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Preface 

Being trained as a land surface modeler, I have been working on various topics of 

land surface modeling during my Ph.D. studies, with the ultimate goal of improving Noah-

MP not only for climate modeling but also for application-based studies. When I first 

entered the Department of Geological Sciences, it was at the time that Noah-MP had just 

been developed and evaluated at local scale and a few global river basins. The 

measurements for local scale evaluation only included about two months of surface fluxes 

in the First ISLSCP (International Satellite Land Surface Climatology Project) Field 

Experiment (FIFE) domain (15 km × 15 km). The evaluation for global river basins used 

Illinois soil moisture, GRACE TWS, GRDC runoff, and Canadian Meteorology Center 

snow depth and SWE data sets, which may not be considered the “best” available 

observations from the hydrological perspective. Clearly, we needed more comprehensive 

evaluation for Noah-MP. Therefore, in Chapter 2, I evaluated Noah-MP’s performance in 

simulating the hydrological cycle for the Mississippi River Basin. I used measurements 

that are considered high quality for this region such as streamflow and groundwater 

measurements from USGS, ET measurement from AmeriFlux, and soil moisture from 

SCAN. The results from this chapter are encouraging. The simulated runoff and soil 

moisture are consistent with USGS and SCAN measurements, respectively. The model can 

reproduce the AmeriFlux ET for natural lands. Some disagreements were also found such 

as the much shallower simulated water table depth and the early fast growing ET over 

croplands. By doing the work presented in Chapter 2, I learned how to use Linux systems, 

Vim text editor, NCAR Command Language, and most importantly Noah-MP. 

I presented my preliminary results from the Mississippi River Basin study at AGU 

Fall Meeting 2011. During the meeting, I had the opportunity to see other similar studies. 
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One thing that amazed me was the very high-quality streamflow data for 961 small river 

basins within CONUS. Fortunately, Dr. Youlong Xia from NOAA/NCEP came to my 

poster session and showed me that NCEP is the owner of the streamflow data for the 961 

small river basins along with many other observational data sets and tools, which in 

combination make the so called “NLDAS test bed”. Later, we decided that we should work 

together to evaluate Noah-MP within the NLDAS framework. Since Noah-MP is designed 

as NCEP’s next generation LSM, it was clear that we should compare it with the current 

NCEP land model (i.e., Noah) and other major LSMs in the U.S. (i.e., VIC and CLM). This 

lead to the work presented in Chapter 3, in which we found no single model is superior to 

other models in simulating TWS, streamflow, soil moisture, and ET at the same time. 

Instead, each model has advantages in simulating one or two of these variables and has 

disadvantages in simulating others. Regarding Noah-MP, it shows the best performance in 

simulating soil moisture and among the best in simulating TWS. However, its simulated 

ET increases too fast during each growing season, which is associated with LAI simulation. 

The work in this chapter really gave me a clearer picture of the current performances of 

LSMs. 

Knowing how difficult it is for Noah-MP to capture the seasonality of LAI, we 

wanted to improve this by considering the N stress on vegetation growth dynamically, 

which was not considered in the original model development. In addition, supported by the 

NASA Interdisciplinary Science Program, we proposed to enable Noah-MP’s capability in 

simulating the movement of nutrients (such as N) from land to estuaries. From literature, 

we have seen that SWAT performed well in simulating the N cycle. So I planned to employ 

the parameterization of N dynamics from SWAT. Due to the partnership between NASA 

Jet Propulsion Laboratory (JPL) and UT Austin, I had the opportunity to interact with Dr. 

Joshua Fisher from JPL and noticed that he developed a plant N model called Fixation and 
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Uptake of N (FUN). Therefore, the N dynamic model integrated into Noah-MP includes 

two parts: the plant N model from FUN and the soil N model from SWAT. This is included 

in Chapter 4, from which we can see that the N model can generally reproduce the N 

state/flux variables at the evaluation site. In addition, the delayed peak LAI due to the 

inclusion of N dynamics is expected to improve the timing of ET modeling. Although our 

model cannot fully simulate the movement of N from land to estuaries due to the lack of a 

river N transport module, this is a big step towards that goal. The work in this chapter is 

my real contribution to the development of Noah-MP. 

Making contributions to building a better model is really exciting for a land surface 

modeler like me. In the future, I hope to use land surface models as a powerful tool to 

answer some scientific questions for a better understanding of our mother Earth and to 

address our societal needs. 
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Abstract 

Land surface models (LSMs) simulate the energy, momentum, water, and carbon 

balance of the soil–vegetation–atmosphere system. As a key component of weather and 

climate models, LSMs play an important role in weather prediction and climate projections. 

Rapid growth in LSM development has resulted in both the improvement of existing 

process representation and the addition of new processes and functionalities. However, it 

is a challenge to evaluate the accuracy of energy, water, and nutrient fluxes simulated by 

LSMs, due to the lack of observational data and the complexity of interactions and 

feedback among different processes. Additionally, climate and terrestrial biosphere models 

consider nitrogen an important factor in limiting plant carbon uptake, while operational 

environmental models view nitrogen as the leading nutrient for causing eutrophication in 

water bodies. However, few LSMs include nitrogen dynamics and nitrogen leaching is 

usually not well parameterized; hence these LSMs are not feasible for applications-based 

modeling, particularly for land management and agricultural impacts. 
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Therefore, this dissertation uses the Noah-MP LSM to study the following three 

questions. (1) How do recent developments in Noah-MP improve its performance in 

hydrological modeling, based on a case study for the Mississippi River Basin? (2) 

Compared to other similar LSMs, what are the advantages and disadvantages of Noah-MP 

in assessing the water balance over the conterminous U.S.? (3) After coupling the Fixation 

and Uptake of Nitrogen plant model and the Soil and Water Assessment Tool soil nitrogen 

dynamics into Noah-MP, can this coupled model characterize the major nitrogen fluxes 

and how the nitrogen dynamics affect the carbon and water simulations? The main 

scientific findings are as follows. (1) Noah-MP shows significant improvement in 

modeling the major hydrological variables such as runoff, groundwater, 

evapotranspiration, soil moisture, and terrestrial water storage (TWS), which is very likely 

due to the incorporation of some major improvements into Noah-MP, particularly an 

unconfined aquifer storage layer for groundwater dynamics and an interactive vegetation 

canopy for dynamic leaf phenology. (2) Compared to other three LSMs, Noah-MP provides 

the best performance in simulating soil moisture and is among the best in simulating TWS. 

(3) The new Noah-MP with nitrogen dynamics performs well in capturing the major 

nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). (4) The addition of 

nitrogen dynamics in Noah-MP improves the modeling of the carbon and water cycles 

(e.g., net primary productivity and evapotranspiration). 

 

  



 xi

Table of Contents 

Preface .................................................................................................................... vi 

Abstract .................................................................................................................. ix 

Table of Contents ................................................................................................... xi 

List of Tables ....................................................................................................... xiv 

List of Figures ........................................................................................................xv 

Chapter 1 : Introduction ...........................................................................................1 

1.1 Background ...............................................................................................1 

1.2 Review of Related Topics .........................................................................2 

1.2.1 Land Surface Model Development and Evaluation ......................2 

1.2.2 New Observational Data ...............................................................3 

1.2.3 Nitrogen Model for Assessing the Carbon–Nitrogen Feedback ...5 

1.2.4 Nitrogen Model for Assessing the Environmental Impact ...........6 

1.3 Research Objectives ..................................................................................7 

Chapter 2 : Hydrological Evaluation of the Noah-MP Land Surface Model for the 
Mississippi River Basin ..................................................................................9 

2.1 Abstract .....................................................................................................9 

2.2 Introduction .............................................................................................10 

2.3 Methodology ...........................................................................................12 

2.3.1 The Noah-MP Model ..................................................................12 

2.3.2 Study Area ..................................................................................15 

2.3.3 Model Input Data ........................................................................16 

2.3.4 Observational Data......................................................................18 

2.3.5 Evaluation Statistics ....................................................................23 

2.4 Model Spin-Up, Sensitivity Tests, and Calibration ................................23 

2.4.1 Model Spin-Up............................................................................23 

2.4.2 Parameter Sensitivity Tests .........................................................25 

2.4.3 Model Calibration .......................................................................28 



 xii

2.5 Evaluation and Discussion ......................................................................31 

2.5.1 Runoff .........................................................................................31 

2.5.2 Groundwater ...............................................................................34 

2.5.3 Evapotranspiration ......................................................................38 

2.5.4 Soil Moisture ...............................................................................40 

2.5.5 Terrestrial Water Storage ............................................................43 

2.6 Conclusions .............................................................................................46 

2.7 Acknowledgements .................................................................................48 

Chapter 3 : Assessment of Simulated Water Balance from Noah, Noah-MP, CLM, 
and VIC over CONUS Using the NLDAS Test Bed ....................................49 

3.1 Abstract ...................................................................................................49 

3.2 Introduction .............................................................................................49 

3.3 Methodology ...........................................................................................53 

3.3.1 Models.........................................................................................53 

3.3.2 Forcing Data................................................................................57 

3.3.3 Model Spin-Up and Integration Procedure .................................58 

3.3.4 Model Output ..............................................................................59 

3.3.5 Lumped Routing Model and Calculation of Streamflow ............60 

3.3.6 Model Evaluation Criteria ...........................................................61 

3.4 Observed and Satellite-Retrieved Data ...................................................61 

3.4.1 GRACE Terrestrial Water Storage .............................................61 

3.4.2 U.S. Geological Survey Streamflow ...........................................62 

3.4.3 MODIS and FLUXNET Evapotranspiration ..............................62 

3.4.4 SCAN Soil Moisture ...................................................................63 

3.5 Evaluation of Model Products ................................................................64 

3.5.1 Evaluation of TWS Simulation ...................................................64 

3.5.2 Evaluation of Streamflow Simulations .......................................71 

3.5.3 Evaluation of ET Simulation ......................................................76 

3.5.4 Evaluation of Soil Moisture Simulation .....................................80 

3.6 Conclusions .............................................................................................83 



3.7 Acknowledgements .................................................................................84 

Chapter 4 : Integration of Nitrogen Dynamics into the Noah-MP Land Surface Model 
for Climate and Environmental Predictions ..................................................85 

4.1 Abstract ...................................................................................................85 

4.2 Introduction .............................................................................................86 

4.3 Models, Data, and Methods ....................................................................88 

4.3.1 Noah-MP .....................................................................................88 

4.3.2 Nitrogen Dynamics .....................................................................90 

4.3.3 Description of Evaluation Data and Model Configuration .........98 

4.4 Results and Analyses ............................................................................100 

4.4.1 Soil Moisture Content ...............................................................100 

4.4.2 Soil Nitrate ................................................................................102 

4.4.3 Nitrate Leaching from Soil Bottom ..........................................104 

4.4.4 Annual NPP ..............................................................................106 

4.4.5 Impacts on Carbon Cycle ..........................................................107 

4.4.6 Impacts on Water Cycle ............................................................109 

4.4.7 Impacts of N Fertilizer Application ..........................................111 

4.4.8 Analysis of N Uptake ................................................................113 

4.4.9 Analysis of Major Soil Nitrate Fluxes ......................................114 

4.5 Conclusions ...........................................................................................115 

4.6 Acknowledgements ...............................................................................116 

Chapter 5 : Conclusions .......................................................................................117 

5.1 Conclusions ...........................................................................................117 

5.2 Contributions to the Understanding of the Earth System .....................120 

5.3 Future Work ..........................................................................................121 

Appendix: Acronyms ...........................................................................................123 

References ............................................................................................................125 

Vita   ...................................................................................................................145 

  
 xiii 



 xiv

List of Tables 

Table 2.1 Basic information regarding the AmeriFlux sites. .............................................21 

Table 2.2 Experimental design for parameter calibration. .................................................26 

Table 2.3 Statistical summary of model calibration for the Mississippi River Basin and 

some of its subbasins. ........................................................................................29 

Table 3.1 Comparison of Noah, VIC, Noah-MP, and CLM4 in the treatments of 

vegetation, soil, and snow. .................................................................................53 

Table 3.2 Statistical summary of model performance in simulating terrestrial water 

storage anomaly, based on comparison with GRACE observation. All R2 

values pass the 99% confidence level. The thick underlines indicate the 

highest R2 or lowest RMSE among the four land surface models. ....................68 

Table 3.3 Contribution of soil moisture (SMC), snow water equivalent (SWE), and 

groundwater (GW) to the R2 and RMSE between GRACE and model 

simulated TWS (%). ..........................................................................................71 

Table 3.4 Statistical summary of model performance in simulating soil moisture for the 

top 1-m soil, based on comparison with SCAN observation. Bold font 

indicates significant at the 95% confidence level. The thick underlines 

indicate the highest R2 or lowest RMSE among the four land surface models.

 ...........................................................................................................................82 

Table 4.1 Model input variables and parameters. ..............................................................92 

Table 4.2 Comparison of atmospheric forcing data between site observation and 

NLDAS (2008–2014). .....................................................................................100 

Table 4.3 Annual averages of Noah-MP simulated major nitrogen fluxes and net 

primary productivity. The NPP within the parentheses is from observation. ..104 



 xv

List of Figures 

Figure 2.1 Map of the Mississippi River Basin showing (a) USGS gaging stations and 

hydrologic regions (Numbers in the shaded area are the 2-digit hydrologic 

unit code: 5–Ohio; 6–Tennessee; 7–Upper Mississippi; 8–Lower 

Mississippi; 10U–Upper Missouri; 10L–Lower Missouri; 11–Arkansas–

White–Red); (b) Annual temperature; and (c) Annual precipitation. ..............17 

Figure 2.2 Map of the 60 SCAN stations and their data availability (percentage of the 

total number of months from 2002 to 2007 with observational data) in the 

Mississippi River Basin. ..................................................................................22 

Figure 2.3 (a) Spin-up time (in years) for the individual variables based on averaged 

values for the entire Mississippi River Basin; (b) Spatial distribution of the 

spin-up time (in years) for the water table depth. ............................................25 

Figure 2.4 Sensitivity tests of (a) the surface dryness factor, (b) the saturated hydraulic 

conductivity and, (c) the maximum soil moisture (porosity). ..........................27 

Figure 2.5 Comparisons of the USGS-observed and the Noah-MP- simulated (default, 

lumped calibrated, and subbasin calibrated) hydrographs for (a) the 

Mississippi River Basin, (b) the Upper Mississippi River Basin, (c) the 

Missouri River Basin, and (d) the Ohio–Tennessee River Basin. ...................30 

Figure 2.6 Climatological mean annual runoff from (a) Noah-MP (2000–2009), (b) 

UNH-GRDC (all available observational time periods (Fekete et al., 2002)), 

and (c) USGS hydrologic unit runoff (1901–2009). (d) Monthly 

climatological runoff (2000–2009) from USGS observation and Noah-MP 

simulation. (e) USGS-gauged and Noah-MP (default and calibrated) and 

Noah LSM simulated runoff (2000–2008) for the Mississippi River Basin. 

The region enclosed in the red box is discussed in the text. ............................32 



 xvi

Figure 2.7 Climatological water table depth from (a) USGS measurements (all available 

observational time periods (Fan and Miguez-Macho, 2011)) and (b) 

Normalized Noah-MP simulations (2000–2009). ............................................36 

Figure 2.8 Comparison of the groundwater storage anomaly from observations (Rodell 

et al., 2007) and model simulations for (a) the entire Mississippi River Basin, 

(b) the Upper Mississippi River Basin, (c) the Missouri River Basin, and (d) 

the Ohio-Tennessee River Basin. .....................................................................37 

Figure 2.9 Comparison of the latent heat flux for the AmeriFlux observations and the 

model simulations for different land cover types. (a) Grassland (5 sites), (b) 

Cropland (5 sites), (c) Forestland (4 sites), and (d) Shrubland (1 site). ...........40 

Figure 2.10 SCAN-observed and Noah-MP-simulated monthly soil moisture (SMC) for 

the Mississippi River Basin at a depth of (a) top 10 cm, (b) 10–40 cm, (c) 

40–100 cm, and (d) 100–200 cm. (c) also shows the Noah-MP simulated 

transpiration (Et). For the Noah-MP simulation, only those grids with a 

SCAN site are included, and for each grid, only those months with observed 

values are used. ................................................................................................43 

Figure 2.11 TWS anomalies for the Mississippi River Basin calculated from (a) the 

water storage terms and their contributing components and (b) the water flux 

terms and their contributing components. TWS anomalies are the cumulative 

anomalies of (Precip. – ET – Runoff), which are compared concurrently with 

the anomalies of the individual terms –ET and –Runoff. Note that the ET 

and runoff anomalies are shown as the negative of the original anomalies. ....45 

Figure 2.12 Comparison of the TWS anomalies from the GRACE-based measurements 

and the Noah-MP simulations from the water storage terms and their 

contributing components for the four subbasins. .............................................46 



 xvii

Figure 3.1 Spatial map showing the geographical locations and data availability of the 

121 SCAN sites. Black solid lines dividing the conterminous United States 

into six regions: Southeast, Northeast, Texas, Great Plains, Northwest, and 

Southwest, respectively....................................................................................64 

Figure 3.2 Amplitude of the annual TWS variation (2003–2007) from (a) GRACE, (b) 

Noah, (c) Noah-MP, (d) CLM4, and (e) VIC. Annual TWS variation is 

defined as the difference of the maximum and the minimum of the monthly 

TWS in a year. The white solid lines divide the CONUS into four quadrants, 

as indicated in (a). The spatial resolution is 1°×1° for GRACE and 

0.125°×0.125° for all four LSMs. ....................................................................66 

Figure 3.3 GRACE-derived and LSMs-simulated terrestrial water storage anomaly over 

the (a) Conterminous U.S., (b) Northwest, (c) Northeast, (d) Southwest, and 

(e) Southeast.....................................................................................................67 

Figure 3.4 Relative bias of mean annual streamflow for the 961 small river basins from 

October 1979 to September 2007 from (a) Noah, (b) Noah-MP, (c) CLM4, 

and (d) VIC. .....................................................................................................72 

Figure 3.5 Correlation coefficient of the 28-year monthly climatological streamflow 

between model simulations and USGS observation for the 961 small river 

basins for (a) Noah, (b) Noah-MP, (c) CLM4, (d) VIC, (e) ensemble mean 

of the NLDAS-2, and (f) ensemble mean of this study. ..................................74 

Figure 3.6 Model simulated and/or USGS gauged monthly climatology (averaged from 

October 1979 to September 2007) of (a) snow water equivalent (SWE) and 

(b) streamflow over the area highlighted by the red box in Figure 3.5b. To 

show the timing of snow accumulation and melting more clearly, we use the 

normalized SWE and streamflow. ...................................................................75 

Figure 3.7 Comparison of monthly evapotranspiration (ET) climatology (2001–2007) 

between simulations and observations (both FLUXNET and MODIS). .........77 



 xviii

Figure 3.8 Spatial distribution of mean annual evapotranspiration (mm) from 

FLUXNET (a) and its differences with the model simulations for (b) Noah, 

(c) Noah-MP, (d) CLM4, (e) VIC, and (f) Ensemble mean (EM) of the four 

land models. .....................................................................................................78 

Figure 3.9 Same as Figure 3.8 except for replacing FLUXNET ET with MODIS ET. ....79 

Figure 3.10 Monthly anomaly (left panels) and climatologically seasonal cycle (right 

panels) of spatially averaged root-zone soil moisture (the top 1 m of the soil 

column) from SCAN observation and model simulations for six regions: (a) 

Southeast, (b) Northeast, (c) Texas, (d) Great Plains, (e) Northwest, and (f) 

Southwest. ........................................................................................................81 

Figure 4.1 Flow chart of the nitrogen dynamic model. ......................................................91 

Figure 4.2 Observed and model simulated volumetric soil moisture from 1989 to 2012 

for (a) Treatment 1: cropland with conventional tillage and (b) Treatment 2: 

cropland without tillage. The error bars show the observational ranges from 

up to six replicates for each treatment. ..........................................................101 

Figure 4.3 Observed and model simulated soil nitrate concentration from 1989 to 2011 

for (a) Treatment 1: cropland with conventional tillage and (b) Treatment 2: 

cropland without tillage. The error bars show the observational ranges from 

up to six replicates for each treatment. ..........................................................103 

Figure 4.4 Observed and model simulated nitrate leaching from bottom of soil profile 

from 1995 to 2013 for (a) Treatment 1: cropland with conventional tillage 

and (b) Treatment 2: cropland without tillage. The error bars show the 

observational ranges from up to six replicates for each treatment. ................105 



 xix

Figure 4.5 Observed and modeled annual NPP from 1989 to 2013 for (a) Treatment 1: 

cropland with conventional tillage and (b) Treatment 2: cropland without 

tillage. The error bars show the observational ranges from up to six replicates 

for each treatment. CTL: original Noah-MP without N cycling. MP-N: 

Noah-MP with N cycling. The letters in the x-axis labels are the crops 

harvested in that year (c: corn; s: soybean; w: winter wheat). .......................107 

Figure 4.6 (left column) Monthly and (right column) climatologically seasonal cycle of 

model simulated  (a) LAI, (b) NPP, (c) GPP, and (d) NEE from default Noah-

Noah-MP and enhanced Noah-MP with N dynamics. The values in the right 

column indicate annual mean for each term (black: default; red: N 

dynamics). ......................................................................................................109 

Figure 4.7 Same as Figure 4.6 except for (a) soil moisture, (b) transpiration, (c) soil 

evaporation, and (d) runoff. ...........................................................................110 

Figure 4.8 (left column) Monthly and (right column) climatologically seasonal cycle of 

model simulated (a) NPP, (b) N uptake, (c) N leaching, and (d) soil nitrate 

with different dates for N fertilization: real, June 20, and April 15. The values 

in the right column indicate annual mean for each term (black: real; red: June 

20; blue: April 15). .........................................................................................112 

Figure 4.9 Daily climatology (1989–2013) of nitrogen uptake by pathways expresses as 

(a) actual amount of uptake and (b) percentage of total uptake. ....................114 

Figure 4.10 Daily climatology of the soil nitrate (blue solid line) and some major fluxes 

(color label bars) going in (humus mineralization and residue 

decomposition) and out (plant uptake, nitrate leaching, and denitrification) 

of the soil nitrate pool. ...................................................................................115 

 



 1

Chapter 1: Introduction 

1.1 BACKGROUND 

Land covers approximately 29.2% of the Earth’s surface. Although this is a small 

fraction compared to ocean surface, land surface largely contributes to the spatial and 

temporal variability in our weather and climate systems, due primarily to the high spatial 

heterogeneity of soil, vegetation, and topography. Land areas not only host the bulk of the 

living biosphere (Verstraete, 1989) but also support human activities such as habitat, 

agriculture, and industry. These intensifying human activities have been shaping the 

formation of the human age—the Anthropocene (Monastersky, 2015). 

Land surface processes generally refer to the exchanges of heat, water, and CO2 

fluxes among the following land components: soil, vegetation, snow, glaciers, inland water, 

animals, and much more (Yang, 2004). As a key component of weather and climate 

models, land surface models (LSMs) simulate the energy, momentum, water, and carbon 

balance of the soil–vegetation–atmosphere system (Foley et al., 1996). They play an 

important role in weather prediction and climate projections (Pitman, 2003). 

Land surface processes that need to be modeled in weather and climate models are: 

energy and water budgets of the land surface, vertical heat and water transports of 

substrates, water transport associated with vegetation, exchange of heat and water vapor 

between the land surface and the atmosphere, and horizontal water transport at and below 

the surface (Warner, 2011). Some of these processes were well represented in early LSMs. 

However, some processes are still not well parameterized in the current generation of 

LSMs. For example, groundwater–surface water interaction—part of the vertical water 

transport—is recognized as important for climate modeling, particularly for regions where 

water table depth fluctuates within five meters of the land surface (Kollet and Maxwell, 
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2008). However, the simulations of water table depth by LSMs are still not very realistic, 

compared to in situ observations (Zampieri et al., 2012; Cai et al., 2014a). 

This chapter provides some background information and a literature review about 

LSM development and evaluation, new available observational data sets, and the 

importance of the biogeochemical nitrogen modeling in supporting climate and 

environmental predictions. Finally, this chapter concludes with the research objective and 

an outline of this dissertation’s organization. 

1.2 REVIEW OF RELATED TOPICS 

1.2.1 Land Surface Model Development and Evaluation 

LSM development started with the “bucket” model (Manabe, 1969), which 

assumed soil moisture storage was a reservoir that was filled by rainfall and emptied by 

runoff. From then on, multilayer soils, vegetation canopy (Dickinson et al., 1986; Sellers 

et al., 1986), and the carbon cycle (Bonan, 1995; Sellers et al., 1996) were gradually 

included into LSMs. Rapid growth in LSM development has resulted in both the 

improvement of existing process representation and the addition of new processes and 

functionalities. During the past decade, widely adopted new model components include 

dynamic leaf/vegetation, groundwater, multilayer snow, biogeochemistry, irrigation, urban 

canopy, and much more. 

Dynamic leaf/vegetation models were the development focus of various research 

groups in the world (Foley et al., 1996; Dickinson et al., 1998; Bachelet et al., 2001; Sitch 

et al., 2003). Although the introduction of dynamic leaf/vegetation models may sometimes 

degrade model performance, it provides a more feasible tool to investigate the impact of 

climate change, land cover and land use change, and urbanization on the climate and water 

and nutrient cycles (Lawrence et al., 2011), which allows further investigation of mitigation 
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measurements for global change. Another important improvement is the modeling of 

groundwater dynamics, which influences soil moisture and runoff generation and hence 

the interaction between the atmosphere and land. Several studies have incorporated 

groundwater models in LSMs with some being coupled with climate models (Fan et al., 

2007; Miguez-Macho et al., 2007; Niu et al., 2007; Lo et al., 2010; Leung et al., 2011; 

Barlage et al., 2015). 

Model evaluation helps the scientific community to identify good models or 

directions for future development. This also helps operational modeling centers such as the 

NOAA/NCEP (National Oceanic and Atmospheric Administration/National Centers for 

Environmental Prediction) implement new features to their next generation of weather and 

climate forecasting systems to improve their operational forecast capability. Besides 

weather and climate forecasts, LSMs have been widely used for drought monitoring, 

climate change impact assessment, and land cover/land use change assessment; therefore, 

the identification of a physically sound, appropriate complexity, computationally 

affordable, and easy to use model is critical to these applications. 

1.2.2 New Observational Data 

Because model development and evaluation are highly dependent on data 

availability, major efforts are being made in producing new and better observational data 

in the land community. In terms of evaluating LSM runoff, the difficulty is how to compare 

station gaged streamflow with grid based runoff, as simulated by models. Besides the 

UNH-GRDC gridded runoff, which has been used for LSM evaluation in previous years, 

the USGS developed a hydrologic-unit runoff (Brakebill et al., 2011) in 2008 and has 

updated it annually (personal communication with David M. Wolock at USGS). Although 

it is not grid based, it retains the accuracy from ground based measurements for each 
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hydrologic unit so that it better represents the spatial pattern. Groundwater evaluation has 

the same issue; however, Fan and Miguez-Macho (2011) have created a climatology water 

table depth map for the U.S., which contains 567,946 water table observational sites and is 

dense enough to show the groundwater spatial pattern for most parts of the U.S.. 

Compared to runoff evaluation, evapotranspiration (ET) evaluation is even more 

constrained by the lack of available data. Over recent decades, the global network of 

micrometeorological tower sites that coordinate eddy covariance measurements of CO2, 

water vapor, and energy, FLUXNET (http://fluxnet.ornl.gov/) (Running et al., 1999; 

Baldocchi et al., 2001), has provided the most reliable ET measurement and has been 

considered valuable data for LSM development (Stöckli et al., 2008) and evaluation 

(Kumar and Merwade, 2011; Li et al., 2011). As part of FLUXNET, AmeriFlux features a 

much denser network of tower sites in the U.S. than other regional networks. 

In addition, Gravity Recovery and Climate Experiment (GRACE) terrestrial water 

storage (TWS) data (Tapley et al., 2004) can now validate the performance of LSMs in 

TWS simulation, which is an overall indicator assessing model proficiency in simulating 

water budget. During the past decade, Swenson and Milly (2006) pioneered the use of 

GRACE data in climate model evaluation, Niu et al. (2007) and Lo et al. (2010) 

successfully used GRACE data for the development of groundwater dynamics in LSMs, 

and van Dijk et al. (2011) have used GRACE data to evaluate the Australian Water 

Resources Assessment system and recommended necessary improvements in the model, 

such as better precipitation forcing and augmentation of groundwater dynamics. More 

information about applying GRACE data in model development and evaluation can be 

found in a review study by Güntner (2008). 
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1.2.3 Nitrogen Model for Assessing the Carbon–Nitrogen Feedback 

The effect of N-limitation on plant growth has long been recognized; however, its 

effect on climate–carbon feedback has not been included in climate models until recently 

(Hungate et al., 2003). Researchers often report that the terrestrial biosphere can uptake 22 

to 57% of expected anthropogenic CO2 emissions that are predicted by an intermediate 

emissions scenario (Cramer et al., 2001; Houghton et al., 2001). Even without considering 

N-limitation, however, the Hadley Center ocean–atmosphere model version 3 (HadCM3) 

predicted the terrestrial biosphere would switch from a weak carbon sink to a strong carbon 

source by 2050, because the soil respiration rate will increase with temperature while the 

direct effect of CO2 on photosynthesis will saturate (Cox et al., 2000). Kicklighter et al. 

(1999) compared four terrestrial biosphere models and demonstrated that models with 

nutrient cycling estimated much less CO2 uptake than models without nutrient cycling. A 

field experiment study by Luo et al. (2004), which proposed that soil nitrogen availability 

will decrease with time when soil nitrogen is sequestrated into long-lived plant biomass 

and soil organic matter pools under elevated CO2, attracted attention from the climate 

community. Since that time, several studies have explicitly incorporated nitrogen dynamics 

in climate models or in offline LSMs or dynamic global vegetation models (Thornton et 

al., 2007; Sokolov et al., 2008; Ostle et al., 2009; Thornton et al., 2009; Bonan and Levis, 

2010; Fisher et al., 2010). Thornton et al. (2007) coupled the Community Land Model 

version 3 (CLM3) (Dickinson et al., 2006) with carbon and nitrogen dynamics of the 

terrestrial biogeochemistry model Biome-BGC version 4.1.2 (Thornton and Rosenbloom, 

2005), in which the authors conclude that a model with C and N dynamics predicts 74% 

less of global terrestrial carbon uptake than the C-only model in response to increasing 

atmospheric CO2 concentration. Fisher et al. (2010) provide similar conclusion but with a 

smaller percentage of reduction. According to Sokolov et al. (2008), who use the coupled 
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MIT Integrated Global Systems Model with carbon and nitrogen dynamics of Terrestrial 

Ecosystems Model, carbon uptake is also reduced in response to increasing atmospheric 

CO2 concentration. In addition, they concluded that, in response to temperature increase, 

the terrestrial biosphere switches from being C-source to C-sink. Thornton et al. (2009) 

reach a similar conclusion from their coupled study using the Community Climate System 

Model (Collins et al., 2006) with carbon-only and carbon-nitrogen versions of CLM4. 

1.2.4 Nitrogen Model for Assessing the Environmental Impact 

The development of N models for environmental and agricultural purposes has 

involved more than three decades of effort. Based on their model structures and temporal 

and spatial scales, nutrient models can be categorized into two types: (1) empirical or semi-

empirical loading function models and (2) process-based simulation models. Loading 

function models include the Generalized Watershed Loading Function (GWLF, Haith and 

Shoemaker, 1987), the Spatially Referenced Regressions on Watersheds (SPARROW, 

Schwarz et al., 2006), and some regression models; Process-based simulation models 

include the Agricultural Non-Point Source Pollution Model (AGNPS, Young et al., 1989), 

the Hydrologic Simulation Program-Fortran (HSPF, Bicknell et al., 1997), and SWAT, all 

of which are mainly developed in the U.S. (U.S. EPA, 2008). Although loading function 

models require limited data and are easy to use, they usually fail to replicate the nonlinear 

biogeochemical and physical processes. In addition, they have limitations in representing 

spatial and temporal information. In contrast, process-based simulation models incorporate 

our understanding of physical, chemical, and biological processes, and hence are capable 

of quantifying the interactions among embedded components (e.g., atmosphere, biosphere, 

hydrosphere, nutrients, and human activities). However, they tend to require detailed data 

and have large uncertainties about (1) model structure that is built based on prior 
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knowledge, (2) model parameters, (3) bias from observational data, and (4) users’ skills 

and experiences (U.S. EPA, 2008). Besides these U.S. models, some models have been 

developed across Europe (Kronvang et al., 2009; Schoumans et al., 2009b), for example, 

the Nutrient Losses at catchment scale model (NL-CAT, Schoumans et al., 2009a), and the 

Transport–Retention–Källfördelning N leaching model (TRK, Brandt and Ejhed, 2002). 

Similar to SWAT, the more complex processed-based models like NL-CAT and TRK are 

designed to assess the impact of nutrient management strategies on the nutrient losses to 

the environment under different conditions; however, none of these nutrient models is 

suitable for all regions of the globe and for all purposes (Schoumans et al., 2009b). 

1.3 RESEARCH OBJECTIVES 

This dissertation uses the Noah-MP LSM (Niu et al., 2011; Yang et al., 2011) as an 

example. Noah-MP incorporates recent model development in parameterizations of 

dynamic leaf, groundwater, and multilayer snow. It is the next generation LSM for the 

operational weather and climate models in NCEP, and is used from day-to-day weather 

forecasts to decadal climate projection. Noah-MP is also part of the Weather Research and 

Forecasting (WRF) meteorological model (Rasmussen et al., 2014), which is used not only 

for weather forecasts but also for regional applications such as water resources 

management and climate change impacts. Specifically, the objectives of this dissertation 

are to: (1) understand the strength and limitation of Noah-MP in characterizing the 

hydrological cycle; (2) evaluate our confidence about current LSMs in modeling the water 

balance at the continental scale; (3) develop an integrated modeling capability for 

simultaneous climate and environmental predictions, and (4) investigate the effects of 

nitrogen dynamics on carbon and water cycles. 
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Correspondingly, this dissertation includes three main chapters, followed by a 

conclusion chapter. Chapter 2 evaluates Noah-MP’s performance in simulating the 

hydrological cycle for the Mississippi River Basin. Model simulated runoff, groundwater, 

evapotranspiration, soil moisture, and terrestrial water storage are compared against 

observed data sets. Chapter 3 compares four LSMs’ performance in assessing the water 

balance over the conterminous U.S. (CONUS), based on the North American Land Data 

Assimilation System (NLDAS) test bed. Chapter 3 is different from Chapter 2 in: (1) it 

employs the tools (e.g., the river routing model) and data sets (e.g., the streamflow for 961 

small river basins) that were developed within the NLDAS test bed; (2) four major LSMs 

are compared, which gives a better picture showing each model’s position in the land model 

community; and (3) it covers a larger study domain and longer time period. Chapter 4 

describes the nitrogen dynamic model and its coupling with Noah-MP. The model 

simulated nitrogen state/flux variables are evaluated at an experimental site. In addition, 

the impacts of the nitrogen dynamic module on carbon and water cycles are analyzed. 

Chapter 5 summarizes the conclusions and findings from this dissertation. The chapter ends 

with directions for future work. 
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Chapter 2: Hydrological Evaluation of the Noah-MP Land Surface 
Model for the Mississippi River Basin1 

2.1 ABSTRACT 

This study evaluates regional-scale hydrological simulations of the newly 

developed community Noah land surface model (LSM) with multiparameterization options 

(Noah-MP). The model is configured for the Mississippi River Basin and driven by the 

North American Land Data Assimilation System Phase 2 atmospheric forcing at 1/8° 

resolution. The simulations are compared with various observational data sets including 

the U.S. Geological Survey streamflow and groundwater data, the AmeriFlux tower 

micrometeorological evapotranspiration (ET) measurements, the Soil Climate Analysis 

Network (SCAN)-observed soil moisture data, and the Gravity Recovery and Climate 

Experiment satellite-derived terrestrial water storage (TWS) anomaly data. Compared with 

these observations and to the baseline Noah LSM simulations, Noah-MP shows significant 

improvement in hydrological modeling for major hydrological variables (runoff, 

groundwater, ET, soil moisture, and TWS), which is very likely due to the incorporation 

of some major improvements into Noah-MP, particularly an unconfined aquifer storage 

layer for groundwater dynamics and an interactive vegetation canopy for dynamic leaf 

phenology. Noah-MP produces soil moisture values consistent with the SCAN 

observations for the top two soil layers (0–10 cm and 10–40 cm), indicating its great 

potential to be used in studying land–atmosphere coupling. In addition, the simulated 

groundwater spatial patterns are comparable to observations; however, the inclusion of 

groundwater in Noah-MP requires a longer spin-up time, ranging from less than 10 years 

for wet regions to hundreds of years for arid regions. Runoff simulation is highly sensitive 

                                                 
1Originally published as: Cai, X., Z.-L. Yang, C.H. David, G.-Y. Niu and M. Rodell, 2014a: Hydrological 
evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res., 119(1): 23-
38, doi:10.1002/2013jd020792. The References section contains full citations for all articles referenced here. 



 10

to three parameters: the surface dryness factor (α), the saturated hydraulic conductivity (k), 

and the saturated soil moisture (θmax). This study identifies groundwater–river interaction, 

leaf dynamics, and agricultural modeling as areas for further research. 

2.2 INTRODUCTION 

Land surface models (LSMs) have evolved rapidly in recent decades due to the 

advances in high-performance computing, ground-based measurements (e.g., FLUXNET 

(Baldocchi et al., 2001)), remote sensing (Murray et al., 2013), and emerging concepts such 

as hyperresolution (Wood et al., 2011) and multiparameterization (or multiple hypotheses) 

(Clark et al., 2011b). One such LSM is the community Noah LSM with 

multiparameterization options (hereafter Noah-MP) (Niu et al., 2011; Yang et al., 2011). 

Based on the Noah LSM (Ek et al., 2003), Noah-MP has added biophysical processes such 

as an unconfined aquifer for groundwater storage and a dynamic water table (Niu et al., 

2007), an interactive vegetation canopy (Dickinson et al., 1998), a multilayer snowpack 

(Yang and Niu, 2003), and a simple TOPMODEL (TOPography based hydrological 

MODEL)-based runoff production (Niu et al., 2005). 

Model evaluation plays a very important role in LSM development, as LSM 

benchmarking or better model evaluation is one of the three core activities in the current 

Global Energy and Water Cycle Exchanges Project (GEWEX) Global Land/Atmosphere 

System Study (GLASS) (van den Hurk et al., 2011). Noah-MP has been tested at local 

scales (Niu et al., 2011) and in global river basins (Yang et al., 2011). Its runoff simulation 

was evaluated using the University of New Hampshire-Global Runoff Data Center (UNH-

GRDC) gridded runoff data set (Fekete et al., 2002), but it has not yet been evaluated with 

the U.S. Geological Survey (USGS) streamflow data. The groundwater module was 

evaluated against the Gravity Recovery and Climate Experiment (GRACE) terrestrial 
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water storage (TWS) data when it was coupled with the Community Land Model (Niu et 

al., 2007), but it has not been evaluated since its coupling with Noah-MP. In addition, the 

evapotranspiration (ET) simulation has not yet been evaluated using observational data. 

Soil moisture is another important variable for land–atmosphere coupling and drought 

monitoring and thus needs to be evaluated using observational data. Lastly, since the launch 

of GRACE in 2002, modeled TWS can now be evaluated at a regional scale with the 

GRACE-derived TWS. 

Therefore, this study comprehensively evaluates the performance of Noah-MP in 

hydrological simulations of major hydrological variables (runoff, groundwater, ET, soil 

moisture, and TWS). It features a detailed multivariable evaluation using the best available 

ground-based and satellite measurements. This type of evaluation is consistent with the 

current call for benchmarking of LSMs by GEWEX GLASS (van den Hurk et al., 2011; 

Abramowitz, 2012; Kumar et al., 2012). Specifically, the following measurements are 

used: USGS streamflow and groundwater data, AmeriFlux tower micrometeorological ET 

data, Soil Climate Analysis Network (SCAN) soil moisture data, and GRACE satellite-

derived TWS anomaly data. 

Before a clean version of the model is obtained for evaluation, hydrological 

modeling generally requires spin-up, parameter sensitivity tests, and model calibration for 

specific study areas. Without groundwater dynamics, hydrological models typically only 

require several years of model spin-up time (Cosgrove et al., 2003b); with groundwater 

dynamics, however, they require much longer time for water table depth (WTD) to reach 

an equilibrium state, particularly in arid regions (Niu et al., 2007). This study will first 

investigate how the integration of groundwater dynamics into Noah-MP affects model 

spin-up. Unlike some parameters (e.g., slope and leaf area index) that can be derived from 

representative field site measurements or remote-sensing data, many parameters, such as 
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the hydraulic conductivity and the Clapp-Hornberger “b” parameter (a fitting parameter in 

determining soil water potential from hydraulic conductivity), cannot be directly derived 

from measurements and must be estimated by calibration for the specific study areas 

(Hogue et al., 2006). This study will identify the most sensitive parameters through 

sensitivity tests and then obtain the optimal combination of these parameters through 

calibration. 

The evaluation of the study is conducted for the period of 2000–2009 for the 

Mississippi River Basin (MRB) at the North American Land Data Assimilation System 

Phase 2 (NLDAS-2)’s 1/8° resolution (Ek et al., 2011). Section 2 describes the Noah-MP 

model, study area, and data sets used in this study. Section 3 introduces model spin-up, 

parameter sensitivity tests, and model calibration. Section 4 shows the specific evaluations 

of runoff, groundwater, ET, soil moisture, and TWS. Section 5 summarizes the study. 

2.3 METHODOLOGY 

2.3.1 The Noah-MP Model 

Noah-MP was enhanced from the original Noah LSM through the addition of 

improved physics and multiparameterization options (Niu et al., 2011; Yang et al., 2011). 

The improved physics includes a dynamic groundwater component, an interactive 

vegetation canopy, and a multi-layer snowpack. The multiparameterization options provide 

users with multiple choices of parameterizations in leaf dynamics, canopy stomatal 

resistance, soil moisture factor for stomatal resistance, and runoff and groundwater. For 

example, there are four options for runoff and groundwater: (1) TOPMODEL with simple 

groundwater model (SIMGM) (Niu et al., 2007), (2) TOPMODEL with an equilibrium 

water table (Niu et al., 2005), (3) original surface and subsurface runoff (free drainage) 

(Schaake et al., 1996), and (4) Biosphere-Atmosphere Transfer Scheme surface and 
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subsurface runoff (free drainage) (Yang and Dickinson, 1996). The parameterizations used 

in this study are the default options recommended by Yang et al. (2011): TOPMODEL 

runoff with SIMGM groundwater, leaf dynamics, Ball-Berry canopy stomatal resistance, a 

Noah-type (using soil moisture) soil moisture factor controlling stomatal resistance, and 

the Monin-Obukhov surface exchange coefficient for heat. 

Both surface and subsurface runoff are computed by a simple TOPMODEL-based 

runoff model (Niu et al., 2005). Surface runoff (Rsf) is parameterized as 

    IpFpFR satsatsf   ,0max1
 (2.1) 

where p, the effective precipitation intensity (kg m–2 s–1), is the rainfall and dewfall 

reaching the ground plus snowmelt, I is maximum soil infiltration capacity (kg m–2 s–1), 

which is dependent on soil properties and moisture, and Fsat is the fraction of saturated area 

and is parameterized as 

  frz
fz

frzsat FeFFF   5.0
max1

 (2.2) 

where Ffrz is a fractional impermeable area as a function of the soil ice content of the surface 

soil layer, z  is the WTD (m), and Fmax is the potential or maximum saturated fraction for 

a grid cell, which can be derived from high-resolution subgrid topography (e.g., 30 m) of 

a model grid cell (e.g., 1° resolution) using the TOPMODEL concepts (see Niu et al. (2005) 

or Niu et al. (2011) for details). In this study, a global mean Fmax = 0.38 is used, which is 

derived from the HYDRO1K 1 km topographic index (or wetness index, WI) data (Verdin 

and Jenson, 1996). 

Subsurface runoff (Rsb) is parameterized as 

 fz
sbsb eRR max,

 (2.3) 
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where Rsb,max is the maximum subsurface runoff when the grid cell mean WTD is zero—

here globally Rsb,max = 5.0×10–4 m s–1, derived from calibration against global runoff data 

through sensitivity tests (Niu et al., 2007)—and Λ is the grid cell mean WI—here Λ = 

10.46, which is its global mean value derived from HYDRO1K 1 km WI data. 

With an unconfined aquifer added to account for the exchange of water between 

the soil and the aquifer, the temporal variation of the water stored in the unconfined aquifer, 

Wa (mm), is parameterized as 

sb
a RQ

t

W


d

d
 (2.4) 

where Q is the recharge rate (mm s–1), which is positive when water enters the aquifer. It 

is parameterized as 

bot

botbotmic
bot zz

zfz
KQ







 )( 
 (2.5) 

where Kbot is hydraulic conductivity of the bottom soil layer (mm s–1). fmic is the fraction of 

micropore content in the bottom-layer soil, which is introduced to limit the upward flow 

(depending on the level of structural soil) and ranges from 0.0 to 1.0 (see Niu et al. (2011) 

for details); and ψbot is the matric potential (mm). 

Latent heat flux (λE, or potential evapotranspiration E) is calculated using the 

Penman-Monteith equation following Bonan (2008): 

    
 HW

Haapn

rrs

reTeCGRs
E

/

/*








  (2.6) 

where λ is the latent heat of vaporization (J kg–1), e*[Ta] is the saturation vapor pressure 

evaluated at the air temperature (Ta); s = de*[Ta]/dT is the saturation vapor pressure versus 

temperature evaluated at Ta, Rn is net radiation (W m–2), G is soil heat flux (W m–2), (Rn – 
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G) is net available radiation (W m–2), ρ is dry air density (kg m-3), Cp is specific heat 

capacity of air (J kg–1 K–1), ea is the vapor pressure of air (Pa), and rH and rW are resistance 

to sensible heat and water vapor, respectively (s m–1). The surface exchange coefficient for 

heat, CH, which is used to calculate aerodynamic resistances, can be estimated using either 

the Monin–Obukhov similarity theory (this study) or the method of Chen et al. (1997). 

In addition to hydraulic conductivity, runoff is also found to be very sensitive to 

the surface dryness factor (α). It determines the soil surface resistance to ground 

evapotranspiration (Sellers et al., 1992), as shown in the following equation: 

   1206.810.1 S
snowsnowsurf effr   (2.7) 

where rsurf is the soil surface resistance (s m−1), fsnow is the snow fraction covering a ground 

surface, and S1 is the soil wetness in the top soil layer, varying from 0.0 to 1.0. Thus, α 

controls the effect of soil moisture on rsurf. 

In the current Noah-MP, vegetation plays a significant role in the model: the 

stomatal conductance determines the photosynthesis and the carbon cycle; the dynamic 

leaf model predicts the leaf area index (LAI) and the green vegetation fraction (GVF); the 

“semitile” subgrid scheme calculates the surface energy balance for vegetated and bare 

ground separately; and the canopy water scheme simulates the canopy water interception 

and evaporation. 

2.3.2 Study Area 

The Mississippi River Basin (MRB) is the largest river basin in North America, 

covering many distinct climate zones. It is also a well-studied river basin, and thus, a 

variety of meteorological, hydrological and ecological data are available. For example, it 

is the study area of the first Continental-Scale Experiment of the World Climate Research 

Program GEWEX Continental-Scale International Project (Roads et al., 2003; Kumar and 
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Merwade, 2011). The MRB area is 3.28 million km2, which is approximately 41% of the 

conterminous U.S. (Figure 2.1a). It covers six of the 21 major geographic regions defined 

by the USGS two-digit hydrologic unit code (HUC2, http://water.usgs.gov/GIS/huc.html). 

Calculated from the NLDAS-2 meteorological forcing data (1998–2009), the basin average 

annual temperature and precipitation are 11.9°C and 821.0 mm, respectively. Across the 

various climate zones, there is a large temperature gradient between the south and north, 

with a minimum of −3°C in the Rocky Mountains and a maximum of 22.9°C in the southern 

most area of the basin (Figure 2.1b), and a large precipitation gradient between the 

southeast and northwest, with a minimum of 126.3 mm in Wyoming and a maximum of 

1973.6 mm in the Gulf of Mexico region (Figure 2.1c). In this study, the Ohio-Tennessee 

Region is considered a typical wet region and Missouri Region a typical dry region, with 

the Upper Mississippi Region considered the transitional zone between the two. 

2.3.3 Model Input Data 

The NLDAS-2 (Mitchell et al., 2004) meteorological forcings at 0.125° spatial 

resolution and hourly temporal resolution are used to drive the Noah-MP model. The seven 

non-precipitation meteorological forcing fields are derived from the NCEP (National 

Centers for Environmental Prediction) North American Regional Reanalysis, including air 

temperature, the U and V components of wind speed, specific humidity, surface pressure, 

surface downward shortwave radiation, and surface downward longwave radiation. 

Precipitation field data are derived from the temporal disaggregation of the gaged daily 

precipitation data from NCEP/Climate Prediction Center with an orographic adjustment 

based on the monthly climatological precipitation of the Parameter-elevation Regressions 

on Independent Slopes Model (Daly et al., 1994). The Noah LSM outputs forced by the 

same NLDAS-2 meteorological forcings are also downloaded from the NLDAS website, 
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which serves as the baseline model for comparison with Noah-MP. More details regarding 

the setup and performance of the Noah LSM model can be found in previous studies (Xia 

et al., 2012a; Xia et al., 2012c). 

 

Figure 2.1 Map of the Mississippi River Basin showing (a) USGS gaging stations and 
hydrologic regions (Numbers in the shaded area are the 2-digit hydrologic unit code: 5–
Ohio; 6–Tennessee; 7–Upper Mississippi; 8–Lower Mississippi; 10U–Upper Missouri; 
10L–Lower Missouri; 11–Arkansas–White–Red); (b) Annual temperature; and (c) Annual 
precipitation. 

The static input data for Noah-MP are from various sources. The land-water mask 

that masks out the water component from simulation (land = 1 and water = 0), and the 

latitude and longitude coordinate information, which are primarily used for computing the 
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solar zenith angle, are the same as those of NLDAS-2, which uses the latitude and longitude 

in the center of each 0.125° grid box. The vegetation type and soil texture types (top 30 cm 

and 30–100 cm depth) are aggregated from the 30 arc-second data of the USGS 24-

category vegetation (land use) and the hybrid State Soil Geographic Database (STATSGO) 

Food and Agriculture Organization soil texture data sets, respectively, both of which are 

maintained by the NCAR/RAL (Research Application Laboratory, National Center for 

Atmospheric Research) (http://www.ral.ucar.edu/research/land/technology/lsm.php). Soil 

color data are used to determine ground surface albedo over visible and infrared bands and 

include eight categories, with one as the lightest and eight as the darkest. The annual mean 

2 m air temperature data (from NCAR/RAL) are also used as the lower boundary layer 

condition for soil temperature. The monthly climatological GVF data are converted from 

the 0.144° five year (1985–1990) GVF data derived from National Oceanic and 

Atmospheric Administration (NOAA)/advanced very high resolution diameter (AVHRR) 

by Gutman and Ignatov (1998). 

2.3.4 Observational Data 

USGS streamflow data are used for runoff calibration and validation. As shown in 

Figure 2.1a, four USGS gaging stations are selected: the Ohio River at Metropolis, IL 

collecting runoff from region 5 and region 6; the Mississippi River at Keokuk, IA collecting 

runoff from region 7; the Missouri River at Hermann, MO collecting runoff from region 

10; and the Mississippi River at Vicksburg, MS collecting runoff from the entire MRB. To 

compare the spatial distribution of runoff between the model and the observations, we use 

two types of data sets: the USGS hydrologic unit runoff (http://waterwatch.usgs.gov/) 

(Brakebill et al., 2011) and the monthly gridded climatological runoff composite fields at 

30 min spatial resolution provided by the University of New Hampshire-Global Runoff 
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Data Center (UNH-GRDC). The USGS hydrologic unit runoff data set was developed in 

2008 and has been updated annually (D. Wolock, personal communication, 2012). It was 

calculated from all the available records for 1901–2009 at the eight-digit hydrologic unit 

code (HUC8) level, which consists of 2110 hydrologic cataloging units for the continental 

U.S. and 1128 units for the MRB. The UNH-GRDC runoff preserves the accuracy of the 

observed discharge data and obtains consistent spatial and temporal resolutions from a 

water balance model (Fekete et al., 2002); hence, it is considered the best available gridded 

data set for LSM evaluation, although the values are occasionally lower than the gaged 

discharge data (Leung et al., 2011). 

A climatological WTD map for the U.S. created by Fan and Miguez-Macho (2011), 

which contains 567,946 USGS groundwater observational sites (254,464 sites for the 

MRB) and is dense enough to show the groundwater spatial pattern for most of the U.S., is 

used for spatial comparison with the Noah-MP simulated WTD. Daily groundwater storage 

anomalies for the MRB and its major subbasins were derived from 58 sites with good 

representation of the subbasin averages by Rodell et al. (2007) and are used in this study 

for temporal comparison with the model results. 

Over recent decades, the global network of micrometeorological tower sites with 

coordinating eddy covariance measurements of CO2, water vapor, and energy, the 

FLUXNET (http://fluxnet.ornl.gov/) (Running et al., 1999; Baldocchi et al., 2001), has 

provided the most reliable ET measurements and has been considered a valuable data 

source for LSM development (Stöckli et al., 2008) and evaluation (Blyth et al., 2010; 

Kumar and Merwade, 2011; Li et al., 2011). As part of the FLUXNET, AmeriFlux features 

much denser flux tower sites in the U.S. than other regional networks. Although there are 

21 AmeriFlux tower sites in the MRB, only 15 of them have overlapping observation times 

with the Noah-MP simulation period (2000–2009), and those sites are used to evaluate the 
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model-simulated latent heat flux (ET). A list of Ameriflux tower sites and their locations, 

land cover, and available measurement periods are shown in Table 2.1. The data included 

in this study are the monthly Level 4 latent heat flux data, which are gap filled using 

Artificial Neural Network and Marginal Distribution Sampling techniques 

(http://public.ornl.gov/ameriflux). 

The SCAN (Schaefer et al., 2007) is a nationwide soil moisture and climate 

information system led by the Natural Resources Conservation Service (NRCS), USDA 

(http://www.wcc.nrcs.usda.gov/scan/). SCAN soil moisture data are collected by dielectric 

constant measuring devices at 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm, where possible. 

The data used in this study have been processed by extensive quality control steps (Liu et 

al., 2011), through which any unrealistic data values (e.g., data outside a reasonable range 

and inconsistent data affected by sensor calibration or installation) and data measured 

under frozen conditions were excluded. Figure 2.2 shows the 60 available SCAN stations 

in the MRB and their data availability. Due to the low data availability at most stations, the 

data are aggregated into monthly basin average. 
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Table 2.1 Basic information regarding the AmeriFlux sites. 

Site 
no. 

Site name State
Latitude 

(°N) 
Longitude 

(°E) 
Land 

covera 
Available 

period 

1 
ARM Southern Great Plains burn site- 
Lamont 

OK 35.55 –98.04 GRA 2005–2006 

2 
ARM Southern Great Plains control 
site- Lamont 

OK 35.54 –98.04 GRA 2005–2006 

3 
ARM Southern Great Plains site- 
Lamont 

OK 36.61 –97.49 
CRO 
(DCP) 

2003–2006 

4 Brookings SD 44.35 –96.84 GRA 2004–2006 

5 Bondville IL 40.01 –88.29 
CRO 
(DCP) 

1996–2007 

6 Fort Peck MT 48.31 –105.10 GRA 2000–2006 

7 Goodwin Creek MS 34.25 –89.97 GRA 2002–2006 

8 Lost Creek WI 46.08 –89.98 
CSH 
(SHR) 

2001–2005 

9 Morgan Monroe State Forest IN 39.32 –86.41 DBF 1999–2006 

10 Missouri Ozark Site MO 38.74 –92.20 DBF 2004–2007 

11 Mead – irrigated continuous maize site NE 41.17 –96.48 
CRO 
(DCP) 

2001–2006 

12 
Mead – irrigated maize-soybean 
rotation site 

NE 41.16 –96.47 
CRO 
(DCP) 

2001–2006 

13 
Mead – rainfed maize-soybean rotation 
site 

NE 41.18 –96.44 
CRO 
(DCP) 

2001–2006 

14 Niwot Ridge Forest (LTER NWT1) CO 40.03 –105.55 ENF 1998–2007 

15 Willow Creek WI 45.81 –90.08 DBF 1999–2006 

a AmeriFlux uses IGBP land cover classification, while Noah-MP uses USGS 

global 24-category classification. GRA stands for Grassland; CRO: Cropland, DCP: Mixed 

Dryland/Irrigated Cropland and Pasture; CSH: Closed Shrublands; SHR: Shrubland; DBF: 

Deciduous Broadleaf Forest; ENF: Evergreen Needleleaf Forest. Unless otherwise 

indicated by parentheses, Noah-MP uses the same land cover type as AmeriFlux for the 

corresponding 0.125°×0.125° model grid. There are six sites where Noah-MP and 

AmeriFlux use slightly different names. At site 3, for example, AmeriFlux uses CRO, while 

Noah-MP uses DCP. 
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Figure 2.2 Map of the 60 SCAN stations and their data availability (percentage of the total 
number of months from 2002 to 2007 with observational data) in the Mississippi River 
Basin. 

Section 1.2.2 has described the GRACE TWS data. This study uses the monthly 

GRACE TWS anomaly data, which have been processed into a 1°×1° resolution gridded 

format (Swenson and Wahr, 2006; Landerer and Swenson, 2012) for easy comparison with 

LSM outputs and which can be publicly accessed on the Jet Propulsion Laboratory 

TELLUS website (http://grace.jpl.nasa.gov). The data are based on the CSR RL4.0 release 

by the Center for Space Research at the University of Texas at Austin. First, a destriping 

filter was applied to the data to minimize the systematic errors, which manifest as north-

south oriented “stripes” in the GRACE TWS maps; then a 300 km wide Gaussian filter 

was applied to reduce random errors in higher-degree spherical harmonic coefficients not 

removed by the previous filter; and lastly, a spherical harmonic filter cutoff at 60° was 

applied. During the filtering process, because GRACE TWS was spatially averaged, 

signals were attenuated by showing smaller root-mean-square variability. To restore the 
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signal attenuation, a gain factor, which was derived by using a simple least square 

regression to minimize the mismatch between the unfiltered, true, and filtered storage time 

series, was applied to each of the 1°×1° grids. More information about the data processing 

can be found in Landerer and Swenson (2012), Chen et al. (2006), and Swenson and Wahr 

(2006). 

2.3.5 Evaluation Statistics 

The agreement between the values predicted by a model and the values actually 

observed is measured using the following statistics: mean, root-mean-square error 

(RMSE), square of the correlation coefficient (R2), and Nash–Sutcliffe efficiency (NSE) 

coefficient (Nash and Sutcliffe, 1970). The NSE is calculated as 
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where Mi and Oi are the predicted and measured values of the same variable, respectively, 

and O  is the mean of the measured values. NSE ranges from minus infinity (poor fit) to 1 

(perfect fit). In general, model prediction is considered to be satisfactory if NSE > 0.50 

(Moriasi et al., 2007). 

2.4 MODEL SPIN-UP, SENSITIVITY TESTS, AND CALIBRATION 

2.4.1  Model Spin-Up 

To allow some of the model variables with longer memories reach equilibrium, a 

numerical model must be properly initialized. When SIMGM, the groundwater component 

of Noah-MP, was introduced (Niu et al., 2007), it was noted that it might take at least 250 

years to spin-up the WTD in arid regions. Therefore, we are interested in examining the 
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time span required to spin-up the model for this river basin. In this study, the spin-up is 

completed by running the model repeatedly through 1997 until each of the variables 

reaches equilibrium and the spin-up time is defined as year n, if 

nnn VarVarVar  001.01

 (2.9) 

where Var stands for each of the variables for the spin-up. This definition is as strict as the 

constraint by Yang et al. (1995). The Var for the calculation in Figure 2.3a is spatially 

averaged, and for the calculation in Figure 2.3b, it is averaged per grid cell. 

The WTD requires the longest spin-up time, 34 years (Figure 2.3a), followed by 

runoff with 11 years and soil moisture (total soil column) with 8 years. This is consistent 

with previous studies of WTD (Niu et al., 2007) and soil moisture (Yang et al., 1995; 

Cosgrove et al., 2003b). However, it is surprising to note that the spin-up time needed for 

runoff is longer than for soil moisture, which is not as commonly reported in literature. 

This may be due to the long spin-up time for WTD, which influences the runoff generation. 

The sensible heat fluxes and latent heat fluxes need shorter times to spin-up, approximately 

4 years, because they are more influenced by surface soil and vegetation states and by the 

atmospheric forcing data, as indicated in Equation 2.6. 

Regarding the spatial distribution of the time (in years) required for WTD to reach 

equilibrium (Figure 2.3b), for the wet region (east), less than 10 years is required to spin-

up, whereas for the dry region (west), more than 72 years or even hundreds of years may 

be required for some small but extremely dry areas. 
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Figure 2.3 (a) Spin-up time (in years) for the individual variables based on averaged values 
for the entire Mississippi River Basin; (b) Spatial distribution of the spin-up time (in years) 
for the water table depth. 

2.4.2 Parameter Sensitivity Tests 

Hydrological modeling involves significant efforts in parameter sensitivity testing 

and calibration, which were usually overlooked in the past. However, it is becoming a must 

when LSMs are more and more used in hydrological studies. Here we briefly describe how 

the model parameters are finalized before the model is ready for evaluation. Based on our 

modeling experience and previous studies (Rosero et al., 2010), several sensitive 

parameters are selected for further analysis. However, only three parameters are identified 

as sensitive parameters for runoff simulation: surface dryness factor (α), saturated 
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hydraulic conductivity (k), and saturated soil moisture (θmax). Table 2.2 provides the 

definitions, units, and value ranges of the three parameters. Figure 2.4 shows how annual 

runoff varies with different values of the individual parameters. Spatially-averaged annual 

mean runoff (1) decreases as the surface dryness factor increases, in a nearly linear 

relationship; (2) decreases dramatically as hydraulic conductivity increases when saturated 

hydraulic conductivity is less than 10% of its original values; and (3) also decreases 

dramatically as saturated soil moisture increases when the multiplier (a factor multiplied 

by the original values) is less than 0.9. 

Although the sensitivity tests are based on the changes in total runoff with different 

parameter values, they influence other hydrological variables more directly. For example, 

as indicated in Equation 2.7, the surface dryness factor is a parameter that determines the 

soil surface resistance and hence controls soil evaporation; when the surface dryness factor 

increases, the soil evaporation increases correspondingly. Therefore, to maintain water 

balance, either or both transpiration and runoff have to decrease. In this case, annual runoff 

decreases as the surface dryness factor increases (Figure 2.4a). Total runoff is affected by 

the saturated hydraulic conductivity via its capability to control the subsurface runoff (base 

flow). Similarly, saturated soil moisture controls the storage capacity of the soil and hence 

affects evaporation and infiltration. 

Table 2.2 Experimental design for parameter calibration. 

Parameters Controlling process Units Min Max Default Values # 

Surface dryness 
factor 

partitions of the 
surface hydrology ― 0 10 6.0 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 8 

Saturated hydraulic 
conductivity 

base flow in runoff 
simulation m s–1 2E-9 7E-2 Vary Multiply by 0.01, 0.05, 0.1, 

0.5, 1, 5, 10 7 

Saturation soil 
moisture content 

water flow between 
aquifer and soil 

― 0.10 0.71 vary Multiply by 0.8, 0.85, 0.9, 
0.95, 1, 1.05, and 1.1 

7 
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Figure 2.4 Sensitivity tests of (a) the surface dryness factor, (b) the saturated hydraulic 
conductivity and, (c) the maximum soil moisture (porosity). 
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2.4.3 Model Calibration 

Based on the parameter sensitivity tests above, model calibration is conducted 

manually by obtaining the optimal combination of the three most sensitive parameters (α, 

k, and θmax) for the entire MRB (i.e., called lumped calibration). As shown in Table 2.2, 

392 experiments are designed and run. The three parameter values that produce the highest 

NSE for the entire MRB are selected. The calibrated hydrographs are shown in Figure 2.5 

and the corresponding statistics are included in Table 2.3. In the hydrograph, the USGS-

observed streamflow is from the station near the basin outlet and the Noah-MP runoff is 

aggregated from all the grids in each basin or subbasins. For the entire MRB, we can 

observe that the hydrograph is greatly improved from the default simulation to the 

calibrated simulation. Although the increase in R2 is small (from 0.76 to 0.81), the decrease 

in RMSE is large (37%), which results in a large increase in NSE from 0.42 (less than the 

satisfactory threshold of 0.50) to 0.77. For the Ohio-Tennessee River Basin, all three 

statistics improve. For the Upper MRB and the Missouri River Basin, however, the NSE 

decreases (from 0.56 and 0.01 to 0.29 and –0.16, respectively) due to the increase in RMSE, 

although the R2 increases. 

To improve the simulation for the subbasins, calibration is conducted by using 

different sets of the three parameters (α, k, and θmax) for each subbasin (i.e., subbasin 

calibration). However, the improvement to the runoff simulation for the Upper MRB and 

the Missouri River Basin is very trivial (not shown here). The possible reasons are (1) the 

selected sensitive parameters are not applicable for these two subbasins, and/or (2) 

hydrological modeling for arid and semiarid areas (such as these two subbasins) is more 

difficult than that for humid areas—a well-recognized problem. Figure 2.5d shows that 

subbasin calibration does significantly improve the simulation for the Ohio–Tennessee 

River Basin. From the lumped calibration to the subbasin calibration, the NSE (R2) 
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increases from 0.36 (0.67) to 0.68 (0.81). In summary, it is worthwhile to calibrate models 

at the subbasin level for humid regions, whereas for arid and semiarid regions, the model 

structure and the selection of the sensitive parameters need further investigation. 

Table 2.3 Statistical summary of model calibration for the Mississippi River Basin and 
some of its subbasins. 

 Mississippi  Upper Mississippi  Missouri  Ohio-Tennessee 

CTLa LPCb  CTL LPC  CTL LPC  CTL LPC SBCc 

RMSE 6128 3875  904 1147  1192 1290  5054 3919 2773 
R2 0.76 0.81  0.60 0.68  0.48 0.57  0.60 0.67 0.81 

NSE 0.42 0.77  0.56 0.29  0.01 –0.16  –0.07 0.36 0.68 
a CRT: default (control) model run. 
b LPC: lumped calibration. 
c SBC: calibration for specific subbasin. 
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Figure 2.5 Comparisons of the USGS-observed and the Noah-MP- simulated (default, 
lumped calibrated, and subbasin calibrated) hydrographs for (a) the Mississippi River 
Basin, (b) the Upper Mississippi River Basin, (c) the Missouri River Basin, and (d) the 
Ohio–Tennessee River Basin. 
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2.5 EVALUATION AND DISCUSSION 

2.5.1  Runoff 

Figure 2.6 compares the spatial distributions of the UNH-GRDC composite runoff, 

the USGS hydrologic unit runoff, and the Noah-MP simulated runoff. Noah-MP is capable 

of capturing the observed general spatial pattern of the runoff, which is similar to the 

precipitation pattern shown in Figure 2.1c. For UNH-GRDC, the runoff in the red box is 

much lower than its surrounding area, which is not found in the Noah-MP simulation or 

the USGS observations. On the contrary, the Noah-MP simulated runoff in that box is 

slightly higher than its surrounding area, whereas the USGS runoff follows the general 

transition pattern. The USGS stream gages in this region are very sparse compared with 

other regions (not shown here), which might explain the difference in the UNH-GRDC 

runoff data because the UNH-GRDC runoff requires runoff input from the USGS. The high 

Noah-MP runoff in that box corresponds to the high precipitation in Figure 2.1c. It is also 

notable that the UNH-GRDC runoff is less than 1 mm for most of the western portion of 

the basin (red shaded area in Figure 2.6b), whereas it is 5 mm to 25 mm in the Noah-MP 

runoff and 6 mm to 50 mm in the USGS runoff. 
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Figure 2.6 Climatological mean annual runoff from (a) Noah-MP (2000–2009), (b) UNH-
GRDC (all available observational time periods (Fekete et al., 2002)), and (c) USGS 
hydrologic unit runoff (1901–2009). (d) Monthly climatological runoff (2000–2009) from 
USGS observation and Noah-MP simulation. (e) USGS-gauged and Noah-MP (default and 
calibrated) and Noah LSM simulated runoff (2000–2008) for the Mississippi River Basin. 
The region enclosed in the red box is discussed in the text. 

To examine how Noah-MP is improved from the baseline Noah LSM in terms of 

runoff simulation, we also present the comparison in Figure 2.6e, which indicates a 
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substantial improvement from the Noah LSM to Noah-MP. The results from the default 

Noah-MP setting slightly underestimate the USGS observations; however, they are already 

much better than the baseline Noah LSM results. The results from the calibrated Noah-MP 

are further improved, as both the magnitudes and the temporal variations correspond 

closely with the USGS observations. For easy comparison with similar studies, monthly 

climatological runoff is also shown in Figure 2.6d. Compared with previous studies by 

Falloon et al. (2011), Li et al. (2011), and Xia et al. (2012b), Noah-MP performs as well as 

or better than other mainstream LSMs in runoff modeling. 

One must bear in mind that these improvements may be undermined by possible 

uncertainties in our comparison process and the models used. First of all, it is unfair to 

compare the model-simulated runoff directly (without river routing) with the USGS-gaged 

streamflow. However, the influence of the runoff routing on the comparison is relatively 

minor if we compare them at the monthly scale. Second, the USGS-gaged runoff is a direct 

measurement of the streamflow through a specific location without tracking its exact 

movement and distribution; therefore, great uncertainties evolve from human activities 

such as irrigation, tile drainage (Li et al., 2010), water supply, and reservoir regulation, as 

the MRB is one of the river basins that involve intensive water consumption (Murray et 

al., 2011). The traditional method is to use gaged streamflow to retrieve natural runoff 

without human interference. However, streamflow naturalization requires significant data 

on water use and water resource management, which are difficult to collect. Third, Noah-

MP does not include a process to represent the artificial tile drainage in the model, which 

is a very important mechanism in some of Midwest areas, not only in runoff generation but 

also in groundwater and soil moisture modeling (Goswami, 2006; Algoazany et al., 2007; 

Gentry et al., 2009; Li et al., 2010). One possible solution is to improve the ability of Noah-
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MP to represent human activities (e.g., irrigation and tile drainage) in future model 

development. 

2.5.2  Groundwater 

Groundwater dynamics have attracted increasing attention within the climate 

community (Fan et al., 2007; Miguez-Macho et al., 2007; Niu et al., 2007; Lo et al., 2010; 

Leung et al., 2011) for three reasons. First, groundwater directly influences soil moisture, 

which is an important variable in LSMs and climate models, an important indicator for 

drought detection, and a major controlling factor for the interaction between the land and 

the atmosphere (Niu et al., 2007). Second, groundwater, which provides most of the water 

needed for ET during the dry season (Gutowski et al., 2002), also influences ET. Because 

ET is both a water flux and a heat flux term, the influence of groundwater is passed on 

throughout the surface energy and water balances. Third, the inclusion of groundwater 

dynamics in climate models provides a direct tool to evaluate the impact of climate change 

on groundwater systems, which is vital for research into climate change adaptation. 

Groundwater dynamics is one of the major improvements in Noah-MP; however, 

the employed SIMGM groundwater model was evaluated against the GRACE TWS 

anomaly data at the global scale (Niu et al., 2007) without comparison with actual ground 

measurements. Therefore, this study compares the simulated WTD against the USGS-

observed WTD, both spatially and temporally. Figure 2.7 shows that Noah-MP can 

simulate the climatological spatial pattern, in which the water table is shallower in the 

southeast and deeper in the northwest. Some small areas in the wet region with deep water 

tables are not well simulated by Noah-MP, which may be due to the coarse spatial 

resolution or the model structure. Temporal variation is also compared with the observed 

groundwater storage data (Figure 2.8). The simulated groundwater variations agree very 
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well with the observations for the entire MRB, the Ohio-Tennessee River Basin, and the 

Upper MRB, with R2 values of 0.75, 0.67, and 0.57, respectively. For the Ohio-Tennessee 

River Basin, the simulated anomalies are very similar to the observations. Because 

precipitation occurs frequently in this wet region, a small but very frequent fluctuation 

occurs in the observations, which Noah-MP fails to replicate. For the entire MRB and for 

the Upper MRB, the simulated anomalies are less than in the observations. For the Missouri 

River Basin, however, the simulated anomalies are much less than in the observations. The 

observed strong seasonal cycle is likely caused by the very shallow water table in this 

region (see Figure 2.7), which is because the aquifers are thin valley alluvium perched on 

top of the bedrock cores of the Rocky Mountains. These thin alluvial aquifers have very 

little storage, and thus, they are very responsive to seasonal snowmelt recharge (rises 

quickly) followed by efficient drainage into the deeply incised streams (i.e., the water level 

falls quickly). Models have difficulties representing these perched thin aquifers (Y. Fan, 

personal communication, 2011). For future model development, it would be helpful to 

collect the bedrock distribution data and include this process in LSMs. 
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Figure 2.7 Climatological water table depth from (a) USGS measurements (all available 
observational time periods (Fan and Miguez-Macho, 2011)) and (b) Normalized Noah-MP 
simulations (2000–2009). 
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Figure 2.8 Comparison of the groundwater storage anomaly from observations (Rodell et 
al., 2007) and model simulations for (a) the entire Mississippi River Basin, (b) the Upper 
Mississippi River Basin, (c) the Missouri River Basin, and (d) the Ohio-Tennessee River 
Basin. 
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The modeled WTD is normalized here so that its spatial pattern is comparable to 

the observations. Indeed, Noah-MP-simulated WTD only ranges from 2 m to less than 14 

m, whereas the observed WTD ranges from above the ground to greater than 80 m. The 

reason that WTD is limited to greater than 2 m in the model is to avoid a numerical 

computation problem. The simulated WTD cannot go deeper than 14 m, most likely due to 

the coarse spatial resolution. The range of WTD is very sensitive to the grid resolution: 

The finer the grid, the larger the range of WTD because when the grids are finer, the steeper 

land slope can be represented in the model, which accelerates the drainage speed. The most 

prominent scale for groundwater divergence-convergence is from hilltops to valleys. When 

averaging over the valleys and hills, and thus only having regional gradients, we get 

regional WTD and groundwater flow, which have much smaller gradients and ranges (Y. 

Fan, personal communication, 2011). Therefore, improving the spatial resolution is another 

direction for groundwater model development in LSMs, but there is always a tradeoff 

between model resolution and computational affordability.  

2.5.3  Evapotranspiration 

For the entire MRB, the simulated canopy evaporation, transpiration, and soil 

evaporation are 35.6 mm, 278.6 mm, and 323.5 mm, respectively, which account for 5.6%, 

43.7%, and 50.7% of the total ET, respectively. To distinguish the effect of different 

vegetation types on ET, the 15 AmeriFlux tower sites are divided into four groups by their 

land cover types, with five grassland sites, five cropland sites, four forestland sites, and 

one shrubland site. Their climatological latent heat fluxes (the energy form of ET) from 

observations and from model simulations are presented in Figure 2.9. Among the four land 

cover types, forestlands and shrublands show significant improvements from Noah LSM 

to Noah-MP, in terms of better timing and more similar mean values, and grasslands also 
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have improved timing. However, we find that the Noah-MP-simulated latent heat fluxes 

are slightly higher than the observations from AmeriFlux for all four land cover types, 

which is similar to the evaluation by Blyth et al. (2010), whereas Noah LSM 

underestimates latent heat fluxes for forestlands and shrublands, overestimates for 

croplands, and well estimates the mean value for grasslands. Interestingly, the three land 

cover types for which Noah-MP performs well are grassland, forestland, and shrubland, 

which are considered more naturally occurring, whereas the land cover type for which 

Noah-MP does not perform well is cropland, which involves more human activities. This 

is most likely due to the use of leaf dynamics in Noah-MP, which can capture the processes 

of natural growth but cannot capture anthropogenic crop growth; thus, its ET increases too 

quickly during spring. In contrast, Noah LSM uses prescribed monthly LAI for various 

vegetation types and monthly GVF climatological values derived from NOAA/AVHRR, 

which better match anthropogenic crop growth. In addition to maintaining the strength in 

modeling natural vegetation dynamics, improvement in the simulation of the dynamic leaf 

model for cropland is highly recommended (this land type is expected to expand with the 

increasing population). One of the limitations of this study is that only runoff is calibrated; 

however, it is recommended that both runoff and ET be calibrated at the same time. 
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Figure 2.9 Comparison of the latent heat flux for the AmeriFlux observations and the model 
simulations for different land cover types. (a) Grassland (5 sites), (b) Cropland (5 sites), 
(c) Forestland (4 sites), and (d) Shrubland (1 site). 

2.5.4 Soil Moisture 

Studies (e.g., Entin et al., 2000) have shown that soil moisture measured at one 

location can represent the temporal variation for the surrounding area, up to 500 km in 

radius. Therefore, it is reasonable to use station-measured soil moisture to evaluate model-

simulated soil moisture. Figure 2.10 compares the Noah-MP-simulated and SCAN-

observed soil moistures for individual soil layers (the top 10 cm, 10–40 cm, 40–100 cm, 

and 100–200 cm). For the top layer (the top 10 cm), the Noah-MP-simulated soil moisture 

values are nearly identical to the SCAN observations, with an R2 of 0.923 and an RMSE 

of 0.016. Because the top layer plays an important role in the water and energy exchanges 

between the land surface and the atmosphere, Noah-MP shows its high potential ability to 

study land-atmosphere coupling. For the second layer (10–40 cm), although the 
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discrepancy is slightly greater than the top layer (RMSE is 0.025), the comparison has an 

even higher R2 value (0.933). A larger discrepancy is found in the deep layers, with R2 of 

0.624 and RMSE of 0.077 for the third layer (40–100 cm) and R2 of 0.574 and RMSE of 

0.035 for the bottom layer (100–200 cm). In terms of R2, the results for the two deep layers 

are still acceptable; however, the Noah-MP-simulated soil moisture values largely 

underestimate the SCAN observations for the third layer, particularly in the summer and 

fall. 

Why does Noah-MP underestimate the SCAN soil moisture for the third soil layer? 

This question can be answered by the connection with the ET comparison in the previous 

section, where it was demonstrated that Noah-MP-simulated ET values increased more 

quickly than did the AmeriFlux observations in the spring (Figure 2.9). Due to the high 

values of the simulated ET, more water is extracted from soil, which very likely leads to 

the low values of the simulated soil moisture. Furthermore, the variation in ET is dominated 

by transpiration (approximately twice that of soil evaporation). The transpiration rate from 

each soil layer is determined by the soil moisture factor controlling stomatal resistance, βi 

(the higher value, the larger fraction of water for transpiration from the layer), which is 

parameterized as 
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where Δzi is the thickness of the ith soil layer (m); zroot is the total depth of root zone (m); 

θliq,i is the liquid soil moisture in the ith soil layer (m3 m–3); θwilt is the soil moisture at 

wilting point (m3 m–3); and θref is the reference soil moisture (close to field capacity) (m3 

m–3). In our comparison, most of the model grids with good availability of SCAN data 

(Figure 2.2) are croplands, grasslands, and shrublands, which have shallow roots, so that 
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root depth may only reach the third soil layer; only a few model grids with poor availability 

of SCAN data are forestlands, which have deep root depths that reach the bottom layer. 

Because of the great thickness of the third soil layer (0.6 m), the water supply for 

transpiration is heavily from the third layer. However, this may not be true in reality for 

croplands and grasslands, where roots may only reach the upper portion of the third layer 

not the entire third layer. Therefore, the water extraction for transpiration from the third 

layer is overestimated. 

Figure 2.10c shows the strong annual cycle of transpiration, where high 

transpiration rates correspond to low soil moisture and low transpiration rates correspond 

to high soil moisture in the third soil layer. There are approximately 2 months of phasing 

difference between the transpiration and soil moisture, which is because after its peak, 

transpiration remains high and continues to dry the soil. To improve the soil moisture 

estimation for the third layer, adjustments (parameters or parameterization) to the dynamic 

leaf model in Noah-MP are needed to limit the increase in the ET rate in the spring. 
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Figure 2.10 SCAN-observed and Noah-MP-simulated monthly soil moisture (SMC) for the 
the Mississippi River Basin at a depth of (a) top 10 cm, (b) 10–40 cm, (c) 40–100 cm, and 
(d) 100–200 cm. (c) also shows the Noah-MP simulated transpiration (Et). For the Noah-
MP simulation, only those grids with a SCAN site are included, and for each grid, only 
those months with observed values are used. 

2.5.5  Terrestrial Water Storage 

The Noah-MP-simulated TWS anomaly is compared with the GRACE-based TWS 

anomaly for the entire MRB in Figure 2.11, in which the contributing components of the 

simulated TWS anomaly are also presented. There are several notable points from this 

comparison. 
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1. Noah-MP agrees well with GRACE in terms of the TWS anomaly, indicating 

that Noah-MP can capture the overall water cycle, including both the timing and the 

magnitude of water fluctuation. Although it may still involve great uncertainties from each 

of these components, Noah-MP captures the most important components such as soil 

moisture, groundwater and snow. 

2. Because Noah-MP does not simulate the water storage of ice, lakes, rivers and 

biomass, from the water balance point of view, TWS has to be balanced by soil moisture, 

groundwater and snow, which are the water storage terms that are simulated in the model. 

In this particular region, soil moisture contributes the most to the TWS anomaly, followed 

by groundwater, and then snow. Although Noah-MP has difficulty in capturing the absolute 

values of WTD (see section 2.5.2), it is quite capable of capturing the annual groundwater 

fluctuation. Compared with the original Noah LSM, in which TWS is only balanced by 

soil moisture and snow, Noah-MP obtains a great improvement by including the second 

largest component of the TWS anomaly—groundwater. 

3. Noah-MP still simulates only the natural part of the TWS anomaly, without 

considering human activities; therefore, Noah-MP has difficulty reflecting human 

interference. We can clearly observe that in the GRACE-based TWS anomaly curve, where 

there are two peaks in approximately half of the years, which cannot be observed in the 

Noah-MP curve. This is very likely due to human activities, for example, high irrigation 

rates in the spring. Some researchers have attempted to include irrigation in LSMs 

(Ozdogan et al., 2010; Pokhrel et al., 2012; Sorooshian et al., 2012). 

4. In Figure 2.11b, the variation amplitude of the cumulative anomaly of ET is much 

higher than in the other fluxes (precipitation and runoff); hence, ET is the dominant water 

flux driving the TWS anomaly. 
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Figure 2.11 TWS anomalies for the Mississippi River Basin calculated from (a) the water 
storage terms and their contributing components and (b) the water flux terms and their 
contributing components. TWS anomalies are the cumulative anomalies of (Precip. – ET 
– Runoff), which are compared concurrently with the anomalies of the individual terms –
ET and –Runoff. Note that the ET and runoff anomalies are shown as the negative of the 
original anomalies. 

As shown in Figure 2.12, we also compare the Noah-MP-simulated TWS anomaly 

with the GRACE-based TWS anomaly at the subbasin level. In all four regions, soil 

moisture is always the largest contributor to the TWS anomaly; groundwater is the second 

largest contributor in the Ohio-Tennessee, Upper Mississippi and Lower Mississippi 

regions, but in the cold Missouri region, snow contributes as much as groundwater to the 

TWS anomaly. In the smaller subbasins, such as the Upper and Lower Mississippi, the 
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agreement between the model and the GRACE TWS anomalies is not as good as the 

agreement at the level of the entire MRB. 

 

Figure 2.12 Comparison of the TWS anomalies from the GRACE-based measurements and 
the Noah-MP simulations from the water storage terms and their contributing components 
for the four subbasins. 

2.6 CONCLUSIONS 

In line with the GEWEX GLASS for LSM benchmarking or better model 

evaluation, we evaluated the model at the continental basin scale, specifically for the MRB. 

We began our evaluation with model spin-up, parameter sensitivity tests and model 

calibration, and then the calibrated results were compared with a number of traditional and 

recently available observational data sets. From this study, we have reached several 

conclusions that may be of interest to LSM developers and users. 

With groundwater dynamics included in Noah-MP, it takes longer for WTD to 

reach equilibrium than without groundwater dynamics. This long WTD spin-up time would 

influence the spin-up times of other variables because when the water table is far from an 

equilibrium state, other variables such as runoff, ET, and soil moisture, need to be adjusted 

to help WTD reach equilibrium. For the entire MRB, at least 34 years is required for the 
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model to spin-up. For some mountain regions with very deep water tables, hundreds of 

years may be required for the model to spin-up. 

Runoff is found to be sensitive to three parameters: the surface dryness factor (α), 

the saturated hydraulic conductivity (k), and the saturated soil moisture (θmax); these three 

factors are selected for model calibration to improve runoff simulation. Although lumped 

calibration can improve model performance, distributed calibration is needed to obtain the 

best parameter values for some wet regions. If time and resources are limited for 

conducting automatic calibration (e.g., in this study), a better understanding of model 

physics and more analyses of the observational data would shorten the calibration time and 

benefit the model performance. 

Noah-MP has shown significant improvements in hydrological modeling. 

1. The Noah-MP simulated runoff is significantly improved compared with the 

baseline Noah LSM output in the NLDAS-2 framework. The spatial pattern of the Noah-

MP simulated runoff matches fairly well with both the UNH-GRDC runoff and the USGS 

hydrologic unit runoff. We believe that this is the first time the USGS hydrologic unit 

runoff has been used in LSM evaluation and found to be very reasonable. 

2. Groundwater evaluation indicated that Noah-MP captures the general spatial 

pattern of the climate conditions and captures the temporal patterns for the wet regions. 

However, it fails in simulating the absolute values and the temporal variation in the water 

table for the dry regions. 

3. The addition of leaf dynamics to Noah-MP has improved its performance in ET 

simulation for natural land cover types. 

4. One of the highlights of the study is that Noah-MP produces soil moisture values 

consistent with the SCAN observations for the top two soil layers (0–10 cm and 10–40 

cm), which indicates its great potential for use in studying land–atmosphere coupling. 
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5. The Noah-MP-simulated TWS anomaly agrees very well with the GRACE 

observations, which may partly benefit from the inclusion in the model of groundwater 

dynamics, considered the second largest component of the TWS anomaly for most of the 

MRB. 
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Chapter 3: Assessment of Simulated Water Balance from Noah, Noah-
MP, CLM, and VIC over CONUS Using the NLDAS Test Bed2 

3.1 ABSTRACT 

This study assesses the hydrologic performance of four land surface models (LSMs) 

for the conterminous United States using the North American Land Data Assimilation 

System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, 

version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially 

augmented Noah LSM with multi-parameterization options (hence Noah-MP), and the 

Community Land Model version 4 (CLM4). All four models are driven by the same 

NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, 

evapotranspiration (ET), and soil moisture are compared with each other and evaluated 

against the identical observations. Relative to Noah, the other three models offer significant 

improvements in simulating TWS and streamflow and moderate improvements in 

simulating ET and soil moisture. Noah-MP provides the best performance in simulating 

soil moisture and is among the best in simulating TWS, CLM4 shows the best performance 

in simulating ET, and VIC ranks the highest in the simulations of streamflow. Despite these 

improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability 

of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant 

overestimation of ET in VIC. 

3.2 INTRODUCTION 

As a key component of weather/climate models, land surface models (LSMs) play 

an important role in weather prediction and climate projections (Pitman, 2003). Rapid 

                                                 
2Originally published as: Cai, X., Z.-L. Yang, Y. Xia, M. Huang, H. Wei, L.R. Leung and M.B. Ek, 2014b: 
Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the 
NLDAS test bed. J. Geophys. Res., 119(24): 13751-13770, doi:10.1002/2014jd022113. The References 
section contains full citations for all articles referenced here. 
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growth in LSM development has resulted in both the improvement of existing process 

representation and the addition of new processes and functionalities. However, it is a 

challenge to evaluate the accuracy of energy, water, and nutrient fluxes simulated by 

LSMs. Better model evaluation or land model benchmarking is the focus of several 

international projects. For example, the Global Energy and Water Cycle Exchanges Project 

(GEWEX) Global Land/Atmosphere System Study has identified LSM benchmarking as 

one of its three core activities (van den Hurk et al., 2011). The most recent activities are 

the diurnal land-atmosphere coupling experiment and the PALS (Protocol for the Analysis 

of Land Surface models) Land Surface Model Evaluation Benchmarking Project, with their 

descriptions available in the May 2013 and November 2013 issues of the GEWEX 

Newsletters, respectively. In addition, the International Land Model Benchmarking 

(ILAMB) project team has been working extensively to define evaluation strategies, 

identify benchmarks, create metrics, and improve model structure (Luo et al., 2012). In line 

with these efforts, a few existing platforms or tools are ready for the land model community 

to use, such as the PALS (Abramowitz, 2012) and the Land surface Verification Toolkit 

(Kumar et al., 2012). 

The North American Land Data Assimilation System (NLDAS), which was 

originally designed to provide reliable initial land surface states to coupled weather/climate 

models (Mitchell et al., 2004), is another system that has the potential to be used for LSM 

benchmarking. Over the past decade or so, the NLDAS team has not only created high-

quality atmospheric forcing data to drive LSMs but also collected substantial observational 

data sets to build necessary tools for evaluating the accuracy of surface and subsurface 

energy/water fluxes that LSMs produce. These efforts have resulted in the NLDAS test bed 

(Xia et al., 2013), which includes the following four LSMs: the community Noah LSM 

(Noah) (Ek et al., 2003), the Mosaic LSM (Mosaic) (Koster and Suarez, 1996), the 
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Sacramento Soil Moisture Accounting model (Burnash et al., 1973), and the Variable 

Infiltration Capacity (VIC) model (Liang et al., 1994). However, the current system does 

not yet include those models that incorporate recent developments in the land model 

community, such as the Community Land Model version 4 (CLM4) (Lawrence et al., 2011) 

and the multi-parameterization options version of the Noah model (Noah-MP) (Niu et al., 

2011). Because these models feature improved physics and new functionalities, they can 

potentially provide better or new products that are not included in the current system. 

Therefore, the first motivation of this study is to examine the feasibility of using the 

NLDAS test bed to evaluate advancements in CLM4 and Noah-MP. 

CLM4 and Noah-MP have adopted new model processes developed over the past 

decade or so, including interactive vegetation canopy, groundwater, and multilayer snow. 

As opposed to prescribed leaf area index (LAI) from observations, interactive vegetation 

canopy means that LAI is a prognostic variable that responds to the variability of 

precipitation, temperature, radiation, and nutrients availability (Dickinson et al., 1998; 

Thornton et al., 2007). Although introducing this type of dynamic leaf models may 

sometimes degrade model performance (Rosero et al., 2009; 2010), this approach adds 

vegetation as a memory process to the land system for seasonal climate forecasts (Jiang et 

al., 2009). In this study, both Noah-MP and CLM4 include dynamic leaf models that are 

from Dickinson et al. (1998) and Thornton et al. (2007), respectively. Another important 

improvement in both models is their inclusion of groundwater dynamics, thereby allowing 

the water table to modulate soil moisture and runoff. Several studies have shown the 

necessity of incorporating groundwater dynamics in offline or coupled LSMs (Fan et al., 

2007; Miguez-Macho et al., 2007; Niu et al., 2007; Lo et al., 2010; Leung et al., 2011). 

Finally, Noah-MP (Niu et al., 2011) and CLM4 (Oleson et al., 2008) divide the snowpack 

into three and five layers, respectively, depending on total snow depth. Such multilayer 
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snowpack physics could potentially improve the accumulation and melt of snow and thus 

improve the timing of runoff generation. The addition of these processes has improved the 

models performance in simulating the hydrological cycle. 

Additionally, this study takes advantage of the recent progress in making 

observational data available for model assessment. Alongside the high-quality small basin 

streamflow observation used in the previous NLDAS papers (Lohmann et al., 2004; Xia et 

al., 2012b), this study features the use of the Gravity Recovery and Climate Experiment 

(GRACE) satellite-derived terrestrial water storage (TWS) anomaly data, both the 

Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived and the global 

network of micrometeorological flux tower sites (FLUXNET)-derived gridded 

evapotranspiration (ET) data, and the Soil Climate Analysis Network (SCAN)-observed 

soil moisture data. Instead of evaluating the streamflow only, a model’s performance in 

simulating the major hydrological variables (TWS, streamflow, ET, and soil moisture) is 

comprehensively evaluated against these data sets. This is important not only for model 

development but also for facilitating the application of LSMs in hydrological, agricultural, 

and environmental studies. 

In line with NLDAS-2 configuration, all four LSMs are driven by the same hourly 

NLDAS-2 atmospheric forcing, from 1979 to 2007, for the conterminous U.S. (CONUS) 

at 1/8° spatial resolution. Section 2 describes the atmospheric forcing data, the four LSMs 

and their configurations, and the model evaluation criteria. Section 3 introduces the 

observed and satellite-retrieved data sets. Section 4 shows the specific evaluations of TWS, 

streamflow, ET, and soil moisture. Section 5 summarizes the study. 
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3.3 METHODOLOGY 

3.3.1 Models 

Four LSMs are included in this study as mentioned in the introduction: Noah, VIC, 

Noah-MP, and CLM4. Table 3.1 shows a simple comparison of the four models. The Noah 

model is used here as the baseline LSM. The VIC model represents the “good” hydrological 

model, as it shows good performance in hydrological modeling in the model 

intercomparison by Xia et al. (2012b). Because Noah-MP and CLM4 incorporate recent 

major advancements, they are referred to as “advanced” LSMs in this study. 

Table 3.1 Comparison of Noah, VIC, Noah-MP, and CLM4 in the treatments of vegetation, 
soil, and snow. 

Model Vegetation Soil Snow 

Noah 
Dominant vegetation type in one grid cell 

with prescribed LAI 
4 layer moisture and 

temperature 
Single 
layer 

VIC Tiling in one grid cell with prescribed LAI 
3 layer moisture and 

temperature 
2 layers 

Noah-MP 
Dominant vegetation type in one grid cell 

with dynamic LAI 
4 layer moisture and 

temperature 
Up to 3 
layers 

CLM4 
Up to 10 vegetation types in one grid cell 

with prescribed LAI 
10 layer moisture and 
15 layer temperature 

Up to 5 
layers 

 

Noah 

The Noah model is the land component of both the community Weather Research 

and Forecast model (Skamarock et al., 2008) and the NOAA/NCEP (National Oceanic and 

Atmospheric Administration/National Centers for Environmental Prediction) 

weather/climate forecasting systems such as the Climate Forecast System and the Global 

Forecast System. Based on Noah version 2.7.1 used in the NLDAS-1 (Phase 1) (Mitchell 

et al., 2004), Noah version 2.8 is developed to improve snowpack simulation such as snow 
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water equivalent (SWE), snowmelt, and snow cover by adding snow age and an 

intermediate fix suggested by Slater et al. (2007). This fix reduces sublimation and 

increases SWE for all stable cases including snow-free grid cells (Livneh et al., 2010). It 

also improves energy fluxes, streamflow, and land surface temperature simulation for 

warm seasons (Smith et al., 2012; Wei et al., 2013). This version of Noah is used to 

generate NLDAS-2 Noah products using a quasi-operational mode (Xia et al., 2013). 

NLDAS-2 Noah products have been comprehensively evaluated using in situ observations 

(Xia et al., 2012b; 2013; 2014a; 2014b). 

VIC 

The VIC model is a macroscale, semidistributed, grid-based, hydrologic model 

developed at the University of Washington and Princeton University (Liang et al., 1994; 

Wood et al., 1997). VIC can be executed in several modes; the full water and energy 

balance version was chosen for NLDAS-1 (version 4.0.3) and NLDAS-2 research work 

(version 4.0.5). The model includes three soil layers, with a 10 cm top layer and two deeper 

layers of spatially varying thicknesses. The root zone can span all three layers, depending 

on the vegetation type and its associated vertical root distribution. Like the Mosaic model, 

the VIC model utilizes subgrid vegetation tiles. The VIC model includes a two-layer energy 

balance snow model (Cherkauer et al., 2003) that not only represents snow accumulation 

and ablation on the ground and in the forest canopy but also uses sub-grid elevation bands 

to represent the impact of elevation on temperature, precipitation, and snow. VIC has been 

widely applied to large river basins all over the world (Nijssen et al., 1997; Lohmann et al., 

1998), at national (Maurer et al., 2002; Livneh et al., 2013) and global scales (Sheffield et 

al., 2006). In addition, NLDAS-2 VIC products (version 4.0.5) have been evaluated 

through the NLDAS test bed framework (Xia et al., 2012b; 2013; 2014b). 
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Noah-MP 

Building on the Noah model (Ek et al., 2003), Noah-MP (Niu et al., 2011; Yang et 

al., 2011) incorporates the recently improved physics in LSMs. It also employs the idea of 

using a single model for ensemble forecasting. Major improvements implemented in Noah-

MP include the following: (1) modifying the model structure to include a one-layer canopy 

and three-layer snow, (2) adding a semi-tile subgrid scheme that separates vegetated areas 

from bare ground to better account for the surface energy balance, (3) introducing a more 

permeable frozen soil by separating permeable and impermeable fractions, (4) developing 

a TOPMODEL-based runoff scheme and a simple groundwater model to improve the 

modeling of soil hydrology, and (5) adding a short-term leaf dynamic model to simulate 

LAI and vegetation greenness fraction. Noah-MP features multiparameterization options 

for dynamic leaf, canopy stomatal resistance, runoff and groundwater, a soil moisture 

factor controlling stomatal resistance (the β factor), and six other processes. Each 

combination of these scheme options forms an ensemble member for ensemble forecasting. 

Therefore, instead of using multiple models, a single land surface model—Noah-MP—can 

be used for ensemble forecasting. The scheme options used in the study are: the modified 

Dickinson et al. (1998) scheme for leaf dynamics, the Ball-Berry scheme for canopy 

stomatal resistance, the Noah-type soil moisture factor controlling stomatal resistance, the 

TOPMODEL runoff with the SIMGM groundwater, the Monin-Obukhov scheme for 

surface exchange coefficient for heat, the Niu and Yang (2006) scheme for both 

supercooled liquid water (or ice fraction) and frozen soil permeability, the modified two-

stream scheme for radiation transfer, the Canadian Land Surface Scheme-type scheme for 

ground snow surface albedo, and the Jordan (1991) scheme for partitioning precipitation 

into rainfall and snowfall. 
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CLM 

CLM4 is the land component of the Community Earth System Model (formerly 

known as the Community Climate System Model) (Gent et al., 2010; Lawrence et al., 

2012). Compared to its previous versions, CLM4 was enhanced with various 

representations of hydrological processes, including those associated with runoff 

generation, groundwater dynamics, soil hydrology, snow module, and surface albedo 

(Lawrence et al., 2011). Specifically, runoff generation is parameterized using a simplified 

TOPMODEL-based representation (Niu et al., 2005; Oleson et al., 2010). The 42 m deep 

ground is divided into 10 hydrologically active layers (i.e., the “soil” layers) extending 

from the surface to 3.8 m and five bottom thermal layers that are not hydrologically active 

to accurately capture soil temperature dynamics in century-scale integrations (Alexeev et 

al., 2007; Nicolsky et al., 2007). The thermal and hydrologic properties of organic soil are 

considered based on Lawrence and Slater (2008). Soil water is then calculated using a 

revised numerical solution of the one-dimensional Richards equation (Zeng and Decker, 

2009). Recharge to groundwater from the soil column and groundwater table depth is 

updated dynamically following the algorithm described in Niu et al. (2007). The snow 

module is updated with new snow cover and snow burial fraction parameterizations (Niu 

and Yang, 2006; Wang and Zeng, 2009), as well as with the Snow and Ice Aerosol 

Radiation model, to describe grain size-dependent snow aging and vertically resolved 

snowpack heating (Flanner et al., 2007). In addition to the above-mentioned processes, the 

model has been extended to include a carbon-nitrogen biogeochemical model that is 

capable of simulating vegetation, litter, soil carbon and nitrogen, and vegetation phenology 

prognostically (Oleson et al., 2010).  

CLM4 considers spatial heterogeneity of the land surface using a nested subgrid 

hierarchy—a grid cell is composed of a number of land units including glacier, lake, 
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wetland, urban, and vegetated surfaces. The latter could then be decomposed further to 15 

possible Plant Functional Types (PFTs) plus bare ground. In this study, the percentages of 

land cover types and PFTs within each CLM4 grid cell are derived from the MODIS-based 

global land parameter data set in Ke et al. (2012) at 0.05° resolution. The model is 

configured to be driven by satellite phenology as (1) the prognostic biogeochemical and 

vegetation phenology modules are not activated (dynamic vegetation is turned off) and (2) 

vegetation phenology (i.e., leaf and stem area indices) is prescribed using the data set from 

Ke et al. (2012). Soil texture is generated based on a hybrid of 30 arc second State Soil 

Geographic Database (now referred to as the U.S. General Soil Map) (Miller and White, 

1998). The two-layer soil type data are then converted to a composition of clay and sand 

(Cosby et al., 1984) within each 30 arc-second grid cell and interpolated to 10 vertical 

layers down to a 3.8m depth.  

3.3.2 Forcing Data 

All four LSMs use the same atmospheric forcing data from NLDAS-2 (Xia et al., 

2012c). The seven forcing fields are precipitation, air temperature, specific humidity, 

surface air pressure, wind speed, incoming solar radiation, and incoming longwave 

radiation. NLDAS-2 atmospheric forcing data are derived from North American Regional 

Reanalysis (NARR) data and supplemented with several sources of observed data sets such 

as the unified gauge-based precipitation from NOAA Climate Prediction Center and the 

satellite-derived downward shortwave radiation. The coarser NARR data, at the 32 km 

spatial resolution and 3 hour temporal resolution, is interpolated to the finer NLDAS data 

at 0.125° resolution and at a 1 hour time interval (Cosgrove et al., 2003a). In line with the 

NLDAS-2 atmospheric forcing, all LSMs are run at 0.125° latitude-longitude resolution 

for the CONUS and at hourly time step.  
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3.3.3 Model Spin-Up and Integration Procedure 

Given certain atmospheric forcing, static inputs (e.g., soil and vegetation types), 

and parameters, individual LSMs needs to find their own equilibrium state before models 

can be used for “real” simulations and applications. Yang et al. (1995) discussed the spin-

up time required for a variety of 22 LSMs over two sites (tropical forest and grassland, 

respectively). Results showed that, normally, models took less than 12 years to reach 

equilibrium. However, for those LSMs with groundwater dynamics, the required spin-up 

time is much longer (Niu et al., 2007; Cai et al., 2014a). 

In the NLDAS-2 project, to minimize the impact of model initialization on model 

products, a two-step method was used to generate the initial states for Noah and VIC (Xia 

et al., 2012c). First, the last 8 years of output from the 11 year NLDAS-1 real-time 

simulation from 1 October 1996 to 31 December 2007 were averaged for each model to 

produce climatological initial land states for 00Z 1 October. In the second step, a spin-up 

simulation was carried out as follows: (1) the climatological 00Z 1 October states from 

NLDAS-1 were used to initialize a 15.25 year spin-up simulation for each model from 1 

October 1979 to 1 January 1995 using the NLDAS-2 forcing data; (2) the 1 January states 

from the last 10 years of this spin-up simulation were then averaged together to provide 

initial states for the final NLDAS-2 simulation. 

In this study, Noah-MP is initialized by running the model repeatedly through the 

entire year of 1979 44 times (44 data years). CLM4 is spun-up by recycling the NLDAS-2 

forcing in 1979–2007 for 36 cycles (i.e., ~1000 years) until all state variables, including 

soil moisture, temperature, and groundwater table depth, reached equilibrium. Such a long 

spin-up period is necessary due to the deep ground column of CLM4 compared to other 

models. 
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3.3.4 Model Output 

After spin-up, Noah-MP and CLM4 were executed from 1 January 1979 to the 

present using the NARR- and observation-based NLDAS-2 forcings. Because the routing 

code that translates gridded model runoff to streamflow needs at least six months of spin-

up, the first 9 month (1 January 1979 to 30 September 1979) run is used as a spin-up period 

and only 28 years of model outputs from 1 October 1979 to 1 September 2007 were 

analyzed in this study. 

The model outputs from Noah and VIC are identical to those used in Xia et al. 

(2012c), while the model outputs from Noah-MP and CLM4 are newly run for this study. 

All four models provide the following outputs: runoff, evapotranspiration, soil moisture, 

and SWE. In addition, Noah-MP and CLM4 also provide groundwater water table depth 

(WTD) in order to calculate the TWS anomaly. 

The TWS anomaly is calculated from storage terms that include two variables (soil 

moisture and SWE) for the Noah and VIC models and three variables (soil moisture, SWE, 

and WTD) for the Noah-MP and CLM4 models (Equation 3.1). Because there is no explicit 

representation of rivers, lakes, or reservoirs, water storage in these water bodies are not 

included. This exclusion is not realistic; however, it is reasonable because these water 

bodies are excluded from the calculation of water balance in LSMs as well. 









CLM4 and MP-Noahfor  ,

VIC and Noahfor ,

iii

ii
i WTDASWEASMCA

SWEASMCA
TWSA  (3.1) 

where TWSAi, SMSAi, SWEAi, and WTDAi are the anomalies of TWS, soil moisture, SWE, 

and WTD, respectively. 
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3.3.5 Lumped Routing Model and Calculation of Streamflow 

As streamflow is measured at gauging stations, for fair comparison, model 

simulated runoff at each grid cell must be routed to the basin outlet. To do so, the NLDAS 

test bed provides both a flow-direction mask for the CONUS and a routing model. The 

flow-direction mask was provided by the NOAA/NWS/OHD (National Oceanic and 

Atmospheric Administration/National Weather Service/Office of Hydrologic 

Development), which calculates the amount and timing of runoff both within each grid cell 

and on the river network, assuming that water in a grid cell can only go into one of its 

neighboring grid cells. The routing model can be operated in either lumped mode or 

distributed mode (Lohmann et al., 2004). The simple lumped mode is used in this study 

because (1) the lumped model has been calibrated for these small basins and has shown 

relative success compared to the distributed mode and (2) it is relatively easy to use. The 

routing model convolutes the sum of each model’s runoff in each basin with one impulse 

response function UH(t) (Lohmann et al., 2004; Xia et al., 2012b). This function is solved 

by deconvoluting 

  







UHRStQ i

t
i

obs 







 




max

04.86
 (3.2) 

where Qobs is the observed streamflow (m3/s), Δτ is the time interval of the streamflow 

observation (1 day), Si is the area of a grid cell in the basin (km2), Ri is the modeled runoff 

of a grid cell (mm/d), 86.4 is the factor for unit conversion, and τmax is the length of the 

impulse response function UH(t). The term τmax is less than 7 days for all study basins and 

represents the maximum concentration time of runoff within the basin. 
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3.3.6 Model Evaluation Criteria 

To quantify the differences between model simulations and observations, the 

following evaluation statistics are used: spatial distribution of difference, relative bias, 

correlation coefficient (r), coefficient of determination (R2), and root-mean-square error 

(RMSE). Relative bias (RB) is calculated as 

O

OM
RB


  (3.3) 

where M  is the mean of modeled streamflow and O  is the mean of observed streamflow. 

3.4 OBSERVED AND SATELLITE-RETRIEVED DATA 

3.4.1 GRACE Terrestrial Water Storage 

The GRACE twin satellites, which were launched in March 2002, measure the 

temporal change of the Earth’s gravity field with time, based on the variation in the 

distances between the two satellites (Tapley et al., 2004). As other mass changes are 

relatively small, GRACE satellites primarily detect the changes in TWS. GRACE-derived 

TWS data have been widely used in studies on LSM development (Niu et al., 2007; Lo et 

al., 2010; Leng et al., 2013; Lei et al., 2014), groundwater depletion (Famiglietti et al., 

2011), and drought detection/assessment (Houborg et al., 2012; Chen et al., 2013; Long et 

al., 2013). This study uses the GRACE TWS anomaly data, processed by Landerer and 

Swenson (2012), based on the CSR RL5.0 release from the Center for Space Research at 

the University of Texas at Austin. The data are at 1°×1° spatial resolution and monthly 

temporal resolution and can be freely downloaded from the Jet Propulsion Laboratory 

TELLUS website (http://grace.jpl.nasa.gov). This is very helpful to users who do not have 

the expertise in removing the errors in the GRACE TWS data.  
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3.4.2 U.S. Geological Survey Streamflow 

U.S. Geological Survey (USGS) streamflow data gauged at 961 small basins are 

used for streamflow evaluation. The 961 small basins, ranging from 23 km2 to 10,000 km2, 

are selected from the original 1145 small basins used in the NLDAS-1 (Lohmann et al., 

2004). The selection is based on expert judgment by the NOAA/NWS/OHD (Xia et al., 

2012b), with the purpose of removing those small basins with visible signs of reservoir 

operation. However, we cannot remove all management effects. The total area of the 961 

small basins is 1.57 million km2, which is approximately 20.6% of the CONUS. These 

small basins have good representation over the eastern part (east of 95°W), covering about 

50% of the land surface area; while the basin representation is poor over the middle and 

western parts. Monthly streamflow data for the period from 1 October 1979 to 30 

September 2007 are converted from the daily streamflow obtained from the USGS website. 

3.4.3 MODIS and FLUXNET Evapotranspiration 

Two different measurements are used for ET evaluation: MODIS ET and 

FLUXNET-MTE (model tree ensemble) ET. The MODIS global ET products are from Mu 

et al. (2011), which have been improved by (1) simplifying the calculation of vegetation 

cover fraction, (2) calculating ET as the sum of daytime and nighttime components, (3) 

adding calculation of the soil heat flux, (4) improving estimates of stomatal conductance, 

aerodynamic resistance, and boundary layer resistance, (5) differentiating between dry and 

wet canopy surfaces, and (6) dividing the soil surface into saturated and moist components 

(Mu et al., 2011). Overall results show that the improved algorithm increases ET values 

globally and overcomes the negative bias that existed in previous ET products generated 

by Mu et al. (2007). Monthly and annual versions of these improved products were 

obtained from Mu at 0.125° resolution. The data cover the entire NLDAS-2 domain and 

span the period from January of 2000 to September of 2007. 
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The FLUXNET-MTE data integrates 253 FLUXNET eddy covariance towers 

distributed over the globe using a machine learning technique, the model tree ensemble 

(MTE) approach (Jung et al., 2009; 2010). The MTE approach processes the gap filled half 

hourly eddy covariance fluxes to global fluxes at 0.5°×0.5° spatial resolution and monthly 

temporal resolution. The data has been used in ET trend detection (Jung et al., 2010) and 

model improvement (Bonan et al., 2011). With the dense distribution of FLUXNET sites 

over the CONUS, we particularly expect high data quality for our study domain. The 

FLUXNET-MTE ET data are available for the whole period of 1982–2008; however, to 

keep consistent with the MODIS data, we only use the period of 2000–2007. 

3.4.4 SCAN Soil Moisture 

For evaluation of soil moisture simulations, we use soil moisture data from the Soil 

Climate Analysis Network (SCAN)—a nationwide soil moisture and climate information 

system led by U.S. Department of Agriculture/Natural Resources Conservation Service 

(Schaefer et al., 2007). Soil moisture data are collected by dielectric constant measuring 

devices at 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm, where possible. The data used in this 

study are identical to those used in Liu et al. (2011) and Xia et al. (2014b). By performing 

extensive quality control steps, the following invalid data have been removed: values 

outside a reasonable range, inconsistent data affected by sensor calibration or installation, 

and data measured under frozen conditions. Figure 3.1 shows the 121 SCAN stations in the 

CONUS and their data availability. To overcome the low data availability at most stations 

while distinguishing different climate conditions, the data are aggregated into six regional 

averages (Southeast, Northeast, Texas, Great Plains, Northwest, and Southwest, 

respectively, see Figure 3.1 for detail) as suggested by Xia et al. (2014b), on a monthly 

basis. 
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Figure 3.1 Spatial map showing the geographical locations and data availability of the 121 
SCAN sites. Black solid lines dividing the conterminous United States into six regions: 
Southeast, Northeast, Texas, Great Plains, Northwest, and Southwest, respectively. 

3.5 EVALUATION OF MODEL PRODUCTS 

3.5.1 Evaluation of TWS Simulation 

Fluctuation of TWS in a region reflects the departure of dry/wet conditions from its 

climatology. It involves the variation in soil moisture, groundwater, snow, ice, and water 

storages in lakes, rivers, and biomass. Therefore, the skill in modeling TWS can reflect the 

overall performance of a land model in hydrological simulation. 

Figure 3.2 shows the amplitude of the annual TWS variation from GRACE and 

model simulations. To examine the effect of different climate conditions on the model 

performance, the CONUS is divided into four quadrants: Northwest, Northeast, Southwest, 

and Southeast, based on the 40°N latitude line and the 98°W longitude line (Figure 3.2a). 

The spatial pattern of the GRACE TWS variation generally follows the spatial pattern of 
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annual precipitation (e.g., the precipitation pattern shown in Cosgrove et al. (2003a)), with 

very high precipitation/TWS variation in the Northwestern region and the Southeastern 

region and very low precipitation/TWS variation in the Southwestern region. Noah-MP 

best captures this pattern and the other three LSMs can also reproduce this general pattern. 

However, Noah simulated TWS variation is too low in the Northwestern and Southeastern 

regions where GRACE TWS variation is high. Although CLM4 simulation generally 

follows this pattern, its simulated amplitudes are either too high in the Northwestern and 

Southeastern regions or too low in the Southwestern region (Figure 3.2d). 

There are two things that GRACE and the LSMs do not agree on: (1) The GRACE-

derived TWS variation along the coastal lines is extremely low, which is likely due to the 

fact that the GRACE signal is contaminated by the signal from ocean, while all LSMs do 

not show this pattern. (2) In the Southeastern quadrant, the deep blue line in the GRACE 

map (Figure 3.2a) is overlaid with the Mississippi River channel, which indicates the very 

high TWS variation amplitude due to the water fluctuation in the river. However, this 

cannot be clearly seen in the LSM maps (Figures 3.2b-e), which is probably because these 

LSMs do not explicitly consider change of water storage in rivers and the exchange of 

groundwater and river water in their formulations. 



 66

 

Figure 3.2 Amplitude of the annual TWS variation (2003–2007) from (a) GRACE, (b) 
Noah, (c) Noah-MP, (d) CLM4, and (e) VIC. Annual TWS variation is defined as the 
difference of the maximum and the minimum of the monthly TWS in a year. The white 
solid lines divide the CONUS into four quadrants, as indicated in (a). The spatial resolution 
is 1°×1° for GRACE and 0.125°×0.125° for all four LSMs.  
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Figure 3.3 GRACE-derived and LSMs-simulated terrestrial water storage anomaly over 
the (a) Conterminous U.S., (b) Northwest, (c) Northeast, (d) Southwest, and (e) Southeast. 
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Figure 3.1 shows a comparison of TWS anomaly between the four model 

simulations and the GRACE observation, with their statistics of model performance 

summarized in Table 3.2. For the entire CONUS (Figure 3.1a), all four LSMs perform 

reasonably well. The largest discrepancy is between the Noah model and GRACE. 

Although Noah captures the timing, its amplitude is smaller than GRACE. The other three 

models capture the TWS fluctuation. Statistics show that R2 ranges from 0.894 (Noah) to 

0.913 (CLM4) and RMSE ranges from 14.50 (CLM4) to 22.55 (Noah). The improvement 

of the advanced LSMs in R2 is minor (0.907–0.913 for the advanced LSMs compared to 

0.894 for Noah), while the improvement in RMSE is large (both below 15.17 for the 

advanced LSMs compared to 22.55 for Noah). 

Table 3.2 Statistical summary of model performance in simulating terrestrial water storage 
anomaly, based on comparison with GRACE observation. All R2 values pass the 99% 
confidence level. The thick underlines indicate the highest R2 or lowest RMSE among the 
four land surface models. 

 R2 RMSE 

Model NW NE SW SE Avg. CONUS NW NE SW SE Avg. CONUS 

Noah 0.914 0.739 0.534 0.917 0.776 0.894 30.89 30.41 25.89 34.51 30.42 22.55 

Noah-MP 0.962 0.696 0.790 0.932 0.845 0.907 24.47 38.05 19.65 21.97 26.03 15.17 

CLM4 0.956 0.683 0.671 0.912 0.805 0.913 26.29 38.81 23.33 57.10 36.38 14.50 

VIC 0.933 0.694 0.670 0.906 0.801 0.906 26.10 31.31 22.35 25.16 26.23 15.50 

Mean 0.941 0.703 0.666 0.917 0.807 0.905 26.94 34.64 22.81 34.68 29.77 16.93 

 

Model performance is evaluated in each of the four quadrants as well. In the 

Northwest quadrant (Figure 3.1b), all LSMs perform very well featuring very high R2 and 

low RMSE, with the highest R2 and lowest RMSE from Noah-MP, while the lowest R2 and 

highest RMSE are from Noah. The reason all four LSMs perform well in this region is 

probably because the TWS anomaly signal is dominated by the snow process—particularly 

in the Rocky Mountains and the Northwestern Costal Mountains—which GRACE (the 
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LSMs) can easily detect (simulate) the signal. In the Northeast quadrant (Figure 3.1c), all 

model performances are also acceptable, but compared to the other three quadrants, models 

tend to produce low R2 and high RMSE. Surprisingly, the highest R2 and lowest RMSE are 

from Noah, while the lowest R2 and highest RMSE are from CLM4. This is the only 

quadrant that advanced LSMs show no obvious improvement to Noah. The amplitudes of 

annual TWS variation simulated by Noah and VIC are smaller than those simulated by 

Noah-MP and CLM4, which can be more clearly seen in Figure 3.2 (less blue shaded area 

in Figures 3.2b and 3.2e than in Figures 3.2c and 3.2d). In the Southwest quadrant (Figure 

3.1d), all LSMs feature relative low R2 and low RMSE. The low RMSE by all four LSMs 

does not necessarily mean low discrepancy, rather it is more due to the low TWS anomaly 

variation in this region. As we can see from Figure 3.1d, except for the abnormal high TWS 

anomaly in 2005, the TWS anomaly is less than 60 mm in all other years, much smaller 

than the 100 mm for the entire CONUS. This low TWS anomaly variation can be seen 

more visually in Figure 3.2, particularly in the U.S. Southwest Border region. Similar to 

the Northwest region, Noah-MP produces the highest R2 and lowest RMSE while Noah 

produces the lowest R2 (0.534, the only one below 0.6) and highest RMSE. Lastly, in the 

Southeast quadrant (Figure 3.1e), CLM4 is able to capture the temporal variation as shown 

by the high R2 (0.912). However, it produces very high RMSE (57.10) due to the much 

larger variation of TWS anomaly compared to GRACE (Figure 3.2d). The other three 

LSMs perform very well featuring very high R2 and low RMSE, with the highest R2 and 

lowest RMSE from Noah-MP. Similar to the Northwest region where the TWS anomaly 

signal is strong due to the high snowfall rate, the TWS anomaly signal is strong in this 

region too due to the high precipitation rate. Therefore, both GRACE and LSMs can easily 

detect these strong snow and precipitation signals. 
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We also summarize model performance one by one. The Noah model can simulate 

the general spatial and temporal patterns, but its simulated TWS variation is smaller than 

the GRACE observation. Overall, it produces lower R2 and higher RMSE than the three 

advanced LSMs. Noah-MP’s performance is interesting. It is not the “best” model in terms 

of high R2 and low RMSE for the entire CONUS; however, if we average the R2 and RMSE 

for each of the four quadrants, it produces the highest averaged R2 (0.845) and lowest 

averaged RMSE (26.03). Because Noah-MP produces good results across all four 

quadrants of CONUS, it shows the most robust performance in this study. In contrast, 

although CLM4 shows the best statistics for the entire CONUS, its performances in 

different regions vary. In particular, the amplitudes of annual TWS anomaly variation are 

either too large (Eastern CONUS) or too small (Western CONUS), with very small 

transition areas. Lastly, VIC performs as robust as Noah-MP, with only small differences 

in statistics (R2 and RMSE). 

Although the Noah and VIC models do not include the groundwater dynamics, they 

can still capture the TWS anomaly. However, groundwater does make a significant 

contribution to the anomaly. As shown in Table 3.3, groundwater anomaly contributes 

about 36% to the R2 and about 32% to the RMSE on average over the CONUS. The snow 

contribution to TWS anomaly is largely dependent on the location—large contribution over 

heavy snow regions and negligible over snow free regions; while contributions from soil 

moisture and groundwater are more stable among different regions. 
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Table 3.3 Contribution of soil moisture (SMC), snow water equivalent (SWE), and 
groundwater (GW) to the R2 and RMSE between GRACE and model simulated TWS (%). 

  NW  NE SW SE  CONUS 

  SMC SWE GW  SMC SWE GW SMC SWE GW SMC SWE GW  SMC SWE GW

R2

Noah-MP 44.0 29.6 26.4  48.4 21.2 30.4 33.4 43.8 22.8 50.7 4.2 45.2  42.1 24.4 33.5

CLM4 41.3 20.0 38.7  42.3 16.3 41.4 36.2 37.1 26.7 50.8 0.2 49.0  39.8 18.7 41.5

RMSE

Noah-MP 25.2 34.2 40.7  28.7 36.5 34.8 29.0 35.4 35.6 19.9 47.2 33.0  23.1 38.0 38.9
CLM4 36.3 36.6 27.0  34.8 35.5 29.8 33.3 35.9 30.8 33.0 40.7 26.4  39.7 42.0 18.3

 

3.5.2 Evaluation of Streamflow Simulations 

Streamflow simulations by the four LSMs are evaluated against USGS observed 

streamflow using relative bias and correlation coefficient. Figure 3.4 shows the relative 

bias of the mean annual streamflow for the four LSMs. The color shaded areas are the 961 

USGS small river basins. We find that the LSMs have difficulty representing streamflow 

in the north central region (as indicated by the red box in Figure 3.4a). As suggested by 

Yang et al. (2011), Noah-MP overcomes Noah’s large overestimation of streamflow 

mainly due to the use of the M-O scheme for the surface exchange coefficient (CH), which 

results in a smaller CH than using the scheme from Chen et al. (1997). In the large area 

centered on the southeastern part of the Midwest (the center is indicated by the blue circle 

in Figure 3.4a), all models show their best performance featuring low relative bias within 

20% (grey shaded area). CLM4 shows the largest good performance area (almost the entire 

east of 95°W), followed by Noah-MP and VIC, with Noah the least (only the area bounded 

by the blue circle in Figure 3.4a). In the Pacific Northwest region, the Noah model 

overestimates streamflow for most areas with only some underestimates occurring in some 

small, isolated areas; while the other three LSMs present approximately equal amounts of 

overestimates and underestimates. 
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Figure 3.4 Relative bias of mean annual streamflow for the 961 small river basins from 
October 1979 to September 2007 from (a) Noah, (b) Noah-MP, (c) CLM4, and (d) VIC. 

The relative bias presented here is generally much larger than we usually see in 

literature regarding modeled streamflow bias for a specific river basin (Christensen et al., 

2004). For a single river basin (usually medium or large basins), we can optimize model 

parameters (calibration) to minimize the relative bias to a small fraction, e.g., ±0.05. 

However, it is a big challenge to calibrate a model to fit each of many small basins 

simultaneously, because some parameters are location sensitive (Hogue et al., 2006). 

Therefore one set of parameter values may not be suitable for every river basin. For 

example, a fixed set of hydrologic parameters were used over all grid cells in the CLM4 

simulation, while previous studies (Hou et al., 2012; Huang et al., 2013) have demonstrated 

that CLM4 surface flux and runoff calculations are sensitive to its hydrologic parameters 
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over different watersheds. Furthermore, these biases can be attributed to uncertainties from 

atmospheric forcing data, static input data (e.g., soil and land cover types), or observation 

bias. For example, the streamflow simulation has been improved over the northern Rocky 

Mountains due to the adjustment of precipitation forcing with the monthly climatological 

precipitation data from the Parameter-Elevation Regressions on Independent Slopes Model 

(Xia et al., 2012b). 

Figure 3.5 shows the correlation coefficients between the model simulated and the 

USGS observed streamflow for each of the small basins. The spatial pattern of these 

correlation coefficients is similar among all four LSMs, with the very high correlation 

values presented in the West Coast and Eastern U.S. (particularly the Southeastern U.S.) 

and low correlation values in the northern Midwest. Overall, the Noah (VIC) model shows 

low (high) correlation values for more small basins than the other three LSMs do; while 

the Noah-MP and CLM4 models present more medium high correlation values. The cause 

for the low correlation in Noah has been investigated by Xia et al. (2014a). The results 

show that after the strong constraint of aerodynamic conductance (Livneh et al., 2010) is 

released in snow-free grids, correlation values were largely increased, particularly in the 

Northeastern region. The higher correlation in VIC may be partly due to its calibration 

work (Troy et al., 2008) and partly due to its development philosophy from the hydrology 

community (Xia et al., 2012a). The improvement in Noah-MP and CLM4 is mainly 

attributed to the better simulation of snow and the buffering effect of groundwater 

dynamics. Particularly, Noah-MP produces very high correlation values over the Pacific 

Northwest snow region (see the red box in Figure 3.5b), which means Noah-MP better 

captures the seasonal cycle of snow. 
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Figure 3.5 Correlation coefficient of the 28-year monthly climatological streamflow 
between model simulations and USGS observation for the 961 small river basins for (a) 
Noah, (b) Noah-MP, (c) CLM4, (d) VIC, (e) ensemble mean of the NLDAS-2, and (f) 
ensemble mean of this study. 
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Figure 3.6 Model simulated and/or USGS gauged monthly climatology (averaged from 
October 1979 to September 2007) of (a) snow water equivalent (SWE) and (b) streamflow 
over the area highlighted by the red box in Figure 3.5b. To show the timing of snow 
accumulation and melting more clearly, we use the normalized SWE and streamflow. 

To test this, Figure 3.6 shows the seasonal cycle of SWE and streamflow over this 

region. Comparing with the Noah model, we see a timing difference in Noah-MP as well 

as in VIC and CLM4. Previous studies revealed that Noah simulates snowmelt too early 

(Livneh et al., 2010). Our study also shows the early snowmelt in Noah, which leads to the 

early streamflow peak. In comparison, Noah-MP simulates snowmelt slowest so that the 

timing of the simulated streamflow matches best the USGS observation. These 
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improvements in Noah-MP are presumably due to their better representations of ground 

heat flux, retention, percolation, and refreezing of melted liquid water within the multilayer 

snowpack (Yang et al., 2011). Consequently, the ensemble mean of this study (Figure 3.5f) 

exhibits significant improvements over that of the current NLDAS-2 land models (Figure 

3.5e). 

3.5.3 Evaluation of ET Simulation 

Figure 3.7 shows the comparison of climatological ET between model simulations 

and observations from both FLUXNET and MODIS. Similar to the evaluation of TWS 

anomalies, the CONUS is divided into four quadrants: Northwest, Northeast, Southwest, 

and Southeast, based on the 40°N latitude line and the 98°W longitude line. To quantify 

the uncertainties in observation, simulations are treated as “perfect” fit if they are within 

the two time series defined by FLUXNET and MODIS. Using this standard, CLM4 is good 

for all four quadrant regions. Noah is good for all four regions except for the Northeast and 

Great Lakes where ET is largely underestimated. The reason is that ET is strongly 

constrained by the aerodynamic conductance under stable boundary layer conditions 

applied over snow-free grid cells (Xia et al., 2014a). Noah-MP is good for the Southwest 

region only, while VIC simulated ET is constantly higher than the two observations. 

We also find Noah-MP simulated ET grows very fast starting in February in the 

Northeast (Figure 3.7b) and Southeast (Figure 3.7d) regions, which results in the largest 

ET difference between Noah-MP simulation and the two observations in May. This is very 

likely due to the use of the dynamic leaf phenology model in Noah-MP, which predicts 

LAI as a function of light, temperature, and soil moisture, rather than using the prescribed 

monthly LAI as the Noah model does. This occurs in the two Eastern quadrant regions 
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because the vegetation effect on ET is higher in these two regions due to the higher 

percentage of forest coverage. 

 

Figure 3.7 Comparison of monthly evapotranspiration (ET) climatology (2001–2007) 
between simulations and observations (both FLUXNET and MODIS). 

Figure 3.8 shows the spatial distribution of the FLUXNET observed annual ET and 

its differences with the model simulations. The spatial pattern of the FLUXNET annual ET 

generally follows the annual precipitation distribution, with very high ET in the 

Southeastern CONUS and low ET in the Western CONUS. One obvious exception is in 

the Pacific Northwest region where annual precipitation rate is very high while the annual 
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ET is not correspondingly high. Note that the snowfall in this region is much higher than 

in other regions, so the low temperature during snow seasons explains the low ET. 

 

Figure 3.8 Spatial distribution of mean annual evapotranspiration (mm) from FLUXNET 
(a) and its differences with the model simulations for (b) Noah, (c) Noah-MP, (d) CLM4, 
(e) VIC, and (f) Ensemble mean (EM) of the four land models. 

All four LSMs tend to underestimate ET for areas along the West Coast and in the 

Rocky Mountains while overestimating ET in the Texas Panhandle and Eastern Kansas. 

The Noah model underestimates ET for most of the CONUS, particularly in the West 

Coast, the Rocky Mountains, and the eastern Great Lakes regions. The Noah-MP model 

mainly underestimates ET for the Western U.S. and overestimates ET in the southern 

Midwest. The CLM4 model features small difference (shaded areas with light colors) with 

FLUXNET for most of the CONUS. The VIC model overestimates ET for a large portion 
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of the study domain, particularly in the Southeast region. Similar to CLM4, the model 

ensemble mean also shows small difference with the FLUXNET ET. Overall, CLM4 

performs the best in ET simulation against FLUXNET observation while Noah-MP and 

VIC show intermediate improvement to Noah. 

 

Figure 3.9 Same as Figure 3.8 except for replacing FLUXNET ET with MODIS ET. 

Figure 3.9 is same as Figure 3.8 except for replacing FLUXNET ET with MODIS 

ET. The annual MODIS ET shows similar spatial patterns as FLUXNET ET. However, 

MODIS ET is generally less than FLUXNET ET for most areas, which results in larger 

overestimations by the four LSMs. One exception is in the area indicated by the red oval 

in Figure 3.9a, where the MODIS ET is very high (not seen in the FLUXNET ET). As a 

result, all LSMs produce lower ET than MODIS in this region. 
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3.5.4 Evaluation of Soil Moisture Simulation 

Reliable gridded soil moisture observational data is not yet available, however, soil 

moisture measured at a site can reflect the temporal variation of soil water for its 

surrounding region, up to 500 km in radius (Entin et al., 2000). Figure 3.10 shows the 

comparison of monthly root-zone soil moisture (the top 1 m of the soil column) between 

SCAN observation and model simulations for the six regions indicated in Figure 3.1, with 

the statistics (correlation coefficient r and RMSE) of model performance summarized in 

Table 3.4. In the Southeast and Northeast regions with dense sites and good data 

availability from SCAN, all four LSMs perform well in terms of high correlation 

coefficient and low RMSE. The correlation coefficient values for Noah-MP, CLM4, and 

VIC are all above 0.72, which are at the higher end of the results reproduced by a range of 

LSMs as reported in the second Global Soil Wetness Project (Guo and Dirmeyer, 2006). 

This is slightly superior to the Noah model. Noah-MP (CLM4) produces the highest 

correlation coefficient for the Northeast (Southeast), while CLM4 (VIC) produces the 

lowest RMSE in the Southeast (Northeast) region. In the Texas region, the Noah-MP model 

stands out with the much higher correlation coefficient and lower RMSE compared to the 

other three models. In this region, the Noah-MP simulated soil moisture is very close to 

the SCAN observation while the other three LSMs simulated soil moisture is higher than 

the SCAN observation. In the remaining three regions, the data availability are low, 

therefore we can only use it as an approximate value without making some strong 

conclusions out of it. The model simulated soil moisture is smaller (larger) than the SCAN 

observation in the Great Plains region (Northwest and Southwest regions). 
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Figure 3.10 Monthly anomaly (left panels) and climatologically seasonal cycle (right 
panels) of spatially averaged root-zone soil moisture (the top 1 m of the soil column) from 
SCAN observation and model simulations for six regions: (a) Southeast, (b) Northeast, (c) 
Texas, (d) Great Plains, (e) Northwest, and (f) Southwest. 
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Table 3.4 Statistical summary of model performance in simulating soil moisture for the top 
1-m soil, based on comparison with SCAN observation. Bold font indicates significant at 
the 95% confidence level. The thick underlines indicate the highest R2 or lowest RMSE 
among the four land surface models. 

  r  RMSE 

Model SE NE TX GP NW SW Avg. SE NE TX GP NW SW Avg. 

Noah 0.712 0.695 0.508 0.300 0.120 0.070 0.401 0.015 0.025 0.035 0.036 0.022 0.032 0.027

Noah-MP 0.781 0.762 0.716 0.220 0.068 0.181 0.455 0.014 0.020 0.028 0.037 0.021 0.030 0.025

CLM4 0.794 0.722 0.527 0.166 0.205 0.044 0.410 0.013 0.024 0.034 0.037 0.020 0.031 0.027

VIC 0.766 0.753 0.431 0.325 0.177 0.008 0.410 0.013 0.021 0.038 0.036 0.020 0.032 0.027

Mean 0.763 0.733 0.546 0.253 0.142 0.076 0.419 0.014 0.022 0.034 0.036 0.021 0.031 0.026

 

Overall, the Noah simulated soil moisture is among the driest for all six regions; 

nevertheless, it is comparable with the SCAN observation. For the Noah-MP model, in 

addition to producing the highest correlation coefficient and low RMSE, its simulated soil 

moisture is closest to the SCAN observation. CLM4 simulated soil moisture correlates well 

with the SCAN observation; however, it produces the highest soil moisture among the four 

LSMs, much higher than the observation. This results in the very high RMSE for Texas, 

Southwest, and Northwest regions. Furthermore, the most important issue with CLM4 is 

that the variability of its simulated soil moisture is too low compared to the SCAN 

observation and the other LSMs, which is an issue found in CLM version 3 (Oleson et al., 

2008). Although the issue is partly alleviated in CLM4 by adjusting the parameters that 

control the water table position (Lawrence et al., 2011), its soil moisture variability is still 

weaker than the observation and the other LSMs. Based on Niu et al. (2011), however, this 

issue is attributed to the parameterization of the soil moisture factor for stomatal resistance 

(the β factor). By running Noah-MP with different β factors, they demonstrated that the 

CLM-type β factor produced smaller root zone soil moisture variability than did the Noah-

type β factor. For the VIC model, although it produces slightly lower (higher) correlation 
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coefficient (RMSE) than Noah-MP, its simulated soil moisture is close to Noah-MP and 

agrees well with the SCAN observation. 

3.6 CONCLUSIONS 

This study used the NLDAS test bed to assess the hydrological performance of four 

LSMs: Noah, Noah-MP, CLM4, and VIC. All models were driven by the same NLDAS-2 

atmospheric forcing and evaluated against the same observational data sets. Compared to 

Noah, the other three models show significant improvements in TWS and streamflow and 

moderate improvements in ET and soil moisture. Among these LSMs, Noah-MP shows the 

best performance in simulating soil moisture and is among the best in simulating TWS; 

CLM4 shows the best performance in simulating ET; and VIC shows the best performance 

in simulating streamflow. 

Deficiencies are also found in these LSMs. The Noah-MP simulated ET grows too 

fast in the spring, which coincides with the fact that its modeled LAI peaks too soon. 

Although the CLM4 model produced the highest correlation coefficient for TWS anomaly 

for the entire CONUS, it produced either too high or too low amplitude of the annual TWS 

variation. In addition, CLM4 produced much weaker soil moisture variability than both 

SCAN observations and other LSMs. Finally, the VIC model constantly overestimated ET 

compared to observations from MODIS and FLUXNET. 

One must bear in mind that the confidence of this study may be undermined by the 

possible uncertainties from various sources. First of all, although the NLDAS atmospheric 

forcing is considered high quality, the error may not be negligible for some regions. 

Second, observational data have errors. For example, the water balance may not be closed 

for the NLDAS precipitation, USGS streamflow, and MODIS (or FLUXNET) ET, as they 

are measured separately and each one involves errors (Gao et al., 2010). This is part of the 
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reason why one model that performs well in simulating streamflow may not perform well 

in simulating ET at annual scales. Third, each model involves many physical processes and 

their interactions are complex, and thus, it is difficult to identify one effect from another. 

In summary, this study gave an overview of the performances of four LSMs over 

CONUS. We demonstrated that, by providing reliable atmospheric forcing data, four in-

house LSMs (more to be added), most appropriate observational data, and necessary tools, 

the NLDAS test bed is a valid platform for evaluating land models on continental or large 

river basin scales in the U.S. 
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Chapter 4: Integration of Nitrogen Dynamics into the Noah-MP Land 
Surface Model for Climate and Environmental Predictions 

4.1 ABSTRACT 

Climate and terrestrial biosphere models consider nitrogen an important factor in 

limiting plant carbon uptake, while operational environmental models view nitrogen as the 

leading pollutant causing eutrophication in water bodies. The community Noah land 

surface model with multi-parameterization options (Noah-MP) is unique in that it is the 

next generation land surface model for the Weather Research and Forecasting 

meteorological model and for the operational weather/climate models in the National 

Centers for Environmental Prediction. In this study, we add capability to Noah-MP to 

simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant 

model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This 

incorporates FUN’s state-of-the-art concept of carbon cost theory and SWAT’s strength in 

representing the impacts of agricultural management on the nitrogen cycle. 

Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf 

retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while 

parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, 

atmospheric deposition, and leaching are based on SWAT. The coupled model is then 

evaluated at the Kellogg Biological Station—a Long-term Ecological Research site within 

the U.S. Corn Belt. Results show that the model performs well in capturing the major 

nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the 

addition of nitrogen dynamics improves the modeling of the carbon and water cycles (e.g., 

net primary productivity and evapotranspiration). The model improvement is expected to 

advance the capability of Noah-MP to simultaneously predict weather and water quality in 

fully coupled Earth system models. 
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4.2 INTRODUCTION 

Over the past several decades, eutrophication—high concentrations of nutrients in 

freshwater bodies leading to severe oxygen depletion from the resultant algal blooms—has 

become a worldwide problem facing river, lake and coastal waters (Howarth et al., 2006; 

Conley et al., 2009). As one of the greatest threats to freshwater and coastal ecosystems, 

eutrophic conditions lower biotic diversity, lead to hypoxia and anoxia, increase the 

incidence and duration of harmful algal blooms, and change ecological food webs that 

reduce fish production (National Research Council, 2000; Diaz and Rosenberg, 2008). 

These eutrophic conditions are attributed to excessive fertilizer leaching in river basins 

(Boyer et al., 2006; Boesch et al., 2009). To complicate this further, climate variation and 

climate change also determine the variation of hypoxia extent (Donner and Scavia, 2007): 

higher temperatures may extend the thermal stratification period and deepen the 

thermocline, thereby resulting in the upwelling of nutrients from sediment and increasing 

the concentration of nutrients in the bottom layer of water in lakes (Komatsu et al., 2007). 

Further, higher precipitation produces more runoff and very likely more nutrients are 

delivered to the ocean as well (Donner and Scavia, 2007). 

Nitrogen (N) is recognized as the leading nutrient causing eutrophication. Without 

human interference, N cycling is relatively slow, as most ecosystems are efficient at 

retaining this in-demand nutrient. N enters soil regularly either through atmospheric wet 

and dry deposition or through atmospheric N2 fixation by microorganisms (occurring 

mostly in legume plants). N taken up by plants is confined to relatively slow processes 

(e.g., growth, decay, and mineralization); in some regions or during the growing season, N 

may also limit plant growth, which reduces carbon sequestration over land (Fisher et al., 

2012). In addition, N cycling produces nitrous oxide (N2O) which is considered one of the 

important greenhouse gases responsible for climate warming. These facts make the N cycle 
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important for studying the response of the climate to the elevated greenhouse gas 

concentrations. With human tillage of soils, mineralization and nitrification of N is 

amplified, which results in the reduction of N storage in soil (Knops and Tilman, 2000; 

Scanlon et al., 2008). In addition, a large amount of N fertilizer is applied in specific areas 

within a short period of time; as a result, a massive excess of N is leached to the aquatic 

systems through discharge and erosion, which contributes to the eutrophication in aquatic 

systems. 

Many of these N processes have been included in land surface, hydrologic, and 

water quality models developed particularly for environmental, climate, and agricultural 

applications (Dickinson et al., 2002; Thornton et al., 2007; Wang et al., 2007; Kronvang et 

al., 2009; Schoumans et al., 2009b; Bonan and Levis, 2010; Fisher et al., 2010). These 

developments are still in their infancy, and large scale climate models lack N leaching 

parameterizations that are comparable to those used in water quality models. Thus, large 

scale models are not feasible for inherently fine-scale applications such as agricultural 

fertilization management and water quality prediction. Therefore, the present study 

improves these weaknesses by incorporating the strength of agriculture-based models into 

large scale LSMs. 

The community Noah LSM with multi-parameterization options (Noah-MP) (Niu 

et al., 2011; Yang et al., 2011) is used as an exemplar of LSMs because it is the next 

generation LSM for the Weather Research and Forecasting (WRF) meteorological model 

(Rasmussen et al., 2014) and for the operational weather and climate models in the 

NOAA/National Centers for Environmental Prediction. Because Noah-MP has an 

interactive vegetation canopy option, which predicts the leaf area index (LAI) as a function 

of light, temperature, and soil moisture, it is logical to augment this scheme with N 

limitation and realistic plant N uptake and fixation. The state-of-the-art vegetation N model 
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is the Fixation and Uptake of Nitrogen (FUN) model of Fisher et al. (2010), which is 

embedded into the Joint UK Land Environment Simulator (JULES) (Clark et al., 2011a) 

and the Community Land Model (CLM) (Shi et al., in preparation). Modeling the impacts 

of agricultural management (e.g., fertilizer use) on N leaching is the strength of the Soil 

and Water Assessment Tool (SWAT) (Neitsch et al., 2011). Therefore, this study 

incorporates into Noah-MP both FUN’s strength in plant N uptake and SWAT’s strength 

in soil N cycling and agricultural management. 

Our objective is to develop and utilize a land surface modeling framework for 

simultaneous climate (carbon) and environmental (water quality) predictions. We first 

describe the nitrogen dynamic model which combines equations used in FUN and SWAT. 

We then focus on evaluating the new integrated model at a cropland site, because globally 

fertilizer application on croplands contributes approximately half of the total N input to 

soil, with the other half by natural processes (i.e. atmospheric deposition and biological N 

fixation) (Gruber and Galloway, 2008). Furthermore, cropland is a major source of N 

loading in water bodies. We evaluate the new model against observed soil moisture content, 

concentration of soil nitrate, concentration of nitrate leaching from soil bottom, and annual 

net primary productivity (NPP). We then analyze the impacts of the addition of N dynamics 

on the carbon and water cycles. To guide the use of this model on regional scale, we also 

analyze the impacts from different fertilizer application scenarios. Finally, we discuss other 

model behaviors, i.e., N uptake from different pathways and the major soil nitrate fluxes. 

4.3 MODELS, DATA, AND METHODS 

4.3.1 Noah-MP 

The Noah-MP model was augmented from the original Noah LSM with improved 

physics and multi-parameterization options (Niu et al., 2011; Yang et al., 2011), based on 
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a state-of-the-art multiple-hypothesis framework (Clark et al., 2011b). Noah-MP provides 

users with multiple options for parameterization in leaf dynamics, canopy stomatal 

resistance, soil moisture factor for stomatal resistance, and runoff and groundwater. Until 

this work, Noah-MP did not include any N dynamics. The only N-related parameterization 

is in the calculation of the maximum rate of carboxylation (Vmax, Equation 4.1)—an 

important factor in estimating the total carbon assimilation (or photosynthesis) rate (Niu et 

al., 2011). 
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  (4.1) 

where Vmax25 a is maximum carboxylation rate at 25°C (μmol CO2 m–2 s–1), avmax is a 

temperature sensitive parameter, f(Tv) is a function that mimics the thermal breakdown of 

metabolic processes, f(N) is a foliage nitrogen factor (f(N) ≤ 1), and β is the soil moisture 

controlling factor. Since there were no N dynamics in the model, f(N) was set as a constant 

0.67, which translates to a constant 33% of Vmax down-regulation due to N stress. This 

factor was originally used in Running and Coughlan (1988) and first adapted into LSMs 

by Bonan (1991). 

Our modifications to the original Noah-MP mainly concern the sub-models dealing 

with dynamic leaf and subsurface runoff. The dynamic leaf option is turned on to provide 

net primary productivity (NPP) and biomass to the newly coupled N dynamic sub-model. 

In the original Noah-MP model, subsurface runoff from each soil layer was not an explicit 

output, but it is now a new output in the updated model. However, N concentrations are 

different among soil layers, which affects the amount of N removed from each soil layer 

by subsurface runoff. Therefore, in conjunction with the runoff scheme options 1 

(TOPMODEL with groundwater) and 2 (TOPMODEL with an equilibrium water table), 
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the lumped subsurface runoff for all four layers is first calculated, and then the water is 

removed from each soil layer weighted by hydraulic conductivity and soil layer thickness. 

4.3.2 Nitrogen Dynamics 

In Noah-MP, the soil N model structure is the same as in SWAT, which includes 

five N pools consisting of two inorganic forms (NH4
+ and NO3

–) and three organic forms 

(active, stable, and fresh pools). The N processes employed from SWAT are 

mineralization, decomposition, immobilization, nitrification, denitrification, and 

atmospheric deposition. The N processes employed from FUN are uptake and symbiotic 

biological N fixation, which can be further divided into active and passive soil N uptake, 

leaf N retranslocation, and symbiotic biological N fixation. Figure 4.1 shows the flow chart 

of the nitrogen dynamic model. Table 4.1 shows the model input variables and parameters. 

Nitrogen Uptake and Fixation 

Plant N uptake and fixation follows the framework of Fisher et al. (2010), which 

determines N acquired by plants through (1) advection (passive uptake), (2) retranslocation 

(resorption), (3) active uptake, and (4) symbiotic biological N fixation. 

Noah-MP calculates the NPP or, following FUN, its available carbon, CNPP (kg C 

m–2). To maintain the prescribed carbon to nitrogen (C:N) ratio (rC:N), the N demand, 

Ndemand (kg N m–2), is calculated: 

NC

NPP
demand r

C
N

:

  (4.2) 

where the C:N ratio for the whole plant is computed from the for each component (leaf, 

root, and wood) of the plant proportionally to the biomass. C:N ratios for each component 

of the plant for each vegetation type are from Oleson et al. (2013). 
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Figure 4.1 Flow chart of the nitrogen dynamic model. 
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Table 4.1 Model input variables and parameters. 

Parameter Definition Controlling process Unit Value 

rC:N C:N ratios for each component of the plant Demand – Leaf 27, root 45 

a Empirical curve-fitting parameter Fixation – –3.62 

b Empirical curve-fitting parameter Fixation – 0.27 

c Empirical curve-fitting parameter Fixation – 25.15 

s Scaling factor Fixation – –62.5 

kN Empirical curve-fitting parameter Active uptake kg C m–2 1.0 

kC Empirical curve-fitting parameter Active uptake kg C m–2 1.0 

Nno3 Initial value for NO3 concentration in soil layer Initialization g N m–2 6.7 

Naon Initial value for humic organic N in soil layer Initialization g N m–2 12.4 

Nfon Initial value for fresh organic N in soil layer Initialization g N m–2 5.3 

Corg Initial organic carbon content in soil layer Initialization % 
2.61, 0.35, 0.11, 
0.07 

ρb Bulk density of the soil layer Initialization Mg m–3 
1.3, 1.4, 
1.5, 1.6 

fnh4n 
Fraction of mineral N in fertilizer that is 
ammonium 

Fertilization – 0.4 

fsurfn 
Fraction of fertilizer that is applied to the  
top 10 mm of soil 

Fertilization – 0.2 

emix Mixing efficiency of tillage operation Tillage – 0.3 

βmin Rate coefficient for mineralization of 
the humic organic nitrogen 

Mineralization – 0.002 

βrsd Rate coefficient for mineralization of 
the fresh organic nitrogen in residue 

Mineralization – 0.04 

βdenit Rate coefficient for denitrification Denitrification – 1.4 

γsw,thr Threshold value of soil water factor for 
denitrification to occur 

Denitrification – 0.85 

Rno3 Concentration of nitrate in the rain Deposition mg kg–1 1.5 

Rnh4 Concentration of ammonium in the rain Deposition mg kg–1 1.0 

Dno3 Constant of nitrate rate with dry deposition  Deposition g N m–2 a–1 0.2 

Dnh4 Constant of ammonium rate with dry deposition  Deposition g N m–2 a–1 0.2 

θe 
Fraction of porosity from which anions are 
excluded 

Leaching – 0.15 

βno3 Nitrate percolation coefficient Leaching – 0.3 

Note: Some parameters are not described in the paper. The values for Corg and ρb are for the four soil layers. 

 

Because no extra energetic cost is needed, passive uptake, Npassive (kg N m–2), is the 

first and preferred source of N that a plant depletes. 

d

T
soilpassive s

E
NN   (4.3) 
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where Nsoil is the available soil N for the given soil layer (kg N m–2), ET is transpiration rate 

(m s–1), and sd is the soil water depth (m). This pathway is typically a minor contributor 

except under very high soil N conditions. 

If Npassive is less than Ndemand, then the remaining required N must be obtained from 

either retranslocation (Nresorb, kg N m–2), active uptake (Nactive, kg N m–2), or BNF (Nfix, kg 

N m–2), all of which are associated with energetic cost and hence require C expenditure (C 

cost). The C cost of fixation (Costfix, kg C kg N–1), active uptake (Costactive, kg C kg N–1), 

and resorption (Costresorb, kg C kg N–1) is calculated: 

   2/5.01exp  cTTbasCost soilsoilfix
 (4.4) 
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where a, b, and c (–3.62, 0.27 and 25.15, respectively) are empirical curve-fitting 

parameters (dimensionless) from Houlton et al. (2008), s is a scaling factor (=–62.5, use 

kg C kg N–1 °C for unit consistency), Tsoil is soil temperature (°C), kN and kC are both 1 kg 

C m–2, kR is 0.01 kg C m–2, and Croot is total root biomass (kg C m–2). Active uptake is 

typically a dominant form of N uptake in natural ecosystems, consuming large quantities 

of NPP (that would otherwise go to growth or other allocations) in exchange for N. 

Similar to parallel circuits, each carbon cost is treated as a resistor and the integrated 

cost (Costacq, kg C kg N–1) is calculated (Brzostek et al., 2014): 





soilN

i iactiveresorbfixacq CostCostCostCost 1 ,

1111
 (4.7) 
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where Costactive,i is the C cost for active N uptake of ith soil layer and Nsoil is the total 

number of soil layers. 

Using Ohm’s law, N acquired from C expenditure (Nacq, kg N m–2) is analogous to 

current and thus is calculated: 

acq

acq
acq Cost

C
N   (4.8) 

Therefore, plant N uptake and fixation are computed and are updated for each N 

pool. In addition, the effect of N-limitation on CO2 sequestration is represented in the 

model through the theory of C cost economics. 

Mineralization, Decomposition, and Immobilization 

Fresh organic residue is firstly broken down into simpler organic components via 

decomposition. The plant-unavailable organic N is then converted into plant-available 

inorganic N via mineralization by microbes. Plant-available inorganic N can also be 

converted into plant-unavailable organic N via immobilization by microbes.  

Immobilization is incorporated into mineralization calculation (net mineralization). 

Mineralization and decomposition, which are only allowed to occur when temperature is 

above 0°C, are constrained by water availability and temperature. The nutrient cycling 

temperature factor for soil layer ly, γtmp,ly, is calculated: 

  1.0
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where Tsoil,ly is the temperature of soil layer ly (°C). 

The nutrient cycling water factor for soil layer ly, γsw,ly, is calculated: 

lys

ly
lysw

,
, 


   (4.10) 
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where θly is the water content of soil layer ly on a given day (mm H2O), and θs,ly is the water 

content of soil layer ly at field capacity (mm H2O). 

The mineralized N from the humus active organic N pool, Nmina,ly (kg N m–2), is 

calculated: 

  lyaonlyswlytmplyminalymina NN ,
2/1

,,,,  
 (4.11) 

where βmina is the rate coefficient for mineralization of the humus active organic nutrients, 

and Naon,ly is the amount of N in the active organic pool (kg N m–2). 

The mineralized N from the residue fresh organic N pool, Nminf,ly (kg N m–2), is 

calculated: 

lyfonlyntrlyminf NN ,,, 8.0  
 (4.12) 

where δntr,ly is the residue decay rate constant, and Nfon,ly is the amount of N in the fresh 

organic pool (kg N m–2). 

The decomposed N from the residue fresh organic N pool, Ndec,ly (kg N m–2), is 

calculated: 

lyfonlyntrlydec NN ,,, 2.0  
 (4.13) 

Nitrification and Ammonia Volatilization 

Using a first-order kinetic rate equation, the total amount of ammonium lost to 

nitrification and volatilization in layer ly, Nnit|vol,ly (kg N m–2), is calculated: 

)]exp(1[ ,,,| ylvollynitlylyvolnit NH4N  
 (4.14) 

where NH4ly is the amount of ammonium in layer ly (kg N m–2), ηnit,ly is the nitrification 

regulator , and ηvol,ly is the volatilization regulator. The calculation of ηnit,ly and ηvol,ly is 

described in Neitsch et al. (2011). 
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Nnit|vol,ly is then partitioned to nitrification and volatilization. The amounts of N 

converted from NH4
+ and NO3

− of the ammonium pool via nitrification and volatilization 

are then calculated: 
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where frnit,ly and frnit,ly are the estimated fractions of N lost through nitrification and 

volatilization, respectively. They are calculated from the individual regulator in Equation 

4.14 as following: 

]exp[1 ,, lynitlynitfr 
 (4.17) 

]exp[1 ,, lyvollyvolfr 
 (4.18) 

Denitrification 

Denitrification is the process that bacteria remove N from soil (converting NO3
− to 

N2 or N2O gases). Denitrification rate, Ndenit,ly (kg N m–2), is calculated: 
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where orgCly is the amount of organic C in the layer (%), βdenit is the rate coefficient for 

denitrification, and γtmp,ly is the nutrient cycling temperature factor for soil layer ly, γsw,ly is 

the nutrient cycling water factor for soil layer ly, and γsw,thr is the threshold value of γsw,ly 

for denitrification to occur. 
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Atmospheric Deposition 

While the mechanism of atmospheric deposition is not fully understood, the 

uncertainty is parameterized into the concentration of nitrate/ammonium in the rain for wet 

deposition, and the nitrate/ammonium dry deposition rate for dry deposition.  

The amount of nitrate and ammonium added to the soil through wet deposition, 

NO3,wet (kg N m–2) and NH4,wet (kg N m–2), are calculated: 

PRNO NOwet  3,3 01.0
 (4.20) 

PRNH NHwet  4,4 01.0
 (4.21) 

where RNO3 is the concentration of nitrate in the rain (mg N L–1), RNH4 is the concentration 

of ammonium in the rain (mg N L–1), and P is the amount of precipitation on a given day. 

Both RNO3 and RNH4 are constants in the model and their values used in this study are listed 

in Table 4.1. 

Fertilizer Application 

The N fertilizer application process is included in the new model as well. If real 

fertilizer application data (timing and amount for a specific year) are available, they can be 

used as model inputs. Otherwise, a fixed amount of N fertilizer (e.g., 7.8 g N m–2 a–1) is 

applied at a fixed time of a year (e.g., June 20).  

Leaching 

N leaching from land to water bodies is a consequence of soil weathering and 

erosion processes. In particular, organic N attached to soil particles is transported to surface 

water through soil erosion. Therefore, the modified universal soil loss equation (USLE) 

(Williams, 1995) is used to determine soil erosion. The detail of the calculation is described 

in Neitsch et al. (2011). 
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N in nitrate form can be transported with surface runoff, lateral runoff, or 

percolation, which is calculated: 

surfmobileNONOsurf QconcNO  ,33,3 
 (4.22) 
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lypercmobileNOperc wconcNO ,,3,3 
 (4.24) 

where NO3,surf, NO3,lat,ly and NO3,perc are the soil nitrates removed in surface runoff, in 

subsurface flow, and by percolation, respectively, (kg N m–2), βNO3 is the nitrate percolation 

coefficient, concNO3,mobile is the concentration of nitrate in the mobile water in for the layer 

(kg N mm H2O–1), and wperc,ly is the amount of water percolating to the underlying soil 

layer on a given day (mm H2O), Qsurf is the surface runoff generated on a given day (mm 

H2O), and Qlat,ly is the water discharged from the layer by lateral flow (mm H2O). 

4.3.3 Description of Evaluation Data and Model Configuration 

At the regional scale, N related measurements are very limited. Even at site level, 

measurements are limited with respect to plant and carbon dynamics. The Kellogg 

Biological Station (KBS)—a Long-term Ecological Research (LTER) site—is unique in 

its long term continuous measurements of N related variables (soil nitrate, N leaching, 

mineralization, nitrification, and fertilizer application) in an agricultural setting with 

multiple crop and soil controls. Even within the LTER network, we cannot find a second 

site that conducts this kind of measurements. Therefore, the new model is evaluated at this 

site. 

KBS is located in Hickory Corners, Michigan, USA, within the northeastern portion 

of the U.S. Corn Belt (42.40ºN, 85.40ºW, elevation 288 m). Mean annual temperature is 
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10.1ºC and mean annual precipitation is 1,005 mm with about half falling as snow. This 

study uses two treatments from this site: T1 cropland with conventional tillage and T2 

cropland without tillage. Both treatments are rainfed are planted with the same crops: corn, 

soybean, and winter wheat in rotation. 

This site features multiple N related measurements. Soil inorganic N concentration, 

which is sampled from surface to 25 cm soil depth, is available from 1989 to 2012. 

Concentration of inorganic N leaching at bedrock, which is sampled at 1.2 m of soil depth, 

is available from 1995 to 2013. These two measurements are used to evaluate model 

simulated concentrations of soil nitrate for the top 25 cm and nitrate leaching from the soil 

bottom. Soil N mineralization, which measures the net mineralization potential and is 

available from 1989 to 2012, is compared with the modeled mineralization rate 

qualitatively. 

In addition, root zone soil moisture content is sampled and calculated on a dry 

weight basis. In order to compare with model output, it is converted to volumetric soil 

moisture by applying the soil bulk density. Annual NPP is converted from annual crop 

yields (1989–2013) by assuming a harvest index and a root to whole plant ratio for each 

crop type. The harvest indices for corn, soybean, and winter wheat are 0.53, 0.42, and 0.39, 

respectively. The root to shoot ratios for corn, soybean, and winter wheat are 0.18, 0.15, 

and 0.20, respectively (Prince et al., 2001; West et al., 2010). Although N uptake cannot 

be evaluated directly at this site, by evaluating the annual NPP, we can see the model’s 

performance in representing the N limitation effect on plant growth. 

Noah-MP requires the following atmospheric forcing data at least at a 3-hourly time 

step: precipitation, air temperature, specific humidity, surface air pressure, wind speed, 

incoming solar radiation, and incoming longwave radiation. The weather station at the site 

measures all of these except for incoming longwave radiation, but does not cover the entire 
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period from 1989 to 2014 (e.g., hourly precipitation data are only available since 2007), 

from when the N data are available. Therefore, atmospheric forcing data are extracted and 

used from the 0.125º × 0.125º gridded North American Land Data Assimilation System 

(NLDAS, (Xia et al., 2012c)) forcing data. Table 4.2 compares the atmospheric forcing 

data between NLDAS and site measurements for 2008–2014. We can see that the 

differences in precipitation and air temperature—the two most important forcing fields for 

N cycling—are very small, with relative biases –1.4% and 4.2%, respectively. 

 

Table 4.2 Comparison of atmospheric forcing data between site observation and NLDAS 
(2008–2014). 

Source 
Precipitation 

(mm) 

Air 
temperature 

(°C) 

Relative
humidity 

(%) 
Pressure 

(hPa) 

Shortwave
radiation 
(W m–2) 

Wind 
speed 
(m s–1) 

Wind 
direction 

(°) 

Site obs. 937.19 9.15 73.44 982.29 157.07 3.37 194.72 

NLDAS 924.45 9.55 76.50 983.47 171.03 4.74 206.43 

 

Finally, the site management log records the detailed operational practices such as 

soil preparation, planting, fertilizer application, pesticide application, and harvest. N 

fertilizer application data include the date of application, rate, fertilizer type, and equipment 

used. The fertilizer application date and rate are used as model inputs. 

4.4 RESULTS AND ANALYSES 

4.4.1 Soil Moisture Content 

Modeled volumetric soil moisture, which is important for nutrient cycling and plant 

growth, is compared to measured soil moisture (Figure 4.2). The model performs 

particularly well on both treatments (i.e., with and without tillage) (see, for example, Cai 

et al. (2014b)). The model simulated multiple year averages are both 0.243 for the two 
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treatments. These are very close to observations which are 0.238 and 0.264 for T1 and T2, 

respectively. The correlation coefficient is 0.78 for T1 and 0.76 for T2, which are 

considered high skills, especially on a daily scale. 

 

Figure 4.2 Observed and model simulated volumetric soil moisture from 1989 to 2012 for 
(a) Treatment 1: cropland with conventional tillage and (b) Treatment 2: cropland without 
tillage. The error bars show the observational ranges from up to six replicates for each 
treatment. 

However, differences between modeled and observed soil moisture are also found. 

From observation (Figure 4.2), we can see that the treatment without tillage (T2) has 

slightly higher soil moisture than the treatment with tillage (T1). Therefore, tillage practice 

has impacts on soil moisture. However, the difference in modeled soil moisture is 

negligible between the two treatments (both are 0.243). This is because Noah-MP does not 

consider water redistribution due to tillage, although N redistribution is considered in the 

soil N dynamic sub-model. In addition, observed soil moisture has higher variations. As 
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we can see from Figure 4.2, observation tends to have either higher peaks or lower valleys 

than model simulation. We also notice that some values from observation are extremely 

low, which may not be necessarily true in reality. Considering the wide spread of the 

observational ranges defined by up to six replicating plots, Noah-MP provides a reasonable 

water environment for the N cycling. 

4.4.2 Soil Nitrate 

Soil nitrate concentration is the outcome of all N related processes that occur in soil 

such as decomposition, mineralization, nitrification, denitrification, and uptake. It 

determines the available N that plants can use. The skills in modeling the soil nitrate 

concentration reflect the overall performance of the model in simulating the N cycle. Figure 

4.3 shows the comparison of the model simulated soil nitrate concentration with site 

observations for both T1 and T2. The model captures the major variations of the soil nitrate. 

N fertilizer application is responsible for the high peaks. These high peaks drop very fast 

at first and then drop slowly, which can sustain crop growth for few months. 

The multi-year average of modeled soil nitrate concentration is 5.77 mg/kg (4.90 

mg/kg) for T1 (T2), which is consistent with the observed 5.61 mg/kg (4.81 mg/kg). 

Correlation coefficients are 0.58 and 0.56 for T1 for T2, respectively. From the wide spread 

of the range error bars, we can see that soil N dynamics may be affected by a variety of 

complicated factors, which makes it difficult to model. Therefore, although the correlation 

coefficients are not considered high skills relative to the soil moisture statistics, they are 

still acceptable. 
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Figure 4.3 Observed and model simulated soil nitrate concentration from 1989 to 2011 for 
(a) Treatment 1: cropland with conventional tillage and (b) Treatment 2: cropland without 
tillage. The error bars show the observational ranges from up to six replicates for each 
treatment. 

While both treatments show very similar patterns (Figure 4.3), T1 with 

conventional tillage tends to have higher soil nitrate concentration. This is understandable 

because tillage practices redistribute water and nutrients in soil, which accelerates the N 

cycling. Table 4.3 shows annual averages of major N fluxes for both treatments. T1 has 

higher rates of humus mineralization and residue decomposition, but at the same time, it 

also has higher rates of denitrification and leaching. Therefore, it produces more N2O (a 

greenhouse gas) and more N runoff to rivers. Particularly, with higher N leaching, less soil 

nitrate is available for passive uptake by plant. As a result, plants need to acquire more N 

through active uptake. 
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Table 4.3 Annual averages of Noah-MP simulated major nitrogen fluxes and net primary 
productivity. The NPP within the parentheses is from observation. 

Treatment 
NPP 

(gC/m2) 

Uptake Humus
Mineral.
(gN/m2) 

Residue
Decomp. 
(gN/m2) 

Denitrif. 
(gN/m2) 

Leaching
(gN/m2) 

Passiv 
(gN/m2) 

Active
(gN/m2) 

Fixation
(gN/m2) 

Retransl.
(gN/m2) 

T1 432 (437) 6.18 0.90 2.88 0.50 3.79 12.30 10.48 7.19 

T2 441 (471) 6.62 0.69 2.84 0.50 2.64 9.34 8.80 4.77 

 

4.4.3 Nitrate Leaching from Soil Bottom 

N leaching can be transported to rivers through surface and subsurface runoff and 

to groundwater through percolation from soil bottom. Only the last pathway is measured 

at this site. Figure 4.4 shows the comparison of concentrations of the leached solution from 

the soil bottom between model simulation and observation. The averaged concentration of 

N leaching from the soil bottom for T1 (T2) is 12.84 mg/kg (8.86 mg/kg) from model 

simulation and 13.57 mg/kg (9.26 mg/kg) from observation. The correlation coefficients 

are 0.43 and 0.40 for T1 and T2, respectively. Although these skills may not be considered 

satisfactory, the model can still produce comparable results with observation. 

The peak in 2003 is extremely high and long lasting. This is probably due to the 

abnormal pattern of precipitation distribution in 2003. In a normal year, storms higher than 

50 mm usually occur in either summer or fall. However, in 2003, there was an early storm 

on April 4 which reached 61 mm in one day. As we can see from Figure 4.4, the soil nitrate 

concentration is also high. The combination of high water infiltration (due to storm) and 

high soil nitrate concentration resulted in a large amount of soil nitrate being brought to 

the bottom soil layer. A few months following that, there was no large storm, which was 

again different from a normal year. As a result, the high concentration nitrate solution was 

drained slowly out of the bottom layer of soil. The modeled nitrate leaching also shows a 

peak over this period but the values are only close to the lower bound of the observed range. 
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This suggests that improvement is needed so the model can better capture peaks under this 

situation. 

 

Figure 4.4 Observed and model simulated nitrate leaching from bottom of soil profile from 
1995 to 2013 for (a) Treatment 1: cropland with conventional tillage and (b) Treatment 2: 
cropland without tillage. The error bars show the observational ranges from up to six 
replicates for each treatment. 

Due to the low sampling frequency, observation tends to miss some high peaks of 

N concentration in leaching. One apparent example is the peak during late 2006 and early 

2007, which can be captured by the model, but no observation is available during this 

period. 

We also notice that without tillage, N leaching is about one third lower than that 

with tillage. Without tillage, the temporal variation is also smaller. 
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4.4.4 Annual NPP 

NPP indicates the amount of C that is assimilated from the atmosphere into plants 

and thus is important in studying not only crop and ecosystem productivity, but also climate 

change feedbacks. NPP is mainly determined by plant photosynthesis and autotrophic 

respiration. It is also affected by water and nutrient stresses. In this study, N stress on plant 

growth is calculated by the reduction of NPP due to N acquisition, which can be considered 

another form of plant respiration. Figure 4.5 shows the comparison of simulated annual 

NPP against observation. Since the original Noah-MP without N dynamics also simulates 

NPP, its results are also shown here as a reference. The mean annual NPP simulated by the 

original Noah-MP is 544 gC/m2 (the same simulation for both treatments as original Noah-

MP does not distinguish tillage and no tillage). By including the N dynamics, simulated 

annual NPP is reduced to 432 gC/m2 (441 gC/m2) for T1 (T2), which is more consistent 

with observed 437 gC/m2 (471 gC/m2). The correlation coefficient increased to 0.77 for 

T1, and from 0.30 to 0.72 for T2, which is a significant improvement. This improvement 

is due to the better characterization of the amount of carbon allocated to N acquisition 

instead of growth. 

Modeled rate of NPP down-regulation—the fraction of NPP reduction due to N 

limitation—is 35.4% and 34.7% for T1 and T2, respectively. These rates are close to the 

33% of down-regulation rate used in the default Noah-MP. By dynamically simulating the 

demand and supply of N with time, these become even closer to the observations. 

Surprisingly, even with slower N cycling, T2 produces slightly higher NPP (Table 

4.3), which is consistent between model and observation. If this is the case, except for 

producing more N2O gas and N runoff, is there any benefit from tillage? The answer is yes. 

Less N fertilizer is needed for cropland with tillage. Based on the site management log, in 
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total there was 194.8 gN/m2 of N fertilizer applied to T1 from 1989 to 2013, which is less 

than the amount (210.7 gN/m2) applied to T2 during the same period. 

 

Figure 4.5 Observed and modeled annual NPP from 1989 to 2013 for (a) Treatment 1: 
cropland with conventional tillage and (b) Treatment 2: cropland without tillage. The error 
bars show the observational ranges from up to six replicates for each treatment. CTL: 
original Noah-MP without N cycling. MP-N: Noah-MP with N cycling. The letters in the 
x-axis labels are the crops harvested in that year (c: corn; s: soybean; w: winter wheat). 

4.4.5 Impacts on Carbon Cycle 

The coupling of the N dynamics into Noah-MP not only adds N related modeling 

but also affects other components of the model, i.e. the C and water cycles. This is because 
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the change in NPP affects leaf biomass and hence LAI. The change in LAI can affect 

photosynthesis, which in return affects NPP. 

Figure 4.6 shows the comparison of the simulated C related state and flux variables 

between the default and N dynamics enhanced Noah-MP. We can see that NPP is decreased 

from 544 gC/m2 to 432 gC/m2. Most of the decrease occurs before the peak growing season, 

which results in a slight decrease in LAI. However, the peak LAI has very minor increase. 

After the peak, LAI decreases more slowly than the default, which is due to the decreased 

turnover rate proportional to the NPP down-regulation rate. If the turnover rate is not down-

regulated accordingly, the peak LAI will be cut in half. Due to the slower turnover rate, 

more leaf biomass (indicated by LAI) is involved in photosynthesis. Therefore, compared 

to the default, Noah-MP with N dynamics generates higher gross primary production (GPP) 

during the second half of the growing season, although it is lower during the first half of 

the growing season. Annual mean GPP is decreased by about 28 gC/m2. 

Net ecosystem exchange (NEE) has a similar change. The annual NEE is –179 

gC/m2 (–183 gC/m2) from Noah-MP with N dynamics (default Noah-MP), which is 

comparable to the NEE in West et al. (2010) for this region. Its absolute value is decreased 

by 4 gC/m2, which means that C sink is slightly decreased. This decrease is small compared 

to the GPP decrease, probably because soil respiration is also decreased. All annual peaks 

of NPP, LAI, GPP, and NEE are delayed for about half month. This is probably due to the 

fact that the primary N fertilizations (> 10 gN/m2) were mainly applied after late June and 

thus plants encountered high N stress during the first half of growing season. 
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Figure 4.6 (left column) Monthly and (right column) climatologically seasonal cycle of 
model simulated  (a) LAI, (b) NPP, (c) GPP, and (d) NEE from default Noah-MP and 
enhanced Noah-MP with N dynamics. The values in the right column indicate annual mean 
for each term (black: default; red: N dynamics). 

4.4.6 Impacts on Water Cycle 

Through the changes in LAI and soil organic matters (SOM), the addition of N 

dynamics affects not only the C cycle but also the water cycle. The change in SOM is not 

currently considered and therefore, the impacts on the water cycle are from the change in 

LAI only, as shown in Figure 4.7. These impacts are most pronounced on plant 

transpiration, which is increased by 33 mm/a. The increase mostly occurs during and after 

the peak growing season. In Cai et al. (2014a), Noah-MP simulated evapotranspiration 

(ET) over croplands increases too fast during the first half of the growing season and 

reaches peak about one month earlier than observation. The delayed peaks of LAI and ET 
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can partly mitigate this issue. As there is more water extracted from soil by transpiration, 

soil moisture further decreases during the second half of growing season. Therefore, less 

water is available and thus soil evaporation is decreased by 9 mm/a. With the increase in 

ET, runoff is decreased by 13 mm/a. 

Therefore, besides the great implications for C modeling and the potential for being 

used in environmental predictions, the addition of N dynamics can improve the 

hydrological simulations as well. 

 

Figure 4.7 Same as Figure 4.6 except for (a) soil moisture, (b) transpiration, (c) soil 
evaporation, and (d) runoff. 
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4.4.7 Impacts of N Fertilizer Application 

Observed N fertilizer application data is used in this study. However, this type of 

data is not always available, especially when models are applied in large regions. Often we 

only know the approximate amount of N fertilizer applied, without information on the exact 

dates. To guide the future large-scale application of this model, two additional experiments 

are run: (1) N fertilizer is applied on June 20 every year and (2) N fertilizer is applied on 

April 15 every year. The first experiment is designed because a large amount of N fertilizer 

is applied mostly during mid-June and early July. Other dates are also reported in the 

literature, therefore, we use April 15 as another example. Both experiments use the same 

amount of N fertilizer as the management log, which on average is 7.8 g N m–2 a–1. 

Figure 4.8 shows comparison of some of the most relevant results between the two 

experiments and the default with recorded dates and amount of N fertilizer application. 

Despite the different application time, the two experiments produce very consistent NPP 

with the default. The June 20 experiment is much closer to the default, even the seasonal 

variation is identical to the default. The largest discrepancy is in 1993 and 1996. Based on 

the management log, in these two years, a large amount of N fertilizer was applied, which 

resulted in much higher NPP than results from the two experiments. Since April 15 is much 

earlier than the primary fertilizer application dates, NPP from this experiment is flattened 

out through the year. This also confirms the statement in Section 4.4.5 that later N fertilizer 

applications delay plant growth. Simulated N uptake from both experiments shows exactly 

the same story as NPP. 

The simulated N leaching shows the opposite pattern to NPP. The default 

simulation produces the highest leaching, followed by the June 20 experiment and then the 

April 15 experiment. This is very likely because the fertilizer application dates are closer 

to the flood season for the former two cases and the chance of fertilized N being flashed 
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out is higher. The difference in N fertilization dates also clearly affects the simulations of 

total soil nitrate. In the June 20 experiment, soil nitrate reaches the lowest level in May 

because no N fertilizer is applied before June 20. In the default case, N fertilizer can 

actually be applied as early as April, but with a smaller amount before mid-June, which 

prevents the soil nitrate concentration from getting too low. Besides a large amount of N 

fertilizer applied in later months, the other reason that the default simulation reaches the 

highest concentration of soil nitrate is because it produces higher NPP, which can be 

returned to soil for decomposition. 

 

Figure 4.8 (left column) Monthly and (right column) climatologically seasonal cycle of 
model simulated (a) NPP, (b) N uptake, (c) N leaching, and (d) soil nitrate with different 
dates for N fertilization: real, June 20, and April 15. The values in the right column indicate 
annual mean for each term (black: real; red: June 20; blue: April 15). 
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Overall, the default simulation grows better plants (higher NPP) because N 

fertilizer is applied based on expert judgment of plants’ demand. At the same time, 

however, it produces more N leaching. The experiment with closer dates of N fertilizer 

application to reality can better reproduce the N dynamics in observation. Therefore, 

although we cannot always know the exact dates of N fertilizer application, a survey on 

this can help to improve model simulation. 

4.4.8 Analysis of N Uptake 

As described in Section 4.3.2, plants can get N for growth from four pathways: 

passive uptake, active uptake, fixation, and retranslocation, and the last three require C 

costs. Figure 4.9 shows the actual N uptake from these pathways and their percentages of 

contribution to the total N uptake. Passive uptake is the dominant pathway, which 

contributes 57.7% of the total N uptake. Fixation, active uptake, and retranslocation 

contribute 28.6%, 8.7%, and 5.0%, respectively. This contrasts the results from the study 

by Brzostek et al. (2014) for non-fertilized trees, in which passive uptake only accounts for 

a small contribution. This is understandable because the purpose of fertilization is to 

minimize active uptake so that more NPP can be retained for crop growth. As demonstrated 

in Timlin et al. (2009), a higher fertilization rate results in a higher ratio of N uptake in 

transpiration to total N uptake. On the one hand, fertilization maintains soil nitrate 

concentration at high level. On the other hand, higher NPP for crop growth in turn results 

in higher LAI and thus higher transpiration. During peak growing season, therefore, plants 

receive a large amount of N under the combination of high transpiration and high soil 

nitrate concentration. During other periods, biological N fixation dominates. 
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Figure 4.9 Daily climatology (1989–2013) of nitrogen uptake by pathways expresses as (a) 
actual amount of uptake and (b) percentage of total uptake. 

4.4.9 Analysis of Major Soil Nitrate Fluxes 

The soil nitrate storage with time is an outcome of the variations in incoming and 

outgoing fluxes. Besides N fertilizer and atmospheric deposition, humus mineralization 

and residue decomposition are the two major incoming fluxes. Because N fertilizer is a 

jumping behavior and atmospheric deposition is a relatively small fraction in this study 

(~1.5 gN/m2/a), they are not analyzed here. The major outgoing fluxes are denitrification, 

leaching, and plant uptake. 

Figure 4.10 shows the seasonal variation of the above major fluxes. During the 

growing season, N fertilizer provides an important role in meeting the plant N demand, 

however, residue decomposition still makes the largest contribution and is the dominant 

factor responsible for the increase in total soil nitrate. During the non-growing season, a 
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large amount of N is lost through denitrification and N leaching. However, when it reaches 

the peak growing season, plants consume a large fraction of soil nitrate, which leaves very 

little for denitrification and leaching. N leaching is mostly associated with the timing and 

intensity of precipitation. Denitrification is also associated with precipitation, but it is 

directly related to the soil water content. High denitrification rate occurs during high soil 

water content, especially during water logging. 

 

Figure 4.10 Daily climatology of the soil nitrate (blue solid line) and some major fluxes 
(color label bars) going in (humus mineralization and residue decomposition) and out 
(plant uptake, nitrate leaching, and denitrification) of the soil nitrate pool. 

4.5 CONCLUSIONS 

In this study, a dynamic N model is coupled into Noah-MP by incorporating FUN’s 

strength in plant N uptake and SWAT’s strength in soil N cycling and agricultural 

management.  

We evaluated the new model at KBS that provides good-quality, long-term 

observed N and ecological data. The model simulated soil moisture is consistent with 

observation, which shows that Noah-MP provides a good water environment for the N 
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cycling. The simulated concentrations of soil nitrate and N leaching from soil bottom also 

compare well with observations. Although the model does not simulate some peaks well, 

especially for N leaching, the averages are very close to the observed values and the 

correlation coefficients are reasonable. Considering the wide spread of the range error bars 

defined by the measurements at the six replicates, the model shows high skill in capturing 

the major N flux/state variables. The significant improvement of annual NPP simulation 

demonstrates that the N limitation effect on plant growth is well represented in the model. 

Moreover, the addition of N dynamics in Noah-MP improves the modeling of the 

C and water cycles. Comparing to the default Noah-MP, NPP simulations are improved 

significantly, in terms of consistent averages and much higher correlation coefficients with 

observation. The temporal pattern of simulated ET is also improved, featuring lower ET 

during spring and delayed peak. 

This enhancement is expected to facilitate the simultaneous predictions of weather 

and environment by using a fully coupled system. 
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Chapter 5: Conclusions 

5.1 CONCLUSIONS 

This dissertation used Noah-MP as an example LSM to: (1) examine the effect of 

its recent development in improving hydrological simulations over the Mississippi River 

Basin; (2) investigate the advantages and disadvantages of Noah-MP in assessing the water 

balance over CONUS; (3) couple the FUN plant model and SWAT’s soil nitrogen 

dynamics into Noah-MP and evaluate how the coupled model characterizes the major 

nitrogen fluxes and state variables; and (4) analyze how nitrogen dynamics affect the 

carbon and water simulations. 

Chapter 2 reported that, with groundwater dynamics included in Noah-MP, WTD 

takes longer to reach equilibrium than without groundwater dynamics. This long WTD 

spin-up time influences the spin-up times of other variables because, when the water table 

is far from an equilibrium state, other variables such as runoff, ET, and soil moisture need 

to be adjusted to help WTD reach equilibrium. For the entire MRB, at least 34 years are 

required for the model to spin-up. For some mountainous regions with very deep water 

tables, hundreds of years may be required for the model to spin-up. 

Runoff is found to be sensitive to three parameters: surface dryness factor (α), 

saturated hydraulic conductivity (k), and saturated soil moisture (θmax); these three factors 

are selected for model calibration to improve runoff simulation. Although lumped 

calibration can improve model performance, distributed calibration is needed to obtain the 

best parameter values for some wet regions. If time and resources are limited for 

conducting automatic calibration (e.g., in this study), a better understanding of model 

physics and more analyses of observational data would shorten the calibration time and 

benefit the model performance. 
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Noah-MP has shown significant improvements in hydrological modeling. (1) The 

Noah-MP simulated runoff is significantly improved compared with the baseline Noah 

LSM output in the NLDAS-2 framework. The spatial pattern of the Noah-MP simulated 

runoff matches fairly well with both the UNH-GRDC runoff and the USGS hydrologic unit 

runoff. We believe that this is the first time the USGS hydrologic unit runoff has been used 

in LSM evaluation and found to be very reasonable. (2) Groundwater evaluation indicated 

that Noah-MP captures the general spatial pattern of the climate conditions and captures 

the temporal patterns for wet regions. However, it fails in simulating the absolute values 

and the temporal variation in the water table for dry regions. (3) The addition of leaf 

dynamics to Noah-MP has improved its performance in ET simulation for natural land 

cover types. (4) One of the highlights of the study is that Noah-MP produces soil moisture 

values consistent with SCAN observations for the top two soil layers (0–10 cm and 10–40 

cm), which indicates its great potential for use in studying land–atmosphere coupling. (5) 

The Noah-MP-simulated TWS anomaly agrees very well with GRACE observations, 

which may partly benefit from groundwater dynamics’ inclusion in the model, considered 

the second largest component of the TWS anomaly for most of the MRB. 

Chapter 3 used the NLDAS test bed to assess the hydrological performance of four 

LSMs: Noah, Noah-MP, CLM4, and VIC. All models were driven by the same NLDAS-2 

atmospheric forcing and evaluated against the same observational data sets. Compared to 

Noah, the other three models show significant improvements in TWS and streamflow and 

moderate improvements in ET and soil moisture. Among these LSMs, Noah-MP shows the 

best performance in simulating soil moisture and is among the best in simulating TWS; 

CLM4 shows the best performance in simulating ET; and VIC shows the best performance 

in simulating streamflow. 
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Deficiencies are also found in these LSMs. The Noah-MP simulated ET grows too 

fast in the spring, which coincides with the fact that its modeled LAI peaks too soon. 

Although the CLM4 model produced the highest correlation coefficient for TWS anomaly 

for the entire CONUS, it produced either too high or too low of an amplitude of the annual 

TWS variation. In addition, CLM4 produced much weaker soil moisture variability than 

both SCAN observations and other LSMs. Finally, the VIC model consistently 

overestimated ET compared to observations from MODIS and FLUXNET. 

In summary, this study gave an overview of the performances of four LSMs over 

CONUS. We demonstrated that, by providing reliable atmospheric forcing data, four in-

house LSMs (with more to be added), most appropriate observational data, and necessary 

tools, the NLDAS test bed is a valid platform for evaluating land models on continental or 

large river basin scales in the U.S. 

Chapter 4 described the coupling of N dynamics into Noah-MP by incorporating 

FUN’s strength in plant N uptake and SWAT’s strength in soil N cycling and agricultural 

management. The new model was then evaluated at KBS where provides good-quality, 

long-term observed N and ecological data. The model-simulated soil moisture is consistent 

with observation, which shows that Noah-MP provides a good water environment for the 

N cycling. The simulated concentrations of soil nitrate and N leaching from soil bottom 

also compare well with observations. Although the model does not most effectively 

simulate some peaks, especially regarding N leaching, the averages are very close to the 

observed values and the correlation coefficients are reasonable. Considering the wide 

spread of the range error bars defined by the measurements at the six replicates, the model 

performs with high skill in capturing the major N flux/state variables. The significant 

improvement of annual NPP simulation demonstrates that the N limitation effect on plant 

growth is well represented in the model. 
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Moreover, the addition of N dynamics in Noah-MP improves the modeling of the 

C and water cycles. Comparing to the default Noah-MP, NPP simulations are improved 

significantly in terms of consistent averages and much higher correlation coefficients with 

observation. The temporal pattern of simulated ET is also improved, featuring lower ET 

during spring and delayed peak. This enhancement is expected to facilitate the 

simultaneous predictions of weather and environment by using a fully coupled system. 

5.2 CONTRIBUTIONS TO THE UNDERSTANDING OF THE EARTH SYSTEM 

My studies contribute to the continuing improvement of our understanding and 

modeling of climate and environmental processes by identifying the strengths and 

limitations of the state-of-the-science LSMs. For example, Noah-MP has shown high skills 

in simulating the major hydrological variables. The inclusion of groundwater model and 

dynamic leaf model improves the model’s performances and enables model’s capability in 

representing these dynamics. However, they are still in their infancy and need further 

improvement. Overall, Noah-MP and other LSMs are doing reasonable jobs in representing 

the natural processes; however, human related processes are still poorly represented in 

LSMs, which should be the direction for LSM development. 

In line with this, by integrating the N dynamics into Noah-MP, I have enabled the 

model’s capability of representing agricultural managements such as N fertilization and 

tillage. This provides a useful tool for understanding the interactions of the N cycle with 

climate and carbon and water cycles. The evaluation at the KBS site shows that the coupled 

model is capable of representing these interactions. The accurate characterization of N 

limitation on plant growth significantly improves C simulation. The inclusion of N 

dynamics decreases NPP by 20.6%, LAI by 3.2%, GPP by 2.6%, and NEE (sink) by 2.2%, 

but increases transpiration by 15.0%. All these C and water related variables are delayed 
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for about half month, which is considered closer to reality. Because these phenomena are 

from a single site only, they may not apply to other locations. Nonetheless, by providing a 

powerful modeling tool, this is a big step towards the goal of better understanding the 

interactions of climate, hydrological cycle, and biogeochemical cycles. 

My studies explain some phenomena about TWS. Based on hydrological modeling 

using Noah-MP and CLM4, the contributions to TWS anomaly from soil moisture, 

groundwater, and snow are equally important for CONUS, with each contributing 

approximately 1/3. However, this largely depends on location, especially for snow. If we 

look at the state of Florida only, the contribution from snow is negligible. However, it may 

not be true that less snow makes lower contribution to TWS anomaly. For example, if we 

look at the Southeastern region, snow contributes less than 5% to the TWS anomaly in 

terms of R2; however, it contributes more than 40% to the TWS anomaly in terms of RMSE. 

This is because in this region, snowfall varies largely from year to year. If we analyze the 

contributions of TWS anomaly from the water flux terms (precipitation, ET, and runoff) 

perspective, ET is the dominant flux. However, these may be model specific and we need 

to confirm this by collecting observations for all of these storage terms simultaneously for 

the same region. 

5.3 FUTURE WORK 

To address the uncertainties and limitations of this dissertation, future work needs 

to be done. First of all, as recommended in Chapter 2, the dynamic leaf scheme in Noah-

MP can capture the LAI growth in natural land but not in cropland. In Chapter 4, the new 

Noah-MP with N dynamics has difficulty with reproducing observed annual NPP for some 

of the simulation years because currently the model is not capable of simulating specific 

crops. Both issues require a crop model to be included in Noah-MP in the future to simulate 
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specific crops. Other agricultural management practices also need to be considered, such 

as tillage, harvest, and tile drainage. 

River routing—horizontal water transport between grid cells—is considered in 

Chapter 3 but neglected in Chapter 2; this is an issue often neglected in coupled weather 

and climate models. This may not be a big issue in early weather and climate models at 

coarse resolution. With the increasing of model resolution (Wood et al., 2011), however, 

the effect of horizontal water transport becomes more pronounced on weather and climate 

predictions and thus the inclusion of this process becomes an urgent task. 

In Chapter 4, since the N dynamic model is newly coupled into Noah-MP and only 

evaluated at one experimental site, we need to make more of an effort in model evaluation 

and improvement. The logical next step is to evaluate the model at additional sites and 

expand evaluation to regional and/or global scales. To make the model capable of doing 

water quality modeling, a riverine N transport scheme needs to be included. Moreover, soil 

organic matter dynamics affects the organic N storage and hence the decomposition and 

mineralization rates. Therefore, we need to improve the parameterization for soil organic 

matter dynamics. Finally, since phosphorus co-limits plant growth (Elser et al., 2007) and 

is also an important nutrient causing eutrophication (Carpenter, 2008; Schindler et al., 

2008; Conley et al., 2009), Noah-MP needs to include a phosphorus dynamics model. 

In summary, the studies presented here not only identified the strengths and 

limitations of Noah-MP and the other three LSMs but also significantly advanced the 

model development of Noah-MP by completing its plant and soil N dynamics. I hope these 

can benefit future LSM development. The ultimate goal of these studies is to facilitate the 

application of LSMs in climate change mitigation and environmental protection. 
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Appendix: Acronyms 

BNF Biological nitrogen fixation  

C Carbon 

CLM Community Land Model 

CONUS The continental United States  

ET Evapotranspiration 

FACE Free Air CO2 Enrichment 

FUN Fixation and Uptake of Nitrogen 

GLASS Global Land/Atmosphere System Study 

GPP Gross primary production 

GRACE Gravity Recovery and Climate Experiment 

GVF Green vegetation fraction 

IDS Interdisciplinary Research in Earth Science 

KBS Kellogg Biological Station 

LAI  Leaf area index 

LSM Land Surface Model 

LTER Long-term Ecological Research 

MODIS Moderate-resolution Imaging Spectroradiometer 

MRB Mississippi River Basin 

N Nitrogen 

NCEP NOAA’s National Centers for Environmental Prediction 

NEE Net ecosystem exchange 

NLDAS North American Land Data Assimilation System 

NOAA National Oceanic and Atmospheric Administration 
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Noah-MP Noah Land Surface Model with MultiParameterization options 

NPP Net primary productivity 

NSE Nash–Sutcliffe efficiency 

NWS National Weather Service 

PRISM Parameter–elevation Regressions on Independent Slopes Model 

RMSE Root-mean-square error 

SCAN USDA Soil Climate Analysis Network 

SIMGM  SIMple Groundwater Model 

SMC Soil moisture 

SOM Soil organic matters 

STATSGO State Soil Geographic Database 

SWAT Soil and Water Assessment Tool 

SWE Snow water equivalent 

TWS Terrestrial water storage 

UNH-GRDC The University of New Hampshire/Global Runoff Data Centre 

USDA United States Department of Agriculture 

USGS United States Geological Survey 

USLE Universal soil loss equation  

VIC Variable Infiltration Capacity 

WRF Weather Research and Forecasting 

WTD Water table depth  
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