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The mathematical analysis of the Boltzmann equation for a wide range of

important models is well developed. It describes physical phenomena which are of-

ten of great engineering importance (in aerospace industry, semiconductor design,

etc.). For that reason, analytical and computational methods of solving the Boltz-

mann equation are studied extensively. The idea of describing processes on a scale

of the order of the relaxation scales of time and space has been realized. The non-

linear Boltzmann equation possesses the important essence of a physically realistic

equation, so it is possible not only to consider the flows of simple media but to for-

mulate new problems due to the ability of this equation to describe nonequilibrium

states. In this dissertation, a new spectral Lagrangian based deterministic solver

for the non-linear Boltzmann transport equation for variable hard potential (VHP)

collision kernels with conservative or non-conservative binary interactions is pro-

posed. The method is based on symmetries of the Fourier transform of the collision

integral, where the complexity in the collision integral computation is reduced to a

separate integral over the unit sphere S2. In addition, the conservation of moments

is enforced by Lagrangian constraints. The resulting scheme, implemented in free
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space, is very versatile and adjusts in a very simple manner to several cases that

involve energy dissipation due to local micro-reversibility (inelastic interactions) or

to elastic model of slowing down processes.

We prove the accuracy, consistency and conservation properties of the proposed

conservative spectral method. Existing spectral methods have consistency proofs

which are only for elastic collisions, and also such methods do not conserve all the

necessary moments of the collision integral. In this dissertation, error estimates for

the conservation routine are provided. Such conservation correction is implemented

as an extended isoperimetric problem with the moment conservation properties as

the constraints. We use and extend an existing bound estimate of Gamba, Pan-

ferov and Villani for the inelastic/elastic space homogeneous Boltzmann collision

operator. The result is an original extension to the work of Gustaffson. Using

these estimates along with projection error estimates and conservation correction

estimates, we prove that the conservation correction is bounded by the spectral ac-

curacy.

Simulations are benchmarked with available exact self-similar solutions, exact mo-

ment equations and analytical estimates for the homogeneous Boltzmann equation

for both elastic and inelastic VHP interactions. Benchmarking of the self-similar

simulations involves the selection of a time rescaling of the numerical distribu-

tion function which is performed using the continuous spectrum of the equation

for Maxwell molecules. The method also produces accurate results in the case of

inelastic diffusive Boltzmann equations for hard-spheres (inelastic collisions under

thermal bath), where overpopulated non-Gaussian exponential tails have been con-

jectured in computations by stochastic methods. Recognizing the importance of the

Boltzmann equation in the analysis of shock structures and nonequilibrium states,
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such a study is done for 1D(x) × 3D(v). The classic Riemann problem is numeri-

cally analyzed for Knudsen numbers close to continuum. The shock tube problem

of Sone and Aoki, where the wall temperature is suddenly changed, is also studied.

We consider the problem of heat transfer between two parallel plates with diffusive

boundary conditions for a range of Knudsen numbers from close to continuum to a

highly rarefied state. Finally, the classical infinite shock tube problem that gener-

ates a non-moving shock wave is studied. The point worth noting is that the flow

in the final case turns from a supersonic flow to a subsonic flow across the shock.
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Chapter 1

Preliminaries

1.1 Introduction

A gas flow may be modeled on either a microscopic or a macroscopic level. The

macroscopic model regards the gas as a continuum and the description is in terms

of variations of the macroscopic velocity, density, pressure and temperature with

space and time. On the other hand, the microscopic or molecular model recog-

nizes the particulate structure of a gas as a myriad of discrete molecules and ideally

provides information on the position and velocity of every molecule at all times.

However, a description in such detail is rarely, if ever, practical and a gas flow is

almost invariably described in terms of macroscopic quantities. The two models

must therefore be distinguished by the approach through which the description is

obtained, rather than by the nature of the description itself. This dissertation is

concerned with the microscopic approach and the first question which must be an-

swered is whether this approach can solve problems that could not be solved through

the conventional continuum approach.

A gas at standard conditions (1 bar, 25oC) contains ca. 2.43 × 1016 particles per

cubic millimeter. Despite this huge number of individual particles, a wide variety of

flow and heat transfer problems can be described by a rather low number of partial

differential equations, namely the well known equations of Navier-Stokes. Due to the

many collisions between particles which effectively distribute disturbances between

particles, the particles behave not as individuals, but as a continuum. Under stan-
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dard conditions, a particle collides with the others very often, about 109 times per

second, and travels only very short distances between collisions, about 5 × 10−8m.

Both numbers, known as collision frequency ν and mean free path l0, depend on the

number density of the gas.

The macroscopic quantities at any point in a flow may be identified with aver-

age values of appropriate molecular quantities; the averages being taken over the

molecules in the vicinity of the point. The continuum description is valid as long as

the smallest significant volume in the flow contains a sufficient number of molecules

to establish meaningful averages. The existence of a formal link between the macro-

scopic and microscopic quantities means that the equations which express the con-

servation of mass, momentum and energy in the flow may be derived from either

approach. While this might suggest that neither of the approaches can provide

information that is not also accessible to the other, it must be remembered that

the conservation equations do not form a determinate set unless the shear stresses

and heat flux can be expressed in terms of the other macroscopic quantities. It is

the failure to meet this requirement, rather than the breakdown of the continuum

description, that places a limit on the range of validity of the continuum equations.

More specifically, the Navier-Stokes equations of continuum gas dynamics fail when

gradients of the macroscopic variables become so steep that their scale length is of

the same order as the average distance traveled by the molecules between collisions,

or mean free path, l0. A less precise but more convenient parameter is obtained if

the scale length of the gradients is replaced by the characteristic dimension of the

flow, Lflow. Flow problems in which typical length scales Lflow are much larger

than the mean free path l0, or in which the typical frequencies ω are much smaller

than ν, are well described through the laws of Navier-Stokes. The Knudsen number

Kn = l0
Lflow

is the relevant dimensionless measure to describe these conditions, and
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the Navier-Stokes equations are valid as long as Kn� 1.

This condition fails to hold when the relevant length scale Lflow becomes com-

parable to the mean free path l0. This can happen either when the mean free path

becomes large, or when the length Lflow becomes small. A typical example of a

gas with large mean free path is high altitude flight in the outer atmosphere, where

the mean free path must be measured in meters, not nanometers, and the Knud-

sen number becomes large for, e.g., a spacecraft. Miniaturization, on the other

hand, produces smaller and smaller devices, e.g., micro-electro-mechanical systems

(MEMS), where the length Lflow approaches the mean free path.

Moreover, the Navier-Stokes equations will fail in the description of rapidly chang-

ing processes, when the process frequency ω approaches, or exceeds, the collision

frequency ν. The Knudsen number (Kn = ω
ν ) is used to classify flow regimes as

follows:

• Kn � 1, i.e., Kn - 0.01: The hydrodynamic regime, which is very well

described by the Navier-Stokes equations.

• 0.01 - Kn - 0.1: The slip flow regime, where the Navier-Stokes equations can

describe the flow well, but must be supplied with boundary conditions that

describe velocity slip and temperature jumps at gas-wall interfaces (rarefaction

effects).

• 0.1 - Kn - 10: The transition regime, where the Navier-Stokes equations

fail, and the gas must be described in greater detail, e.g., by the Boltzmann

equation, or by extended macroscopic models.
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• Kn & 10: Free molecular flow, where collisions between particles do not play

an important role and the flow is dominated by particle-wall interactions.

Rarefied gases are gases which are outside the hydrodynamic regime, i.e., Kn & 0.01.

For Knudsen numbers 0.01 - Kn - 1, the gas still behaves as a continuum but

Navier-Stokes equations fail to describe the underlying physical processes and thus

lose their validity and must be replaced by more refined sets of continuum equations

that describe the behavior of the gas. There are certain approximation methods

to derive equations that allow one to describe these physical processes in rarefied

gases and the evaluation of the resulting equations. Most of these methods rely on

expansions in the Knudsen number, Kn, and thus yield equations that cannot cover

the full transition regime, but are restricted to 0.01 - Kn - 1.

A rarefied gas is well described by the Boltzmann equation which describes the

gas on the microscopic level accounting for the translation and collisions of the par-

ticles. The solution of the Boltzmann equation is the phase density f which is a

measure for the likelihood to find molecules at a location x with molecular veloci-

ties v. The Boltzmann equation is the central equation in the kinetic theory of gases.

Macroscopic quantities such as mass density ρ, mean velocity (bulk velocity) V,

temperature T , pressure tensor p, and heat flux vector q are the weighted averages

of the phase density, obtained by integration over the molecular velocity. One way

to compute the macroscopic quantities is to use rational methods to deduce macro-

scopic transport equations from the Boltzmann equation, that is to get transport

equations for the macroscopic quantities ρ,V, T , etc. This is suitable for processes

at small and moderate Knudsen numbers, which as it turns out, can be described

by a small number of equations. Alternatively, the Boltzmann equation can be
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solved and its solution f integrated over the molecular velocity, v, domain. Such

an approach is not restricted by the range of the Knudsen number values and can

be used in analysis of systems where Kn & 0.01 (rarefied gases). The work in this

dissertation concentrates on solving the Boltzmann equation for rarefied gases and

subsequent analysis of 3D in v (space homogenous) and 1D in x and 3D in v (space

inhomogeneous) systems.

In addition to the description based on the Boltzmann equation, the study of rarefied

flows requires an additional piece of information concerning the interaction of gas

molecules with the solid (or, possibly liquid) surfaces that bound the gas expanse.

It is to this interaction that one can trace the origin of the drag and lift exerted

by the gas on the body and the heat transfer between the gas and the solid boundary.

The study of gas-surface interaction may be regarded as a bridge between the kinetic

theory of gases and solid state physics. The difficulties of a theoretical investigation

are due mainly to our lack of knowledge of the structure of surface layers of solid

bodies and hence of the effective interaction potential of the gas molecules with the

wall. When a molecule impinges upon a surface, it is absorbed and may form chem-

ical bonds, dissociate, become ionized, or displace surface molecules. Its interaction

with the solid surface depends on the surface finish, the cleanliness of the surface,

its temperature, etc. It may also vary with time because of outgassing from the

surface. Preliminary heating of a surface also promotes purification of the surface

through emission of adsorbed molecules. In general, adsorbed layers may be present;

in this case, the interaction of a given molecule with the surface may also depend on

the distribution of molecules impinging on a surface element. This physical aspect

has a mathematical counterpart: The Boltzmann equation must be accompanied

by boundary conditions, which describe the aforementioned interaction of the gas
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molecules with the solid walls.

Rarefied gas analysis using the Boltzmann equation has a vast number of appli-

cable areas. In the area of environmental problems, understanding and controlling

the formation, motion, reactions, and evolution of particles of varying composition

and shapes, as well as their space-time distribution under gradients of concentra-

tion, pressure, temperature, and the action of radiation, has grown in importance.

This is because of the increasing awareness of the local and global problems related

to the emission of particles from electric power plants, chemical plants, and vehicles

as well as of the role of small particles in fog and cloud formation, radioactive re-

leases, etc. Another area of application of rarefied gas dynamics is in the design of

micromachines whose sizes range from a few microns to a few millimeters. Rarefied

flows can form the basis of design of important micromechanical systems. In this

dissertation, the areas of formation, propagation and analysis of shocks and some

some classical hydrodynamic examples have been studied.

1.2 Literature Review

From the computational point of view, one of the well-known and well-studied meth-

ods developed in order to solve the Boltzmann equation is a stochastic based method

called “Direct Simulation Monte-Carlo” (DSMC) developed initially by Bird[3] and

Nanbu[76] and more recently by [82; 83]. This method is usually employed as an

alternative to hydrodynamic solvers to model the evolution of moments or hydro-

dynamic quantities. In particular, this method have been shown to converge to the

solution of the classical Boltzmann equation in the case of monatomic rarefied gases

[88]. One of the main drawbacks of such methods is the inherent statistical fluctu-

ations in the numerical results, which becomes very expensive or unreliable in the
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presence of non-stationary flows or non equilibrium statistical states, where more

information is desired about the evolving probability distribution. Currently, there

is extensive work from Rjasanow and Wagner [83] and references therein, to deter-

mine accurately the high-velocity tail behavior of the distribution functions from

DSMC data. Implementations for micro irreversible interactions such as inelastic

collisions have been carefully studied in [49].

In contrast, a deterministic method computes approximations of the probability dis-

tribution function using the Boltzmann equation, as well as approximations to the

observables like density, momentum, energy, etc. There are currently two determin-

istic approaches to the computations of non-linear Boltzmann, one is the well known

discrete velocity models and the second a spectral based method, both implemented

for simulations of elastic interactions, i.e., energy conservative evolution. Discrete

velocity models were developed by Broadwell [27] and mathematically studied by

Illner, Cabannes, Kawashima among many authors [61; 62; 28]. More recently these

models have been studied for many other applications on kinetic elastic theory in

[10; 33; 68; 91; 58]. These models have not adapted to inelastic collisional problems

up to this point according to our best knowledge.

Spectral based models, which are the ones of our choice in this work, have been devel-

oped by Pareschi, Gabetta and Toscani [45], and later by Bobylev and Rjasanow[21]

and Pareschi and Russo[81]. These methods are supported by the ground breaking

work of Bobylev[5] using the Fourier Transformed Boltzmann Equation to analyze

its solutions in the case of Maxwell type of interactions. After the introduction of

the inelastic Boltzmann equation for Maxwell type interactions and the use of the

Fourier transform for its analysis by Bobylev, Carrillo and Gamba [8], the spectral

based approach is becoming the most suitable tool to deal with deterministic compu-
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tations of kinetic models associated with the Boltzmann non-linear binary collisional

integral, both for elastic or inelastic interactions. More recent implementations of

spectral methods for the non-linear Boltzmann equation are due to Bobylev and

Rjasanow[25], who developed a method using the Fast Fourier Transform (FFT) for

Maxwell type interactions, and then for Hard-Sphere interactions[22] using gener-

alized Radon and X-ray transforms via FFT. Simultaneously, L. Pareschi and B.

Perthame[80] developed a similar scheme using FFT for Maxwell type interactions.

Later, I. Ibragimov and S. Rjasanow[60] developed a numerical method to solve the

space homogeneous Boltzmann Equation on a uniform grid for variable hard po-

tential (VHP) interactions with elastic collisions. This particular work has been a

great inspiration for the current work and was one of the first initiating steps in the

direction of a new numerical method.

We mention that, most recently, Filbet and Russo[40],[41] implemented a method to

solve the space inhomogeneous Boltzmann equation using the previously developed

spectral methods in [81; 80]. The afore mentioned work in developing deterministic

solvers for the non-linear BTE have been restricted to elastic, conservative interac-

tions. Finally, Mouhot and Pareschi[74] are currently studying the approximation

properties of the schemes. Part of the difficulties in their strategy arises from the

constraint that the numerical solution has to satisfy conservation of the initial mass.

To this end, the authors propose the use of a periodic representation of the distribu-

tion function to avoid aliasing. There is no conservation of momentum and energy

in [41], [40] and [74]. Both methods ([41], [40], [74]), which are developed in 2 and 3

dimensions, do not guarantee the positivity of the solution due to the fact that the

truncation of the velocity domain combined with the Fourier method makes the dis-

tribution function negative at times. This last shortcoming of the spectral approach

remains in our proposed technique; however we are able to handle conservation in
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a very natural way by means of Lagrange multipliers. We also want to credit an

unpublished calculation of V. Panferov and S. Rjasanow [79] who wrote a method

to calculate the particle distribution function for inelastic collisions in the case of

hard spheres, but there were no numerical results to corroborate the efficiency of the

method. Our proposed approach is slightly different and it takes a smaller number

of operations to compute the collision integral.

The interest in shock tube problems is the analysis of shock waves or shock layers.

In the Euler set of equations in classical fluid dynamics, the shock layer is treated as

a discontinuity. Its internal structure is discussed using the Navier-Stokes equations.

However, the thickness of such a shock layer is of the order of mean free path and

thus the Navier-Stokes equations are invalid for such an analysis. For this purpose,

the Boltzmann equation is used.

Consider a time-independent unidirectional flow in an infinite expanse of a gas,

where the states at infinities are both uniform. The states at infinities being uniform,

the velocity distribution functions are Maxwellian with corresponding densities, flow

velocities and pressures. Such a choice of averages cannot be made arbitrarily and

are derived from the Rankine-Hugoniot relations. Obviously, when the two states

at infinities are equal, the uniform state is a solution. The mathematical theory of

the existence of a nontrivial solution is studied by Caflisch and Nicolaenko [30] and

Liu and Yu [66], and the existence and uniqueness of a weak shock wave solution,

where the two uniform states at infinities are very close, is proved. Such a profile

has been described by Grad [53] and is given by a slowly varying local Maxwellian

with the parametric averages given from the fluid dynamic equations. Liu and Yu

[66] also prove that the distribution function is positive in the shock layer and that

the solution is stable.
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Other numerical analysis of shock structures include the pioneering work of Mott

and Smith in [73], Liepmann, Narasimha and Chahine [64], Salwen, Grosch and

Ziering [84], Ohwada [78], Cercignani, Frezzotti and Grosfils [34], Takata, Aoki and

Cercignani [86]. Many of the above are discussions of numerical approximations of

the shock wave rather than their physical nature. Takata, Aoki and Cercignani [86]

carried out the analysis on the basis of Grad [53] and Caflisch [29] for a hard-sphere

gas, according to which the trace of the singular character at upstream infinity re-

mains at downstream infinity. Yu [90] used Hilbert expansions to study the behavior

of a gas when the length and time scales of variations are much larger than the mean

free path and mean free time respectively. Yu [90] extended the expansion to in-

clude a discontinuity caused by the shock wave in the solution. The above analysis

was done for a one space dimensional case. It was also proven by Yu that the solu-

tion thus obtained approximates the Boltzmann solution for weak shocks. Ha, Liu

and Yu in a private communication, studied a one dimensional problem where the

two equilibrium states are in contact with each other initially. The Euler equations

dictate the propagation of the initial shock discontinuity, where no expansion wave

appears. The time evolution of the Boltzmann equation reveals the formation of

a shock layer through the initial layer and its propagation. This supplements the

work of Yu [90].

1.3 Brief Description and Organization of the Dissertation

Our current approach, based on a modified version of the work in [21] and [60],

works for elastic or inelastic collisions and energy dissipative non-linear Boltzmann

type models for variable hard potentials. We do not use periodic representations for

the distribution function. The only restriction of the current method is that it re-
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quires that the distribution function at any time step be Fourier transformable. The

required conservation properties of the distribution function are enforced through a

Lagrange multiplier constrained optimization problem with the desired conservation

quantities set as the constraints. Such corrections to the distribution function to

make it conservative are very small but crucial for the evolution of the probability

distribution function according to the Boltzmann equation.

This Lagrange optimization problem gives the freedom of not conserving the en-

ergy, independent of the collision mechanism, as long as momentum is conserved.

Such a technique plays a major role as it gives the option of computing energy

dissipative solutions by just eliminating one constraint in the corresponding opti-

mization problem. The current method can be easily implemented in any dimension.

A novel aspect of the presented approach here relies on a new method that uses the

Fourier Transform as a tool to simplify the computation of the collision operator

that works both for elastic and inelastic collisions. It is based on an integral repre-

sentation of the Fourier Transform of the collision kernel as used in [21]. If N is the

number of discretizations in one direction of the velocity domain in d-dimensions,

the total number of operations required to solve for the collision integral are of

the order of N2d. This number of operations remains the same for elastic/ inelastic,

isotropic/anisotropic VHP type of interactions. However, when the differential cross

section is independent of the scattering angle, the integral representation kernel is

further reduced by an exact closed integrated form that is used to reduce the num-

ber of computational operations to O(Ndlog(N)). This reduction is possible when

computing hard spheres in d+2 dimensions or Maxwell type models in 2-dimensions.

Nevertheless, the method can be employed without much change for the other case.

In particular the method becomes O(P d−1Ndlog(N)), where P , the number of each

angular discretizations is expected to be much smaller than N used for energy dis-
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cretizations. Such reduction in number of operations was also reported in [41] with

O(Nlog(N)) number of operations, where the authors are assuming N to be the

total number of discretizations in the d-dimensional space (i.e., our Nd and P of

order of unity).

Our numerical study is performed for several examples of well establish behavior

associated with solutions of energy dissipative space homogeneous collisional mod-

els under heating sources that secure existence of stationary states with positive

and finite energy. We shall consider heating sources corresponding to randomly

heated inelastic particles in a heat bath, with and without friction; elastic or in-

elastic collisional forms with anti-divergence terms due to dynamically (self-similar)

energy scaled solutions [47; 18] and a particularly interesting example of inelas-

tic collisions added to a slow down linear process that can be derived as a weakly

coupled heavy/light binary mixture. On this particular case, when Maxwell type

interactions are considered, it is shown that [16; 17; 15], on one hand, dynamically

energy scaled solutions exist; they have a close, explicit formula in Fourier space for

a particular choice of parameters; and their corresponding inverse Fourier transform

in probability space exhibits a singularity at the origin and power law high energy

tails, while remaining integrable and with finite energy. On the other hand they

are stable within a large class of initial states. We used this particular example to

benchmark our computations by spectral methods by comparing the dynamically

scaled computed solutions to the explicit self similar one.

It is expected that the proposed spectral approximation of the free space problem

will have optimal algorithmic complexity using the non-equispaced FFT as obtained

by Greengard and Lin [55] for spectral approximation of the free space heat kernel.

The spectral-Lagrangian scheme methodology proposed here can be extended to

12



cases of Pareto tails, opinion dynamics and N player games, where the evolution

and asymptotic behavior of probabilities are studied in Fourier space as well [45; 15].

The dissertation is organized as follows. In Chapter 2, some preliminaries and de-

scription of the various approximated models associated with the elastic or inelastic

Boltzmann equation are presented. In Chapter 3, the actual numerical method is dis-

cussed along with the moment conservation method. In Chapter 4, the special case

of a spatially homogeneous collisional model for a slow down process derived from

a weakly coupled binary problem with isotropic elastic Maxwell type interactions

is considered wherein an explicit solution is derived and shown to have power-like

tails in some particular cases corresponding to a cold thermostat problem. Chapter

5 describes the various discretizations used, the proposed algorithm and numerical

results for both space homogenous and inhomogeneous (shock structure analysis)

examples. Finally in Chapter 6, direction of future work is proposed along with a

summary of the current work.
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Chapter 2

Description and Properties of the Boltzmann Transport

Equation

2.1 The Space Inhomogeneous Boltzmann Transport Equation

The Boltzmann Transport Equation describes the statistical (kinetic) evolution of

a single point probability distribution function f(x,v, t) for x ∈ Ωx ⊂ R
3,v ∈ R

d

(where d is the velocity space dimension). The probability distribution function

f(x,v, t) describes the probability of finding a particle at x with velocity v at time

t. For variable hard potential interactions, the corresponding initial value-boundary

value problem in the presence of a force field F with a post-collisional specular

reflection direction σ, is given by

∂

∂t
f(x,v, t) + v · 5xf(x,v, t) + 5v · (Ff(x,v, t)) = Q(f, f) , (2.1.1)

with

f(x,v, 0) = f0(x,v) ,

f(x,v, t) = fB(x,v, t) ∀ x ∈ ∂Ωx ,

where the initial probability distribution f0(x,v) is assumed to be integrable and

the boundary condition fB(x,v, t) ∀ x ∈ ∂Ωx is given in Section 2.3.4.2.

The collision or interaction operator Q(f, f) is a bi-linear integral form that can be

defined in weak or strong form. The classical Boltzmann formulation is given in
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strong form is classically given in three space dimensions for hard spheres by

Q(f, f) =

∫

w∈Rd,η∈Sd−1

[
1

′e ′J
f(x, ’v, t)f(x, ’w, t) − f(x,v, t)f(x,w, t)] |u · η| dηdw

(2.1.2)

where the integration over the sphere is done with respect to η, the direction that

contains the two centers at the time of the interaction, also referred as the impact

direction. We denote by ’v and ’w the pre-collisional velocities corresponding to v

and w. In the case of micro-reversible (elastic) collisions one can replace ’v and ’w

with v′ and w′ respectively in the integral part of (2.1.2). The exchange of velocities

law is given by

u = v − w relative velocity

v′ = v − 1 + e

2
(u · η)η, w′ = w +

1 + e

2
(u · η)η .

(2.1.3)

This collisional law is equivalent to u′ · η = −eu · η and u′ ∧ η = u ∧ η.
The parameter e = e(|u · η|) ∈ [0, 1] is the restitution coefficient covering the range

from sticky to elastic interactions, so ′e = e(|′u · η|), with ′u the pre-collisional

relative velocity. The Jacobian J =| ∂(v′,w′)
∂(v,w) | of post-collisional velocities with

respect to pre-collisional velocities depends also on the local energy dissipation [31].

In particular, ′J =| ∂(’v,’w)
∂(v,w) |. In addition, it can be seen in general that it is a

function of the quotient of relative velocities and the restitution coefficient as well.

For example and in the particular case of hard spheres interactions

J(e(z)) = e(z) + z e(z) = (z e(z))z with z = |u · η| .

When e = 1 then the collision law is equivalent to specular reflection with respect to

the plane containing η, orthogonal to the corresponding tangent plane to the sphere

of influence. The direction η is also called the impact direction. We note that J = 1

when e = 1, that is, for elastic hard sphere interactions.
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The corresponding weak formulation of the collisional form becomes more transpar-

ent and crucial in order to write the inelastic equation in higher dimensions or for

more general collision kernels. Such formulation, originally due to Maxwell for the

space homogeneous form is often called the Maxwell form of the Boltzmann equa-

tion. The integration is parametrized in terms of the center of mass and relative

velocity. And on the d − 1 dimensional sphere, integration is done with respect to

the unit direction σ given by the elastic post collisional relative velocity, that is

∫

v∈Rd

Q(f, f)φ(v) dv =

∫

v,w∈R2d,σ∈Sd−1

f(x,v, t)f(x,w, t)[φ(v′) − φ(v)]B(|u|, µ) dσdwdv ,

(2.1.4)

where the corresponding velocity interaction law is now given by

v′ = v +
β

2
(|u|σ − u), w′ = w − β

2
(|u|σ − u) ,

u′ = (1 − β)u + β|u|σ (inelastic relative velocity) ,

µ = cos(θ) =
u · σ
|u| (cosine of the elastic scattering angle) ,

B(|u|, µ) = |u|λ b(cos θ) with 0 ≤ λ ≤ 1 ,

ωd−2

∫ π

0

b(cos θ) sind−2 θdθ < K (Grad cut-off assumption) ,

β =
1 + e

2
(energy dissipation parameter) .

(2.1.5)

We denote by ’v and ’w the pre-collision velocities corresponding to v and w. In the

case of micro-reversible (elastic) collisions one can replace ’v and ’w with v′ and w′

respectively in the integral part of (2.1.1). We assume the differential cross section

function b(u·σ
|u| ) is integrable with respect to the post-collisional specular reflection

direction σ in the d−1 dimensional sphere, referred as the Grad cut-off assumption,
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and that b(cos θ) is renormalized such that

∫

Sd−1

b(
u · σ
|u| ) dσ = ωd−2

∫ π

0

b(cos θ) sind−2 θ dθ

= ωd−2

∫ 1

−1

b(µ)(1 − µ2)(d−3)/2dµ = 1 , (2.1.6)

where the constant ωd−2 is the measure of the d − 2 dimensional sphere and the

corresponding scattering angle is θ is defined by cos θ = σ·u
|u| . The above equation

2.1.6 is written for a general d.

The parameter λ regulates the collision frequency as a function of the relative speed

|u|. It accounts for inter particle potentials defining the collisional kernel and they

are referred to as Variable Hard Potentials (VHP) whenever 0 < λ < 1, Maxwell

Molecules type interactions (MM) for λ = 0 and Hard Spheres (HS) for λ = 1. The

Variable Hard Potential collision kernel then takes the following general form:

B(|u|, µ) = Cλ(σ)|u|λ , (2.1.7)

with Cλ(σ) = 1
4π b(θ), λ = 0 for Maxwell type of interactions; Cλ(σ) = a2

4 , λ = 1 for

Hard Spheres (with a = particle diameter). For 3−D in v, Cλ(σ) = 1/4π. In addi-

tion, if Cλ(σ) is independent of the scattering angle we call the interactions isotropic.

Otherwise we refer to them as anisotropic Variable Hard Potential interactions.

Depending on their nature, collisions either conserve density, momentum and energy

(elastic) or density and momentum (inelastic) or density (elastic - linear Boltzmann

operator), depending on the number of collision invariants the operator Q(f, f) has.

In the case of the classical Boltzmann equation for rarefied (elastic) monatomic

gases, the collision invariants are exactly d+ 2, that is, according to the Boltzmann

theorem, the number of polynomials in velocity space v that generate φ(v) = A+B·
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v+C|v|2, with C ≤ 0. In particular, one obtains the following conserved quantities:

Density ρ(x, t) =

∫

v∈Rd

f(x,v, t)dv ,

Flow velocity vector V(x, t) =
1

ρ(x, t)

∫

v∈Rd

vf(x,v, t)dv ,

Temperature 3RT (x, t) =
1

ρ(x, t)

∫

v∈Rd

|v − V|2f(x,v, t)dv ,

Pressure p(x, t) =
1

3

∫

v∈Rd

|v− V|2f(x,v, t)dv = Rρ(x, t)T ,

Specific internal energy e(x, t) =
1

2ρ(x, t)

∫

v∈Rd

|v − V|2f(x,v, t)dv =
3

2
RT ,

Stress tensor, p(x, t) = {pij}(x, t) pij =

∫

v∈Rd

(vi − Vi)(vj − Vj)f(x,v, t)dv ,

Heat-flow vector q(x, t) =
1

2

∫

v∈Rd

(v − V)|v − V|2f(x,v, t)dv ,

(2.1.8)

where R is the specific gas constant. Of significant interest from the statistical view

point are the evolution of moments or observables, at all orders. They are defined by

the dynamics of the corresponding time evolution equation for the velocity averages,

given by

∂

∂t
Mj(x, t) =

∫

v∈Rd

f(x,v, t)v©∨ jdv =

∫

v∈Rd

Q(f, f)v©∨ jdv , (2.1.9)

where, v©∨ j = the standard symmetric tensor product of v with itself, j times.

Thus, according to (2.1.8), for the classical elastic Boltzmann equation, the first

d + 2 moments are conserved, meaning, Mj(x, t) = M0,j =
∫
v∈Rd

f0(x,v)v©∨ jdv for

j = 0, 1; and E(x, t) = tr(M2)(x, t) = E0 =
∫
v∈Rd

f0(x,v)|v|2dv. Other higher order

moments of interest and alternate moment forms are

Momentum Flow M2(x, t) =

∫

Rd

vvT f(x,v, t)dv

Specific internal Energy E(x, t) =
1

2ρ(t)
(tr(M2(x, t)) − ρ(x, t)|V(x, t)|2) ,

(2.1.10)

with k− Boltzmann constant.
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2.2 The Space Homogeneous Boltzmann Equation

Similar to the space inhomogeneous case, the initial value problem associated to

space homogeneous Boltzmann Equation modeling the statistical (kinetic) evolution

of a single point probability distribution function f(v, t) for v ∈ R
d (where d is the

velocity space dimension and could take a value of 2 or 3 depending on the underlying

physics), for Variable Hard Potential (VHP) interactions in the absence of a force

field is given by

∂

∂t
f(v, t) = Q(f, f)(v, t)

=

∫

w∈Rd,σ∈Sd−1

[Jβf(’v, t)f(’w, t) − f(v, t)f(w, t)]B(|u|, µ) dσdw

f(v, 0) = f0(v) , (2.2.1)

where the initial probability distribution f0(v) is assumed to be integrable and

Jβ = ∂(v′,w′)
∂(v,w) is the Jacobian of post with respect to pre collisional velocities which

depend the local energy dissipation [31]. The problem may or may not have finite

initial energy E0 =
∫

Rd
f0(v)|v|2dv and the velocity interaction law, written in cen-

ter of mass and relative velocity coordinates is given in (2.1.5).

Just like in the space inhomogeneous case, ’v and ’w are the pre-collision veloci-

ties corresponding to v and w. In the case of micro-reversible (elastic) collisions one

can replace ’v and ’w with v′ and w′ respectively in the integral part of (2.1.1). The

differential cross section function b(u·σ
|u| ) is assumed to be integrable with respect to

the post-collisional specular reflection direction σ in the d − 1 dimensional sphere

(Grad cut-off assumption eqrefgrad-cut-off). (2.1.7) gives the variable hard poten-

tial interparticle interaction potentials.

For classical case of elastic collisions, it has been established that the Cauchy prob-
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lem for the space homogeneous Boltzmann equation has a unique solution in the

class of integrable functions with finite energy (i.e., C1(L1
2(R

d))), it is regular if ini-

tially so, and f(., t) converges in L1
2(R

d) to the Maxwellian distribution Mρ,V,E(v)

associated to the d + 2-moments of the initial state f(v, 0) = f0(v) ∈ L1
2(R

d). In

addition, if the initial state has Maxwellian decay, this property will remain with a

Maxwellian decay globally bounded in time ([46]), as well as all derivatives if initial

so (see [1]).

Just as in the space inhomogeneous case, depending on the number of collision

invariants of Q(f, f) the conservation properties of the Boltzmann equation change

accordingly. In particular, one obtains conserved quantities just as in (2.1.8) but

without the space, x dependence. Other higher order moments can also be derived

for the space homogeneous case to give expressions identical to (2.1.9) and (2.1.10)

but again without the space, x dependence.

We finally point out that, in the case of Maxwell molecules (λ = 0), it is possi-

ble to write recursion formulas for higher order moments of all orders ([6] for the

elastic case, and [8] in the inelastic case) which, in the particular case of isotropic

solutions depending only on |v|2/2, take the form

mn(t) =

∫

Rd

|v|2n f(v, t)dv = e−λntmn(0)+

n−1∑

k=1

1

2(n+ 1)

(
2n+ 2

2k + 1

)
Bβ(k, n − k)

∫ t

0
mk(τ)mn−k(τ) e

−λn(t−τ) dτ ,

(2.2.2)

with

λn = 1 − 1

n+ 1
[β2n +

n∑

k=0

(1 − β)2k] ,

Bβ(k, n − k) = β2k

∫ 1

0
sk(1 − β(2 − β)s)n−kds ,
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for n ≥ 1, 0 ≤ β ≤ 1, where λ0 = 0, m0(t) = 1, and mn(0) =
∫

Rd
|v|2n f0(v)dv.

2.2.1 Boltzmann Collisional Models with Homogeneous Heating Sources

A collisional model associated to the space homogeneous Boltzmann transport equa-

tion (2.1.1) with grad cutoff assumption (2.1.5), can be modified in order to accom-

modate an energy or ‘heat source’ like term G(f(v, t)), where G is a differential or

integral operator. In these cases, it is possible to obtain stationary states with finite

energy as it is for the case of inelastic interactions. In such general framework, the

corresponding initial value problem model is

∂

∂t
f(v, t) = ζ(t)Q(f, f) + G(f(v, t)) ,

f(v, 0) = f0(v) ,

(2.2.3)

where the collision operator Q(f, f) is as in (2.1.1) and G(f(v, t)) models a ‘heating

source’ due to different phenomena. The term ζ(t) may represent a mean field ap-

proximation that follows from proper time rescaling and is usually taken to be equal

to 1. See [8] and [18] for several examples for these type of models and additional

references.

Following the work initiated in [18] and [17] on Non-Equilibrium Stationary States

(NESS), based on the proposed computational approach we shall present several

computational simulations of non-conservative models for either elastic or inelastic

collisions associated to (2.2.3) of the Boltzmann equation with ‘heating’ sources. In

all the cases we have addressed, one can see that stationary states with finite en-

ergy are admissible, but they may not be Maxwellian distributions. Of this type of

model we show computational output for three cases. First one is the pure diffusion

thermal bath due to a randomly heated background [89; 77; 47], in which case

G1(f) = µ∆vf, (2.2.4)
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where µ > 0 is a constant. The second example relates to self-similar solutions of

equation (2.2.3) for G(f) = 0 [71; 38], but dynamically rescaled by

f(v, t) =
1

vd
0(t)

f̃
(
ṽ(v, t), t̃(t)

)
, ṽ =

v

v0(t)
, (2.2.5)

where

v0(t) = (a+ ηt)−1, t̃(t) =
1

η
ln(1 +

η

a
t), a, η > 0. (2.2.6)

Then the equation for f̃(ṽ, t̃) coincides (after omitting the tildes) with equation

(2.2.3) for

G2(f) = −η div(vf), η > 0 . (2.2.7)

Of particular interest of dynamical time-thermal speed rescaling is the case of colli-

sional kernels corresponding to Maxwell type interactions. Since the second moment

of the collisional integral is a linear function of the energy, the energy evolves expo-

nentially with a rate proportional to the energy production rate, that is

d

dt
E(t) = λ0 E(t), or equivalently E(t) = E(0) eλ0 t , (2.2.8)

with λ0 the energy production rate. Therefore the corresponding rescaled variables

and equations (2.2.5) and (2.2.3) for (2.2.7) to study the long time behavior of

rescaled solutions are

f(v, t) = E− d
2
(t)f̃
( v

E
1
2 (t)

)
= (E(0)eλ0 t)−

d
2 f̃(v(E(0)eλ0 t)−

1
2 ) , (2.2.9)

and f̃ satisfies the self-similar equation (2.2.3)

G2′(f) = −λ0xfx, where x = vE− 1
2 (t) is the self-similar variable . (2.2.10)

We note that it has been shown that these dynamically self-similar states are stable

under very specific scaling for a large class of initial states [15].
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The last source type we consider is given by a model, related to a weakly cou-

pled mixture modeling slowdown (cooling) process [17] given by an elastic model in

the presence of a thermostat given by Maxwell type interactions of particles of mass

m having the Maxwellian distribution

MT(v) =
m

(2πT)d/2
e

−m|v|2

2T ,

with a constant reference background or thermostat temperature T (i.e., the average

of
∫
MT dv = 1 and

∫
|v|2MT dv = T). Define

QL(f)
.
=

∫

w∈Rd,σ∈Sd−1

BL(|u|, µ)f(’v, t)MT(’w) − f(v, t)MT(w)] dσdw . (2.2.11)

Then the corresponding evolution equation for f(v, t) is given by

∂

∂t
f(v, t) = Q(f, f) + ΘQL(f)

f(v, 0) = f0(v) . (2.2.12)

where Q(f, f), defined as in (2.1.1), is the classical collision integral for elastic

interactions (i.e., β = 1), so it conserves density, momentum and energy. The

second integral term in (2.2.12) is a linear collision integral which conserves just the

density (but not momentum or energy). The collision rule for this particular case

of a mixture can be rewritten as follows:

u = v− w the relative velocity

v′ = v +
m

m + 1
(|u|σ − u), w′ = w − 1

m + 1
(|u|σ − u) .

(2.2.13)

The coupling constant Θ depends on the initial density, the coupling constants and

on m. The collision kernel BL of the linear part may not be the same as the one

for the non-linear part of the collision integral, however we assume that the Grad

cut-off assumption (2.1.6) is satisfied and that, in order to secure mass preservation,
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the corresponding differential cross section functions bN and bL, the non-linear and

linear collision kernels respectively, satisfy the renormalized condition

∫

Sd−1

bN (
u · σ
|u| ) + ΘbL(

u · σ
|u| ) dσ = 1 + Θ . (2.2.14)

This last model describes the evolution of binary interactions of two sets of particles,

heavy and light, in a weakly coupled limit, where the heavy particles have reached

equilibrium. The heavy particle set constitutes the background or thermostat for

the second set of particles. It is the light particle distribution that is modeled by

(2.2.12). Indeed, Q(f, f) corresponds to all the collisions which the light particles

have with each other and the second linear integral term corresponds to collisions

between light and heavy particles at equilibrium given by a classical distribution

MT(v). In this binary 3-dimensional, mixture scenario, collisions are assumed to be

isotropic, elastic and the interactions kernels of Maxwell type.

In the particular case of equal mass (i.e., m = 1), the model is of particular interest

for the development of numerical schemes and simulations benchmarks. Even though

the local interactions are reversible (elastic), it does not conserve the total energy.

In such a case, there exists a special set of explicit, in spectral space, self-similar

solutions which are attractors for a large class of initial states. When considering

the case of Maxwell type interactions in three dimensions, i.e., B(|u|, µ) = b(µ) with

a cooling background process corresponding to a time temperature transformation,

T = T(t) such that T(t) → 0 as t → 0, the models have self similar asymptotics

[17; 15] for a large class of initial states. Such long time asymptotics corresponding

to dynamically scaled solutions of (2.2.12), in the form of (2.2.10), yields interesting

behavior in f(v, t) for large time, converging to states with power like decay tails in

v. In particular, such a solution f(v, t) of (2.2.12) will lose moments as time grows,

even if the initial state has all moments bounded.
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2.3 Properties of the Boltzmann Equation and the Collision Inte-

gral

In this section, important properties of the collision integral and the Boltzmann

equation are explored in detail.

2.3.1 Well-posedness of the Boltzmann Transport Equation

Existence of bounded global solutions and bounded derivatives is of great importance

in the area of Boltzmann equations. Renormalized solutions were first developed by

Diperna and Lions in the 90’s to find existence results for Cauchy problem and

boundary value problem for the Boltzmann equation. Most of the theory has been

developed for elastic collisions. For inelastic collisions, there is some work done

for space homogeneous Boltzmann but for the inhomogeneous case, there is very

little work that has been done. For the purpose of completion of presentation, some

important results will be presented in this section.

2.3.1.1 The Space Homogeneous Boltzmann Equation

Elastic collisions:

It is a convenient starting point to consider the symmetrized collision operator with

cutoff

QM (f, g) =
1

2

∫
dw

∫

n.(v−w)≥0
dnn.(v − w)χM (|v − w|)(f ′g′∗ + g′f ′∗ − fg∗ − gf∗)

(2.3.1)

where χM : R
+ → R is defined by χM (r) = 1 r ≤ M and zero otherwise i.e.,

ignoring the collisions between particles with a relative velocity bigger than M .

Consider a modified initial value problem for the space homogeneous Boltzmann
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equation:

∂tf
M = QM (fM , fM )

fM(., 0) = f0 . (2.3.2)

For the modified problem (2.3.2) with (2.3.1) the following theorem exists:

Theorem 2.3.1. [35] Arkeryd ’71-’73: There exists a unique positive solution

fM ∈ C1([0, T ];L1(R3)) to the modified initial value problem (2.3.2) with (2.3.1)

for arbitrary times T ≥ 0, provided that f0 ≥ 0 and
∫
f0 = 1. Suppose in addition

that E(f0) = 1
2

∫
|v|2f0(v)dv and H(f0) =

∫
f0log(f0)dv (energy and entropy) are

initially finite. Then

E(f0) = E(fM (v, t))

H(fM(v, t)) ≤ H(f0) .

Define ‖f‖1,s =
∫

(1 + |v|2)s/2|f(v)|dv and the associated family of Banach spaces

L1
s = {f : ‖f‖1,s <∞}. Then for the original initial value problem:

Theorem 2.3.2. [35] Arkeryd ’71-’73: Let f0 ≥ 0 be an initial datum with finite

entropy such that f0 ∈ L1
4. Then there exists a unique f ∈ C1([0, T ];L1) satisfying

the space homogeneous Boltzmann equation. Moreover f(v, t) ∈ L1
4 and H(f(v, t)) ≤

H(f0(v)).

An L∞− estimate was developed as follows:

Theorem 2.3.3. [35]: Suppose that f(v) ≤ C
(1+|v|2)s/2 with s > 6. Then the solu-

tions ofthe Boltzmann equation f(v, t), (2.1.1) - (2.1.5) satisfies:

supt∈R+‖f(v, t)‖∞ < C
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where C depends only on f0. In addition, for almost all v ∈ R
3 and all t ∈ R

+,

f(v, t) is differentiable in time and

∂tf = Q(f, f)

pointwise.

In the past decade, better estimates for the bound on the solutions to space homo-

geneous Boltzmann equation were developed. Some of the results are presented here

for a general d ≥ 2.

Theorem 2.3.4.

(1) If

0 < f0 ∈ (L1
2 ∩ L∞)(Rd) ,

then

f(t, v) ∈ C∞((0,∞), (L1
k ∩ L∞)(Rd)) ∀k > 0 .

(2) Propagation of L1
exp estimates [7; 50; 19]: In addition, if

f0 ∈ L1
exp,r = {f :

∫

v

f(v, t)er|v|
2
dv <∞} ,

then, ∃r∗ < r such that

f(v, t) ∈ L1
exp,r∗ .

This estimate is valid for both elastic variable hard potentials and inelastic

hard spheres.

(3) Propagation of L∞
exp estimates [50; 69; 2]: If

0 < C1e
−r1|v|2 < f0(v) < C2e

−r2|v|2 ,
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then

0 < C̄1e
−r1∗|v|2 < f0(v) < C̄2e

−r2∗|v|2 ,

where r1∗ > r1 > r2 > r2∗ ∀t.

(4) Weighted bound estimates for derivatives [2; 75] for elastic variable hard po-

tentials:

(i) If f0 ∈ (L1
2∩Hs

1)(R
d) then ∃ a unique solution f(v, t) ∈ (C∞(0,∞), C∞(Rd)).

(ii) If

0 ≤ C1e
−r1|v|2 ≤ |Dαf0(v)| ≤ C2e

−r2|v|2 ,

then ∃r1∗, r2∗ such that

0 ≤ C̄1e
−r1∗|v|2 ≤ |Dαf(v, t)| ≤ C̄2e

−r2∗|v|2 .

Inelastic collisions:

For a detailed investigation of various aspects of the inelastic Maxwell potential space

homogeneous Boltzmann equation like existence and uniqueness of solutions, self-

similar solutions and moment equations, the work of Bobylev, Carrillo and Gamba

[9] serves as a good reference. In the hard sphere case, a complete study for inelastic

interactions has been done by Gamba, Panferov and Villani [48], where a diffusively

granular media is considered.

2.3.1.2 The Space Inhomogeneous Boltzmann Equation

Considering the Space inhomogeneous Boltzmann equation have:

Theorem 2.3.5. Local existence and uniqueness [35] Kaniel-Shinbrot, Babovsky:

Suppose that f0 ∈ L1
+(Ω×R

3) and a.e. 0 ≤ f0(x, v) ≤ Ce−β0|v|2 for some C, β0 > 0,

and impose the specular reflection boundary condition for x ∈ ∂Ω. Then there is a
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t0 > 0 (depending on C, β0) such that the Cauchy problem for the Boltzmann equa-

tion with initial value f0 has an a.e. non-negative mild solution f(x, v, t), defined

for t ∈ [0, t0). In particular, t → f(T t(x, v), t) is absolutely continuous for almost

all (x, v).

Theorem 2.3.6. Global existence and uniqueness for a rare gas cloud in all space

[35] Kaniel-Shinbrot iteration scheme: Suppose that f0 ∈ L1
+(R3

x ×R
3
v) and that a.e.

0 ≤ f0(x, v) ≤ be−β0(|x|2+|v|2)

for some b > 0, β0 > 0. Then, if b.C is sufficiently small, the Cauchy problem for

the Boltzmann equation has a unique mild solution, which satisfies

0 ≤ f(x, v, t) ≤ C.be−β0(|x−tv|2)a.e.

For the initial-boundary value problem, the global existence of a renormalized so-

lution for the Cauchy problem for the Boltzmann equation was first obtained by

DiPerna and Lions. Their proof applies to non-negative data with finite energy and

entropy. When considering the time evolution of of a rarefied gas in a vessel Ω whose

boundaries (∂Ω piecewise C1) are kept at a constant temperature, one needs to ex-

tend the DiPerna-Lions proof. In this aspect, Hamdache proved the global existence

of weak solution by assuming the boundary condition to be a linear combination

of Diffusive reflection term and Specular reflection term. Arkeryd and Cercignani

treated the case with non-isothermal boundaries. The space inhomogeneous theory

is more advanced for the linear Boltzmann equation than for the fully nonlinear

case.

29



2.3.2 Weak Form of the Collision Integral

The Boltzmann collision operator can be re-written in the following form with (v∗ =

w; ′f = f(’v), ′f∗ = f(’v∗), f∗ = f(v∗), f = f(v), ignoring the dependence in x, t):

Q(f, f)
.
=

∫

v∗∈Rd

∫

σ∈Sd−1

B(|u|, µ)[Jβ
′f ′f∗ − ff∗]dσdv∗ . (2.3.3)

Multiplying equation (2.3.3) with a suitably regular test function φ(v) and exploring

the symmetric properties of the collision integral, one of the weak forms of the

collision integral is given as:

∫

Rd

Q(f, f)φ(v)dv =

∫

Rd

∫

Rd

∫

Sd−1

ff∗B(u, σ)(φ′ − φ)dv∗dσdv . (2.3.4)

Another weak form is

∫

Rd

Q(f, g)φ(v)dv =

1

8

∫

Rd

∫

Rd

∫

Sd−1

(′f ′g∗ + ′g′f∗ − fg∗ − gf∗)B(u, σ)(φ + φ∗ − φ′ − φ′∗)dv∗dσdv .

Equation (2.3.4) is an important property of the collision integral that is instrumen-

tal in deriving the deterministic scheme proposed in this dissertation. In the rest of

the dissertation, we use d = 3.

2.3.3 H - Theorem for the Space Homogeneous Boltzmann Equation

Boltzmann Inequality or H-Theorem: If f is a non-negative function such

that log(f)Q(f, f) is integrable and the manipulations involved in collision invariants

hold for φ = log(f) then:

∫

R3

log(f)Q(f, f)dv ≤ 0

Further, the equality sign applies if and only if log(f) is a collision invariant with

c < 0:

f = exp(a+ b.v + c|v|2)
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i.e., a Maxwellian distribution. Above inequality is true only for elastic interactions.

Nothing can be said for inelastic collisions. Starting from the space inhomogenoues

Elastic Boltzmann equation multiplyiing both sides with log(f) and integrating

with respect to v, obtain:
∂H

∂t
+

∂

∂x
.I = S

where

H =

∫

R3

flog(f)dv

I =

∫

R3

vflog(f)dv

S =

∫

R3

log(f)Q(f, f)dv

With H =
∫

R3 flog(f)dv;S =
∫

R3 log(f)Q(f, f)dv from the Boltzmann inequality

have S ≤ 0 and S = 0 if and only if f is a Maxwellian. This then implies for space

homogeneous case:
∂H

∂t
= S ≤ 0

This results in a simplified form, the H-Theorem (space homogeneous case):

H is a decreasing quantity, unless f is a Maxwellian (in which case the time deriva-

tive of H is zero). Again such a theorem exists only for elastic collisions. There is

no H-Theorem for inelastic interactions.

2.3.4 Conservation Equations

In the elastic collision case, multiplying the Boltzmann equation (2.1.1) by 1,v, |v|2

and integrating the result over the whole space of v, we obtain the following con-
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servation equations:

∂ρ

∂t
+ 5x · (ρV) = 0

∂

∂t
(ρVi) +

d∑

j=1

∂

∂xj
(ρViVj + pij) = ρFi ∀i = 1, 2, 3

∂

∂t

[
ρ

(
e+

1

2
|V|2

)]
+

d∑

j=1

∂

∂xj

[
ρVj

(
e+

1

2
|V|2

)
+ V · pj + qj

]
= ρV · F ,

(2.3.5)

where F is assumed to be independent of molecular velocities v. The collision term

vanishes on integration in the velocity domain. Equations (2.3.5) are referred to as

the conservation equations of mass, momentum and energy respectively. In classical

fluid dynamics in statistical equilibrium, pij and qi are assumed to be in appropriate

forms to close the system (2.3.5). For example,

pij = pδij , qi = 0 , (2.3.6)

or

pij = pδij − µ

(
∂Vi

∂xj
+
∂Vj

∂xi
− 2

3

d∑

k=1

∂Vk

∂xk
δij

)
− µB

d∑

k=1

∂Vk

∂xk
δij , qi = −λ ∂T

∂xi
,

(2.3.7)

where δij is Kronecker’s delta and µ, µB and λ, called the viscosity, bulk viscosity,

and thermal conductivity of the gas respectively, are functions of temperature. The

set of equations with the former stress and heat flow is called the Euler equations,

and the set with the latter the Navier-Stokes equations. The relations for pij and qi

given in (2.3.7) are called the Newton’s law and Fourier’s law, respectively.

2.3.4.1 The Maxwell Boltzmann Distribution (Equilibrium Distribu-
tion)

For the space homogeneous Boltzmann equation (so 5x · f = 0), when the force

field F = 0 there exists a stationary (∂f
∂t = 0) solution Mρ,V,T called the Maxwell
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Boltzmann (or Maxwellian) distribution with constant parameters ρ,V and T given

by

Mρ,V,T =
ρ

(2πRT )3/2
exp

(
−|v− V|2

2RT

)
. (2.3.8)

2.3.4.2 Kinetic Boundary Conditions: Simple boundary

On a boundary or a wall where there is no mass flux across it, which will be called a

simple boundary, the following condition called the Maxwell-type condition is widely

used (for d = 3):

f(x,v, t) = (1 − α)f(x,v − 2[(v − Vw) · n]n, t)

+
ασw

(2πRTw)3/2
exp

(
−|v− Vw|2

2RTw

)
[(v − Vw) · n > 0] ,

σw = −
(

2π

RTw

)1/2 ∫

[(v−Vw)·n<0]
[(v −Vw) · n]f(x,v, t)dv , (2.3.9)

where Tw and Vw are, respectively, the temperature and velocity of the boundary;

n is the unit normal vector to the boundary, pointed to the gas, and α(0 ≤ α ≤ 1)

is the accommodation coefficient. These quantities depend on the position of the

boundary. In (2.3.9), the case α = 1 is called the diffuse-reflection condition, and

α = 0 the specular-reflection condition.

More generally, the boundary condition is expressed in terms of a scattering kernel

KB(v,v∗,x, t) as

f(x,v, t) =

∫

(v∗−Vw)·n<0

KB(v,v∗,x, t)f(x,v∗, t)dv∗ [(v −Vw) · n > 0] . (2.3.10)

The kernel KB(v,v∗,x, t) is required to satisfy the following conditions:

• KB(v,v∗) ≥ 0 [(v − Vw) · n > 0, (v∗ − Vw) · n < 0] .
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• −
∫

[(v−Vw)·n>0]

(v−Vw)·n
(v∗−Vw)·nKB(v,v∗)dv = 1 [(v−Vw)·n > 0, (v∗−Vw)·n < 0],

which corresponds to the condition of a simple boundary.

• When the kernel KB is determined by the local condition of the boundary,

fB(v) =

∫

[(v∗−Vw)·n<0]

KB(v,v∗)fB(v∗)dv∗ [(v − Vw) · n > 0] , (2.3.11)

where

fB(v) =
ρ

2πRTw
exp

(
−|v− Vw|2

2RTw

)
,

with ρ being arbitrary, and the other Maxwellians do not satisfy the relation (2.3.11).

This uniqueness condition excludes the specular reflection. The condition (2.3.11)

is the result of the local property of the kernel KB and the natural requirement that

the equilibrium state at temperature T̄w and the velocity V̄w is established in a box

with a uniform temperature T̄w and moving with a uniform velocity v̄w.

For the Maxwell-type condition (2.3.9), the scattering kernel KB is given by

KB(v,v∗) = KBM (v,v∗)

=
−α

2π(RTw)2
[(v∗ − Vw) · n] exp

(
−|v − Vw|2

2RTw

)

+(1 − α)δ(v∗ − [v− 2[(v − Vw) · n]n]) ,

where δ(v) is the Dirac delta function.

When dealing with special boundary conditions like an interface of a gas with its

condensed phase, a mixed-type condition is often used [85].

2.4 Non-dimensional Expressions

Throughout the rest of the dissertation, nondimensional variables and equations

will be used. Such a representation is essential as it captures the flow scales of the
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physical system. In order to nondimensionalize the Boltzmann equation and related

variables, we introduce reference quantities. Let xr, pr, Tr and tr be reference length,

pressure, temperature and time, respectively, and let ρr = pr

RTr
, vr =

√
2RTr =

reference velocity. Then the nondimensional variables are defined as follows:

x̂ =
x

xr
, t̂ =

t

tr
, v̂ =

v

vr
,

f̂ =
f

ρrv
−3
r
, F̂ =

F

v2
r/xr

, ρ̂ =
ρ

ρr
,

V̂ =
V

vr
, T̂ =

T

Tr
, p̂ =

p

pr
,

p̂ =
p

pr
, q̂ =

q

prvr
, V̂w =

Vw

vr
,

T̂w =
Tw

Tr
,

p̂w =
pw

pr
= ρ̂wT̂w .

(2.4.1)

Then, the nondimensional form of the Boltzmann equation for f̂ is

Sh
∂f̂

∂t̂
+ v̂ · 5x̂(̂f ) + 5v̂ · (̂f F̂) =

1

k
Q̂(̂f , f̂) ,

Q̂(f̂ , ĝ) =
1

2

∫

v̂∗×α

(f̂ ′ĝ′∗ + f̂ ′∗ĝ
′ − f̂ ĝ′∗ − f̂ ′∗ĝ

′)B̂dΩ(α)dv̂∗ ,
(2.4.2)

where

Sh =
xr

tr
√

2RTr
,

k =

√
π

2
Kn ,

B̂ = B(|α · (v̂∗ − v̂)|/|v̂∗ − v̂|, |v̂∗ − v̂|) ,

dv̂ = dv̂1dv̂2dv̂3, dv̂ = dv̂∗1dv̂∗2dv̂∗3 ,

f̂ = f̂(v̂), f̂∗ = f̂(v̂∗), f̂ ′ = f̂(v̂′), f̂ ′∗ = f̂(v̂′
∗) ,

v̂′ = v̂ + α(α · (v̂∗ − v̂)), v̂′
∗ = v̂∗ − α(α · (v̂∗ − v̂)) ,

(2.4.3)

where Sh is called the Strahal number and Kn is the Knudsen number. The nondi-

mensional generalized collision integral satisfies the following symmetry relation for

35



φ(v̂), f̂(v̂), ĝ(v̂),

∫
φ(v̂)Q̂(f̂ , ĝ)dv̂ =

1

8

∫
(φ+φ∗−φ′−φ′∗)(f̂ ′ĝ′∗+f̂ ′∗ĝ′−f̂ ĝ′∗−f̂ ′∗ĝ′)B̂dΩdv̂∗dv̂ . (2.4.4)

From (2.4.4) and (2.4.2), the relations between the nondimensional macroscopic

variables ρ̂, V̂, T̂ , etc. and the nondimensional velocity distribution function f̂ can

be derived to give

ρ̂ =

∫
f̂dv̂ ,

ρ̂V̂ =

∫
v̂f̂dv̂ ,

3

2
ρ̂T̂ =

∫
|v̂− V̂|2f̂dv̂ ,

p̂ = ρ̂T̂ ,

p̂ = 2

∫
(v̂ − V̂)(v̂ − V̂)T f̂dv̂ ,

q̂ = 2

∫
(v̂− V̂)|v̂ − V̂|2f̂dv̂ .

(2.4.5)

The nondimensional Maxwellian distribution function is given by

M̂ρ̂,V̂,T̂ =
ρ̂

(πT̂ )3/2
exp

(
−|v̂− V̂|2

T̂

)
. (2.4.6)

The nondimensional forms of the conservation equations are then

Sh
∂ρ̂

∂t̂
+ 5x̂ · (ρ̂V̂) = 0

Sh
∂

∂t̂
(ρ̂V̂i) +

3∑

j=1

∂

∂x̂j
(ρ̂V̂iV̂j +

1

2
p̂ij) = ρ̂F̂i ∀i = 1, 2, 3 (2.4.7)

Sh
∂

∂t̂

[
ρ̂

(
1

2
T̂ + |V̂|2

)]
+

3∑

j=1

∂

∂x̂j

[
ρ̂V̂j

(
1

2
T̂ + |V̂|2

)
+ V̂ · p̂j + q̂j

]

= 2ρ̂V̂ · F̂ ,

where F̂ is assumed to be independent of v̂.

36



The Maxwell-type nondimensional boundary conditions on a simple boundary can

be expressed as:

f̂(x̂, v̂, t̂) = (1 − α)f̂(x̂, v̂ − 2[(v̂ − V̂w) · n]n, t̂)

+
ασ̂w

(πT̂w)3/2
exp

(
−|v̂ − V̂w|2

T̂w

)
[(v̂ − V̂w) · n > 0] ,

σ̂w = −2

(
π

T̂w

)1/2 ∫

(v̂−V̂w)·n<0

[(v̂ − V̂w) · n]̂f(x̂, v̂, t̂)dv̂ . (2.4.8)

Similarily, the nondimensional form of the boundary kernel can also be derived [85].

Depending on the underlying physics and the rarefied gas system being considered,

other nondimensional forms of the Boltzmann equation can be derived using the

corresponding flow scales as reference variables.

In the rest of the dissertation, nondimensional equations and variables are used,

but to simplify notation, the “hats” in the nondimensional notation are dropped.
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Chapter 3

The Conservative Deterministic Spectral Method

In the current chapter, the spectral approach to computing the collision integral,

is described in detail along with accuracy and consistency results of the modified

(conservative) spectral method. Extensions to a standard Fourier approximation

estimate will be proven for a finite domain (v ∈ Ωv = [−L,L)3) of our interest in

a weighted L2(Ωv) norm, i.e., L2
m(Ωv). A bound on the optimization correction is

developed in terms of spectral accuracy. Based on the work of [48], we prove Sobolev

bounds for the asymmetric collision integral. The chapter is organized as follows. In

Section 3.1, some preliminaries and description of the spectral method is presented.

In Section 3.2, the conservation correction method is described as an extension to

an isoperimetric type of problem (isomoment problem). In Section 3.3, the accuracy

and consistency estimates of the conservative spectral method are proved.

3.1 Spectral Collision Integral Representation

One of the pivotal points in the derivation of the spectral numerical method for the

computation of the non-linear Boltzmann equation lies in the representation of the

collision integral in Fourier space by means of its weak form. For ease of notation,

the time and space dependence in f are ignored in the rest of this chapter. Then

for a suitably regular test function ψ(v), the weak form of the collision integral is
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given by

∫

v∈Rd

Q(f, f)ψ(v)dv =

∫

(w,v)∈Rd×Rd, σ∈Sd−1

f(v)f(w)B(|u|, µ)[ψ(v′)−ψ(v)]dσdwdv ,

(3.1.1)

where v′,w′,u, B(|u|, µ) are given by (2.1.5). In particular, taking d = 3 and

ψ(v) = e−iζ·v/(
√

2π)3,

where ζ is the Fourier variable, we get the Fourier Transform of the collision integral

through its weak form

Q̂(ζ) =
1

(
√

2π)3

∫

v∈R3

Q(f, f)e−iζ·vdv

=

∫

(w,v)∈R3×R3, σ∈S2

f(v)f(w)
B(|u|, µ)

(
√

2π)3
[e−iζ·v′ − e−iζ·v]dσdwdv .(3.1.2)

We will use [̂.] = F(.) to denote the Fourier transform and F−1 for the classical

inverse Fourier transform. Plugging in the definitions of collision kernel B(|u|, µ) =

Cλ(σ)|u|λ (which in the case of isotropic collisions would just be the Variable Hard

Potential collision kernel) and the post collisional velocity, v′ from (2.1.5), we get

Q̂(ζ) =
1

(
√

2π)3

∫

(w,v)∈R3×R3, σ∈S2

f(v)f(w)Cλ(σ)|u|λe−iζ·v[e−i β
2
ζ·(|u|σ−u))−1]dσdwdv .

(3.1.3)

From u = v − w, have w = v − u ⇒ dw = du [Jacobian of this change of variable

matrix is 1]. This gives

Q̂(ζ) =

∫

v∈R3

∫

u∈R3

∫

σ∈S2

f(v)f(v− u)Cλ(σ)|u|λe−iζ·v[e−i β
2
ζ·(|u|σ−u)) − 1]dσdudv

(3.1.4)

Upon further simplification, (3.1.4) can be rewritten as

Q̂(ζ) =
1

(
√

2π)3

∫

u∈R3

Gλ,β(u, ζ)

∫

v∈R3

f(v)f(v− u)e−iζ·vdvdu

=

∫

u∈R3

Gλ,β(u, ζ)F[f(v)f(v − u)]du , (3.1.5)
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where

Gλ,β(u, ζ) =

∫

σ∈S2

Cλ(σ)|u|λ[e−i β
2
ζ·(|u|σ−u)) − 1]dσ

= |u|λ
[
ei

β
2
ζ·u
∫

σ∈S2

(Cλ(σ)e−i β
2
|u|ζ·σ − 1)dσ

]
. (3.1.6)

Note that (3.1.6) is valid for both isotropic and anisotropic interactions. For the

former type, a simplification ensues due to the fact the Cλ(σ) is independent of

σ ∈ S2:

Gλ,β(u, ζ) = Cλω2 |u|λ
[
ei

β
2

ζ.usinc(
β|u||ζ|

2
) − 1

]
. (3.1.7)

Thus, it is seen that the integration over σ on the unit sphere S2 is completely in-

dependent, and there is actually a closed form expression for this integration, given

by (3.1.7) in the case of isotropic collisions. In the case of anisotropic collisions, the

dependence of Cλ on σ is again isolated into a separate integral over the unit sphere

S2 as given in (3.1.6). The above expression can be transformed for elastic collisions

β = 1 into a form suggested by Rjasanow and Ibragimov [60].

Further simplification of (3.1.5) is possible by observing that the Fourier transform

inside the integral can be written in terms of the Fourier transform of f(v) since it

can also be written as a convolution of the Fourier transforms. Let h(v) = f(v−u).
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Then, (3.1.5) can be written as

Q̂(ζ) =

∫

u∈R3

Gλ,β(u, ζ)F[f(v)h(v)]du =

∫

u∈R3

Gλ,β(u, ζ)
1

(
√

2π)3
(f̂ ∗ ĥ)(ζ)du

=

∫

u∈R3

Gλ,β(u, ζ)
1

(
√

2π)3

∫

ξ∈R3

f̂(ζ − ξ)ĥ(ξ)dξdu

=

∫

u∈R3

Gλ,β(u, ζ)
1

(
√

2π)3

∫

ξ∈R3

f̂(ζ − ξ)f̂(ξ)e−iξ·udξdu

=
1

(
√

2π)3

∫

ξ∈R3

f̂(ζ − ξ)f̂(ξ)[

∫

u∈Rd

Gλ,β(u, ζ)e−iξ·udu]dξ

=
1

(
√

2π)3

∫

ξ∈R3

f̂(ζ − ξ)f̂(ξ)Ḡλ,β(ξ, ζ)dξ, (3.1.8)

where Ḡλ,β(ξ, ζ) =
∫
u∈R3 Gλ,β(u, ζ)e−iξ·udu. Let u = re, e ∈ S2, r ∈ R. Using

(3.1.7), this gives

Ḡλ,β(ξ, ζ) =

∫

r

∫

e

r2G(re, ζ)e−irξ·ededr

= 16π2Cλ

∫

r
rλ+2[sinc(

rβ|ζ|
2

)sinc(r|ξ − β

2
ζ|) − sinc(r|ξ|)]dr .

Since the domain of the computation is restricted to Ωv = [−L,L)3, u ∈ [−2L, 2L)3,

and so r ∈ [0, 2
√

3L] and

Ḡλ,β(ξ, ζ) = 16π2Cλ

∫ 2
√

3L

0
rλ+2[sinc(

rβ|ζ|
2

)sinc(r|ξ− β

2
ζ|)− sinc(r|ξ|)]dr . (3.1.9)

Note that (3.1.9) is evaluated over a sphere with radius 2L. This sphere contains

the domain of interest of u i.e., [−2L, 2L)3. A point worth noting is that the above

formulation (3.1.8) results in O(N6) number of operations, where N is the number

of discretizations in each velocity direction. Also, exploiting the symmetric nature

in particular cases of the collision kernel, one can reduce the number of operations

to O(N3logN).
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3.2 Conservation Method - An Isomoment problem

In the current section, we are following the path suggested by [81] for d = 3. Let

Ωv = [−L,L)3 and Ωζ = [−Lζ , Lζ)
3 be the domains of v = (v1, v2, v3) and ζ =

(ζ1, ζ2, ζ3) respectively. Define hζ =
2Lζ

N and ζk
i = kihζ for i = 1, 2, 3. Also, let

P
N = span{eiζk·v| − Lζ ≤ ζk

l < Lζ , l = 1, 2, 3;−N/2 ≤ kl < N/2},

be the set of trigonometric polynomials of degree N . For the sake of brevity, we

denote k = (k1, k2, k3) and let

N/2+1∑

k1,k2,k3=−N/2

=
∑

|k|<N/2

=
∑

k

.

Also, let Π : L2(Ωv) → P
N to be the orthogonal projection operator upon P

N in the

L2(Ωv) inner product such that

〈f − Πf, ψ〉 = 0 ∀ ψ ∈ P
N ,

〈f, f〉 = ‖f‖L2(Ωv).

Then the probability distribution function f(v) can be approximated by a truncated

Fourier series defined (ignoring the integration weights and the Fourier normalization

coefficient (1/(2π)3/2)) as

Πf(v) = fΠ(v) =
∑

k

f̂N (ζk)e
iζk ·v , (3.2.1)

where

f̂N(ζk) =
1

(
√

2π)3

∫

v

f(v)e−iζk ·vdv .

Also, it is easy to prove that

〈Πψ, φ〉 = 〈ψ,Πφ〉 = 〈Πψ,Πφ〉, ψ, φ ∈ L2(Ωv). (3.2.2)
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Define

Q(f, f) : Classic non-linear Boltzmann collision integral

with supp[Q(f, f)] ∩ supp[f ] ⊂ Ωv

Q(fΠ, fΠ) : Classic collision integral

evaluated at the truncated Fourier series of f(v)

QΠ(fΠ, fΠ) : Projection of Q(fΠ, fΠ)

= ΠQ(fΠ, fΠ) =
∑

k

Q̂(ζk)e
iζk ·v ,

where Q̂(ζk) =

(
1√
2π

)3 ∫

v

ΠQ(fΠ, fΠ)e−iζk ·vdv

QΠ
C(fΠ, fΠ) : Conserved version of QΠ(fΠ, fΠ)

i.e., QΠ(fΠ, fΠ) after Lagrangian correction.

Using the above definitions, it is easy to see that the space homogeneous Boltzmann

equation can be approximated in terms of the Fourier series expansions as

∂

∂t
f(v, t) = QΠ(fΠ, fΠ) . (3.2.3)

The conserved version of QΠ(fΠ, fΠ) is obtained by defining a constrained La-

grange multiplier minimization problem with the moment conservation properties

of QΠ
C(fΠ, fΠ) as the constraints and finding the critical points of the objective

function.

3.2.1 Conservation Method - An Extended Isoperimetric problem

Due to the truncation of the velocity domain, QΠ(fΠ, fΠ) does not preserve all

the moments that its unrestricted counterpart Q(f, f) does. This issue of non-

conservation of moments cannot be ignored as it is a very important property of
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the space homogeneous Boltzmann equation. In order to achieve this, one needs

to enforce these moment conservation properties artificially by imposing them as

constraints in a optimization problem. For the sake of brevity, let

qu(v) := QΠ(fΠ, fΠ)(v) ,

qc(v) := QΠ
C(fΠ, fΠ)(v) .

(3.2.4)

The method explained in the previous Section is invariant under elasticity of colli-

sions, i.e., it works for both elastic and inelastic collisions. The moment conservation

properties for an elastic collision differ from those of an inelastic collision. So, we

form two similar but different optimization problems, one for elastic collisions and

one for inelastic collisions (described later). We form the following optimization

problem for the elastic case.

Elastic Problem (E):

Minimize - Objective Function Ae(qc) :=

∫

Ωv

(qu(v) − qc(v))2dv

Subject to : ψ1(qc) :=

∫

Ωv

qc(v)dv = 0;

ψj+1(qc) :=

∫

Ωv

vjqc(v)dv = 0, ∀j = 1, 2, 3;

ψ5(qc) :=

∫

Ωv

|v|2qc(v)dv = 0 ; (3.2.5)

that is, minimize the quadratic cost functional of the correction to the projected

collision integral subject to conservation constraints in (3.2.5).

Lemma 3.2.1. (Elastic Lagrange Estimate): A solution to (3.2.5) exists and is

given by

qc(v) = qu(v) − 1

2
(γ1 +

3∑

j=1

γj+1vj + γ5|v|2) ,

and the minimized objective function is given by

Ae(qc) = ‖qu−qc‖2
L2(Ωv) = 2L3γ2

1 +
2L5(γ2

2 + γ2
3 + γ2

4)

3
+γ2

5

38

15
L7+γ1γ54L

5 , (3.2.6)
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where γj , for j = 1, ..., 5, are Lagrange multipliers associated with the elastic opti-

mization problem given by

γ1 = O3ρu +O5eu ,

γi+1 = O5µ
i
u , i = 1, 2, 3 ,

γ5 = O5ρu +O7eu ,

where ρu, eu, µ
i
u are defined below in (3.2.8) and Or = O( 1

Lr ) for r ∈ Z and Or

depends on Ωv = [−L,L)3 defining the integration domain and also on the integrals

of moment weights over Ωv.

Proof. From calculus of variations, when the objective function is an integral equa-

tion and the constraints are also integrals, the optimization problem can be solved

by forming the Lagrangian functional and finding its critical points. Define

H(qc, γ) = Ae(qc) +

5∑

i=1

γiψi(qc)

=

∫

Ωv

[
(qc(v) − qu(v))2 + γ1qc(v) +

3∑

j=1

γj+1vjqc(v) + γ5|v|2qc(v)dv
]

where γ = (γ1, · · · , γ5). Let h(v, qc, q
′
c, γ) = (qc(v)−qu(v))2+γ1qc(v)+

∑3
j=1 γj+1vjqc(v)+

γ5|v|2qc(v). Then

H(qc, q
′

c, γ) =

∫

Ωv

h(v, qc, q
′

c, γ)dv .

To find the critical point, one needs to compute DqcH and DγjH, j = 1, · · · , 5. In or-

der to find DqcH we can get the Euler-Lagrange equations and solve for the function

qc(v) that satisfies them. DγiH, i = 1, · · · , 5, just retrieves the constraint integrals.

From the calculus of variations, for multiple independent variables v1, v2, v3 and a
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single dependent function qc(v), the Euler-Lagrange equations are given by

D2h(v, qc, q
′

c, γ) =

3∑

i=1

d

dvi
D3h(v, qc, q

′

c, γ)

i.e.,
∂

∂qc
h(v, qc, q

′

c, γ) =

3∑

j=1

d

dvj

∂

∂q′c
h(v, qc, q

′

c, γ) .

But, h(v, qc, q
′

c, γ) is independent of q′c, so

∂

∂qc
h(v, qc, q

′

c, γ) = 0 .

This gives the following equation for the conservation correction in terms of the

Lagrange multipliers:

2(qc − qu) + γ1 +

3∑

j=1

γj+1vj + γ5|v|2 = 0

⇒ qc(v) = qu(v) − 1

2
(γ1 +

3∑

j=1

γj+1vj + γ5|v|2) . (3.2.7)

Let g(v, γ) = γ1 +
∑3

j=1 γj+1vj + γ5|v|2. Substituting (3.2.7) into the constraints

from (3.2.5) gives

ρu :=

∫

Ωv

qu(v)dv =
1

2

∫

Ωv

g(v, γ)dv

µj
u :=

∫

Ωv

vjqu(v)dv =
1

2

∫

Ωv

vjg(v, γ)dv, j = 1, 2, 3

eu :=

∫

Ωv

|v|2qu(v)dv =
1

2

∫

Ωv

|v|2g(v, γ)dv . (3.2.8)

Identities (3.2.8) form a system of 5 linear equations in 5 unknown variables that

can be solved. Solving for the critical γj, j = 1, ..., 5, gives

γ1 = O3ρu +O5eu ,

γj+1 = O5µ
j
u , j = 1, 2, 3 ,

γ5 = O5ρu +O7eu , (3.2.9)
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where Or = O( 1
Lr ) for r ∈ Z and Or depends on Ωv = [−L,L)3 defining the inte-

gration domain and also on the integrals of moment weights over Ωv. In particular,

Or depends inversely on the volume of the domain Ωv = [−L,L)3.

Substituting these values of critical Lagrange multipliers (3.2.9) into (3.2.7) gives

the critical qc(v). But we are interested in the objective function Ae(qc) in (3.2.5)

Ae(qc) = ‖qu − qc‖2
L2(Ωv) =

∫

Ωv

(qc(v) − qu(v))2dv

=
1

4

∫

Ωv

(γ1 +
3∑

j=1

γj+1vj + γ5|v|2)2dv.

Upon simplification,

‖qu − qc‖2
L2(Ωv) = 2L3γ2

1 +
2L5(γ2

2 + γ2
3 + γ2

4)

3
+ γ2

5

38

15
L7 + γ1γ54L

5 , (3.2.10)

where γj , j = 1, ..., 5, as given by (3.2.9) are dependent on the moments of the

unconserved collision integral.

Similar to (3.2.5), we now form the following optimization problem for the inelastic

case

Inelastic Problem (IE):

Minimize : Ain(qc) :

∫

Ωv

(qu(v) − qc(v))2dv

Subject to : ψ1(qc) :

∫

Ωv

qc(v)dv = 0;

ψj+1(qc) :

∫

Ωv

vjqc(v)dv = 0,∀j = 1, 2, 3 . (3.2.11)

Following the minimization process as given in the proof of Lemma 3.2.1, we get the

following Lemma.
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Lemma 3.2.2. (Inelastic Lagrange Estimate): A solution to (3.2.5) exists and is

given by

qc(v) = qu(v) − 1

2
(γ1 +

3∑

j=1

γj+1vj) ,

and the minimized objective function is given by

Ain(qc) = ‖qu − qc‖2
L2(Ωv) = 2L3γ2

1 +
2L5(γ2

2 + γ2
3 + γ2

4)

3
, (3.2.12)

where γj for j = 1, ..., 4, are Lagrange multipliers associated with the inelastic opti-

mization problem given by

γ1 = O3ρu ,

γi+1 = O5µ
j
u , j = 1, 2, 3 , (3.2.13)

where Or = O( 1
Lr ) for r ∈ Z and Or depends on Ωv = [−L,L)3 defining the inte-

gration domain and also on the integrals of moment weights on Ωv. In particular,

Or depends inversely on the volume of the domain Ωv = [−L,L)3.

Remark: Note that equation (3.2.6) in Lemma 3.2.1 (elastic optimization prob-

lem) indicates dependence only on the unconserved moments ρu, µ
1
u, µ

2
u, µ

3
u, and eu

of qu(v). Ideally these are supposed to be zero. Similarly, (3.2.12) in Lemma 3.2.2

(inelastic optimization problem) indicates dependence on the unconserved moments

ρu, µ
1
u, µ

2
u, and µ3

u of qu(v). Also, Ae(qc) in (3.2.6) differs from Ain(qc) in (3.2.12) in

the last two terms which correspond to the energy conservation constraint.

The next theorem shows the sharp control from the extended isoperimetric problem

i.e. the conservation correction to the collision integral is spectrally accurate.

Theorem 3.2.3. (Conservation Correction Estimate): The accuracy of the conser-

vation scheme is directly proportional to the spectral accuracy of the method:

‖QΠ
C(fΠ, fΠ) −QΠ(fΠ, fΠ)‖L2(Ωv) ≤ Ĉ‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv) , (3.2.14)
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where Ĉ is a constant that is independent of the domain size L.

Proof. Let ψ(v) ∈ L2(Ωv). As in the case of the classic space-homogeneous Boltz-

mann equation,

∂

∂t
f(t,v) = Q(f, f)(v) ⇒ 〈Q(f, f), ψ〉 = 〈 ∂

∂t
f, ψ〉 . (3.2.15)

From (3.2.3), the space homogeneous Boltzmann equation for the truncated Fourier

series is

∂

∂t
fΠ(t,v) = QΠ(fΠ, fΠ)(v) ⇒ 〈QΠ(fΠ, fΠ), ψ〉 = 〈 ∂

∂t
fΠ, ψ〉 . (3.2.16)

For the elastic Boltzmann collision integral, 〈Q(f, f), ψ〉 = 0 for ψ(v) = 1, v1, v2, v3, |v|2,
and for the inelastic case, 〈Q(f, f), ψ〉 = 0 for ψ(v) = 1, v1, v2, v3 . From (3.2.15) -

(3.2.16),

|〈qu, ψ〉| = |〈QΠ(fΠ, fΠ), ψ〉| = |〈 ∂
∂t
fΠ, ψ〉 − 〈 ∂

∂t
f, ψ〉|

= |〈 ∂
∂t

(fΠ − f), ψ〉| (3.2.17)

≤ ‖ ∂
∂t

(fΠ − f)‖L2(Ωv)‖ψ‖L2(Ωv)

= ‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv)‖ψ‖L2(Ωv) .

For ψ(v) = 1, v1, v2, v3, |v|2, the L2(Ωv) norms can be explicitly computed and they

are calculated to be proportional to powers of L. Exact calculations give

Cρ : ‖|1|‖L2(Ωv) =
√

8L3 ,

Cµ : ‖|vj |‖L2(Ωv) =

√
8L5

3
, for j = 1, 2, 3 ,

Ce : ‖|v|2‖L2(Ωv) =

√
152L7

15
. (3.2.18)
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Using (3.2.18) in (3.2.18) gives estimates of the unconserved moments in terms of

the domain size L:

|ρu| ≤ Cρ‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv) ,

|µj
u| ≤ Cµ‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv), j = 1, 2, 3 ,

|eu| ≤ Ce‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv) . (3.2.19)

Elastic collisions:

We examine the individual terms of (3.2.6), by substituting in (3.2.9) and using

(3.2.19). We find that all the factors with Cρ, Cµ, and Ce cancel out exactly with

the Or = O( 1
Lr ), r ∈ Z terms with the appropriate values of r (recall that r depends

on the v− space dimension in the domain Ωv defining the integration domain and

the integrals of the moment weights in Ωv). The first term in (3.2.5) yields

γ2
12L3 = (O6ρ

2
u +O10e

2
u +O8ρueu)2L3

= O3ρ
2
u +O7e

2
u +O5ρueu

≤ (O3(C
ρ)2 +O7(C

e)2 +O5C
ρCe)‖Q(f, f) −QΠ(fΠ, fΠ)‖2

L2(Ωv)

≤ Ĉ1‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) . (3.2.20)

Similarly, using the definition of Or = O( 1
Lr ), r ∈ Z and plugging in the values of

ρu, eu, µ
j
u, j = 1, 2, 3 into other terms of (3.2.6) we get

γ2
j+1

2L5

3
= (µj

u)2O5

≤ Ĉ2‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv), for j = 1, 2, 3 ,

γ2
5

38L7

15
= O7e

2
u +O3ρ

2
u +O5ρueu

≤ Ĉ3‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) ,

γ1γ54L
5 = O3ρ

2
u +O7e

2
u +O5ρueu

≤ Ĉ4‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) , (3.2.21)
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where Ĉ1, Ĉ2, Ĉ3, Ĉ4 are constants independent of L and the order of moments. In

order to estimate (3.2.14) for the elastic case by means of (3.2.4), we need to estimate

‖qu − qc‖L2(Ωv) where we use the estimates from (3.2.21) in (3.2.6):

‖QΠ(fΠ, fΠ) −QΠ
C(fΠ, fΠ)‖2

L2(Ωv) = ‖qu − qc‖2
L2(Ωv)

= 2L3γ2
1 +

2L5(γ2
2 + γ2

3 + γ2
4)

3

+γ2
5

38

15
L7 + γ1γ54L

5

≤ Ĉ2‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) ,

where Ĉ is a constant independent of L but depends on the dimension of the v−
space and the order of moments through Ĉ1, Ĉ2, Ĉ3, Ĉ4. This is the claimed result.

Inelastic collisions:

Next, we examine the individual terms of (3.2.12) (inelastic optimization problem),

by plugging in (3.2.13) and using (3.2.19) and find that all the factors with Cρ, Cµ

cancel out exactly with the Or terms with the appropriate values of r to give:

γ2
12L3 = O3ρ

2
u

≤ ‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) ,

γ2
j+1

2L5

3
= (µj

u)2O5

≤ ‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv), for j = 1, 2, 3 . (3.2.22)

In order to estimate (3.2.14) by means of (3.2.4), we need to estimate ‖qu−qc‖L2(Ωv)

for the inealstic case where we use the estimates from (3.2.22) in (3.2.12)

‖QΠ(fΠ, fΠ) −QΠ
C(fΠ, fΠ)‖2

L2(Ωv) = ‖qu − qc‖2
L2(Ωv)

= 2L3γ2
1 +

2L5(γ2
2 + γ2

3 + γ2
4)

3

≤ 2‖Q(f, f) −QΠ(fΠ, fΠ)‖2
L2(Ωv) .
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This gives

‖QΠ(fΠ, fΠ) −QΠ
C(fΠ, fΠ)‖L2(Ωv) ≤

√
2‖Q(f, f) −QΠ(fΠ, fΠ)‖L2(Ωv)

As expected, again this shows that the conservation error is directly proportional to

the spectral approximation error and works for all finite domains Ωv = [−L,L)3 of

support of f(t, ·) in v.

Thus, we obtain the same conservation error (3.2.14) for both elastic and inelas-

tic collisions and the theorem 3.2.3 is proven.

3.2.2 Discrete in Time Conservation Method: Lagrange Multiplier Method

In this subsection, we consider the discrete version of the conservation scheme. For

such a discrete formulation, the conservation routine is implemented as a Lagrange

multiplier method where the conservation properties of the discrete distribution are

set as constraints. Let M = Nd, the total number of Fourier modes. For elastic

collisions, ρ = 0,m = (m1,m2,m3) = (0, 0, 0) and e = 0 are conserved, and for

inelastic collisions, ρ = 0 and m = (m1,m2,m3) = (0, 0, 0) are conserved. Let

ωj > 0 be the integration weights for j = 1, 2, ...,M . Let

Q̃ =
(
Q̃1 Q̃2 . . Q̃M

)T

be the distribution vector at the computed time step and

Q =
(
Q1 Q2 . .QM

)T

be the corrected distribution vector with the required moments conserved. For the

elastic case, let

Ce
(d+2)×M

=




ωj

viωj

|vj |2ωj



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and correspondingly, let

ae
(d+2)×1

=
(
ρ m1 m2 m3 e

)T

be the vector of conserved quantities. Using the above vectors, the conservation

method can be written as a constrained optimization problem:

(∗)
{

min‖Q̃ − Q‖2
2 : CeQ = ae;Ce ∈ R

d+2×M ,Q ∈ R
M ,ae ∈ R

d+2
}

To solve (*), one can employ the Lagrange multiplier method. Let γ ∈ R
d+2 be the

Lagrange multiplier vector. Then the scalar objective function to be optimized is

given by

L(Q, λ) =
M∑

j=1

|Q̃j −Qj |2 + γT (CeQ − ae) . (3.2.23)

Equation (3.2.23) can be solved explicitly for the corrected distribution value and

the resulting equation of correction be implemented numerically in the code. Taking

the derivative of L(Q, λ) with respect to fj, j = 1, ...,M , and γi, i = 1, ..., d + 2, i.e.,

gradients of L,

∂L

∂Qj
= 0 j = 1, ...,M ,

⇒

Q = Q̃ +
1

2
(Ce)T γ . (3.2.24)

Moreover,

∂L

∂γ1
= 0; i = 1, ..., d + 2 ,

⇒

CeQ = ae , (3.2.25)
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retrieves the constraints. Solving for γ,

Ce(Ce)Tγ = 2(ae − CeQ̃) . (3.2.26)

Now Ce(Ce)T is symmetric and, because Ce is the integration matrix, Ce(Ce)T is

positive definite. By linear algebra, the inverse of Ce(Ce)T exists. In particular one

can compute the value of λ by

γ = 2(Ce(Ce)T )−1(ae − CeQ̃) .

Substituting γ into (3.2.24), since ae = 0,

Q = Q̃ + (Ce)T (Ce(Ce)T )−1(ae − CeQ̃)

=
[
I − (Ce)T (Ce(Ce)T )−1Ce

]
Q̃

= ΛN (Ce)Q̃ , (3.2.27)

where I = N ×N identity matrix and we define ΛN (Ce) : I− (Ce)T (Ce(Ce)T )−1Ce.

For the future sections, define this conservation routine as Conserve. So,

Conserve(Q̃) = Q = ΛN (Ce)Q̃ . (3.2.28)

Define Dtf to be any order time discretization of ∂f
∂t . Then we have:

Dtf = ΛN (Ce)Q̃ , (3.2.29)

where we expect the required observables are conserved and the solution approaches

a stationary state for the elastic space homogeneous Boltzmann equation, since

limn→∞ ‖ΛN (C)Q(fn
j , f

n
j )‖∞ = 0 [52]. Identity (3.2.29) summarizes the whole con-

servation process. As described previously, setting the conservation properties as

constraints to a Lagrange multiplier optimization problem ensures that the required

observables are conserved.
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3.3 Accuracy and Consistency

In this section, we prove the accuracy of the artificial conservation property imposed

and the spectral accuracy of approximating the classic collision integral with the pro-

jected version. Define Hα,0(Ωv) = {g ∈ L2(Ωv)|Dβg ∈ L2(Ωv)∀|β| ≤ |α|; supp[g] ⊂
Ωv}.

The following result is an extension of the standard approximation estimate for

regular functions by Fourier series expansions to Hα,0(Ωv) space. We include here

that result for completeness of the reading.

Lemma 3.3.1. (Fourier Approximation Estimate I): Let g ∈ Hα,0(Ωv), gN = Πg =
∑

k ĝN (ζk)e
iζk ·v and α = (α1, α2, α3) be a multi-index. Then

‖g − gN‖L2(Ωv) ≤
C

Nα1+α2+α3
‖g‖Hα,0(Ωv) , (3.3.1)

where C is a constant that depends on the Fourier space (ζ) discretization, hζ .

Proof. From the definition of g(v) as a full Fourier series

g(v) =
∞∑

k=−∞
ĝN (ζk)e

iζk ·v ,

and using the definition of gN (v), we get:

g(v) − gN (v) =
∑

|k|>N/2

ĝN (ζk)e
iζk ·v. (3.3.2)

Parseval’s relation gives

‖g − gN‖L2(Ωv) =

√ ∑

|k|>N/2

|ĝN (ζk)|2.
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For g a periodic function or g ∈ Hα,0(Ωv), we have

|ĝ(ζk)| =
1

(
√

2π)3
1

∏3
j=1 |(ζ

j
k)

αj |
|(D̂αg)(ζk)|

⇒
∑

|k|>N/2

|ĝN (ζk)|2 =
1

(2π)3

∑

|k|>N/2

1
∏3

j=1 |(ζ
j
k)αj |2

|(D̂αg)(ζk)|2

≤ 1

(2π)3
1

∏3
j=1 |(ζ

j
N/2)

αj |2
∑

|k|>N/2

|(D̂αg)(ζk)|2

≤ 1

(2π)3
1

∏3
j=1 |(ζ

j
N/2)

αj |2
∑

k

|(D̂αg)(ζk)|2 .

So

∫

Ωv

|g(v) − gN (v)|2dv =
∑

|k|>N/2

|ĝN (ζk)|2 =
1

(2π)3
1

∏3
j=1 |(ζ

j
N/2)

αj |2

∫

Ωv

|Dαg(v)|2dv

=
1

(2π)3
1

∏3
j=1 |(ζ

j
N/2)

αj |2
‖Dαg‖2

L2(Ωv)

≤ 1

(2π)3
1

∏3
j=1 |(ζ

j
N/2)

αj |2
‖g‖2

Hα,0(Ωv).

We use the definition of ζα
N/2 =

Nhζ

2 . This gives the error in projection

‖g − gN‖L2(Ωv) ≤ C∏3
j=1N

αj
‖g‖Hα,0

≤ C

Nα1+α2+α3
‖g‖Hα,0

=
C

N |α| ‖g‖Hα,0 , (3.3.3)

where C is a constant that depends on the Fourier space (ζ) discretization, hζ . Note

that α is the degree of regularity of g as a multi-index.

Define ‖g‖Lp
m

(Ωv) := (
∫
Ωv

|(1 + |v|2)m/2g(v)|pdv)1/p. We now extend the

above result (3.3.3) to a weighted L2
m(Ωv) norm.
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Corollary 3.3.2. (Fourier Approximation Estimate II): Let g ∈ Hα,0(Ωv), gN =

Πg =
∑

k ûN (ζk)e
iζk ·v and α = (α1, α2, α3) be a multi-index. Then,

‖g − gN‖L2
m(Ωv) ≤

C

Nα1+α2+α3
‖g‖Hα,0

m (Ωv) , (3.3.4)

where C is a constant that depends on the Fourier space (ζ) discretization, hζ .

Proof. Let U(v) = (1 + |v|2)m/2(g − gN )(v) and apply Lemma 3.3.1 to it. Hence

the corollary.

Next, we derive an estimate on the classic collision integral Q(f, f). The following

theorem draws from the estimates for variable hard potentials for the collision in-

tegrals originally derived in [48] for elastic and inelastic hard sphere interactions in

the whole velocity space R
3. In the sequel, the following notation is used

‖.‖Lk
l (R3) = ‖.‖Lk

l
.

Theorem 3.3.3. (Collision Integral Estimate for Elastic/ Inelastic Collisions): For

f, g ∈ L2
m+λ,

‖Q(f, g)‖L2
m
≤ Cλ,β(‖f‖L2

m+λ
‖g‖L1

m+λ
+ ‖f‖L1

m+λ
‖g‖L2

m+λ
) , (3.3.5)

where Cλ,β is a constant that depends on the collision cross-section, mass and energy

of the initial state, λ and β = 1+e
2 ; e is the restitution coefficient.

Proof. In Lemma 4.1 in [48], we have proven the above estimate for λ = 1 for

both elastic and inelastic collisions for the whole velocity domain R
3. However a

thorough calculation shows that it is valid for any 0 ≤ λ ≤ 1. Consider Q(f, g) =

Q+(f, g)−Q−(f, g), the asymmetric form of the collision operator. For an estimate
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on the loss part of the collision integral, consider that:

Q−(f, g) = f(v)(

∫

R3

B(|v − v∗|, θ)g(v∗)dv∗)

= f(v)[B(| · |, θ) ∗ g(·)](v)

= f(v)[B(|u|, θ) ∗ g(u)](v) ,

which gives [48]

‖Q−(f, g)‖L1
m

≤ C1Cλ‖f‖L1
m+λ

‖g‖L2
m+λ

≤ C2Cλ‖f‖L2
m+λ

‖g‖L2
m+λ

. (3.3.6)

Using the weak form of the collision integral, we reduce the L2
l (R

3) bound of the

asymmetric collision integral Q(f, g) to L1(R3) bounds on the operator S[ψ](v,v∗)

on the unit sphere S2, defined as follows from [48], where B(u, σ) = |u|λb(u, σ),

S[ψ](v,v∗) =

∫

σ∈S2

ψ
′
b(u, σ)dσ

=

∫

u·σ>0
ψ

′
b(u, σ)dσ −

∫

−u·σ>0
ψ

′
b(u, σ)dσ (3.3.7)

= S+[ψ](v,v∗) − S−[ψ](v,v∗) .

The ‖S±[ψ](v,v∗)‖L1 estimate from Proposition 4.2 in [48] gives

∫

v∗

S+[ψ](v,v∗)dv∗ ≤ (
β

2
)−3‖ψ‖L1 ,

∫

v

S−[ψ](v,v∗)dv ≤ (
2 − β

2
)−3‖ψ‖L1 .

(3.3.8)

Next, we bound Q(f, g) with (3.3.8) using the definition < v >m:= (1 + |v|2)m/2.

Let Λ(v,v∗) =< v >m+λ + < v∗ >m+λ, then:
∫

v∈R3

Q(f, g)ψdv ≤ Cm

∫

v∗∈R3

f(v∗)
∫

v∈R3

g(v)(Λ(v,v∗))S+[ψ](v,v∗)dvdv∗

+Cm

∫

v∗∈R3

g(v∗)
∫

v∈R3

f(v)(Λ(v,v∗))S−[ψ](v,v∗)dv∗dv . (3.3.9)
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Using (3.3.8) in (3.3.9) and simplifying the resulting expression gives the following

with ψ = Q(f, g)

‖Q(f, g)‖L2
m
≤ Cλ,β(‖f‖L2

m+λ
‖g‖L1

m+λ
+ ‖f‖L1

m+λ
‖g‖L2

m+λ
) (3.3.10)

where Cλ,β is a constant that depends on the collision cross-section, mass and energy

of the initial state, λ and β = 1+e
2 ; e is the restitution coefficient.

Define

Hα
m : {g ∈ L2

m|Dβg ∈ L2
m∀|β| ≤ |α|} ,

‖g‖2
Hα

m
:

∑

∀β,|β|≤|α|
‖∂βg‖2

L2
m
. (3.3.11)

Next, we prove a Sobolev class regularity bound for the collision integral based on

the technique outlined in Lemma 4.6 in [48] and the Leibniz formula

∂jQ(f, g) =
∑

0≤l≤j

(
j

l

)
Q(∂j−lf, ∂lg) , (3.3.12)

where j and l are multi-indices, j = (j1, j2, j3), l = (l1, l2, l3), ∂
j = ∂j1

v1∂
j2
v2∂

j3
v3 and

(j
l

)

are multinomial coefficients.

Theorem 3.3.4. (Sobolev Bound Estimate): For f, g ∈ Hα
m+λ ∩ Hα

m+µ, we have

the following bound on the assymetric collision integral Q(f, g) in Hα
m:

‖Q(f, g)‖2
Hα

m
≤ Ĉλ,β,µ

∑

1≤l≤α

(
α

l

)
(‖f‖2

Hα−l
m+λ

‖g‖2
Hl

m+µ
+ ‖f‖2

Hα−l
m+µ

‖g‖2
Hl

m+λ
) , (3.3.13)

where Ĉλ,β,µ is a constant that depends on µ > 3
2 +λ, λ, β, and the mass and energy

of the initial state.

Proof. We now get the Hα
m estimate of the asymmetric collision integral Q(f, g)

using the methodology outlined in lemma 4.6 in [48]. From (3.3.11) and (3.3.12),
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we know

‖Q(f, g)‖2
Hα

m
=

∑

1≤j≤α

‖∂jQ(f, g)‖2
L2

m

=
∑

1≤j≤α

‖
∑

1≤l≤j

(
j

l

)
Q(∂j−lf, ∂lg)‖2

L2
m

≤
∑

1≤j≤α

∑

1≤l≤j

(
j

l

)
‖Q(∂j−lf, ∂lg)‖2

L2
m
. (3.3.14)

We then use Theorem 3.3.3 in the summand of (3.3.14)

‖Q(∂j−lf, ∂lg)‖2
L2

m
≤ (Cλ,β)2(‖∂j−lf‖L2

m+λ
‖∂lg‖L1

m+λ
+ ‖∂j−lf‖L1

m+λ
‖∂lg‖L2

m+λ
)2

≤ 2(Cλ,β)2(‖∂j−lf‖2
L2

m+λ
‖∂lg‖2

L1
m+λ

(3.3.15)

+ ‖∂j−lf‖2
L1

m+λ
‖∂lg‖2

L2
m+λ

)2 .

Note that

‖∂jf‖L1
m+λ

≤ ‖ < v >λ−µ ‖L2‖∂jf‖L2
m+µ

, (3.3.16)

so if µ > 3
2 + λ, we get

‖∂jf‖L1
m+λ

≤ Ĉµ,λ‖∂jf‖L2
m+µ

, (3.3.17)

where Ĉµ,λ is a bounded constant that depends on λ and µ. Equation (3.3.16) can

be simplified using (3.3.17) to

‖Q(∂j−lf, ∂lg)‖2
L2

m
≤ Ĉλ,β,µ(‖∂j−lf‖2

L2
m+λ

‖∂lg‖2
L2

m+µ
+ ‖∂j−lf‖2

L2
m+µ

‖∂lg‖2
L2

m+λ
) .

(3.3.18)

Next we finish the proof by substituting in (3.3.18) into (3.3.14) and simplifying the
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expression to get

‖Q(f, g)‖2
Hα

m
≤ Ĉλ,β,µ

1

∑

1≤j≤α

∑

1≤l≤j

(
j

l

)
(‖∂j−lf‖2

L2
m+λ

‖∂lg‖2
L2

m+µ

+ ‖∂j−lf‖2
L2

m+µ
‖∂lg‖2

L2
m+λ

)

≤ Ĉλ,β,µ
2

∑

1≤l≤α

(
α

l

)
(‖∂α−lf‖2

L2
m+λ

‖∂lg‖2
L2

m+µ

+ ‖∂α−lf‖2
L2

m+µ
‖∂lg‖2

L2
m+λ

)

≤ Ĉλ,β,µ
∑

1≤l≤α

(
α

l

)
(‖f‖2

Hα−l
m+λ

‖g‖2
Hl

m+µ

+ ‖f‖2
Hα−l

m+µ
‖g‖2

Hl
m+λ

) , (3.3.19)

where Ĉλ,β,µ is a constant that depends on µ > 3
2 +λ, λ, β, and the mass and energy

of the initial state. Thus we have proved the theorem.

From the estimate (3.3.19) in Theorem 3.3.4, we now prove a useful result for the

symmetric collision integral Q(f, f)

Corollary 3.3.5. For f ∈ Hα
m+λ ∩Hα

m+µ

‖Q(f, f)‖Hα
m
≤ Ĉ

λ,β,µ‖f‖2
Hα

m+λ+µ
, (3.3.20)

where µ > 3
2 + λ, Ĉ

λ,β,µ
depends on the mass and energy of initial state, λ, β, and

µ.

Proof. Note that

‖f‖Hα
m+λ

≤ Cλ,µ‖f‖Hα
m+λ+µ

, (3.3.21)

where Cλ,µ depends on µ > 3
2 + λ, the dimension of the v− space, mass and energy

of the initial state.

61



Then we use (3.3.21) in (3.3.19) of the proof of Theorem 3.3.4 for g = f to get

‖Q(f, f)‖2
Hα

m
≤ Ĉλ,β,µ

∑

1≤l≤α

(
α

l

)
(‖f‖2

Hα−l
m+λ

‖f‖2
Hl

m+µ
+ ‖f‖2

Hα−l
m+µ

‖f‖2
Hl

m+λ
)

≤ Ĉλ,β,µ
2

∑

1≤l≤α

(
α

l

)
‖f‖4

Hα
m+λ+µ

. (3.3.22)

Upon simplification of (3.3.22), we get the corollary.

Remarks:

(i) From [36] and bilinearity of the Q(f, f),

Q(f, f) −Q(g, g) = Q(f + g, f − g) . (3.3.23)

(ii) If it has a regularity α = (α1, α2, α3), multi-index ∀|α| ≥ 0 then, Q(fΠ, fΠ) ∈
Hα,0(Ωv).

(iii) Computational velocity domain: The choice of truncation, L in the velocity

domain (Ωv = [−L,L)3) is based on two factors:

– The velocity domain is restricted to Ωv = [−L,L)3. The choice of L

is done in such a way that supp[f ] = [−Lf , Lf ]3 ⊂ Ωv. From [81], it

is known that for such a choice of f , supp[Q(f, f)] ⊂ [−
√

2Lf ,
√

2Lf ]3.

In order for the support relations of Q and f to hold good in the es-

timates, the value of L is chosen in such a way that Ωv contains the

supports of both Q and f , i.e., L >
√

2Lf . So, Q(fΠ, fΠ) ∈ L2(Ωv) and

supp[Q(fΠ, fΠ)] ⊂ Ωv.

– Long time behavior of f :
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∗ If there is a steady state solution, M to the problem, then given any

ε, ∃Ωε such that

‖M‖Lk
l (R3\Ωε)

≤ O(ε) .

∗ For k = 1, 2; l ∈ [0, 1], from the work of Bobylev, Cercignani and

Gamba [26] for Maxwell type interactions,

suppf0 ⊂ Ωε, and ‖f − M‖Lk
l (R3) ≤ e−µt‖f0 − M‖Lk

l (R3) .

∗ So, uniformly in time

‖f‖Lk
l (R3\Ωε)

≤ ‖f − M‖Lk
l (R3\Ωε)

+ ‖M‖Lk
l (R3\Ωε)

≤ ‖f − M‖Lk
l (R3) +O(ε)

≤ e−µt‖f0 − M‖Lk
l (R3) +O(ε) .

Since ‖f0 − M‖Lk
l (R3) is known and time independent,

‖f‖Lk
l (R3\Ωε)

≤ O(ε) for any t > T∗ = |log(ε+‖f0−M‖Lk
l (R3))/µ| .

Then,

‖f‖Lk
l (R3) ≤ ‖f‖Lk

l (Ωε)
+ ‖f‖Lk

l (R3\Ωε)

≤ ‖f‖Lk
l (Ωε)

+O(ε) for any t > T∗ .(3.3.24)

Note: ε is seen as the mass lost due to truncation of the computed

distribution functions.

Theorem 3.3.6. (Convergence Estimate): For f ∈ Hα
λ+µ(Ωv), and fΠ ∈ Hγ

λ+µ(Ωv),

‖Q(f, f)−QΠ
C(fΠ, fΠ)‖L2(Ωv) ≤ Ĉλ,β,µ

‖f‖2
Hα

λ+µ(Ωv)

N |α| +Ĉ
λ,β,µ‖fΠ‖Hγ

λ+µ(Ωv)

N |γ| +O(ε)+O(ε2) ,

(3.3.25)
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where Ĉ
λ,β,µ

is a constant that depends on λ, β, L, and the Fourier space (ζ) dis-

cretization, hζ ; C
λ,β,L is a constant that depends on λ, β, and µ; and α, γ are the

degrees of regularity of f and Q, respectively, as multi-indices. ε is the error due to

velocity truncation.

Proof. The proof of (3.3.25) is straightforward due to Theorems 3.2.3 and 3.3.3 and

Corollary 3.3.2. The first step in proving (3.3.25) is rewriting its left hand side

using the transitive property and the bilinearity property of Q(f, g) from (3.3.23).

For brevity, let Q(f) = Q(f, f), Q(fΠ) = Q(fΠ, fΠ), QΠ(fΠ) = QΠ(fΠ, fΠ), and

QΠ
C(fΠ) = QΠ

C(fΠ, fΠ). Then

‖Q(f) −QΠ
C(fΠ)‖L2(Ωv) ≤ ‖Q(f) −QΠ(fΠ)‖L2(Ωv) + ‖QΠ(fΠ) −QΠ

C(fΠ)‖L2(Ωv)

≤ (1 + Ĉ)(‖Q(f) −QΠ(fΠ)‖L2(Ωv)

≤ C1(‖Q(f) −Q(fΠ)‖L2(Ωv) + ‖Q(fΠ) −QΠ(fΠ)‖L2(Ωv))

≤ C1(‖Q(f + fΠ, f − fΠ)‖L2(Ωv)

+ ‖Q(fΠ) −QΠ(fΠ)‖L2(Ωv)) (3.3.26)

where Theorem 3.2.3 was used in the second line. Now,

‖Q(f + fΠ, f − fΠ)‖L2(Ωv) ≤ ‖Q(f + fΠ, f − fΠ)‖L2 . (3.3.27)

We then use Theorem 3.3.3 with m = 0 and (3.3.27) in the first term of the last line

of (3.3.26):

‖Q(f + fΠ, f − fΠ)‖L2(Ωv) ≤ Cλ,β(‖f + fΠ‖L2
λ
‖f − fΠ‖L1

λ
+ ‖f + fΠ‖L1

λ
‖f − fΠ‖L2

λ
) .

Using (3.3.24) in the above equation,

‖Q(f + fΠ, f − fΠ)‖L2(Ωv) ≤ C̃λ,β(‖f‖L2
λ(Ωv)‖f − fΠ‖L1

λ(Ωv)

+‖f‖L1
λ(Ωv)‖f − fΠ‖L2

λ(Ωv) +O(ε) +O(ε2)) . (3.3.28)
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For g ∈ L2
m+µ(Ωv), it is straightforward to see that

‖g‖L1
m(Ωv) ≤ Cµ

1 ‖g‖L2
m+µ(Ωv) ,

‖g‖L2
m(Ωv) ≤ Cµ

2 ‖g‖L2
m+µ(Ωv) , (3.3.29)

where Cµ
1 , C

µ
2 are bounded constants that depend on µ > 3

2 . Using (3.3.29) and

(3.3.4) from Corollary 3.3.2 in (3.3.28), we get

‖Q(f + fΠ, f − fΠ)‖L2(Ωv) ≤ C̃λ,β(Cµ
2 ‖f‖L2

λ+µ(Ωv)C
µ
1 ‖f − fΠ‖L2

λ+µ(Ωv)

+ Cµ
1 ‖f‖L2

λ+µ(Ωv)C
µ
2 ‖f − fΠ‖L2

λ+µ(Ωv))

≤ Ĉλ,β,µ‖f‖L2
λ+µ(Ωv)‖f − fΠ‖L2

λ+µ(Ωv)

≤ Ĉλ,β,µ
1

‖f‖L2
λ+µ(Ωv)‖f‖Hα,0

λ+µ(Ωv)

N |α|

≤ Ĉλ,β,µ
2

‖f‖Hα,0
λ+µ(Ωv)‖f‖Hα,0

λ+µ(Ωv)

N |α|

≤ Ĉλ,β,µ
‖f‖2

Hα
λ+µ(Ωv)

N |α| , (3.3.30)

where α gives the degree of regularity of f in v as a multi-index. Lets consider

the second term in the last line of (3.3.26). This term can be bounded using the

projection approximation estimate from Corollary 3.3.2. This gives

‖Q(fΠ) −QΠ(fΠ)‖L2(Ωv) ≤ Ĉ4

‖Q(fΠ)‖Hγ,0(Ωv)

N |γ|

≤ Ĉ
‖Q(fΠ)‖Hγ (Ωv)

N |γ| , (3.3.31)

where γ gives the degree of regularity of Q in v as a multi-index. We combine

the results from (3.3.30) and (3.3.31) and absorbing C into Ĉλ,β,L and Ĉ in the

appropriate terms to give

‖Q(f, f)−QΠ
C(fΠ, fΠ)‖L2(Ωv) ≤ Ĉλ,β,µ

‖f‖2
Hα

λ+µ(Ωv)

N |α| +Ĉ
‖Q(fΠ)‖Hγ (Ωv)

N |γ| +O(ε)+O(ε2) ,

(3.3.32)
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where Ĉ is a constant that depends on v− space dimension and the Fourier space

(ζ) discretization, hζ ; C
λ,β,L is a constant that depends on λ, β, and µ; and α, γ are

the degrees of regularity of f and Q respectively as multi-indices.

Finally, we finish proving (3.3.25) from (3.3.33) by using k = 0 in Corollary 3.3.5

and using (3.3.24) to get

‖Q(f, f)−QΠ
C(fΠ, fΠ)‖L2(Ωv) ≤ Ĉλ,β,µ

‖f‖2
Hα

λ+µ(Ωv)

N |α| +Ĉ
λ,β,µ‖fΠ‖Hγ

λ+µ(Ωv)

N |γ| +O(ε)+O(ε2)

(3.3.33)

where Ĉ
λ,β,µ

and Cλ,β,L are as required.
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Chapter 4

Self-Similar Asymptotics for the Space Homogeneous

Problem with Maxwell Type Interactions

As mentioned in the introduction, a new interesting benchmark problem for our

scheme is that of a dynamically scaled solution involving self-similar asymptotics.

More precisely, we present a simulation where the computed solution, in properly

scaled time, approaches a self similar solution. This is of interest because of the

power tail behavior, i.e., higher order moments of the computed solution are un-

bounded. The content of the current chapter is inspired by the work of Gamba and

Bobylev [17]. For completeness of this presentation, the analytical description of

such asymptotics is given here.

4.1 Self-Similar Solution for a Non-negative Thermostat Temper-

ature

We consider the Maxwell type equation from (2.2.12) related to a space homogeneous

model for a weakly coupled mixture modeling a slowdown process. The content of

this section is dealt in detail in [17] for a particular choice of zero background tem-

perature (cold thermostat). For the sake of brevity, we refer to [17] for certain

details. However, a slightly more general form of the self-similar solution for non

zero background temperature is derived here from the zero background temperature

solution. Without loss of generality for our numerical test, we assume the differen-

tial cross sections for the collision kernel, bL of the linear part and corresponding

nonlinear part, bN are the same, both denoted by b( ζ·σ
|ζ| ), satisfying the Grad cut-off
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conditions (2.1.6). In particular, condition (2.2.14) is automatically satisfied.

Taking the Fourier Transform of the initial value problem (2.2.12) with respect

to the velocity variable v (for a general velocity dimension d) yields

f̂t = Q̂(f̂ , f̂) + Θ

∫

σ∈Sd−1

b(
ζ · σ
|ζ| )[f̂(ζ+)M̂T(ζ−) − f̂(ζ)M̂T(0)]dσ

= Q̂(f̂ , f̂) + ΘL̂(f̂ , M̂T) ,

f̂(ζ, 0) = f̂0(ζ) ,

(4.1.1)

where f̂(0) = 1 and M̂T(ζ) = e−
T|ζ|2

2m . The first collisional integral is

Q̂(f̂ , f̂) =

∫

ω∈Sd−1

[
f̂(ζ+)f̂(ζ−) − f̂(0)f̂(ζ)

]
b(
ζ · σ
|ζ| )dσ ,

ζ± =
1

2
(ζ ± |ζ|ω) , (4.1.2)

corresponding to the transformed elastic collisions of particles with mass equal to

unity in spectral space. The corresponding exchange of coordinates in the second

linear integral L̂ in (4.1.1) is given by

ζ+ =
ζ +m|ζ|ω

1 +m
and ζ− = ζ − ζ+ , (4.1.3)

corresponding to those exchanging collisions with particles of mass m.

In order to benchmark our calculation we use a particular case of model (4.1.1)

for a choice of parameters where explicit solution formulae in Fourier space were

constructed in [17]. In particular, in order to find a solvable equation (4.1.1), we

set both sets of particles to have equal mass, that is m = 1 in (4.1.3). First, rescale

(4.1.1) with the Fourier transform equilibrium distribution (i.e., Maxwellian),

f̂(ζ, t) =
˜̂
f(ζ, t) exp(

−T|ζ|2
2

) ,
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so it follows

˜̂
ft = Q̂(

˜̂
f,

˜̂
f) + Θ

∫

σ∈Sd−1

b(
ζ · σ
|ζ| )[

˜̂
f(ζ+) − ˜̂

f(ζ)]dσ

= Q̂(
˜̂
f,

˜̂
f) + ΘL̂(

˜̂
f) . (4.1.4)

Notice that this last equation is equivalent to (4.1.1) for T = 0. Next, we will look

for isotropic solutions to the initial value problem. Let the initial states be isotropic

with bounded energy whose Fourier transform belongs to the unit ball of continuous

bounded functions with the L∞-norm. Set

x =
|ζ|2
2
, φ(x, t) =

˜̂
f(ζ, t) , (4.1.5)

and ζ · σ/|ζ| = cos θ = 2s − 1, where the differential cross section function b is

renormalized such that

∫

Sd−1

b(
ζ · σ
|ζ| ) dσ = 2d−1ωd−2

∫ 1

0

b(2s− 1)(s(1 − s))
d−3
2 ds =

∫ 1

0

G(s)ds = 1,

where the constant ωd−2 is the measure of the d−2 dimensional sphere. Then using

(4.1.5), the transformed and rescaled initial value problem (4.1.4) becomes

φt =

∫ 1

0
φ((1 − s)x)[φ(sx) + Θ]G(s)ds − (1 + Θ)φ(x) ,

φ(x, 0) = 1 − x+O(x1+ε) for ε ≥ 0, |x| < 1 .

(4.1.6)

Note that φ(0, t) = 1 for all t ≥ 0. For our simulations we take d = 3 and

b(cos θ) = G(s) = (4ω1)
−1 = 1/4π. However, it is possible to compute more general

cross sections satisfying the integrability condition in s. In what follows, the only

important assumption is that b(cos θ) satisfies the Grad cut-off assumption (2.1.6).

Further, in order to construct self-similar solutions with finite energy, one starts

by looking for solutions of (4.1.6) with the form

φ(x, t) = ψ(xe−µt) = 1 − a(xe−µt)p, as xe−µt → 0, with p ≤ 1 , (4.1.7)
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Note that p = 1 corresponds to initial states with finite energy. We shall see that

it is possible to choose a value of µ and Θ for which one can find explicit solutions

in Fourier space with a very peculiar behavior: they decay power like for large

velocities, and are unbounded at zero velocity. Equivalently, set

η = a
1
pxe−µt ,

and substitute φ(x, t) by ψ(η) in (4.1.6) to obtain

−ψ′
(η)µη + (1 + Θ)ψ(η) =

∫ 1

0
ψ((1 − s)η)[ψ(sη) + Θ] ds . (4.1.8)

Next, set the change of coordinates sη = y with its corresponding differentials

ds = dy
η and replace in (4.1.8) to obtain

−µηψ′
(η) + (1 + Θ)ψ(η) =

∫ η

0
ψ(η − y)[ψ(y) + Θ]

dy

η

=
1

η
[ψ ∗ (ψ + Θ)](η) . (4.1.9)

In order to construct an explicit solution to (4.1.9), one needs to examine its Laplace

transform. Define the Laplace transform as

w(z) = L(ψ)(z) =

∫ ∞

0
ψ(η)e−zηdη; Re(z) > z0 .

Recalling the Laplace transform properties L(η2ψ
′
(η))(z) = (zw(z))

′′
and L(ηψ(η))(z) =

−w′
(z), the corresponding Laplace transformed equation computed from (4.1.9)

reads

µ(zw(z))
′′

+ (1 + Θ)w
′
(z) + w(z)(w(z) +

Θ

z
) = 0 , (4.1.10)

or equivalently, for u(z) = z w(z), satisfies the equation

µz2 u′′ + (1 + Θ)z u′ + u (u− 1) = 0 . (4.1.11)
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Next, for a parameter q to be conveniently determined below, set ū(z) = u(z) =

u(z
1
q ), with z = zq. Then rewrite (4.1.11) in terms of ū(z) in order to obtain

µq2 z2ū′′ + q[µ(q − 1) + (1 + Θ)]z ū′ + ū2 − ū = 0 . (4.1.12)

To this end, for a parameter B, also to be conveniently determined below, set

ū(z) = z2 y(z) +B, so (4.1.12) is transformed into a solvable second order ODE for

y(z). That is

µ q2 z4 y′′ + z4 y2 + αz3 y′ + βz2 y +B(B − 1) = 0 ,

where the coefficients α and β satisfy

α = (5µq + 1 + Θ − µ)q and β = 4µq2 + 2B − 1 + 2q(1 + Θ − µ) , (4.1.13)

and setting both α and β to vanish, equation (4.1.13) is of Painlevé type. If in

addition, B is taken to be 0 or 1, the solutions of (4.1.13) are rational functions of

z depending on the parameter q.

The particular choice of B = 1 results in a self-similar solution with finite en-

ergy, which is the case of interest for our benchmarking calculations. In particular,

B = 1, combined with the α and β vanishing conditions of (4.1.13), yields that q

must satisfy 6µ q2 = 1. The corresponding reduced equation (4.1.13) is the simple

ODE y′′ = −6y2, whose solution is expressed in terms of the Weierstrass elliptic

function y(z) = −(c+ z)−2, with the constant c determined below by the appropri-

ate boundary conditions at infinity given in (4.2.1) in the next section. We remark

that the particular choice of B = 0 yields

µ(p) = − 1

6p2
,

Θ =
(3p − 1)(1 − 2p)

6p2
. (4.1.14)
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In particular, for B = 1 and choosing q such that α and β vanish, the solutions to

(4.1.11) are of the form

u(z) = 1 − (1 + c z−q)−2

with (4.1.15)

6µq2 = 1 and Θ = µ[1 − 5q] − 1 ,

where c is determined from the boundary conditions (4.2.1), which must satisfy

u(z) ∼= 1 − 1

zq
, as z → ∞ .

Since this condition at infinity is satisfied for the choice of q = −p
2 , then the vanishing

conditions on (4.1.13) results in the constraint that both µ and Θ are related to the

solution of the problem as follows

u(z) = 1 − (1 + z
p
2 )−2

with

µ =
2

3p2
and Θ =

(3p + 1)(2 − p)

3p2
.

In order to recover the corresponding self-similar solution in the space of probability

distributions with finite energy, one chooses p = 1, which forces from the above iden-

tity µ = 2
3 . To complete the discussion of finite background temperatures, we denote

the self-similar solution for the original equilibrium positive temperature T (i.e., the

hot thermostat case) for the linear collisional term (including time dependence for

convenience) by

φ0(x, t) = φ(x, t) for T = 0 and φT(x, t) = φ(x, t) for T > 0

so that φT(x, t) = φ0(x, t)e
−Tx . (4.1.16)

Note that the solution constructed in (4.2.2) in the next section is actually φ0(x, t).

Then the self-similar solution for non zero background temperature, denoted by
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φT(x, t), satisfies

φT(ζ, t) =
4

π

∫ ∞

0
e−|ζ|2e−2t/3as2/2 1

(1 + s2)2
e−|ζ|2T/2ds

=
4

π

∫ ∞

0
e−|ζ|2[e−2t/3as2+T]/2 1

(1 + s2)2
ds , (4.1.17)

where x = |ζ|2/2 has been used. In particular, let T̄ = e−2t/3as2 + T. Taking the

inverse Fourier Transform, we obtain the corresponding self-similar state, according

to (2.2.9), in probability space

f ss
T (|v|, t) = etFT(|v|et/3) with FT(|v|) =

4

π

∫ ∞

0

1

(1 + s2)2
e−|v|2/2T̄

(2πT̄ )
3
2

ds. (4.1.18)

As t→ ∞, T̄ = T + as2e
−2t
3 → T. This yields

FT(|v|) →t→∞

4

π

1

(2πT)
3
2

e−|v2/2T

∫ ∞

0

1

(1 + s2)2
ds = MT(v) , (4.1.19)

since
4

π

∫ ∞

0

1

(1 + s2)2
ds =

2

π

(
s

1 + s2
+ arctan(s)

)
|∞0 = 1. (4.1.20)

So, the self-similar particle distribution f ss
T

(v, t) approaches a rescaled Maxwellian

distribution with the background temperature T, that is according to (2.2.9),

f ss
T (|v|, t) = etFT(|v|et/3) ≈ et

(2πT)
3
2
e−(|v|2 e2t/3)/2T+t , as t→ ∞ .(4.1.21)

Remark: Such an asymptotic behavior, for finite initial energy, is due to the balance

of the binary term and the linear collisional term in (2.2.12).

4.2 Self Similar Asymptotics for Cold Thermostat

In order to complete the argument, we need the inverse Laplace transforms from

Bobylev and Cercignani [12], where it was shown that the inversion by Laplace

transform of u(z), the solution of (4.1.8) for p = 1 and µ = 2
3 , satisfies

ψ(η) =
4

π

∫ ∞

0

s2

(1 + s2)2
e−ηds .
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The Fourier transform of the isotropic self-similar solution associated to the problem

in (2.2.12) will take the form

φ(x, t) = ψ(xe−µt) = 1 − a(xe−µt)p, as xe−µt → 0, with p ≤ 1 , (4.2.1)

where x = |ζ|2/2 and µ and Θ are related by

µ =
2

3p2
and Θ =

(3p + 1)(2 − p)

3p2
.

Note that p = 1 in (4.2.1) corresponds to initial states with finite energy. It was

shown in [17] for T = 0 (i.e., cold thermostat), the Fourier transform of the self-

similar, isotropic solutions of (2.2.12) is given by

φ(x, t) =
4

π

∫ ∞

0

1

(1 + s2)2
e−xe

−2t
3 as2

ds , (4.2.2)

and its corresponding inverse Fourier transform for p = 1, µ = 2
3 and Θ = 4

3 (as

computed in [17]) is given by

f ss
0 (|v|, t) = etF0(|v|et/3) with F0(|v|) =

4

π

∫ ∞

0

1

(1 + s2)2
e−|v|2/2s2

(2πs2)
3
2

ds. (4.2.3)

Remark: It is interesting to observe that, as computed originally in [12], for B = 0

in (4.1.14), letting p = 1
3 or p = 1

2 in (4.2.2) yields Θ = 0, and one can construct

explicit solutions to the elastic BTE with infinite initial energy. It is clear now that

in order to have self-similar explicit solutions with finite energy, one needs to have

this weakly couple mixture model for slowdown processes, or bluntly speaking, the

linear collisional term added to the elastic energy conservative operator.

In addition, very interesting behavior is seen on FT(|v|) as T → 0 (cold thermostat

problem), where the particle distribution approaches a distribution with power-like

tails (i.e., a power law decay for large values of |v|) and an integral singularity at
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the origin. Indeed, in [17] an asymptotic behavior is derived for F0(|v|) from (4.2.3),

for large and small values of |v|, leading to

F0(|v|) = 2(
2

π
)5/2 1

|v|6 [1 +O(
1

|v|)], for |v| → ∞,

F0(|v|) =
21/2

π5/2

1

|v|2 [1 + 2|v|2ln(|v|) +O(|v|2)], for |v| → 0. (4.2.4)

In particular, the self-similar particle distribution function F (|v|), v ∈ R
3, behaves

like 1
|v|6 as |v| → ∞, and as 1

|v|2 as |v| → 0, which indicates a very anomalous,

non-equilibrium behavior as a function of velocity, but, nevertheless, remains with

finite mass and kinetic temperature. This asymptotic effect can be described as an

overpopulated (with respect to Maxwellian), large energy tails and infinitely many

particles at zero energy. This interesting, unusual behavior is observed in problems

of soft condensed matter [54].

We shall see, then in the following section, that our solver captures these states with

spectral accuracy and, consequently, the self similar solutions are attractors for a

large class of initial states. These numerical tests are a crucial aspect of the spec-

tral Lagrangian deterministic solver used to simulate this type of non-equilibrium

phenomena, where all these explicit formulas for our probability distributions allow

us to carefully benchmark the proposed numerical scheme.

4.3 Self-Similar Asymptotics for a General Problem

The self-similar nature of the solutions F (|v|) for a general class of problems, for a

wide range of values for the parameters β, p, µ and Θ, was addressed in [15] with

much detail. Three different behaviors have been clearly explained. Of particular

interest for our present numerical study are the mixture problem with a cold back-

ground and the inelastic Boltzmann cases.
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For the purpose of our presentation, let φ = F[f ] be the Fourier transform of the

probability distribution function satisfying the initial value problem (2.1.1)-(2.1.5)

or (2.2.3). Let’s denote by Γ(φ) = F[Q+(f, f)] the Fourier transform of the gain part

of the collisional term associated with the initial value problem. It was shown that

the operator Γ(φ), defined over the Banach space of continuous bounded functions

with the L∞-norm (i.e., the space of characteristic functions or the space of Fourier

transforms of probability distributions), satisfies the following three properties:

1 - Γ(φ) preserves the unit ball in the Banach space;

2 - Γ(φ) is an L-Lipschitz operator, i.e., there exists a bounded linear operator L

in the Banach space, such that

|Γ(u1) − Γ(u2)|(x, t) ≤ L(|u1 − u2|(x, t)) ∀ ‖ui‖ ≤ 1, i = 1, 2; .

3 - Γ(φ) is invariant under the transformations (dilations)

eτDΓ(u) = Γ(eτDu) , D = x
∂

∂x
, eτDu(x) = u(xeτ ), τ ∈ R

+ . (4.3.1)

In the particular case of the initial value problem associated to Boltzmann type

equations for Maxwell type interactions, the bounded linear operator that satisfies

Property 2 is the one that linearizes the Fourier transform of the gain operator

about the state u = 1.

Let xp be the eigenfunction corresponding to the eigenvalue λ(p) of the linear oper-

ator L associated to Γ, i.e., L(xp) = λ(p)xp. Define the spectral function associated

to Γ as µ(p) = λ(p)−1
p , defined for p > 0. It can be shown that µ(0+) = +∞ (i.e.

p = 0 is a vertical asymptote) and that for the problems associated to the initial
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value problems (2.1.1)-(2.1.5) or (2.2.3), there exists a unique minimum for µ(p)

localized at p0 > 1, and that µ(p) → 0− as p→ +∞.

The existence of self-similar states and convergence of the solution to the initial

value problem to such self-similar distribution function is described in the following

four statements.

(i) Existence: [15] - Lemma 5.1 There exists a unique isotropic solution f(|v|, t)
to the initial value problem (2.1.1)-(2.1.5) or (2.2.3) for Maxwell type inter-

actions in the class of probability measures, satisfying f(|v|, 0) = f0(|v|) ≥

0,
∫

Rd f0(|v|)dv = 1, and such that for the Fourier transform problem x =

|ζ|2
2 , u0 = F[f0(|v|)] = 1 +O(x), as x→ 0.

(ii) Self similar states: [15] - Theorem 7.2: f(|v|, t) has self-similar asymptotics in

the following sense.

Taking the Fourier transform of the initial state to satisfy

u0 + µ(p) xp u′0 = Γ(u0) +O(xp+ε) such that p+ ε < p0 (4.3.2)

(i.e., µ′(p) < 0). Then, there exists a unique, non-negative, self-similar solution

f ss(|v|, t) = e−
d
2
µ(p)tFp(|v|e−

1
2
µ(p)t) ,

with F(Fp(|v|)) = w(x), x = |ζ|2/2, such that µ(p)xpw′(x) + w(x) = Γ(w).

(iii) Self similar asymptotics - Section 9 and Theorem 11.1 in [15]: In the class of

probability measures, there exists a unique solution f(|v|, t) satisfying f(|v|, 0) =
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f0(|v|) ≥ 0, with
∫

Rd
f(|v|)dv = 1, such that, for x = |ζ|2

2 ,

F[f0(|v|)] = 1 − axp +O(xp+ε), x→ 0, 0 ≤ p ≤ 1 with p+ ε < p0 .

Then, for any given 0 ≤ p ≤ 1, there exists a unique non-negative self-similar

solution f
(p)
ss (|v|, t) = e−

d
2
µ(p)tFp(|v|e−

1
2
µ(p)t) such that

f(|v|, t) →t→∞ e−
d
2
µ(p)tFp(|v|e−

1
2
µ(p)t) , (4.3.3)

or, equivalently,

e
d
2
µ(p)tf(|v|e 1

2
µ(p)t, t) →t→∞ Fp(|v|) , (4.3.4)

where µ(p) is the value of the spectral function associated to the linear bounded

operator L as described above.

(iv) Power tail behavior of the asymptotic limit: If µ(p) < 0, then the self-similar

limiting function Fp(|v|) does not have finite moments of all orders. In ad-

dition, if 0 ≤ p ≤ 1 then all moments of order less than p are bounded; i.e.,

mq =
∫

Rd Fp(|v|)|v|2qdv ≤ ∞ for 0 ≤ q ≤ p. However, if p = 1 (the finite

energy case), then the boundedness of moments of any order larger than 1

depend on the conjugate value of µ(1) by the spectral function µ(p). That

means mq <∞ only for 0 ≤ q ≤ p∗, where p∗ ≥ p0 > 1 is the unique maximal

root of the equation µ(p∗) = µ(1).

Remark 1: When p = 1, µ(1) is the energy dissipation rate, and E(t) = eµ(1)t is

the kinetic energy evolution function. So, E(t)d/2f(vE(t), t) → F1(|v|).

Remark 2: We point out that condition (4.3.2) on the initial state is easily satisfied

by taking a sufficiently concentrated Maxwellian distribution, as shown in [15], and
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µ(p)
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µ(1)

µ(pmin)

µ(p): Spectral Function

Figure 4.1: Spectral Function µ(p) for a general homogeneous Boltzmann collisional
problem of Maxwell type interactions.

as done for our simulations in the next section.

However, rescaling with a different rate, it is not possible to pick up the non-trivial

limiting state f ss, since

f(|v|e 1
2
ηt, t) →t→∞ e−

d
2
ηtδ0(|v|) η > µ(1) , (4.3.5)

and

f(|v|e 1
2
ηt, t) →t→∞ 0 µ(pmin) < µ(1 + δ) < η < µ(1) . (4.3.6)

These results are also true for any p ≤ 1. For the general space homogeneous

(elastic or inelastic) Boltzmann model of Maxwell type or the corresponding mixture
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problem, the spectral function µ(p) is given in Figure 4.1.
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Chapter 5

Numerical Results

In this chapter, the numerical analysis of the proposed spectral scheme is performed

and the results benchmarked. The velocity space discretization is shown in Section

5.1. Since the collision integral computation is an important component in modeling

physical processes in rarefied gas dynamics, the algorithm used to compute it is

described in Section 5.2. Several test cases for the space homogeneous Boltzmann are

performed in Section 5.4. An interesting self-similar solution is computed in Section

5.4. As described in the introduction, the Boltzmann equation is an important

tool in the analysis of shock structures. Recognizing this, such a study is done for

1D(x)×3D(v) in Section 5.5. The classic Riemann problem is numerically analyzed

for Knudsen numbers close to continuum. The shock tube problem of Sone and Aoki

[85], where the wall temperature is suddenly increased or decreased, is also studied.

We consider the problem of heat transfer between two parallel plates with diffusive

boundary conditions for a range of Knudsen numbers from close to continuum to a

highly rarefied state. Finally, the classical infinite shock tube problem that generates

a non-moving shock wave is studied. The point worth noting in this example is that

the flow in the final case turns from a supersonic flow to a subsonic flow across the

shock.
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5.1 Velocity and Fourier Space Discretization

The distribution function is generally not compactly supported in v but is usually

negligible outside of a small ball

BL(V) = {v ∈ R
3 : |v −V| ≤ L} ,

where V is the flow velocity. As mentioned in the description of the spectral method,

we restrict to distribution functions that are compactly supported, i.e.,

suppf(x, ., t) = BL(V), ∀x ∈ Ωx, t ≥ 0 .

It is numerically much more convenient to consider a cube instead of a ball BL(V)

CL(V) = {v ∈ R
3 : |vj − Vj| ≤ L, j = 1, 2, 3} .

It is easy to see that BL(V) ⊂ CL(V), and such a discretization is used for all velocity

variables v,v∗. This yields the following discretization space for the relative velocity

u = v − v∗

u ∈ C2L(0) .

Let N ∈ N be a natural number. Then we denote by CN the following three-

dimensional indices

CN = {k ∈ Z
3 : 0 ≤ km < N, m = 1, 2, 3} .

Introducing the velocity mesh size hv = 2L
N , we get the following discrete velocities

Cv = {vj = V + (hv −
N

2
)j, j ∈ CN} ⊂ CL(V) .

Similarly, the appropriate set for the relative velocity u is

Cu = {vj = (hv −
N

2
)j, j ∈ CN} ⊂ C2L(0) .
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Because, an FFT package is used, the discrete velocity space then requires the

Fourier space mesh size hζ =
2Lζ

N to be given from hv as

hvhζ =
2π

N
, i.e., hζ =

π

L
,

and the discrete Fourier variable set is given by

Cζ = {ζ = hζj, j ∈ CN} .

5.2 Collision Integral Algorithm

The collision integral is given by (3.1.8) and (3.1.9) in Section 3.1. Ḡλ,β(ξ, ζ) from

(3.1.9) can be computed either in advance and stored or at run time. Depending

on the computing strategy employed, a operation efficient (former) or a memory

efficient (latter) approach can be implemented. Define Ḡl,m := Ḡλ,β(ξl, ζm) for a

particular choice of λ and β. Then the process of computing the collision integral can

be summarized into the following algorithm, wherein ω[l] are the integration weights.

For the purpose of numerical analysis in the rest of the chapter, trapezoidal rule
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weights are used.

[1] (O(N3log(N))) f̂(ζm) = FFTvk→ζm[f(vk)]

[2] (O(N3)) For ζm ∈ Cu, Do

[2.1] Q̂(ζm) = 0

[2.2] (O(N3)) For ξl ∈ Cu, Do

[2.2.1] g(ξl) = f̂(ξl) × f̂(ζm − ξl)

[2.2.2] Q̂(ζm) = Q̂(ζm) + Ḡl,m × ω[l] × g(ξl)

[2.2]* End Do

[2]* End Do

[3] (O(N3log(N))) Q(vk) = IFFTζm→vk
[Q̂(ζm)]

5.3 Temporal and Advection Approximation

After the discretization of the collision integral, the problem of numerically solving

the Boltzmann equation reduces to approximating the time derivative ∂
∂t and the

advection term v · 5xf(x,v, t) + 5v · (Ff(x,v, t)) in (2.1.1). The current section

describes a standard way of dealing with the advection term in the space inhomo-

geneous Boltzmann equation. A description of the time and space discretizations

which are employed is also given.
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5.3.1 Time Splitting

When computing the space inhomogeneous Boltzmann transport equation with zero

force field, i.e., F = (0, 0, 0), a reliable way of devising a numerical approximation

is to employ an efficient time-splitting method. The problem of solving equation

(2.1.1) with F = (0, 0, 0) is divided into two smaller subproblems. We discretize

time into discrete values tn = t0 + n ∗ dt, where dt > 0 is the time step size. Denote

f(x,v, tn) by fn(x,v). Using a first order time-splitting scheme, in a small time

interval [tn, tn+1], the two subproblems are given by

(1) The Advection (Collisionless) Problem

∂

∂t
g(x,v, t) + v · 5xg(x,v, t) = 0 ,

g(x,v, 0) = fn(x,v) , (5.3.1)

and

(2) The Homogenous (Collision) Problem

∂

∂t
f̃(x,v, t) = Q(f̃ , f̃) ,

f̃(x,v, 0) = g(x,v, dt) . (5.3.2)

Let A(dt) and H(dt) be solution operators corresponding to (5.3.1) and (5.3.2),

respectively. Then the solutions for (5.3.1) and (5.3.2) can be rewritten as

g(x,v, dt) = A(dt)fn(x,v) ,

f̃(x,v, dt) = H(dt)g(x,v, dt) ,
(5.3.3)

and the computed solution at time step tn+1 is given by

fn+1(x,v) = f(x,v, tn+1) = H(dt)A(dt)fn(x,v) . (5.3.4)
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This is a time-splitting method that is first order in time. Equation (5.3.4) is usually

good enough for kinetic problems. Neverthless, for non-stiff problems a second order

time-splitting method (Strang splitting) can be employed:

fn+1(x,v) = f(x,v, tn+1) = A(
dt

2
)H(dt)A(

dt

2
)fn(x,v) . (5.3.5)

Using Strang splitting to separate the advection and homogenous calculations, the

overall finite difference scheme is second order in time provided that a second order

in time scheme is used in each of the subproblems.

5.3.2 Space Discretization

We now turn to finite differences schemes for the advection operator. This is the

first step in time splitting procedure mentioned above, i.e., collisionless step. For

simplicity, only 1D flows (say in the x direction) are considered. So (5.3.1) reduces

to
∂

∂t
g(x,v, t) + v1

∂

∂x
g(x,v, t) = 0 ,

where v = (v1, v2, v3) is used. A first order scheme that is used is the standard

upwind scheme. Let xj = x0 + jdx and gj
n(v) = g(xj ,v, tn). Then

gj
n+1(v) − gj

n(v)

dt
+ v1

gj
n(v) − gj−1

n (v)

dx
= 0, v1 ≥ 0

gj
n+1(v) − gj

n(v)

dt
+ v1

gj+1
n (v) − gj

n(v)

dx
= 0, v1 < 0 , (5.3.6)

gives the upwind scheme for appropriate signs of v1. As is the case with explicit finite

difference schemes, (5.3.6) is restricted by the CFL condition which guarantees that

the numerical domain of dependence includes the analytical domain of dependence.

For (5.3.6), the CFL condition is given by |max(v1)
dt
dx | ≤ 1. When necessary, the
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following second order upwind scheme is used:

gj
n+1(v) − gj

n(v)

dt
+ v1

gj−2
n (v) − 4gj−1

n (v) + 3gj
n(v)

2dx
= 0, v1 ≥ 0

gj
n+1(v) − gj

n(v)

dt
+ v1

−gj+2
n (v) + 4gj+1

n (v) − 3gj
n(v)

2dx
= 0, v1 < 0 . (5.3.7)

Again, (5.3.7) is restricted by the CFL condition |max(v1)
dt
dx | ≤ 1.

When using finite differences, it is desirable to use an implicit scheme which is

unconditionally stable. But there are some difficulties when using the splitting pro-

cess with implicit schemes. The total approximation is guaranteed as well as for the

explicit scheme; however the influence of the implicit scheme can result in smoothing

the profiles of desired quantities. Indeed, the solutions at a given time level of an

implicit scheme at any point of the computational domain depend on the boundary

values at the previous time level. So, the adoption of an implicit scheme is con-

nected with the type of problem under consideration. In some problems the fact

that particles from the boundary would influence an interior point withtout under-

going collisions during the single time step in the splitting process can lead to large

errors of approximation. For the physical processes considered in this dissertation,

an explicit scheme does a good job in terms of convergence and order of error.

5.3.3 Time Discretization

The simplest time discretization that is employed for (5.3.2) is the Euler scheme.

The collision integral computation in (5.3.2) is not conservative as noted in the

introduction. So, the correction mentioned in Section 3.2 is done at this step to the

computed collision integral Q(fnfn). This gives in the time interval [tn, tn+1]

Qn = Conserve(Q(fn, fn)) ,

f̃(x,v, dt) = fn(x,v) + dtQn . (5.3.8)
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The Euler scheme is formally first order in time. For higher order accuracy, a second

order Runge Kutta scheme is used whenever necessary:

Q̃n = Conserve(Q(fn, fn)) ,

fn+1/2(x,v) = fn(x,v) +
dt

2
Q̃n ,

Qn = Conserve(Q(fn+1/2, fn+1/2)) ,

fn+1(x,v) = fn(x,v) + dtQn . (5.3.9)

The Conserve routine used in (5.3.8) and (5.3.9) is described in (3.2.28). In the rest

of this chapter, appropriate reference quantities are chosen and the non-dimensional

Boltzmann equation (2.4.2) with (2.4.3) is used. The “hats” are intentionally

dropped in the sequel for simplicity.

5.4 The Space Homogenous Boltzmann Equation

The proposed numerical method is benchmarked to compute several examples of 3D

in velocity and time for initial value problems associated with non-conservative mod-

els where some analysis is available. The exact moment formulae for Maxwell type of

interactions as well as qualitative analysis for solutions of VHS models are available

and these results are numerically validated. We plot our numerical results versus

the exact available solutions in several cases. Because, all the computed problems

converge to an isotropic long time state, we choose to plot the distribution function

in only one direction, which is chosen to be the one with the initial anisotropies. All

examples considered in this chapter are assumed to have isotropic, VHS collision

kernels, i.e., the differential cross section is independent of the scattering angle. We

simulate the homogeneous problem associated to the following problems for differ-

ent choices of the parameters β and λ, and the Jacobian Jβ and heating force term

G(f). Let xr = l0 be the mean free time, Tr be the equilibrium temperature, tr = t0
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be the mean free time and vr = vth be the thermal velocity; these are the reference

quantities in (2.4.1) for all space homoegenous numerical computations.

5.4.1 Maxwell Type Elastic Collisions

Consider the initial value problem (2.2.1), with B(|u|, µ) = 1
4π |u|λ. In (2.1.1),

(2.1.5), the value of the parameters are β = 1, Jβ = 1 and λ = 0 with the pre-

collision velocities defined from (2.1.5). In this case, for a general initial state with

finite mass, flow velocity and kinetic energy, there is no exact expression for the

evolving distribution function. However, there are exact expressions for all the sta-

tistical moments (observables). Thus, the numerical method is compared with the

known analytical moments for different discretizations in the velocity space.

The initial states we take are convex combinations of two shifted Maxwellian distri-

butions. So consider the following case of initial states with unit mass
∫

R3 f0(v)dv =

1 given by

f(v, 0) = f0(t) = γMT1(v −V1) + (1 − γ)MT2(v− V2); with 0 6 γ 6 1 , (5.4.1)

where MT (v − V) = 1
(2πT )3/2 e

−|v−V|2

(2T ) . Taking γ = 0.5 and flow velocity fields for

the initial state determined by

V1 = [−2, 2, 0]T , V2 = [2, 0, 0]T , T1 = 1 , T2 = 1 ,

enables the first five moment equations corresponding to the collision invariants to

be computed from those of the initial state. All higher order moments are computed

using the classical moments recursion formulas for Maxwell type interactions (2.2.2).

In particular, it is possible to obtain the exact evolution of moments as functions of

time. Thus

ρ(t) = ρ0 = 1 and V(t) = V0 = [0, 1, 0]T .
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By a corresponding moment calculation as in (2.2.2), the complete evolution of the

second moment tensor (2.1.10) is given by

M(t) =




5 −2 0
−2 3 0
0 0 1


 e−t/2 +

1

3




8 0 0
0 11 0
0 0 8


 (1 − e−t/2) ,

and the energy flow (2.1.10)

r(t) =
1

2




−4
13
0


 e−t/3 +

1

6




0
43
0


 (1 − e−t/3) − 1

6




12
4
0


 (e−t/2 − e−t/3) ,

and the kinetic temperature is conserved, so

T (t) = T0 =
8

3
. (5.4.2)

The above moments along with their numerical approximations for different dis-

cretizations in velocity space are shown in Figure 5.4.1. There is a good agreement

of the computed moments with the corresponding analytical quantities except for

energy flow for larger time. This is due to the fact that r1 and r2 are third order

moments and that a smaller number of Fourier modes are taken for the simula-

tion. Also, such higher order moments are not enforced as part of the conservation

routine.

In Figure 5.2, the evolution of the computed distribution function into a Maxwellian

is shown for N = 40.

5.4.2 Maxwell Type Elastic Collisions: Bobylev-Krook-Wu (BKW) So-
lution

An explicit solution to the initial value problem (2.1.1) for elastic, Maxwell type

interactions (β = 1, λ = 0) was derived in [4] and independently in [67] for initial

states that have at least 2 + δ bounded moments. It is not of self-similar type, but
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Figure 5.1: Maxwell type elastic collisions: Momentum flow M11,M12,M22,M33 and
energy flow r1, r2.
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Figure 5.2: Maxwell type elastic collisions: Evolution of the distribution function

it can be shown to converge to a Maxwellian distribution. This solution takes the

form

f(v, t) =
e−|v|2/(2Kη2)

2(2πKη2)3/2
(
5K − 3

K
+

1 −K

K2

|v|2
η2

) , (5.4.3)

where K = 1 − e−t/6 and η is the initial distribution temperature. It is interesting

that it is negative for small values of t. So in order to obtained a physically meaning

probability distribution, f must be non-negative. This is indeed the case for any

K > 3
5 or t > t0 ≡ 6 ln(5

2 ) ∼ 5.498. In order to test the accuracy of the proposed

solver, we set the initial distribution function to be the BKW solution at rescaled

initial time. The numerical approximation to the BKW solution and the exact

solution are shown for different values of N at various time steps in Figure 5.3. As

can be seen in the figure, there is a good agreement.

92



V_x

f(
V

_
x
,
0

,
0

)

-10 -5 0 5

-0.02

0

0.02

0.04

Initial Condition: t = 5.0
Computed: t = 5.5
BKW: t = 5.5
Computed: t = 6.0
BKW: t = 6.0
Computed: t = 7.5
BKW: t = 7.5
Computed: t = 9.0
BKW: t = 9.0

V_x

f(
V

_
x
,
0

,
0

)

-10 -5 0 5

-0.02

0

0.02

0.04

Initial Condition: t = 5.0
Computed: t = 5.5
BKW: t = 5.5
Computed: t = 6.0
BKW: t = 6.0
Computed: t = 7.5
BKW: t = 7.5
Computed: t = 9.0
BKW: t = 9.0

(N = 24) (N = 32)

Figure 5.3: BKW, ρ,E(t) conserved.

5.4.3 Hard-Sphere Elastic Collisions

In (2.1.1), we have β = 1, Jβ = 1 and λ = 1 with the post-collision velocities

defined from (2.1.1). Unlike Maxwell type interactions, there is neither an explicit

expression for the moment equations nor are any explicit solution expression, as

opposed to the BKW scenario. For Hard Sphere isotropic collisions, the expected

behavior of the moments is similar to that of the Maxwell type interactions case,

except that in this case, the moments evolve to the equilibrium faster than in the

former case (see Figure 5.4 and compare to Figure 5.4.1).

Also shown is the time evolution of the distribution function starting from the convex

combination of Maxwellians as described (5.4.1) in Figure 5.5.

5.4.4 Inelastic Collisions

Inelastic collisions is the scenario wherein the utility of the proposed method is

clearly seen. No other spectral deterministic method can compute the distribution
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function in the case of inelastic collisions, but the current method computed 3 −D

evolution examples without much complication and with exactly the same number

of operations as used in an elastic collision case. This model works for variable

hard potential (VHP) interactions. Consider the special case of Maxwell (λ = 0)

type inelastic (β 6= 1) collisions in a space homogeneous Boltzmann Equation in

(2.1.1), (2.1.5). Let φ(v) = |v|2 be a smooth enough test function. Using the weak

form of the Boltzmann equation with such a test function, one can obtain the ODE

governing the evolution of the kinetic energy K(t). In general

∫

v∈R3

Q(f, f)φ(v)dv =
1

2

∫

v×w∈R6

∫

σ∈S2

B(|u|, µ)f(v, t)f(w, t)[φ(v′) + φ(w′)]dσdwdv

−1

2

∫

v×w∈R6

∫

σ∈S2

B(|u|, µ)f(v, t)f(w, t)[φ(w) + φ(v)]dσdwdv ,(5.4.4)
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and φ(v) = |v|2gives the kinetic energy estimate. Using the definition of the post-

collisional velocities from (2.1.1) and ν = u

|u| and µ = σ · ν,

|v′|2 + |w′|2 = |v|2 + β(|u|σ − u) · v +
β2

4

∣∣|u|σ − u
∣∣2 + |w|2

−β(|u|σ − u) ·w +
β2

4
|
∣∣u|σ − u

∣∣2

= |v|2 + |w|2 +
β2

2
|
∣∣u|σ − u

∣∣2 + β(|u|σ − u) · u

= |v|2 + |w|2 +
β2

2
[2|u|2 − 2|u|σ · u] + β(|u|σ · u− |u|2)

So,

|v′|2 + |w′|2 = |v|2 + |w|2 + β2|u|[|u| − σ · u] + β|u|(σ · u− |u|)

= |v|2 + |w|2 + β|u|[β(|u| − σ · u) + (σ · u− |u|)]

= |v|2 + |w|2 + β|u|(σ · u− |u|)[−β + 1]

= |v|2 + |w|2 + β|u|2(σ · u
|u| − 1)[−β + 1]

= |v|2 + |w|2 + β(1 − β)|u|2(σ · ν − 1) ,

which gives

|v′|2 + |w′|2 − |v|2 − |w|2 = β(1 − β)|u|2(µ− 1) . (5.4.5)

Multiplying (2.1.1) with φ(v) = |v|2 and using (5.4.4), (5.4.5) and

K(t) =
1

2
(

∫

v∈R3

|v|2f(v, t)dv),
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we get

K ′(t) =
1

2

d

dt
(

∫

v∈R6

|v|2f(v, t)dv)

=
1

2

∫

v ∈R3

∫

w ∈R3

∫

σ∈S2

Cλ|u|λf(v, t)f(w, t)[β(1 − β)|u|2(1 − µ)]dσdwdv

=
Cλβ(1 − β)

2

∫

v∈R3

∫

w∈R3

|u|λ+2f(v, t)f(w, t)dwdv

∫

σ∈S2

(1 − µ)dσ

︸ ︷︷ ︸
−4π

.

Let λ = 0 and Cλ = 1
4π , i.e., Maxwell type interactions. Then

K ′(t) =
β(β − 1)

4

∫

v∈R3

∫

w∈R3

|v − w|2f(v, t)f(w, t)dwdv

=
β(β − 1)

4

∫

v∈R3

∫

w∈R3

(|v|2 + |w|2 − 2v ·w)f(v)f(w)dwdv

=
β(β − 1)

4
[2K(t) + 2K(t) − 2

∫

v∈R3

∫

w∈R3

v ·wf(v, t)f(w, t)dwdv]

= β(1 − β)[
1

2

∫

v∈R3

∫

w∈R3

v ·wf(v, t)f(w, t)dwdv −K(t)]

Using the fact that v = (v1, v2, v3),w = (w1, w2, w3), then the integral above can be

simplified as follows

∫

v ∈R3

∫

w∈R3

v ·wf(v, t)f(w, t)dwdv =

3∑

i=1

(

∫

v∈R3

vif(v, t)dv)(

∫

w∈R3

wif(w, t)dw)

=

3∑

i=1

ρ(t)2V 2
i (t)

= |ρ(t)V(t)|2 ,

where ρ(t)V(t) is the momentum of the distribution function. Since this is con-

served, it remains constant, i.e., ρ(t)V(t) = ρV. So

K ′(t) = β(1 − β)(
|ρV|2

2
−K(t)) . (5.4.6)

97



t

K
(t

)

0 2 4 6 8 10
2

3

4

5

6

7

8

Computed (N = 30)
Analytical

V_x

f(
V

_
x,

0
,
0

)

-6 -4 -2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065
Initial Distribution
time step 3
time step 5
time step 7
time step 9
time step 12
time step 17

Figure 5.6: Inelastic: Kinetic energy (left) and f(v, t) (right).

This gives the following solution for the kinetic energy as computed in (2.2.2):

K(t) = K(0)e−β(1−β)t +
|ρV|2

2
(1 − e−β(1−β)t) , (5.4.7)

where K(0) is the kinetic energy at time t = 0. As we have an explicit expression

for the kinetic energy evolving in time, this analytical moment can be compared

with its numerical approximation for accuracy and the corresponding graph is given

in Figure 5.6. The general evolution of the distribution in an inelastic collision

environment is also shown in Figure 5.6. In the conservation routine (constrained

Lagrange multiplier method), energy is not used as a constraint and just density

and momentum equations are used for constraints. Figure 5.6 shows the numerical

accuracy of the method even though the energy (plotted quantity) is not being

conserved as part of the constrained optimization method.
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5.4.5 Inelastic Collisions with Diffusion Term

Here we simulate for (2.2.3) and (2.2.4), a model corresponding to inelastic inter-

actions in a randomly excited heat bath with constant temperature η. Following

the procedure in Section 5.4.4, the evolution equation for kinetic temperature as a

function of time is given by

dT

dt
= 2η − ζ

1 − e2

24

∫

v∈R3

∫

w∈R3

∫

σ∈S2

(1 − µ)B(|u|, µ)|u|2f(v)f(w) dσdwdv ,

(5.4.8)

which, in the case of inelastic Maxwell type interactions according to (2.2.2), be-

comes
dT

dt
= 2η − ζπC0(1 − e2)T . (5.4.9)

The above equation gives a closed form expression for the time evolution of the

kinetic temperature and can be expressed as

T (t) = T0e
−ζπC0(1−e2)t + TMM

∞ [1 − e−ζπC0(1−e2)t] , (5.4.10)

where

T0 =
1

3

∫

v∈R3

|v|2f(v, 0)dv and TMM
∞ =

2η

ζπC0(1 − e2)
.

From (5.4.10), it can be seen that in the absence of the diffusion term (i.e., η = 0) and

for e 6= 1 (inelastic collisions), the kinetic temperature of the distribution function

decays like an exponential, just like in the previous section. So, the presence of

the diffusion term pushes the temperature to an equilibrium value of TMM
∞ > 0,

though the collisions are locally inelastic. Also note that if the interactions were

elastic and the diffusion coefficient positive then, TMM
∞ = +∞, so there would be

no equilibrium states with finite kinetic temperature. These properties were shown

in [47] and similar time asymptotic behavior is expected in the case of hard-sphere

interactions where THS
∞ > 0 is shown to exist. However, the time evolution of the
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(TMM
∞ > T0) (TMM

∞ < T0)

Figure 5.7: Maxwell type inelastic collisions, diffusion term for N = 16.

kinetic temperature is a non-local integral (5.4.8) does not satisfy a closed ODE form

(5.4.9). The proposed numerical method for the calculation of the collision integral

is tested for these two cases. We compare with the analytical expression (5.4.10)

for different initial data and show the corresponding computed kinetic temperatures

for Maxwell type interactions in Figure 5.7. The asymptotic behavior is observed

in the case of hard-sphere interactions in Figure 5.8. The conservation properties

for this case of inelastic collisions with a diffusion term are set exactly like in the

previous Section 5.4.4 (no energy constraint).

5.4.6 Maxwell Type Elastic Collisions: Slow Down Process Problem

Next, consider (2.2.12) with β = 1, Jβ = 1 and B(|u|, µ) = 1
4π , i.e., isotropic colli-

sions. The second term is the linear collision integral which conserves only density

and the first term is the classical collision integral from (2.2.12) conserving density,
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Figure 5.8: Hard sphere, inelastic collisions, diffusion term, THS
∞ < T0 for N = 16.

momentum and energy. M(v) in (2.2.12) refers to the Maxwellian defined by

MT(v) = e
−|v|2

(2T)
1

(2πT)3/2
,

with T the constant thermostat temperature. In particular, any initial distribution

function converges to the background distribution MT. Such behavior is well cap-

tured by the numerical method. Indeed, Figure 5.9 corresponds to an initial state

of a convex combination of two Maxwellians. In addition, from (4.1.18),

f ss
T (v, t) =

√
2

π5/2

∫ ∞

0

1

(1 + s2)2
e−|v|2/2T̄

T̄
3
2

ds where T̄ = T + as2e
−2t
3 ,

which is the finite energy solution for p = 1, a = 1, µ = 2
3 , and θ = 4

3 in (4.2.2), i.e.,

p = 1 in (4.3.3) and (4.3.4). As t → ∞, the time rescaled numerical distribution

is compared with the analytical solution f ss
T

for a positive background temperature

T and it converges to a Maxwellian MT. From Figure 5.9, it can be seen that the

numerical method is quite accurate and the computed distribution is in very good

agreement with the analytical self-similar distribution f ss
T

from (4.1.18).
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Figure 5.9: Maxwell type collisions, slow down process with Θ = 4/3, µ = 2/3, N =
24.

102



Similar agreement is observed for different constant values of T approaching 0 (Fig-

ure 5.9). The interesting asymptotics (4.2.4) corresponding to power-like tails and

infinitely many particles at zero energies occur only when T = 0 as shown in (4.2.4)

and (4.2.4). Since letting T = 0 in the scheme created an instability, we proposed

the following new methodology to counter this effect. We let, instead, T = γe−αt

ensuring that the thermostat temperature vanishes for large time, and set

T̄ = γe−αt + as2e
−2t
3 , (5.4.11)

where the role of α is very important and a proper choice needs to be made. A

choice of α < 2/3 would result in T converging to 0 more slowly than required to

guarantee power tail behavior; while α > 2/3 results in T → 0 faster than non-

equilibrium distribution temperature. Such a rapid decay is not required, but is

only an essential condition, and would require better spectral accuracy, i.e., larger

N . The condition α = 2/3 is the necessary condition. In our simulations, we take

γ = 0.25 and the values of α need to be chosen exactly as α = µ(1) = 2/3, the

energy dissipation rate as described in Section 4.2 to recover the asymptotics as in

(4.2.4).

Remark: Due to the exponential time rescaling of Fourier modes, our procedure

to compute self-similar solutions in free space may also be viewed as a non-uniform

grid of Fourier modes that are distributed according to the continuum spectrum of

the associated problem. This choice plays the equivalent role to the corresponding

spectral approximation of the free space problem of the heat kernel, that is, the

Green’s function for the heat equation, which happens to be a similarity solution

as well, due to the linearity of the problem in this case. In particular, we expect

optimal algorithm complexity using such non-equispaced Fast Fourier Transform,

as obtained by Greengard and Lin [55] for spectral approximation of the free space
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Figure 5.10: Slow down process: N = 32, T = 1
4e

−2t/3.

heat kernel. This problem will be addressed in a forthcoming paper. The follow-

ing plots, Figures 5.10, 5.11, elucidate the fact that power-like tails are achieved

asymptotically with a decaying T.

For a decaying background temperature as in (5.4.11), Figure 5.10 shows evolution of

a convex combination of Maxwellians to a self-similar (blow up for zero energies and

power-like heavy tails for high energies) behavior. Figure 5.11 plots the computed

distribution along with a Maxwellian with temperature of the computed solution.

This illustrates that the computed self-similar solution deviates strongly from a

Maxwellian equilibrium.

In order to better capture the power-law effect using this numerical method, we

set T = ζe−2t/3 = ζe−µt, see (5.4.11), where µ is related the spectral properties of

the Fourier transformed equation as described previously in Chapter 4 on the slow

down process problem with µ = µ(1), the energy dissipation rate. Thus, as it was
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Figure 5.11: Computed distribution Vs. Maxwellian with temperature of the com-
puted distribution.

computed in [17] and revised in Chapter 4, we know that for initial states with finite

energy, p = 1 and the corresponding energy dissipation rate is µ(1) = µ = 2/3 is

positive. In particular p∗ = 1.5 is the conjugate of p = 1 of the spectral curve mq

in Theorem 4.1 Part (i). In addition, the rescaled probability will converge to the

moments of the self-similar state (4.3.3), (4.3.4), that is,

e−qt2/3

∫

v∈R3

f(v)|v|2qdv → mq ,

and we know any moment mq is unbounded for q > p∗ = 1.5. We show in figure

5.12, the evolution of e−qt2/3
∫
v∈R3 f(v)|v|2qdv for q = 1, 1.3, 1.45, 1.5, 1.55, 1.7,

and 2.0, computed for N = 10, 14, 22, and 26. It can be seen that as time progresses

(and as the thermostat temperature T decreases to 0), the approximated numerically

computed moments mq, q ≥ 1.5 start to blow up as predicted. The value q = 1.5 is

the threshold value, as any momentmq>1.5(t) → ∞. The expected spectral accuracy,

as the value ofN increases, improves the growth zone of such moments for larger final
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times. The reason for such an effect is because the velocity domain is truncated and

we use only a finite number of Fourier modes. This makes the computed distribution

function take small negative values for large velocities, contributing to numerical

errors that may cause mq to peak and then relax back. In particular, larger order

moments of the computed self-similar asymptotics with the negative oscillating parts

on large energy tails, result in the large negative moment values for the above

mentioned values of N creating large negative errors. However it is noticed that

the negative oscillation values of f(t,v) coincide with large velocity values used in

getting its q-moments approximating mq, for q > 1.5, and that such error is reduced

in time for larger number of Fourier modes. Typically, it is easier to see the power-

law tails in the distribution function when plotted in a semilog scale. But, in the

current simulations because of the negative distribution values for large velocities, we

show the power-law effect using higher order moments of the distribution function.

Finally, we point out that the FFTW [44] package is used to compute the fast fourier

transform (FFT). We have noticed in our numerics that for the specific choice of

values N 6= 6, 10, 14, 18, 22, 26, ..., 6 + 4k for k = 0, 1, 2, 3, ..., the approximating

moments to mq(t) start to take negative values very quickly, as seen in Figure 5.13

for N = 16 and 20, making the numerical solution inadmissible, since analytically

mq(t) > 0,∀t. To see this trend of moments becoming negative for the above

mentioned values of N , we show the moments only for a smaller duration of time.

For larger time, the moments take large negative values.

5.5 The Space Inhomogeneous Boltzmann Equation

In this section, several physical examples of 1D in x are modelled using (2.1.1).

When solving the inhomogeneous Boltzmann equation, the choice of reference quan-

tities plays an important role. These reference quantities are dictated by the under-
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N = 10 N = 14

N = 22 N = 26

Figure 5.12: mq(t) for T = 1
4e

−2t/3.
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N = 16 N = 20

Figure 5.13: mq(t) for T = 1
4e

−2t/3.

lying physics and scales of the problem. In the sequel, depending on the problem

being modelled, the reference quantities will be specified and (2.4.2) will be used

with the scaled variables in (2.4.1).

The splitting approach as mentioned in Section 5.3 is used to numerically com-

pute the inhomogeneous Boltzmann equation. A scheme that is first order in time

and space is used for the advection part and also the homogeneous part of the split

problem. When a higher order splitting scheme is used then, higher order approxi-

mations are employed for the time and space derivatives.

In shock structure problems, it is convenient to look at the conservation equations

(2.3.5) in a divergence form. A typical scenario of a 1−D flow in an infinite expanse

of a gas is when we have a monatomic gas at two uniform states at infinities. The

states at infinities being uniform are described by Maxwellian distribution functions

with parameters ρl, Tl,Vl = (Vl, 0, 0) for x1 → −∞, and ρr, Tr, and Vr = (Vr, 0, 0)
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for x1 → ∞. The two states at infinities cannot be chosen arbitrarily, but their

macroscopic quantities have to satisfy the Rankine-Hugoniot relations. For a steady

state, the Rankine-Hugoniot relations can be derived from (2.3.5):

ρlVl = ρrVr ,

ρlV
2
l + ρlTl = ρrV

2
r + ρrTr ,

ρlVl(Tl + 5V 2
l ) = ρrVr(Tr + 5V 2

r ) . (5.5.1)

Our interest is in understanding the solution that connects these two states at

infinities, i.e., shock wave analysis.

5.5.1 The Riemann Problem

The Riemann problem is a fundamental tool for studying the interaction between

waves. It has played a central role both in the theoretical analysis of systems of

hyperbolic conservation laws and in the development and implementation of practi-

cal numerical solutions of such systems. The Riemann problem describes the micro

structure of the shock wave.

This test deals with the numerical solution of the inhomogeneous 1D × 3D Boltz-

mann equation for hard sphere molecules (λ = 1). In this section, we present some

results for the one dimensional Riemann problem. Numerical solutions are obtained

for a Knudsen number closed the fluid limit (Kn ≤ 0.01). The macroscopic initial

conditions satisfying the Rankine-Hugoniot relations (5.5.1) are given by

(ρl, Vl, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5 ,

(ρr, Vr, Tr) = (0.125, 0, 0.25) if 0.5 < x ≤ 1.0 . (5.5.2)

Let t0 the mean free time, and Tl, ρl, and Vth =
√

2RTl be the reference quantities.

Recall that L is the domain size parameter of v i.e. v ∈ Ωv = [−L,L)3. Then the

109



CFL condition gives dt
t0

≤ dx
L mean free times.

The flow becomes stationary by a smaller final time of 0.2 mean free times. In

this case, a choice of dx = 0.5l0 is made. For smaller values of Kn ≤ 0.01, i.e.,

close to continuum flow, the numerical method is noticeably slow. In order to main-

tain good accuracy and to reduce the effect of the splitting error for close to stiff

problems, a smaller value of dt is taken than required by the CFL condition. This

results in a slow march in time, and thus it typically takes longer to reach the

stationary state. The density, flow velocity and temperature profiles are shown in

Figure 5.5.1. It can be seen that for Kn = 0.01, the profiles approach the shapes

typical of continuum flows.

5.5.2 Shock Due to a Sudden Change in Wall Temperature

As an example showing the formation of a shock wave and its propagation, we con-

sider a semi-infinite expanse (x1 > 0) of a gas bounded by a plane wall at rest

with temperature T0 at x1 = 0. Initially, the gas is at equilibrium with the wall

at pressure p0 and temperature T0. At time t = 0, the temperature of the wall is

suddenly changed to another value T1 and is kept at T1 for subsequent time. The

time evolution of the behavior of the gas is studied numerically on the basis of the

fully nonlinear Boltzmann equation and the diffuse-reflection condition (full accom-

modation) on the wall.

As the reference length Xr, we take l0 the mean free path of the gas in the equilib-

rium state at rest with density ρ0 = p0/RT0 and temperature T0. We take l0/
√

2RT0

as the reference time tr and use Equation (2.4.2). Typically, when considering a flow

that is uniform in a particular velocity direction, the Boltzmann equation can be re-

duced to a system of equations by integrating the distribution function in respective
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Figure 5.14: Riemann problem: Stationary profiles for Kn = 0.01 at t = 0.15.
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Twall

velocity direction(s) to get a set of marginal distributions. The proposed algorithm

in this dissertation relies on the weak form for its derivation. But, such a weak

form is not available for the marginal distribution. Moreover, it is a difficult task

to eliminate a velocity component in the nonlinear collision integral. It is for these

reasons that the conservative spectral method cannot be reduced in velocity com-

ponents and the full 3−D computation in v has to be performed. For the purpose

of analysis, the marginal distribution function (g(x1, v1, t) =
∫
v2,v3

f(x1,v, t)dv2dv3)

is calculated from the three dimensional velocity distribution.

The marginal velocity distribution function g has a discontinuity at the corner

(x1, t) = (0, 0) of the domain (x1 > 0, t > 0) for v1 > 0. This discontinuity in

g propagates in the direction of characteristic x1−v1t = 0, and subsequently decays

owing to the collision integral on the right hand side. The direction of propagation

depends on v1. For v1 < 0, the characteristic starts from infinity where g is contin-

uous and thus for all x1, t remains continuous. For numerical calculations, typically
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a modified scheme is devised to account for this. But, it has been observed that for

the fully nonlinear Boltzmann equation, the standard finite-difference scheme with

time splitting does an extremely good job of capturing this discontinuity.

There are two cases of interest in the numerical experiment, T1 = 0.5T0 and

T1 = 2T0. For the first case where T1 = 0.5T0, in the numerical computation

of the time-evolution problem the temperature, pressure and density profiles have

been shown in Figure 5.5.2. By sudden cooling of the wall temperature, the gas near

the wall is suddenly cooled resulting in a pressure decrease there and an expansion

wave propagates into the gas. The expansion wave accelerates gas towards the wall

initially. As time goes on, with the decrease of temperature of gas near the wall,

the suction of heat from the gas by the wall decreases and pressure becomes weaker.

Thus, the gas begins to accumulate near the wall, because there is no suction on

the wall. The pressure drop by cooling of the gas is not enough to compensate the

gas flow. As the gas equilibrates with the wall, in the absence of condensation (no

sink of mass), a compression wave develops that propagates outward and attenuates

the initial expansion wave. Then, a compression wave chases the expansion wave to

attenuate. This phenomenon occurs in long time. The main temperature drop of

the gas occurs gradually, well after the expansion wave is passed.

Next, we consider the case where T1 = 2T0. With the sudden rise of wall tempera-

ture, the gas close to the wall is heated and accordingly the pressure rises sharply

near the wall, which pushes the gas away from the wall and a shock wave (or compres-

sion wave) propagates into the gas. As times goes on, the gas moves away from the

wall but there is no gas supply from the walll and the heat transferred from the wall

to the gas decreases owing to the rise of gas temperature near the wall. Accordingly,

the pressure decrease due to escape of the gas is not compensated by the heating and
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Figure 5.15: Formation of an expansion wave by an initial sudden change of wall
temperature from T0 to T0/2.
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the pressure gradually decreases. As a result, an expansion wave propagates toward

the shock wave from behind and attenuates the shock wave together with another

dissipation effect. The main temperature rise of the gas occurs gradually well after

the shock wave passed. This process is due to the conduction of heat. In the nu-

merical computation of the time-evolution problem, the temperature, pressure and

density profiles have been shown in Figure 5.5.2 for the region of a few mean free

paths close to the wall. In Figure 5.5.2, the marginal velocity distribution function

g is plotted for various times t/tr. We let Kn = 1, dx = 0.01l0, dt = 0.75dx/L, and

N = 16. We see that g has a discontinuity at (x1, t). As time goes on, the position

of discontinuity shifts to x1 = v1t/tr, and the size of this discontinuity decreases

due to molecular collisions (collision integral). All of the above numerical results

agree extremely well with the ones obtained by Aoki, Sone, Nishino and Sugimoto

[85]. In both cases of wall temperature change, the second wave (compression wave

for Twall = 0.5T0 and expansion wave for Twall = 2T0) attentuates the first wave

(expansion wave for Twall = 0.5T0 and compression wave for Twall = 2T0) only be-

cause the wall temperature is suddenly changed. If the wall temperature is changed

gradually in proportion to the collision parameters i.e., the mean free path and mean

free time then, we speculate that only the first wave would be propagating into the

gas and there would be no ensuing second wave.

5.5.3 Heat transfer Between Two Parallel Plates

We consider the case of a rarefied gas between two parallel plane walls at

rest: one with temperature T0 at x1 = 0 and the other with a temperature T1 = 2T0

at x1 = 1. Note that, in this case the distance between the two plates is taken as the

reference length. The gas molecules make diffuse reflection on the walls. The state

of the gas or the velocity distribution function can be considered to be uniform with

respect to x2 and x3. Note that when considering a highly rarefied gas (Kn→ ∞),
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Figure 5.18: Stationary Temperature Profile for increasing Knudsen number values.

such a flow becomes uniform even in the x1 direction i.e. the state of the gas is

independent of x1. We consider here the stationary flows for range of Kn between

0.1 to 4. The stationary temperature profiles for Kn = 0.1, 0.5, 1, 2, 4 have been

plotted in figure 5.5.3. With larger values of Kn, we find that the temperature

profiles get flatter and flatter. An increase in the Knudsen number value implies

that the gas is becoming more and more rarefied and that the only interactions the

gas molecules have are with the walls where they exchange their temperatures. The

corresponding stationary density profiles have been plotted in figure 5.5.3.

5.5.4 Classic Shock in an Infinite Tube: Supersonic → Subsonic Flow

Consider a time-independent unidrectional flow in x1 direction in an infinite expanse

of a gas, where the states at infinity are both uniform and their velocity distributions

are Maxwellians with corresponding parameters as explained in the preamble for this
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Figure 5.19: Stationary Density Profile for increasing Knudsen number values.

section. That is,

f → ρl√
2πRTl

exp(−|v− δ1Vl|2
2RTl

), as x1 → −∞ ,

f → ρr√
2πRTr

exp(−|v − δ1Vr|2
2RTr

), as x1 → ∞ .

The Maxwellian parameters satisfy the Rankine-Hugoniot relations. We take ρl, Tl,

and l0 as the reference density, temperature and lengths respectively. The shock

profile is best considered in the frame of reference moving with the shock in steady

state. The relevant parameter for the shock is the inflow Mach number M , defined

as the ratio of the inflow velocity relative to the shock and the speed of sound,

M =
Vl

c
=

Vl√
γTl

=
Vl√
γ
,

where c is the speed of sound and γ = 5
3 for monatomic gases. For simple notation,

the “hats” in the nondimensional notation are dropped.
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For the purpose of numerical computations, the inflow temperature Tl is chosen

as the free parameter and ρl = 0.5. Then the rest of the parameters take the

following values in terms of Tl:

Vl =

√
5Tl

3
M ,

ρr =
4M2

M2 + 3
ρl ,

Tr =
(M3 + 3)(5M2 − 1)

16M2
Tl ,

Vr =
M2 + 3

4M

√
5Tl

3
.

These are derived from the Rankine-Hugoniot relations, which give the boundary

conditions under which the steady shock wave can be observed.

When discussing shock structure, one often looks at the entropy production in the

shock. Such an analysis shows that the entropy must grow across the shock. This

requirement combined with Rankine-Hugoniot relations (5.5.1) produces a require-

ment on the inflow Mach number:

(
5M2 − 1

4
)3(

M2 + 3

4M2
)5 ≥ 1 ⇒M ≥ 1 .

Thus, a shock can only be observed for Mach numbers M ≥ 1, i.e., when the inflow

velocity is supersonic. The Mach number behind the shock has to satisfy

Mr =
Vr

c
=

Vr√
5Tr/3

=

√
M2 + 3

5M2 − 1
≤ 1 .

These conditions imply that the flow velocity changes from being supersonic to

subsonic in a shock, while density and temperature grow. In Figure 5.5.4, we plot
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the density, temperature and pressure profiles for M = 1.5, and Kn = 1 for Maxwell

type interactions.
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Chapter 6

Conclusions and Future Work

In this dissertation, an accurate deterministic spectral method is presented which

conserves all relevant moments of the Boltzmann collision integral. The proposed

method works for both the conservative (locally elastic collisions) and non-conservative

(linear Boltzmann, inelastic collisions) regimes. In the existing literature on spectral

deterministic methods, the proposed method for the numerical approximation of the

space inhomogeneous, time dependent Boltzmann equation is the first scheme that

is conservative. Typical to any spectral method, the spectral accuracy is indeed

controlled by the number of Fourier modes N , and a new Fourier approximation

estimate is proven. The traditional proof for periodic functions has been extended

for compactly supported functions. The conservation of moments is enforced by

using the moment equations as constraints in an isomoment (continuous in time)

or a Lagrange optimization (discrete in time) problem. The conservation correction

that ensues is proven to be bounded by the spectral accuracy of the unconserved

scheme. This guarantees overall spectral accuracy of the proposed isomoment spec-

tral method. Such an estimate does not exist in the literature for spectral deter-

ministic methods.

We studied the correction estimate of the Lagrange optimization problem for both

elastic and inelastic collisions for the space homogeneous Boltzmann equation based

on the method proposed in [52]. As expected, the correction estimate was directly

proportional to the spectral accuracy of the unconserved method. Using a stan-
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dard Fourier approximation error estimate as the starting point, we proved a new

result in the L2
k(Ωv) norm for a finite domain Ωv = [−L,L)3. We then extended the

bounded estimate of the asymmetric collision integral in [48] to a finite domain for

variable hard potentials for both elastic and inelastic collisions. Combining all of the

above results, we proved the overall error estimate ‖Q(f, f)−QΠ
C(fΠ, fΠ)‖L2(Ωv) in

(3.3.33). As expected apriori, (3.3.33) reveals that, if the number of Fourier modes

N is increased then, all the terms in (3.3.33) become small for |α|, |γ| ≥ 1.

This is the first method of its kind that requires no modification to compute both

elastic and inelastic collisions. In comparison with the known analytical results (mo-

ment equations for elastic BTE, BKW self-similar solution, and attracting Bobylev-

Cercignani-Gamba self-similar solutions for elastic collisions in a slow down process),

the computed ones are found to be very close. The method employs a Fast Fourier

Transform for faster evaluation of the collision integral. Even though the method

is implemented for a uniform grid in velocity space, it can be implemented for a

non-uniform velocity grid. The only challenge in this case is computing the Fast

Fourier Transform on such a non-uniform grid. There are available packages for this

purpose, but such a non-uniform FFT can also be implemented using certain high

degree polynomial interpolation, and this possibility is currently being explored.

The integration over the unit sphere is avoided completely and only a simple in-

tegration over a regular velocity grid is needed. Even though a trapezoidal rule is

used as an integration rule, other integration rules like a Gaussian quadrature can be

used to get better accuracy. For time discretization, a simple Euler scheme is used.

The proposed method has a big advantage over other non-deterministic methods, as

the exact distribution function can actually be computed instead of just the averages.

The numerical results for space inhomogeneous problems show the effectiveness of

124



the present method in solving a wide class of problems. Especially, shock structure

analysis is performed for the classic stationary shock and Riemann problems. The

supersonic to subsonic flow is shown for the stationary shock problem wherein the

initial conditions and the states at infinities satisfy the Rankine-Hugoniot relations.

Other shock structure properties are also analyzed. For the Riemann problem, it

is observed that for smaller Knudsen numbers, the computed macroscopic profiles

approach the ones expected for a fluid type flow. In addition, the effect of sudden

change of wall temperature, that reflects gas diffusively as done in [85], is also anal-

ysed. The results in this case are found to be in complete agreement with the results

obtained with a BGK method.

We are currently analyzing the importance of N , the velocity discretizations for

space inhomogeneous Boltzmann calculations. In the case of a space inhomoge-

neous spherical Boltzmann shock analysis calculation [51], we see that we require

ND > NS , where ND is the number of Fourier modes near discontinuity in v and NS

is the number of Fourier modes near a smooth region in v. The reason is not only

to make sure that we have a good spectral accuracy and convergence but also to

eliminate the effect of Gibbs phenomenon [51]. Granular flows can be analysed de-

terministically using the present method, and such inelastic problems are currently

being explored. In addition, Rayleigh-Benard convective flows and Taylor-Couette

flows are also being numerically studied.
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