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This dissertation addresses fault detection and isolation (FDI) for non-

linear systems based on models using two different approaches. The first ap-

proach detects and isolates single and multiple faults, particularly when there

are restrictions in measuring process variables. The FDI model-based method

is based on nonlinear state estimators, in which the estimates are calculated

under high filtering, and a high fidelity residuals model, obtained from the dif-

ference between measurements and estimates. In the second approach, a robust

fault detection and isolation (RFDI) system, that handles both parameter esti-

mation and parameters with uncertainties, is proposed in which complex mod-

els can be simplified with nonlinear functions so that they can be formulated

as differential algebraic equations (DAE). In utilizing this framework, faults

are identified by performing a statistical analysis. Finally, comparisons with

existing data-driven approaches show that the proposed model-based methods
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are capable of distinguishing a fault from the diverse array of possible faults,

a common occurrence in complex processes.
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Chapter 1

Introduction

Efficient systems with the capability of detecting and locating faults

play an important role in avoiding the undesirable shutdown of a process and

in minimizing the risk of an accident. According to a global survey conducted

by Honeywell [55, 70], some 40% of abnormal operations are caused by human

error. Therefore, in using fault detection and isolation (FDI) systems, the

workload of operators can be reduced by providing them with quicker and more

efficient solutions to avoid unsafe situations. Many industrial accidents could

have been prevented if information about process failures had been available

in a timely fashion. As an example, an environmental disaster struck Lemont,

Illinois in 1990 after a failure in either a heater actuator or thermostat caused

the explosion of a gas oil tank with a capacity of a 60, 000 barrels. The fault

in the system caused the gas oil to overheat, releasing flammable vapors [14].

This case is only one of many as there are multiple cases of similar accidents

reported [65]. These undesirable and destructive situations are a motivating

factor in utilizing FDI systems, as they can be applied to increase operational

reliability. In other words, the ability of a system to perform and maintain its

functions in normal operation as well as in the presence of unexpected faults,

will ultimately improve safety when a fault occurs.
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The principal aim of this dissertation focuses on detecting and isolat-

ing faults in nonlinear systems by means of dynamic modeling. As a result of

computational advances [1, 21], modeling is becoming a driving force in increas-

ing profitability and reliability in operating and controlling complex systems.

However, applying model-based FDI techniques to nonlinear processes is also

a formidable task. Models are becoming increasingly detailed, while analyz-

ing them in the context of control systems is becoming more demanding. In

particular, false alarms can increase because of model uncertainties such as

inaccuracies in model parameters. Nevertheless, having a model available, fa-

cilitates a better understanding of the system’s behavior and provides greater

information about the system’s condition, an important advantage to distin-

guish faults and minimize the rate of false alarms specially under situations

where constraints in the number of measurements available exist. In section

1.1, the principal tasks of an FDI system will be introduced in addition to the

restrictions and assumptions considered in this dissertation. Section 1.2 will

present a review of the current approaches and the motivations of the present

work. Finally, a summary of the scope of this work and a brief description of

the chapters of this dissertation are presented in the Section 1.3.

1.1 Nonlinear FDI Concepts and Main Challenges

A fault detection and isolation (FDI) system is defined as a system

capable of completing the following functions [8, 31, 39, 64]:

• Fault detection’s main function is to determine if there are faults or
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abnormal conditions in the system as well as detecting the time when

the fault occurred. The performance of a fault detection system can be

evaluated based on the following criteria [19, 84]: (1) fault sensitivity,

which refers to the ability to detect faults of a reasonably small size; (2)

prompt detection, which is defined as the ability to detect faults with

a small delay after their arrival; (3) robustness, which is related to the

capability of the detection system to operate in the presence of noise,

disturbances and modeling errors with a low false alarm rate.

• Fault isolation whereby the kind and location of the fault are deter-

mined. The isolation performance is evaluated based on the ability to

distinguish single and multiple faults.

Figure 1.1 shows the general structure of an FDI system. The task of

the FDI system is to generate an isolation statement F, which contains infor-

mation about the kind, location and further details about the fault (such as

qualitative percentages indicating the confidence of the diagnosis) that can ex-

plain the abnormal behavior of the process. This isolation objective is achieved

in the context of five assumptions. First, it is assumed that the FDI system

is operating on-line. Consequently, the faults are not presented initially in the

system but will arrive some time later. Second, fault models that describe

the behavior of the system under an abnormal condition are not available,

instead plant data in normal operation is accessible. Therefore, only fault-free

models can be used to generate the isolation statement F. Third, the kinds of

3



faults considered include: actuator, sensor and process faults. Fourth, there

are restrictions in the quantity of measurements available. For example, the

controller outputs,uc, are available but there is not information available at the

output of the actuators, ua. Also, some outputs, y, of the system are attain-

able. Lastly, abrupt and incipient or small faults may be considered. These

are the restrictions considered in the design of the proposed FDI approaches

in this dissertation so that they can be applied to single and multiple faults

situations.

Figure 1.1: Structure of the FDI System

For a better understanding of how the isolation system is comprised, a

model, h(u, y), is needed that represents the normal operational behavior of

the plant, utilizing u and y. This model can be derived based on data, first
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principles or a combination of both. Hypotheses can be obtained by dividing

h(u, y) into smaller components hi(u, y), whereby it is assumed that each of

the hypotheses hi(u, y) generates a diagnosis statement Fi. Thus, the purpose

of the decision algorithm (see Figure 1.1) is then to combine the information

or select the best statement, Fi, to form the diagnosis statement F . The

procedure to generate the hypothesis depends on the method that is used, and

it will be detailed in Chapters 2 and 3.

1.2 Existing Approaches in Nonlinear FDI

The diverse range of FDI systems found in the literature can be clas-

sified into three main categories: model-based, data-driven, and combined

approaches. In this section, an overview of the main approaches that have

been applied to nonlinear systems is presented. Table 1.1 summarizes the

different approaches that can be used for nonlinear systems, Table 1.2 concen-

trates the applications in which these techniques have been utilized and Table

1.3 compiles the main advantages and disadvantages for every technique.

Table 1.1: Nonlinear Fault Detection and Isolation (FDI) Approaches

Model-based Approaches Data-driven Approaches Combined Approaches

State estimators Neural networks NN-PCA
ARRs Fuzzy logic FL-SPM

Soft computing ARRs-PCA
Expert systems State estimation-FL

PCA
Kernel PCA

PLS

5



Table 1.2: Nonlinear FDI Applications Reported in the Literature

Model-based Approaches Data-driven Approaches Combined Approaches

CSTR [15, 52, 71] Power plants [68, 73, 77] Polymerization reactor [95]
Steam generator [8, 10] Polymerization reactors [50, 95, 100] Steam generator [46, 80]

Power plant [61] Distillation column [100] Power plant [25]
Distillation column [47] CSTR [3, 93] CSTR [56]

Aircraft engine [91] Wastewater treatment process [46] Coal mills [59]
Fluid catalytic cracking unit [75] Gas turbines [7, 60] Combined cycles [5]

Polymerization reactor [75] Fluid catalytic cracking unit [53]
Combustion engines [38] Automotive engine [87]

Induction motor [78]
Gas turbine [72]

PET production [96]

Nonlinear model-based FDI systems [9, 29, 31, 38, 39, 84], which use dy-

namic models that are physically-based or empirically-defined, consist of two

methods. The first method utilizes nonlinear state estimators and the concept

of analytical redundancy, where residuals are derived by calculating the dif-

ference between the actual outputs of the monitored system with the outputs

obtained from a mathematical model and the state estimator. To detect faults,

the residuals are evaluated by using either threshold values or statistical deci-

sions. To isolate faults, a signature matrix can be defined in which residuals

that fall outside of the threshold values are matched with different faults that

could occur in the system. Another alternative is by using parameter estima-

tion [36, 37], whereby variations of parameters of the nonlinear model, from

their nominal normal operation values, are associated with different faults.

The later isolation technique is known as a parametric approach. In the sec-

ond method, analytical redundancy relations (ARRs) (or parity equations) are

6



Table 1.3: Advantages and Disadvantages of Utilizing Nonlinear Fault Detec-
tion and Isolation (FDI) Approaches

Approach Advantages Disadvantages

Model-based Explains the FDI results through Difficult to apply using complex
physical reasoning models

Robust under the effect of noise Parametric approaches are limited
and adaptable to distinguish single/multiple faults

Constant threshold values decrease
detection sensitivity

Uncertainties in the model parameters
generate false alarms

Data-driven Handles a large number of Unable to provide an explanation
measurements of the FDI conclusions

Efficiently detects faults Does not deal with false alarms
Does not perform well in the presence of

disturbances
Combined approaches Takes the strengths of Model-based Multiple alternatives, making it difficult

and Data-driven methods to choose one
Deals with multiple faults A few comparisons have been reported

utilized [8, 78], where residuals are obtained through differential-algebraic re-

lationships that are generated by using the nonlinear model. The ARRs are

ideally equal to zero. Faults are then detected when a nonzero value is pre-

sented in any of these equations and the isolation mechanism uses a signature

matrix. There are multiple alternatives to generate these ARRs, using struc-

tural representations generated by bipartite graphs [44], bond graph modeling

[10, 67] or by means of polynomial differential algebraic equations [78]. Al-

though there are efficient algorithms that have eased the generation of ARRs

[26, 44], the generation of these relations require considerable effort depending

on the complexity of the model.

Examples of the application of model-based FDI methods are: CSTR
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[15, 52, 71], binary distillation column [47], polymerization processes [75, 96],

gas turbine [72], a fluid catalytic cracking unit [75], polyethylene terephthalate

(PET) production [96], steam generator [8, 10], reduced power plant models

[61] and combustion engines [38].

An important disadvantage of these nonlinear model-based FDI tech-

niques occurs when there are process-model mismatches which significantly

decrease their reliability. Uncertainties in model parameters is one cause of

these mismatches. Research that addresses this problem consists of designing

state estimators capable of parameter estimation [22]. However, restrictions

surrounding the observability of these parameters limit this approach. An-

other option includes robust concepts in FDI techniques, whereby they deal

with parameter uncertainty for restrictive nonlinear systems, utilizing sliding

mode concepts and residual generation [27, 30, 92]. In this dissertation, the

sliding mode concepts are applied to deal with the bounded uncertainties of

some parameters of the model that cannot be estimated. In addition, this

simplifies the complexity of the fault-free model with algebraic nonlinear func-

tions that have bounded uncertainty in the model parameters. Further details

can be found in Chapter 5.

Data-driven methods [29, 82, 83] typically use signal processing tech-

niques on plant data to extract characteristic parameters and assess abnor-

mal conditions using the following two methods: (1) Computational intelli-

gent methods [7, 60, 73, 95, 100] (or artificial intelligence approaches) whereby

these techniques incorporate heuristics and reasoning in the FDI decisions.
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Accordingly, using these methods involves uncertainty, conflicting and non-

quantifiable information. The detection and isolation mechanism of the ma-

jority of these techniques is inspired from model-based approaches, whereas

complex system dynamics can be modeled by using non-mathematical mod-

els or heuristic alternatives. Examples of the FDI approaches reported are

based on: soft computing [62], neural networks [68, 77, 95, 100], fuzzy logic

[37, 51, 60, 63], expert systems [4], pattern recognition and machine learning

[81]. An important disadvantage of some of these computational techniques

is their inability to provide physical reasoning, due to operating as a black

boxes, or to provide an explanation for FDI conclusions. (2) Statistical process

monitoring (SPM) techniques, mostly by PCA [2, 66, 93] and PLS [50, 56, 93].

These techniques have the ability to handle a large number of measurements

by compressing them into a few indexes such that operating conditions can

be visualized in lower dimensional plots. However, these techniques have lim-

itations when they are applied to complex nonlinear systems in which new

techniques, such as Kernel PCA [3, 46], are a topic of current research. Also,

when there are restrictions in the number of available system measurements,

the isolation conclusions are limited. The advantages and disadvantages of

utilizing PCA and Kernel PCA will be reviewed in Chapter 4.

Examples of industrial applications reported by using data-driven meth-

ods are: power plants [68, 77], polymerization reactors [50, 95, 100], distillation

columns [100], CSTR [3, 93], wastewater treatment process [46], gas turbines

[7].
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A good compromise between the use of data-driven or model-based FDI

approaches is to integrate both types of techniques into one method. Typically,

these combined approaches use model-based principles for the detection, while

the isolation task is accomplished by data-driven techniques [80, 97]. Some of

these techniques reported use ARRs and PCA [32, 46], state estimators and

fuzzy logic [63]. Examples of industrial applications are: steam generator

[80], power plant [25], CSTR [56], coal mills [59], combined cycle gas turbine

[5], and fluid catalytic cracking unit [53]. A combined FDI approach will be

introduced in Chapter 2 which will explore the advantages of the mixing for

FDI purposes.

Methods based on models, data or both can be extended to solve the

issue of multiple fault identification. Solutions that solve multiple sensor fault

cases are found in [20, 79], where the large space of possibilities is simplified

using artificial intelligence. Similar approaches can be obtained utilizing com-

bined approaches where fault signatures, derived from ARRs, are analyzed

by means of intelligent techniques [87]. However, in this dissertation, multiple

fault cases are analyzed when different multiple kinds of faults (such as sensor,

actuator or process faults) are included under a restrictive amount of available

measurements. With this restriction, there is no guarantee of successful iden-

tification, except for extracting major information from the residuals. This

challenging situation will be discussed in Chapter 3.

Finally, a few comparisons between nonlinear FDI techniques, for in-

stance model-based and data-driven, have been reported in the literature [94].

10



Qualitative comparisons can be found in [19, 81, 83] pointing out the advan-

tages and disadvantages of the different methods. However, more detailed

analysis is required. An important aim of this work is to perform compar-

isons between the proposed model-based approach in Chapter 3 and existing

solutions in order to evaluate their performance in identifying faults. Further

details can be found in Chapter 4.

1.3 Outline of this Work

According to the definitions, constraints and literature review regard-

ing FDI systems presented in Sections 1.1 and 1.2, the contributions of this

dissertation are focused on solving the following four aspects: (1) how to iden-

tify single and multiple faults in nonlinear systems; (2) how to facilitate the

use of complex models in order to achieve the FDI objectives; (3) how to min-

imize false alarms and increase robustness in the case there are uncertainties

in the model parameters; and finally, (4) how this proposed model-based FDI

system performs in comparison with existing data-driven and model-based ap-

proaches. To solve these challenges, the dissertation is divided into six chapters

and a brief description of each chapter is as follows:

Chapter 2 proposes a model-based FDI approach that is able to distin-

guish single faults that have the same fault signatures. The detection mech-

anism is based on nonlinear state estimation. A fuzzy system combined with

parameter estimation is used to isolate faults. The performance of the FDI

system is validated by using an air heater laboratory experiment that is im-
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plemented using Labview.

Further improvements to facilitate the FDI task for single and multi-

ple fault cases is proposed in Chapter 3. The fault detection mechanism is

enhanced by increasing its sensitivity. Desirable characteristics of the state

estimators, specifically based on Kalman filter, are defined such that the per-

formance in the detection and identification of the faults is augmented. The

isolation mechanism designed uses a residuals model combined with parameter

estimation. Utilizing the evaluation criteria that is defined in section 1.1 for

FDI systems, Chapter 4 presents a comparison of the technique designed in

Chapter 3 with existing approaches, specifically PCA and Kernel PCA. Advan-

tages and disadvantages of these methods will be pointed out under different

cases of single and multiple faults. The air heater experiment and a CSTR

simulation will be used for validation and comparisons.

Chapter 5 deals with both the simplification of complex models by for-

mulating them as differential algebraic equations (DAE) and the improvement

of robustness by handling parameters with uncertainties. A nonlinear state

estimator able to manage both parameter estimation and parameters with un-

certainties is designed using sliding mode theory. This nonlinear estimator is

utilized to design a robust FDI system. The detection mechanism is based on

parameter estimation and the isolation procedure uses the corrections provided

for the state estimator by applying a statistical analysis. A steam generator

system is used to validate this approach where process faults are considered.

Finally, conclusions of this work will be presented in Chapter 6 where

12



the contributions and future directions are indicated.
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Chapter 2

Single Fault Nonlinear Model-Based FDI

Approach

In Chapter 1, a review of the main approaches that can be used for non-

linear FDI systems was illustrated. The constraints considered to design the

FDI system were also introduced. This chapter focuses on presenting an FDI

system, in which the detection mechanism is based on nonlinear state estima-

tion and the principal contribution concentrates on the isolation mechanism.

Based on its performance in locating faults, weaknesses will be identified for

further improvements in Chapter 3. This FDI system uses fault-free models

and is implemented and validated on-line using an air heater lab experiment

whereby single actuator and sensor faults are considered.

Several sections are presented in this chapter. Section 2.1 explains the

motivation behind the design of this approach in which the main objective is

to differentiate faults with restrictions of available information. Section 2.2

presents the proposed fault detection and isolation technique. Then, a brief

description of an air heater experiment and its dynamic model formulation are

presented in Section 2.3. The proposed FDI technique is validated when com-

paring the air heater experiment with simulations during normal operation and
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under sensor and actuator faults. Finally, the advantages and shortcomings

provided by the proposed FDI method will be summarized in Section 4.5.

2.1 Motivation

A typical model-based FDI technique is divided into two components

[8]: (1) residual generation, in which the residuals are defined as the difference

between the measured signals of the plant and the estimates from a state es-

timator; (2) residual evaluation, whereby the residuals are evaluated to detect

and isolate the faults. This chapters’s main contribution is found in the de-

sign of a residual evaluation methodology capable of distinguishing different

types of faults and addressing the problem of non-isolability derived from the

signature matrix.

To better clarify the problem, Table 2.1 shows a typical signature ma-

trix where each row is associated with a residual that extends beyond its

threshold value and each column is associated with a fault. The fault isola-

tion process is performed by matching columns to the actual residual response.

Faults f1 through f4 can be distinguished from one another. However, faults f5

and f6 cannot be distinguished from one another or from the previous faults,

leading to a situation of non successful isolation of the faults. In order to

solve this problem, complex model-based techniques based on analytical re-

dundancy relations (ARRs) can be found in [8, 78], in which the rows of the

signature matrix of Table 2.1 are replaced by differential-algebraic relations

generated using the nonlinear model. This approach has two main disadvan-
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tages. First, depending on the complexity of the model, the generation of

ARRs can prove to be a formidable task. Second, once the ARRs are found,

there is no guarantee that all the faults are distinguishable.

Table 2.1: Example of a Fault Signature Matrix

Residuals f1 f2 f3 f4 f5 f6

r1 1a 0b 0 0 xc x
r2 1 1 0 0 x x
r3 0 1 1 0 x x
r4 0 0 1 1 x x

a residual has exceeded threshold value.
b residual has not exceeded threshold

value.
c it is possible to have either option 0 or

1.

The method proposed here combines nonlinear model-based fault de-

tection with fuzzy theory concepts and parameter estimation. The residuals

are generated by using an extended Kalman filter (EKF). The EKF is the most

widely used estimation algorithms for nonlinear FDI systems [15, 47, 54, 75, 91].

The fault isolation method is inspired by the utilization of fuzzy ideas found

in [28, 43, 88] and parametric approaches developed in [36]. The fuzzy system

evaluates the residual trends generating possible fault candidates. Verification

of these hypotheses are achieved through parameter estimation of the fault-free

model by solving a nonlinear optimization problem.

2.2 Formulation of the Nonlinear FDI System

The architecture of the FDI method is illustrated in Figure 2.1 and it

is divided into two components:
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Figure 2.1: Fault Detection and Isolation (FDI) System

a) Residual generation, where residuals r[k] are calculated as follows:

ri[k] = zi[k]− ŷi[k] (2.1)

where ri is the residual of the ith measurable output zi[k] and the estimate

for the ith output ŷi[k] is obtained by using an extended Kalman filter

(EKF).

b) Residual evaluation is divided into three elements: (1) the fault detec-

tor step, whereby faults are detected once the residual trajectories have

reached constant threshold values; (2) the hypothesis generation sys-

tem, which continuously provides a possible explanation of the abnor-

mal trends of the residual trajectories by creating a list of faults. Every

fault has an associated membership grade that ranges from 0 to 1; (3)

the quantitative fault isolator system that is activated once a fault is

detected by the fault detector system. The evaluation of the faults with

the biggest membership grades, provided by the hypothesis generation

system, are calculated using a parameter estimation mechanism.
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The elements of the residual components will be detailed in the follow-

ing subsections.

2.2.1 Nonlinear State Estimator: Extended Kalman Filter

For nonlinear systems, the extended Kalman filter (EKF) is a widely

used algorithm for state estimation [74]. The EKF linearizes the model about

the current estimated state. The estimation of the recursive predictive Kalman

filter is based on minimizing the estimate error covariance. In order to design

the EKF, a nonlinear dynamic model is required and given by equations 2.2

and 2.3:

xk = f (xk−1, uk−1, wk−1) (2.2)

y = h (xk, vk) (2.3)

where:

• x ∈ <n is the vector of state variables

• u ∈ <m is the vector of system inputs

• y ∈ <p is the vector of system outputs

• f (·) is the nonlinear state equation function

• h (·) is the nonlinear output function

• w and v are gaussian white noises with covariance matrix Qk and Rk re-

spectively. These covariances satisfy the following conditions: E
(
wkw

T
j

)
=

Qkδk−j, E(vkv
T
j ) = Rkδk−j and E(vkw

T
j ) = 0
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The EKF at each time step does the following: (1) a initial prediction

of the state variables is obtained utilizing the dynamic model; (2) a correction

of the predicted states is calculated where the error covariance of the estimator

is minimized by using the observation model of the process.

Based on the discrete model (equations 2.2 and 2.3) in the prediction

step, the approximate values of the state vector x−k (equation 2.4) and mea-

surement vector y−k (equation 2.5) are obtained without considering the values

of the noise wk−1 and vk and applying the value of the a priori state estimate

x̂k−1.

x−k = f (x̂k−1, uk−1, 0) (2.4)

y−k = h
(
x−k , 0

)
(2.5)

Consequently, equation 2.4 is linearized by computing the following partial

derivative:

A[i,j] =
dfi
dxj
|x̂k−1,uk−1

(2.6)

Thus, a prediction of the error covariance P−k is obtained using equations 2.4

and 2.6.

P−k = AkPk−1A
T
k +Qk−1 (2.7)

In order to correct the state predictions (equation 2.4), the observation

model is linearized.

H[i,j] =
dhi
dxj
|x−k ,uk−1

(2.8)
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Hence, the Kalman gain Kk is calculated as follows:

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
(2.9)

Next, a posteriori estimate x̂k is obtained by using the Kalman gain and mea-

surement vector zk.

x̂k = x−k +Kk

(
zk − y−k

)
(2.10)

Then, the error covariance Pk is updated by:

Pk = (I −KkHk)P
−
k (2.11)

Finally, in order to calculate the residuals of equation 2.1, the vector

of the estimated outputs ŷk is calculated by evaluating the estimation of the

states, derived in equation 2.10, in equation 2.3 as follows:

ŷk = h (x̂k, 0) (2.12)

2.2.2 Fault Detector

Faults are detected at sampling time k once the mean of the absolute

value of the residuals ri[k] exceeds the threshold value βi,

fi [k] =

{
1,

∣∣µN1,i
[k]
∣∣ > βi

0, otherwise
(2.13)

where the variable fi[k] represents a signal which is equal to 1 in the case

there is a fault in residual i and 0 otherwise. The value of the empirical mean

µN1,i
[k], for the residual i, is obtained from the following expression,

µN1,i
[k] =

1

N1

k∑
j=k−N1

ri [j] (2.14)
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and the integer N1 provides the number of past samples used to calculate the

empirical mean. A second condition, called final fault detection (FFDi [k]),

is introduced to reduce the number of false alarms without having to change

the threshold values. This condition evaluates the consecutive occurrence of

the binary signal fi [k],

FFDi [k] =

{
1,

∑k
j=k−γ fi [j] = γ

0, otherwise
(2.15)

where the final fault detection signal FFDi [k] is calculated when the number

of consecutive fi [k] reaches a constant value γ.

Finally, the threshold values βi for each residual, the index N1 and the

parameter γ for the fault detector system can be calculated off-line by using

normal operating conditions data.

2.2.3 Hypothesis Generator

Utilizing the residual trajectories, a fuzzy system is used to define a

list of fault candidates with membership grade. The objective of this system

is to differentiate among fault categories such as sensor, actuator or process

faults. Fuzzy concepts are used to evaluate a set of rules for the input/output

membership functions [40].

Figure 2.2 shows the membership functions of the inputs/outputs. Three

trapezoid-shaped functions, with linguistic variables smalli, mediumi and

largei, are used for each residual input i in which their parameters are de-

fined based on each threshold value βi associated with each residual.
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(a) Membership Functions of the Inputs

(b) Membership Functions of the Outputs

Figure 2.2: Membership Functions of the Hypothesis Generator System

The membership functions of the outputs are singleton functions, and

the linguistic variables are named as the potential faults of the system. Equa-

tion 2.16 shows the Mamdani [40] type rules used in this system, where the

antecedents and consequents are comprised of fuzzy sets,

Rulei :If r1 is A1i, and r2 is A2i, · · ·, and rN2 is AN3i

Then gi is Bi

(2.16)

where indexes N2 and N3 are the maximum number of residuals and mem-

bership functions respectively. A1i through AN3i and Bi represent the mem-
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bership functions of the inputs/outputs. The residuals r1...rN2 and gi are the

inputs/outputs of the fuzzy system. A fuzzy set, for instance for the residual

rj, is defined as a set of ordered pairs 〈rj, µAki (rj)〉. This indicates that the

membership function Aki is related to each membership grade µAki (rj) by a

real number in the closed interval [0, 1].

Finally, the degree of fulfillment of each rule, or the firing strength αi,

which are the membership grade values of the hypotheses, are obtained by

using the following expression,

αi = minimum{µA1i
(r1) , µA2i

(r2) , . . . , µAN3i
(rN2)} (2.17)

In the case that multiple rules are associated with the same fault, their

associated firing strength are accumulated using the set union operation, given

by its maximum. The hypotheses are selected depending upon the membership

grade values, which are the largest values of every fuzzy output that has an

associated fault. This procedure is explained in more detail in Section 2.3.1.

2.2.4 Quantitative Fault Isolator

A parameter estimation mechanism is designed to validate which hy-

potheses represent the true fault based on the list of possible faults. Figure 2.3

shows that the estimation is determined by evaluating the following three steps:

Step 1: Once a fault is detected by the fault detector system, faulty

data for the inputs U and outputs Y are collected during a constant size
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Figure 2.3: Evaluation of the Hypothesis

window N.

Step 2: Every possible fault candidate has a certain number of param-

eters associated in each model that need to be estimated; one candidate at a

time is picked.

Step 3: A vector of parameters P is obtained by searching over a

defined region. The final P is the one that minimizes the Mean Absolute

Percentage Error (MAPE) of the objective function defined in below,

J [k] =minP
100

N

k∑
i=k−N

|Y [i]− h (X [i] , P )|
Y [i]

such that lb ≤ P ≤ ub

(2.18)

the nonlinear least squares problem uses the nonlinear model (similar to equa-

tions 2.2 and 2.3) given in the following expression,

X [k] = f (X [k − 1] , U [k − 1] , P ) (2.19a)

YM [k] = h (X [k] , P ) (2.19b)
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where the parameters P are bounded (not time-variant) and can be estimated

by the nonlinear optimization problem. The limits of these parameters are

defined by the lower, (lb), and upper, (ub), bounds respectively.

Step 4: An acceptable estimate of the parameters should bring its

MAPE close to zero.

2.3 Case Study: Air Heater Laboratory Experiment

The air heater laboratory experiment has been used for fault diagnosis

applications [11] and educational publications in process control [23, 41]. Fig-

ure 2.4(a) shows the air heater experiment connected to a laptop through a

USB data acquisition device that allows up to eight analog plant outputs and

two analog plant inputs. Figure 2.4(b) illustrates the physical variables of the

air heater system with the following inputs: (1) the forced flow of air q [m3/s]

which is proportional to the fan voltage vf [Volts]; (2) the heat, emitted by the

heater, Q [J/s] which is proportional to the voltage of the heater vQ [Volts].

The disturbance variable is the temperature of the ambient Tamb.

The air heater model contains four state variables, which correspond to

the temperature of each air heater section, and were derived based on energy

and balance equations. Further details of their formulation are presented in

Appendix A. The model of the air heater is summarized in the following set
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(a) Picture of the Air Heater Experiment

(b) Physical Variables of the Air Heater and Sections of the Air
Heater

Figure 2.4: Main Characteristics of the Air Heater Experiment

of differential equations:

dT1

dt
= vfα0 (Tamb − T1) + βvQ (2.20a)

dT2

dt
= vfα1 (T1 − T2) + γ1 (Tamb − T2) (2.20b)

dT3

dt
= vfα2 (T2 − T3) + γ2 (Tamb − T3) (2.20c)

dT4

dt
= vfα3 (T3 − T4) + γ3 (Tamb − T4) (2.20d)

y (t) =
[
T1 T2 T3 T4

]T
(2.20e)
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Four measurable temperature outputs are distributed along four sec-

tions of the air heater pipe. Two sets of data were used to obtain the pa-

rameters of the model. In the first set of data, a pseudo random sequence,

shown in Figure 2.5(a), was generated for the inputs and used to calculate

the parameters given by Table A.1 of Appendix A. Notice that the red line

(thin) corresponds to the voltage of the fan that ranges from 1 to 4 volts. The

trajectory of the heater voltage is plotted by the black line (thick) and ranges

from 0 to 5 volts.

Figure 2.5(b) shows the input trends generated for validation of the

model. Figure 2.6 illustrates the response trajectories, where the red lines

(thin ones) are the measurements of the temperatures in each section, grouped

into the vector Yreal, and the black lines (thick) are the estimates given by

Equation 2.20e. The largest mean absolute percentage error (MAPE), defined

by

MAPE =
|Yreal − y (t)|

Yreal
100[%] (2.21)

was 11.10 [%] in T1.

2.3.1 Simulation Results: Sensor and Actuator Faults

Four steps were programmed in LabVIEW for the development and

testing of this technique:

Step 1: The implementation of the extended Kalman filter (EKF),

which is used to obtain the residual values defined in equation 2.1 and shown
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(a) Inputs Air Heater for Identification of Model Parameters Versus
Time

(b) Inputs Air heater for Validation of the Model Versus Time

Figure 2.5: Pseudo Random Signals Utilized for Identification and Validation
of the Air Heater Model
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(a) Temperature Section 1 vs. Time (b) Temperature Section 2 vs. Time

(c) Temperature Section 3 vs. Time (d) Temperature Section 4 vs. Time

Figure 2.6: Validation of the Model

in Figure 2.7.

Step 2: The parameters for fault detection were defined based on the

normal operating conditions. The threshold values used were βi = 0.015,

while the number of sample data was N1 = 10, and the number of consecutive

detections in order to avoid false alarms was γ = 5.

Step 3: Six different faults were considered to implement the hypoth-
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(a) Residuals Trajectories Section 1 vs. Time (b) Residuals Trajectories Section 2 vs. Time

(c) Residuals Trajectories Section 3 vs. Time (d) Residuals Trajectories Section 4 vs. Time

Figure 2.7: Residuals of the Air Heater in Normal Operation

esis generator system, four sensor faults as biases in the temperature measure-

ments and two actuator faults in either the fan or the heater voltage signals.

Equation 2.22 shows the set of rules that are constructed based on the possible

set of faults,

If r1 is not small and r2 is not small and r3 is

small and r4 is small Then g1 is sensor1

(2.22a)
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If r1 is small and r2 is not small and r3 is

not small and r4 is small Then g2 is sensor2

(2.22b)

If r1 is small and r2 is small and r3 is not small

and r4 is not small Then g3 is sensor3

(2.22c)

If r1 is small and r2 is small and r3 is small and

r4 is not small Then g4 is sensor4

(2.22d)

If r1 is not small and r2 is not small and r3 is

not small and r4 is not small Then g5 is actuator
(2.22e)

where ri is the residual of section i, and gi indicates the most probable fault.

The membership functions utilized were defined in Figure 2.2. The rules are

defined such that they are able to distinguish between sensor and actuator

faults. The first four rules are associated with sensor faults, while the last rule

is associated with actuator faults. This set of rules is derived from physical

reasoning, specifically analyzing the responses of the air heater model, defined

in equation 2.20, when faults occur. For instance, as a result of a bias in

the temperature sensor of section 1, a significant change is expected in tem-

peratures of sections 1 and 2, given by equations 2.20a and 2.20b. A similar

situation occurs when there is an actuator fault, in which significant changes

in all the sections of the air heater are expected.

To clarify the rules introduced above, Figure 2.8 illustrates the absolute

values of the residual trajectories of section 2 that are shown in Figure 2.7(b).
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Even though the fault detector system has not detected any fault, the hypoth-

esis generator system operates and provides potential faults. The membership

functions of input faults shown in Figure 2.2(a) are constantly evaluating the

residual trajectories.

Figure 2.8: Example of How the Hypothesis Generator Works

For instance, at t = 300 [s] in Figure 2.8, the residual value r2 = 0.008

is evaluated in the three membership functions respectively (µsmall2 = 0.77,

µmedium2 = 0.23 and µbig2 = 0). The other residuals (r1 = 0.006, r3 = 0.009

and r4 = 0.003) are evaluated in the membership function small (µsmall1 = 1,

µsmall3 = 0 and µsmall4 = 0.23). Thus, equation 2.23 shows how to calcu-

late the firing strength α1 (defined by equation 2.17) for the rule given by

equation 2.22a. By calculating the firing strength for the other rules of equa-

tion 2.22, the fuzzy outputs are defined as a set of ordered pairs as follows:
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[〈f1, 0〉, 〈f2, 0〉, 〈f4, 0〉, 〈f5, 0〉]. In this particular case there is no fault because

the firing strength for each rule is equal to zero,

α1 = min{1− µsmall1 (r1) , 1− µsmall2 (r2) , µsmall3 (r3) ,

µsmall4 (r4)} = 0
(2.23)

Step 4: Three fault scenarios are considered: a bias in the sensor of

section 1 and two separate actuator faults, including a fan fault and a heater

fault where abrupt saturation is inserted in these voltage inputs. Figure 2.9

shows the residual trajectories of sections 1 and 2 when a bias in senor of

section 1 was inserted at t = 110 [s]. As a result, this bias introduces abrupt

changes in the residuals of sections 1 and 2. The residuals of the other sections

remain without any change. For this case, the rule defined by equation 2.22a is

completely fulfilled and the fault is detected at t = 115 [s]. Thus, verification

is no longer required.

(a) Residuals Trajectories Section 1 vs. Time (b) Residuals Trajectories Section 2 vs. Time

Figure 2.9: Residual Trajectories for the Section 1 and 2 in the Presence of a
Sensor Fault.
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Figure 2.10 shows the residual trajectories in the case when a saturation

of the fan voltage is introduced in the air heater at t = 106 [s]. For the case

of actuator faults, there are changes in the residual trajectories of all sections.

Thus, these changes can be captured by the hypothesis generator such that

the rule of equation 2.22e is activated. The fault is detected at t = 112 [s]

and the faulty data of the inputs/outputs are collected during a constant time

window of N = 50.

(a) Residuals Trajectories Section 1 vs. Time (b) Residuals Trajectories Section 2 vs. Time

Figure 2.10: Residual Trajectories for the Sections 1 and 2 in the Presence of
an Actuator Fault. The Saturation of a Fan Voltage

Based on the air heater model formulation of equation 2.20, the pa-

rameter β is associated with the heater fault, the parameters α0, α1, α2 and

α3 are associated with fan fault and the parameters γ0, γ1, γ2 and γ3 are asso-

ciated with sensor faults and disturbances. Depending upon the information

obtained from the hypothesis generator, the parameters are evaluated. The

worst case scenario is to evaluate the three conditions for one fault.
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For the fan fault case, the parameters associated with the fan and heater

faults are estimated by using equation 2.18. The objective function values

evaluated with the optimal parameters were Jf = 48.35 [%] and JH = 68.12 [%]

for the fan and heater respectively. The least error is given by the estimation

of the parameters associated with the fan fault. Similarly, when heater fault

is inserted at t = 115 [s], the fault is detected at t = 121 [s]. The rule given by

equation 2.22e is activated. The objective functions were Jf = 68.72 [%] and

JH = 59.3 [%] for the fan and heater respectively. The parameters associated

with the heater fault gave the lowest error.

2.4 Summary

In this chapter, a nonlinear model-based fault detection and fuzzy set

isolation system are proposed to solve the problem of non-isolability for single

faults that can be summarized in the following steps:

• The residuals are calculated by using an EKF and faults are detected by

using constant threshold values.

• The fault isolation scheme uses a fuzzy system that evaluates the residual

trends generating possible fault candidates.

• Verification of these fault candidates (hypotheses) are achieved through

parameter estimation of the fault-free model by solving a nonlinear op-

timization problem.
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The FDI system was successfully validated on-line for an air heater

experiment in which sensor and actuator faults were considered. According to

the performance of the FDI system, which is based on the residual trends, the

following aspects of the methodology require further improvement:

• The performance of the EKF depends on its tuning parameters such as

Qk and Rk. Therefore, an analysis of the objectives of the estimator for

purposes of FDI require definition.

• Constant threshold values for the detection mechanism have the advan-

tage of minimizing the effect of false alarms. However, the detection

system could lose sensitivity.

• The residual trends when faults occur in the system are important to

define the set of rules for the Hypothesis Generator. Thus, a better

understanding of the residual dynamics is needed.

• Once hypothesis are formulated, the verification is performed through

parameter estimation. This procedure has the ability to be used to dif-

ferentiate faults with similar residual trends, as in the case of the actuator

faults in the air heater experiment. However, the disadvantage lies in

that the estimation of parameters is obtained over the nonlinear model,

therefore solving a nonlinear optimization problem in which depending

upon the complexity of the model, no unique solution is guaranteed,

generating inconsistencies in the verification of the hypotheses.
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These four aspects will be investigated in Chapter 3, whereby condi-

tions regarding the tuning parameters of the EKF will be defined. A sensitive

detection system will be created, and an isolation system is designed that will

analyze the possibility of false alarms. Finally, for a better generation of the

hypotheses, a model that will allow a major understanding of the residual

trends is formulated. This model can be used for parameter estimation, that

is performed over a linearized model, consequently facilitating the verification

of the hypotheses.
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Chapter 3

Single/Multiple Nonlinear Model-Based FDI

based on Residuals Modeling

The mechanism of detection and isolation of the model-based approach

presented in Chapter 2 [11, 13] is based on both an extended Kalman filter,

in which residuals are generated, and a fuzzy system, whereby a possible set

of faults is formulated. FDI is further verified through parameter estimation

where the faulty measurable trajectories are matched. A disadvantage of this

approach is that further understanding of the residual trends is needed so that

their trajectory trends can be predicted when a fault occurs. The main objec-

tive of this chapter is to develop a model for these residual trends, which will

serve as the basis to detect and isolate multiple and single faults. Furthermore,

a new detection mechanism is presented such that sensitivity to detect faults

is increased.

This chapter is comprised of six sections. Section 3.1 presents the

main components of the model-based FDI system. Next, Section 3.2 presents

the desirable characteristics for the Kalman filter to best achieve the FDI

objectives. Section 3.3 formulates the dynamic residuals model that will be

used for FDI purposes, while its mechanism is explained in Section 3.4. This

38



approach is then validated in Section 3.5 utilizing the air heater experiment

and a CSTR, which is simulated using unit operation software. Finally, closing

remarks are presented in Section 3.6.

3.1 Components of the FDI System

The idea behind the formulation of a residuals model to detect and

isolate faults is illustrated in Figure 3.1, whereby the left part shows the state

estimator for control and the control system blocks, which are typically the

components used for operating the system under control. The right portion of

Figure 3.1 illustrates how the FDI system is designed. Another state estimator,

which has different characteristics than the one used for control purposes,

is utilized to generate the residuals. These residual trends can be predicted

using the residuals model block at each time step. Additionally, using both the

residuals and predicted residual trends, the mechanism of detection is designed

whereby the detection of the fault is performed at each time step. Once a

fault is detected, the residuals model and the residual signals are utilized to

isolate the faults at each time step; where at the output of this isolation

block, different modes are generated, such as Faultik or False Alarm. These

three components (the residuals model, detection and isolation mechanism)

are presented later in this chapter.

Note that this approach can be applied to either closed-loop or open-

loop systems. To clarify the terminology used in this chapter, the residuals

Resk are calculated from the difference between the measurements and the
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Figure 3.1: Fault Detection and Isolation (FDI) System

EKF estimates. Also, the predicted residuals rk refer to the values obtained

from the residuals model that is presented in Section 3.3.

3.2 Desirable Characteristics for the State Estimator to
Detect Faults

There are multiple fault detection approaches based on nonlinear state

estimation that can be found in the literature [15, 47, 54, 75, 91]. However,

most of these nonlinear estimators require the tuning of some of their param-

eters in order to guarantee a good performance. This section concentrates on

analyzing an extended Kalman filter approach, which requires knowledge of

noise statistics. The noise covariances Qk and Rk (defined in equations 2.2

and 2.3) are generally unknown. Consequently, methods for estimating these

noise covariances from process data can be found in [17, 42, 58]. This section’s

objective is to establish conditions that will best help to accomplish the FDI

objectives for nonlinear systems. The estimation algorithm defined in Section

2.2.1 will be used for this analysis in which the state estimates are obtained
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by:

x̂k = f (x̂k−1, uk−1, 0) +Kk (zk − h (f (x̂k−1, uk−1, 0) , 0)) (3.1)

where the Kalman gain, Kk(Qk, Rk), given by equation 2.9, is in terms of these

noise covariances. The second term to the right of Equation 3.1 is in terms of

the measurements vector zk, while the first term provides the predictions of

the model based on the a priori estimated state x̂k−1 without considering noise

effects. Notice that depending upon the value of Kk more preference could be

given to either the measurements or the model predictions. Therefore, large

values of Kk imply greater preference to the measurements suggesting less

filtering, whereas small values of the Kalman gain suggest more importance

to the model predictions. As a result, there is more filtering in the estimates

because noise effects are minimized. The question that arises in the context

of FDI is: What is convenient for detecting faults, more or less filtering? To

answer this question, Figures 3.2 and 3.3 show the predictions of the Kalman

state estimator under different values of Rk and Qk, in which the blue (thin)

lines are the measurements and the dotted (red) trajectories are the estimates.

The norm of the Rk/Qk ratio can be used as a qualitative measurement of the

error of estimation versus filtering in an EKF. For the case when Rk/Qk < 1,

shown in Figure 3.2, the estimation error is low with a mean average percentage

error (MAPE) equal to 0.1%. Note that the Kalman estimations are strongly

influenced by the effect of noise on the measurements. Consequently, the

residual magnitudes, derived from their difference, are very small. On the
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other hand, more filtering can be found in Figure 3.3, when Rk/Qk > 1 with a

MAPE error equal to 1.4%, in which the magnitude of the residuals is larger.

Figure 3.2: EKF Estimations when RK/Qk < 1

To better clarify the source of this estimation error, equation 3.2 shows

the estimation error without considering noise effects (its derivation, including

noise effects is explained in Section 3.3). From this equation, the Kalman gain

Kk plays two important roles. First, convergence in the estimation needs to

be guaranteed, requiring the term (I −KkHk)Ak to be stable. Second, error

in the estimates can result from errors in the values of Qk and Rk.

ek = (I −KkHk)Akek−1 (3.2)

To summarize, the filtering of the measurable trends plays an important
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Figure 3.3: EKF Estimations when RK/Qk > 1

role in analyzing the residuals in faulty situations in the system. The magni-

tude of the residuals is larger, making it possible to analyze its dynamic.

3.3 Derivation of the Residuals Model

This section’s objective is to generate a dynamic function that will be

able to predict the current residual values rk ∈ <p as a function of the previous

residuals rk−1. This dynamic expression is of the following form:

rk = ϕ+G (rk−1) (3.3)

The residuals model is derived by considering the following assump-

tions: (1) the process is formulated as a nonlinear stochastic differential equa-

tion shown in equations 2.2 and 2.3; (2) the nonlinear system is observable;
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(3) the effect of the noises w and v is considered even though these vectors

are unknown; and (4) a state estimator is needed. Then, the EKF algorithm

presented in Section 2.2.1 will be utilized for the formulation of this function.

The measurement vector zk ∈ <p can be approximated by linearizing

equation 2.3 over the state estimated x̂k ∈ <n:

zk ' h (x̂k, vk) +Hk [xk − x̂k] (3.4)

where Hk ∈ <pxn is the Jacobian matrix given by:

Hk[i,j] =
∂h[i]

∂x[j]

|(x̂k,0) (3.5)

The outputs’ estimates ŷk ∈ <p are calculated utilizing the estimations

provided by the Kalman filter:

ŷk = h (x̂k, 0) (3.6)

Therefore, the residuals vector of equation 2.1 can be written as:

rk = zk − ŷk ' αk +Hk [xk − x̂k] (3.7)

where αk ∈ <p is defined as follows:

αk = h (x̂k, vk)− h (x̂k, 0) (3.8)

Similarly, the true state vector xk can be approximated by linearizing

the nonlinear state equation function, given by equation 2.2, over the a priori

estimated state x̂k−1 as follows:

xk ' f (x̂k−1, uk−1, wk−1) + Ak [xk−1 − x̂k−1] (3.9)
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where Ak ∈ <nxn is derived by:

Ak[i,j] =
∂f[i]

∂x[j]

|(x̂k−1,uk−1,0) (3.10)

Thus, using the EKF estimates of equation 3.1 and equation 3.9, the

state prediction error vector exk = xk − x̂k is derived by:

xk − x̂k = ηk − Ak [xk−1 − x̂k−1]−Kk

[
zk − h

(
x−k , 0

)]
(3.11)

where x−k is calculated using equation 2.4 and ηk ∈ <n is given by:

ηk = f (x̂k−1, uk−1, wk−1)− f (x̂k−1, uk−1, 0) (3.12)

In order to compute the difference vector zk − h
(
x−k , 0

)
, the measurement

vector zk can also be obtained by linearizing over the approximate values of

the state vector x−k as in equation 3.4, resulting in the following expression:

zk − h
(
x−k , 0

)
= γk +HF

k (ηk + Ak (xk−1 − x̂k−1)) (3.13)

where HF
k ∈ <pxn and γk ∈ <p are given by:

HF
k[i,j]

=
∂h[i]

∂x[j]

|(x−k ,0) (3.14)

γk = h
(
x−k , vk

)
− h

(
x−k , 0

)
(3.15)

Consequently, substituting equation 3.13 into equation 3.11, the state

prediction error vector can be simplified as follows:

xk − x̂k =
(
I −KkH

F
k

)
ηk −Kkγk +

(
I −KkH

F
k

)
Ak [xk−1 − x̂k−1] (3.16)
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This state error of equation 3.16 is used to rewrite the residuals expres-

sion defined in equation 3.7 as follows:

rk =αk +Hk

(
I −KkH

F
k

)
ηk −HkKkγk

+Hk

(
I −KkH

F
k

)
Ak [xk−1 − x̂k−1]

(3.17)

Notice that the vectors αk, ηk and γk of equation 3.17 result from noise effects

and errors in the modeling.

In order to obtain an expression that relates the residual values rk

in function of the previous values rk−1, equation 3.7 is utilized to calculate

recursively an expression for [xk−1 − x̂k−1]:

Hk−1 [xk−1 − x̂k−1] = rk−1 − αk−1 (3.18)

Hence, the vector [xk−1 − x̂k−1] of equation 3.18 can be solved as follows:

xk−1 − x̂k−1 = ∅k−1 [rk−1 − αk−1] (3.19)

Solving for the difference [xk−1 − x̂k−1] leads to different cases that are con-

tained in the matrix ∅k−1 and studied in Sections 3.3.1 and 3.3.2.

Finally, substituting equation 3.19 into equation 3.17, the residuals

dynamic model is given by:

rk =αk +Hk

(
I −KkH

F
k

)
ηk −HkKkγk

+Hk

(
I −KkH

F
k

)
Ak∅k−1 [rk−1 − αk−1]

(3.20)

Further simplifications of the model of equation 3.20 will be presented in Sec-

tion 3.3.3.
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3.3.1 Solution for the Square Case

For this case, the matrix Hk−1 of equation 3.18 is assumed to be square,

n = p, and invertible. Therefore, the solution for ∅k−1 is as follows:

∅k−1 = H−1
k−1 (3.21)

This case will be validated using the air heater experiment.

3.3.2 Solution for the Non-square case

As the matrix Hk−1 ∈ <pxn is assumed to be non-square, the Moore-

Penrose pseudo-inverse [33, 35] is used to solve for [xk−1 − x̂k−1] in equation

3.18.

When the matrix Hk−1 is full rank, or the Rank(Hk−1) = r where

r = min(p, n), then ∅k−1 can be calculated by:

∅k−1 =

{
HT
k−1

(
Hk−1H

T
k−1

)−1
, p < n(

HT
k−1Hk−1

)−1
HT
k−1, p > n

(3.22)

On the other hand, if the matrix Hk−1 is not full rank, the pseudo-

inverse is then computed using singular value decomposition (SVD) whereby

this matrix is decomposed as follows:

H = UΣV T (3.23)

where the matrices U ∈ <pxp and V ∈ <nxn are orthogonal and the diagonal

matrix Σ ∈ <pxn corresponds to the singular values σi of matrix H in descend-

ing order such as σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 with r = min (p, n). Consequently,
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the matrix ∅k−1 is derived by:

∅k−1 = V Σ+UT (3.24)

where Σ+ is obtained by transposing Σ and inverting all its nonzero singular

values. This non-square case will be validated using the CSTR case study.

3.3.3 Assumptions and Simplifications for Calculating Parameters
of the Residuals Model

The objective function formulated in equation 3.25 is utilized to calcu-

late the parameters αk, ηk and γk as follows:

Jk = minαk,ηk,γkError
T
resJErrorres

0 ≤ αk ≤ ∞

0 ≤ ηk ≤ ∞

0 ≤ γk ≤ ∞

(3.25)

where the matrix J ∈ <pxp is a weighting constant. The vector Errorres ∈ <p

is given by equation 3.26 whereby |ri (αk, ηk, γk)| corresponds to the absolute

value of the residuals dynamic of equation 3.20 and is shown in equation 3.27.

The absolute value of the residuals model is evaluated in order to limit the

range of its parameters. Also, the absolute value of the residuals, |Resi|, is

obtained by calculating the difference of the measurements and estimates and

given by equation 3.7.

Errorres =
N−1∑
i=0

(|ri (αk, ηk, γk)| − |Resi|)2 (3.26)
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|rk| ' |αk|+
∣∣Hk

(
I −KkH

F
k

)∣∣ |ηk| − |HkKk| |γk|

+
∣∣Hk

(
I −KkH

F
k

)
Ak∅k−1

∣∣ (|rk−1| − |αk−1|)
(3.27)

In order to facilitate the use of the model defined in equation 3.20, two

simplifications can be considered. First, the error obtained from the vectors

αk, ηk and γk, which is generated due to noise effects and model inaccuracies,

is approximated to be constant. Even though these vectors have stochastic

trends, a constant value is a good approximation because the magnitude of the

residual trends is close to zero. Thus, in applying the following simplifications:

αk = αk−1 = α and ηk = η, the residuals model of equation 3.20 is simplified

to the following expression:

rk =α +Hk

(
I −KkH

F
k

)
η −HkKkγk

+Hk

(
I −KkH

F
k

)
Ak∅k−1 [rk−1 − α]

(3.28)

The second simplification is related to the analysis addressed in Section

3.2 whereby the EKF state estimator is setting up such that it gives more

priority to the model predictions. This restriction implies that x−k ≈ x̂k, or in

other words, the contributions provided by the Kalman filter are less important

than the ones provided by the model. Therefore, for cases when there are no

major uncertainties in the model’s parameters or disturbances that can affect

the predictions of the model, the values of the vectors αk and γk, which are

defined by equations 3.8 and 3.15 respectively, are approximately the same

αk ' γk. Consequently, equation 3.28 can be simplified to:

rk = (I −HkKk)α +Hk

(
I −KkH

F
k

)
η

+Hk

(
I −KkH

F
k

)
Ak∅k−1 [rk−1 − α]

(3.29)
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For this chapter the model of equation 3.28 will be used for validating

this approach.

3.4 FDI Mechanism

Figure 3.4: Detection Mechanism: Trajectories in Normal Operation

This section explains the mechanism to detect and isolate faults, which

is based on the residuals model defined in Section 3.3. In Chapter 2, the

detection mechanism is based on threshold values that are defined in the tem-

poral space for each residual trajectory. In the approach presented here, the

detection of a fault is evaluated in the space of the residuals, whereby multi-

ple spaces can be generated providing redundancy and increasing sensitivity

for detection. To clarify this idea, Figure 3.4 shows a typical residual space,
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in which the thick (blue) trajectory represents the behavior of the absolute

value of both the residuals, obtained from equation 3.7, versus the predicted

residuals, given by equations 3.20 or 3.28, in normal operation. Ideally, this

trajectory should be a straight line, however its variations are the result of

noise effects and model mismatches. This residual trend can be enclosed by

defining a trajectory that best represents the normal operating behavior of

the system. Elliptical trajectories, represented by thin (black) line in Figure

3.4, are defined for each residual space. Furthermore, three different kinds

of residual spaces can be generated: (1) spaces that include residuals versus

predicted residuals as in Figure 3.4; (2) residual spaces that are comprised of

two different residuals as in Figure 3.5; and (3) residual spaces that are derived

from the predictive residuals formulated in equation 3.20.

To understand how detection sensitivity can be increased, Figure 3.5

shows another example of residual space. The thin (blue) line represents the

residual trajectory trend of two different residuals and the dashed (red) lines

describe constant threshold values associated with each residual. A fault can

be detected only if the residual trajectory extends over these threshold limits.

Therefore, if the residual trajectory moves to the areas shown by the ovals, a

fault will not be immediately (or ever) detected. Elliptical trajectories will add

more sensitivity to the detection, but a mechanism is needed to continually

evaluate false alarms.

Figure 3.6 shows an example of how a fault can be detected. Faults are

detected when a residual trajectory, in any of the residual subspaces generated,
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Figure 3.5: Disadvantage of Having Constant Threshold Values

goes beyond the elliptical trajectory previously defined from the fault-free

trends.

Three steps are considered to isolate faults. First, multiple modes are

defined in the isolation system: (1) a false alarm mode; (2) different single

and multiple fault modes fi that include sensor, actuator or process faults;

and (3) unknown fault mode. Second, for each of the single and multiple fault

cases fi, parameters of the residuals model of equation 3.28 are associated with

each fault mode and defined as Pfi . This procedure is similar to the parametric

approach presented in Chapter 2. However, parameters that consider the effect

of noise and model mismatch, such as η, γ and α, are considered in addition

to the parameters of the nonlinear model. Third, the objective function of
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Figure 3.6: Detection Mechanism: Trajectories under a Fault Situation

equation 3.30 is utilized to calculate the parameters Pfi for every of the single

and multiple fault cases at each time step,

Jk = minPfik
∆T
fik
W∆fik

lb ≤ Pfik ≤ ub
(3.30)

where the matrix W ∈ <pxp is a weighting constant. The lower and upper

bounds of the parameters to be estimated are given by lb and ub respectively.

The function ∆fik
, which is in terms of the parameters Pfi associated with

each fault case fi, is given by equation 3.31. Figure 3.7 shows the algorithm to

isolate faults. Once a fault is detected, every ∆fik
is calculated. Then, a false

alarm is diagnosed when ∆NOk , which is obtained by calculating the difference

between the values of the predicted residuals and residuals values in normal

operation, is larger than all the ∆fik
cases considered. Otherwise, the fault fi
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is identified by comparing the multiples ∆fik
against each other. In case there

are inconsistent comparisons, an unknown fault is diagnosed.

∆fik
=
∣∣∣rk (Pfik)∣∣∣− |Resk| (3.31)

Finally, in comparison with the approach presented in Chapter 2, an

important advantage of utilizing this approach is that the parameter estima-

tion is performed over the linearized nonlinear model at each time step, such

that matrices Ak and Hk are obtained at each time step and utilized in the

residuals model. In addition, only the residual values for time k− 1 and k are

needed for the isolation conclusions. This is a fundamental difference from the

approach of Chapter 2 in which the isolation results are performed utilizing the

nonlinear model, only considering the model’s parameters, and the estimation

of these parameters is performed over a constant time window.

3.5 Case Study

In this section, an experimental air heater and a nonisothermal CSTR

simulation are utilized to validate the proposed fault detection and isolation

approach. In Section 3.5.1, the residuals model square solution is applied using

the air heater under both open-loop and closed-loop cases, while in Section

3.5.2 the non-square solution of the residuals model is evaluated utilizing the

CSTR under closed-loop control.

The reactor is simulated using CHEMCAD, which is a unit operation

software, under both normal operation and fault situations, whereby single and
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multiple actuator and sensor faults are created. The data from the simulator is

utilized to validate the residuals modeling FDI approach, in which a fault-free

model for the CSTR is developed in Section 3.5.2, as the CHEMCAD’s model

is not available.

3.5.1 Air Heater: Single/Multiple Actuator Faults

To validate the residuals modeling approach, the faults are introduced

operating the air heater in open-loop and closed-loop control. Figure 3.8 shows

the performance of a multiple input/single output predictive controller at dif-

ferent setpoint values, given by the dashed line trajectories. The controlled

variable is the temperature of section 1, given by the red (thin) line, and the

manipulated variables are the fan and heater voltages. Further details of the

control law and controller parameters are detailed in Appendix A.

Figure 3.8: Air Heater under Control
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One closed-loop and two open-loop faults are considered in the air

heater experiment. Figure 3.9 shows the air heater temperature trajectories

under the fault situations, operating the system in open-loop. The fan voltage

saturation case is illustrated in Figure 3.9(a), whereby a soft saturation of the

actuator is introduced from t = 140s to t = 225s, while an abrupt saturation

is created in the time window defined by t = 329 − 388s. As a result of the

fault in the fan voltage, the air heater experiences an increase in tempera-

ture. On the other hand, Figure 3.9(b) illustrates the open-loop multiple fault

case, in which the fan and heater actuators are saturated simultaneously. An

abrupt saturation is introduced in the air heater from t = 73s to t = 117s,

while a soft saturation is included from t = 168s to t = 220s. Finally, a mul-

tiple abrupt fault, saturating simultaneously both fan and heater actuators,

is inserted when the air heater is operating in close-loop, in the time window

t = 389− 508.

(a) Single Fault Case: Saturation of the Fan
Voltage

(b) Multiple Fault Case: Saturation of
Heater and Fan Voltages

Figure 3.9: Fault Scenarios Air Heater Open-Loop
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To detect and isolate faults three steps are performed:

Step 1: The parameters of the residuals model, η, γ and α, are calcu-

lated using the performance index defined in equation 3.25. Figure 3.10 shows

the norm of the residuals utilizing data in normal operation, the red (thick)

line corresponds to the norm of the residual trends while the black (thin) line

represents the norm of predicted residuals with a mean average percentage

error (MAPE) of 2.5%. The values of these parameters are listed in Table 3.1.

Figure 3.10: Performance of the Residuals Model in Normal Operation

Step 2: The norm of the Rk/Qk ratio is defined as 1. The elliptical

trajectories for the 16 different residual spaces, where the number of residual

spaces is defined by using equation 3.32, are created for the air heater in normal
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Table 3.1: Parameters of the Residuals Model

Parameters Air Heater CSTR

α
[

0.67 1.46 0.94 0.0087
]T [

1.52 2.85e−05 8.43e−07
]T

η
[

0.18 1.24e−05 3.99e−04 0.41
]T [

0 0 8.52e−04 0.29 0.12
]T

γ
[

0.53 0.61 1.01 1.66e−04
]T [

1.63 6.72e−06 5.27e−07
]T

operation. The total number of residual spaces NRs is defined as:

NRs = 2

(
p
2

)
+ p (3.32)

where (·) denotes the number of combinations of p measurements taken 2 at

a time. In operating the air heater in open-loop, Figure 3.11 shows the case

when a detection is performed for the multiple fault scenario, in which the

residuals are outside the elliptical trajectories.

(a) Residual Values 1 versus Residual Values
2

(b) Predicted Residual Values 3 versus Pre-
dicted Residual Values 4

Figure 3.11: Example of Residual Spaces under Saturation of the Fan and
Heater Voltages in the Air Heater Open-loop Case

Step 3: Five fault modes are defined for the air heater: (1) false alarm;
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(2) fan fault; (3) heater fault; (4) heater-fan fault; and (4) unknown fault. For

fault modes 2, 3 and 4, parameters of the residuals model are chosen and

estimated by using equation 3.30. Figure 3.12 shows the isolation results for

the two open-loop fault cases considered. For the fan saturation fault case

shown in Figure 3.12(a), there is an increment in both the rate percentage of

false alarms and percentage of incorrect isolation as a result of variations in

the ambient temperature, which is a disturbance in the air heater. Further

analysis of the effects generated for this disturbance are investigated in Chapter

4. There is no successful detection and isolation for the soft fault scenario

because of the size of the fault saturation, which is small and comparable to

the error generated by the effect of disturbances. On the other hand, the

abrupt saturation scenario is correctly detected.

(a) Isolation Results: Saturation Fan Voltage (b) Isolation Results: Multiple Fault Case
Saturation of Heater and Fan Voltages

Figure 3.12: Isolation Results Air Heater Open-loop

Figure 3.12(b) shows the isolation results for the multiple fault case,

whereby both situations (abrupt and soft scenarios) are detected and isolated
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correctly. However, note that after the first isolation statement of the abrupt

fault at t = 168s, there is a time window in which no fault detection takes

place. The main reason for not having a successful detection is because of the

parameters (η, γ and α) of the residuals model, obtained in step 1, that were

calculated at different operating points of the nonlinear model. Therefore,

the sensitivity for detection and the accuracy of the residuals model can be

improved by obtaining these parameters around the current operating point.

Note also that for both cases in Figure 3.12, during the first 30 seconds, some

incorrect detection and isolation statements are generated. These errors are

obtained because both the air heater and the Kalman state estimator start

at different initial temperature conditions, consequently the magnitude of the

residuals is big enough to generate these FDI errors, until the state estimator

reaches convergence.

Figure 3.13: Isolation Results Multiple Fault Case Air Heater Closed-loop
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In operating the air heater under control, the isolation results for the

multiple fault case are illustrated in Figure 3.13. Similar to the open-loop

fault cases, incorrect detection and isolation conclusions are obtained during

the first 20 seconds, due to the convergence of the state estimator. Also,

some errors in the isolation statements are obtained because of the effect of

disturbances. Finally, Table 3.2 summarizes the fault detection and isolation

results for these faults (open and closed-loop) that will be compared with the

data-driven approaches in Chapter 4.

Table 3.2: Fault Detection and Isolation Results Air Heater Case Study

Criteria Fan Fault Fan-Heater Fault Fan-Heater Closed-Loop

Total Number of Detections 431 118 317
Pct. Correct Isolation of the Fault [%] 22.4 49 58

Pct. Correct Detection [%] 33.2 47.5 31.9
Pct. Correct Isolation of False Alarms [%] 79.9 16.1 58.3

Time of the Fault [min]
140− 225
329− 388

73-117 168-220 389-508

3.5.2 Non-isothermal Chemical Reactor

The hydrolysis of propylene oxide to propylene glycol [6], whereby the

reaction is defined by equation 3.33, is simulated using CHEMCAD through

a nonisothermal CSTR reactor.

C3H6O +H2O → C3H8O2 (3.33)

Figure 3.14 shows the P&ID of the system. The reactor has two inputs:

(1) the flow of propylene oxide FPO [m3/min] which is represented by feed
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stream 1; and (2) the flow of water FW [m3/min], given by feed stream 7, which

is proportional to the opening of the control valve given by unit operation

number 5. The output Fr [m3/min] of the reactor is given by product stream

6. The jacket of the reactor is fed with cooling water flow Fc [m3/min], given

by the feed stream 5, which is proportional to the opening of control valve

denoted by unit operation number 3. The simulation conditions are defined in

Appendix B.

Figure 3.14: CSTR P&D Diagram Using CHEMCAD

The following reactor simulation conditions were used: (1) the quantity

of water that is fed into the reactor is larger than the amount of propylene

oxide, with the objective of providing higher selectivity to the propylene glycol

and eliminating consecutive reactions of propylene oxide with propylene glycol;

(2) the reactor is operated at 75% of the designed volume; (3) the desired

conversion of the propylene glycol must be around 80%; (4) the residence
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time should be approximately of 30 minutes; (5) the reactor is operated at

atmospheric pressure; and (6) the dependence of a reaction rate constant on

the temperature is described by the Arrhenius equation, given by equation

3.34 and the reaction kinetics, which is in terms of the concentration of both

the propylene oxide oxide CPO [kmol/m3] and water CW [kmol/m3], and is of

second order and given by equation 3.35. Further details of these equations

are discussed in Appendix B.

k = k0e
− E
RTr (3.34)

r = CPOCWk0e
− E
RTr (3.35)

Two PI controllers maintain the temperature of the reactor Tr [oK]

and the concentration of the propylene glycol CPG [kmol/m3] within a desired

range. The temperature in the reactor is controlled by manipulating the jacket

cooling flow, which is proportional to the opening of valve with unit operation

number 3. On the other hand, the concentration of glycol is controlled by

manipulating the water flow through the opening of the control valve with

unit operation number 5. Figure 3.15 shows the performance of the controllers

whereby the black (dashed) lines correspond to the set point trajectories and

the red (thin) lines represent the process variables.

In order to apply the proposed model-based FDI approach, a model for

the CSTR is required. Table 3.3 summarizes the set of assumptions defined

to obtain the CSTR model, which are also compared with the assumptions

utilized using the CHEMCAD software. The CSTR model can be summarized
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(a) Concentration Propylene Glycol (b) Reactor Temperature

Figure 3.15: CSTR Control Loop Trajectories

Table 3.3: Assumptions to Obtain the CSTR Model

Assumptions CSTR Model CHEMCAD Model

Constant Volume Yes Yes
Constant Densities Yes No

Constant Heat Capacities Yes No
Ideal Mixing Yes Yes

Temperature Independent Volumetric Flow Rates Yes No

in equations 3.36 through 3.38, and obtained by formulating [86, 89]: (1) the

total mass balance [kg/min], given by equation 3.35, for the species of the

reactor which are water, propylene oxide and propylene glycol; (2) the energy

balance [kJ/min] of the reaction mixture which is formulated in equation 3.36;

and (3) the energy balance [kJ/min] of the cooling jacket which is illustrated

in equation 3.37.

Vr
dcj
dt

= Fr (cj0 − cj) + Vrνjr, j = 1, 2, 3 (3.36)

Vrρrcpr
dTr
dt

= Frρrcpr (Tr0 − Tr)− UA (Tr − Tc) + Vr (−∆rH) r (3.37)
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Vcρccpc
dTc
dt

= Fcρccpc (Tc0 − Tc) + UA (Tr − Tc) (3.38)

The parameters (Vr, Vc, cpr, cpc, ρr, ρc, U, A) are defined in Appendix B.

Figure 3.16 shows the validation of the CSTR model. The five state variables

of the CSTR model, which are the concentrations of the water CW [kmol/m3],

propylene oxide CPO [kmol/m3] and propylene glycol CPG [kmol/m3], the re-

actor temperature Tr [oK] and the jacket temperature Tc [oK], are compared

with the CHEMCAD simulations, with the largest MAPE error resulting in

the concentration of the propylene oxide with a value of 10.4%.

3.5.2.1 Simulations Results: Single/Multiple Actuator and Sensor
Faults

Three faults are considered for this system. First, a sensor fault through

inserting a constant bias in the reactor temperature sensor at t = 250−350min,

in which the reactor and jacket temperatures are shown in Figures 3.19(a) and

3.19(b). The sensor fault generates an instantaneous change in the reactor

temperature, generating a fast response in the controller temperature, there-

fore causing changes in the temperature of the jacket. Second, an actuator

fault is created by modifying the coefficient of the control valve of the jacket.

Figures 3.19(c) and 3.17(d) show the reactor and jacket temperatures trajec-

tories under this actuator fault. The flow of the cooling jacket decreases and

creates an increment in the reactor and jacket temperatures. Finally, the third

fault is the combination of the previous single faults, in which Figures 3.17(e)
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(a) Concentration Water versus Time (b) Concentration Propylene Oxide versus
Time

(c) Concentration Propylene Glycol versus
Time

(d) Reactor Temperature versus Time

(e) Jacket Temperature versus Time

Figure 3.16: CSTR Open Loop Model Trajectories versus CHEMCAD Trajec-
tories
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(a) Reactor Temperature under Sensor Fault (b) Jacket Temperature under Sensor Fault

(c) Reactor Temperature under Actuator
Fault

(d) Jacket Temperature under Actuator
Fault

(e) Reactor Temperature under Sensor and
Actuator Fault

(f) Jacket Temperature under Sensor and Ac-
tuator Fault

Figure 3.17: CSTR Single/Multiple Fault Scenarios
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and 3.17(f) show the temperature trajectories for the reactor and jacket re-

spectively. These trends are similar to the sensor fault ones, making the task

of isolation a formidable task.

As in the air heater case, the parameters of the residuals model are

obtained and listed in Table 3.1. The elliptical trajectories are calculated from

the normal operation data in which 9 residual spaces were created. Figure 3.18

shows an example of the residual spaces created in normal operation.

(a) Residual Values 3 versus Predicted Resid-
ual Values 3

(b) Residual Values 2 versus Residual Values
3

Figure 3.18: Example of Residual Spaces CSTR Normal Operation Case

Figure 3.19 shows the isolation results for the single and multiple fault

cases considered. Excellent results were obtained for the detection and isola-

tion of each fault and summarized in Table 3.4.

To better understand how the isolation mechanism is performed, Figure

3.20(a) shows the residuals trajectories for the multiple fault case before the

fault is isolated. The green line corresponds to the residual values and the
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(a) Isolation Results Sensor Fault (b) Isolation Results Actuator Fault

(c) Isolation Results Sensor and Valve Fault

Figure 3.19: Isolation Results CSTR

blue line illustrates the predicted residual values. Notice that the difference

between the predicted residuals and the residual values, defined as ∆fik
in

equation 3.31, is sense for the detection mechanism. Figure 3.20(b) shows

the results after the parameter estimation is calculated, in which the faulty

residual values are matched using the residuals model and the estimation of

the parameters associated with each fault.
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(a) Residual Values and Predicted Residual
Values versus Time

(b) Residual Values and Predicted Residual
Values versus Time After Isolation

Figure 3.20: Example of Parameter Estimation for the Multiple Fault Case
CSTR

Table 3.4: Fault Detection and Isolation Results CSTR Case Study

Criteria Actuator Fault Sensor Fault Actuator-Sensor Fault

Total Number of Detections 222 185 207
Pct. of Correct Isolation of the Fault [%] 80.8 71.3 94.7

Pct. of Correct Detection [%] 68 54.6 72.9
Pct. of Correct Isolation of False Alarms [%] 18.3 86.9 80.4

Time of the Fault [min] 200-350 250-350 250-400

3.6 Summary

A model that predicts the residuals dynamic behavior is formulated in

this chapter and used with the purpose of fault detection and isolation. The

approach is based on a nonlinear state estimator and the estimation goals are

based on performing high filtering over the measurements. In this way, the

magnitude of the residuals will be important enough to be analyzed. In us-

ing this residuals model, a better understanding regarding the residual trends,
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when a fault occurs, can be studied and further utilized to isolate faults effi-

ciently. The detection is performed by analyzing the residual trends of both

residuals signals and predicted residuals. Multiple faults modes are defined

and validated through parameter estimation for the isolation mechanism. The

approach has the advantage of verifying false alarms.

Having a restricted number of measurements available makes the ob-

jectives of detection and isolation a formidable task. However, it has been

demonstrated that the residuals modeling based approach can deal with this

restriction. Two nonlinear processes were utilized to successfully validate the

proposed approach, showing acceptable performance under both closed-loop

and open-loop situations. These results serve as an important evidence to

extend the FDI formulation to other nonlinear applications.

Finally, an accurate model of the system is required for utilizing the

proposed approach. The disturbances in the model increase the rate of false

alarms for the detection. Comparisons with existing approaches will be pre-

sented in Chapter 4, and Chapter 5 will be the focus on how to properly deal

with model uncertainties and disturbances.
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Chapter 4

Comparisons of Data-Driven and Model-Based

Approaches

In Chapter 3, a model-based approach to deal with single and multiple

faults was proposed and validated using an air heater experiment and a CSTR

system. In this chapter, the model-based FDI system, based on residuals

modeling, is compared with data-driven approaches, based on principal com-

ponent analysis (PCA) and Kernel PCA. The advantages and disadvantages

of utilizing these two methods are presented here.

Section 4.1 presents the motivations behind these comparisons. Then,

a brief description of the formulation of PCA and Kernel PCA is introduced

in Section 4.2. Next, the criteria to evaluate these two approaches (model-

based and data-driven) are defined in Section 4.3. Then, in Section 4.4, the

performance of each technique is studied, using the air heater and a CSTR

nonlinear systems. Finally, the evaluation results are summarized in Section

4.5.
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4.1 Motivation

Several papers [32, 93] on nonlinear systems have discussed comparisons

between data-driven and model-based approaches. Most of the comparisons

found in the literature are based on PCA. Recently, image analysis approaches

[69] have been extended to the context of FDI to deal with nonlinearities

in plant data, resulting in the creation of Kernel PCA [3]. Therefore, an

important goal of this chapter is to evaluate the FDI performance of KPCA

with both PCA and the nonlinear model-based approach presented in Chapter

3.

On the other hand, PCA based FDI methods [66, 93] have the ability to

handle a large number of measurements for industrial processes, whereby these

measurements are compressed in reduced dimensional spaces. The challenge

here is to evaluate FDI performance when there are a reduced number of

measurements available.

4.2 Data-Driven Approaches: PCA and Kernel PCA

PCA performs under the assumption that the process data are linear.

Therefore, one alternative of dealing with nonlinearities in the data is by uti-

lizing kernel functions [69], such that the data is transformed into a higher

dimensional space. Figure 4.1 shows how Kernel PCA works. Through using

a nonlinear mapping function φ, the plant data, which is located in the in-

put space, is mapped into a new space named a feature space. PCA is then

computed in this new space. The advantages of using this method is that
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the mapping does not involve nonlinear optimization, utilizing linear algebra

instead.

Figure 4.1: Basic Idea of Kernel PCA

Table 4.1 summarizes how PCA and Kernel PCA approaches can be

used for purposes of detecting and isolating faults. The detection mechanism

is based on statistical indices [66] in which the most common are: (1) squared

prediction error (SPE); (2) Hottelling’s T 2 statistic; and (3) combined indices

ϕ. A fault is detected when any of these indices surpass a constant control

index, which is associated with each index and calculated based on data in nor-

mal operation. These statistical indices can be used for both PCA and Kernel

PCA. The isolation of the fault is based on the idea that the faulty variables

are those with the highest contributions, obtained from the fault detection

indices. There are two main approaches to extract these contributions for

each measurable variable from the statistical indices: (1) contribution plots,

which is the most common approach; and (2) reconstruction-based contribu-

tion (RBC), which is based on the idea of reconstructing along the direction of

a variable such that the detection index is minimized. Only RBC can be used
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to isolate faults utilizing Kernel PCA because of the mapping into the feature

space, whereby the fault information can be reconstructed in the input space

using RBC.

Table 4.1: Fault Detection and Isolation Using PCA and KPCA

PCA Kernel PCA

Fault Detection SPE SPE
T 2 T 2

ϕ ϕ
Fault Isolation Contributions Plots Reconstruction-based

Reconstruction-based Contribution (RBC)
Contribution (RBC)

In this section, a brief review of the basic concepts regarding principal

component analysis (PCA) will be studied, focusing mainly on the RBC re-

construction method. Then, these concepts will be extended when the data is

projected onto the feature space as explained in Section 4.2.2.

4.2.1 Principal Component Analysis (PCA): A brief review

PCA performs an eigenvalue decomposition, given by equation 4.1, over

the covariance matrix S of the normalized matrix X ∈ <mxn, biased to zero

mean and scaled to unit variance. Therefore, the variability of the plant data

is captured in a low dimensional model represented by l principal components

(PC) which are an orthogonal set of basis vectors,

S
1

N − 1
XTX = PΛP T + P̃ Λ̃P̃ T (4.1)

where m represents the number of samples and n represents the number of

measurable variables, P ∈ <nxl is the principal loadings, P̃ ∈ <nxn−l corre-
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sponds to the residual loadings and the diagonal matrices Λ and Λ̃ contain the

principal and residual eigenvalues.

A measurement x ∈ <n can be projected into different subspaces (such

as the principal subspace (PS), the residual subspace (RS) or combined space)

through statistical indices [2, 66, 93]. To perform the projection in any of these

subspaces, equation 4.2 represents the general form to calculate the different

indices:

Index(x) = xTMx (4.2)

Thus, to calculate the SPE index, whose projections are in the residual sub-

space, the matrix M is replaced by M = C̃ = P̃ P̃ T . Similarly, to compute

T 2 index, whose projections are in the principal subspace, the matrix M is

M = D = PΛ−1P T . Finally, the ϕ index is calculated by replacing the matrix

M by M = C̃/δ2 + D/τ 2. The control indices (δ,τ and ζ) are formulated in

Appendix D.

Reconstruction-based contribution (RBC) [2] can be utilized as an iso-

lation technique. RBC reconstructs the fault contribution along each variable

i with associated direction ξi ∈ <n by using the following general expression:

RBCIndex
i = (ξifi)

T M (ξifi) (4.3)

where fi is calculated in order to minimize the value of the statistical index

Index (x− ξifi), given by equation 4.2. Calculating the derivative of this index

Index (x− ξifi) with respect to fi and equating to 0, results in the calculation
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of the fi as:

fi =
(
ξTi Mξi

)−1
ξTi Mx (4.4)

Thus, by using the results of equations 4.3 and 4.4, the fault contribu-

tions for each variable are calculated.

4.2.2 Kernel Principal Component Analysis (KPCA)

The nonlinear mapping of the measurement vector xi, from the input

space to the feature space, is calculated by using a nonlinear function φ:

xi ∈ <m → φi = φ (xi) ∈ <h (4.5)

where the dimension of the feature space h can be arbitrarily large. Thus, the

covariance matrix of the data matrix χ = [φ1φ2 · · ·φm] in the feature space is

given by:

(m− 1)S = χTχ =

 φT1 φ1 · · · φT1 φm
...

. . .
...

φTmφ1 · · · φTmφm


=

 k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)

 = K

(4.6)

where k(·, ·) is called the kernel function and PCA is performed over the Ker-

nel matrix K ∈ <mxm. The problem of mapping into a high dimensional space

is that the computational time can increase. Therefore, the dot products φTi φj

are computed without explicitly carrying out the mapping into the feature
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space in which the kernel functions are used. However, selecting the kernel

function is not an easy task and its selection is very important to capture

the nonlinear characteristics of the data. There are multiple kernel functions

that can be used; examples of them are polynomial, sigmoid and radial basis

shown in equations 4.7 through 4.9, respectively. Notice that these functions

have constant parameters associated with them that require a priori specifica-

tion. There are not standard methods to select these parameters and a poor

choice can lead to the unsuccessful detection and isolation of faults. For the

simulations in this chapter the radial basis kernel function is utilized.

k (x, y) = 〈x, y〉d (4.7)

k (x, y) = tanh (β0〈x, y〉+ β1) (4.8)

k (x, y) = exp

[
−(x− y)T (x− y)

c

]
(4.9)

The statistical indices are calculated similarly as in the input space.

However, there are some changes because the mapping is not being explicitly

calculated in the feature space. For a given measurement x, the calculation

of the statistical indices, SPE, T 2 and ϕ, are given by the following equations

[3]:

SPE = k(x, x)− k(x)TCk(x) (4.10)

T 2 = k(x)TDk(x) (4.11)

ϕ =
k(x, x)

δ2
+ k(x)TΩk(x) (4.12)
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where C = PΛ−1P T , D = PΛ−2P T and Ω = C/τ 2 − C/δ2. P and Λ are the l

principal eigenvectors and eigenvalues of the Kernel matrix K. The calculation

of the control limits (δ, τ and ζ) are specified in Appendix D. Finally, k(x) is

defined in equation 4.13.

k(x) =
[
k(x1, x) k(x2, x) · · · k(xm, x)

]
(4.13)

To isolate the fault, RBC is utilized, similarly to the PCA case pre-

sented in Section 4.2.1, fi is minimized by solving the following nonlinear

function of equation 4.14 which does not have an explicit solution and requires

and iterative solution.

fi = argminIndex (k(x− ζifi)) (4.14)

4.3 Evaluation Criteria

In this section, five characteristics are defined to evaluate the perfor-

mance of the FDI approaches, which are related to the desirable aspects that

an FDI system must have. These are:

• Prompt and Sensitive Detection is one of the most important attributes.

A prompt detection system can be very sensitive and lead to increas-

ing the rate of false alarms which is not desirable. Also, this attribute

involves the capability of detecting soft or abrupt faults.

• Isolability, which refers to the ability of distinguishing between different

failures in the system, such as process, sensor or actuator faults. Fur-
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thermore, it is desirable to have an explanation of the possible cause of

the fault.

• Modeling Demand, refers to the modeling requirements of the FDI sys-

tem. Accurate models are difficult to obtain and prone to multiple un-

certainties.

• Robustness and Adaptability, refers to the capability of the FDI system

to operate under disturbances and the effect of noise. Also, it involves

the capacity of the FDI system to adapt in the event of unexpected

changes in the operating conditions of the plant.

• Multiple Fault Identifiability, refers to the capability of the FDI system

to isolate multiple faults, whereby the difficulties lie in the ability to

distinguish one fault from another.

4.4 Comparison Results

This section’s objective is to analyze the detection and isolation results

of the model-based and data-driven approaches by considering the aspects

defined in Section 4.3. A common characteristic of these two FDI systems

is that they perform on-line diagnosis or a detection and isolation statement

is evaluated at each time step. The air heater FDI results are presented in

Section 4.4.1, while the CSTR FDI results are illustrated in Section 4.4.2.

For the latter example, the faults are created by the unit operation software

(CHEMCAD) and the data is evaluated by using both FDI approaches.
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4.4.1 Air Heater Case

One interesting characteristic of the air heater experiment is that the

ambient temperature is an important disturbance that affects the performance

of both FDI systems. The multiple tests evaluated in normal operation or un-

der fault situations result in different initial conditions that affect the FDI

results. As an example, Figure 4.2 shows the temperatures of each section

for the air heater, whereby the inputs of the two sets of data are at the same

operating points. Note that the differences between them are in the initial con-

ditions. For data-driven approaches, there is not a clear idea of how to include

the effect of disturbances in the data-driven models. However, these distur-

bances considerably affect the FDI performance of PCA and Kernel PCA.

(a) Air Heater Data Normal Operation: Ex-
ample 1

(b) Air Heater Data Normal Operation: Ex-
ample 2

Figure 4.2: Data Normal Operation Air Heater at Different Ambient Temper-
atures

Table 4.2 summarizes the fault detection results for the data-driven
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approaches and Table 3.2 lists the detection results for the model-based ap-

proach. Three fault cases are considered: (1) a fan fault; (2) a fan and heater

fault in open-loop; and (3) a fan and heater fault in closed-loop.

Table 4.2: Fault Detection Results Air Heater Case Study

Fault Criteria PCA Kernel PCA
SPE T 2 PHI SPE T 2 PHI

Fan Fault Detections 214 0 168 72 0 37
PCDa 30.1 0 28 26.6 0 21
PFAb 80 0 76.2 47.2 0 18.9

Fan-Heater Fault Detections 26 0 22 24 0 0
(Open-loop) PCD 27.3 0 23.9 26.1 0 0

PFA 7.7 0 4.6 4.2 0 0
Fan-Heater Fault Detections 34 84 74 34 80 100

(Closed-loop) PCD 0 46.7 38.3 0 52.5 45.8
PFA 100 33.3 37.8 100 21.3 45

a Percentage of correct detection
b Percentage of false alarms

Figure 4.3 shows, for PCA and KPCA, the three statistical indices

(SPE, T 2 and ϕ) for the case of a fan fault in open-loop. The blue (thin) lines

correspond to the statistical indices and the red (dashed) lines correspond to

the control limits associated with each index. A fault is detected when any of

the indices surpass their associated control limits. For the T 2 indices there is

no detection for the open-loop cases and the soft fault is not detected in any

of the cases. The differences between PCA and KPCA lie in the percentage

of false alarms (PFA) (shown in Table 4.2). For PCA, the percentage is very

high and depends on the selection of the training data, while for KPCA false

alarms percentage is considerably lower even though there is a decrease in the

percentage of correct detection (PCD). The question that arises is: Which in-
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(a) SPE Index Using PCA (b) SPE Index Using KPCA

(c) T 2 Index Using PCA (d) T 2 Index Using KPCA

(e) φ Index Using PCA (f) φ Index Using KPCA

Figure 4.3: Statistical Indices for the Fan Fault Air Heater Open-loop
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dex should be selected for detection purposes? Should all of them be selected?

Nevertheless, there is not a clear conclusion regarding this issue, although

some ideas are found in [66]. On the other hand, for the model-based case

(Table 3.2), the percentage of correct detection is 22.4%, which is similar to

the results of the KPCA. Also, the percentage of false alarms is high, but the

percentage of isolation of correct alarms is very high at around 80%.

(a) ϕ Contribution Plots Using PCA (b) RBCϕ Contribution Plots Using PCA

(c) RBCϕ Contribution Plots Using KPCA

Figure 4.4: Isolation Results for the Fan Fault Air Heater Open-loop

Figure 4.4 shows the ϕ RBC and ϕ contribution plots for the fan fault.
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The differences between PCA contribution plots and PCA RBC in Figures

4.4(a) and 4.4(b) lie in the magnitude of the contributions. A similar result

was found in RBC KPCA in Figure 4.4(c). These contributions are similar to

the SPE contributions found in Figure 4.5 for the heater fan fault case. These

isolation results suggest that the two faults are not isolatable, because their

contributions are comparable. Finally, for the model-based approach the fan

fault is isolated with a percentage of 22.4%, indicating there are a high number

of incorrect isolations (see Figure 3.12(a) where the incorrect isolations given

by the fan heater fault appear in cyan).

Figure 4.5 shows the detection and isolation results for the multiple

fault case, when the air heater is operating in open-loop. Note that both SPE

indices PCA and Kernel PCA, shown in Figures 4.5(a) and 4.5(c) respectively,

do not detect the soft fault. Furthermore, the SPE index trajectories for both

methods are very similar, suggesting that the kernel function or its parameters

require better selection and tuning. Similar isolation results in the RBC con-

tribution plots were found for both methods and shown in Figures 4.5(b) and

4.5(d). For the model-based case, the detection and isolation results are supe-

rior. Both types of faults, the abrupt and soft, are isolated with a percentage

of 50%.

Finally, for the case of the multiple fault in closed-loop, the detection

results are better when using KPCA. Figure 4.6 shows the multiple fault case

in closed-loop. Note that the ϕ contributions are similar to the contributions

of the single faults. However, a significant change is presented in the RBCT 2.
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(a) SPE Index Using PCA (b) RBCSPE Contribution Plots Using PCA

(c) SPE Index Using KPCA (d) RBCSPE Contribution Plots Using
KPCA

Figure 4.5: FDI Result for the Fan-Heater Fault Air Heater Open-loop
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(a) T 2 Index Using KPCA (b) RBCT 2

Contribution Plots Using KPCA

(c) ϕ Index Using KPCA (d) ϕ Contribution Plots Using KPCA

(e) RBCT 2

Contribution Plots Using PCA (f) RBCϕ Contribution Plots Using PCA

Figure 4.6: FDI Results for the Fan-Heater Fault Air Heater Closed-loop
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These trends generate many uncertainties in the isolation of the fault. For

the model-based case, there is good detection and isolation of the fault with a

percentage of correct isolation of 60%.

4.4.2 CSTR Case

Table 4.3 summarizes the CSTR results by using PCA and KPCA, in

which the ϕ Index is analyzed. Notice that for all fault cases, KPCA performs

better because the percentage of false alarms is lower. The results of the

model-based approach are listed in Table 3.4, in which the percentages of

correct isolation for all cases are over 70%.

Table 4.3: Fault Detection Results CSTR Case Study

Fault Criteria PCA Kernel PCA
PHI PHI

Sensor Fault Detections 246 128
PCDa 84.2 62.4
PFAb 65.5 50.8

Actuator Fault Detections 33 49
PCD 0 21.9
PFA 100 32.7

Sensor-Actuator Fault Detections 219 221
PCD 88.7 88.1
PFA 38.8 39.8

a Percentage of correct detection
b Percentage of false alarms

Finally, Figure 4.7 shows the RBCϕ contribution for the three faults.

Notice that the sensor fault, Figure 4.7(a) is identified correctly. However, for

the actuator and sensor actuator fault the contributions are similar, leading

to unsuccessful isolation.
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(a) RBCϕ Contribution Plots for Sensor
Fault Using KPCA

(b) RBCϕ Contribution Plots for Sensor
Fault Using PCA

(c) RBCϕ Contribution Plots for Actuator-
Sensor Fault Using KPCA

(d) RBCϕ Contribution Plots for Actuator-
Sensor Fault Using PCA

(e) RBCϕ Contribution Plots for Actuator
Fault Using KPCA

Figure 4.7: Isolation Results for the CSTR
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4.5 Summary

In this Chapter, PCA and Kernel PCA approaches were compared with

the model-based approach designed in Chapter 3. In terms of detection, KPCA

performs better than PCA in all the cases presented, specifically because of

the percentage of false alarms, which is lower for Kernel PCA. Table 4.4 shows

a qualitative evaluation based on the performance results using the air heater

and CSTR nonlinear systems. An important advantage of the model-based

approach is that it can effectively handle false alarms. In situations where

there is a high rate of false alarms, correct isolation is very important. The

data-driven approaches are very efficient for detection. However, the isolation

results do not identify the root of the fault, and only serve to reduce the

range of possibilities, leaving the interpretation for the process engineer. This

situation does not occur in the model-based case.

Table 4.4: Qualitative Evaluation of the Model-based and Data-driven FDI
Systems

Criteria Model Based Data Driven

Prompt and Sensitive Detection XXa XXb

Isolability XXX X
Modeling Demand Xc XX

Robustness and Adaptability XX X
Multiple Fault Identifiability XX X

a X means deficient performance
b XX means acceptable performance
c XXX means excellent performance

The data-driven approaches are very sensitive to disturbances, and con-

siderably affect the FDI results. On the other hand, an important advantage
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of the data-driven techniques is that the data models are easy to obtain in

comparison with the model-based approach.
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Chapter 5

Robust Nonlinear Model-based FDI

In Chapter 3, an FDI system was proposed based on residuals model-

ing and then compared with existing approaches in Chapter 4. This proposed

model-based FDI approach assumes that the fault-free model is sufficiently

accurate. Nevertheless, the rate of both false alarms and incorrect isolation

diagnosis can be increased when the nonlinear model has parameter uncertain-

ties and restrictions associated with observability, limiting the calculation of

parameter values. This fact highlights an important disadvantage of model-

based FDI approaches and will be the main motivation of this chapter. On the

other hand, besides the model inaccuracies, complexity derived from nonlin-

earities in the process is another important factor that makes the application

of model-based approaches a formidable task. This chapter simplifies complex

nonlinear dynamics by formulating them as differential algebraic equations

(DAE), facilitating the objectives of state estimation, detection and fault iso-

lation.

The estimation mechanism studied in Chapters 2 and 3 was based on

the extended Kalman filter (EKF). The approach proposed here also utilizes

nonlinear state estimation, however, it is dependent on the extended Luen-
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berger observer (ELO) and can handle both parameter estimation and param-

eters with uncertainties by means of using sliding mode theory. Consequently,

a robust fault detection and isolation (RFDI) system for nonlinear processes

that can be represented as differential algebraic equations (DAE) is designed,

whereby the detection procedure is inspired by model-based ideas and the di-

agnosis mechanism is based on data-driven techniques by means of statistical

analysis.

This chapter is divided into five sections. The motivations driving

this chapter are stated in Section 5.1. Next, Section 5.2 presents the model

assumptions, which are the basis for the formulation of the FDI approach. The

details of the fault detection and isolation system are developed in Section 5.3,

in which a nonlinear state estimation algorithm is designed and the isolation

process is grounded through a statistical approach. Subsequently, the robust

FDI technique is validated in Section 5.4 by using a steam generator model

with simulations during normal operation and under process faults. A brief

description of a steam generator system followed by a concise analysis of the

main characteristics of its dynamic model are illustrated. Comparisons with

both an extended Kalman filter (EKF) and Extended Luenberger Observer

(ELO) are also presented. Finally, a summary of this chapter is contained in

Section 5.5.
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5.1 Motivation

Several FDI alternatives found in the literature can be utilized when

models have uncertainties. If there are no restrictions related to the observ-

ability of the system, the simplest alternative is the design of state estimators

capable of parameter estimation [22]. In other approaches, robust linear ideas

[90] are extended in nonlinear systems by designing nonlinear state estimators.

Nonlinear state estimators are also designed by using either adaptive threshold

values [98] or sliding mode concepts, in which sliding observers are formulated

for restrictive nonlinear systems [24]. Examples based on residual generation

can be found in [27, 30, 92]. Furthermore, linear sliding observers are used

in [76] by transforming the nonlinear model. In spite of the diverse amount

of existing approaches, there is no guarantee that faults can be identified or

distinguished from one another. Therefore, in order to deal with model un-

certainties that lead to failures in detection, this chapter’s main contribution

concentrates on the design of a robust fault detection and isolation (RFDI)

system that can be applied to nonlinear processes by using a state estima-

tor capable of dealing with both bounded uncertainties and estimation of the

model parameters. In this robust approach, sliding mode concepts are applied

to deal with the bounded uncertainties of some parameters of the model that

cannot be estimated as well as to simplify the complexity of the fault-free

model with algebraic nonlinear functions that have bounded uncertainty in its

parameters.

In Chapters 2 and 3, the fault detection mechanism is based on de-
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tecting abnormal changes between an observer, or state estimator estimates,

and the measured signals from the plant. Once faults are detected, the es-

timator is not able to follow the behavior of the faulty system, resulting in

the increase of the residual trend’s magnitude. These trends were studied in

Chapter 3 and utilized for purposes of isolating faults. Furthermore, when

the nonlinear system has to operate in closed-loop control, the nonlinear state

estimator may be unnecessary for the detection objectives, since the faults

can be detected when the controlled outputs are unable to follow the setpoint

trajectories. In the new approach proposed here, the state estimator is able to

follow the faulty system. Therefore, the mechanism of detection is based on

detecting both the abnormal deviations between the controlled outputs and

the setpoint trajectories and the variations of the estimated parameters from

their normal values.

As the magnitude of the residual trends will be close to zero, the iso-

lation of a fault is obtained by means of statistical analysis, using principal

component analysis [66], to extract the information of the state variable esti-

mates of the robust observer. Specifically, the corrections that the nonlinear

robust observer applies to the state variable estimates provided by the non-

linear model. In Chapter 4, PCA and KPCA were studied and it was demon-

strated that these methods perform poorly under the effect of disturbances and

nonlinearities when there are restrictions in the number of measurements avail-

able. However, these data-driven methods have the advantage of developing

simple data models that can be successfully applied around single operating
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points or when the process has non-severe nonlinearities. An interesting moti-

vation behind this work is to study how these approaches can best be applied

to complex processes.

5.2 Modeling Assumptions

The proposed approach can be utilized for nonlinear systems formulated

as a differential algebraic equation (DAE) of the following form:

dx

dt
= f (x, u, θ, pd, q) (5.1)

q (x, θ, pd) = 0 (5.2)

y = h (x, θ, pd, q) (5.3)

where:

• x ∈ <n is the vector of state variables

• u ∈ <m is the vector of system inputs

• y ∈ <p is the vector of system outputs

• f (·) is the nonlinear state equation function

• q (·) is a nonlinear function that can be used in equations 5.1 and 5.3

• h (·) is the nonlinear output function
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• pd ∈ <r are the parameters that cannot be estimated and these are

defined as pd = pd + δpd. Each of these parameters are assumed to have

bounded uncertainty defined by |δpd| ≤ ε

• θ ∈ <s are bounded parameters that can be estimated by the observer.

The parameters are assumed fixed (not time-variant) but unknown. The

maximum limit of these parameters is defined by θmin < θ < θmax

As the observer executes parameter estimation, the state variables are

augmented with the estimated parameters, θ, and defined as x̃ ∈ <ñ=n+s =[
xT θT

]T
. Thus, equations 5.1, 5.2 and 5.3 become equations 5.4 through

5.6.

dx̃

dt
= f̃ (x̃, u, pd, q) (5.4)

q (x̃, pd) = 0 (5.5)

y = h (x̃, pd, q) (5.6)

with

f̃ (x̃, u, pd, q) =
[
f (x, u, θ, pd, q) [0 · · · 0]

]T
(5.7)

A simple discrete version of these equations can be written as follows:

x̃k = x̃k−1 + Ts · f̃ (x̃k−1, uk−1, pd, q) (5.8)

q (x̃k−1, pd) = 0 (5.9)

y = h (x̃k, pd, q) (5.10)
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where Ts is the sample time.

Finally, equations 5.8, 5.9 and 5.10 will be used to develop the robust

fault detection and isolation approach presented in section 5.3.

 

Figure 5.1: Robust Fault Detection and Isolation (RFDI) Architecture

5.3 Formulation of the RFDI System

The detection of a fault is performed by using both a nonlinear dis-

crete observer, which predicts the trends of the measurable outputs ŷ, and a

fault detector system. This system determines the time of the fault, tfault,

once differences are found either between the setpoint trajectories and process

variables or variations of the parameters estimated, θ, from their normal op-

erating values. Furthermore, once a fault is detected, the isolation of the fault

is carried out by analyzing the corrections of the state variables, x∗k ∈ <ñ,

derived from the observer at each time step. Figure 5.1 illustrates how these

three components are connected. The fault contributions, f ik for each i state

variable, are obtained by applying principal component analysis (PCA) over

the vector, x∗k. Further detail regarding these components will be presented in
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upcoming subsections.

Notice that PCA will be applied over the corrections performed by the

robust state estimator x∗k, instead of using the measurements, y, or the residual

trajectories, which are the typical data or information utilized for these data-

driven techniques to carry out the detection and isolation objectives. These

corrections have the advantage of being associated with the state variables

of the system. Consequently, the severe nonlinearities are immersed in the

predictions of the nonlinear model of equations 5.8 through 5.10 while the ad-

justments are done based on the linearized dynamic of the system, facilitating

the use of this statistical approach.

5.3.1 Robust Observer Formulation

The predictions of the state variables ̂̃xk, at each time step k, can be

obtained by,

̂̃xk = x̃−k + x∗k
(
e−yk
)

(5.11)

where the approximate values of the state vector x̃−k , determined by applying

equation 5.12, are in terms of the a priori state estimates ̂̃xk−1 and calculated

by using equation 5.8.

x̃−k = ̂̃xk−1 + Ts · f̃
(̂̃xk−1, uk−1, pd, q

)
(5.12)

These approximate values, x̃−k , are corrected by adding the term x∗k
(
e−yk
)

that

is in function of the error e−yk ,

e−yk = zk − y−k (5.13)
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where the vector zk ∈ <p corresponds to the measurements of the nonlinear

system and the estimates of the measurement vector y−k are computed by

applying equation 5.14.

y−k = h
(
x̃−k , pd, q

)
(5.14)

In order to deal with bounded uncertainties in the parameters of the

model, the discrete observer is based on the sliding observers theory [16],

whereby it is demonstrated that the robust performance of these type of ob-

servers is possible in the presence of parameter inaccuracies. The idea behind

the sliding modes theory is to define a surface along which the process can

slide to its desired final value, by applying a high-frequency switching control.

The sliding observer is designed such that it drives the states to a

particular surface, called the sliding surface S(t) and defined by equation 5.15.

S(t) =
{
x̃k ∈ <ñ : e−yk = 0

}
(5.15)

Once this surface has reached the sliding motion, it is ensured that the states

will remain close to the surface. The sliding motion is generated by using a

switching function ,vk ∈ <p, defined by:

vi = Misign
(
zi − y−i

)
i = 1, ..., p (5.16)

where p is the number of measurable variables and Mi is chosen in order to

match all the bounded uncertainties that were defined in the model parameters.

The sliding observer used is based on the linear Utkin observer [16],

which has been extended to nonlinear systems. Furthermore, the observer
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proposed also allows parameter estimation whereby an extended Luenberger

observer in combination with the sliding motion guarantee a robust estimation.

Equation 5.17 shows how the corrected vector x∗k is determined:

x∗k = Kke
−
yk

+ T−1
c

[
−Lkvk

(
e−yk
)

vk
(
e−yk
) ]

(5.17)

where the matrix Kk ∈ <ñxp corresponds to the Luenberger gain, the matrix

Lk ∈ <(ñ−p)xp represents the sliding gain and the matrix Tc ∈ <ñxñ is used to

introduce a coordinate transformation. In the section 5.3.1.1, the calculation

of these matrices will be presented in detail.

As was mentioned previously in Section 5.1, the proposed robust state

estimator has three tasks. First, it must deal with parameter uncertainties

through utilizing sliding mode concepts whereby equations 5.15 and 5.16 play

an important role. Second, it has to follow the faulty system, or in other words,

the nonlinear state estimator has to maintain the residual values, defined in

equation 5.13, close to 0. This explains the formulation of the sliding surface

of equation 5.15. Third, the proposed robust state estimator may simplify

the complex nonlinearities of the model, whose procedure will be addressed in

Section 5.4.

5.3.1.1 Robust Observer Algorithm

The prediction of the states can be achieved by using the following

algorithm at each time step:

Step 1: Approximate values of the state vector x̃−k are obtained from
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equation 5.12.

Step 2: Estimates of measurement vector y−k are determined from

equation 5.14.

Step 3: The nonlinear state equation and output functions are lin-

earized around the current estimated state, ̂̃xk−1, as in equations 5.18 and

5.19.

A[i,j] =
∂f̃i
∂x̃j

̂̃xk−1,uk−1

A ∈ <ñxñ (5.18)

C[i,j] =
∂hi
∂x̃j

̂̃xk−1,uk−1

C ∈ <pxñ (5.19)

Thus, the linear nominal system, at each time step, can be written as in

equation 5.20 whereby non-external disturbances are considered.

xk = Axk−1

yk = Cxk
(5.20)

Step 4: The gains that are used in the proposed nonlinear state esti-

mator of equation 5.11 are calculated in this step. These gains are calculated

based on the linearized model of equation 5.20 which is obtained at each time

step. The state estimator in the linear domain has the following form:

x̂k = Ax̂k−1 +Kkeyk−1
+ T−1

c

[
−Lkvk
vk

]
ŷk = Cx̂k

(5.21)

where Kk and Lk correspond to the Luenberger and sliding gains respectively.

The switching function vk is defined by equation 5.27. The matrix Tc is ob-

tained by equation 5.22 and the error eyk , which is the difference between the

103



measurement vector yk and the estimates of the outputs ŷk, which is deter-

mined by equation 5.23.

Tc =
[
null(C)T C

]T
(5.22)

eyk = yk − ŷk (5.23)

exk = xk − x̂k (5.24)

Kk ∈ <ñxp is determined such that the eigenvalues of the error exk , given

by equation 5.25, have strictly negative real parts. This error exk , defined as

the difference between the true states xk and estimates x̂k, is formulated in

equation 5.24. Thus, the first order difference equation given by 5.25 is derived

by using equations 5.20, 5.21, 5.23 and 5.24.

exk = (A−KkC) exk−1
(5.25)

In order to obtain the sliding gain Lk, the matrix A of equation 5.20

is transformed such that the outputs appear as components of the states. By

using the following transformation Tcx → χ, the state estimator model of

equation 5.21 becomes:[
χ̂k
ŷk

]
=

[
A11 A12

A21 A22

] [
χ̂k−1

ŷk−1

]
+ TcKkeyk +

[
−Lkvk
vk

]
ŷk =

[
0 Ip

] [χ̂k
ŷk

] (5.26)

where each row of the discontinuous vector vk ∈ <p is defined by:

vi = Misign (yi − ŷi) i = 1, ..., p (5.27)
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Equation 5.28 shows the error between the transformed estimates and true

states.[
eχk
eyk

]
=

[
A11 A12

A21 A22

] [
eχk−1

eyk−1

]
+ TcKkeyk −

[
−Lkvk
vk

]
(5.28)

After some finite time when the states have reached the sliding surface, as

defined by equation 5.15, the errors eyk−1
and eyk approach 0. Equation 5.28

then reduces to:

eχk = (A11 − LkA21) eχk−1
(5.29)

The matrix Lk ∈ <(ñ−p)xp is obtained such that the eigenvalues of equation

5.29 have strictly negative real parts.

Step 5: A posteriori estimate ̂̃xk, or a correction of the values x̃−k , is

computed by utilizing equations 5.11 and 5.17. While this nonlinear observer

equation is similar to the observer model presented in equation 5.21, the dif-

ference lies in the error of the outputs e−yk , which is defined in equation 5.13.

The gains Kk and Lk are calculated by using equations 5.25 and 5.29. Finally,

the states that correspond to the parameters of the model are verified such

that they are inside the limits defined previously in section 5.2.

5.3.2 Fault Detector System

The detection of a fault is performed by verifying differences in the

controlled variables with setpoint trajectories, followed by an examination of

the changes in the parameter values that were estimated from normal operation
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trends, as is shown in Figure 5.1. This procedure will be clarified in Section

5.4.4.

5.3.3 Fault Isolation Mechanism: A Statistical Analysis

A statistical analysis is performed over the corrections vector, x∗k, de-

fined in equation 5.17. A statistical model of this vector is created using

principal component analysis (PCA). By collecting data of the vector, x∗k,

during normal process operation, the data matrix X ∈ <Nxñ is created, where

N represents the number of samples and ñ represents the number of state

variables. As was stated in Section 4.2.1, the main idea behind PCA is that

instead of using the matrix X, the variability in the data can be predicted by

using l principal components (PC). In other words, the covariance matrix S

of the normalized matrix X, scaled to zero mean and to unit variance, can be

decomposed as follows:

S
1

N − 1
XTX = PΛP T + P̃ Λ̃P̃ T (5.30)

where P ∈ <ñxl is the principal loadings, P̃ ∈ <ñx(ñ−l) corresponds to the

residual loadings and the diagonal matrices Λ and Λ̃ contain the principal and

residual eigenvalues.

Once the PCA model is computed, the objective is to determine the

fault contributions for each state variable, after a fault is detected by the mech-

anism illustrated in section 5.3.2. PCA projects the information contained in

x∗k into two subspaces: the principal subspace (PS) and the residual subspace
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(RS). As was mentioned in Chapter 4, statistical indices [2, 66, 93] are used for

projecting the data into these subspaces and then utilized for purposes of fault

detection and isolation. The combined index ϕ, in which both indices T 2 and

SPE are combined, will be used in this approach and is defined by equation

5.31.

ϕk

(
x∗

T

k

)
= x∗

T

k

(
C̃

δ2
+
D

τ 2

)
x∗k (5.31)

where C̃ = PP T and D = PΛ−1P T . The control limits δ2 and τ 2 are defined

in Appendix D.

Furthermore, once the statistical index is calculated, isolation is carried

out by decomposing the information provided by this index into each element

of the vector x∗k which is associated to the state variables of the system. The

most utilized isolation technique is contribution plots [66]. However, here

the reconstruction-based contribution (RBC) [2] isolation technique will be

utilized. RBC reconstructs the fault contribution along each variable i with

associated direction ξi ∈ <ñ by using the following expression which is defined

for the case of the ϕ index:

RBCϕ
i = (ξifi)

T

(
C̃

δ2
+
D

τ 2

)
(ξifi) (5.32)

where fi is calculated in order to minimize the value of the statistical index

ϕ (x∗k − ξifi), given by equation 5.31. Calculating the derivative of this index

ϕ (x∗k − ξifi) with respect to fi and equating to 0, results in the calculation of
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the fi as:

fi =

(
ξTi

(
C̃

δ2
+
D

τ 2

)
ξi

)−1

ξTi

(
C̃

δ2
+
D

τ 2

)
x∗k (5.33)

Thus, by using the results of equations 5.32 and 5.33, the fault contri-

butions for each variable are calculated. The application of this technique will

be presented in section 5.4.4.

5.4 Case Study: Steam Generator

In this section, the steam generator case study will be utilized to val-

idate the proposed robust fault detection and isolation (RFDI) system pre-

sented in Section 5.3. This model is based on a pilot process operating at

the University of Lille (France) and used in applications of fault diagnosis

[8, 10, 12]. Section 5.4.1 presents a brief description of the boiler system with

its main characteristics (derived from nonlinear complexity), which are very

common in chemical processes. Additionally, further details of the formulation

of the boiler system is described in Appendix C. Next, in section 5.4.2, the

proposed robust observer will be validated and also compared with different

nonlinear state estimators in Section 5.4.3, whereby the advantages of includ-

ing the sliding modes will be highlighted. Finally, Section 5.4.4 illustrates the

FDI results when there are gas and liquid leaks in the system.
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Figure 5.2: P&ID of the Steam Generator

5.4.1 Description of the Nonlinear Process and its Main Charac-
teristics

This Section focuses on the dynamic of the boiler, which possesses the

most severe nonlinearities. Figure 5.2 shows the P&ID diagram of this system.

The boiler system has four inputs: (1) the flow of feed water, FAL [kg/s], which

is proportional to the opening of the control valve V1; (2) the heater control

signal uTH ; (3) the steam flow in the boiler output, FGV [kg/s], which is

proportional to the opening of the control valve V2; and (4) the temperature

of the feed water, TAL [◦C]. Three measurable outputs are considered: (1) the

water volume of the boiler, L [l]; (2) the pressure in the boiler PGV [bar]; and

(3) the temperature of the metal body of the boiler, TMG [◦C]. The system’s

model contains three state variables: (1) the mass of the water-steam mixture

in the boiler, MGV [kg]; (2) enthalpy in the boiler, HGV [J ]; and (3) the

temperature of the metal body of the boiler, TMG [◦C]. Two PI controllers

maintain the pressure and level in the boiler within a desired range. The

pressure in the boiler is controlled by manipulating the thermal resistor, which
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has a maximum power of 55 [Kw], while the level in the boiler is controlled by

operating the control valve V1, which transfers water from the storage tank.

Additionally, the steam flow is controlled by using control valve V2 which is

operated in manual mode.

The differential equations that represent the behavior of the boiler are:

dMGV

dt
= FAL − FGV (5.34)

dHGV

dt
= uTHPTH + cpeTALFAL + V

dPGV
dt
− FGV hv (5.35)

−KGM (TGV − TMG)

dTMG

dt
=

1

CGM
(KGM (TGV − TMG)−Kex (TMG − Tex)) (5.36)

y (t) =
[

(1−X)MGV vL PGV TMG

]T
(5.37)

where the parameters (V, cpe, PTH , KGM , Kex, CGM and TGV ) and the thermo-

dynamical properties (hGV , vGV , hL, hv, vL and vV ) are defined in Appendix

C. The polynomials of the thermodynamical properties were fitted using the

data provided by the International Association for the Properties of Water

and Steam (IAPWS) [85].

The outputs of the model are given by equation 5.37. Also, equations

5.38 and 5.39 are used to model the two-phase water-steam mixture. In using

these equations, both the pressure PGV of the boiler and the steam quality X

are obtained by solving the polynomials of equations 5.40 and 5.41 respectively.

hGV =
HGV

MGV

= hV (PGV ) ·X + hL (PGV ) · (1−X) (5.38)

vGV =
V

MGV

= vV (PGV ) ·X + vL (PGV ) · (1−X) (5.39)
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(hGV − hL) (vV − vL)− (vGV − vL) (hV − hL) = 0 (5.40)

X =
(hGV (PGV )− hL (PGV ))

(hV (PGV )− hL (PGV ))
=

(vGV (PGV )− vL (PGV ))

(vV (PGV )− vL (PGV ))
(5.41)

Figure 5.3 shows the pressure and volume trajectories of the boiler

respectively, where random noise has been included in solving the model for-

mulated in equations 5.34 through 5.41. The pressure is operated at 7 [bar],

10 [bar] and 8 [bar]. The water volume is operated at 149 [l], 153 [l] and 147

[l], respectively. These controlled variables, pressure and water volume of the

boiler, successfully follow the setpoint trajectories in normal operation.

 

Figure 5.3: Pressure and Level Trajectories of the Boiler Simulated at Different
Operating Points

Three interesting characteristics were found based on the nonlinear

model equations:
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1. The uncertainty of some parameters of the model. For instance, in equa-

tions 5.35 and 5.36, the parameters KGM and Kex are difficult to deter-

mine. As a result, errors in the prediction of outputs can lead to false

alarms.

2. The stability of the system. The first state equation, given by equation

5.34, is unstable in open loop, forcing the system to be analyzed un-

der closed-loop control. This violates causality assumptions in system

identification [45, 48].

3. A noninvertible characteristic of the pressure trajectory. Due to the

modeling of the water-steam mixture, where the thermodynamic prop-

erties are used in equations 5.38 and 5.39. Figure 5.4 shows a typical

trajectory of the boiler pressure, PGV , which is obtained by solving the

polynomial given in equation 5.40. Based on this pressure trajectory,

that is the function of the state variables MGV and HGV , a noninvertible

characteristic can be found. For instance, if the pressure of the boiler is

7.5 [bar] (grey plane shown in Figure 5.4), then the pressure value can

be obtained from three different values in the state variables, MGV and

HGV . This fact makes it very difficult to derive a nonlinear function

that approximates the trajectory of the pressure in terms of the state

variables. Therefore, it is a formidable task to analyze the properties of

the model, such as observability and controllability, while also using the

model as a state estimator.
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Figure 5.4: Pressure Trajectory, PGV , vs. Mass of the Steam-Water Mixture,
MGV , and Enthalpy, HGV

To deal with the first characteristic, there are two alternatives: (1) To

verify if Kgm and Kex can be estimated by applying an observability analysis;

or (2) if these parameters are not observable, then bounded uncertainties can

be defined for them.

PGV = b1 + b2MGV + b3HGV (5.42)

To handle the noninvertible characteristic, instead of using equation

5.40, which is a high order polynomial, an explicit function that solves for

the pressure PGV can be defined as shown in equation 5.42. Notice that this

function corresponds to the function q defined in equation 5.9 that could be

in a function of the state variables and parameters that cannot be estimated.
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In equation 5.42, the parameters b are defined as:

b =
[

11.96 −0.23 2.78e−7
]T

(5.43)

with the following bounded uncertainties:

|δb1 ≤ 4| (5.44a)

|δb2 ≤ 0.1| (5.44b)∣∣δb3 ≤ 1e−07
∣∣ (5.44c)

The bounded uncertainties were included after determining that these param-

eters cannot be estimated.

In Section 5.4.2, these simplifications, derived from the nonlinear boiler,

will be used to validate the RFDI system.

5.4.2 Analyzing the Sliding Contributions in the Estimation

The robust fault detection and isolation system that was introduced in

Section 5.3, will be applied to the steam generator. To summarize, three steps

are used to define the robust observer:

Step 1: The complex nonlinear dynamics, as illustrated in the case of

the noninvertible characteristic in section 5.4.1, can be simplified so that they

can be formulated like the model defined in equations 5.8 through 5.10. For

the steam generator, the function that solves for the pressure PGV , given by

equation 5.40, is replaced by equation 5.42.
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Step 2: An observability analysis is performed in order to define the

parameters of the nonlinear model that can be estimated with their associated

maximum limits. In this example, Kgm and Kex were the parameters selected.

The estimation of these parameters will be obtained over the following limits:

0 ≤ Kex ≤ 10 (5.45)

0 ≤ Kgm ≤ 2100 (5.46)

Step 3: The parameters that cannot be estimated but could lead to

false alarms are defined with bounded uncertainties. The value of Mi of equa-

tion 5.16 is also determined based on the magnitude of these uncertainties. For

the case study, the parameters of equation 5.42 were defined as the parameters

with associated uncertainties and their M1..r values are M1..r = 0.25.

Figure 5.5 shows the estimate of the pressure PGV , at the same oper-

ating points illustrated in Figure 5.3. The blue (thick) line represents the real

trajectory of the pressure, which is obtained by solving equations 5.34 through

5.41. The red (thin) line has an oscillatory trajectory around the operation

points of pressure, that represent the sliding motion of the observer. The green

(dashed) line corresponds to the estimated trajectory of pressure which is a

filtered version of the oscillatory red line. The error of estimation calculated

was 1.53 [%] and computed by the mean absolute percentage error (MAPE),

defined as:

MAPE =

∣∣y(t)− y−k
∣∣

y(t)
100[%] (5.47)
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Figure 5.5: Estimate of the Pressure Trajectory by Using the Robust Nonlinear
Observer

where y(t) is given by equation 5.37 and y−k is determined by equation 5.14.

Figure 5.6 shows the estimated trajectories of parameters Kex and Kgm.

The black (thick) lines are the estimated parameters, which result from filtering

the oscillatory trajectory given by the red (thin) line trajectories. Because

of the sliding motion, the oscillation presented is within the limits defined

previously in equations 5.45 and 5.46 for these parameters.

In section 5.4.3, the performance of different nonlinear state estimators

is compared using the simplified model that includes equation 5.42.
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(a) Estimate of the Coefficient Kex

 
(b) Estimate of the Coefficient Kgm

Figure 5.6: Parameter Estimation Results by Using the Robust Nonlinear
Observer
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5.4.3 Nonlinear State Estimator Comparisons

The performance of the proposed nonlinear robust observer is compared

with an extended Luenberger observer (ELO) and extended Kalman filter

(EKF). For these three state estimators parameter estimation is performed.

The estimated pressure trajectories using an extended Luenberger ob-

server (ELO) and an extended Kalman filter (EKF) are illustrated in Figure

5.7. The blue (thick) line corresponds to the the real trajectory of the pressure

and the red (dashed) lines represent the estimates of each estimator. Notice

that the MAPE error of estimation for the case of the ELO, Figure 5.7(a),

obtained was 0.93 [%], which is better than the error obtained when using

the robust observer. The MAPE error for the EKF, Figure 5.7(b), was 5 [%].

For this case, the trajectory of the pressure estimated has larger error than

the case estimated in the proposed robust observer (shown in Figure 5.5),

stemming from the approximation of the pressure function defined in equation

5.42. However, because of the uncertainties associated in the parameters of

5.42, these estimators violate the assumptions formulated for parameter esti-

mation, which are defined in equations 5.8, 5.9 and 5.10. In Figure 5.8, the

estimated trajectories of the parameter Kex, for ELO and EKF, are not con-

stant. Therefore, these parameter estimations cannot be used to detect faults.

This fact is a fundamental advantage of including the sliding mode contribu-

tions in an observer when uncertainties are presented in the model. Finally,

Figure 5.9 shows the pressure estimates of an extended Kalman filter (EKF),

red (dashed) line. The performance of this estimator is evaluated under the
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(a) Extended Luenberger Observer (ELO) Estimates

 
(b) Extended Kalman Filter (EKF) Estimates

Figure 5.7: Estimate of the Pressure Trajectory by Using ELO and EKF
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(a) Estimate Using ELO

 
(b) Estimate Using EKF

Figure 5.8: Parameter Estimation of the Coefficient Kex
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Figure 5.9: Estimates of the Pressure, PGV , in the Presence of a Gas Leak
Using an Extended Kalman Filter (EKF). The EKF trace is truncated to
show a relevant scale

gas leak case, where further detail can be found in section 5.4.4. Before the

fault occurs, the estimated trajectory has a similar trend to the one shown in

Figure 5.7(b). Once the fault has occurred, the estimates of the EKF are no

longer valid.

5.4.4 FDI Results

Two faults are introduced to validate the proposed approach. First, a

gas leak is introduced in the system at t = 1, 000 [s]. Figure 5.10(a) shows

the estimated trajectories. As a result of the fault, the pressure value, blue

(thick) line, falls at t = 1, 000 [s] and separates from the set point trajectory.
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The observer is able to follow the pressure trajectory, green (dashed) line, with

a MAPE error equal to 2.17 [%]. A similar situation happens when a liquid

leak (second fault) is added into the system at t = 600 [s]. For this fault, the

level trajectory, blue (thick) line, separates from the set point trajectory. The

observer follows the level trajectory, green (dashed) line, with a MAPE error

equal to 0.44 [%].

Figure 5.10(b) shows the coefficient Kex trajectory, black (thick) line,

in the presence of a gas leak fault. In this case, changes in the value of this

coefficient from the nominal value have occurred and the fault is detected as a

result. The fault is first detected from the deviation of the pressure values to

the set point trajectory and then verified once changes in the parameter value

have been detected. The fault is detected at t = 1, 026 [s]. For the case of the

liquid leak, Figure 5.11(b) shows the coefficient Kex estimates and the fault is

detected at t = 651 [s].

Figures 5.12(a) and 5.12(b) illustrate the results of isolation for the gas

leak and liquid leak respectively, whereby the fault contributions, calculated by

using equation 5.32 for each state variable, are plotted. While the contribution

of each fault is similar, the faults can be distinguished based on the magnitude

of the contributions associated for each state variable.

5.5 Summary

A robust fault detection and isolation system utilizing a fault-free model

was designed. The detection mechanism proposed involves a robust state es-
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(a) Pressure Trajectory Estimates

 
(b) Estimate of the Parameter Kex

Figure 5.10: Gas Leak Fault
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(a) Level Trajectory Estimates

 
(b) Estimate of the Parameter Kex

Figure 5.11: Liquid Leak Fault
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(a) Gas Leak Contributions

 
(b) Liquid Leak Contributions

Figure 5.12: Isolation Results in the Case of Process Faults
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timator, which is based on an extended Luenberger observer combined with

the theory of sliding modes. The advantage of including the sliding modes

in presence of parameter uncertainties has been demonstrated by comparing

its performance with an extended Kalman filter (EKF) and extended Luen-

berger observer (ELO). Consequently, this robust estimator is capable of deal-

ing with parameters that can have associated bounded uncertainties as well as

parameter estimation in the presence of noise. These capabilities provide the

advantage of avoiding false alarms in addition to allowing the simplification of

nonlinear complex dynamics into explicit functions that can be modeled as dif-

ferential algebraic equations (DAE’s). Therefore, this simplification facilitates

the analysis of the main properties of the system such as observability, stability

and controllability. These two advantages are important contributions for fa-

cilitating FDI tasks. Faults are detected by verifying changes in the parameter

values and deviations of the controlled variables from the setpoint trajectories.

In regards to the isolation mechanism proposed, faults can be recon-

structed determining the contributions over the state variables and parame-

ters estimated. A statistical analysis is performed from the correction vector

of the robust state estimator, which minimizes the error between the output

estimates and the measurable variables of the system. This correction vector

is calculated by linearizing the nonlinear model at the current operating point

which facilitates the use of statistical methods that are based on linear models.

This mechanism of isolation provides further information as it facilitates the

identification of faults sharing similar characteristics, as in the case of process
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faults.

Finally, this approach was successfully validated by using a steam gen-

erator system where two process faults, a gas leak and a liquid leak, were con-

sidered. The proposed robust fault detection and isolation (RFDI) technique

can be applied to nonlinear systems that can be modeled as the differential

algebraic equations (DEAs) formulated in Section 5.2.
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Chapter 6

Summary and Future Work

6.1 Summary of Contributions

Fault detection and isolation (FDI) systems play an important role in

increasing operational reliability and safety in industrial processes. Based on

the desirable characteristics for an FDI system, defined in Chapter 4, an impor-

tant attribute for an isolation system is the capability of distinguishing single

and multiple faults. Chapters 2, 3 and 5 propose a set of methodologies able

to achieve this challenging objective for nonlinear systems, specifically when

there are restrictions in the quantity of plant data available. The idea behind

these approaches is based on capturing a better understanding of how the

residuals trajectories will perform under faults. A residuals dynamic model,

based on a fundamental (high fidelity) model presented in Chapter 3, is for-

mulated to achieve this goal. Consequently, hypotheses can be generated and

further validated through parameter estimation. This approach was success-

fully validated using two case studies, demonstrating that the FDI formulation

can be extended to other nonlinear applications. The FDI system presented in

Chapter 2 was implemented using LABVIEW and the air heater experiment;

Figure 6.1 illustrates an example of the appearance of the hypothesis generator

block. Furthermore, in Chapter 3 a CSTR simulation, using a unit operation

128



software CHEMCAD, was studied.

Figure 6.1: Example of the Implementation of an FDI System for the Air
Heater Case Study

Sensitive detection systems, with a low percentage rate of false alarms,

correspond to another helpful characteristic that an FDI system should have.

A high rate of false alarms leads the FDI system to become distrustful and not

useful, wasting the time of plant engineers. False alarms can be generated for

different reasons, such as the effect of disturbances on the system or uncertain-

ties in the model parameters utilized for the FDI system. Chapter 3 deals with

false alarms by including them in the isolation system. A correct identification

of a false alarm is useful for sensitive detection systems that are prone to high

rates of false alarms. On the other hand, Chapter 5 proposes a framework

that deals with uncertainties in the model, using nonlinear state estimation

and sliding mode concepts. The case study to validate this approach was a

nonlinear steam generator system.
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No significant work can be found in the literature that points out the

advantages and disadvantages of using existing nonlinear FDI systems. Chap-

ter 4 shows how standard PCA and Kernel PCA compare with the residuals

modeling approach of Chapter 3.

A methodology that is capable of dealing with complex systems and

model inaccuracies is proposed in Chapter 5. Under observability restrictions,

the complexity of the model can be simplified by using differential algebraic

equations (DAE). Therefore, a robust fault detection and isolation system

(RFDI), based on nonlinear estimation, is capable of dealing with parameters

that have associated bounded uncertainties and parameter estimation. These

two characteristics are important to avoid false alarms and isolate faults. The

advantages of data-driven techniques are used here to extract information from

the state estimator. The ultimate objective of this approach is to facilitate the

task of performing FDI when there are complex models available. A steam

generator was utilized to validate this approach.

6.2 Recommendations for Future Work

This research should continue in the following five directions:

• Extension of the FDI proposed techniques to other applications: The

fault isolation results obtained with the three case studies (Air heater,

CSTR and steam generator) suggest that these approaches can be ex-

tended to other type of applications, e.g., batch processes.
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• Fault identification : Even though the objective of this dissertation is on

isolation, the proposed model-based FDI approaches can be extended to

perform identification of the fault, which means the ability of determin-

ing the size of the fault.

• Further comparisons with existing approaches: No substantive work can

be found for the case of nonlinear systems. Therefore, more comparisons

with existing approaches, such as based on computational intelligence or

analytical redundancy relations need to be studied.

• Observability analysis of the nonlinear system under single/multiple faults:

The system can lose its observability properties under the effect of single

or multiple faults. The question that arises is: What should be the role

of the state estimator under this cases?

• Combined Approaches: An insight of how the combination of existing ap-

proaches can be used to detect and isolate faults has been demonstrated

in Chapters 2 and 5. Taking advantage of the current techniques, a ro-

bust framework could be created that increases the reliability of an FDI

system.
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Appendix A

Air Heater Model

Three main assumptions were considered to develop this model: (1)

incompressible air flow q with no material leaks; (2) the system is subject to

heat losses and the ambient temperature Tamb is considered to be a disturbance

input; (3) plug flow and uniform temperature profile along the air heater.

The following expressions represent the dynamic model for this system,

c11

dT1

dt
= qTambc21 − qT1c21 + vQc31 (A.1a)

c1i

dTi
dt

= qTi−1c2i − qTic2i − c4i (Ti − Tamb) (A.1b)

Equation A.1a represents the energy balance of the first section, in which the

heater Q is included. The energy balance for sections 2 through 4 are given by

equation A.1b, where i denotes the section number. The following expressions

are used to simplify the number of parameters used to describe the dynamic

model presented in equation 2.20:

q = c5 [m3/s · Volts] · vf β =
c31

c11

(A.2a)

αi−1 =
c2ic5

c1i

γi−1 =
c4i

c1i

(A.2b)

Table A.1 illustrates the values of the parameters of the simplified model
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presented in equation 2.20. These parameters were obtained using the pseudo

random signal of Figure 2.5(a).

Table A.1: Parameters of the Air Heater Model

Parameters Values Units

β 0.0064 [1/s]
α0 0.004 [1/Volts · s]
α1 0.375 [1/Volts · s]
γ1 0.0382 [1/s]
α2 0.3757 [1/Volts · s]
γ2 0.1302 [1/s]
α3 0.4556 [1/Volts · s]
γ3 0.1189 [1/s]

A predictive controller is designed to maintain the temperature of sec-

tion 1, TSection1 , within a desired range. The control law utilized is as follows:

J (nc, np) =

np∑
i=1

‖ŷ (k + i|k)− r (k + i|k)‖2
Q +

nc∑
i=1

‖∆u (k + i|k)‖2
N

umin ≤ u(k) ≤ umax

∆umin ≤ u(k)− u(k − 1) ≤ ∆umax

ymin ≤ y(k) ≤ ymax

(A.3)

where ŷ (k + i|k) is the predicted output for the future time sample k + i at

time instant k. r (k + i|k) is the expected setpoint evaluated i samples in the

future. The prediction horizon, np, is 7. The control horizon, nc, is 2. The

weight Q value is 6. The weight matrix N is given by:

N =

[
5 0
0 5

]
(A.4)

Two are the manipulated variables of the system: (1) the voltage of the fan,

ufan; and (2) the voltage of the heater, uheater. The objective function of
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equation A.4 is implemented using LABVIEW with the constraints that are

defined in equation A.5.

umin =
[

0 1
]T

(A.5a)

umax =
[

5 4
]T

(A.5b)

∆umin =
[
−5 −5

]T
(A.5c)

∆umax =
[

5 5
]T

(A.5d)

ymin =0 (A.5e)

ymax =5 (A.5f)

135



Appendix B

Nonisothermal CSTR Model

The CSTR simulation parameters are:

The preexponential factor or frequency factor, k0 [min−1], is 2.4067e11; which

is utilized in the Arrhenius equation (given by equation 3.34).

The activation energy, E [kJ/kmol], is 84666.3

The universal gas constant, R [kJ/kmol −o K], is 8.314

k [min−1], defined in equation 3.35, is the specific reaction rate.

Tr [oK] is the reactor temperature.

r [kmol/min−m3], defined by equation 3.35, is the rate of consumption of

reactants.

The volume of the reactor, Vr [m3], is 3

cj [kmol/m3] is the molar concentration of the j-th component. Three molar

concentrations are considered: (1) concentration of the propylene oxide, CPO;

(2) concentration of the water, CW ; and (3) the concentration of the propylene

glycol, CPG.

cj0 [kmol/m3] is the inlet reactant molar concentration of the j-th component.

The initial concentrations of the components, defined by equation 3.33, are as

follows: (1) CW0 = 48.19; (2) CPO = 1.7; and (3) CPG0 = 0.078

νj is the stoichiometric coefficient of the j-th component.
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The density of the process mixture, ρr [Kg/m3], is 987.4286

The heat capacity of mixture, cpr [kJ/kg −o K], is 3.9566

The overall heat transfer coefficient, U [kJ/(min−m2 −o K)], is 23.16

The jacket heat transfer area, A [m2], is 10.52

The heat of the reaction, ∆rH [kJ/kmol], is -89262.93

The inlet feed temperature, Tr0 [oK], is 300

Tc [oK] is the jacket temperature.

The inlet coolant temperature, Tc0 [oK], is 288.15

The density of coolant jacket, ρc [Kg/m3], is 997.246

The heat capacity of coolant, cpc [kJ/kg −o K], is 4.1872

The volume of the jacket, Vc [m3], is 0.524

Fr [m3/min] is the inlet/outlet flow rate of the reactor and represented

by feed stream 4 (shown in Figure 3.14). Fr is obtained from the mixing of

both water and propylene oxide flow rates:

Fr =
FWρW + FPOρPO

ρr
(B.1)

where the densities of the feed streams water, ρW [Kg/m3], and propylene

oxide, ρPO [Kg/m3], are 993.115 and 820.903, respectively. The propylene

oxide flow rate, FPO [m3/min], is held constant at approximately 0.012. The

water flow, FW [m3/min], is proportional to the opening of the control valve

denoted by unit operation 5. The flow rate through the control valve is given

by:

FW =
Ucr
100

[
1− 1

Rang

]
kcv5

√
∆P (B.2)
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where the rangeability, Rang, is 10. The valve position, Ucr %, is obtained

from the propylene glycol controller. The differential pressure of the valve,

∆P bar, is assumed constant at 0.1. The coefficient of the valve, kcv5, is 0.721.

Similarly, the coolant flow, Fc [m3/min], is proportional to the opening

of the control valve, denoted by unit operation 3, and calculated using the

following equation:

Fc =
Ucc
100

[
1− 1

Rang

]
kcv3

√
∆P (B.3)

where the valve position, Ucc %, is obtained from the reactor temperature

controller. The coefficient of the valve, kcv3, is 1.152.

The parameters of the two PI controllers are defined by equation B.4:

Ucj = Kpj

[
1− 1

τijs

]
e(s) (B.4)

where j = 1, 2. The parameters of the propylene glycol, j = 1, and reactor

temperature, j = 2, controllers are defined as Kp1 = 14.29, τi1 = 10, Kp2 = 1,

τi2 = 4, respectively.
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Appendix C

Parameters and the Thermodynamical

Properties of the Steam Generator

The assumptions to develop the steam generator model are as follows:

• There is no temperature gradient in the vapor phase.

• Water and steam are saturated and the thermodynamic properties cal-

culated are in equilibrium.

• Feedwater temperature is assumed to be constant.

• The water level variation due to the bubble formation is neglected. It is

assumed that evaporation and condensation take place at the surface of

the liquid phase.

• The liquid in feedwater system is incompressible and the steam flow at

the output of the boiler is compressible.

The parameters and thermodynamical properties are as follows:

KGM is the heat exchange coefficient from the water-steam mixture to the

metal body of the boiler, KGM = KgmFV G

Kex is the heat exchange coefficient from the metal body of the boiler to the
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environment

hGV [J/kg] is the specific enthalpy of the water-steam mixture

vGV [m3/kg] is the specific volume of the water-steam mixture

The geometric volume of the boiler, V [m3], is 0.165

The specific heat of the feedwater flow, cpe [J/kg◦C], is 4200

The heating power, PTH [kW ] or [kJ/s], is 55

The average heat capacity of the metal, CGM [J/◦C], is

CGM = Mmetalcmetal = 102[kg]498[J/kg◦C]

The temperature of the boiler, TGV [◦C], is

TGV =− 8.569e−3P 4
GV + 0.336P 3

GV − 4.805P 2
GV

+ 34.357PGV + 65.533

The specific enthalpy of liquid, hL [kJ/kg], is

hL =− 3.578e−2P 4
GV + 1.402P 3

GV − 20.077P 2
GV

+ 144.7PGV + 273.96

The specific enthalpy of steam, hv [kJ/kg], is

hv =− 4.068e−4P 6
GV + 2.205e−2P 5

GV − 0.472P 4
GV

+ 5.094P 3
GV − 29.552P 2

GV + 96.438PGV + 2599.3

The specific volume of liquid, vL [m3/kg], is

vL = −3.591e−7P 2
GV + 1.246e−5PGV + 1.039e−3
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The specific volume of steam, vv [m3/kg], is

vv =− 3.290e−5P 5
GV + 1.606e−3P 4

GV − 3.008e−2P 3
GV

+ 0.271P 2
GV − 1.211PGV + 2.489

Figure C.1 shows the thermodynamical properties that are used in the

steam generator model. These were fitted into the following range of pressure:

[0 − 16bars]. The steam table values, taken from IAPWS [85], are compared

with the polynomial approximations, where the root mean squared error (rms)

is calculated. In the worst case, the error is less than 7%.
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(a) Enthalpy of Saturated Liquid versus Pres-
sure

(b) Enthalpy of Saturated Vapor versus Pres-
sure

(c) Specific Volume of Saturated Liquid ver-
sus Pressure

(d) Specific Volume of Saturated Vapor ver-
sus Pressure

(e) Temperature of Saturated Vapor versus
Pressure

Figure C.1: Polynomial Approximation of the Thermodynamical Properties
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Appendix D

PCA and Kernel PCA Control Limits

The control limits, to evaluate the PCA indices, are defined as follows

[66]:

• δ2 = θ2
θ1
χ2
α

(
θ21
θ2

)
with (1− α) x 100% confidence level.

where θ1 =
∑n

i=l+1 λi and θ2 =
∑n

i=l+1 λ
2
i with λi equal to the ith eigen-

value of the covariance matrix S, defined by equations 4.1 and 5.30.

• τ 2 = χ2
α (l) with (1− α) x 100% confidence level.

• ζ2 =
[(

l
τ4

+ θ2
δ4

)
/
(

l
τ2

+ θ1
δ2

)]
χ2
α

((
l
τ2

+ θ1
δ2

)2
/
(

l
τ4

+ θ2
δ4

))
with (1 − α) x

100% confidence level.

The control limits, to evaluate the Kernel PCA indices, are defined as

follows [3]:

• δ2 =
∑m
i=l+1 λ

2
i

(m−1)
∑m
i=l+1 λi

χα

(
(
∑m
i=l+1 λi)

2∑m
i=l+1 λ

2
i

)
with (1−α) x 100% confidence level.

where λi is equal to the ith eigenvalue of the Kernel matrix K, defined

by equation 4.6. m is the number of measurements or samples.

• τ 2 = [1/ (m− 1)]χα (l) with (1− α) x 100% confidence level.
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• ζ2 =

[
l
τ4

+
∑m
i=l+1 λ

2
i /δ

4

(m−1)

(
l
τ2

+

∑m
i=l+1

λi

δ2

)
]
χα

(
( l
τ2

+
∑m
i=l+1 λi/δ

2)
2

( l
τ4

+
∑m
i=l+1 λ

2
i /δ

4)

)
with (1 − α) x

100% confidence level.
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