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The design of low-order controllers for high-order plants is a challeng-

ing problem theoretically as well as from a computational point of view. Fre-

quently, robust controller design techniques result in high-order controllers.

It is then interesting to achieve reduced-order models and controllers while

maintaining robustness properties. Controller designed for large structures

based on models obtained by finite element techniques yield large state-space

dimensions. In this case, problems related to storage, accuracy and computa-

tional speed may arise. Thus, model reduction methods capable of addressing

controller reduction problems are of primary importance to allow the practical

applicability of advanced controller design methods for high-order systems.

A challenging large-scale control problem that has emerged recently is

the protection of civil structures, such as high-rise buildings and long-span

bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic,

viii



and deliberate attacks. Even though significant effort has been spent in the

application of control theory to the design of civil structures in order increase

their safety and reliability, several challenging issues are open problems for

real-time implementation.

This dissertation addresses with the development of methodologies for

controller reduction for real-time implementation in seismic protection of civil

structures using projection methods. Three classes of schemes are analyzed for

model and controller reduction: nodal truncation, singular value decomposi-

tion methods and Krylov-based methods. A family of benchmark problems for

structural control are used as a framework for a comparative study of model

and controller reduction techniques. It is shown that classical model and con-

troller reduction techniques, such as balanced truncation, modal truncation

and moment matching by Krylov techniques, yield reduced-order controllers

that do not guarantee stability of the closed-loop system, that is, the reduced-

order controller implemented with the full-order plant.

A controller reduction approach is proposed such that to guarantee

closed-loop stability. It is based on the concept of dissipativity (or positivity)

of linear dynamical systems. Utilizing passivity preserving model reduction to-

gether with dissipative-LQG controllers, effective low-order optimal controllers

are obtained. Results are shown through simulations.
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Chapter 1

Introduction

1.1 Approaches to Model Reduction

The design of low-order controllers for high-order plants is a challeng-

ing problem, both theoretically as well as from a computational point of view.

Designs for control of large structures are often based on mathematical mod-

els constructed by finite element techniques together with experimental data,

and so frequently, they yield large state-space dimensions (on the order of

tens of thousands to millions) upon discretization. Advanced controller design

methods such as LQG/LTR loop-shaping, H2/H∞ control design, µ-synthesis

and linear matrix inequalities (LMIs) typically produce controllers with orders

comparable to the order of the plant. Highly accurate models desired for feed-

back control often lead to high-order controllers. These high-order controllers

are not practical for real-time applications. It is an important problem to con-

sider how to achieve reduced-order models and controllers while maintaining

the desired performance during real-time implementation.

Applying classical design methodologies to complex systems relies on

the ad hoc design process of introducing controllers in various locations, as the

performance with the control system is assessed. This process necessarily relies
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on the level of experience and capability of the designer, sometimes leading to

good results but often not. The complexities of the system may be inadver-

tently overlooked. As a result, a more difficult control design problem (from

a mathematical and computational point of view) is to consider a structured

and theoretically-based modern control design methodology which addresses

problems related to storage, accuracy, and computational speed [8]. In gen-

eral, however, the order of these modern controllers tends to be too high for

practical use. For many reasons, simple controllers are preferred over complex

ones [86]. Thus, model reduction methods capable of addressing controller

reduction problems are of primary importance to allow the practical applica-

bility of modern controller design methods for high-order systems. As sensor

networks and embedded processors proliferate our environment, technologies

for such approximations and real-time control emerge as a major technical

challenge [5].

A challenging large-scale control problem that has emerged recently is

the protection of civil structures, such as high-rise buildings and long-span

bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic,

and deliberate attacks. Even though significant effort has been expended on

the application of control theory to the design of civil structures (see [100],

[20]) in order to increase safety and reliability, several challenging issues are

yet to be successfully addressed for real-time implementation. The control

of civil structures using passive, active or semi-active techniques has reached

the stage of full-scale implementations [19]. More than fifty installations in
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building structures and bridges have been subjected to actual wind forces

and earthquake inputs [19]. However, with the increasing complexity of the

available finite element models, model reduction has to be performed to reduce

the problem to a feasible number of degrees of freedom (DOF) so that design

and simulation of the control system can be accomplished in a reasonable

time and so that practical low-order controllers can be applied to real-time

implementations.

Model and controller reduction for large-scale structures have not yet

been addressed in the building control literature. Usually, the low-order struc-

tural models for building control are obtained by standard model reduction

techniques, such as modal reduction, balanced truncation and static condensa-

tion [24]. However, those techniques do not address the issue of controller de-

sign in a closed-loop framework, where destabilizing reduced-order controllers

are often obtained. In such cases, by means of trial-and-error, stabilizing

reduced-order controllers may be achieved. Thus, model and controller design

techniques that guarantee stabilizing reduced-order controllers when they are

implemented on the actual structure become important factors for the success

of building control.

The model and controller reduction methods can be divided into two

different classes [2]: Direct and Indirect. Figure 1.1 shows the direct method

design from a high-order plant to a low-order controller. With direct meth-

ods, the parameters defining a low-order controller are computed by employing

an optimization technique. With indirect methods, two design pathways are
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possible. A high-order controller can first be designed, and then a procedure

can be used to reduce the controller complexity. In Figure 1.1, this pathway is

illustrated in the upper right. Following a different procedure, a reduced-order

plant can be found prior to the controller design, and then a reduced-order

controller is designed for the reduced-order plant. In Figure 1.1, this pathway

is illustrated in the lower left. There are many issues that arise with the indi-

rect approach. In the overall design process, the plant model approximation is

carried out at an early step of the design process, without the benefit of per-

tinent information about the low-order controller. As discussed in [33, 34], a

good approximation of the plant requires knowledge of the controller. It is im-

portant to understand that the problem of controller reduction (closed-loop) is

distinct from the problem of model reduction (open-loop), since it is after all,

closed-loop performance that should be approximated. Recently, Antoulas, et

al. [8, 50] proposed a method for incorporating closed-loop system information

into the plant and controller reduction process for large-scale systems, using

rational interpolation through the poles of the large-scale closed-loop system

and the large-scale controller.

Most computational methods currently employed for controller reduc-

tion [125] cannot effectively handle very large-scale problems that exhibit some

sparsity. They frequently involve the solution of Riccati equations and linear

matrix inequalities (LMI) in the controller reduction process. It is known that

current methods exhibit computational cost associated with the algorithms

on the order O(n3)− O(n6) operations, where n is the number of states, thus
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Figure 1.1: Direct and Indirect Approaches for Controller Reduction (Adapted
from [2]).

becoming impractical for large-scale applications [8, 41, 90]. A systematic way

for reducing the order of large-scale controllers using a reasonable amount of

computational effort and storage, that is, involving efficient algorithms, would

yield controllers feasible for real-time implementations.

1.2 Control of Structures: Building Control Problem

Recent devastating events around the world have raised awareness of

the importance of understanding the way in which civil engineering structures

respond during dynamic events. One of the main challenges in structural

engineering is to develop innovative design concepts to better protect civil

structures from earthquakes, strong winds and direct attacks. With the im-
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provements in construction techniques, an increase in height for civil structures

has been seen in practice. This brings up very interesting problems related to

the comfort sensations of its occupants due to high accelerations and displace-

ments and structural safety due to external disturbances.

Buildings and other physical structures have traditionally relied on their

strength and the use of passive devices, such as base isolation schemes, to

dissipate energy under severe dynamic loading [100]. However, in recent years,

the field of active (or semi-active) control of civil structures has emerged as a

way to enhance the capability of dealing with natural and man-made hazards

[101].

The first full-scale application of active control to a building was ac-

complished by the Kajima Corporation in 1989 [100]. The Kyobashi Seiwa

building, as shown in Fig. 1.2, is an eleven-story building in Tokyo, Japan,

having two Active-Mass Dampers (AMDs) for controlling the structure. The

primary AMD is employed to control transverse motion, while a smaller sec-

ondary AMD is employed to reduce torsional motion. Since 1989, several

advances have been made in the application of feedback control for civil struc-

tures. Research has been conducted in the application of control strategies for

linear and nonlinear building models [29, 32, 65]. Jansen ([65] and references

therein) analyzed the use of LQG/H2 control for the active control of buildings,

as well as Lyapunov-based schemes, bang-bang, and clipped-optimal control

strategies for semi-active control of buildings. Also, the possibility of using a

combination of passive and active control strategies, the so-called hybrid con-
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Figure 1.2: Kyobashi Seiwa Building with AMD Installation [100].

trol, has been successfully investigated. To date, there have been over forty

buildings and ten bridges that have employed feedback control strategies in

full-scale implementation [19, 101]. Most of these full-scale systems have been

subjected to actual wind forces and ground motions. Significant improvements

in the response of the structures to external disturbances has been observed

together with model and controller validations [19].

One of the disadvantages of the active and hybrid control strategies

is that they depend on external power, which may not be available during

seismic events when the main power to the structure may fail. Also, they

rely on hydraulic actuators, which require large amount of power to func-

tion. Semi-active control strategies on the other hand, such as variable-orifice

dampers, variable friction dampers and controllable fluid dampers are partic-
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ularly promising in addressing many of these issues. They combine the best

features of both passive and active control systems and offer the greatest re-

liability for civil protection. This is due to the fact that they can operate

on battery power, and at the same time guarantee to stabilize the structure

since they do not add energy to the system. The Kajima Technical Research

Institute, as shown in Fig. 1.3, was the first full-scale building structure to be

implemented with semi-active control devices in 1990 [101]. As seen in Fig. 1.3,

semi-active hydraulic dampers are installed inside the walls on both sides of

the building to enable it to be used as a disaster relief base in post-earthquake

situations.

SensorsSemi-active

Hydraulic Damper

Controller and 

Power Supply

Figure 1.3: Semi-active hydraulic dampers installed in the Kajima Shizuoka
Building [100].

Although several full-scale implementations have been accomplished,

there is a general lack of research on the application of model and controller re-

duction for building control. Indeed, the most challenging aspect of active con-
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trol research in civil engineering is the fact that it involves large-scale models

(often above one million degrees-of-freedom), and it comprises the knowledge

of diverse disciplines, such as computer science, systems and control theory,

structural dynamics, materials science and earthquake engineering.

1.3 Problem Overview and Dissertation Goals

This dissertation addresses the development of efficient algorithms for

reducing the order of large-scale building models and/or feedback controllers

in a closed-loop framework for real-time implementation. The aim is to achieve

reduced-order controllers that are guaranteed to stabilize the closed-loop sys-

tem when implemented in a closed-loop framework using the original building

structure as the large-scale plant.

To this end, one considers the feedback control loop as depicted in Fig.

1.4. Given a large-scale dynamical system or plant, G(s), with state-space

representation

Σ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

⇔ Σ =

[
A B
C D

]

∈ R
(n+p)×(n+m), (1.1)

and a stabilizing high-order controller K(s), with closed-loop performance in-

dex defined as I (G(s),K(s)), one seeks a low-order controller Kr(s), with r ≪

n, such that (G(s),Kr(s)) is a stable closed-loop system and I (G(s),K(s)) ≈

I (G(s),Kr(s)).

The unifying feature of all model and controller reduction techniques

presented here is that they are obtained by means of a projection. The defini-
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Figure 1.4: Feedback configuration.

tion of a projector is given in Chapter 2. The idea is to construct the projector

Π = VWT where V,WT ∈ Rn×r with WTV = Ir, where Ir is the identity

matrix of size r, such that the reduced-order model can be obtained as

ẋr(t) = WTAV
︸ ︷︷ ︸

:=Ar

xr(t) + WTB
︸ ︷︷ ︸

:=Br

u(t) yr(t) = CV
︸︷︷︸

:=Cr

xr(t) + D
︸︷︷︸

:=Dr

u(t), (1.2)

where Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r and Dr ∈ Rp×m. This process

applies to the controller and to the closed-loop system as well.

Also, for an efficient reduction algorithm, one has to guarantee that:

i. the dimension of the reduced-order model is r ≪ n;

ii. the behavior of the reduced-order model approximates the original with

certain accuracy, i.e., there is a small error bound on ‖y(t)−yr(t)‖H2,H∞
;

and

iii. the model reduction procedure is computationally stable and efficient.

In the next chapters, several model and controller reduction techniques will

be presented in a projection framework. They are classified according to the

scheme used to approximate its model.
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1.3.1 Model Reduction Schemes

In a projection framework one can distinguish three families of model

reduction techniques([8]): (1) nodal truncation; (2) singular value decomposi-

tion (SVD)-based methods; and (3) Krylov-based or moment matching meth-

ods. Roughly speaking, nodal truncation, such as Guyan reduction, is based

on a rather rough approximation, where nodes, originating from finite element

methods, are truncated according to their static or dynamic influence directly

on the mass and stiffness matrices of the structure [93]. Nodal truncation in-

volves almost no computational cost for small to medium systems, and often

yields satisfactory solutions for systems that involve low frequency content.

The SVD family, such as balanced truncation and its variants, relies on dense

matrix factorizations for state-space truncation and preserves important the-

oretical properties of the original system, such as stability, together with a

measure of the approximation error. However, they are not suited for large-

scale systems [8]. Finally, the Krylov methods based on moment matching rely

only on matrix vector multiplications, yielding numerically efficient algorithms

for large-scale applications, but they lack good theoretical properties [8].

As will be seen in later chapters, the standard reduction approach used

in the industry for structural dynamic problems is modal truncation. The

justification is that higher modes generally have much less influence in the total

response of the system. However, the computational cost of modal truncation

becomes prohibitive for large-scale systems, due to the costly computation of

associated eigensolutions.
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1.3.2 Second-order Model Reduction

In structural dynamics analysis, the dynamic equations of equilibrium

are generally represented as a set of linear second-order differential equations

Mẍ(t) + Daẋ(t) + Kx(t) = Bu(t) (1.3)

y(t) = C0x(t) + C1ẋ(t) + Du(t) (1.4)

with M,Da,K ∈ Rn×n,B ∈ Rn×m, C = [C0 C1] ∈ Rp×2n, andD ∈ Rp×m.

They are, respectively, the mass, damping, stiffness, input, output matrices,

and feedforward term of the full-order model. Here, t is the time variable,

x(t) ∈ Rn is the state vector and n is the full degrees-of-freedom (DOFs),

u(t) ∈ Rm is the input excitation force vector, and y(t) ∈ Rp is the output

measurement vector. In general, finite element computer codes, such as NAS-

TRAN [23], ANSYS [59], and SAP2000 [60], provide the model in a second-

order framework.

One can take Eq. (1.3) and collapse to a first-order differential equation

as in Eq. (1.1), and then obtain a reduced-order model as in Eq. (1.2).

However, there is no guarantee that the resulting reduced-order model will

have the same second-order structure as the original model. Because second-

order models have important physical meaning (mass, spring and dampers), it

is interesting to consider model reduction techniques that preserve the second-

order structure of the original system [105, 114]. In this manner, one would
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like to obtain a reduced-order model as

Mrẍr(t) + Dar
ẋr(t) + Krxr(t) = Bsru(t) (1.5)

yr(t) = C0rxr(t) + C1rẋr(t) + Dru(t) (1.6)

with Mr,Dar
,Kr ∈ Rr×n,Bsr ∈ Rr×m, C0r

∈ Rp×r,C1r
∈ Rp×r, andDr ∈

Rp×m, with r ≪ n. This will be called structure preserving model reduction

throughout this dissertation.

1.4 Historical Overview

The development of the support theory relevant to this research pro-

ceeds along independent paths. The first path encompasses large-scale ap-

proximation systems represented by the eigenvalue problem and model order

reduction methods. The second path incorporates controller synthesis and

employs advanced control design methods, such H2/H∞ applied to controller

reduction. The third path is that of structural modeling and control applied

to building control.

In the literature on computational methods in linear algebra, much

emphasis is placed on methods for solving standard linear algebra problems

involving large sparse matrix operators [41, 97]. The non-symmetric Lanc-

zos algorithm was originally proposed by Lanczos in 1950 [75] as an oblique

projection method for computation of eigenvalues of symmetric and nonsym-

metric matrices. The idea was to reduce the general matrix to a tridiagonal

form from which the eigenvalues could be easily computed [11]. In the same
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manner, Arnoldi [10] proposed an orthogonal projection method as a means

of reducing a dense matrix to the Hessenberg form to accurately approxi-

mate some eigenvalues of the original matrix. For an extensive treatment of

the Lanczos Algorithm, the reader should refer to [55, 56]. In [90], a Linear

Fractional Transformation (LFT) method was developed in order to obtain a

tridiagonal realization of a model in terms of a number of “small” Lanczos

algorithms.

The first mathematical connection between the Lanczos algorithm and

model reduction was shown in [43]. It was shown that partial realizations could

be generated through the Lanczos process. Villemagne and Skelton [117] have

shown that adaptations to the Krylov subspaces could be performed in order to

generate Padé approximations. Applications of the moment matching results

were utilized in the structural dynamics field as a model reduction technique

for flexible structures [112] and MIMO systems [73, 74]. However, as studied

in [36], model reduction methods, such as partial realizations (i.e, expansion

of the frequency response about s = ∞), and Padé approximation (i.e, ex-

pansion about s = 0), are not acceptable in all applications. To circumvent

this difficulty, a multi-point Padé approximant was developed, and is known

as rational interpolation in the literature [47, 48, 94–96]. In the rational in-

terpolation problem [1, 6], one has to solve a system of equations involving a

Loewner matrix, yielding a reduced-order model whose transfer function inter-

polates the value and subsequent derivatives of the original transfer function

model at multiple frequencies. Several algorithms have been developed for a
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practical computational approach to rational interpolation (see [37, 48, 96] and

references therein).

One of the drawbacks of rational interpolation in model reduction is

the selection of the interpolation points [46]. The location of the interpola-

tion points and the number of moments matched dictates the accuracy of the

reduced-order model. In [51], a method related to an error bound for the

Lanczos procedure was suggested in order to choose the interpolation points.

Model reduction using Krylov subspaces in control system design was

used in [14]. Related to this work is [15], which uses Krylov subspace methods

to obtain bases for the controllability and observability subspaces, such that

the coefficients generated during the Lanczos process could be used to compute

a minimal realization of a linear dynamical system. Much of the recent work on

this subject is in the area of error analysis [63, 64] and stability and passivity

retention [47].

Most of the problems related to controller reduction are frequently for-

mulated as frequency-weighted model reduction problems, where the frequency

weights are chosen to enforce closed-loop stability and an acceptable perfor-

mance degradation when the low-order controller is used instead of the original

high-order controller [115], [3]. Even though good theoretical results using H∞

controller reduction have been reported in the literature [125], there remains

a lack of methods for large-scale systems. As will be seen later, the solutions

of Lyapunov, Riccati and LMI equations are not well-suited for large-scale

systems.
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1.5 Contributions of the Dissertation

To date, the issue of stability of reduced-order controllers in a closed-

loop framework for large-scale systems has not been addressed in the literature.

Several algorithms have been proposed to obtain reduced-order controllers that

minimize the H∞-norm of the closed-loop system. They rely on the solution

of either linear matrix inequalities (LMI) or Riccati-like equations. However,

the computational cost associated with their solutions becomes impractical for

large-scale systems.

This dissertation develops efficient algorithms for controller reduction

in a closed-loop framework applied to large-scale structures. Particularly, it

addresses the problem of reduced-order controllers applied to building control.

Controller design for civil structures has been based on reduced-order models

obtained by either modal or balanced truncation, i.e, they are based on open-

loop controller reduction. Issues related to stability of the closed-loop systems

have not been addressed. Furthermore, computational efforts related to model

and controller reduction for large scale-systems have not been reported in the

literature.

To this end, the contributions of this dissertation are:

1. Development of a solution to the problem of closed-loop stability of a

reduced-order controller, when implemented with the original plant. The

main contribution is a solution to the Positive Real Lemma applied to

flexible structures, which plays an important role in the development of
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passive controllers.

2. Development of a new scheme to obtain reduced-order controllers applied

to large-scale structures using efficient algorithms;

3. Implementation of model and controller order reduction schemes for the

building control problem, and assessment of the related performances,

and issues related to large-scale implementations and stability; and

4. Illustration and comparison of several feedback control strategies, actu-

ation and sensor schemes applied to the building control problem.

1.6 Outline of the Dissertation

We conclude this introduction with a summary of each of the remaining

chapters.

Chapter 2: This chapter covers the basic material used for the development

of model reduction schemes. Pertinent results from linear algebra, such

as the singular value decomposition, projection and Krylov subspaces are

introduced. Also, connections to well-known results from linear systems

are described and relevant norm definitions are stated.

Chapter 3: This chapter develops model reduction techniques based on the

SVD methods. It is shown how to obtain reduced-order models based

on the so-called Balanced Techniques. Also, the problem of closed-loop
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controller reduction is addressed. Examples of model and controller re-

duction are developed.

Chapter 4: This chapter introduces the field of rational interpolation and

the rational Krylov algorithms for model and controller reduction. An

example is studied to assess the differences of approximating the mo-

ments of the system at different points in the complex plane. Efficient

algorithms, such as Lanczos and Arnoldi are derived, and its applications

to multi-input, multi-output model and controller reduction is achieved.

An algorithm for controller reduction is tested in several examples.

Chapter 5: This chapter solves the problem of controller design and closed-

loop controller reduction that guarantee closed-loop stability. First, the

notion of passivity and positive realness of linear systems are introduced.

Then, it is shown how to construct models and controllers that guarantee

the closed-loop stability. Finally, the passivity-preserving model reduc-

tion is developed and the application to the controller reduction problem

is discussed.

Chapter 6: This chapter describes the existing approaches to building con-

trol. Mathematical models of active and semi-active actuators are de-

rived and implementations for building control are shown through ex-

amples. Several control strategies are employed to vibration mitigation

due to earthquake inputs. Finally, a family of benchmark problems in

building control is defined.
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Chapter 7: This chapter presents the application of several model reduction

techniques applied to the family of benchmark problems. Also, some of

the current industrial techniques used for model reduction are discussed.

Chapter 8: The issue of controller reduction for the building control problem

is addressed in this chapter. A new scheme that guarantees a stabilizing

reduced-order controller is proposed, and its performance is assessed in

comparison to techniques presented in previous chapters.

Chapter 9: In this chapter, a summary of the results is provided, together

with ideas to be explored in future work.
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Chapter 2

Mathematical Preliminaries

Relevant definitions and facts from linear systems analysis and linear

algebra required in the development of this dissertation are presented here.

Model reduction will be achieved by projection applied to linear time-invariant

(LTI) dynamical systems. Metrics to quantify the reduced-order models will

be required using different matrix norms. Therefore, concepts such as singular

value decomposition (SVD), projectors, Krylov subspaces, matrix norms, and

dynamical systems will be briefly described. This description will follow mainly

[8], [98], [97] and [41].

2.1 The Singular Value Decomposition: SVD

Every matrix A ∈ Rn×m can be decomposed as a product of unitary

and diagonal matrices as:

A = UΣdV
∗ ∈ R

n×m (2.1)

where U and V are unitary matrices (orthogonal) represented by

U =
[
u1, u2, · · · ,um

]
∈ C

m×m

V =
[
v1, v2, · · · ,vn

]
∈ C

n×n
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and Σd is a diagonal matrix given by

Σd =

[
Σ1 0
0 0

]

,

where Σ1 = diag(σ1, · · · , σn) ∈ R
n×n is diagonal with nonnegative diagonal

entries called singular values: σi =
√

λi (A∗A) ≥ σi+1 and λi(·) represents the

ith eigenvalue of the matrix A∗A. Also, a dyadic decomposition of A is given

by

A = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σnunv

∗
n.

2.2 Linear Dynamical Systems

This section presents the necessary background on linear time-invariant

(LTI) dynamical systems in the continuous-time framework. For the discrete

time, refer to [8], [68] and references therein. Consider the continuous-time

LTI system in state-space:

Σ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

⇔ Σ =

[
A B
C D

]

∈ R
(n+p)×(n+m). (2.2)

One can define for the system Σ, a convolution operator S with kernel H(t)

from u(t) to y(t) as

S : u(t) 7→ y(t) = H ∗ u =

∫ ∞

−∞

H(t− τ)u(τ)dτ (2.3)

where H(t) is called the impulse response matrix of Σ. It can be shown that

the Laplace transform, H(s) of the impulse response H(t), is given by

H(s) := L(H)(s) :=

∫ ∞

0

H(t)e−stdt = C(sI−A)−1B + D (2.4)
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and H(s) is called the transfer function matrix of Σ. Two important funda-

mental concepts are discussed next. They are the reachability (controllability)

and reconstructability (observability) of Σ.

Definition 2.2.1. Controllability: Given the dynamical system Σ, the sys-

tem is called controllable if starting from zero initial state, any state can be

reached via a suitable control within finite time. In other words, there exists

u(t) ≤ ∞, such that, starting from x(t0) = 0, any desired state x(t) at a

finite time t can be reached. It can be shown that the LTI dynamical sys-

tem, Σ, defined as in Eq. (2.2), is controllable if and only if its reachability

(controllability) matrix, R(A,B), as defined below, is of full rank, i.e,

rank (R(A,B)) = rank
([

B AB A2B · · · An−1B
])

= n. (2.5)

Definition 2.2.2. Observability: Given the dynamical system Σ, the sys-

tem is called observable if for any initial state x(t0), there exists a finite t1 > 0,

such that the knowledge of the input u(t) and the output y(t) over the inter-

val [0, t1] suffices to determine uniquely the initial state x(t0). In other words,

the states can be reconstructed based on the input u(t) and output y(t). It

can be shown that the LTI dynamical system, Σ, defined as in Eq. ( 2.2), is

observable if and only if its reconstructability (observability) matrix, O(A,B),

as defined below, if of full rank, i.e,

rank (O(C,A)) = rank
([

CT ATCT (AT )2CT · · · (AT )n−1CT
]T

)

= n.

(2.6)
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An important definition, related to the controllability and observability

matrices, is the concept of infinite Gramians and their relation to Lyapunov

equations.

Definition 2.2.3. Let Σ be a LTI asymptotically stable system. The so-

called infinite reachability gramian P and the infinite observability gramian Q

are defined as

P :=

∫ ∞

0

eAτBBT eAT τdτ and Q :=

∫ ∞

0

eAT τCTCeAτdτ. (2.7)

It readily follows that P = PT ≥ 0 and Q = QT ≥ 0. Moreover, the infinite

gramians satisfy the following Lyapunov equations:

AP + PAT + BBT = 0 and AT Q + QA + CTC = 0. (2.8)

2.3 System Norms

Recall the definition of the convolution operator S for the LTI system

Σ, as shown in Eq. (2.3). Restricting its domain and co-domain yields the

definition of a fundamental operator in model reduction, the so-called Hankel

operator.

Definition 2.3.1. Given the asymptotically stable LTI system Σ, the Hankel

operator H is defined as

H : u−(t) 7→ y+(t) := H(u−) =

∫ 0

−∞

H(t− τ)u−(τ)dτ, t ≥ 0. (2.9)

where u−(t) and y+(t) represent past inputs and future outputs, respectively.
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In other words, the Hankel operator maps the past inputs to the future

outputs. It turns out that, unlike the convolution operator, H has finite rank,

at most n, and hence a finite set of singular values as defined below:

Definition 2.3.2. The Hankel singular values, denoted by σi(Σ) for i =

1, . . . , n, are the non-zero singular values of the Hankel operator. Moreover,

given a controllable, observable and asymptotically stable LTI dynamical sys-

tem Σ of dimension n, the Hankel singular values are the positive square-roots

of the eigenvalues of PQ as

σi (Σ) =
√

λi (PQ), i = 1, · · · , n, (2.10)

where P and Q are the reachability and observability gramians of Σ.

Finally, one defines three important norms applied to asymptotically

stable systems:

Definition 2.3.3. Let Σ be an asymptotically stable system with transfer

function H(s). Its Hankel norm, denoted by ‖Σ‖H is defined as its largest

singular value, i.e.

‖Σ‖H := σ1(Σ). (2.11)

The H∞ norm of Σ is defined as

‖Σ‖H∞
:= sup

ω∈R

σmax (H(jω)) , (2.12)

where σmax denotes the maximum singular value. Finally, the H2 norm of Σ

is defined as

‖Σ‖H2
:=

(∫ ∞

−∞

trace (H∗(jω)H(jω))dω

)1/2

. (2.13)
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2.4 The Krylov Subspace

In this section, the definition of the Krylov subspaces is stated, and

connections to controllability and observability are presented.

Definition 2.4.1. Given a matrix A ∈ R
n×n and a vector b ∈ R

n, the kth

Krylov sequence K(A,b, k) is a sequence of k column vectors, constructed

recursively,

K(A,b, k) ≡
(
b,Ab,A2b, · · · ,Ak−1b

)

and the corresponding column span is called the kth Krylov space, as

K(A,b, k) = span
{
b,Ab,A2b, · · · ,Ak−1b

}
.

By the Cayley-Hamilton Theorem [14], one can check that K(A,b, k) =

K(A,b, n), ∀k > n. In this manner, Krylov subspaces can be viewed as gener-

alizations of the controllability and observability matrices. A generalization of

these concepts is given by the so-called partial generalized reachability matrix:

Rk (A,B; σ) =
[

(σIn −A)−1 B (σIn −A)−2 B · · · (σIn −A)−k B
]
.

(2.14)

The partial generalized observability follows in the same manner.

2.5 Projectors

A projector P ∈ Cn×n onto a subspace S ⊆ Cn is defined as a linear

mapping from Cn to itself, such that it satisfies

P2 = P, Px ∈ S, ∀x ∈ Cn. (2.15)
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From this definition, if P is a projector, it is idempotent, as is I − P. The

following relation holds,

Ker(P) = Ran(I−P), (2.16)

where Ker(·) and Ran(·) are the kernel and range spaces, respectively. Every

vector x ∈ Cn can be written as

x = Px + (I−P)x, (2.17)

and therefore the space Cn can be decomposed as the direct sum

Cn = Ker(P)⊕Ran(P). (2.18)

From this property, for every pair of subspaces M and S which forms a direct

sum of Cn and for any vector x, the vector Px satisfies the conditions,

Px ∈M (2.19)

x−Px ∈ S

and the linear mapping P is said to project x onto M and along or parallel to

the subspace S. An orthogonal projector P satisfies, in addition to Eq. 2.15,

the condition

(I−P)x ∈ S⊥. (2.20)

2.5.1 Matrix Representation

According to Eqs. 2.19, two bases are required to obtain a matrix

representation of a general projector: a basis V = [v1,v2, · · · ,vm] for the

subspace M = Ran(P ) and W = [w1,w2, · · · ,wm] for the subspace S⊥.
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If the two bases are biorthogonal, i.e, W∗V = I, where (·)∗ represents

the complex conjugate transpose of a matrix, then it follows that the matrix

representation of the projector P is

P = VW∗ (2.21)

and in case where the bases V and W are not biorthogonal, the projector is

P = V (W∗V)−1 W∗. (2.22)

2.5.2 Orthogonal and Oblique Projectors

Two classes of projectors are obtained when one considers the relation

between the subspaces M and S⊥. When M = S⊥, i.e, when

Ker(P) = Ran(P)⊥,

the projector P is said to be the orthogonal projector onto M and satisfies, in

addition to Eq. (2.19), the conditions

(I−P)x ∈ S⊥ (2.23)

Px ∈M (2.24)

x−Px ⊥M.

A projector that is not orthogonal is oblique.

2.5.3 Projection Methods Applied to Linear Systems

Consider the linear algebraic system

Ax = b, (2.25)
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where A ∈ R
n×n and b ∈ R

n. The idea of using projection techniques is to

search for an approximation subspace of Rn×n in order to extract an approxi-

mate solution to the above problem. Suppose K and L are two m-dimensional

subspaces of Rn. In general, in numerical computations one cannot find an

approximate solution x̃ to Eq. (2.25) such that the residual b − Ax̃ is zero.

Instead, one uses a projection technique onto the subspace K and orthogonal

to L, by imposing a relaxed condition that x̃ belongs to K and that the new

residual vector is orthogonal to L, as

(b−Ax̃) ⊥ L. (2.26)

This is called the Petrov-Galerkin Condition. In order to find a solution based

on a initial guess x0 to the solution, defining the approximate solution as

x̃ = x0 + δ and the initial residual to be r0 = b −Ax0, the Petrov-Galerkin

conditions can be written as

x̃ = xo + δ, δ ∈ K (2.27)

(ro −Aδ,w) = 0, ∀w ∈ L, (2.28)

where (·, ·) represents an inner product. In matrix representation, let V =

[v1, · · · ,vm] be an n × m matrix whose column-vectors form a basis of K,

and similarly for L, the columns of W = [w1, · · · ,wm] form a basis for the

subspace. Then, the approximate solution can be written as

x̃ = x0 + V
(
WTAV

)−1

WTr0.
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2.5.4 Projection Methods for Model Order Reduction

A generalization of the above results can be applied to model reduc-

tion. For consistency with the previous section, suppose the following state-

space representation of a stable LTI single-input single-output (SISO) system

is given,

ẋ(t) = Ax(t) + Bu(t) (2.29)

y(t) = Cx(t) + Du(t) (2.30)

where the state vector x(t) ∈ Rn, and u(t), y(t) are the scalar input and

output, respectively. Denoting the transfer function as

G(s) = C (sI−A)−1 B + D, (2.31)

we can rewrite it as

G(s) = CGB(s) = GT
C(s)B, (2.32)

where GB(s) and GC(s) are the solutions to the linear systems

(sIn −A)GB(s) = B (2.33)

GT
C(s) (sIn −A) = C (2.34)

and the model reduction problem becomes the one of finding approximate

solutions GB,m(s) and GT
C,m(s) to GB(s) and GT

C(s), respectively, such that

the following Petrov-Garlekin, as given by Eq. (2.26), conditions are satisfied.

In this case one can obtain the reduced-order models as

ẋr(t) = WTAV
︸ ︷︷ ︸

:=Ar

xr(t) + WTB
︸ ︷︷ ︸

:=Br

u(t) yr(t) = CV
︸︷︷︸

:=Cr

xr(t) + D
︸︷︷︸

:=Dr

u(t), (2.35)

where W and V are the matrices that form the projector Π = VWT.
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Chapter 3

SVD Methods for Model and Controller

Reduction

This chapter presents model and controller reduction methods using

SVD-based procedures. The key steps in SVD-based methods are the compu-

tation of the so-called Hankel singular values, as described in Chapter 2, and

balancing of the system. In general terms, balancing consists of simultane-

ously diagonalization of two appropriate chosen positive definite matrices [8],

according to solutions of Lyapunov equations or Riccati equations.

The most commonly used model reduction scheme is the so-called bal-

anced model reduction, which was first introduced by Mullis and Roberts

[83] and then in a systems framework by Moore [82]. The main idea of this

technique is a change of the state coordinate basis, called a balancing trans-

formation, such that the controllability and observability grammians are both

equal to some diagonal matrix, Σd, where the magnitudes of the diagonal en-

tries of the gramians reflect the contributions of different entries of the state

vector of the system.

Although balanced model reduction and its variants have nice system

theoretic properties, such as preservation of stability and computation of an
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error bound, they become computationally prohibitive for large-scale systems.

This drawback stems from the fact that they require dense matrix factoriza-

tions, such as solving two Lyapunov equations, and therefore the computa-

tional cost on the order O(n3) and storage of order O(n2) becomes impractical

for systems of order n≫ 1000.

Lyapunov balancing methods are now explored with applications to

model reduction. Extensions to the problem of frequency-weighted balanced

reduction will introduced. This discussion will support the application of the

concepts to the problem of closed-loop controller reduction by balanced trun-

cation.

3.1 Balanced Model Reduction

Consider a stable LTI system model, G(s), given by its state-space re-

alization and transfer function as described in Eq. (1.1). Then, the infinite

controllability and observability gramians are defined, respectively, as in De-

finition 2.2.3. The gramians satisfy the Lyapunov equations as shown in

Definition 2.2.3. The square roots of the eigenvalues of the product PQ are

the Hankel singular values σi(G(s)) of the system G(s), and as described in

Definition 2.2.3 are given by

σi (G(s)) =
√

λi (PQ).

Definition 3.1.1. The reachable, observable and stable system G(s) is called
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Lyapunov-balanced if

P = Q = Σd = diag
(
σ1Im1

, · · · , σqImq

)
, (3.1)

where Σd is a diagonal matrix with σ1 > σ2 > · · · > σq > 0, and mi are the

multiplicities of σi, so that, m1 + · · ·+ mq = n.

According to [8], given a state x of a stable linear system, the smallest

amount of energy needed to steer the system from 0 to x is given by the square

root of

ε2
r = xT P−1x,

while the energy obtained by observing the output of the system with initial

condition x and no excitation function is given by the square root of

ε2
o = xT Qx.

Thus, if one simultaneously diagonalizes P and Q, one can see the states that

are difficult to reach and simultaneously difficult to observe. Hence, the idea

of model reduction by truncation is that one can eliminate those states which

require a large amount of energy εr to be reached and yield small amounts of

observation energy εo. Mathematically, one finds a similarity transformation

applied to the LTI system in Eq. (2.2), such that the gramians are equal and

diagonal. The following theorem formally describes the balancing method:

Theorem 3.1.1. Consider a stable system G(s) ∈ RH∞ and suppose G(s) =
[

A B
C D

]

is a balanced realization, i.e, its controllability and observability
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gramians are equal and diagonal given by P = Q = Σd, which satisfy the

following Lyapunov equations

AΣd + ΣdA
∗ + BB∗ = 0 (3.2)

A∗Σd + ΣdA + C∗C = 0, (3.3)

where (·)∗ denotes the complex conjugate transpose of a matrix. Partitioning

the balanced gramians as Σd =

[
Σ1 0
0 Σ2

]

with

Σ1 = diag (σ1Im1
, · · · , σkImk

) and Σ2 = diag
(
σk+1Imk+1

, · · · , σqImq

)

and partitioning the balanced system accordingly

G(s) =

[
Ab Bb

Cb Db

]

=





A11 A11 B1

A21 A22 B2

C1 C2 D



 , (3.4)

where the dimensions are A11 ∈ R
k×k, B1 ∈ R

k×m, C1 ∈ R
p×k and D ∈ R

p×m.

Then, the reduced-order model Gr(s) =

[
A11 B1

C1 D

]

obtained by truncation

is asymptotically stable, balanced, minimal (controllable and observable) and

satisfies

‖G(s)−Gr(s)‖H∞
≤ 2 (σk+1 + · · ·+ σq) . (3.5)

Equality holds if Σ2 = σqImq
.

In order to compute the simultaneous diagonalization of P and Q, sev-

eral algorithms have been proposed in the literature [8]. Two of the algorithms,

possessing the same theoretical properties, but different numerical results, are

shown below. Let P and Q be the gramians of a reachable, observable and
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stable system G(s) of order n. Since the gramians are positive-definite, they

have a Cholesky decomposition as

P = UU∗, and Q = L∗L, (3.6)

where U,L are upper and lower triangular, respectively. It can be shown that

computing the eigenvalue decomposition of U∗QU as

U∗QU = KΩ2K∗, (3.7)

the transformation and its inverse, defined as

T = Ω1/2K∗U−1 andT−1 = UKΩ−1/2, (3.8)

produce simultaneous diagonalization of the gramians as

P = Q = Ω. (3.9)

A variant of this algorithm, the so-called square-root algorithm, can be accom-

plished taking the SVD of the product

U∗L = WΩV∗, (3.10)

where W and V are orthogonal matrices, and forming the balanced transfor-

mation as

T = Ω−1/2V∗L∗ andT−1 = UWΩ−1/2. (3.11)

In general, the square-root algorithm leads to a smaller condition number.

Enhancements to this method have lead to two other algorithms which yield

much smaller condition numbers and the same theoretical results: the diagonal

scaling algorithm and the balanced-free square root algorithm [8].
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3.1.1 Other Types of Balancing

Besides the Lyapunov balancing method, there exist other types of

balancing that diagonalize two appropriate chosen positive-definite matrices

that are either solutions to the Lyapunov equations or Riccati equations [8].

This topic will be further developed when model reduction that preserves

passivity is analyzed in Chapter 5.

Stochastic Balancing Method: The stochastic balancing method was first

proposed by Desai and Pal [26] for balancing stochastic systems. It

requires solving one Lyapunov equation and one Riccati equation, as

shown by [44, 45];

Positive Real Balancing: This class of balancing is applied to model reduc-

tion of positive real (passive) systems. It can be cast as the stochastic

balancing method applied to the spectral factor of the given passive sys-

tem, and it requires solving two positive real Riccati equations;

Bounded Real Balancing: This class of balancing is applied to bounded

real systems, and requires solving two Riccati equations.

3.1.2 Frequency Weighted Balanced Truncation

The Lyapunov balancing method presented here provides an approxi-

mation to the full order model G(s) over all frequencies. However, in many

applications, one is interested in matching the reduced order model Gr(s) over
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a specific range of frequencies. This problem leads to an extension of the bal-

anced truncation method called frequency weighted balanced truncation. In

this case, the problem becomes to find a low-order approximation Gr(s) such

that

‖Wo(s) (G(s)−Gr(s))Wi(s)‖H∞
(3.12)

is made as small as possible for a given input weighting Wi(s) ∈ RH∞ and

output weighting Wo(s) ∈ RH∞. The frequency weighted method, proposed

first by Enns [33], and later by Lin and Chiu [76], can be posed as follows: Let

G(s), Wi(s), andWo(s) have the following state-space realizations

G(s) =

[
A B
C D

]

, Wi(s) =

[
Ai Bi

Ci Di

]

, Wo(s) =

[
Ao Bo

Co Do

]

.

(3.13)

Assuming there are no pole-zero cancellations, then the minimal state space

realization of the weighted transfer matrices are given by

G(s)Wi(s) =

[

Āi B̄i

C̄i 0

]

=





A BCi BDi

0 Ai Bi

C 0 DDi



 (3.14)

and

Wo(s)G(s) =

[

Āo B̄o

C̄o Do

]

=





A 0 B
BoC Ao 0
DoC Co DoD



 . (3.15)

Let P̄ =

[
P11 P12

PT
12 P22

]

and Q̄ =

[
Q11 Q12

QT
12 Q22

]

be the solutions to the following

Lyapunov equations:

ĀiP̄ + P̄ĀT
i + B̄iB̄

T
i = 0 (3.16)

ĀT
o Q̄ + Q̄Āo + C̄T

o C̄o = 0. (3.17)
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The following theorem, denoted Enn’s method, applies:

Theorem 3.1.2. Given the asymptotically stable and minimal system G(s),

let Gr(s) be obtained by simultaneously diagonalizing P11 and Q11, with

P11 = Q11 = diag
(
σ1In1

, · · · , σkInk
, σk+1Ink+1,··· ,σqInq

)

where ni are the multiplicities of σ1 with n1 + · · ·+nq = n and in this balanced

basis, let the partitioning of the full order model be given by

G(s) =





A11 A11 B1

A21 A22 B2

C1 C2 D



 , (3.18)

where the dimensions are A11 ∈ Rk×k, B1 ∈ Rk×m, C1 ∈ Rp×k and D ∈ Rp×m.

Then the reduced-order model is obtained by truncating the full-order model at

the largest k weighted singular values σi, as

Gr(s) =

[
A11 B1

C1 D

]

. (3.19)

In this case, the σi’s are no longer the Hankel singular values of G(s). How-

ever, they still represent a measure of how controllable and observable the

input-output filtered states are. Hence, they are called “frequency weighted

Hankel singular values”. Unlike the Lyapunov balancing, the reduced-order

model is not guaranteed to be stable. A simplification occurs if either Wi(s) = I

or Wo(s) = I. In this case Gr(s) is guaranteed to be asymptotically stable and

the following error bound is derived

‖Wo(s) (G(s)−Gr(s))Wi(s)‖H∞
≤ 2

q
∑

i=k+1

√

σ2
k + (αk + βk)σ

3/2
k + αkβkσk,

(3.20)
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where αk and βk denote the H∞ norms of the transfer function which depend

on Wo(s), Wi(s), and Grj
(s), j = 1, · · · , k.

A variant of Enn’s method, which overcomes the stability issues for

the double sided weights, was developed by Lin and Chiu [76]. The balancing

is performed with respect to two matrices derived by a Schur complement

operation, i.e, based on simultaneous diagonalization of

P̃ := P11 −P12P
−1
22 PT

12, Q̃ := Q11 −QT
12Q

−1
22 QT

12 (3.21)

so that if

P̃ = Q̃ = diag
(
σ̃1In1

, · · · , σ̃kInk
, σ̃k+1Ink+1

, · · · , σ̃qInq

)

are the balanced gramians, then the reduced order model can be obtained as

in the Lyapunov balanced method by truncation. This method also satisfies

an error equation [76]. Recently, Wang et al. [118] introduced a new fre-

quency weighted balancing method as a modification to Enns’s method, which

guarantees stability and yields a simple a priori error bound.

In many cases, the input and output weightings are not given. Thus,

the problem becomes the approximation of G(s) over a given range of fre-

quencies [ω1, ω2]. This problem can be solved by using the frequency domain

representation of the gramians, with the limits of the integration restricted

according to the frequency range considered [40]

P(ω) =
1

2π

∫ ω

−ω

(iωI−A)−1 BB∗ (−iωI−A∗)−1 dω (3.22)

Q(ω) =
1

2π

∫ ω

−ω

(−iωI−A∗)−1 C∗C (iωI−A)−1 dω (3.23)
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and balancing involving the simultaneous diagonalization of the gramians

P(ω1, ω2) and Q(ω1, ω2), using the methods discussed in the previous section. It

should be pointed out that the representation of the gramians in the frequency

domain allow one to compute the balanced realization for an unstable system

[8, 124], and to generalize the balancing methods for the case of second-order

systems. This will be further developed in Chapter 7.

3.2 Controller Reduction

Controller reduction problems are often formulated as special frequency-

weighted model reduction problems, where the frequency weights are chosen

to enforce closed-loop stability and an acceptable performance degradation,

when the low-order controller is used in the original closed-loop system [3].

Let G(s) be the transfer of an nth order time-invariant, continuous-time

plant with state-space realization G(s) =

[
A B
C D

]

and let K(s) be a sta-

bilizing high-order (nth
k order) controller with state-space realization K(s) =

[
AK BK

CK DK

]

. The controller reduction problem is to seek a low order con-

troller Kr(s) of order r ≪ nk to replace K(s) such that the closed-loop stability

and performance are preserved.

The controller reduction problem can be recast as a frequency weighted

model reduction if one regards the closed-loop system with Kr(s) replacing

K(s) as being equivalent to that of Fig. 3.1 It is known from [124] that Kr(s)

is a stabilizing controller if
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High-order controller

K(s)

+

+
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U(s)
Y(s)Kr(s)-K(s)

Figure 3.1: Modified Feedback Configurations.
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i. K(s) and Kr(s) have the same number of unstable poles and no poles

on the imaginary axis; and

ii. Either

‖ [K(s)−Kr(s)]G(s) [I + K(s)G(s)]−1 ‖H∞
< 1, or (3.24)

‖ [I + G(s)K(s)]−1 G(s) [K(s)−Kr(s)] ‖H∞
< 1 (3.25)

This can be thought as of a minimization of the weighted error given by

‖Wo(s) (K(s)−Kr(s))Wi(s)‖H∞
(3.26)

where, to ensure closed-loop stability, one can choose the input and output

weights as

Wi(s) = I , Wo(s) = [I + G(s)K(s)]−1 G(s), or (3.27)

Wo(s) = I , Wi(s) = G(s) [I + G(s)K(s)]−1 . (3.28)

On the other hand, to preserve closed-loop performance, one can use a two-

sided weighting of the form

Wo(s) = [I + G(s)K(s)]−1 G(s), and (3.29)

Wi(s) = [I + G(s)K(s)]−1 . (3.30)

Following the same structure as the Enns’s frequency-weighted balanced re-

duction method, the reduced order controller can be obtained as in Theorem

3.1.1.

41



Other representations of the controller lead to different frequency-weighted

problems, as in [3], where matrix fractional representation can be used to de-

fine the system to be reduced instead of using rational transfer functions. Also,

the controller does not need to be stable. In the case of instability, the ap-

proach suggested in [3] can be used. In this case, one may decompose K(s)

as

K(s) = K−(s) + K+(s) (3.31)

where K−(s) and K+(s) denote the stable and anti-stable parts of K(s), re-

spectively. Thus, the model reduction method can be applied to to the stable

part K−(s) with K+(s) unaltered and copied into the reduced order controller

Kr(s) = K−r(s) + K+(s).

3.3 Examples

In order to understand the various options of balanced model reduction

and controller reduction, two examples used as benchmarks in model reduc-

tion [86] are analyzed: (1) the dynamics of portable CD player, and (2) the

dynamics of spinning disks.

3.3.1 The CD player

The full-order model of the CD player describes the dynamics between

the lens actuator and the radial arm position, as shown in Fig. 3.2. Tradi-

tionally, the behavior of the lens position is represented by a third-order set of

differential equations [122]. However, controllers designed from these simple,

42



low-order systems experience difficulties when employed in newer, portable CD

players [110]. To obtain a higher-order controller for the CD player, a better

model of its dynamics was obtained using finite element approximation, yield-

ing a model that has 120 states with 2 inputs and 2 outputs. Its frequency

response (magnitude) is shown in Fig. 3.3.

Figure 3.2: CD player model. Source: [110]

Analyzing the eigenvalues of the system matrix of the higher-order

model of the CD player, as depicted in Fig. 3.4, one realizes that it con-

tains both very high and very low real and imaginary parts. Also, observing

the decay rates of the normalized Hankel singular value (HSV)1 plot as in Fig.

3.5, one notices that a very rapid decay occurs, indicating that the full-order

model might be approximated well with a reduced-order model of very low

dimension. Using balanced truncation to approximate the full-order model,

one obtains the reduced-order models as described in Table 3.1.

1The highest HSV is set to 1 and plotted in a logarithmic scale
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Figure 3.3: MIMO frequency response of the CD player model.

The calculation of the a priori error bounds for the balanced truncation

technique uses Eq. 3.5. For comparison purposes, the relative errors between

the full-order model (FOM) and reduced-order model (ROM) will be computed

as follows:

‖G(jω)−Gr(jω)‖H2,H∞

‖G(jω)‖H2,H∞

. (3.32)

Since the CD player is a multi-input, multi-output model, the frequency re-

sponse representation is given by the so-called sigma plots, that is, the maxi-

mum singular values of the frequency response. The sigma plots of the reduced

and error systems are depicted in Fig. 3.6 and Fig. 3.7, respectively.

As can be seen from Figs. 3.6 and 3.7, balanced truncation allows

44



−900 −800 −700 −600 −500 −400 −300 −200 −100 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

Re( λ
i
(A))

Im
ag

( 
λ i(A

) 
)

Figure 3.4: Eigenvalues of the higher-order CD player.
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Figure 3.5: Hankel singular values (logarithmic scale) of the higher-order CD
player.

one to obtain a good low-order approximation of the high order model. The

reduced-order models of order higher than 30 match the full order model at all
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Order H2 norm H∞ norm H∞ error bound

50 2.6558e− 007 4.1979e− 009 2.2754e− 008
30 2.0814e− 006 3.9388e− 008 1.7402e− 007
20 1.5977e− 005 3.2885e− 007 1.0221e− 006

Table 3.1: Reduced-order models and error bounds for the CD player.
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Figure 3.6: Sigma plots of the full-order and reduced-order models.

frequencies of interest. The reduced-order model of size 20 misses a resonant

peak between the frequencies 104 and 105 rad/sec. From the error sigma

plots, one can verify that indeed, reduced-order models of order 30 yield low

mismatch errors at all frequencies. The reduced-order model of size 20 yields

low error except at the resonant peaks of the full-order model.
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3.3.2 The Spinning Disks

Consider the well-studied problem of controlling four spinning disks

[33, 34, 86], connected by a flexible rod, with torque applied to the third disk,

and the angular displacement of the first disk being the control objective. The

plant schematic is depicted in Fig. 3.8.

A controller is designed for the full-order model. Consider the controller

K(s) designed by loop shaping G(s)K(s). The design specification is given by

constraints on the loop gain |G(s)K(s)| as shown in Fig. 3.10. For the closed-

loop performance specification, a lower bound on the loop gain is assigned.
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For robustness against nonstructured uncertainties, an upper bound on the

loop gain is determined. The high-order controller is obtained using LQG

design techniques by means of tuning the weightings for the linear quadratic

performance index and covariance matrices of the noise disturbance [86].

In order to compare the controller reduction techniques, a balanced

truncation is first used to approximate the full-order model of size n = 8 with

a lower-order model. The frequency response of the full-order model is depicted

in Fig. 3.9 together with a fourth-order reduced order model. Using the same

controller specifications as for the full-order model, a low-order controller is

designed based on the fourth-order model.

The closed loop system is then considered for the controller reduction

process. A reduction is carried out on the controller by frequency-weighted

balanced truncation considering the frequency weighted index J = ‖(K(s) −

Kr(s))G(s)(I + GK(s))−1‖ where K(s) is the high-order controller designed

for the original plant. The results are compared in Fig. 3.10.

As can be seen in Figures 3.9 and 3.10, controller reduction in a closed-

loop framework using frequency weighted balanced truncation outperforms the

design of low-order controllers using low-order models, i.e, open-loop controller

reduction. Even though both designs match well the full-order loop gain in

the low frequency region, they violate the high-frequency constraint around

1.5 rad/s. In this case, one can fine tune the weights of the controller design

in order to achieve good robustness properties. It was observed that in both

cases, the reduced-order controller stabilizes the full-order system.
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In this example, the one-sided frequency weighted controller reduction

was used. However, one can work with a two-sided frequency weighted as

shown in Eqs. (3.24) and (3.26) in order to guarantee similar performance of

the reduced-order system and the full-order closed-loop system. The results

with the fourth-order controller in this case are almost the same as those with

the one-sided frequency weighted approach.

Figure 3.8: Model of the spinning disks.

3.4 Concluding Remarks

This chapter introduced model and controller reduction by balanced

truncation methods. It was shown that good reduced-order models can be

achieved and that error bounds can be computed using Lyapunov balanced

truncation. Also, frequency-weighted balanced truncation was introduced in

order to approximate the low-order model at specific frequencies. The con-
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troller reduction problem was posed as a frequency-weighted controller reduc-

tion, where weights were chosen to take into account the system closed-loop

behavior. It was shown that good low-order controllers can be obtained by

balancing methods. However, using frequency-weighted balanced truncation,

one loses the important issue of stability of the closed-loop system, i.e, the

reduced-order controller is not guaranteed to stabilize the full-order model.

Despite the nice system theoretical properties, such as stability and

error bounds, and the computational improvements of the balanced system, the
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SVD-based methods become expensive and impractical for large-scale system.

They require dense matrix factorizations, yielding computational costs of order

O(n3) and storage requirements of order O(n2). This is mainly due to the need

to solve two large-scale Lyapunov or Riccati equations in order to compute the

required system gramians. In the next chapter, the notion model reduction by

moment matching is introduced. It will be shown that model and controller

reduction for large-scale systems can be achieved using efficient algorithms.
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Chapter 4

Krylov-Based Model Reduction

SVD-based methods are not suitable for large-scale systems due to the

use of dense matrix factorizations of O(n3) and storage of O(n2). As an alter-

native, model reduction techniques that rely on matrix-vector multiplication

and that can be implemented iteratively in a numerically efficient manner be-

come good choices for large-scale systems. Krylov subspace techniques provide

this alternative [8].

The key ingredient of Krylov-based methods is moment matching. The

idea is to match moments of the original higher-order model Σ =

[
A B
C D

]

,

by the moments of a lower-order model. This is achieved by iteratively con-

structing matrices that span certain (generalized) Krylov subspaces of A and

B (controllability susbspace) and/or AT and CT (observability subspace).

This chapter begins by introducing the notion of moments of a dy-

namical system and their relation to model reduction. Then, two important

algorithms for moment matching, Arnoldi and Lanczos procedures, which are

suitable for single interpolation point, are examined. Also, a generalization of

the multi-point rational interpolation will be given and the Rational Krylov

(Arnoldi) algorithm for SISO systems will be explored. As will be seen, some
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modifications are required for applications to MIMO systems. Finally, the

problem of closed-loop controller reduction using Krylov techniques will be

presented. Numerical examples follow to illustrate moment matching at dif-

ferent frequencies and its relation to the reduced-order model behavior.

4.1 System Representation and Moments

In order to describe the general form of model reduction, it is assumed

that the original system is described by the SISO generalized (descriptor)

state-space equations

Eẋ(t) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) + Du(t) (4.2)

where E,A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, and D is a scalar. Also, as in

the case of large-scale problems, it is assumed that the system matrix A and

the descriptor matrix E are large, sparse and nonsingular. Without loss of

generality, the system given by Eq. (4.1) and (4.2) will be assumed to be

strictly proper, i.e, the feedforward term D is assumed to be zero.

The model reduction problem is the one that finds a reduced-order

approximation to Eq. (4.1) and (4.2) in the form

Erẋr(t) = Arxr(t) + Bru(t) (4.3)

yr(t) = Crxr(t) (4.4)

where the dimension of the reduced-order model is r ≪ n, and the behav-

ior of the reduced-order system approximates the original model in certain
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aspects with the desired accuracy. A good approximation would require the

output yr(t) to be a good representation of the true output y(t) for all inputs

u(t). Therefore, a good measure of the accuracy of the approximation could

be evaluated in terms of a system norm, in which one tries to bound the H∞

or H2 norms of the difference y(t) − yr(t). Another method for evaluating

the accuracy of the approximation takes into account the assessment of which

properties of the original model are preserved in the reduction process (invari-

ant properties). This will be important for controller design, where one has to

guarantee stability of the reduced-order closed-loop system.

Model reduction by Krylov techniques is not based on minimization, as

with the SVD-based reduction methods. Instead Krylov techniques are based

on moment matching, where one attempts to match the coefficients of a power

series expansion of the transfer function for the original and reduced-order

models. The definition of moments is as follows:

Definition 4.1.1. Given the transfer function of the original and reduced-

order systems, respectively

G(s) = C (sE−A)−1 B; Gr(s) = Cr (sEr −Ar)
−1 Br, (4.5)

if the transfer functions in Eq. 4.5 are expanded in a Laurent series around a
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given point in the complex plane, σ ∈ C, then

G(s) = C (sE−A)−1 B = C (sE + σE− σE−A)−1 B (4.6)

= C
(
I− (σE−A)−1E(σ − s)

)−1
(σE−A)−1B

= mo + m1(σ − s) + m2(σ − s)2 + m3(σ − s)3 + · · ·

=

∞∑

i=0

mi(σ − s)i.

The coefficients denoted by mi are called moments of the system at a point σ.

It can be shown that the moments of the system are the values of the transfer

function and its derivatives evaluated at the expansion point σ [8]. Similarly,

one obtains the moments of the reduced-order model as mri
.

The main idea of model-order reduction by moment matching is to

match a given number of moments as

mi = mri
, i = 1 · · · , l, and l ≪ n,

of the original and reduced-order transfer functions.

Several special cases of the moments can be determined depending on

the location of the expansion points in the complex plane. In the case of

σ = ∞, the moments are the well-known Markov parameters of the system.

Assuming E to be nonsingular, the expansion of Eq. (4.5) around σ = ∞

is obtained as in Eq. 4.6 using the Laurent series expansion of the transfer

function:

G(s) = CE−1Bs−1 + C
(
E−1A

)
E−1Bs−2 + · · ·+ C

(
E−1A

)i−1
E−1Bs−i · · ·

(4.7)
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yielding the Markov parameters mi = C (E−1A)
i−1

E−1B. The Markov pa-

rameters represent the values of the zero-state impulse response, or transfer

function G(s), and subsequent derivatives of the impulse response at t = 0.

Since matching the Markov parameters emphasizes the behavior at t = 0,

the reduced-order model may be dominated by rapid decaying dynamics, not

representing accurately the behavior at later time. In the frequency domain,

once can show good matching of the frequency response of the system at high

frequencies.

A power series expansion can also be performed about σ = 0. By

assuming A is nonsingular, one has

G(s) = −CA−1B−C
(
A−1E

)
A−1Bs−· · ·−C

(
A−1E

)i−1
A−1Bsi−1 · · · (4.8)

and thus, the moments are given by mi−1 = −C (A−1E)
i−1

A−1B, and the

reduced-order model whose moments match the original moments up to 2r,

where r is the order of the reduced-order model, is known as Padé approxi-

mation. In this case, since moments are being matched at σ = 0, the reduced-

order model will be a good approximation to the steady-state response of the

original system.

In general, one may be interested in matching moments at a particular

frequency, σ. By replacing s in the expansion in Eq. (4.6) with the shifted

variable s− σ yields

G(s) =

∞∑

i=1

(s− σ)i−1 mi−1,

56



producing the shifted moments mi−1 = −C
{
(σE−A)−1 E

}i−1
(σE−A)−1 B.

Beyond single-point moment matching, one may be interested in matching the

moments of the transfer function at selected frequencies, i.e., one may be in-

terested in a reduced-order model that interpolates the frequency response

and its derivatives at multiple points {σ1, σ2, . . . , σk}. This is called rational

interpolation and will be explored in Section 4.3. As a summary, Table 4.1 is

constructed based on Eq. (4.6).

Frequency to be Power Series ith Moment
Approximated Expansion of the TF

About σ =∞
∞∑

i=1

m−is
−i C (E−1A)

i−1
E−1B

Partial Realization

About σ = 0 or
∞∑

i=1

mi−1s
i−1 −C (A−1E)

i−1
A−1B

Padé

About s = σ or
∞∑

i=1

mi−1 (s− σ)i−1 C
{
(σE−A)−1 E

}i−1×

Shifted Padé × (σE−A)−1 B

Table 4.1: Expansions and moments to be matched.

4.2 Approximations by Moment Matching

A straightforward approach to constructing reduced-order models can

be obtained by explicitly computing 2r moments of the original system as in

Table 4.1, where r is the size of the reduced-order model. Then, the frequency

response of the reduced-order system is forced to correspond to the selected
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moments. This can be viewed as a selection of the coefficients for the numer-

ator and denominator of the reduced-order transfer function through the so-

lution of a linear system involving Hankel matrices. Unfortunately, numerical

drawbacks of the explicit moment-matching can occur, such as ill-conditioned

Hankel matrices, sensitivity of the partial realization, moment scaling, and the

stability of the approximation [36].

Numerically reliable algorithms have been reported in the literature

for moment matching without explicit moment computations [48]. The main

Krylov subspace methods for nonsymmetric problems, that is when A,E are

nonsymmetric, rely on the Arnoldi algorithm and the nonsymmetric Lanczos

algorithm. While the Arnoldi algorithm constructs an orthonormal base for

a Krylov subspace of dimension r, leading to an r × r Hessenberg matrix,

the nonsymmetric Lanczos algorithms constructs biorthogonal bases for two

Krylov subspaces, resulting in a r × r tridiagonal matrix. One of the first

connections between the Lanczos algorithm and model reduction was shown

in [43].

In this section, the Lanczos and Arnoldi algorithms will be derived in

a system-theoretical framework [8] and its numerical algorithms will be given.

Without loss of generality, it will be assumed that E = I.

4.2.1 Lanczos and Arnoldi Methods

Recall the definitions of the controllability and observability matrices,

given in Chapter 2. Based on the moments expansion as in Eq. (4.6), one can
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define the Hankel matrix Hk and the shifted Hankel matrix σHk, respectively,

as:

Hk =








m1 m2 · · · mk

m2 m3 · · · mk+1
...

. . .

mk mk+1 · · · m2k−1








, σHk =








m2 m3 · · · mk+1

m3 m4 · · · mk+2
...

. . .

mk+1 mk+2 · · · m2k








(4.9)

It can be shown that [17], Hk = OkRk and σHk = OkARk.

4.2.1.1 Lanczos Method

For the Lanczos procedure, assuming that det(Hi) 6= 0, i = 1, · · · , k,

the LU factorization of Hk can be computed as

Hk = LU, L(i, j) = 0, i < j and U(i, j) = 0, i > j, (4.10)

where L and U can be chosen such that

L(i, i) = ±U(i, i).

Define the maps:

WT := L−1Ok and V := RkU
−1.

With the definitions of V and W, it follows that WTV = I. Thus VWT is

an oblique projection. Therefore, one can define the reduced-order system Σk

obtained by projection as:

Ak := WTAV, Bk := WTB, Ck := CV. (4.11)

The following theorem holds:
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Theorem 4.2.1 (Lanczos Procedure). Given the full-order model as in Eq.

(4.5), the reduced-order model Σk defined as above matches 2k Markov pa-

rameters, i.e, CAi−1B = CkA
i−1
k Bk, for i = 1, · · · , 2k. Furthermore, Ak is

tridiagonal, and Bk,C
T
k are multiples of the unit vector e1, where e1 is a vector

of one at the position 1 and zeros elsewhere.

Proof. The complete proof is found in [8]

4.2.1.2 The Non-Symmetric Lanczos Algorithm

The Lanczos algorithm was originally proposed by Lanczos [75] as a

method for computation of eigenvalues of symmetric and nonsymmetric ma-

trices. The algorithm can also be used to construct all of the subspaces associ-

ated with the controllability and observability decomposition of a system [15].

The nonsymmetric Lanczos algorithm presented here follows [8] and references

therein.

Consider a model as in Eq. (4.1) and (4.2) with E = I and D = 0.

Also, assume that A is of large dimension and sparse. The algorithm depicted

in Table 4.2 can be employed to determine the projection matrices Vk and

Wk. In this case, the following relationships hold:

Vm =
(
v1 v2 · · · vm

)
(4.12)

Wm =
(
w1 w2 · · · wm

)
(4.13)

AVm = VmAm + ṽm+1ã
T
mV , B = VmBm (4.14)

ATWm = WmAT
m + w̃m+1ã

T
mW , C = WmCm (4.15)
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1. β1 =
√

CTB; δ1 = β1 · sign
(
CTB

)
;

2. v1 = B/δ1;w1 = C/β1;v0 = 0;w0 = 0;

3. for j = 1 to m

αj = wT
j Avj;

v̂j+1 = Avj − αjvj − βjvj−1; v̂j+1 = v̂j+1 −Vj

(
WT

j v̂j+1

)

ŵj+1 = ATwj − αjwj − δjwj−1; ŵj+1 = ŵj+1 −Wj

(
VT

j ŵj+1

)

βj+1 =
√∣

∣ŵT
j+1v̂j+1

∣
∣

if βj+1 ≤ ǫ

stop

end

4. δj+1 = βj+1 · sign
(
ŵT

j+1v̂j+1

)

5. vj+1 = v̂j+1/δj+1;wj+1 = ŵj+1/βj+1

Table 4.2: The non-symmetric Lanczos algorithm.

Am = WT
mAVm =








α1 β2 0

δ2 α2
. . .

. . .
. . . βm

0 δm αm







∈ R

m×m (4.16)

and

ãT
mV = δm+1e

T
m, Bm = e1δ1, (4.17)

ãT
mW = βm+1e

T
m, Cm = e1β1, (4.18)

where the vector ei denotes the ith unit vector. In a pictorial manner, the

algorithm can be depicted in Fig. 4.1.

61



=

=

A Vk Vk

Tk

+  vkeT
k

AT Wk Wk

Tk

+  wkeT
k

Figure 4.1: The kth step of the Lanczos algorithm.

4.2.1.3 Arnoldi Procedure

As in the Lanczos procedure, the Arnoldi procedure can be developed

as follows: Let the controllability matrix of G(s) in Eq. (4.5) be given as in

Eq. (2.7). Then, one can write

ARk = RkF, where F =










0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

. . .

0 0 · · · 1 −αk−1










(4.19)

and χA(s) = det(sI−A) = sn +αn−1s
n−1 + · · ·+α1s+α0 is the characteristic

polynomial of A. Unlike the computation of a LU factorization of Hk in the

Lanczos algorithm, the core of the Arnoldi algorithm is the computation of

the QR factorization of Rk as

Rk = WRA (4.20)
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where W is orthogonal and RA is upper triangular. Using Eq. (4.19), one can

write

AWRA = WRAF⇒ AW = WRAFR−1
A ⇒ AW = WF̄

where F̄ = RAFR−1
A . Since RA and R−1

A are upper triangular, F̄ is upper

Hessenberg. Consequently the projection can be formed, recalling that Hk =

OkRk, and defining the map V based of the QR factorization of Rk as:

V = RkR
−1
A ∈ R

n×k, (4.21)

where VTV = Ik and RA is upper triangular. Then VVT is an orthogonal

projection. Therefore, the reduced order system Σk is defined as:

Ak := VTAV, Bk := VTB, Ck := CV. (4.22)

The following theorem summarizes the results:

Theorem 4.2.2. Given the full-order model as in Eq. (4.5), the reduced-order

model Σk defined as above matches k Markov parameters, i.e, CAi−1B =

CkA
i−1
k Bk, for i = 1, · · · , k. Furthermore, Ak is upper Hessenberg, and

Bk,C
T
k are multiples of the unit vector e1, where e1 is a vector of one at

the position 1 and zeros elsewhere.

Proof. The complete proof is found in [8]

4.2.1.4 The Arnoldi Algorithm

The Arnoldi method [10] was introduced as a means of reducing a

dense matrix into Hessenberg form. The standard Arnoldi algorithm, in exact
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arithmetic, is given by the algorithm depicted in Table 4.3 for the single-input,

single-output case.

1. Set v1 = B

‖B‖

2. for j = 1, 2, . . . k

(a) Compute hij = vT
i Avj, for i = 1, 2, . . . j

(b) wj = Avj −
∑j

i=1 hijvi

(c) hj+1,j = ‖wj‖2
(d) If hj+1,j = 0 Stop

(e) vj+1 = wj/hj+1,j

3. end

Table 4.3: The Arnoldi algorithm.

At each step, the algorithm multiplies the previous Arnoldi vector vj

by A and then orthonormalizes the resulting vector wj against all previous

vj ’s by standard Gram-Schmidt orthogonalization. However, in practice, the

more stable Modified Gram-Schmidt algorithm [41, 98] is used. For each step

of the Arnoldi algorithm, the following relationship holds

AVk = VkHk + wke
T
k , (4.23)

where

Hk = VT
k AVk =










h11 h12 h13 · · · h1k

h21 h22 h23 · · · h2k

. . .
. . .

. . .
...

hk−1,k−2 hk−1,k−1 hk−1,k

0 hk,k−1 hkk










∈ R
k×k (4.24)
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and ek denotes the kth unit vector and VT
k Vk = Ik. Schematically, the Arnoldi

steps can be illustrated as shown in Fig. 4.2.

=A Vk Vk

Hk

+  wkeT
k

Figure 4.2: The kth step of the Arnoldi algorithm.

Remarks : (a) The above procedures apply in the same manner for

descriptor systems;

(b) Due to the fact that in the Lanczos procedure, two-sided oblique

projection is employed, the reduced-order model obtained by k steps of the

Lanczos Algorithm matches 2k Markov parameters, whereas, using a one-side

orthogonal projection in the Arnoldi Algorithm, one matches only k Markov

parameters.

(c) One of the disadvantages of the Lanczos and Arnoldi procedures

is the possibility of the algorithm breakdown. In exact arithmetic, Lanczos

breaks down if det Hi = 0, for some 1 ≤ i ≤ n. The breakdown occurs because

the tridiagonal structure is forced in the reduced-order model. However, one

can match 2k Markov parameters without the condition det Hi 6= 0, for i =

1, · · · , k and therefore this restriction is not required for model reduction.

Arnoldi breaks down if Ri, for some 1 ≤ i ≤ n, does not have full rank;
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However this restriction is not necessary for model reduction, as long as V has

full rank.

(d) Unlike the SVD methods of Chapter 3, the reduced-order model

obtained from Arnoldi or Lanczos algorithms might not be stable for a stable

full-order model. The remedy is the implicit restart of Lanczos and Arnoldi

proposed by Sorensen [47, 102]. However, there will be a trade-off between

guaranteed stability and exact moment matching.

(e) In general, for matching moments at arbitrary interpolation points

σi ∈ C, the problem can be solved using rational interpolation which will be

discussed in detail in the next sections.

4.3 Multi-point Rational Interpolation

Recall the definitions of moments at a point s = σ, and the concepts

of the (generalized) reachability and observability matrices. In the case of

moment matching at several points in the complex plane, one can use the

Rational Krylov algorithm. The following theorem is presented in [48] for the

SISO case. It shows how to construct the projection matrices V and W, in a

numerically efficient way so that multi-point rational interpolation is solved by

extending the concepts of Krylov subspaces to the generalized controllability

and observability matrices [8].

Theorem 4.3.1. If

K⋃

k=1

Kbk

(
(σkI−A)−1 , (σkI−A)−1 B

)
⊆ V = Im(V) (4.25)
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and

K⋃

k=1

Kck

(

(σkI−A)−T , ((σkI−A)−T CT
)

⊆W = Im(W) (4.26)

where WTV = I and σk are chosen such that the matrices σkI−A are invertible

∀k ∈ {1, · · · , K}, then the moments of Σ and Σ̂ satisfy

η(jk)
σk

= η̂(jk)
σk

, for jk = 0, 1, 2, · · · , bk + ck − 1 and k = 1, 2, · · · , K (4.27)

provided the matrices σkI−Ar are invertible.

Remarks :

1. Theorem 4.3.1 states that for moment-matching, one has to construct

full-rank matrices V and W with Im(V) and Im(W) satisfying Eq.

(4.25) and (4.26), respectively.

2. Several algorithms have been implemented in the literature (see [48] and

referenced therein): Lanczos algorithm and Arnodi algorithm and its

variants. In general, they follow the Rational Krylov methods of [94].

As pointed out before, they can suffer from numerical breakdowns as

well. A reliable implementation of the Arnoldi algorithm is give in the

next section.

4.3.1 The Dual Rational Arnoldi for SISO Systems

The best way to avoid the numerical breakdowns in the construction

of V and W is to construct them as orthogonal matrices. A simple, yet
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1. Initialize parameters: → m = 0;
V = [ ]; Z = [ ]

2. for j = 1, · · · , J

(a) for k = 1, · · · , K
i. If j = 1

ṽm = (A− σkI)
−1 B, and z̃m = (A− σkI)

−T CT ;

else

ṽm = (A− σkI)
−1 vm−k, and z̃m = (A− σkI)

−T zm−k;

end

ii. v̂m = ṽm −VVT ṽm and ẑm = z̃m − ZZT z̃m;

iii. V =
[

V v̂m/‖v̂m‖
]

and Z =
[

Z ẑm/‖ẑm‖
]
;

iv. m = m + 1;

3. Z← Z
(
VTZ

)−1
;

Table 4.4: The Dual Rational Arnoldi algorithm for interpolation points σi, i =
1, · · · , K and J moments to be matched per point.

reliable, implementation of this method is called Dual Rational Arnoldi [48].

In this case, V and W are constructed independently using steps of the Arnoldi

procedure. The basic algorithm is shown in the Table 4.4.

Remarks :

1. In the multi-input, multi-output (MIMO) case, one cannot be sure that

the block Krylov space will be of full-rank as for SISO systems. This

adds complexity to the algorithm, so that deflation has to occur in the

construction of V and W in order to achieve linearly independent vectors

(or blocks) for the corresponding Krylov subspaces.
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2. Extensions of the Arnoldi and Lanczos algorithms for the MIMO case

have been proposed in the literature [14, 49]. A neat and clear version

of the Arnoldi procedure has been suggested by Boley [14]. In this case,

the deflation is achieved by the use of a rank-revealing QR algorithm.

This is discussed in the next section.

4.3.2 Rational Krylov Methods for MIMO Systems

As discussed in Section 4.3, in order to solve the multi-point rational

interpolation by Krylov techniques, one has to construct full rank matrices V

and W which span the required Krylov subspaces for interpolation points σi,

for i = 1, · · · , K. In the SISO case, due to the minimality of the system Σ,

the controllability (Rr) and observability (Or) are guaranteed to be full-rank,

and therefore constructing V and W based on the images of the Rr and Or

yields the required full-rank Krylov projection. However, for MIMO systems,

the construction of a full-rank projection is more difficult since one cannot

guarantee generation of linearly independent vectors from the corresponding

Krylov subspaces. To overcome this problem in the MIMO case, one has to

search for an orthogonal basis for V and W by means of deflating linearly

dependent vectors.

Extensions of both Lanczos and Arnoldi algorithms for the MIMO case

have been proposed in the literature [14, 35]. One of the suggestions for the

MIMO version of Arnoldi, is the use of a rank-revealing QR algorithm as a de-

flation technique. This algorithm, introduced by [14] will be further explored.
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It is interesting to note, see for instance [49], that deflation in this case has an

interpretation as the selection of nice indices for the controllability matrix [7].

4.3.3 The Algorithms for Rational Krylov in the MIMO case

In this section, the construction of the projection matrix V will be

considered. The construction of the dual matrix W follows similarly. In

this manner, the so-called block-wise construction with deflation will be used

[14, 49]. This algorithm adds, at the ith step, m columns to V if the ith block

has full-rank. Otherwise, the block will be deflated and mi < m columns

will be added to V. The procedure will continue until the required Krylov

subspace is spanned or mi becomes zero.

Consider the LTI system given by Eq. (2.2), and K interpolation points

σi with multiplicities bi, where i ∈ {1, · · · , K}. Also consider the following

definitions

Fi : = (σiI−A)−1, Gi := (σiI−A)−1B if σi 6=∞

Fi : = A, Gi := B if σi =∞

where for i = 1, · · · , K, let

Gi =
[

gi1 gi2 · · · gim

]
, Vi = Kbi

(Fi,Gi) , V =
[

V1 V2 · · · VK

]

The algorithm in Table 4.3.3 computes a full-rank orthogonal V such that

Im(V) = Im(V1, · · · ,VK). It can be shown that, since all Vi’s, for i =

1, · · · , K satisfy Im(Vi) = Kbi
(Fi,Gi) by construction, then it is guaranteed

70



that
K⋃

k=1

Kbi

(
(σiI−A)−1, (σiI−A)−1B

)
⊆ V = Im(V)

and therefore V is the appropriate choice for the Krylov subspace.

A version of this algorithm, the so-called vector-wise construction with

deflation has also been proposed in the literature. In this case, the algorithm

will add only one column to V at each step until the required Krylov subspace

is spanned. The reader is referred to [35, 49] for details.

4.4 H2 Expression for the Lanczos procedure (SISO case)

The H2-norm of a continuous-time system Σ =

[
A B
C D

]

is defined

as the L2-norm of the impulse response in the time-domain, so that

‖Σ‖H2
= ‖h(t)‖L2

(4.28)

Using Parseval’s theorem and the properties of the trace of a matrix, one

obtains

‖Σ‖H2
=

√

trace [BT QB] =
√

trace [CPCT ]. (4.29)

where P and Q are the controllability and observability gramians of Σ. An-

toulas [8] showed that for a continuous-time system Σ, with a stable transfer

function H(s), the following result holds

‖Σ‖2
H2

=

n∑

i=1

ciH(s)∗|s=λ∗

i
=

n∑

i=1

ciH(−λ∗
i )

∗|s=λ∗

i
(4.30)

where λi, i = 1, · · · , n are distinct poles of H(s) and ci is the corresponding

residue: ci = H(s)(s − λi)|s=λi
i = 1, · · · , n. This result can be generalized
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1. for = 1, · · · , K

(a) if σi 6=∞
Fi = (σiI−A)−1 and Gi = (σiI−A)−1B

else

Fi = A and Gi = B

(b) Q0R = qr(Gi) (Rank revealing qr decomposition)

(c) For k = 1, 2, · · · , bk − 1

i. Qk = FiQk−1

ii. Apply Gram-Schmidt to ortogonalize Qk to previous Q′
js where

j = 1 : k − 1

iii. QkR = qr(Qk) (Rank revealing qr decomposition)

iv. rk = rank(Qk)

v. if rk 6= 0

Vi = [Vi Qk]

else

k = bk − 1 (the kth block is complete)

2. for i = 1 : K (If Vi not assumed to be linearly independent)

(a) Apply Gram-Schmidt on {V1, · · · ,VK} to get V

3. V is the required full-rank projection matrix

Table 4.5: MIMO Rational Krylov (Arnoldi) with blockwise construction.
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for the case of poles with multiplicity greater than one [8]. Inspired by the

above results and the work of Antoulas and Sorensen [104], where an exact

expression for the H2 norm of the error system obtained by truncation is

presented, Gugercin [51] showed a similar result considering model reduction

by the Lanczos process. Consider a system Σ with transfer function H(s) and

the reduced-order model Σr = Ĥ(s). Let also φi and φ̂ denote the residues of

the transfer function H(s) and Ĥ(s) at λi and λ̂i respectively, i.e.,

φi = H(s)(s− λi)|s=λi
, i = 1, · · · , n and (4.31)

φ̂j = Ĥ(s)(s− λ̂j)|s=λ̂j
, j = 1, · · · , r (4.32)

The following lemma holds [51]:

Lemma 4.4.1. Exact expression for the H2 norm error system. Let

Σr be obtained by the r step Lanczos reduction of Σ. Then the norm of the

error system, defined as, Σe := Σ−Σr is given by

‖Σe‖2H2
=

n∑

i=1

φi

(

H(−λ∗
i )− Ĥ(−λ∗

i )
)

+

r∑

j=1

φ̂i

(

Ĥ(−λ̂∗
j )−H(−λ̂∗

j)
)

(4.33)

Lemma 4.4.1 shows that the H2-norm of the error is due to the mis-

match of the full-order model and reduced-order model at the mirror images

of the full-order poles and reduced-order poles.

Based on the H2 error analysis, Gugercin and Antoulas [50] proposed

to choose as interpolation points (for the SISO case) a subset of the mirror

images of the full-order poles, i.e., one can choose

σi = −λ∗
i (A), (4.34)
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where the subset can be chosen based on the highest residues of the transfer

function. By means of an iterative process, Gugercin [53] showed how one can

achieve the minimization.

4.5 Rational Krylov for Controller Reduction

Computing a reduced-order controller by simply using an open-loop

strategy, such as reducing the controller K(s) to some Kr(s) by one of the

methods mentioned above, is often not enough to preserve the desired closed-

loop performance. The controller reduction problem benefits when the plant

dynamics are taken into account. The SVD-methods (presented in Chapter

3) achieve this through frequency weighting. However, this requires solving

two large-scale Lyapunov equations on order nK or n + nK , which becomes a

difficult task for large-scale systems.

In order to have a more efficient controller reduction Gugercin, et al.

[12, 54] proposed to use the Rational Krylov method to reduce the large-scale

controller. It was shown that a reduced-order controller, obtained through

a rational Krylov model reduction scheme, is guaranteed to yield closed-loop

behavior which approximates the full-order closed-loop system as described in

the following proposition:

Proposition 4.5.1. [12] For a given plant G(s) and full-order controller K(s),

let T(s) denote the full-order closed-loop system as

T(s) = [I + G(s)K(s)]−1 G(s).
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Given a set of interpolation points σk, k = 1, · · · , 2K, and the number of mo-

ments jk to be matched at each σk, let Kr(s) be the reduced rth-order controller

obtained from K(s) using a Rational Krylov method of Section 4.3. Denote

the closed-loop transfer function using the reduced-order controller as Tr(s),

then

Tr(s) = [I + G(s)Kr(s)]
−1 G(s).

Therefore, Tr(s) interpolates the full-order closed-loop system T(s) and its

first jk − 1 derivatives at σk for k = 1, · · · , 2K, i.e,

(−1)j

j!

djT(s)

dsj

∣
∣
∣
∣
s=σk

=
(−1)j

j!

djTr(s)

dsj

∣
∣
∣
∣
s=σk

(4.35)

for k = 1, . . . , 2K and for j = 1, . . . , jk.

As with model reduction, the selection of interpolation points is an ad

hoc procedure. So, for the case of the closed-loop controller reduction, it is

suggested to use σk from the union of mirror images of the poles of T(s) and

K(s). Hence this choice is expected to yield a small H2 error for both error

systems K(s)−Kr(s) and T(s)−Tr(s).

4.6 Numerical Examples

To illustrate the various options of moment matching using the Lanczos

Algorithm, two examples used as a benchmark in model reduction are ana-

lyzed: (1) the dynamics of portable CD player [110] and (2) the dynamics of

the flex modes of the 1R (Russian Service Module) for the International Space

Station (ISS) [8].
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4.6.1 Model Reduction: The CD Player

The frequency response corresponding to this system is shown as a solid

line in Figure 4.3. Based on Figures 3.4 and 3.5, we reduce the order of the full

model to r = 14. The frequency responses of a partial realization, i.e, expan-

sion about σ = ∞ (dotted line), a Padé approximation, i.e, expansion about

σ = 0 (dashed line), and a shifted Padé approximation, i.e, expansion about

σ = 104 (dashed-dot line) are also represented for comparison. This exam-
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Figure 4.3: Frequency responses of a full-order model of the CD player and fre-
quency responses for reduced-order models based on partial realization, Padé
and shifted Padé approximations.

ple shows the behavior expected from each of the moment-matching methods,

as described in the previous sections. The partial realization captures only
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higher frequency behavior. The two single-point Padé approximations are re-

lated to the choice of σ. While choosing σ = 0, the behavior matches of

the reduced-order model matches the full-order model at lower frequencies,

choosing σ = 104 makes the reduced order model approximately equal at this

frequency.

4.6.2 Model Reduction: The Russian Service Module of the Space
Station

The full-order model represents the component 1R (Russian Service

Module) for the International Space Station. It is comprised of 270 states, 3

inputs and 3 outputs. The frequency response of the MIMO system is depicted

in the Figure 4.4.

In order to verify the model reduction methods, MIMO Krylov methods

are employed and compared with the balanced reduction techniques of the

previous chapter. The normalized Hankel singular values are depicted in Fig.

4.5. It appears from the decay rate of its Hankel singular values that a reduced-

order model of r = 20 should give a good approximation. The frequency

responses of the reduced-order models for balanced truncation and Krylov

techniques are shown in Figure 4.6.

As seen in the development of the rational Krylov algorithms, the order

of the reduced-order model using MIMO rational Krylov is restricted by the

size of the input and output matrices, i.e, the number of sensors and actuators,

and the linear dependency of the columns of the projection matrices. In this
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case, one cannot choose directly the size of the reduced-order model. One can,

however, experiment with the choice of interpolation points together with the

number of derivatives to be matched per point to yield the size of the reduced-

order model.

For the Russian Service example, it was chosen to work with two sce-

narios: (1) interpolation points at frequencies 0.1, 10, 80 rad/sec, evaluated in

the imaginary axis matching only the value of the transfer function, and (2)

interpolation points at frequencies 0.1, 2, 10, 20, 80 rad/sec, evaluated in the

imaginary axis matching only the value of the transfer function. The ratio-

nale regarding this choice is that the former gives a reduced-order model of

size r = 18 and matches some of the peaks in the frequency response of the

full-order model, whereas the later yields a reduced-order model of size r = 30

and tries to match all peaks of the frequency response of the full-order model.

Figures 4.6 and 4.7 illustrate those choices.

As observed in Fig. 4.7, all three of the reduced-order models match

well the full-order model in the frequency range under consideration. Even

though balanced truncation seems to perform better for reduced-order models

of approximately the same size, its computational efforts are much higher than

Krylov techniques, as seen in the Table 4.6.

4.6.3 Controller Reduction Examples

Two examples are considered for the case of controller reduction by the

Krylov method: (1) the rotational disks and (2) the CD player. For the case of
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Model Reduction Size Time

Balanced Truncation r = 20 3.7260 sec
MIMO Krylov r = 18 0.3700 sec
MIMO Krylov r = 30 0.5910 sec

Table 4.6: Computational time for the reduced-order models of the Russian
Module of the ISS (full-order model: n = 270 states) based on computations
performed in Matlab
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Figure 4.4: MIMO frequency responses of the 1R Module of the ISS.

the spinning disks, a fourth-order reduced controller is obtained and compared

with the case of frequency weighted balanced reduction. For the CD player, a

14th order controller is obtained from the full-order controller by the Rational

Krylov procedure.

Consider first the spinning disks example. As seen in the previous

chapter, an eighth-order LQG controller is obtained by loop shape design. The
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rational Krylov technique is applied here to obtain a fourth-order controller. In

order to determine the interpolation points to be matched by the reduced-order

controller, the procedure shown in Section 4.4 is used. Hence, the interpolation

points were chosen to be the mirror images of some of the closed-loop and

full-order controller poles. As seen in Fig. 4.8, the reduced-order controller

obtained by rational Krylov performs as well as the one obtained by frequency

weighted balanced truncation. The closed-loop system, in this case, is stable

as well.

Consider now the CD player example. A SISO model was considered

for the controller design in order to perform model reduction using the choice

of the interpolation points as in Section 4.5. A LQG controller was designed
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based on the SISO model to reduce the oscillations as can be seen in Fig.

4.9, where the impulse response of the uncompensated and the compensated

systems are shown. The oscillations represent the lens position due to an

impulse disturbance on the lens actuator.

Two approaches were taken to obtain the reduced-order controller.

First, as suggested in Section 4.5, the union of some mirror images of the

poles of the closed-loop and full-order controller were chosen to obtain a 14th

reduced-order controller. The choice of the interpolants among all poles were

based on the poles with the highest residues. Simulation was performed in or-

der to arrive to a 14th order controller yielding good response and closed-loop

stability.

Secondly, the interpolation points were chosen to match some of the

peaks of the frequency response of the full-order system loop gain. In this

case, choosing 14 frequencies, based on the frequency response plot, evaluated

in the imaginary axis yielded unstabilizable reduced-order controllers. Thus,

a stabilizing reduced-order controller was obtained by randomly choosing fre-

quencies between [101 105] rad/s.

The impulse response of the reduced-order closed-loop systems are de-

picted in Fig. 4.10. As can be observed, both reduced-order controllers match

well the closed-loop behavior of the full-order controller. Furthermore, as il-

lustrated in Fig. 4.11, both reduced-order controllers yield good matching in

the frequency range under consideration.
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4.7 Concluding Remarks

This chapter introduced moment matching techniques for model reduc-

tion of large-scale systems. It was shown how to construct, in a numerically

efficient way, full-rank projection matrices to be applied to the large-scale sys-

tem. Unlike the SVD-based methods, reduced-order models are not guaranteed

to be stable from a stable full-order model.

Also, the problem of controller reduction in a closed-loop framework

was presented using Krylov techniques. It was shown that one can obtain

reduced-order controllers that approximate well the full-order controller and

the full-order closed-loop systems in the neighborhood of specific frequencies

or points in the complex plane. Those frequencies are determined by ad hoc
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procedures such as the mirror images of the poles of the full closed-loop system.

In order to fully apply these efficient procedures for controller reduction of

large-scale systems, methods that guarantee closed-loop stability need to be

addressed. This will be covered in the next chapter.
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Chapter 5

Passivity Preserving Model and Controller

Reduction

This chapter deals with the reduced-order controller design that guar-

antees closed-loop stability. An approach to model reduction will be proposed

based on the “dissipativity” property of linear systems. In a broad sense, this

property reveals that some external energy put into the system gets dissipated.

The term energy will be defined in a general sense, and some simplifications

will be made to arrive at the concept of passivity of a linear time invariant

system.

By means of a well-known characterization of passive systems, the Pos-

itive Real Lemma, it will be shown how one can obtain closed-loop stability

by feedback interconnection of two passive systems. Also, the development of

such concepts for flexible structures will be achieved. In what follows, pas-

sivity preserving model reduction will be developed and its connection to the

systems spectral zeros will be made.
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5.1 System Dissipativity

A generalization of the Lyapunov stability criterion useful for the analy-

sis of feedback systems is called system dissipativity or system passivity [121].

Broadly speaking, a system is said to be dissipative (or passive) if it does not

generate energy internally, and strictly dissipative if it dissipates or consumes

input energy [9, 71, 103]. As will be seen in the following sections, the main

advantage of dissipative systems is that they can be robustly stabilized by a

controller that itself satisfies a certain dissipativity condition.

5.1.1 System Dissipativity, Passivity and Positive Real Lemma

Mathematically, system dissipativity is defined as follows [8, 121]. Given

the dynamical system ẋ = f(x,u), y = g(x,u), with inputs u ∈ U, outputs

y ∈ Y and state-space x ∈ X, one can define a supply function to the system

s : U×Y→ R, (u,y) 7→ s(u,y)

which may represent the power delivered to the system. The system is called

dissipative, with respect to the supply function s, if there exists a non-negative

function Θ : X 7→ R such that the following dissipation inequality holds for

all t0 ≤ t1 and all trajectories (u,x,y) which satisfy the system equations.

Θ (x(t1))−Θ (x(t0)) ≤
∫ t1

t0

s (u(t),y(t)) dt (5.1)

In the case of a stable and square LTI dynamical system Σ, one can define the

supply function as a quadratic “power function” [67]

p(u,y) =
[

yT uT
]
[

Q N
NT R

] [
y
u

]

(5.2)
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where Q, N and R have the appropriate dimensions. Several important special

cases of dissipative linear systems are defined below

Definition 5.1.1. A linear system which is dissipative with respect to the

power function p(u,y) in Eq. (5.2) is said to be

• Passive if Q = 0, R = 0 and N = I;

• Norm-bounded if Q = −I, R = −γ2I, and N = 0 for some finite γ > 0.

In this case, γ > H∞-norm of the system;

• Sector-bounded inside the sector [a b] , a < 0 < b if Q = −I, R = −abI,

and N = αI with α = (a + b)/2.

In this dissertation, only passive systems will be discussed. A large class

of dynamical systems can qualify to be passive systems [42]. An important

class of passive systems is an RLC circuit consisting only of resistors, inductors

and capacitors. Also, some examples include large flexible space structures

with collocated sensors and actuators [69]. It turns out that for linear systems,

passivity is equivalent to the concept of positive realness of a transfer function

[8].

Definition 5.1.2. An square m × m rational matrix G(s), with G∗(s) =

GT (−s), is said to be positive real (PR) if

1. all elements of G(s) are analytic in ℜe(s) > 0;
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2. G(s) maps the right-half of the complex plane C onto itself, i.e.,

s ∈ C,ℜe(s) ≥ 0⇒ ℜe(G(s)) ≥ 0, s not a pole of G

3. G(s) + G∗(s) ≥ 0 in ℜe(s) > 0 or equivalently

(a) pole (in the Smith-McMillan sense) on the imaginary axis are simple

and have non-negative definite residues, and

(b) G(jω) + G∗(jω) ≥ 0 for ω ∈ (−∞,∞)

The time-domain equivalence of a positive real transfer function is given

by the well known Kalman-Yacubovich-Popov (KYP) Lemma which is stated

below without proof (see [71, 121] for proofs).

Lemma 5.1.1. [8] (a) Positive Real Lemma The minimal system Σ =
[

A B
C D

]

is dissipative with respect to the supply rate s = y∗u + y∗y, if, and

only if, there exists X = X∗ ≥ 0, K̃ and L such that

A∗X + XA + K̃∗K̃ = 0

XB + K̃∗L = C∗ (5.3)

D + D∗ = L∗L

(b) Let D + D∗ be non-singular and define ∆ = (D + D∗)−1. The

system Σ is positive real if, and only if, there exists a positive semi-definite

solution X = X∗ ≥ 0 to the Riccati equation

(A∗ −C∗∆B∗)X + X (A−B∆C) + XB∆B∗X + C∗∆C = 0 (5.4)
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The above definitions imply the existence of a stable rational matrix

function W(s), the so-called spectral factor of G, such that: (1) W(s) has a

stable inverse, and (2) G(s) + GT(−s) = W(s)WT (−s). This is the spectral

factorization of G(s). Also, the zeros of W(s), i.e, λi, i = 1, · · · , n, such that

detW(λi) = 0, are the so-called spectral zeros of G(s). It turns out that the

spectral zeros can be determined using the following generalized eigenvalue

problem AΛ = EΛZ, where [103]

A :=





A 0 B
0 −AT −CT

C BT D + DT



 , and E :=





I
I

0



 , (5.5)

and Z is a diagonal matrix which contains the spectral zeros. Finally, there

is one extension of the positive real lemma to systems that are stable and

bounded by one on the imaginary axis. It is called bounded real systems. One

can show [8] that a condition for a system to be bounded real is given by the

Bounded Real Lemma as follows

Lemma 5.1.2. [8] (a) Bounded Real Lemma The minimal system Σ =
[

A B
C D

]

, with D 6= 0, is bounded real, i.e, the H∞ norm of Σ is at most

one, if, and only if there exists X ≥ 0, K̃ and L such that

A∗X + XA + C∗CK̃∗K̃ = 0

XB + C∗D + K̃∗L = 0 (5.6)

I−D∗D = L∗L

The main passivity result is related to the feedback connection of two

passive systems. It is based on a fundamental theorem of passivity which states
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that a negative feedback interconnection of two passive system is passive, and

also, the negative feedback interconnection of any passive and strictly passive

system is asymptotically stable. This property will be developed further and

will be the basis for the passive controller reduction scheme. Next, the stability

theorem is given without proof for the feedback interconnection of passive

systems.

5.1.2 Stabilization by a Passive System

The main result of feedback interconnection of passivity system is given

by the following theorem.

Theorem 5.1.3. [71, 79] Consider the system of Fig. 5.1. Then, it follows

that the negative feedback interconnection of G1(s) and G2(s) is globally as-

ymptotically stable if G1(s) is positive real (PR), G2(s) is strictly positive real

(SPR), and none of the purely imaginary poles of G2(s) is a transmission zero

of G1(s). Mathematically, one can write

∫ T

0

uT
1 y1 + β ≥ 0, for all T > 0

where β is a positive constant and therefore, the signal u2 can be shown to be

u2 ∈ L2.

This theorem shows that if one obtains a passive system, G1, and de-

signs a strictly passive controller G2, the closed-loop feedback system of G1

and G2 is guaranteed to be asymptotically stable. Moreover, if one obtains

either a passive reduced-order plant Gr1
from G1 or a passive reduced-order
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Figure 5.1: A PR connected via negative Feedback with SPR system.

controller Gr2
, the reduced-order closed-loop system is still guaranteed to be

stable. The problem, thus, becomes the one of seeking passivity preserving

model reduction schemes and the design of passive controllers. These issues

will be treated in the next sections and chapters.

5.2 Passivity Preserving Model Reduction

In order to use the stability of a passive feedback system with a reduced-

order model or controller, one has to guarantee that the reduced model or

controller preserves the passivity of the original system. This section deals

with such algorithms. First, using the same framework as Chapters 3 and

4, an SVD-based model reduction is presented using concepts of PR systems.

They have already been mentioned on Chapter 3, but here their algorithms are

further developed. Next, using the framework of Krylov methods, it is shown

how one can use a Rational Krylov algorithm in order to produce a passive

reduced-order model based on a passive original model.
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5.2.1 Bounded Real Balancing

One important class of dynamical systems is the class of bounded real

systems [8, 52]. They are stable systems whose transfer function is bounded

by one on the imaginary axis, i.e., its transfer function G(s) satisfies: I −

G∗(−iω)G(iω) ≥ 0, ω ∈ R. It is called strictly bounded if this inequality is

strict. Recall the bounded real lemma. If one defines RC := I−D∗D, then

G(s) is bounded real if and only if there exists Y = Y∗ > 0 such that the

following Riccati equations holds

A∗Y + YA + C∗C + (YB + C∗D)RC
−1 (YB + C∗D)∗ = 0. (5.7)

Any solution Y lies between two extremal solutions, i.e, 0 < Ymin ≤ Y ≤ Ymax.

Ymin is a unique solution to Eq. (5.7). Also, one can define a dual Riccati

equation

AZ + ZA∗ + BB∗ + (ZC∗ + BD∗)RB
−1 (ZC∗ + BD∗)∗ = 0, (5.8)

where RB := I−DD∗ and the solution lies in between two extremal solutions:

0 < Zmin ≤ Z ≤ Zmax.

Lemma 5.2.1. [84, 85] If Y = Y∗ > 0 is a solution to Eq. (5.7), then Z = Y−1

is a solution to 5.8. Hence Zmin = Y−1
max and Zmax = Y−1

min.

Based on this fact, one can define a bounded real balanced represen-

tation of the system Σ by means of simultaneously diagonalizing Ymin and

Zmin = Y−1
max.
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Definition 5.2.1. [8, 84]. A bounded real system is called bounded real bal-

anced if

Ymin = Zmin = Y−1
max = Z−1

max = diag
(
ξ1Il1 , · · · , ξqIlq

)
(5.9)

where 1 > ξ1 > ξ2 > · · · > ξq > 0, mi = 1, · · · , q are the multiplicities of ξi,

and m1 + · · ·+ mq = n. The ξ′is are the bounded real singular values of Σ.

Balanced reduction follows as the usual balanced truncation as done in

Chapter 3, by simply eliminating the states which correspond to small bounded

real singular values. An error bound is derived in [52, 84].

5.2.2 Positive Real Balancing

Following the same procedure as for the bounded real balancing, one

can define a reduced-order model based on the positive real lemma. Recall the

definition of the positive real Riccati equations as in Eq. (5.4). Then a system

Σ with transfer function G(s) =

[
A B
C D

]

∈ R(n+p)×(n+m), m = p is PR if

and only if there exists K = K∗ > 0 such that the following Riccati equations

hold

A∗K + KA + (KB−C∗) (D + D∗)−1 (KB + C∗)∗ = 0 (5.10)

Also, one can define a dual Riccati equation

AL + LA∗ + (LC∗ −CB) (D + D∗)−1 (LC∗ −CB)∗ = 0 (5.11)

Lemma 5.2.2. [84] Any solution Kmin and Lmin, of the positive real Riccati

equations, lies between two extremal solutions, i.e, 0 < Kmin ≤ K ≤ Kmax
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and 0 < Lmin ≤ L ≤ Lmax. If K = K∗ > 0 is a solution to Eq. (5.10), then

L = K−1 is a solution to Eq. (5.11). Hence Kmin = L−1
max and Kmax = L−1

min

Analogous to the bounded real case, a positive real balancing trans-

formation is performed by simultaneously diagonalizing the minimal solutions

Kmin and Lmin. Hence, it follows:

Definition 5.2.2. [8, 84]. A positive real system is called positive real bal-

anced if

Kmin = Lmin = K−1
max = L−1

max = diag
(
π1Is1

, · · · , πqIsq

)
(5.12)

where 1 > π1 > π2 > · · · > πq > 0, si = 1, · · · , q are the multiplicities of πi,

and s1 + · · ·+ sq = n. The π′
is are the positive real singular values of Σ.

Similarly, balanced reduction follows as the usual balanced truncation

as done in Chapter 3, by simply eliminating the states which corresponds to

small positive real singular values. An error bound is derived in [52, 84]. For

the same reasons as the Lyapunov-balanced truncation, theses two algorithms

are not suitable for large-scale systems, since one has to solve two large Riccati

equations. Methods based on Krylov methods will be derived next.

5.2.3 Passivity Preserving Rational Krylov

As seen in the previous chapters, SVD-based methods for large-scale

model reduction rely on solving large-scale Lyapunov or Riccati equations.

Therefore, it is interesting to obtain reduced-order models using Krylov tech-

niques that preserve passivity and stability. Antoulas [9] has shown how one
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can produce a passive reduce-order model based on interpolation of the spectral

zeros of the full order system, i.e., a passive reduced-order model will result if

certain spectral zeros are preserved (interpolated) in the reduced order model.

In this case, rational Krylov methods can be applied for the interpolation

problem. The approach taken here follows [8, 9]. The theorems will be stated

without proof.

Theorem 5.2.3. [8] Recall the definitions of the spectral zeros as in Eq. (5.5).

Given a stable and passive system Σ, let Z denotes its set of spectral zeros. If

the projection matrices V and W are obtained as follows

V :=
[
(λ1I−A)−1 B · · · (λkI−A)−1 B

]
(5.13)

W :=
[(

γ1I−AT
)−1

CT · · ·
(
γkI−AT

)−1
CT

]

(5.14)

where λi 6= γi, i, j = 1, · · · , k, λ1, · · · , λk ∈ Z and in addition γi = −λ∗
i , then

the reduced system Σr is obtained by projection as

Ar = W̃TAV, Br = W̃TB, Cr = CV, Dr = D

with W̃ = W(V∗W)−1 and det(W∗V) 6= 0 satisfies: (i) G(λi) = Gr(λi) and

G(γi) = Gr(γi), (ii) is stable (iii) is passive.

In the context of this dissertation, there remains the question of how

to apply the passivity preserving model reduction to the building models. The

next section deals with the positive realness of flexible structures.
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5.3 Passivity in Flexible Structures

It is known that for flexible structures, the plant transfer function is

positive real if the sensors are collocated with the actuators [66, 70, 92]. This

property holds, for instance, if force actuators and velocity sensors or torque

actuators and angular rate sensors are collocated. In this manner, for a flexible

structure with m force inputs and m collocated velocity measurements, one

can define its equation of motion as

Mẍ(t) + Daẋ(t) + Kx(t) = Bsu(t) (5.15)

y(t) = BT
s ẋ(t) (5.16)

and its state-space realization as in Eq. (2.2), where

A =

[
0 I

−M−1K −M−1Da

]

; B =

[
0

−M−1Bs

]

; (5.17)

C =
[

0 BT
s

]
; D = 0. (5.18)

Theorem 5.3.1. Given the flexible structural model as in Equations (5.15)-

(5.17) with symmetric mass, stiffness and damping matrices. One can, thus,

define the square roots factors

K = KT
1 K1; M = MT

1 M1; Da = DT
a1

Da1
. (5.19)

The positive real lemma 5.1.1 is satisfied if

X =

[
K 0
0 M

]

; K̃ =
[

0
√

2DT
a1

]
. (5.20)

Proof. By direct substitution of the above equations into the positive real

lemma.

98



Having found a solution to the positive real lemma, one guarantees that

the flexible structure is indeed passive (or positive real), and therefore, one can

determine a reduced-order model using passivity preserving model reduction

schemes. The solution, X, of the positive real lemma will play an important

role in the derivation of a passive optimal controller, as will be seen in Chapter

8.

5.4 Concluding Remarks

This chapter introduced the concept of passivity of a linear systems.

Connection to the positive realness property was shown through the used of the

well-known positive real lemma (or KYP-lemma). By the fact that a negative

interconnection of two passive systems results in a stable closed-loop system,

a method of computing reduced-order models and controllers was derived us-

ing passivity preserving techniques. Three methods were shown for obtaining

the passive reduced-order model: positive-real balancing, bounded-real bal-

ancing and passivity preserving Krylov algorithm. Needless to say, the first

two reduction schemes are not appropriate for large-scale implementations.

Passivity of flexible structures was shown based on the collocation of

sensors and actuators. Thus, using the methods presented in this chapter, one

can obtain reduced-order models and controllers that guarantee stability of the

closed-loop system. There are some concepts remaining for the full application

of passivity preserving controller reduction of large-scale systems: the design

of a passive controller. This issue will be dealt with in the next chapters using
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ideas from the passive-LQG controllers.
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Chapter 6

Structural Control in Civil Engineering

Control studies in civil engineering can be divided into two categories:

those which address serviceability issues and those whose main concern is

safety. When serviceability is the main concern, control is used to reduce

structural acceleration in order to increase occupant comfort during relatively

mild wind or seismic excitations. However, for those controllers developed for

stronger excitations, where occupant safety is the main concern, the goal is to

improve structural response by reducing peak interstory drift or by increasing

energy dissipation.

For structural control to gain viability in the earthquake engineer-

ing community, understanding the role of controllers within the context of

performance-based engineering is of primary importance. Design of a struc-

ture/controller system should involve a thorough understanding of how various

types of controllers enhance structural performance, such that the most effec-

tive type of controller is selected for the given structure and seismic hazard.

Controllers may be passive, requiring no external energy source, or active,

requiring an external power source. Application of certain passive systems,

including base isolation and viscous dampers, have become more common,

101



leading to a reasonable understanding of how such systems reduce the dy-

namic behavior of structures. However, few full-scale applications of active

controllers exist and their assessment, either for structural performance or

reduced-order controller implementation is less studied.

In this chapter, an introduction to structural control for buildings is

presented. First, an overview of the types of energy dissipation system, that

is passive, active or semi-active, is presented in a general sense. Then, topics

in modeling active and semi-active control are discussed with emphasis on

their mathematical models, control interaction, and control techniques applied

to vibration mitigation in civil structures. Finally, a family of benchmark

problems is introduced to illustrate the application of the model and controller

reduction schemes described in the previous chapters.

6.1 Classification of Building Control

Structural control systems can be grouped into four broad areas [19]

based on the energy requirements of the control systems and the presence of

sensors and the type of control algorithms: (1) base isolation or passive con-

trol, (2) active control, (3) semi-active control, and (4) hybrid control. Base

isolation can be considered the most widely-used control in building applica-

tions. The basic configuration of those systems is shown schematically in Fig.

6.1 and their description is given below.
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Figure 6.1: Block diagram of various structural control strategies: (a) Passive,
(b) Active, and (c) Semi-active [101]
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Passive Control Passive control systems do not require external forces. The

forces applied to the structural system are functions of the response to

the excitation. By simply increasing the dissipated energy capacity of

the structure through the use of special damper devices and materials,

vibration mitigation can be accomplished.

One of the most successful types of passive systems is called the base

isolation system, as shown in Fig. 6.2. It is typically placed at the

foundation of a structure. The isolation system introduces flexibility

and energy absorption capabilities, thereby reducing the level of energy

that can be transmitted to the structure. Another example of a pas-

sive control system employs passive supplemental damping devices, such

as viscous dampers and tuned-mass dampers. Although passive con-

trol systems have reached a mature stage in technological development,

they have inherent limitations. Usually, passive devices are optimally

tuned to protect the structure from a particular dynamic loading or a

particular mode of vibration (in general the first mode), and thus the

performance of these devices is suboptimal for other loading scenarios

and configurations. A comprehensive review of the literature on passive

supplemental damping devices for civil engineering structures can be

found in [100, 101, 107]. In this dissertation, only active and semi-active

types of control systems will be considered for further implementations,

due to the passive nature (no feedback control) of those systems.

Active Control A logical extension of the passive control system is its en-
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Building

Base Isolation

Figure 6.2: Base isolation schematic

hancement with the addition of external inputs to the structure. Active

control systems contain external powered actuators that apply forces in

a pre-determined manner. They both add and dissipate energy in the

structure. A computer-based control algorithm uses information from

sensors to command the actuator system. The main advantage of active

control systems is that they act simultaneously with the hazard excita-

tion to provide enhanced structural behavior for improved service and

safety [19]. The main drawback of such systems stems from the fact that

external power (actuators, motors) has to be added to the system, thus,

increasing its complexity.

Active control systems can be implemented in several configurations:

active bracing, active tendon, and active mass drivers, among others.

The differences are only on the type and direction of forces and torques

applied to the structure. They all need an external power supply and a

computer for the control implementation.
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Semi-Active Control A semi-active control system can be considered as

a passive device whose properties can be actively controlled. For ex-

ample, a fluid viscous damper whose damping constant can be con-

trolled. These systems require power inputs that are significantly re-

duced from a fully active system. They can be implemented in a variety

of schemes: variable-orifice dampers, variable-friction dampers, electro-

rheological devices, and magnetorheological devices.

The main advantages of semi-active control devices stem from the fact

that they operate on battery power and they do not destabilize the struc-

ture.

Hybrid Control

Lastly, by combining features of both passive and active control systems,

a hybrid system can be used. Generally, a passive device is utilized to

control the larger portion of the response, while the active device is

utilized to optimize the response to the given excitation and maintain

the passive system within desired parameters.

6.2 Actuator Systems for Active and Semi-Active Build-

ing Control

Many different actuation systems have been implemented for appli-

cations in active and semi-active control of civil structures. The actuation

schemes differ only in the type of force applied to the structure. In this dis-
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sertation, a few actuation systems are illustrated and only the active bracing

system is used in the subsequent analysis.

6.2.1 Hydraulic Actuation and Active Bracing

The active bracing actuation system is usually placed across a single

story level using a chevron or V-shape configuration. In large structures, they

can span several story levels. There are other variations, such as X-braces. The

system is comprised of a hydraulic actuator attached to the structure in order

to create horizontal forces between floor diaphragm levels. For a hydraulic

actuator system, the equation of motion describing the fluid flow rate in an

actuator can be linearized about the origin yielding [27]

ḟ(t) =
2β

V

(
Akqc(t)− kcf(t)− A2ẋa(t)

)
(6.1)

where c is the valve input, f is the force generated by the actuator, A is the

cross-sectional area of the actuator, β is the bulk modulus of the fluid, V is

the characteristic hydraulic fluid volume for the actuator, xa is the actuator

displacement, and (kq, kc), are system constants.

In general, the open-loop system in Eq. (6.1) is unstable. Closed-loop

is essential for stabilization of the actuator. Also, the dynamics of the force

applied by the actuator are dependent on the velocity response of the actuator,

i.e., the feedback interaction path is intrinsic to the dynamical response of a

hydraulic actuator. Incorporating unity gain displacement feedback into the
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hydraulic actuator model yields

ḟ(t) =
2β

V

(
Akqγ(u(t)− xa(t))− kcf(t)− A2ẋa(t)

)
(6.2)

where u is the is the control command, and γ is a proportional feedback gain

of the stabilizing controller for the actuator. Eq. (6.2) can be rewritten as

ḟ(t) = a1u(t)− a1xa(t)− a2ẋa(t)− a3f(t) (6.3)

where a1 = 2βkqγ
V

, a2 = 2βA2

V
and a3 = 2βkc

V
. Eq. (6.3) can be written in a

state-space form (useful later for its implementation) as

ẋa = Aaxa + Bau (6.4)

ya = Caxa + Dau = f (6.5)

For the case of a single actuator, it follows that

Aa = [−a3], Ba = [a1 − a1 − a2], Ca = 1, Da = [0 0 0] (6.6)

The generalization to the case of several actuators readily follows from the

state-space equations in Eq. (6.4) and (6.5).

6.2.2 Hydraulic Actuation and Active Tendons

The actuation system using an active tendon configuration is similar to

the active bracing system, except that the forces generated by the hydraulic

system are transmitted to the structure through a set of tendons or two pre-

tensioned cables spanning the inter-story space at angles in an X-pattern. A
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single degree-of-freedom structure is shown in Fig. 6.2.2. The mathematical

model of system is given by

mẍ(t) + cẋ(t) + kx(t) = −mẍg(t) + (4kc cos α)f(t) (6.7)

where m, c, k are the mass, damping and stiffness of the structure, respectively,

kc is the tendon stiffness, α is the tendon inclination angle and f is the hy-

draulic actuator force as given by Eq. (6.2). The state-space equations follow

the same ideas as for the active bracing system and will not be discussed here.

Active

tendon

Floor

Actuator

x(t)

α

Figure 6.3: Hydraulic actuation and active tendon configuration. Adapted
from [29]

6.2.3 Hydraulic Actuation and the Active Mass Driver

The active mass driver actuation system is based on the base-excitation

principle of structural systems [24, 61], or what is called tuned mass damper.

The idea is to incorporate a second spring-mass-damper into the system to

change from a single-degree-of-freedom to a multi-degree-of-freedom in order

to tune the motion of the original system. As an example, consider the spring-
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mass system shown in Fig. 6.4. The equations of motion of the tuned-mass

are given by

m

m a
K/2

Ka

K/2

F

x a

Figure 6.4: Tuned Mass-Damper

[
m 0
0 ma

] [
ẍ
ẍa

]

+

[
K + Ka −Ka

−Ka Ka

] [
x
xa

]

=

[
Fo sin ωt

0

]

(6.8)

One chooses the parameters of the added system (ma, Ka) such that in the

steady-state, the displacement of the original system is minimized. In this

case, one can write the solution in the steady-state for the displacement of the

structure and the added mass as

xss(t) = X sin ωt (6.9)

xass
(t) = Xa sin ωt (6.10)

Substituting Eqs. (6.9) and (6.10) into Eq. (6.8), yields

X =
(Ka −maω

2)F0

(K + Ka −mω2)(Ka −maω2)−K2
a

(6.11)

Xa =
KaF0

(K + Ka −mω2)(Ka −maω2)−K2
a

(6.12)

So, to minimize X, select ω according to

ω2 =
Ka

ma
(6.13)
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One of the drawbacks of this approach is the lack of tuning in multiple fre-

quencies, as shown by the tuning condition given in Eq. (6.13). For tuning

the system at several frequencies, hydraulic actuators together with dampers

can be added and feedback control techniques can be applied to enhance the

performance of the entire system. In this case, a hybrid system is used and,

hence, the system is called active-mass-driver.

6.2.3.1 Magneto-Rheological Actuators

According to Dyke [31, 32], semi-active control strategies using, for ex-

ample, magneto-rheological (MR) actuators, provide a promising solution for

several challenges in seismic control. Semi-active control devices offer the re-

liability of passive devices while maintaining the versatility of active control

together with a decrease in size and power requirements.

MR fluids are the magnetic analogs of electro-rheological (ER) fluids

and typically consist of micron-sized, magnetically polarizable particles dis-

persed in a carrier medium, such as mineral or silicone oil [32]. When a

magnetic field is applied to the fluid, particle chains form and the fluid be-

comes a semi-solid. The fluid then exhibits viscoplastic behavior similar to

that of ER fluids. Transition to rheological equilibrium can be achieved in a

few milliseconds, allowing construction of devices with high bandwidth. Also,

a wider choice of additives (surfactants, dispersants, friction modifiers, anti-

wear agents, etc.) can generally be used with MR fluids to enhance stability,

seal life, and bearing life. The MR fluid can be readily controlled with a low
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voltage (12− 24V ), current-driven power supply outputting only 1− 2 amps.

The schematic of an MR damper is shown in Fig. 6.5.

Accumulator Diaphragm

Coil MR Fluid

Bearing & Seal

Electromagnet

Figure 6.5: Magneto-rheological Dampers. Adapted from [109].

Due to its promising characteristics, several studies have been under-

taken in the past decade and several commercially available dampers have

been developed [22]. The mathematical model of an MR is very complex due

to its nonlinear nature. Several models have been developed and tested in an

experimental framework [109]. One of the mechanical idealizations of the MR

damped force that is numerically tractable uses the Bouc-Wen model [120] for

hysteretic systems. The most effective model for predicting the behavior of an

MR damper was proposed by Spencer [109], as shown in Fig. 6.6 and can be

mathematically modeled as follows:

F = αz + c0(ẋ− ẏ) + k0(x− y) + k1(x− x0) = c1ẏ + k1(x− x0) (6.14)

with

ż = γ|ẋ− ẏ|z|z|n−1 − β(ẋ− ẏ)|z|n + A(ẋ− ẏ) (6.15)

ẏ =
1

c0 + c1
[αz + c0ẋ + k0(x− y)] (6.16)
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where F is the applied force of the damper, k1 is the accumulator stiffness,

c0 is the viscous damping observed at larger velocities, c1 is the damping

introduced to model the nonlinear roll-off in the force-velocity at low velocities,

k0 is present to control the stiffness at higher velocities, and x0 is the initial

displacement of the spring k1. The mathematical model can be determined by

adjusting the parameters γ, β, A using system identification procedures.

c1

k1

y x

c0

k0

Bouc-Wen

f

Figure 6.6: Schematic model of magneto-rheological dampers. Adapted from
[109].

To account for the dependence of the force on the voltage applied to

the current driver and the resulting magnetic current, one can use [109]

α = α(u) = αau + αbu (6.17)

c1 = c1(u) = c1a
u + c1b

u (6.18)

c0 = c0(u) = c0a
u + c0b

u (6.19)

where, due to the dynamics in reaching rheological equilibrium and in driving

the electromagnet in the MR damper, u is given as a first-order system as a
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function of the commanded voltage to the current driver, ν, such that

u̇ = η(u− ν) (6.20)

In order to show the effectiveness of the proposed MR damper model, a sim-

ulation was performed in Matlab-Simulink using the same parameters as in

[109]. The MR block diagram is depicted in the Appendix A and the results

due to a sinusoidal displacement input and several input voltages are given in

Fig. 6.7 and Fig. 6.8.
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Figure 6.7: MR force due to a sinusoidal displacement and varying input
voltages.

From Figure 6.7, it can be seen that the force produced by the damper

is not centered at zero. This effect is due to the presence of the accumulator in
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Figure 6.8: MR force due to a sinusoidal displacement and varying input
voltages.

the MR damper. The enhancement on the MR output force can be observed in

Fig 6.7, as voltage is increased from 0 V to 2.25 V . Also, the effects of changing

the magnetic field are readily observed from Fig. 6.8. At 0 V the MR damper

function as a purely viscous device. As the voltage increases, the damper

force also increase and produces behavior associated with a plastic material

in parallel with a viscous damper as shown by the hysteretic behavior of the

MR force and velocity. In the following sections, the effectiveness of the MR

damper will be shown for seismic response reduction.
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6.3 Models of Civil Structures for Control Design

In general, civil structures are modeled as multi-story shear buildings

[91], that is, structures in which there is no rotation of a horizontal section at

the level of the floors [24, 91]. In order to consider this simplification, several

key assumptions have to be made:

1. The total mass of the structure is concentrated at the level of the floors;

2. The girders on the floor are infinitely rigid as compared to the columns;

and

3. The deformation of the structure is independent of the axial forces in

the columns.

These assumptions transform the problem from a structure with an infinite

number of degrees of freedom to a structure that has only as many degrees as

it has lumped masses at the floor levels. Also, in some cases, the problem of a

building comprised of several bays can be considered as a single bay, due to the

rigidity of the floors. The mathematical model of a building subjected to an

earthquake excitation is usually considered as a response of a shear building to

a base or foundation displacement. This can be accomplished if one considers

the floor displacements relative to the base motion [24, 91]. Therefore, the

equation of motion for the shear building can be written as

[M] ẍ(t) + [D] ẋ(t) + [K]x(t) = BsF(t)− [M]Γẍg(t) (6.21)
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where x(t) is the floor displacements relative to the base motion, M,D,K are,

respectively, the mass, damping and stiffness of the building, Bs is a matrix

of input selection, F(t) is a matrix of external input forces from the control

system, ẍg(t) is the earthquake excitation and finally, Γ is a matrix of ones on

the respectively earthquake directions.

For control design problem, the building model can be rewritten in a

state-space framework as

ẋ(t) = Ax(t) + BF(t) + Eẍg(t) (6.22)

ym(t) = Cmx(t) + DmF(t) + Fmẍg(t) + v (6.23)

z(t) = Czx(t) + DzF(t) + Fzẍg(t) (6.24)

yc(t) = Ccx(t) + DcF(t) + Fcẍg(t) (6.25)

where x is the state vector, ym is the measured output vector, z is the reg-

ulated output vector, yc is the feedback vector for the control devices, that

is, the actuator connections due to the actuator-structure interactions [30],

and v is the measurement noise. Also, the matrices Dm,Dz,Dc represent the

contribution of the input vector on the respective output of the system (for

instance, in the case of acceleration feedback), and the matrices Fm,Fz,Fc

represent the contribution of the external disturbances (earthquake) to the

respective output of the system. The state-space matrices are

A =

[
0 I

−M−1K −M−1D

]

; B =

[
0

M−1Bs

]

; E =

[
0
−Γ

]

. (6.26)
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For the case of position, velocity and acceleration measurements one

can derive the following output matrices:

Cm =





I 0
0 I

−M−1K −M−1D



 , Dm =





0
0

M−1Bs



 . (6.27)

Similar expressions can be derived for the regulated and the connections

output matrices. In this dissertation, it will be assumed that

Fm = Fz = Fc = 0. (6.28)

The state-space formulation can be modified in a way to include dy-

namics of the actuator and sensors (possibly a gain matrix). In this respect

the actuators and sensor can be represented by their state-space form as

Σs : ysensor(t) = Dsensorym(t) (6.29)

Σa :







ẋa(t) = Aaxa(t) + Ba

[
u(t)
yc(t)

]

fa(t) = Caxa(t) + Da

[
u(t)
yc(t)

]
(6.30)

(6.31)

The actuator input matrix can be partitioned according to the type of its

inputs, i.e., Ba =
[

Ba1 Ba2

]
. In order to enhance performance of the

control design, the actuator and structure models are lumped together forming

only one design state-space system as

ẋd = Adx + BdF + Edẍg (6.32)

ym = Cmdx + DmdF + Fmdẍg + v (6.33)

zd = Czdx + DzdF + Fzdẍg + v (6.34)

118



where

Ad =

[
A BCa

Ba2Cc A + Ba2DcCa

]

, Bd =

[
0

Ba1

]

, (6.35)

Ed =

[
Er

Ba2Fc

]

Cmd =
[

Cm DmCa

]
, Czd =

[
Cz DzCa

]

Dmd = Dzd = 0, Fmd = Fm, Fmd = Fz

6.3.1 Active Control Systems: The LQG Approach

Several control algorithms have been developed for the active control

system as discussed in Section 6.2.1. The most common approach for building

control uses the LQG/H2 methods associated with linear controller design

[4, 111, 124]. In this manner the control design problem can be formulated

as follows: Given the design model in state-space as in Eqs. (6.35), Σ =
[

Ad Bd

Cmd Dmd

]

, design a linear quadratic Gaussian (LQG) control algorithm

for vibration reduction due to external inputs, such as earthquakes. The LQG

solution minimizes the following performance index:

J = lim
τ→∞

E

[∫ τ

0

{
zT

d Qzd + FT RF
}

dt

]

, (6.36)

where E is the expectation operator. It is known that [4, 111], an LQG con-

troller is given by the following state-space equations:

ẋC(t) = (Ad −BdK− LCmd + LDmdK)xC(t) + Lu(t) (6.37)

F(t) = −KxC(t) (6.38)

119



where K,L are the regulator and estimator gains determined by the solution

of two particular Riccati equations.

6.3.2 Semi-Active Control Systems: The Clipped Optimal Control
Approach

Several control algorithms have been developed for semi-active systems

[65]. One algorithm that has been shown to be effective when used with

MR dampers is the clipped-optimal control approach proposed by Dyke et al.

[31, 32]. The idea of the clipped-optimal control is to design a linear optimal

controller Kc(s), using a variety of synthesis methods (H2/LQG, for instance)

to generate a vector of desired control forces fc that would be achieved by the

actuator if it could apply an active force to the system. Due to the dissipative

nature of the semi-active device, this linear force cannot be achieved at all

times. Thus, a logic has to be implemented in order to take into account the

direction of the relative velocity of the control device.

The design of the linear optimal controller is based on the measured

structural responses, i.e, ym and the measured control force vector F applied

to the structure, that is

fc = L−1

{

Kc(s)L

{
ymd

F

}}

(6.39)

where L{·} denotes the Laplace transform.

In order to generate the desired optimal control force, a force feedback

loop is added to induce the MR damper to generate approximately the desired

optimal control force, such that the command voltage v is selected as follows.
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When the MR damper provides the desired optimal force (i.e., F = f c), the

voltage applied to the damper should remain at the present level. If the

magnitude of the force produced by the damper is smaller than the magnitude

of the desired optimal force and both have the same sign, the voltage applied

to the current driver is increased to the maximum level in order to increase the

force produced by the damper to match the desired control force. Otherwise,

the commanded voltage is set to zero. Mathematically, the above algorithm

can be stated as

v = VmaxH [(fc − F)F] (6.40)

where H[·] is the Heaviside step function and Vmax is the voltage of the current

driver associated with saturation of the magnetic field in the MR damper.

vi = Vmax H [ (fc - F) F ] -K  (s)C

StructureMR Damper

Command Signal Selection Optimal Controller

Clipped-optimal Controller

v

F

F

F

fc

y

x, x
.

xg (t)
.. 

Figure 6.9: Clipped-Optimal Control Strategy

It should be pointed out that some modification of the LQG control law

is necessary to take into account the clipped-optimal control strategy. Since
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the output of the controller is not anymore a direct input to the plant, one

needs to write

ẋC(t) = AdxC(t) + BdF(t) + L [ymd − (Cmdxc(t) + DmdF(t))] (6.41)

fC(t) = −KxC(t) (6.42)

In this manner, the clipped-optimal controller becomes

ẋC(t) = (Ad − LCmd)xC(t) +
[

L Bd − LDmd

]
[

ym(t)
F(t)

]

(6.43)

fC(t) = −KxC(t) (6.44)

6.4 Numerical Example: Three-Story Building

A three story building is used to illustrate the active and semi-active

controller implementations. The building is depicted in Fig 6.10. A hydraulic

actuator (active bracing system) is placed at the first floor of the building

and attached to the ground on the structure. For this system, the actuator

displacement is equivalent to the displacement of the first floor. A position

sensor is used to measure the displacement of the first floor and provide feed-

back for the control actuator. Also, accelerometers were placed on each floor

for measurement of absolute accelerations. For comparison purposes a MR

device is placed on the first floor using the same configuration as the active

bracing system, and its controller is redesigned for the same building.
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x1 (t)

xg (t)

x3 (t)

x2 (t)

.. 

F (t)

Position Sensor

Accelerometers

Ground

Acceleration

Figure 6.10: Three-story building schematic

6.4.1 Active Bracing System

The mathematical model used here is taken from [20, 21]. The model

consists of lumped masses at each floor with respective stiffness and damping

effects. A hydraulic actuator is placed at the first floor. Numerically, the

model is given by

[M] ẍ(t) + [C] ẋ(t) + [K] ẋ(t) = BsF (t)− [M]Γẍg(t) (6.45)

where

M = 175.2





5.6 0 0
0 5.6 0
0 0 5.6



 ; K = 175.2





15649 −9370 2107
−9370 17250 −9274
2107 −9274 7612



 ;

C = 175.2





2.185 −0.327 0.352
−0.327 2.608 −0.015
0.352 −0.015 2.497



 ; Γ =





1
1
1



 ; Bs =





1
0
0
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with the following units: M → [kg], K → [N/m], C → [N ∗ m/sec]. The

hydraulic actuator is modeled as in 6.3 and its parameters are given by [30]:

a1 = 6.08e5 [kN/m ∗ s]; a2 = 6.567e5 [kN/m]; a3 = 29.6 [1/s]

Using the acceleration of the all floors together with the displacement of the

actuator as a regulated output vector, i.e, z =
[

ẍ1 ẍ2 ẍ3 x1

]
the results

for an actual earthquake input (El Centro [116]) is given in Figures 6.11-6.4.1.
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6.4.2 Magneto-Rheological System

For illustration of semi-active control, the same mathematical model

of a three-story building was used as in the previous section. The MR model

was taken from Section 6.2.3.1. For the controller design, it is not possible to

directly command the MR damper to generate a specified force to be applied

to the structure as in Section 6.4.1. Only the control voltage can be directly

commanded to increase or decrease the force produced by MR the device.
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Figure 6.11: With active bracing: displacement of the (a) first, (b) second,
and (c) third floors.
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The application of the MR damper to a three-story building can be

modeled using the block diagram depicted in Fig. 6.9. The effectiveness of the

semi-active control for seismic mitigation, can be seen in Figures 6.13-6.16.

125



0 10 20 30 40 50 60 70
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (sec)

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Acceleration of the floor of the Floor

Uncontrolled
Controlled

(c)

Figure 6.12: With active bracing: acceleration of the (a) first, (b) second, and
(c) third floors.

The input to the system is given by the same El-Centro earthquake [116] data

as the previous section.

Comparing the outputs of the active bracing system with the MR actu-

ation scheme, one observes that the MR outperforms the active control scheme

in terms of input efforts and actual displacement and acceleration reduction.

6.5 A Family of Benchmark Problems

In an effort to develop a common basis for comparison of the various

algorithms and devices for seismic control, the American Society of Civil En-

gineers (ASCE) Committee on Structural Control has developed a benchmark

for structural control design [87, 106, 108]. The benchmark problems are com-

prised of three generations: (1) First Generation Three-story linear build-
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Figure 6.13: With MR device: displacement of the (a) first, (b) second, and
(c) third floors.

ing; (2) Second Generation: Twenty-story linear building, and (3) Third

Generation: Three-, nine-, and twenty-story non-linear building models.

As reported in the 1997 ASCE Structures Congress [100], several suc-
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Figure 6.14: With MR device: acceleration of the (a) first, (b) second, and (c)
third floors.

cessful control algorithms have been implemented in simulation and exper-

imentally verified for the three-story building model. However, during the

Second International Workshop on Structural Control in 1996, it was recog-
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Figure 6.15: Voltage applied to the current driver.
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Figure 6.16: Force output from the MR damper.

nized that developing a family of benchmark building models was important

to provide systematic and standardized means by which competing control
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strategies, including devices, algorithms, and sensors, could be evaluated.

Following the suggestions of the Working Group on Building Control

(ASCE), two benchmark problems were proposed during 2nd World Confer-

ence on Structural Control held in 1998. The first, a benchmark problem con-

sidered wind excited buildings (see Yang, et al. [123]). The second benchmark

problem was the next generation benchmark control problem for seismically ex-

cited buildings (see Spencer, et al. [108]). Both benchmark problems assumed

that the structural models remained perfectly elastic during the disturbance

inputs.

Finally, due to the fact that large magnitude earthquakes can cause

material yielding in the structural elements, a nonlinear building model was

proposed. High-fidelity nonlinear models were developed as extensions to the

second generation of benchmark problem addressing other heights [87, 88].

The nonlinear building model benchmark problem will not be pursued in this

dissertation.

In order to verify the consequences of model order reduction applied to

the benchmark problem, it was decided to work with the seismically excited

next generation benchmark problem [108]. Moreover, due to its systematic

model construction approach, it allows one to readily perform changes in the

model, such as the number of floors and bays. In this manner, a smaller

six-story building was developed for the evaluation of the model reduction

procedures. Finally, in order to assess the effectiveness of model reduction for

large-scale structures, a larger problem was considered. An actual structure

130



located at Purdue University, called the Bowen Model, was modeled by finite

element techniques and used as the third structure evaluated.

6.5.1 Twenty-Story Building Model

The twenty-story building is shown in Fig. 6.17. It was developed

as a benchmark study for structural control strategies comparison. Although

the building was designed by a construction firm to meet seismic code for the

Los Angeles region, it was not constructed. The Los Angeles twenty-story

(known here as the LA 20-story) structure is 30.48 m by 36.58 m in plan, and

80.77 m in elevation. The bays are 6.10 m on center, in both directions, with

five bays in the north-south (N-S) direction and six bays in the east-west (E-

W) direction. The buildings lateral load-resisting system is comprised of steel

perimeter moment-resisting frames (MRFs). The interior bays of the structure

contain simple framing with composite floors. Refer to [108] for more design

details.

A high-fidelity linear time-invariant state-space model was developed

and was designated the evaluation model [108]. The LA 20-story structure is

modeled using finite element techniques resulting in 180 nodes interconnected

by 284 elements, as seen in Fig. 6.17. The nodes are located at beam-to-

column joints and column splices. Each node has three degrees-of-freedom

(DOFs): horizontal, vertical and rotational. The entire structure has 540

DOFs prior to application of boundary conditions/constraints and subsequent

model reduction. Global mass and stiffness matrices are assembled from the
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elemental mass and stiffness matrices by summing the mass and stiffness as-

sociated with each DOF for each element of the entire structure.
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Figure 6.17: Twenty-story benchmark building model. Source [108].

6.5.2 Six-Story Building Model

A less complex version of the twenty-story building was constructed in

order to investigate the mathematical model of the structure for the controller

design and eventually to use to illustrate the model reduction techniques. Re-

moving floors of the twenty-story structure, a six-story building was devel-
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oped. The building is illustrated in Fig. 6.18. The same material properties

and structure types were used for the six-story building as for the twenty-story

building. However, several modifications were made to the finite element pro-

gram to suit the six-story model, such as the connections between columns

and floors.
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6.5.3 The Bowen Building Model

The Bowen building is an actual structure built in the Large Scale

Research Laboratory in the Department of Civil Engineering at Purdue Uni-

versity. Even though it is comprised of only three floors, the finite element

model system matrices are on order of M ∈ R4950×4950 and K ∈ R4950×4950.

Moreover, the model is well-suited for testing the model reduction techniques

for large-scale structures since there are some freedom on the choice of actua-

tor and sensor locations, and on the type of actuation (active, semi-active, or

hybrid) to be used.

Figure 6.19: Bowen Building at Purdue University. Source [113].

6.6 Actuator and Sensor Placement

It is known that actuator and sensor placement, i.e., determination of

the total number of actuator control and sensors together with their physical

location on the structure, have great influence of the closed-loop performance
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Figure 6.20: Bowen Building at Purdue University - The Finite Element Model
obtained in NASTRAN. Source [72].

of the structure [81]. This becomes more important for 3D multi-story civil

structures with lateral-torsional behavior. The vertical distribution of sensors

and actuators across the building height is critical to structural performance,

as well as the horizontal distribution at floor levels [119]. This section dis-

cusses the placement issues associated with actuators and sensors for flexible

structures.

The actuator and sensor placement issue has been investigated since

the introduction of the concept of structural control [78]. Many techniques for

the optimal placement of sensors and actuators in vibration control systems

have been developed in recent years based on the concepts of controllability

and observability. It is known that the controllability and observability are

136



closely related to an optimal placement of actuators and sensors. Chang and

Soong [16] placed a limited number of active devices in a structure for modal

control by minimizing a particular performance index. In [77], an appropriate

number and placement of devices based on independent modal space control

was analyzed. Cheng and Pantiledes [18] computed the controllability index

associated with each story of a building, from which the actuator locations

were provided.

In practice, the actuator and sensor placement procedure should be

simple and efficient and require a limited computational effort. Also, the pro-

cedure should take into account the fact that, for technical and economical

reasons, the number of sensors significantly exceeds the number of actuators,

so that the actuator placement is done first, and once fixed, the sensor place-

ment is established. This dissertation focuses on a different controllability-

observability approach proposed by [89] and described in detail in [38, 39].

This approach involves the computation of the system norms of each device

location for selected modes, and then grades them according to their participa-

tion in the total system norm giving rise to the concept of placement indices.

First, the concepts of modal representations is presented and it is shown how

one can compute in a straightforward manner the system norms and therefore

the placement indices.
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6.6.1 Nodal and Modal Representations

The state-space representation is not unique. Usually, the state equa-

tions are written using displacement and velocity at structural locations yield-

ing the nodal coordinates. By means of a similarity transformation, the nodal

state-space representation can be converted to modal displacements and their

derivatives as states yielding the modal state-space representation.

However, modal coordinates are not unique either. They can be trans-

formed to convenient representations such that the state matrix A is expressed

in diagonal or block diagonal forms [38, 39]. Given the modal state-space rep-

resentation

ẋ = Ax + Bu (6.46)

y = Cx + Du (6.47)

it can be transformed to the modal model as

Am = diag(Ami
), Bm =








Bm1

Bm2

...
Bmn








, Cm =
[
Cm1

Cm2
· · · CT

mn

]
. (6.48)

for i = 1, 2, · · · , n modes. In this case, Ami
are 2× 2 blocks, Bmi

and Cmi

are 2× s and r × 2 blocks, for s actuators and r sensors respectively.

According to [38, 39], three modal representations have important prop-

erties that will be used in the actuator and sensor placement context. They

are:
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• Modal Model 1:

Ami =

[
0 ωi

−ωi −2ζiωi

]

, Bmi =

[
0

bmi

]

, Cmi =
[ cmqi

ωi
cmvi

]
;

(6.49)

• Modal Model 2:

Ami =

[
−ζωi ωi

−ωi −ζiωi

]

, Bmi =

[
0

bmi

]

, Cmi =
[ cmqi

ωi
− cmviζi cmvi

]
;

(6.50)

• Modal Model 3:

Ami =

[
0 1
−ω2

i −2ζiωi

]

, Bmi =

[
0

bmi

]

, Cmi =
[

cmqi cmvi

]
;

(6.51)

Consider a modal state-space representation as in Eq. (6.48) and its

transfer function representation Gm(s) = Cm(sI−Am)−1Bm. It readily follows

[38, 39] that the H2, H∞ and Hankel norms for each mode are approximated

by

‖Gi‖2 ∼=
‖Bm,i‖2‖Cm,i‖2

2
√

ζiωi

, ‖Gi‖∞ ∼=
‖Bm,i‖2‖Cm,i‖2

2ζiωi
, (6.52)

‖Gi‖h ∼=
‖Bm,i‖2‖Cm,i‖2

4ζiωi
.

Also, an additive property of the modal norms yield the norm of the entire

structure as

‖G‖2 ∼=

√
√
√
√

n∑

i=1

‖Gi‖22, (6.53)

‖G‖∞ ∼= max‖Gi‖∞, i = 1, · · · , n (6.54)

‖G‖h ∼= max‖Gi‖h = γmax, i = 1, · · · , n (6.55)
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where γmax is the largest singular value of the system.

6.6.2 Placement Indices and Strategies

The method used in this dissertation for the actuator and sensor place-

ment uses the Hankel norms for construction of the placement indices. The

reason is that measures of controllability and observability are captured by

the Hankel singular values of the system and are system invariants. Using the

concepts from the previous section, in particular, the Eq. (6.55), one can de-

fine the placement index, σij , that evaluates the jth actuator at the ith mode

in terms of Hankel norm as

σij =
‖Gij‖h
‖G‖h

. (6.56)

Similarly, for the sensor placement, one can define

σik =
‖Gik‖h
‖G‖h

. (6.57)

where σik evaluates the kth sensor at the ith mode of the structure. It is

convenient to to represent the placement indices in a matrix form, having r

actuators and s sensors and n modes, as follows:

Σh =












σ11 σ12 · · · σ11 · · · σ1r

σ21 σ22 · · · σ2j · · · σ2r
...

... · · · ...
...

...
σi1 σi2 · · · σij · · · σir
...

... · · · ...
...

...
σn1 σn2 · · · σnj · · · σnr












⇐ ith mode
(6.58)

⇑ jth actuator

140



Similarly, the sensor placement matrix is

Σh =












σ11 σ12 · · · σ11 · · · σ1s

σ21 σ22 · · · σ2k · · · σ2s
...

... · · · ...
...

...
σi1 σi2 · · · σik · · · σis
...

... · · · ...
...

...
σn1 σn2 · · · σnk · · · σns












⇐ ith mode
(6.59)

⇑ kth sensor

The placement matrices give information about each actuator/sensor

with respect to each mode. However, it can be studied from two different points

of view: (1) one may examine the importance of a single actuator/sensor over

all modes, i.e., compute the rms of the rows of the placement matrix, or (2)

one may examine the importance of all control devices/sensors to a single

mode, i.e., compute the rms of the columns of the placement matrix. Since

the former method can possibly result in large indices for higher modes, it

does not agree with the building models, where the first few (lower) modes

dominate the response, and thus will not be considered here. In this manner

one can compute

σAm =
[

σAm1 σAm2 · · · σAmn

]
(6.60)

σSm =
[

σSm1 σSm2 · · · σSmn

]
(6.61)

where σAm and σSm are the actuator and sensor index vectors respectively,

and

σAmi =

√
√
√
√

s∑

j=1

σ2
ij , σSmi =

√
√
√
√

r∑

k=1

σ2
ik. (6.62)
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Therefore, it is possible to readily eliminate locations with small indices for

lower modes.

The above criteria works well for small to medium sizes structures [39].

However, for large-scale structures, this criteria might not be enough. Suppose

for a specific sensor location with high placement index, locations close to it

will have high indices as well. The neighboring locations to the original sensor

might not be the best choice for placement since by adjusting sensors gains, one

can eliminate the location’s redundancies [38, 39]. In this manner, correlation

coefficients are used to remove highly correlated locations. This procedure is

explained in [38, 39].

6.6.3 Twenty-Story Building Model: Actuator and Sensor Place-
ment

Due to the simplicity of the actuator and sensor placement for this

structure (rigid floors and shear building model), a different approach will be

taken. Hydraulic actuators are employed as the active control device. The ac-

tuators are placed on each floor of the structure, and a total of fifty hydraulic

actuators are used to control the twenty-story benchmark problem. The actu-

ators are distributed as follows: eight actuators are located on the first floor,

four are located on both the second and third floors, and two actuators on each

of the remaining floors of the structure [108]. For this benchmark, the actua-

tors are implemented on the structure using a chevron brace configuration, in

which the actuator is horizontal and rigidly attached between two consecutive
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floors.

Due to the Action and Reaction Law [99, 108], the forces caused by the

hydraulic actuators have to be taken into account for the two floor in between

the actuator. The force distribution can be seen in Fig. 6.21 for actuators in

every floor. In this picture, the red forces are due to the application of the

actuation, and the blue are the reaction of the actuation. For simplification,

the forces are considered at nodal locations.
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Assigning the nodal coordinates of the actuator locations allow the

formation of the input matrix Bs. Since the actuator nodal coordinates are

referenced to the global coordinate system (that is, before any constraints

have been applied), a transformation has to be performed on the coordinates
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after boundary conditions. It should be pointed out that new coordinate

translations have to be taken into account when model reduction is performed.

Acceleration feedback will be considered for the controller design. A

total of five accelerometers were selected for feedback in the control system

(on floors 5, 9, 13, 17 and the roof). In this case, there is no need to compute

the sensor placement matrix, since rigidity of the floors was considered.

6.6.4 Six-Story Building Model: Actuator and Sensor Placement

The placement strategy for this smaller building follows the same pro-

cedure as the twenty-story building model. A first attempt to control the

structure is to place several actuators on every floor, with some known distri-

bution on the number of actuators in each floor. We are considering the floors

to be rigid, hence it is assumed that all the actuators on a single floor undergo

the same inputs, and in turn, responds in the same way. Therefore, only six

independent actuators are used for the control calculations. For simulation

purposes, thus, a matrix gain is used to take into account the actuator distri-

bution in all floors. Based on Fig. 6.18 and 6.21, the nodal coordinates of the

actuator placement was chosen as:

Actual forces⇒ =
[

22 34 40 46 58 64
]

Reaction forces⇒ =
[

15 21 33 39 45 57
]
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which represents forces applied in every floor at the center bay. The sensor

placement follows the same structure as the twenty-story building model. In

this case, a total of six accelerometers were placed in every floor of the building.

6.6.5 Bowen Building: Actuator and Sensor Placement Strategy

Based on the above analysis, the placement strategy is established.

For the Bowen building model, sensor placement is more flexible, so actuator

locations are accomplished first. The placement procedure is described as

follows:

• Place the control devices in order at the allowed locations, one in the

x-direction and one in the y-direction. Assume each admissible sensor

location has two sensors, one in the x- and one in the y-direction, so

that the Cm matrix is fixed. For each location, compute the modal Bm

matrix and then the Hankel placement indices for all modes, until the

placement index matrix is formed.

• Choose 40 to 45 locations with the largest placement indices in the lower

modes.

• Check the correlation coefficients for the selected locations. Reject ac-

tuators with high correlation. The resulting values (≈ 30) are the final

locations. Fix the Bm matrix for the resulting set of actuator locations.

• Compute the floor sensor placement indices, assuming sensors are put

at all allowable locations for each floor while none are on other floors
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to determine Cm matrix. Repeat for each floor until the the sensor

placement index matrix is formed.

• Reject insignificant floors that have very low sensor placement indices.

• For the remaining floors, compute the placement indices one by one.

Retain the non-correlated ones.

• Once this procedure is accomplished all control device and sensor loca-

tions are determined for the entire building.

In this manner, analyzing the placement indices as depicted in Figures 6.22 and

6.23, one can see that the actuator locations circled in the Figure 6.22 represent

the locations with the highest contribution on all modes of the structure. The

final selected actuator locations is shown in the Appendix B. Even though

a procedure is given for the sensor placement, it was decided to use in the

final sensors placement, a collocated actuator/sensor strategy (i.e., actuators

and sensors in the same location). This is due to the fact that actuators

and sensors collocation is an important issue for the passivity-based model

reduction of flexible structures, as will be seen in the next chapters.

6.7 Concluding Remarks

This chapter illustrated the techniques involved in the process of de-

signing controllers for seismically excited building models. First, different ac-

tuation schemes were shown. The differences between active and semi-active

control strategies were illustrated with a three-story building model.
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for the Bowen Building - displacement modes.

In order to apply the model and controller reduction techniques to

real building structures, a family of benchmark building problems was intro-

duced together with actuator and sensor placement techniques. Based on such

schemes, the building models were constructed using Matlab/Simulink. Con-

troller design and controller reduction for the benchmark problems become

the next steps to be seen in the next chapters.
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Chapter 7

Model Reduction in Structural Dynamics

Great improvements have been reported in the theory and application

of Finite Element Modeling (FEM) during the past several decades. Many

commercial software packages exist in the field of structural dynamics analysis,

including NASTRAN [23], ANSYS [59], and SAP2000 [60], among others.

However, the models obtained are usually of large dimensions due to a fine

grid on the finite element modeling. In general, the output of such software

are the equivalent of the mass, spring and dampers matrices as

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t) (7.1)

y(t) = C0x(t) + C1ẋ(t). (7.2)

As seen in the previous chapters, model reduction can be used to lower the

order of such large-scale systems using balanced truncation and Krylov tech-

niques. However, before the reduction procedure, the system has to be repre-

sented in the conventional state-space formulation as

Σ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

⇔ Σ =

[
A B
C D

]

∈ R
(n+p)×(n+m) (7.3)

As noted by several authors [105, 114], this leads to a mixture of states and

there is no guarantee that the reduced-order model would have the same mass,
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spring and dampers structure, thereby losing its physical meaning. Therefore,

methods that preserve the second-order structure are of great importance.

This chapter introduces model reduction that preserves the second-

order structure. In the context of aeroelasticity, Guyan Reduction, is an ap-

proximate dynamical analog of static condensation, and is a popular method

of structural model reduction. It is based on a rather rough approximation,

but is very simple, involves almost no computational cost, and often yields

satisfactory aeroelastic solutions. Another standard procedure in structural

dynamics is modal truncation, where modal decomposition is performed, and

only limited number of the eigenmodes with the lowest frequencies are retained

to represent the structure, whereas the high-frequency modes are truncated.

A recently developed method that provide extensions to the gramians of a

second-order structure in the frequency domain is explored for model reduc-

tion for second-order structure preservation.

7.1 Nodal Approach

7.1.1 Constraints Reduction - Ritz Reduction

Although constraint reduction is not considered a technique of model

order reduction, it will be treated here for completeness. Usually, one has to

enforce certain constraints or boundary conditions on the finite element model

(zero displacements, prescribed forces), prior to solving the associated matrix

equations, since the system matrices K and M were assembled as though all

joints of the structure were unrestrained [24]. This could lead to singular
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stiffness matrix K, and therefore, free rigid-body motion.

One of the most straight-forward procedures for enforcing zero displace-

ments, in the case of restrained joints, is the partition of the system into active

degrees-of-freedom and constrained degrees-of-freedom. Mathematically, one

can write

[
Maa Mac

Mca Mcc

] [
ẍa

ẍc

]

+

[
Kaa Kac

Kca Kcc

] [
xa

xc

]

=

[
Pa

Pc

]

(7.4)

In the case where xc = 0, Eq. (7.4) can be written as

Maaẍa + Kaaxa = Pa (7.5)

Mcaẍa + Kcaxa = Pc (7.6)

It should be pointed out that since only Maa and Kaa are required in the

solution of the active displacement vector xa, there is no need assemble the

entire matrices M and K.

In Eq. (7.4), the constraints were imposed as boundary conditions on

the structure. However, in general, one can write relationships among system

displacement coordinates, which can be enforced by using a transformation of

coordinates called Ritz Transformation [24] as

x = Tx̂ (7.7)

where x̂ is a vector of generalized coordinates and the transformation T arises

from the relationships among the displacement coordinates, as

Rx =
[

Rda Rdd

]
[

xa

xd

]

= 0 (7.8)
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In this case, xd is the vector on nd dependent coordinates and xa is the vector

of independent or active coordinates. From Eq. (7.8), one can write

xd = −R−1
dd Rdaxa

and, the entire coordinates can be related to only the active coordinates as

x = Tx̂a =

[
Iaa

−R−1
dd Rda

]

xa.

Using energy equivalence, it can be shown [24] that the reduced model obtained

by imposing the constraints equations is given by

M̂ẍa + D̂ẍa + K̂xa = P̂a (7.9)

where

M̂ = TTMT, K̂ = TTKT, D̂ = TTDT and P̂a = TTPa.

7.1.2 Guyan Reduction - Static Condensation

The simplest and the most straightforward approach for reducing the

stiffness (mass) matrix is the static condensation method, first proposed by

Guyan [57] and Irons [62]. It consists of a selection of DOFs to be eliminated

by means of a partition of the displacement vector into primary degrees of

freedom to be kept and the secondary degrees of freedom to be eliminated. The

principal assumption of this technique is that the inertia terms associated with

the omitted DOFs are negligible compared to the elastic forces transmitted to

the omitted DOFs by the motion of the active DOFs. Mathematically, one
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writes a set of static conditions based on the eigenvalue problem from Eq.

(7.1), as

Kx = ω2Mx (7.10)

which can be represented in partitioned form as

[
Krr Krc

Kcr Kcc

] [
xr

xc

]

= ω2

[
Mrr Mrc

Mcr Mcc

] [
xr

xc

]

(7.11)

where xr refers to the active coordinates to be kept and xc are the coordinates

to be condensed out. Expanding Eq. (7.11) yields

Krrxr + Krcxc = ω2 (Mrrxr + Mrcxc) (7.12)

Kcrxr + Kccxc = ω2 (Mcrxr + Mccxc) . (7.13)

Assuming that the secondary coordinates have two components, static and

dynamic, xc = xs + xd, the static coordinate can be defined as the solution of

the static problem
[

Krr Krc

Kcr Kcc

] [
xr

xc

]

=

[
P1

0

]

(7.14)

Therefore, it follows that

xs = −K−1
cc Kcrxr. (7.15)

Substituting Eq. (7.15) into Eq. (7.12), yields

Kcrxr + Kcc

(
−K−1

cc Kcrxr + xd

)
= ω2

(
Mcrxr + Mcc(−K−1

cc Kcrxr + xd)
)

[
Kcc − ω2Mcc

]
= ω2

[
Mcr −MccK

−1
cc Kcr

]
xr

and therefore
[
Kcc − ω2Mcc

]
xd = ω2

[
M̄cr

]
xr (7.16)
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where M̄cr = Mcr −MccK
−1
cc Kcr.

The above condensation technique is termed as Dynamic Condensation.

Several improvements of this technique have been developed [91], [93], mainly

in the area of Iterative Methods. A simplification of this method, known as

Static Condensation, has been developed such that the dynamic displacement

vector xd is neglected and thus xc = xs. In this manner

x =

[
xr

xc

]

= Txr =

[
Irr

−K−1
cc Kcr

]

xr

and therefore, it can be used to produce the equation of motion for the active

coordinates only. In this case, the reduced mass and stiffness matrices are

determined by

M̄rr = TTMT = Mrr −MrcK
−1
cc Kcr −KrcK

−1
cc Mcr +

KrcK
−1
cc MccK

−1
cc Kcr (7.17)

K̄rr = Krr −KrcK
−1
cc Kcr. (7.18)

Several remarks are in order:

1. The major advantages of the Guyan/Irons reduction technique are that

it is computationally efficient and easy to implement. It is a standard

option in many commercial finite element software packages.

2. The major disadvantage of the Guyan/Irons method is that it does

not explicitly account for the inertia effects associated with the omit-

ted DOFs, and that the validity of static condensation depends on the

extent to which the vector xd is negligible.
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3. Since the total DOFs of the full-order model is partitioned, the selection

of the active DOFs plays an important role in the reduction process;

4. One can use dynamic condensation to remedy the negligible inertia.

However, dynamic condensation is frequency dependent and nonlinear

with respect to the unknown eigenvalue. Several techniques have been

introduced in the literature to approximate and improve the dynamic

condensation. They include: first order condensation, second order dy-

namic condensation and iterative dynamic condensation [93].

7.1.3 CMS: Craig-Bampton

The standard reduction approach used in the industry for structural

dynamic problems is modal truncation. The justification is that higher modes

have much lower influence in the total response of the system. However, com-

putational cost of modal truncation becomes prohibitive for large-scale systems

due to the costly computation of its eigensolutions. In order to solve this large-

scale eigenvalue computation, it is common to represent the structure as an

assembly of smaller finite element models grouped together as substructures,

or superelements [24, 93].

Component mode synthesis (CMS) is one of the well-established super-

element analysis methods frequently employed in structural dynamics analysis.

It is a model reduction process for partitioning a large complex structure into

several components, modeling each component by a set of Ritz basis vectors,

describing the physical coordinates of each component in terms of both reduced
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physical coordinates and generalized modal coordinates, and assembling the

basis coordinates of components into global coordinates. One can then solve

the approximate problem, and recover the required data. The advantage of

subdividing a single large problem into several reduced-order problems follows

due to the behavior of each component that is approximated by a superposi-

tion of Ritz basis vectors with greatly reduced size compared with the original

finite element model. CMS is a much more efficient method for the process of

design and analysis, particularly when the components of structural systems

are designed and analyzed separately.

The Craig-Bampton method [24, 25] is a type of CMS, that relies on two

mode sets: (1) fixed substructure interface normal modes, and (2) constraint

modes. The fixed-interface normal modes are calculated by assuming that the

substructure interface DOFs are fully fixed. The constraint modes are influ-

ence coefficients describing the static deformation of the substructure due to

interface displacement. They can be thought of as the structural deformation

resulting from successive unit displacements of the interface DOFs while the

other interface DOFs are held to zero. Consider first the undamped equation

of motion for a single substructure, that is divided in two substructures for

convenience The first step of the Craig-Bampton method is to reorder the ma-

trices K,M andD, such that they become divided with the following sparsity

pattern

K =





K1 0 K1,3

0 K2 K2,3

KT
1,3 KT

2,3 K3



 ; M =





M1 0 M1,3

0 M2 M2,3

MT
1,3 MT

2,3 M3



 (7.19)
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Figure 7.1: Division of a structure into two components with fixed interface.

Applications of the Guyan reduction and modal truncation results in the

reduced-order model. A generalization of classical component mode synthesis

has been proposed by Bennighof [13] and it is called the Automated Multilevel

Substructuring Method (AMLS), in which the structure is recursively divided

into thousands of subdomains and Craig-Bampton techniques are applied to

those subdomains. The AMLS matured in 2001 to a commercially available

software in the industry, and today is the largest eigensolver software used

in the automotive industry. The CMS approach and its variants will not be

pursued in this dissertation.

7.2 SVD-based Approach

7.2.1 Second-order Balanced Truncation

The first-order reduction presented previously using balanced reduction

techniques, in general, destroys the second-order structure of the dynamical

equations. However, it is important in structural dynamical problems to keep

the second-order structure with mass, stiffness and damping matrices as the

parameters. Several techniques have been developed in the literature to per-

form a balanced truncation preserving the second-order structure (see [8], and
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references therein).

First, two pairs of “second order gramians” are defined. The first pair

(Ppos, Lpos) will correspond to an energy optimization problem depending only

on the positions x(t) and not on the velocities ẋ(t). Analogously, the second

pair (Pvel, Lvel) will represent the optimization problem depending only on

the velocities ẋ(t) and not on the positions x(t). The second step follows

from the balancing method. A coordinate transformation is applied to the

gramians in such a way that the second-order gramians are equal and diagonal:

P̄pos = L̄pos = Σpos and P̄vel = L̄vel = Σvel.

In order to compute the balancing transformation, the following Lya-

punov equations are defined based on the state-space as given in Eqs. (7.3):

AP + PA
T + BB

T = 0, AT L + LA + CT C = 0. (7.20)

It can be shown [8], that (Ppos, Lpos) = (P11, L11), that is, the n×n left upper

block of P and L as in Eq. (7.20) and (Pvel, Lvel) = (P22, L22), where (P22, L22)

are the n× n right lower block of P and L, respectively.

7.2.2 Structured Eigenvalue Reduction

Using a structured version of the gramians, called second-order grami-

ans, a reduction scheme for truncation of the eigenvalues of the second-order

gramians written in the frequency domain was developed in [105]. This special

version of the gramian provides a measure of the error bound for the reduction

process. The following definition is in order:
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Definition 7.2.1. Given a second-order structure as

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t)

y(t) = C0x(t) + C1ẋ(t),

a second-order gramian in the frequency domain is defined as

P2 :=
1

2π

∫ ∞

−∞

(
−ω2M + iωD + K

)−1
BB∗

(
−ω2M∗ − iωD∗ + K∗

)−1
dω

(7.21)

The model reduction can be accomplished using the following theorem

[105]:

Theorem 7.2.1. Let P2 = VΛV∗ with V = [V1 V2] and Λ = diag [Λ1 Λ2],

the reduced-order model can be written as

M̂ = V∗
1MV1; D̂ = V∗

1DV1; K̂ = V∗
1KV1; B̂ = V∗

1B; Ĉ = CV1

(7.22)

In this case, the reduction error bound is given as

‖Σ− Σ̂‖2
H2
≤ trace {C2Λ2C

∗
2
}+ κ trace {Λ2} (7.23)

where κ = supω ‖(C1L(iω))∗(C1L(iω)− 2C2)‖2.

7.2.2.1 Gramian Computation

In order to use Theorem 7.2.1, the controllability gramian must be com-

puted. In the general case, the second-order gramian needs to be integrated

in the frequency domain as in Eq. (7.21).
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The gramian can be computed by “brute-force” integration of Eq.

(7.21). If one defines a grid for ω = [ω1 : ∆ω : ω2] and the integrand being

the function

f(ω) =
(
−ω2M + iωD + K

)−1
BB∗

(
−ω2M∗ − iωD∗ + K∗

)−1
, (7.24)

the approximated gramian can be writen as

Papprox =

∫ ω

−ω

f(ω)dω ≈
length(ω)

∑

k=1

f(ω)∆ω (7.25)

A simplification for the gramian computation is achieved for structures with

proportional damping, i.e., D = αM + βK. The proportional damping can

now be diagonalized together with the mass and stiffness matrices using modal

analysis. In this manner, given M,D and K, a generalized eigenvalue decom-

position can be performed on M and K and the matrices can be written as

[V,E] = eig(K,M)→ KV = MVE

M ← VTMV = I

K ← VTKV = E = diag(k1, · · · , kn)

D ← VTDV = diag(d1, · · · , dn);

Using the above definitions, it can be shown that each element of the second-

order gramian matrix can be computed as

Pij =
1

2π

∫ ∞

−∞

(
−ω2 + iωdi + ki

)−1
B(i, :)B∗(:, j)

(
−ω2 − iωd∗

j + k∗
j

)−1
dω

(7.26)
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Making use of partial fraction expansions, this integral can be evaluated [105]

and, thus one explicitly constructs the required gramian. It should be pointed

out that the gramian obtained has to be transformed back to the coordinates

given prior to the modal transformations.

7.3 Model Reduction Applied to the Benchmark Build-

ing Problems

The application of the aforementioned model-order reduction methods

for the family of benchmark building problems is now considered. The ap-

proach taken here will follow two different pathways, as depicted in Fig. 7.2.

Starting with the full-order model (FOM), boundary conditions are ap-

plied to the structure and constraint nodal coordinates are removed yielding

the so-called Model BC. Based on this model, one way to compare the var-

ious model reduction methods is to apply Ritz transformations and Guyan

model reduction and then to form the basis for a smaller model called the

evaluation model. The idea here is that for large-scale systems, balanced trun-

cation and modal truncation should be considered from a small to medium size

model, so that it can be computed with a reasonable amount of computational

effort. The second path is to consider reductions based directly on the model

after boundary conditions have been applied. In this case, model reduction

is performed on a larger model, and one should be careful to use the proper

techniques.

Four techniques will be evaluated for the benchmark problems pre-
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sented in Chapter 6: balanced truncation, modal truncation, second-order

structure preserving and Krylov subspaces. According to the pathway chosen

they will be named as:

• balanced truncation from Guyan model =⇒ Model BT G

• balanced truncation from Model BC =⇒ Model BT BC

• second-order structure preserving from Guyan model =⇒Model SOSR G

• second-order structure preserving from Model BC =⇒Model SOSR BC

• Krylov from Guyan model =⇒ Model K G

• Krylov from Model BC =⇒ Model K BC

7.3.1 Model Reduction for the Six-Story Building Model

Guyan Reduction After eliminating all rotational DOFs and some of the

vertical DOFs, a reduced-order model of size 34, i.e., a state-space of

order 68, is obtained for the building model. In this case, for the partition

of the system, all the active horizontal DOFs (after boundary conditions

have been applied), as well as the vertical DOFs for levels 1-6 located

on the second and fifth columns, are chosen as active DOFs to be kept

after the reduction.

Balanced Truncation A balanced truncation is performed using the square-

root algorithm for the balanced-realization. The order of the reduced

order model was varied from 60 to 20.
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Structured Eigenvalue Reduction The structured eigenvalue reduction is

also obtained using a reduced model of the same size as the models

obtained by balanced truncation.

In order to evaluate the effectiveness of the model reduction techniques pre-

sented above, the frequency response plots or sigma plots, i.e., the maximum

singular value of the transfer function matrix of the reduced-order models, are

obtained. Also, the the error sigma plots, i.e., the sigma plots of the error

between the full-order and reduced-order models are obtained. They are de-

picted in Fig. 7.3-7.18. Reduced-order models of size r = 60, 50, 40, 30, and 20

were obtained.

FOM

Model_BC

Model_Ritz

Model_Guyan

Model_BT_G

Model_SOSR_G

Model_K_G Model_BT_BC

Model_SOSR_BC

Model_K_BC

FOM

Model_BC

Model_Ritz

Model_Guyan

Model_BT_G

Model_SOSR_G

Model_K_G Model_BT_BC

Model_SOSR_BC

Model_K_BC

Figure 7.2: Model-order reduction sequence.
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7.3.2 Model Reduction for the Twenty-Story Building Model

Following the same procedures as for the six-story building model, sev-

eral reduced-order models were obtained applying the techniques described in

the previous sections. Since this is a bigger building, reduced order models

were chosen to be of size r = 100, 80, 60, 50, and 20.
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Figure 7.3: Six-story building sigma plots of the reduced-order model for the
sizes (a) r = 60, (b) r = 50
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Figure 7.4: Six-story building sigma plots of the reduced-order model for the
sizes (a) r = 40, (b) r = 20
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Figure 7.5: Six-story building sigma plots of the reduced-order model differ-
ent model-order reduction techniques. (a) Balanced Truncation reduced-order
model full model, (b) Balanced Truncation reduced-order model Guyan model.
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Figure 7.6: Six-story building sigma plots of the reduced-order model dif-
ferent model-order reduction techniques. (a) second-order structured reduc-
tion(SOSR) from full model, (b) SOSR from Guyan model.
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Figure 7.7: Six-story building error sigma plots of the reduced-order model for
the sizes (a) r = 60, r = (b)50.
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Figure 7.8: Six-story building error sigma plots of the reduced-order model for
the sizes (a) r = 40 (b) r = 20.
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Figure 7.9: Six-story building error sigma plots of the reduced-order model
from different model reduction techniques. (a) Balanced Truncation reduced-
order model from full model, (b) Balanced Truncation reduced-order model
from Guyan model.
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Figure 7.10: Six-story building sigma plots of the reduced-order model from
different model reduction techniques. (a) Second-order structured reduction
(SOSR) from full model, (b) SOSR reduced-order model from Guyan model.
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7.3.3 Model Reduction for the Bowen Building Model

For the case of the Bowen building model, a different approach was

pursued. The Bowen building finite element model is comprised of system

matrices of order n = 4950. However, the mass matrix is singular due to the

fact that rotational inertia was neglected during the modeling process. Thus,

direct application of techniques involving the state-space realization would fail,

since the inverse of the mass matrix is required. Hence, Guyan reduction was

performed first on the system, in order to condense out the rotational degrees-

of-freedom. Other techniques of model reduction were performed using the

reduced-order model.

It should be pointed out that even with the reduction of the full-order

model to a smaller version using Guyan (2439 DOFs), balanced truncation

is impractical for such large systems. In this manner, modal truncation was

performed to obtain reduced-order models of reasonable sizes.

7.4 Concluding Remarks

Figures 7.3-7.18 show two important aspects of the model reduction

techniques presented. If one starts the reduction process based on the Guyan

model, the high frequency content of the model is removed. Guyan reduction

eliminates those high-order modes due to vertical and rotational degrees-of-

freedom. The frequency response closely match the full-order models in the

lower region frequencies. However, for large-scale buildings, it might lead to

structures rather stiffer than the original model (shear building model) and
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therefore reduced-order controller design based on those reduced-models might

lead to spillover effects.

Furthermore, structure preserving model reduction leads to reduced-

order models that perform worse than the other reduction techniques. This

can readily be observed reduced-order model the error sigma plots. The error

of the second-order structure preserving model reduction is always higher than

other techniques. Balanced reduction is the one that performs the best.
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Figure 7.11: Twenty-story building: Sigma plots of the reduced-order model
for the sizes (a) 100 (b) 80
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Figure 7.12: Twenty-story building sigma plots of the reduced-order model for
the sizes. (a) r = 50, (b) r = 20.
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Figure 7.13: Twenty-story building sigma plots of the reduced-order model
for different model reduction techniques. (a) Balanced Truncation from full
model, (b) Balanced Truncation from Guyan model.
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Figure 7.14: Twenty-story building sigma plots of the reduced-order model
foe different model reduction techniques. (a) Second-order structure reduction
(SOSR) from full model, (b) SOSR from Guyan model.
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Figure 7.15: Twenty-story building error sigma plots of the reduced-order
model for the sizes (a) r = 60, (b) r = 50.
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Figure 7.16: Twenty-story building error sigma plots of the reduced-order
model for the sizes (a) r = 40, (b) r = 20.

180



10
−5

10
0

10
5

10
10

−50

−40

−30

−20

−10

0

10

20

30

40

50

Frequency ω

σ(
G

(j 
ω

Sigma Plots (dB) −−> ROM = [100   80   60   50   20]

FOM
Guyan Reduction
ROM Provided
Balred from BC1
Balred from BC2
Balred from BC3
Balred from BC4
Balred from BC5

(a)

10
−2

10
0

10
2

10
4

10
6

10
8

−30

−25

−20

−15

−10

−5

0

5

10

Frequency ω

σ(
G

(j 
ω

Error Sigma Plots (dB) −−> ROM = [100   80   60   50   20]

Guyan Reduction
Balred from G1
Balred from G2
Balred from G3
Balred from G4
Balred from G5

(b)

Figure 7.17: Twenty-story building error sigma plots of the reduced-order
model for different model reduction techniques. (a) Balanced Truncation from
full model, (b) Balanced Truncation from Guyan model

181



10
−2

10
0

10
2

10
4

10
6

10
8

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Frequency ω

σ(
G

(j 
ω

Error Sigma Plots (dB) −−> ROM = [100   80   60   50   20]

Guyan Reduction
SOSR from BC1
SOSR from BC2
SOSR from BC3
SOSR from BC4
SOSR from BC5

(a)

10
−2

10
0

10
2

10
4

10
6

10
8

−30

−25

−20

−15

−10

−5

0

5

10

Frequency ω

σ(
G

(j 
ω

Error Sigma Plots (dB) −−> ROM = [100   80   60   50   20]

Guyan Reduction
SOSR from G1
SOSR from G2
SOSR from G3
SOSR from G4
SOSR from G5

(b)

Figure 7.18: Twenty-story building sigma plots of the reduced-order model
for different model reduction techniques. (a) Second-order structure reduction
(SOSR) from full model, (b) SOSR from Guyan model
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Chapter 8

Low-order Controller Design for the Building

Problems

This chapter deals with the reduced-order controller design for the

benchmark problems described in previous chapters. In a first approach,

reduced-order controllers will be obtained by means of model reduction on the

building model. As will be seen, this approach leads to good responses, but

no guarantees on the closed-loop stability. As a second approach, controller

reduction based on SVD and Krylov methods will be performed directly on

the full-order controller, which was designed based on the full-order building

model. Again, closed-loop stability will be shown to be not always guaran-

teed. Finally, a third approach will be proposed, based on the “dissipativity”

property of linear systems. The term energy will be defined in a general sense,

and some simplifications will be made to arrive at the concept of passivity of

a linear time-invariant system.

In what follows, LQG controller design will be performed for the bench-

mark building problems, and several performance indices will be defined for

assessing the response of the closed-loop system to seismic inputs. Also, details

about the controller implementation will be given and results for the low-order
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controller will be compared. The passivity preserving model reduction is ex-

plained and dissipative-LQG-controllers will be designed such that closed-loop

stability is guaranteed. It should be pointed out that in this chapter, stability

of the closed-loop system will be the main issue studied, even though perfor-

mance will be assessed by means of evaluation criteria formulated for seismic

excited buildings.

8.1 Controller Design for the Benchmark

In order to evaluate different control strategies, a criteria based on max-

imum response quantities [108], defined in Table 8.1, together with the number

of sensors and control devices used in the implemented solution is proposed

for the benchmark building problems. This criteria involves the evaluation

of the closed-loop control system for four different inputs excitation (ground

acceleration) of four historical earthquake records [108]: (i) El Centro, (ii)

Hachinohe, (iii) Northridge and (iv) Kobe. Smaller values of these evaluation

criteria are generally more desirable.

A summary of the fifteen evaluation criteria is given in Table 8.1. A

detailed description of the meaning of each quantity is given in [108]. Essen-

tially, Table 8.1 provides indices for the evaluation of the effectiveness of the

control algorithm with the optimal number of sensors and actuators.

In order to make the benchmark control problem as representative of

the full-scale implementation as possible, several specifications regarding the

controllers and implementation are given [108]:
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Table 8.1: Summary of evaluation criteria for the benchmark problem. Source
[108].
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1. Digital control systems are implemented with a sampling time of T =

0.005 seconds.

2. Each of the measured responses contains an RMS noise of 0.03V, which

is approximately 0.3% of the full span of the A/D converters. The mea-

surement noises are modeled as Gaussian rectangular pulse processes

with a pulse width of 0.001 seconds.

3. The control algorithm is required to be stable.

4. Sensors are modeled as having constant magnitude and phase. The sen-

sitivity of the accelerometers is given by 10 V/g where 1g = 9.81 m/sec2.

5. Active control is employed using hydraulic actuators in a chevron bracing

configuration, in which the actuator is horizontal and rigidly attached

between the two consecutive floors of the building. Thus, in the analysis,

the compliance of the bracing is neglected.

Based on the above specifications, LQG controllers are designed for the

benchmark control problems. The following LQG performance is used

J = lim
τ→∞

1

τ
E

[∫ τ

0

{
yT

wdQywd + uT Ru
}

dt

]

(8.1)

where ywd is the regulated output and the LQR parameters, Q and R were

chosen according to the RMS value of the output signals.

Several controller design strategies are applied to the twenty-story build-

ing used in the Second Generation Benchmark Control Problem for Seismically
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Excited Buildings. In order to remain consistent in the comparative study, the

same LQG criteria and the same number of sensors and actuators are used for

all the model and controller reduction processes. In this manner, the LQG pa-

rameters were chosen as Q = 3× 10−3I20×20; R = I20×20 and Sẍgẍg
/Svivi

= 25.

First, model reduction is performed. The frequency response plots of

the full-order model (FOM) and reduced-order models (ROM), for a fixed

reduced-order size (r = 20), are depicted in Fig. 8.1. The benchmark problem

used the model obtained by Guyan reduction as the evaluation model. In this

manner, all of the reduction techniques were applied to the evaluation model.

A reduced-order model obtained by balanced truncation was selected for the

low-order controller design.

As can be seen in Fig. 8.1, model reduction based on static condensa-

tion can be used to eliminate high-order modes due to vertical and rotational

degrees-of-freedom. The frequency response closely matches the full-order

model in the lower region frequencies. However, for large-scale buildings, it

might lead to structures rather stiffer than the original model (shear building

model).

In the second approach, controller reduction is performed based on a

LQG controller designed using the evaluation model. The same evaluation

criteria, as shown in Table 8.2, is used for the twenty-story building as in the

benchmark. Controller reduction was performed using the methods presented

in the previous chapters. It was chosen to work with the frequency-weighted

controller reduction scheme as the controller reduction method for performance
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Index Original Benchmark Red. Model Red. Controller
r = 62 r = 40 r = 20

J1 0.84169 0.83478 0.84207
J2 0.89064 0.91473 0.89061
J3 0.90873 0.90204 0.90288
J4 0.92953 0.93459 0.92933
J5 0.69826 0.69546 0.69788
J6 0.73189 0.75206 0.73303
J7 0.62149 0.60536 0.62255
J8 0.70146 0.70404 0.7010
J9 1.3881× 10−2 1.554× 10−2 1.402× 10−2

J10 1.0050× 10−1 1.027× 10−1 1.0068× 10−1

J11 1.9699× 10−1 2.0963× 10−1 2.0041× 10−1

J12 6.6554× 10−2 6.8608× 10−2 6.6984× 10−2

J13 50 50 50
J14 5 5 5
J15 62 40 20

Table 8.2: Pre-Earthquake Evaluation Criteria for the Full-order and Reduced-
order Models.

evaluation. As can be seen in Fig. 8.1 and Table 8.2, low-order controllers

can be obtained without compromising the response of the system. However,

several simulations were performed in order to obtain a good reduced-order

controller which stabilized the original building model.

8.2 Dissipative LQG-Optimal Controller

Dissipative LQG controllers are presented here based on the Positive

Real Lemma applied to a special realization of a positive real plant system

[28, 42, 58, 67, 80]. This section follows the work in [67, 80]. The following

theorem holds.
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Figure 8.1: Frequency response of the full-order model and reduced-order mod-
els (r = 20).

Theorem 8.2.1. Given the positive real dynamical system Σ and X that sat-

isfy the positive real lemma, one can obtain the so-called self-dual realization

by means of a coordinate transformation of the form ζ = X1x, where X1 is the

square root factor (or Cholesky factor) of X, i.e., X = XT
1 X1. The self-dual

realization of Σ is the one that satisfies the positive real lemma with

X = I; K̃ = −(A + AT ); B = CT . (8.2)

Therefore, without loss of generality, it will be assumed that the dy-

namical system considered in this section is a self-dual realization. To this
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Figure 8.2: Uncontrolled and controlled responses for the pre-Earthquake due
to El Centro.

end, consider an LQG controller designed based on this self-dual realization

plant. It is known that the controller which minimizes the LQG performance

index is given by

ẋc = Acxc + Bcy (8.3)

yc = Ccxc; u = −yc (8.4)
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where

Ac = A−BR−1
r BTPr −PfC

TR−1
f C; Bc = PfC

TR−1
f ; Cc = R−1

r BTPr

(8.5)

and Pr and Pf satisfy the controller and filter algebraic Riccati equations

PrA + ATPr −PrBR−1
r BTPr + Qr = 0 (8.6)

PfA
T + APf −PcC

TR−1
f CPf + Qf = 0 (8.7)

The following theorem due to [80] will be stated without proof. For a complete

proof see [67, 80].

Theorem 8.2.2. Consider the positive real system as in Theorem 8.2.1 and

the LQG-type controller as in Eqs. 8.5. If Qr, Qf , Rr and Rf are chosen

such that

Qr > BR−1
r BT ⇒ Qr = QB + BR−1

r BT , for QB > 0 (8.8)

Rf = Rr (8.9)

Qf = −(A + AT ) + BR−1
r BT (8.10)

then the LQG controller defined in Eq. (8.5) is strictly positive real.

8.3 Passivity Preserving Controller Reduction Applied

to the Building Problems

In this section, the concepts of dissipative-LQG controller design and

the passivity preserving model reduction will be applied to the three-story
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building model and to the twenty-story benchmark problem. For the three-

story problem, due to the simplicity of its model, all the steps related to the

controller design and model and controller reduction process are shown. Per-

formance of the full-order and reduced-order controllers are compared through

the use of the evaluation criteria as in Table 8.1. The fifteen evaluation criteria

will not be the main issue in assessing the performance of the reduced-order

controllers. Guaranteed stability and the order of the reduced-order controllers

are used as a main arguments supporting this new passivity-based technique.

8.3.1 Three-Story Building Problem

For the three-story building model, the following procedure is used:

1. Determine the state-space model using collocated actuators and sensors;

2. Using a coordinate transformation, take the state-space model to a self-

dual realization using:

X =

[
K 0
0 M

]

; (8.11)

X = XT
1 X1 (8.12)

Ap = X1AX−1
1 ; Bp = BX−1

1 ; Cp = X1C. (8.13)

3. Design a passive LQG controller using:

R = 25; Qr = BpR
−1BT

p ; Q = Qr + αI.
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4. Vary α and obtain the spectral zeros (SZ) of the controller. In this case,

with α = 1× 10−1, it follows that

SZ =

























Inf
Inf
14.3927 + 62.6032i
14.3927− 62.6032i
−14.3927 + 62.6032i
−14.3927− 62.6032i
40.9569
−40.9569
8.3190 + 15.4617i
8.3190− 15.4617i
−8.3190 + 15.4617i
−8.3190− 15.4617i
Inf

























5. Select the spectral zeros of the controller. In this case, the first four

complex spectral zeros were chosen, yielding a reduced-order controller

of size 2.

6. Perform controller reduction using passivity preserving methods. Nu-

merical simulation were performed and depicted in Fig. 8.4. One can

check that the reduced-order controller is indeed passive and, therefore,

stabilizes the closed-loop system.

As can be seen in Fig. 8.4, a reduced-order controller based on passivity

preserving model reduction guarantees closed-loop stability, since it is itself

passive. Even though the performance of the closed-loop system deteriorates

with the choice of the LQG passive controller, fine-tuning of its gain can be

used to obtain better results.
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Figure 8.3: Uncontrolled and Controlled Three-Story Building Model.

8.3.2 Twenty-Story Building Problem

Applying the same procedure as for the three-story building model,

dissipative LQG controllers are obtained for the twenty-story building. Sim-

ulations were performed to tune the gains of the controller. In this case, in

order to obtain a square system, i.e., the same number of inputs and outputs,

twenty actuators and sensors are placed on each floor. The passivity preserving

controller reduction scheme was then applied to the full-order LQG controller.

Unlike the three-story building model, the MIMO rational Krylov was

used to perform the reductions. As seen in previous chapters, one cannot

194



directly choose the order of the reduced-order model. In this case, one can

perform simulations taking into account the number of spectral zeros to be

matched in order to find the size of the reduced-order controller. Choosing four

spectral zeros, a reduced-order controller of size 80 was obtained. On the other

hand, choosing three spectral zeros, a controller of size 40 was obtained. In

both cases, the selection of the spectral zeros to be interpolated was arbitrary.

There is no known theoretical basis for this selection. The results of the LQG

design are depicted in Figures 8.4 and 8.5 and summarized in Table 8.3.

Figure 8.4 shows the displacement of the first floor for the twenty-

story building model. Even though the full-order passive-LQG controller yield

responses with higher noise content, the reduced-order controller performs

approximately in the same manner as the original LQG controller designed for

the benchmark problem. The only remaining differences are in the value of

some of the evaluation criteria performances. As seen in Table 8.3, the LQG

passive controller yields closed-loop systems with some performance indeces

better than the original model, but some that are worse than the original, as in

the case of the maximum stroke force for the actuators. It should be pointed

out that stability is always guaranteed for the passive-LQG reduced controller.

However performance of the closed-loop system, even though assessed by the

evaluation criteria design, should be further investigated. As seen in Table

8.3, some of the performances were better for the reduced-order controller

than the original controller. Also, some of performance measures exceeded the

maximum limits allowed for this particular benchmark. This issue should be
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Index Original Benchmark Full passive LQG Reduced passive LQG
r = 62 r = 212 r = 80

J1 0.84169 0.81745 1.015
J2 0.89064 1.0376 0.9938
J3 0.90873 14.464 1.0693
J4 0.92953 1.6706 0.9587
J5 0.69826 0.81904 0.9131
J6 0.73189 − 0.8682
J7 0.62149 0.60536 2.5358
J8 0.70146 1.4448 0.8863
J9 1.3881× 10−2 3.546× 10−2 9.132× 10−4

J10 1.0050× 10−1 1.167× 10−1 1.0608× 10−1

J11 1.9699× 10−1 − 1.5421
J12 6.6554× 10−2 − −
J13 50 50 50
J14 5 20 20
J15 62 212 80

Table 8.3: Earthquake evaluation criteria for the full-order and reduced-order
models using passive LQG Controller.

resolved by fine tuning the gains of the controller.

8.4 Concluding Remarks

In this chapter, low-order controllers were obtained for the seismically

excited building control problems. It was shown that by performing model

and controller reduction using the standard SVD-based and Krylov-based ap-

proaches, one cannot guarantee the stability of the closed-loop system. On

the other hand, by means of passivity properties and the passive preserving

model reduction scheme, one can obtain an efficient algorithm that performs

controller reduction and guarantees closed-loop stability. Even though closed-
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Figure 8.4: A comparison of the original benchmark controller and PR LQG
controllers for the twenty-story building Model - displacement of the first floor.

loop performance was assessed by means of seismic evaluation criteria, one

cannot evaluate the effectiveness of the passive LQG controllers as developed

in this chapter. Further investigations should be performed in order to properly

determine a good set of controller gains and number of sensors and actuators

to be used in the assessment of the evaluation criteria.
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Chapter 9

Conclusions and Future Directions

This chapter provides a summary of the results on model and controller

reduction applied to building control as developed in the previous chapters.

Moreover, suggestions for future directions on the improvements of the afore-

mentioned techniques will be stated.

9.1 Concluding Remarks

This dissertation focused on the development of efficient techniques

for model and controller reduction applied to structural control, emphasizing

the importance of such procedures for the case of building control for hazard

mitigation. A procedure for effectively constructing reduced-order controllers

based on large-scale systems, such that the reduced-order controller is guaran-

teed to yield closed-loop stability when connected to the full-order large-scale

plant, has been developed. The effectiveness of such procedure has been evalu-

ated using a family of benchmark problems for building control. Upon consid-

ering models of different order, from a small three degrees-of-freedom building

model to a more complex model with almost five thousand degrees-of-freedom,

reduced-order models and controllers have been successfully implemented.
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Several model and controller reduction approaches were investigated

using a projection framework. Two different pathways were used: model re-

duction followed by low-order controller design, and controller reduction di-

rectly from a high-order controller model. First, SVD-based methods, such as

Lyapunov balanced truncation, were used to determine low-order models for

control design purposes. It was shown that even though good reduced-order

models can be obtained, there is no guarantees on the reduced-order closed-

loop stability. Secondly, controller reduction based on the frequency-weighted

balanced truncation has been used to determine low-order controllers. For

the same reasons, closed-loop stability was not guaranteed. Furthermore, it

has been shown that SVD-based methods are suited for small to medium size

models, due to the two Lyapunov equations to be solved. A remedy for this

issue is the application of approximate balancing, which is part of an ongoing

research and thus will be left for future work.

For large-scale systems, Krylov-based methods were presented. It was

shown that reduced-order models can be achieved through the use of moment

matching techniques. Depending on the location of the interpolation points in

the complex plane, several special cases can be obtained: Markov parameters

(s = ∞), Padé approximation (s = 0), and rational interpolation (s = σ). It

was shown that such techniques are suited for large-scale systems due to the

fact that they depend only on matrix-vector multiplications. The problem of

controller reduction by Krylov methods has also been addressed. It was shown

that the low-order closed-loop system is guaranteed to interpolate the full-order
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closed-loop system at the chosen interpolation points, which were suggested

to be given by the mirror images of the poles of the full-order controller and

full-order closed-loop system. As in the case of SVD methods, closed-loop

stability is not guaranteed.

For structural models, i.e., models written as a second-order dynamical

systems, several model reduction methods were presented. Instead of collaps-

ing the second-order equations into a set of first-order differential equations to

work in a state-space framework, one can directly use model reduction meth-

ods on the second-order equations. The rationale of this approach is that

once the state-space is obtained, the physical meaning of mass, stiffness and

damping on the structure is lost, and there is no guarantee that the reduced-

order models could be realized again as a set of mass, stiffness and damping

matrices. In this manner, several approaches were discussed: static (Guyan)

and dynamic condensation, modal truncation, component mode synthesis and

the structure preserving eigenvalue reduction. Even though Guyan reduction

is one of the most widely used model reduction techniques for structural dy-

namic problems, in the building control framework, it is only used to eliminate

those high-order modes due to vertical and rotational degrees-of-freedom. Its

frequency response closely matches the full-order model in the lower region

frequencies. However, for large-scale buildings, it might lead to structures

rather stiffer than the original model (shear building model). Modal trunca-

tion is also widely used for model reduction. However, it lacks error bounds

and generalizations for the problem of controller reduction. Also, it is costly
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in the application of large-scale systems.

The main contribution of this dissertation belongs to the area of dissi-

pative systems. In a broad sense, dissipative systems have the property that

some of the energy put into the system is dissipated. A particular case of the

definition of the “energy” of the system are the so-called passive systems. For

LTI systems, passivity is connected to the well-known positive realness of dy-

namical systems and hence to the Positive Real Lemma. A major advantage

of passive systems is that they can be robustly stabilized by a controller that

is itself passive. In this case, a method was proposed based on the passivity

preserving model reduction through interpolation of the spectral zeros of the

large-scale system. The design method of a passive LQG yielded controllers

that were easy to design and implement, and at the same time guaranteed

closed-loop stability. The effectiveness of the proposed control strategies was

demonstrated and evaluated through application to the twenty-story bench-

mark problem.

9.2 Future Directions

The goal of this dissertation was to provide an efficient controller reduc-

tion procedure suited for large-scale systems, such that, one could guarantee

closed-loop stability. Some recommendations for future studies related to this

work are presented below:
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9.2.1 Large-scale Building Problems

In this dissertation, reduced-order models were obtained for relatively

small to medium systems. Even though the procedures presented for obtaining

reduced-order controllers can be used for large-scale systems, its effectiveness

should be assessed. Building models comprised of fifty-thousand to several

million states have already been obtained using finite element methods. There-

fore, application of the passive-LQG design approach together with controller

reduction should be investigated.

9.2.2 Rational Krylov

Rational Krylov has been shown to be very effective for large-scale sys-

tems. In this dissertation, methods based upon the state-space equations have

been investigated. However, as is the case of structural models, Krylov meth-

ods based on the second-order equations can be used. Several second-order

preserving methods have been proposed in the literature. Thus, investigation

of such methods for the case of large-scale building models could be addressed.

Furthermore, investigation of the selection of the interpolation points specific

to structural models might introduce optimality to the reduction process. In

this dissertation, the algorithms for moment matching were based on exten-

sions of the SISO rational Krylov to the case of multi-input, multi-output

(MIMO) systems through the use of a deflation technique. One of the dis-

advantages of this technique is that the full-rank projection matrices, and in

turn, the size of the reduced-order models, are constrained by the number of
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inputs and outputs in the system. Thus, for the case of the building problems

where a large number of actuators and sensors are used, model reduction by

moment matching using tangential interpolation should be investigated.

9.2.3 MR Dampers

Magneto-rheological (MR) dampers have been successfully implemented

in several fields of semi-active structural control: building control, car suspen-

sions, bridge-control, and seat vibration, among others. Control strategies

based on semi-active devices combine the best features of both passive and

active control systems. In this dissertation, active control was considered for

the controller reduction problem. It would therefore be interesting to apply

the model and controller reduction procedures of this research to the case

of semi-active control. Semi-active control strategies are based on nonlinear

control methodologies. Thus, extensions to the problem of nonlinear control

strategies should also be addressed.

9.2.4 Nonlinear Building Models

Even though several important model reduction problems are still be-

ing investigated for linear systems, it is considered a mature field. The next

major challenge in the field of model and controller reduction is the applica-

tion of such concepts to nonlinear systems. Several methods have been devised

for model and controller reduction using the so-called proper orthogonal de-

composition and its variants. However, there is not a general theory as in the
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linear case, and usually, the model reduction procedures are problem depen-

dent. In the case of building models, large magnitude earthquakes can cause

material yielding in the structural elements, and therefore, nonlinearities are

present. The applications of linear model/controller reduction together with

the nonlinear model reduction can be addressed using the third generation of

benchmark problems.

9.2.5 Passivity Preserving Model and Controller Reduction

Dissipative-LQG controller design was shown to be very effective for

large-scale seismic building control. Passivity-based design, which was opti-

mized for the LQG performance index, guaranteed closed-loop stability. Im-

provements in the design could be addressed since the passivity conditions

make the controller design conservative. With respect to passivity preserving

model reduction, one has to interpolate the reduced-order model at some of

the spectral zeros of the full-order model. In this manner, methods for the

selection of spectral zeros in order to guarantee, besides passivity, optimality

of the error between the full-order model and the reduced-order model should

be addressed. Also, the issue of selection as mirror images could be generalized

for structural models.
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Appendix A

Simulink Block Diagrams

In this section, two Simulink block diagrams will be shown: Building

Control and MR damper.

A.1 Building Control

The building control problem, used for simulation of the benchmark

problems, is given by the following block diagram.

All signa ls --> Y  = [pos vel a ccel]T

Acel [m/s 2̂]

u
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Figure A.1: Building Block Diagram.
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A.2 MR damper

As described in detail in Chapter 6, the following equations represent

the equations of motion of a MR damper. Its block diagram used for simulation

is given by Fig. A.2

F = αz + c0(ẋ− ẏ) + k0(x− y) + k1(x− x0) = c1ẏ + k1(x− x0) (A.1)

with

ż = γ (|ẋ− ẏ|) z|z|n−1 − β(ẋ− ẏ)|z|n + A(ẋ− ẏ) (A.2)

ẏ =
1

c0 + c1
[αz + c0ẋ + k0(x− y)] (A.3)

α = α(u) = αau + αbu (A.4)

c1 = c1(u) = c1a
u + c1b

u (A.5)

c0 = c0(u) = c0a
u + c0b

u (A.6)
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Appendix B

Actuator Placement for the Bowen Model

B.1 Actuator Locations

Based on the method presented in Chapter 6, actuator locations were

determined for the Bowen building model. Its finite element model is com-

prised of 825 nodes, or 4950 degrees-of-freedom. Two actuators were placed in

each location, in the x-direction and y-direction. It should be noted that the

procedure used to determine the actuator locations did not yield any locations

in the first floor. The actuator locations are given in the following diagrams.
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Figure B.1: Actuator Locations for the Second Floor.
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Figure B.2: Actuator Locations for the Third Floor.
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