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1H Nuclear Magnetic Resonance (NMR) has long been applied in downhole 

logging and laboratory analyses to investigate pore size distributions of rocks through 

correlation with measured relaxation time distributions. However, due to the inherent 

chemical heterogeneity of pore surfaces in rock, the pore surface relaxivity, which links 

relaxation time and pore size, varies throughout the pore system. I seek to modify and 

control the surface relaxivity in natural porous media through coating of paramagnetic 

nanoparticles so that NMR measurements can be used to compute pore sizes directly.  

I chose zirconia nanoparticle dispersions with opposite surface charge but similar 

size. The absence of surface coating on zirconia nanoparticles simplified the calculation of 

nanoparticle surface relaxivity and interactions between nanoparticles and pore walls. 

Glass bead packs and Boise sandstone cores were saturated with positively charged 

zirconia nanoparticle dispersions in which nanoparticles can be electrostatically adsorbed 

onto pore surfaces, while negatively charged zirconia nanoparticle dispersions were 

employed as a control group to provide the baseline of nanoparticle retention due to non-

electrostatic attraction. When 1.114 vol. % positively charged zirconia nanoparticles 

dispersion was used to saturate a glass bead pack, 11.6% of the nanoparticles were 

adsorbed to the bead surfaces and modified the glass bead surface relaxivity.  
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I performed core flushing with DI water, pure acid and alkali, and compared 

properties of zirconia nanoparticles before and after exposure to Boise sandstone. After 2 

pore volumes of core flooding, there was around 3% of negatively charged nanoparticles 

trapped in Boise sandstone core while around 30% to 40% of positively charged 

nanoparticles were retained in Boise sandstone cores. The results indicated that besides van 

der Waals attraction, electrostatic attraction is the driving force for retention of 

nanoparticles with positive surface charge in sandstone cores. Full coverage of 

nanoparticles onto sandstone surface was not achieved. The attachment of nanoparticles 

onto sandstone surface changed the mineral surface relaxivity. After contact with Boise 

sandstone, nanoparticles themselves exhibited increased relaxivity due to interactions 

between nanofluids and mineral surface under different pH conditions. The complicated 

interactions between nanofluids and pore surfaces make it difficult to predict sandstone 

surface relaxivity with attached nanoparticles. 

Since adsorption of nanoparticles changed the pore surface relaxivity, it is crucial 

to know nanoparticle relaxivity and factors that may affect the relaxivity of nanoparticles. 

T1 values of zirconia nanoparticle dispersions before and after mixing with various Fe(III) 

solutions were measured and compared. Adsorption of iron onto zirconia nanoparticles was 

confirmed based on measurements of aqueous Fe remaining in supernatants. Adsorbed iron 

increases zirconia nanoparticles’ surface relaxivity, as the relaxation rate of zirconia 

nanoparticles increased with the amount of adsorbed Fe(III).  

Besides adsorbed paramagnetic species, surface coatings also play a role in 

changing nanoparticle surface relaxivity. Since organic surface coatings usually give a 

small value of relaxivity, it is better to use a nanoparticle core with high relaxivity as to 

investigate the effect of organic surface coatings. I examined the relaxation properties of 

(3-Aminopropyl)triethoxysilane (APTES) coated Fe3O4 nanoparticles in mixtures with 
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different D2O volume fractions. Fe3O4 nanoparticles exhibited decreased relaxivity with 

more APTES coating. The presence of D2O affects proton-proton relaxation but not 

electron-proton relaxation. Comparison of relaxivity of APTES coated Fe3O4 nanoparticles 

with different coating amount and D2O volume fractions indicated that at relatively high 

Fe concentration, when electron-proton interaction dominates surface relaxation, hydrogen 

atoms in the APTES did not significantly alter the surface relaxation mechanism of 

nanoparticles. At lower Fe3O4 concentration, proton-proton relaxation brought by APTES 

also played a role in the overall relaxation mechanism on nanoparticle surfaces, as more 

APTES coating showed lower apparent surface relaxivities with higher D2O volume 

fractions in the mixture. 
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Chapter 1  

 Introduction 

1.1 MOTIVATION AND OBJECTIVES 

In recent years, nuclear magnetic resonance (NMR) has been used to characterize 

a wide range of gaseous, liquid and solid materials. NMR is a phenomenon that occurs 

when nuclei of some atoms in a static magnetic field are exposed to a second oscillating 

electromagnetic field at a particular frequency. Some nuclear with spin will experience this 

phenomenon. NMR spectroscopy is used to study physical, chemical, and biological 

properties of materials. NMR is frequently used to measure the longitudinal (T1) and 

transverse (T2) relaxation times in fluid saturated porous media. NMR relaxation time 

distributions may be related to pore size distributions in porous media through calibration 

with other quantitative methods such as mercury injection capillary pressure (MICP) tests 

or 3-D imaging. Surface relaxivity is the parameter that relates relaxation time to pore size 

(Fleury, 2007), and is a function of the surface concentration of paramagnetic and/or 

magnetic sites on the pore surface (Kleinberg et al., 1994).  

In natural porous media like rocks, the value of this important parameter is often 

unknown because the properties of rocks are heterogeneous, so NMR measurements can 

typically offer only relative pore size distributions (Nelson, 2009). We seek to modify and 

control surface relaxivity in natural porous media so that NMR measurements can be used 

to compute pore sizes directly. To control pore surface relaxivity, previous researchers 

have used paramagnetic materials to coat pore solid surfaces (Anand and Hirasaki, 2007) 

and magnetic particles to attach onto silica gel surfaces and pore surfaces (Bryar et al., 

2000; Cheng et al., 2014).   
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There are many advantages of nanoparticles to be employed to accomplish our goal. 

The small size of nanoparticles relative to colloidal particles allows them to be transported 

freely through pores with the movement of the pore fluid. In addition, nanoparticles have 

relatively large mass compared to dissolved ions, which allows better control of adsorption 

and nanoparticle retention in porous media, and they have much lower potential for fluid-

rock interactions than dissolved ions.  

Due to the harsh subsurface environment in the oilfield (Carter et al., 2005), proper 

surface coating is widely employed to stabilize nanoparticles. However, care must be taken 

when using polymer-coated nanoparticles as contrast agents, as studies have reported that 

polymer coating affects the relaxivities of nanoparticles (Issa et al., 2011).  

The use of paramagnetic nanoparticles as contrast agents to characterize porous 

media has focused on measurements of saturated porous media (Bryar et al., 2000; Yu, 

2012; Cheng et al., 2014a), and questions regarding relaxation phenomena of nanoparticles 

and surface relaxivity alteration of pore walls remain to be answered. When nanoparticles 

are present in natural porous media like rocks, van der Waals attraction and electrostatic 

attraction can drive adsorption of nanoparticles onto pore surfaces (Caldelas, 2010), 

changing the pore surface relaxivity and hence the overall relaxation time of the dispersion-

saturated rock. In addition, iron oxides and paramagnetic ions are commonly present on 

the pore surfaces of reservoir rocks (Carmichael, 1982), and after injection of nanoparticle 

dispersions into these reservoirs, it is possible that these chemical species may be adsorbed 

onto nanoparticles and alter the relaxivities of nanoparticles in the pore fluid and/or 

attached on pore surfaces. I seek to attach nanoparticles onto the pore surface to 

homogenize and control the pore surface relaxivity. This requires a detailed study of 

analyze relaxation properties of nanoparticles and pore surfaces in nanofluid-saturated 

porous media.  
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The main objectives of this dissertation are: 

1. To attach nanoparticles onto sandstone surfaces via electrostatic attraction, thus 

changing and controlling pore surface relaxivity via adsorption of 

nanoparticles. 

2. To quantify the relationship between adsorbed nanoparticles and alteration of 

surface relaxivity of sandstones. 

3. To understand how the interactions between nanoparticles and sandstone 

surfaces under different pH conditions will affect adsorption and relaxivities of 

nanoparticles in porous media, and how this will be reflected in NMR 

measurements. 

4. To study how surface coating may change nanoparticle relaxivities, which will 

provide useful insight for the future use of surface-coated nanoparticles in NMR 

measurements.  

1.2 OUTLINE OF CHAPTERS 

This dissertation contains 7 chapters.  

Chapter 1 describes the problems and introduces the motivation and objectives of 

this project. 

Chapter 2 reviews the methods and theories that have been applied to study 

relaxation of protons in pure fluids and in saturated porous media, the main force that drives 

adsorption of nanoparticles onto pore surfaces, possible interactions between 

nanoparticles’ surfaces and pore surfaces, and alterations of nanoparticle properties due to 

surface coating. 

Chapter 3 studies the relaxivities of nanoparticles and retention of nanoparticles on 

silica porous media (glass bead pack and Boise sandstone cores). Adsorption of positively 
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charged zirconia nanoparticles onto silica surface is confirmed. Silica pore surface 

relaxivities were altered due to attachment of nanoparticles. 

Chapter 4 presents the changes in surface relaxivities of Boise sandstone cores after 

saturating with positively and negatively charged zirconia nanoparticles with different 

nanoparticle concentrations and pH values. Retention of nanoparticles in sandstone cores 

after core flooding was observed. The results also indicate alterations of zirconia 

nanoparticles’ relaxivity after being flushed from Boise sandstone cores. 

Chapter 5 studies the interactions of iron ions and uncoated zirconia nanoparticles 

and polyethylene glycol (PEG)-coated silica nanoparticles. Increased surface relaxivities 

of nanoparticles are shown to be associated with attached iron ions on nanoparticle 

surfaces. 

Chapter 6 describes how 3-aminopropyl triethoxysilane (APTES) coating on Fe3O4 

nanoparticles may reduce the relaxivities of nanoparticles and affect relaxation 

mechanisms on nanoparticle surface.  

Chapter 7 summarizes this project and provides recommendations for future work.  
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Chapter 2  

 Background 

2.1. PROTON NUCLEAR MAGNETIC RESONANCE IN POROUS MEDIA 

The principle of NMR measurement is to use coils with strong currents which can 

generate a steady magnetic field that can polarize hydrogen nuclei (Abragam, 1961; Allen 

et al., 1998). Hydrogen is mainly present in the pore fluids in natural porous media, so 

proton NMR allows us to investigate the pore system and the fluids contained in it 

(Kleinberg et al., 1994).  

The longitudinal relaxation time T1 is the decay constant for recovery of nuclear 

spin magnetization perpendicular to the applied static field. As shown in Figure 2.1, when 

exposed to the static field of the NMR device, the nuclear spin magnetization is at its 

thermal equilibrium Mz,eq. At time 0, there is a second magnetic field with opposite 

direction (180o) to original magnetic field applied, which inverts the initial magnetization 

to -Mz,eq, as shown in Equation (2.1): 

,(0)Z z eqM M 
. (2.1) 

After the 180o magnetic field pulse, under the original static field, the nuclear spin 

states are redistributed to reach the thermal equilibrium state distribution Mz,eq. During this 

redistribution, another magnetic field oriented perpendicular to the static field is applied at 

different inversion times TI, enabling measurement of the magnetization amplitude. The 

record of magnetization amplitude with different TI gives the profile shown in Figure 2.1. 

The decay constant is derived from Equation (2.2): 

1 1

, ,eq ,eq( ) [ (0)] [1 2 ]

t t

T T

Z Z eq Z Z ZM t M M M e M e
 

    
.  (2.2) 

 



 6 

 

Figure 2.1 Mechanism of T1 measurement in inversion recovery experiment. At the top is 

the applied magnetic field pulse sequence. A  pulse is followed by a /2 

pulse after TI (inversion time), then the resulting free induction decay’s 

amplitude is recorded (asterisk). To compute T1, with various values of TI, 

many measurements are made and the amplitude of free induction decay is 

fitted as function of TI employing Equation (2.2) (modified from Daigle et 

al., 2014). 

Several mechanisms contribute to magnetic relaxation in porous media: bulk fluid 

relaxation, surface relaxation, and diffusion in local magnetic field gradients (Wong, 1999). 

Bulk fluid relaxation is due to dipole-dipole coupling among protons in the liquid 

(Bloembergen et al., 1948; Brownstein and Tarr, 1979). Surface relaxation is due to 

interactions between protons in the pore fluid and unpaired electrons in paramagnetic ions 

on the pore surface (Kleinberg et al., 1994), or protons on the pore surface (Washburn, 

2014). Diffusion relaxation is due to diffusion of protons within local magnetic fields 
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generated by paramagnetic material in response to the applied static magnetic field. These 

three mechanisms act simultaneously to produce the measured magnetization decays. 

T1 relaxation is affected by bulk fluid relaxation and surface relaxation. In a single 

pore, the decay of magnetization is assumed to be single exponential, so the longitudinal 

relaxation rate 1/T1 can be denoted by the sum of different relaxation rates as described in 

Equation (2.3): sum of bulk fluid relaxation rate 1/T1,B and surface relaxation rate 1/T1,S 

(Carr and Purcell, 1954):  

. (2.3) 

Since the diffusion relaxation complicates the relationship between T2 and pore 

size, I employ T1 in this work.  

Because the relaxation rate due to bulk fluid processes is much smaller than the 

surface relaxation rate, the relaxation of fluids confined in porous media is mainly 

controlled by fluid-grain surface interaction at the surface of pores. In most natural porous 

media, the pores are relatively small (order tens of microns and smaller), and diffusion of 

fluid molecules to grain pore surfaces is much faster compared to surface relaxation, so the 

overall relaxation time is controlled by relaxation at the pore surface (Brownstein and Tarr, 

1979). In this case, the relaxation rate in a single pore is spatially uniform and single-

exponential, does not depend on pore shape, and is proportional to surface-to-volume ratio 

as described in Equation (2.4): 

, (2.4) 

where 1 is the longitudinal surface relaxivity of porous medium, S is porous medium 

surface area, and V is pore volume. In fluid saturated porous media, T1 may be expressed 

by combining Equations (2.3) and (2.4) as 

1 1, 1,

1 1 1

B ST T T
 

1

1,

1

poreS

S

T V

 

  
 
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. (2.5) 

Thus, for each single pore there is a corresponding T1, and the distribution of T1 from NMR 

measurements will give pore size distribution in porous medium.  

In rocks, due to the presence of paramagnetic materials on the pore surface, the 

overall relaxation rate of the pore surface can be explained as in Equation (2.6) (Kleinberg 

et al., 1994): 

.  (2.6) 

Here, c is mole fraction of adsorbed water molecules close enough to be relaxed by 

paramagnetic sites on the pore surface (surface ions in crystals, paramagnetic crystal 

defects, or adsorbed paramagnetic ions) and relaxed with relaxation time of T1,M, and M is 

the residence time of water molecules near paramagnetic sites. T1,N is relaxation time of 

adsorbed water molecules not relaxed by paramagnetic sites, and N is the corresponding 

residence time of water molecules at surface. 

Different species of paramagnetic sites may have various values of T1,M and M, so 

Equation (2.6) can be re-written in a more general form as below. Here, ci is the fraction 

of protons in water molecules relaxed by paramagnetic species i, h is the thickness of one 

monolayer of water, and ni is surface fraction of paramagnetic sites i. 

.  (2.7) 
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The surface relaxivity is hard to know and is often not a uniform, steady value (Ryu, 2009), 

and requires independent pore size measurements (e.g., microtomography images) to 

constrain. 

2.2. NANOPARTICLES 

2.2.1. Zeta potential model and theory 

An important factor that controls the stability of nanoparticles in dispersions is zeta 

potential, which is used to quantify surface charge magnitude. It is the potential difference 

between the dispersion medium and the stationary layer of fluid attached to the dispersed 

particle. The sign and magnitude of zeta potentials of different materials will determine the 

electrostatic force between them, whether attractive when they have different signs of zeta 

potential (one is positive, the other is negative) or repulsive when they have the same sign 

of zeta potential. The repulsive forces are required to stabilize nanoparticles in dispersion 

against van der Waals attractive forces. Studies of adsorption of ionic surfactants on an 

ionogenic surface have shown that the adsorption is mainly controlled by the zeta potential 

(Keesom et al., 1998). The retention of surface-treated stabilized paramagnetic iron-oxide 

nanoparticles in sedimentary rocks is also controlled by the zeta potential of the 

nanoparticles in dispersion (Yu et al., 2010).  Previous studies indicate that silica and most 

sedimentary rock grains have negative zeta potential when exposed to fluid with various 

pH values under laboratory conditions (Kim and Lawler, 2005). Therefore, nanoparticles 

with positive zeta potential are the best candidates for adsorption to silicate grain surfaces. 

2.2.2 pH values affect nanoparticle zeta potential and size 

In porous media, the electrostatic force is responsible for the retention of 

nanoparticles by adsorption on the pore surface (Overbeek, 1952). As shown in Figure 2.2, 

there is an electrical double layer (EDL) associated with the mineral surface. The outer 
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boundary of the EDL is the location where the particle’s surface charge is neutralized by 

the nearest layer in the liquid containing ions of opposite charge to that of the surface (the 

counterions). The thickness of the EDL is determined by the concentration of electrolyte 

(Prides, 1994). Free electrolyte is in the pore fluid outside the EDL. The relative motion 

between the charged mineral surface and its EDL in pore fluid is localized along a shear 

plane within the EDL, and controls all electrokinetic phenomena such as the motion of 

particles and liquids in porous media under electric fields or chemical potential gradients, 

as well as electric fields and currents generated by motion of colloidal particles. Zeta 

potential is the electrical potential of the EDL (Overbeek, 1952).  

The variation in zeta potential with electrolyte concentration has been studied for 

various minerals (Ishido and Mizutani, 1981; Morgan et al., 1989; Revil et al., 1999a,b). 

Silicate minerals have negative zeta potential ranging from -10mv to -130mv with different 

electrolyte concentrations ranging from 10-6 mol/L to 10-1 mol/L (Gaudin and Fuerstenau, 

1955; Li and De Bruyn, 1966). As previously studied (Iler, 2004), silica surfaces contain 

two types of surface groups: >Si2O
0 (surface siloxal group) and >SiOH0 (surface silanol 

group). Here the symbol “>” indicates surface complexes. >SiOH0 undergoes amphoteric 

reactions to generate positively charged surface groups (>SiOH2
+) when pH is lower than 

2, and negatively charged surface groups (>SiO-) when pH is higher than 3 (Revil et al., 

1999a,b). When silica minerals are exposed to electrolyte solutions, there are surface 

mineral reactions at silanol surface sites. In the left part of Figure 2.2, the pH value is 

between 3 and 8, the main surface groups are siloxane groups (>Si2O
0), silanol groups 

(>SiOH), and silicic acid groups (>SiO-), and the shear plane is on the mineral surface. In 

the right part of Figure 2.2, the pH value is higher than 8, and silicic acid chains generate 

longer filaments near the surface due to mineral surface dissolution. This builds a silica gel 
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layer that coats the solid mineral surface and the shear plane is located between the silica 

gel and aqueous phases (Revil et al., 1999a,b).  

 

 

 

Figure 2.2 Simplified model of electric double layer (EDL) at a silica mineral surface in 

aqueous solution (Revil et al., 1999a). 

It has been demonstrated that the pH value of a liquid affects nanoparticle zeta 

potential and aggregation (Godinez and Darnault, 2011). For small silica particles with 

diameters from 0.63 m to 6.3 m, zeta potential changes with pH values: zeta potential 

drops from -10 mV to -65 mV as pH increases from 2 to 10 (Nelson, 2009). The zeta 

potential of kaolinite is +0.7 mV at pH value of 2 and decreases to -54 mV at pH value of 

10 (Vane and Zang, 1997; Daigle and Dugan, 2011). Reservoir brine pH is important to 

the zeta potential and aggregation behavior of nanoparticles (Yu et al., 2010; Daigle and 

Dugan, 2011). For pure commercial carbon black without surfactants, zeta potential is ~-
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20 mV at pH ~6, and zeta potential drops to -40 mV when pH increases to 11 (Sis and 

Birinci, 2009). Even though nanoparticles are smaller than colloidal particles, similar pH-

zeta potential behavior has been observed. When there are nonionic surfactants used to 

stabilize carbon black nanoparticles, zeta potential is -5mV when pH is ~3, and zeta 

potential decreases to -20mV when pH increases to 11 (Sis and Birinci, 2009). Lower pH 

values generally correspond to higher zeta potential, which could result in stronger 

repulsive forces between nanoparticles and inhibit nanoparticle aggregation. 

2.2.3 Paramagnetism 

Paramagnetism means the magnetic state of an atom with one or more unpaired 

electrons. The unpaired electrons can spin in either direction and thus generate magnetic 

moments in any direction. When they are placed in a magnetic field, they will be attracted 

by the magnetic field due to the electrons' magnetic dipole moments. Most paramagnetic 

materials are metals that are weakly attracted by magnets, and will not retain their magnetic 

properties after applied magnetic field disappears. Examples are aluminum, tin, and 

manganese. When paramagnetic materials are exposed to a magnetic field, they generate a 

secondary magnetic field that decreases the relaxation time of protons in the pore fluid. 

Paramagnetic nanoparticles mostly are rare earth oxides, hydroxides, and fluorides, which 

have been used as magnetic resonance imaging (MRI) contrast agents (Vuong et al., 2012). 

Now paramagnetic nanoparticles are widely used in NMR studies (Ryoo et al., 2012). 

When there are paramagnetic nanoparticles present in pore fluid and attached on a 

grain surface, the contributions to the overall relaxation rate can be split more specifically 

from Equation (2.3). As shown in Figure 2.2, in part a, there is pure bulk pore fluid present 

in pores, with relaxation contributed by bulk fluid T1,B and pore surface T1,S, corresponding 

to the two components in Equation (2.3). In part b, if nanoparticles are present only in the 
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pore fluid, they provide an additional relaxation contribution T1,B-NP. If some nanoparticles 

move from bulk pore fluid to be adsorbed onto the pore surface, they provide an additional 

surface relaxation time T1,S-NP. Hence the sum of these four relaxation contributions gives 

Equation (2.8): 

1 1, 1, 1, 1,

1 1 1 1 1

B B NP S S NPT T T T T 

   

. (2.8) 

 

Figure 2.3 Mechanisms of relaxation of nanoparticle dispersion in a single spherical pore. 

25 nm magnetite nanoparticles were used to coat fine and coarse sand at different 

surface concentrations (Anad and Hirasaki, 2007). The results indicate that the size and 

concentration of paramagnetic nanoparticles affect the degree to which they influence the 

proton relaxation times. Magnetite particles may be modeled as thin spherical shell of 

paramagnetic material.  

2.3 RELAXATION OF SATURATED MEDIA INVOLVING NANOPARTICLES 

Based on previous work, the effect of paramagnetic nanoparticles on NMR 

measurements varies according to the nanoparticle locations, whether in bulk dispersion, 
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or adsorbed on a solid surface. Two models with different spatial scales may be used to 

quantify the effect of paramagnetic nanoparticles on longitudinal relaxation.  

2.3.1 Dispersion scale 

Model 1: Surface relaxation of nanoparticles surface with paramagnetic sites (Bryar 

et al., 2000; Zhu, et al., 2016) 

We may also treat nanoparticle dispersions as a dilute porous medium in which 

solid nanoparticles are the matrix providing surface relaxation (Korb et al., 1997; 

McDonald et al., 2005; Zhu et al., 2015), and the bulk fluid in which the nanoparticles are 

dispersed provides the bulk fluid relaxation. The overall longitudinal relaxation rate 1/T1 

of a nanoparticle dispersion is the sum of the contributions from bulk relaxation rate 

1/T1,Fluid and the nanoparticle surface relaxation rate 1/T1,NP (e.g., Carr and Purcell, 1954), 

as displayed in Equation (2.9): 

. (2.9) 

1/T1,Fluid can be calculated from experiments by measuring the relaxation time of 

the pure dispersing fluid. When diffusion of water molecules across the pores is fast enough 

to maintain uniform magnetization in the pores during signal decay, 1/T1,NP is proportional 

to S/V, the ratio of total nanoparticle surface area (S) to total fluid volume (V) in the 

dispersion (Senturia and Robinson, 1970), with the constant of proportionality being the 

nanoparticles’ surface relaxivity 1,NP. In Equation (2.10), Spore can be calculated from 

nanoparticles’ volume VNP and radius rNP assuming that the nanoparticles are spherical. 

Vpore is fluid volume which equals total volume of suspension VTotal minus the 

nanoparticles’ volume VNP. The parameter  is the ratio of the nanoparticles’ volume to the 

fluid volume in the dispersion (Zhu et al., 2015): 

1 1,Fluid 1,NP

1 1 1

T T T
 
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.  (2.10) 

With various types of paramagnetic sites (surface ions in crystals, paramagnetic 

crystal defects, or adsorbed paramagnetic ions) on nanoparticle surfaces, the relaxation rate 

of nanoparticles has contributions from paramagnetic and non-paramagnetic parts 

(Kleinberg et al., 1994) as shown in Equation (2.11): ci is fraction of water molecules get 

close enough and relaxed by paramagnetic locations on surface, T1M is the intrinsic 

relaxation time for each paramagnetic site, M is the corresponding residence time of water 

molecules, h is thickness of one monolayer of water molecule, ni is surface fraction of 

paramagnetic sites on nanoparticle surface. When surface concentrations of paramagnetic 

sites ni increase, the overall relaxation rate of nanoparticle will increase accordingly. 

. (2.11) 

If i is the inherent relaxivity of the different kinds of paramagnetic relaxation sites 

on the solid surface, ni is surface concentration of paramagnetic species (Bryar et al., 2000), 

and N is the relaxivity of the non-paramagnetic sites, the overall relaxivity ρ1,NP of 

nanoparticles with surface coating can be computed using Equation (2.12): 

. (2.12) 
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2.3.2 Molecular Scale 

Model 2: Surface relaxation on surfaces with adsorbed paramagnetic species 

(McDonald et al., 2005) 

The dominant mechanism of longitudinal surface relaxation is interactions with 

paramagnetic relaxation centers on the pore wall (Korb et al., 1997). Since the size of water 

molecules is much smaller than the porous medium grains, the pore surface is relatively 

flat in the reference frame of the water molecules. As shown in Figure 2.4, during the 

surface residence time τs in which the water molecule is close enough to the surface to 

interact with paramagnetic ions, the motion of the water molecules may be represented by 

a two-dimensional random walk in which the water molecules jump between relaxing sites 

on the solid surface with a characteristic time m (translational correlation time) (s>>m). 

After s the water molecule leaves the surface and returns back to pore fluid. The 

longitudinal relaxation time of protons in the surface relaxing layer may be expressed as 

2 2 2 0 1 2

1,

1 2
( 1)[ ( ) 3 ( ) 6 ( )]

9
I S L I S L I L I S

M

S S J J J
T

           

, (2.13) 

where the spectral density functions JL are different from those in Equation (2.11) and are 

computed as in Equation (2.13). Here, s is surface density of paramagnetic species and  

is the distance of minimum approach, which is taken as the radius of a water molecule.  
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Figure 2.4 Schematic of mechanism of a two-dimensional random walk of water 

molecules coordinated with paramagnetic relaxation sites on the pore 

surface (McDonald et al., 2005). 

Previous studies of surface relaxation in porous media modified with paramagnetic 

materials (iron or manganese precipitated from solution) have shown that the adsorption 

of paramagnetic materials can increase surface relaxivity by factors of 6 to 50 (Kenyon and 

Kolleeny, 1995). 

If we treat the adsorbed paramagnetic nanoparticles on mineral surfaces as a 

uniform layer with a given surface concentration of paramagnetic relaxation sites, the 

relaxation rate of that layer is the difference between overall relaxation rate and pore fluid 

relaxation rate, and can be easily derived from Equation (2.3).  
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Chapter 3  

Nuclear Magnetic Resonance Investigation of Pore Surface Relaxivity 

Alteration with Presence of Paramagnetic Nanoparticles1 

3.1 INTRODUCTION 

1H Nuclear magnetic resonance (NMR) is widely used to characterize a wide range 

of gaseous, liquid and solid materials. NMR relaxation time distributions may be related to 

pore size distributions in porous media through calibration with other quantitative methods 

such as mercury injection capillary pressure (MICP) tests or 3-D imaging. To obtain pore 

size distribution, paramagnetic nanoparticles are employed as contrast agents. 

25 nm magnetite nanoparticles were employed to saturate fine and coarse sand at 

different surface concentrations by Anand and Hirasaki (2008). Their results indicate that 

the size and concentration of paramagnetic nanoparticles affect the degree to which they 

influence the proton relaxation times. More recent work has shown that superparamagnetic 

nanoparticles in porous media change the NMR signal by shortening transverse relaxation 

times (Cheng et al., 2014a,b). 

An important factor that controls the stability of nanoparticles in dispersions is the 

zeta potential, which is used to quantify surface charge magnitude. In porous media, 

electrostatic forces are also responsible for the retention of nanoparticles by adsorption on 

the pore surface (Overbeek, 1952). Studies of adsorption of ionic surfactants on an 

ionogenic surface have shown that the adsorption is mainly controlled by the zeta potential 

(Keesom et al., 1988). The retention of surface-treated stabilized paramagnetic iron-oxide 

nanoparticles in sedimentary rocks is also controlled by the zeta potential of the 

nanoparticles in dispersion (Yu et al., 2010).  Previous studies indicate that silica and most 

                                                 
1This chapter is based on: Zhu, C., Daigle, H., & Bryant, S. (2015, September). Nuclear magnetic 

resonance investigation of surface relaxivity modification by paramagnetic nanoparticles. In SPE Annual 

Technical Conference and Exhibition. Society of Petroleum Engineers. I was the primary author. 
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sedimentary rock grains have negative zeta potential when exposed to fluid with various 

pH values under laboratory conditions (Kim and Lawler, 2005). Therefore, nanoparticles 

with positive zeta potential are the best candidates for adsorption to silicate grain surfaces. 

Previous studies such as Anand and Hirasaki’s work focused on characterization of 

transverse relaxation regimes in sandstones corresponding to paramagnetic particles’ 

concentration and size, and provided a way to quantitatively understand the relaxation of 

paramagnetic particles in sandstone due to diffusion in internal magnetic field gradients. 

However, the surface relaxivity of pore surface was not studied. We chose zirconia 

nanoparticles provided from Nissan Chemical America, because (1) these nanoparticles do 

not have surface coating, which may interfere with the relaxivity of nanoparticles; (2) they 

are stabilized and dispersed under 2 different pH conditions, giving opposite surface 

charge; and (3) they have similar size. In this paper, we measured longitudinal relaxation 

time distribution which solely depends on bulk relaxation and surface relaxation. The 

objectives of our work are: 1) to understand how dispersed zirconia nanoparticles affect 

proton relaxation in bulk fluid, and 2) how adsorbed zirconia nanoparticles change the 

surface relaxivity of porous media. We measured relaxation time and particle sizes of 

zirconia nanoparticle dispersions at different concentrations, characterized the relationship 

of relaxation rate of zirconia nanoparticles and particle sizes and concentrations, and 

estimated nanoparticles’ surface relaxivity. We measured and compared relaxation time of 

DI water and zirconia nanoparticles under three conditions: the original bulk dispersion, 

saturating a silica porous medium, and as effluent flushed from the silica porous medium. 

Our results indicated adsorption of nanoparticles onto pore surface leaves fewer 

nanoparticles in the pore space and affects surface relaxation at the pore wall. 
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3.2 THEORY 

In order to analyze nanoparticles’ relaxation time under different conditions, well 

studied equations that characterized nanoparticles with simplified assumptions and models 

can be used.  

3.2.1 Bulk Relaxation of Paramagnetic Nanoparticle Dispersions  

The bulk relaxation behavior of paramagnetic nanoparticle dispersions is similar to 

the relaxation behavior of a dilute porous medium in which solid nanoparticles are the 

matrix providing surface relaxation (Korb et al., 1997; McDonald et al., 2005). The fluid 

within the dispersion has a characteristic bulk relaxation rate 1/T1,Fluid.  Paramagnetic ions 

on the surface of the nanoparticles create relaxation sites that contribute an additional 

surface relaxation rate 1/T1,NP (Korb et al., 1997). We assume that the decay of 

magnetization in the dilute medium is single exponential, so the longitudinal relaxation 

rate 1/T1 can be denoted by the sum of different relaxation rates (e.g., Carr and Purcell, 

1954): 

1 1,Fluid 1,NP

1 1 1

T T T
 

. (3.1) 

The bulk fluid relaxation rate is easy to obtain from experiments by measuring the 

relaxation time of pure fluid. The surface relaxation rate generated by dispersed 

nanoparticles can be modeled and computed as a 2D random walk (McDonald et al., 2005). 

The dominant mechanism of longitudinal surface relaxation is interactions with 

paramagnetic relaxation centers on the nanoparticle surfaces (Korb et al., 1997). Since 

water molecules are much smaller than the nanoparticles, the nanoparticle surfaces are 

relatively flat in the reference frame of the water molecules. The longitudinal relaxation 

rate of protons near the paramagnetic nanoparticle surfaces may be expressed as 

(McDonald et al., 2005):                                                                                                                                        
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where δ is the water molecular diameter, S/V is specific surface area of the pore space,  

and S are the gyromagnetic ratios of the protons and electrons, respectively, and S 

=658.21I, ℏ is the reduced Planck’s constant, S is the spin of paramagnetic ions in the 

nanoparticles, and S and I are Larmor angular frequencies of electrons and protons, 

respectively. The Fourier spectral density functions J are given by 
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where τs is surface residence time in which the water molecule is close enough to the 

surface to interact with paramagnetic ions, τm is the translational correlation time that is a 

measure of the time a proton is coordinated with each relaxation site, and σs is the surface 

density of relaxation sites. The motion of the water molecules may be represented by a 

two-dimensional random walk in which the water molecules jump between relaxing sites 

on the solid surface with a characteristic time m (translational correlation time) (s>>m). 

The surface density s can be calculated from known properties of paramagnetic 

nanoparticles as 

s bX  
, (3.4) 

where X is the fraction of paramagnetic atoms in nanoparticles with non-zero spins,  is 

the number of paramagnetic atoms per gram of dry material of nanoparticles, b is the 

density of the solid nanoparticles, and  is the distance between paramagnetic atoms in the 

nanoparticle crystal structure.  

Equation (3.2) may be simplified by introducing the longitudinal surface relaxivity 

ρ1, which relates 1/T1,NP to S/V as 1/T1,NP = ρ1(S/V). Since S/V is the ratio of total 
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nanoparticle surface area to total fluid volume in the dispersion, it may be computed from 

nanoparticle radius rNP and volume fraction  as   

1,NP 1,NP 1,NP

1,NP

3

1 3
NP

NP

pore Total NP NP

V
rS

T V V V r


  

 
    
      

    
 
  , (3.5) 

where χ is assumed to represent volume of nanoparticles per unit volume of fluid in the 

dispersion.                                                                                      

3.2.2 Relaxation of Nanoparticle Dispersions in Porous Media 

When nanoparticle dispersions enter a porous medium, it is possible for 

nanoparticles to attach to the porous medium surface (Anand and Hirasaki, 2008), thus 

affecting the surface relaxation of the porous medium. Some nanoparticles will remain in 

the dispersion within the pore space. Again assuming single exponential decay in a single 

pore, the overall relaxation rate can be described as 

1 1,Bulk 1,Surface 1,Fluid 1,NP in pore 1,Medium surface 1,NP on surface

1 1 1 1 1 1 1

T T T T T T T    

   
          

   , (3.6) 

where T1,Bulk is the relaxation time of bulk dispersion in pore space, T1,Surface is the surface 

relaxation time at pore wall, T1,NP-in-pore is the relaxation time of nanoparticles remained in 

pore space, T1, Medium-surface is the surface relaxation time of the porous medium, and T1,NP-

on-surface is the relaxation time of nanoparticles adsorbed onto pore surface. Adsorbed 

nanoparticles will alter both bulk dispersion relaxation time (by reducing the nanoparticle 

concentration in the dispersion) and surface relaxation time at the pore wall.  

Similarly, in a porous medium saturated with nanoparticle dispersions, when pores 

are treated as spheres with radius of rpore, the overall surface relaxation rate can be linked 

with pore size using a modified surface relaxivity 1,eff.  1,eff arises from the scenario in 

which some of the nanoparticles in dispersion are removed from the pore space and 
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attached to the solid pore wall. With NNP nanoparticles adsorbed onto one spherical pore, 

1,eff is related to the relaxivities of the adsorbed nanoparticles and the pore wall. On pore 

surface, the altered surface relaxivity may be determined by considering the surface area 

that is covered by the projection of an adsorbed nanoparticle onto the pore surface. 1,eff is 

calculated from the areally weighted average of medium surface relaxivity 1,Medium-surface 

and attached NNP nanoparticles relaxivity 1,NP: 

 

1,eff 1,eff
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1 3

pore pore

S
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The relaxation rate of the bulk nanoparticle dispersion 1/T1,NP-in-pore with MNP 

nanoparticles remaining in the pore can be calculated from the original relaxation rate of 

the bulk dispersion 1/T1,NP with (MNP+NNP) nanoparticles:  

1,NP in pore 1,NP

1 1 NP

NP NP

M

T T M N 

 
  

  . (3.10) 

3.3 METHODS  

We used zirconia nanoparticles dispersed in water (ZR-30AL) with 30 wt% of 

colloidal zirconium oxide (ZrO2) stabilized with 0.9 wt% HNO3 from Nissan Chemical 

America Corporation. The specific gravity was 1.36 and the pH value was 3.2. The original 

ZR-30AL was diluted with DI water to obtain dispersions with various zirconia 
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nanoparticles, ranging from 0.3 wt% of ZrO2 to 15 wt% of ZrO2.  6 wt% of ZrO2 in 

dispersion (ZR-6AL) was used for further saturation of silica porous media. The 

nanoparticles had positive surface charge, with an average zeta potential of +32.5 mV. 

Nanoparticle diameters were between 110 and 130 nm measured by a Dynamic Light 

Scattering (DLS) ZetaSizer (Malvern Nano ZS).  

We also used a 40 wt% dispersion of colloidal ZrO2 (ZR-40BL) from Nissan 

Chemical America Corporation. These nanoparticles were dispersed in water and stabilized 

with 1 wt% C4H12N.HO. The specific gravity was 1.53 and pH was 9.2. The original ZR-

40BL dispersion was diluted with DI water to reduce the weight concentration of zirconia 

nanoparticles to a wide range from 0.4 wt% to 20 wt%. The 6 wt% of ZrO2 in dispersion 

(ZR-6BL) was used to saturate silica porous media. The nanoparticles in the ZR-6BL 

dispersion had negative surface charge with average zeta potential of -38.8 mV. 

Nanoparticle diameters were between 70 and 90 nm.  Figure 3.1 shows the Transmission 

Electronic Microscope (TEM) images of these particles.  

 

 

Figure 3.1 TEM image of zirconia nanoparticles in ZR-BL dispersion. 
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The Malvern Nano ZS was used to measure size distribution and surface zeta 

potential of zirconia nanoparticles at different concentrations in ZR-AL and ZR-BL. Size 

and zeta potential calibrations were performed with calibration standard dispersions before 

each measurement. 0.450 mL of zirconia nanoparticle dispersion was placed in a 

disposable cell to measure size distribution. The size distribution and average value of 

measured size were recorded. A 1.0 mL plastic syringe was used to inject 1 mL of 

nanoparticle dispersion into a disposable folded capillary cell to measure zeta potential. 

The average volume and distribution of zeta potentials were recorded. Measurements of 

each dispersion sample were performed three times and the mean value and standard 

deviation were recorded. 

NMR measurements were performed at room temperature (20°C) using a 2 MHz 

GeoSpec2 benchtop NMR core analysis instrument from Oxford Instruments with an 

operating frequency of 2.15 MHz The external magnetic field B0 was 0.05047 Tesla. We 

used an inversion recovery measurement to determine the distribution of longitudinal 

relaxation times (T1). 

In order to check nanoparticles’ retention in porous media, density of zirconia 

nanoparticles dispersions ZR-6AL and ZR-6BL before and after saturating porous media 

were computed. The mass of 1 mL of dispersion was measured by Mettler Toledo mass 

balance. Measurements were repeated 5 times at room temperature, and average values 

were used. 

Glass beads with diameter of 2 mm were soaked in ethanol to remove dust and other 

surface impurities for 10 hours, and then dried in an oven for 14 hours at 135°C. Glass 

beads were packed in plastic cylinder to form a column with 1.5” (3.81 cm) in diameter 

and 4” (10.16 cm) in length. The porosity of glass bead pack was determined as 38% based 

on NMR measurements with DI water as the saturating fluid. Three plastic tubes containing 
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the glass bead packs were oriented vertically, and different saturating fluids were injected 

from the bottom of bead pack at constant flow rate of 0.5 mL/min using a Teledyne ISCO 

D-Series hydraulic pump. The bottom valves were closed once fluid was observed running 

out through the top outlet. 

The three Boise Sandstone samples (BS1, BS2, BS3) used in this study were 1.5” 

(3.81 cm) in diameter and 3” (7.62 cm) in length. All core samples were oven-dried for 14 

hours at 135°C. The porosity of the core samples was computed approximately 29% 

according to NMR measurements with DI water as the saturating fluid. All dried core 

samples were placed in a sealed container and vacuumed with a Welch vacuum pump for 

4 hours. After vacuuming, the saturating fluid was sucked into the sealed container until 

the core sample was fully immersed. The core samples were kept immersed in the 

saturating fluid under vacuum for 1 additional hour to ensure complete saturation. 

To test and check whether there were nanoparticles adsorbed on pore surface, after 

measuring the T1 distribution of the saturated porous media we flooded the media with DI 

water from bottom to top at a constant flow rate of 0.5 ml per minute. Core flooding was 

performed until 1.2 pore volumes (PV) were injected. The first 0.7 PV of effluent was 

collected from the top outlet of the bead packs and core samples. The T1 value and 

nanoparticle sizes were measured and compared with that of the original fluids. 

Error bars for the longitudinal relaxation rate were computed from the standard 

deviation of the longitudinal relaxation time obtained from the Matlab inversion. The signal 

and noise were extracted from the raw NMR data in the time domain. Random noise with 

the same properties (magnitude, mean value and standard deviation) of noise extracted 

from raw NMR data was added to the time domain signal. With the added noise, there was 

a slightly different magnetization buildup curve compared to the curve obtained directly 

from the raw data. A linear inversion regression was then applied to the buildup curve with 
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added noise to compute the T1 value. After repeating this process 100 different times, 100 

buildup curves were generated and used to calculate associated T1 values. Based on these 

100 computed T1 values, the standard deviation of T1 was recorded and used to compute 

the errors in longitudinal relaxation rate. 

3.4 RESULTS 

3.4.1 Zirconia Nanoparticles Characterization  

We measured the size and zeta potential of zirconia nanoparticles at different 

concentrations in ZR-AL and ZR-BL. As shown in Table 3.1, zirconia nanoparticles in 

diluted dispersions with less stabilizer tend to aggregate and showed bigger nanoparticle 

size than well-stabilized nanoparticle dispersions. Zeta potential of nanoparticles in ZR-

AL and ZR-BL at highest concentration were not displayed since dispersions were so dense 

that results were too noisy. 

Table 3.1 DLS ZetaSizer measured size and zeta potential of zirconia nanoparticles in 

ZR-AL and ZR-BL at different concentrations. 

ZR-AL 

Concentration 

(wt%) 

Concentration 

(vol%) 

Average Size 

(nm) 

Average Zeta potential 

(mV) 

15.0 3.034 110 N.A 

6.0 1.114 113 32.5 

3.0 0.542 115 29.8 

0.6 0.106 118 35.3 

0.3 0.053 128 36.2 

ZR-BL 

Concentration 

(wt%) 

Concentration 

(vol%) 

Average Size 

(nm) 

Average Zeta Potential 

(mV) 

20 4.259 80.5 N.A 

8.0 1.513 84.6 -36.3 

4.0 0.729 85.2 -32.1 

0.8 0.142 88.1 -32.8 

0.4 0.071 88.3 -34.0 
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3.4.2 Bulk Relaxation Rate 1/T1 of Zirconia Nanofluids 

We measured the bulk relaxation rate of DI water, ZR-AL, and ZR-BL with 

different concentrations. Those fluids were placed in glass tubes and T1 was measured. 

According to Equation (3.1), the relaxation rate of zirconia nanoparticles 1/T1,NP can be 

obtained by deducting the pure liquid longitudinal relaxation rate 1/T1,Liquid from the overall 

longitudinal relaxation rate 1/T1. Here 1/T1,Liquid is the relaxation rate of DI water, which 

was determined as 0.385 s-1. We calculated the 1/T1,NP values of zirconia nanoparticle 

dispersions with different concentrations. In Figure 3.2, 1/T1,NP shows a linear relationship 

with 3/rNP in both ZR-AL and ZR-BL dispersions. Zirconia nanoparticle surface relaxivity 

in ZR-AL was computed as 1.427 ± 0.014 m/s as indicated in Figure 3.2a) according to 

Equation (3.5) using the slope of the weighted least squares regression line in Figure 3.2. 

Similarly, ZR-BL has relaxivity as 1.095 ± 0.024 m/s. According to the equations in 

Appendix A, error bars in 1/T1,NP associated with each point were obtained from the 

standard deviations of 1/T1 and 1/T1,Liquid, which were computed from the standard 

deviations of T1 and T1,Liquid obtained from Matlab as illustrated in section 3.3. The raw 

NMR data for zirconia nanoparticle dispersions with different nanoparticle concentrations 

are displayed in the Appendix. We additionally determined the correlation times τm and τs 

in Equations (3.2 and 3.3) according to parameter values listed in Table 3.2 by optimizing 

the measured 1/T1,NP values at different nanoparticle concentrations. For ZR-AL 

dispersions we found τm = 0.233 ns and τs = 2.524 ns, and for ZR-BL dispersions we found 

τm = 0.251 ns and τs = 1.528 ns.  Figs. 3a and 3b show the predicted nanoparticle relaxation 

rate from Equations (3.2 and 3.3) versus the measured relaxation rate in ZR-AL and ZR-

BL, respectively. There is excellent match between fitted and measured values.  
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Table 3.2 Parameter values used in calculation of m and s. 

Parameter Value used in Equations  (3.2 and 3.3) 

B0 0.05047 T 

 7×10-10 m 

I 2.675×108 s-1·T-1 

s=(658.21×I) 1.761×1011 s-1·T-1 

ℏ 1.055×10-34 J·s 

S 2.5 

I=(I×B0) 1.348×107 s-1 

s=(s×B0) 8.874×108 s-1 

s 1.028×1018  m2 

 

   

Figure 3.2 Measured 1/T1 of zirconia nanoparticles with different nanoparticle fluid 

volume ratio  and size rNP in a) ZR-AL dispersions, and b) ZR-BL 

dispersions fit the theory of Equations (3.2 and 3.3) well for suitable values 

of m and s. Values and standard deviations of slopes are obtained via 

weighted least squares linear regression. 
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Figure 3.3 Predicted 1/T1,NP from Equations (3.2) and (3.3) versus measured 1/T1,NP in a) 

ZR-AL dispersions, and b) ZR-BL dispersions. 

3.4.3 Fluids with Glass Bead Packs  

Evidence of Adsorption 

The recorded densities of the original ZR-6AL fluid and effluent with 0.7 PV were 

1.0631 g/cm3 and 1.0557 g/cm3, respectively; measured densities of ZR-6BL before and 

after contact with glass bead pack were 1.0633 g/cm3 and 1.0632 g/cm3, respectively. 

Figure 3.4 shows the measured relaxation rates of DI water, ZR-6AL and ZR-6BL in three 

states: as bulk fluids before injecting into the glass bead pack, as the saturating fluid within 

the glass bead pack, and as effluent flushed from the glass bead pack. The bulk relaxation 

rates of DI water, ZR-6AL and ZR-6BL were 0.357, 1.166, and 1.234 s-1, respectively. 

When saturating the glass bead pack, the relaxation rates were 0.408, 1.122, and 1.292 s-1, 

respectively. Finally, when the fluids were flushed out of the glass bead pack the relaxation 

rates were 0.357, 0.850, and 1.237 s-1, respectively. Error bars were calculated from the 

standard deviation of the longitudinal relaxation time (T1) of the nanoparticle dispersions 
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before, during, and after contact with the 2 mm glass bead pack by linear regression of raw 

data with added noise as described previously. 

The 1/T1 value of DI water increased inside the glass bead pack because of the 

presence of glass bead surfaces providing additional surface relaxation. The DI water 

effluent had the same value of bulk 1/T1 as before saturating the glass bead pack, as 

expected. The 1/T1 value of ZR-6BL also increased in the bead pack relative to the bulk 

value due to additional surface relaxation on the glass bead surfaces. Effluent ZR-6BL and 

the original bulk ZR-6BL showed similar 1/T1 values (1.234 s-1 and 1.235 s-1) and 

nanoparticle sizes (84.8 nm and 85.1 nm), suggesting that the zirconia nanoparticle 

concentration in the ZR-6BL effluent was the same as that in the original dispersion. The 

measured density of the fluid did not change, confirming the absence of adsorption. Since 

the nanoparticles in ZR-6BL were negatively charged, we hypothesize that the electrostatic 

repulsion between the nanoparticles and glass bead surfaces prevented adsorption. 

In contrast to the DI water and ZR-6BL, the 1/T1 value of ZR-6AL decreased inside 

the bead pack relative to the original dispersion, and the ZR-6AL effluent had a smaller 

1/T1 than the original dispersion. The smaller 1/T1 in the bead pack result is counterintuitive 

because the additional surface relaxation contributed by the glass bead surfaces should 

have increased the relaxation rate. The explanation is that nanoparticles adsorbed onto the 

bead surfaces, reducing their concentration in the aqueous phase. The evidence of 

adsorption comes from the smaller 1/T1 of the effluent, which strongly indicates smaller 

nanoparticle concentration in the effluent than in the original dispersion. Moreover, the 

effluent density was smaller than the density of the original fluid, also consistent with 

nanoparticle adsorption on the beads. Since nanoparticles in ZR-6AL were positively 

charged, we hypothesize that electrostatic attraction caused adsorption of positively 

charged nanoparticles onto the negatively charged glass bead surface. This is consistent 
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with previous studies that have shown that the retention of surface-treated stabilized 

paramagnetic iron-oxide nanoparticles in sedimentary rocks is controlled by the zeta 

potential of the nanoparticles in dispersion (Yu et al., 2010).  Evidently, the reduction in 

1/T1 caused by depletion of nanoparticles in the aqueous phase in the pore space dominates 

the increase in 1/T1 brought from bead surfaces. The other effect of adsorption in this 

experiment is on the surface relaxation rate, which is described next.   

 

Figure 3.4 Comparison of 1/T1 values of DI water, ZR-6AL and ZR-6BL as prepared 

bulk phase; when present in pore space of bead pack; as bulk phase 

withdrawn from bead pack. 

Adsorbed Nanoparticles  

Based on relaxation rate of DI water and DI water in the glass bead pack, we were 

able to compute the glass bead surface relaxation rate 1/T1,Medium-surface, 0.051 s-1 based on 

Equation (3.6). In bead pack with 2 mm glass beads and 38% porosity, we assumed that 

the pores could be represented as spheres with the radius of a maximum inscribed sphere 

in body-centered cubic packing, which yielded rpore of 0.613 mm. According to Equation 
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(3.9), the glass bead surface relaxivity 1,Medium-surface was 10.42 m/s. The fact that the 

glass beads had a larger surface relaxivity than the nanoparticles (1.43 m/s) was probably 

due to the presence of paramagnetic impurities in the glass beads, as has been noted in 

other studies using these particular beads (e.g., Daigle et al., 2014). 

To compute the theoretical maximum adsorption amount of nanoparticles onto the 

glass bead surface, we assume that the conditions such as zeta potential, pH value, 

temperature, and other driving forces such as van der Waals attraction are favorable for 

each positively charged nanoparticle to attach onto negatively charged glass bead surface. 

A simple geometric method is used. With the assumption that nanoparticles form a dense 

packing in a monolayer on the glass bead surface, each nanoparticle covers a projected area 

(ℼrNP
2) on the bead surface. A hexagonal packing of equal circles in 1 dimension is used to 

compute the maximum surface fraction of the glass bead surface that can be occupied by 

adsorbed nanoparticles (Chang and Wang, 2010). In the ZR-6AL group, we assumed that 

the number of nanoparticles remaining in the bulk fluid was MNP and that the number of 

adsorbed nanoparticles on the glass bead surface was NNP. Given that the glass bead pore 

radius is computed as 613 m, and the volume fraction of nanoparticles in ZR-6AL is 1.114 

%, the total number of nanoparticles with size about 113 nm in dispersion (MNP+NNP) in a 

single spherical pore is estimated as 1.42×109. NNP, MNP and 1,eff were computed from 

solving Equations (3.6, 3.7, 3.8 and 3.10). According to Equation 3.8, the maximum 

surface fraction of nanoparticles is 0.9069, and the corresponding fraction of nanoparticles 

in the system attached onto the glass bead surface is computed as 30.0%. When fully 

covered by a monolayer of zirconia nanoparticles, the surface relaxivity of the glass bead 

is 2.265 m/s, and the overall relaxation rate is 0.934 s-1. As shown in Figure. 3.5, with a 

fixed total number of nanoparticles in one pore, the overall relaxation rate of the saturated 

pore (1/T1) decreases with adsorption of nanoparticles onto the glass bead surface. The 
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experimental data are consistent with the trend expected for adsorption of nanoparticles in 

a close-packed monolayer on the bead surface. 

 

Figure 3.5 Calculated relaxation rate of saturated glass bead pack with adsorbed ZR-6AL 

nanoparticles. Black line indicates no adsorption, the overall relaxation rate 

remains as 1.217 s-1; red line shows how overall relaxation rate of ZR-6AL 

saturated glass bead pack decreases with more attached nanoparticles; green 

dot is computed from density measurement of effluent and original fluid and 

corresponding relaxation rate of saturated bead pack. 

Based on density measurement, we computed that approximately 11.6% of the 

nanoparticles in the original dispersion adsorbed onto glass bead surface and modified the 

surface relaxivity 1,eff to 7.27 m/s.  The smaller relaxivity also contributes to the smaller 

value of 1/T1 in the ZR-6AL fluid-saturated bead pack, though in this experiment the 

reduced aqueous phase concentration is the dominant effect. The measured relaxation rate 

of glass bead pack after core flushing with 1.2 PV of DI water was 0.498 s-1, which is faster 

than that of glass bead pack saturated with DI water (0.408 s-1), this may due to part of 
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nanoparticle desorption during core flushing. Recall Equations (3.5 and 3.8), when 

nanoparticles are in fluid, the surface area that proton would access it the whole sphere 

surface (4πrNP
2), while adsorbed nanoparticles on pore surface only provide projected area 

(πrNP
2) on pore surface for proton to relax. Relative amount of desorbed nanoparticles was 

14%, after 1.2 PV of DI water flushing, effective pore surface relaxivity was 6.05 m/s 

with remained 86% of adsorbed nanoparticles, there was 15.4% change in pore surface 

relaxivity due to core flooding.   

3.4.4 Fluids with Boise Sandstone Core Samples 

Evidence of adsorption 

DI water, ZR-6AL, and ZR-6BL were used to saturate three Boise sandstone cores 

labeled as BS1, BS2, and BS3, respectively. We then measured the T1 distributions of the 

three saturated core samples. Figure 3.6 is obtained from a linear inversion calculation 

based on NMR raw data displayed in the Appendix. Figure 3.6 shows and compares T1 

distribution of Boise sandstone cores BS1, BS2, and BS3 saturated with DI water, ZR-

6AL, and ZR-6BL, respectively. Assuming that the three cores had similar pore structure 

and size, different saturating fluids altered relaxation time to different extents: core sample 

BS2 saturated with ZR-6BL showed the shortest peak T1 (443.2 ms), core sample BS3 

saturated with ZR-6AL gave an intermediate peak T1 (424.3 ms), and the DI water-

saturated core sample (BS1) displayed the longest peak T1 value (1165 ms). The 

differences can be explained by different degrees of surface relaxivity alteration in the 

different core samples. Note the apparent variation in total porosity (the area under each 

curve) among the three samples; this is probably due to differences in hydrogen index due 

to different stabilizers in the nanoparticle dispersions as well as the presence of the 

nanoparticles themselves, which would tend to lower the hydrogen index of the pore fluid.  
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Figure 3.6 T1 distribution of Boise sandstone cores saturated with DI water, ZR-6AL, and 

ZR-6BL. 

The bulk relaxation rates, nanoparticle sizes and density of the original fluids before 

saturating Boise sandstone cores and the effluents are displayed in Table 3.3. Based on 

density measurements (values not shown here), there were less nanoparticles in effluents 

than in original fluids. Thus some of the nanoparticles introduced into the cores during 

vacuum saturation remained in the core after the injection of 1.2 PV of DI water. This is 

expected for the positively charged ZR-6AL nanoparticles and the negatively charged sand 

grains in the core. For the negatively charged ZR-6BL nanoparticles, this is presumably 

the consequence of mechanical retention or van der Waals attraction.  Measured 

nanoparticle size in effluents were slightly larger than that in original fluids. According to 

Figure 3.2, larger nanoparticle size and smaller nanoparticle concentration should result in 

a smaller relaxation rate if nanoparticle relaxivity remained constant. However, the 

measured relaxation rates of the effluents did not decrease correspondingly.  In fact the 

relaxation rate increased for the ZR-6AL fluid.  Because ZR-6AL contains HNO3 to 
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stabilize nanoparticles, it is possible that acid dissolved iron or other minerals from the 

sandstone. The presence of these species in the effluent would relax protons faster and thus 

counterbalance the effect of reduced nanoparticle concentration. This complicates the 

relationship between nanoparticle concentration and measured relaxation rate.  

Table 3.3 NMR measured relaxation rate and nanoparticle size of nanofluids before, in 

and after contact with Boise sandstone core. 

Original Fluids DI water ZR-6BL ZR-6AL 

Relaxation rate 1/T1 (s
-1) 0.348 1.294 1.202 

Nanoparticle size (nm) N/A 84.8 113 

Fluids in Boise sandstone core DI water ZR-6BL ZR-6AL 

Relaxation rate 1/T1 (s
-1) 0.858 2.26 2.36 

Relaxation rate change due to Boise sandstone 

1/T1 (s
-1) 

0.51 0.966 1.158 

Effluents DI water ZR-6BL ZR-6AL 

Relaxation rate 1/T1 (s
-1) 0.353 1.293 1.209 

Nanoparticle size (nm) N/A 90.1 115 

Adsorbed Nanoparticles 

As shown in Table 3.3, when saturating Boise sandstone, the relaxation rates of DI 

water, ZR-6BL and ZR-6AL increased by 0.51 s-1, 0.966 s-1 and 1.158 s-1, respectively. 

The magnitude of change was much larger when nanoparticles were present. With 

saturation of zirconia nanoparticles, Boise sandstone surface relaxivity may have changed, 

but the value was difficult to determine since there apparently were complicated reactions 

between nanoparticles and the sandstone surface. We calculated the surface relaxation rate 

of Boise sandstone from the DI water measurement using Equation (3.6) as 0.51 s-1. To 

compute the surface relaxivity of Boise sandstone, we assumed that the pore radius was 

145 μm based on micro-CT images (Krohn, 1988). From Equation (3.9) we obtained Boise 

sandstone surface relaxivity as 24.65 m/s when DI water present. Based on Equation 

(3.6), in ZR-6BL saturated Boise sandstone, we expected no adsorption of nanoparticles 
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due to electrostatic repulsion, hence 1/T1,NP-on-surface should be zero. If assumed medium 

surface relaxivity as 24.65 m/s, to give overall relaxation rate as 2.36 s-1 in ZR-6BL 

saturated Boise sandstone core, nanoparticle dispersion in pore fluid should have relaxation 

rate as 1.85 s-1, which is higher than original ZR-6BL relaxation rate (1.294 s-1). From 

Equation (3.5), the corresponding relaxivity of nanoparticles would be 1.561 m/s, which 

is in consistence with our previous guess based on effluent relaxation rate and density 

measurements. Increased relaxivity of nanoparticles may be caused by dislodged materials 

that relax proton faster from sandstone surface. If constant relaxivity of nanoparticles in 

ZR-6BL was assumed, Boise sandstone surface should give an increased surface relaxivity 

as 51.52 m/s. However, in ZR-6AL saturated Boise sandstone, when assume fixed 

relaxivity of nanoparticles (1.427 m/s) in ZR-6AL, based on Figure 3.2 we calculated 

higher nanoparticle concentration in effluent than in original dispersion, which conflicted 

with mass conservation. Thus, nanoparticle relaxivity might have changed after contact 

with Boise sandstone. To get the best estimate of the changed surface relaxivity of 

nanoparticles and sandstone surface, we assumed the relevant amount of adsorbed zirconia 

nanoparticles was 11.6% according to the results in siliceous glass bead packs. Effective 

sandstone surface relaxivity was computed as 55.16 m/s, nanoparticle surface relaxivity 

was changed to 1.60 m/s during interactions with Boise sandstone minerals. 

Characterization of nanoparticles in effluent is presented with more details in Chapter 4. 

3.5 DISCUSSIONS 

Recent NMR works have been focused on measurements of porous media saturated 

with nanofluids (Anand and Hirasaki, 2008; Yu, 2012; Cheng et al., 2014a,b), did not study 

the effects of nanoparticles brought to pore surface relaxivity. How and to what extent will 

the pore surface relaxivity be altered by adsorbed paramagnetic nanoparticles remained 
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unknown. In this work, we try to answer this question by adding different paramagnetic 

nanoparticles in pore fluid, and made three measurements: i) a nanoparticle-free fluid 

measurement (DI water) to get pore wall effect; ii) the fluid-saturated measurement under 

conditions for which the change in aqueous concentration is the dominant effect (this 

demonstrates surface adsorption occurred); iii) displace the nanoparticle dispersion with 

DI water and isolate the effect of the controlled relaxivity of the pore walls. 

This work is a step toward the engineered control of surface relaxivity of porous 

media, which in turn would enable more robust inference of pore size distributions from 

NMR measurements, especially in logging tools. In our experiments, the known value of 

pore size and surface relaxivity of silica porous media enabled us to estimate adsorbed 

zirconia nanoparticles and modified surface relaxivity. To realize the end goal of being 

able to predict pore size distributions directly from NMR measurements with no prior 

knowledge of pore sizes, further work is necessary to understand the link between zeta 

potential differences between nanoparticles and substrates, quantity adsorbed, and overall 

relaxivity alteration.  Once such model is generated and tested, we can use it to simulate, 

predict and control concentration of adsorbed nanoparticles on pore surface to fix effective 

surface relaxivity to the pre-decided value, followed by the calculation of pore size from 

measured relaxation time distribution.  The results presented here show promise for this 

technique and serve as a proof of the concept that surface relaxivity can be modified in a 

predictable manner. 

More generally our work helps to understand behavior of nanoparticles in porous 

media and will be used in future studies of the pore-scale characteristics in rocks. In 

particular, our work highlights the complicated interplay between nanoparticles and rock 

surfaces that affect measurements of bulk properties. Understanding these complicating 

factors is essential to future applications that depend on coating grain surfaces or fluid 
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interfaces with nanoparticles, such as enhanced oil recovery, imaging oil-water contacts, 

and determining interfacial surface areas.  

3.6 CONCLUSIONS 

We studied the influence of zirconia nanoparticles on NMR response in bulk fluid 

dispersion and in porous media. The bulk relaxation rate of nanoparticle dispersions is 

proportional to nanoparticle-pure fluid volume ratio and inversely proportional to 

nanoparticle size. In nanofluid-saturated porous media (glass bead packs, outcrop 

sandstone), electrostatic attraction between grain surfaces and nanoparticles was the main 

driving force for adsorption of nanoparticles onto grain surfaces. The two types of 

nanoparticles used in this study differed only in their zeta potential (one being positive, the 

other negative), and only the positively charge particles adsorbed appreciably onto the 

negatively charged silica surfaces of the porous medium. Porous media surface relativities 

were altered only by the presence of adsorbed paramagnetic nanoparticles. When 1.114 

vol. % positively charged zirconia nanoparticles dispersion was used to saturate a glass 

bead pack, 11.6% of the nanoparticles were adsorbed to the bead surfaces and modified the 

glass bead surface relaxivity from 10.42 m/s to 7.27 m/s.  

Under theoretically favorable conditions where all ZR-6AL nanoparticles are 

driven to attach onto the glass bead surface and generate a monolayer with dense packing, 

the maximum fraction of nanoparticles that can be attached is 30.0%, occupying 0.9069 of 

glass bead surface. The surface relaxivity is altered to 2.265 m/s, and the overall 

relaxation rate is 0.934 s-1. In this study, the fraction of retained nanoparticles is 11.6%, 

which is much lower than the theoretical maximum value of 30.0%. Note that we did not 

consider the hydration layer on the nanoparticles themselves, which may affect attachment 

of nanoparticles onto bead surface.  
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DI water flushing was able to wash out 14% of adsorbed nanoparticles from 

siliceous surface, change of surface relaxivity due to core flushing was 15.4%.  In contrast, 

negatively charged zirconia nanoparticles did not alter the relaxivity of the beads. When 

positively charged zirconia nanoparticle dispersions were used to saturate a Boise 

sandstone core, both pore surface and nanoparticle relaxivity were altered. With the 

assumption of fixed relaxivity of nanoparticles in ZR-6AL, retained nanoparticles in Boise 

sandstone would be negative, and thus invalidate that assumption. With assumed 11.6% of 

positive nanoparticles’ adsorption, Boise sandstone surface relaxivity was modified from 

24.65 m/s to 55.16 m/s, and nanoparticle surface relaxivity changed from 1.43 m/s to 

1.60 m/s However, mechanical retention of negatively charged nanoparticles in the Boise 

sandstone may have caused additional relaxation effects such as increased surface 

relaxivity to 1.561 m/s or increased nanoparticle relaxivity from 24.65 m/s to 51.52 

m/s. Our work indicated there is a way to control pore surface relaxivity by adsorbed 

paramagnetic nanoparticles and served as the foundation to generate a model to link 

relaxation time distribution and pore size by altered pore surface relaxivity. But in the 

subsurface environment in the oilfield where temperature, pressure, and pH are different 

from those of our experiment, the behavior and stability of nanoparticles may be different 

from our observation in this study. In addition, the hydration layer present on nanoparticles 

may also play a role in affecting attachment of nanoparticles onto the pore surface. Further 

work is needed to constrain these effects. 
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Chapter 4   

Paramagnetic nanoparticles as NMR contrast agents in sandstone: 

Importance of nanofluid-rock interactions2 

4.1 INTRODUCTION 

In porous media, the nuclear magnetic resonance (NMR) relaxation time 

distribution is mainly controlled by interactions near the pore-grain interface for wetting 

phase fluids (Foley et al., 1996). Fluid molecules in the pore space have the chance to 

interact with pore surface by diffusion, where they are temporarily adsorbed (Korringa et 

al., 1962). On the pore surface, generally there are two types of adsorption sites: one 

magnetic, including paramagnetic and ferromagnetic, and the other diamagnetic. Magnetic 

sites enhance relaxation due to the strong coupling between nuclear magnetic moments and 

unpaired electrons and thus control relaxation rate. Magnetic sites in natural rocks are 

paramagnetic ions, and most of them are iron (Carmichael, 1982). The concentration of 

paramagnetic ions varies with natural sedimentary rocks, so pore surface relaxivity varies 

from rock to rock and even within the rock at the pore scale. To control pore surface 

relaxivity, we investigated the adsorption of paramagnetic nanoparticles onto pore surface. 

Nanoparticles offer advantages over the ferric ions that have been employed in previous 

work (Anand and Hirasaki, 2008) since sorption of ions is more difficult to monitor and 

quantify, while nanoparticles have several independent mechanisms for attachment: van 

der Waals forces, electrostatic attraction, and a tunable chemical affinity for functional 

groups or compounds at the rock surface.  

Transport and retention behavior of paramagnetic nanoparticles in sedimentary 

rocks have been studied by Oldenburg et al. (2000), Prodanović et al. (2010) and Yu et al. 

                                                 
2This chapter is based on: Zhu, C., Daigle, H., & Bryant, S. L. (2016). Paramagnetic nanoparticles as 

nuclear magnetic resonance contrast agents in sandstone: Importance of nanofluid-rock 

interactions. Interpretation, 4(2), SF55-SF65. I was the primary author. 
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(2014). When stable nanoparticles with virtually zero surface charge and or with negative 

charge were individually dispersed in sandstone pores, even though there was no 

electrostatic attraction between nanoparticles and silica surface, attachment of 

nanoparticles onto pore surface was observed by Yu et al. (2010). The main retention 

mechanism is reversible adsorption on pore wall: van der Waals attraction could drive 

attachment of nanoparticles onto solid surface, and such attachment can be reversed due to 

Brownian diffusion (Rodriguez Pin et al., 2009 and Yu et al., 2010). Nanoparticles that are 

unstable tend to aggregate to form clusters when van der Waals attraction overcomes 

electrostatic repulsion, which leads to nanoparticle retention when the size of the clusters 

become larger than pore throats (Wang et al., 2008). Positively charged nanoparticles tend 

to attach onto negatively charged mineral surfaces by electrostatic attraction (Zhu et al., 

2015). 

Previous work in Chapter 3 has indicated that positively charged zirconia 

nanoparticles adsorb onto glass bead surfaces and decreased the surface relaxivity of the 

glass beads due to smaller relaxivity of the nanoparticles, while negatively charged 

nanoparticles are not retained in glass bead packs and do not affect the pore surface 

relaxivity (Zhu et al., 2015). However, in Boise sandstone, due to the complicated 

interactions between the nanoparticle dispersion and mineral surface, the surface 

relaxivities of the pore surface and the nanoparticles both change but in opposite directions. 

The purpose of our present work is therefore to analyze the interactions of paramagnetic 

nanoparticle dispersions and sandstone surface that lead to surface relaxivity alteration, as 

well as the factors that control such interactions. In our work we analyzed longitudinal 

relaxation time (T1) measurements since the diffusion relaxation additionally complicates 

the relationship between transverse relaxation time (T2) and pore size (e.g., Kleinberg and 

Horsfield, 1990). We measured longitudinal relaxation time, pH, zeta potential, and 
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nanoparticle size of zirconia nanoparticle dispersions with different surface charge under 

various pH values. We then saturated Boise sandstone cores with the different dispersions, 

and performed corefloods to displace the dispersions, and collected the effluents. T1, pH 

value, zeta potential, and nanoparticle sizes in effluent samples were measured and 

compared with the original dispersions to investigate possible interactions between 

nanoparticle dispersions and pore surfaces. To isolate the effects of the nanoparticle 

dispersion fluids from the effects of the nanoparticles themselves, we used pure deionized 

(DI) water, nitric acid, and TMAH as control groups in corefloods. We found that 

nanoparticles were able to decrease Boise sandstone surface relaxivity by attachment onto 

pore surface. In addition, we found that pH was an important parameter in determining zeta 

potential and stability of nanoparticles, and influenced adsorption of nanoparticles on pore 

walls. Our work showed that rock’s relaxivity can be changed by attachment of 

nanoparticles. This can serve as the foundation to generate a model to link relaxation time 

distribution and pore size by altered pore surface relaxivity.  

4.2 THEORY OF RELAXATION CALCULATION  

4.2.1 Relaxivity of nanoparticles in bulk fluid 

    We analyzed the longitudinal relaxation of nanoparticle dispersions by 

considering them as dilute porous media composed of spherical nanoparticles and 

dispersion fluid. Assuming that surface relaxation takes place in the fast diffusion regime 

(Brownstein and Tarr, 1979), the nanoparticle surface relaxivity 1,NP can be computed 

from Equation (4.1), where pore surface area S that water molecules can access to equals 

the surface area of nanoparticle spheres, pore fluid volume V is computed as total 

dispersion volume VTotal minus nanoparticle volume VNP, χ is volume of nanoparticles per 

unit volume of fluid in the dispersion:  
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Nanoparticle surface relaxation rate 1/T1,NP can be obtained from the relaxation 

rates of the nanoparticle dispersion 1/T1, and pure dispersion fluid 1/T1,Fluid according to 

Equation (4.2).  While it is well established that salinity affects aggregation properties of 

nanoparticles (Fernández-Toledano et al., 2006) and so would have an effect on the NMR 

response of the nanoparticles in porous media. Higher salinity leads to more aggregation, 

less effective transportation and slower relaxation rate of nanoparticles.  We did not 

perform experiments at elevated salinity because we wanted to minimize any potential 

aggregation.  

1 1,Fluid 1,NP

1 1 1

T T T
 

. (4.2) 

We assume that the relaxation rates from different processes are additive (e.g., Carr and 

Purcell, 1954). 

4.2.2 Retained nanoparticles in Boise sandstone cores 

    When nanoparticle dispersions enter a porous medium, it is possible for 

nanoparticles to attach to the porous medium surface (Anand and Hirasaki, 2008), thus 

affecting both the bulk dispersion relaxation time and the surface relaxation time at the 

pore wall. Suppose some number NNP of nanoparticles move from the pore space to the 

pore surface, while MNP nanoparticles remain in the pore space. According to our previous 

study (McDonald et al., 2005 and Zhu et al., 2015), the relaxation rate of nanoparticles in 

bulk dispersion (1/T1,NP-in-pore) with MNP nanoparticles remaining in the pore can be 
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calculated from the original relaxation rate of the bulk dispersion 1/T1,NP with (MNP+NNP) 

nanoparticles:  

1,NP in pore 1,NP

1 1 NP

NP NP

M

T T M N 

 
  

  . (4.3) 

With assumed single exponential decay in a single pore (Brownstein and Tarr, 

1979), the overall relaxation rate is the sum of relaxation rates of the bulk dispersion in 

pore space and the surface relaxation rate of the pore wall.  As shown in Figure 4.1, in a 

porous medium saturated with nanoparticle dispersion, relaxation occurs in the pure 

dispersion fluid and at the surfaces of nanoparticles still in dispersion, as well as on the 

pore surface and on the surfaces of nanoparticles adsorbed to the pore wall. The overall 

relaxation rate in the pore is given by 

1 1,Bulk 1,Surface 1,Fluid 1,NP in pore 1,Medium surface 1,NP on surface

1 1 1 1 1 1 1

T T T T T T T    

   
          

   , (4.4) 

where 1/T1 is the measured relaxation rate of porous media saturated with nanoparticle 

dispersion, 1/T1,Bulk is the relaxation rate of nanoparticle dispersion in pore, 1/T1,Surface is 

the relaxation rate of pore surface, 1/T1,Fluid is the relaxation time of pure fluid in 

nanoparticle dispersion, 1/T1,NP-in-pore is the relaxation rate of nanoparticles in dispersion 

located in pores, 1/T1,Medium-surface is the intrinsic relaxation rate on the pore surface in the 

absence of nanoparticles, and 1/T1,NP-on-surface is the relaxation rate of adsorbed nanoparticles 

on pore surface.  

Adsorbed nanoparticles will alter both the bulk dispersion relaxation time (by 

reducing the nanoparticle concentration in the dispersion) and the surface relaxation time 

at the pore wall. With NNP nanoparticles adsorbed onto one spherical pore, ρ1,eff is related 

to the relaxivities of the adsorbed nanoparticles and the pore wall. We know that the 

nanoparticles were not perfect spheres, and the surface of the glass beads and Boise 
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sandstone at the nanometer scale may have irregularities that, when combined with the 

irregular shape of the nanoparticles, would result in a finite contact area between the 

nanoparticles and grains. Therefore, we believe that it is unlikely that the nanoparticles 

were in point contact with the grain surfaces in both the case of the glass beads and Boise 

sandstone. In addition, small interstices between the adsorbed nanoparticles and the silica 

surface may relax protons at a much faster relaxation time (1~50 ms) as shown in Figure 

4.4 and Figure 4.6 due to restrictions in Brownian motion of protons in and out of these 

interstices. Since the silica grain radius is much larger than nanoparticle radius, we use the 

projected area of the nanoparticles on the silica surface to compute the contributed 

relaxation of nanoparticles with relaxivity of ρ1,NP, and the remaining accessible silica 

surface area provides a relaxivity of ρ1,Medium-surface. ρ1,Medium-surface can be calculated 

according to the intrinsic relaxation rate on the pore surface in the absence of nanoparticles 

1/T1,Medium-surface and pore radius rpore. ρ1,eff is calculated from the areally weighted average 

of medium surface relaxivity ρ1,Medium-surface and attached NNP nanoparticles relaxivity 

ρ1,NP, as indicated in Equations (4.5-4.7).  
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Here rpore is the radius of an assumed spherical pore, 4πrpore
2 indicates the total pore surface 

of porous media made from packed sphere grains, and πrNP
2 measures the area occupied 

by one nanoparticle attached to the pore wall.    

 

 

Figure 4.1 Mechanisms of relaxation of nanoparticle dispersion in a single spherical pore. 

Sizes of the pore space and nanoparticles are not to scale: (a) When only 

pure bulk fluid is present in the pore space, the overall relaxation rate 1∕T1 is 

the sum of 1∕T1,fluid and 1∕T1,medium-surface; (b) when nanoparticles are in pore 

fluid, 1∕T1 increases by an increment 1∕T1,NP-in-pore; and (c) some 

nanoparticles are adsorbed onto the pore surface, and the measured 1∕T1 

equals the summation of 1∕T1,fluid, 1∕T1,NP-in-pore, 1∕T1,medium-surface, and 

1∕T1,NP-on-surface. Note that 1∕T1,NP-in-pore is smaller than in panel (b) because 

fewer nanoparticles are present in the bulk fluid. 

4.3 METHODS    

   We used two types of zirconia nanoparticle dispersions from Nissan Chemical 

America Corporation. The first was ZR-30AL, with 30 wt% positively charged zirconia 

(ZrO2) nanoparticles with HNO3 as stabilizer. The second was ZR-40BL, with 40 wt% 

negatively charged zirconia nanoparticles with C4H12N.HO (Tetramethylammonium 
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Hydroxide: TMAH) as stabilizer. DI water was used to dilute the original zirconia 

nanoparticle dispersions into 6 wt% and 7.5 wt%, which we denote as ZR-6AL, ZR-7.5AL, 

ZR-6BL, and ZR-7.5BL. pH values were measured with a pH probe and nanoparticle sizes 

were measured by dynamic light scattering (DLS). To provide control groups, we prepared 

HNO3 solution with the same pH value of ZR-6AL (3.2), and TMAH solution with same 

pH value of ZR-6BL (9.1). 

A Malvern Nano ZS ZetaSizer was used to measure particle size distribution and 

surface zeta potential of the zirconia nanoparticles. Size and zeta potential calibrations were 

performed with calibration standard dispersions before each measurement. 450 L of 

nanoparticle dispersion was placed in a disposable cell to measure particle size distribution. 

Fisher Scientific 1.0 mL plastic syringe was used to inject 0.9 mL of nanoparticle 

dispersion into a disposable folded capillary cell for zeta potential measurement. The 

average value and distribution of sizes and zeta potentials were recorded. Each sample was 

measured three times and the mean value was chosen to be presented.    

NMR measurements were performed at room temperature (20°C) using a 2 MHz 

GeoSpec2 benchtop NMR core analysis instrument from Oxford Instruments with an 

operating frequency of 2.15 MHz The external magnetic field B0 was 0.05047 Tesla. 

Inversion recovery measurement was used to determine the distribution of longitudinal 

relaxation times (T1). Signal noise ratio (SNR) was set to 100 for each NMR measurement. 

To obtain nanoparticle concentration, we determined the density of nanoparticle 

dispersions ZR-6AL, ZR-7.5AL, ZR-6BL, and ZR-7.5BL, DI water, HNO3 and TMAH 

original fluids and effluents after saturating porous media. The mass of known volume of 

dispersion was measured by Mettler-Toledo mass balance with a precision of 0.0001 g. 

Measurements were repeated 5 times at room temperature, and average values were used. 

Nanoparticle concentration was computed from the density of an effluent sample and that 
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of the corresponding pure dispersion fluids. This method for determining nanoparticle 

concentration assuming that the concentration of other fluid components (notably the 

dissolved solids) is invariant, and in particular that the acid and base neutralization 

reactions in the core do not change the fluid density.   

We measured pH with a Thermo Scientific Orion Versa Star pH benchtop meter. 

The meter was calibrated with standard pH buffers at pH 4.01, 7.00 and 10.01.  The pH 

probe was triple rinsed with DI water before measurements of different fluid samples. 

We used ten Boise sandstone samples Core #1-#13 in this study, each 1” (2.54 cm) 

in diameter and 3” (7.62 cm) in length. All core samples were oven-dried for 24 hours at 

135°C. All dried core samples were saturated with various fluids by vacuum pump. Our 

preliminary results indicated that ZR-6AL and ZR-7.5AL dispersion remained stable after 

contact with Boise sandstone, while nanoparticles in ZR-6BL and ZR-7.5BL dispersion 

coagulated and most of nanoparticles were retained in Boise sandstone due to large cluster 

size since the ZR-6BL and ZR-7.5BL effluent showed pH value close to 7. Since ZR-6BL 

and ZR-7.5BL nanoparticles are stable in dispersion only at pH >8.8, Cores #8, #9, #13 

and #13 were pretreated with strong TMAH at pH 13.416 and put into oven to dry for 24 

hours at 135°C before saturating with ZR-6BL and ZR-7.5BL. After the pre-treatment, 

TMAH residues were able to stay on sandstone surface and provide strong alkaline 

condition. To isolate the effect of dried strong alkali left on pore surface, we also pretreated 

Core #4 and #5 with strong TMAH at pH 13.4 for same procedure before saturated with 

TMAH fluid with pH of 9.1. All saturating fluids for 10 cores were introduced by vacuum 

pump. To saturate the cores, oven-dried cores were placed in a vacuum container for 4 

hours, after which the saturating fluid was injected and vacuumed for another 1 hour. 

 To test whether nanoparticles were adsorbed on pore surface, after measuring the 

T1 distribution of the saturated core plug we flooded the plug with DI water at a constant 
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flow rate of 0.5 ml per minute. Effluent was collected from the bottom outlet of the 

vertically mounted core samples. To identify the effect of pH on the interactions between 

nanoparticles and the pore surface, we also flushed all pore fluids (with and without 

nanoparticles) with pure solutions at the same pH value. DI water was also used as flushing 

fluid as a control. The T1 value, nanoparticle size, zeta potential and concentration were 

measured and compared with that of the original fluids. 

We used mass balance to measure nanoparticle concentrations. There are three 

main reasons that we did not use UV-VIS to measure normalized concentration: The first 

reason is that our NP concentrations in the original fluid and effluents were relatively high 

and out of the range in which UV-VIS displays a linear relationship with concentration. 

The second reason is that we collected very small volumes of effluent at each time, such 

as 0.4 ml, which was not enough for the UV-VIS measurement which requires at least 1 

ml. Finally, we wanted to collect all effluents and measure the T1 value and Fe 

concentration in the effluents, and dilution to make the UV-VIS measurement would have 

altered the experimental results. 

To identify and isolate the contribution of nanoparticles to the overall relaxation 

rate in effluent samples, we additionally centrifuged nanoparticles from the effluents we 

collected. Zirconia nanoparticle dispersion effluents were placed in 15ml Fisher Scientific 

plastic centrifuge tubes and centrifuged at 10000 rpm for 30 minutes using Beckman 

Avanti J-E centrifuge and rotor JA-10. Supernatant fluid was collected to measure T1, 

density, and iron concentration. 

We used Varian Liberty Series II Axial ICP-OES to measure dissolved iron 

concentration in original fluids and effluents after removal of nanoparticles. Wavelengths 

for Fe were picked as 234.350 nm, 238.204 nm, and 259,940 nm, 1 mg/L, 2 mg/L, 5 mg/L, 

8 mg/L, 10 mg/L, 20 mg/L, 50 mg/L, 80 mg/L and 100 mg/L iron standard solutions were 



 52 

used for calibration. Concentrations of iron in samples were measured and calculated based 

on a calibration range from 0 mg/L to 100mg/L. Measurements were performed in triplicate 

and we reported the average value of the three values as the iron concentration in each 

sample.  

4.4 RESULTS 

Different Boise sandstone cores were saturated with DI water, HNO3, TMAH, ZR-

6AL, ZR-7.5AL, ZR-6BL, and ZR-7.5BL, and the saturating fluids were flushed with DI 

water, HNO3, and TMAH. Table 4.1 displays the 13 Boise sandstone cores along with their 

respective saturating and flushing fluids. The T1 distributions of fluids before, during and 

after exposure to the Boise sandstone cores were measured and compared.    

Table 4.1 List of Boise Sandstone Cores with saturating and flushing fluids. 

Core # Saturated with Fluid Flushed with Fluid 

1 DI DI 

2 HNO3              (pH 3.1) DI 

3 HNO3                     (pH 3.1) HNO3            (pH 3.1) 

4* TMAH             (pH 9.1) DI 

5* TMAH             (pH 9.1) TMAH          (pH 9.1) 

6 ZR-6AL           (pH 3.1) DI 

7 ZR-6AL           (pH 3.1) HNO3            (pH 3.1) 

8* ZR-6BL           (pH 9.1) DI 

9* ZR-6BL            (pH 9.1) TMAH          (pH 9.1) 

10 ZR-7.5AL            (pH 3.1) DI 

11 ZR-7.5AL            (pH 3.1) HNO3            (pH 3.1) 

12* ZR-7.5BL            (pH 9.1) DI 

13* ZR-7.5BL            (pH 9.1) TMAH          (pH 9.1) 

*Cores were pre-soaked in TMAH at pH 13.41 to maintain significant negative surface 

charge.  

4.4.1 Pure fluids in cores: effect of pH 

    Figure 4.2 displayed below is obtained from Matlab via linear inversion of raw 

NMR data shown in the Appendix B. Figure 4.2a) shows the measured T1 distribution of 
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Boise sandstone cores #1 to #5 saturated with corresponding fluids. Core #1, saturated with 

DI water, displayed a modal (peak) T1 value of 0.557 s and was used as a reference sample 

against which to check for surface relaxivity alteration caused by pure solutions at different 

pH values and addition of nanoparticles. Figure 4.2b) exhibits T1 distribution of Cores #1-

#5 after 2 pore volume flushing with selected fluids. T1 peak value of Cores #1-#5 after 

core flooding are 0.534 s, 0.480 s, 0.465 s, 0.424 s, and 0.444 s respectively. After core 

flooding, T1 values were slightly shorter comparing to those of saturated cores before 

flushing. 
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Figure 4.2 The T1 distribution of a) Boise sandstone cores saturated with pure fluids at 

different pH values: Core #1 saturated with DI water at pH 7, Core #2 and 

#3 saturated with HNO3 at pH 3.1, Core #4 and #5 are pretreated with strong 

TMAH at pH 13.4, and saturated with TMAH at pH 9.1; b) Boise sandstone 

Cores #1-#5 after 2 pore volume flooding with selected fluids. 

 

 

 

a) 

b) 
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Table 4.2 T1 and pH values of original fluids and effluents. 

Core # 1 2 3 4 5 

Original Fluid T1 (s) 2.743 2.625 2.625 2.659 2.659 

Core Saturated with Fluid T1 (s) 0.557 0.503 0.502 0.452 0.469 

EffluentT1 (s) 2.630 2.571 2.607 2.183 2.051 

Sandstone Surface Relaxation Rate  (s-1) 1.430 1.606 1.610 1.833 1.758 

Sandstone Surface Relaxivity (m/s) 5.05 5.67 5.69 6.48 6.21 

Original Fluid  Iron conc. (mg/L) 0 0.020 0.020 0.245 0.245 

Effluent Iron conc. (mg/L) 0.071 0.046 0.053 3.594 2.953 

Original Fluid pH 7.0 3.1 3.1 9.1 9.1 

Effluent pH 7.1 6.9 6.7 9.9 10.0 

Table 4.2 summarizes the T1 values of bulk fluid DI water, HNO3 at pH 3.1 and 

TMAH at pH 9.1 after pretreated with strong TMAH at three stages of the experiment: 

before entering a core, while within a core and after being displaced from a core. We 

recorded the peak T1 value of each core saturated with different fluids, the sandstone 

surface relaxation rate was calculated correspondingly based on Equation (4.4). Using the 

T1 values of original DI water and sandstone Core#1 saturated with DI water, the Boise 

sandstone surface relaxation rate was computed from Equations (4.4 and 4.5) as 1.43 s-1 

when saturated with DI water. Assuming a median pore radius of 10.6 μm based on Boise 

sandstone pore structure studied by Arawole (2015), the Boise sandstone surface relaxivity 

was calculated as 5.05 m/s. Mild acid at pH 3.1 increased surface relaxivity slightly to 

around 5.7 m/s and after pretreatment with strong alkali, saturation of mild alkali at pH 

9.1 also increased sandstone surface relaxivity to around 6.3 m/s. 

Each fluid’s and effluent’s pH values were recorded as well. The pH value of DI 

water increased slightly from 7 to 7.1 after contact with Core #1. In Core #2 and Core #3, 

the pH of the HNO3 effluents increased from 3.1 to values close to 7, indicating that most 

of H+ in acid were either attached to negatively charged sandstone surface or reacted with 

the mineral surfaces. After contact with Core #4 and Core #5, which were pretreated with 
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TMAH at pH 13.4, the effluent from the saturating fluid (TMAH) at pH 9.1 increased to 

pH of 10, probably due to residue of strong TMAH left on sandstone surface that was dried 

out was washed into effluent.  

Iron concentration in HNO3 increased from 0.02 mg/L to 0.046 mg/L ~ 0.053 mg/L 

after contact with Boise sandstone, indicated that acid dissolved some irons. TMAH at pH 

9.1 showed increased iron concentration from 0.25 mg/L to 3.0 mg/L ~ 3.6 mg/L. Presence 

of more irons in effluents results in shorter relaxation time. 

4.4.2 Nanoparticle dispersions in cores 

Negatively charged nanoparticle dispersion in Boise sandstone 

 Figure 4.3 shows the normalized nanoparticle concentration in the effluents with 

respect to the concentration in the original ZR-6BL and ZR-7.5BL dispersions (6 wt% and 

7.5 wt%) when flushed with DI water in Core #8 and #12 and with TMAH at pH 9.1 in 

Core #9 and #13. Comparison of the mass of nanoparticles in the effluents and original 

fluids indicated little retention of nanoparticles in Boise sandstone cores, with about 2.8% 

and 2.3% of the ZR-6BL and ZR-7.5BL nanoparticles retained in Core #9 and #13 when 

flushed by TMAH, and approximately 3.4% and 3.0% of nanoparticles in ZR-6BL and ZR-

7.5BL trapped in Core #8 and #12 after DI water flushing.  
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Figure 4.3 Normalized effluent nanoparticle concentration with respect to nanoparticle 

concentration in original ZR-6BL and ZR-7.5BL dispersion (6 wt% and 7.5 

wt%) as a function of pore volume flushing in Cores #8, #9, #12, and #13. 

Two pore volumes of DI was injected into Cores #8 and #12; 2 pore 

volumes of water and TMAH at pH 9.1 were used to flush Core #9 and #13. 

The T1 value for the effluent (see Table 4.3) was obtained by measuring the 

first 0.7 pore volumes commingled. 

As shown in Figure 4.4, a) before core flooding, Boise sandstone Cores #4, #8, #9, 

#12, and #13 were saturated respectively with TMAH at pH 9.1, ZR-6BL, ZR-6BL, ZR-

7.5BL and ZR-7.5BL. The corresponding T1 peak values are 0.452 s, 0.115 s, 0.108 s, 

0.0803 s, and 0.0724 s; b) after flushing 2 pore volumes, Cores #8, #9, #12 and #13 had T1 

peak values (0.378 s, 0.307 s, 0.274 s, and 0.268 s, respectively) close to 0.424 s of Core 

#4. This suggests comparable surface relaxivity to that exhibited by Core #4, which was 

pretreated with the same strong alkali used to pretreat Cores #8, #9, #12, and #13. The 

retained 2.3% to 3.4% of nanoparticles in Cores #8, #9, #12, and #13 after flushing may 

contribute to the shortening of the T1 peak value relative to that of Core #4. Therefore, this 
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surface relaxivity alteration was likely a direct result of the pretreatment; retained 

nanoparticles in the porous media after core flooding played a role in speeding up the 

overall relaxation rate. Figure 4.4 was obtained from Matlab processing of raw data 

displayed in Appendix B via linear inversion. 

 

 

Figure 4.4 The T1 distribution of Boise sandstone Cores #1, #4, #8, #9, #12, and #13 a) 

saturated with TMAH at pH 9.1, ZR-6BL, ZR-6BL, ZR-7.5BL, and ZR-

7.5BL, respectively and b) after flushing with two pore volumes of DI water 

and TMAH at pH 9.1. Figures are obtained from Matlab via linear inversion, 

number of point for T1 distribution was set to 200.  

a) 

b) 
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Table 4.3 T1 of ZR-6BL and ZR-7.5BL dispersions before, during and after contact with 

Boise sandstone, along with pH value and nanoparticle size, zeta potential 

relaxation rate and relaxivity in original dispersion and effluents. 

Core # 8 9 12 13 

Original Fluid T1 (s) 0.878 0.832 0.733 0.733 

Core Saturated with Fluid T1 (s) 0.115 0.108 0.803 0.724 

Effluent T1 (s) 0.121 0.0855 0.058 0.061 

Effluent pure dispersion fluid without 

nanoparticles T1 (s) 
1.44 1.65 1.10 1.37 

Original Fluid pH 9.1 9.1 9.1 9.1 

Effluent pH 9.5 9.6 9.7 9.9 

Iron concentration in Original Fluid without 

nanoparticles (mg/L)  
0.015 0.015 0.018 0.018 

Iron concentration in Effluent without 

nanoparticles (mg/L)  
2.91 1.58 3.04 2.83 

Nanoparticle Relaxation Rate in Original 

Fluids (s-1) 
0.774 0.774 1.000 1.000 

Nanoparticle Relaxivity in Effluents (m/s) 12.34 16.19 17.49 18.82 

Nanoparticle Size in Original Fluids (nm) 72.4 72.4 72.7 72.7 

Nanoparticle Size in Effluents (nm) 78.0 77.4 78.4 79.0 

Nanoparticle Relaxation Rate in Effluents (s-1) 7.60 11.09 16.32 15.66 

Nanoparticle Relaxivity in Original Fluids 

(m/s) 
1.095 1.095 1.095 1.095 

Nanoparticle Zeta Potential in Original Fluids 

(mV) 
-28.9 -28.9 -29.3 -29.3 

Nanoparticle Zeta Potential in Effluents (mV) -26.1 -25.8 -26.2 -26.2 

As shown in Table 4.3, the T1 of ZR-6BL decreased from 0.878 s to 0.121 s and 

0.0855 s after contact with sandstone Cores #8 and #9; similarly, T1 of ZR-7.5BL dropped 

from 0.733 s to around 0.06 s after being flushed from Cores #12 and #13. This is 

inconsistent with small amount of nanoparticle retention in the cores (2.3% to 3.4%), which 

would have increased the relaxation times slightly. When ZR-6BL was saturating the 

sandstone Core #9, T1 was around 0.108 s, which is longer than that of the effluents: 0.0855 

s. For ZR-7.5BL saturated Core #12, T1 peak value was 0.0803 s, while effluent from Core 
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#12 has shorter T1 as 0.058 s. It is possible that this is a result of nanoparticle adsorption 

on the mineral surfaces as explained in Chapter 3.   

The T1 of the first 0.7 pore volumes of effluent collected from Cores #8, #9, #12 

and #13 were 0.121 s, 0.0855s, 0.058s and 0.061 s, respectively. The T1 of the effluents 

after removal of nanoparticles by filtration shown in Table 4.3 (1.44 s, 1.65 s, 1.10 s and 

1.37 s) were shorter than the effluent T1 from Cores #4 (2.183 s) and Core #5 (2.051 s) 

displayed in Table 4.2. But the difference cannot explain the significant drop in T1 of 

effluents from ZR-BL saturated cores. This suggests that the much faster relaxation seen 

in the effluents was mainly caused by the nanoparticles themselves rather than the 

dispersion fluid. For pure fluid in ZR-6BL and ZR-7.5BL effluents after removal of 

nanoparticles, iron concentrations were 1.6 mg/L to 3.0 mg/L, smaller than that in TMAH 

effluent (3.0 mg/L to 3.6 mg/L). It is possible that irons with positive charge tends to attach 

on negatively charged nanoparticles and were removed in the centrifuge procedure. More 

iron present will result in shorter relaxation time, this is consistent with T1 measurements 

mentioned above. Another possibility is that there were other magnetic species such as Mn 

in the effluent that sped up the relaxation, but we did not measure concentration of Mn in 

this study. 

After deduction of the pure dispersion fluid’s contribution to the overall relaxation 

rate, the nanoparticle relaxation rate in the effluents increased by a factor more than 10. 

Given the computed nanoparticle concentration based on Figure 4.3, according to 

Equations (4.1 and 4.2), the relaxivity of the nanoparticles increased from 1.10 m/s (Zhu 

et al., 2015) to 12.3 m/s ~ 16.2 m/s (in effluents wash from Core #8 and #9) and 17.5 

m/s ~ 18.8 m/s (in effluents from Core #12 and #13) after contacting with strong alkali-

treated Boise sandstone cores. The dramatic increase in nanoparticle relaxivity was 

possibly due to interactions between nanoparticle dispersion and Boise sandstone surface. 
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Alkaline solution with pH larger than 8 brought mineral surface dissolution (Revil et al., 

1999a, b), paramagnetic materials such as iron cations were exposed and attached to 

negatively charged nanoparticles. Attached iron onto nanoparticles in ZR-6BL will help 

increase nanoparticle relaxivity. With the same nanoparticle concentration in the 

nanofluids before core flooding, nanoparticles in effluents flushed by DI water had lower 

relaxivities than nanoparticles in effluents flushed by TMAH at pH 9.1. It is possible that 

this is due to the higher pH creating a more negative surface charge on the nanoparticles, 

promoting more adsorption of metal cations. 

Due to the procedures used to pre-treat Cores #8, #9, #12, and #13, there might be 

residual TMAH on the sandstone surface after oven drying. This would tend to increase 

the pH of the ZR-6BL after contact with Boise sandstone cores. Nanoparticles in the ZR-

6BL and ZR-7.5BL effluents remained stable, with zeta potential increasing slightly by 3 

m V ~ 4 mV and size increasing by 5 nm ~ 6 nm. 

Positively charged nanoparticle dispersion in Boise sandstone 

Figure 4.6a) exhibits T1 profile of Cores #2, #6, #7, #10 and #11 saturated with 

HNO3, ZR-6AL, ZR-6AL, ZR-7.5AL, and ZR-7.5AL, respectively. Normalized 

nanoparticle concentration in effluents with respect to the concentration of the original ZR-

6AL and ZR-7.5AL dispersions (6 wt% and 7.5 wt%) as a function of flushed pore volume 

in Cores #6, #7, #10 and #11 are displayed in Figure 4.5. Based on these measurements we 

determined that 40% and 37% of the nanoparticles were retained in Core #6 and #10 after 

flushing with 2 pore volumes of DI water, and 35% and 31% of the nanoparticles were 

retained in Core #7 and #11 after flushing with 2 pore volumes of HNO3. After flushing, 

Boise sandstone cores were put in the NMR probe to measure the T1 distributions. As 

shown in Figure 4.6b), with nanoparticles retained in Core #6, #7, #10, and #11, the T1 
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peak values were 0.424 s, 0.322 s, 0.361 s, and 0. 250 s, respectively. The values are shorter 

than that of Core #2 after core flooding: 0.480 s. Figure 4.6 is obtained from Matlab 

processing linear inversion of NMR raw data displayed in the Appendix B. 

Table 4.4 T1 of ZR-6AL and ZR-7.5AL dispersions before, during and after contact with 

Boise sandstone, along with pH value and nanoparticle size, zeta potential 

relaxation rate, and relaxivity in original dispersion and effluents. 

Core # 6 7 10 11 

Original Fluid T1 (s) 0.794 0.794 0.676 0.676 

Core Saturated with Fluid T1 (s) 0.284 0.299 0.251 0.235 

Effluent T1 (s) 0.439 0.178 0.360 0.169 

Effluent pure dispersion fluid without 

nanoparticles T1 (s) 
2.271 1.880 2.210 1.872 

Original Fluid pH 3.1 3.1 3.1 3.1 

Effluent pH 4.5 4.4 4.3 4.3 

Iron concentration in Original Fluid without 

nanoparticles (mg/L) 
0.022 0.022 0.023 0.023 

Iron concentration in Effluent without 

nanoparticles (mg/L) 
0.035 0.049 0.037 0.047 

Nanoparticle Relaxation Rate in Original 

Fluids (s-1) 
0.895 0.895 1.115 1.115 

Nanoparticle Relaxation Rate in Effluents (s-1) 1.84 5.07 2.33 5.38 

Nanoparticle Size in Original Fluids (nm) 101 101 101 101 

Nanoparticle Size in Effluents (nm) 109 108 104 106 

Nanoparticle Relaxivity in Original Fluids 

(m/s) 
1.427 1.427 1.427 1.427 

Nanoparticle Relaxivity in Effluents (m/s) 4.68 10.08 4.29 8.95 

Nanoparticle Zeta Potential in Original Fluids 

(mV) 
32.1 32.1 32.5 32.5 

Nanoparticle Zeta Potential in Effluents (mV) 20.1 22.4 21.0 21.9 
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Figure 4.5 Normalized effluent nanoparticle concentration with respect to nanoparticle 

concentration in the original ZR-6AL and ZR-7.5AL dispersions (6 wt% and 

7.5 wt%) as a function of pore volume flushed in Cores #6, #7, #10 and #11. 

Two pore volumes of selected fluid was injected into Cores #6, #7, #10 and 

#11, which were originally saturated with ZR-6AL and ZR-7.5AL. The T1 

value for the effluent (see Table 4.4) was obtained by measuring the first 0.7 

pore volumes commingled. 
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Figure 4.6 The T1 distributions of Boise sandstone Cores #1, #2, #6, #7, #10 and #11 a) 

saturated with HNO3, ZR-6AL, ZR-6AL, ZR-7.5AL, and ZR-7.5AL, 

respectively, and b) Cores #4, #6, #7, #10 and #11 after flushing with two 

pore volumes of selected fluids. Figures are obtained from Matlab via linear 

inversion, number of point for T1 distribution was set to 200.  

Table 4.4 summarizes nanoparticle relaxation rate, nanoparticle size and zeta 

potential, and T1 of ZR-6AL and ZR-7.5AL dispersions before and after flooding in Boise 

sandstone. T1 of ZR-6AL decreased from 0.794 s to 0.4398 s and 0.178 s after contact with 

a) 

b) 
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to sandstone Cores # 6 and #7, T1 of ZR-7.5AL dropped from 0.676 s to 0.360s and 0.169 

s in the first 0.7 pore volume effluents displaced from Core #10 and #11. After removing 

nanoparticles from effluent, the pure dispersion fluid showed shorter T1 (2.271 s, 1.880 s, 

2.210 s and 1.872 s) than the effluents from Core #2 (2.571 s) and Core #3 (2.607 s). The 

difference may be due to additional interactions between the Boise sandstone surface and 

the acidic nanoparticle dispersion that resulted in more paramagnetic species dissolved into 

fluid. After subtracting the pure dispersion fluid’s contribution to the overall relaxation 

rate, we found that the nanoparticle relaxation rate in the effluents increased by a factor of 

2~6. Given the computed nanoparticle concentrations based on Figure 4.3, according to 

Equations (4.1 and 4.2), the relaxivity of ZR-6AL increased from 1.43 m/s (Zhu et al., 

2015) to 4.68 m/s, 10.08 m/s, 4.29 m/s, and 8.95 m/s after flooding the Boise 

sandstone Cores #6, #7, #10, and #11 respectively. ZR-AL nanoparticles flushed by DI 

water have relaxivities lower than 5 m/s, while ZR-AL nanoparticles flushed by HNO3 

have higher relaxivity of 9 to 10 m/s. It is possible that at lower pH, more paramagnetic 

ions can be removed from the pore surface and be available to adsorb onto nanoparticles. 

After being exposed to the sandstone pore surface, the pH value of the effluents 

increased by less than 1.5, and the pH difference is much smaller than the acidic fluid (no 

nanoparticles) used in Core #2 and Core #3 in which the pH value increased from 3 to 

around 7. It is possible that some of the abundant H+ in the ZR-6AL and ZR-7.5AL 

dispersions attached to the negatively charged sandstone surface or reacted chemical with 

impurities on mineral surface. Since H+ is the stabilizer in ZR-6AL and ZR-7.5AL, H+ 

were ionically bonded at the nanoparticle surface and within the Stern layer. Due to the 

large surface area to volume ratio of the nanoparticles, less H+ was available to be attached 

to the sandstone surface when nanoparticles were present, and the pH of the effluents was 

relatively larger than that of the pure HNO3 effluents after contact with Core #2 and Core 
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#3. Nanoparticle zeta potential dropped from 32 mV to 20 m V ~ 22 mV, and nanoparticle 

size remained similar to that in the original dispersion. 

4.5 DISCUSSIONS 

4.5.1 General observations 

    After saturating Boise sandstone cores with pure fluids at different pH, effluents 

from Cores #1 to #5 showed shorter T1 compared to that of the original fluid. The decrease 

in T1 of DI water after contact with Boise sandstone is probably due to the presence of 

dissolved paramagnetic species or mobilized fine mineral particles in the sandstone core 

(Keating and Knight, 2008). Cores #2 and #3, which were saturated with HNO3, displayed 

enhanced surface relaxivity and increased relaxation rate 1/T1 in the effluents. A possible 

explanation is that acid contains more H+ which can react with impurities such as Fe2O3 on 

sandstone surface, and dissolve more paramagnetic materials in pore fluid. Iron 

concentrations in effluents from Core #2 and Core #3 were relatively higher than original 

fluids (0.05 mg/L in effluent versus 0.02 mg/L in original fluids). For Cores #4 and #5 

which are pretreated with strong TMAH, relaxivity of sandstone surface increased from 

5.05 m/s to larger than 6 m/s. This is probably due to mineral surface dissolution that 

occurs when silica cores are saturated with alkaline solution at pH higher than 8 (Revil et 

al., 1999a,b). In this situation, paramagnetic ions such as iron in sandstone could be 

exposed to pore fluid and dislodged into pore fluid, thereby speed up relaxation in pore 

fluid (Foley et al., 1996). Effluents from Cores #4 and #5 showed increased Fe 

concentration comparing to that in original fluids (3.0 mg/L ~ 3.5 mg/L comparing to 0.25 

mg/L) 

Effluents of both ZR-6AL, ZR-7.5AL, ZR-6BL, and ZR-7.5BL had much shorter 

relaxation time than the original dispersions despite the fact that part of nanoparticles have 
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been captured in sandstone cores, which should have slowed relaxation in the effluent. The 

ways in which sandstone surface relaxivity changed with presence of zirconia nanoparticles 

dispersions depended both on the dispersion pH and the surface charge of the nanoparticles. 

4.5.2 Negatively charged nanoparticles dispersion in Boise sandstone 

    Given the negative surface charge of nanoparticles in the original fluids and 

effluents, there was an electrostatic repulsive force between the nanoparticles and the 

sandstone surface. Nanoparticle retention occurred due to reversible adsorption on pore 

surface caused by van der Waals attraction. Brownian diffusion would finally release 

attached nanoparticles from pore wall when flushed with a pure fluid containing no 

nanoparticles (Yu et al., 2010). According to Equations (4.3, 4.4, 4.5, 4.6, and 4.7) and 

altered sandstone surface relaxivity as 6.3 m/s by strong alkali, 13% ~ 19% of ZR-6BL 

nanoparticles were initially attached to sandstone surface due to van der Waals attraction 

and more than 82% ~ 88% of the attached nanoparticles were removed due to Brownian 

motion. For cores saturated with ZR-7.5BL, 15% ~ 21% of ZR-7.5BL nanoparticles were 

initially attached to sandstone surface due to van der Waals attraction, while Brownian 

motion removed about 80% ~ 86% of the attached nanoparticles. 

Along with mineral surface dissolution under strong alkaline condition, it is 

possible that after interactions with Boise sandstone surface, the stabilizer TMAH was 

consumed during interactions with silica surface, less stabilizer in pore fluid brought more 

pure nanoparticles exposed to the bulk fluid and provided more paramagnetic relaxation 

sites for protons. Slightly increased nanoparticle size and zeta potential in effluents does 

indicate less stability of the nanoparticles, which may due to less stabilizer remained. 

Attached iron cations onto nanoparticle surface also played a role in increase nanoparticle 

surface relaxivity. 
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The theoretical maximum amount of ZR-BL that can attach onto Boise sandstone 

may be computed using a geometrical method by assuming that attached nanoparticles 

form a dense pack in a monolayer and occupy a projected area of ℼrNP
2 on the pore surface. 

According to a hexagonal packing of equal circles, the highest surface fraction that can be 

occupied by the projected area of the nanoparticles is 0.9069. In Boise sandstone saturated 

with ZR-6BL, I assume that the pores can be simplified as spheres with a median radius of 

10.6 m. With nanoparticle size around 72 nm and volume fraction of 1.114%, number of 

nanoparticles in ZR-6BL inside a single pore is calculated as 2.73 × 105.  Based on 

Equations (4.3, 4.4, 4.5, 4.6, and 4.7), the largest number of nanoparticles that can possibly 

adsorbed onto the pore surface is 3.15 × 105, where 90.69% of grain surface is covered by 

attached nanoparticle monolayer. The corresponding surface relaxivity is about 8.98 m/s 

to 10.7 m/s depending on the surface relaxivity of the attached nanoparticles. Our 

experimental results indicated that, with 2.8% and 3.4% of 2.73 × 105 ZR-6BL 

nanoparticles retained in a single pore of Cores #9 and #8, there are 2.2% and 2.7% of 

sandstone pore surface covered by trapped nanoparticles. Similarly, in ZR-7.5BL saturated 

Boise sandstone cores, there are 2.73 × 105 nanoparticles inside a single pore with radius 

10.6 m, highest possible percentage of attached nanoparticles is 89.7% (3.15 × 105 

nanoparticles) when 0.9069 of pore surface is covered by monolayer of attached 

nanoparticles. The resulting surface relaxivity would be 16.5 m/s to 17.7 m/s in this 

case. With 2.3% and 3.0% of ZR-7.5BL (7843 and 10230 nanoparticles) retained in Cores 

#13 and #12, assuming monolayer packing of trapped nanoparticles onto pore surface, the 

surface fractions covered by nanoparticles are 2.3% and 3.0%, respectively.  

Assuming a monolayer packing of attached ZR-BL nanoparticles, with the lowest 

and highest relaxivities determined from effluents, the relaxivity range of the Boise 

sandstone pore surface covered with retained nanoparticles is calculated and displayed by 
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lines in Figure 4.7. Theoretical The experimental data fall within the predicted range. 

Source of error bars are NMR noise and errors in obtaining longitudinal relaxation rate 

(1/T1) of flushing fluid by linear regression of raw data. The scatter observed in the 

experimental data points indicates that the nanoparticles may have variable relaxivity 

between these bounds, or the pore size in each Boise sandstone cores is not exactly the 

same as 10.6 m. When comparing cores contacted with same nanofluids, surface 

relaxivities of Cores # 8 and #12 flushed by DI water were close to the lower bound while 

the relaxivity values of Cores #9 and #13 after flushing with TMAH were closes to the 

upper bound.  
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Figure 4.7 Computed possible boundaries (two lines) of Boise sandstone pore surface 

relaxivities covered by different fraction of ZR-BL nanoparticles with 12.3 

m/s and 18.8 m/s. Experimental determined sandstone pore surface 

relaxivities from flushed Boise sandstone cores and corresponding retained 

nanoparticle fraction are indicated by scattered points. Diagram at the 

bottom shows zoomed in view with x-axis ranges from 0 to 0.1 and y-axis 

ranges from 6 to 7.5.   
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4.5.3 Positively charged nanoparticles dispersion in Boise sandstone 

    Core flooding with DI water in Core #6 and Core #10 (37% and 40%) trapped 

more fraction of positively charged nanoparticles than in Core #7 and Corex cc #11 (35% 

and 31%) flushed by HNO3 at pH 3.1. It is possible that since SiO2 zeta potential drops 

from -10 mV to -65 mV as pH increases from 2 to 10 (Li and De Bruyn, 1966), sandstone 

surface tends to be more negative at higher pH and attract more positively charged 

nanoparticles. Based on Equations (4.3, 4.4, 4.5, 4.6, and 4.7), 49% ~ 52% of nanoparticles 

in ZR-6AL were initially attached onto Cores #6 and #7 driven by electrostatic attraction, 

Boise sandstone surface relaxivity was altered to about 5 m/s ~ 6.7 m/s. Around 45% ~ 

50% of ZR-7.5AL were attached onto Cores #10 and #11 before core flooding. Boise 

sandstone surface relaxivity changed from 5.05 m/s to around 5.4 m/s as a result of the 

attached nanoparticles. The surface relaxivity of the zirconia nanoparticles in effluents 

increased from 1.43 m/s to more than 4 m/s (washed with DI water) and approximately 

9 m/s (washed with HNO3). After interactions between the nanoparticle dispersion and 

the mineral surface, pore fluid pH increased, decreasing the positive charge on nanoparticle 

surface and weakening the bond between nanoparticles and pore surface, causing around 

20% ~ 30% of adsorbed nanoparticles to desorb back into the fluid.  Similar with ZR-BL, 

increased surface relaxivity may due to less stabilized condition where part of H+ were 

attached onto sandstone surface or reacted with impurities, leaving more paramagnetic 

relaxation sites on pure nanoparticles that were accessible to protons. Changes in 

nanoparticle size and drops in zeta potential again indicated less stability of the 

nanoparticles in dispersion. 

We used the same geometric method that was used to calculate largest fraction of 

ZR-BL can be adsorbed on the sandstone surface. In Boise sandstone cores saturated with 

ZR-6AL, with nanoparticle radius of 101 nm, there are 1.03 × 105 nanoparticles in a 
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spherical pore with radius 10.6 μm. The theoretical maximum number of ZR-AL 

nanoparticles that can be adsorbed on the pore surface is 1.60 × 105 to cover 90.69% of the 

sandstone pore surface area. The corresponding surface relaxivity is about 4.77 m/s to 

9.67 m/s depending on the surface relaxivity of attached nanoparticles. Experimental data 

showed that there were 35% and 40% of ZR-6AL (36050 and 41200 nanoparticles) trapped 

in Boise sandstone Cores #7 and #6, surface fractions covered by attached nanoparticles 

are 20.45% and 23.38% respectively assuming monolayer packing. Similarly, in Boise 

sandstone cores saturated with ZR-7.5AL, the number of nanoparticles with radius as 51 

nm inside a pore with radius 10.6 m is 1.25 × 105, the highest theoretical amount of 

attached nanoparticles is 1.60 × 105 when 0.9069 pore surface is occupied by nanoparticles. 

The resulting surface relaxivity would be 4.42 m/s to 7.74 m/s in this case. According 

to experimental results, there were 31% and 37% of nanoparticles (38750 and 46250 

nanoparticles) retained in Cores #11 and #10, covering 21.99% and 26.42% of pore surface 

via monolayer packing. 

In Figure 4.8, Boise sandstone surface relaxivities determined experimentally are 

indicated by scattered points. Error bars are computed from determination of the 

longitudinal relaxation rate (1/T1) of flooding fluid by linear regression of raw data and 

noise. The expected surface relaxivity bounds were computed assuming a monolayer 

packing of attached ZR-AL nanoparticles with relaxivities of 4.29 m/s and 10.08 m/s. 

The ZR-AL nanoparticles flushed with DI water from Cores #6 and #10 have relaxivity 

close to 5.9 m/s, while the ZR-AL nanoparticles flushed with HNO3 from Cores #7 and 

#11 have relaxivity around 6.4 m/s. The experimental data form Cores #6 and #10 are 

located closer to the lower bound, while the computed relaxivities of Cores #7 and #11 are 

closer to the upper bound. As before, it is possible that the nanoparticles inside the core 

had relaxivity values between the bounds I assumed here.  
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Figure 4.8 Computed possible boundaries (two lines) of Boise sandstone pore surface 

relaxivities covered by different fraction of ZR-AL nanoparticles with 4.29 

m/s and 10.08 m/s. Experimental determined sandstone pore surface 

relaxivities from flushed Boise sandstone cores and corresponding retained 

nanoparticle fraction are indicated by scattered points. 

In the future, we will inject NP dispersions with positive surface charge that do not 

require changing the pH in the sandstone pores. In our experiments, we only pretreated the 

sandstone with strong alkali to allow stability of negatively charged nanoparticles, and the 

behavior of these nanoparticles is treated as a control group with zero adsorption. Therefore 

this treatment would likely not be required in the field.  
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4.6 CONCLUSIONS 

Our study showed that nanoparticle dispersions in Boise sandstone cores altered 

sandstone surface relaxivity, in a complicated way depending on nanoparticles’ surface 

charge and pH condition of the dispersions. During contact with 6 wt% and 7.5 wt% 

positively charged zirconia nanoparticles at pH 3.1, Boise sandstone surface relaxivity 

changed from 5.05 m/s to 5 m/s ~ 6.7 m/s due to 45% ~ 51% adsorbed nanoparticles 

onto pore surface. In Boise sandstone pores with pore walls pretreated with TMAH at pH 

13.4, sandstone surface relaxivity increased to more than 6 m/s due to strong alkaline 

condition, nanoparticle dispersion at pH 9.1 with 6 wt% and 7.5 wt% negatively charged 

zirconia nanoparticles temporally increased sandstone surface relaxivity to 7 m/s ~ 10 

m/s when approximately 13% ~ 21% of negatively charged nanoparticles were attached 

to silica surface driven by Van der Waals attraction. However, after coreflooding, most 

attached negatively charged nanoparticles were removed by Brownian diffusion, Boise 

sandstone surface relaxivity remained more than 6 m/s as result from strong alkaline 

environment.  

In this experiment, with a pore radius as small as 10.6 m, the specific surface area 

of Boise sandstone is much larger than that of the 2 mm glass bead pack, which has pore 

radius around 613 m. This provides more surface area for nanoparticle attachment. In the 

2 mm glass bead pack, only up to 30% of ZR-6AL can attach to the bead surface and form 

a dense monolayer packing of nanoparticles, while in Boise sandstone, the upper limit is 

100% for ZR-6AL. The theoretical maximum amount of adsorbed nanoparticles onto the 

pore surface is limited by the density of the hexagonal packing of equal circles: 

nanoparticles can only occupy up to 0.9069 of the pore surface via the projected area. In 

this limit, the sandstone surface contributes a negligible amount to the surface relaxation 

on the pore wall. It should be pointed out that the dense packing of nanoparticles in a 
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monolayer on the pore surface may not be achieved, as it is possible that nanoparticles 

attach to some sites of pore surface preferentially due to heterogeneity and localized driving 

forces. The electrostatic repulsion between nanoparticles may limit the maximum amount 

of nanoparticles that can adsorb on the pore walls below the theoretical maximum predicted 

for hexagonal packing. In addition, the hydration layer on nanoparticles and the pore 

surface may also affect adsorption. Further experiments should be performed to study the 

effects of hydration layers.     

Experimental results indicated that pH of nanoparticle dispersions played a role in 

interactions with Boise sandstone surface. Acid could increase Boise sandstone surface 

relaxivity by reacting with impurities such as Fe2O3 and FeO on mineral surface (Pettijohn, 

1963). HNO3 at pH 3.1 increased Boise sandstone surface relaxivity from 5.05 m/s to 5.7 

m/s. Alkali can alter Boise sandstone surface relaxivity by mineral surface dissolution 

and exposure of paramagnetic impurities to pore fluid. Such alteration can remain for long 

period as long as pore fluid condition remains alkaline. TMAH at pH 13.4 increased Boise 

sandstone surface relaxivity to higher than 6 m/s.  

After contact with Boise sandstone, zirconia nanoparticles with positive and 

negative surface charges both showed increased relaxivity. Positively charged 

nanoparticles relaxivity increased from 1.43 m/s to 4.3 m/s ~10 m/s.  Nanoparticles 

with negative surface charge displayed increased relaxivity from 1.10 m/s to 12 m/s ~ 

19 m/s after contact with TMAH treated Boise sandstone. Such increase in relaxivity were 

possibly due to less stabilizer in dispersions after interactions with sandstone surface. Less 

stabilizers were ionically bounded with nanoparticles, leaving more specific area of 

nanoparticles exposure to bulk fluid and increasing chance of protons to get close to 

paramagnetic sites and relaxed faster. Hence increased the effective relaxivity of 

nanoparticles. Attachment of iron ions on negatively charged nanoparticles further 
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enhanced nanoparticle relaxivity. Our work helps to understand the behavior of 

nanoparticles in porous media through NMR measurements and will be used in future 

studies on the pore-scale characteristics in rocks. This work will help advance nanoparticle-

based analyses of fluid-solid or fluid-fluid interfaces through adsorption of nanoparticles. 

Applications of this work include imaging oil-water contacts, and determining interfacial 

surface areas for many petrophysical and reservoir engineering needs. However, the 

differences in temperature and pressure conditions between oilfield subsurface and the 

laboratory may lead to different properties of nanoparticles and interactions between 

nanoparticles and pores.  
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Chapter 5  

Altering nuclear magnetic resonance surface relaxation on 

nanoparticles by adsorption of Fe(III) 

5.1 INTRODUCTION 

Many applications of nuclear magnetic resonance (NMR) have been explored in 

recent decades. In the biological and medical areas, NMR is used to obtain images of 

anatomy and physiological processes of bodies, which helps in the diagnosis and treatment 

of diseases (Mansfield and Pykett, 1978). In the oil and gas industry, NMR is employed to 

determine porosity, pore size, permeability, tortuosity, water saturation, and wettability of 

reservoir rocks (Hinedi et al., 1997; Freedman et al., 2003; Wang et al., 2005; Daigle and 

Johnson, 2016). Pore surface relaxivity is the key parameter that links the NMR signal to 

pore size in rock samples (Coates et al., 1999). 

With the development of nanotechnology and nanomaterials having the advantage 

of small size and large surface area to volume ratio, paramagnetic nanoparticles and 

magnetic nanoparticles have been used as enhanced oil recovery agents (Ogolo et al., 2012) 

and applied in produced water purification (Ko et al., 2014). They have also been employed 

in the characterization of multiphase fluid dynamics in porous media (Prodanović et al., 

2010) and pore connectivity (Cheng et al., 2014b). Their use in NMR has included 

application as contrast agents to highlight the pores that contribute the most to flow (Cheng 

et al., 2014b) and more robust determination of pore size through alteration of rock surface 

properties (Zhu et al., 2016). 

Nanoparticles have been widely used in medical and biological sciences as 

magnetic resonance imaging (MRI) contrast agents (Na et al., 2009), which help 

identification of disease-specific biomarkers at molecular and cellular levels. Coating of 

these nanoparticles with various polymers or functional groups is introduced to generate 
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shells that bring compatibility in biological environments and to attach to specific human 

tissue (Oh et al., 2006) and other applications. The behavior of these surface coatings often 

depends on having precise control on fluid chemistry (Petri-Fink et al., 2008). However, 

when nanoparticles are injected into subsurface reservoir rocks, the pore fluid chemistry 

cannot be controlled or predicted as easily as in medical applications. The chemistry of 

pore fluid and behavior of nanoparticles can vary from site to site. The behavior and 

stability of nanoparticles affect NMR response and limit their application in downhole 

environments (Carter et al., 2005). Polymer coatings are often used to stabilize 

nanoparticles in harsh reservoir conditions (ShamsiJazeyi et al., 2014). While providing 

the dispersion stability that is necessary for subsurface applications, the surface properties 

of the nanoparticles can take on the properties of those polymers themselves, potentially 

completely masking the properties of the nanoparticle core (Gupta and Gupta, 2004).  

In the subsurface, anions and cations in the pore fluid can interact with the solid 

pore surface. If more paramagnetic ions are present on the pore surface, the relaxivity of 

pore surface will increase, which will reduce the NMR relaxation time. Following 

adsorption of paramagnetic cations such as Fe(III) and Mn(II), increases in mineral surface 

relaxivity have been observed that follow predictions from theory (Kenyon and Kolleeny, 

1995; Bryar et al., 2000). Previous studies also indicated that cations could similarly adsorb 

onto nanoparticles (Hu et al., 2005) or the surface coating driven by electrostatic attraction 

(Zhang et al., 2009). Our previous results in Chapter 4 indicates that attachment of Fe ions 

from Boise sandstone pore surface onto zirconia nanoparticles in pores may increase 

relaxivities of nanoparticles by a factor of 8 to 12. Research on how adsorbed ions on 

nanoparticles can change relaxivity is limited. For practical use of nanoparticles as contrast 

agents in the subsurface, it is crucial to understand the way magnetic and paramagnetic 

ions affect nanoparticles and corresponding NMR signals.  
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5.2 RELAXATION THEORY 

5.2.1 Relaxivity of nanoparticles in dispersions 

Relaxation of hydrogen nuclei in nanoparticle dispersions is similar to the 

relaxation behavior of a very dilute porous medium in which solid nanoparticles are the 

matrix providing surface relaxation (Korb et al., 1997; McDonald et al., 2005; Zhu et al., 

2015), and the bulk fluid in which the nanoparticles are dispersed provides the bulk fluid 

relaxation. The overall longitudinal relaxation rate 1/T1 of a nanoparticle dispersion is the 

sum of the contributions from bulk relaxation rate 1/T1,Fluid and nanoparticle surface 

relaxation rate 1/T1,NP (e.g., Carr and Purcell, 1954): 

    

.  (5.1) 

The bulk fluid relaxation rate is easy to obtain from experiments by measuring the 

relaxation time of pure dispersing fluid. 

When diffusion of water molecules across the pores is fast enough to maintain 

uniform magnetization in the pores during signal decay, the longitudinal surface relaxivity 

ρ1 can be used to link 1/T1,NP to S/V , the ratio of total nanoparticle surface area to total 

fluid volume in the dispersion (Senturia and Robinson, 1970). In Equation (5.2), Spore is 

nanoparticles’ surface area, which can be calculated from nanoparticles’ volume VNP and 

radius rNP assuming that the nanoparticles are spherical. Vpore is fluid volume which equals 

total dispersion volume VTotal minus the nanoparticles’ volume VNP. The parameter v is the 

ratio of the nanoparticles’ volume to the fluid volume in the dispersion (Zhu et al., 2015). 
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5.2.2 Relaxivity of Fe cations in solution 

For paramagnetic ions in solution, the NMR relaxation theory was first developed 

by Solomon (1955) and extended by Bloembergen and Morgan (1961). The overall 

longitudinal relaxation rate of aqueous solutions with paramagnetic ions 1/T1,Fluid contains 

contributions from the paramagnetic species’ relaxation rates and the pure water bulk 

relaxation rate 1/T1,W (Bryar et al., 2000), as indicated in Equation (5.3): 

, (5.3) 

where T1,M is relaxation time of a hydrogen nucleus in the hydration shell around 

the paramagnetic ion, M is the residence time of water molecules in the hydration sphere 

that are close enough to the paramagnetic ion to be relaxed, and  is the molar fraction of 

water molecules in the paramagnetic ions’ hydration shells. The value of  is proportional 

to paramagnetic ion concentration in the fluid. Therefore, since the relaxation time T1,W is 

an intrinsic property of pure water, there is a linear relationship between the overall 

relaxation rate 1/T1,Fluid and paramagnetic ion concentrations and number of water 

molecules in the hydration shell of a paramagnetic ion.  

5.2.3 Relaxivity of Fe(III) adsorbed on solid surface 

Given different paramagnetic surface sites, such as surface ions in a crystal lattice, 

adsorbed paramagnetic ions, or paramagnetic crystal defects, the surface relaxation rate of 

solid nanoparticles, 1/T1,S, contains contributions from paramagnetic relaxation, as well as 

from non-magnetic relaxation due for example to homonuclear dipolar interactions 

(Pfeifer, 1972). Paramagnetic relaxation is associated with various paramagnetic species 

on the surface (Kleinberg et al., 1994) as shown in the middle terms of Equation (5.4), 

where i is molar fraction of water molecules located in the inner coordination sphere of 

the ith species of adsorbed paramagnetic ion, T1,N is relaxation time of water molecules not 
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interacting with paramagnetic sites, and N is the residence time of water molecules at the 

solid surface. There is assumed to be a background of nonmagnetic relaxation on the solid 

surface that causes the relaxation of protons not interacting with the paramagnetic sites. As 

indicated in the right-hand side of Equation (5.4), surface relaxivity , the parameter 

characterizing effectiveness of pore surface relaxation, links surface relaxation rate 1/T1,S
 

with surface area to volume of the pore (S/V)pore when all water molecules can be relaxed 

with the solid surface during lifetime of decay. 

. (5.4) 

Adsorption of Fe(III) brings more paramagnetic sites to the solid surface, so 

relaxivity increases with the fraction of surface occupied by magnetic sites ni, i is the 

inherent relaxivity of different kind of magnetic site on solid surface (Bryar et al., 2000) as 

shown in Equation (5.5): 

. (5.5) 

The molar fraction of water molecules coordinated with paramagnetic sites, i, is 

related to the surface fraction ni, with the assumption that the maximum distance at which 

a proton spin can be relaxed by a paramagnetic ion is the thickness of one monolayer of 

water h:  

. (5.6) 

Combining Equations (5.4), (5.5) and (5.6) gives the surface relaxivity of the ith 

paramagnetic species on the solid surface i: 
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5.3 MATERIALS AND METHODS 

We used zirconia nanoparticles dispersed in water (ZR-30AL) with 30 wt% of 

colloidal zirconium oxide (ZrO2) stabilized with 0.9 wt% HNO3 from Nissan Chemical 

America Corporation. The pH value was measured as 3.1. The original ZR-30AL was 

diluted with DI water to 6 wt% of ZrO2 in dispersion with pH value of 3.13 for further 

usage. The nanoparticles have no surface coating and had positive surface charge, with an 

average zeta potential of +32.5 mV. Nanoparticle diameters were between 110 and 130 nm 

measured by a Dynamic Light Scattering (DLS) ZetaSizer (Malvern Nano ZS).  

We also used a 40 wt% dispersion of colloidal ZrO2 (ZR-40BL) from Nissan 

Chemical America Corporation. These nanoparticles were dispersed in water and stabilized 

with 1 wt% C4H12N.HO. The pH was 9.2. The original ZR-40BL dispersion was diluted 

with DI water to reduce the weight concentration of zirconia nanoparticles to 6 wt%, and 

pH was measured as 9.1. No surface coating attached on the nanoparticles, they had 

negative surface charge with average zeta potential of -38.8 mV. Nanoparticle diameters 

were between 70 and 90 nm.   

Silica nanoparticle dispersion with poly(ethylene glycol) (PEG) coating was diluted 

with DI water to obtain 4 wt% of silica nanoparticles and labeled as Si-4B. The pH value 

was 8.8 for the diluted silica nanoparticle dispersion. Nanoparticle size was determined by 

DLS Zeta Sizer as 30 nm, and the average zeta potentials of Si-4B was -28.1 mV.  

Iron standard solution with Fe(III) concentration of 1000 mg/L in 2% HNO3 was 

purchased from ACROS Organics. DI water was used to dilute the Fe standard solution to 

different concentrations: 100mg/L, 50mg/L, 18mg/L, and 8mg/L. We used 2% HNO3 to 

serially dilute the Fe standard solution to build a calibration curve for inductively coupled 

plasma optical emission spectroscopy (ICP-OES) measurements. NMR measurements 
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were performed to obtain Fe3+ relaxation rates with Fe concentrations of 50mg/L, 25mg/L, 

9mg/L, and 4mg/L. 

15 ml of Fe(III) solutions with different concentrations: 100 mg/L, 50 mg/L, 18 

mg/L, and 0 mg/L were mixed with 15 ml of different groups of nanoparticle dispersions: 

ZR-6AL, ZR-6BL, Si-4B, and DI water separately. We also introduced a control group of 

NaOH solution at pH 9 to isolate the effects of alkaline conditions. All mixtures were kept 

for overnight at ambient conditions before further measurements were performed. 

Measurements and treatments to different mixtures and solutions are listed in Table 5.1. 

A Malvern Nano ZS was used to measure size distribution of nanoparticles mixed 

with different concentrations of Fe(III) in ZR-AL and ZR-BL. Size calibrations were 

performed with calibration standard dispersions before each measurement. 0.450 mL of 

zirconia nanoparticle dispersion was placed in a disposable cell to measure size 

distribution. The size distribution and average size value were recorded. Measurements of 

each dispersion sample were performed three times and the mean value and standard 

deviation were recorded. 

We used Beckman Avanti J-E centrifuge and rotor JA-10 to remove nanoparticles. 

Zirconia nanoparticles with size 80-110 nm were easily separated from supernatant after 

30 minutes of centrifuging at 9,000 RPM. 14,000 RPM is required to remove the smaller 

silica nanoparticles (30nm) by centrifugation. Since the maximum rotation speed of rotor 

JA-10 is 10,000 RPM, we could not separate the silica nanoparticles with the centrifuge in 

this study. After centrifuging Fe-zirconia nanoparticles mixtures and Fe-NaOH mixtures, 

12 ml of the supernatants of the corresponding samples were collected for further NMR 

and ICP-OES measurements as shown in Table 5.1. 

NMR measurements were performed at room temperature (20°C) using a 2 MHz 

GeoSpec2 benchtop NMR core analysis instrument from Oxford Instruments with an 
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operating frequency of 2.15 MHz The external magnetic field B0 was 0.05047 T. We used 

an inversion recovery measurement to determine the distribution of longitudinal relaxation 

times (T1). Samples for which we performed T1 measurements are displayed in Table 5.1. 

A Varian Liberty Series II Axial ICP-OES was employed to measure dissolved iron 

concentration in Fe-DI mixture and supernatants after centrifuging the Fe-nanoparticles 

and Fe-NaOH mixtures. Wavelengths for Fe were picked as 234.350 nm, 238.204 nm, and 

259.940 nm. Calibration was generated based on 1 mg/L, 2 mg/L, 5 mg/L, 8 mg/L, 10 

mg/L, 20 mg/L, and 50 mg/L iron standard solutions. Concentrations of iron in samples 

were measured and calculated employing standard calibration range from 0 mg/L to 

50mg/L.  

A Thermo Scientific Orion Versa Star pH benchtop meter was used to measure pH 

values of different mixtures with various Fe concentrations. The meter was calibrated with 

standard pH buffers at pH 4.01, 7.00 and 10.01.  The pH probe was triple rinsed with DI 

water before and after measurements of different samples. 

Table 5.1 Treatment and measurement performed of different mixture groups. 

Mixture 

labels 
Contents 

NMR 

measurement 
Centrifuge 

ICP, NMR and pH measurement 

of pure fluid (supernatant)  after 

centrifuge 

Fe-DI 

solution 

Fe(III) and DI 

water 

 

Y 

 

N 

 

Y, w/o centrifuge 

Fe-NaOH 

mixture 

Fe(III) and 

NaOH 

solution 

 

Y 

 

Y 

 

Y 

Fe(III)-Si-

2B 

mixture 

Fe(III) and 

Silica NPs 

 

Y 

 

N 

 

N 

Fe(III)-

ZR-3AL 

mixture 

Fe(III) and 

Zirconia NPs 

 

Y 

 

Y 

 

Y 

Fe(III)-

ZR-3BL 

mixture 

Fe(III) and 

Zirconia NPs 

 

Y 

 

Y 

 

Y 
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Error bars for the longitudinal relaxation rate were computed from the standard 

deviation of the longitudinal relaxation time obtained from the Matlab inversion. The signal 

and noise were extracted from the raw NMR data in the time domain. Random noise with 

the same properties (magnitude, mean value and standard deviation) of noise extracted 

from raw NMR data was added to the time domain signal. With the added noise, there was 

a slightly different magnetization buildup curve compared to the curve obtained directly 

from the raw data. A linear inversion regression was then applied to the buildup curve with 

added noise to compute the T1 value. After repeating this process 100 different times, 100 

buildup curves were generated and used to calculate associated T1 values. Based on these 

100 computed T1 values, the standard deviation of T1 was recorded and used to compute 

the errors in longitudinal relaxation rate. 

5.4 RESULTS AND DISCUSSIONS 

5.4.1 Proton Relaxation by Fe(III) Ions in Solution 

Longitudinal relaxation time of Fe(III) solutions with different Fe concentrations 

was measured and computed. The pH value was recorded as 2.4 for each sample. In nitric 

acid solution with Fe(III), the first hydration shell of Fe(III) contains 6 water molecules 

(Magini and Caminiti, 1977), while the second hydration shell is formed by 12 water 

molecules (Caminiti and Magini, 1979). Previous studies indicated that the relaxation rate 

of water molecules outside the first hydration shell of paramagnetic ions is insignificant 

compared to those in the first hydration shell (Koenig and Brown, 1987). At pH around 

2.4, the overall relaxation rate of Fe(III) solution decreased from 18.508 s-1 with 50 mg/L 

Fe(III) ions to 0.361 s-1 with zero iron in solution are shown in Figure 5.1. The error bars 

of relaxation rate were obtained from the standard deviation of the longitudinal relaxation 

times of nanoparticle dispersions by linear regression of the raw data in Matlab as described 



 86 

in section 5.3. Based on the slope calculated from Figure 4.1 and Equation (4.5), along 

with the calculated mole fraction of water in the Fe(III) hydration shell, which is 6 times 

Fe(III) mole fraction, T1,M+ associated with dissolved magnetic Fe(III) is computed to 

be 7.53 s. This value is in good agreement with previous work: Bryar et al. (2000) found 

T1,M+ around 8 s for Fe(III) ions at pH around 2.5. Smaller values of T1,M+ may arise 

from different pH values where lower pH value increases the number of exchangeable 

water molecules in the hydration shell and thus increases the relaxation rate (Bertini et al., 

1993).  

 

Figure 5.1 Dependence of overall relaxation rate on Fe(III) concentration in solutions. 
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5.4.2 Proton Relaxation in Fe- Nanoparticles mixture 

As shown in Figure 5.2a), the relaxation rate of pure Fe-DI solution increased 

proportionally with increasing Fe concentration. This indicates that the relaxation 

contribution of Fe(III) ions dominates the overall relaxation rate, so hydrogen nuclei get 

relaxed faster with higher Fe concentrations, as demonstrated in the previous section.  Error 

bars for the relaxation rate were obtained based on the standard deviation of the relaxation 

times described in section 5.3. For the Fe-NaOH mixture, the relaxation rate remained 

similar to that of the Fe-DI solution at the same Fe concentration. When nanoparticles were 

present in the Fe-zirconia nanoparticle mixtures, at relatively high Fe concentrations such 

as 50 mg/L and 25 mg/L, relaxation rate was lower than that of pure Fe solutions at same 

concentrations even with additional surface relaxivity brought from nanoparticles. In 

contrast, at low Fe concentration (9 mg/L), Fe-Zirconia nanoparticle mixtures showed 

faster relaxation rate than those of pure Fe-DI solutions. The observed amount of change 

in relaxation rate in this case cannot be simply explained by the additional contribution of 

the nanoparticle surface relaxation rate. For example, with 9 mg/L of Fe in mixture, the 

relaxation rate of Fe(III)-ZR-3AL was 3.631 s-1, while the relaxation rate of Fe(III) in 

solution at 9 mg/L was 3.252 s-1. The increase from 3.252 s-1 to 3.782 s-1 (0.379 s-1) is 

smaller than surface relaxation of pure zirconia nanoparticles in ZR-3AL, which is 0.419 

s-1. This may indicate that Fe(III) and nanoparticles interact with each other and the overall 

relaxation rate of Fe and nanoparticles is not simply the sum of the relaxation rate of 

aqueous Fe(III) in solution and the pure zirconia nanoparticle surface relaxation rate as 

indicated by lines in Figure 5.2b).  

For Fe-Silica nanoparticle mixtures, the relaxation rate was much slower than that 

of pure Fe-DI solution with the same Fe concentrations. This suggests that the addition of 

silica nanoparticles causes the Fe(III) in the mixtures to relax proton spins less efficiently 
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so that the overall relaxation rate decreased in the Fe-nanoparticles mixture. From Equation 

(5.4), this suggests that the value of  decreased after adding silica nanoparticles. A 

possible explanation for this is that Fe ions were removed from the aqueous phase and 

adsorbed to the nanoparticle surfaces (Zhu et al., 2016), thus altering both the bulk fluid 

and surface relaxations. In both types of nanoparticles (silica and zirconia, with and without 

surface coating), the overall relaxation rate showed similar trend at high Fe concentration 

(25 mg/L ~ 50 mg/L): with presence of nanoparticles, relaxation rate decreased. 
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Figure 5.2 Longitudinal relaxation rate of Fe-DI solution and Fe(III)-nanoparticles 

mixtures with different Fe(III) concentrations. a) Grouping of relaxation 

rates of different mixtures with same Fe concentration; b) Comparison of 

measured mixture overall relaxation rate with values assuming no Fe(III) 

adsorption onto nanoparticles. 
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5.4.3 Fe(III) and pH in supernatants 

To separate the relaxation contribution of nanoparticles in the mixture, we 

centrifuged the Fe-Zirconia nanoparticles, collected the supernatant, measured the Fe 

concentration with ICP-OES and recorded the NMR results of the supernatant. In the 

meantime, Fe-NaOH mixture was used as a control group to isolate effects of pH on Fe 

concentrations and relaxation rate in supernatants. However, due to the speed limit of 

centrifuge rotor, silica nanoparticles with smaller size (21 nm ~ 35 nm) could not be 

removed from the mixture, so we only further studied the Fe-Zirconia nanoparticles 

mixture and supernatants in this work. 

Table 5.2 ICP measured Fe concentration in supernatants of Fe-NaOH mixtures and Fe-

Zirconia nanoparticles after centrifuging. 

Fe conc. in 

mixture 

(mg/L) 

Fe conc. in 

Fe-NaOH 

supernatant (mg/L) 

Fe conc. in  

Fe(III) - ZR-3AL 

supernatant (mg/L) 

Fe conc. in  

Fe(III) -ZR-3BL  

supernatant (mg/L) 

50 49.03 0.9603 0.9019 

25 24.89 0.5179 0.5095 

9 8.516 0.1043 0.09675 

0 0.0366 0.02094 0.02630 

We also centrifuged the group of Fe-NaOH mixture at 10,000 RPM for 30 minutes. 

As shown in Table 5.2, the supernatant collected from Fe-NaOH mixture contained a 

similar Fe concentration to the mixture before centrifuging and we determined that 98% of 

the original Fe(III) remained in the supernatant after centrifuging.  According to the ICP-

OES results for Fe concentration in Fe-Zirconia nanoparticle mixtures and supernatants 

after centrifuging displayed in Table 5.2, there was much less iron remaining in the 

supernatant, indicating that Fe(III) was retained on the zirconia nanoparticles’ solid 

surface. Adsorption of Fe(III) onto nanoparticles may also explain the decrease in overall 

relaxation rate observed with the addition of silica nanoparticles to Fe solutions.   
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Relaxation rates of supernatants from Fe-NaOH and Fe-Zirconia nanoparticle 

mixtures are shown in Figure 5.3a). The relaxation rates of the supernatants after removal 

of zirconia nanoparticles were smaller than 0.8 s-1, indicating that less Fe(III) was in the 

supernatant. This suggests that most of the Fe(III) was attached to the zirconia 

nanoparticles’ surface. Figure 5.3b) shows the bounds on overall relaxation rate assuming 

no adsorption of Fe(III) (upper bound) and full adsorption of Fe(III) (lower bound). The 

measured data for NaOH fall along the upper bound, indicating that all Fe(III) remained in 

the supernatant as expected. The data for the two nanoparticle dispersions fall along the 

lower bound, indicating that all of the Fe(III) was attached to the nanoparticles.  Error bars 

for the longitudinal relaxation rate were computed from the standard deviation of relaxation 

times as described in section 5.3.  

Table 5.3 pH of supernatant from Fe-Zirconia nanoparticles mixtures and Fe-NaOH 

mixtures, and Fe-Silica nanoparticles mixtures. 

Fe 

conc. 

in 

mixture 

(mg/L) 

pH of 

Fe-NaOH 

supernatant 

pH of 

Fe(III)- 

ZR-3AL 

supernatant 

pH of 

Fe(III)- 

ZR-3BL 

supernatant 

pH of Fe-

DI solutions 

pH of 

Fe(III)- Si-

2B mixtures 

50 3.0 2.4 3.0 2.4 2.6 

25 3.4 2.5 3.4 2.4 7.1 

9 7.2 2.8 7.0 2.4 8.0 

0 9.0 3.1 8.7 6.7 9.2 
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Figure 5.3 Relaxation rates of supernatants from Fe-Zirconia nanoparticles mixtures and 

Fe-NaOH mixtures. 5.3a) Grouping of relaxation rates of supernatants 

collected from different mixtures with same original Fe concentration; 5.3b) 

Comparison of measured supernatant relaxation rate of mixtures with 

theoretical values assuming no Fe(III) attached onto nanoparticles. 
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The pH values of the supernatants and Fe-DI solution are displayed in Table 5.3. 

At low Fe concentration (9 mg/L) the pH value of each mixture group varies from 2.4 in 

pure Fe(III) solution to 7.5 in the Fe-NaOH mixture because the Fe standard solution is 

significantly diluted. To isolate the effect of pH on Fe(III) relaxivity, the Fe(III)-ZR-3BL 

group was compared to the Fe-NaOH group for Fe concentrations ranging from 9 mg/L to 

50 mg/L; the Fe(III)-ZR-3AL group was compared to the Fe-DI solution for Fe 

concentrations at 25 mg/L and 50 mg/L. 

5.4.4 Proton Relaxation by Zirconia Nanoparticles with adsorbed Fe(III) 

Table 5.4 Surface relaxivity of zirconia nanoparticles with increased amount of adsorbed 

Fe(III) under different iron concentrations. 

Fe 

conc. in 

mixture 

(mg/L) 

ZR-

3AL 

radius 

in 

mixture 

(nm) 

Surface 

relaxivity 

of  

ZR-3AL 

(m/s) 

Adsorbed 

Fe(III) 

onto 

 ZR-3AL 

(mg) 

ZR-

3BL 

radius 

in 

mixture 

(nm) 

Adsorbed 

Fe(III) 

onto 

 ZR-3BL 

(mg) 

Surface 

relaxivity 

of  

ZR-3BL 

(m/s) 

Si-2B 

radius 

in 

mixture 

(nm) 

50 58.2 50.17 1.345 42.9 1.342 35.13 10.35 

25 59.7 27.17 0.5974 42.5 0.5976 17.77 17.45 

9 57.8 12.27 0.2088 44.0 0.2078 8.430 13.95 

0* 59.6 1.427 N.A. 43.3 N.A. 1.095 10.94 

Based on Fe concentration measured by ICP-OES in the Fe-Zirconia nanoparticle 

mixtures and corresponding supernatants, a mass balance calculation indicates that Fe(III) 

adsorbed onto the zirconia nanoparticles (Table 5.4). Before adsorption of Fe, pure zirconia 

nanoparticles in dispersion have surface relaxivities of 1.427 m/s for ZR-3AL and 1.095 

m/s for ZR-3BL (Zhu, et al., 2015).  Relaxation rates of zirconia nanoparticles in the 

mixtures were computed using Equation (5.1) by subtracting the supernatant relaxation rate 

from the overall relaxation rate of the Fe-Zirconia nanoparticle mixture. We assumed that 

the supernatant represented the composition of the dispersing fluid in the presence of 
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nanoparticles. The nanoparticle surface relaxivity was then determined using Equation 

(5.2) with nanoparticle sizes obtained from DLS measurements. 

As shown in Table 5.4, relaxivity of zirconia nanoparticles increased with the 

amount of adsorbed Fe(III). The relaxivity of positively-charged zirconia nanoparticles 

increased about 40 fold after exposure to 50 mg/L Fe(III) at pH around 2.4; at pH around 

3, the relaxivity of negatively-charged zirconia nanoparticles increased by a factor of 36. 

The results indicate that with Fe(III) in solution, even at disparate pH values and 

nanoparticle surface charges, adsorption of Fe ions onto nanoparticles increased 

nanoparticles relaxivity. 

When pH value was above 6, with no surface coating, zirconia nanoparticles in 

dispersion were negatively charged (Tang et al., 2000), and the driving force for adsorption 

of Fe(III) onto ZR-3BL was likely due to electrostatic attraction between negatively 

charged nanoparticle and iron cations (Stuart et al., 1991). Under acidic conditions where 

pH value was lower than 6, zirconia nanoparticles with positive surface charge also acted 

as a Fe(III) sink, which suggests that electrostatic attraction was not the driving force of 

adsorption in these cases. Hydrolysis of Fe3+ in solution builds Fe(OH)3 and polymers of 

Fe(III) could have been precipitated at pH values ranging from 1.8 to 3.4 (Dousma and De 

Bruyn, 1976). These polymers tend to precipitate on solid surfaces under acidic conditions 

(Dai and Hu, 2014).  

Although we were not able to perform any measurements on supernatants from the 

silica nanoparticle solutions, the behavior observed with the negatively charged zirconia 

nanoparticles can be used to inform some interpretations of our measurements. At pH from 

5.5 to 9, the PEG coated silica nanoparticles were negatively charged. Therefore, the 

increase in relaxation rate can probably be attributed to electrostatically-driven adsorption 

of Fe ions onto the nanoparticles.  
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With the assumption that the values of surface relaxivities (i) for pure solid surface 

and paramagnetic sites are constant, the surface relaxivity of adsorbed Fe(III) ions can be 

computed according to Equations (5.4-5.7). Adsorbed Fe(III) relaxivity on zirconia 

nanoparticles was computed as 68 m/s to 78 m/s when assuming there are 3 water 

molecules remaining in a hemisphere around Fe(III) after their adsorption on the solid 

surface.  Similar values with 80 m/s to 120 m/s for surface relaxivity of adsorbed Fe(III) 

ions on silica gel surface were obtain by previous studies (Bryar et al., 2000). 

To compute the theoretical highest amount of Fe(III) that can be adsorbed onto 

nanoparticles, we assume all the conditions such as temperature, viscosity, pressure, pH 

value, zeta potential will favor each Fe(III) ions to attach onto nanoparticle surface. We 

employ a geometric method where Fe(III) ions and their associated hydration shells are 

assumed to be spheres. The attached Fe(III) spheres form a monolayer, and each Fe(III) 

sphere makes a project area of ℼrFe(III)
2 on the nanoparticle surface. The radius can be 

computed from Fe3+’s ionic radius (0.66 Å), the Fe-O distance (2.00 Å) (Persson, 2010), 

and the O-H distance in water molecules (0.942 Å) (Csaszar et al., 2005). This yields rFe(III) 

of 0.3602 nm. Since zirconia nanoparticles are a very dilute matrix compared to rock, the 

volume fraction of zirconia nanoparticles in dispersion is 0.557%. We compute the volume 

of Fe(III)-ZR3AL mixture that contains only 1 zirconia nanoparticle with radius of 58.56 

nm (mean value computed based on Table 5.4) as 0.151 m3. Given Fe(III) molecular 

weight of 55.845 g/mol, theoretically up to 95,883 Fe(III) ions can attach onto the 

nanoparticle surface to cover 90.69% of the surface. This would increase the nanoparticle 

surface relaxivity to 68.15 m/s. With Fe(III) concentration of 50 mg/L, there are 81,426 

Fe(III) atoms in this volume. As indicated in Figure 5.4, if all 81,426 Fe(III) atoms get 

adsorbed onto the surface of spherical nanoparticles with radius of 58.56 nm, 3.14 × 10-6 

mol/m2 Fe(III) would be attached on the nanoparticle. With the radius of Fe(III) being 
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0.3602 nm, the nanoparticle surface fraction occupied by Fe(III) is 0.77, according to 

Equations (5.4 and 5.5), and the corresponding surface relaxivity is calculated as 58.1 m/s 

based on experimental results assuming a linear relationship between nanoparticle 

relaxivity and adsorbed Fe(III) amount. Similarly, the maximum number of Fe(III) ions 

that can be adsorbed onto ZR-3BL is 52,011, which would cover 90.69% of the 

nanoparticle surface and increase the relaxivity as 63.58 m/s. In this study, in the Fe(III)-

ZR3BL mixture with 50 mg/L initial Fe(III) concentration, there was 2.36 × 10-6 mol/m2 

Fe(III) attached onto the nanoparticle. The surface fraction occupied by the Fe(III) 

monolayer is 0.564, and the corresponding nanoparticle relaxivity is 40.1 m/s.  

In Figure 5.4, assuming monolayer attachment as described in Equations (5.4-5.7), 

the relaxivities of ZR-3AL and ZR-3BL should increase linearly with quantity of adsorbed 

Fe(III). Experimental data with errors in nanoparticle relaxivity are displayed and 

compared with the two theoretical bounds. Errors bars for nanoparticle relaxivity were 

determined from the standard deviations of nanoparticle size and relaxation times of 

mixture and effluents as described in section 5.3 and equations in Appendix A. The 

deviation from linearity observed at lower adsorbed Fe(III) quantities could be caused by 

variable relaxivity among different Fe(III) species. We did not consider Fe(III) adsorption 

dynamics or mechanisms in the monolayer attachment, and it is possible and that at 

different pH values, different Fe(III) species with various inherent relaxivities are 

preferentially adsorbed on nanoparticles. The relaxivity of adsorbed Fe(III) used to 

compute the theoretical nanoparticle relaxivity is the average value derived from 

calculations based on 3 samples in each group with different pH values (pH values shown 

in Table 5.3). Differences between this value and the specific values for different Fe(III) 

complexes (Bertini et al.,1993; Bryar et al., 2000) may lead to deviation of the experimental 

data from the predicted lines. Additionally, the radius of the zirconia nanoparticles used to 
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compute the theoretical lines is the averaged value obtained from 3 samples of each group 

shown in Table 5.4. Differences between the measured radius in the experimental data and 

the mean value used here also contributes to the deviation of the experimental data from 

the trend. Note that the iron concentration in the supernatant of the Si-2B mixtures was not 

determined due to the inability of those mixtures to be separated by centrifuge. For this 

reason, the surface relaxivity as a function of iron concentration was not determined for 

the silica nanoparticles. 

 

Figure 5.4 Zirconia nanoparticles relaxivity increases with attached Fe(III). Blue and Red 

lines display computed ZR-3AL and ZR-3BL relaxivity with attached 

Fe(III), respectively; green dots exhibit the experimental results from this 

work for ZR-3AL, purple triangles show experimental data for ZR-3BL. 
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According to Figure 5.4, assuming a constant nanoparticle radius of 10.35 nm and 

a nanoparticle volume fraction of 0.76%, the maximum percentage of 50 mg/L Fe(III) in 

the mixture that can attach onto silica nanoparticle surface is 100%. The attached 1.45 × 

10-6 mol/m2 Fe(III) covers 0.309 of silica nanoparticle surface, and the resulting relaxivity 

increased from 0.0722 m/s to around 22 m/s ~ 23 m/s (giving the adsorbed Fe(III) 

relaxivity of 68 m/s ~ 78 m/s from previous results).  

We were not able to separate Si-2B nanoparticles from mixtures via centrifuge, and 

thus were unable to obtain the necessary properties of the supernatant. The measured size 

of the silica nanoparticles varies by more than 50% among tested mixtures, as indicated in 

Table 5.2. This further complicates computation of silica nanoparticle surface relaxivity 

with fractions of attached Fe(III), which requires a relatively constant and representative 

value of nanoparticle radius. Hence, the theoretical relaxation rate with full adsorption of 

Fe(III) onto the silica surface with different initial Fe(III) concentrations cannot be 

determined. The relaxation rate of zirconia nanoparticle and Fe(III) mixture as a function 

of Fe concentration are shown in Figure 5.5, along with upper and lower bounds 

determined by assuming monolayer adsorption of Fe(III) in hexagonal packing. When 

there is no adsorption of Fe(III) onto nanoparticles, the overall relaxation rate is simply the 

sum of the nanoparticle surface relaxation rate and the relaxation rate of aqueous Fe(III) 

solution. In zirconia nanoparticles and Fe(III) mixtures with different Fe(III) concentration, 

when Fe(III) is fully adsorbed onto nanoparticles, the fraction of adsorption capacity can 

be determined, and the corresponding value of nanoparticle relaxivity in Figure 5.4 were 

used to compute the relaxation rate. As expected, the experimental data fall inside the 

envelope between no adsorption and full adsorption of Fe(III). At higher Fe(III) 

concentration, the experimental points for ZR-3AL and ZR-3BL are closer to the lower 

bound, indicating significant, but not full, Fe(III) adsorption.  



 99 

 

Figure 5.5 Comparison of theoretical relaxation rates with fully attached of Fe(III) and 

none adsorbed Fe(III) from aqueous solution to nanoparticles. Experimental 

data falls between the boundaries, indicating occurrence of adsorption but 

not to full capacity. 

5.5 CONCLUSIONS 

This work has shown that paramagnetic ions such as Fe(III) can adsorb onto 

nanoparticles regardless of surface coating and surface charge of nanoparticles. Our work 

suggests that the silica nanoparticles with PEG surface coating can remove Fe(III) from 

aqueous solution, since the relaxation rates of silica nanoparticles dispersed in Fe(III) 

solutions is not a simple sum of the nanoparticle and iron solution relaxation rates. Zirconia 
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nanoparticles with positive and negative surface charge can remove more than 90% of 

Fe(III) from solutions. Slightly alkaline conditions (pH between 7 and 8) do not play an 

important role in precipitating Fe(III) ions. Adsorbed Fe(III) significantly increased the 

zirconia nanoparticles’ surface relaxivity. Surface relaxivity of positively charged zirconia 

nanoparticles increased from 1.427 m/s to 50.17 m/s with 2.80 × 10-6 mol/m2 adsorbed 

Fe(III) at pH around 2.4. Zirconia nanoparticles with negative surface charge at pH around 

3.0 had surface relaxivity increased from 1.095 m/s to 35.13 m/s when 2.07 × 10-6 

mol/m2 Fe(III) was adsorbed. The results show that under various pH conditions ranging 

from 2.4 to 7.5, adsorption of Fe(III) species onto nanoparticle surfaces occurred and 

increased the relaxivity of the nanoparticles. 

Our research indicates that, in natural porous media with pore fluid containing 

paramagnetic ions, sorption of these ions to the surface of nanoparticles can significantly 

alter the NMR relaxation behavior of the nanoparticles. The phenomenon affects 

nanoparticles regardless of surface charge or whether the nanoparticles are coated with 

polymers or not. Care must therefore be taken when using nanoparticles as NMR contrast 

agents in rock samples both in the laboratory and the subsurface. With the assumption that 

attached Fe(III) forms a monolayer packing, the nanoparticle surface has the geometrical 

capacity to adsorb all the Fe(III) in the mixture. However, at laboratory conditions, we did 

not observe full adsorption of Fe(III) in the tested Fe(III) concentrations. It is possible that 

the mixture conditions are not optimized for adsorption of all Fe(III); for example, an 

adsorbed Fe cation may prevent other Fe cations from settling next to it due to electrostatic 

repulsion. We did not analyze how the hydration layer on nanoparticles affects the 

adsorption of Fe(III), and it is possible that the existence of a hydration layer which has 

higher density and viscosity than bulk water (Israelachvili and Wennerstrom, 1996) may 

play a role in affecting adsorption of hydrated Fe(III).  In addition, in the subsurface, 
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temperature, pressure, pH values are different from the conditions in our experiments, 

which were performed at room temperature and pressure. The interactions between Fe(III) 

and nanoparticles in this case may be different from what we observed in this study.   
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Chapter 6  

NMR relaxation of surface-functionalized Fe3O4 nanoparticles 

6.1 INTRODUCTION 

As indicated in Chapter 5, adsorption of paramagnetic ions onto nanoparticles with 

and without surface coating will increase the nanoparticles’ surface relaxivity. On the other 

hand, presence of surface coating with low relaxivity may also affect relaxivities of 

paramagnetic nanoparticles. With superior magnetic properties, nanoscale dimensions and 

nontoxic characteristics, iron oxide nanoparticles are of high interest in nanoscience and 

nanotechnology. As superparamagnetic nanoparticles (MNPs), Fe3O4 nanoparticles have 

been widely applied in biomedical areas such as magnetic resonance imaging (MRI) 

techniques (Babes et al., 1999), tissue repair (Jordan et al., 2001) and targeted drug delivery 

(Chertok et al., 2008). In the petroleum industry, applications of Fe3O4 nanoparticles 

include use as a nuclear magnetic resonance (NMR) contrast agent (Ogolo et al., 2012), 

stabilization of magnetic Pickering emulsions (Zhou et al., 2011), remediation of oil spills 

in oceans (Ko et al., 2014), flow assurance in subsea pipelines (Mehta et al., 2014), and 

characterization of multiphase fluid dynamics in porous media (Prodanović et al., 2010).  

To provide the desired chemical functionality while maintaining dispersion 

stability in vivo or in the subsurface, different surface coatings are usually employed in 

applications of iron oxide nanoparticles. In natural reservoirs, the environmental conditions 

are complicated, and the chemical components are not as well controlled as in biomedical 

research. Interactions between nanoparticles, pore fluid and rocks may take place, and 

various surface coatings must be used. The properties of nanoparticle cores may be 

influenced by the presence of these surface coatings (Lu et al., 2010; Issa et al., 2011). 
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In the subsurface, NMR logging is widely used to characterize properties of 

reservoir rocks such as porosity, pore size, permeability, tortuosity, water saturation, and 

wettability (Hinedi et al., 1997; Freedman et al., 2003; Wang et al., 2005; Daigle and 

Johnson, 2016;). In studies on the use of iron oxide nanoparticles as a contrast agent, 

investigation of how surface coatings of Fe3O4 nanoparticles affect NMR properties is 

limited. Thus it is crucial to understand the way and to what extent surface coating affects 

iron oxide nanoparticles and corresponding NMR signals. 

6.1.1 Proton relaxation by dipole-dipole interactions 

In NMR, the object of interest is typically a molecule, atom, nucleus, or subatomic 

particle. The objects (such as protons, electrons, and NMR-active nuclei) can be thought 

of as tiny magnets with north and south poles (dipoles) whose electromagnetic fields 

interact through space. This interaction is called dipole-dipole interaction; it is the most 

important single mechanism responsible for longitudinal (T1) and transverse (T2) relaxation 

in our studies. 

In 1H NMR as typically used in downhole applications, dipole-dipole interactions 

may be either proton-proton (H-H) or electron-proton (e-H). These are referred to as 

homonuclear and heteronuclear dipolar interactions, respectively. A dipolar interaction is 

the interaction of the fields from two such spinning particles. If the spins reside on the same 

molecule, it is called an intramolecular dipolar interaction; if on different molecules, an 

intermolecular interaction (Diehl et al., 1969).  

Proton-proton relaxation 

In pure water, the principal relaxation mechanism of protons is proton-proton 

relaxation. The strength of this homonuclear dipolar interaction is inversely proportional 

to the sixth power of distance (1/r6). Hence, short-range intramolecular dipole-dipole 
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interactions are more powerful than long-range intermolecular ones. This generally means 

that two ¹H nuclei must approach to within about 0.3 nm of each other for their spins to be 

relaxed. In pure water, it is estimated that about 70% of the dipolar interactions are 

intramolecular while 30% are intermolecular (Bloembergen, 1956). 

Electron-proton relaxation 

With the presence of paramagnetic materials, electron-proton relaxation may occur. 

Due to its small size, an electron has a much larger gyromagnetic ratio (γ) than a proton, 

so electron-proton dipolar interactions are much stronger than proton-proton interactions. 

In natural porous media, electron-proton interactions are the dominant surface relaxation 

mechanism (Kleinberg et al., 1994). 

6.1.2 Relaxivity of nanoparticles in dispersions 

We may treat nanoparticle dispersions as dilute porous media in which solid 

nanoparticles are the matrix providing surface relaxation (Korb et al., 1997; McDonald et 

al., 2005; Zhu et al., 2015), and the bulk fluid in which the nanoparticles are dispersed 

provides the bulk fluid relaxation. In this study, we focus on longitudinal relaxation 

because it is not affected by diffusion in internal magnetic field gradients generated by the 

iron oxide nanoparticles (Anand and Hirasaki, 2008). The insights however are relevant 

and transferable to transverse surface relaxation, however. The overall longitudinal 

relaxation rate 1/T1 of a nanoparticle dispersion is the sum of the contributions from the 

bulk relaxation rate 1/T1,Fluid and the nanoparticle surface relaxation rate 1/T1,NP (e.g., Carr 

and Purcell, 1954), as displayed in Equation (6.1): 

. (6.1) 1 1,Fluid 1,NP

1 1 1

T T T
 
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1/T1,Fluid can be calculated from experiments by measuring the relaxation time of 

the pure dispersing fluid. When diffusion of water molecules is fast enough to maintain 

uniform magnetization in the pores during signal decay, 1/T1,NP is proportional to S/V, the 

ratio of total nanoparticle surface area (S) to total fluid volume (V) in the dispersion 

(Senturia and Robinson, 1970), with the constant of proportionality being the 

nanoparticles’ surface relaxivity 1,NP. In Equation (6.2), Spore can be calculated from 

nanoparticles’ volume VNP and radius rNP assuming that the nanoparticles are spherical. 

Vpore is fluid volume, which equals total volume of suspension VTotal minus the 

nanoparticles’ volume VNP. The parameter  is the ratio of the nanoparticles’ volume to the 

fluid volume in the dispersion (Zhu et al., 2015): 

. (6.2) 

With various types of paramagnetic sites (surface ions in crystals, paramagnetic 

crystal defects, or adsorbed paramagnetic ions) on nanoparticle surfaces, the relaxation rate 

of nanoparticles includes contributions from paramagnetic and non-paramagnetic parts 

(Kleinberg et al., 1994) as shown in Equation (6.3):    
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Here, ci is the fraction of water molecules close enough to be relaxed by 

paramagnetic locations on the surface, T1M is the intrinsic relaxation time for each 

paramagnetic site, M is the corresponding residence time of water molecules, h is thickness 

of one monolayer of water molecules, and ni is the fraction of surface sites occupied by 

paramagnetic relaxation centers on the nanoparticle surface. T1N is the intrinsic relaxation 

time for each non-paramagnetic site and τN is the surface residence time of water molecules 

at the non-paramagnetic sites. When the surface concentration of paramagnetic sites ni 

increases, the overall relaxation rate of the nanoparticle will increase accordingly. 

If i is the inherent relaxivity of the different kinds of paramagnetic relaxation sites 

on the solid surface, ni is surface concentration of paramagnetic species (Bryar et al., 2000) 

and N is the relaxivity of the non-paramagnetic sites, the overall relaxivity ρ1,NP of 

nanoparticles with surface coating can be computed using Equation (6.4): 

.  (6.4) 

As indicated in Equations (6.3 and 6.4), the nanoparticle’s surface relaxation rate 

is determined by a combination of the relaxation rates of paramagnetic species via e-H 

interactions and H-H interactions from non-paramagnetic sites. Since e-H relaxation is 

much faster than H-H relaxation, with sufficient surface concentration of paramagnetic 

sites ni and a high value of i, the nanoparticle’s relaxation rate is dominated by e-H 

relaxation associated with paramagnetic sites. When a surface coating is present, some of 

the paramagnetic sites on nanoparticle surfaces may be occupied, buried or masked by the 

surface coating molecules, decreasing the fraction of paramagnetic sites on surface ni. 

When the value of ni is small enough that the influence of the paramagnetic sites is 

negligible, the overall relaxation rate may be dominated by non-paramagnetic locations via 

H-H relaxation.  
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6.1.3 Relaxation mechanism in A-MNPs  

When D2O is present in the bulk fluid phase along with H2O, the presence of 

deuterium changes the relaxation characteristics at the nanoparticle surfaces. The 

replacement of covalently bonded hydrogen atoms with deuterium can generate partially 

deuterated adsorbate molecules, which will tend to change the rate of 1H-1H dipolar 

interactions but not electron-1H dipolar interactions. This phenomenon can be used to 

distinguish the relative importance of the different relaxation mechanisms on the 

nanoparticle surface. The comparison of relaxation rates as illustrated in Figure 6.1 helps 

identify relaxation mechanisms involved in nanoparticle suspensions. 

 

 

Figure 6.1 Relaxation analysis of NMR via comparing relaxation rates before and after 

adding D2O. (Modified from Pfeifer, 1972).  

6.2 MATERIALS AND METHODS 

The method of Ko et al. (2016) was used to produce amine-functionalized Fe3O4 

nanoparticles. A co-precipitation method was used to generate Fe3O4 nanoparticles (Bee et 

al., 1995); the general steps are shown in Figure 6.2. In the presence of citric acid, 

FeCl2●4H2O and FeCl3●6H2O at a molar ratio of 1:2 were mixed and heated to 90oC. With 

vigorous stirring under a N2 atmosphere, ammonium hydroxide was added to induce 

nucleation of Fe3O4 nanoparticles. After 2 hours of growth, the mixture was placed in an 



 108 

ice bath to stop the growth of the particles. Deionized (DI) water was used to wash and 

disperse the generated Fe3O4 nanoparticles (MNP) for further study and modification. 

We used the 3-aminopropyltriethoxysilane (3-APTES) coating process (Bagaria et 

al., 2013; Xue et al., 2014) to coat Fe3O4 nanoparticles with amine functional groups. 

Hydrolysis of APTES at pH around 4 was performed for 1 hour, then pH was adjusted to 

around 8. 20 mL of Fe3O4 nanoparticle dispersion with nanoparticle concentration around 

42 g/L (equivalent to 30 g/L Fe) was added slowly to 180 mL of APTES solution. The 

mixture was kept at 65oC for 24 hours, and then cooled to room temperature while stirring. 

Magnets were used to separate and collect the APTES-coated nanoparticles (A-MNPs) 

during the washing steps, and DI water was used to wash and re-suspend A-MNPs back to 

20 mL volume (Wang et al., 2014). The process is illustrated in Figure 6.2. 

 

 

Figure 6.2. Procedures of generating Fe3O4 nanoparticles with different APTES coating 

5.6 g, 7.5 g, and 9.8 g of APTES were hydrolyzed in 180 mL solution. After reaction 

with 20 mL of MNP dispersion, the corresponding A-MNPs were labeled as 5.6A-MNPs, 

7.5A-MNPs and 9.8A-MNPs. The Fe concentration in the A-MNPs was around 30 g/L. DI 

water was used to dilute different A-MNP suspensions to 1.0 g/L Fe concentration. Serial 

dilution was performed to obtain different Fe concentrations: 0.07 g/L Fe, 0.05 g/L Fe, 

0.025 g/L Fe, 0.01 g/L Fe, 0.007 g/L Fe, 0.005 g/L Fe, 0.0025 g/L Fe, and 0.001 g/L Fe. 

The corresponding NMR and dynamic light scattering (DLS) size measurements were used 
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to compute the relaxivity of A-MNPs with different coating amounts following the 

procedure of Zhu et al. (2015). 

To study the possible effect that surface coating may have on the MNPs’ surface 

relaxation rate, A-MNPs with the least and most surface coating were compared: 5.6A-

MNPs and 9.8A-MNPs. These two samples were diluted with H2O to obtain 0.1 g/L 0.02 

g/L Fe concentration. Each 1 mL of 5.6A-MNPs dispersed in H2O with those two Fe 

concentrations was diluted to a total of 10 mL to obtain 0.01 g/L Fe and 0.002 g/L Fe with 

different D2O volume fractions of 0 vol%, 30 vol%, 50 vol%, and 70 vol%. The same 

procedure was repeated for the 9.8A-MNPs group. We also used mixtures of H2O and D2O 

with the same volume fractions as above to obtain the T1 of the bulk fluid in each 

dispersion. NMR and DLS measurements were used to calculate normalized T1 values of 

MNPs and to study how APTES coating reduces the surface relaxivities of MNPs. 

A-MNPs samples were oven-dried at 80oC for 24 hours to obtain nanoparticle 

powder. A Mettler Thermogravimetric Analyzer (model number TGA/DSC 1) was used to 

measure and calculate the weight of attached APTES on the nanoparticles in each sample.  

To prevent oxidation of Fe3O4, we used a N2 stream at 50 mL/min and heated the dried 

nanoparticle samples from 30oC to 500oC with a temperature increase of 20oC per minute. 

Before and after the TGA measurement, a Kratos X-ray Photoelectron Spectrometer (XPS) 

experiment was performed to make sure that there were no amine groups remaining in the 

burned samples. The mass percentage of APTES coated on each A-MNP sample was 

calculated by the weight loss of each dried A-MNP sample after heating to 500oC under 

N2 flow.  

A Malvern Nano ZetaSizer was used to measure the size distribution of A-MNPs 

with different surface coating amounts, Fe concentrations, and D2O volume fractions. Size 

calibrations were performed with calibration standard dispersions before each 
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measurement. 0.45 mL of A-MNP dispersion was placed in a disposable cell to measure 

size distribution. The size distribution and average size value were recorded. Measurements 

of each sample were performed three times and the mean value and standard deviation were 

recorded. 

NMR measurements were performed at ambient temperature (20°C) using a 2 MHz 

GeoSpec2 benchtop NMR core analysis instrument from Oxford Instruments with an 

operating frequency of 2.15 MHz. The external magnetic field B0 was 0.05047 T. We used 

an inversion recovery measurement to determine the distribution of longitudinal relaxation 

times (T1).  

Error bars for the longitudinal relaxation rate were computed from the standard 

deviation of the longitudinal relaxation time obtained from the Matlab inversion. The signal 

and noise were extracted from the raw NMR data in the time domain. Random noise with 

the same properties (magnitude, mean value and standard deviation) of noise extracted 

from raw NMR data was added to the time domain signal. With the added noise, there was 

a slightly different magnetization buildup curve compared to the curve obtained directly 

from the raw data. A linear inversion regression was then applied to the buildup curve with 

added noise to compute the T1 value. After repeating this process 100 different times, 100 

buildup curves were generated and used to calculate associated T1 values. Based on these 

100 computed T1 values, the standard deviation of T1 was recorded and used to compute 

the errors in longitudinal relaxation rate. 
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6.3 RESULTS 

6.3.1 Relaxivities of A-MNPs with different APTES coating amount 

According to the TGA results, after subtraction of the baseline, the weight 

percentages of APTES coating for A-MNPs were 1.60 wt% for 5.6A-MNPs, 1.99 wt% for 

7.5A-MNPs, and 2.80 wt% for 9.8A-MNPs. We expected to have more APTES coated on 

nanoparticles with higher initial added amount of APTES in the MNP suspensions. T1 

values of A-MNPs with Fe concentration ranging from 0.001 g/L to 0.07 g/L were 

measured and recorded. The T1 of DI water was used to compute 1/T1,NP for each sample 

of A-MNPs using Equation (6.1). According to Equation (6.2), with the calculated 

nanoparticle relaxation rate 1/T1,NP and values of 3/rNP the relaxivities of A-MNPs can be 

determined using the slope of a regression lines. As shown in Figure 6.3, error bars indicate 

the errors in longitudinal relaxation rate 1/T1 when linear regression of raw data was 

performed. Relaxivities of A-MNPs are 105,000 ± 2,110 m/s, 94,100 ± 1,660 m/s, and 

78,300 ± 846 m/s for 5.6-A-MNPs, 7.8A-MNPs and 9.8 A-MNPs respectively. Raw 

NMR data for A-MNPs dispersions are displayed in the Appendix B. Error bars associated 

with each 1/T1,NP point were obtained based on the standard deviation of the relaxation 

times T1 and T1,Fluid obtained after linear regression as described in section 6.2 and 

Appendix A. Weighted least squares linear regression was used to compute the relaxivity 

and standard deviation for each A-MNP group. 
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Figure 6.3 Computed 1/T1,NP of APTES-coated Fe3O4 nanoparticles from Equation (6.1) 

with different nanoparticle fluid volume ratios  and sizes rNP in 5.6A-

MNPs, 7.5A-MNPs, and 9.8A-MNPs dispersions fit using Equation (6.2). 

Relaxivity (slope of linear regression using weighted least squares) of each 

group decreases with more extent of APTES coating. 

6.3.2 Variations in relaxation rate of A-MNPs with added D2O 

We measured the T1 of bulk DI water mixed with different volumes of D2O. T1 

increased from 2,590 ms to 5,340 ms when the percentage of D2O increased from 0 to 70%, 

as displayed in Table 6.1.  
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Table 6.1 T1 of water with different D2O volume fractions. 

D2O volume fraction in water (vol%) T1(ms) 

0 2,590 

30 3,450 

50 3,660 

70 5,340 

Table 6.2 DLS measured A-MNP radius with different D2O volume fractions. 

Nanoparticles radius of A-MNPs 
0 vol% 

D2O 

30 vol% 

D2O 

50 vol% 

D2O 

70 vol% 

D2O 

rNP of 5.6A-MNPs with 0.01 g/L Fe (nm) 54.5 58.0 62.0 64.0 

rNP of 9.8A-MNPs with 0.01 g/L Fe (nm) 40.8 42.3 45.3 43.0 

rNP of 5.6A-MNPs  with 0.002 g/L Fe (nm) 49.6 51.0 52.0 54.5 

rNP of 9.8A-MNPs with 0.002 g/L Fe (nm) 51.5 39.2 36.8 41.6 

Normalized rNP of 5.6A-MNPs with 0.01 g/L 

Fe (Dimensionless) 
1 1.06 1.13 1.17 

Normalized rNP of 9.8A-MNPs with 0.01 g/L 

Fe (Dimensionless) 
1 1.04 1.11 1.06 

Normalized rNP of 5.6A-MNPs with 0.002 

g/L Fe (Dimensionless) 
1 1.03 1.04 1.10 

Normalized rNP of 9.8A-MNPs with 0.002 

g/L Fe (Dimensionless) 
1 0.763 0.715 0.810 

With the same volume percentage of D2O, the diluted 5.6A-MNPs and 9.8A-MNPs 

with Fe concentrations of 0.01 g/L and 0.002 g/L were tested with NMR to obtain A-MNP 

nanoparticle surface relaxation rates 1/T1,NP according to Equation (6.1). The DLS results 

of A-MNP samples also indicated a slight size change of the same A-MNPs with the same 

Fe concentration with different D2O volume fractions, as displayed in Table 6.2. 

Nanoparticle size was normalized to the value obtained for the A-MNP dispersion in DI 

water.  

Based on Equation (6.2), with same nanoparticle concentration and constant 

nanoparticle relaxivity, the nanoparticles’ surface relaxation rates are inversely 

proportional their size. To isolate the change of surface relaxation rate only brought about 

by the addition of D2O, we normalized A-MNP surface relaxation rate by dividing 1/T1,NP 
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obtained from Equation 1 by the corresponding normalized A-MNP size calculated in 

Table 6.2. Normalized surface relaxation rates of two A-MNPs groups with different Fe 

concentrations and D2O volume fractions are displayed in Figure 6.4. Error bars were 

calculated from the standard deviations of the longitudinal relaxation times T1 and T1,Fluid 

via linear regression as described in section 6.2 and equations in Appendix A. Figure 6.4a) 

shows that, at relatively higher concentration of 0.01 g/L Fe, the normalized relaxation rate 

of A-MNPs remained similar with variation of D2O volume fraction: 11.5 s-1 - 11.7 s-1 for 

5.6A-MNPs and 9.66 s-1 - 9.73 s-1 for 9.8A-MNPs. As indicated in Figure 6.4b, at lower 

Fe concentration (0.002 g/L), when volume percentage of D2O in dispersions increased 

from 0% to 30% to 50%, and to 70%, relaxation rate of 5.6A-MNPs dropped from 2.48 s-

1 to 2.24 s-1, to 2.29 s-1 and to 2.17 s-1, and from 2.20 s-1 decreased to 1.59 s-1, to 1.45 s-1, 

and to 1.49 s-1 for 9.8A-MNPs.  
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Figure 6.4 Relaxation rate 1/T1 of 5.6A-MNPs and 9.8A-MNPs mixed with different 

volume fractions of D2O with a) 0.01 g/L Fe and b) 0.002 g/L Fe. 
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6.4 DISCUSSIONS 

6.4.1 Relaxivities of A-MNPs with different APTES coating amount 

As shown in Figure 6.5, from left to right, we expect MNPs to pick up more APTES 

when there is more APTES present in the mixture. More Fe on the surface of nanoparticles 

will be occupied by APTES branches, and thus less surface area will remain accessible to 

protons in water molecules. As indicated in Equation (6.3), with fewer available 

paramagnetic sites on the surface, the relaxivity will decrease accordingly. Among the 

three A-MNP samples, 5.6A-MNPs have the least APTES coating with 1.60 wt%, while 

9.8A-MNPs have the most APTES with 2.80 wt%. With the additional 1.20 wt% of surface 

coating on the 9.8A-MNPs, the surface relaxivity of the A-MNPs decreased by 25.4% from 

105,000 m/s to 78,300 m/s. Even with the decreased relaxivity associated with more 

coated APTES, the value of 78,300 m/s is significantly higher than other studied 

nanoparticles such as ZrO2 nanoparticles, which had relaxivity of 1.10 m/s ~ 1.43 m/s 

(Zhu et al., 2015). The relaxivity of other Fe(III) oxides such as Fe2TiO5 with size around 

6881 nm was reported to be around 120 m/s (Bryar et al., 2000), which is almost 1000 

times smaller than our computed relaxivity of A-MNPs with size around 100 nm. Since 

Fe2TiO5 exhibits ferromagnetic-paramagnetic behavior (Enhessari et al., 2014), giving it 

smaller magnetic susceptibility than ferromagnetic Fe3O4, at the same nanoparticle size, 

concentration and temperature, we expect Fe3O4 to have higher relaxivity than Fe2TiO5. In 

addition, as size increases from 100 nm for Fe3O4 to 6881 nm for Fe2TiO5, the specific 

surface area decreases dramatically from 11.6 m2/g to 0.1 m2/g. Lower specific area may 

result in fewer surface relaxation sites accessible to water molecules and smaller surface 

relaxivity.  
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Figure 6.5 More APTES coated on MNPs with increased initial amount of 3-APTES in 

the mixture (from left to right) during reactions with MNPs. 

Previous studies indicated that Fe3O4 has an inverse spinel structure where Fe3O4 

unit cells have a face-centered cubic pattern (Hill et al., 1979), and the lattice parameter 

(unit cell edge length) is a=0.8396 nm, with each unit cell containing 8 Fe3O4 molecules 

(Cornell and Schwertmann, 2003). With the DLS nanoparticle sizes, along with the 

assumption that only Fe in the first layer of the Fe3O4 unit cell surface can be either 

accessible to water molecules as relaxation sites or bonded with APTES, we calculated the 

number of Fe atoms on the nanoparticle surface that can relax protons. According to Figure 

6.2 and Figure 6.5, each APTES branch will covalently bond to 3 Fe atoms on the 

nanoparticle’s surface. Given the TGA weight and the molecular weight of burned APTES, 

with the nanoparticle’s size it is easy to obtain the number of APTES bonded to each 

nanoparticle. Hence the number of Fe atoms masked by APTES can be obtained by 

multiplying the number of APTES molecules on one nanoparticle by 3. We further 

calculated the fraction of Fe located on the surface of nanoparticles that were occupied by 

attached APTES in each A-MNPs group: 24% for 5.6A-MNPs, 30% for 7.5A-MNPs and 

43% for 9.8A-MNPs. Since more than half of the surface Fe atoms remained unbonded, 
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surface relaxation may still be dominated by e-H relaxation: protons in the water molecules 

are mainly relaxed by magnetic sites (Fe) on the nanoparticle’s surface.  

If we assume that there is only one type of magnetic site on the MNPs, based on 

Equation (6.4), a linear relationship between magnetic surface site fraction ni and the 

overall relaxation rate of the nanoparticles can be obtained. As shown in Figure 6.6, with 

more APTES on the nanoparticle surfaces, the magnetic sites fraction decreased, and the 

overall relaxation rate of nanoparticles decreased. According to the errors (±1σ) in slope 

and intercept, I computed the possible relaxivity range of A-MNPs with different fraction 

of Fe attached with APTES, as indicated by red and blue lines. The relaxivity of bare 

nanoparticles falls in the range between 121,000 m/s to 151,000 m/s. If all magnetic 

sites are covered by APTES, the computed relaxivity of A-MNPs is 1,410 ± 4,670 m/s, 

which is about 1.3% of the 5.6A-MNPs relaxivity (105,000 m/s). Note that in this study, 

only 3 groups of A-MNPs were used to generate a linear relationship between relaxivity 

and fraction of occupied Fe sites on the nanoparticle surface. As a result, there are relatively 

large errors in the slope and intercept. More experiments with higher percentage of APTES 

coating are needed to better constrain the relaxivity value of MNPs fully covered by 

APTES. 
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Figure 6.6 Overall relaxivity of A-MNPs decreased with less Fe accessible to protons on 

nanoparticle surfaces due to attached APTES coating. Red and blue lines 

indicate the possible range of A-MNPs relaxivity with fraction of Fe 

attached by APTES due to errors in slope and intercept (±1σ) obtained by 

linear regression of measured 3 samples. 

6.4.2 Change in relaxation rate of A-MNPs with D2O 

The T1 of H2O-D2O mixtures increased with higher volume fraction of D2O. Since 

the intermolecular H-H relaxation contributes 30% of the overall H-H relaxation in bulk 

water, with more D2O, the intermolecular H-H relaxation is hindered by the presence of 

D2O and decreases the overall relaxation rate, i.e., elongates the relaxation time.  

During the process of obtaining normalized surface relaxivity of A-MNPs at the 

same concentration with different D2O volume fractions, the relaxation brought by bulk 

fluid was deducted and effects from nanoparticle size were filtered by dividing 1/T1,NP by 
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the normalized nanoparticle size. At relatively higher Fe concentration (0.01 g/L), 

normalized surface relaxation rates of 5.6A-MNPs and 9.8A-MNPs did not vary much with 

the change of D2O volume fraction. This situation indicates that nanoparticle surface 

relaxation was dominated by e-1H relaxation. With a sufficient amount of Fe3O4, which 

relaxes protons by e-1H relaxation, the surface relaxation is not significantly affected by 

the presence of D2O. At lower Fe concentration (0.002 g/L), when D2O concentration 

increased generally from 0 vol% to 70 vol%, the surface relaxation rate of 5.6A-MNPs 

decreased correspondingly from 2.48 s-1 to 2.17 s-1, which is a 12.5% drop; the 9.8A-

MNPs’ surface relaxation rate dropped from 2.20 s-1 to 1.44 s-1, a decrease of 34.5%. With 

more APTES coating, the effect of D2O in reducing the surface relaxation rate became 

more obvious. With the attachment of APTES, more magnetic sites of Fe are occupied by 

APTES and not available to relax 1H from water molecules; in addition, the 1H in APTES 

functional groups such as –NH2 may introduce proton-proton relaxation (Ganesan et al., 

1990) which also contributes to the overall surface relaxation of A-MNPs. With more 

APTES on the Fe3O4 surface, there is less e-H relaxation on the nanoparticles’ surface; 

with lower Fe concentration, e-H relaxation becomes less dominant, so the contribution of 

H-H brought from APTES becomes more significant. With the large range of chemical 

shift values of –NH2, –H in the amine group of APTES can be exchanged with –D in D2O. 

Since D cannot be seen by 1H-NMR, with higher D2O volume fraction, more of the amine 

groups in APTES contain deuterium, so the NMR signal and relaxation rate would be 

reduced due to the interrupted H-H relaxation. A-MNPs with more APTES attached have 

surface relaxation rates more sensitive to the presence and amount of D2O. 
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6.5 CONCLUSIONS 

In this work, we computed and compared 3 groups of APTES-coated Fe3O4 

nanoparticles (A-MNPs) with different surface coating amount: 1.60 wt% for 5.6A-MNPs, 

1.99 wt% for 7.5A-MNPs, and 2.80 wt% for 9.8A-MNPs. The corresponding surface 

relaxivities decreased from 105,000 m/s to 94,100 m/s to 78,300 m/s. Among the 3 

groups of A-MNPs, only 24% - 43% of the surface magnetic sites were occupied by 

APTES branches, leaving most of the surface Fe atoms accessible to water molecules and 

providing e-H relaxation which will dominate the overall surface relaxation rate of the 

nanoparticles. If all the magnetic sites on the nanoparticle surface are occupied by APTES, 

the resulting relaxivity is much smaller (102 m/s). To accurately determine the correct 

value of A-MNPs fully covered with APTES, more measurement of A-MNPs with higher 

APTES coating amount are required.  

The mechanisms by which surface coating reduces nanoparticles’ relaxivity was 

studied by diluting A-MNPs with the least and most surface coating using different volume 

fractions of D2O. When D2O volume fraction increased from 0 vol% to 70 vol%, with Fe 

concentration of 0.002 g/L, 9.8A-MNPs with 2.80 wt% surface coating showed more 

reduction in surface relaxation rate (dropped by 34.5%) compared to 5.6A-MNPs with 1.60 

wt% surface coating (dropped by 12.5%). This suggests that at very low nanoparticle 

concentration, e-H relaxation is less dominant due to the limited amount of Fe3O4; 

intermolecular H-H relaxation between 1H in APTES braches and 1H in water molecules 

contributed more to nanoparticle surface relaxation. Our results indicate that A-MNPs with 

various coating amounts relax protons at nanoparticle surfaces mainly by e-H relaxation 

and controls the overall relaxation of suspensions at higher Fe3O4 nanoparticles 

concentration. In this study, the maximum amount of APTES attached to nanoparticles was 

2.80 wt%, covering only 43% of the Fe3O4 nanoparticle surface. In this case the effect of 
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APTES in reducing relaxivities of the nanoparticle was limited. However, when APTES 

coating amount is increased, we would expect more nanoparticle surface occupied by 

APTES, leaving less Fe3O4 exposed to water molecules. Therefore, when organic surface 

coating is used to add target functional groups onto nanoparticles in oilfield, the presence 

of surface coating may affect the NMR signal of porous media, and care should be taken 

when using nanoparticles with extensive surface coating. We caution that this experiment 

was performed at room temperature and pressure, and the relaxivity of these same A-

MNPS may change when applied in field conditions. 
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Chapter 7  

Synthesis, Conclusions, and Future Work 

7.1 SYNTHESIS 

Recent work focused on NMR measurements of porous media saturated with 

nanofluids (e.g., Anand and Hirasaki, 2008; Yu, 2012; Cheng et al., 2014a,b) did not study 

how and to what extent the pore surface relaxivity will be altered by adsorbed paramagnetic 

nanoparticles. In the meantime, when applying nanoparticles in the oilfield where natural 

porous media have more complicated fluid and surface chemistry, there are several factors 

such as interactions between natural rock surfaces, pore fluid and nanofluids, attachment 

of paramagnetic species, and coating of surface polymers that may affect nanoparticles’ 

relaxivity (Keating and Knight, 2008; Issa et al., 2011). How the attachment of 

paramagnetic species and surface coatings onto nanoparticles change nanoparticles’ 

surface relaxivity and the NMR signal of nanofluids in porous media remains to be studied. 

7.1.1 Attachment of nanoparticles onto pore surface and modified pore surface 

relaxivity 

In this work, I chose zirconia (ZrO2) nanoparticles without surface coating. There 

were two dispersions of zirconia nanoparticles with similar size but different surface 

charge: ZR-AL, with positively charged nanoparticles, and ZR-BL, with negatively 

charged nanoparticles. I used ZR-6AL and ZR-6BL nanofluids, with 6 wt% nanoparticles, 

and ZR-7.5AL and ZR-7.5BL, with 7.5 wt% nanoparticles.  

Nanoparticle retention limit in porous media 

With the assumption that nanoparticles are spheres, attached nanoparticles will 

form a densely packed monolayer, and each adsorbed nanoparticle occupying its projected 

area (ℼrNP
2) on pore walls. The highest surface fraction that can be occupied by a monolayer 
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of equal spheres is 0.9069. In the 2 mm glass bead pack with pore radius as 613 m, the 

maximum possible adsorption fraction of ZR-6AL is about 30%. In Boise sandstone cores, 

with much smaller pore radius of 10.6 m, there is much more pore surface provided for 

adsorption of nanoparticles. In ZR-6AL saturated Boise sandstone cores, up to 65.8% of 

nanoparticles can be adsorbed to the pore walls; for ZR-7.5AL, up to 54.2% of the 

nanoparticles can attach to the pore surfaces. Similarly, up to 48.9% of negatively charged 

zirconia nanoparticles in the ZR-6BL dispersion can attach onto the pore surface; and 

38.0% of nanoparticles in ZR-7.5BL can attach onto the pore surface. With these maximum 

extents of attached nanoparticles, the computed surface relaxivities are close to the surface 

relaxivity values of the nanoparticles themselves. 

Retained nanoparticles and the modified pore surface relaxivity 

Density measurement of effluents from Boise sandstone cores indicated that 

negatively charged zirconia nanoparticles were trapped in Boise sandstone cores but not in 

the glass bead packs. Such different results may due to differences in surface charge and 

other properties between the glass bead surface and Boise sandstone surface. In addition, 

smaller pores in Boise sandstone can play a role in retaining nanoparticles mechanically 

via narrow pore throats (Arawole, 2015). To maintain significant negative surface charge, 

a strong alkaline was used to pretreat Boise sandstone cores, and the NMR results indicated 

that such treatment increased Boise sandstone surface relaxivity from 5.05 m/s to more 

than 6 m/s. In Boise sandstone cores saturated with ZR-6BL and ZR-7.5BL, after flushing 

2 pore volumes with DI water, 3.4% and 3.0% of nanoparticles were retained in the cores, 

only around 3% of pore surface is occupied by attached nanoparticles assuming monolayer 

packing, the resulting pore surface relaxivities were 6.4 m/s and 6.6 m/s. After flushing 

2 pore volumes of TMAH at the same pH value as ZR-6BL and ZR-7.5BL, there were 
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2.8% and 2.3% of negatively charged nanoparticles left in the cores, covering about 2% of 

pore surface, the corresponding surface relaxivity was about 6.6 m/s and 6.7 m/s. The 

results indicated that in this study Boise sandstone pore surface relaxivity alteration was 

mainly due to strong alkali condition: with pH higher than 10, dissolution of silica surface 

(Revil et al., 1999a, b) may expose buried paramagnetic species and speed up the 

relaxation. Since both the nanoparticles and pore surface were negatively charged, 

electrical repulsion may prevent the attachment of nanoparticles onto the silica surface, 

resulting in very little percentage (around 2% ~ 3%) of negatively charged nanoparticles 

being retained in the sandstone. The small retention value is in good agreement with 

previous work in which less than 10% of 20 nm silica nanoparticles were retained in Boise 

sandstone (Caldelas, 2010). These values do not approach the maximum adsorption limits 

calculated above (48.9% for ZR-6BL and 38.0% for ZR-7.5BL). Such retention may due 

to van del Waals attractions and mechanical straining.  

As indicated in my experiment results, 11.6% of positively charged zirconia 

nanoparticles in ZR-6AL were retained in the 2 mm glass bead pack with pore radius as 

613 m. The bead surface relaxivity was correspondingly altered from 10.42 m/s to 7.27 

m/s. With a calculated maximum fraction of attached nanoparticles of 30%, the resulting 

glass bead surface relaxivity would be 2.265 m/s. In contrast, in Boise sandstone, the 

smaller pore size (10.6 μm) provided more surface area for attached nanoparticles. I 

observed that 40% of ZR-6AL and 37% of ZR-7.5AL were left in Boise sandstone cores 

after flushing with 2 pore volumes of DI water, pore surface covered by attached 

nanoparticles assuming monolayer packing are 23.38% and 26.42%, respectively. If 

homogeneous adsorption is assumed, the changed pore surface relaxivities are computed 

to be 5.8 m/s and 5.9 m/s respectively. When flushing with 2 pore volumes of HNO3 

under same pH value of nanofluids, there were 35% of ZR-6AL and 31% of ZR-7.5AL 
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trapped in Boise sandstone cores, occupying 20.45% and 21.99% of pore surface. The 

altered pore surface relaxivities were 6.4 m/s and 6.5 m/s. The adsorption may be the 

result of a force balance between electrostatic attraction and van del Waals attraction. I did 

not find the evidence that nanoparticles attached onto pore surface to the full coverage 

capacity, so it is possible that my experimental conditions such as zeta potential difference 

between surface of nanoparticles and pore walls, electrostatic repulsion between each 

nanoparticle, pH values, viscosity, temperature cannot drive the full 100% (for ZR-6AL) 

or 100% (for ZR-7.5AL) of nanoparticles’ attachment. The results suggested that there is 

a way to control pore surface relaxivity by adsorbed paramagnetic nanoparticles, and serve 

as the foundation to generate a model to link relaxation time distribution and pore size by 

altered pore surface relaxivity.  

My work helps to understand the behavior of nanoparticles in porous media through 

NMR measurements and will be used in future studies on the pore-scale characteristics in 

rocks. This research part will help advance nanoparticle-based analyses of fluid-solid or 

fluid-fluid interfaces through adsorption of nanoparticles. Applications of this work 

include imaging oil-water contacts, and determining interfacial surface areas for many 

petrophysical and reservoir engineering needs.   

7.1.2 Attachment of iron species onto nanoparticle surface  

Another interesting finding in the Boise sandstone cores experiments is that the 

relaxivity of effluents increased after contact with Boise sandstone cores, and nanofluid 

effluents showed a higher increase relative to pure fluid effluents. I measured the iron 

concentrations in the original fluids and effluents, and showed that the increased iron 

concentration in effluents helps to explain speeded up relaxation (Revil et al., 1999a,b) in 

the pure fluid effluents. In the case of nanofluids, the comparison of iron concentration in 
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supernatants of original nanofluids and effluents indicated that the gain in iron 

concentration was not enough to support the observed increase in relaxation rate of the 

nanofluid effluents. I determined the nanoparticle relaxivity in each effluent: positively 

charged nanoparticles increased relaxivity from 1.43 m/s to 4 m/s ~ 10 m/s; negatively 

charged nanoparticle relaxivity increased from 1.10 m/s to 12 m/s ~ 19 m/s. I proposed 

that paramagnetic species from Boise sandstone cores (Pettijohn, 1963) might also attach 

to nanoparticles and increase nanoparticle relaxivity, which also contributed to speeding 

up the overall relaxation in effluents.  

To testify the hypothesis that iron can attach onto nanoparticles and increase surface 

relaxivity. I further conducted the experiments by mixing Fe(III) solution with same 

volume of ZR-6AL and ZR-6BL nanofluids. To see if surface coating can help shield 

nanoparticles from attachment of iron species, I employed polyethylene glycol (PEG)-

coated silica nanofluids labeled as Si-4B with 4 wt% of silica nanoparticles to mix with 

Fe(III) solutions, too. The experiments showed that at as high as 50 mg/L Fe(III) in the 

mixture, more than 90% of iron in the aqueous solution can be picked up by nanoparticles 

regardless of surface charge sign and the presence of surface coating. Relaxivities of 

positively charge nanoparticles increased from 1.43 m/s to 50.17 m/s after 2.80 × 10-6 

mol/m2 attached Fe(III), and negatively charged nanoparticles with original relaxivity of 

1.10 m/s showed a modified relaxivity of 35.13m/s after adsorption of 2.07 × 10-6 

mol/m2 Fe(III). A previous study (Bryar et al, 2000) found that after equilibrating with 5 

mg/L Fe, silica gel showed an increased relaxivity from 0.0012 m/s to 0.020 m/s with 1 

× 10-9 mol/m2 Fe adsorbed. Such attachment of Fe in their results is much more efficient 

than our findings for Fe(III) attached onto zirconia nanoparticles. It may be explained by 

the difference between types of nanoparticle surface that results in different rotational 

correlation times.  
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With the assumption of dense monolayer packing of attached Fe(III) onto 

nanoparticles surface, up to 3.14 × 10-6 mol/m2 Fe(III) can be attached onto ZR-3AL, 2.36 

× 10-6 mol/m2 Fe(III) adsorbed on to ZR-3BL, and 1.45 × 10-6 mol/m2 Fe(III) onto Si-2B 

nanoparticles. In this experiment, the attachment of Fe(III) did not reach the calculated 

limit which would be 100% of Fe(III), so it is possible that the pH value, viscosity, 

temperature, electrostatic repulsion between each cations and other properties were not 

able to support 100% adsorption.  

The results provided a hint of the possible interactions between nanoparticles and 

paramagnetic species in natural porous media: attachment of nanoparticles may affect pore 

surface relaxivity, and adsorption of paramagnetic materials onto nanoparticles will 

dramatically increase nanoparticle relaxivity and further affect NMR signal of nanofluids 

saturated porous media. Attached iron species can speed up nanoparticles’ relaxivity to 

about 36 ~ 40 fold, such increase is comparable with previous reported study which 

claimed increased by 6 to 50 fold with attached paramagnetic materials (Kenyon and 

Kolleeny, 1995). When using nanoparticles as NMR contrast agents, the sorption of 

paramagnetic species should be considered before interpretation of NMR results.  

7.1.3 Attachment of organic surface coatings on nanoparticles 

Given the results that adsorption of paramagnetic materials causes the relaxivity of 

nanoparticles with initially low relaxivity to increase dramatically, another question arises: 

since adsorbed iron species onto nanoparticles significantly increased the relaxivity of 

nanoparticles in porous media, what will happen if organic surface coating with low 

relaxivity is attached to iron oxide nanoparticles with initially high relaxivity? To what 

extent will the surface coating modify the iron oxide nanoparticle relaxivity? 
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To answer the above questions, I studied three groups of 3-aminopropyl 

triethoxysilane (APTES) coated Fe3O4 nanoparticles (A-MNPs) with different surface 

coating amounts: 5.6A-MNPs, 7.5A-MNPs and 9.8A-MNPs. Fe sites that relax protons via 

electron-proton relaxation can be occupied by APTES branches and cannot relax protons 

any more.  The results showed that nanoparticle relaxivity decreased from 105,000 m/s 

for 5.6A-AMNPs to 94,100 m/s for 7.5A-MNPs to 78,300 m/s for 9.8A-MNPs with as 

surface coating amount increased. Previous work has reported decreased relaxivity with 

increased PEG surface coating on Mn0.5Zn0.5Gd0.02Fe1.98O4 nanoparticles (Issa et al., 2011). 

The fraction of Fe sites taken by APTES are 24%, 30%, and 43% respectively for 5.6A-

MNPs, 7.5A-MNPs and 9.8A-MNPs. With the assumption that nanoparticle surface 

relaxivity has a linear relationship with the fraction of available Fe sites accessible to water 

molecules, we computed that with no APTES coating, the nanoparticles have surface 

relaxivity of 136,656 m/s; with 100% of APTES coating, the resulting relaxivity is 101 

m/s. These determined values with 0% and 100% surface coating may be differ from the 

true values due to large uncertainties caused by the use of only 3 groups of A-MNPs. 

Studies of more groups of A-MNPs with higher surface coating are required to obtain more 

accurate estimation of relaxivity for bare and fully covered nanoparticles.  

To identify the relaxation mechanisms of A-MNPs, I used D2O in the mixture. The 

presence of D will change the fraction of H and hence the proton-proton relaxation brought 

by APTES, while electron-proton relaxation will not be affected. The results showed that, 

with relatively high nanoparticle concentration (0.01 g/L Fe), 5.6A-MNPs and 9.8A-MNPs 

relax protons mainly by electron-proton relaxation, since the presence of D2O and change 

in D2O volume fraction did not vary relaxation rate of nanoparticles. In contrast, at 

relatively low nanoparticle concentration (0.002 g/L Fe), 5.6A-MNPs and 9.8A-MNPs 

exhibited lowered relaxation rates with increased D2O volume fraction. With the higher 
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surface coating in 9.8A-MNPs, the decrease was more significant, indicating that at low 

nanoparticle concentration, nanoparticles relax protons also via proton-proton relaxation. 

Hence, the presence of APTES coating decreased iron oxide nanoparticle relaxivity by 

occupying Fe relaxation sites, but due to the small surface coverage fraction of APTES, 

Fe3O4 can still relax protons mostly via electron-proton relaxation. Only in very dilute A-

MNPs will proton-proton relaxation brought from APTES also play a role in relaxing 

protons. 

In sum, my project studied the possible interactions between nanoparticles and 

pores in porous media saturated with nanofluids (as shown in Figure 7.1): adsorption of 

nanoparticles onto the pore surface will modify the pore surface relaxivity, while 

attachment of paramagnetic species and organic surface coating may affect the relaxivity 

of nanoparticles. Pore fluid chemistry is therefore necessary to characterize in any 

application of nanoparticles as NMR contrast agents in rocks. 

In the course of my experiments, I did not observe full adsorption of nanoparticles 

on pore surfaces, of iron on nanoparticle surfaces, or of organic surface coating on 

nanoparticle surfaces. Therefore, all the observed behavior lies between two endmembers. 

It is possible that in my project, the fluid properties, local surface chemistry, and laboratory 

conditions are not sufficient to support full attachment of adsorbates onto surfaces. Given 

the variation in behavior between the fully adsorbed and completely desorbed conditions I 

computed, constraining and controlling the degree of adsorption of any material described 

in this dissertation is essential for any subsurface application of nanoparticles as NMR 

contrast agents.  
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Figure 7.1 Different adsorption mechanisms affecting NMR response of nanoparticles in 

porous media. Top: idealized depiction of nanoparticles adsorbed on grain 

surfaces. Middle: in reality, some nanoparticles remain in dispersion while 

others are adsorbed. Paramagnetic species on the pore surface additional 

provide some surface relaxation. Bottom: in even more detail, paramagnetic 

species present in the pore fluid and/or desorbed from the grain surface due 

to the nanoparticle dispersion chemistry can attach to nanoparticles, further 

complicating the NMR response. 
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7.2 CONCLUSIONS 

To understand the effect of nanoparticles on pore surface relaxivity, I performed 

experiments by adding different paramagnetic nanoparticles in pore fluid, and made three 

measurements: i) a nanoparticle-free fluid measurement (DI water) to get the pore wall  

effect; ii) the fluid-saturated measurement under conditions for which the change in 

aqueous concentration is the dominant effect (this demonstrates surface adsorption 

occurred); iii) displacing the nanoparticle dispersion with DI water and isolating the effect 

of the controlled relaxivity of the pore walls. 

The bulk relaxation rate of the nanoparticle dispersions is proportional to 

nanoparticle-pure fluid volume ratio, and inversely proportional to nanoparticle size. In 

nanofluid-saturated porous media (glass bead packs, outcrop sandstone), electrostatic 

attraction between grain surfaces and nanoparticles was the main driving force for 

adsorption of nanoparticles onto grain surfaces. The two types of zirconia nanoparticles 

used in this study differed only in their zeta potential (one being positive, the other 

negative), and only the positively charge particles adsorbed appreciably onto the negatively 

charged silica surfaces of the porous medium. Porous media surface relaxivities were 

altered only by the presence of adsorbed paramagnetic nanoparticles. When 1.114 vol. % 

positively charged zirconia nanoparticles dispersion was used to saturate a glass bead pack, 

11.6% of the nanoparticles were adsorbed to the bead surfaces and modified the glass bead 

surface relaxivity from 10.42 m/s to 7.27 m/s. DI water flushing was able to wash out 

14% of adsorbed nanoparticles from siliceous surface, change of surface relaxivity due to 

core flushing was 15.4%.  In contrast, negatively charged zirconia nanoparticles did not 

alter the relaxivity of the beads.  

Zirconia nanoparticle dispersions in Boise sandstone cores altered sandstone 

surface relaxivity, in a complicated way depending on nanoparticles’ surface charge and 
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pH condition of the dispersions. During contact with 6 wt% and 7.5 wt% positively charged 

zirconia nanoparticles at pH 3.1, Boise sandstone surface relaxivity changed from 5.05 

m/s to 5.8 m/s ~ 6.5 m/s due to 31% ~ 40% adsorbed nanoparticles onto pore surface. 

In Boise sandstone pores with pore walls pretreated with TMAH at pH 13.4, sandstone 

surface relaxivity increased to 6.3 m/s due to strong alkaline condition. With 2.3% ~ 3.4% 

retained negatively charged nanoparticles, the sandstone surface relaxivity remained higher 

than 6 m/s. 

Experimental results indicated that pH of nanoparticle dispersions played a role in 

interactions with Boise sandstone surface. Acid could increase Boise sandstone surface 

relaxivity by reacting with impurities such as Fe2O3 and FeO on mineral surface (Pettijohn, 

1963). HNO3 at pH 3.1 increased Boise sandstone surface relaxivity from 5.05 m/s to 5.7 

m/s. Alkali can alter Boise sandstone surface relaxivity by mineral surface dissolution 

and exposure of paramagnetic impurities to pore fluid. Such alteration can remain for long 

period as long as pore fluid condition remains alkaline. TMAH at pH 13.4 increased Boise 

sandstone surface relaxivity to 6.3 m/s.  

After contact with Boise sandstone, zirconia nanoparticles with positive and 

negative surface charges both showed increased relaxivity. Positively charged 

nanoparticles relaxivity increased from 1.43 m/s to 4 m/s ~ 9 m/s.  Nanoparticles with 

negative surface charge displayed increased relaxivity from 1.10 m/s to 12 m/s ~ 19 

m/s after contact with TMAH treated Boise sandstone. Such increase in relaxivity were 

possibly due to less stabilizer in dispersions after interactions with sandstone surface. Less 

stabilizer was ionically bonded with the nanoparticles, leaving more surface area of the 

nanoparticles exposed to bulk fluid and increased the chances for protons to get close to 

paramagnetic sites and be relaxed faster. Hence, the effective relaxivity of nanoparticles 
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increased. Attachment of iron ions on negatively charged nanoparticles further enhanced 

nanoparticle relaxivity.  

After contact with Boise sandstone, the relaxivities of negatively charged zirconia 

nanoparticles increased dramatically, indicating attachment of paramagnetic species such 

as Fe onto nanoparticles from pore surface. In order to understand the role of Fe ions in 

altering nanoparticle surface relaxivity, I designed my experiments by mixing 

nanoparticles with and without surface coating into Fe(III) solutions with various Fe(III) 

concentrations: i) measure relaxation times of the mixtures and pure Fe (III) solutions at 

same concentration (to isolate relaxivity of nanoparticles); ii) measure relaxation time and 

Fe(III) concentration of supernatants after centrifuge of nanoparticles (to calculate the 

adsorption of Fe(III) onto nanoparticles); iii) compare surface relaxivity of nanoparticles 

before and after attachment of Fe(III) to get relationship between adsorbed Fe(III) and 

alteration in nanoparticles surface relaxivities.  

The results indicate that paramagnetic ions such as Fe(III) can adsorb onto 

nanoparticles regardless of surface coating and surface charge of nanoparticles. My work 

suggests that the silica nanoparticles with PEG surface coating can remove Fe(III) from 

aqueous solution, since the relaxation rates of silica nanoparticles dispersed in Fe(III) 

solutions is not a simple sum of the nanoparticle and iron solution relaxation rates. Zirconia 

nanoparticles with positive and negative surface charge can remove more than 90% of 

Fe(III) from solutions. Slightly alkaline conditions (pH between 7 and 8) do not play an 

important role in precipitating Fe(III) ions.  

When pH value was above 6, with no surface coating, zirconia nanoparticles in 

dispersion were negatively charged (Tang et al., 2000), and the driving force for adsorption 

of Fe(III) onto ZR-3BL was likely due to electrostatic attraction between negatively 

charged nanoparticle and iron cations (Stuart et al., 1991). Under acidic conditions where 
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pH value was lower than 6, zirconia nanoparticles with positive surface charge also acted 

as a Fe(III) sink, which suggests that electrostatic attraction was not the driving force of 

adsorption in these cases. Hydrolysis of Fe3+ in solution builds Fe(OH)3 and polymers of 

Fe(III) could have been precipitated at pH values ranging from 1.8 to 3.4 (Dousma and De 

Bruyn, 1976). These polymers tend to precipitate on solid surfaces under acidic conditions 

(Dai and Hu, 2014). Although I was not able to perform any measurements on supernatants 

from the silica nanoparticle solutions, the behavior observed with the negatively charged 

zirconia nanoparticles can be used to inform some interpretations of our measurements. At 

pH from 5.5 to 9, the PEG coated silica nanoparticles were negatively charged. Therefore, 

the increase in relaxation rate can probably be attributed to electrostatically-driven 

adsorption of Fe ions onto the nanoparticles.   

Adsorbed Fe(III) significantly increased the zirconia nanoparticles’ surface 

relaxivity. Surface relaxivity of positively charged zirconia nanoparticles increased from 

1.427 m/s to 50.17 m/s with 2.80 × 10-6 mol/m2 adsorbed Fe(III) at pH around 2.4. 

Zirconia nanoparticles with negative surface charge at pH around 3.0 had surface relaxivity 

increased from 1.095 m/s to 35.13 m/s when 2.07 × 10-6 mol/m2 Fe(III) was adsorbed. 

The results show that under various pH conditions ranging from 2.4 to 7.5, adsorption of 

Fe(III) species onto nanoparticle surfaces occurred and increased the relaxivity of the 

nanoparticles. My research indicates that, in natural porous media with pore fluid 

containing paramagnetic ions, sorption of these ions to the surface of nanoparticles can 

significantly alter the NMR relaxation behavior of the nanoparticles. The phenomenon 

affects nanoparticles regardless of surface charge or whether the nanoparticles are coated 

with polymers or not. Care must therefore be taken when using nanoparticles as NMR 

contrast agents in rock samples both in the laboratory and the subsurface. 
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With the observed confirmation that attached Fe onto nanoparticles increases 

nanoparticle relaxivity. It leads to another question: whether and how organic surface 

coating with low relaxivity will affect iron oxides nanoparticle’s relaxivity. To identify the 

effect of surface coating to iron oxides nanoparticles, I employed 3 groups of amine 

functionalized Fe3O4 nanoparticles (A-MNPs) designed to attach with different amount of 

ATPES. I i) measured coating weight percentage and calculated relaxivities of the 3 

samples; ii) added D2O to nanoparticles dispersions to check NMR relaxation mechanisms 

of A-MNPs. 

The three groups of A-MNPs are coated with different surface coating amount: 1.60 

wt% for 5.6A-MNPs, 1.99 wt% for 7.5A-MNPs, and 2.80 wt% for 9.8A-MNPs. The 

corresponding surface relaxivities decreased from 105,000 m/s to 94,100 m/s to 78,300 

m/s. Among the 3 groups of A-MNPs, only 24% ~ 43% of the surface magnetic sites was 

occupied by APTES branches, leaving more than half of the surface Fe atoms accessible 

to water molecules and providing e-H relaxation which will dominate the overall surface 

relaxation rate of the nanoparticles.  

The mechanisms by which surface coating reduces nanoparticles’ relaxivity was 

studied by diluting A-MNPs with the least and most surface coating using different volume 

fractions of D2O. When D2O volume fraction increased from 0 vol% to 70 vol%, with Fe 

concentration of 0.002 g/L, 9.8A-MNPs with 2.80 wt% surface coating showed more 

reduction in surface relaxation rate (dropped by 34.5%) compared to 5.6A-MNPs with 1.60 

wt% surface coating (dropped by 12.5%). It suggested that at very low nanoparticle 

concentration, e-H relaxation is less dominant due to the limited amount of Fe3O4; 

intermolecular H-H relaxation between 1H in APTES braches and 1H in water molecules 

contributed more to nanoparticle surface relaxation. My results indicate that A-MNPs with 

various coating amounts relax protons at nanoparticle surfaces mainly by e-H relaxation 
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and controls the overall relaxation of suspensions at higher Fe3O4 nanoparticles 

concentration. In this study, the maximum amount of APTES attached to nanoparticles was 

2.80 wt%, covering only 43% of the Fe3O4 nanoparticle surface. In this case the effect of 

APTES in reducing relaxivities of the nanoparticle was limited. However, when APTES 

coating amount is increased, we would expect more nanoparticle surface occupied by 

APTES, leaving less Fe3O4 exposed to water molecules. Therefore, care should be taken 

when using nanoparticles with extensive surface coating.     

To sum up, this project was intended to coat silica surfaces with a known quantity 

of nanoparticles and thus control the pore surface relaxivity. 30% ~ 40% retention of 

positively charged zirconia nanoparticles were observed in Boise sandstone cores after 

flushing with 2 pore volumes of DI water and HNO3. Assuming a monolayer packing of 

nanoparticles on the pore walls, the maximum surface fraction that can be achieved by 

attached nanoparticles is 90.69%. With 30% ~ 40% of nanoparticles captured in sandstone 

cores, only 20.5% ~ 26.4% of pore surface were covered by attached nanoparticle via 

monolayer packing, the pore surface was not covered by nanoparticles to full capacity. 

Electrostatic repulsion between nanoparticles may prevent nanoparticles from getting too 

close to each other on the pore surface and thus limit the adsorption amount. Due to 

interactions between nanofluids and pore surfaces, nanoparticles picked up paramagnetic 

ions from the pore surface, causing the nanoparticles’ relaxivities to increase and thus 

making the calculation and prediction of altered sandstone surface relaxivity more 

complicated. Based on my results, it is currently not practical to coat pore surfaces 

completely with a nanoparticle monolayer. Further study on how to prevent adsorption of 

paramagnetic species onto nanoparticles, and how to increase nanoparticle attachment to 

pore surfaces, is necessary to ensure constant nanoparticle relaxivity and predictable value 

of pore surface with attached nanoparticles.  
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Table 7.1 Property summary of four nanoparticle dispersions studied in this project. 

Nanoparticles Label Size (nm) Surface charge Relaxivity (m/s) 

zirconia ZR-AL 90~110 positive 1.427 

zirconia ZR-BL 70~80 negative 1.095 

PEG coated Silica Si-B 20~30 negative 0.0722 

APTES coated Fe3O4 A-MNPs 70~100 negative 78,300~105,000 

In this study, as displayed in Table 7.1, four groups of nanoparticles were studied: 

ZR-AL, ZR-BL, Si-B, and A-MNPs. Among those samples, A-MNPs with high relaxivity 

will help increase the pore surface relaxivity if attached on to pore surface. However, with 

negative surface charge of silica under natural conditions (Revil, 1999a, b), it is not easy 

for the negatively charged A-MNPs to adsorb onto pore surface. However, it is possible 

that A-MNPs can be employed to attach onto positive pore surfaces and control surface 

relaxivity such as calcite. With low relaxivity and negative surface charge, Si-4B is not a 

good candidate to coat silica pore surface or control pore surface relaxivity. For zirconia 

nanoparticles, ZR-BL nanoparticles were observed to be retained in Boise sandstone at 

very low fraction (2% to 3%) and not at all in glass bead packs; ZR-AL was retained better 

in glass bead packs (11.6%) and Boise sandstone (30% to 40%), resulting in an appreciable 

alteration of pore surface relaxivity via adsorption onto pore surface. However, due to their 

relatively small relaxivities, attachment of paramagnetic ions on the zirconia nanoparticles 

increased their surface relaxivity, which makes it complicate to link the attached amount 

of nanoparticles and altered pore surface relaxivity since the nanoparticle relaxivity is 

variable. Hence, even with the evidence that positively charged zirconia nanoparticles can 

attach to silica surfaces and alter the pore surface relaxivity, due to their low relaxivity and 

vulnerability to the presence of paramagnetic ions, zirconia nanoparticles in this study may 
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need to be modified to increase relaxivity and/or to prevent adsorption of paramagnetic 

ions before they can be suitably applied for this purpose. 

More generally, my work helps to understand factors that affect nanoparticles’ 

surface relaxivities and the behavior of nanoparticles in porous media, and will be used in 

future studies of the pore-scale characteristics in rocks. In particular, my work highlights 

the complicated interplay between nanoparticles and rock surfaces that affect 

measurements of bulk properties. Understanding these complicating factors is essential to 

future applications that depend on coating grain surfaces or fluid interfaces with 

nanoparticles, such as enhanced oil recovery, imaging oil-water contacts, and determining 

interfacial surface areas.  

7.2 FUTURE WORK 

This project is a step toward the engineered control of surface relaxivity of porous 

media, which in turn would enable more robust inference of pore size distributions from 

NMR measurements, especially using logging tools. In my experiments, factors that many 

affect nanoparticles surface relaxivities were studied, however all the possible mechanisms 

of Fe(III) adsorbed onto positively charged zirconia nanoparticles were not well studied. 

 The known value of pore size and surface relaxivity of silica porous media enabled 

me to estimate adsorbed zirconia nanoparticles and modified surface relaxivity. To realize 

the end goal of being able to predict pore size distributions directly from NMR 

measurements with no prior knowledge of pore sizes, further work is necessary to 

understand the link between zeta potential differences between nanoparticles and 

substrates, quantity adsorbed, and overall relaxivity alteration.   

My results indicated adsorption of positively charged nanoparticles onto silica 

surface. A separate experiment to study the adsorption of negatively charged nanoparticles 
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onto positive pore surface may broaden the applications and studies of nanoparticle-pore 

surface interaction and effect of adsorbed nanoparticles on pore surface relaxivity.   

The experimental data showed that, even with an excess amount of nanoparticles 

in the pores, full coverage in a monolayer was never observed. It is possible that 

electrostatic repulsion between nanoparticles prevents them from settling next to each other 

on the pore surface. It will be useful to use DLVO theory to better analyze and predict the 

adsorption of nanoparticles on pore walls, and to provide guidance on suitable surface 

coatings that can promote this behavior.  

In addition, I did not analyze how hydration layers on nanoparticles and pore 

surfaces will affect attachment of nanoparticles onto pore walls. Further study is required 

to identify the role of the hydration layer in nanoparticle adsorption and relaxation. 
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Appendix A 

ARITHMETIC CALCULATIONS OF ERROR PROPAGATION   

              

 

X: function of u and v (u and v are independent measured varibles from an experiment) 

X: standard deviation of X 

u: standard deviation of u 

v: standard deviation of v 
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Appendix B 

RAW NMR DATA  

 

Figure B-1. T1 relaxation of ZR-AL dispersions with different nanoparticle weight 

percentage. x axis is time, y axis is measured sample volume after correction 

with H index. 
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Figure B-2. T1 relaxation of ZR-BL dispersions with different nanoparticle weight 

percentage. x axis is time, y axis is measured sample volume after correction 

with H index. 
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Figure B-3. T1 relaxation of 3 saturated Boise sandstone cores: BS1, BS2, BS3. They are 

saturated with DI water, ZR-6AL, and ZR-6BL nanoparticle dispersions, 

respectively. x axis is time, y axis is measured sample volume after 

correction with H index. 
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Figure B-4. T1 relaxation of DI water, HNO3, and TMAH saturated Boise sandstone cores 

for Cores #1-#5 after correction with H index. x axis is time, y axis is 

measured sample volume after correction with H index. 
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Figure B-5. T1 relaxation of DI, HNO3, ZR-6AL, and ZR-7.5AL dispersions saturated 

Boise sandstone cores for Cores #1, #2, #6, #7, #10, and #11 after correction 

with H index. x axis is time, y axis is measured sample volume after 

correction with H index. 

 



 147 

 

Figure B-6. T1 relaxation of DI, TMAH, ZR-6BL, and ZR-7.5BL dispersions saturated 

Boise sandstone cores for Cores #1, #4, #8, #9, #12, and #13. x axis is time, 

y axis is measured sample volume after correction with H index. 
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Figure B-7. T1 relaxation of DI water, HNO3, and TMAH saturated Boise sandstone cores 

for Cores #1-#5 after core flooding with pre-selected pure fluid for 2 pore 

volume. x axis is time, y axis is measured sample volume after correction 

with H index. 
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Figure B-8. T1 relaxation of DI, HNO3, ZR-6AL, and ZR-7.5AL saturated Boise 

sandstone cores for Cores #1, #2, #6, #7, #10, and #11 after core flooding 

with pre-selected pure fluid for 2 pore volume. x axis is time, y axis is 

measured sample volume after correction with H index. 
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Figure B-9. T1 relaxation of DI, TMAH, ZR-6BL, and ZR-7.5BL saturated Boise 

sandstone cores for Cores #1, #4, #8, #9, #12, and #13 after core flooding 

with pre-selected pure fluid for 2 pore volume. x axis is time, y axis is 

measured sample volume after correction with H index. 
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Figure B-10. T1 relaxation of first 0.7 pore volume effluents from DI water, HNO3, and 

TMAH saturated Boise sandstone cores for Cores #1-#5. x axis is time, y 

axis is measured sample volume after correction with H index. 
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Figure B-11. T1 relaxation of first 0.7 pore volume effluents from HNO3, ZR-6AL, and 

ZR-7.5AL saturated Boise sandstone cores for Cores #2, #6, #7, #10, and 

#11. x axis is time, y axis is measured sample volume after correction with 

H index. 
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Figure B-12. T1 relaxation of first 0.7 pore volume effluents from TMAH, ZR-6BL, and 

ZR-7.5BL saturated Boise sandstone cores for Cores #4, #8, #9, #12, and 

#13. x axis is time, y axis is measured sample volume after correction with 

H index. 
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Figure B-13. T1 relaxation of 5.6A-MNPs dispersions with different nanoparticle 

concentration. x axis is time, y axis is measured sample volume after 

correction with H index. 
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Figure B-14. T1 relaxation of 7.5A-MNPs dispersions with different nanoparticle 

concentration. x axis is time, y axis is measured sample volume after 

correction with H index. 
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Figure B-15. T1 relaxation of 9.8A-MNPs dispersions with different nanoparticle 

concentration. x axis is time, y axis is measured sample volume after 

correction with H index. 
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