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Glycine receptors (GlyRs) are ligand-gated ion channels (LGICs) that, along with 

other members of the cys-loop superfamily of receptors, mediate a considerable portion 

of fast neurotransmission in the central nervous system (CNS).  GlyRs are pentameric 

channels, organized quasi-symmetrically around an ion-conducting pore.  Opening of the 

integral ion pore depends on ligand binding and transduction of this binding signal to the 

channel gate.   

Research presented in this dissertation describes a number of critical electrostatic 

interactions that play a role in conserving the closed-state stability of the receptor in the 

absence of ligand, ensuring that receptor activation occurs only upon neurotransmitter 

binding.  These amino acids, aspartic acid at position 97 (D97), lysine 116 (K116), 
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arginine 119 (R119) and arginine R131 (R131) are charged residues that interact with one 

another through electrostatic attraction.  When D97 is replaced with any other amino acid 

this destabilizes the closed state of the channel and causes spontaneous GlyR channel 

opening.  I show that restoration of this electrostatic interaction in GlyR bearing double 

mutations in which the charges are swapped  (D97R/R119E and D97R/R131D) markedly 

decreases this spontaneous current.  In addition, I investigate how these residues that 

interact at the interfaces between receptor subunits affect the efficacies of GlyR partial 

agonists.  My work shows that the partial agonist taurine is converted into a full agonist 

at both D97R and R131D receptors.   

Furthermore, I analyzed the structure of the more extracellular part of the 

transmembrane (TM) 2 segment that lines the ion channel pore, showing that it is 

unlikely that this fragment (stretching from T13’ to S18’) is constrained in a true alpha 

helical conformation.  From this work, using disulfide trapping and whole cell 

electrophysiology, I conclude that a significant level of flexibility characterizes this part 

of the TM2 domain.  This segment includes residue S267, previously shown to be 

significant for alcohol and anesthetic actions, as well as residue Q266 that, when mutated, 

produces a hyperekplexia-like phenotype.  The range of movement of residues in this 

region may therefore play an important role not only in channel gating but also in how 

modulators of GlyR function exert their actions.     
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CHAPTER 1: INTRODUCTION 

 

1.1 The glycinergic synapse: background and significance 

The central nervous system (CNS) is responsible for thought processes, memory, 

motor coordination and other functions vital for sustaining body homeostasis. Consisting 

of the brain and spinal cord it represents an exceptionally complex network of cells that 

governs human consciousness and understanding of self, as well as other more autonomic 

functions such as breathing, digestion and heart rate control. With trillions of cells and 

even more neuronal connections these neuronal networks are challenging to explore and 

decipher. The complexity of specialized contacts of neuronal “chatter”, synapses, are 

governed by the abundance of neurotransmitters that mediate chemical communication 

among neurons. These formations are believed to hide the key to the understanding of 

numerous CNS disorders (Figure 1.1:glycinergic synapse). Anesthetics, alcohols and 

various drugs of abuse are just some of the compounds that are known to exert their 

effects by modulating the function of neuronal proteins.  

The glycine receptor (GlyR) plays a significant role in fast neuroinhibition in the 

CNS.  Although numerous studies have localized this integral membrane protein in 

higher brain regions (egs, hypothalamus, nucleus accumbens and cerebellum), it is 

thought to play its major role by acting on the neurons of the spinal cord, brain stem and 

retina (Lynch, 2004).  Numerous studies have shown that many pharmacologically 

important agents and substances of abuse modulate the function of GlyRs, in this way 

affecting the balance between the inhibitory and excitatory influences in the CNS. The 
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major role of GlyRs in postsynaptic inhibition makes them an attractive target for drug 

development.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1.1 The glycinergic synapse. Some of the molecular constituents playing 
important roles in the inhibitory synapse are presented here: glycine is released from 
presynaptic vesicles onto a postsynaptic cell where it activates GlyRs.  Gephyrin is a 
protein organizing heteromeric GlyRs at the membrane surface by acting as a bridge 
between the receptor’s β subunit and cytoskeleton. GlyT1 and GlyT2 are transporters 
responsible for reuptake of glycine from the synapse. (Adapted from Laube et al., TRENDS in 
Pharmacological Sciences, Vol 23 No.11) 
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1.2 Molecular biology of glycine receptor 

The GlyR belongs to the cys-loop superfamily of receptor subunits, which include 

the excitatory nicotinic acetylcholine receptor (nAChR) and serotonin-3 receptor (5-

HT3R), as well as other inhibitory receptors, γ aminobutyric acid type A (GABAA) and γ 

aminobutyric acid type A, subclass rho (GABAA-ρ).  These pentameric proteins are 

characterized by their dependence on ligand binding for the opening of their integral ion 

channels and are recognized by an invariant cys-loop structure in the extracellular domain 

(ECD).  Each of the five GlyR subunits consists of a large ECD, a transmembrane 

domain consisting of 4 segments (TM1-4), a long intracellular loop connecting the TM3 

and TM4 segments and a short C-terminal domain located on the extracellular side 

(Lynch, 2004).  Agonist binding pockets are located within the ECD.  When 5 subunits 

co-assemble to form a receptor, each subunit contributes its TM2 segment to form the 

pore, which also constitutes the ion selectivity barrier of the channel.  Thus far 5 subunit 

encoding GlyR genes have been identified: α1-4 and one β subunit (Betz et al., 1991).   

The amino acid glycine is an endogenous ligand at GlyR. It controls fast 

neurotransmission in the central nervous system by activating its channel at glycinergic 

synapses and allowing Cl- ions to pass across the postsynaptic membrane. If Cl- influx 

occurs as a result of GlyR opening (when the cell membrane potential is less negative 

than ECl-) this will hyperpolarize the membrane and inhibit action potential generation. In 

the special case of “shunting inhibition” glycine balances excitatory and inhibitory tones, 

but not by simple subtractive hyperpolarization. In this case GlyR activation will result in 

the reduction of depolarization caused by the excitatory input without causing large 
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outward Cl- current (as is the case when the Cl- gradient is small or non-existent; ECl- ≈ 

Em) (Price et al., 2009).  Prenatally glycine can play a different role and depolarize the 

postsynaptic membrane. This is due to the difference in Cl- concentrations during 

embryogenesis. Higher intracellular concentrations of chloride during this stage will 

cause efflux of this anion in order to reach ECl- (due to the change in Cl- gradient). As 

neurons mature they express a specialized transporter (K+-Cl- co-transporter) that will 

drive down intracellular Cl- concentrations (Stein and Nicoll, 2003), resulting in the 

transition of both GABAA and glycine receptors to the inhibitory roles they play in 

adults.   

 Local movements of different segments in the loops of the ligand binding domain 

(LBD) are believed to initiate the transduction of the glycine binding signal to residues 

located in TM2 that constitute the channel gate. Although a recent crystal structure and 

refined model of the nAChR (Unwin, 2005) resulted in a broader understanding of the 

structure of the cys-loop ligand-gated ion channels much remains to be determined to 

gain a full understanding of the steps involved in conformational movements involved in 

signal propagation after the ligand binds. This warrants additional studies to be conducted 

to solve the puzzle of the glycine receptor structure, adding insight into the mechanisms 

by which the cys-loop superfamily of receptors function. 

Changes in specific amino acids of glycine receptors can render them more or less 

sensitive to glycine. There are many naturally occurring mutations at GlyR that cause 

serious and potentially fatal disorders.  Substitutions of glutamine for arginine at residue 

271 (R271Q; Rajendra et al., 1995) or glutamate for lysine at position 276 (K276E; 
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Lewis et al., 1998) for example, are two mutations that can cause hereditary startle 

disease, or hyperekplexia. These mutations result in a significant decrease in GlyR 

agonist sensitivity.  Such genetic defects cause abnormal, exaggerated reflexes in 

response to sudden, external stimuli (Harvey et al., 2008).  Loss of the glycine transporter 

2 (GlyT2), which reduces glycine output, also unsurprisingly, produces the hyperekplexia 

phenotype (Rees et al., 2006).  Many other amino acid substitutions of GlyR subunits 

have been found to occur in families affected by this neurological disorder.  In the most 

recent collaborative study, various new mutants have been uncovered and subsequently 

studied. In detail, Chung et al. (2010) found that R65W/L, R252C and G254D mutations 

all resulted in either nonfunctional receptors or receptors that could not assemble 

properly, exhibiting no measurable currents at up to 30 mM glycine concentrations.  

Furthermore, E103K, S231N that were characterized by the wildtype-like maximally 

inducible currents had significantly higher glycine EC50s. Another mutation mentioned in 

their studies, D165G reduces the magnitudes of currents elicited by maximally effective 

glycine concentrations, causing in this way a hyperekplexia phenotype (Chung et al., 

2010).     

Other roles that glycine receptors play are noteworthy and have been extensively 

described, in particular, work highlighting the importance of glycinergic signaling in 

amacrine cells (Wassle et al., 1986, Wassle and Boycott, 1991) and 

immunohistochemical research that identified Gly and GABAARs as sources of inhibitory 

input of specialized cells within the mammalian retina (Grunert et al., 2000).  
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Considering the importance of the spinal cord in pain signal transduction it did not come 

as a surprise when GlyRs were found to play a role in controlling nociception.  Plenty of 

evidence for this has been accumulated in the last couple of years.  GlyR α3 subunits are 

found in the dorsal horn (specifically as part of lamine II) of the spinal cord where 

afferent endings are located. In addition, mice lacking this subunit display insensitivity to 

chronic inflammatory pain (Lynch et al., 2006); it should therefore prove useful to 

develop analgesics that specifically target this GlyR isoform.   

Although it was originally believed that the β subunit plays exclusively structural 

and organizational roles, such as receptor localization through interaction with gephyrin 

(Meyer et al., 1995), recently published data proved this assumption to be wrong.  

Mutations studied in the β subunit established its significant role in agonist binding at 

interfaces between the subunits (Grudzinska et al., 2005).  More comprehensive 

knowledge about the structure of these receptors will increase our understanding of their 

functioning as well as the functioning of related receptors. This will further assist us in 

explaining how different pharmacological agents modulate the activity of this group of 

CNS targets and hopefully allow us to design superior, highly selective therapeutic 

agents.  

 

 

 



 

Figure 1.2 Graphical representation of a GlyR subunit   A large extracellular domain 
where residues responsible for ligand binding are found is depicted here, together with 
the four transmembrane domains (TM1-4), the TM2-3 linker region (critical for signal 
transduction), a long intracellular TM3-4 loop and a short C terminal tail located on the 
extracellular side.  
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Alanine (Ala, A)          Arginine (Arg, R)         Aspartate (Asp, D)        Asparagine (Asn, N) 
 
 

                                             
 
Cysteine (Cys, C)         Glycine (Gly, G)       Glutamine (Gln, Q)           Glutamic acid (Glu, E) 
 
   

                                     
 
 
Histidine (His, H)         Isolucine (Iso, I)            Leucine (Leu, L)               Lysine (Lys, K)                  
 
 

                                           
  
Methionine (Met, M)   Phenylalanine (Phe, F)      Proline (Pro, P)            Serine (Ser, S)  
 
 

                                   
 
Threonine (Thr, T)       Tryptophan (Trp, W)         Tyrosine (Tyr, Y)             Valine (Val, V) 
 
 
Figure 1.3 Structures and nomenclature of the twenty naturally-occurring amino 
acids Glycine is boxed in orange, negatively charged residues in red, and those carrying 
an overall positive charge in blue. A black dashed box highlights cysteine, a residue 
capable of forming a disulfide bridge. (Adapted from Timothy Paustian, 
http://lecturer.ukdw.ac.id/dhira/BacterialStructure/Proteins.html, 2001) 
 



1.3 Agonist binding properties  
 
 

In order for the intrinsic channel of GlyR to open, the receptor has to be 

activatable and, in most cases, the agonist has to be present. This activatable (but not yet 

ion permeating) state is called the closed state, and transitions among states are 

simplistically outlined below: 

 
RC + A           RAC          RAO 

 
Here, RC represents a receptor found in its most stable closed state, A is the agonist, RAC is a 

receptor going through conformational changes caused by agonist binding, and RAO is a receptor 
conducting ions through the open pore. 

 
 

When glycine binds to initiate channel opening, it does so by interacting with specific 

amino acids located at the interfaces between the subunits.  Six regions of amino acids 

constitute the known binding site for glycine on the GlyR.  On the plus (+) side of the 

interface, between the adjacent subunits, loops A, B and C come together and interact 

with β sheets labeled D, E, F carrying residues that form the opposite, minus (–) side of 

the binding region (Lynch, 2004). Many different groups have worked on building the 

knowledge that we today have about the location of glycine binding. The work on 

identifying the exact residues that may interact with glycine has proven difficult, but 

nonetheless, informative. We now know that loop A contributes residues I93 and N102 

(Vafa et al., 1999). It has also been shown that residues R119, as well as R131, play a 

significant role in the formation of the binding pocket. Domain B mutants have been 

harder to interpret, since all of those studied seemed to affect both binding and gating 

aspects of glycine receptor activation. Nevertheless, available data point to the 
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importance of the F159, G160 and Y161 residues (Schmieden et al., 1993). Loop C is 

interesting because it is a part of a second cys-loop, found only in the GlyR. This 

disulfide bridge appears to play a role in stabilizing the secondary structure of the agonist 

binding domain by keeping the residues important for interacting with the agonist in the 

proper orientation. Residues from C loop, shown to have a significant role in agonist 

binding, are L200, Y202 and T204 (Rajendra et al., 1995).  A complete understanding of 

the complementary  (-) side of the binding interface, strands D, E and F, still remains 

elusive and work on this region will help us further our understanding of the structure of 

the binding pocket as well as strengthen what we know about the mechanism of binding. 

An aspartate residue at position 97 (D97) was implicated previously (Beckstead et al., 

2002) as an important part of the (+) side of the binding interface.  When this aspartate is 

mutated to any other amino acid this renders GlyR spontaneously active, showing a 

critical role of this amino acid for closed state stability and receptor activation (Chapter 3: 

Todorovic et al., 2010). Besides the role it plays in stabilizing the receptor in the closed 

state it also affects glycine EC50 and strychnine IC50 values. This strongly suggests a role 

for this residue in the formation of the agonist-binding pocket. 

Until recently it was believed that the α subunit alone contributes to the glycine 

binding domain. This thought arose from the finding that incorporating a β subunit 

reduces apparent cooperativity of binding (represented with the lower Hill coefficient 

value).  However in 2005, a paper published in Neuron showed that agonist efficacy is 

indeed affected by β subunit mutations (Grudzinska et al., 2005). In particular, this group 

found that negatively charged glutamic acid residues at positions 157 and 180 on the β 
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subunit appear to interact with the glycine molecule, by possibly stabilizing its α amino 

group (Grudzinska et al., 2005). They also note that, as part of the (-) interface, positively 

charged arginines at positions 65 and 86 contribute to glycine binding as well, most likely 

by interacting with the glycine α carboxylate side chain (Grudzinska et al., 2005).   

 
 
1.4 Signal transduction connects agonist binding and channel gating 
 

After a glycine molecule docks at the interface between the subunits this binding 

signal has to travel more than 40 angstroms to the pore region in order for the channel to 

be opened (Miyazawa et al., 1999).  

The mechanism responsible for this activation has been and continues to be a 

major mystery, and knowledge of the steps involved in the activation pathway of GlyR 

would explain how different pharmacologically important agents such as ethanol 

modulate this process. More detailed knowledge of this mechanism would then allow us 

to find more selective agents that would be able to modulate different steps of glycine 

receptor function. In addition, the details of the movements required for activation would 

also add to our understanding of receptor structure. 

In the related nAChR, signal transduction after agonist binding has been described 

as a “Brownian conformational wave” that travels down the interface between the 

binding subunits (Purohit and Auerbach, 2007). Auerbach’s group performed calculations 

to show time-dependent relative movements of different extracellular segments of the 

nAChR, that they label “Phi blocks”. Their calculations are based on the ratio between 

the rates of activation (β) and rates of deactivation (α) measured using multiple mutant 
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receptors, each representative of a different segment. They call the calculated ratio values 

φ, representing the relationship between free energy changes that occur as the receptor 

switches between the “end” states (open and closed).  As expected, the binding 

domain/loop 5 (Chakrapani et al., 2003) of the muscle nAChR has the highest φ value 

(0.93), which translates into an almost instant movement after acetylcholine binding. Of 

all the mutants they made nAChR αD97 showed the highest phi scores, implicating this 

area in moving early in the activation process. Movement of loops 2 and 7 comes next 

(Chakrapani et al., 2004, Purohit et al., 2007), followed by the M2 cap, a segment 

homologous to GlyR’s TM2-3 linker region. This area has been implicated in significant 

detail in channel activation (sitting about midway between the binding site and the gate) 

in many members of cys-loop receptor superfamily of subunits (Absalom et al., 2003, 

Bafna et al., 2008). Although similar work as the φ analyses described by Auerbach’s 

group for the nAChR is currently unavailable for GlyRs, many studies have looked at 

comparable domains in an attempt to shed some light on allosteric transduction process 

after glycine initiates opening.  

Extensive studies on pre TM1, TM1-2 loop and the TM2-3 linker region have 

uncovered the importance that these segments play in proper channel activation (Lynch et 

al., 1997).  It is not surprising that residues close to the pore-forming TM2 domain 

constitute an important transduction point for the binding signal. Therefore, most likely 

due to the proximity of these residues to the pore, almost any change in these segments 

will cause a disruption of signal transduction to the gate. Kash et al. (2003) illustrated the 

importance of the interaction between loops 2 and 7 (the disulfide loop conserved in all 
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cys-loop receptors) of the GABAAR with the TM2-3 linker region in bridging binding 

and gating processes. The Schofield group revisited this interaction in GlyR, 

hypothesizing that during channel activation, charged residues, located in these loops, are 

also necessary for proper activation of GlyRs (Schofield et al., 2003). They concluded 

that residues in loop 2 and loop 7 (conserved cys loop) play an important role in the 

activation of GlyR but do not relay the message to the base of ECD/pore mouth by direct 

electrostatic interaction with residues from the TM2-3 loop as seen in GABAAR study 

(Schofield et al., 2003).  This points to differences among activation processes in 

different members of the cys-loop family of receptor-activated channels.  

Additional evidence for the importance of the TM2-3 linker region in transducing 

the binding message came from a detailed study of the conserved arginine residue at 

position 271 in the α1 GlyR subunit.  Mutations of this residue occur naturally and are 

known to affect glycine efficacy and potency as well as decrease ion conductance across 

the pore (Langosch et. al., 1994).  As mentioned above R271L and R271Q are mutant 

receptors that cause hyperekplexia (Ryan et al., 1992). This mutation also converts 

taurine and β alanine into competitive antagonists while not affecting their binding 

profiles (Laube et al., 1995). All this points to the importance of this residue, and this 

region in general, in the proper activation and gating of GlyR. Mutations of comparable 

residues in other cys-loop LGICs also affect gating and as a result cause various disorders 

(Croxen et al., 1997, Baulac et al., 2001). 

The cysteine accessibility method was used previously to study the residues of the 

TM2-TM3 linker region. This work confirmed that changes in these residues disrupt the 
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activation process and has also uncovered higher than expected flexibility of the region. 

(Dupre et al., in preparation). Specifically, many of the single cysteine mutants in this 

area show crosslinking which, when assayed in C41A and C290A mutant backgrounds 

have no conceivable way of forming the disulfide bonds other than between the subunits. 

This indicates that the TM2-3 linker has a high degree of flexibility, a characteristic that 

one would expect in a region implicated in interaction with the binding domain.   

 

1.5 Gating and ion permeation 

Residues of the TM2 segment line the GlyR pore and form the gate that is 

ultimately responsible for ion permeation. The gate forms the barrier dividing the 

extracellular and intracellular milieu.  It is at the gate that many functional decisions are 

made, namely, what ions pass (ion selectivity), when ions pass through (conducting and 

non-conducting receptor states) and how many ions pass per unit time (unitary 

conductance).  The GlyR pore is lined with hydrophilic residues and it contains two rings 

of positive charges, R252 and R271 that are believed to attract and organize anions 

before they are transported across the membrane (Keramidas et al., 2004).  Substitution 

of arginine 252 by alanine prevents the expression of the receptors so this position could 

not be studied in detail.  When residues around this site are mutated this causes a reversal 

in permeability, causing the GlyR channel to conduct cations. This most likely occurs 

when positively charged arginine side chains at position 252 are not positioned properly, 

changing in this way ion selectivity. Mutations of R271 do not change ion selectivity 

even when negatively charged residues are engineered at this position, but, as mentioned 
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previously, naturally-occurring mutations at this position do in fact affect channel 

function and cause hereditary startle disease (Shiang et al., 1993).  Data from Bormann et 

al. (1994) support the role of this residue in affecting conductance. When the β subunit is 

co-expressed with an α subunit the conductance is about half that of homomeric α 

receptors.  It is interesting to note that when a negatively charged glutamic acid found at 

the position 270 of the β subunit (the position homologous to α1 R271) is substituted 

with serine, the resulting heteromeric αβ(E270S) GlyRs display increased conductance, 

similar to the levels recorded from α1 homomeric receptors.   

  GlyR single channel recordings report variable unitary conductance. This depends 

on the expression system and subunit composition. The most frequently measured 

heteromeric αβ GlyR conducting states reported in 42-50 pS range with lower 

subconductance states between 29-36 pS (Bormann et al., 1993).  The wild type glycine 

receptor is permeable to many anions and the order of ion permeability is outlined below: 

SCN- > NO3
- > I-> Br- > Cl- > F- 

 

Although GlyR can permit different ions to pass across the pore, in vivo, Cl- is the 

most abundant anion in both the intracellular and extracellular environment, and therefore 

the primary anion that this channel will conduct. When this occurs, the membrane 

potential will be pushed towards the Cl- equilibrium potential which will in turn change 

the excitability potential of the postsynaptic cell. 
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1.6 Single channel properties 

On a whole cell level, electrophysiological recordings are limited in many ways.  

Data collected does not allow us to individually assay many of the intrinsic properties of 

the receptor, preventing a fuller understanding of receptor function. Whole cell 

recordings involve the simultaneous recording of millions of receptors and results are 

influenced by a number of unknowns: expression levels, desensitization rates and 

possibly receptor-receptor interactions. Employing patch clamp electrophysiology can 

successfully avoid some of these problems. In 1991, the Nobel Prize for Physiology and 

Medicine was awarded to Bert Sakmann and Erwin Neher for their groundbreaking 

advancement in ion channel research. They realized that by using a glass pipette tip with 

an extremely small diameter they could make a tight contact with the cell from which 

they were trying to record. The contact between the pipette and the membrane made a 

high-resistance gigaOhm seal, decreasing the background noise and making small, 

picoamp single channel current recordings a possibility. The advent of this new method 

and subsequent years of improvement led to significant progress in ion channel research. 

Hamill and Sakmann (1981) reviewed single channel conductance states in acetylcholine 

receptors and soon after, the same group of scientists published the first paper describing 

GlyR single channel properties.  In their 1983 Nature paper, Hamill et al. report that 

unitary conductance levels, recorded from mouse spinal neurons, in the presence of 

GABA or glycine differed, depending on agonist used. This was the first strong evidence 

in support of the hypothesis that these two endogenous agonists activated different 

receptors (Hamill et al., 1983).  The same year, they published additional data, using the 
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cell-attached patch clamp protocol, on glycine and GABA receptors from spinal cord 

neurons, showing that receptors open after the two agonists have bound and going on to 

describe what were just the beginning insights into glycine receptor function (Sakmann et 

al., 1983). More detailed studies on GlyR single channel kinetics came a couple of years 

later when Twyman and Macdonald (1991) published their work on glycine receptor 

currents measured from mouse spinal cord neurons in vitro. From their recordings they 

concluded that the GlyR has three distinct open state conformations: short-, medium- and 

long-lived states. They also found that as the concentration of glycine increased so did 

the frequency of occurrence of the longer-lived states. This, they thought, indicated that 

longer-lived states were probably characterized by the receptor being occupied by more 

ligand molecules (more often) than at lower concentrations (Twyman and Macdonald, 

1991).  Single channel recording techniques and analysis kept improving and the 

following years brought more insights into the kinetics of GlyR function. Beato and 

colleagues (2004), for example, studied GlyR single channel kinetics at maximally-

effective glycine concentrations (1mM) and showed that when the receptor is saturated 

with agonist, it primarily opens to only the longest-lived open state. By testing different 

models to explain their data, they demonstrated that at saturating glycine concentrations, 

the best fit of the data could be explained by a model involving the binding of three 

agonist molecules; adding a fourth or fifth binding occurrence did not improve the overall 

fit of the data, and that if these additional binding events occurred, it did not significantly 

change the efficacy of channel gating (Beato et al., 2004). The same group repeated 

comparable recordings on heteromeric α1β receptors and arrived at the same 
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conclusions; as glycine concentration increased so did the probability of channel opening 

(Beato et al., 2007). Again, at higher glycine concentrations the channels increasingly 

opened to the longest-lived state. Heteromeric α1β glycine receptor activation was fit 

best with up to three occupied binding sites, equal to the number of binding events used 

to fit data from the homomeric receptors.  Just recently another important component was 

hypothesized to be necessary for the better fit of single channel data. These additional 

closed states, termed “flipped”, are proposed to be intermediates representing the 

transition of the channel between the closed and open states. First introduced by the 

Sivilotti and Colquhoun group, this flip mechanism is suggested to represent the channel 

in a ligand-bound “closed, but high affinity state”  (Lape et al., 2008).  A model, which 

includes this “pre-open” conformation, has already been used in an attempt to explain the 

mechanism of partial agonist activation on cys-loop receptors.  Both Sivilotti and others 

(Welsh et al., in revision) propose that partial agonists at GlyR cannot achieve full 

efficacy because of their lower rate of transitioning the receptor from the closed 

(bound/resting) to the flipped state; as was shown previously partial and full agonists 

have almost identical kinetics of transitioning to and from the open state from this 

intermediate, flipped state (Sivilotti, 2010).    

 Single channel electrophysiology has also allowed for a more precise 

understanding of allosteric modulation of GlyR function.  The application of ethanol with 

glycine was shown to increase mean open burst durations (Welsh et al., 2009) while 

another group demonstrated that potentiating concentrations of Zn2+ affect GlyR kinetics 
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by increasing the probability of channel opening while also increasing burst durations 

(Laube et al., 2000). Neither ethanol nor Zn2+ affect GlyR conductance.  

 Although single channel recordings obviate many weaknesses of macroscopic 

recordings, much needs to improve in order to perfect this method and to fully 

comprehend the function of the channels from which we are recording. Missed events 

and the choice of appropriate models for data fits are some of the areas where more work 

is necessary if we are to continue to make steps forward in fully appreciating the function 

of ion channels.  

 

1.7 Partial agonists 

Ligand gated ion channels all have more than one ligand capable of gating them, 

at varying efficacies. Until recently there was no clue as to why glycine acts as a full 

agonist while taurine, β-alanine, and even GABA can all bind at GlyR but are, in most 

cases, all characterized by possessing lesser efficacy. If co-applied with the full agonist, a 

partial agonist will exert antagonistic properties, competing for receptor occupancy, 

decreasing in this way the efficacy of the full agonist.  A review of taurine, one partial 

agonist at the GlyR, is included below.   

Taurine acts mainly as a partial agonist on GlyR although its efficacy can vary 

across different expression systems. This β amino acid is found in many different organs 

of mammals, with the highest concentration found in intestines.  It was first isolated from 

ox bile, and appropriately named taurine from the Latin, Taurus meaning bull.  It can 

exist in cis and trans forms, an important characteristic for its binding to various target 
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proteins.  In its cis structure taurine is like glycine while the trans form resembles the 

competitive GlyR antagonist nipecotic acid (see Structures of Compounds - xxiii).  

Whether this cis/trans isomerization determines the efficacy of taurine at the GlyR 

remains to be seen. In the R271Q and R271L mutations that cause hyperekplexia, taurine 

acts as an antagonist (Laube et al., 1995). Other residues such as E53 and E57 are 

significant determinants of taurine binding since mutations at these positions also change 

taurine into an antagonist at the GlyR (Absalom et al., 2003).   A mutation of the ECD 

residue D97 that renders GlyRs spontaneously active increases the efficacy of taurine, 

making it a full agonist at these receptors (Welsh et al., in revision). Other mutations also 

change the efficacy of this endogenous compound. One such mutation, I244N, located on 

the intracellular side of TM2, causes a decrease in taurine’s efficacy while also changing 

receptor desensitization rates (Lynch et al., 1997).  Taurine’s efficacy on GlyR also varies 

between different expression systems.  For example, it acts as almost a full agonist when 

GlyRs are expressed in HEK293 cells but displays about 45% of the efficacy of glycine 

on receptors expressed in Xenopus oocytes (Farroni and McCool, 2004).  A more 

dramatic decrease in taurine’s efficacy was seen in GlyRs expressed in L-cell fibroblasts 

(Farroni and McCool, 2004).  In addition, differences in agonist efficacies also exist 

between  α homomeric and  αβ heteromeric receptors.   

A number of studies have investigated how taurine and glycine signal 

transduction compare. The ability of thiosulfonate agents to bind residues of the TM2-3 

linker region was studied.  This segment was previously shown to play a vital role in the 

proper activation of GlyRs (Lynch et al., 2001, Absalom et al., 2003).  Han et al. (2004) 
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demonstrated that changes that occur at the TM2-3 linker region as the result of receptor 

activation by glycine and taurine are comparable. Therefore they concluded that taurine 

efficacy must depend on the ability to stabilize the open state and not by the steps 

preceding the opening of the channel (Han et al., 2004)  

 

1.8 Antagonists 

An antagonist can be defined as any compound that prevents an agonist from 

exerting its effect, but does not itself possess efficacy. These compounds either compete 

for the same or overlapping binding sites with agonists, or block the activity in an 

allosteric way (channel blockers).  Among the different antagonists that act on GlyRs, 

strychnine and picrotoxin (PTX) are the two used in the dissertation research described 

below (Structures of relevant GlyR ligands – xxii).  

 

a) Strychnine  

Seeds of the Strychnos nux vomica plant are the largest known source for the 

GlyR competitive antagonist strychnine. Although this plant alkaloid was once prescribed 

for different ailments and even used as a stimulant by athletes, today’s use is limited to 

research and represents one of the most valuable compounds when studying inhibitory 

synapses and GlyRs.  Strychnine and glycine binding sites are not identical but, as 

expected, overlap. From the work by Grudzinska et al. (2005) it is hypothesized that 

residues coordinating the binding of this compound are R131 and E157 on the minus side 

of the binding interface and Y202 and F207 on the plus side of an adjacent subunit.  
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Strychnine acts as a competitive antagonist by shifting the glycine concentration-response 

curve to the right without affecting the maximally-attainable current. The sensitivity of 

GlyR to strychnine depends on subunit composition.  This competitive antagonist has 

greater affinity for α1 than α2 subunit-containing receptors (Tapia et al., 1998, Ye, 

2000).    

 

b) Picrotoxin  

Another highly poisonous plant alkaloid, picrotoxin, is most often isolated from 

the fruit Cocculus indicus.  Consisting of equal amounts of two almost identical 

compounds, picrotin and picrotoxinin, it acts as a noncompetitive antagonist on 

GABAARs by blocking the channel pore (Newland and Cull-Candy, 1992, Chang and 

Weiss, 2002, Olsen, 2000). The mechanism of PTX action on GlyR is still somewhat 

unclear.  While some groups argue that it acts as a pore blocker, like at the GABAAR, 

others believe that its non-use dependence hints at a different mechanism of action on 

GlyR.  Some of the first studies demonstrated a loss or reduction of PTX effects when 2’ 

and 6’ arginine residues within the GlyR pore, were mutated (Lynch et al., 1995).  

Furthermore, in a study conducted by Hawthorne and Lynch (2005), they engineered a 

cysteine at position R271, at the mouth of the channel, and demonstrated that PTX 

inhibition could only be reversed with additional glycine application.  This, they felt, 

strengthened the evidence for PTX binding in the pore and thus acting as a pore blocker.    

Due to the significant difference in binding affinity PTX can be used to distinguish 

between homomeric and heteromeric GlyRs. The presence of the β subunit makes the 
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receptors significantly less sensitive to the effects of PTX. This is caused by a difference 

in TM2 residues between α and β subunits. This strengthens the evidence that this 

compound indeed binds in the pore (Pribilla et al., 1992) but without definitive proof that 

it actually blocks the glycine receptor pore.     

 

1.9 Allosteric modulators 

 

a) Alcohols and anesthetics 

Alcohol is a common name for the organic compound ethanol (EtOH), present as 

the active ingredient of alcoholic beverages. Residuals found on excavated pottery pieces, 

dated to Neolithic period, imply that humans may have used alcohol since as early as 

9000 BC. Since these early times, alcohol abuse and dependence have become one of the 

biggest problems of the modern society. With billions of dollars spent every year to treat 

diseases caused by alcohol abuse, and alcohol dependence itself, it is not surprising that 

considerable effort is being expended to improve our understanding of the development 

of dependence as well as symptoms of drug withdrawal.  Knowing the specific molecular 

targets responsible for the various effects of ethanol could help explain these processes 

and aid the search for selective agents that could treat symptoms of the withdrawal and 

prevent relapse in alcoholics.  

Until the last two decades it was believed that alcohols acted exclusively by 

nonspecifically disordering neuronal membranes. Even though considerable progress has 

been made in highlighting the roles of more specific targets for alcohol, the debate of 
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where ethanol binds to exert its many actions, still remains. This CNS depressant has 

been implicated in causing its behavioral effects by acting on different neuronal proteins. 

Not surprisingly, it has been shown to enhance GABAA and glycine receptor function, 

elevating in this way the inhibitory tone in the CNS.  

Initial studies showed that single and double mutations of receptor subunits can 

prevent alcohol potentiation of GlyR and GABAAR function.  The Harris group first 

demonstrated that a mutation responsible for the spasmodic phenotype in mice 

(α1A52S), results in a decreased effect of ethanol on GlyR when compared to the 

potentiation seen in the wt α1GlyR (Mascia et al., 1996).  The site of alcohol action on 

these receptors was localized using various chimeric constructs consisting of different 

segments of the α1GlyR and the related GABAC receptor whose function is inhibited by 

alcohols and anesthetics. These findings revealed the TM2 and TM3 segments that are 

critical for observing the potentiating actions of alcohols and volatile anesthetics at GlyR 

(Mihic et al., 1997).  More importantly, they identified two residues that when mutated 

either decreased or completely abolished the enhancing actions of these compounds. In 

GlyR, serine at position 267 of the TM2 domain and alanine at position 288 of the third 

TM region were the two residues initially implicated in forming the alcohol and 

anesthetic binding pocket (Mihic et al., 1997).    

Since those initial studies, many experiments have been conducted studying these 

and other residues to verify the existence of the alcohol and volatile anesthetic binding 

domain and its conservation throughout the LGIC family. In series of studies Ingrid 

showed that in  α1 GlyR S267 (TM2), A288 (TM3) and another TM residue isoleucine 



 26

293 of TM4 can crosslink within the subunit, postulating that in this way they form a 

cavity where various allosteric modulators can fit, exerting in this way their actions at 

these receptors (Lobo et al., 2004a, Lobo et al., 2008).  In her studies using MTS 

reagents, she also showed that this pocket, formed between the membrane domains, is 

water accessible (Lobo et al., 2004b, Lobo et al., 2006). A study investigating the region 

postulated to form an alcohol and anesthetic binding pocket used cysteine labeling and 

disulfide trapping to determine whether residues S267 (TM2) and A288 (TM3) played a 

direct role in the binding of alcohols and anesthetics (Mascia et al., 2000). They 

investigated whether propanethiol, an anesthetic with a structure comparable to that of 

the alcohol propanol, would be able to form a covalent bond with C267 and/or C288 

engineered residues. Their results allowed them to conclude that position 267 of the TM2 

domain can form a direct bond with both propanethiol and PMTS (another thiol reagent). 

Binding of both of these thiol reagents resulted in irreversible potentiation of  α1(S267C) 

GlyR function. This strengthens the hypothesis that this is the most likely site for direct 

binding of alcohols and anesthetics. They did not observe the same results on the A288 

residue even though this position was postulated in previous studies to be in direct 

contact with S267 (Mascia et al., 2000).  

Before these in vitro studies (reviewed above) had been conducted, several 

behavioral studies gave some convincing evidence for a site of ethanol action at the 

GlyR. In particular, a study in mice showed that glycine and the glycine precursor, serine, 

could positively affect ethanol action. In addition, strychnine abolished these effects, 

strongly implying that the action was controlled by strychnine-sensitive GlyRs (Williams 
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et al., 1995).  On the behavioral level, studies have also demonstrated that knock-in mice 

carrying the S267Q  α1 mutation rendered animals less sensitive to the effects of ethanol, 

seen as an improvement of animal motor coordination in the presence of ethanol (Findlay 

et al., 2002). 

 

b) Zinc (Zn2+) 

After iron, Zn2+ is a second most abundant transition metal found in mammalian 

bodies.  This divalent cation affects many biological processes: it is necessary for various 

enzymatic reactions, RNA and DNA metabolism, and is vital for many aspects of CNS 

function and modulation.  In neurons, Zn2+ is stored in presynaptic vesicles and released 

onto postsynaptic membranes with neurotransmitters. In GlyRs Zn2+ has potentiating 

effects at low concentrations (low nM - 10µM) and an inhibitory effect at concentrations 

exceeding 10µM.  Studies related to the general binding properties of Zn2+ have shown 

that the most likely residues to coordinate the binding of Zn2+ would be histidine 

residues. Site directed mutagenesis experiments demonstrated that two histidines in the 

ECD, H107 and H109, regulate the inhibitory actions of Zn2+ on GlyR (Harvey et al., 

2001, Nevin et al., 2003). Nevin et al. (2003) provide strong evidence that the binding of 

Zn2+ to this site occurs at the interface of two adjacent subunits. From their work on 

heteromeric α1βGlyRs they concluded that only the α-α interface is crucial for the 

modulation of channel activity by Zn2+.  On the single channel level it was shown that, at 

inhibitory concentrations, Zn2+ decreases the amount of time channels remain open by 
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stabilizing the closed state and decreasing the gating efficacy of the receptor  (Laube et 

al., 2000).  

The high affinity, potentiating, site of Zn2+ binding has, for the longest time, 

remained quite elusive.  The first studies that uncovered the region critical for the 

potentiating effects of Zn2+ were conducted on homomeric α1GlyR.  When aspartic acid 

at position 80 of the ECD was replaced by alanine (α1D80A) this prevented Zn2+ 

enhancement of glycine currents, but did otherwise not affect receptor function (Lynch et 

al., 1998, Laube et al., 2000).  The significant role of this residue for Zn2+ action was 

proved further when Hirzel et al. (2006) demonstrated that mice homozygous for this 

mutation (Glra1 D80A) developed a hyperekplexia-like disorder.  Electrophysiological 

data from obtained from hypoglossal brainstem slices of the same animals demonstrated 

no other significant differences in glycinergic organization or transmission  (Hirzel et al., 

2006).  Other residues were also implicated in playing a role in the potentiating effects of 

Zn2+.  In particular, residues α1E192, α1D194 and α1H215 have all been proposed to 

either stabilize Zn2+ binding or have a role in transducing the signal following the zinc 

binding event (Miller et al., 2005).  

At a concentration of 10µM, Zn2+ was found to increase the efficacy of the 

partial agonist taurine. In the same study it was reported that on the single channel level 

Zn2+ increased the open channel probability at a low (5µM) zinc concentration by 

decreasing the rate at which agonist dissociates once bound (Laube et al., 2000).   

 

 



 29

1.10 Statement of purpose 

The work presented in this dissertation attempts to further our knowledge of GlyR 

structure and function. Our data obtained using α1 homomeric GlyRs demonstrated that 

the charged residue aspartate at position 97 (α1D97) in the extracellular domain plays an 

important role in the regulation of channel opening and closing events. In this dissertation 

I determined the role that this residue plays in channel activation.  It is accepted today 

that there are many important interactions among residues of GlyR subunits that play 

critical roles in all aspects of receptor function, including but not limited to the receptor 

stability in its different states, signal transduction, ion permeability and channel 

activation.  

The data presented here involves the study of a number of different interactions 

that we believe control some of the above-mentioned GlyR features.       

 

Aim 1: Identify the salt bridge residues necessary to restore closed-channel stability 

to the spontaneously opening GlyR  

We previously determined that any mutation of the aspartic acid residue at 

position 97 (α1D97), located in the ECD destabilizes receptors and renders them 

tonically active in the absence of the agonist.  From initial modeling studies in which the 

glycine receptor sequence was threaded on both the known structures of the nACh 

binding protein (nAChBP) and Torpedo nAChR, two different residues, a positively 

charged lysine at position 116 and an arginine 119, were postulated to be at the right 
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position to interact with α1D97. It was hypothesized that re-establishing this electrostatic 

bond by a second mutation would stabilize the closed state of the receptor in the absence 

of an agonist, and in doing so decrease or abolish the spontaneous activity recorded in all 

of the single α1D97 mutants. 

 

Aim 2: Determine that the salt bridge controlling GlyR channel gating occurs 

between adjacent subunits 

We hypothesized that α1D97 interacts with the positively charged residue R119 

located on an adjacent subunit.  The purpose of this aim was to gain more information 

about the nature of the D97-R119 salt bridge that regulates channel opening and closing 

events.  The basic question addressed in this aim was whether the α1D97 and α1R119 

electrostatic interaction occurs between subunits or within the subunit.  To differentiate 

between these two possibilities we co-injected single mutant cDNAs coding for either the 

α1D97C or α1R119C subunits, in a ratio that favored expression of the α1R119C 

subunit.  We then functionally identified receptors carrying both α1D97C and α1R119C 

subunits using disulfide trapping.  The existence of cross-linking in that scenario would 

allow us to conclude with certainty that the D97-R119 electrostatic interaction between 

these charged residues occurs between adjacent subunits.   
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Aim 3: Identify other residues that are interacting with residue D97  

From the structure of the prokaryotic cys-loop channel GLIC, a new model was 

devised that included another charged residue as a potential amino acid that could play a 

role in interacting with α1D97 to keep the receptor in a stable closed state.  This residue, 

α1R131, has previously been implicated in many other aspects of GlyR function, making 

it an interesting target to investigate. In particular, a recent study (Laube et al., 2002) 

implicates this residue in both glycine and strychnine binding stabilization. This 

characteristic would be expected from a residue that may contribute to a cloud of charges 

that regulates the structure of the binding interface and stability of the closed state before 

binding is initiated.  We hypothesized that interaction occurs between α1D97 and 

α1R131 and tested this by performing electrophysiological studies on the 

α1D97R/R131D double mutant like we had previously done on the α1D97R/R119D 

double mutant in Aim 1.  We also tested for disulfide bond formation between these 

positions when residues 97 and 131 were substituted with cysteines.  

 

Aim 4: Characterize the structure of the extracellular portion of TM2 responsible 

for signal transduction 

Binding of glycine in the ECD between adjacent subunits is the first step in the 

activation of GlyR.  The binding signal must then ultimately be transduced to the pore 

and a number of distinct regions of these receptor subunits have been implicated in this 

transduction process.  One of these regions is the extracellular portion of TM2 and the 
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TM2-3 linker region.  Discrepancies in results among labs have brought on a conflict of 

thoughts on what the more extracellular segment of TM2 (residues T265 to S270) looks 

like structurally. Unwin’s 4.6 angstrom model of the nAChR reports this area as a 

constrained true α helix (Unwin et al., 2005).  However, Dejian Ma and group published 

conflicting data in their work on the GlyR, concluding that this region, at least in this 

anionic receptor, is characterized by more relaxed structure and a greater degree of 

flexibility (Ma et al., 2005).  This structural feature may play a significant role in 

allosteric activation and modulation of LGIC’s and could further explain key elements of 

glycine signal transduction and the kinetics of gating. We employed cysteine mutagenesis 

and disulfide trapping in order to test this electrophysiologically. True α helical structure 

in this region would be expected to allow every third or fourth residue in a segment to be 

accessible and to point in same direction.  If this stretch of amino acids is indeed 

constrained in a true α helical fashion only a few of the residues should be able to interact 

with equivalent residues on an adjacent subunit, but if there is less restriction in their 

movement this could occur in more (or all) of the proposed residues.  
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CHAPTER 2: EXPERIMENTAL PROCEDURES 

 

2.1 Primer design 

Primers were custom-designed and supplied by Integrated DNA Technologies 

(Coralville, IA).  To make primers we designed 35-45 base length sequences, with more 

than 60% GC content, possessing a melting point (Tm) greater than 78o, and a minimal 

possibility for intraplasmid loop formation (as outlined in the book Methods in Alcohol-

Related Neuroscience Research, Liu Y. and Lovinger D. M., 2000). Standard desalting 

and HPLC purification procedures were utilized to ensure the purity of samples.  

 

 
2.2 Site directed mutagenesis  
 
  

The human  α1 GlyR subunit cDNA was subcloned into a modified pBK-CMV 

vector lacking the lac promoter and the lacZ ATG (Mihic et al., 1997).  All mutant 

receptors were made using this plasmid except for S267 mutations, which were 

subcloned into the pCIS plasmid vector.  Both of these plasmids contain the CMV 

promoter that allows them to be expressed in both HEK293 cells and Xenopus oocytes. 

One difference between the two vectors is that the pBKCMV vector contains a 

kanamycin resistance gene while pCIS2 contains a gene conferring ampicillin resistance. 

Antibiotics were introduced into the LB (Luria Broth) agar plates that were used for the 

overnight growth (at 37o) of XL-1 supercompetent bacterial cells carrying the vector with 

the desired cDNA construct.  LB media used to grow separate selected colonies was also 
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enriched with the appropriate antibiotic, at a concentration of 50 µg/ml for kanamycin 

and 100 µg/ml for ampicillin.  Sterile tubes with loose tops, 3ml of Luria broth, 

appropriate antibiotic and chosen colonies were placed in a shaker and incubated at 37oC. 

To prevent accumulation of bacterial growth byproducts, the incubation time was limited 

to 18 hours.  A miniprep kit was used to isolate the plasmid and gather the cDNA of 

interest, as described in the provided protocol (Invitrogen). The Stratagene (Cedar Creek, 

TX) QuickChange Mutagenesis Kit was used to create all mutations. Each mutation was 

constructed by using the appropriate template (in our case either α1 or β GlyR sequence 

at a concentration of 25 ng/µL), plasmid primers (125 ng/µL), nucleotide tri phosphates 

(NTPs), and Taq polymerase.   The PTC-100 termocycler was used for linear 

amplification: template cDNA was denatured at 95o, the temperature then lowered to 55o 

to allow for annealing of the primer sequence and finally raised to 68o to allow for 

extension at the 3’ end to form the product of the reaction. This is set to repeat 30 times.  

After cycling the product was incubated with the enzyme Dpn I that cleaves the 

methylated template, leaving intact only the newly formed mutated version.  

Transformation then occurred as described above and the accuracy of the introduced 

mutation was verified by the sequencing facility at the University of Texas at Austin. To 

ensure cleanliness and to determine the concentration of our samples they were analyzed 

using the ND-1000 spectrophotometer. Acceptable quality of cDNA requires a A260/280 

ratio greater than 1.8 and only samples that passed this quality control were kept as stocks 

for dilutions (when necessary) and injection.  
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2.3 Xenopus leavis oocyte isolation and cDNA injection 

Oocytes were surgically removed from Xenopus leavis in accordance with the 

National Institutes of Health guidelines for the care and use of laboratory animals. 

Oocytes were first held in isolation media, containing in mM: 108 NaCl, 10 HEPES, 2 

KCl and 1 EDTA. This allows for partial dehydration of the oocyte, which will allow for 

easier removal of the thecal and epithelial membrane layers.  After manual isolation 

oocytes are kept for 10 minutes in a collagenase solution (mM: 83 NaCl, 5 HEPES and 2 

MgCl2 with 5 mg/10ml collagenase D enzyme) in order to remove the follicular layers.  

Oocytes are then stored in sterile Modified Barth’s Saline (MBS) and nuclear cDNA 

injections, at concentrations ranging from 0.03-3 ng/30nl, are performed.  MBS contains 

(in mM): 88 NaCl, 1 KCl, 2.4 NaHCO3, 10 HEPES, 0.82 MgSO4 ּ7H2O, 0.33 Ca(NO3)2  

and 0.91 CaCl2 at pH 7.5.  In order to ensure that the cDNA will reach the nucleus 

injections are delivered to the center of the oocyte animal pole, approximately one quarter 

of the diameter into the oocyte. After injection oocytes are separated and kept 

individually in sterile 96 well plates (Costar) in incubation media (1X MBS enriched with 

2 mM Na pyruvate, 0.5 mM theophylline, 10 U/ml penicillin, 10 mg/l streptomycin and 

50 mg gentamycin and sterilized by filtration using 0.22 µm filter).  Plates are placed in a 

room at a controlled temperature (≈ 19o C) and held in the dark until ready for 

experiments (usually between 1-10 days). 
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2.4 Whole-cell oocyte electrophysiological recordings 

All whole-cell experiments were conducted at room temperature (22-24o C) with 

oocytes voltage-clamped at a holding potential of -70mV using a Warner Instrument 

OC725C (Hamden, CT) oocyte clamp. Oocytes were perfused with MBS at a rate of 2 

ml/min through 18-gauge polyethylene tubing (Benton Dickinson, Sparks, MD) using a 

peristaltic pump from Cole Parmer Instruments (Vernon Hills, IL).  Currents were 

recorded using a Cole Parmer Instruments chart recorder from the same company.  All of 

the compounds used to produce or modify currents were dissolved in MBS prior to 

application.  Complete concentration-response curves were determined where possible, 

by applying 3-60 sec pulses of glycine separated by 10-15 min washouts between 

applications.  In experiments in which we measured spontaneous activity of mutant 

receptors, 1-10 mM strychnine was applied for 60 seconds.  During application of cross-

linking, oxidizing or reducing reagents oocytes were unclamped and electrodes removed 

from the bath to minimize their exposures to these agents.    

 

2.5 Patch clamp electrophysiology, acquisition and analysis 

Outside-out patches recordings were made according to standard methods (Hamill 

et al., 1981) and those methods are described in Welsh et al. (2009). Single channel data 

were analyzed as described previously (Welsh et al. 2009) using the single channel 

analysis programs in QuB (Qin et al., 2000a, Qin et al., 2000b) (version 1.4.0.125).  A 

Star model incorporating two open and two closed states was used for idealization and 

fitting.  Individual clusters were identified in the wildtype and D97R mutant GlyR by 
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eye.  For each cluster the probability of channels being found in the open state (Popen) was 

determined by dividing the open time in the cluster by the cluster length.  In the 

D97R/R119E double mutant, defined clusters could not be delineated; the Popen in this 

case was determined by sampling several portions of the tracings that did not contain 

multiple simultaneous openings. 

 

2.6 Modeling 

A homology model of GlyR  α1 was built by threading the GlyR primary 

sequence onto an X-ray crystal structure template using the Modeler module of 

Discovery Studio (DS 2.1; Accelrys, Inc, San Diego, CA) as previously described 

(Crawford et al., 2007).  The template we used was the prokaryotic ligand-gated ion 

channel homologue GLIC (PDB ID 3EAM) (Bocquet et al., 2009) in part because the X-

ray structure of GLIC has higher resolution than the previous cryo-electron microscopy 

structure of torpedo nAChR (PDB ID 2BG9).  In addition, GLIC has higher homology to 

GlyR than to nAChR.  However, note that the sequence of GLIC does not contain the N-

terminal alpha helix of the eukaryotic Cys-loop receptors; the alignment of the GlyR 

sequence starts at residue 5 of GLIC.  In preparation for the Modeler module we aligned 

the GlyR sequence with the template using the ‘align multiple sequences’ module of DS 

2.1.  We used a three-step procedure.  First, we used the alignment of GlyR with torpedo 

nAChR-α1 suggested by Brejc et al. (2001).  Second, we used the alignment of nAChR-

α1 with GLIC suggested by Bouquet et al. (2009).  Third, the resulting alignment of 

GlyR with GLIC presented a decision point; in the region of interest of the GlyR 
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sequence there are four gaps in the alignment.  This is because GlyR has two more 

residues in this region than nAChR-α1, which in turn has two more residues than GLIC.  

To resolve this issue we built three models; the first with the gaps placed by the 

translation exactly as described above, a second with the four gaps clustered together and 

placed at the beginning of the beta5-beta5’ strand in GLIC, and a third with the four gaps 

at the end of the beta5-beta5’ strand.  The three resulting models had all the new loops 

optimized and then all side chain rotamers automatically optimized.  A restraining 

harmonic potential of 10 kcal/Å2 was applied to all backbone atoms for the following 

steps.  The models were optimized to a gradient of 0.001 kcal/ Å with a 20 Å nonbond 

cutoff and then relaxed with molecular dynamics at 300 K for 5,000,000, 2 fs steps using 

the CHARMm force field. 

 

2.7 Reagents 

All reagents used were obtained from Sigma Aldrich (St. Louis, MO). Xenopus 

laevis were purchased from Xenopus Express (Homosassa, FL) or Nasco (Fort Atkinson, 

WI ). Glycine, taurine, strychnine and picrotoxin solutions were made by dissolving the 

necessary amount into sterile 1x MBS. When not in use stock solutions were kept at 4o C 

and used within a week. To decrease degradation, DTT, HgCl2, H2O2 and I2 were made 

just before application. 
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2.8 Statistical analysis 

Statistical analyses were performed using SigmaStat (Chicago, IL). 

Concentration-response curves were fit to a four-parameter logistic equation in SigmaPlot 

11 to determine the Hill coefficient and EC50 values. One-way ANOVAs were used to 

test for statistically significant changes (p< 0.05) in GlyR responses after application of 

oxidizing, reducing or cross-linking agents.  
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CHAPTER 3: DISRUPTION OF AN INTERSUBUNIT 

ELECTROSTATIC BOND IS A CRITICAL STEP IN 

GLYCINE RECEPTOR ACTIVATION1

 
 
 

3.1 Introduction 
 
 

Glycine receptors (GlyR) are anion-conducting members of the cys-loop receptor 

superfamily.  All members of this cys-loop family are pentameric in structure, with their 

subunits arranged around a central ion pore.  Each subunit consists of a large N-terminal 

ligand binding domain and four transmembrane segments (TM1-TM4); TM2 of each 

subunit lines the central ion pore (Langosch et al., 1988).  When glycine binds to initiate 

channel opening it does so by interacting with specific amino acids located at the 

interfaces between subunits. Spontaneous openings of the integral ion channel of the 

GlyR do not occur in the absence of neurotransmitter (Twyman et al., 1991).  Six loops of 

amino acids located on adjacent subunits constitute the known binding site for glycine.  

On the plus (+) side of the interface on one subunit are found loops A-C, whereas loops 

D-F are located on the minus (–) side of an adjacent subunit (Lynch JW, 2004).   In the 

related nAChR, signal transduction after agonist binding has been described as a 

 
1 Significant portion of this chapter has previously been published in the journal Proceedings of the 
National Academy of Sciences (PNAS) in an article titled “Disruption of an intersubunit electrostatic bond 
is a critical step in Glycine Receptor activation.” Jelena Todorovic, Brian T. Welsh, James R. Trudell, 
Edward Bertacinni and S.John Mihic © Proc. Natl. Acad. Sci. USA 107:7987-7992, 2010 
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“Brownian conformational wave” that travels down the interface between the subunits 

(Purohit et al., 2007).  This study used φ analyses to show that the binding pocket region 

of the N-terminal domain is the first to move after ligand binds.  Loops 2 and 7 (the cys-

loop) of the N-terminal domain interact with the extracellular end of TM1 and the TM2-3 

linker region to transmit binding signals to the channel gate (Unwin N, 2005, Bocquet et 

al., 2009, Lee et al., 2005).  In the α1 GlyR subunit, D148 in loop 7 forms an electrostatic 

bridge with K276 in the TM2-3 linker (Schofield et al., 2003).  An interaction of 

extracellular domain loops with the TM2-3 linker has also been identified in the nAChR 

(Lee et. al, 2005). 

Our previous work demonstrated that mutation of D97 in loop A results in 

spontaneous channel opening (Beckstead et al., 2002).  This D97 residue is conserved in 

all members of the cys-loop receptor superfamily (Figure 3.1), suggesting its critical role 

in channel function.  Because this is a charged residue we asked if it was forming an 

electrostatic bridge to help maintain the channel in a stable closed state in the absence of 

neurotransmitter.  In this paper we report an interaction between specific charged amino 

acid residues at the interfaces of adjacent subunits that contribute to the stabilization of 

the closed channel state.  Disruption of these electrostatic bonds is a critical step in GlyR 

activation.    

 
 

 
 
 
 



α1 GlyR 
Mutation 

Response 
to 

Glycine 
(EC50) 

Hill 
Coefficient

Possible 
Electrostatic 

Bonds 
 

None 
(wildtype) 

 
0.196 mM

(n=6)  
1.4 

   

 
 
 

D97R 1.9 mM 0.41 

   

 
 
 

K116D 

 
 

3.0 mM 
(n=6) 1.01 

  

 
 

R119E 
 

87.9 mM 
(n=6) 1.30 

    

 
 

D97R/K116D 
 

1.3 mM 
(n=10) 0.64 

   

 
 

D97R/R119E 
 

401 mM 
(n=6) 3.53 

 

 
   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Characterization of glycine concentration-response relationships of 
wildtype and mutated α1 GlyR expressed in Xenopus oocytes.  For each receptor 
glycine concentration-response curves were generated and the glycine EC50s and Hill 
coefficients determined.  The possible inter-subunit electrostatic interactions among the 
amino acids studied (97, 116 and 119) are shown for each GlyR.   
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Figure 3.1 Partial amino acid sequence alignment of selected members of the 
nAChR receptor subunit superfamily. The human GlyR  α1 subunit sequence from 
residues 89 to 123 was compared with the same regions of selected human GABAA, 
nACh and 5-HT3 receptor subunits, as well as the Lymnaea Stagnalis acetylcholine 
binding protein. Residues equivalent to GlyR  α1 D97, K116 and R119 are highlighted. 
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3.2 Methods 
 
 

Primer design, Xenopus leavis oocyte isolation and injection, whole cell 

electrophysiology, single channel data acquisition and analysis have all been previously 

described (see chapter 2: Experimental Procedures). Details of the reduction and 

crosslinking experimental procedures are described below.  

In general, glycine maximal currents were recorded at least three times to ensure a 

stable response. The reducing agent 1,4 dithiothreitol (DTT) at a concentration of 10 mM 

was then applied for 3 minutes. After a 10-12 minute washout, a maximally effective 

glycine concentration was applied again at least twice before we proceeded with 

crosslinking or oxidation reactions, depending on the protocol. Next a 10µM 

concentration of a crosslinking agent mercury (II) chloride (HgCl2) was applied for 1 

minute after a stable glycine current has been established just like explained above.  After 

a 10-12 minute washout the maximal glycine current was measured again. In the same 

way, to measure the disulfide bond formation when in an oxidizing environment, 10 µM 

iodine (I2) or 0.3% hydrogen peroxide (H2O2) were applied for 1 minute. As noted 

before, after a washout period of 10-12 minutes, the maximal glycine response was 

recorded again in order to see whether, and to what extent, receptor activity was altered.  
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3.3 Results 

 

3.3.1 Charge swap mutations illustrate interactions between D97 and K116/R119 

In homomeric  α1 GlyR mutating aspartate-97 to arginine (D97R) produces 

receptors that exhibit increased background inward currents in the absence of glycine, 

characteristic of spontaneously active channels.  This tonic current, not seen in wildtype 

 α1 GlyR, can be blocked by the competitive antagonist strychnine (Figure 3.2 and 3.3).  

Two other mutations,  α1 K116D and α1 R119E, each resulted in receptors with 

decreased glycine sensitivity (Table 1), but did not exhibit spontaneously opening 

channels.  The charge reversal mutant α1 D97R/K116D bearing both mutations on the 

same subunit showed a partial  α1 D97R phenotype, with reduced holding currents and a 

smaller effect of strychnine in inhibiting that tonic current, compared to  α1 D97R 

(Figure 3.4 a and 3.5).  In contrast, the  α1 D97R/R119E charge reversal appeared to 

stabilize the receptor in the closed state, characterized by wildtype-like whole-cell 

holding currents as well as a loss of the channel-closing strychnine effects seen in 

tonically-activating receptors (Figure 3.4b and 3.5).  Despite the low sensitivity to 

glycine seen in the α1 R119E and α1 D97R/R119E mutants, the enhancing effects of a 

very high concentration of glycine (500 mM) could be antagonized by 1-10 mM 

strychnine (Figure 3.4 b).  This high concentration of glycine acted specifically via the 

GlyR on these mutants since concentrations as high as 1 M applied to uninjected oocytes 

did not elicit any currents.  Direct strychnine effects were seen in the α1D97R and 

α1D97R/K116D mutants, but not in the α1 wildtype, α1K116D, α1R119E or 
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α1D97R/R119E mutants.   Consistent with these findings, the average holding currents 

when cells were clamped at –70 mV were much higher in oocytes expressing the 

α1D97R or α1D97R/K116D receptors, reflective of considerable spontaneous channel-

opening activity (Figure 3.5).   

 

 

 

 

 

 

 

 

 

 



 

Figure 3. 2: Constitutive activity observed in D97 GlyRα1 mutants.  Representative 
tracings showing the responses to maximally effective glycine and strychnine 
concentrations for the D97R α1 GlyR mutant.  The lines over tracings refer to drug 
applications.  Glycine applied for 45 sec produced inward currents indicating channel 
opening in the D97R mutant. In contrast, strychnine applied for 1 min initially produced 
an outward current indicative of closure of spontaneously active channels, followed by an 
inward current once strychnine was removed 
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Figure 3.3 α1D97R spontaneous leak currents can be completely abolished by 
antagonists As depicted in the figure above, this representative tracing shows that with 
increasing strychnine concentrations (1 to 10 mM) most of the α1 D97R spontaneous 
current can be prevented. Similar results are seen when picrotoxin (300  µM), another 
antagonist of the GlyR, is applied. 
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Figure 3.4 Representative tracings showing the reduction of spontaneous opening on 
D97R/K116D  α1 GlyR and a lack of tonic activity on the D97R/R119E double 
mutant. a) The double mutant D97R/K116D also displays spontaneous channel-opening 
activity that can be antagonized by strychnine. b) The D97R/R119E double mutant shows 
no evidence of strychnine antagonism of spontaneous activity in whole-cell recordings, 
although strychnine can block the effects of glycine on these receptors. 
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Figure 3.5 Bar graph representation of differences in spontaneous current levels in 
wt, D97R, R119E, K116D and the double mutants D97R/R119E, D97R/K116D. The 
holding current required to voltage clamp oocytes at –70 mV was measured and 
compared among mutants. Wildtype  α1 GlyR do not exhibit spontaneous channel 
opening and typically exhibit holding currents less than 100 nA. These low holding 
currents were also seen in the R119E, K116D and D97R/R119E mutants. However, the 
D97R and D97R/K116D mutants displayed significantly greater holding currents. Values 
are reported as mean ± S.E.M. of 8-17 oocytes.  
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3.3.2 Single channel recordings of D97R and D97R/R119E mutants  

In research conducted by Brian T. Welsh he used outside-out patch clamp 

recordings of homomeric  α1 D97R GlyR and  α1 D97R/R119E GlyR in the absence of 

exogenously applied glycine, as well as wildtype  α1 GlyR exposed to 10 mM glycine 

(Figure 3.6), in order to further study these mutants and the interactions of D97 and 

R119. The spontaneous activity observed in the D97R GlyR appeared quite similar to the 

effects of a saturating concentration of glycine on wildtype receptors.  The D97R/R119E 

receptor behaved very differently, with many very brief opening events being seen as 

shown in the tracing on the left-hand side of Figure 3.6 c.  The two mutant receptors 

displayed quite different open and closed dwell-time properties.  D97R receptor 

spontaneous activity had a Popen of 0.91, very similar to that produced by glycine on 

wildtype GlyR (Popen = 0.9).   In contrast, the D97R/R119E mutant had a much lower 

Popen of 0.14, which is likely an over-estimate since multiple channels probably 

contributed to this measure.  Open dwell-time histograms generated from the tracings 

were fit using two open-time components ( τs) for the wildtype, α1 D97R GlyR and  α1 

D97R/R119E GlyR (Figure 3.6, right panels).  Spontaneous openings were much longer 

in the D97R mutant, suggesting that re-establishing the electrostatic bond in the double 

D97R/R119E mutant acts to stabilize the closed state of the channel, albeit imperfectly.  

Supporting this argument, the histograms illustrating the fits of the closed-dwell times for 

 α1 D97R GlyR and  α1 D97R/R119E GlyR, which were each fit using two closed-time 

components, indicate that longer closed times were much more evident in the double 

mutant, while very short closings predominated in the D97R mutant.  



 

Figure 3.6 Single-channel recordings of D97R and D97R/R119E  α1 GlyR mutants. 
Representative tracings of single channel recordings made from a) wildtype α1 GlyR 
exposed to 10 mM glycine, as well as spontaneous activity recorded from b) D97R α1 
GlyR and c) D97R/R119E α1 GlyR in the absence of exogenously-applied glycine.  Each 
of the top lines represents 7 sec of recording and regions with the horizontal lines above 
them in each trace are expanded below. Downward deflections signify channel opening. 
The D97R/R119E trace appears to show multiple channels in the patch with very brief 
spontaneous openings. Open- and closed-time histograms generated from measurements 
of the wildtype GlyR in the presence of 10 mM glycine appeared quite similar to those 
describing the spontaneous activity of the D97R α1 GlyR. Both exhibited longer open 
times as well as shorter closed times than the D97R/R119E double mutant.  Activity of 
each GlyR was adequately fit using two open-time or closed-time components ( τs). The 
two thin lines in each histogram describe the individual components while the thicker line 
is an overall fit.   
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Figure 3.7 Reduction and crosslinking reactions show no significant effects on wt 
GlyRs or D97C and R119C single mutants. Control bar graphs showing that no 
significant changes in current are recorded on the a) wt, b) D97C and c) R119C GlyRs 
after application of either a reducing agent DTT or a crosslinking agent HgCl2 
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3.3.3 Effects of reduction and cross-linking on cysteine mutants 

To test our hypothesis that residues D97 and R119 are physically interacting, we 

constructed  α1 D97C, R119C and D97C/R119C mutants to test for possible cross-

linking.  In all cross-linking experiments, responses to maximally effective 

concentrations of glycine (1 M) were first measured twice.  After establishing stable 

glycine responses, the reducing agent DTT, the cysteine-bridging agent HgCl2 or the 

oxidizing agent iodine were tested for their effects.  Applications of 1 M glycine were 3-5 

sec long, during which a peak response was observed, followed by 12 - 15 min washout 

periods.  Oocytes were then perfused with 10 mM DTT for 2 minutes and after a 12 min 

washout 1M glycine was reapplied twice.  Oocytes then received either a 2 minute 

application of HgCl2 (10  µM), or a 1 minute application of iodine (0.5 mM), which 

favors disulfide bond formation.  Control experiments followed the same experimental 

procedure but with the application of buffer (MBS) instead of DTT, HgCl2, or iodine.  

The wildtype, D97C and R119C single mutants showed no significant effects of either 

DTT or HgCl2 (Figs 3.7 a, b and c).  In marked contrast, application of DTT to the  α1 

D97C/R119C double mutant significantly enhanced responses to glycine applied 

afterwards, while HgCl2 decreased the magnitude of glycine effects (Figs. 3.8 a and 3.8 

b).  Re-application of DTT after HgCl2, resulted in the same high glycine-mediated 

currents that were observed after the initial DTT application.    

All three mutants were also tested for possible disulfide bond formation by the 

oxidizing agents iodine.  In both the D97C and R119C mutants, the application of 0.5 

mM iodine for 1 min had no effects on glycinergic currents, suggesting that there were 
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no other available free cysteine residues close enough to form disulfide bonds.  However, 

the double mutant D97C/R119C was able to form a disulfide bond when in an oxidizing 

environment since iodine (Figure 3.8 c) markedly decreased the effects of glycine, in a 

DTT-reversible manner.  In order for this disulfide bond formation to occur the 

sulfhydryl groups of cysteine residues can be up to 15 Å (Careaga et al., 1992) apart; 

once the bond has formed the distance between  α-carbons in the two cysteines is 5.6 Å 

(Schmidt et al., 2007). 

 

 

 

 



 

 

Figure 3.8 Reduction, crosslinking and oxidation of the double mutant D97C/R119C 
In contrast to the wt and single mutants data, a) the sample tracing of the double mutant 
D97C/R119C  α1 GlyR shows a significant increase in glycine current after exposure to 
DTT and a decrease in the glycinergic current after application of the cross-linking 
reagent HgCl2. b) Bar graph illustrating the effects of DTT and HgCl2 on D97C/R119C 
 α1 GlyR responses.  Data are reported as the mean ± S.E.M. of 5-12 oocytes. c) The 
oxidizing agent iodine can also decrease the effects of a maximally effective glycine 
concentration.  Data are reported as mean ± S.E.M. of 6 oocytes.    
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3.3.4 Inter-subunit interactions stabilize the closed state of the receptor 

We next sought to determine whether the interaction between D97 and R119 

occurs between adjacent subunits and not within the same subunit.  To determine this we 

mixed cDNAs containing two different single mutants, one expressing the  α1 D97C 

mutation alone and the other expressing the  α1 R119C mutation (Fig. 3.9).  The D97C 

and R119C cDNAs were mixed in a ratio of 1:50, allowing us to predict the percentages 

of D97C and R119C subunits in different receptor populations that would be expressed 

on the oocyte membrane surface.  The equation 

 

P = 100 X pD97C
n X pR119C

(5-n) X 5! / [n!(5-n)!] 

 

describes the percentage of receptors12 bearing n D97C subunits, where n = 1 to 5.  pD97C 

and pR119C represent the fractions of D97C and R119C cDNAs injected into oocytes; 

those numbers were 1/51 and 50/51, respectively.  Thus the chances of obtaining 

receptors bearing zero, one or two D97C subunits in any individual receptor were 90.6%, 

9.06% and 0.34%, respectively.  Our studies of the homomeric  α1 R119C single mutant 

showed that it is markedly insensitive to glycine, such that concentrations of glycine 

below 1 mM elicit no currents.  In contrast, co-expression of the D97C and R119C 

mutants resulted in receptors displaying considerable currents at glycine concentrations 

as low as 10  µM (Fig. 3.10b).  It seems that replacement of C119 with the wildtype R119 

in even one of five subunits in a receptor is sufficient to restore sensitivity to low 

concentrations of glycine.  Co-expression of  α1 wildtype + R119C cDNAs at a 1:50 
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ratio produced the same results (Fig. 3.10b).  This suggested that the responses obtained 

using low concentrations of glycine in the  α1 D97C + R119C heteromeric GlyR must 

have been elicited by receptors that bore one copy of the D97C mutation and this receptor 

is illustrated in Figure 3.9.  It possesses a single wildtype D97-R119 inter-subunit bond, 

a single D97C-R119C bond as well as three D97-R119C bonds.  A concentration of 30 

 µM glycine was applied to D97C + R119C receptors to ascertain the effects of HgCl2 

and DTT on cross-linking between subunits each bearing either D97C or R119C 

mutations (Figure 3.10a, c).  Initially these receptors displayed low  µA currents in 

response to 30  µM glycine, which decreased significantly after HgCl2 exposure, 

suggesting cross-linking between adjacent subunits bearing α1D97C and α1R119C 

mutations.  This cross-linking was reversed by DTT.    

 

 

 

 

 



 

 

Figure 3.9 Graphical representation of the α1 GlyR expressing one D97C and four 
R119C mutant subunits In this heteromeric receptor only one disulfide bond could form 
(between D97C and R119C subunits: color coded green) while one interface would 
exhibit wild type binding pocket (between D97C and R119C: color coded red). 
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Figure 3.10 Disulfide bond formation between adjacent subunits.  a) A concentration 
of 30  µM glycine does not activate homomeric R119C  α1 GlyR.  However, in the 
D97C+R119C (1:50) receptors, in which the two single mutants D97C and R119C were 
injected in a cDNA ratio of 1:50, 30  µM glycine elicited currents.  These currents are 
believed to be produced by receptors bearing four R119C subunits and a single D97C 
subunit. b) Glycine concentration response curves were constructed for wildtype+R119C 
(1:50) and D97C+R119C (1+50) receptors, in which the R119C subunit cDNA was co-
injected with either the wildtype or D97C cDNAs but at 50 X the concentration.  The 
glycine concentration-response curves thus depict the responses of homomeric R119C 
receptors, which are very insensitive to glycine, as well as a minority of heteromeric 
wildtype+R119C or D97C+R119C GlyR that exhibit greater sensitivity to glycine.  The 
10,000-fold glycine concentration range at which glycine effects are observed is evidence 
of this receptor heterogeneity.  For wildtype+R119C GlyR the EC50 was 3 mM, with a 
Hill coefficient of 0.69, while for the D97C+R119C GlyR the EC50 and Hill numbers 
were 8.6 mM and 0.55, respectively.  c) Bar graph summarizing data comparing the 
effects of HgCl2 and DTT on homomeric receptors bearing both the D97C and R119C 
mutations on each subunit (D97C/R119C) as well as those bearing the two mutations on 
different subunits, at D97C+R119C ratios of 1 to 50.  Data are shown as mean ± SEM 
obtained from 3 oocytes.   
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3.3.5 Co-expressing α1D97C/R119C with the wt β GlyR subunit can prevent 

crosslinking between the subunits 

When we co-expressed α1 GlyR subunit carrying a double mutant D97C/R119C 

mutation with the β GlyR subunit, in the 1:10 ratio we saw increased holding current 

when compared to either wt or α1D97C/R119C mutant receptors (Figure 3.11). The 

spontaneous leak of current was evident and measurable as an outward current observed 

after application of the GlyR antagonist PTX at a concentration of 300 µM for 1 minute. 

We first demonstrated stable glycinergic currents by measuring the maximally attainable 

currents two or three times before continuing with the experiment. The washouts between 

glycine applications lasted 15 minutes due to the high concentration of the agonist used. 

When the reducing agent DTT was applied to the oocytes expressing this mixture of 

subunits (10 mM for 3 minutes) there was no change in the amount of current attainable 

by the following 1M glycine application. The same was true with the crosslinking 

reaction. When 10 µM HgCl2 was applied for 1 minute no significant change in current 

was detected after the oocytes were exposed to the crosslinking agent (Figure 3.11). 
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Figure 3.11 Sample tracing demonstrating the loss of the D97-R119 interaction in 
α1(D97C/R119C)β GlyRs Although we can see that the presence of the α1R119 
mutation still forms receptors that require 1M glycine to elicit currents, traces show that 
receptors are still spontaneously open: the bottom trace shows the effects of 300 µM PTX 
on these receptors. The crosslinking agent HgCl2 does not have an effect on these 
heteromeric receptors most likely due to a physical separation of α1(D97C/R119C) 
subunits with intercalating β wt subunits.   
 
 
 

 

 

 

 

 

 

 62



 63

3.3.6 Modeling 

Initial use of the homology model, conducted by James Trudell and Edward 

Bertacinni, was to predict residues in the vicinity of D97 that could form a salt bridge 

with it.  They considered residues that would be suitable for charge-reversal mutations.  

A second use, as described in Methods, was to refine the alignment of the GlyR sequence 

with that of the template, GLIC (Figure 3.12a).  The ambiguity in alignment is that GlyR 

has four more residues in the region of interest than does GLIC.  Although many other 

regions in the total alignment have important conserved residues or prominent secondary 

structural features (Bertaccini and Trudell, 2002), the region of interest here does not.  

Even secondary structure prediction for GlyR in this region does not help because it is an 

interrupted  β strand, designated  β5- β5’ (throughout we use the nomenclature suggest 

for the nicotinic acetylcholine binding protein by Brejc et al. (2001).  We built models 

based on three alignments; the four gaps spaced along the  β5- β5’ strand of GLIC, the 

four gaps clustered after  β5’ (increased the size of Loop 6), and the four gaps clustered 

before  β5 (increased the size of Loop 5).  Only the latter alignment produced a good 

model because Loop 5 could expand without bad overlaps with other residues (Figure 

3.12b).  In contrast, the former two models resulted in conflicts with other regions; in 

particular the expanded Loop 6 intercalated with Loop 3.  

We then used the homology model to observe possible interactions of D97 with 

K116 and R119 on the opposite subunit interface.  Figure 3.12b shows that both K116 

and R119 are in proximity to D97 and that fluctuations of torsion angles within each side 

chain produce a variety of possible electrostatic interactions.  In fact, we observed 
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variations in conformations in the other four subunit interfaces that are not shown in 

Figure 3.12b.  It is interesting that the model started out as a homopentamer, but after 

5,000,000 steps of molecular dynamics it diverged such that the relative positions of D97, 

K116, and R119 were slightly different at each interface. 

 

 

 

 

 

 

 

 

 



 

Figure 3.12 Homology model of the GlyR inter-subunit interface.     
a) A partial amino acid sequence alignment of the GlyR  α1 (residues 68 through 131) 
and GLIC sequences is provided.  Arrows highlight D97, K116 and R119 in the GlyR 
 α1 sequence. b) A homology model of GlyR was built as described in Methods.   
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3.4 Discussion 

 

It is critical for the proper regulation of neurotransmission that ligand-activated 

ion channels remain closed until a binding signal is received by the receptor.  The 

receptor complex must exist in conformations that will keep the channel from opening in 

the absence of agonist as well as allow for rapid conformational changes to occur within 

microseconds after neurotransmitter binding.  The opening of the GlyR pore is thought to 

be initiated by the binding of the glycine molecule at interfaces between loops A, B and 

C, on the “+“ side of one subunit and  β sheet segments D, E and F on the “-” side of an 

adjacent subunit (Lynch JW, 2004).   The binding of glycine is stabilized by its 

interactions with the side chains of a number of amino acids in the “+” and “-“ sides of 

adjacent subunits, including R119 (Lynch, 2004, Rajendra et al., 1995, Grudzinska et al., 

2005, Grudzinska et al., 2008).  The 2BG9 model of the nicotinic acetylcholine receptor 

(Unwin, 2005) and the prokaryotic acetylcholine receptor homolog GLIC (Bocquet et al., 

2009) provide a structural framework to aid in explaining how ligand binding signals 

could be transmitted to the pore (Unwin, 2005).  From binding to opening, electrostatic 

interactions are thought to occur between residues in extracellular loops 2, 7 (the 

conserved cys-loop) and 9, with amino acids in the pre-TM1 region, the TM2-3 

extracellular loop, and post-TM4 residues (Xiu et al., 2005), linking ligand binding to 

channel opening.  In the GABAA receptor specific electrostatic interactions between D57 

and D149 residues in loops 2 and 7 with K276 in the TM2-3 linker region affect gating 

(Kash et al., 2003); later work also implicated a residue in the pre-TM1 region (Kash et 
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al., 2004).  However, in the homomeric  α1 GlyR, direct electrostatic interactions 

between D53 or E57 of loop 2, or D148 of loop 7, with K276 in the TM2-3 linker were 

not observed (Absalom et al., 2003).  Xiu et al. (2005) concluded that interactions 

between extracellular domain amino acids with those in pre-TM1, TM2-3 and post-TM4 

do not generally appear to involve specific amino acids but rather that overall clusters of 

positively and negatively charged residues mediate interactions between these domains.  

In a series of publications Auerbach and colleagues studied the relative timing of 

movements of domains of the nAChR initiated by ligand binding that result in the 

transitioning of channels from closed to open states.  Upon acetylcholine binding the 

transmitter binding region involving loops A, B and C moves first (Grosman et al.,2000), 

loops 2 and 7 then move (Chakrapani et al., 2004, Jha et al., 2007), and this is followed 

by the almost simultaneous movements of the TM2-3 linker region (Jha et al., 2007) and 

TM2 (Purohit et al., 2007, Mitra et al., 2005).   It is believed that a “Brownian 

conformational wave” involving sequential movements of domains of portions of 

receptor subunits ultimately links ligand binding to channel opening. 

  In the current study we found a fundamental inter-subunit interaction that plays a 

significant role in stabilizing the closed state of the channel in the absence of agonist 

activation signals and plays a role in the transduction of binding signals to the integral ion 

channel pore.  We noted that the WxPD motif in which D refers to D97 in the α1 GlyR is 

invariantly conserved among all members of the cys loop family, including the snail 

acetylcholine binding protein.  Mutation of this highly conserved D97 residue to arginine 

destabilizes the receptor closed state resulting in channels that exhibit constitutive 
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activity.  We sought to determine if the D97 residue was stabilizing the closed-channel 

state of the  α1 GlyR by forming an electrostatic bond with a positively charged residue, 

and identified R119 on an adjacent subunit as a plausible candidate, based on molecular 

modeling.  Reversing the charge at D97 to arginine results in tonic channel opening that 

can be markedly reduced by a second charge reversal mutation at R119.  Interestingly the 

single R119E mutation does not result in spontaneous channel opening and this may be 

because the D97 residue can also interact with K116.  We hypothesize that the 

electrostatic bond between D97 and R119 (or K116) breaks at the initiation of the binding 

signal allowing for the uninterrupted propagation of the conformational wave to occur, 

ultimately leading to the opening of the channel pore.  The interaction between D97 and 

R119 is also illustrated by mutating both residues to cysteine.  Application of DTT to 

D97C/R119C  α1 GlyR results in markedly enhanced glycine-mediated currents, 

consistent with a breakage of disulfide bonds (Figures 3.8 and 3.10).  Application of the 

oxidizing agent iodine or the cysteine-bridging agent HgCl2 decreases the magnitudes of 

glycine-mediated currents, suggesting that the re-linking of D97C and R119C constrains 

the channels from opening.  Importantly, none of these effects are seen with either the 

D97C or R119C single mutants or in wildtype receptors.   

We next addressed the issue of whether the D97 and R119 interactions were 

occurring between or within α1 subunit(s).  Our mixed cDNA data, involving the co-

expression of two  α1 GlyR mutants each bearing either a D97C or R119C mutation, 

show that reduction and cross-linking effects are conserved despite the fact that no single 

subunit contains two cysteine mutations.  When α1D97C and α1R119C cDNAs are 
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injected in a 1:50 ratio, we would expect about 9% of the resulting receptors to consist of 

a single  α1 D97C subunit and four α1 R119C subunits (Figure 3.9).  In this case these 

receptors would possess three distinct inter-subunit interfaces: one D97C-R119C 

interface capable of forming a disulfide bond, a single wildtype D97-R119 interface and 

three D97-R119C interfaces that would not interact either covalently or electrostatically.  

Our results show that these α1D97C + α1R119C receptors become dramatically more 

sensitive to glycine compared to α1R119C homomeric mutants; this suggests that the 

single wildtype-like D97:R119 interface is able to leftshift the glycine concentration-

response curve so that it is closer to wildtype GlyR sensitivity.   After application of the 

bridging agent HgCl2, a single covalent link formed between α1D97C and α1R119C on 

adjacent subunits is sufficient to limit the abilities of these subunits to move relative to 

one another and this results in a significant decrease in receptor activation (Figures 3.10a 

and c).  The breakage of this disulfide bond by DTT can reverse this. In addition when 

the α1(D97C/R119C) double mutant was co-expressed with the wild type β GlyR subunit 

we saw a loss of the crosslinking effects of HgCl2 that were seen in receptors composed 

solely of D97C/R119C α subunits. These receptors also showed increased holding 

currents and channel-closing effects of both strychnine (data not shown) and PTX 

(Figure 3.11). Presumably this offers further proof that the interaction of D97 and R119 

occurs between adjacent subunits.   

Our single channel recordings on the charge reversal mutant α1D97R/R119E 

illustrate that restoration of the electrostatic bond in this double mutant prevents the 

receptor from opening to the same extent as the D97R mutant in the absence of ligand.  In 
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fact the spontaneously opening α1D97R mutant appears to behave very much like a 

wildtype GlyR exposed to a saturating concentration of glycine.  The α1D97R receptor 

has a Popen of 0.91 and, like the wildtype GlyR, openings are grouped into long clusters 

containing very brief closing events.  In addition, in both GlyR clusters appear to be 

terminated by entries into longer-lived desensitized states.  Histograms generated of the 

open and closed dwell-times are also very similar between spontaneously opening 

α1D97R and fully activated wildtype GlyR.  Spontaneous channel opening was also 

reported by Miller et al. (2008) who studied the nearby α1F99A mutant.  This mutation 

produced spontaneously opening channels due to a movement in loop A, and we wonder 

if this mutation may also produce a weakening of the electrostatic bond between α1D97 

and α1R119.  

By restoring the attractive force between these residues in the α1D97R/R119E 

GlyR we were able to increase the closed state stability of the double mutant (Figure 

3.6).  One logical inference that might be made from our findings is that the brief intra-

burst closings seen in maximally-activated wildtype  α1 GlyR do not involve the 

temporary restorations of electrostatic bonds such as the one between the D97 and R119 

residues.  Very brief closings were also prevalent in the α1D97R mutant presumably 

because of the inability of the channel to re-establish salt bridges that would stabilize 

longer-lived closed states.  Longer-lived closed states seen in wildtype GlyR at lower 

glycine concentrations might, however, involve restoration of these electrostatic bonds.  

Interactions other than D97/R119 within this region do occur, such as the hydrophobic 

interactions noted by Miller et al. (2008) and we also see this in our partial phenotype 
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mutant α1D97R/K116D, where the tonic activity is reduced but not decreased to the 

same extent as in the α1D97R/R119E mutant.  We hypothesize that this inter-subunit 

region of charges may be implicated in agonist binding, where the interaction between 

charged residues on adjacent subunits regulates closed to open state kinetics after agonist 

binds within the binding pocket.  The dramatic reduction of receptor sensitivity to glycine 

in all α1R119 mutants lends support to this idea.  The competing electrostatic 

interactions shown in Figure 3.12b may help explain why the α1D97R mutation was so 

deleterious whereas the α1K116D and α1R119E mutations were better tolerated from the 

view of spontaneous opening.  This compensating interaction is similar to what was 

observed between loops 2, 7, and the TM2-3 linker in the GABAAR (Kash et al., 2003).  

In fact, Xiu et al. (2005) suggested that such redundant electrostatic interactions represent 

a common motif for transduction of gating energy.  In conclusion, our study demonstrates 

the importance of inter-subunit electrostatic coupling for normal receptor activation, and 

that disruption of this electrostatic bond may represent an initial step in GlyR activation.   
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CHAPTER 4: AN ELECTROSTATIC INTERACTION OF 

ARGININE-131 WITH ASPARTIC ACID-97 

 

4.1 Introduction 

 

The most recent computer model of the ECD, describing the electrostatic 

interaction of the aspartic acid residue at position 97 with arginine at position 119, also 

implicated other residues as possible options for such interaction at the interfaces of 

subunits.  One of these, R131 was particularly interesting since it has previously been 

implicated in many other aspects of glycine receptor function (Grudzinska et al., 2005).  

When studying the improved GlyR model, it is obvious that this charged residue is 

positioned right above the D97-R119 interaction studied previously (Chapter 3) and it 

may be positioned in a manner that allows the formation of a triad of charges with these 

two residues. Alternatively it may be the one that actually forms a direct electrostatic 

interaction with aspartic acid at position 97, and in this way contributes to stabilizing the 

receptor in its wild type closed state.  Previous work showed that this residue plays an 

important role in stabilizing glycine and strychnine binding (Grudzinska et al., 2005).  

These findings fit with the hypothesis that this residue may indeed be at the 

interface between subunits where it forms part of the binding pocket for both glycine and 

strychnine. In this chapter I show that mutations at this position destabilize the closed 

state of the receptor resulting in small but significant tonic activity.  Interestingly, when 
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this residue is mutated to either aspartic acid (R131D) or cysteine (R131C), the resulting 

receptors display almost normal glycine concentration-response curves, but is 

characterized by significant changes in the relative efficacies of other agonists. Taurine 

becomes a full agonist on receptors carrying this mutation while efficacy of another beta 

amino acid, βAIBA, is increased as well. A competitive antagonist nipecotic acid acts as 

a weak partial agonist with similar pharmacological effects to those seen in the GlyR  α1 

D97R mutant.   

 

4.2 Methods 

Primer design, oocyte harvesting and injection, general electrophysiology 

techniques and statistical analysis have all been previously described in Chapter 2.   

 

 

 

 

 

 

 

 

 

 

 



 74

4.3 Results 

 

4.3.1 Characterization of α1 R131D GlyR mutant  

Currents elicited by varying concentrations of glycine and taurine were assayed 

on homomeric R131D  α1 GlyR.  Concentration response curves were generated and the 

EC50 was determined for both agonists tested.  The α1R131D mutation did not 

significantly affect glycine potency although this charge reversal did produce measurable 

spontaneous activity (Figure 4.1a). This residue was previously shown to play a role in 

stabilizing strychnine binding, so in order to demonstrate spontaneous activity we 

recorded and compared the background current from this mutant to those of the wild type 

GlyRs (Figure 4.1b). We also measured a direct effect of 200mM EtOH on the receptors 

expressing this mutation (Fig 4.1c).  . On the other hand, relative to glycine, taurine 

efficacy increased significantly, and nipecotic acid, normally an antagonist at the wt 

GlyR became a weak partial agonist (Figure 4.2).    

 

 

 

 

 

 

 

 



 

 

Figure 4.1 Characterization of α1R131D single mutant 
a) A glycine concentration response curve shows that potency of glycine at R131D GlyR  
is comparable to that of wt GlyRs (EC50 = 271µM and Max = 2.2 mM; n=6) b) Holding 
currents are significantly larger at the R131D mutant than those measured at wt GlyR 
voltage-clamped at –70 mV c) Significant direct effect of 200mM EtOH applied in the 
absence of glycine on the receptors expressing α1 R131D mutation.  This is very similar 
to what was reported by Beckstead et al. (2002) for the D97R mutation. 
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Figure 4.2 Nipecotic acid acts as a weak partial agonist at the α1 D97R/R131D 
double mutant Tracing of currents demonstrating the gain of efficacy of the competitive 
antagonist nipecotic acid at the reversal of charge mutant D97R/R131D.   
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4.3.2 Reversal of charge in the α1D97R/R131D double mutant restores receptor 

closed state stability  

Both the single α1D97R and α1R131D mutations result in receptors exhibiting 

some levels of spontaneous activity (leak current in the absence of an agonist).  As we 

had previously done with the swap charge reversal between the α1D97 and α1R119 

positions, we used the reversal of charge at the double mutant α1D97R/R131D to study 

whether this could restore GlyR closed state stability.  The double mutant was 

characterized and wt-like holding currents were observed.  The double, reversal of charge 

mutant, also exhibited no increase in background current when compared to the single 

mutants α1D97R and α1R131D, and was at levels that resembled wt α1GlyR (Figure 

4.1b).  These results are consistent with the model in which α1R131 is in proximity to 

α1D97, which allows electrostatic interactions between these two residues to occur.  This 

bridging appears to be necessary for keeping the receptor in more stable closed state.  

The glycine concentration-response curve was unchanged in this double mutant, 

compared to wt  α1 GlyR, and taurine still remained a full agonist, often exhibiting even 

higher maximal currents than those induced by maximally-effective concentrations of 

glycine (Figure 4.3).  

 

 

 

 



 

Figure 4.3 Representative tracing showing an increase in taurine potency in the 
double mutant α1 D97R/R131D Here we demonstrate the change of taurine from a 
partial agonist into a full agonist at GlyRs carrying this charge of reversal double 
mutation even though on the whole cell level the stability of the closed state has 
apparently been reinstated.  
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4.3.3 α1D97C and α1R131C residues are in proximity and in the right orientation to 

interact and form disulfide bonds  

In order to examine whether these residues are in the right orientation and close 

enough to interact, we engineered cysteines residues in positions α1D97 and α1R131.  

Glycine responses measured on this double mutant D97C/R131C  α1 GlyRs were stable, 

but low, suggestive of disulfide bond formation and consequently suppressed receptor 

activation.  The reducing agent DTT was applied to these mutants to break apart the 

disulfide bonds that we hypothesized would form if these two engineered cysteines were 

in proximity and in the right orientation to interact.  We saw that reduction by DTT 

successfully increased the glycine response but also elevated the holding current, 

presumably because receptors lacking this disulfide bond were more likely to 

spontaneously open (Figure 4.4).  As seen in the representative tracing, this leak current 

decreased with each successive glycine application.  This decrement in current over time 

was most likely occurring due to the spontaneous reformation of disulfide bonds as a 

result of the movements of GlyR binding interfaces in response to the binding of glycine.   

 

 
 
 
 



 

Fig 4.4 Disulfide bond in α1 D97C/R131C can be reduced with DTT Representative 
tracing showing that at least some receptors with a double mutation form disulfide bonds 
that suppress channel activity. It should also be noted that after the reduction with DTT 
not only is an increase in glycine response observed but also an increase in the holding  
current, highlighting the fact that, when this inter-cysteine bond s broken, the closed state 
is destabilized once again.  Numbers in tracings represent the holding currents at the 
times indicated. 
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4.3.4 In D97R/R131D  α1 GlyR taurine still acts as a full agonist 

Reversal of charge in the double mutant α1D97R/R131D eliminates spontaneous 

channel-opening activity. We believe that, as in D97-R119, restoration of the attractive 

electrostatic force that is lost in α1D97R or α1R131D single mutants causes the binding 

interface of adjacent subunits to come closer together. When this attractive force is re-

established this holds the binding domain together and prevents transduction of a 

channel-opening signal to the gate when the agonist is not present. As seen in the 

representative trace in Figure 4.3, taurine possesses full efficacy on the double mutant 

α1D97R/R131D.     
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 4.4 Discussion 

 

Data presented in chapter 3 illustrated how an inter-subunit electrostatic 

interaction plays a critical role in stabilizing the receptor in its closed channel state.  From 

updated structural models of GlyR generated by Dr. James Trudell (Stanford Univ.) other 

residues were identified that could potentially contribute to this interaction.  We found 

that arginine at position 131 can indeed form a salt bridge with D97 in α1 homomeric 

GlyR.  On a whole cell level, when re-instated in the double mutant, this interaction re-

stabilizes the receptor’s closed state.  This is represented as decrement of the background 

current seen in the single mutants and the lack of measurable direct effect of PTX, or 

200mM EtOH (Figure 4.1b and 4.3).  

It is interesting to note that taurine, in most cases a partial agonist at wt GlyR, was 

converted into a full agonist at both D97R (Welsh et al., submitted) and R131D mutant 

receptors. This may indicate a significant role of this region for the mechanism of 

channel activation by both full and partial agonists. In particular it has been hypothesized 

that partial agonists have decreased efficacy because their binding yields a diminished 

capacity of transferring the receptor to the flipped closed-channel state that precedes 

channel opening. After the closed to flipped conformational change is accomplished, 

glycine and taurine should, by this proposed mechanism, activate GlyR to the same 

extent (Lape at al., 2008).   This is how Welsh et al. (submitted) proposed taurine became 

a full agonist on α1D97R GlyR.  The weakened bond between α1D97R and α1R119 

primes the receptors in such a way that they can attain the flipped state in the absence of 
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agonist, allowing the flipped to open transition to occur as if receptors have already 

passed the first energy barrier of the transduction process.  It was then logical to expect 

that restoring this electrostatic interaction should also return taurine efficacy to that of the 

wt GlyR. This proved more complicated to test due to the dramatically rightshifted nature 

of the glycine concentration-response curve in the α1D97R/R119E double mutant. They 

were able to use the fact that nipecotic acid, normally an antagonist at GlyR, converts 

into a partial agonist at α1D97R. Nipecotic acid regains its antagonistic properties when 

the bond is restored in the double mutant α1D97R/R119E.  When I found that another 

amino acid could interact with α1D97, in this way stabilizing the closed channel state I 

decided to revisit this issue and test taurine and nipecotic acid efficacies on this double 

mutant.  The reversal of charge in the double mutant α1D97R/R131D produced 

maximally attainable currents comparable to those of wt GlyRs (at the same ranges of 

glycine concentrations). The stabilization of the closed channel state in the double mutant 

did not reverse taurine or nipecotic acid actions at α1D97R/R131D. Even though this 

double mutant appears to stabilize the closed state on the whole cell level we cannot 

conclude with certainty that there are absolutely no brief openings occurring in these 

receptors in the absence of the agonist.  The α1D97R/R131D electrostatic interaction 

may not be as strong as that seen in wt GlyR. Due to the limits of whole cell 

electrophysiology this would not be detected in our experiments, as we have seen 

previously in the case of the α1D97R/R119E double mutant. They displayed brief 

spontaneous openings that were detected in single channel recordings, although tonic 

current was not detected in whole-cell recordings. Nevertheless, the fact that both α1D97 
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and α1R131 mutations cause decreased stability of the closed state, have been implicated 

in the formation of the binding pocket, and seem to be at a junction point early in signal 

transduction where efficacy can already be influenced, we can conclude that this region 

plays a significant role in controlling GlyR function.  

Overall these data suggest that the residues studied here play a critical role in 

stabilizing the closed state of the receptor. This stabilization may occur by a simple one-

to-one interaction between α1D97 and α1R131 but it is much more likely that other 

charged residues that constitute this domain contribute as well. As we have previously 

seen (Chapter 3) an inter-subunit salt bridge between α1D97 and α1R119 successfully 

re-established the integrity of the closed state. In this chapter we add to the understanding 

of the character of the interface critical for proper GlyR function by showing that the 

α1R131 residue can interact with α1D97 as well. We cannot conclude with certainty 

which pair of residues interacts to a greater extent in the wt GlyR. It could be that, as we 

proposed earlier, these residues form a cloud of charges, necessary in its entirety for the 

normal functioning of the α1 homomeric GlyRs. It is safe to conclude that this area 

certainly holds the key to better understanding many aspects of the connection between 

the binding of the agonist and subsequent proper gating of the channel.     
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CHAPTER 5: AN ANALYSIS OF THE STRUCTURE 

OF THE UPPER PORTION OF THE α1 GLYR TM2 

SEGMENT IMPORTANT FOR SIGNAL TRANSDUCTION 

AND ALLOSTERIC MODULATION 

 
 

5.1 Introduction 
 

The glycine receptor is a pentameric protein characterized by high sequence 

homology with other members of the cys-loop receptor superfamily of subunits. It is 

evident that these ion channels, that exert their actions by selective ion permeation across 

the membrane, share a number of secondary structural features as well.  All of the 

members of the family are integral membrane proteins. This, together with low 

availability and difficulties inherent in the crystallization of membrane-bound proteins 

makes structural studies a challenge.  Most of our knowledge of GlyR structure comes 

from pioneering research conducted on the nAChR and nAChBP.  Although comparative 

studies and use of homology modeling using the available nAChR crystal structures and 

GlyR sequence has contributed a great deal of valuable information, it is important to 

remember that these proteins are characterized by some fundamental differences as well.   

Notably, when comparing GlyR and nAChR, they are activated by different 

agonists, their function is modulated by different compounds, and they are selectively 

permeable to different ions. These functional differences must be due to fundamental 



 86

variations in structure.  In 2005 Unwin published a study describing details of the high 

resolution nAChR cryo electron microscopy (cryo-EM) structure.  At 4 Å resolution this 

study of the nAChR structure gave us a more detailed view of distinct receptor domains 

and how they are arranged with respect to one another.  His work has since been used 

extensively to make conjectures about structurally related receptors.  Unwin’s study 

reported that TM2, the pore forming domain, was fully alpha helical (Unwin, 2005). This 

would mean that the side chain of about every third to fourth residue contributes to the 

formation of the pore region while the rest are pointing in toward the other TM segments 

or adjacent subunits. This was consequently studied in GlyR but different conclusions 

were reached.  Work by Ma and colleagues indicated that the helical structure of the TM2 

domain extends to Q266 (Q14’) and possibly to S267 (S15’).  Their results were obtained 

from NMR studies of truncated TM2 and TM3 domains from the α1 GlyR.  It is also 

important to note that in their studies, they used trifluoroethanol (TFE) for the exploration 

of the structural stability and dynamics of the TM2 region.  TFE is known to support the 

formation of alpha helical structures (Ma et al., 2005).  We report here, from our 

electrophysiological studies on the homomeric  α1 GlyR that the upper, more 

extracellular segment of TM2 (T265-S270; T13’-S19’) appears to be characterized by 

much higher levels of flexibility than could be accounted for if this section was 

constrained as a true alpha helix. Cysteine substitutions and disulfide bond formation 

experiments led us to conclude that these residues can cross-link between the subunits.  

In this way our results agree with the published NMR results detailing the secondary 
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structure of the TM2 domain (Ma et al., 2005) and with the GLIC structure model 

(Bocquet et al., 2000). 

 
5.2 Methods 

 
General methods, including primer design, site directed mutagenesis, oocyte 

isolation and injection, and electrophysiological procedures were described in Chapter 2. 

Methods not previously used are outlined in more detail below. 

To determine the disulfide bond formation in each of the engineered mutant 

receptors (T265C, Q266C, S267C, S268C, G269C and S270C) maximally effective 

glycine concentrations were identified for each mutant.  

After two or more applications of glycine, the reducing agent, DTT, was applied 

for 3 min at a concentration of 10 mM.  After a 10-12 minute washout period, glycine 

applications were repeated (at the initial saturating glycine concentrations) two or three 

times, to determine if the reducing agent had any effect on GlyR function.  In the same 

oocyte, mutants were tested with the oxidizing reagent H2O2, applied to favor the 

formation of disulfide bonds between free sulfhydryl groups; this would occur if cysteine 

side chains were in close enough proximity and in the right orientation to interact.  In 

some of the preliminary experiments the cross-linking agent HgCl2 was used as well. The 

application of this compound followed the same protocol as the H2O2 oxidation reaction.  

HgCl2 was applied for a minute at a concentration of 10 µM, and possible changes in 

function of mutant and wt GlyR were assayed after a 7-12 minute washout.  During the 

applications of reducing, cross-linking or oxidizing reagents, oocytes were unclamped, 

and both voltage and current electrodes were removed from the bath to minimize 
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exposure of the glass electrodes to the bath solutions.  Oocytes expressing wild type 

receptors were previously tested for any changes that might arise from re-impaling the 

cells with electrodes and no significant differences in currents were recorded (data not 

shown).    
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5.3 Results 
 
 

5.3.1 T265C to S270C single mutant substitutions all spontaneously cross-link across 
subunits. 
 

In order to assess whether individual cysteine substitutions from threonine 265 to 

serine 270 would affect GlyR function we first determined the concentrations of glycine 

producing maximal effects.  In all mutants we observed a significant decrease in 

maximally attainable currents (consistent across the cells we tested) compared to 

maximal currents elicited in wt GlyR.  We then investigated whether this decrease could 

be reversed following the application of the reducing agent DTT. After the initial two or 

three applications of 10mM glycine, DTT and H2O2 or HgCl2 were applied to probe for 

changes in receptor function.  We recorded significant increases in current after 3 min 

applications of 10 mM DTT in T265C, S267C, S268C, G269C and S270C  α1 GlyR 

(Figure 5.1a and Figure 5.2).  In contrast, current levels decreased considerably in all 

mutants tested, when they were exposed to 0.03% H2O2 or 10 µM HgCl2 (Figure 5.1 a 

and Figure 5.2).   Both DTT and H2O2 were tested for possible effects on wild type α1 

GlyR and were without effect (data shown for DTT in Chapter 3: Figure 3.7a).  This 

wt control has been tested previously by others (Lobo et al., 2004, Dupre, personal 

communication) and just confirms that in the wild type α1 GlyRs no cysteine residues are 

free to interact with one another, and those that form disulfide bonds (as is case with the 

four cysteines forming the two cys-loops in the ECD) are not accessible to DTT.   

 
 
 



 

 
 

 
Figure 5.1 The α1 S267C glycine receptor forms inter-subunit disulfide bonds 
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a) Tracings of currents recorded from homomeric S267C α1 GlyR, demonstrating the 
occurrence of crosslinking at this mutant receptor.  In this case the crosslinking reagent 
HgCl2, causes a decrease in current while reduction with DTT significantly increases 
glycine-induced currents at these receptors. b) Bar graph summarizing the data recorded 
from α1 S267C GlyR before and after exposing oocytes to reducing and crosslinking 
agents.  From left to right the vertical bars represent consecutive applications of 10 mM 
glycine and the applications of DTT or HgCl2 in the absence of glycine are also noted.  
Data are presented as mean ± SEM of 4-6 oocytes.  



 
 
 
 
 
Figure 5.2 Inter-subunit disulfide bonds form between residues of the upper TM2 
segment.  Summaries of results obtained from receptors bearing cysteine substitutions at 
positions T265 (upper left), S268 (upper right), G269 (lower left) and S270 (lower right). 
In each case, from left to right the vertical bars represent consecutive applications of 10 
mM glycine; in addition the applications of DTT or H2O2 in the absence of glycine are 
also noted. These bar graphs clearly demonstrate that crosslinking occurs in these 
receptors, leading to decreases in current responses to maximally effective glycine 
concentrations after the oxidation and increases in currents (reversal of the effect of 
disulfide bond formation) after reduction with DTT.  The data shown represent the mean 
± SEM of 3-5 oocytes.   
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5.3.2 A special case of cross-linking at α1 Q266C mutant receptors 
 

In the case of the α1 Q266C mutant we obtained different results depending on 

the order of events in the oxidation-reduction protocol.  These receptors showed a 

progressive decrement in current as a result of recurring glycine-induced activation 

(Figure 5.3 a). When DTT is applied first this results in a significant increase in glycine 

current.  When, in the same oocyte, this is followed by an application of H2O2, this results 

in further current increase (Figure 5.3 a and b).  However, different results are obtained 

when the order of application of the oxidizing and reducing agents is reversed.  When 

application of a maximally-effective concentration of glycine is followed by an 

application of H2O2 before the oocytes have been exposed to the reducing agent, this 

results in a significant increase in current (Figure 5.3 b). The subsequent application of 

the reducing agent then, either caused a small reduction, or an increase in the glycine-

evoked currents (Figure 5.3 b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 5.3 An unusual case of crosslinking at the α1 Q266C mutant 
a) Sample tracing showing one of the effects of disulfide bond formation at Q266C. The 
decreases in glycine-mediated currents due to recurrent glycine applications are evident.  
In this case the reducing agent DTT did not appear to have an effect while application of 
H202 increased glycine-induced currents significantly.  This DTT effect was an unusual 
but reproducible finding seen in only some oocytes. b) On average the reducing agent 
(when applied first) had the expected effect of enhancing subsequent glycine-induced 
currents.  Application of the oxidizing agent H2O2 had unexpected results, increasing 
glycine currents in all oocytes tested. After the oocytes were exposed to H2O2 a second 
application of DTT caused either a decrease in current or had no apparent effect on these 
receptors. Data are presented as mean ± SEM of 3-7 oocytes.  
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5.3.3 Rates of cross-linking in the S267C  α1 GlyR is affected by channel activation 
 

We determined whether differences exist between the rates of cross-linking with 

or without re-applications of the agonist; i.e., does spontaneous cross-linking occur and 

can the rate of cross-linking be accelerated by receptor activation? We applied DTT for 3 

min and after a 7-10 minute washout glycine was then applied either four times at 12 

minute intervals or once after a 48 minute washout period. The final measurements of 

current levels were then compared to determine the dependence of cross-linking on 

movement of this segment during channel activation (Figure 5.4).    

 
 

 

 

 

 

 

 

 

 

 



 

Figure 5.4 The rate of crosslinking at S267C depends on receptor activation. A 
scatterplot graph demonstrating the dependence of rates of crosslinking at α1 S267C 
GlyR on glycine application.  Filled circles represent crosslinking as it occurs when max 
glycine is applied every 12 min, bringing the current to 41.4 ± 3.1% of the initial glycine 
response.  Triangles represent the percent current loss when maximal glycine was applied 
only once 48 minutes after the initial glycine application.  This results in a significantly 
smaller decrement in the glycine-evoked current (to 76.4 ± 3.3% of initial current).   Data 
are presented as mean ± SEM of 3-5 oocytes. 
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5.3.4 S267C does not interact with free α1 GlyR cysteines at positions 41 and 290 

In the wild type  α1 GlyR three free cysteines could potentially interact with 

another cysteine residue if it was in the right orientation, environment and proximity. 

These cysteines are all positioned far from the segment that we studied here.  C41 is 

located in the extracellular domain, C290 is in TM3, while C345 is situated 

intracellularly, as part of the cytoplasmic TM3-4 loop.  We considered the possible 

interaction of C345 with S267C as highly unlikely, and did not consider it further.  We 

tested the possible interactions of S267C with C41 or C290 by engineering the double 

mutants α1C41A/S267C (data not shown) and α1S267C/C290A (Figure 5.5).  These 

double mutants yielded results that were the same as those obtained from the α1S267C 

single mutant.  A decrease in current as a result of a disulfide bond formation was still 

evident and reduction and oxidation reaction results were comparable to those seen in the 

single α1S267C mutant. We can therefore conclude that the naturally occurring cysteine 

residues cannot interact with S267 residue (Figure 5.4).  Although we still have to test 

the remaining residues that we studied here, we at present assume that they would also 

not be affected by these free cysteine residues. This is something that can be done in the 

future to ensure no interaction is possible between these TM2 amino acids and either C41 

or C290. 

 

 

 

 



 

Figure 5.5 S267C does not crosslink with the endogenous cysteine residue at position 
C290 in TM3.  Representative tracing of currents recorded from the double mutant 
S267C/C290A, demonstrating that when the C290 residue is mutated to alanine, the 
disulfide bond formation observed in the α1 S267C mutant GlyR remains conserved.  
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5.3.5 Maximal current at S267C is increased by PMTS  
 

Previous work from our lab demonstrated, using single channel recordings, that 

the α1 S267C mutation significantly reduces the unitary channel conductance (Goldstein 

et al., in preparation).  Wild type-like conductance was re-established after an application 

of the thiol reagent propyl methanethiosulfonate (PMTS) but what was responsible for 

this was at the time not further evaluated.  Considering that our whole cell measurements 

showed spontaneous cross-linking at S267C GlyR we hypothesized that PMTS may be 

breaking the disulfide bonds that formed spontaneously between receptor subunits and 

relief of this crosslinking could then explain the changes in unitary conductance. To test 

this further we decided to measure changes in whole-cell maximal currents following the 

application of PMTS.  One would hypothesize that they should be greater if conductance 

increased due to a PMTS-induced breakage of inter-subunit bonds.  After exposing the 

cell to the concentrations of glycine (10 mM) that induced a maximal current in the α1 

S267C mutant, we applied 50 µM PMTS for 1 minute. Following a washout period of 10-

12 minutes the same glycine concentration was re-applied and a significantly greater 

current was observed (Figure 5.6).   

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Figure 5.6 PMTS increases maximal glycine currents at S267C mutant receptor.  
a) Representative tracings illustrating the increases in glycinergic currents at α1 S267C 
GlyR after the receptors were exposed to 50 µM PMTS. b) Bar graph showing the 
average increase in current recorded from the S267C mutant receptors after exposure to 
PMTS. The left and middle bars represent currents induced by a maximally effective 
glycine application before PMTS has been applied, while the right bar represents currents 
evoked by the same receptors after PMTS exposure.  Data are presented as mean ± SEM 
of 11 oocytes.  
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5.4 Discussion 

 

My research demonstrates that the upper segment of TM2, the pore lining 

segment, does not appear to be constrained in a true alpha helical shape.  If the secondary 

structure of this segment were truly helical it seems unlikely that the engineered cysteines 

we evaluated could all interact with each other across the interface of two adjacent 

subunits. The flexibility of this region may indeed play an important role in both the 

activation and modulation of GlyRs. Although differing in the degree of disulfide bond 

formation, T265C, Q266C, S267C, S268C, G269C and S270C  α1 GlyR can all 

spontaneously cross-link with the same residue on an adjacent subunit.  This may not be 

surprising if we consider that this segment feeds into the TM2-3 linker region that is 

believed to play an important role in transferring the binding signal from the ECD to the 

pore region and possibly even between the subunits (Dupre et al., 2007).  The flexibility 

of this segment may have additional implications in the dynamics of signal transduction. 

Positions Q266 and S267 may be of particular interest considering their importance in 

GlyR function.  Among the identified mutations causing hyperekplexia, a missense 

mutation at position 266 is the only mutation occurring within TM segments (Milani et 

al., 1995).  Moorhouse et al. (1999) showed that a histidine for glutamine exchange at 

position 266 in the TM2 domain leads to destabilization of the channel open state. This 

mutant, however, does not affect the receptor’s sensitivity to Zn2+ (tested due to the high 

affinity interaction of Zn2+ with histidine) or pH changes: this, they thought, hinted at the 

possibility that the H266 side chain is facing away from the channel lumen. In addition, 
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their data demonstrated that this mutation produces a decrease in taurine’s efficacy, 

making it a weak partial agonist at these receptors (Moorhouse et al., 1999).  Another 

group, working to solve the structure of the GlyR TM2 segment, looked into Q266H 

substitution and concluded that histidine at this position may be preventing normal gating 

movements by stabilizing anions in the pore due to the positively charged histidine side 

chain (Tang et al., 2002), suggesting that this could explain why Q266H spent 

significantly less time in the open state than the wild type α1GlyR (Moorhouse et al., 

1999). Furthermore, their NMR structure studies indicated that this Q266 residue at the 

14’ position forms the most constricted part of the pore (Tang et al., 2002).  This would 

agree with the inconsistent data that we obtained with the reduction and oxidation 

protocols on this mutant.  It could be that Q266C can cross-link not only between 

adjacent subunits but perhaps also across the pore, giving us in this way differing results 

after DTT and H2O2 application.  This may be why, depending on the order of application 

of reducing and oxidizing agents, we measured increases in current after the application 

of DTT, and reductions in current when H2O2 was applied following reduction. The same 

applications, but occurring in a different order, with oxidation first and reduction second, 

resulted in unexpected results.  When receptors were first exposed to the oxidative 

environment this resulted in an increased current. This was followed with either a small 

reduction or a further increase in current following the application of DTT.  Essentially, 

under the two scenarios, we could be dealing with different populations of receptors.  

Some may have cross-linked between adjacent subunits and others across the pore, giving 

us in this way different outcomes from, in principle, the same protocols.  
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CHAPTER 6: GENERAL DISCUSSION, CONCLUSIONS 
AND FUTURE DIRECTIONS 

 
 

Ever increasingly sophisticated electrophysiological procedures and advances in 

LGIC structural models have provided great insight into GlyR function in the last decade.  

The activation processes of these proteins have proved difficult to decipher, and studies 

of this nature still represent an enormous challenge. Most of the current knowledge about 

the processes of binding and signal transduction of the GlyR is based on pioneering work 

done on the nAChR and nAChBP.  Although advances made in our understanding of the 

structures of these related receptors provided a wealth of clues to aid in interpreting the 

puzzle that is the GlyR one must always remember the caveat that the protein subunits in 

this superfamily share less than 20% primary sequence homology.  

 The research described in this dissertation delineates some of the critical 

processes necessary for the proper functioning of the GlyR, in this way furthering our 

understanding of these ion channels.   
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6.1 Significance of ion channel closed state stability in the absence of the 

agonist 

 

The proper functioning of the GlyR and other ligand-gated ion channels (LGICs) 

depends on ligand binding initiating the process of signal transduction.  The presence, 

timing, and the concentration of different agonists that are released onto a postsynaptic 

cell represent one of the important controls of neuronal communication.  Many 

subsequent events such as action potential generation and neurotransmitter release rely on 

the proper signaling that is initiated at LGICs.  The neuronal connections and networks 

that they help form are like a finely tuned instrument: if one of the strings breaks, the 

music just doesn’t sound the same.  

Although examples of tonic activity in wildtype receptors exist, these occurrences 

of spontaneous channel openings are rare, and among cys loop receptors, have only been 

seen in the nicotinic acetylcholine receptor (Jackson, 1986).  Glycine receptors that may 

at times appear to open spontaneously are instead displaying currents simply because 

sufficiently high and persistent concentrations of agonists such as taurine or β-alanine are 

tonically present, such as at extrasynaptic GlyR.  Thus far no evidence exists that any 

wildtype GlyR can form channels that activate spontaneously in the absence of an 

agonist.  In Chapter 3 I studied a mutant GlyR involving an aspartic acid substitution at 

position 97 in the ECD that confers tonic channel opening activity. This was 

characterized by a strychnine-sensitive leak current that was observed even when glycine 

was absent from the bath solution.  Some of the receptors in this population pool were in 
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the closed channel state and were still activatable by glycine.  This conclusion was 

reached after examination of α1 D97R single channel data that demonstrated that the 

probability of these channels being found in the open state in clusters in the absence of 

the agonist was comparable to that of wildtype α1 GlyR exposed to saturating glycine 

concentrations (>90%).  The magnitudes of whole-cell inward currents elicited by glycine 

in the α1 D97R mutant cannot be explained simply as increases in channel Po and 

therefore this suggest that a subpopulation of channels is found in a closed and 

activatable state.  In other words, the α1 D97R mutation does not force channels into an 

open state; instead it increases the likelihood that they will transition from a closed to an 

open state, in the process promoting the possibility of cluster initiation.  Once the cluster 

has been initiated, the channel seems to behave much like a wildtype receptor exposed to 

a maximally effective glycine concentration.  In a study performed by Beckstead et al. 

(2002) the phenomenon of spontaneous receptor openings seen in the D97R mutant was 

used to further delineate the mechanisms by which modulators such as alcohols and 

volatile anesthetics affect GlyR function, but major questions remained following that 

study.  The Todorovic et al (2010) paper helps to clarify remaining issues.  In two-

electrode whole-cell studies conducted on α1 D97R GlyR expressed in oocytes 

Beckstead et al (2002) found that ethanol enhanced tonic channel opening but did not 

enhance any currents elicited by even low concentrations of glycine on this mutant; i.e. 

the effects of ethanol and glycine appeared additive on α1 D97R receptors.  This was 

quite puzzling until we showed that tonically opening α1 D97R GlyR behave as though 

they have bound a maximally effective glycine concentration (Po >0.9).  One would not 
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expect ethanol to enhance the function of receptors with a Po this high since ethanol does 

not affect Po (Welsh et al, 2009).  Instead ethanol could be acting by increasing the 

likelihood of cluster initiation, antagonizing desensitization (leading to longer clusters) or 

increasing the rate of transitions between desensitized and closed states.  The last two 

possibilities of the three seem unlikely since ethanol does not affect currents elicited by 

long-term exposure to a saturating glycine concentration in wt α1 GlyR, at which time 

channels would be expected to be in equilibrium between desensitized and open states 

(Welsh et al. 2010).   

These data also explain the very low Hill slope number (0.61) found by Beckstead 

et al. (2002) for α1 D97R glycine concentration-response curves.  In wildtype α1 GlyR 

the Hill slope is typically around 1.5-2, indicating cooperativity of binding as multiple 

glycine molecules sequentially bind to a receptor.  The loss of cooperativity in the 

α1 D97R GlyR makes sense when one considers that spontaneously-active receptors 

have Po values almost identical to those of maximally-activated wildtype receptors that 

have bound as few as three glycine molecules (Beato et al. 2004).   If spontaneously-

activating receptors result in clusters of high Po activity one would expect the same to be 

true of clusters initiated by the binding of even a single glycine molecule.   As a result the 

glycine concentration-response curve in the α1 D97R mutant reflects just the likelihood 

of binding and consequent channel activation, with no cooperativity evident. 
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6.2 Inter-subunit electrostatic interactions play a significant role in 

GlyR function 

 

The research described above identifies several different residues that can interact 

with aspartate-97 to stabilize the closed-state of the GlyR in the absence of agonist.  It 

would be overly simplistic to postulate that only one such interaction was possible or 

even likely since proteins such as the GlyR are not static structures.  I concluded that 

structurally and functionally α1 K116, R119 and R131 can all, to variable degrees, fulfill 

the role of electrostatically interacting with D97 and thus contributing to the inter-subunit 

attractive force that helps keep the receptor from spontaneously activating.  K116 seems 

to be the least important of the three since charge reversal experiments involving the 

double mutant α1 D97R/K116D yield channels that still exhibit significant tonic activity, 

albeit at levels below those of the D97R mutant.  For this reason my effort was largely 

expended in studying the R119 and R131 residues.  In both cases the double charge 

reversal mutants (α1 D97R/R119E and α1 D97R/R131D) resulted in wildtype-like 

holding currents suggesting the re-establishment of inter-subunit electrostatic bonds.  

Cysteine substitution experiments confirmed the physical interactions of residue 97 with 

cysteines introduced at positions 119 and 131. Interestingly, although the 

 α1 D97R/R119E double mutant appeared to exhibit wildtype-like holding currents when 

measured on the whole-cell level, single channel recordings showed very brief 

spontaneous openings.  This was not surprising if one considers that even in the charge 

reversal double mutant, the R97 and E119 electrostatic interactions are not the only 
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possible interactions in which these two residues participate.  For example, arginine 

replacing aspartate at position 97 would be expected to change the conformation of the – 

side of the subunit interface bearing that residue in addition to interacting with residue 

119 on the + side.  The same holds for residue 119 on the + side of the interface in the 

ECD.   It is interesting to speculate if comparable inter-subunit, or perhaps intra-subunit, 

electrostatic interactions affect open state stability; i.e., are there specific electrostatic 

interactions involving  α1 D97, R119 or R131, or perhaps other as yet unidentified 

charged residues, that stabilize channel open states?    
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6.3 Upper TM2 segment structure and implications of its flexibility on 

GlyR function and modulation 

 

Binding of glycine in the ECD between adjacent subunits is the first step in the 

activation of GlyR.  This binding signal is then transduced to the pore and a number of 

distinct regions of these receptor subunits are implicated in this transduction process.  

One of these regions is the extracellular portion of TM2 as well as the TM2-3 linker 

region.  Structural data obtained from studies conducted on nAChR (Unwin, 2005), 

nAChBP (Brejc et al., 2001), and the GLIC (Bocquet et al., 2009) and ELIC (Hilf and 

Dutzler, 2008, 2009) channels suggests that these proteins have varying structures in their 

extracellular portions of TM2.   In addition some preliminary studies I conducted on the 

S267 residue in TM2 suggested that this amino acid may not just play a role in 

constituting an intra-subunit alcohol binding pocket but also appears capable of sufficient 

movement to interact with equivalent residues on adjacent subunits.  Specifically, when 

residue 267 is mutated to cysteine it can form covalent cross-links to adjacent C267 

residues.  If this region in TM2 is truly α helical as the Unwin et al. (2005) model of the 

nAChR suggests, one would expect only every three or four residues to point in the same 

direction.  Thus not all of the residues in this region should be capable of these inter-

subunit interactions upon cysteine mutation.   However I found that all of the residues 

between locations T265 and S270 (upper end of TM2) were capable of crosslinking after 

cysteine mutagenesis, making it highly unlikely that this region is α helical.  This 

suggests that the structure of the GlyR α1 receptor subunits in this region is closer to that 
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found in the ELIC (Hilf and Dutzler, 2008) and GLIC prokaryotic proteins (Bocquet et 

al., 2009) than in the nAChR.   
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6.4 Overview and future directions 

 

A thorough knowledge of protein structure is important as it can provide us with 

information of the organization of amino acids relative to one another as well as the local 

environment of different protein domains.  In research on LGICs this can further assist us 

in elucidating how different agonists and modulators may be stabilized upon binding, 

giving us more insight into their mechanisms of action.  As seen from the research 

presented above new information obtained regarding the receptor structure may also 

reveal critical interactions that occur within and between the subunits, in this way helping 

us to navigate through the details of signal transduction, channel gating and receptor 

modulation by various endogenous and exogenous agents.    

The research presented in this dissertation contributes to our understanding of GlyR 

structure and function as well as answering some questions that remained from previous 

studies on these and related receptors.  However, many questions still remain and the 

following suggestions will outline some of the future directions that might prove fruitful. 

 

1. In Chapters 3 and 4, I discussed electrostatic interactions that play critical roles in 

maintaining receptor closed-state stability and also appear to constitute initial 

steps in the initiation of signal transduction once the agonist has bound. Mutations 

of charged residues D97R and R131D, that are part of this region, also resulted in 

increases in the efficacies of the partial agonists taurine, β−AIBA, β−ABA and 

even changed the antagonist nipecotic acid into a weak partial agonist (Welsh et 
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al., 2010).  A number of possibilities exist to explain differential sensitivities of 

partial agonists at LGIC’s.  Lape et al. (2008) conclude from their work that 

agonist efficacy is dependent on the ability of a ligand to effect transitions 

between two closed-channel states: the closed and flipped states.  Their 

hypothesis posits that once the receptor adopts the flipped state, which is 

hypothesized to occur early in the process of signal transduction, from that point 

different ligands no longer have differenct efficacies;is not affected; i.e., β/α do 

not vary among ligands such as glycine and taurine. Welsh et al. (2010) 

developed on this idea further by conducted experiments that allowed them to 

conclude that the dramatic increase in taurine efficacy at α1 D97R is consistent 

with the hypothesis that these receptors exhibit a decreased energy barrier for 

transitions between closed and flipped states.  Another possibility is that partial 

agonism arises through self-antagonizing properties that some of these ligands 

may have.  Schmieden et al. (1995, 1999) show that, in β amino acids that are 

found in both the cis and trans forms in solution, the cis isomer act as an agonist 

while the trans form is an antagonist at the GlyR.  This hypothesis is strengthened 

when we take in consideration that nipecotic acid, which is found only in a trans- 

form, acts as an antagonist at wildtype GlyR.  Research presented in Chapter 4 

demonstrates that even though in the D97R/R131D double-mutant assayed on the 

whole-cell level, the receptor did not appear to open spontaneously taurine 

remains a full agonist and other β amino acids, as well as nipecotic acid, still 

exhibit increased efficacy at this mutant receptor compared to wildtype.  It seems 
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imperative that single channel recordings be made from the R131D and 

D97R/R131D receptors.  In addition to determining if spontaneous channel 

opening was occurring one would also look at the responses to a saturating 

concentration of taurine.  The prediction would be that taurine would have a high 

Po, comparable to the effect of a saturating concentration of glycine applied to 

wild type receptors.  

 

2. The majority of data presented in this dissertation has been recorded from 

α1 homomeric GlyRs.  It is important to see if one could generalize conclusions 

pertaining to the critical interactions that I showed stabilize the closed state of the 

α1 receptor to the α1β heteromeric GlyR.  This would be of significance since it 

is the heteromeric receptors that are the most commonly found in neurons in 

mature animals.  While aspartic acid at position 97 (Chapter 3) remains 

conserved in the β subunit, positions equivalent to α1 K116 and α1 R119 are not 

charged residues in the β subunit (I139 and F142, respectively).  Nevertheless, 

arginine at position 131 on α1 (Chapter 4) has a homologous charged 

counterpart in the β GlyR subunit (R154) that should be tested for its possible 

electrostatic interactions with the D97 residue in the α1 subunit.   In addition 

R145 in the β subunit (equivalent to α1 R122) should also be examined. 

 

3. In Chapter 5, I studied the upper segment of the TM2 domain and determined, 

through cysteine scanning, that all of the residues studied expressed some degree 
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of crosslinking (presumably between subunits).  It would be interesting to develop 

on this idea further to show conclusively that this crosslinking occurs between 

subunits.  In order to do so, one would have to run Western blots of the subunits 

under reducing and non-reducing conditions.  Under non-reducing conditions one 

would expect dimmers of mutant but not wildtype subunits to be present.  In 

addition all of the mutants studied should also be tested on C41A and C290A α1 

GlyR backgrounds that remove the possibilities of crosslinking to endogenous 

cysteine residues.  In the case of the Q266C mutant I believe it is quite possible 

that it may be interacting with C290 because the results of the oxidation 

experiment were quite unexpected. Considering that a significant increase in the 

glycine-induced current was observed after receptors were exposed to the 

oxidizing environment (preference for disulfide bond formation when sulfhydryl 

groups of free cysteines are close enough and in the right orientation to interact) 

one could postulate that there may be interactions taking place between C266 and 

a naturally-occurring cysteine at position C290 of TM3 domain, either within the 

same subunit or possibly between subunits.  After determining whether this may 

be occurring with the double mutant Q266C/C290A, in the case of a positive 

result (change in oxidizing reaction effects when compared to the single mutant 

Q266C: decrease or no effect in the C290A background), one would then 

differentiate between intra- and inter subunit interaction using Western blotting.  
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