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 Development of wavelength selective detection, tunable multi-spectral capability 

with functionality in the infrared spectral region is highly desirable for a variety of 

applications such as thermography, chemical processing and environmental monitoring, 

spectroradiometry, medical diagnosis, Fourier transform infrared spectroscopy, night 

vision, mine detection, military defense and astronomy. Infrared detector with 

wavelength selective functionality have emerged as next generation infrared detectors.  

This study presents fabrication and characterization of wavelength selective 

Germanium dielectric coated Salisbury screen and novel 3D stacked microbolometer for 

multispectral infrared detection. This novel fabrication process helps produce much 

flatter, more robust device structure by using an un-patterned sacrificial layer to produce 

device legs that hold the central structural layer above the reflective mirror supported by 

a completely flat sacrificial layer with sufficient thermal isolation to allow 

microbolometer operation. For the fabricated wavelength selective Germanium dielectric 

coated Salisbury screen microbolometer using self aligned process, the FTIR measured 

spectral responses and numerical simulation results show excellent agreement with 

wavelength selectivity (9μm, 10μm, 11μm) in long wave infrared (LWIR) region. 



 vii 

To achieve multicolor infrared detection, recently a few device concepts using 

uncooled detectors have been reported. However, none of the proposed device designs 

have demonstrated fabrication. Moreover, Commercial Fabry-perot resonant cavity based 

uncooled microbolometers (Air gap: 2 to 2.5μm) have limited design parameters due to 

multicolor narrow band spectral response. In this study, a feasible device fabrication 

method for novel 3D stacked microbolometer is demonstrated for multispectral uncooled 

infrared detector that can achieve tunable narrowband absorption in mid-wave infrared 

(MWIR) and long-wave infrared (LWIR) spectral regions.  
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Chapter 1:  Introduction 

 

The infrared detection technologies for thermal imaging have been the subject of 

research and development for many decades in a wide variety of different applications. 

Infrared focal plane arrays (FPAs) are now fast emerging in military, civilian, 

scientific and medical applications such as defense, security and surveillance, medical 

thermography and diagnosis, building diagnostics, environmental and chemical process 

monitoring, forensic drug analysis, microscopy, mine detection, Fourier transform 

infrared spectroscopy, spectroradiometry, astronomy, night vision in vehicles, and 

industrial thermography (e.g., microelectronics: inspection of microchip and circuits, 

electrical and mechanical equipment fault detection) [1].  

Currently, developing of infrared detection for enhanced capabilities such as high 

thermal resolution, wavelength selective detection, tunable multispectral functionality in 

the infrared spectral region would be highly desirable for a variety of applications.  This 

capability has emerged as a next generation infrared detectors [2].  

The infrared detectors are typically divided into two principally different devices: 

thermal detectors and photon detectors. In contrast to photon detectors, which are 

sensitive only to wavelengths shorter than the cutoff, the widely used thermal detector is 

the uncooled microbolometer, which is sensitive to all wavelengths. The absorption of 

incident infrared radiation raises the temperature of the device, which can be result in a 

change in a temperature-dependent parameter such as electrical conductivity.  

As a consequence, the output of a conventional uncooled microbolometer is 

usually proportional to the amount of energy absorbed per unit time by the detector and, 
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provided the absorption efficiency is same for the all wavelengths, is independent of the 

wavelength of the light. In addition, dark current does not limit thermal detectors. 

Therefore, microbolometer can be operated inexpensively at room temperature. Uncooled 

microbolometer focal plane arrays have significant weight, power and cost advantages 

over cooled infrared focal plane arrays which allows for compact infrared detector system 

designs [3].  

Currently, in the development of multispectral infrared detector systems, narrow 

bandwidth absorption for infrared wavelength selectivity can be achieved using infrared 

photon detectors such as HgCdTe (Mercury Cadmium Telluride: MCT) photodiodes, 

quantum well infrared photodetectors (QWIPs), strained layer super lattices (SLs), and 

quantum dot infrared photodetectors (QDIPs)[4].  

However, photon detectors typically require cryogenic cooling systems. Since 

these quantum detectors use intrinsic photoelectric effect, the materials of a quantum 

detector respond to infrared by absorbing photons that elevate the electrons to a higher 

energy state, causing a change in conductivity, current or voltage. By cooling down the 

quantum detector to a certain cryogenic temperature, quantum detectors can be made 

very sensitive to the infrared. The reason is that when a quantum detector’s material 

cooled to a low temperature, the thermal energy of the electrons may be too low such that 

there are no electrons in the conduction band. Therefore the material cannot carry any 

current. When detectors have incident photons, this energy can stimulate an electron in 

the valence band to move to the conduction band. 

 Another common method uses classical optical techniques, such as either 

dispersing the optical signal across multiple infrared focal plane arrays (FPAs) or a filter 

wheel to spectrally discriminate the image focused on a single infrared focal plane array 

(FPA). These systems use optical components such as bandpass filters, grating, lenses, 
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and beam splitters in the optical path to focus the images onto separate focal plane arrays 

responding to multispectral infrared [5]. 

By using a conventional uncooled microbolometer based on a simple Fabry-Perot 

cavity structure, wavelength selectivity in infrared spectral region is hard to achieve, 

since a simple Fabry-Perot microbolometer typically produces a fairly broad spectral 

response in long wavelength infrared region (LWIR, 8μm to 12 μm).  

In this study, we present narrow bandwidth absorption for wavelength selectivity 

in infrared spectral region using wavelength selective Germanium dielectric coated 

Salisbury screen microbolometers and novel 3D stacked microbolometer. This device 

should enable efficient multi-color infrared uncooled microbolometer focal plane arrays. 

Chapter 2 describes background and motivation of research. The fundamentals of 

infrared radiation, theory of conventional infrared detectors and application of infrared 

detector technologies for thermal imaging, background and theory of uncooled infrared 

microbolometers, as well as multispectral infrared detection for research motivation are 

reviewed.  

Chapter 3 describes fabrication of wavelength selective Germanium dielectric 

coated Salisbury screen microbolometers. In this chapter, the process for polyimide as 

sacrificial layer, Germanium dielectric structural layer, air gap formation using oxygen 

plasma ashing, electrical contact pads and self align methods are presented in detail. 

Chapter 4 discusses the measurement results. For the device characterization, 3D 

optical surface profiles to evaluate air gap device structure, spectral responses using 

Fourier transform infrared (FTIR) spectrometer with focusing systems and electrical 

measurements are performed.    
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Chapter 5 present novel 3D stacked microbolometer for two color infrared 

detection. Fabrication methods capable of 3D stacked microbolometer and simulation 

results for device design enabling to two color detection in mid wavelength infrared 

(MWIR) and long wavelength infrared (LWIR), are described. 

Chapter 6 concludes the dissertation with a summary of the achievements of this 

research and presents ideas for future work in this area. 
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Chapter 2:  Background and Motivation 

In this chapter, fundamentals of infrared radiation, theory of conventional infrared 

detectors and its applications, and motivation of research based on multispectral infrared 

detection for the advanced infrared detectors are covered.  

 

2.1 INFRARED RADIATION 

“INFRA” from the Latin prefix means beneath or below and infrared refers to the 

region beyond the visible spectral region. Infrared radiation was discovered in 1666 by 

Issac Newton, when he separated the electromagnetic energy form sunlight by passing 

light through a prism that separated the beam into rainbow colors. Sir William Herschel 

measured the relative energy of color using a prism and thermometers in 1800. He found 

that thermometer temperature increased from above the violet color to under the red 

color. He concluded that invisible light must be related between wavelength and 

temperature and energy of light beyond the red color does indeed exist. This energy 

would eventually be called the infrared [6].  

Kirchhoff (Kirchhoff’s law, 1859), Wilhelm Wien (Wien’s displacement law, 

1893), Stefan and Boltzmann, (Stefan-Boltzmann law, 1897), and Plank (Plank’s 

radiation law, 1900) much further investigated the electromagnetic spectrum activities 

and developed equations to define infrared [7].  

      Infrared is electromagnetic radiation with a wavelength between 0.3 and 300μm 

which equates to approximately 1 to 430 THz in frequency range. Infrared wavelengths 

can be classified into several categories. Visible and short wavelength infrared (near 

infrared, NIR or SWIR: 0.35 to 2.5μm spectral region) corresponds to a band of light 

atmospheric transmission and peak solar illumination, yielding detectors with the best 
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clarity and resolution of the three bands. Without moonlight or artificial illumination, 

however, SWIR imagers provide poor or no imagery of objects at 300K. The mid-wave 

infrared band (MIR or MWIR: 3 to 5 μm spectral region) can be almost transmitted with 

the added background noise, lower, ambient benefits. The long wavelength infrared band 

(LWIR: 8 to 12 μm spectral region) can be nearly transmitted and it also offers excellent 

visibility regarding to terrestrial objects.  

Figure 2.1 shows atmospheric attenuation in the infrared spectral regions (NIR, 

SWIR, MWIR, and LWIR). Between the infrared detector system and the object is the 

atmosphere which tends to attenuate radiation because of scattering by particles as well 

as absorption by gases. 

 

 

Figure 2.1: Atmospheric attenuation in the infrared spectral region. The area under the 
curve shows the highest infrared transmittance. Atmospheric attenuation 
prevents an object’s total radiation from the reaching the infrared detector 
[8]. 
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2.2 FUNDAMENTALS OF INFRARED RADIATION 

Every single object whose temperature is not absolute zero (the theoretical 

temperature at which entropy reaches its minimum value: 0K on the Kelvin scale and 

273.15° on the Celsius scale) emits, which is defined “thermal radiation”. Thermal 

radiation at terrestrial temperatures consists of self emitted radiation from vibrational and 

rotational quantum energy level transitions in molecules, and reflection of radiation from 

the heated sources.  

The intensity of the emitted energy from an object varies with radiation 

wavelength and temperature. Total radiation law can be simplified to α + ρ + τ = 1, where 

α = absorptance, ρ = reflectance, τ = transmittance.  If there is no transmitted or 

reflected radiation and all incident radiation is absorbed it is defined a perfect blackbody. 

A perfect blackbody is an idealization and it can emit and absorb the maximum 

theoretical amount of thermal radiation at a given temperature. Fundamentals of 

blackbody can be described by Kirchhoff’s law. According to Kirchhoff’s law, α 

(absorptance) = ε (emissivity) and both values vary with the radiation wavelength, α (λ, 

T) = ε (λ, T). 

The amount of radiation power properties from a perfect black body will follow 

Planck’s radiation law, which can described the radiation power intensity of a perfect 

blackbody at certain temperature as a function of wavelength or frequency. 

 
2

2
5 /

2( , ) [ / ]
[ 1]hc kT

hcM T W cm m
e 

 


 


              Eq. 2.1 

  where  

        M: Spectral radiant exitance 

         λ: Wavelength; 
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         T: Absolute temperature in Kevin [K]; 

         c: Speed of light in a vacuum = 2.998 x 1010 cm/s; 

         h: Planck’s constant=6.626 x 10-34Js; 

         k: Boltzmann’s constant=1.3807 x 10-23J/K. 

 

From Plank’s radiation law, the total radiated power energy from a backbody at 

temperature T is the integral over all wavelengths. This result is the Stefan-Boltzmann 

law; 

               4 2

0

( ) ( , ) [ / ]M T M T d T W m   


                Eq. 2.2      

  where 

         M: Total exitance 

         σ: Stefan-Boltzmann’s constant=5.6696 x 10-8 W/m2; 

         T: Absolute temperature in Kevin [K]. 

 

 The decrease in the wavelength of peak exitance as the temperature increases is 

quantified in the Wien Displacement law and can be expression for the wavelength of 

maximum exitance at certain temperature. 

  

                      max
2898 mK

T


                         Eq.2.3 

where 

       λmax: Wavelength of maximum radiation [μm]; 

         T: Absolute temperature in Kevin [K]. 
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2.3 INFRARED DETECTORS 

There are two fundamental methods of infrared detector: thermal detection and 

photon detection. Thermal detection mechanism is where the radiation incident on a 

thermal detector causes the detector temperature to increase due to absorbed radiation and 

this temperature rise cause physical parameters to change such as resistance or voltage. 

The spectral response of thermal detector is determined by the spectral dependence of the 

surface absorptance.  Thermal mass and thermal conductance are associated with the 

thermal detector, and determine the response time of thermal detector. 

Photon detectors generate free electrical carriers through the interaction of 

photons and bound electrons results in photo effects such as photovoltaic, 

photoconductive, photoelectromagnetic and photon drag.  

The current responsivity of a photodetector is determined by the quantum 

efficiency (η). The photoelectric gain and quantum efficiency describe the performance 

of the detector which is coupled to the radiation to be detected. As a result, it turns out as 

number of electron-hole pairs generated per incident photon.  In the results, the photon 

detector can carry a photocurrent which is proportional to the power intensity of the 

incident radiation. However photovoltaic (Schottky barrier) and photoconductive (p-n 

junction) detectors have been widely exploited. Photon detectors use general 

semiconductor materials such as HgCdTe, InGaAs, InSb, PtSi, PbS, PbSe, SiGa, SiAs, 

SiSb, etc. Figure 2.2 shows infrared detector technology and comparison of different 

infrared detector materials using the noise equivalent temperature difference (NETD) 

measured I degrees K. 

For more demanding applications, advanced infrared detection systems have led 

to the use of photon detectors. On the other hand, thermal detectors are low cost and 

commonly used for a variety of detector applications.  
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Recent advances in microfabrication techniques and materials science have led to 

the exciting field of uncooled detectors which promise lower cost of system operation 

and functionality of portable system.  

 

 

 

Figure 2.2: Infrared detector technology. Comparison of different infrared detector 
materials using the noise equivalent temperature difference (NETD) 
measured in degrees K. [9] (Courtesy of Hamamatsu)  
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2.4 APPLICATIONS OF INFRARED DETECTOR TECHNOLOGIES FOR THERMAL IMAGING 

Infrared detector technologies for thermal imaging have been the subject of 

research and development for many decades in a wide variety of different applications 

and infrared focal plane arrays (FPAs) are now fast emerging in military, civilian, 

scientific and medical applications such as medical diagnosis, environmental and 

chemical process monitoring, forensic drug analysis, building diagnostics, microscopy, 

Fourier transform infrared spectroscopy, spectroradiometry, astronomy, night vision in 

vehicles, and industrial thermography (e.g., microelectronics: inspection of microchip 

and circuits, electrical and mechanical equipment fault detection).  Figure 2.3 shows a 

variety of applications of infrared thermal imaging. 
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(a)                            (b) 

 

  

              (c)                            (d)                        

 

Figure 2.3: Applications of infrared thermal imaging. (a) Security and defense      
(b) Medical diagnosis (c) night vision (d) micro chip inspection   
(Courtesy of FLIR) [10]. 
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2.5 BACKGROUND OF UNCOOLED INFRARED MICROBOLOMETERS 

The name bolometer comes from the ancient Greek word bole, for something 

thrown, as with a ray of light.  Bolometer was invented by American astronomer Samuel 

Pierpont Langley in 1878 and his bolometer was the first to measure the energy flow in 

form of electromagnetic radiation from the sun using a blackened platinum absorber 

element, which consisted of two platinum strips covered with lampblack and a simple 

Wheatstone bridge sensing circuit. The circuit was fitted with a sensitive galvanometer 

and connected to a battery. As a result, electromagnetic radiation falling on the exposed 

strip would heat it and change its resistance.  

 

 

(a)                                  (b) 

 

Figure 2.4: Conventional microbolometer (a) Microbolometer Unit cell depiction (b) 
SEM image of Microbolometer FPA [11]. 

Conventional microbolometer technology was originally developed by Honeywell 

in the mid 1980’s as a classified contract for the US Department of Defense. The United 

States government declassified the technology in 1992. After declassification Honeywell 
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licensed their technology to several manufacturers. Figure 2.4 shows illustration of 

conventional uncooled infrared microbolometer and fabricated uncooled infrared 

microbolometer FPAs.  

      At present, the majority of infrared detector systems have an uncooled infrared 

microbolometer focal plane array due to cost consideration. Table 2.1 shows commercial 

and state-of-the-art R&D uncooled infrared microbolometer FPAs. Microbolometer FPAs 

do not require a cooling system which allows for compact infrared system designs that 

are relatively lower cost. Uncooled infrared microbolometer FPAs can be fabricated with 

metal or semiconductors based materials and are able to operate with non-quantum 

efficiency at room temperature [12][13] .  
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Company Bolometer Type Array Format 
Pixel 
pitch  

Detector NETD 
[mk] 

[μm]  (f/1, 20-60Hz) 

FLIR (USA) VOx 160x120-640x480 25 35 
 
 
 VOx 320x240 37.5 50 

L-3 (USA)  α-Si 160x120-640x480 30 50 
  α-Si/α-SiGe 320x240-1024x768 R&D:17 30-50 
 
 
 VOx  320x240-640x480 28 30-50 

BAE (USA)  VOx (Standard design) 160x120-640x480 17 50 
  VOx (Standard design) 1024x768 R&D:17   
 
 
 VOx (umbrella design) 320x240 25 35 

DRS (USA)  VOx (Standard design) 320x240 17 50 
  VOx (umbrella design) 640x480 R&D:17   
 
 

 VOx 320x240-640x480 25 30-40 
 Raytheon (USA) VOx (umbrella design) 320x240-640x480 17 50 

  VOx (umbrella design) 640X480,1024X768 R&D:17   
 
 

ULIS (France) α-Si 160x120-640x480 25-50 35-80 
  α-Si 1024x768 R&D:17   
 
 

Mitsubishi 
(Japan) Si diode 320x240-640x480 25 50 

 
 

SCD (Israel) VOx 384x288 25 50 
  VOx 640x480 25 50 
 

 
NEC (JAPAN) VOx 320x240 23.5 

 
75 

 

Table 2.1: Commercial and state-of-the-art R&D uncooled infrared microbolometer 
focal plane arrays (FPAs) [14]. 
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2.6 THEORY OF CONVENTIONAL UNCOOLED INFRARED MICROBOLOMETERS 

2.6.1 Responsivity 

The responsivity parameter R, a function of the blackbody temperature, is the 

output signal voltage from detector (a pixel of an array) divided by the incident radiant 

power falling on that pixel. 

 

                         Rv = s

o

V
P

                           Eq.2.4  

 

                         Ri = s

o

I
P

                           Eq.2.5                              

 

where Vs: Output signal voltage [V], Po: Radiant input power [W], Is: Output signal 

current [A]. 

 

2.6.2 Noise Equivalent Power (NEP) 

 The Noise Equivalent Power (NEP) is defined as the absorbed power change that 

produces a signal equal to the total (root mean square: rms) noise.  

 

                        NEP = Vn / Rv                         Eq.2.6   

  

                        NEP = In / Ri                          Eq.2.7                                          

   

where Vn is the root mean square (rms) noise voltage within the system bandwidth and In 

is the root mean square (rms) noise current within the system bandwidth. 
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2.6.3 Noise Equivalent Temperature Difference (NETD) 

The Noise Equivalent Temperature Difference (NETD) is defined as the 

temperature change at the target that produces a signal in the microbolometer equal to the 

total (root mean square: rms) noise.  

 

                  NETD = 
1 2

2

0

4
( / )

n

D

F V
A P T     

                 Eq.2.8   

                                         

where 0  is the transmittance of the optics, 
1 2

( / )P T     is the change in power per 

unit area radiated by a blackbody at temperature T (with respect to T measured within the 

spectral band width from 1  to 2 , DA ) ,is the total area of a pixel and F is a function 

of distance from the optics to the scene being viewed and it defined by  

 

                        F = 
1

2sin
                          Eq.2.9   

 

where   is the angle which the marginal rays from the optics make, with the axis of the 

optics at the focal point of the image.  

 

2.6.4 Detectivity  

The Detectivity D is the reciprocal of the parameter Noise Equivalent Power 

(NEP): 

                         D = 
1

NEP
                         Eq.2.10 
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The signal to noise ratio depends on the square root of the active area of a pixel of  

the detector. It means that both NEP and Detectivity are function of electrical bandwidth 

and detector area. Thus a normalized Detectivity D* is defined to be 

 

             D* = 
1/2 1/21/2 ( ) ( )( ) D v D iD

n n

A f A fA f
NEP V I

   
           Eq.2.11 

 

where DA is the active (absorbing) area of the pixel and f is signal bandwidth. The unit 

of D* is cmHz1/2/W. 

 

2.6.5 Temperature Coefficient of Resistance (TCR) 

The temperature coefficient of resistance (TCR) is defined as  

 

                       
0

1 dR
R dT

                             Eq.2.12 

 

where 0R is the initial resistance of a pixel, dR is the change in resistance, and dT is the 

change in temperature. The temperature coefficient of resistance (TCR) can be either 

positive or negative. For metals at room temperature and superconductors their transition 

edges have positive TCRs. For semiconductors at room temperature, it has typically 

negative TCRs. The main reason is that semiconductor materials have mobile carrier 

densities that increase with temperature increase.  The resistance of semiconductors 

depends on the activation energy for thermal excitation across a bandgap which is 

defined by 
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                          0( ) exp( )ER T R
kT


                        Eq.2.13 

where E  is the activation energy and is equal to half the bandgap and R0 is a constant.  

As a result, temperature coefficient of resistance (TCR) of semiconductor materials can 

be defined by 

 

                              2
E

kT



                            Eq.2.14 

 

2.6.6 Thermal Response Time 

The thermal response time T  is defined as the ratio of the heat capacitance of 

the detector to its effective thermal conductance. 

 

                  T
eff

C
G

                      Eq.2.15 

 

where C is the heat capacitance of the pixel of detector and G is the total thermal 

conductance of all the heat-loss from the pixel of the detector. The units of C are 

joule/deg K, G are W/deg K. So, the units of T are seconds.                     
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Detector materials α [K-1] 

Platinum (Pt) 0.0018 

Ni-Fe 0.0023 

Au 0.0036 

Ag 0.0037 

Ti 0.0042 

Ni 0.005 

Y-Ba-Cu-O (YBCO) 0.5~1 

Semiconducting YBCO -0.0299 ~ -0.0337 

Vanadium Oxide (VOx) -0.02 ~ -0.03 

Bi -0.003 

V-W-O -1.5 ~ -4.0 

 

Table 2.2:  Infrared detector materials: Temperature Coefficient of Resistance (TCR) 
[15].  
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2.7 MOTIVATION OF RESEARCH  

2.7.1 Multispectral Infrared Detection 

The multispectral infrared detector simultaneously detects infrared radiation 

emitted by the target in more than one spectral response. Multispectral (Multicolor) 

capabilities are highly desirable for advanced infrared imaging systems since 

multispectral detection provide efficient and rapid understanding of the scene due to 

enhanced target discrimination and identification. Systems that gather data in separate 

infrared spectral bands can discriminate both absolute temperature and unique spectral 

signatures of objects in the scene. Using this new dimension of contrast, multispectral 

detection facilitates advanced color processing algorithms to further improve sensitivity 

above that of single color detector. Multispectral infrared focal plane arrays (FPAs) are 

extremely important for a variety of applications such as advanced night vision systems, 

biomedical thermal imaging, target detection, acquisition and tracking in military and 

defense areas, airborne surveillance and so on. 

The difference between multispectral and hyperspectral imagers is nuanced and 

both provide data from multitude of wavelengths. Multispectral imager acquires imaging 

data from discreet wavelengths only, whereas hyperspectral devices provide both 

imaging data and full spectral at each pixel as well as scanning within a range of 

wavelengths. 

 Figure 2.5 shows example of hyperspectral image compared to natural image. (a) 

is field image and (b) is a hyperspectral image, which is data derived from the airborne 

hyperspectral imager. This image shows mineralogy of the area. The reddish colors are 

likely areas with gold mineralization. Green areas are predominantly with the mineral 

illite at lower temperatures and pressures. Blue areas are sedimentary rocks and red 

colors shows rocks and the presence of minerals such as alunite and kaolinite. 
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(a)                              (b) 

Figure 2.5: Applications of mineral identification using hyperspectral imaging (a) Field 
photograph, (b) Hyperspectral image (Courtesy of University of Twente) 
[16]. 

2.7.2 Multispectral Infrared Detectors 

Commercial multispectral infrared detector systems are bulky, complex, and 

extensive in system size, relatively high cost and require cooling systems [17].     

Conventional multispectral infrared detector systems use classical optic 

techniques such as either dispersing the optical signal across multiple infrared focal plane 

arrays (FPAs) or using filter wheel to spectrally discriminate the image focused on a 

single infrared focal plane arrays (FPAs). These systems use optical components such as 

bandpass filters, grating, lenses, and beam splitters in the optical path to focus images 

onto separate focal plane arrays responding to multispectral infrared.   

Recently, development of multispectral infrared detectors is focused on focal 

plane arrays, such as HgCdTe (Mercury Cadmium Telluride: MCT) photodiodes, strained 
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layer superlattice (SLs), quantum well infrared photodetectors (QWIPs)[18] and quantum 

dot infrared photodetectors (QDIPs). Comparison of current competitive 3rd generation 

infrared detector technologies are shown in Table 2.3. However, these multispectral 

infrared detectors are facing major challenges, which are concerned with complicated 

device structure, multilayer material growth, lower operational temperature, requiring 

cryogenic cooling systems and more difficult device fabrication.  

 

 Micro 

Bolometer 
HgCdTe InSb QWIPs QDIPs 

Superlattices 

(SLs) 

Multispectral 

Detection 
No Yes No Yes Yes Yes 

Operational 

Temperature 
Uncooled 

77K (PV), 

193K(PC) 
77K 70K 

135K, 

250K 
77K 

Quantum 

Efficiency 

(%) 

Not  

Applicable 
89.2 85 

~19 

@65K 
~10 ~60  

High 
Detectivity No Yes Yes Yes Yes Yes 

Homogenity Yes No Yes Yes Yes Yes 

Status Practically implemented Theoretically predicted 

 

Table 2.3:  Comparison of competitive third generation infrared detectors [19] 
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(a)                                 (b) 

 

Figure 2.6: Two-color quantum well photodetector (QWIP) focal plane arrays: (a) 
Illustration of a dual-band quantum well photodetector (QWIP), (b) SEM 
image of fabricated two-color quantum well photodetector (QWIP) FPAs 
[20]. 

      Figure 2.5 shows schematic and fabricated devices for dual band (MWIR/LWIR) 

quantum well infrared photodetectors (QWIPs) focal plane arrays. They integrate within 

each pixel both MWIR and LWIR spectral sensitivity. Vertically stacked two color focal 

plane arrays eliminate internal band optical distortions and temperature induced 

alignment errors. In addition, quantum well infrared photodetectors (QWIPs) focal plane 

arrays have demonstrated an improvement in measurement accuracy, high pixel 

functionality, high yield, high thermal and spatial resolution, excellent homogeneity, low 

fixed-pattern noise and low1/f noise.  However, structure layer thickness (operating 

wavelengths are determined by each layer thickness) of dual-band quantum well infrared 

photodetectors (QWIPs) is controlled by molecular beam Epitaxy (MBE) growth. 
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Example of dual band infrared image using quantum well infrared photodetectors 

(QWIPs) focal plane arrays is shown in Figure 2.6 (Yellow area indicate above 27 °C and 

green area indicate above 29°C).  

 

 

Figure 2.7: Dual band infrared image using quantum well photodetector (QWIP) focal 
plane arrays [21]. 

After the success of quantum-well structures for infrared detection, quantum dot 

infrared photodetectors (QDIPs) have emerged. Generally quantum dot infrared 

photodetectors (QDIPs) are similar to quantum well infrared photodetectors (QWIPs), 

however QWIPs replaced by QDIPs due to size confinement in spatial directions. 
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Figure 2.8: Schematic of multispectral quantum dot infrared photodetectors (QDIPs) 
[22]. 

Figure 2.7 shows schematic of multispectral quantum dot infrared photodetectors 

(QDIPs). This device consists of InAs quantum dots layers in two different cap layers, 

InGaAs and GaAs for mid-wave infrared (MWIR) and long-wave infrared (LWIR) 

absorption, respectively. This multispectral quantum dot infrared photodetectors (QDIPs) 

absorption band consists of 10 periods of InAs/InGaAs quantum dot layers stacked 

between the top and bottom electrode. Theoretically, is better performance (lower dark 

current, higher responsivity, etc) for is predicted QDIPs, compared with QWIPs. 

However, multispectral quantum dot infrared photodetectors (QDIPs) potential has not 

yet been realized completely. 
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Chapter 3:  Fabrication of Wavelength Selective Germanium 
Dielectric Coated Salisbury Screen Microbolometers 

 In this chapter, fabrication of a wavelength selective Germanium dielectric 

coated Salisbury screen microbolometer is described. Device fabrication methods and 

related issues are covered. 

 

3.1 THE PROCESS FOR POLYIMIDE AS SACRIFICIAL LAYER 

3.1.1 Curing Process of Polyimide with Thickness Control 

Polyimide was developed by DuPont Chemical Company in the 1950s as a high 

temperature polymer, designed and manufactured for functional and structural properties 

for electrical, mechanical and medical applications. Polyimide is liquid (resin) prior to 

undergoing a curing process with applied heat. Curing process irreversibly changes the 

resin in a rigid material by cross linking the polymer molecules and simultaneously 

removing the solvent carriers and other volatiles.   

The processes of polyimide in semiconductor area are generally spin coated on 

the substrates. The polyimide resin is applied to similar processes as conventional 

photoresist and its applications are mainly in protective over-coatings for thin or fragile 

films of layers and used as interlayer dielectrics in thin film microchip modules.   

      A sacrificial layer is typically used to provide support to a structural layer on 

which device layers can be deposited; the sacrificial layer is subsequently removed to 

leave a suspended or freestanding device. There are several sacrificial layers commonly 

used in NEMS/MEMS device fabrication such as silicon dioxide, polysilicon and 

polyimide.  
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       In this study, polyimide was used as a sacrificial layer for forming an air gap.  

It can be removed by an oxygen plasma ashing process. In addition, the polyimide can be 

applied by spin coating, it can provide some surface planarization for the silicon circuitry 

underneath, and after curing it is stable at the temperatures involved in later processing 

steps. In device fabrication, a layer of PI-2610 and PI-2611 polyimide (HD Microsystems) 

was used as a sacrificial layer [23]. 

 

 

 

Figure 3.1: Illustration of the curing process use to produce polyimide as sacrificial 
layer due to formation of air gap. 

 

For the best results, the resin material of polyimide should be stored in 

refrigerator. After spin coating, a soft bake is generally done on hot plates. The soft bake 

of polyimide consists of two different temperatures. First step of soft bake is at a 
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temperature of 90°C for 90 seconds and second step of soft bake is at a temperature of 

150°C for 90 seconds. After the spinning step and during the soft bake step the substrate 

should be kept in a horizontal position. Soft bake time is 30-40 minutes using convection 

ovens.  

For PI-2610 and PI-2611, standard polyimide curing process converts the 

polyamic acid into a fully aromatic, insoluble polyimide and drives off solvent carrier. 

This curing process requires increased temperatures and controlled environments to 

achieve the best polyimide thin films. There is enough energy at 200°C to nearly 

complete the polyimide imidization process, though higher temperatures are needed to 

completely dissociate the carrier solvent, fully imidize the polyimide film and complete 

polymer orientation for optimizing film properties. Curing process can be done in a 

programmable temperature controlled vacuum oven. 

For the optimized results, ramp rate of temperature is ambient up to 300°C in 

steps of 3.8°C per minute and final curing time is 30 min for desired cured film properties.  

Figure 3.1 shows the curing process to produce the polyimide as sacrificial layers using 

two steps: hotplate and programmable temperature controlled vacuum oven.  

 

3.1.2 Patterning Process of Polyimide using Plasma Dry Etching  

Plasma dry etching process by reactive ion etching (RIE) and laser ablation 

processes are possible for polyimide film patterning. Since polyimide film patterning uses 

general wet etching process, it is very difficult for the formation of molecular structure 

and inherent film density. 

For the dry etching processing, an AZ series photoresist is spin coated over the 

cured polyimide film. This photoresist etch mask should have a lower etch rate than the 
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polyimide in an oxygen based plasma dry etching. Plasma etch conditions depend on the 

plasma etch equipment, polyimide film thickness and resolution. The gas composition of 

90-95% Oxygen and 5-10% CF4 is used. The power density of RIE is usually 200W and 

vacuum pressure in the range of 200 mTorr. After plasma dry etching it may be necessary 

to clean the pattern of residuals. Figure 3.2 shows results of polyimide pattern arrays 

using oxygen plasma dry etching such as 140 μm by 140 μm square pattern arrays, 190 

μm by 190 μm square pattern arrays and 5 μm and 10 μm line width patterns.  

  

 

 

 

Figure 3.2:  SEM images of polyimide patterning using oxygen based plasma dry 
etching: 140 μm by 140 μm square pattern arrays, 190 μm by 190 μm square 
pattern arrays, etched polyimide line width (5 μm and 10μm). 
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      AZ series photoresist is used as oxygen plasma dry etch mask. For a successful 

masking using AZ series photoresist, we need a relatively longer hard baking process due 

to increased time of polyimide protection against oxygen plasma etch. Figure 3.3 shows 

optimized plasma dry etching process results.  

      The Group A indicates results of relatively thin polyimide film (target film etch 

depth: around 2μm thickness using PI2610) etch rate using RIE and the Group B 

indicates results of thick polyimide film (target film etch depth: around 5μm thickness 

using PI2611) etch rate. The etch rate is approximately 0.15 μm per minute. 

 

Figure 3.3: Results of polyimide plasma dry etch study for two different polyimide 
resins. Group A: Thin polyimide films (PI2610), targeted etch depth around 
2 μm, Group B: Thin polyimide films (PI2611), targeted etch depth around 
5 μm. 
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The SEM images of over etched pattern arrays are show in Figure 3.5. These 

results suggest that an undesired process occurred during the overall fabrication process. 

Understanding of these problems requires process evaluation studies, with every step in 

the process isolated and SEM examinations done after each step. Figure 3.4 shows SEM 

images of initial status of over-etching done by plasma dry etch (before removing 

photoresist mask layer). This led to the discovery that for polyimide sacrificial layer we 

have two potential issues in the plasma dry etching process. First issue is that the masking 

layer (AZ series photoresist), used to pattern the polyimide, might not survive the full 

polyimide etch time. Second issue is that the actual reactive ions etching (RIE) of the 

polyimide can lead to extremely rough and textured layers.  

 

 

 

Figure 3.4:  SEM images of thick polyimide etching process: initial status before over 
oxygen plasma dry etching. 
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Figure 3.5 shows a SEM of a square of polyimide that has been partially etched. 

In this case the square area should have been protected by a photoresist mask, but instead 

the mask did not survive long enough to complete the polyimide etch, leading to erosion 

of the square. As the mask layer was removed and the polyimide below began to etch, the 

polyimide removal was very non-uniform at the sub-micron scale, producing a very 

rough, textured layer. Even in the areas around the square that should have been cleanly 

etched we observed very rough, textured residue.  

To understand what might have caused this roughening, we performed a literature 

search; we found that RIE etching of polyimide can in fact produce such a textured layer 

[24].  

In order to determine infrared spectral absorption characteristics, textured 

polyimide samples were measured using vacuum Fourier transform infrared spectroscopy 

(FTIR). There were fourteen different samples prepared with either Au-Cr or Al mirror 

layers with polyimide spacer layers, subjected to varying degrees of etch process using 

reactive ion etching (RIE) in Figure 3.6.   
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Figure 3.5:  SEM images of roughness of a polyimide pattern arrays due to over etch by 
oxygen plasma dry etching using reactive ion etching (RIE). 
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Figure 3.6:  Illustration of the fourteen polyimide dielectric Salisbury screen samples 
fabricated for infrared spectral characterization using vacuum Fourier 
transform infrared spectroscopy (FTIR). 
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Figure 3.7:  FTIR reflectance spectra for polyimide supported Salisbury screen (un-
etched sample S9) compared to roughed polyimide samples (S1, S2, S4, S6, 
and S7, where increasing number indicates greater roughening of the 
polyimide, FTIR measurement by Ani Weling, Fost-Miller). 

The reflectance measurements using FTIR (Figure 3.7 and Figure 3.8) indicate 

that the polyimide has a number of strong infrared absorption bands beyond wavelength 

of ~ 5.5 um that largely match published spectra [25]. Below this wavelength, the 

polyimide acts as a low-loss dielectric spacer layer with varying thickness, depending on 

the etch time. They were all measured with a 5 mm infrared beam aperture using the 

Aluminum (1000Å) on Si as reference.  

However, the textured samples did not exhibit enhanced absorption or spectrally 

selective properties in the infrared region.  
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Figure 3.8:  FTIR reflectance spectra for polyimide without absorber (un-etched sample 
S12), with an absorber (un-etched sample S11) compared to roughed 
polyimide samples (S13 and S14), FTIR measurement by Ani Weling, Fost-
Miller. 
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3.1.3 Process of Photoresist Masking Layer for Thick Polyimide Etching 

In order to pattern the thick polyimide (PI 2611: over 5μm), AZ 9260 was 

employed instead of silicon dioxide mask layer. The reason is that photoresist mask 

process is relatively simple and it is an easy to remove mask layer after polyimide etching 

process. Thick photoresist (AZ 9260) is designed for more demanding higher resolution 

requirements and it provides superior aspect ratio, wide focus and exposure latitude as 

well as good sidewall profiles of patterns. This photoresist is available in four viscosity 

levels for expected film thickness, from 2 μm to 24 μm. For the thick polyimide mask 

layer, photoresist was applied in two steps. In the first step, it was spin coated with a soft 

bake at 90°C for 5min using hot plate. In the second step, it was again spin coated with 

another soft bake at 115°C for 1 min using convection oven and rehydration for 20min. 

UV exposure is followed by development in AZ 400K (1:4) for 210 sec and a rinse in DI 

water for 1 min. The substrate was then dried with nitrogen gas. Figure 3.9 shows 

optimization of thick polyimide film thickness control using PI2611 and results of 

optimized photoresist mask layer (film thickness: 17 μm) are shown in Figure 3.10.  

 

Figure 3.9: Thickness control for thick polyimide using PI2611 (polyimide film   
thickness: 4μm to 11 μm). 
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Figure 3.10:  SEM images of photoresist mask layer for thick polyimide patterning    
(photoresist thickness: 17 μm using AZ 9260, exposure time: 310 sec±5sec).  

 

3.2 THE PROCESS FOR GERMANIUM DIELECTRIC STRUCTURAL LAYER 

The advantage of using only Germanium as both the interference layer for 

wavelength selectivity in the dielectric coated Salisbury screen and the structural layer is 

electromagnetic improvement, as Germanium is low loss and dispersion less in the long 

wavelength infrared as well as fabrication process simplicity. Germanium as structural 

layer is evaporated by e-beam evaporator (target thickness: 3000Å and 6250Å, deposition 

rate: 1.2 Å/sec, chamber pressure: 10-6 Torr or lower pressure) and then photoresist 

patterning as mask layer is performed using photolithography.  
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Finally, the Germanium layer is etched using reactive ion etching (RIE) for CF4 

gas with 50sccm flow rate. The power density of RIE is usually 200W and vacuum 

pressure is in the range of 200 mTorr. After plasma dry etching it may be necessary to 

clean the pattern of residuals. Results of Germanium layer patterning are shown in Figure 

3.11.  

 

 

 

 

Figure 3.11: Microscopic images of Germanium layer patterning (60 μm by 60 μm, 70 
μm by 70 μm, 80 μm by 80 μm, 90 μm by 90 μm, and 110 μm by 110 μm 
square pattern array, 5 μm line width).  
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3.3 THE PROCESS FOR AIR GAP FORMATION USING OXYGEN PLASMA ASHING 

3.3.1 Process Evaluation of Oxygen Plasma Ashing using Cantilever Structure 

In this section, the cantilever structures used to evaluate the polyimide undercut 

etch process using an oxygen plasma ashing process and undercut inspection after oxygen 

plasma ashing process, will be discussed. 

The process flow is patterning of the Germanium layer and removal of the 

polyimide as sacrificial layer. The first step is the formation of sacrificial layer using 

polyimide PI2610 (Targeted thickness of sacrificial layer: 2.0 μm). The second step is the 

deposition of Germanium as structure using e-beam evaporator (Deposition rate: 2.0 

Å/sec, e-beam power: 34%, targeted thickness of Germanium structure: 6000Å). The 

third step is plasma dry etching of Germanium as structural layer using RIE (Etch rate: 

0.0004 μm/sec, power: 150W, CF4 gas flow rate: 50sccm). The fourth step is oxygen 

plasma ashing process of polyimide as sacrificial layer (Chamber pressure: 1270 mTorr, 

Power: 292W, oxygen flow rate: 50sccm, undercut rate: 0.012 μm/sec).   

Figure 3.12 shows the top view of fabricated Germanium cantilever structure 

arrays (Air gap: 2.0 μm). During oxygen plasma ashing process, polyimide surface 

roughness was measured by using Atomic Force Microscopy (AFM), as shown in Figure 

3.13. The area of polyimide surface scanned using AFM, is 30 μm by 30 μm.  

Typically, undercut inspection in microbolometer fabrication process is 

challenging due to relatively thin air-gap space (2.0 μm to 2.5 μm). For this reason, one 

of the popular microbolometer designs employ etched hole patterns in the active area, to 

enhance undercut process performance during oxygen plasma ashing process. 
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Figure 3.12: Illustration and Microscopic images of fabricated Germanium cantilever 
structure arrays with air gap (2.0 μm).  
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(a) 

 

(b) 

Figure 3.13: Polyimide surface roughness image using Atomic Force Microscopy (AFM): 
(a) surface morphology before oxygen plasma ashing (b) after 55min 
oxygen plasma ashing process. 
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Demonstration of fabricated Germanium as structural layer with air gap is shown 

in Figure 3.14. As can be seen, the polyimide sacrificial layer was completely removed 

from below the Germanium structural layer, using oxygen plasma ashing process. The 

targeted thickness of Germanium structure is about 6000Å and the air gap is about 2.0 

μm. Fabricated Germanium cantilever structures arrays are smooth, flat and robust. 

 

 

 

 

 

Figure 3.14: SEM image of air gap formation below Germanium structural layer after 
complete removal of sacrificial layer using an oxygen plasma ashing 
process. 
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3.3.2 Polyimide Residue and Structure Deformation under the Oxygen Plasma 
Ashing Process  

In this section, the issues of undercut etch process in oxygen plasma potentially 

influencing the shape of suspended microstructure and sacrificial residue will be 

discussed. In order to fabricate the optical resonance cavity and for thermal isolation, the 

formation of air gap space below the structure layer is one of the key processes in 

wavelength selective microbolometer fabrication. 

Cantilever structures are used to evaluate the polyimide undercut etch process 

using an oxygen plasma ashing process. However, these process steps have faced several 

challenging fabrication issues during the oxygen plasma ashing process.  

The first issue is related to the polyimide residue due to uncontrolled undercut 

etch process in Figure 3.15. Second issue is deformable structure layer after completion 

of the oxygen plasma ashing process in Figure 3.16 and Figure 3.17. The third issue is 

related to the electrical contact pad damage, which is discussed in the section 3.5.  

      In general, structure deformation is strongly reduced by lowering the temperature. 

However, in this study, oxygen plasma undercut processes require over 300 min, where 

the optimized total release time depends on device design. 

      The flexural deformation of the released cantilever beam occurs after oxygen 

plasma ashing process. In order to maintain stable oxygen plasma ashing process 

conditions, the optimal process time is experimentally determined around 5 min. On the 

other hand, a continuous single ashing process without break-times results in large plastic 

deformation of the structure.  
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(a) 

 

(b) 

Figure 3.15: Released structure layer using oxygen plasma ashing process: (a) Formation 
of air gap and residue of polyimide under structure layer (b) Residual 
polyimide due to insufficient undercut etch process. 



 47 

 

 

(a) 

 

 

(b) 

 

Figure 3.16: Stress of the cantilever structure arrays during sacrificial layer undercut etch 
process using oxygen plasma (a) Microscopic images, (b) SEM images. 

The oxygen plasma generated during the plasma ashing process can increase the 

ambient temperature inside the asher chamber, which generates thermal deformation of 
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the structure. For this reason, in this study the experimental methods of oxygen plasma 

ashing process consist of a plasma exposure time for undercut and a break time to 

decrease the temperature of oxygen plasma asher chamber.  

Experimental approaches of continuous or long oxygen plasma exposure without 

break time for air gap formation, can lead to several fabrication issues; especially that of 

large and incontrollable deformation on practically all structures.  

Consequently, a stable oxygen plasma ashing process condition followed by a 

fixed break time, cyclically repeated until the sacrificial layer is completely removed, 

results in successful air gap structure formation. 

 

 

 

Figure 3.17: Damage to Germanium layer during polyimide undercut etch process using 
oxygen plasma when exposed for more than 360min. The dark areas are 
curled layers of Germanium. 
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3.4 THE PROCESS FOR X SHAPE WAVELENGTH SELECTIVE GERMANIUM DIELECTRIC        
SALISBURY SCREEN MICROBOLOMETERS 

In this section, fabrication of X shape wavelength selective Germanium dielectric 

Salisbury screen microbolometer will be discussed. Fabrication process flow is shown in 

Figure 3.18. 

The complete process begins with aluminum deposition of a highly reflective 

mirror layer on a silicon substrate. Next, a controlled thickness polyimide layer is spin-

deposited and cured, followed by a photolithography step and an etch step to define a 

pattern region of polyimide. After which, a controlled thickness germanium structural 

layer is vacuum deposited over the polyimide sacrificial layer, patterned via normal 

photolithography and dry etch processes. Then, the sacrificial layer is removed by an 

oxygen plasma ashing process. Finally, the resistive absorber Cr layer with the 

appropriate sheet resistance is deposited. Wavelength selective dielectric coated Salisbury 

screen (DSS) single pixel patterns fabricated with approximately 50µm x 50 µm active 

areas supported using legs are shown in Figure 3.19.  

Fabricated X shape Germanium dielectric coated Salisbury screen (DSS) pixels 

had good yield. In this fabrication of completed devices the air gap (set by the polyimide 

thickness) is approximately, 1.8µm, 2µm, and 2.5µm respectively and the germanium 

structural/interference layer thickness is approximately 0.4 µm, 0.5µm, and 0.6 µm 

respectively [26]. 
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Figure 3.18: Fabrication process flow of X shape wavelength selective Germanium 
dielectric supported Salisbury screen microbolometers: 1. Formation of 
reflective mirror layer, (a) to (e), 2.Formationof sacrificial layer, (f) to (j), 3. 
Formation of Germanium structure layer: (k) to (o), 4. Formation of Airgap, 
(p) and 5.Formation of absorber layer, (q). 
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Figure 3.19 SEM image of X shape wavelength selective Germanium dielectric 
Salisbury screen (DSS) microbolometer (Air-gap: 2.5µm). 
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3.5 THE PROCESS FOR ELECTRICAL CONTACT PADS 

3.5.1 Process of Bi-Layer Lift-off Metallization 

In this section, formation of electrical contact pads using bi-layer lift-off process 

for wavelength selective Germanium dielectric coated Salisbury screen microbolometer 

will be discussed. Figure 3.20 shows fabricated wavelength selective Germanium 

dielectric coated Salisbury screen microbolometer whose metallic absorber layer also 

functioned as an electrical contact pads.  

Common methods used for metallization or oxide layer patterning in 

microfabrication are lift-off process and etching process. Lift-off process is different 

compared to etching process, in that a sacrificial photoresist layer is exposed using an 

inverse mask pattern in the lift-off process. Any material which was deposited on the 

sacrificial layer is removed, while any material which was in direct contact with the 

substrate remains. However, depending on the lift-off material used, retention typically 

can occur and unwanted metal pattern may remain on the substrate. Another typical 

problem in lift-off process is that the metal may get ripped away from the substrate and 

leaves behind a ragged pattern. All such cases are shown in Figure 3.21.  

In this study, bi-layer lift-off method using LOR2A/PGMI is employed as a 

critical level lift-off process where precise undercut is required as well as an enhanced 

lift-off process for the formation of electrical contact pads. 
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Figure 3.20: SEM images of wavelength selective Germanium dielectric coated Salisbury 
screen microbolometer arrays using self aligned process: single metallic 
layer functioned absorber and contact pads.  

contact pad contact pad

contact pad contact pad
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support arms support arms

air gap
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Figure 3.21: Microscopic images of general lift-off process for electrical contact pads 
with Ti (adhesion layer, 200 Å)/Au (1500Å).  

The process flow is shown in Figure 3.22. This bi-layer lift-off process uses Lift 

Off Resist (LOR) 2A/Polydimethylglutarimide (PMGI), manufactured by Microchem.  

These materials are not photosensitive and freely soluble in conventional 

Tetramethylammonium hydroxide (TMAH) developers.  

A general experimental approach to bi-layer lift-off process is to coat the 

LOR/PMGI on the substrate, followed by photoresist spin coating, which is then 

developed simultaneously.  
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If the photoresist is fully developed, the developer continues to dissolve the 

LOR/PGMI layer. The dissolution rate of developer is isotropic, but can be precisely 

controlled to undercut edges of the resist profile. The experimental results of bi-layer lift-

off process are shown in section 3.6. 

 

 

 

 

Figure 3.22: Process flow of bi-layer lift-off using LOR2A/PMGI for electrical contact 
pads of wavelength selective Germanium dielectric coated Salisbury screen 
microbolometer. 
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3.5.2 Oxygen Plasma Damage in Adhesion Layer of Electrical Contact Pads 

In this section, damage to electrical contact pads of wavelength selective 

Germanium dielectric coated Salisbury screen microbolometer during oxygen plasma 

ashing process will be discussed.  

In order to form a good electrical contact to a device, good adhesion of metal to 

the device is an important parameter in microelectronics. Poor adhesion of the metal 

contact pad layer can result due to thermo-mechanical effects or intrinsic stresses from 

deposition using sputtering or evaporation process. If a contact metal doesn’t have good 

adhesion to the device surface, an adhesion layer of another metal should be deposited 

before the contact metal. The most commonly used metals as an adhesion layer for Au in 

microfabrication are Chromium (Cr), Titanium (Ti), Palladium (Pd) and Ni (Nickel).  

 

 

 

            (a)                                 (b) 

Figure 3.23: Microscopic image of damage to electrical contact pads after long oxygen 
plasma ashing process: deposited materials of contact pads (a) Cr/Au, (b) 
Ti/Au. 
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If Chromium and Titanium are used as adhesion layers, Au needs to be deposited 

straight after the adhesion metal is deposited without breaking vacuum, since Cr and Ti 

oxidize readily forming a surface oxide (native oxide) between the adhesion and contact 

layers, resulting in increased resistance. 

In this study, the additional layer is used to promote adhesion between the Au and 

Germanium structural layer. In addition, adhesion layers prevent Au from diffusing into 

Ge. Figure 3.23 shows damage to electrical contact pads (Cr/Au) after long oxygen 

plasma ashing process. We expect this damage is induced during oxygen plasma ashing 

process. It should be considered that ions and radicals in the oxygen plasma damage the 

Cr adhesion layer in electrical contact pads. Illustration of damage models is shown in the 

Figure 3.24.  

 

 

 

 

Figure 3.24: Damage model of electrical contact pad under relatively long oxygen plasma 
exposure time during the ashing process [27]. 
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To overcome the damage to metal contact pads, Titanium and Nickel were chosen 

instead of Chromium as adhesion layer. These metals can survive under electrical contact 

pads in a long oxygen plasma ashing process. Figure 3.25 shows top view and cross 

section view of fabricated electrical contact pads using Ti/Au for wavelength selective 

Germanium dielectric coated Salisbury screen microbolometer.  

To verify fabricated electrical contact pad using Ti (film thickness: 20nm, 

evaporation rate: 0.3Å/sec) /Au (film thickness: 120nm, evaporation rate: 0.5Å/sec), 3D 

optical surface profilometer by Veeco-Wyko (NT 9100 Optical Profiler system) was 

used. We can confirm experimental parameters of fabricated contact pad film and surface 

morphology after long oxygen plasma ashing process, as seen in Figure 3.26.  

 

                  (a)                                  (b) 

Figure 3.25: 3D optical surface profilometer images of electrical pads using Ti/Au for 
wavelength selective Germanium dielectric coated Salisbury screen 
microbolometer: (a) top view, (b) cross section view. 
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Figure 3.26: 3D optical surface profilometer images of electrical contact pads (Ti/Au) 
and Germanium structure layer after relatively long oxygen plasma exposure 
time during the ashing process. 
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3.6 THE PROCESS FOR WAVELENGTH SELECTIVE GERMANIUM DIELECTRIC 
SALISBURY SCREEN MICROBOLOMETERS USING SELF ALIGN PROCESS 

 

 

 

Figure 3.27: Illustration of wavelength selective Germanium dielectric coated Salisbury 
screen microbolometer arrays using self aligned process.  

In this section, fabrication of wavelength selective Germanium dielectric coated 

Salisbury screen microbolometer using a self aligned process will be discussed.  

Figure 3.27 shows the illustration of wavelength selective Germanium dielectric 

coated Salisbury screen microbolometer arrays using a planar self-aligned process [28]. 

The novel fabrication process helps produce much flatter, more robust device structure by 

using an un-patterned sacrificial layer to produce device legs that hold the central 

structural layer above the reflective mirror supported by a completely flat sacrificial layer 

with sufficient thermal isolation to allow microbolometer operation.  
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The fabricated wavelength selective Germanium dielectric coated Salisbury 

screen microbolometer using a self aligned process consist of a metal resistive sheet of 

400Ω/□ as an infrared absorber layer, dielectric Germanium structure layer for 

structure/interference layer, reflective mirror layer and electrical contact pads. The 

configuration of device is shown in Figure 3.28.  

 

 

 

Figure 3.28: Configuration of wavelength selective Germanium dielectric coated 
Salisbury screen microbolometer using self aligned process.  

The critical step in this fabrication process is the undercut removal of the 

sacrificial layer that creates the air gap under the structural layer as well as undercutting 

the support leg providing thermal isolation for the microbolometer. This process also 
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undercuts the edges of the contact pad, forming a shadow mask which produces self-

aligned formation of electrical contact to the infrared absorber/microbolometer layer. In 

general, process of sacrificial layer patterning is considered to be one of the important 

steps in conventional microbolometer fabrication due to produce thermal isolation 

structure. 

 

 

Figure 3.29: SEM image of wavelength selective Germanium dielectric coated Salisbury 
screen microbolometer arrays using self aligned process. 

Figure 3.29 shows fabricated wavelength selective Germanium dielectric coated 

Salisbury screen microbolometer using a self aligned process. Microbolometer dimension 

is 50μm by 50μm with 15μm leg width, and 150μm leg length. Complete removal of the 
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sacrificial layer and highly flattened structure of the fabricated device can be seen in 

Figure 3.30. 

 In this study, different design devices were fabricated with different device 

active areas, leg lengths and leg widths (Figure 3.31). For device absorber materials, 

metal bolometer absorbers (Ni, Ti, Cr, and TaN) were employed.  Mask design 

parameters are shown in Table 3.1.  

 

 

 

Figure 3.30: SEM images of wavelength selective Germanium dielectric coated Salisbury 
screen microbolometer arrays using self aligned process. 
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Active area 

(μm) 
Leg width 

(μm) 
Leg length 

(μm) 
1 30x30 10 25 
2 30x30 10 50 
3 30x30 10 100 
4 50x50 10 20 
5 50x50 10 40 
6 50x50 15 50 
7 50x50 15 100 
8 50x50 15 150 
9 70x70 10 20 
10 70x70 20 50 
11 70x70 20 100 
12 70x70 20 150 
13 100x100 15 50 
14 100x100 20 100 
15 100x100 20 150 
16 150x150 15 100 
17 150x150 20 200 

 

Table 3.1: Mask design parameters of wavelength selective Germanium dielectric 
coated Salisbury screen microbolometer. 
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Figure 3.31: SEM image of fabricated different devices with different microbolometer 
active area, leg length and width, and different metallic absorber materials. 

Figure 3.32 shows the device fabrication process flow that simultaneously forms 

self-aligned contact pads and produces flat support legs.  
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The process starts with thermal oxidation: the substrate (Si) is thermally oxidized 

to achieve an insulation layer with a thickness 0.7µm. The next step in the process is 

formation of infrared reflective mirror layer on a silicon dioxide layer: Lift-off process 

technique using photolithography and e-beam evaporation of Aluminum (film thickness: 

150nm, evaporation rate: 0.5Å/sec).  

Next, a controlled thickness “polyimide sacrificial” layer is coated and cured 

using programmable temperature controlled vacuum oven. This is one of the critical 

steps, since if this process is unstable, it is hard to achieve specific air gap space based on 

design parameters of the resonant cavity (t air= λ/2; t=space of air gap, λ=target 

wavelength).  

A controlled thickness Germanium structural layer is then deposited using e-beam 

evaporator over polyimide sacrificial layer (t Ge Structure= λ/4n; t=thickness of Germanium 

structural layer, n=index of refraction of structural layer, λ=target wavelength).  

The formation of Germanium structural layer by photolithography and dry etching 

process with a CF4 using reactive ion etching (RIE) is shown in Figure 3.32 (a). In the 

next step, for the formation of metal contact pads, bi-layer lift-off process was chosen 

instead of standard lift-off technique, as shown in Figure 3.32 (b) to Figure 3.32 (c).  

Since double lift-off layers are used to create a more stable lift-off process of the 

metal layer for contact pads, Titanium (film thickness: 20nm, evaporation rate: 0.3Å/sec) 

and Au (film thickness: 150nm, evaporation rate: 0.5Å/sec) were deposited by e-beam 

evaporation as materials of contact pads.  

The sacrificial layer was then removed, to form the air gap below the 

microbolometer structural layer using an oxygen plasma ashing process, as shown in 

Figure 3.32 (d).  
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Finally, the resistive absorber layer with the appropriate sheet resistance is 

deposited using sputtering systems or e-beam evaporation systems depend on absorber 

material in Figure 3.32 (e). 
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Figure 3.32: Simplified fabrication process flow of wavelength selective Germanium 
dielectric coated Salisbury screen microbolometer arrays using self aligned 
process. 
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Chapter 4:  Device Characterization 

 In this chapter, several characteristics of the fabricated devices are evaluated. 

The characterization includes 3D optical surface profilometer and infrared optical 

measurement of the spectral responses of wavelength selective Germanium dielectric 

Salisbury screen microbolometer using Fourier transform infrared spectroscopy (FTIR). 

Electrical measurements were also performed, including IV curve, RP plot, thermal 

impedance and Temperature Coefficient of Resistance (TCR). 

 

4.1 OPTICAL MEASUREMENT OF WAVELENGTH SELECTIVITY USING FOURIER 
TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

4.1.1 Spectral Responses of Wavelength Selective Germanium Dielectric Salisbury 
Screen Microbolometer using Self align Process: Wavelength Selectivity in the Long 
Wavelength Infrared (LWIR) Region 

To characterize the spectral response of the wavelength selective Germanium 

dielectric Salisbury screen microbolometer using self align process, Fourier transform 

infrared (FTIR) microscopy measurements were taken on a number of the fabricated 

devices using Nicolet TM 6700 FTIR spectrometer.  

This FTIR spectrometer employs a cooled HgCdTe (MCT) detector with a 

spectral resolution of ~0.09 cm-1 and Nicolet TM imaging system at room temperature in 

a standard lab atmosphere. In order to produce the maximum power absorption, the sheet 

resistive absorber layers of the Salisbury screen need to have sheet resistance RS=377 

Ω/□, by controlling the thickness of the absorber layer (In Section 4.1, Tantalum nitride 

(TaN) and Chromium (Cr) is used as absorber layer). To verify the DC sheet resistance of 

the absorber layer, four point probe measurement is performed.  
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Figure 4.1:  Numerical simulation of infrared spectral responses (red curve) and FTIR 
measured infrared spectral responses of Germanium dielectric coated 
Salisbury screen microbolometer for wavelength selectivity in long wave 
infrared region (blue curve): Targeted wavelength absorption peak: 10μm. 
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Figures 4.1, 4.2, and 4.3 show a comparison between simulation results (red 

curve) and measured spectral responses (blue curve) using FTIR for wavelength selective 

Germanium dielectric Salisbury screen microbolometer using self align process 

(Chromium: Cr as absorber layer). To achieve wavelength selectivity in the long 

wavelength infrared (LWIR) region, three different devices were designed and fabricated, 

for three different wavelengths (9μm, 10μm, 11μm). Figures 4.1, 4.2 and 4.3 show the 

comparison for the different device parameters, for different target wavelengths, i.e., 

10μm, 9μm and 11μm, respectively. 

In Figure 4.1, the fabricated device parameters are as follows: Germanium 

thickness is around 0.6μm (experimental target thickness: 0.625μm), air gap is 5μm, sheet 

resistance of Cr absorber layer is 400Ω/□. The target wavelength peak is 10μm.  

In Figure 4.2, the fabricated device parameters are Germanium thickness: around 

0.6μm (experimental target thickness: 0.625μm), air gap: 4.5μm, sheet resistance of Cr 

absorber layer: 400Ω/□. The target wavelength peak is 9μm.  

In Figure 4.3, the fabricated device parameters are Germanium thickness: around 

0.6μm (experimental target thickness: 0.625μm), air gap: 5.5μm, sheet resistance of Cr 

absorber layer: 400Ω/□. The target wavelength peak is 11μm and measured maximum 

power absorption is over 90%. 

Using Chromium (Cr) absorber layer in the device, the FTIR measured spectral 

responses and numerical simulation results show excellent agreement in LWIR region. 
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Figure 4.2:  Numerical simulation of infrared spectral responses (red curve) and FTIR 
measured infrared spectral responses of Germanium dielectric coated 
Salisbury screen microbolometer for wavelength selectivity in long wave 
infrared region (blue curve): Targeted wavelength absorption peak: 9μm. 
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Figure 4.3:  Numerical simulation of infrared spectral responses (red curve) and FTIR 
measured infrared spectral responses of Germanium dielectric coated 
Salisbury screen microbolometer for wavelength selectivity in long wave 
infrared region (blue curve): Targeted wavelength absorption peak: 11μm. 
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Another set of devices were designed and fabricated, with a different absorber 

layer, namely Tantalum nitride (TaN). Simulation and measured results have also been 

compared for these devices in the following figures. 

Figures 4.4 and 4.5 show the comparison between simulation results (red curve) 

and measured spectral responses (blue curve) using FTIR for wavelength selective 

Germanium dielectric Salisbury screen microbolometer using self align process, with 

Tantalum nitride TaN as absorber layer. 

In Figure 4.4, the fabricated device parameters are Germanium thickness: around 

0.6 μm (experimental target thickness: 0.625μm), air gap: 4.5μm, sheet resistance of Cr 

absorber layer: 400Ω/□. The target wavelength peak is 9μm.  

In Figure 4.5, the fabricated device parameters are Germanium thickness: around 

0.6 μm (experimental target thickness: 0.625μm), air gap: 5μm, sheet resistance of TaN 

absorber layer: 400Ω/□. The target wavelength peak is 10μm.  

Both of the target wavelengths (9μm and 10μm) in the long wavelength infrared 

(LWIR) using Tantalum nitride as absorber layer, the FTIR measured spectral responses 

show excellent agreement with numerical simulation results. 
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Figure 4.4:  Numerical simulation of infrared spectral responses (red curve) and FTIR 
measured infrared spectral responses of Germanium dielectric coated 
Salisbury screen microbolometer for wavelength selectivity in long wave 
infrared region (blue curve): Targeted wavelength absorption peak: 9μm. 
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Figure 4.5:  Numerical simulation of infrared spectral responses (red curve) and FTIR 
measured infrared spectral responses of Germanium dielectric coated 
Salisbury screen microbolometer for wavelength selectivity in long wave 
infrared region (blue curve): Targeted wavelength absorption peak: 10μm. 
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4.1.2 Spectral Responses of Germanium Dielectric Salisbury Screen (DSS) with Low 
Air gap (around 2μm) and Non-Uniform Air gap 

To characterize the spectral response of the general Germanium Dielectric 

Salisbury Screen (DSS) devices (discussed in the Chapter 3), FTIR microscope 

measurements were taken on a number of the fabricated devices. In this section, FTIR-

microscope data were collected by QinetiQ North America and Ani Weling, Fost-Miller. 

They were all collected in reflectance with a 30 x 30 μm FOV using a gold slide 

reference.   

Figure 4.6 shows typical measured FTIR microscope absorption data (blue curve) 

for a DSS pixel (with an air gap) with a Germanium layer of physical thickness of 0.3µm, 

as measured by a crystal monitor. The air gap physical thickness is set by the polyimide 

sacrificial layer thickness, and is measured using an Alpha Step profilometer to be 

1.7µm. The TaN absorber layer is approximately 25nm thick and has a measured DC 

sheet resistance of Rs = 400Ω/□. Figure 4.6 also compares the measurement with 

numerically simulated result. The numerical simulation uses thicknesses obtained from a 

best fit of the location of the peaks along the wavelength axis. It should be noted that in 

the plane wave model the layer thicknesses and indices of refraction primarily affect the 

behavior along the wavelength axis (i.e., position of absorbance resonance), while the 

sheet resistance of the absorber primarily determines the heights of the absorption peaks 

(although the indices of refraction do somewhat affect the peak heights).  

The fabricated DSS device has a measured sheet resistance of Rs = 400Ω/□; the 

measured data should thus agree with the simulation with Rs = 400Ω/□ (red curve). The 

location of the absorption resonance along the wavelength axis for the fabricated DSS 

device matches well with the simulation results. However, the fabricated device shows 

less absorption than the simulation with Rs = 400Ω/□.  
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Figure 4.6:  FTIR microscope measured absorption data (blue curve) for DSS 
microbolometer with thickness of Ge d1 = 0.3µm, air gap thickness d2 = 
1.7µm, and TaN absorber layer (Rs = 400Ω/□) compared to plane wave 
calculations for the same structure with sheet resistances Rs = 400Ω/□ (red 
curve). 
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4.7 and 4.8 show the simulated spectral response compared to measured results for two 

assumed sheet resistances:  lower sheet resistances (Figure 4.7) than the ideal sheet 

resistance Rs = 400Ω/□, and higher sheet resistance (Figure 4.8). It is possible to fit the 

height of one peak, but the other peak is not well matched. Also the spectral width for the 

high resistance value is narrower than the measured result. As discussed above, these 

differences suggest that a discrepancy in Rs is not the cause of the discrepancy between 

the simulation model and FTIR measurements. 
 

 

Figure 4.7:  FTIR-microscope-measured absorption data (blue curve) for DSS compared 
to plane wave calculated power absorption curve (red) for a sheet absorber 
with sheet resistance Rs = 100Ω/□. 
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Figure 4.8:  FTIR-microscope-measured absorption data (blue curve) for DSS compared 
to plane wave calculated power absorption curve (red) for a sheet absorber 
with sheet resistance Rs = 1000Ω/□. 
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averaged over many air-gap values, it leads to an overall drop in the peaks of the 

absorption curve.  

Figure 4.10 shows the FTIR-measured data (blue curve) for the DSS compared to 

the simulation result when averaged over air gaps varying over a range of 8% (red curve). 

Both absorption peak heights appear to align well, suggesting that non-uniformity of air 

gap is a likely cause of the change in response (observed in Figure 4.6).  

 

 

Figure 4.9:  FTIR-microscope-measured absorption data (blue curve) for DSS with 
thickness of Ge d1 = 0.3µm, air gap thickness d2 = 1.7µm, and TaN absorber 
layer (Rs = 400Ω/□) compared to plane wave calculation averaging over air 
gap thicknesses varying by 3.5% (red). 
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Figure 4.10: FTIR-microscope-measured absorption data (blue curve) for modified DSS 
with thickness of Ge d1 = 0.3µm, air gap thickness d2 = 1.7µm, and TaN 
absorber layer (Rs = 400Ω/□) compared to plane wave calculation averaging 
over air gap thicknesses varying by 8% (red). 
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4.2 DEVICE STRUCTURE CHARACTERIZATION USING 3D OPTICAL PROFILOMETER 

To characterize the low deformation membranes, 3D optical surface profilometry 

has been used to measure the surface shape of devices. These measurements were made 

using a Veeco-Wyko NT 9100 Optical Profiler system. Figure 4.11 shows 3D device 

structure profile result obtained from the Veeco system. Each leg is 150μm long and 

15μm wide, and the area of absorber is 50 μm by 50μm, in the fabricated device. Figure 

4.12 shows that there is excellent agreement between the X and Y cross sectional 

profiles, obtained along the indicated axes in Figure 4.12(a). The cross sectional profiles 

are shown in Figure 4.12 (b) and Figure 4.12 (c). This confirms that the structural layer is 

a low deformation (high flatness) membrane with a uniform air gap. The flatness of the 

structure is a key parameter, which improves the performance of the microbolometer 

leading to enhanced infrared absorption. 

 

 

Figure 4.11: 3D profile image of fabricate wavelength selective Germanium dielectric 
coated Salisbury screen microbolometer using a Veeco-Wyko NT9100 
optical profiler. 
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Figure 4.12: 3D optical profiler image of fabricated wavelength selective Germanium 
dielectric coated Salisbury screen microbolometer for low deformation 
membrane: (a) Top view of structure profile, (b) cross sectional profile of X 
axis, (c) cross sectional profile of Y axis. 
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4.3 SHEET RESISTANCE CONTROL WITH THICKNESS OF THIN FILM METAL ABSORBER 

     The sheet resistance of the resistive absorber layer is one of the major design 

parameters. Matching of the sheet resistance to free space (377Ω/□) leads to enhanced 

power absorption in the wavelength selective Germanium dielectric Salisbury screen 

microbolometer. The sheet resistance can be controlled by the thickness of the deposited 

thin film metal absorber. 

     Figures 4.13, 4.14, and 4.15 show experimental results of the sheet resistance 

variation with thin film thickness in Nickel (Ni), Titanium (Ti) and Chromium (Cr), 

which are typically used metal absorbers in microbolometers. The thin films were 

deposited using e-beam evaporation. 

 

 

 

Figure 4.13: Sheet resistance vs. Metal absorber layer thickness (Nickel: Ni). 
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Figure 4.14: Sheet resistance vs. Metal absorber layer thickness (Titanium: Ti). 

 

 Figure 4.15: Sheet resistance vs. Metal absorber layer thickness (Chromium: Cr). 
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4.4 PASSIVATION LAYER OF OXYGEN PLASMA EXPOSURE USING GERMANIUM LAYER 

In this section, a passivation method for the absorber layer is presented, which is 

performed during oxygen based plasma ashing process. An important step in the 

fabrication of thermally isolated structures for the proposed wavelength-selective 

microbolometer is the ability to define electrical contacts to the Germanium dielectric 

coated Salisbury Screen (DSS) pixel with Chromium absorber layer. Ideally this should 

be done lithographically before the Ge-supported membranes are released to define the 

air gap. Since the Chromium layer has been shown to be oxidized by the plasma ashing 

required to remove the polyimide sacrificial layer used to define the air gap, the current 

process flow would have to be changed significantly in order to protect the top 

Chromium absorber layer during the final membrane release step. A Germanium 

passivation layer has been developed, which can achieve this without altering the process 

sequence.  

Figure 4.16 illustrates a basic electrical test, which shows that a very thin layer of 

Germanium deposited above the Chromium absorber layer can protect it from even very 

long oxygen plasma exposures. Ellipsometer measurements suggest that a layer of oxide 

is formed on top of the Ge, although this layer is not more than approximately 10nm 

thick. Nonetheless, the sheet resistance of the Chromium absorber layer is almost 

unchanged.  

Figure 4.17 shows the FTIR reflectance results from a set of Germanium 

dielectric coated Salisbury screen samples. These samples use a λ/4 thick (at 10µm) Ge 

layer deposited directly on top of an Al mirror, with the usual Chromium absorber (sheet 

resistance ~ 400Ω/□). These are then covered with a final 50nm thick Germanium 

passivation layer. As can be seen from the data, the thin Germanium passivation layer 

does not significantly alter the expected reflectance spectra from the DSS structure, but 
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more importantly, protects this structure even after 10 hours of oxygen plasma exposure. 

This experimental method is also applicable to 3D stacked microbolometer fabrication 

for passivation of two absorber layers during oxygen plasma ashing process. 

 

 

 

Figure 4.16: Illustration of Passivation of Oxygen plasma exposure using Germanium 
layer. 
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Figure 4.17: FTIR reflectance results of test sample using Germanium Passivation (FTIR 
measurement by Ani Weling, Fost-Miller).  
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bolometer temperature change. The change in bolometer temperature with applied power 

is just the thermal impedance of the structure: 

 

                          

bolo
thermal

dT Z
dP

  .                       Eq.4.2 

One further simplification can be made by noting that the change in resistance 

with temperature is related to the bolometer material’s temperature coefficient of 

resistivity (TCR) α, given by: 

 

                            

1 bolo

bolo

dR
R dT

  .                     Eq.4.3 

Combining these terms, the bolometer resistance Rbolo can be conveniently written 

as (in the small signal approximation): 

 

                     bolo o o thermalR P R R Z P      .             Eq.4.4 

By making a simple dc current (I) vs. voltage (V) measurement these parameters 

can be easily extracted from the bolometer’s R-P curve by noting that: 
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DC measurement was performed to do characterization of the electrical properties 

of the fabricated devices (Device dimension: leg length of 20μm, leg width of 10μm, 

active area of 70 μm by70 μm and structure thickness of approximately 325nm). The DC 

Current-Voltage measurements (Hewlett-Packard, Precision Semiconductor Parameter 

Analyzer: HP4156A) were performed at atmospheric pressure and room temperature. 

Sixty second holding and long integration time was used to ensure thermal steady 

measurement. 
 

 

Figure 4.18: Resistance as a function of dissipated power for wavelength selective 
Germanium dielectric coated Salisbury screen microbolometer at various 
temperatures, bias voltage (0.1-2V) with step of 0.1V. 
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suggesting a negative Temperature Coefficient of Resistance (TCR).  This desirable 

characteristic as it avoids the problems associated with thermal runaway and can be used 

in the construction of a true bolometric device. The linearity in the spacing of the curves 

in the R-P plot suggests a fairly constant slope (dR/dP) over the measured temperature 

range.  The slope of the R-P plots obtained by linear regression (coefficient 0.998) 

yields dR/dP= 0.753 (Ω/µW), a reasonably constant value. Thus the DC responsivity can 

be calculated, at 100µA bias current, as 75.3V/W.  

 

 

 

Figure 4.19: Temperature dependence of resistance for the microbolometer at a bias 
voltage of 0.5V.The slope yields dR/dT which can be used to estimate TCR 
(α).  
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regression is dR/dT = -13.458 which is a material property.  The TCR for deposited TaN 

is calculated to be -0.0008/K. (TCR value by IBM: -0.0003/°C) [29].  The thermal 

impedance of the device using the estimated dR/dP and dR/dT was determined to be 

approximately 5.81 x 104 K/W. 
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Chapter 5:  Novel 3D Stacked Microbolometers 

In this chapter, the design and fabrication of novel 3D stacked microbolometer 

with two infrared absorbers and Germanium dielectric structural layers using self aligned 

process, which enables two color uncooled infrared detector, is covered.  

 

5.1 INTRODUCTION 

Conventional Fabry-perot resonant cavity based uncooled microbolometers (Air 

gap: 2 to 2.5μm) have limited design parameters due to multicolor narrow band spectral 

response. In this study, a feasible device fabrication method for novel 3D stacked 

microbolometer is demonstrated for multispectral uncooled infrared detector that can 

achieve tunable narrowband absorption in mid-wave infrared (MWIR) and long-wave 

infrared (LWIR) spectral range. An illustration of the novel device is shown in Figure 

5.1. 

In recent years, multispectral (multicolor, multichannel) infrared systems have 

been extensively investigated for numerous critical applications as discussed in Chapter 

2. The primary spectral bands for infrared imaging are 3 to 5μm and 8 to 12μm, since 

atmospheric transmission is highest in these bands. Both the bands, however, differ 

dramatically with respect to contrast, scene characteristics, atmospheric transmission, 

background signal under optical aperture constraints and diverse weather conditions.   

These complex combinations of system performance metrics require ideal dual 

band (multicolor, multichannel) operation devices. At present, as discussed in Chapter 2, 

commercial platforms of multispectral infrared detectors are relatively complex and have 

bulky components. They also require more complicated device fabrication leading to high 

cost and large scale systems. 
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Figure 5.1: Illustration of Novel 3D stacked microbolometers. 
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5.2 REVIEW OF TWO COLOR UNCOOLED MICROBOLOMETERS 

Recently, a few device concepts for achieving two color infrared using uncooled 

detector have been reported. One of the reported device concepts achieves two 

wavelengths responses by tuning the optical resonant cavity using switching MOEMS 

micro mirror between two positions, by an applied electrostatic actuation, as shown in 

Figure 5.2. However, currently none of the proposed device designs for two color 

uncooled microbolometer have been fabricated. 

 

 

(a) 
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(b) 

 

                                      (c) 

Figure 5.2: Design of two color microbolometer using tunable mirror actuation [30], 
[31]: (a) Amorphous type (b) Si3N4 type (c) Calculated absorption spectra. 

Another proposed concept employs a smart material based infrared detector used 

for wavelength selectivity in the long wavelength infrared (LWIR) band. This design 

proposes a modification in the depth of the optical resonant cavity between the suspended 

thermistor material and a mirror on the substrate, using a smart mirror. This smart mirror 
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is made of VO2, which has a phase transition from semiconductor to metallic state 

triggered at 68°C. This phase transition alters its optical and electrical as well as 

semiconductor material properties from the properties at room temperature. Before 

transition, VO2 is in the semiconducting phase and is transparent to infrared. As and 

when the temperature increases to 68°C, VO2 undergoes phase transition and it reflects 

infrared in the metallic phase, effectively reducing the cavity gap. The calculated 

absorption coefficients in the dual bands were 59% and 65% respectively (Figure 5.3). 

  

(a) 

 

(b) 

Figure 5.3: Design of dual band uncooled infrared microbolometer using smart mirror 
material [32]: (a) Schematic of device, (b) Calculated optical absorption.  
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5.3 DESIGN OF 3D STACKED MICROBOLOMETERS FOR TWO COLOR INFRARED 
DETECTION 

The 3D stacked microbolometer enables a separate spectral response for each 

targeted wavelengths, using dielectric coated Jaumann Absorber. Vertically stacked 

wavelength selective device pixels can save space and provide enhanced resolution 

compared to varying air gap based dielectric coated Salisbury screen microbolometer. 

This device consists of two Germanium dielectric structural layers, two resistive sheets as 

infrared absorber layers above each Germanium dielectric structural layer, two air gap 

spaces and a reflective mirror layer for enhanced infrared absorption power efficiency, as 

shown in Figure 5.4. 

 

 

 

 

Figure 5.4: Illustration of configuration of 3D stacked microbolometers. 
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5.3.1 Two Color Wavelength Selectivity in Long Wavelength Infrared (LWIR)  

The device design is approached such that each absorber layer in stacked 

microbolometer responds to the specific wavelength with narrow band absorption. Our 

group has set up design parameters such as sheet resistance of absorbers, thickness of 

Germanium dielectric structural layers, and air gap spaces.  

Figure 5.5 shows the result of two color wavelength selectivity in long wave 

length infrared (LWIR). The design parameters are sheet resistance of top absorber layer: 

1100Ω/□, thickness of top structural layer: 1.02μm, 2nd air gap: 2.0 μm, sheet resistance 

of bottom absorber layer: 2200Ω/□, thickness of bottom structural layer: 0.54μm and 1st 

air gap: 0.27 μm.  

 

 

 

Figure 5.5: Design of two color wavelength selectivity in long wavelength infrared 
(LWIR: 8 μm and12 μm) region. 
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5.3.2 Variation of Two Color Spectral Responses with Sheet Resistance of Absorber 

In this section, results of variation of two color spectral responses with sheet 

resistance as a parameter (from the results of section 5.2.1) are presented. Figure 5.6 

shows simulation results of two color spectral response by doubling the sheet resistance 

of the 1st absorber. The design parameters are sheet resistance of top absorber layer: 

2200Ω/□, thickness of top structural layer: 1.02μm, 2nd air gap: 2.0 μm, sheet resistance 

of bottom absorber layer: 2200Ω/□, thickness of bottom structural layer: 0.54μm and 1st 

air gap: 0.27 μm.  

Figure 5.7 shows simulation result by halving the sheet resistance of the 2nd 

absorber. The design parameters are sheet resistance of top absorber layer: 2200Ω/□, 

thickness of top structural layer: 1.02μm, 2nd air gap: 2.0 μm, sheet resistance of bottom 

absorber layer: 1100Ω/□, thickness of bottom structural layer: 0.54μm and 1st air gap: 

0.27 μm. Figure 5.8 shows the simulation result by now lowering the sheet resistance of 

1st absorber. The design parameters are sheet resistance of top absorber layer: 550Ω/□, 

thickness of top structural layer: 1.02μm, 2nd air gap: 2.0 μm, sheet resistance of bottom 

absorber layer: 1100Ω/□, thickness of bottom structural layer: 0.54μm and 1st air gap: 

0.27 μm. 
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Figure 5.6: Variation of two color responses with sheet resistance of 1st absorber layer: 
2200Ω/□. 

 

Figure 5.7: Variation of two color responses with sheet resistance of 2nd absorber layer: 
1100Ω/□. 
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Figure 5.8: Variation of two color responses with relatively low sheet resistance of 1st 
absorber layer: 550Ω/□. 
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layer: 1.02μm, 2nd air gap: 3.0 μm, sheet resistance of bottom absorber layer: 2200Ω/□, 

thickness of bottom structural layer: 0.54μm and 1st air gap: 0.27 μm.  

Figure 5.11 shows simulation result by changing both the spaces of the 1st and 2nd 

air gaps. The design parameters are sheet resistance of top absorber layer: 1100Ω/□, 

thickness of top structural layer: 1.02μm, 2nd air gap: 3.0 μm, sheet resistance of bottom 

absorber layer: 2200Ω/□, thickness of bottom structural layer: 0.54μm and 1st air gap: 

0.54 μm. 

 

 

Figure 5.9: Variation of two color responses with space of 2nd air gap: 1.0μm. 
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Figure 5.10: Variation of two color responses with space of 2nd air gap: 3.0μm. 

        

Figure 5.11: Variation of two color responses by changing the space of both 1st and 2nd 
air gap: 0.54μm, 3.0μm respectively. 
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5.3.4 Two Color Spectral Responses with Experimental Parameters 

In this section, simulation results using experimental parameters are discussed. 

The design parameters are extracted from a fully fabricated device, previously discussed 

in Chapter 3, namely the Wavelength selective Germanium dielectric Salisbury screen 

microbolometer. The design parameters are sheet resistance of top absorber layer: 

1100Ω/□, thickness of top structural layer: 1.02μm, 2nd air gap: 3.0 μm, sheet resistance 

of bottom absorber layer: 2200Ω/□, thickness of bottom structural layer: 0.54μm and 1st 

air gap: 1.0 μm. These results are shown in Figure 5.12. Figure 5.13 shows the result with 

design parameters of sheet resistance of top absorber layer: 1100Ω/□, thickness of each 

structural layer: 0.6μm, 2nd air gap: 5.0 μm, sheet resistance of bottom absorber layer: 

1000Ω/□ and 1st air gap: 2.0 μm. 

 

 

 

Figure 5.12: Two color spectral responses using experimental parameters: Space of air 
gap (1st air gap: 1.0 μm, 2nd air gap: 3.0 μm). 
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Figure 5.13: Two color spectral responses using experimental parameters: Thickness of 
Germanium structural layer (1st Ge structure: 0.6 μm, 2nd Ge structure: 0.6 
μm), space of air gap (1st air gap: 2.0 μm, 2nd air gap: 5.0 μm). 
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microbolometers. This design uses the same materials as the ones used in wavelength 

selective Germanium dielectric coated Salisbury screen microbolometer, previously 

discussed in Chapter 3. By using Germanium as both the interference layer for 

wavelength selectivity and the structural layer, the problems associated with highly 

infrared absorbing and dispersive silicon nitride layers can be avoided. To form the 

thermally isolated free-standing device structure in uncooled microbolometers, most 

commonly used microfabrication methods employs a high-temperature stable polyimide 

as the sacrificial layer, with patterning process. We use a self-aligned process without a 

polyimide patterning process, which helps eliminate deformation and stress in the two 

infrared absorbers/structural membranes and leads to cost effective device fabrication due 

to reduced fabrication process flow.  

Briefly, the fabrication process starts with infrared reflective mirror layer 

formation. Second step in the process is the formation of the 1st sacrificial layer. Third 

step is the formation of 1st Germanium structure layer. Fourth step is the formation of 1st 

absorber layer. Fifth step is the formation of 2nd sacrificial layer. Sixth step is the 

formation of 2nd Germanium structure layer. Seventh step is the formation of 2nd absorber 

layer. Finally, the sacrificial layer is then removed, to form the air gap below the two 

structural layers. Figures 5.14 and 5.15 show the first feasible demonstration of fabricated 

3D stacked microbolometer devices. 
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Figure 5.14: SEM images of demonstrated 3D stacked microbolometers. 
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Figure 5.15: SEM images of fabricated 3D stacked microbolometers with different active 
areas, leg lengths and widths. 
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Chapter 6:  Conclusions 

A study of fabrication and characterization of wavelength selective Germanium 

dielectric coated Salisbury screen and novel 3D stacked microbolometer, for 

multispectral infrared detection, has been presented in this work. 

Wavelength selective Germanium dielectric coated Salisbury screen 

microbolometer using self aligned process has been demonstrated. The fabricated device 

consists of a metal resistive sheet of 400Ω/□ as an infrared absorber layer, dielectric 

structural layer, reflective mirror layer and electrical contact pads. Dielectric Germanium 

was used as structure/interference layer. Devices have been fabricated with different 

microbolometer active areas, leg lengths and widths, and different metallic absorber layer 

materials (Ni, Ti, Cr, and TaN). 

The novel fabrication process leads to a flat and robust device structure. This is 

achieved by using an un-patterned sacrificial layer to produce device legs that hold the 

central structural layer above the reflective mirror supported by a completely flat 

sacrificial layer with sufficient thermal isolation to allow microbolometer operation.  

To characterize the spectral response of the wavelength selective Germanium 

dielectric Salisbury screen microbolometer using self align process, Fourier transform 

infrared (FTIR) microscopy measurements were taken on a number of the fabricated 

devices using Nicolet TM 6700 FTIR spectrometer. The FTIR measured spectral responses 

and numerical simulation results show excellent agreement with wavelength selectivity 

(9μm, 10μm, 11μm) in long wave infrared (LWIR) region. Electrical measurements were 

also performed, including IV curve, RP plot, thermal impedance and Temperature 

Coefficient of Resistance (TCR). 
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Recently, a few device concepts for achieving multicolor infrared detection using 

uncooled detector have been reported. However, currently none of the proposed device 

designs for the two color uncooled microbolometer have been fabricated. Moreover, 

commercial Fabry-perot resonant cavity based uncooled microbolometers (Air gap: 2 to 

2.5μm) have limited design parameters due to multicolor narrow band spectral response.  

In this study, a feasible device fabrication method for novel 3D stacked 

microbolometer is demonstrated for multispectral uncooled infrared detector that can 

achieve tunable narrowband absorption in mid-wave infrared (MWIR) and long-wave 

infrared (LWIR) spectral regions.  

The 3D stacked microbolometer enables a separate spectral response for each of 

the targeted wavelengths, using dielectric coated Jaumann Absorber. Vertically stacked 

wavelength selective device pixels can save space and provide enhanced resolution 

compared to varying air gap based dielectric coated Salisbury screen microbolometers. 

This device consists of two Germanium dielectric structural layers, two resistive sheets as 

infrared absorber layers above each Germanium dielectric structural layer, two air gap 

spaces and a reflective mirror layer for enhanced infrared absorption power efficiency. 

Based on experimentally extracted parameters from the fabricated 3D stacked 

microbolometer devices, numerical simulations for spectral responses have been 

performed showing two color infrared selectivity. The experimental parameters used in 

this study are the two air gap spaces, sheet resistance of the two absorber layers and 

thicknesses of the structural layers. 
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Possible directions for future work include packaging of wavelength selective 

Germanium dielectric coated Salisbury screen microbolometers. 

Another possibility for future work is the application of novel absorber materials 

that can lead to enhanced infrared power absorption in the microbolometer. 

Developmental studies of carbon nanomaterials, such as Graphene or its compounds, can 

be performed as possible candidates for absorber materials. 

One of future developments would be optimizing the novel 3D stacked 

microbolometers fabrication for multispectral infrared detection. The 3D stacked 

microbolometer is a useful approach to two color uncooled infrared detectors. Further 

study of the 3D stacked microbolometer presented here will hopefully provide guidance 

for novel uncooled multispectral infrared detectors.  
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