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Co-Supervisors: Purnamrita Sarkar
Peter Müller

The common theme of the projects in this thesis is statistical inference and

characterizing uncertainty for complex structures, including networks and separately

exchangeable data matrices.

In the first two projects, we focus on uncertainty quantification of network

subgraph count statistics. In the first project, we study the network jackknife procedure

to consistently estimate the variance of subgraph counts under the sparse graphon

model. In the second project, we develop a family of network multiplier bootstraps for

subgraph counts using linear and quadratic weights. In both projects, we complement

our theoretical proofs with simulation studies and real data analysis on social

networks.

In the final third project we consider the more elementary questions of

how investigators arrive at certain model assumptions, focusing on commonly used
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symmetry assumptions known as various forms of exchangeability. In particular, we

argue for a more common use of separate exchangeability as a modeling principle.

We show how this notion is still ignored in some recent work, but could easily be

included.
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Chapter 1

Introduction

1.1 Graphon models and subgraph counts

Many applications involve data that are naturally characterized as networks.

Examples include social network data such as Facebook, and biological data such as

brain networks and protein-protein interaction networks. The increasing use of such

data calls for more statistical inference tools.

Subgraph count statistics (count functionals) are of great importance in

characterizing networks. For example, in biological networks, certain subgraphs may

represent functional subunits in the larger system (Milo et al., 2002; Chen and Yuan,

2006; Daudin et al., 2008; Kim et al., 2014). In social networks, the frequency of

triangles provides information about mutual friendships (Newman, 2001; Myers

et al., 2014; Ugander et al., 2011). Although many results have been established

to estimate subgraph counts on very large networks, quantifying the uncertainty of

such estimates remains less studied. Such work is critical for statistical inference and

has recently attracted much attention. Quantifying the variability of subgraph count

estimators not only reveals information about the data generating process, but also is

key to construct confidence intervals and conduct tests to compare networks. Such

inference will be discussed in details in Chapter 2 and Chapter 3.
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Resampling methods including jackknife, bootstrap, and subsampling have

been well studied for quantifying uncertainty in independent and identically dis-

tributed data, and some recent literatures (reviewed in Section 3.1) have started

to study and implement resampling methods on network data. In Chapter 2 and

Chapter 3, we develop our new family of network resampling methods in quantifying

subgraph counts, including network jackknife procedure and network multiplier

bootstrap family. We study the properties of these procedures, compare with current

methods and provide application examples on real world data.

1.1.1 The Sparse Graphon Model

Our network resampling methods are developed under sparse graphon models

for networks. Sparse graphon models are a very rich family of network models.

Many widely used network models such as stochastic block models (Holland et al.,

1983) and random dot product graphs (Young and Scheinerman, 2007) are all part of

this family. To formally define sparse graphon model, we use the parameterization

introduced by Bickel and Chen (2009). Let a size 𝑛 graph be represented by a 𝑛 × 𝑛

binary adjacency matrix {𝐴(𝑛)}𝑛∈N and latent positions 𝑋1, . . . , 𝑋𝑛 ∼ Unif [0, 1]. We

assume that 𝐴(𝑛) is generated by the following model: for 𝑖 = 𝑗 , 𝐴(𝑛)
𝑖𝑖

= 0; for all

𝑖 ≠ 𝑗 , let 𝜂𝑖 𝑗 ∼ Uniform[0, 1],

𝐴
(𝑛)
𝑖 𝑗

= 𝐴
(𝑛)
𝑗𝑖

= 1(𝜂𝑖 𝑗 ≤ 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 )) ∼ Bernoulli(𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 )), (1.1)

where 𝑤 is a graphon function that satisfies 𝑤 : [0, 1]2 ↦→ R and is a symmetric

measurable function such that
∫ 1

0

∫ 1
0 𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 = 1 and 𝑤(𝑢, 𝑣) ≤ 𝐶 for some

1 ≤ 𝐶 < ∞. We refer to 𝑤 as a graphon. The parameter 𝜌𝑛 = 𝑃(𝐴𝑖 𝑗 = 1) determines

16



the sparsity level of the sequence {𝐴(𝑛)}𝑛∈N. Many real world graphs are thought

to be sparse, with 𝑜(𝑛2) edges; 𝜌𝑛 → 0 is needed for graphs generated by (1.1) to

exhibit this behavior.

Bounded graphons arise as a limiting object in the theory of graph limits;

see Lovász (2012). Alternatively, graphons are a natural representation for (infinite-

dimensional) jointly exchangeable arrays, where this notion of exchangeability

corresponds to invariance under vertex permutation; see for example, Diaconis and

Janson (2008). Bounded graphons subsume many other commonly studied network

models, including stochastic block models (Holland et al., 1983) and random dot

product graphs (Young and Scheinerman, 2007) as we mentioned above.

While boundedness of the graphon is a common assumption in the statistics

literature (see, for example, the review article by Gao and Ma (2019)), it should

be noted that unbounded graphons are known to be more expressive. As noted by

Borgs et al. (2019), unboundedness allows graphs that exhibit power-law degree

distributions, a property that bounded graphons fail to capture. For mathematical

expedience, in the present article, we focus on the bounded case, but we believe that

our analysis may be extended to sufficiently light-tailed unbounded graphons as well.

Here we illustrate two examples of sparse graphon models. They are also

the examples we use in simulation studies in Chapter 2. Chapter 3 also uses similar

examples, for which we do not provide details here to avoid repetition. The first

example for illustration is a Stochastic Block Model (SBM) (Holland et al., 1983), a

commonly used model to study networks with communities. In a SBM with sparsity

level 𝜌𝑛 and 𝑚 number of communities, let binary matrix 𝑍 ∈ {0, 1}𝑛×𝑚 denote

17



Figure 1.1: Illustration of a three-community Stochastic Block Model as an example
of sparse graphon model: discretizing uniform latent positions and partitioning vertex
set (left), community-community interaction matrix (middle), and a realization of
size 20 𝜌𝑛 = 1 graph formed by the model (right).

Figure 1.2: Illustration of a continuous graphon model (GR(2)) as an example of a
sparse graphon model: graphon function (left), and a realization of size 20 𝜌𝑛 = 1
graph formed by the model (right).

cluster membership, and 𝐵 denote a community-community interaction matrix. Let

𝑎,𝑏 denote community label. Conditioned on 𝑍𝑖𝑎 = 1 and 𝑍 𝑗 𝑏 = 1, nodes 𝑖 and 𝑗

form an edge with probability 𝜌𝑛𝐵𝑎𝑏:

𝑃(𝐴𝑖 𝑗 = 1 | 𝑍𝑖𝑎 = 1, 𝑍 𝑗 𝑏 = 1) = 𝜌𝑛𝐵𝑎𝑏 .

Here we present in Figure 1.1 an example of three-community SBM, where member-

ship probability of three communities are (0.3, 0.3, 0.4), 𝐵 = ((0.4, 0.1, 0.1), (0.1, 0.5, 0.1),

(0.1, 0.1, 0.7)) and a small size 𝑛 = 20, 𝜌𝑛 = 1 graph generated from it.
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For the second example of sparse graphon model, we consider a continuous

graphon which we call GR(2), where

𝑃(𝐴𝑖 𝑗 = 1 | 𝑋𝑖 = 𝑢, 𝑋 𝑗 = 𝑣) = 𝜌𝑛 |𝑢 − 𝑣 |.

We present in Figure 1.2 the illustration of this graphon model and a size 𝑛 = 20

𝜌𝑛 = 1 graph simulated from the model.

1.1.2 Subgraph Count Functionals

In this subsection, we present the definitions of subgraph counts. The count

functionals that we consider were first studied in Bickel et al. (2011). We first

introduce some notation needed to define these functionals. Let 𝐺𝑛 denote a graph

with vertex set 𝑉 (𝐺𝑛) = {1, 2, . . . , 𝑛} and edge set 𝐸 (𝐺𝑛) ⊂ 𝑉 (𝐺𝑛) × 𝑉 (𝐺𝑛). Let

𝑅 ⊆ 𝐸 (𝐺𝑛) denote the subgraph of interest parameterized by its edge set. For

convenience, we assume 𝑉 (𝑅) = {1, 2, . . . , 𝑟}. Furthermore, let 𝐺𝑛 [𝑅] denote the

subgraph induced by the vertices of 𝑅.

We consider two different types of count functionals. The first one counts

exact matches and has the following probability under the sparse graphon model:

(Eq 1.1):

𝑃(𝑅) = 𝑃(𝐺𝑛 [𝑅] = 𝑅) = 𝐸


∏
(𝑖, 𝑗)∈𝑅

𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 )
∏
(𝑖, 𝑗)∈𝑅

(1 − 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 ))
 (1.2)

We also consider the functional 𝑄(𝑅), which provides the probability of an induced

subgraph containing the subgraph 𝑅:

𝑄(𝑅) = 𝑃(𝑅 ⊆ 𝐺𝑛 (𝑅)) = 𝐸


∏
(𝑖, 𝑗)∈𝑅

𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 )
 (1.3)
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Note that 𝑄(𝑅) is agnostic to the presence of additional edges. When the

graph sequence is sparse, 𝑃(𝑅) and 𝑄(𝑅) are uninformative, as 𝑃(𝑅), 𝑄(𝑅) → 0.

Let 𝑠 = |𝐸 (𝑅) | and 𝑟 = |𝑉 (𝑅) |. Instead, define the following normalized subgraph

frequency:

𝑃̃(𝑅) = 𝜌−𝑠𝑛 𝑃(𝑅) 𝑄̃(𝑅) = 𝜌−𝑠𝑛 𝑄(𝑅) (1.4)

Furthermore, let 𝐼𝑠𝑜(𝑅) denote the class of graphs isomorphic to 𝑅, and |𝐼𝑠𝑜(𝑅) |

its cardinality. Our estimator of 𝑃̃(𝑅) is given by:

𝑃̂(𝑅) = 𝜌−𝑠𝑛
1(𝑛

𝑟

)
|Iso(𝑅) |

∑︁
𝑆∼𝑅

1(𝑆 = 𝐺𝑛 [𝑆]) (1.5)

Similarly, define 𝑄̂(𝑅) as:

𝑄̂(𝑅) = 𝜌−𝑠𝑛
1(𝑛

𝑟

)
|Iso(𝑅) |

∑︁
𝑆∼𝑅

1(𝑆 ⊆ 𝐺𝑛 [𝑆]) (1.6)

Due to magnification by 𝜌−𝑠𝑛 , (1.4), (1.5), and (1.6) are not necessarily upper

bounded by 1; nevertheless, they are still meaningful quantities related to subgraph

frequencies.

It is not hard to see that 𝑃(𝑅) = 𝑄(𝑅) (1 +𝑂 (𝜌𝑛)).

Examples of Count Functionals As examples of count functionals, we introduce

the edge, triangle, Two-star (V-star) density. which we explicitly define below.

𝑃̂(Edge) = 𝑄̂(Edge) :=
∑
𝑖< 𝑗 𝐴𝑖 𝑗(𝑛
2
)
𝜌𝑛
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𝑃̂(Triangle) = 𝑄̂(Triangle) :=
∑
𝑖< 𝑗<𝑘 𝐴𝑖 𝑗 𝐴 𝑗 𝑘𝐴𝑘𝑖(𝑛

3
)
𝜌3
𝑛

𝑃̂(Two-star) :=
∑
𝑖, 𝑗<𝑘, 𝑗 ,𝑘≠𝑖 𝐴𝑖 𝑗 𝐴𝑖𝑘 (1 − 𝐴𝑖𝑘 )(𝑛

3
)
𝜌2
𝑛 (1 − 𝜌𝑛)

𝑄̂(Two-star) :=
∑
𝑖, 𝑗<𝑘, 𝑗 ,𝑘≠𝑖 𝐴𝑖 𝑗 𝐴𝑖𝑘(𝑛

3
)
𝜌2
𝑛

We have developed shortcuts to efficiently calculate these count statistics

in large size graphs. Let 𝐶 = 𝐴2 be the matrix square of 𝐴. 𝑃̂(Triangle) can be

expressed as
∑
𝑖 𝑗 (𝐶𝑖 𝑗 · 𝐴𝑖 𝑗 )/6. 𝑃̂(Two-star) can be expressed as

∑
𝑖 𝑗 (𝐶𝑖 𝑗 · (1− 𝐴𝑖 𝑗 ))/2,

while 𝑄̂(Two-star) is
∑
𝑖

(𝑑𝑖
2
)
/2 where 𝑑𝑖 is degree of node 𝑖. We have also developed

approximated count functionals with its algorithm and properties introduced in

details in Chapter 3.

1.2 Exchangeability and other paradigms in Bayesian model
choices

In statistical inference we usually start with an assumed inference model.

In particular, in Bayesian inference many commonly used models take the form

of hierarchical models. While investigators usually do not extensively discuss the

motivation for such model choices, there are actually broadly applicable theoretical

results and representation theorems that one can rely on. We review such principles

in some detail in Section 4.1, and provide here just a brief summary. The perhaps

most widely invoked principle is exchangeability. In many problems it is natural

to require that any inference model should be symmetric with respect to arbitrary

re-labeling and change of indices for experimental units (patients, proteins, etc.).
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That is, the probability model should be invariant under a permutation of indices of

the experimental units.

The classic de Finetti’s theorem (de Finetti, 1930) states that exchangeability

of an extendable sequence 𝑥1, . . . , 𝑥𝑛 is equivalent to the assumption that it can

be expressed as conditionally independently identically distributed from a random

probability 𝑃, where 𝑃 ∼ L. The de Finetti measure L can be interpreted as

the prior in the Bayes-Laplace paradigm, thus calling for a Bayesian hierarchical

model. Partial exchangeability satisfies invariance for permutations of observations

only within sub-populations. Thus, the order of observations is only irrelevant

when the membership of observations in sub-populations are preserved. Partial

exchangeability allows meta analysis for modeling data from related populations

and borrowing information across populations. However, it is common in many

studies to have more than one type of experimental units. The need of separate

exchangeability arises from a more complex structure of data. It allows two types of

experimental units with the data usually recorded as a data matrix. For example, in

one of the examples we studied different microbiomes observed in different subjects.

Separate exchangeability indicates invariance under separate permutations of rows

and columns, respectively. Mathematically, using 𝑑
= to denote equality in distribution,

a data matrix 𝑍 is separately exchangeable if

𝑍1:𝑛,1:𝐽
𝑑
= 𝑍𝜋1 (1:𝑛),𝜋2 (1:𝐽)

for separate permutations 𝜋1 and 𝜋2 of rows and columns. Under such constructions,

the Aldous-Hoover representation theorem (Aldous, 1981; Hoover, 1979) for sepa-

rately exchangeable arrays allows the data to be modelled in a hierarchical model in
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terms of latent quantities. This result has motivated Bayesian statistical inference for

such array data. We discuss these principles in more details in Chapter 4.

Exchangeability in graphon models Sparse graphon models exhibit vertex ex-

changeability. The distribution of the random graph is unchanged when node labels

are permuted. It is natural to see that the adjacency matrix is thus jointly exchangeable:

𝐴1:𝑛,1:𝑛
𝑑
= 𝐴𝜋(1:𝑛),𝜋(1:𝑛)

using the same permutations of 𝜋 over rows and columns. Jointly exchangeability

is close to separately exchangeability and is also subject to the Aldous-Hoover

representation of extendable (infinitely-dimensional) exchangeable arrays. Many

models studying graphs and relational data, including the sparse graphon model we

study here, are motivated by Aldous-Hoover representation theorems for exchangeable

arrays (Bickel and Chen, 2009; Lloyd et al., 2012; Caron and Fox, 2017).

1.3 Nonparametric Bayesian inference

Nonparametric Bayesian (BNP) models are Bayesian models with infinite-

dimensional parameters (Ghosh and Ramamoorthi, 2003; Müller et al., 2015).

Performing Bayesian inference on such models requires a prior probability model

on the infinite-dimensional parameters. Such prior models are known as Bayesian

nonparametric priors. The Dirichlet Process (DP), introduced by Ferguson (1973,

1974), an infinite-dimensional priors over distributions with discrete sample draws, as

an analogue to the finite-dimensional Dirichlet Prior, is the most popular BNP Priors
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and remains the cornerstone of many BNP models. For more currently available

BNP tools, extensive reviews of recent BNP priors beyond the Dirichlet and related

processes can be found in Phadia (2015) and Hjort et al. (2010).

The essence and one of the biggest advantages of BNP models as pointed

out by Hjort (2003), is flexibility. The data is not restrictively modelled by a fixed

number or a low number of parameters. BNP models allow a growing number of

parameters with increasing sample size, and in some cases, even growing number of

candidate models.

Over the past few decades, nonparametric Bayesian methods have found a

wide range of applications on many problems such regression, survival analysis,

hierarchical models, clustering and feature allocation (Müller and Quintana, 2004).

In our motivating examples in the third project, we focus on regression and nested

random partition problems using BNP models, and discuss the use of separate

exchangeability as a modeling principle under these models.

1.4 Contributions

The three project in this thesis include several original contributions to the

theory of random graph models as well as to basic modeling principles in Bayesian

statistics.

Network Jackknife In Chapter 2, we propose a leave-node-out jackknife procedure

for network data and study its properties. Under the sparse graphon model, we

prove an Efron-Stein type inequality, showing that the network jackknife is always
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conservative in expectation as an estimate of the variance for subgraph counts. We

also establish consistency of the network jackknife. We complement our theoretical

analysis with a range of simulated and real world data examples and show that the

network jackknife offers competitive performance in cases where other resampling

methods are known to be valid. In fact, for several network statistics, we see that the

jackknife provides more accurate inferences compared to related methods such as

subsampling.

Network multiplier bootstrap In Chapter 3, we propose a new class of multiplier

bootstraps for subgraph counts. Based on first and second-order terms of Hoeffding

decomposition of the bootstrapped statistic from multiplier bootstrap respectively,

we propose bootstrap procedures with linear and quadratic weights. We show that the

quadratic bootstrap procedure achieves higher-order correctness for appropriately

sparse graphs. The linear bootstrap procedure requires fewer estimated network

statistics, leading to improved accuracy over its higher-order correct counterpart in

sparser regimes. To improve the computational properties of the linear bootstrap

further, we consider fast sketching methods to conduct approximate subgraph counting

and establish consistency of the resulting bootstrap procedure. We complement our

theoretical results with a simulation study and real data analysis and verify that our

procedure offers state-of-the-art performance for several functionals.

Separate exchangeability. In Chapter 4, we introduce the notion of separate

exchangeability as a modeling principle. The main contributions in that chapter are:
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(i) recognizing and clarifying the need of respecting separate exchangeability in

model constructions and (ii) discussing two specific models that implement separate

exchangeability. In many parametric models such structure is naturally respected.

However, this is not the case in many nonparametric Bayesian models. We identify

one example in recent literature in an analysis of microbiome data, and study one

other example with original data from a protein study of a neurodegeneration disease.

In both cases we discuss how to use separate exchangeability as a modeling principle.

Methodologically, in the latter application we show how separate exchangeability is

naturally respected in a nonparametric regression implemented as a popular dependent

Dirichlet process model with appropriate choices. In the earlier application we modify

a common atoms model for dependent (subject-specific) random probability measures

to respect separate exchangeability by carefully introducing parameters in the model

to reflect the desired symmetry.
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Chapter 2

On the Theoretical Properties of Network Jackknife

This chapter is published in the Proceedings of Machine Learning Research

(Lin et al., 2020a). Contribution Statement: My contribution for this chapter includes

performing the research, developing the theories and their proofs, developing analytic

tools and R code for this work, analyzing data (simulated data and real-world data). I

have also contributed to the writing of this chapter.

2.1 Introduction

Network-structured data are now everywhere. The internet is a giant, directed

network of webpages pointing to other webpages. Facebook is an undirected network

built via friendships between users. The ecological web is a directed network of

different species with edges specified by ‘who-eats-whom’ relationships. Protein-

protein interactions are undirected networks consisting of pairs of bait-prey proteins

that bind to each other during coaffinity purification experiments arising in mass

spectrometry analysis.

In these application areas, it is often of interest to characterize a network using

statistics such as the clustering coefficient, triangle density, or principal eigenvalues.

There has been a substantial amount of work on approximating these quantities
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with small error on massive networks Feige (2006); Goldreich and Ron (2008);

Assadi et al. (2018); Eden et al. (2017); Gonen et al. (2010); Kallaugher et al. (2019).

However, comparatively little attention has been paid to assessing the variability of

these statistics with a few exceptions that we will discuss shortly. Quantifying the

uncertainty of these estimators is of utmost importance, as it gives us information

about the underlying variability of the data generating process. Take for example the

problem of comparing two networks, which is a key question in many biological

applications and in social network analysis. A natural direction would be to first

obtain resamples of networks to construct distributions of different summary statistics

and then compare these distributions. While there has been some recent interest

in two-sample tests for networks Kim et al. (2014); Durante and Dunson (2018);

Ghoshdastidar et al. (2017); Tang et al. (2017), very few works use resampling to

compare networks.

Resampling methods have a long and celebrated history in statistics, with the

bootstrap, jackknife,and subsampling being the three main forms. There is a now

vast literature developing these methods for IID data; for seminal works in this area,

see Quenouille (1949); Efron and Tibshirani (1986); Bickel et al. (1997); Politis et al.

(1999); Shao and Wu (1989). Even when the data are not independent, resampling

methods have been shown to yield asymptotically valid inferences for a wide range of

functionals under various dependence structures. For weakly dependent time series,

for example, the key innovation is to resample contiguous blocks of data instead of

individual observations. Under mild conditions on the block length and nature of

dependence, blocked variants of resampling methods, including the block bootstrap
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(Künsch, 1989), block subsampling (Politis and Romano, 1994), and the blockwise

jackknife (Künsch, 1989) have been shown to asymptotically capture the dependence

structure of the data, leading to theories that closely resemble the corresponding

theories for IID data.

Recently, some work has started to emerge involving resampling procedures

for networks. Levin and Levina (2019) propose two bootstrap procedures for random

dot product graphs that involve estimating the latent positions and resampling the

estimated positions to conduct inference for the functional of interest. The authors

establish bootstrap consistency for functionals that are expressible as U-statistics

of the latent positions, which encompasses many important classes of functionals

including subgraph counts.

Lunde and Sarkar (2019) consider a procedure that involves subsampling

nodes and computing functionals on the induced subgraphs. This procedure is shown

to be asymptotically valid under conditions analogous to the IID setting; that is,

the subsample size must be 𝑜(𝑛) and the functional of interest must converge to a

non-degenerate limit distribution. Previously, Bhattacharyya and Bickel (2015) had

shown the validity of subsampling for count functionals. By proving a central limit

theorem for eigenvalues, Lunde and Sarkar (2019) also establish subsampling validity

for these functionals under certain conditions. Finally, in Green and Shalizi (2017),

the authors propose sieve and nonparametric bootstrap procedures for networks.

We would like to note that that both the sieve approach of Green and

Shalizi (2017) and the latent position estimation approaches of Levin and Levina

(2019) depend on accurately estimating the underlying graphon. The nonparametric
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bootstrap procedure described in Green and Shalizi (2017) requires resampling much

larger networks from a size 𝑛 network, leading to computational inefficiency. Even

subsampling requires weak convergence and a known rate of convergence; it turns

out that the latter may be estimated (Bertail et al., 1999), but doing so entails a

substantial increase in computation and is likely to adversely affect the finite-sample

performance of the procedure. While asymptotically valid under general conditions,

the finite-sample performance of subsampling methods is known to be sensitive to

the choice of tuning parameters; see for example, Kleiner et al. (2014).

2.1.1 Our Contribution

In the present work, we study the properties of a network jackknife introduced

by Frank and Snijders (1994) under the sparse graphon model. On the theoretical

side, we make two primary contributions. First, analogous to the IID setting, we

show that the network jackknife produces variance estimates that are conservative in

expectation under general conditions. Our result here justifies the network jackknife

as a rough-and-ready tool that produces reasonable answers (erring on the side of

caution) even when the asymptotic properties of the functional of interest are poorly

understood.

While the upward bias of the network jackknife is a favorable property, it

does not provide information as to how the jackknife compares to other resampling

procedures for more well-understood functionals. As another theoretical contribution,

we establish consistency of the jackknife for a general class of count statistics studied

in Bickel et al. (2011). We also extend our result to smooth functions of counts,
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which encompasses widely used measures such as the transitivity coefficient.

We complement our theoretical results with an empirical investigation of

the network jackknife on both simulated and real datasets. In our simulation study,

we study the rate of convergence of the jackknife variance estimate for two sparse

graphon models under a range of choices for the network functional. Our results

suggest that by and large, the jackknife has better finite-sample properties than

subsampling. For real data, we conduct network comparisons of Facebook networks

constructed from a number of different colleges such as Caltech, Berkeley, Stanford,

Wellesley, etc.

The paper is organized as follows. In Section 2.2, we do problem setup and

introduce notation. In Section 2.3, we present our theoretical results and some proof

sketches. Finally in Section 3.6 we present experimental results on simulated and

real networks.

2.2 Background

In this section, we first briefly recall the original Jackknife for IID data. Then

we describe the network jackknife procedure under sparse graphon models. Recall

that the sparse graphon models are introduced in Section 1.1.1.

2.2.1 The Jackknife for IID Data

The jackknife, attributed to Quenouille (1949) and Tukey (1958), is a resam-

pling procedure that involves aggregating leave-one-out estimates. More precisely,

let 𝑌1, . . . , 𝑌𝑛 ∼ 𝑃 and let 𝑆𝑛 be a permutation-invariant function of 𝑛 variables. Fur-
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thermore, let 𝑆𝑛,𝑖 denote the functional computed on the dataset with 𝑌𝑖 removed and

let 𝑆𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑆𝑛,𝑖. The jackknife estimate of the variance of 𝑆𝑛−1 = 𝑆(𝑌1, . . . , 𝑌𝑛−1)

is given by:

V̂arJACK 𝑆𝑛−1 :=
𝑛∑︁
𝑖=1
(𝑆𝑛,𝑖 − 𝑆𝑛)2 (2.1)

For appropriately smooth functionals, it is well-known that the jackknife

consistently estimates the variance; see for example, Shao and Tu (1995). The

bootstrap, introduced by Efron (1979), typically requires weaker regularity conditions

than the jackknife for consistency. In fact, it is well-known that the jackknife is

inconsistent for the median (Miller, 1974) while the bootstrap variance remains

consistent under reasonable conditions (Ghosh et al., 1984)1.

However, for more complicated functionals, it may often be the case that both

the bootstrap and the jackknife are inconsistent2. Even in these cases, the jackknife

still provides reasonable answers. The remarkable inequality of Efron and Stein

(1981) asserts that the jackknife is always upwardly biased, ensuring a conservative

estimate of the variance.

Since networks are inherently high-dimensional objects, asymptotic results

are often harder to come by compared to the IID setting. The theory of the jackknife

for IID processes suggests that, even in this challenging regime, a network analogue

of the jackknife may have some advantageous properties.

1It should be noted that the delete-d jackknife is valid under more general conditions; see Shao
and Wu (1989).

2Recent work by Fang and Santos (2019) suggests that Hadamard differentiability of 𝑔 is both
necessary and sufficient for bootstrap consistency of 𝑔(𝜃𝑛) whenever 𝜃𝑛 is asymptotically Gaussian.
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2.2.2 The Network Jackknife Procedure

Let 𝑓 : {0, 1} 𝑛−1 × 𝑛−1 ↦→ R denote a function that takes as input a 𝑛−1×𝑛−1

adjacency matrix and let 𝑍𝑛,𝑖 denote the random variable formed by applying 𝑓

to an induced subgraph with node 𝑖 removed. Under the model (1.1), observe that

each induced subgraph formed by leaving a node out is identically distributed

as a consequence of vertex exchangeability. Therefore, functionals calculated on

these induced subgraphs are similar in spirit to the the leave-one-out estimates for

the jackknife in the IID setting. Following Frank and Snijders (1994), a natural

generalization of the jackknife to the sparse graphon setting is given by:

V̂arJACK 𝑍𝑛−1 :=
𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2 (2.2)

where 𝑍̄𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑍𝑛,𝑖 and V̂arJACK 𝑍𝑛−1 is an estimate of Var 𝑍𝑛−1, the variance

with respect to an induced subgraph with node set {1, . . . , 𝑛 − 1}. We would like to

note that letting 𝑍𝑛−1 := 𝑍𝑛,𝑛 constitutes a slight abuse of notation since 𝜌𝑛−1 need

not equal 𝜌𝑛, but doing so substantially improves the readability of our proofs.

2.3 Theoretical Results
2.3.1 The Network Efron-Stein Inequality

The first result we state here is our generalization of the Efron-Stein inequality

to the network setting. Intuitively, the Efron-Stein inequality may be thought of as a

general property of functions of independent random variables. While edges in the

adjacency matrix are dependent through the latent positions, the fact that they are

functions of independent random variables allow us to prove the following:
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Theorem 1 (Network Efron-Stein Inequality). If 𝑍𝑛−1 is a permutation invariant

statistic, then we have,

Var 𝑍𝑛−1 ≤ 𝐸 (V̂arJACK 𝑍𝑛−1) (2.3)

The main ingredients in our proof are an adaptation of a martingale argument

due to Rhee and Talagrand (1986) and an appropriate filtration for graphon models

inspired by Borgs et al. (2008). We provide a proof sketch below; for details, see

Appendix A.1.

Proof Sketch. As discussed in the Supplementary Material, for 1 ≤ 𝑖 ≤ 𝑛, we may

express 𝑍𝑛,𝑖 as a measurable function of latent positions 𝑋𝑖 ∼ Unif [0, 1] for 1 ≤ 𝑖 ≤ 𝑛

and 𝜂𝑖 𝑗 ∼ Unif [0, 1] for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. More precisely, 𝑍𝑛,𝑖 is a function of the

variables that are not shaded below:

𝑍𝑛,𝑖 = 𝑔

©­­­­­­­­­«

𝑋1 𝜂12 𝜂13 ... 𝜂1𝑖 ... 𝜂1𝑛
𝑋2 𝜂23 ... 𝜂2𝑖 ... 𝜂2𝑛

𝑋3 ... 𝜂3𝑖 ... 𝜂3𝑛
... ... ... ...

𝑋𝑖 𝜂𝑖,𝑖+1 .. 𝜂𝑖𝑛
𝑋𝑛−1 𝜂𝑛−1,𝑛

𝑋𝑛

ª®®®®®®®®®¬
. (2.4)

We design a martingale difference sequence 𝑑𝑖,

𝑑𝑖 = 𝐸 (𝑍𝑛−1 |Σ𝑖) − 𝐸 (𝑍𝑛−1 |Σ𝑖−1), (2.5)
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based on filtration Σ𝑖:

Σ𝑖 = 𝜎{𝑋1, , 𝑋𝑖, 𝜂12, , 𝜂1𝑖, 𝜂23, , 𝜂2𝑖, , , 𝜂𝑖−1,𝑖}

= 𝜎



𝑋1 𝜂12 ... 𝜂1,𝑖−1 𝜂1𝑖
𝑋2 ... 𝜂2,𝑖−1 𝜂2𝑖

... ..

𝑋𝑖−2 𝜂𝑖−2,𝑖−1, 𝜂𝑖−2,𝑖
𝑋𝑖−1 𝜂𝑖−1,𝑖

𝑋𝑖


.

(2.6)

Then we can show that,

Var 𝑍𝑛−1 =

𝑛−1∑︁
𝑖=1

𝐸𝑑2
𝑖 .

On the other hand, the expectation of Jackknife estimate is:

𝐸

𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2 = (𝑛 − 1)𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)

2

2
. (2.7)

Now, we construct another filtration A such that 𝐸 (𝑍𝑛,1 |A) = 𝐸 (𝑍𝑛,2 |A).

In particular, we use:

A = 𝜎{𝑋3, . . . , 𝑋𝑖+1, 𝜂34, . . . , 𝜂3,𝑖+1, . . . , 𝜂𝑖,𝑖+1}. (2.8)

This is essentially Σ𝑖+1, with the first and second row and columns removed. Define

𝑈 = 𝐸 (𝑍𝑛,1 |Σ𝑖+1) − 𝐸 (𝑍𝑛,1 |A)

𝑉 = 𝐸 (𝑍𝑛,2 |Σ𝑖+1) − 𝐸 (𝑍𝑛,2 |A)

Using the fact that 𝐸 (𝑋2) = 𝐸 (𝐸 (𝑋2 |Σ)) ≥ 𝐸 (𝐸 [𝑋 |Σ)2) for some random variable

𝑋 which is measurable w.r.t to some Sigma field Σ, we get:

𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)2 ≥ 𝐸 (𝑈 −𝑉)2 = 2𝐸 (𝑑2
𝑖 ) (2.9)

The result follows from plugging in Eq 2.9 to Eq 2.7. □
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Remark 1. Using the aforementioned filtration for graphon models, is also possible

to prove another network variant of the Efron-Stein inequality following arguments

in Boucheron et al. (2004). This alternative procedure does not require the functional

to be invariant to node permutation and allows flexibility with the leave-one-out

estimates. However, the resulting estimate is often not sharp. See the Appendix A.6

for more details.

2.3.2 Beyond the Efron-Stein inequality

While the Efron Stein inequality in Theorem 1 is surprising and useful for

estimating uncertainty for network statistics, it would be much more satisfying if

indeed the jackknife estimate of variance in fact coincided with the true underlying

variance, at least asymptotically. We want to draw the attention of the reader to

leftmost panel in Figure 2.1. The solid black line shows the mean and standard error

of the ratio between the jackknife estimate of the variance and the true variance for

edge density for a blockmodel and a smooth graphon (details in Section 3.6), as

graph size grows. This figure shows the surprising trend that, in fact, the jackknife

estimate is not only an upper bound on the true variance; it is in fact asymptotically

unbiased. Our next proposition establishes exactly that. In what follows, let 𝑍𝑛 denote

the edge density (see Section 3.6).

Proposition 1. Suppose that
∫ 1

0

∫ 1
0 𝑤2(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 < ∞ and 𝑛𝜌𝑛 → ∞. Let

𝜎2 = lim𝑛→∞ 𝑛 · Var(𝑍𝑛−1). Then,

𝑛 · 𝐸 (V̂arJACK 𝑍𝑛−1) → 𝜎2 (2.10)
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The proof of the above result involves tedious combinatorial arguments and is

deferred to the Appendix A.4. The above proposition says that, the jackknife estimate

of variance of the edge density of a sparse graphon model (see Eq 1.1), in expectation,

converges to the true variance. This is a somewhat weak result, since it does not

say anything about the jackknife estimate obtained from one network. However, it

begs the question, whether a stronger result is true. In fact, in the next section, we

prove that for a broad class of count functionals, the jackknife estimate is in fact

consistent. This paves the way to the next section, which we start by introducing

count functionals.

2.3.3 Jackknife Consistency for Count Functionals

In this section, we study the properties of the jackknife for subgraph counts,

which are an important class of functionals in network analysis. In graph limit theory,

convergence of a sequence of graphs can be defined as the convergence of appropriate

subgraph frequencies (Lovász, 2012). More practically, subgraph counts have been

used to successfully conduct two-sample tests in various settings. In social networks,

for example, the frequency of triangles provides information about the likelihood of

mutual friendships/connections and is therefore a useful summary statistic.

Recall the definitions of count functionals in Section 1.1.2. Bickel et al. (2011)

establish a central limit theorem for these functionals under general conditions on

the sparsity level and structure of the subgraph. Under analogous conditions, we

establish the following consistency result:

Theorem 2 (Jackknife Consistency for Counts). Suppose that R is acyclic graph
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and 𝑛𝜌𝑛 →∞ or R is a simple 𝑟-cycle and 𝑛𝑟−1𝜌𝑟𝑛 →∞. Furthermore, suppose that∫ 1
0

∫ 1
0 𝑤2𝑠 (𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 < ∞. Let 𝜎2 = lim𝑛→∞ 𝑛 · Var 𝑃̂(𝑅). Then,

𝑛 · V̂arJACK 𝑃̂(𝑅)
𝑃−→ 𝜎2 (2.11)

Our proof relies on a signal-noise decomposition of the jackknife variance.

Bickel et al. (2011) establish that the variance of a count functional is largely driven

by the variance of a U-statistic related to the edge structure of the subgraph. For

this U-statistic component of the decomposition, results for jackknifing U-statistics

due to Arvesen (1969) may be used to show convergence in probability towards the

variance of the corresponding U-statistic. Since the jackknife is a sum of squares, we

are able to decouple the effects of a remainder term and show that it is negligible.

We provide a sketch below, and defer the details to Appendix A.2.

Proof Sketch. Define density (normalized counts) of R when leaving 𝑖th node out is

𝑍𝑛,𝑖 =
(𝑛−1
𝑟

)−1
𝜌−𝑠𝑛 (𝑇 − 𝑇𝑖), where 𝑇 is total counts of 𝑅 in 𝐺𝑛, 𝑟 and 𝑠 are number

of vertices and edges in 𝑅. Define 𝑍𝑛 =
(𝑛
𝑟

)−1
𝜌−𝑠𝑛 𝑇 . Then V̂arJACK =

∑
𝑖 (𝑍𝑛,𝑖 − 𝑍𝑛)2,

Var 𝑃̂(𝑅) = Var 𝑍𝑛.

Theorem 1 of Bickel et al. (2011) establishes that 𝑛Var(𝑍𝑛) converges to a

positive constant. Thus we scale V̂arJACK by 𝑛, and decompose 𝑛V̂arJACK into

𝑛

[∑︁
𝑖

(𝛼𝑖 − 𝛼̄𝑛)2−2
∑︁
𝑖

(𝛼𝑖 − 𝛼̄𝑛) (𝛽𝑖 − 𝛽𝑛)+
∑︁
𝑖

(𝛽𝑖 − 𝛽𝑛)2
]
, (2.12)

where 𝛼𝑖 = 𝑍𝑛,𝑖 − 𝐸 (𝑍𝑛,𝑖 |X𝑛), 𝛽𝑖 = 𝐸 (𝑍𝑛,𝑖 |X𝑛), 𝛼̄𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝛼𝑖, 𝛽𝑛 =

1
𝑛

∑𝑛
𝑖=1 𝛽𝑖 and

X𝑛 = (𝑋1, . . . 𝑋𝑛). The term 𝑛
∑
𝑖 (𝛽𝑖 − 𝛽𝑛)2 corresponds to the signal component

discussed before the theorem statement.
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We show in the Supplement that 𝐸
∑
𝑖 (𝛼𝑖 − 𝛼̄𝑛)2 can be further written into

𝐸
[∑

𝑆,𝑇 𝑐𝑜𝑣(𝑆, 𝑇 |X𝑛)
]
,∀ 𝑆,𝑇 ∼ 𝑅. By Bickel et al. (2011),𝐸

[∑
𝑆,𝑇 𝑐𝑜𝑣(𝑆, 𝑇 |X𝑛)

]
=

𝑜( 1
𝑛
). 𝑛∑

𝑖 (𝛼𝑖 − 𝛼̄𝑛)2 is thus negligible by Markov Inequality. The cross term

𝑛
∑
𝑖 (𝛼𝑖 − 𝛼̄𝑛) (𝛽𝑖 − 𝛽𝑛) is also negligible by the Cauchy-Schwartz Inequality.

□

Remark 2. Our theoretical results hold for both notions of subgraph frequencies.

However, note that 𝑄̃(𝑅) is independent of n, but 𝑃̃(𝑅) depends on 𝑛 and approaches

𝑄̃(𝑅). While
√
𝑛[𝑃̂(𝑅) − 𝑃̃(𝑅)] and

√
𝑛[𝑄̂(𝑅) − 𝑄̃(𝑅)] have the same limiting

variance, inference for a fixed target using 𝑃̂(𝑅) requires stronger sparsity conditions;

namely 𝜌𝑛 = 𝑜(1/
√
𝑛). See Section 2.3.4 for a related discussion.

Remark 3. Central limit theorems and jackknife consistency can also be shown

for more general (cyclic) graphs. However, in these cases, more stringent sparsity

conditions are needed.

Now, let 𝑓 (𝐺𝑛) denote a function of the vector (𝑃̂(𝑅1), . . . , 𝑃̂(𝑅𝑑)). Further-

more, let ∇ 𝑓 denote the gradient of 𝑓 and 𝜇 ∈ R𝑑 the limit of (𝑃̃(𝑅1), . . . , 𝑃̃(𝑅𝑑))

as 𝑛→ ∞; it turns out that 𝜇 corresponds to an integral parameter of the graphon

related to the edge structure of the subgraph. We have the following result.

Theorem 3 (Jackknife Consistency for Smooth Functions of Counts). Suppose that

(𝑅1, . . . , 𝑅𝑑) are simple cycles and 𝑛𝑟𝑖−1𝜌𝑟𝑖𝑛 →∞ for 𝑖 ∈ {1, . . . , 𝑑} corresponding

to simple cycles, or acyclic graphs and 𝑛𝜌𝑛 →∞. Let 𝑠∗ = max{|𝐸 (𝑅1),

. . . 𝐸 (𝑅𝑑)} and suppose that
∫ 1

0

∫ 1
0 𝑤2𝑠∗ (𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 < ∞. Furthermore, suppose
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that ∇ 𝑓 exists in a neighborhood of 𝜇, ∇ 𝑓 (𝜇) ≠ 0, and that ∇ 𝑓 is continuous at 𝜇.

Let 𝜎2
𝑓

is the asymptotic variance of
√
𝑛[ 𝑓 (𝐺𝑛) − 𝑓 (𝐸 (𝐺𝑛))]. Then,

𝑛 · V̂arJACK 𝑓 (𝐺𝑛)
𝑃−→ 𝜎2

𝑓

Proof Sketch. Let 𝑍𝑛,𝑖 = (𝑍𝑛,𝑖 (1), . . . 𝑍𝑛,𝑖 (𝑑)), where 𝑑 is a constant w.r.t 𝑛 and each

entry corresponds to a count functional with node 𝑖 removed. Let 𝑍̄𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑍𝑛,𝑖.

We use a Taylor expansion of 𝑓 (𝑍𝑛,𝑖) around 𝑍̄𝑛.

𝑓 (𝑍𝑛,𝑖) = 𝑓
(
𝑍̄𝑛) + ∇ 𝑓 (𝜇)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛) + (∇ 𝑓 (𝜁𝑖) − ∇ 𝑓 (𝜇))𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)︸                                  ︷︷                                  ︸

𝐸𝑖

,

where 𝜁𝑖 = (𝜁𝑖1, . . . , 𝜁𝑖𝑑) = 𝑐𝑖𝑍𝑛,𝑖 + (1 − 𝑐𝑖) 𝑍̄𝑛 for some 𝑐 ∈ [0, 1]. Thus, we also

have:

𝑓 (𝑍𝑛,𝑖) − 𝑓 (𝑍𝑛,𝑖) = ∇ 𝑓 (𝜇)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)︸                  ︷︷                  ︸
𝐼𝑖

+ 𝐸𝑖 −
1
𝑛

∑︁
𝑖

𝐸𝑖︸          ︷︷          ︸
𝐼 𝐼𝑖

(2.13)

We bound 𝑛
∑
𝑖 (𝐼𝑖)2 and 𝑛

∑
𝑖 (𝐼 𝐼𝑖)2 separately. Let Σ denotes the covariance matrix

of a multivariate U-statistic with kernels (ℎ1, . . . , ℎ𝑑), where each ℎ 𝑗 is the kernel

corresponding to the count functional in the 𝑗 𝑡ℎ coordinate of the vector 𝑍𝑛 (see Eq

A.7 for detailed definition). We can show that�����𝑛∑︁
𝑖

(𝐼𝑖)2 − ∇ 𝑓 (𝜇)𝑇Σ∇ 𝑓 (𝜇)
����� = 𝑜𝑝 (1).

We can also show that 𝑛
∑
𝑖 (𝐼 𝐼𝑖)2 is also 𝑜𝑝 (1). Then, let 𝜇𝑛 = 𝐸 [𝑍𝑛]. Note that if

one counts subgraphs by an exact match as in Bickel et al. (2011) 𝜇𝑛 → 𝜇. If one

counts subgraphs via edge matching, 𝜇𝑛 = 𝜇. Thus, both these types of subgraph
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densities, which asymptotically have the same limit, can be handled by our theoretical

results. By Theorem 3.8 in Van der Vaart (2000),

√
𝑛( 𝑓 (𝑍𝑛) − 𝑓 (𝜇𝑛)) ⇝ 𝑁 (0,∇ 𝑓 (𝜇)𝑇Σ∇ 𝑓 (𝜇))

This shows that the jackknife estimate of variance converges to the asymptotic

variance of 𝑓 (𝑍𝑛). The proof is deferred to the Appendix A.3. □

2.3.4 A Remark on the use of the Network Jackknife for Two-Sample Testing

In principle, the jackknife variance provides a quantification of uncertainty

that may be used for many inference tasks. When the limiting distribution is

Normal, one may use a Normal approximation; otherwise, one may use Chebychev’s

inequality. However, in these cases, the centering is 𝜃𝑛−1 = 𝐸 (𝑍𝑛−1), which depends

on 𝑛. Inferences about 𝜃𝑛−1 are often useful for a single graph, but for two-sample

testing, issues may arise when comparing networks of different sizes. Probability

statements involving a fixed population parameter 𝜃 are needed. To ensure that the

jackknife yields valid inferences for an appropriate population parameter, we will

need to impose some additional assumptions. In what follows, let {𝜏𝑛}𝑛∈N denote a

sequence of normalizing constants and let𝑈𝑛−1 = 𝜃𝑛−1 − 𝜃 for some 𝜃 ∈ R. We have

the following result:

Proposition 2. Suppose that 𝜏𝑛 → ∞ and 𝜏𝑛𝑈𝑛 ⇝ 𝑈 for some non-degenerate 𝑈

with mean 0 and variance 𝜎2 and {(𝜏𝑛𝑈𝑛)2}𝑛∈N is uniformly integrable. Then,

𝜏𝑛 (𝜃𝑛 − 𝐸 (𝜃𝑛)) ⇝ 𝑈,
Var 𝑈𝑛
Var 𝜃𝑛

→ 1 (2.14)
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Figure 2.1: Ratio of Jackknife estimate V̂arJACK to true variance Var for
edge density, triangle density, two-star density and transitivity in size 𝑛 =

100, 500, 1000, 2000, 3000 graphs simulated from the SBM (top) and GR2 (bottom),
compared to subsampling with 𝑏 = 0.05𝑛, 𝑏 = 0.1𝑛, 𝑏 = 0.2𝑛 variance estimation
on the same graphs.

As a consequence of Proposition 2, if a central limit theorem is known

for
√
𝑛 𝑈𝑛 and a uniform integrability condition is satisfied, then one may use the

jackknife variance in conjunction with a Normal approximation to conduct (possibly

conservative) inference for 𝜃. For count functionals, we have mentioned when this

condition holds, so in this case it does not need to be checked.
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2.4 Experiments

In this section, we present simulation experiments and experiments on real

data. For simulations, we compare our variance estimate with that estimated using

subsampling. We present our results on two graphons. For real data, we compare

networks based on C.I.’s constructed using jackknife estimates of variance of network

statistics like edge or triangle density and normalized transitivity.

Count functionals used In this chapter, we consider the edge, triangle, two star

density introduced in Section 1.1.2. We use 𝑃̂(Edge) (same as 𝑄̂(Edge)), 𝑃̂(Triangle)

(same as 𝑄̂(Triangle)) and 𝑄̂(Two-star) (asymptotically same as 𝑃̂(Two-star)). As a

smooth function of count statistics, we use:

Normalized transitivity :=
𝑃̂(Triangle)
𝑄̂(Two-star)

.

Here we use 𝑄̂(Two-star) instead of 𝑃̂(Two-star) for the purpose of compu-

tation simplicity and for the fact that 𝑄̂ is independent of 𝑛. In a hypothesis test, it is

more natural to use a statistic whose expectation does not depend on 𝑛, since one

may wish to compare two networks of different sizes. See Remark and Section 2.3.4

for details.

2.4.1 Simulated Data

We simulate graphs from two different graphons. The first is a Stochastic

Block Model (SBM) Holland et al. (1983), which is a widely used model for networks

with communities. A SBM is characterized by a binary cluster membership matrix
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𝑍 ∈ {0, 1}𝑛×𝑟 , where 𝑟 is the number of communities, and a community-community

interaction matrix 𝐵. Conditioned on 𝑍𝑖𝑎 = 1 and 𝑍 𝑗 𝑏 = 1, nodes 𝑖 and 𝑗 form a link

with probability 𝐵𝑎𝑏. We use 𝐵 = ((0.4, 0.1, 0.1), (0.1, 0.5, 0.1), (0.1, 0.1, 0.7)) and

generate a 𝑍 from a Multinomial(0.3, 0.3, 0.4).

For the other graphon, we consider the following parameterization:

ℎ𝑛 (𝑢, 𝑣) = 𝑃(𝐴𝑖 𝑗 = 1 | 𝑋𝑖 = 𝑢, 𝑋 𝑗 = 𝑣) = 𝜈𝑛 |𝑢 − 𝑣 | (GR2)

where 𝜈𝑛 is a sparsity parameter. We use 𝜈𝑛 = 𝑛−1/3. We denote this graphon by GR2.

From these two graphons, we consider graph size 𝑛 of 𝑛 = 100, 500, 1000, 2000,

3000. For each 𝑛, we simulated 100 graphs to calculate the approximate true variance

of edge density, triangle density, two-star density and normalized transitivity among

these graphs.

Computation: For each simulated network, we remove one node at a time,

recalculate a statistic 𝑍𝑛,𝑖 on the graph with (𝑛 − 1) nodes left. Next we compute

the jackknife estimate of the variance V̂arJACK :=
∑
𝑖 (𝑍𝑛,𝑖 − 𝑍̄𝑛)2, where 𝑍̄𝑛 is the

average of the 𝑍𝑛,𝑖’s. It should be noted that for some statistics, jackknife, owing to its

leave-one-node-out characteristic, can be implemented to reduce computation. For

example, in calculating triangles, we calculate the number of triangle on the whole

graph once and the number of triangles each node is involved in. This can be done by

keeping track of the number of common neighbors between a node and its neighbors.

For each statistic mentioned, we report the mean of the ratio V̂arJACK/Var 𝑍𝑛

among 100 graphs of each 𝑛 and a 95% confidence interval from the standard
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deviation from a normal approximation of these 100 ratios. We also plot a dotted line

to denote 1. Closer to this line a resampling procedure is, the better. In Figure 2.1, we

plot this on the 𝑌 axis with 𝑛 on the 𝑋 axis. We also plot the same for subsampling

with 𝑏 = 0.05𝑛, 𝑏 = 0.1𝑛, 𝑏 = 0.2𝑛 performed on the same graphs. Figure 2.1 a,b,c,

and d contain results for the SBM, whereas the rest are for the smooth graphon.

We see that for both graphons, V̂arJACK/Var converges to 1 much more

quickly in comparison to subsampling and has much smaller variance. These figures

also show how susceptible the performance of subsampling is to the choice of 𝑏. For

𝑏 = 0.05𝑛, subsampling overestimates the variance, and exceeds the upper bound on

Y axis of some of the figures. In Figure 2.1 (h) we see that V̂arJACK for the normalized

transitivity converges slowly for GR2, and subsampling with all choices of 𝑏 are

worse as well.

Eigenvalues: Here we examine the performance of jackknife on assessing the

variance of eigenvalues, to which we have not yet extended our theoretical guarantees.

In Figure 2.2 we show the V̂arJACK/Var for the two principal eigenvalues of the

SBM ((a) and (b)) and two graphons described before. Here we only compared with

subsampling with 𝑏 = 0.3𝑛 and 𝑛 = 1000, 2000, 3000 as subsampling for eigenvalues

in sparse graphs only works asymptotically for very large 𝑛 Lunde and Sarkar (2019).

For smaller 𝑛 and 𝑏 in our sparsity setting, we saw that subsamples of adjacency

matrices often were too sparse leading to incorrect estimate of the variance. Let us

first look at Figure 2.2 (a) and (b) for the SBM setting. For both the eigenvalues in this

case, V̂arJACK/Var converges to 1, whereas subsampling consistently underestimates
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Figure 2.2: Ratio of Jackknife estimate V̂arJACK to true variance 𝑉𝑎𝑟 for first and
second eigenvalues in size 𝑛 = 100, 500, 1000, 2000, 3000 graphs simulated from
stochastic block model in (a) and (b) and the graphon GR2 in (c) and (d), compared
to subsampling with 𝑏 = 0.3𝑛 variance estimation on the same graphs.

the true variance. For graphon GR2, we see from Figure 2.2 (c) that both jackknife

and subsampling estimate the true variance well, whereas for the second eigenvalue

(see (d)) they both perform extremely poorly. These preliminary results of jackknife

estimates show tentative evidence that our theory can be applied to statistics beyond

count statistics, like eigenvalues, which we aim to investigate in future work.

2.4.2 Real-world Data

We present two experiments using Facebook network data Rossi and Ahmed

(2015). In the first experiment, we compared three colleges: Caltech, Williams and

Wellesley. While Caltech is known for its strength in natural sciences and engineering,

Williams and Wellesley are strong liberal arts colleges. They all have relatively

small number of students (800-3000), but with different demographics. For example,

Wellesley is a women’s liberal arts college, whereas the other have a mixed population.

We present the 95% confidence intervals (CI) obtained using a normal approximation
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(A) (B)
Figure 2.3: (A) Triangle density , and (B) two-star density (bottom) and their CI’s
based on jackknife and subsampling variance estimates.

with the estimated variances for two-star and triangle densities for these networks.

We see that while all three have similar two-star density, Wellesley has

significantly higher triangle density. We also see that CI’s from jackknife and

subsampling with 𝑏 = 0.1𝑛 and 𝑏 = 0.2𝑛 are comparable. Subsampling with

𝑏 = 0.05𝑛 tends have a wider CI, as it overestimates the variance. It is interesting to

note that, for triangles, subsampling with 𝑏 = 0.2𝑛 took nearly 10 times as much

time as jackknife, since we used the leave-one-node-out structure. In comparison, for

both methods, two-star counting is overall much faster than counting triangles.

In the second experiment, we look at three college pairs: Berkeley and

Stanford, Yale and Princeton, Harvard and MIT. First we decide which statistic

differentiates between a given pair. For this, we split each college data set in half, into

a training set and test set. On each of training set, we estimated their triangle density,

two-star density, normalized transitivity and their variances estimated by jackknife,

demonstrated in Table 2.1. Interestingly, in Table 2.1, the triangle density is large

for all colleges, owing to the sparsity of the networks. From Table 2.1 we can see

normalized transitivity estimates have relatively smaller variance and well separates
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Table 2.1: Triangle, two-star density and normalized transitivity and their variances
estimated in college training sets

College Triangle Two-star Norm. Trans.
Est 𝑉𝑎𝑟 Est 𝑉𝑎𝑟 Est 𝑉𝑎𝑟

Berkeley 77.95 18.10 6.31 0.27 37.05 5.57
Stanford 36.62 5.12 5.90 0.11 18.61 0.16
Yale 24.20 2.40 5.22 0.09 13.90 0.06
Princeton 20.87 2.34 5.25 0.11 11.91 0.06
Harvard 38.56 5.11 6.28 0.10 18.43 0.10
MIT 30.20 7.89 6.11 0.24 14.82 0.15

Figure 2.4: For 3 pairs of colleges, 97.5% CI constructed using V̂arJACK on normalized
transitivity

each of the pairs in training sets. Thus we choose normalized transitivity as the test

statistic. We now obtain jackknife estimate of variance of normalized transitivity

using the the test sets.

Figure 2.4 presents 97.5% CI’s for normalized transitivity for each college.

Thus, two disjoint CI’s are equivalent to rejecting a level 0.05 test. Figure 2.4 basically

shows that transitivity can in fact separate Berkeley and Stanford Facebook networks,

as well as Harvard and MIT Facebook networks, giving us interesting information
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about the inherent differences between the network structures of these colleges.

2.5 Discussion

In the present work, we have shown that the network jackknife is a versatile

tool that may be used in a wide variety of situations. For poorly understood functionals,

the Network Efron-Stein inequality ensures that the jackknife produces conservative

estimates of the variance in expectation. For a general class of functionals related

to counts, we establish consistency of the jackknife. Our empirical investigation is

encouraging regarding the finite sample properties of the procedure, as the network

jackknife outperforms subsampling in many simulation settings.
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Chapter 3

Trading off Accuracy for Speedup: Multiplier
Bootstraps for Subgraph Counts

A paper based partly on the contents of this chapter is under revision (Lin

et al., 2020b).

3.1 Introduction

From social networks like Twitter and Facebook to biological networks like

protein-protein interaction networks and brain networks, network data has become

ubiquitous in a broad range of real-world applications.

Count functionals play a pivotal role in the analysis of network data. In

biological networks, it is believed that certain subgraphs may represent functional

subunits within the larger system (Milo et al., 2002; Chen and Yuan, 2006; Daudin

et al., 2008; Kim et al., 2014). In social networks, the frequency of triangles provides

information about the likelihood of mutual friendships (Newman, 2001; Myers et al.,

2014; Ugander et al., 2011). At a more theoretical level, count functionals may be

viewed as network analogs of the moments of a random variable. Thus, a method

of moments approach may be used to estimate the underlying model under suitable

conditions (Bickel et al., 2011). Furthermore, the convergence of graph sequences
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(at least dense sequences) may be stated in terms of the convergence of a collection

of subgraph frequencies (Borgs et al., 2008).

Given their practical and theoretical importance, quantifying the uncertainty

of count functionals is naturally of substantial interest. While real-world networks

share many qualitative features (see for example, Newman (2003)), they often vary

substantially in terms of size, given by the number of vertices in the network, and

sparsity level, given by the number of edges relative to the number of vertices. For

networks of small to moderate size, inferential methods that are highly accurate are

advantageous; for sparse, massive networks, one needs to simultaneously consider

computational tractability and accuracy.

To meet these diverse needs in real-world applications, we develop a new

family of bootstrap procedures for count functionals of networks, ranging from a

very fast and consistent randomized linear bootstrap to a fast quadratic bootstrap

procedure that offers improved accuracy for moderately sparse networks. Both

procedures may be viewed as approximations1 to a multiplier bootstrap method

in which each potential subgraph in the network is perturbed by the product of

independent multiplier random variables. This multiplier bootstrap is closely related

to a bootstrap method for U-statistics (see for example, Bose and Chatterjee (2018)).

Under the sparse graphon model (see Section 1.1.1), subgraph counts may be viewed

as U-statistics perturbed by asympotically negligible noise, allowing the adaptation

of bootstrap methods for U-statistics to the network setting.

1More precisely, the linear and quadratic bootstraps may be viewed as first and second-order terms
of a Hoeffding decomposition for the multiplier bootstrap, respectively.
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One of the main theoretical contributions of our paper is deriving (uniform)

Edgeworth expansions for the quadratic bootstrap. Edgeworth expansions may be

viewed as a refinement of the Normal approximation that accounts for skewness of the

distribution of interest; an excellent treatment of this topic in the IID setting is given by

Hall (2013). By establishing an Edgeworth expansion for the quadratic bootstrap and

showing that it is very close to the Edgeworth expansion of the sampling distribution,

we show that the bootstrap is higher-order correct under certain sparsity conditions,

meaning that it offers a faster convergence rate in the Kolmogorov distance than the

Berry-Esseen bound. Establishing higher-order correctness is often key to justifying

the (typically) computationally intensive bootstrap over a Normal approximation.

Edgeworth expansions of network moments were first studied by Zhang and

Xia (2020). The authors show that the network noise has a smoothing effect that

allows them to bypass the typical Cramér’s condition, which is restrictive in the

network setting. We also bypass the Cramér’s condition for the bootstrap, but by

using a different approach. We choose a continuous multiplier that matches the first

three moments of the data; it is well-known that continuous random variables satisfy

Cramér’s condition. To derive our Edgeworth expansion for the bootstrap, we also

build upon results from Wang and Jing (2004) for order two U-statistics. It turns out

that network noise, particularly when the graph is sparse, causes certain terms related

to our Edgeworth expansion to blow up. While the details are technical, we show that

a valid Edgeworth expansion is still possible, with the sparsity level directly affecting

the convergence rate.

On the other hand, the linear bootstrap is not higher-order correct in any
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sparsity regime as it only aims to approximate the leading term of the Hoeffding

decomposition. However for sparser networks, we observe an interesting phenomenon;

in this case, the linear bootstrap outperforms the higher-order correct variants in

terms of accuracy. In essence, the extra terms in the quadratic bootstrap cannot be

estimated accurately enough for sparse graphs and consequently these terms hurt

more than they help in sparse regimes. For sparser graphs, we propose speeding up

the linear bootstrap further by randomizing the precomputation of count functionals.

By randomizing to an extent that is appropriate for the sparsity level of the network,

we sacrifice very little statistical performance for vastly reduced computation. Thus,

the approximate linear bootstrap is well-suited for scalable inference on large, sparse

graphs.

In addition to obtaining Edgeworth expansions for count statistics, we also

obtain Edgeworth expansions for smooth functions of U-statistics. We show that,

under suitable sparsity assumptions, the cumulative distribution function of smooth

functions arising from the quadratic bootstrap match this asymptotic expansion and

are therefore higher-order correct. In this setting, obtaining analytical expressions

for Edgeworth expansions are cumbersome, whereas the bootstrap is automatic and

user-friendly.

We will now provide a roadmap for the rest of the paper. In Section 3.2,

we discuss related work, focusing on the emerging area of resampling methods

for network data. The problem setting and our bootstrap proposal is introduced in

Section 3.3. In Section 3.5, we present our main results, which establish higher-order

correctness for our bootstrap procedures. In Section 3.6, we present a simulation
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study, which shows that our procedure exhibits strong finite-sample performance in

various settings. Finally, in Section 3.7, we use our bootstrap methods to compare

networks representing the voting similarities of U.S. Congress from 1949 to 2012.

3.2 Related Work

The first theoretical result for resampling network data was attained by Bhat-

tacharyya and Bickel (2015). Their subsampling proposals involve expressing the

variance of a count functional in terms of other count functionals and estimating the

non-negligible terms through subsampling. Lunde and Sarkar (2019) show that it is

also possible to conduct inference using quantiles of the subsampling distribution as

in Politis and Romano (1994). Green and Shalizi (2017) propose a bootstrap based

on the empirical graphon. Lin et al. (2020a) establish the validity of the network

jackknife for count functionals.

Levin and Levina (2019) study a two-step procedure that is closely related

to our linear bootstrap procedure. The above authors propose estimating the latent

positions with the adjacency spectral embedding in the first step (see, for example,

Athreya et al. (2018)) and resampling the corresponding U-statistic with the estimated

positions in the second step. They derive theoretical results under the assumption

that the rank is known of the random dot product graph model is known and finite.

In contrast, our procedures do not impose assumptions on the spectral properties of

the underlying graphon.

Zhang and Xia (2020) establish conditions under which the empirical

graphon bootstrap exhibits higher order correctness. They require Cramér’s condition

54



for the leading term of the Hoeffding projection, which is restrictive for network

models. The empirical Edgeworth expansion proposal, which has been considered

in other settings (see, for example, Putter and Van Zwet (1998) and Maesono

(1997)), involves studentizing by a variance estimate and plugging in estimated

moments into an Edgeworth expansion. While our rates are less sharp than existing

work, we see that multiplier bootstraps can handle functions of subgraph counts

more easily than empirical Edgeworth corrections. We show that even for smooth

functions, our proposed bootstrap procedures exhibit higher-order correctness. While

computationally more demanding, work in other settings suggests that the bootstrap

may have some favorable properties over empirical Edgeworth expansions (see, for

example, Hall (1990)).

On the mathematical side, the analysis of our multiplier bootstrap involves

Edgeworth expansions for weighted sums. Prior work (c.f. Bai and Zhao (1986) and

Liu (1988)) suggests that establishing sharp rates of convergence for the independent

but non-identically distributed sequences is more difficult, with the above references

establishing a 𝑜(𝑛−1/2) error bound instead of the 𝑂 (𝑛−1) bound for i.i.d. sequences.

Edgeworth expansions for multiplier bootstraps of (degree 2) U-statistics are also

considered in Wang and Jing (2004).

From the computational standpoint, (Chen and Kato, 2019) presented a

randomized algorithm to estimate high dimensional U-statistics from a subsample of

subsets from the set of all subsets of a given size. We propose a different sampling

method that exploits the structure of U-statistics and draws random permutations

instead of subsets. Empirically, we show that this method provides faster computation
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over subset sampling.

3.3 Problem Setup and Notation
3.3.1 Count Functionals

Under the sparse graphon models, recall the definitions of count functionals

in Section 1.1.2. For notational convenience, in this chapter we re-express them as

follows. Let 𝑅 denote the adjacency matrix of a subgraph of interest, with 𝑟 vertices

and 𝑠 edges. Let 𝐴(𝑛)
𝑖1,...,𝑖𝑟

denote the adjacency matrix formed by the node subset

{𝑖1, . . . , 𝑖𝑟} and for each such 𝑟-tuple, define the following function:

𝐻 (𝐴(𝑛)
𝑖1,...,𝑖𝑟

) := 1(𝐴(𝑛)
𝑖1,...,𝑖𝑟

� 𝑅)

where we say that 𝐴(𝑛)
𝑖1,...,𝑖𝑟

� 𝑅 if there exists a permutation function 𝜋 such that

𝐴𝜋(𝑖1),...,𝜋(𝑖𝑟 ) = 𝑅. Our count functional, which we denote 𝑇𝑛 (𝑅), or 𝑇𝑛 when there is

no ambiguity, is formed by averaging over all 𝑟-tuples in the graph.

𝑇𝑛 :=
1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...<𝑖𝑟≤𝑛

𝐻 (𝐴(𝑛)
𝑖1,...,𝑖𝑟

) (3.1)

Recall the definition of 𝑃̂(𝑅) in Eq 1.5. Note that 𝑃̂(𝑅) = 𝜌−𝑠𝑛 𝑇𝑛. Define the following

kernel:

ℎ𝑛 (𝑋𝑖1 , . . . 𝑋𝑖𝑟 ) := E{𝐻 (𝐴(𝑛)
𝑖1,...,𝑖𝑟

) | 𝑋𝑖1 , . . . 𝑋𝑖𝑟 }. (3.2)

For readability, we will suppress the 𝑛 in ℎ𝑛 in what follows. Now, define the following

(conventional) U-statistic:

𝑇𝑛 :=
1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...<𝑖𝑟≤𝑛

ℎ(𝑋𝑖1 , . . . 𝑋𝑖𝑟 )
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For notational convenience we will refer to ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑟 ) by ℎ(𝑋𝑆), where 𝑆 is the

subset {𝑖1, . . . , 𝑖𝑟}. Denote 𝜃𝑛 := E{ℎ(𝑋𝑆)}. We see that 𝜃𝑛/𝜌𝑠𝑛 → 𝜇. This can be

thought of as a normalized subgraph density that we want to infer. The normalization

by 𝜌𝑠𝑛 is to ensure that our functional converges to an informative non-zero quantity.

By a central limit theorem for U-statistics (Hoeffding, 1948), it can be shown

that (𝑇𝑛 − 𝜃𝑛)/𝜎𝑛 is asymptotically Gaussian. Here we have:

𝜏2
𝑛 = var[E{ℎ(𝑋𝑆) | 𝑋1}], 𝜎2

𝑛 = 𝑟2𝜏2
𝑛/𝑛 (3.3)

Furthermore, Bickel et al. (2011) show that, (𝑇𝑛 − 𝑇𝑛)/𝜎𝑛 = 𝑜𝑃 (1) under mild

sparsity conditions for a wide range of subgraphs. Thus, we may view (𝑇𝑛 − 𝜃𝑛)/𝜎𝑛 =

(𝑇𝑛 − 𝑇𝑛)/𝜎𝑛 + (𝑇𝑛 − 𝜃𝑛)/𝜎𝑛 as a U-statistic perturbed by asymptotically negligible

noise.

3.3.2 Preliminaries of proposed bootstrap procedures

In order to estimate the subgraph density, we will consider the following

multiplier bootstrap procedures. In what follows let 𝜉1, . . . 𝜉𝑛 be i.i.d. continuous

random variables with mean 𝜇 = 1 and central moments 𝜇2 = 1, and 𝜇3 = 1. An

example of such a random variable is the product 𝑍 of two independent Normal

random variables 𝑋 and 𝑌, defined below:

𝑋 ∼ 𝑁 (1, 1/2) 𝑌 ∼ 𝑁 (1, 1/3) 𝑍 = 𝑋𝑌 (3.4)

Let 𝜉𝑖1···𝑖𝑟 denote 𝜉𝑖1 × . . . × 𝜉𝑖𝑟 and define the following multiplicative
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bootstrap:

𝑇∗𝑛,𝑀 = 𝑇𝑛 +
1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...𝑖𝑟

𝜉𝑖1···𝑖𝑟 ·
{
𝐻 (𝐴(𝑛)

𝑖1,...,𝑖𝑟
) − 𝑇𝑛

}
(3.5)

Our multiplicative bootstrap is motivated by Hoeffding’s decomposition (see

Supplementary Section B.1 for details). The first two terms of the decomposition for

𝑇𝑛 − 𝜃𝑛 are given by:

𝑔1(𝑋𝑖) = 𝐸{ℎ(𝑋𝑖, 𝑋𝑖2 . . . 𝑋𝑖𝑟 ) | 𝑋𝑖} − 𝜃𝑛

𝑔2(𝑋𝑖, 𝑋 𝑗 ) = 𝐸{ℎ(𝑋𝑖, 𝑋 𝑗 , 𝑋𝑖3 . . . 𝑋𝑖𝑟 ) | 𝑋𝑖, 𝑋 𝑗 } − 𝑔1(𝑋𝑖) − 𝑔1(𝑋 𝑗 ) − 𝜃𝑛,

leading to the representation:

𝑇𝑛 − 𝜃𝑛 =
𝑟

𝑛

𝑛∑︁
𝑖=1

𝑔1(𝑋𝑖) +
𝑟 (𝑟 − 1)
𝑛(𝑛 − 1)

∑︁
𝑖< 𝑗

𝑔2(𝑋𝑖, 𝑋 𝑗 ) + 𝑜𝑝
(
𝜌𝑠𝑛

𝑛

)
(3.6)

Similarly, conditional on the data, it can be shown that we have the following bootstrap

analog. Let:

𝑔̂1(𝑖) =
1(𝑛−1
𝑟−1

) ∑︁
1≤𝑖2<...𝑖𝑟≤𝑛,𝑖𝑢≠𝑖

{
𝐻 (𝐴𝑖,𝑖2,...𝑖𝑟 ) − 𝑇𝑛

}
(3.7)

𝑔̃2(𝑖, 𝑗) =
1(𝑛−2
𝑟−2

) ∑︁
1≤𝑖3<...𝑖𝑟≤𝑛,𝑖𝑢≠𝑖,𝑖𝑢≠ 𝑗

{
𝐻 (𝐴𝑖,𝑖2,...𝑖𝑟 ) − 𝑇𝑛

}
(3.8)

𝑔̂2(𝑖, 𝑗) = 𝑔̃2(𝑖, 𝑗) − 𝑔̂1(𝑖) − 𝑔̂1( 𝑗) (3.9)

Furthermore, Eq 3.7 can be used to standardize the bootstrap replicates using the

following estimate of 𝜏𝑛 (Eq 3.3):

𝜏2
𝑛 =

∑︁
𝑖

𝑔̂1(𝑖)2
𝑛

(3.10)

We now present the Hoeffding decomposition for our bootstrap statistic. The proof is

deferred to Supplement Section B.1.
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Lemma 4. We have the following decomposition:

𝑇∗𝑛,𝑀 − 𝑇𝑛 =
𝑟

𝑛

𝑛∑︁
𝑖=1
(𝜉𝑖 − 1) · 𝑔̂1(𝑖) +

𝑟 (𝑟 − 1)
𝑛(𝑛 − 1)

∑︁
𝑖< 𝑗

(𝜉𝑖 𝜉 𝑗 − 𝜉𝑖 − 𝜉 𝑗 + 1) · 𝑔̃2(𝑖, 𝑗)

+𝑂𝑃

(
𝜌𝑠𝑛𝑛
−1/2𝛿(𝑛, 𝜌𝑛, 𝑅)

)
,

(3.11)

where 𝛿(𝑛, 𝜌𝑛, 𝑅) is defined as follows:

𝛿(𝑛, 𝜌𝑛, 𝑅) =


1
𝑛𝜌𝑛

R is acyclic
1

𝑛𝜌
3/2
𝑛

R is a simple cycle.

Although the quadratic term in the above expansion may seem different from

Eq 3.6, Some manipulation yields that
∑
𝑖< 𝑗 ( 𝜉𝑖 𝜉 𝑗 − 𝜉𝑖 − 𝜉 𝑗 +1) · 𝑔̃2(𝑖, 𝑗) is equivalent

to
∑
𝑖< 𝑗 (𝜉𝑖𝜉 𝑗 − 1)𝑔̃2(𝑖, 𝑗) − (𝜉𝑖 − 1) · 𝑔̂1(𝑖) − (𝜉𝑖 − 1) · 𝑔̂1( 𝑗), which is similar to the

corresponding term in the Hoeffding decomposition of the U statistic (see Eq 3.6).

Viewing 𝑔̂1(𝑖) and 𝑔̂2(𝑖, 𝑗) as estimates of 𝑔1(𝑋𝑖) and 𝑔2(𝑋𝑖, 𝑋 𝑗 ), respectively,

it is clear that that our weighted bootstrap version encapsulates important information

about 𝑇𝑛 − 𝜃𝑛. The above decomposition also suggests that one may approximate the

non-negligible terms more directly. Ignoring the remainder term, we arrive at the

linear and quadratic bootstrap estimates:

𝑇∗𝑛,𝐿 = 𝑇𝑛 +
𝑟

𝑛

𝑛∑︁
𝑖=1
(𝜉𝑖 − 1) · 𝑔̂1(𝑖) (3.12)

𝑇∗𝑛,𝑄 = 𝑇∗𝑛,𝐿 +
𝑟 (𝑟 − 1)
𝑛(𝑛 − 1)

∑︁
𝑖< 𝑗

(𝜉𝑖 𝜉 𝑗 − 𝜉𝑖 − 𝜉 𝑗 + 1) · 𝑔̃2(𝑖, 𝑗). (3.13)

Now that we have introduced the main concepts, we are ready to present the

our bootstrap procedures. We first present the results on our fast linear bootstrap

method.
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3.4 Proposed algorithms

In this section, we present a fast linear bootstrap method using Eq 3.12.

Recall that the multiplicative bootstrap requires to precompute 𝑇𝑛 and 𝑔̂1(𝑖) for all

𝑖. This computation is 𝑂 (𝑛𝑟) in the worst case. In addition to this, the computation

complexity for MB-L is 𝑂 (𝐵𝑛). Therefore, in what follows, our goal is to reduce the

precomputation time.

3.4.1 Fast linear bootstrap

We propose a randomized approximation for 𝑇𝑛 and 𝑔̂1(𝑖). The main idea is

that an average over all size 𝑟 subset can be written as an average over 𝑛! permutations

(see Hoeffding (1948); Lunde and Sarkar (2019)).

For any 𝑖 ∈ {1, . . . , 𝑛}, denote the set of all subsets of size 𝑟 − 1 taken from

{1, . . . , 𝑖 − 1, 𝑖 + 1, . . . 𝑛} as S−𝑖. Denote 𝐻 (𝐴𝑖,𝑖2,...𝑖𝑟 ) for 𝑆 = {𝑖2, . . . 𝑖𝑟} ∈ S{−𝑖} as

𝐻 (𝐴𝑆∪𝑖).

Denote

𝐻1(𝑖) =
1(𝑛−1
𝑟−1

) ∑︁
𝑆∈S{−𝑖}

𝐻 (𝐴𝑆∪𝑖).

One can also write 𝐻1(𝑖) as follows:

𝐻1(𝑖) =
1

(𝑛 − 1)!
∑︁
𝜋

𝐻𝜋 (𝑖).

Here 𝐻𝜋 (𝑖) =

∑
𝑆∈S𝜋 𝐻 (𝐴𝑆∪𝑖)

𝑛−1
𝑟−1

, where S𝜋 denotes the set of all disjoint subsets

{𝜋(𝑖−1) (𝑟−1)+1, . . . , 𝜋𝑖(𝑟−1)}, 𝑖 = 1, . . . , 𝑛−1
𝑟−1 obtained from permutation 𝜋. Now let 𝜋 𝑗
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be a permutation picked with replacement and uniformly at random from the set of

all permutations of {1, . . . , 𝑛} \ 𝑖.

Our randomized algorithm makes use of this structure and draws 𝑗 = 1, . . . , 𝑁

independent permutations 𝜋 𝑗 . We compute

𝐻̃1(𝑖) =
∑
𝑗 𝐻𝜋 𝑗

(𝑖)
𝑁

𝑇𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝐻̃1(𝑖) (3.14)

To calculate 𝐻̃1(𝑖), for each 𝑖, we permute the node set excluding 𝑖 for 𝑁 times

and for each of these permutations 𝜋 we check the disjoint set S𝜋 for count functionals.

Thus, the complexity for calculating 𝐻̃1(𝑖) is now 𝑂
(
𝑁 𝑛
𝑟

)
. From {𝐻̃1(𝑖)𝑛𝑖=1}, 𝑇𝑛 is

calculated from their mean and 𝜏𝑛 is defined as

𝜏2
𝑛 =

∑𝑛
𝑖=1{𝐻̃1(𝑖) − 𝑇𝑛}2

𝑛2 . (3.15)

The linear bootstrap uses 𝑇𝑛,𝐿 by plugging in 𝑔̃1(𝑖) = 𝐻̃1(𝑖) − 𝑇𝑛 and 𝑇𝑛 in Eq 3.12.

𝑇∗𝑛,𝐿 = 𝑇𝑛 +
𝑟

𝑛

𝑛∑︁
𝑖=1
(𝜉𝑖 − 1){𝐻̃1(𝑖) − 𝑇𝑛}, (3.16)

We denote this algorithm by MB-L-apx and explicitly provide the algorithm in

Algorithm 1.

3.4.2 Higher order correct bootstrap procedures

In this section, we present our proposed Quadratic, and Multiplicative

algorithms (MB-Q, and MB-M).
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Algorithm 1. Construction of linear or approximated linear bootstrap estimate of
CDF

Input: Network 𝐴, motif 𝑅, number of resamples 𝐵,
approximate ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, parameter 𝑢

If approximate = 𝑇𝑟𝑢𝑒
Compute {𝐻̃1(𝑖)}𝑛𝑖=1, 𝑇𝑛 (Eq 3.14) and 𝜏𝑛 (Eq 3.15)

Else

Compute 𝑇𝑛, (Eq 3.1), {𝑔̂1(𝑖)}𝑛𝑖=1 (Eq 3.7) and 𝜏𝑛 (Eq 3.10)
End
for 𝑗 ∈ {1, . . . , 𝐵} do

Generate 𝑛 weights ξ( 𝑗) = {𝜉 ( 𝑗)
𝑖
, 𝑖 = 1, . . . , 𝑛}𝐵

𝑗=1 using Eq 3.4
If approximate = 𝑇𝑟𝑢𝑒
𝑇∗𝑛 ( 𝑗) ← 𝑇∗

𝑛,𝐿
(using Eq 3.16.)

Else
𝑇∗𝑛 ( 𝑗) ← 𝑇∗

𝑛,𝐿
(using Eq 3.12.)

End
end

Return
1
𝐵

∑
𝑗 1

(
𝑇∗𝑛 ( 𝑗) − 𝑇𝑛

𝑟

𝑛1/2 𝜏𝑛
≤ 𝑢

)
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Algorithm 2. Construction of quadratic or multiplier bootstrap estimate of CDF

Input: Network 𝐴, motif 𝑅, number of resamples 𝐵, choice of bootstrap
procedure 𝑎 ∈ {𝑀,𝑄}, parameter 𝑢

Compute 𝑇𝑛 (Eq 3.1), {𝑔̂1(𝑖)}𝑛𝑖=1 (Eq 3.7), {𝑔̂2(𝑖, 𝑗)}𝑛𝑖=1 (Eq 3.9) and 𝜏𝑛
(Eq 3.10)

for 𝑗 ∈ {1, . . . , 𝐵} do
Generate 𝑛 weights ξ( 𝑗) = {𝜉 ( 𝑗)

𝑖
, 𝑖 = 1, . . . , 𝑛}𝐵

𝑗=1 using Eq 3.4
If 𝑎 = 𝑀

𝑇∗𝑛 ( 𝑗) ← 𝑇∗
𝑛,𝑀

(using Eq 3.5.)
Else
𝑇∗𝑛 ( 𝑗) ← 𝑇∗

𝑛,𝑄
(using Eq 3.13.)

End
end

Return
1
𝐵

∑
𝑗 1

(
𝑇∗𝑛 ( 𝑗) − 𝑇𝑛

𝑟

𝑛1/2 𝜏𝑛
≤ 𝑢

)
For a given network, we first compute 𝑇𝑛 and 𝜏𝑛 (see Eqs 3.1, 3.10). For

each algorithm, we generate 𝐵 samples of 𝑛 weights {𝜉 ( 𝑗)
𝑖
, 𝑖 = 1, . . . , 𝑛}𝐵

𝑗=1 from the

Gaussian Product distribution (see beginning of Section 3.3.2). For each of these,

MB-M, MB-Q, and MB-L respectively values 𝑇∗
𝑛,𝑀
, 𝑇∗
𝑛,𝑄

and 𝑇∗
𝑛,𝐿

. From the 𝐵 values one

then constructs the CDF of the statistic in question, after shifting and normalizing it

appropriately. We present this in Algorithm 2.

While we divide by 𝑟

𝑛1/2 𝜏𝑛, note that our statistic is not studentized, which

is why our expansion differs from previous work. Conditioned on the data, 𝜏𝑛 is

constant for the bootstrap samples.

Note that MB-M is computationally expensive since it involves computing the

expression in Eq 3.5 for each sample of the bootstrap. The worst-case complexity

of evaluating all
(𝑛
𝑟

)
subsets of nodes is 𝑛𝑟 . For 𝐵 bootstrap samples, the worst-case
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timing of MB-M will be 𝐵𝑛𝑟 . In comparison, for MB-L and MB-Q, we can precompute

the 𝑔̂1(𝑖) and 𝑔̂2(𝑖, 𝑗) values in 𝑂 (𝑛𝑟) time. After that, the time per bootstrap sample

is linear for MB-L and quadratic for MB-Q. Thus worst-case computational complexity

for a dense network for MB-M, MB-Q, and MB-L is 𝑂 (𝐵𝑛𝑟), 𝐵𝑛2 and 𝐵𝑛 respectively,

excluding precomputation time (which is O(𝑛𝑟) in the worst case). In contrast, the

approximate linear bootstrap algorithm MB-L-apx takes O(𝑁𝑛/𝑟) computation for

each 𝐻̃1(𝑖), 𝑖 ≤ 𝑛. Note that we can easily parallelize this step. With 𝐶 cores, that

will lead to a computational cost of 𝑁𝑛2/𝑟𝐶.

3.5 Main Results
3.5.1 Theoretical guarantees for approximate linear bootstrap

In this section, we show that the linear bootstrap statistic using the approximate

moments in Eq 3.14 is indeed first-order correct under appropriate sparsity conditions

as long as 𝑁 is large enough. For theorem 5, we will use the following assumption:

Assumption 1. We assume the following:

(a) 𝜏𝑛/𝜌𝑠𝑛 ≥ 𝑐 > 0, for some constant 𝑐.

(b) 0 < 𝑤(𝑢, 𝑣) < 𝐶, for some constant 𝐶.

The first condition is a standard non-degeneracy assumption for U-statistics.

Theorem 5. Suppose Assumption 1 is satisfied, the weights 𝜉1, . . . , 𝜉𝑛 are generated

from a distribution such that E[𝜉1] = 1, E[(𝜉1−1)2] = 1, E[(𝜉1−1)3] < ∞. Further

assume that 𝜌𝑛 = 𝜔(1/𝑛) when 𝑅 is acyclic or 𝜌𝑛 = 𝜔(𝑛−1/𝑟) when 𝑅 is cyclic. Then,
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(a) The standardized bootstrap distribution converges at the Berry-Esseen rate to

a standard Normal under the condition that 𝑁 ≫ 1
𝑛𝜌𝑠𝑛

,

sup
𝑢∈𝑅

����𝑃∗ ( 𝑇∗
𝑛,𝐿
− 𝑇𝑛

{var(𝑇∗
𝑛,𝐿
| 𝐴, 𝑋)}1/2

≤ 𝑢
)
−Φ(𝑢)

���� = 𝑂𝑃

(
𝑛−1/2

)
, (3.17)

where 𝑃∗(·) denotes the conditional measure conditioned on 𝐴 and 𝑋 .

(b) The variance of 𝑇∗
𝑛,𝐿

satisfies:

var(𝑇∗
𝑛,𝐿
| 𝐴, 𝑋)

𝜎2
𝑛

= 1 +𝑂𝑃

(
1
𝑛𝜌𝑛

)
+𝑂𝑃

(
1

𝑁𝑛𝜌𝑠

)
. (3.18)

(c) If 𝑇∗
𝑛,𝐿

in Eq 3.17 is replaced by the 𝑇∗
𝑛,𝐿

computed without approximate

moments and 𝑇𝑛 is replaced by 𝑇𝑛, then Eq 3.17 holds. We also have:
var(𝑇∗

𝑛,𝐿
| 𝐴, 𝑋)

𝜎2
𝑛

= 1 +𝑂𝑃

(
1
𝑛𝜌𝑛

)
. (3.19)

Remark 4 (Comparison to existing work on approximating𝑈- statistics). In Chen and

Kato (2019), the authors draw𝜔(𝑛) subsets of size 𝑟 from all
(𝑛
𝑟

)
subsets with replace-

ment to estimate an incomplete𝑈-statistic. The total number of subsets we examine

for approximating a local count statistic is also 𝜔(𝑛). Comparing our Theorem 5

with their result shows that both methods require similar computation to achieve

consistency. However, practically, drawing 𝑁𝑛/𝑟 subsamples with replacement seems

to be slower than drawing a 𝑁 permutations and then dividing each into disjoint

subsets (see Fig 3.3).

Remark 5 (Approximation quality). In the above theorem, if 𝑁𝑛/𝑟 = 𝜔(𝜌−𝑠𝑛 ), then

the ratio of the variance of the linear bootstrap statistic and that of the count statistic

in question converges in probability to one. This shows that for sparse networks we

need larger number of random permutations to estimate the moments.
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Remark 6 (Broader Sparsity Regime). Eq 3.19 suggests that the linear bootstrap

without approximation gives a consistent estimate of variance even when the average

degree 𝑛𝜌𝑛 goes to infinity. This shows a stark contrast to Theorem 6 and Corollary 6.1,

where the average degree has to much larger to achieve higher-order correctness. It

should be noted that the arguments in Zhang and Xia (2020) require 𝜌𝑛 = 𝜔(1/
√
𝑛)

for acyclic graphs and therefore, their convergence rates for empirical Edgeworth

expansions do not hold in sparser regimes.

Remark 7 (Conditions on subgraphs). While we state Theorem 5 for acyclic and

general cyclic subgraphs, it should be noted that weaker sparsity conditions are

possible for simple cycles. In particular, for simple cycles one only needs 𝑛𝑠−1𝜌𝑠𝑛 →∞.

3.5.2 Results on higher-order correct bootstrap procedures

Below, we establish an Edgeworth expansion normalized by the true standard

deviation, which is more appropriate for our purposes. Since estimating the variance

leads to a non-negligible perturbation, the polynomials in our expansion differ from

those established by Zhang and Xia (2020). All proofs and details are deferred to

Supplement Section B.3 and Section B.4. In what follows, let 𝐹𝑛 (𝑢) denote the CDF

of 𝑇𝑛 and 𝐺𝑛 (𝑢) denote the Edgeworth expansion of interest, given by:

𝐺𝑛 (𝑢) = Φ(𝑢) −𝜙(𝑡) (𝑢
2 − 1)

6𝑛1/2𝜏3
𝑛

[
𝐸{𝑔3

1 (𝑋1)} +3(𝑟 −1)𝐸{𝑔1(𝑋1)𝑔1(𝑋2)𝑔2(𝑋1, 𝑋2)}
]
.

(3.20)

Furthermore, recall 𝜏2
𝑛 = var[E{ℎ(𝑋𝑆) | 𝑋1}] denotes the asymptotic vari-
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ance of the U-statistic. Throughout this section, we will impose the following

condition:

Assumption 2. For acyclic 𝑅, 𝜌𝑛 = 𝜔(𝑛−1/2) and for cyclic 𝑅, 𝜌𝑛 = 𝜔(𝑛−1/𝑟).

The above is a nontrivial sparsity assumption that we require for higher-order

correctness. We have the following result:

Proposition 3. Let 𝐺𝑛 be the Edgeworth expansion defined in Eq 3.20 and let 𝑅

be a fixed subgraph. Suppose that Assumptions 1 and 2 hold. Further suppose that

𝜌𝑛 = 𝑂 (1/log 𝑛) or Cramér’s condition holds, i.e. lim sup𝑡→∞
��E {

𝑒𝑖𝑡𝑔1 (𝑋1)/𝜏𝑛
}�� < 1

then we have,

sup
𝑢

|𝐹𝑛 (𝑢) − 𝐺𝑛 (𝑢) | = 𝑂 (M(𝑛, 𝜌𝑛, 𝑅)) (3.21)

where 𝐹𝑛 is the cumulative distribution function of

M(𝑛, 𝜌𝑛, 𝑅) =
{ 1
𝑛𝜌𝑛

R is acyclic
1

𝑛𝜌
𝑟/2
𝑛

R is cyclic (3.22)

Now, we will state our bootstrap approximation results. We will first show

that conditioned on the network, and latent variables, the CDF of MB-Q matches

the asymptotic expansion in Eq 3.20, where the true moments are replaced by their

empirical versions. In what follows, let 𝐸̂𝑛 (·) denote the expectation operator with

respect to the empirical measure of 𝐴 and 𝑋 . Define

𝐺̂𝑛 (𝑢) = Φ(𝑢) − (𝑢
2 − 1)𝜙(𝑢)
6𝑛1/2𝜏̂3

𝑛

[
𝐸𝑛

{
𝑔1(𝑖)3

}
+ 3(𝑟 − 1)𝐸𝑛{𝑔1(𝑖)𝑔1( 𝑗)𝑔2(𝑖, 𝑗)}

]
,

(3.23)
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where we have:

𝐸𝑛
{
𝑔1(𝑖)3

}
=

1
𝑛

𝑛∑︁
𝑖=1

𝑔̂1(𝑖)3,

𝐸𝑛{𝑔1(𝑖)𝑔1( 𝑗)𝑔2(𝑖, 𝑗)} =
1(𝑛
2
) ∑︁

1≤𝑖< 𝑗≤𝑛
𝑔̃2(𝑖, 𝑗)𝑔̂1(𝑖)𝑔̂1( 𝑗).

(3.24)

Theorem 6. If Assumptions 1 and 2 are satisfied, the weights 𝜉1, . . . , 𝜉𝑛 are generated

from a non-lattice distribution (see Feller (1971) page 539) such that E[𝜉1] = 1,

E[(𝜉1 − 1)2] = 1, E[(𝜉1 − 1)3] = 1, then

sup
𝑢

�����𝑃∗
(
𝑇∗
𝑛,𝑄
− 𝑇𝑛
𝜎̂𝑛

≤ 𝑢
)
− 𝐺̂𝑛 (𝑢)

����� = 𝑜𝑃 (𝑛−1/2) +𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
,

where 𝑃∗(·) denotes the conditional probability of event (·) conditioned on 𝐴 and 𝑋 .

Remark 8. While the above theorem is for standardized bootstraps, our proof may

be adapted to yield an analogous statement for bootstraps studentized by a variance

estimator inspired by the Delta Method. In essence, the studentized bootstrap may

also be expressed as a weighted U-statistic and a negligible remainder term, allowing

the use of similar proof techniques.

Remark 9. While Zhang and Xia (2020) establish higher-order correctness under

milder sparsity conditions for subsampling and the empirical graphon, our result

here does not require Cramér’s condition for 𝑔1(𝑋𝑖), which is an important feature

for network applications. Our simulation study suggests that our rate here can be

improved, but we leave this to future work.

Combining Theorem 6 with the Hoeffding decomposition in Eq 3.11, we

obtain the corollary below for the multiplicative bootstrap. Since the remainder term

68



in the Hoeffding decomposition concentrates slowly for well-connected subgraphs of

sparser networks, we impose additional assumptions on the subgraph to maintain the

rate from the previous theorem.

Corollary 6.1. Suppose Assumption 1 is satisfied and either R is acyclic and

𝜌𝑛 = 𝜔(1/
√
𝑛) or R is a simple cycle and 𝜌𝑛 = 𝜔(𝑛−1/𝑟). Further suppose that

the weights 𝜉1, . . . , 𝜉𝑛 are generated from a non-lattice distribution with such that

E(𝜉1) = 1, E{(𝜉1 − 1)2} = 1, E{(𝜉1 − 1)3} = 1, then,

sup
𝑢

�����𝑃∗
(
𝑇∗
𝑛,𝑀
− 𝑇𝑛
𝜎̂𝑛

≤ 𝑢
)
− 𝐺̂𝑛 (𝑢)

����� = 𝑜𝑃 (𝑛−1/2) +𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
,

where 𝑃∗(·) denotes the conditional probability of event (·) conditioned on

𝐴 and 𝑋 and 𝜎̂𝑛 = 𝑟𝜏𝑛/𝑛1/2.

The proof of Theorem 6 build upon results from Wang and Jing (2004), which

establish higher-order correctness of the weighted bootstrap for order-2 U-statistics.

However, certain terms that appear as constants in their work blow up when perturbed

by sparse network noise. To deal with this issue, we control various terms unique to

the network setting and use different arguments to control the overall error rate.

As in Zhang and Xia (2020), it is also possible to consider an empirical

Edgeworth expansion in which the expectations of interest are estimated. We state a

result for this procedure below:

Lemma 7. Under the assumptions in Assumption 1 and 2, we have

sup
𝑢

|𝐺̂𝑛 (𝑢) − 𝐹𝑛 (𝑢) | = 𝑂𝑃 (M(𝑛, 𝜌𝑛, 𝑅))

69



The lemma above suggests that the empirical Edgeworth expansion achieves

a better rate than the bootstrap procedures considered. In the experimental section,

we see that the empirical Edgeworth expansion (EW) in fact achieves the smallest

error when the network is dense enough. However, for smooth functions of counts,

it is cumbersome to derive such expansions and the bootstrap emerges as a strong

practical alternative that offers improved accuracy over a Normal approximation in

certain regimes.

3.5.3 Smooth functions of count statistics

In network science, the transitivity coefficient, which may be defined as a

smooth function of triangles and two-stars, is commonly used to quantify how much

nodes in the network cluster together. Given the importance of such functions in

applications, accurate inference for these parameters is naturally of substantial interest.

Our results in this section establish the quadratic and multiplicative bootstraps as

accurate and user-friendly methods for smooth functions of counts that sidestep the

cumbersome computation of gradients and moments required by empirical Edgeworth

expansions.

Our theorem below is the first result in the literature for Edgeworth expansions

of smooth functions of count statistics. In fact, to the best of our knowledge, Edgeworth

expansions for smooth functions of U-statistics were not derived previously. It turns

out that arguments to derive Edgeworth expansions for smooth functions of IID

means such as those in Hall (2013) depend heavily on the properties of cumulants

of independent random variables and require multivariate Edgeworth expansions,
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complicating extensions even to U-statistics. In contrast, we adapt flexible Edgeworth

expansion results of Jing and Wang (2010) to approximate non-negligible terms

arising from a Taylor approximation of the smooth functional.

To state our result, we need to introduce some additional notation. Let 𝑢 denote

a d-dimensional vector of count functionals, let 𝑢∗ be a vector of corresponding

bootstrap statistics generated by either the multiplier bootstrap 𝑇∗
𝑛,𝑀

or the the

quadratic bootstrap 𝑇∗
𝑛,𝑄

. Furthermore, let 𝑓 : R𝑑 ↦→ R denote the function of interest.

Consider the following smooth function of bootstrapped count frequencies:

𝑆∗𝑛 = 𝑛
1/2{ 𝑓 (𝑢∗) − 𝑓 (𝑢)}/𝜎̃ 𝑓 (3.25)

where 𝜎̃ 𝑓 is used to standardize the bootstrap version and will be defined shortly. The

standard Delta Method involves a first-order Taylor expansion; to attain higher-order

correctness, we need to consider a second-order expansion. We use the following

notation to denote the derivatives of interest evaluated at the expectation 𝐸 (𝑢) = 𝜇:

𝑎𝑖 =
𝜕 𝑓 (𝑥)
𝜕𝑥 (𝑖)

����
𝑥=𝜇

, 𝑎𝑖 𝑗 =
𝜕2 𝑓 (𝑥)
𝜕𝑥 (𝑖)𝜕𝑥 ( 𝑗)

����
𝑥=𝜇

, (3.26)

Define corresponding gradients for the bootstrap evaluated at the count

functional 𝑢:

𝑎̂𝑖 =
𝜕 𝑓 (𝑥)
𝜕𝑥 (𝑖)

����
𝑥=𝑢

, 𝑎̂𝑖 𝑗 =
𝜕2 𝑓 (𝑥)
𝜕𝑥 (𝑖)𝜕𝑥 ( 𝑗)

����
𝑥=𝑢

. (3.27)

Define the asymptotic variance of the smooth function as:

𝜎2
𝑓 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎𝑖𝑎 𝑗𝐸

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑙)
𝜌
𝑠 𝑗
𝑛

)
. (3.28)
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and define the empirical analogue of the asymptotic variance as:

𝜎̃2
𝑓 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎̂𝑖 𝑎̂ 𝑗𝐸𝑛

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑙)
𝜌
𝑠 𝑗
𝑛

)
. (3.29)

We are now ready to state our Edgeworth expansion for the smooth function

of the bootstrapped statistics. For simplicity, we state the Edgeworth expansion for

𝑢∗ resulting from the quadratic bootstrap procedure MB-Q. A similar result holds

for MB-M, albeit under stronger conditions on the subgraph like those imposed in

Corollary 6.1.

Theorem 8. Suppose that 𝜎 𝑓 > 0, the function 𝑓 has three continuous derivatives in

a neighbourhood of 𝜇 and suppose that the weights 𝜉1, . . . , 𝜉𝑛 are generated from

a non-lattice distribution such that E(𝜉1) = 1, E{(𝜉1 − 1)2} = 1, E{(𝜉1 − 1)3} = 1.

Further suppose that Assumptions 1 and 2 are satisfied. Then, we have:

𝑃∗(𝑆∗𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝜙(𝑥){ 𝐴̃1𝜎̃
−1
𝑓 +

1
6
𝐴̃2𝜎̃

−3
𝑓 (𝑥

2 − 1)} +𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
.

(3.30)

where:

𝐴̃1 =
1
2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎̂𝑖 𝑗𝐸𝑛

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑙)
𝜌
𝑠 𝑗
𝑛

)
,

𝐴̃2 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑎̂𝑖 𝑎̂ 𝑗 𝑎̂𝑘𝐸𝑛

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑙)
𝜌
𝑠 𝑗
𝑛

𝑟𝑘 𝑔̂
(𝑘)
1 (𝑙)
𝜌
𝑠𝑘
𝑛

)
+ 3

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑑∑︁
𝑡=1

𝑎̂𝑖 𝑎̂ 𝑗 𝑎̂𝑘𝑡𝐸𝑛

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟𝑘 𝑔̂
(𝑘)
1 (𝑙)
𝜌
𝑠𝑘
𝑛

)
𝐸𝑛

(
𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑙)
𝜌
𝑠 𝑗
𝑛

𝑟 𝑗 𝑔̂
(𝑡)
1 (𝑙)
𝜌
𝑠𝑡
𝑛

)
+ 3

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑎̂𝑖 𝑎̂ 𝑗 𝑎̂𝑘𝐸𝑛

(
𝑟𝑖 𝑔̂
(𝑖)
1 (𝑙)
𝜌
𝑠𝑖
𝑛

𝑟 𝑗 𝑔̂
( 𝑗)
1 (𝑚)
𝜌
𝑠 𝑗
𝑛

𝑟𝑘 (𝑟𝑘 − 1)𝑔̃(𝑘)2 (𝑙, 𝑚)
𝜌
𝑠𝑘
𝑛

)
.
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In the Supplementary Material, we derive Edgeworth expansions for smooth

functions of U-statistics corresponding to the non-negligible component of the count

functional in Proposition B.5.1 and show that our bootstrap version of the Edgeworth

expansion is close to this expansion in Proposition B.5.2. To derive Edgeworth

expansions for the U-statistic, we impose a non-lattice condition; however, it is likely

that this assumption can be removed for count functionals if a smoothing argument

used in Zhang and Xia (2020) is adapted.

3.6 Simulation Study

We consider two graphons in our simulation study. The first graphon we

consider is a Stochastic Blockmodel (SBM), introduced by Holland et al. (1983). The

SBM is a popular model for generating networks with community structure. The SBM

may be parameterized by a 𝐾 ×𝐾 probability matrix 𝐵 and a membership probability

vector 𝜋 that takes values in the probability simplex inR𝐾 . Let𝑌1, . . . 𝑌𝑛 ∈ {1, . . . , 𝐾}

be random variables indicating the community membership of the corresponding

node, with probability given by the entries of 𝜋. Under this model, we have that

𝑃(𝐴(𝑛)
𝑖 𝑗

= 1 | 𝑌𝑖 = 𝑢,𝑌 𝑗 = 𝑣) = 𝜌𝑛𝐵𝑢𝑣. In our simulations, we consider a two block

SBM (SBM-G) with 𝐵𝑖 𝑗 = 0.6 for 𝑖 = 1, 𝑗 = 1 and 0.2 for the rest. 𝜋 = (0.65, 0.35)

The second model we use is a smooth graphon model from Zhang et al.

(2017) (SM-G) with 𝑤(𝑢, 𝑣) = (𝑢2 + 𝑣2)/3 × 𝑐𝑜𝑠(1/(𝑢2 + 𝑣2)) + 0.15. This graphon

is continuous and high rank in contrast to the first graphon, which is piece-wise

constant and low rank.

Define err(𝐹, 𝐺) as the maximum of |𝐹 (𝑥) − 𝐺 (𝑥) | over a grid on [−3, 3]
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with grid size 0.1; this will serve as an approximation to the Kolmogorov distance

between 𝐹 and 𝐺. In order to study this error, we first need an estimate of the true

CDF. To this end, we conduct Monte Carlo simulations with 𝑀 samples generated

from each model. Note that, since our goal is to show that the error is better than

the Normal approximation, we need 𝑀 = 𝜔((𝑛𝜌𝑛)2), which ensures that the error

from the Monte Carlo samples is 𝑜(1/𝑛𝜌𝑛). To ease the computational burden, we

perform simulations on small networks with 𝑛 = 160 nodes. We generate 𝑀 = 106

Monte Carlo simulations, so that the higher order correctness is not obscured by

error from the simulations. In addition to this, we also compare the coverage for

different resampling methods in Figure 3.2, where we use 𝑛 = 500, since the true

CDF does not have to be estimated. In this setting we estimate the true parameter of

inferential interest from a 15000 node network. In the next subsection we show how

to obtain higher-order correct confidence intervals.

3.6.1 Higher-order correct confidence intervals

In this paper, we have studied the properties of bootstrap methods for

standardized count functionals of networks. While our Edgeworth expansions establish

that the standardized bootstrap is higher-order correct in the Kolmogorov norm,

it is well known (see Hall (1988)) that corresponding confidence intervals do not

offer refined accuracy over those formed from a Normal approximation. In contrast,

studentized bootstraps produce higher-order correct confidence intervals. While our

theoretical results can be extended to studentized count functionals (see Remark 8),

it is also well-known that for statistics such as correlation coefficients, studentization
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may not be suitable because the variance estimate can be unstable (Hall, 2013).

Alternatively, bias-corrected standardized CIs have also been extensively investigated

in other settings; see for example, Efron (1980), Efron (1987), and Hall (1988). In

this section, we show how to correct standardized intervals to attain higher-order

accuracy for coverage.

The (uncorrected) two-sided confidence interval for the standardized bootstrap

two-sided confidence interval with nominal coverage 𝛼 is given by: I1 =

(
𝑦̂ 1−𝛼

2
, 𝑦̂ 1+𝛼

2

)
,

where we define function 𝐿̂ (𝑡) = 𝑃(𝑇∗𝑛 < 𝑡 | 𝐴, 𝑋) for bootstrap samples {𝑇∗𝑛 }, and

𝑦̂𝛼 = 𝐿̂−1(𝛼). Let 𝑧𝛼 denote standard normal critical point at 𝛼 where Φ(𝑧𝛼) = 𝛼,

then 𝑦̂𝛼 = 𝐿̂−1(𝛼). Equivalently, define 𝑢̂𝛼 as the critical point at 𝛼 for standardized

bootstrap sample (𝑇∗𝑛 − 𝑇𝑛)/𝜎̂𝑛 distribution and 𝑣̂𝛼 as the critical point at 𝛼 for

studentized bootstrap sample (𝑇∗𝑛 − 𝑇𝑛)/𝜎̂∗𝑛 distribution. The standardized bootstrap

CI I1 can be written as

I1 = (𝑇𝑛 + 𝑛−1/2𝜎̂𝑛𝑢̂ 1−𝛼
2
, 𝑇𝑛 + 𝑛−1/2𝜎̂𝑛𝑢̂ 1+𝛼

2
).

Since the population version of I1 involves the true 𝜎𝑛 instead of 𝜎̂𝑛, it follows that

𝜎𝑛 − 𝜎̂𝑛 is too large of a perturbation for higher-order correctness to hold. In order to

make them higher order correct, i.e. make them identical to the studentized CI, one

can correct the CI as follows (see Hall (2013) for more details):

I′1 =

(
𝑦̂ 1−𝛼

2
+ 𝑛−1𝜎̂𝑛

{
𝑝1(𝑧 1−𝛼

2
) + 𝑞1(𝑧 1−𝛼

2
)
}
, 𝑦̂ 1+𝛼

2
+ 𝑛−1𝜎̂𝑛

{
𝑝1(𝑧 1+𝛼

2
) + 𝑞1(𝑧 1+𝛼

2
)
})

(3.31)
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where for any 𝑥 ∈ R, 𝑝1(𝑥) and 𝑞1(𝑥) are estimates for 𝑝1(𝑥) and 𝑞1(𝑥). Recall

that 𝑝1(𝑥) and 𝑞1(𝑥) are polynomial coefficients of the second order term in the

Edgeworth Expansions of the standardized and studentized statistic.

When the statistic is a count functional like the triangle or two-star density,

then we already know the form of 𝑝1(𝑥) and 𝑞1(𝑥). For smooth functions of count

statistics like the transitivity, we derive the standardized and studentized Edgeworth

expansion for the smooth function of the corresponding U statistics in the supplement

Sections B.5.1 and B.6 respectively. We also show that the Edgeworth expansion

of the bootstrapped smooth function converges to this population version in the

supplement Section B.5.4.

3.6.2 Competing methods

We compare our algorithms, namely MB-M and MB-Q, with the network resam-

pling procedures discussed in Section 3.2. In particular, we consider subsampling

with subsample size 𝑏𝑛 = 0.5𝑛 (SS), the empirical graphon with resample size 𝑛 (EG),

the latent space bootstrap (LS), and the empirical Edgeworth expansion (EW). For the

latent space bootstrap, we treat the latent dimension as known for SBM-G and estimate

the latent dimension for SM-G using Universal Singular Value Thresholding (USVT)

procedure of Chatterjee (2015). We provide a brief description of each algorithm

below.

Empirical Graphon (EG). We draw 𝐵 size 𝑛 resamples 𝑆∗
𝑖

with replacement

from 1, . . . , 𝑛 . We compute the count functional 𝑇∗
𝑛,𝑖

on 𝐴(𝑛) (𝑆∗
𝑖
, 𝑆∗
𝑖
). We also

compute 𝑇𝑛 and 𝜎̂2
𝑛 on the whole graph. Now for triangles and two-stars we compute
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the CDF of {(𝑇∗
𝑛,𝑖
− 𝑇𝑛)/𝜎̂𝑛}𝐵𝑖=1. For functions of count functions, we compute the

function for each resampled graph, center using the function computed on the whole

network.

Subsampling (SS). We draw 𝐵 size 𝑏 subsamples 𝑆∗
𝑖

without replacement from

1, . . . , 𝑛 . We compute the count functional 𝑇∗
𝑏,𝑖

on 𝐴(𝑛) (𝑆∗
𝑖
, 𝑆∗
𝑖
). We also compute 𝑇𝑛

and 𝜎̂2
𝑛 on the whole graph. We set 𝜎̂2

𝑏
= 𝑛/𝑏𝜎̂2

𝑛 . Now for triangles and two-stars

we compute the CDF of {(𝑇∗
𝑏,𝑖
− 𝑇𝑛)/𝜎̂𝑏}𝐵𝑖=1. For functions of count functions, we

compute the function for each subsampled graph, center using the function computed

on the whole network.

Latent Space (LS). We first estimate the latent variables 𝑋̂ := {𝑋̂1, . . . , 𝑋̂𝑛}

from the given network. For SBM-G, we use the true number of blocks, whereas for

smooth graphon SM-G, we use the USVT algorithm to estimate the number of latent

variables. We compute the count functional To be concrete, we compute 𝑔1( 𝑋̂𝑖)

for 𝑖 = 1 . . . 𝑛, and then compute 𝑇𝑛 ( 𝑋̂) = 𝑇𝑛 ( 𝑋̂1, . . . , 𝑋̂𝑛). Now we simply use the

additive variant of bootstrap 𝑇𝑛 ( 𝑋̂) + 𝑟
𝑛

∑
𝑖 (𝑔1( 𝑋̂𝑖) − 𝑇𝑛 ( 𝑋̂)) (see Levin and Levina

(2019); Bose and Chatterjee (2018)). For triangles and two-stars, we normalize by

the square root of 𝑟2/𝑛∑
𝑖 𝑔1( 𝑋̂𝑖)2. For functions of count functionals, we center

using the function computed on 𝑋̂ .

We compare the performance of the resampling methods for two-stars,

triangles and a variant of the transitivity coefficient defined in Example 3 of

Bhattacharyya and Bickel (2015), which is essentially an appropriately defined ratio

between triangle and two-star.
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3.6.3 Results
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Figure 3.1: We plot err(𝐹𝑛,𝐹∗𝑛 ) for triangle density for all methods on the 𝑌 axis,
where 𝐹∗𝑛 (𝑡) corresponds to the appropriate resampling distribution. We vary the
sparsity parameter 𝜌𝑛 on the 𝑋 axis. The networks in the left column are simulated
from SBM-G and those in the right column are simulated from SM-G. The first row is
centered at bootstrap mean and normalized by variance estimation from each method
𝜎̂𝑛 The second row is centered by triangles density estimated on the whole graph
(MB-L-apx is centered at approximate triangle density estimated from the whole
graph) and normalized by 𝜎̂𝑛.

In Figure 3.1, we plot the maximum of (absolute) difference of the bootstrap

CDF 𝐹∗𝑛 over the [−3, 3] range (err(𝐹𝑛,𝐹∗𝑛 )) for triangle density from the true CDF

𝐹𝑛 for sparsity parameter 𝜌𝑛 varying from 0.05 to 1. We show the average of the

expected difference over 30 independent runs along with error-bars. In this figure

we see an interesting phenomenon. For sparse networks with 𝜌𝑛 < 0.2, the linear
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Figure 3.2: We present coverage of 95% Bootstrap Percentile CI with correction for
triangles (top) and transitivity coefficient (bottom) of the SBM-G (A) and SM-G (B)
models with 𝜌𝑛 varying from 0.05 to 1

method outperforms the higher order correct methods. As the networks become

denser, the higher order correct methods start performing better. For 𝜌𝑛 ≤ 0.2, we

also see that the empirical Edgeworth expansion performs worse than the linear

bootstrap method. We also compare the bootstrap samples centered at the bootstrap

mean (first row) with bootstrap samples centered at the subgraph density computed

on the whole network. We see that the latest space method (LS) and approximate

linear bootstrap method (MB-L-apx) behave differently under these two centerings,

with LS performing much worse. This suggests that while both suffer from bias, LS

suffers from it to a higher degree. For all parameter settings, we used 𝑁 = 50 log 𝑛.

It is possible that increasing 𝑁 for sparser settings may lead to reduced bias of

MB-L-apx.

In Figure 3.2, we show the coverage of 95% Bootstrap Percentile CI with
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Figure 3.3: Logarithm of running time for four-cycles in SBM-G against sample size
𝑛.

correction for triangles (top) and transitivity coefficient (bottom) of the SBM-G and

SM-G models in 𝜌𝑛 from 0.05 to 1. We simulate 200 graphs for each 𝜌𝑛 from SBM-G

and SM-G models, construct CI from bootstrap percentiles and correct the CI using

Eq 3.31 for triangles and transitivity respectively. For smooth functions, computing

the bootstrap distribution is straightforward. One simply computes 𝑢∗ which is now a

vector of bootstrapped triangles and two-star densities. Now a standardized bootstrap

replicate is given by { 𝑓 (𝑢∗) − 𝑓 (𝑢)}/𝜎̃ 𝑓 , where 𝑢 is the vector of triangles and

two-star densities computed on the whole graph, and 𝜎̃ 𝑓 is given by Eq 3.29. For

transitivity, 𝑓 (𝑥, 𝑦) = 𝑥/𝑦.

3.6.4 Computation time

In Figure 3.3 we show logarithm of running time for 4-cycles count against

growing 𝑛 for SBM-G model. (See the Supplement for timing of SM-G.) We compare

our approximate linear method MB-L-apx with MB-L-SWR, which uses a randomized

algorithm for approximating U-statistics proposed by Chen and Kato (2019), Section

2.2, for precomputation of the local network statistics. We see that among higher
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order correct methods, MB-Q offers strong computational performance, outperforming

methods such as the EG and SS. We see that while EG has comparable performance

to MB-Q, it requires recomputation of the count statistic for every bootstrap iteration,

making it about 500 times slower than MB-Q for 𝑛 = 500 for four-cycle counting.

MB-M is the slowest one we do not show here as the weights make symmetric counting

shortcuts not as simple to apply. EW is the fastest among higher order correct methods,

but it cannot be readily adapted for smooth functions of count statistics and is

much slower compared to additive methods LS, MB-L, MB-L-SWR, MB-L-apx. The

four additive methods, i.e. LS, MB-L, MB-L-SWR, MB-L-apx are the fastest four of

all methods, but they are not higher order accurate; among them MB-L-apx is the

fastest method in all with our proposed approximate precomputation. The procedure

MB-L-SWR draws around 𝑁 (𝑛 − 1)/(𝑟 − 1) size 𝑟 − 1 subsets with replacement,

whereas we draw 𝑁 permutations at random and then divide each into consecutive

disjoint subsets of size 𝑟 − 1. While these two methods have similar computational

complexity theoretically, we observe that MB-L-apx appears to be faster empirically.

For better presentation, additional experiments including the sup of (absolute)

difference of the bootstrap CDFs for two-star density and timing for four-cycles for

the SM-G model are deferred to Supplement Section B.7. The experiments are run

on the Lonestar super computer (1252 Cray XC40 compute nodes, each with two

12-core Intel® Xeon® processing cores for a total of 30,048 compute cores) at the

Texas Advance Computing Center.
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3.7 Real Data Application

In this section, we apply our algorithms to compare networks representing

the voting similarities of U.S. Congress. We use roll call vote data from the U.S.

Figure 3.4: Threshold for forming edges between congress members calculated from
histograms of same-party (SP) and cross-party (CP) agreements, illustrated with
example of 81st Congress and 109th Congress

House of Representatives (Jeffrey B. et al., 2020) from 1949 (commencement of the

81𝑠𝑡 Congress) to 2012 (adjournment of 112𝑛𝑑 Congress). Each Congress forms a

network of representatives (nodes). An edge between a node pair is formed when

the number of agreements, i.e. number of times they both vote yay or nay exceeds

a threshold computed by (Andris et al., 2015) of this congress. The threshold is

computed by constructing histograms of same-party pairs’ number of agreements

and cross-party pair’s number of agreements and using the intersection point of the

two histograms as the threshhold. We will denote same-party by SP and cross-party

by CP. For example, the threshold value is 124 for 81st Congress and 766 for 109𝑡ℎ

Congress as illustrated in Figure 3.4. For each network, we calculate the normalized

cross-party edge density and cross-party triangle density, and perform our bootstrap

methods on these quantities. We construct 95% second-order corrected Confidence
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Intervals from the MB-Q method and present the CIs over 81st to 112nd Congress.

Note that the CIs are adjusted by Bonferonni Correction where 𝛼 = 0.05/32 for 32

experiment congresses.
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Figure 3.5: Bonferroni-adjusted 95% second-order corrected CI for cross party edge
density (left) and cross party triangle density (right) from 1949 (commencement of
the 81st Congress) to 2012 (adjournment of 112nd Congress).

In Figure 3.5, we can a significant decrease in cross party edge densities

and cross party triangle densities over the years, suggesting a trend of decreasing

bipartisan agreement.

3.8 Conclusion

In this paper, we propose multiplier bootstraps for network count functionals.

Our multiplicative proposal involves perturbing a potential subgraph by the product

of independent multiplier random variables. We also present the linear and quadratic

bootstrap, which can be seen as different orders of approximations of the Hoeffding

decomposition of the statistic arising from the multiplier bootstrap. We show that

the quadratic bootstrap is higher-order correct for moderately sparse graphs whereas

the linear bootstrap is first-order correct but faster. For the first time in the literature,

we also derive Edgeworth expansions for smooth functions of counts. Empirically,
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we observe an interesting phenomenon in which the linear bootstrap, which is not

higher-order correct in any regime, performs better than other methods for sparse

graphs since the higher-order correct methods directly or indirectly involve estimation

of higher-order moments that may not be accurately estimated under sparsity. To truly

harness the computational power of the linear bootstrap, we also present and analyze

an approximate bootstrap method which uses randomized sketching algorithms for

estimating local network counts that are used by the linear method. Taken together,

we establish the multiplier bootstrap as a user-friendly, automatic procedure that can

be tailored to yield higher-order correctness or scalable and consistent inference.
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Chapter 4

Separate Exchangeability as Modeling Principle in
Bayesian Nonparametrics

This chapter is submitted for publication (Lin et al., 2021). It is currently

under review for Statistical Science.

4.1 Introduction

We argue for the use of separate exchangeability as a modeling principle and

unifying framework for data that involves multiple sets of experimental units. While

exchangeability and partial exchangeability have proven to be powerful principles

for statistical modeling (Bernardo and Smith, 2009), separate exchangeability has

been curiously under-used as a modeling principle in some of the nonparametric

Bayesian literature. In the context of two typical examples, we introduce two modeling

frameworks that implement inference under separate exchangeability.

Contrary to partial exchangeability and exchangeability, separate exchange-

ability facilitates inference that maintains the identity of experimental units in

situations like the two motivating applications with shared sets of one type of

experimental units over subsets of the other type of experimental units or blocks.

That is, if the data (or a design matrix) is a rectangular array, the nature of rows

85



and columns as different experimental units is preserved. See the two motivating

examples for illustrations.

Under parametric inference separate exchangeability is often naturally pre-

served by just introducing additive row- or column-specific effects. In contrast, this

is not true in nonparametric Bayesian models. In the present article we discuss two

general strategies to define Bayesian nonparametric (BNP) models to perform flexible

inference and prediction under separate exchangeability. The first example concerns

inference for microbiome data, with 𝐽 patients and 𝐼 OTUs (essentially different

types of microbiomes) being two different experimental units (Denti et al., 2021).

We discuss how to define separately exchangeable partition structures via nested

partitions similar to Lee et al. (2013). The second example is about inference for

protein activation for 𝐼 proteins in 𝐽 patients, under two different conditions. We

build a separately exchangeable model for random effects, using simple additive

structure.

The rest of this article is organized as follows. Section 4.2 reviews the notion

of exchangeability and how it relates to modeling in Bayesian inference. Section 4.2.3

discusses the borrowing of information under separate exchangeability, focusing in

particular on dependent random partitions as they arise under mixture models. Section

4.3 describes two motivating data sets. In the context of these two applications we

then proceed to introduce two specific models to implement separate exchangeability

in related problems. Section 4.4 presents one general strategy based on a construction

of nested partitions that preserves the identity of two types of experimental units. The

strategy is illustrated with inference for the microbiome data set. Section 4.5 presents
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another general strategy based on a BNP regression model with an additive structure

of random effects related to the two types of experimental units. Section 4.6 contains

concluding remarks and suggested future work. Additional details, including Markov

chain Monte Carlo (MCMC) based posterior inference algorithms, are presented in

the supplementary materials.

4.2 Exchangeability as a Modeling Principle

To perform inference and prediction we rely on some notion of homogeneity

across observations that allows us to leverage information from the sample 𝑥1:𝑛 =

(𝑥1, . . . , 𝑥𝑛) to deduce inference about a set of future observations 𝑥𝑛+1:𝑛+𝑚. De Finetti

refers to this as “analogy” (de Finetti, 1937). In Bayesian statistics, the assumptions

are stated in the language of probability and learning is naturally performed via

conditional probability.

4.2.1 Exchangeability and partial exchangeability.

Exchangeability. A fundamental assumption that allows such generalization in

Bayesian learning is exchangeability, that is, invariance of the joint law of the

data with respect to permutations of the observation indices. This entails that the

order of the observations is irrelevant in the learning process and one can deduce

inference for 𝑥𝑛+1:𝑛+𝑚 from observations 𝑥1:𝑛. More precisely, a sequence 𝑥1:𝑛 is

judged exchangeable if

𝑥1:𝑛
𝑑
= 𝑥𝜋(1:𝑛) (4.1)
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for any permutation 𝜋 of [𝑛] B {1, . . . , 𝑛}. Here 𝑑
= denotes equality in distribution.

If the observable 𝑥1, . . . , 𝑥𝑛 are considered a sample from an infinite exchangeable

sequence (𝑥𝑖)𝑖≥1, that is finite exchangeability holds for any sample size 𝑛 ≥ 1, de

Finetti’s theorem (de Finetti, 1930) states that such an extendable sequence 𝑥1, . . . , 𝑥𝑛

is exchangeable if and only if it can be expressed as conditionally independently

identically distributed (i.i.d.) from a random probability 𝑃. The model is completed

with a prior on 𝑃:

𝑥𝑖 | 𝑃 𝑖𝑖𝑑∼ 𝑃, 𝑖 = 1, 2, . . .

𝑃 ∼ L. (4.2)

The characterization of infinite exchangeability as a mixture of i.i.d. sequences

highlights the fact that the homogeneity assumption of exchangeability in Bayesian

learning is equivalent to assuming an i.i.d. sequence in the frequentist paradigm. The

de Finetti measure L can be interpreted as the prior in the Bayes-Laplace paradigm.

The random measure 𝑃 in (4.2) is known as the directing measure and its prior L

is known as the de Finetti measure. If 𝑃 is restricted to a parametric family, we

can write 𝑃 as 𝑃𝜃 , where 𝜃 denotes a finite dimensional random parameter and L

reduces to a prior probability model on 𝜃. However, if 𝑃 is unrestricted we have the

characterization in (4.2) and L can take the form of a BNP prior on 𝑃 (Müller and

Quintana, 2004).

Note that the unknown probability 𝑃 arises from an assumption on observable

quantities, justifying inference on the parameters/latent quantities in terms of measur-

able quantities. Eliciting assumptions in terms of observable, and thus testable, events
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is fundamental in science also if the main inference goal were inference on latent

quantities. In general, a predictive approach of statistics is becoming increasingly

popular in the statistics and machine learning community. See Fortini et al. (2000,

2012) or Fortini and Petrone (2016) for interesting discussions of the predictive

approach and characterization results for the prior probability measure in terms of

predictive sequences under exchangeability and partial exchangeability.

Partial exchangeability. In real world applications, the assumption of exchangeabil-

ity is often too restrictive. To quote de Finetti (1937): “But the case of exchangeability

can only be considered as a limiting case: the case in which this ‘analogy’ is, in

a certain sense, absolute for all events under consideration. [..] To get from the

case of exchangeability to other cases which are more general but still tractable, we

must take up the case where we still encounter ‘analogies’ among the events under

consideration, but without attaining the limiting case of exchangeability.” Indeed,

depending on the design of the experiment it is often meaningful to generalize

exchangeability to less restrictive invariance assumptions that allow us to introduce

more structure into the prior, and thus into the learning mechanism.

If the data are collected in different, related populations a simple generalization

of exchangeability is partial exchangeability. Let X = (𝑥𝑖 𝑗 : 𝑖 = 1, . . . , 𝐼 𝑗 , 𝑗 =

1, . . . , 𝐽) denote a data array, where 𝑗 is the label of the population from which 𝑥𝑖 𝑗 is

collected. We say that X is partially exchangeable if the joint law is invariant under
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different permutations of the observations within each population

(𝑥𝜋 𝑗 (𝑖), 𝑗 : 𝑖 = 1, . . . , 𝐼 𝑗 ; 𝑗 = 1, . . . , 𝐽) 𝑑= (𝑥𝜋 𝑗 (𝑖), 𝑗 : 𝑖 = 1, . . . , 𝐼 𝑗 ; 𝑗 = 1, . . . , 𝐽),
(4.3)

for any family of permutations {𝜋1, . . . , 𝜋𝐽}. Partial exchangeability entails that the

order of the observations is irrelevant in the learning mechanism up to preserving

the information of the population memberships. If partial exchangeability holds for

any sample sizes (𝐼1, . . . , 𝐼𝐽) the “analogy” assumption of partial exchangeability

can be characterized in terms of latent quantities (e.g. parameters) via de Finetti’s

theorem (de Finetti, 1937),

𝑥𝑖 𝑗 | (𝑃1, . . . , 𝑃𝐽) 𝑖𝑛𝑑∼ 𝑃 𝑗 𝑗 = 1, 2, . . . ; 𝑖 = 1, 2, . . .

(𝑃1, . . . , 𝑃𝐽) ∼ L. (4.4)

Therefore, partially exchangeable extendable arrays can be thought of as decompos-

able into different conditionally independent exchangeable populations. As in (4.2)

the characterization in (4.4) does not restrict the distributions associated with the

different populations to any parametric family. The 𝑃 𝑗 would usually be assumed to

be dependent, allowing borrowing of strength across blocks.

Note that exchangeability is a degenerate special case of partial exchangeability

which corresponds to ignoring the information on the specific populations 𝑗 from

which the data are collected, i.e., ignoring the known heterogeneity. The opposite,

also degenerate, extreme case corresponds to modeling data from each population

independently, i.e., ignoring similarities between populations. See Aldous (1985) or

Kallenberg (2006) for detailed probabilistic accounts on different exchangeability
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assumptions and Foti and Williamson (2013) and Orbanz and Roy (2014) for

insightful discussions on the topic in the context of non-parametric Bayesian models

(BNP).

The way how partial exchangeability preserves heterogeneity is perhaps easiest

seen in considering marginal correlations between pairs of observations. As desired,

partial exchangeability allows increased dependence between two observation arising

from the same experimental condition, compared to correlation between observations

arising from different populations. For instance, under partial exchangeability (4.3)

it is possible that

Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ) > Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ′), 𝑗 ≠ 𝑗 ′, 𝑖 ≠ 𝑖′ (4.5)

while by definition of exchangeability, under (4.1)

Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ) = Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ′), (4.6)

entailing that in the learning process we can borrow information across groups, but to

learn about a specific population 𝑗 the observations recorded in the same population

𝑗 are more informative than observations from another population 𝑗 ′. Here and in

the following we assume that 𝑥𝑖 𝑗 are real valued, square integrable random variables

such that the stated correlations are well defined. See Appendix A for a (simple)

proof of (4.5).

Going beyond correlations between individual observations, one can see a similar

pattern for groups of observations under populations 𝑗 and 𝑗 ′. See Section 4.2.3 for

more discussion.
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Statistical inference. From a statistical perspective partial exchangeability is a

framework that allows to borrow information across related populations while still

preserving heterogeneity of populations. Partially exchangeable models are widely

used in many applications, including meta-analysis, topic modeling and survival

analysis when the design matrix records different statistical units (e.g. patients) under

related experimental conditions (e.g. hospitals).

Flexible learning can be achieved assuming dependent non-parametric priors

for the vector of random probabilities 𝑃 𝑗 in (4.4). An early proposal appeared in

Cifarelli and Regazzini (1978), but the concept was widely taken up in the literature

only after the seminal paper of MacEachern (1999) introduced the dependent DP

(DDP) as a prior over families F = {𝐹𝑥 , 𝑥 ∈ 𝑋}, an instance of which could be used

for L in (4.4). See Quintana et al. (2020) for a recent review of DDP models.

Finally, in anticipation of the later application examples we note that while

in a stylized setup it is convenient to think of 𝑥𝑖 𝑗 in (4.4) as the observable data, in

many applications the discussed symmetry assumptions are used to construct prior

probability models for (latent) parameters. The 𝑥𝑖 𝑗 might be, for example, cluster

membership indicators for bi-clustering models, or any other latent quantities in a

larger hierarchical model. The same comment applies for the upcoming discussion

of separate exchangeability.

4.2.2 Separate exchangeability.

We discussed earlier that exchangeability can be too restrictive to model

the case when observations are arranged in different populations. Similarly, partial
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exchangeability can prove to be too restrictive when the same experimental unit is

recorded across different blocks of observations (e.g., the same patient is recorded in

different hospitals). A similar case arises when two types of experimental units are

involved, and observations are recorded for combinations of the two types of units,

as is common in many experimental designs (e.g., in the first motivating study in

Section 4.3 the same type of microbiome is observed across different subjects).

In such a case a simple, but effective, homogeneity assumption that preserves

the information on the experimental design is separate exchangeability, that is,

invariance of the joint law under different permutations of indices related to the two

types of units (or blocks). If data is arranged in a data matrix with rows and columns

corresponding to two different types of units (or blocks), this reduces to invariance

with respect to arbitrary permutations of rows and column indices. More precisely, a

data matrix is separately exchangeable if

𝑥1:𝑛,1:𝐽
𝑑
= 𝑥𝜋1 (1:𝑛),𝜋2 (1:𝐽) (4.7)

for separate permutations 𝜋1 and 𝜋2 of rows and columns, respectively.

The notion of separate exchangeability formally reflects the known design in

the learning mechanism. That is, it introduces more dependence between two values

recorded from the same statistical unit than between values recorded in different

statistical units. Note also that partial exchangeability of 𝑥1:𝐼,1:𝐽 grouped w.r.t. columns

plus exchangeability of the columns is a stronger homogeneity assumption than

separate exchangeability in a similar way as exchangeability is a degenerate case

of partial exchangeability (i.e. we loose some structure). Similar to (4.5) and (4.6),
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under separate exchangeability it is possible that

Corr(𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 ′) > Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ′), 𝑗 ≠ 𝑗 ′, 𝑖 ≠ 𝑖′ (4.8)

while by the definition of partial exchangeability, under (4.3) we always have

Corr(𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 ′) = Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ′). (4.9)

In fact, inequality (4.8) is always true with ≥ (for extendable separately exchangeable

array), as can be shown similar to a corresponding argument for partial exchangeability

in Appendix A. See Section 4.2.3 for a more detailed discussion on the borrowing of

information under partial and separate exchangeability.

Finally, we conclude this section reviewing a version of de Finetti’s theorem

for separately exchangeable arrays. If 𝑥1:𝐼,1:𝐽 is extendable, that is, it can be seen as a

projection of (𝑥𝑖 𝑗 : 𝑖 = 1, 2, . . . ; 𝑗 = 1, 2, . . .), a representation theorem in terms of

latent quantities was proven independently by Aldous (1981) and Hoover (1979). See

also Kallenberg (1989) and reference therein. More precisely, an extendable matrix

𝑥1:𝑛,1:𝐽 is separately exchangeable if and only if

𝑥𝑖 𝑗 = 𝑓 (𝜃, 𝜉𝑖, 𝜂 𝑗 , 𝜁𝑖 𝑗 ), (4.10)

for some measurable function 𝑓 : [0, 1]4 → R and i.i.d. Unif(0, 1) random variables

𝜃, 𝜉𝑖, 𝜂 𝑗 and 𝜁𝑖 𝑗 , 𝑖, 𝑗 ∈ N. The representation theorem in (4.10) implies a less

strict representation theorem in which the uniform distributions are replaced by

any distributions 𝑝𝜉 , 𝑝𝜂 and 𝑝𝜁 , as long as independence is maintained (together

with a corresponding change of the domain for 𝑓 ). This representation in turn can
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alternatively be written as

𝑝(𝑥1:𝐼,1:𝐽) =
∫

𝑝𝜃 (𝜃)
𝑛∏
𝑖=1

𝑝𝜉 (𝜉𝑖)
𝐽∏
𝑗=1

𝑝𝜂 (𝜂 𝑗 )
∏
𝑖 𝑗

𝑝(𝑥𝑖 𝑗 | 𝜃, 𝜉𝑖, 𝜂 𝑗 ) 𝑑𝜃 𝑑𝜉1:𝑛 𝑑𝜂1:𝐽 .

(4.11)

Similar to (4.2) or (4.4) model (4.11) can be stated as a hierarchical model

𝑥𝑖 𝑗 | 𝜃, 𝜂 𝑗 , 𝜉𝑖 𝑖𝑛𝑑∼ 𝑃𝜃,𝜉𝑖 ,𝜂 𝑗 , 𝑖 = 1, . . . ; 𝑗 = 1, 2, . . .

𝜃 ∼ 𝑝𝜃 ⊥ 𝜉𝑖
𝑖𝑖𝑑∼ 𝑝𝜉 ⊥ 𝜂 𝑗

𝑖𝑖𝑑∼ 𝑝𝜂, 𝑖 = 1, 2, . . . ; 𝑗 = 1, 2, . . . (4.12)

where 𝑃𝜃,𝜉𝑖 ,𝜂 𝑗 is the law of 𝑝(𝑥𝑖 𝑗 | 𝜃, 𝜉𝑖, 𝜂 𝑗 ) in (4.11). Finally, in both, (4.11) and

(4.12), the probability models can still be indexed with unknown hyperparameters.

4.2.3 Separately exchangeable random partitions

We discuss in more detail the nature of borrowing of information under partial

and separate exchangeability. For easier exposition we focus on a matrixX = [𝑥𝑖 𝑗 , 𝑗 =

1, . . . , 𝐽, 𝑖 = 1, . . . , 𝐼], with two columns, i.e. 𝐽 = 2. Note that the assumptions of

partial and separate exchangeability imply marginal exchangeability within columns.

Moreover, we exclude the degenerate cases of (marginal) independence between 𝑥1:𝑖 𝑗

and 𝑥1:𝐼, 𝑗 ′, when no borrowing of strength occurs under Bayesian learning, as well as

the fully exchangeable case when we loose heterogeneity across columns.

In the previous section we discussed how separate exchangeability, contrary

to partial exchangeability, allows to respect the identity of an experimental unit 𝑖 by

allowing for increased dependence between 𝑥𝑖,1 and 𝑥𝑖,2 compared to dependence
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between 𝑥𝑖,1 and 𝑥𝑖′,2. 1

We now extend the discussion to borrowing of information also on other

functionals of interest of 𝑥1:𝐼,1 and 𝑥1:𝐼,2, potentially even while assuming 𝑥𝑖,1 and

𝑥𝑖′,2 independent for any 𝑖, 𝑖′ ∈ [𝐼], but 𝑥1:𝐼,1 and 𝑥1:𝐼,2 dependent. In the following

we focus on a fundamental example related to borrowing of information about a

partition of 𝑥1:𝐼,1 and 𝑥1:𝐼,2. For this discussion, we assume discrete 𝑃𝜃,𝜉,𝜂. In that

case, ties of (𝑥𝑖 𝑗 , 𝑖 = 1, 2, . . .) define a partition of {1, . . . , 𝐼} for each column 𝑗 (and

similarly for rows – but for simplicity we only focus on columns). Let Ψ 𝑗 denote this

partition in column 𝑗 . A common context when such situations arise is when 𝑥𝑖 𝑗 are

latent indicators in a mixture model for observable data 𝑦𝑖 𝑗 , with a top level sampling

models 𝑝(𝑦𝑖 𝑗 | 𝑥𝑖 𝑗 = ℓ, 𝜑ℓ), where 𝜑ℓ are additional cluster-specific parameters.

Similarly, a partially exchangeable model (4.4) with discrete probability

measures 𝑃 𝑗 defines a random partition Ψ 𝑗 in column 𝑗 . If we then induce dependence

between Ψ1 and Ψ2 (by way of dependent 𝑃 𝑗 ), it is possible to borrow information

about the law of the random partitions, for example, the distribution of the number of

clusters. See Franzolini et al. (2021) for definition and probabilistic characterizations

of partially exchangeable partitions. However, by definition of partial exchangeability

(4.3), with only partial exchangeability it is not possible to borrow information about

the actual realizations of the random partitions Ψ1,Ψ2. For example, under a partially

exchangeable partition

𝑝({𝑥1, 𝑗 ′ = 𝑥2, 𝑗 ′} | {𝑥1, 𝑗 = 𝑥2, 𝑗 }) = 𝑝({𝑥1, 𝑗 ′ = 𝑥3, 𝑗 ′} | {𝑥1, 𝑗 = 𝑥2, 𝑗 }). (4.13)

1Note that sometimes it might be desirable to introduce negative dependence (repulsion), e.g. as
Corr(𝑥𝑖,1, 𝑥𝑖′,2) < 0.
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In contrast, under separate exchangeability it is possible to have

𝑝({𝑥1, 𝑗 ′ = 𝑥2, 𝑗 ′} | {𝑥1, 𝑗 = 𝑥2, 𝑗 }) > 𝑝({𝑥1, 𝑗 ′ = 𝑥3, 𝑗 ′} | {𝑥1, 𝑗 = 𝑥2, 𝑗 }). (4.14)

From a statistical perspective this means that under separate exchangeability the fact

that two observations are clustered together (e.g. 1 and 2) in one column can increase

the probability that the same two observations are clustered together in another

column. This difference in the probabilistic structures, and thus in the borrowing

of information under Bayesian learning, is particularly relevant when observations

indexed by 𝑖 have a meaningful identity in a particular application. For example,

in one of the motivating examples, units 𝑖 = 1, 2, 3 refer to three different types of

microbiomes (OTU). In words, (4.14) implies that seeing OTUs 1 and 2 clustered

together in subject 𝑗 increases the probability of seeing the same OTUs co-cluster

in subject 𝑗 ′. In the actual application 𝑥𝑖 𝑗 will refer to parameters in a hierarchical

model.

In Section 4.4 we discuss an effective way to define flexible, but analytically

and computationally tractable, non-degenerate separately exchangeable partitions.

We first cluster columns, and then set up nested partitions of the rows, nested within

column clusters. That is, all columns in the same column-cluster share the same

nested partition of rows.

4.3 Two Examples

We use two motivating examples to illustrate the notion of separate exchange-

ability, and to introduce two modeling strategies that provide specific implementations

97



respecting separate exchangeability.

In the first example we assume separate exchangeability for data 𝑦𝑖 𝑗 . In short,

we construct a separately exchangeable model for a data matrix [𝑦𝑖 𝑗 ] by setting up a

partition of columns and, nested within column clusters, partitions of row. Such nested

partitions are created by assuming separate exchangeability for parameters 𝑥𝑖 𝑗 in a

hierarchical prior model. In the second example we assume separate exchangeability

for the prior on model parameters 𝜃𝑖𝑡 which index semi-parametric regression models.

The separately exchangeable model is set up in a straightforward way by defining

additive structure with exchangeable priors on terms indexed by 𝑖 and 𝑡. In both cases

the model is separately exchangeable without reducing to the special cases of partial

exchangeability or marginal exchangeability.

Microbiome data - random partitions. The first example is inference for micro-

biome data for 𝐽 = 38 subjects and 𝐼 = 119 OTUs (operational taxonomic units). The

data report the frequencies 𝑦𝑖 𝑗 of OTU 𝑖 for subject 𝑗 (after suitable normalization). In

building a model for these data we are guided by separate exchangeabilty with respect

to subject indices 𝑗 and OTU indices 𝑖. We use a publicly available microbiome data

set from a diet swap study (O’Keefe et al., 2015). The same data was analyzed by

Denti et al. (2021). The dataset includes subjects from the US and rural Africa. The

interest is to investigate the different patterns of microbial diversity (OTU counts)

across subjects and how the distributions of OTU abundancy vary across subgroups

of subjects. Focusing on inference for microbial diversity they restricted attention to

inference about identifying clusters of subjects with similar distributions of OTU
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frequencies, considering OTU counts 𝑦𝑖 𝑗 as partially exchangeable. While this focus

is in keeping with the tradition in the literature, it is ignoring the shared identity of

the OTUs 𝑖 across subjects 𝑗 . In Section 4.4 we will set up an alternative model that

respects OTU identity by modeling the data as separately exchangeable.

We show some summary plots of the data, trying to motivate the proposed

inference. First we sort OTUs by overall abundancy (across all subjects). Figure 4.1

(top) shows the cumulative relative frequencies of OTUs in rural Africans (RU),

African Americans (AA) and all subjects, highlighting a difference in distribution

of OTU frequencies between RU and AA. Throughout, The OTU frequencies in

this data have been scaled by average library size, i.e, 𝑦𝑖 𝑗 is the absolute count of

OTU 𝑧𝑖 𝑗 normalized by the totals 𝛾 𝑗 =
∑𝑛
𝑖=1 𝑧𝑖 𝑗 . The two barplots at the bottom of

the same figure show OTU abundancies in the two groups, suggesting that subjects

might meaningfully group by distribution OTU frequencies.

In Figure 4.2, we show hierarchical clustering for subjects based on the 10

OTUs with highest empirical variance. Note how the clusters correlate well with

the two groups, RA and AA, suggesting that in grouping subjects by distribution

of OTUs frequencies we should proceed in a way that maintains and respects OTU

identities (as is the case in the hierarchical clustering). Importantly, any inference on

such groupings has to account for substantial uncertainty. Observing these features

in the figures motivates us to formalize inference on grouping subjects by OTU

abundancies using model-based inference. We will set up a separately exchangeable

model, exchangeable with respect to subject and OTU indices.
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Figure 4.1: Top: Cumulative Relative Frequencies of OTU for average Rural Africans
(RU), average African Americans (AA) and average of all subjects. Bottom: Histogram
of OTU abundancy in RA and AA (scaled as described in the text).

Protein expression - nonparametric regression. In a second example we analyze

protein measurement data in a study of ataxia, a neurodegenerative disease. The

same data is studied in Lee et al. (2021). The data measures the abundancy of 4350

potentially disease-related proteins among two groups of subjects, one control group

and one patient group. Each group includes 16 subjects with ages between 5 and 50

years. The subjects’ ages define time for our observations. There are 𝑇 = 16 unique

times 𝜏𝑡 , 𝑡 = 1, . . . , 𝑇 , with one control and one patient for each unique time 𝜏𝑡 . That

is, 𝜏 refers to time in calendar years, and 𝑡 is an index in the list of the 𝑇 unique

time points. The data are protein activation data 𝑦𝑖 𝑗 , 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝐼, for
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Figure 4.2: Agglomerative Hierarchical Clustering with Euclidean Distance and
Complete method subjects using 10 OTUs with highest cross-subject variance.

the 𝐽 = 32 subjects and 𝐼 = 4350 proteins. For each subject, 𝑧 𝑗 is an indicator for

being a patient (𝑧 𝑗 = 1) or control (0), and 𝑡 𝑗 ∈ {1, . . . , 𝑇} denotes the age. The

inference goal is to identify proteins that are related with the disease, defined as

proteins with a large difference between patients and controls in change of protein

expression over age. We set up a nonparametric regression for 𝑦𝑖 𝑗 versus age 𝑡 𝑗 . The

regression mean function is constructed using a cubic B-splines with 2 interior knots,

an offset for protein 𝑖, and an interaction of treatment and B-spline, to allow for a

difference in spline coefficients for patients versus controls. See the later discussion

for more model details. In this case, the separate exchangeability assumption is made

for protein-and-age specific effects 𝜃𝑖𝑡 that appear in the regression mean function.

Figure 4.3 shows a random subset of the data. The figure shows protein

expression (on a logarithmic scale) over time for 10 randomly selected proteins,

separately for patient and control groups. The figure highlights the high level of noise

in this data. Recall the primary inference goal of identifying proteins with the largest
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Figure 4.3: Randomly selected 10 proteins: log abundancy 𝑦𝑖 𝑗 against age 𝑡 𝑗 . Solid
lines correspond to patients (𝑧 𝑗 = 1), and dotted lines indicate controls (𝑧 𝑗 = 0).
Lines corresponding to the same protein share the same color.

Table 4.1: Top 10 selected proteins using simple data summaries. Notice the lack of
overlap. See the text for details.

Naive method 1: Empirical difference of differences
1 Q9H6R3 Q9Y3E1 P49591 Q9NQ66-1 P01859
6 O60256-1 P10915 P10768 P53041 Q9H6U6-8
Naive method 2: separate regression for each protein
1 Q13634-1 Q9Y6U3 P04275 Q5VSL9-1 Q9NYY8
6 Q9UPU9-1 P06454-1 P24844-1 Q8WZA9 P48651

difference in slopes between patients versus controls. Table 4.1 shows the selected

top 10 proteins using two simple data summaries. Let 𝑗01, 𝑗0𝑇 , 𝑗11 and 𝑗1𝑇 denote

the indices of four subjects, with 𝑗𝑧𝑡 indicating the subject with 𝑧 𝑗 = 𝑧 and 𝑡 𝑗 = 𝑡.

The first set of 10 proteins are the proteins with the largest empirical difference

𝛾̂𝑖 =
𝑦𝑖 𝑗1𝑇 − 𝑦𝑖 𝑗11

𝑇 − 1
−
𝑦𝑖 𝑗0𝑇 − 𝑦𝑖 𝑗01

𝑇 − 1
, (4.15)

that is, the 10 proteins with largest observed difference between patients and controls
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in change over time. One problem with 𝛾̂𝑖 is that it is based on only the 4 subjects with

minimum and maximum age, and does not borrow any strength from data for subjects

with ages in between, or other proteins. The second set of 10 proteins are the proteins

with largest fitted difference, fitting for each protein two separate smoothing splines,

one to all patients and a second one to all controls, and evaluating 𝛾̂𝑖 replacing the

data by the fitted values 𝑦̂𝑖 𝑗 under these smoothing splines. The second set therefore

includes borrowing of strength across all subjects, but still no borrowing of strength

across proteins. And both summaries ignore uncertainty of 𝛾̂𝑖. Note that the top 10

proteins based on these two data summaries include no overlap, highlighting again

the high level of noise in these data, and the need for more principled inference

and characterization of uncertainties. These observations motivate us to develop a

hierarchical model to borrow strength across proteins and time, and to allow for a

full description of uncertainties. The hierarchical model across subjects and proteins

is set up using separate exchangeability on parameters θ𝑖𝑡 . Note that in this case

separate exchangeability is not on the data, but on parameters (including slope etc.)

of the fitted curves. See later for details. The model includes a random partition of

proteins to group proteins with similar patterns into common clusters, allowing us to

identify a group of interesting proteins as the cluster with the highest cluster-specific

change in protein expression over time.
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4.4 Separate Exchangeability through Nested Partitions
4.4.1 Separate versus partial exchangeability

The microbiome data records frequencies 𝑦𝑖 𝑗 of 𝐼 = 119 OTUs 𝑖 = 1, . . . , 𝐼,

for 𝐽 = 38 subjects, 𝑗 = 1, . . . , 𝐽. The measurement 𝑦𝑖 𝑗 reports the scaled abundancy

of OTU 𝑖 in subject 𝑗 . The main inference goal is to identify subgroups 𝐶𝑘 ,

𝑘 = 1, . . . , 𝐾+, of subjects with different patterns of OTU frequencies. The subsets

𝐶𝑘 define a partition as
⋃𝐾+

𝑘=1𝐶𝑘 = [𝐽] with 𝐶𝑘 ∩ 𝐶𝑘 ′ = ∅ for 𝑘 ≠ 𝑘′. We refer to

the 𝐶𝑘 as subject clusters. Alternatively we represent 𝐶𝑘 using cluster membership

indicators 𝑆 𝑗 = 𝑘 if and only if 𝑗 ∈ 𝐶𝑘 .

Partially exchangeable model. We assume mixture of normal distributions. Let

GEM(𝛼) denote a stick-breaking prior for a sequence of weights (Sethuraman, 1994).

Marginally for each subject 𝑗 (i.e., marginalizing over other subjects, 𝑗 ′ ≠ 𝑗), we

assume

𝑦𝑖 𝑗 | 𝑆 𝑗 = 𝑘 𝑖𝑖𝑑∼ 𝐺𝑘 , 𝑖 = 1, 2, . . .

𝐺𝑘 =

∞∑︁
ℓ=1

𝑤𝑘ℓ𝑁 (𝜇ℓ, 𝜎2
ℓ ) and 𝜃ℓ = (𝜇ℓ, 𝜎2

ℓ )
𝑖𝑖𝑑∼ 𝐺0, w𝑘 ∼ GEM(𝛼)

𝑝(𝑆 𝑗 = 𝑘 | π) = 𝜋𝑘 and π = (𝜋1, . . .) ∼ GEM(𝛽) (4.16)

with independent sampling across 𝑖 = 1, . . . , 𝐼. Marginally, for one subject 𝑗 , the

first two lines of (4.16) imply a Dirichlet process (DP) mixture of normal model for

𝑦𝑖 𝑗 , 𝑖 = 1, 2, . . .. That is, the marginal law for each 𝑗 is a DP mixture

𝑦𝑖 𝑗 | 𝐺 𝑖𝑖𝑑∼ 𝐺, 𝑖 = 1, . . . , 𝐼,
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𝐺 =

∫
𝑁 (𝜇, 𝜎2) 𝑑𝐹 (𝜇, 𝜎2) and 𝐹 =

∑︁
ℓ

𝑤𝑘ℓ𝛿𝜇ℓ ,𝜎ℓ ∼ DP(𝛼, 𝐺0). (4.17)

We keep using notation 𝑤𝑘ℓ to highlight the link with (4.16). Here (𝜇ℓ, 𝜎ℓ) are the

atoms of a discrete random probability measure 𝐹 and DP(𝛼, 𝐺0) defines a DP

prior with total mass 𝛼 and base measure 𝐺0. See, for example, (Müller et al., 2015,

Chapter 2) for a review of such DP mixture models. However, the fact that in (4.16)

multiple subjects can share the same 𝐺𝑘 introduces dependence across subjects.

Additionally, note that the normal moments 𝜃ℓ = (𝜇ℓ, 𝜎2
ℓ
) are indexed by ℓ only,

implying common atoms of the 𝐺𝑘 across 𝑘 . The model construction is completed by

assuming that 𝑦𝑖 𝑗 in (4.16) are sampled independently also across 𝑗 given the vector

of random probabilities. Below we will introduce a variation of this final assumption,

motivated by the following observation.

The use of common atoms (𝜇ℓ, 𝜎ℓ) across 𝐺𝑘 allows us to define clusters

of observations across OTUs and subjects. This is easiest seen by replacing the

mixture of normal model in the first line of (4.16) by a hierarchical model with latent

indicators 𝑀̃𝑖 𝑗 as

𝑝(𝑦𝑖 𝑗 | 𝑀̃𝑖 𝑗 = ℓ) = 𝑁 (𝜇ℓ, 𝜎2
ℓ ) and 𝑝(𝑀̃𝑖 𝑗 = ℓ | 𝑆 𝑗 = 𝑘) = 𝑤𝑘ℓ .

Interpreting 𝑀̃𝑖 𝑗 as cluster (of OTUs) membership indicators, the model defines

clusters 𝑅̃ 𝑗ℓ = {(𝑖 𝑗) : 𝑀̃𝑖 𝑗 = ℓ}. The model also defines a random partition Ψ̃ 𝑗

of OTUs for each subject 𝑗 with clusters defined by 𝑅̃ 𝑗ℓ = {(𝑖 𝑗) : 𝑀̃𝑖 𝑗 = ℓ}, i.e.,

Ψ̃ 𝑗 = {𝑅̃ 𝑗ℓ, ℓ = 1, 2, . . .}. In this construction subjects 𝑗 with shared 𝑆 𝑗 = 𝑘 share

the same prior 𝑝(Ψ̃ 𝑗 ) on the partition of OTUs, implied by 𝑦𝑖 𝑗 | 𝑃 𝑗 ∼ 𝑃 𝑗 with

𝑃 𝑗 = 𝐺𝑆 𝑗
, defining partial exchangeability as in (4.4), with the random partition
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(𝑆1, . . . , 𝑆𝐽) defining a dependent prior on (𝑃1, . . . , 𝑃𝐽). Conditional of 𝑆1, . . . , 𝑆𝐽

the latter is characterized by only 𝐾+ distinct 𝐺𝑘 .

A separately exchangeable prior. Recognizing the described construction with 𝑀̃𝑖 𝑗

as reducing to partial exchangeability when non-degenerate separate exchangeability

is implied by the nature of the experiment, we introduce a modification. While the

change is minor in terms of notation, it has major consequences for interpretation

and inference as we will show later. We replace the indicators 𝑀̃𝑖 𝑗 by 𝑀𝑖𝑘 (note the

subindex 𝑘 ) specific to each OTU and cluster of subjects, with otherwise unchanged

marginal prior

𝑝(𝑀𝑖𝑘 = ℓ) = 𝑤𝑘ℓ (4.18)

and 𝑝(𝑦𝑖 𝑗 | 𝑆 𝑗 = ℓ, 𝑀𝑖𝑘 = ℓ) = 𝑁 (𝜇ℓ, 𝜎2
ℓ
). The assumption completes the marginal

model (4.16) by introducing dependence of the 𝑦𝑖 𝑗 across 𝑗 ∈ 𝐶𝑘 , which is parsimo-

niously introduced with the 𝑀𝑖𝑘 indicators. The marginal distribution (4.17) remains

unchanged. But now the implied random partitions Ψ̃ 𝑗 are shared among all 𝑗 ∈ 𝐶𝑘 .

Let Ψ𝑘 = {𝑅𝑘𝑙 , 𝑙 = 1, 2, . . .} denote this shared partition.

In practice we use an implementation using a finite Dirichlet process (Ishwaran

and James, 2001) for 𝐺𝑘 , i.e., we truncate 𝐺𝑘 with 𝐿 atoms. Similarly, we truncate

the stick-breaking prior for 𝜋𝑘 at a fixed number of 𝐾 atoms. For later reference we

state the joint probability model conditional on 𝐾 and 𝐿 is

𝑝(𝑦1:𝐼,1:𝐽 ,S,M ,π,w, | 𝐾, 𝐿) =
𝐽∏
𝑗=1

𝐼∏
𝑖=1

𝑝(𝑦𝑖 𝑗 | 𝜇𝑀𝑖,𝑆 𝑗
, 𝜎2

𝑀𝑖,𝑆 𝑗
)
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×
𝐽∏
𝑗=1

𝜋𝑆 𝑗

{
𝐾∏
𝑘=1

𝐼∏
𝑖=1

𝑤𝑀𝑖𝑘 ,𝑘

}
𝑝(π)

𝐾∏
𝑘=1

𝑝(w𝑘 )
𝐿∏
ℓ=1

𝑝(𝜇ℓ, 𝜎2
ℓ ) (4.19)

with 𝑝(π) = 𝑝(𝜋1, . . . , 𝜋𝐾) = GEM(𝛽) and 𝑝(w𝑘 ) = 𝑝(𝑤𝑘1, . . . , 𝑤𝑘𝐿) = GEM(𝛼)

being finite stick breaking priors, and 𝑝(𝜇ℓ, 𝜎2
ℓ
) chosen to be conditionally conjugate

for the sampling model 𝑝(𝑦𝑖 𝑗 | 𝜇ℓ, 𝜎2
ℓ
).

In summary, we have introduced separate exchangeability for 𝑦𝑖 𝑗 by defining

(i) a random partition 𝛾 = {𝐶1, . . . , 𝐶𝐾+} of columns, corresponding to the cluster

membership indicators 𝑆 𝑗 , and (ii) nested within column clusters𝐶𝑘 , a nested partition

Ψ𝑘 = {𝑅𝑘1, . . . , 𝑅𝑘𝐿} of rows, represented by cluster membership indicators 𝑀𝑖𝑘 .

In contrast, a model under which 𝑗 ∈ 𝐶𝑘 only share the prior 𝑝(Ψ̃ 𝑗 ) on the nested

partition reduces to the special case of partial exchangeability. The model remains

invariant under arbitrary permutation of the row (OTU) labels in any column (subject).

Without the reference to separate exchangeability a similar construction with nested

partitions was also used in Lee et al. (2013). The construction of the nested partition is

identical, but there is no notion of common atoms to allow for clusters of observations

across column clusters.

Finally, to highlight the nature of the model as being separately exchange-

able with respect to OTUs and subjects we exhibit the explicit Aldous-Hoover

representation (4.11), still conditional on hyperparameters. We show separate ex-

changeability conditional on 𝜙 = (π,w) by matching variables with the argu-

ments in (4.11) as follows: 𝜂 𝑗 = 𝑆 𝑗 , 𝜉𝑖 = (𝑀𝑘𝑖, 𝑘 = 1, . . . , 𝐾), 𝜃 = (µ,σ), and

𝑝(𝑥𝑖 𝑗 | 𝜃, 𝜉𝑖, 𝜂 𝑗 ) = 𝑁 (𝜇ℓ, 𝜎2
ℓ
) with ℓ = 𝑀𝑆 𝑗 𝑖. Here we used that (4.11) allowed

conditioning on additional hyperparameters, in this case 𝜙.
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4.4.2 Results

Posterior simulation is implemented as a straightforward Gibbs sampling

algorithm. All required complete conditional distributions follow easily from the joint

probability model (4.19). Posterior Monte Carlo simulation is followed by a posterior

summary of the random partition using the approach of Dahl (2006) to minimize

Binder loss, using the algorithm in Dahl et al. (2021). We estimate three clusters

of subjects, 𝐶1, 𝐶2, 𝐶3. We show the three subject clusters in Figure 4.4 by plotting

cumulative frequencies of OTUs. We sort all OTUs by overall abundancy across

subjects. For each cluster of subjects, we collect all subjects 𝑗 and plot cumulative

(observed) frequencies.
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Figure 4.4: Cumulative Relative Frequencies of OTU in the subject clusters 𝐶𝑘 ,
𝑘 = 1, 2, 3, of subjects.

Figure 4.5 summarizes the nested partition of OTUs, nested within the three

subject clusters. The three panels correspond to subject clusters 𝑘 = 1, 2 and 3. For

each subject cluster, the figure shows the estimated co-clustering probabilities of
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OTUs, i.e., 𝑝𝑘
𝑖𝑖′ = 𝑝(𝑀𝑖𝑘 = 𝑀𝑖′𝑘 | y,S) for each pair (𝑖, 𝑖′) of OTUs. As usual for

heatmaps, the OTUs are sorted for a better display, to highlight the clusters.
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Figure 4.5: OTU co-clustering probability under each subject cluster of subjects. In
each block, OTU are ordered by their cluster assignment.

Figure 4.6 shows the same nested partitions, but now by showing the data

𝑦𝑖 𝑗 arranged by subject clusters. In each panel OTUs are sorted by observational

clusters. That is, each plot shows the data corresponding to 𝑗 ∈ 𝑆𝑘 , for 𝑘 = 1, 2 and

3. The subjects 𝑗 ∈ 𝐶𝑘 are on the x-axis. The OTUs are on the y-axis, arranged by

the estimated observational clusters. The patterns in 𝑦𝑖 𝑗 echo the clusters shown in

the previous plot.

Inference as in Figure 4.5 or 4.6 is not meaningfully possible under partial

exchangeability, since the nested partitions 𝜌 𝑗 = (𝑅̃ 𝑗ℓ, ℓ = 1, . . . , 𝐿) are not shared

across 𝑗 ∈ 𝐶𝑘 . In other words, consider for example two subjects 𝑗 = 1 and 𝑗 = 2.

Assume for subject 1 we record two OTUs 𝑎 and 𝑏 co-cluster in a cluster with

high frequency, whereas for subject 2 OTUs 𝑐 and 𝑑 cluster together. Under partial

exchangeability 𝑗 = 1 and 2 might be placed in the same cluster 𝐶𝑘 although the

different OTUs might be linked to entirely different diets.
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Figure 4.6: Heatmap of column scaled y in log scale for each subject clusters of
subjects. OTU is sorted by each cluster specific OTU cluster assignment.

4.5 Nonparametric Regression
4.5.1 Separate exchangeability in an ANOVA DDP model

ANOVA DDP. In this example we set up a separately exchangeable model as

an implementation of the popular dependent Dirichlet process (DDP), by means

of introducing the symmetric structure in the prior for the atoms in a Dirichlet

process (DP) random measure over subjects and time. In this example, the separate

exchangeability assumption is not on the observed data (protein expression over time

and two different conditions). Instead we set up a separately exchangeable prior for

the linear model parameters in a statement of the DDP as a DP mixture of linear

models. The actual construction is very simple. We achieve separate exchangeability

by setting up additive structure with terms specific to proteins 𝑖 and time 𝑡.

The DDP is a predictor-dependent extension of DP mixtures first proposed

by MacEachern (1999, 2000). It defines a family of random probability measures

F = {𝐹𝑥 , 𝑥 ∈ 𝑋}, where the random distributions 𝐹𝑥 are indexed by covariates 𝑥 and

each 𝐹𝑥 marginally follows a DP prior as in (4.17). The desired dependence of 𝐹𝑥
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across 𝑥 is achieved by writing the atoms or the weights of the DP random measure

𝐹𝑥 as functions of covariates (Quintana et al., 2020). The simplest version of the

DDP arises when only the atoms of 𝐹𝑥 vary over 𝑥 (common weights DDP) and are

specified as a linear function of 𝑥. This defines the linear dependent DP (LDDP) or

ANOVA DDP (De Iorio et al., 2004). The model can be written as a DP mixture

of linear models, that is, as a mixture with respect to some (or all) linear model

parameters, and a DP prior on the mixing measure. See below for a specific example.

The DDP naturally implements partially exchangeable structure if it is

assumed as de Finetti measure in (4.4). Consider data 𝑦𝑖 𝑗 , assuming 𝑝(𝑦𝑖 𝑗 | F ) =∫
𝑝(𝑦𝑖 𝑗 | 𝜃) 𝑑𝐹𝑗 (𝜃), typically using the additional convolution with a density

kernel 𝑝(𝑦𝑖 𝑗 | 𝜃) to construct a continuous sampling model, if desired. A similar

situation arises when data 𝑦𝑖 is observed with a categorical covariate 𝑤𝑖 ∈ {1, . . . , 𝐽}

and 𝑝(𝑦𝑖 | 𝑤𝑖 = 𝑗 , F ) =
∫
𝑝(𝑦𝑖 𝑗 | 𝜃) 𝑑𝐹𝑗 (𝜃). In either case, a DDP prior on

F = (𝐹𝑗 , 𝑗 = 1, . . . , 𝐽) implements a partially exchangeable model for the observable

data 𝑦𝑖 𝑗 , or 𝑦𝑖 grouped by 𝑤𝑖, respectively. However, if the experimental context

calls for separately exchangeable structure with respect to 𝑖 and 𝑗 , appropriate model

variations are called for. We introduce one next, where the separately exchangeable

structure is on the parameters 𝜃 in (a variation of) the DP mixture representation.

A separately exchangeable ANOVA DDP. To state the specific model we need

some more notation. Recall the notation set up in Section 4.3, with 𝑦𝑖 𝑗 denoting

the abundancy of protein 𝑖 in subject 𝑗 , and 𝑡 𝑗 and 𝑧 𝑗 denoting subject-specific age

and condition. We use cubic B-splines with two internal nodes to represent protein
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expression over a grid of 𝑇 = 16 time points, 𝜏𝑡 , 𝑡 = 1, . . . , 𝑇 . The linear model

parameters in the ANOVA DDP model include coefficients for the B-spline basis

functions to represent protein expression over time for controls, plus an additional

equal number of coefficients for the same basis functions to represent an offset for

protein expression for patients. More specifically, let x 𝑗 ∈ ℜ12 denote a design vector

for subject 𝑗 , with (𝑥 𝑗1, . . . , 𝑥 𝑗6) being 6 spline basis functions evaluated at time 𝑡 𝑗 ,

and (𝑥 𝑗7, . . . , 𝑥 𝑗 ,12) = 𝑧 𝑗 (𝑥 𝑗1, . . . , 𝑥 𝑗 ,6) representing an offset for patients (𝑧 𝑗 = 1).

That is, linear model coefficients for (𝑥 𝑗1, . . . , 𝑥 𝑗6) model protein expression over

time for controls (𝑧 𝑗 = 0), while the coefficients for (𝑥 𝑗7, . . . , 𝑥 𝑗 ,12) represent an

additional offset for patients (𝑧 𝑗 = 1) in protein expression over time.

Let y𝑖 = (𝑦𝑖 𝑗 , 𝑗 = 1, . . . , 𝐽) denote all data for protein 𝑖. We assume an

ANOVA DDP model, written as DP mixture

𝑓 (y𝑖 | 𝐺,α, δ) =
∫ 

𝐽∏
𝑗=1

𝑁 (𝑦𝑖 𝑗 ;𝛼𝑖 + 𝛿𝑡 𝑗 + x′𝑗β𝑖, 𝜎2
𝑖 )

 𝑑𝐺 (β𝑖, 𝜎2
𝑖 )), (4.20)

with a DP prior for 𝐺 =
∑
ℎ 𝜋ℎ𝛿𝛽ℎ,𝜎̃ℎ

, 𝐺 ∼ DP(𝜉, 𝐺0). Here 𝛼𝑖 are protein-specific

offsets and 𝛿𝑡 are offsets for each of the unique time points, 𝑡 = 1, . . . , 16. We use a

finite DP, 𝐺 ∼ DP𝐻 (𝜉, 𝐺0), truncated at 𝐻 = 25 (Ishwaran and James, 2001), with

total mass parameter 𝜉 and𝐺0 defined byβℎ ∼ 𝑁 (β0, 𝜎𝛽0𝐼) and𝜎2
ℎ
∼ InvGa(𝑎0, 𝑏0).

We complete the prior specification with 𝛿𝑡 ∼ 𝑁 (𝜁, 𝜔) and 𝛼𝑖 ∼ 𝑁 (𝜇0, 𝜎
2
0 ). Here,

(𝜉,β0, 𝜎𝛽0, 𝑎0, 𝑏0, 𝜇0, 𝜎
2
0 , 𝜁0, 𝜔0) are fixed hyperparameters. See Appendix B for

specific values.

Note that the linear model is over-parameterized. For example, we do not

restrict the cubic splines to zero average over all (two) subjects observed at the same
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time 𝑡 𝑗 = 𝑡, implying confounding of the intercept with 𝛿𝑡 . However, recall that the

inference target is the difference in slope between patient and control for a given

protein, which is not affected by this over-parameterization.

The regression model is set up to allow straightforward inference on the

protein-specific difference in slope for patients versus controls. As in (4.15), let again

𝑗01, 𝑗0𝑇 , 𝑗10, 𝑗1𝑇 denote indices of subjects with (𝑧 𝑗 , 𝑡 𝑗 ) = (0, 1), (0, 𝑇), (1, 1) and

(1, 𝑇), respectively. Then keeping in mind that x 𝑗1𝑇 and x 𝑗0𝑇 differ only in the last 6

elements (and ignoring scaling by a constant 1/(𝑇 − 1)),

𝛾𝑖 = [(x 𝑗1𝑇 − x 𝑗11) − (x 𝑗0𝑇 − x 𝑗01)]β𝑖 = (x 𝑗1𝑇 ,7:12 − x 𝑗11,7:12)β𝑖,7:12 (4.21)

represents the desired difference in slope between patients and controls. Posterior

inference on 𝛾𝑖 implements the desired model-based inference on the difference of

slopes with borrowing of strength across proteins and subjects.

Let θ𝑖𝑡 = (𝛼𝑖, 𝛿𝑡 ,β𝑖, 𝜎2
𝑖
) denote the parameters that index the regression

model for protein 𝑖 at time 𝑡. By construction the prior probability model on θ𝑖𝑡 is

separately exchangeable, as it is invariant with respect to separate permutations 𝜋 of

protein indices and 𝜋′ of age:

𝑝(θ1:𝐼,1:𝑇 ) = 𝑝(θ𝜋(1:𝐼),𝜋′(1:𝑇)).

Note that β𝑖 represents the mean function for patient 𝑖 as coefficients for the spline

basis (valid for any 𝑡). Only in (4.20) this mean function is evaluated for 𝑡 = 𝑡 𝑗 and

𝑥 = 𝑥 𝑗 . In particular, separate exchangeability is assumed for the mean function

parameters, not for the fitted values or the data. The model is separately exchangeable
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by construction. Alternatively one can trivially match the variables with the arguments

in (4.11), 𝜉𝑖 = (𝛼𝑖,β𝑖, 𝜎𝑖) and 𝜂𝑡 = 𝛿𝑡 .

4.5.2 Posterior Inference

MCMC posterior simulation. Posterior simulation under the proposed ANOVA

DDP (or DDP of splines) model for protein expression is straightforward. We used

the R function bs from the package splines to evaluate the spline basis functions for

x 𝑗 . The transition probabilities are detailed in Algorithm 1 in the appendix.

For the statement of the detail transition probabilities in Algorithm 1 it is

useful to replace the mixture model (4.20) by an equivalent hierarchical model

𝑦𝑖 𝑗 | 𝑠𝑖 = ℎ ∼ 𝑁 (𝛼𝑖 + 𝛿𝑡 𝑗 + x′𝑗 β̃ℎ, 𝜎̃2
ℎ ) (4.22)

with 𝑝(𝑠𝑖 = ℎ) = 𝜋ℎ. Recall that (β̃ℎ, 𝜎̃ℎ) are the atoms of the random mixing

measure 𝐺 in (4.20), and that we use a finite DP truncated at 𝐻 atoms. Interpreting 𝑠𝑖

as cluster membership indicators defines inference on a random partition of proteins.

Let then 𝐶ℎ = {𝑖 : 𝑠𝑖 = ℎ} denote cluster ℎ defined by 𝑠𝑖, and let 𝑛ℎ = |𝐶ℎ |. Note

that in this notation we allow for empty clusters that arise when an atom (β̃ℎ, 𝜎̃ℎ)

is not linked with any observation, i.e., 𝐶𝑖 = ∅ and 𝑛ℎ = 0. Using this notation, see

Algorithm 1 in Appendix B for a description of MCMC posterior simulation.

We are mainly interested in two posterior summaries, a partition of proteins

by different patterns of protein expression over time, and identification of the proteins

with the highest rank in |𝛾𝑖 | (the difference in slope between patients and control).

The latter proteins are the ones that are most likely linked with ataxia.
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We start by identifying the MAP estimate 𝐾∗ for the number of clusters

𝐾+ =
∑
ℎ 1(𝑛ℎ > 0) in (4.22), and then follow the approach of Dahl (2006) to

report a posterior summary of the random partition of proteins. Let 𝑠∗ denote the

reported partition. Conditional on 𝑠∗, we then generate a posterior Monte Carlo

sample for 𝛽ℎ for each cluster to obtain (conditional) posterior mean and variance for

the cluster-specific β̃ℎ. We did not encounter problems related to label-switching

in the actual implementation - in general one might need to account for possible

label-switching.

Ranking proteins. The main inference target is to identify proteins with the most

significant difference between time profiles for patients versus controls, suggesting

such proteins are the most likely to be linked with ataxia.

We therefore focus on the difference (across conditions) in differences (over

age) of mean protein expression, defined as 𝛾𝑖 in (4.21). We evaluate the posterior

mean 𝐸 (𝛾𝑖 | y) using Rao-Blackwellization, that is, as Monte Carlo average of

conditional expectations 𝛾̄𝑖 = 1
𝑀

∑
𝑚 𝐸 (𝛾𝑖 | 𝜃 (𝑚)−, y), where 𝜃 (𝑚)− are all parameters

in the 𝑚-th posterior Monte Carlo sample, excluding β. Note that 𝛾𝑖 is a deterministic

function of the cluster-specific 𝛽ℎ when 𝑠𝑖 = ℎ. Let 𝛾̃ℎ denote the cluster-specific

estimate. Conditioning on 𝑠★ we can then identify the set of proteins with the largest

average change.

Alternatively, we can cast the problem of identifying interesting proteins as a

problem of ranking, and more specifically, one of estimating a certain quantile, to

report the most promising 100(1− 𝑐)% proteins. Here 𝑐 is chosen by the investigator.
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Choice of 𝑐 should reflect the effort and capacity to further investigate selected

proteins. We then formalize the problem of reporting promising proteins as the

problem of identifying the proteins with |𝛾𝑖 | in the top (1−𝑐) percentile of |𝛾𝑖 | values.

The problem of ranking experimental units in a hierarchical model and reporting

the top (1 − 𝑐) percentile is discussed in Lin et al. (2004) who cast it as a Bayesian

decision problem. Let

𝑅𝑖 = rank(𝛾𝑖) =
𝐼∑︁

𝑖′=1
𝐼 ( |𝛾𝑖 | ≥ |𝛾𝑖′ |),

denote the true ranks, with 𝑅𝑖 = 1 for the smallest |𝛾𝑖 | and 𝑅𝑖 = 𝐼 for the largest

|𝛾𝑖 |. Alternatively we use 𝑃𝑖 = 𝑅𝑖/(𝐼 + 1) to report the quantile, or the percentile

100 𝑃𝑖%. One of the loss functions that Lin et al. (2004) consider is a 0-1 loss aimed

at identifying the top 100(1 − 𝑐)% units, i.e., the 𝑐−quantile. Let 𝑅𝑖 denote the

estimated rank for unit 𝑖, and 𝑃𝑖 = 𝑅𝑖/(𝐼 + 1). The following loss function penalizes

the number of misclassifications in the top 𝑐 quantile, including the number of

proteins that are falsely reported (false positives) plus those that are failed to be

reported (false negatives).

𝐿0/1(𝑐) =
1
𝐼
{# misclassifications} = 1

𝐼

{
𝐼∑︁
𝑖=1

AB(𝑐, 𝑃𝑖, 𝑃𝑖) + BA(𝑐, 𝑃𝑖, 𝑃𝑖)
}

where AB and BA are penalties for the two types of misclassifications,

𝐴𝐵(𝑐, 𝑃, 𝑃) = 1(𝑃 > 𝑐, 𝑃 < 𝑐) = 1(𝑅 > 𝑐(𝐼 + 1), 𝑅 < 𝑐(𝐼 + 1),

𝐵𝐴(𝑐, 𝑃, 𝑃) = 1(𝑃 < 𝑐, 𝑃 > 𝑐) = 1(𝑅 < 𝑐(𝐼 + 1), 𝑅 > 𝑐(𝐼 + 1),
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Lin et al. (2004) show that 𝐿0,1(𝑐) is optimized by 𝑅𝑖 = 𝑅★𝑖 with

𝑅★𝑖 (𝑐) = rank{𝑝(𝑃𝑖 > 𝑐 | y)}, (4.23)

or 𝑃★
𝑖
= 𝑅★

𝑖
/(𝐼 + 1).

4.5.3 Simulations

We set up a simulation with 𝐽 = 20 subjects and 𝐼 = 100 proteins. The

simulation does not include a split into patients and control (think of the data as

already reporting the difference of patient and control). We generate 𝑡 𝑗 ∼ Unif (0, 1)

(equivalent to age in the actual study), a hypothetical partition of proteins with cluster

membership indicators 𝑠𝑖 ∈ {1, 2, 3} using 𝑝(𝑠𝑖 = ℎ) = 𝜋ℎ, π = (0.25, 0.3, 0.45).

We set up protein-specific offsets 𝛼𝑖 using shared common values for all proteins

in a cluster, i.e., 𝛼𝑖 = 𝛼̃𝑠𝑖 with (𝛼̃1, 𝛼̃2, 𝛼̃3) = (0,−3, 1), and patient-specific offsets

𝛿 𝑗 ∼ 𝑁 (0, 0.1). To mimic the actual data, we manually modify some 𝛿 𝑗 to create

similar patterns as in the data (see Figure 4.8b). Using these parameters we set up a

simulation truth

𝑦𝑖 𝑗 =


𝛼𝑖 + 2𝑡 𝑗 + 3𝑡3

𝑗
+ 𝛿 𝑗 + 𝜖𝑖 𝑗 , 𝑠𝑖 = 1

𝛼𝑖 − 2𝑡 𝑗 + 𝑡3𝑗 + 𝛿 𝑗 + 𝜖𝑖 𝑗 , 𝑠𝑖 = 2
𝛼𝑖 + 𝑡 𝑗 − 3𝑡3

𝑗
+ 𝛿 𝑗 + 𝜖𝑖 𝑗 , 𝑠𝑖 = 3

with 𝜖𝑖 𝑗 ∼ 𝑁 (0, 𝜎) and 𝜎 = 0.2, 0.5, 1 for 𝑠𝑖 = 1, 2, 3, respectively. See Figure

4.8b (black lines) for the mean functions for proteins in the three clusters under the

simulation truth. Under this simulation truth, the proteins in cluster 2 are those with

largest overall slope. Figure 4.7 shows 20 randomly selected 𝑦𝑖 versus age 𝑡, in the

simulation (left panel) and in the real data (right panel).
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Figure 4.7: Left: 20 randomly selected 𝑦𝑖 from simulation versus age 𝑡, each color
indicates a different 𝑦𝑖. Right: the mean log abundancy difference between patient
and control in 20 randomly selected proteins from data.

MCMC posterior simulation converges after 3000 iterations. As before, let

𝑛ℎ = |𝐶ℎ |, and let 𝐾+ =
∑𝐻
ℎ=1 𝐼 (𝑛ℎ > 0) denote the number of non-empty clusters.

Figure 4.8a shows a histogram of the posterior distribution 𝑝(𝐾+ | y). The posterior

mode 𝐾★ = 3 recovers the simulation truth, with little posterior uncertainty. We then

evaluate the earlier described point estimate 𝑠★ for the posterior random partition.

Conditioning on 𝑠★we continue to simulate MCMC transitions to evaluate conditional

posterior means for β̃ℎ, 𝛼𝑖 and 𝛿𝑡 in the analysis model (4.20).

Let 𝛿𝑡 = 𝐸 (𝛿𝑡 | 𝑠★, y), β̄ℎ = 𝐸 (β̃ℎ | 𝑠★, y) and 𝛼̄𝑖 = 𝐸 (𝛼𝑖 | 𝑠★, y) denote the

conditional posterior means. All posterior means are evaluated numerically as Monte

Carlo sample averages. Also, let 𝛼★
ℎ
= 1

𝑛ℎ

∑
𝑖∈𝐶ℎ

𝛼̄𝑖. For a data point 𝑦𝑖 𝑗 , let 𝑡 = 𝑡 𝑗

and ℎ = 𝑠★
𝑖
. Then 𝑦̂ℎ𝑡 = 𝛼★ℎ + 𝛿𝑡 + x

′
𝑗
β̄ℎ are the posterior fitted values for 𝑦𝑖 𝑗 . Figure

4.8(b) shows the posterior fitted values 𝑦̂ℎ𝑧𝑡 and pointwise one-standard deviation

intervals. The estimates closely track the true mean profiles. These simulation results

indicate that with moderate sample sizes as in the actual study, and noise levels

comparable to the data, inference could reliably estimate protein expression over
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Figure 4.8: (a) Histogram of 𝑝(𝐾+ | y) in the simulation experiment. The simulation
truth is 𝐾+ = 3. (b) Prediction 𝑦̂ℎ𝑡 (solid black line) and simulation truth (solid color
line) for each cluster in the simulation experiment versus age 𝑡. Dotted lines indicate
pointwise one standard deviation standard errors.

time. The a posteriori identification of the proteins with the largest change over time

perfectly recovers the simulation truth in this example. The assignment 𝑠★ includes

no misclassification for any of the 100 proteins.

4.5.4 Results

We implement inference under the proposed DDP model with the separately

exchangeable prior. We find the following eleven clusters for the 4350 proteins.

For each cluster, we separately plot the cluster predicted protein abundancy ŷℎ =

( 𝑦̂ℎ𝑡 , 𝑡 = 1, . . . , 𝑇) for patients (solid) versus control (dashed). For comparison we

show corresponding averages of protein expression, averaging the data 𝑦𝑖 𝑗 across

all patients (dotted) and controls (dash-dotted) for each estimated cluster (under 𝑠★).

The predicted mean protein abundancy for each cluster ℎ is computed as before, as

𝑦̂ℎ𝑧𝑡 = 𝛿𝑡 + x′𝑗𝑧𝑡 𝛽ℎ + 𝛼
★
ℎ
, for a data point 𝑦𝑖 𝑗 with 𝑠★

𝑖
= ℎ, 𝑡 𝑗 = 𝑡 and 𝑧 𝑗 = 𝑧, and the
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cluster-specific posterior means 𝛽ℎ and 𝛼★ defined as before.

In Figure 4.9, we see noticeably different trajectories for patients and controls,

except for cluster 𝑘 = 3 (in panel (c)). The figure also indicates 𝑅2 (coefficient of

determination) as an indication of model fit for each cluster, with an average 𝑅2 of

0.70 (0.075 empirical standard deviation) across the 𝐾+ clusters. For an additional

goodness of fit assessment we use a model fit diagnostic proposed by Johnson

(2004). For each iteration, we randomly select a subject 𝑗 and protein 𝑖, calculate the

fitted value 𝑦̂ (𝑚)
𝑖 𝑗

= 𝑦̂ℎ𝑧𝑡 using currently imputed parameters, including the random

partition s, and form the residual 𝑧𝑖 𝑗 = 𝑦𝑖 𝑗 − 𝑦̂ (𝑚)𝑖 𝑗
. Figure 4.10 shows a normal q-q

plot of the residuals 𝑧𝑖 𝑗 , dropping an initial burn-in and thinning out iterations. The

approximately 45 degree line indicates no evidence against model fit.

Evaluating the posterior rank summary (4.23) we find top 100 (= 2.5%)

ranked proteins, with highest |𝛾𝑖 |, i.e., (absolute) difference of slopes between patients

and controls. Table 4.2 shows the top 20 of these.

Table 4.2: Top 20 Ranked Proteins with highest posterior |𝛾𝑖 |

1 Q15149-8 Q13813-2 Q13813-3 Q01082-1 O15020
6 Q00610-1 Q14643-5 Q01484 P49327 P46821
11 P14136 Q8NF91 P35580-4 P14136-3 Q05193-3
16 Q05193-5 P61764-2 P46459 P61764 P07900-2

120



4.6 Discussion

We have argued for the use of separate exchangeability as a modeling principle,

especially for nonparametric Bayesian models. The main arguments are that (i) in

many cases separate exchangeability is more faithfully representing the experimental

setup than, say, partial exchangeability; and (ii) some summaries of interest (related

to the identity of the experimental units) cannot even be stated without introducing

separate exchangeability. An example for the latter are shared nested partitions of rows

across different columns in a data matrix. In a wider context, the discussion shows

that careful considerations of the experimental setup often leads to more specific

symmetry assumptions than omnibus exchangeability or partial exchangeability.

In many cases separately exchangeable probability models will serve a

tractable submodel of a larger, encompassing inference model as we did in Section

4.5.1.

Finally, recall that the proposed separately exchangeable BNP model in the

first example can be rephrased in terms of dependent random partition models that

exploit the random partitions induced by the ties of Dirichlet processes. In this

context, an interesting future related research is to study the learning mechanisms

that arise from similar compositions of Gibbs-type priors (Gnedin and Pitman, 2006;

De Blasi et al., 2013) that preserve analytical and computational tractability of the

random partition law.
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Figure 4.9: Predicted protein abundancy 𝑦̂ℎ𝑧𝑡 in cluster ℎ versus age 𝑡 for patients
(𝑧 = 1, solid) and controls (𝑧 = 0, dashed) versus age 𝑡. For comparison, the dotted
and dash-dotted line plots the average over all patients in the same cluster (under 𝑠★)
under condition 𝑧 at time 𝑡.
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Figure 4.10: Normal Q-Q plot of residuals.
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Chapter 5

Conclusion

In this thesis we study inference and uncertainty in complex structures. In

the first two chapters after the initial introduction we focus on count statistics in

networks under sparse graphon models, which is intrinsically a jointly exchangeable

structure. In the fourth chapter, we explore separate exchangeable structures with its

examples and applications in Bayesian nonparametrics.

In the first chapter, we propose a network jackknife procedure, a leave-one-

node out method to estimate the variance of count statistics in networks. We prove

that under the sparse graphon model, the network jackknife estimate of variance is

always conservative in expectation and is consistent for count statistics and smooth

functions of count statistics. As we showed in simulations, our network jackknife

algorithm outperforms traditional subsampling methods in variance estimation and in

computation speed. We have tentative evidence that network jackknife has a potential

to be applied beyond count statistics such as eigenvalues and achieve consistent

estimation. Future work and attention is needed for this exciting extension.

In the second chapter, we propose a family of network multiplier bootstrap

methods for inference of count statistics. Our linear and quadratic multiplier bootstraps

are bootstrap procedures with linear and quadratic weights, which respectively
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correspond to the first and second-order terms of the Hoeffding decomposition.

Between linear and quadratic bootstraps, we see a trade-off of speed and accuracy.

For moderately sparse graphs, quadratic bootstrap is higher-order correct while linear

bootstrap is first-order correct but faster in computation. To make linear bootstrap

even faster, we also propose an approximate linear bootstrap where a randomized

sketching algorithms is used for estimating local network count statistics. We present

empirical results in both simulations and real data networks. Future work includes

applications on larger and sparser social networks and biological networks.

In the third chapter, we review the definition of separate exchangeability and

discuss separate exchangeability as a modeling principle in Bayesian nonparametric

models. We provide two examples. In the first example related to microbiome

analysis, the data from the experimental setup is separately exchangeable. In the

second example related to a protein study, separate exchangeability is introduced

in the prior probability model for the parameters. For the microbiome data in

the first example, we use a model of nested partitions. The proposed model is a

variant of the common atoms model to respect the separate exchangeability structure

in the experimental units. For the protein study in the second example, separate

exchangeability in the prior probability model for the parameters in a nonparametric

regression is introduced by appropriate choices in the model construction. In both

examples, we argue for the use of separate exchangeability as a modeling principle

that is often overlooked in the modeling process of Bayesian nonparametrics. As

separately exchangeable probability models can be used as tractable submodels

in a larger inference model, an interesting future study is to further explore these
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applications.

The methods that we propose for inference and for characterizing uncertainty

in complex structures such as networks or separately exchangeable structures can be

used in many applications using social science data or biological data. The problems

that we discussed are only some specific examples of issues that arise with inference

for complex structures. These studies are just a beginning, as complicated data arising

from social and biological sciences call for the development of more theory and

methods for inference and uncertainty estimation methods.
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Appendix A

Theoretical Proofs and Additional Experiments for
Network Jackknife

A.1 Proof of Theorem 1

To facilitate the proof below, we will explicitly define the data generating

mechanism for the Bernoulli trials defined in Eq 1.1. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, define the

random variable 𝜂𝑖 𝑗 ∼ Unif [0, 1] and let 𝐴𝑖 𝑗 = 1(𝜂𝑖 𝑗 ≤ 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 ) ∧ 1). We may

view a function 𝑓 that takes as input a 𝑛 − 1 × 𝑛 − 1 adjacency matrix as a function 𝑔

of the underlying latent positions. We require that 𝑔 is invariant to node-permutation,

meaning that 𝑔 remains unchanged when some (bijective) permutation function

𝜑 : {1, 2, . . . , 𝑛 − 1} ↦→ {1, 2, . . . , 𝑛 − 1} is applied to the indices corresponding to

𝑋𝑖 and both the row and column indices of 𝜂𝑖 𝑗 separately.

In what follows, let X𝑛 = (𝑋𝑖)1≤𝑖≤𝑛 and η𝑛 = (𝜂𝑖 𝑗 )1≤𝑖< 𝑗≤𝑛. Furthermore,

we will let X𝑛,𝑖 denote the vector formed by removing node 𝑖 and η𝑛,𝑖 denote the

(concatenated) vector formed by removing all elements containing row or column

index 𝑖.

Proof. Let 𝑍𝑛,𝑖 = 𝑔(X𝑛,𝑖,η𝑛,𝑖) denote the functional calculated on an induced

subgraph of 𝑛 − 1 nodes excluding node 𝑖. As before, let 𝑍𝑛−1 = 𝑍𝑛,𝑛. Construct the

128



following martingale difference sequence:

𝑑𝑖 = 𝐸 (𝑍𝑛−1 |Σ𝑖) − 𝐸 (𝑍𝑛−1 |Σ𝑖−1) (A.1)

Here, we consider a filtration introduced by Borgs et al. (2008), which was originally

used to establish exponential concentration for certain subgraph frequencies in the

dense regime.

Let Σ0 = {∅,Ω}, Σ1 = 𝜎(𝑋1), Σ2 = 𝜎(𝑋1, 𝑋2, 𝜂12), Σ3 = 𝜎(𝑋1, 𝑋2, 𝑋3, 𝜂12,

𝜂13, 𝜂23) and so forth up to 𝑛. The filtration we consider has the following interpre-

tation: for each time 1 ≤ 𝑡 ≤ 𝑛, suppose that we observe a 𝑡 × 𝑡 adjacency matrix

induced by the nodes {1, 2, . . . , 𝑡}. Then, Σ𝑡 captures all of the randomness in the

corresponding induced subgraph. We may visualize Σ𝑖 as a 𝜎-field generated by a

triangular array so that:

Σ𝑖 = 𝜎


𝑋1 𝜂12 ... 𝜂1,𝑖−1 𝜂1𝑖

𝑋2 ... 𝜂2,𝑖−1 𝜂2𝑖
... ..

𝑋𝑖−2 𝜂𝑖−2,𝑖−1, 𝜂𝑖−2,𝑖
𝑋𝑖−1 𝜂𝑖−1,𝑖

𝑋𝑖


; Σ𝑖−1 = 𝜎


𝑋1 𝜂12 ... 𝜂1,𝑖−1

𝑋2 ... 𝜂2,𝑖−1
... ..

𝑋𝑖−2 𝜂𝑖−2,𝑖−1
𝑋𝑖−1


Observe that 𝑍𝑛−1 − 𝐸 (𝑍𝑛−1) =

∑𝑛
𝑖=1 𝑑𝑖, 𝑑𝑖 is Σ𝑖 measurable, and 𝐸 (𝑑𝑖 |Σ𝑖−1) = 0.

Therefore, the variance of 𝑍𝑛 can be written as:

var 𝑍𝑛−1 = 𝐸

(
𝑛∑︁
𝑖=1

𝑑𝑖

)2

=

𝑛∑︁
𝑖=1

𝐸 (𝑑2
𝑖 ) + 2

∑︁
𝑖< 𝑗

𝐸 (𝑑𝑖𝑑 𝑗 )

Now, for 𝑖 ≠ 𝑗 , observe that:

𝐸 (𝑑𝑖𝑑 𝑗 ) = 𝐸 (𝐸 (𝑑𝑖𝑑 𝑗 |Σ𝑖)) = 𝐸 (𝑑𝑖)𝐸 (𝑑 𝑗 |Σ𝑖)

= 𝐸 (𝑑𝑖) (𝐸 [𝐸 (𝑆𝑛 |Σ 𝑗 ) |Σ𝑖] − 𝐸 [𝐸 (𝑆𝑛 |Σ 𝑗−1) |Σ𝑖]) = 0
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For the jackknife estimate, we have that:

𝐸

(
𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2

)
=

∑︁
𝑖< 𝑗

𝐸 (𝑍𝑛,𝑖 − 𝑍𝑛, 𝑗 )2

𝑛
=
(𝑛 − 1) · 𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)2

2

We also denote by Σ𝑖: 𝑗 , the sigma field containing all information of random

variables 𝑋𝑖, . . . , 𝑋 𝑗 , and 𝜂𝑘ℓ, 𝑖 ≤ 𝑘 < ℓ ≤ 𝑗 . Now define A as Σ3:𝑖+1. Since

𝑍𝑛−1 is invariant to node-permutation, A is independent of 𝜎(𝑋2, 𝜂23, . . . , 𝜂2𝑛) and

𝜎(𝑋1, 𝜂13, . . . , 𝜂1𝑛),

𝐸 (𝑍𝑛,1 |A) = 𝐸 (𝑍𝑛,2 |A)

Define:

𝑈 = 𝐸 (𝑍𝑛,1 |Σ𝑖+1) − 𝐸 (𝑍𝑛,1 |A), 𝑉 = 𝐸 (𝑍𝑛,2 |Σ𝑖+1) − 𝐸 (𝑍𝑛,2 |A) (A.2)

Then, using the fact that 𝐸 [𝑋2 |Σ𝑖+1] ≥ 𝐸 [𝑋 |Σ𝑖+1]2 for some Σ𝑖+1 measurable r.v. 𝑋 ,

we have:

𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)2 ≥ 𝐸 [𝐸 (𝑍𝑛,1 |Σ𝑖+1) − 𝐸 (𝑍𝑛,2 |Σ𝑖+1)]2 = 𝐸 (𝑈 −𝑉)2 (A.3)

Notice that conditional on A,𝑈 is a function of {𝑋2, 𝜂23, . . . , 𝜂2,𝑖+1}, while

𝑉 is a function of {𝑋1, 𝜂13, . . . , 𝜂1,𝑖+1}. Thus,𝑈 and 𝑉 are conditionally independent.

Then, since A ⊂ Σ𝑖+1, by the tower property of conditional expectations, we have

that:

𝐸 (𝑈 −𝑉)2 = 𝐸 (𝑈2) − 2𝐸 (𝑈𝑉) + 𝐸 (𝑉2)

= 𝐸 (𝑈2) + 𝐸 (𝑉2) − 2𝐸 (𝐸 (𝑈 |A)𝐸 (𝑉 |A))
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= 𝐸 (𝑈2) + 𝐸 (𝑉2),

Now, we expand 𝐸 (𝑈2) as follows:

𝐸 (𝑈2) = 𝐸 ((𝐸 (𝑍𝑛,1 |Σ(𝑖+1)) − 𝐸 (𝑍𝑛,1 |A))2]
(𝑖)
= 𝐸 ((𝐸 (𝑍𝑛,1 |Σ2:𝑖+1) − 𝐸 (𝑍𝑛,1 |Σ3:𝑖+1))2]
(𝑖𝑖)
= 𝐸 [(𝐸 (𝑍𝑛,𝑛 |Σ1:𝑖) − 𝐸 (𝑍𝑛,𝑛 |Σ1:𝑖−1))2]

= 𝐸 [(𝐸 (𝑍𝑛−1 |Σ𝑖) − 𝐸 (𝑍𝑛−1 |Σ𝑖−1))2] = 𝐸 (𝑑2
𝑖 )

Step (𝑖) holds because the random variables associated with node 1 are not present

in 𝑍𝑛,1. Step (𝑖𝑖) holds because 𝑋1, . . . 𝑋𝑛 and 𝜂𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 are i.i.d random

variables, and 𝐸 [𝑍𝑛,1 |Σ2:𝑖+1] ( 𝐸 [𝑍𝑛,1 |Σ3:𝑖+1] ) and 𝐸 [𝑍𝑛,𝑛 |Σ1:𝑖] (𝐸 [𝑍𝑛,𝑛 |Σ1:𝑖−1]) are

equal in distribution.

Similarly, 𝐸𝑉2 = 𝐸𝑑2
𝑖
, 𝐸 (𝑈 −𝑉)2 = 2𝐸𝑑2

𝑖
. Thus,

𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)2 ≥ 𝐸 (𝑈 −𝑉)2 = 2𝐸𝑑2
𝑖 (A.4)

𝐸

(
𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2

)
=
𝑛 − 1

2
𝐸 (𝑍𝑛,1 − 𝑍𝑛,2)2 ≥ (𝑛 − 1)𝐸𝑑2

𝑖 = var 𝑍𝑛−1 (A.5)

□

A.2 Proof of Theorem 2

For notational convenience, let 𝑍𝑛 = 𝑃̂(𝑅) and let 𝑍𝑛,𝑖 denote the subgraph

frequency defined in Eq 1.5 with node 𝑖 removed:

𝑍𝑛,𝑖 = 𝜌
−𝑠
𝑛

1(𝑛−1
𝑟

)
|Iso(𝑅) |

∑︁
𝑆∼𝑅, 𝑖∉𝑉 (𝑆)

1(𝑆 = 𝐺𝑛 [𝑆]) (A.6)
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We first present a lemma that will be used in the proof. An identity relating the mean

of leave-one-out jackknife estimates to a U-statistic plays an important role in the

proof of jackknife consistency for U-statistics. Using a novel combinatorial argument,

we show that a similar identity holds for normalized subgraph counts:

Lemma A.2.1. Letting 𝑍𝑛,𝑖 and 𝑍𝑛 be defined as above, we have that:

𝑍̄𝑛 :=
1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑛,𝑖 = 𝑍𝑛

Proof. For a subgraph with 𝑟 nodes and 𝑠 edges, denote the number of this subgraph

in 𝐺𝑛 as 𝑄. Denote the number of subgraphs node 𝑖 is involved in as 𝑄𝑖. We now

analyze
∑𝑛
𝑖=1𝑄𝑖. For each vertex set with cardinality 𝑟 , a given subgraph is counted

once from each vertex. Therefore,
∑𝑛
𝑖=1𝑄𝑖 = 𝑟𝑄.

Observe that 𝑍𝑛,𝑖 + 𝑄𝑖 = 𝑄 since the set of subgraphs that do not contain

node 𝑖 and the set of subgraphs that contain node 𝑖 are disjoint and their union gives

the set of subgraphs counted in 𝑄. It follows that:

1
𝑛

∑︁
𝑖

𝑍𝑛,𝑖 =

1
𝑛

∑
𝑖 (𝑄 −𝑄𝑖)(𝑛−1
𝑟

)
𝜌𝑠𝑛

=
(𝑛 − 𝑟)𝑄
𝑛
(𝑛−1
𝑟

)
𝜌𝑠𝑛

=
𝑄(𝑛
𝑟

)
𝜌𝑠𝑛

= 𝑍𝑛.

□

Now, we introduce the limiting value of the scaled variance, which represents

the value we are aiming for with the jackknife. Bickel et al. (2011) show that the

asymptotic behavior of 𝑃̂(𝑅) is driven by a U-statistic corresponding to the edge
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structure of the subgraph. For a subgraph 𝑅 with 𝑉 (𝑅) = {1, . . . , 𝑝}, define the

kernel:

ℎ(𝑋1, . . . , 𝑋𝑟) =
1

|𝐼𝑠𝑜(𝑅) |
∑︁

𝑆∼𝑅, 𝑉 (𝑆)={1,...,𝑟}

∏
(𝑖, 𝑗)∈𝐸 (𝑆)

𝑤(𝑋𝑖, 𝑋 𝑗 ) (A.7)

Theorem 1 of Bickel et al. (2011) establishes that:

𝑛 · var 𝑃̂(𝑅) → 𝜎2

where 𝜎2 = 𝑟2𝜁 is the variance of the U-statistic with kernel ℎ, with 𝜁 =

Var(𝐸 (ℎ(𝑋1, . . . , 𝑋𝑟) |𝑋1)). We will now scale the jackknife variance by 𝑛 to study

its asymptotics. Let:

𝛼𝑖 = 𝑍𝑛,𝑖 − 𝐸 (𝑍𝑛,𝑖 |X𝑛), 𝛽𝑖 = 𝐸 (𝑍𝑛,𝑖 |X𝑛) (A.8)

For simplicity we will use 𝛼̄𝑛 (or 𝛽𝑛) to denote the average of 𝛼𝑖 (or 𝛽𝑖). Now, consider

the following signal-noise decomposition:

𝑛 ·
𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2 = 𝑛 ·

𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛 + 𝛽𝑖 − 𝛽𝑛)2

= 𝑛 ·
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛)2 + 2𝑛 ·

𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛) (𝛽𝑖 − 𝛽𝑛)

+ 𝑛 ·
𝑛∑︁
𝑖=1
(𝛽𝑖 − 𝛽𝑛)2. (A.9)

We start by bounding the third sum, which is the signal in our decomposition.

Observe that 𝛽𝑖 is a U-statistic with the kernel ℎ defined in (A.7); therefore, by

Theorem 1 and its following discussions of Chapter 5 in Lee (1990), we have that:

𝑛 ·
𝑛∑︁
𝑖=1
(𝛽𝑖 − 𝛽𝑛)2

𝑃−→ 𝜎2 (A.10)
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The result will follow if we show that the remaining two sums in the

decomposition are negligible. If the first sum is negligible, the Cauchy-Schwarz

inequality would imply that:

𝑛 ·
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛) (𝛽𝑖 − 𝛽𝑛) ≤ 𝑛 ·

√√
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛)2 ·

𝑛∑︁
𝑖=1
(𝛽𝑖 − 𝛽𝑛)2

𝑃−→ 0

It remains to show that: 𝑛 ·∑𝑛
𝑖=1(𝛼𝑖 − 𝛼̄𝑛)2

𝑃−→ 0. Now, observe that:
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛)2 =

𝑛∑︁
𝑖=1

𝛼2
𝑖 − 𝑛𝛼̄2

𝑛

Expanding the square for
∑𝑛
𝑖=1 𝛼

2
𝑖

we have that:
𝑛∑︁
𝑖=1

𝛼2
𝑖 =

𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝐸 (𝑍𝑛,𝑖 |X𝑛))2

=

𝑛∑︁
𝑖=1

(
𝑛 − 1
𝑟

)−2 ∑︁
𝑆∼𝑅, 𝑖∉𝑉 (𝑆)

(𝜌−𝑠𝑛 𝜓(𝑆) −𝑊 (𝑆))
∑︁

𝑇∼𝑅, 𝑖∉𝑉 (𝑇)
(𝜌−𝑠𝑛 𝜓(𝑇) −𝑊 (𝑇))

where 𝜓(𝑆) and𝑊 (𝑆) are given by:

𝜓(𝑆) = 1
|𝐼𝑠𝑜(𝑅) |

∏
(𝑖, 𝑗)∈𝐸 (𝑆), 𝑆∼𝑅

𝐴𝑖 𝑗 ×
∏

(𝑖, 𝑗)∈𝐸 (𝑆), 𝑆∼𝑅

1 − 𝐴𝑖 𝑗 ,

𝑊 (𝑆) = 1
|𝐼𝑠𝑜(𝑅) |

∏
(𝑖, 𝑗)∈𝐸 (𝑆), 𝑆∼𝑅

𝑤(𝑋𝑖, 𝑋 𝑗 ) ×
∏

(𝑖, 𝑗)∈𝐸 (𝑆), 𝑆∼𝑅

1 − 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 )

and 𝐸 (𝑆) are (𝑖, 𝑗) ∈ 𝑉 (𝑆) × 𝑉 (𝑆) that are not contained in 𝐸 (𝑆). Now, similar

to Lee (1990), we group elements in the sum based on the number of elements in

𝑉 (𝑆) ∩ 𝑉 (𝑇). For each |𝑉 (𝑆) ∩ 𝑉 (𝑇) | = 𝑐, there are 𝑛 − 2𝑟 + 𝑐 terms in total. It

follows that:
𝑛∑︁
𝑖=1

𝛼2
𝑖 =

(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0
(𝑛 − 2𝑟 + 𝑐)

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

(𝜌−𝑠𝑛 𝜓(𝑆) −𝑊 (𝑆)) (𝜌−𝑠𝑛 𝜓(𝑇) −𝑊 (𝑇))
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=

(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0
(𝑛 − 2𝑟 + 𝑐)

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

𝛾(𝑆, 𝑇), say.

Now we turn to 𝑛𝛼̄2
𝑛;

𝛼̄𝑛 =
1
𝑛

∑︁
𝑖

𝑍𝑛,𝑖 −
1
𝑛

∑︁
𝑖

𝐸 (𝑍𝑛,𝑖 |X𝑛)
(𝑖)
= 𝑍𝑛 − 𝐸 (𝑍𝑛 |X𝑛)

Equality (i) follows from Lemma A.2.1. Now expanding 𝛼̄2
𝑛 in a similar manner, we

have that

𝛼̄2
𝑛 =
(𝑛 − 𝑟)2
𝑛

(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

𝛾(𝑆, 𝑇),

Then,

𝑛 ·
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛)2 =

(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0

(
𝑛 − 2𝑟 + 𝑐 − (𝑛 − 𝑟)

2

𝑛

) ∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

𝛾(𝑆, 𝑇)

=

𝑟∑︁
𝑐=0

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

(
𝑐 − 𝑟

2

𝑛

)
·
(
𝑛 − 1

2

)−2
𝛾(𝑆, 𝑇)

Now, taking expectations, we have that:

𝐸
©­«
(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

𝛾(𝑆, 𝑇)ª®¬
= 𝐸

©­«
(
𝑛 − 1
𝑟

)−2 𝑟∑︁
𝑐=0

∑︁
|𝑉 (𝑆)∩𝑉 (𝑇) |=𝑐

(
𝜌−𝑠𝑛 𝜓(𝑆) −𝑊 (𝑆)

) (
𝜌−𝑠𝑛 𝜓(𝑇) −𝑊 (𝑇)

)ª®¬
= 𝐸

[∑︁
Cov(𝑆, 𝑇 |X𝑛)

]
= 𝑜

(
1
𝑛

)
where the last line follows from the proof of Theorem 1 of Bickel et al. (2011).

Now, by Markov inequality, we have that

𝑛 ·
𝑛∑︁
𝑖=1
(𝛼𝑖 − 𝛼̄𝑛)2

𝑃−→ 0 (A.11)

and the result follows.
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A.3 Proof of Theorem 3

Proof. Let 𝑍𝑛,𝑖 = (𝑍𝑛,𝑖 (1), . . . 𝑍𝑛,𝑖 (𝑑)), where 𝑑 is a constant w.r.t 𝑛 and each entry

corresponds to a count functional with node 𝑖 removed. Each count functional may

involve subgraphs of different sizes. We will use a Taylor expansion around 𝑍̄𝑛.

𝑓 (𝑍𝑛,𝑖) = 𝑓
(
𝑍̄𝑛) + ∇ 𝑓 (𝜁𝑖)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)

= 𝑓
(
𝑍̄𝑛) + ∇ 𝑓 (𝜇)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛) + (∇ 𝑓 (𝜁𝑖) − ∇ 𝑓 (𝜇))𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)︸                                  ︷︷                                  ︸

𝐸𝑖

,

where 𝜁𝑖 = (𝜁𝑖1, . . . , 𝜁𝑖𝑑) = 𝑐𝑖𝑍𝑛,𝑖 + (1 − 𝑐𝑖) 𝑍̄𝑛 for some 𝑐 ∈ [0, 1]. Thus, we also

have:

𝑓 (𝑍𝑛,𝑖) − 𝑓 (𝑍𝑛,𝑖) = ∇ 𝑓 (𝜇)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)︸                  ︷︷                  ︸
𝐼𝑖

+ 𝐸𝑖 −
1
𝑛

∑︁
𝑖

𝐸𝑖︸          ︷︷          ︸
𝐼 𝐼𝑖

(A.12)

For the first part we see that,

𝑛
∑︁
𝑖

(𝐼𝑖)2 = 𝑛∇ 𝑓 (𝜇)𝑇
(∑︁
𝑖

(𝑍𝑛,𝑖 − 𝑍̄𝑛) (𝑍𝑛,𝑖 − 𝑍̄𝑛)𝑇
)
∇ 𝑓 (𝜇) (A.13)

We will first show that the inner average of the above expression converges to the

covariance matrix of 𝑍𝑛,𝑖 (recall that here we are considering a finite dimensional

vector). Extending the same argument in Eq A.9 to finite dimensional 𝑍𝑛,𝑖’s (and 𝛼𝑖

and 𝛽𝑖’s defined in Eq A.8),

𝑛
∑︁
𝑖

(𝑍𝑛,𝑖 − 𝑍̄𝑛) (𝑍𝑛,𝑖 − 𝑍̄𝑛)𝑇

= 𝑛
∑︁
𝑖

(
(𝛼𝑖 − 𝛼̄𝑛) (𝛼𝑖 − 𝛼̄𝑛)𝑇 + (𝛼𝑖 − 𝛼̄𝑛) (𝛽𝑖 − 𝛽𝑛)𝑇 + (𝛽𝑖 − 𝛽𝑛) (𝛼𝑖 − 𝛼̄𝑛)𝑇

+(𝛽𝑖 − 𝛽𝑛) (𝛽𝑖 − 𝛽𝑛)𝑇
)
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By Theorem 9 of Arvesen (1969) we have that:

𝑛
∑︁
𝑖

(𝛽𝑖 − 𝛽𝑛) (𝛽𝑖 − 𝛽𝑛)𝑇
𝑃→ Σ (A.14)

Above, Σ is the covariance matrix of a multivariate U-statistic with kernels

(ℎ1, . . . , ℎ𝑑), where each ℎ 𝑗 is the kernel corresponding to the count functional in the

𝑗 𝑡ℎ coordinate of the vector 𝑍𝑛 (see Eq A.7). Now combining Eq A.14 with Eq A.13

we see that,�����𝑛∑︁
𝑖

(𝐼𝑖)2 − 𝑓 (𝜇)𝑇Σ 𝑓 (𝜇)
����� ≤ ∥∇ 𝑓 (𝜇)∥2𝑛∑︁

𝑖

∥𝛼𝑖 − 𝛼̄𝑛∥2

+ 2𝑛∥∇ 𝑓 (𝜇)∥2
∑︁
𝑖

| (𝛼𝑖 − 𝛼̄𝑛)𝑇 (𝛽𝑖 − 𝛽𝑛) | (A.15)

The first part is 𝑜𝑝 (1) by an analogous argument leading to Eq A.11. For the

second part, we see that an application of Cauchy Schwarz inequality gives:

𝑛
∑︁
𝑖

| (𝛼𝑖 − 𝛼̄𝑛)𝑇 (𝛽𝑖 − 𝛽𝑛) |

≤
𝑑∑︁
𝑗=1

√√√(∑︁
𝑖

𝑛(𝛼𝑖 ( 𝑗) − 𝛼̄𝑛 ( 𝑗))2
) (
𝑛
∑︁
𝑖

(𝛽𝑖 ( 𝑗) − 𝛽𝑛 ( 𝑗))2
)

The first part inside the square root is 𝑜𝑝 (1) due to Eq A.11, and the second part is

𝑂𝑝 (1) by Eq A.10. Using this in conjunction with Eq A.15 and since ∥∇ 𝑓 (𝜇)∥ is

bounded, we see that: �����𝑛∑︁
𝑖

(𝐼𝑖)2 − ∇ 𝑓 (𝜇)𝑇Σ∇ 𝑓 (𝜇)
����� = 𝑜𝑝 (1)

All that remains now is to show that part 𝐼 𝐼𝑖 in Eq A.12 is negligible even when

summed and multiplied by 𝑛. First note that (𝐼 𝐼𝑖)2 ≤ 𝐸2
𝑖
.

𝑛
∑︁
𝑖

(𝐼 𝐼𝑖)2 ≤ 𝑛
∑︁
𝑖

| (∇ 𝑓 (𝜁𝑖) − ∇ 𝑓 (𝜇))𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛) |2
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≤ max
𝑖
∥∇ 𝑓 (𝜁𝑖) − ∇ 𝑓 (𝜇)∥2

(
𝑛
∑︁
𝑖

(𝑍𝑛,𝑖 − 𝑍̄𝑛)𝑇 (𝑍𝑛,𝑖 − 𝑍̄𝑛)
)

(A.16)

Theorem 2 shows that the second part in the RHS of Eq A.16 is 𝑂𝑝 (1). We will now

show that the first part is asymptotically negligible.

Observe that:

max
𝑖
∥𝜁𝑖 − 𝜇∥ ≤ max

𝑖
𝑐𝑖∥𝑍𝑛,𝑖 − 𝜇∥ +max

𝑖
(1 − 𝑐𝑖)∥ 𝑍̄𝑛 − 𝜇∥

≤
√
𝑑 ·max

𝑖, 𝑗
|𝑍𝑛,𝑖 ( 𝑗) − 𝑍̄𝑛 ( 𝑗) | + 2∥ 𝑍̄𝑛 − 𝜇∥

≤
√
𝑑 ·max

𝑗

√√
𝑛∑︁
𝑖=1

(
𝑍𝑛,𝑖 ( 𝑗) − 𝑍̄𝑛 ( 𝑗)

)2 + 2∥𝑍𝑛 − 𝜇∥

Above, 𝑍̄𝑛 = 𝑍𝑛 by Lemma A.2.1. The first term on the RHS converges

in probability to 0 from our Theorem 2. By Theorem 1 of Bickel et al. (2011),

∥𝑍𝑛 − 𝜇∥ is also negligible. Since max𝑖 ∥𝜁𝑖 − 𝜇∥ = 𝑜𝑝 (1) and ∇ 𝑓 is continuous at

𝜇, by continuity, we have that max𝑖 ∥∇ 𝑓 (𝜁𝑖) − ∇ 𝑓 (𝜇)∥2 = 𝑜𝑝 (1). Since the second

term on the RHS of Eq A.16 is 𝑂𝑝 (1) from our previous argument and the first term

is 𝑜𝑝 (1), it follows that the LHS of Eq A.16 is 𝑜𝑝 (1).

Let 𝜇𝑛 = 𝐸 [𝑍𝑛]. Note that if one counts subgraphs by an exact match as

in Bickel et al. (2011) 𝜇𝑛 → 𝜇. If one counts subgraphs via edge matching, 𝜇𝑛 = 𝜇.

Thus, both these types of subgraph densities, which asymptotically have the same

limit, can be handled by our theoretical results. By Theorem 3.8 in Van der Vaart

(2000),
√
𝑛( 𝑓 (𝑍𝑛) − 𝑓 (𝜇𝑛)) ⇝ 𝑁 (0,∇ 𝑓 (𝜇)𝑇Σ∇ 𝑓 (𝜇))

This shows that the jackknife estimate of variance converges to the asymptotic

variance of 𝑓 (𝑍𝑛).
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□

A.4 Proof of Proposition 1

Throughout this section, we will use the notation 𝑥𝑛 ≍ 𝑦𝑛 to denote 𝑥𝑛 =

𝑦𝑛 (1 + 𝑜(1)). Before presenting the proof, we present two accompanying lemmas

which will be used in the proof of Proposition 1.

Lemma A.4.1. Denote 𝐷 (𝑛)
𝑖

the degree of node 𝑖 in the size 𝑛 graph.

𝑛−1∑︁
𝑖=1

var

(
𝐷
(𝑛)
𝑖(𝑛−1

2
)
𝜌𝑛

)
≍ 4
𝑛3𝐸 (var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)

+ 4
𝑛

var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] +𝑂 (𝑛−2𝜌−1
𝑛 ).

Lemma A.4.2. Denote 𝐷 (𝑛)
𝑖

the degree of node 𝑖 in the size 𝑛 graph.

∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

cov ©­«
𝐷
(𝑛)
𝑖(𝑛−1

2
)
𝜌𝑛
,
𝐷
(𝑛)
𝑗(𝑛−1

2
)
𝜌𝑛

ª®¬ ≍ 4
𝑛
× 3var(𝐸 [𝑤(𝑋𝑖, 𝑋 𝑗 ) |𝑋𝑖]) +𝑂 (𝑛−2𝜌−1

𝑛 )

We will use the above to lemmas to prove Proposition 1, which we now

present.

Proof. Denote 𝐷𝑛 as the total number of edges in graph 𝐺𝑛. By definition,

𝑍𝑛 =
𝐷𝑛(𝑛
2
)
𝜌𝑛

Denote 𝐷 (𝑛)
𝑖

the degree of node 𝑖 in the size 𝑛 graph. We have that 𝐸𝐷 (𝑛)
𝑖

= 𝐸𝐷
(𝑛)
𝑗

for

any node pair. Thus the jackknife estimate of edges for a graph with node 𝑖 removed
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is 𝐷𝑛 minus the degree of node 𝑖. Define

𝛾𝑛 =

(
𝑛 − 1

2

)
𝜌𝑛; 𝛾′𝑛 =

(
𝑛 − 1

2

)
𝜌𝑛−1 (A.17)

Then by definition, we have

𝑍𝑛,𝑖 =
𝐷𝑛 − 𝐷 (𝑛)𝑖(𝑛−1

2
)
𝜌𝑛

=
𝐷𝑛 − 𝐷 (𝑛)𝑖

𝛾𝑛

Then, the jackknife estimate is

𝐸

𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2 =

1
2𝑛

∑︁
𝑖≠ 𝑗

𝐸 (𝑍𝑛,𝑖 − 𝑍𝑛, 𝑗 )2 =
1

2𝑛

∑︁
𝑖≠ 𝑗

𝐸
©­«
𝐷
(𝑛)
𝑖
− 𝐷 (𝑛)

𝑗

𝛾𝑛

ª®¬
2

=

𝑛−1∑︁
𝑖=1

var

(
𝐷
(𝑛)
𝑖

𝛾𝑛

)
− 1
𝑛

∑︁
𝑖≠ 𝑗

cov ©­«
𝐷
(𝑛)
𝑖

𝛾𝑛
,
𝐷
(𝑛)
𝑗

𝛾𝑛

ª®¬ (A.18)

whereas the total number of degrees in a (𝑛 − 1) graph is 𝐷𝑛−1 =
∑𝑛−1
𝑖=1 𝐷

(𝑛−1)
𝑖
/2

as each edge is counted 2 times from each node. We first obtain an expression for

var 𝑍𝑛−1.

var 𝑍𝑛−1 = var

(∑𝑛−1
𝑖=1 𝐷

(𝑛−1)
𝑖
/2(𝑛−1

2
)
𝜌𝑛−1

)
=

1
4
(𝑛 − 1)var

(
𝐷
(𝑛−1)
𝑖

𝛾′𝑛

)
(A.19)

+ 1
4

∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

cov ©­«
𝐷
(𝑛−1)
𝑖

𝛾′𝑛
,
𝐷
(𝑛−1)
𝑗

𝛾′𝑛

ª®¬ (A.20)

For the second term in the R.H.S of Eq A.18, from Lemma A.4.2, it is easy
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to check that it is 𝑂 (𝑛−2). Thus scaling Eq A.18 by 𝑛 − 1 we have,

(𝑛 − 1)𝐸
𝑛∑︁
𝑖=1
(𝑍𝑛,𝑖 − 𝑍̄𝑛)2 = (𝑛 − 1)

𝑛∑︁
𝑖=1

var

(
𝐷
(𝑛)
𝑖

𝛾𝑛

)
+𝑂

(
1
𝑛

)
=

4
𝑛2𝐸 [var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖] + 4var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] +𝑂
(

1
𝑛𝜌𝑛

)
+𝑂

(
1
𝑛

)
(A.21)

Plugging in Lemma A.4.2 into the second term of R.H.S of Eq A.19 and

scaling Eq A.19 by 𝑛 − 1, we have

(𝑛 − 1)var 𝑍𝑛−1

=
1
𝑛2𝐸 [var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖] + var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)]

+ 3var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] +𝑂
(

1
𝑛𝜌𝑛

)
=

1
𝑛2𝐸 [var

∑︁
𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖] + 4var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] +𝑂
(

1
𝑛𝜌𝑛

) (A.22)

The difference between Eqs A.21 and A.22 is:

(𝑛 − 1)𝐸 (𝑍𝑛,𝑖 − 𝑍̄𝑛)2 − (𝑛 − 1)var 𝑍𝑛−1 =
3
𝑛2𝐸 [var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖] +𝑂
(

1
𝑛𝜌𝑛

)
.

(A.23)

Note that, we also have:

1
𝑛2𝐸 [var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖] =
1
𝑛
𝐸 [var(𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] = 𝑂 (1/𝑛) (A.24)

Eq A.24 establishes Eq 2.10. Furthermore, in conjunction with Eqs A.19

and A.18, it also shows that both (𝑛 − 1)𝐸 ∑𝑛
𝑖=1(𝑍𝑛,𝑖 − 𝑍𝑛)2 and (𝑛 − 1)var 𝑍𝑛−1

converge to positive constants. This concludes our proof. □
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We now present the proofs of Lemmas A.4.1 and A.4.2.

Proof of Lemma A.4.1. Applying law of total variance,
𝑛−1∑︁
𝑖=1

var

(
𝐷
(𝑛)
𝑖

𝛾𝑛

)
=

𝑛−1∑︁
𝑖=1

var

[
𝐸

(
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋)]
+
𝑛−1∑︁
𝑖=1

𝐸

[
var

(
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋)]
. (A.25)

We now show that the second term on the RHS of the above equation is small.
𝑛−1∑︁
𝑖=1

𝐸

[
var

(
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋)]
=

𝑛−1∑︁
𝑖=1

𝐸

[
var

(∑
𝑗≠𝑖 𝐴𝑖 𝑗(𝑛
2
)
𝜌𝑛

����𝑋)]
=

𝑛−1∑︁
𝑖=1

𝐸

(∑
𝑗≠𝑖 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 ) (1 − 𝜌𝑛𝑤(𝑋𝑖, 𝑋 𝑗 ))(𝑛

2
)2
𝜌2
𝑛

)
≍

∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝜌𝑛𝐸 [𝑤(𝑋𝑖, 𝑋 𝑗 )]
𝑛4𝜌2

𝑛

= 𝑂 (𝑛−2𝜌−1
𝑛 ) (A.26)

For the first term on the RHS of Eq A.25, for any fixed 𝑖, we have:

var

(
𝐸

[
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋])
= var𝐸

( ∑
𝑘,𝑘≠𝑖 𝐴𝑖𝑘

(𝑛−1) (𝑛−2)
2 𝜌𝑛

����𝑋)
≍ 4
𝑛4 var

( ∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 )
)

≍ 4
𝑛4𝐸

(
var

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖

)
+ 4
𝑛4 var

(
𝐸

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖

)
.

(A.27)

Exchanging the sum and expectation in the second term, we can also write,

4
𝑛4 var

(
𝐸

∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖

)
=

4
𝑛2 var[𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 ) |𝑋𝑖)] . (A.28)

Since Eq A.25 involves a sum over 𝑛 − 1 identical terms, owing to the fact that {𝑋𝑖}

are i.i.d, we get the result by multiplying Eq A.27 and A.28 by 𝑛 − 1. □

Proof of Lemma A.4.2. We decompose the covariance into∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

cov ©­«
𝐷
(𝑛)
𝑖

𝛾𝑛
,
𝐷
(𝑛)
𝑗

𝛾𝑛

ª®¬ =
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

cov

(
𝐸

[
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋]
, 𝐸

[
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋])
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+
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝐸

cov ©­«
𝐷
(𝑛)
𝑖

𝛾𝑛
,
𝐷
(𝑛)
𝑗

𝛾𝑛

����𝑋ª®¬
 . (A.29)

The second term on the RHS of the above equation is small as shown before.∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝐸

cov ©­«
𝐷
(𝑛)
𝑖

𝛾𝑛
,
𝐷
(𝑛)
𝑗

𝛾𝑛

����𝑋ª®¬


=
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝐸

[
cov

(∑
𝑘,𝑘≠𝑖 𝐴𝑖𝑘

𝛾𝑛
,

∑
𝑠,𝑠≠ 𝑗 𝐴 𝑗 𝑠

𝛾𝑛

����𝑋)]
≍ 1
𝑛4𝜌2

𝑛

∑︁
𝑖, 𝑗

𝐸 [var(𝐴𝑖 𝑗 |𝑋)]

≍ 1
𝑛2𝜌2

𝑛

𝜌𝑛𝐸 [𝑤(𝑋𝑖, 𝑋 𝑗 )] = 𝑂 (𝑛−2𝜌−1
𝑛 )

For the first term in Eq A.29, for any fixed 𝑖 and 𝑗 , we have

cov ©­«𝐸
[
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋]
, 𝐸


𝐷
(𝑛)
𝑗

𝛾𝑛

����𝑋ª®¬
= cov

(∑𝑘≠𝑖
𝑘
𝑤(𝑋𝑖, 𝑋𝑘 )𝜌𝑛

(𝑛−1) (𝑛−2)
2 𝜌𝑛

,

∑𝑠≠ 𝑗
𝑠 𝑤(𝑋 𝑗 , 𝑋𝑠)𝜌𝑛
(𝑛−1) (𝑛−2)

2 𝜌𝑛

)
≍ 4
𝑛4 cov

( ∑︁
𝑘,𝑘≠𝑖

𝑤(𝑋𝑖, 𝑋𝑘 ),
∑︁
𝑠,𝑠≠ 𝑗

𝑤(𝑋 𝑗 , 𝑋𝑠)
)

=
4
𝑛4

∑︁
𝑘,𝑘≠𝑖

∑︁
𝑠,𝑠≠ 𝑗

cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑠)).

(A.30)

Let 𝑆𝑖 = {𝑖, 𝑘}, and 𝑆 𝑗 = { 𝑗 , 𝑠} be two pairs containing 𝑖 and 𝑗 respectively. Some

algebraic manipulation yields,∑︁
𝑘,𝑘≠𝑖

∑︁
𝑠,𝑠≠ 𝑗

cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑠)) =
∑︁

|𝑆𝑖∩𝑆 𝑗 |=1
cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑠))

+
∑︁

|𝑆𝑖∩𝑆 𝑗 |=2
cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑠)).

(A.31)
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In the R.H.S of the above expression, the second summation has 𝑛(𝑛 − 1) terms,

whereas the first has 𝑛(𝑛−1) (𝑛−2) terms. Furthermore, for |𝑆𝑖∩𝑆 𝑗 | = 2, it is easy to

see that cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑠)) is simply the variance of var(𝑤(𝑋𝑖, 𝑋𝑘 )) which

is positive. For |𝑆𝑖 ∩ 𝑆 𝑗 | = 1, W.L.O.G. let 𝑆𝑖 = {𝑖, 𝑢} and 𝑆 𝑗 = { 𝑗 , 𝑢}. Conditioned

on the shared node 𝑋𝑢,

cov(𝑤(𝑋𝑖, 𝑋𝑢), 𝑤(𝑋 𝑗 , 𝑋𝑢)) = cov[𝐸 (𝑤(𝑋𝑖, 𝑋𝑢) |𝑋𝑢), 𝐸 (𝑤(𝑋 𝑗 , 𝑋𝑢) |𝑋𝑢)]

= var(𝐸𝑤(𝑋𝑖, 𝑋𝑢) |𝑋𝑢) (A.32)

which is also positive. Hence the contribution of the first sum is of a larger order.

Now we enumerate all the ways in which 𝑆𝑖 and 𝑆 𝑗 can have a node in

common, with the constraint of 𝑖 ≠ 𝑗 . For any fixed 𝑖 and 𝑗 , s.t. 𝑖 ≠ 𝑗 , |𝑆𝑖 ∩ 𝑆 𝑗 | = 1

means that there is 1 common node in 𝑆𝑖 = {𝑖, 𝑘} and 𝑆 𝑗 = { 𝑗 , 𝑠}. There are three

possible cases, 𝑖 = 𝑠, 𝑘 = 𝑗 , 𝑘 = 𝑠. Thus, Eq A.30 can be expanded as (W.L.O.G,

suppose 𝑖 = 𝑠),

cov ©­«𝐸
[
𝐷
(𝑛)
𝑖

𝛾𝑛

����𝑋]
, 𝐸


𝐷
(𝑛)
𝑗

𝛾𝑛

����𝑋ª®¬ ≍
4
𝑛4 [3(𝑛 − 2)cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑖))]

=
4
𝑛3 × 3cov(𝑤(𝑋𝑖, 𝑋𝑘 ), 𝑤(𝑋 𝑗 , 𝑋𝑖))

(𝑖)
=

4
𝑛3 × 3var(𝐸 (𝑤(𝑋𝑖, 𝑋𝑘 )) |𝑋𝑖) (A.33)

Step (𝑖) uses an analogous argument from Eq A.32, and conditions on 𝑋𝑖.

Eq A.29 involves a sum over all (𝑖, 𝑗) pairs, 𝑖 ≠ 𝑗 , , owing to the fact that

{𝑋𝑖} are i.i.d, we get the result by multiplying Eq A.33 by 𝑛(𝑛 − 1). □
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A.5 Proof of Proposition 2

Before we state the proof of our result, recall the following well-known

relationship between uniform integrability and convergence of moments. See for

example, Theorem 25.12 of Billingsley (1995).

Proposition A.5.1. Suppose that 𝑋𝑛 ⇝ 𝑋 and {𝑋𝑛}𝑛≥1 is uniformly integrable.

Then, 𝐸 (𝑋𝑛) → 𝐸 (𝑋).

Now we will prove our proposition below:

Proof. In what follows let 𝑋𝑛 := 𝜏𝑛 [𝜃𝑛 − 𝐸 (𝜃𝑛)] and 𝑉𝑛 = 𝜏𝑛 · 𝑈𝑛. Recall that

𝑈𝑛 = 𝜃𝑛 − 𝜃. While our result here is more general, in a jackknife context, 𝜃𝑛 = 𝑍𝑛

following the notation that we use elsewhere. Consider the following decomposition:

𝜏𝑛 [𝜃𝑛 − 𝐸 (𝜃𝑛)] = 𝜏𝑛 [𝜃𝑛 − 𝜃] + 𝐸 (𝜏𝑛 [𝜃 − 𝜃𝑛])

Since {𝑉2
𝑛 }𝑛≥1 is uniformly integrable, it follows that {𝑉𝑛}𝑛≥1 is also uniformly

integrable. Therefore, by Proposition A.5.1, 𝐸 (𝜏𝑛 [𝜃 − 𝜃𝑛]) → 0. By Slutsky’s

Theorem, it follows that 𝜏𝑛 [𝜃𝑛 − 𝐸 (𝜃𝑛)] ⇝ 𝑈.

To show that the variances converge to the same value, observe that 𝐸 (𝑋2
𝑛 ) is

given by:

𝐸 (𝑋2
𝑛 ) = 𝐸 (𝑉2

𝑛 ) − (𝐸 (𝑉𝑛))2

First, 𝑉2
𝑛 ⇝ 𝑈2 by continuous mapping theorem. Since {𝑉2

𝑛 }𝑛≥1 is uniformly

integrable, 𝐸 (𝑉2
𝑛 ) → 𝐸 (𝑈2) by Proposition A.5.1 again. Finally, (𝐸𝑉𝑛)2 → 0 and

the result follows. □
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A.6 Additional theory

It should be noted that a similar inequality for a closely related procedure

has an even simpler proof. This alternative procedure does not require the functional

to be invariant to node permutation and allows flexibility with the leave-one-out

estimates. However, the resulting estimate is often not sharp. More concretely, let 𝑍𝑛

denote a function of 𝐴(𝑛) and let 𝑍𝑛,𝑖 be an arbitrary functional calculated on a graph

with node 𝑖 removed. Consider the following estimator:

V̂arJACK 𝑍𝑛 =

𝑛∑︁
𝑖=1
(𝑍𝑛 − 𝑍𝑛,𝑖)2 (A.34)

Combining the aforementioned filtration with arguments in Boucheron et al. (2004)

leads to the following inequality:

Proposition A.6.1 (Network Efron-Stein, alternative version).

var 𝑍𝑛 ≤ 𝐸 (V̂arJACK 𝑍𝑛) (A.35)

A.7 Additional experiments

We first present Tables A.1 and A.2 with details of the networks we used in

our real data experiments in Section 3.6 of the main paper.

For our real data experiments, (Section 3.6 of main paper) we compared

subsampling with jackknife on the three colleges (see Figure 2.3). For simplicity, for

the second experiment comparing three pairs of college networks (see Figure 2.4), we

only showed the confidence intervals obtained using jackknife. Here, in Figure A.1,

for completeness, we present confidence intervals for test sets constructed from the
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Table A.1: Details of college networks for first real data experiment (see Figure 2.3
of main paper)

Caltech Williams Wellesley
Nodes 769 2790 2970
Edges 16656 112986 94899
Ave. Degree 43.375 63.927 81.023

Table A.2: Details of college networks for second real data experiment (see Figure 2.4
of main paper)

Berkeley Stanford Yale Princeton Harvard MIT
Nodes 22937 11621 8578 6596 15126 6440
Edges 852444 568330 405450 293320 824617 251252
Ave. Degree 74.332 97.819 94.544 88.952 109.040 78.040

six college networks using both jackknife and subsampling with different choices of

𝑏. This again shows that jackknife CI’s mostly are in agreement with those obtained

from subsampling.

In addition, we show the timing results our real data experiments. Figure A.2

shows computation time of the three college example of Facebook network data (see

Figure 2.3). We demonstrate the triangle, two-star densities and normalized transitivity

variance computation time using jackknife and subsampling with 𝑏 = 0.05𝑛, 𝑏 = 0.1𝑛

and 𝑏 = 0.2𝑛, 𝐵 = 1000 in each college network.

In Figure A.3, we show the computation time of variance estimation for the

same statistics on the test sets for the same set of algorithms. Since we split training

and test set in half, the training sets have approximately the same time.
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Figure A.1: Confidence intervals of subsampling and jackknife in calculating triangle,
two-star densities and normalized transitivity in the example of six college Facebook
networks test sets. The four CIs for each college are in the order of jackknife,
subsampling with b=0.05n, b=0.1n, and b=0.2n respectively.

These figures show that, it is possible to implement jackknife in a computa-

tionally efficient manner when there is nested structure in the subgraph counts. In all

these cases, we see that for the larger networks, subsampling with large 𝑏 is often

considerably slower than jackknife.
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Figure A.2: Computation time of jackknife compared to subsampling in calculating
triangle, two-star densities and normalized transitivity in the example of three college
Facebook networks.
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Facebook networks test sets.
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Appendix B

Supplementary Material for Network Multiplier
Bootstrap

B.1 Proof of Lemma 4

Proof. In what follows, we will consider a projection of 𝑇∗
𝑛,𝑀

with respect to the

random variables 𝜉1, . . . 𝜉𝑛, conditional on 𝐴 and 𝑋 .

Recall that 𝜉𝑖 follows the Gaussian Product distribution. First, we may express

𝑇∗
𝑛,𝑀

as:

𝑇∗𝑛,𝑀 =
1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...𝑖𝑟

(
𝜉𝑖1···𝑖𝑟 − 1

)
·
{
𝐻 (𝐴(𝑛)

𝑖1,...,𝑖𝑟
) − 𝑇𝑛

}
where 𝜉𝑖1···𝑖𝑟 denotes the product 𝜉𝑖1×· · ·×𝜉𝑖𝑟 . It turns out that applying the Hoeffding

decomposition directly to 𝑇∗
𝑛,𝑀

leads to tedious combinatorial calculations; following

Bentkus et al. (1997), let Ω𝑟 denote an 𝑟-tuple of {1, . . . , 𝑛}. For each summand,

we will consider a Hoeffding representation with respect to Ω𝑟 . Note that using the

Hoeffding projection (also see Bentkus et al. (1997) section 2.8),∏
1≤𝑖≤𝑟

𝜉𝑖 − 1 =

𝑟∑︁
𝑘=1

∑︁
1≤𝑖1<···<𝑖𝑘≤𝑟

ℎ𝑘 (𝜉𝑖1 , . . . , 𝜉𝑖𝑘 ),

where for Ω𝑘 = {1, . . . , 𝑘},

ℎ𝑘 (𝜉1, . . . , 𝜉𝑘 ) =
∑︁
𝐵∈Ω𝑘

(−1)𝑘−|𝐵 |E
{ ∏

1≤𝑖≤𝑟
𝜉𝑖 − 1 | 𝐵

}
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Thus the first two terms are given by:

ℎ1(𝜉1) := (𝜉1 − 1)

ℎ2(𝜉1, 𝜉2) := (𝜉1𝜉2 − 1) − (𝜉1 − 1) − (𝜉2 − 1) = (𝜉1 − 1) (𝜉2 − 1)

In what follows, we will also denote 𝐴(𝑛)
𝑖1,...,𝑖𝑟

by 𝐴(𝑛)
𝑆

, where 𝑆 = {𝑖1, . . . , 𝑖𝑟}. Let

𝐻̂2(𝑖, 𝑗) =
1(𝑛−2
𝑟−2

) ∑︁
𝑆 | 𝑖, 𝑗∈𝑆

𝐻 (𝐴𝑆), (B.1)

𝐻̂𝑢 (𝑖1, . . . , 𝑖𝑢) =
1(𝑛−𝑢
𝑟−𝑢

) ∑︁
𝑆 | 𝑖1,...,𝑖𝑢∈𝑆

𝐻 (𝐴𝑆).

Thus 𝑇∗
𝑛,𝑀

can be written as follows:

𝑇∗𝑛,𝑀 =
1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...<𝑖𝑟

(
𝜉𝑖1···𝑖𝑟 − 1

)
·
{
𝐻 (𝐴(𝑛)

𝑖1,...,𝑖𝑟
) − 𝑇𝑛

}
=

1(𝑛
𝑟

) ∑︁
1≤𝑖1<𝑖2<...<𝑖𝑟

𝑟∑︁
𝑘=1

∑︁
1≤𝑖1<···<𝑖𝑘≤𝑖𝑟

ℎ𝑘 (𝜉𝑖1 , . . . , 𝜉𝑖𝑘 ) ·
{
𝐻 (𝐴(𝑛)

𝑖1,...,𝑖𝑟
) − 𝑇𝑛

}
=

1(𝑛
𝑟

) 𝑟∑︁
𝑘=1

∑︁
1≤𝑖1<···<𝑖𝑘≤𝑛

ℎ𝑘 (𝜉𝑖1 , . . . , 𝜉𝑖𝑘 ) ·
∑︁
𝑆

{
𝐻 (𝐴(𝑛)

𝑆
) − 𝑇𝑛

}
1(𝑖1, . . . , 𝑖𝑘 ∈ 𝑆)

=
1(𝑛
𝑟

) 𝑟∑︁
𝑘=1

(
𝑛 − 𝑘
𝑟 − 𝑘

) ∑︁
1≤𝑖1<···<𝑖𝑘≤𝑛

ℎ𝑘 (𝜉𝑖1 , . . . , 𝜉𝑖𝑘 )

∑
𝑆

{
𝐻 (𝐴(𝑛)

𝑆
) − 𝑇𝑛

}
1(𝑖1, . . . , 𝑖𝑘 ∈ 𝑆)(𝑛−𝑘

𝑟−𝑘
)

=
𝑟

𝑛

∑︁
𝑖

(𝜉𝑖 − 1)𝑔̂1(𝑖) +
𝑟 (𝑟 − 1)
𝑛(𝑛 − 1)

∑︁
1≤𝑖< 𝑗≤𝑛

(𝜉𝑖 − 1) (𝜉 𝑗 − 1) {𝐻̂2(𝑖, 𝑗) − 𝑇𝑛}︸             ︷︷             ︸
𝑔̃2 (𝑖, 𝑗)

+𝑅𝑛

(B.2)

Now, it remains to show that the remainder of (𝑇∗
𝑛,𝑀
−𝑇𝑛)/𝜎̂𝑛 is𝑂 (𝛿(𝑛, 𝜌𝑛, 𝑅)),

where:

𝛿(𝑛, 𝜌𝑛, 𝑅) =
{ 1
𝑛𝜌𝑛

R is acyclic
1

𝑛𝜌
3/2
𝑛

R is a simple cycle.
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The residual 𝑅𝑛 is a sum of higher order Hoeffding projections, which

are all uncorrelated. Therefore, we see that the variance of the 𝑢𝑡ℎ order term is∑
1≤𝑖1<𝑖2···<𝑖𝑢 𝑔̃𝑢 (𝑖1, . . . , 𝑖𝑢)2

𝜎̂2
𝑛

(𝑛
𝑢

)2 . We will now obtain expressions for 3 ≤ 𝑢 ≤ 𝑟.

Consider any term 𝑔̃𝑢 (1, . . . , 𝑢). We will now bound E{𝑔̃𝑢 (1, . . . , 𝑢)2}.

E{𝑔̃𝑢 (1, . . . , 𝑢)2} ≤ 2[var{𝐻̂𝑢 (1, . . . , 𝑢)} + var(𝑇𝑛)︸  ︷︷  ︸
𝑂 (𝜌2𝑠

𝑛 /𝑛)

]

The bound on the second term follows from Bickel et al. (2011) and will be smaller

than that of the first term. Let S𝑟,𝑢 denote all subsets of size 𝑟 − 𝑢, not containing

1, . . . 𝑢. For any subset 𝑆 ∈ S𝑟,𝑢, also define, 𝑆𝑢 = 𝑆 ∪ {1, . . . , 𝑢}. For the first part,

we have:

var{𝐻̂𝑢 (1, . . . , 𝑢)} =
∑
𝑆,𝑇∈S𝑟 ,𝑢 cov{𝐻 (𝐴𝑆𝑢), 𝐻 (𝐴𝑇𝑢)}(𝑛−𝑢

𝑟−𝑢
)2

Note that the dominating term here will indeed be the one where |𝑆 ∩ 𝑇 | = 0.

The number of such terms is
( 𝑛
2𝑟−𝑢

)
. Also the covariance of those terms will be

𝜌
2𝑠−𝐸 (𝐴1,...,𝑢)
𝑛 , where 𝐸 (𝐴1,...,𝑢) denotes the intersection of the edgeset of 𝐴1,...,𝑢 and

the subgraph we are counting. This number can be at most 𝑢 − 1 for acyclic 𝑅 and

𝑢 for a simple cycle 𝑅. For |𝑆 ∩ 𝑇 | = 𝑘 , the number of terms is
( 𝑛
2𝑟−2𝑢−𝑘

)
and the

exponent on 𝜌𝑛 is at most 2𝑠 − (𝑢 + 𝑘 − 1). Thus, for an acyclic subgraph, we have,

var{𝐻̂𝑢 (1, . . . , 𝑢)} ≤
∑𝑟
𝑘=0

( 𝑛
2𝑟−2𝑢−𝑘

)
𝜌

2𝑠−(𝑢+𝑘−1)
𝑛(𝑛−𝑢

𝑟−𝑢
)2

≤
𝑟∑︁
𝑘=0

𝑛−𝑘𝜌2𝑠−(𝑢+𝑘−1)
𝑛 = 𝜌

2𝑠−(𝑢−1)
𝑛

(
1 +

∑︁
𝑘>0

1
(𝑛𝜌𝑛)𝑘

)
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The cyclic one is worse by a factor of 𝜌𝑛. Thus the contribution of the 𝑢𝑡ℎ element of

the Hoeffding decomposition is

𝑛 ·
∑
𝑖1,...,𝑖𝑢 𝑔̃𝑢 (𝑖1, . . . , 𝑖𝑢)2(𝑛

𝑢

)2
𝜏2
𝑛

=


𝑂𝑃

(
1

(𝑛𝜌𝑛)𝑢−1

)
𝑅 acyclic

𝑂𝑃

(
𝜌−1
𝑛

(𝑛𝜌𝑛)𝑢−1

)
𝑅 a simple cycle

This shows that the third term contributes the most to 𝑅𝑛 in Eq B.2. By

Markov’s inequality, and the definition of 𝑂𝑃 (.) notation, it is easy to see that

𝑅𝑛 = 𝑂𝑃 (𝛿(𝑛, 𝜌𝑛, 𝑅)). □

B.2 Proof of Theorem 5

Proof. For any 𝑖 ∈ {1, . . . , 𝑛}, denote the set of all subsets of size 𝑟 − 1 taken from

{1, . . . , 𝑖 − 1, 𝑖 + 1, . . . 𝑛} as S−𝑖. Denote 𝐻 (𝐴𝑖,𝑖2,...,𝑖𝑟 ) for 𝑆 = {𝑖2, . . . , 𝑖𝑟} ∈ S{−𝑖} as

𝐻 (𝐴𝑆∪𝑖). Denote

𝐻1(𝑖) =
1(𝑛−1
𝑟−1

) ∑︁
𝑆∈S{−𝑖}

𝐻 (𝐴𝑆∪𝑖).

Now let 𝜋 𝑗 be a permutation picked with replacement and uniformly

at random from the set of all permutations of {1, . . . , 𝑛} \ 𝑖. We have 𝑗 =

1, . . . , 𝑁 independent permutations 𝜋 𝑗 . Let S𝜋 denote the set of all disjoint subsets

{𝜋(𝑖−1) (𝑟−1)+1, . . . , 𝜋𝑖(𝑟−1)}, 𝑖 = 1, . . . , 𝑛−1
𝑟−1 obtained from permutation 𝜋. We write

𝑇∗𝑛,𝐿 − 𝑇𝑛 =
𝑟

𝑛

𝑛∑︁
𝑖=1
(𝜉𝑖 − 1){𝐻̃1(𝑖) − 𝑇𝑛},

where

𝐻̃1(𝑖) =
∑
𝑗 𝐻𝜋 𝑗

(𝑖)
𝑁

,
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𝐻𝜋 (𝑖) =
∑
𝑆∈S𝜋 𝐻 (𝐴𝑆∪𝑖)

𝑛−1
𝑟−1

,

𝑇𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝐻̃1(𝑖).

Note that

var(𝑇∗𝑛,𝐿 − 𝑇𝑛 |𝐴, 𝑋) =
𝑟2

𝑛2

∑︁
𝑖

𝜎̃2
𝑛,𝑖

Proof of Theorem 5 (a):

Let 𝑌𝑖 denote (𝜉𝑖 − 1){𝐻̃1(𝑖) − 𝑇𝑛}. Conditioned on 𝐴 and 𝑋 , 𝐻̃1(𝑖) − 𝑇𝑛 are

observed constants, 𝑌𝑖 are independent but not identically distributed with variance

𝜎̃2
𝑛,𝑖

.

𝜎̃2
𝑛,𝑖 = var[(𝜉𝑖 − 1){𝐻̃1(𝑖) − 𝑇𝑛} | 𝐴, 𝑋] = 𝐸 [{𝐻̃1(𝑖) − 𝑇𝑛}2 | 𝐴, 𝑋]

Applying Berry-Esseen theorem to 𝑇∗
𝑛,𝐿
− 𝑇𝑛 conditioned on 𝐴 and 𝑋 , we

have

sup
𝑢∈𝑅

����𝑃∗ ©­­«
𝑇∗
𝑛,𝐿
− 𝑇𝑛√︃

var(𝑇∗
𝑛,𝐿
− 𝑇𝑛 |𝐴, 𝑋)

≤ 𝑢
ª®®¬ −Φ(𝑢)

����
= sup
𝑢∈𝑅

����𝑃∗ ©­­«
∑
𝑖 𝑌𝑖√︃∑
𝑖 𝜎̃

2
𝑛,𝑖

≤ 𝑢
ª®®¬ −Φ(𝑢)

����
≤

(
𝑛∑︁
𝑖=1
(𝜎̃2

𝑛,𝑖)
)−3/2 𝑛∑︁

𝑖=1
𝛾𝑖 =: 𝐶1𝜓𝑁 ,

Now in order to bound 𝜓𝑁 , we need to bound 𝐸𝜎̃2
𝑛,𝑖

. We decompose 𝜎̃2
𝑛,𝑖

into
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𝜎̃2
𝑛,𝑖 = 𝐸

[
(𝐻̃1(𝑖) − 𝑇𝑛)2 | 𝐴, 𝑋

]
= E

[
{𝐻̃1(𝑖) − 𝐻1(𝑖)}2 | 𝐴, 𝑋

]
+ (𝐻1(𝑖) − 𝑇𝑛)2 + E

[
(𝑇𝑛 − 𝑇𝑛)2 | 𝐴, 𝑋

]
+ 2E[{𝐻̃1(𝑖) − 𝐻1(𝑖)}{𝐻1(𝑖) − 𝑇𝑛)} | 𝐴, 𝑋] − 2E[(𝐻1(𝑖) − 𝑇𝑛) (𝑇𝑛 − 𝑇𝑛) | 𝐴, 𝑋]

− 2E[{𝐻̃1(𝑖) − 𝐻1(𝑖)}(𝑇𝑛 − 𝑇𝑛) | 𝐴, 𝑋] (B.3)

It is easy to see that the first two cross terms are zero. As for the third, the

law of iterated expectation gives:

E[{𝐻̃1(𝑖) − 𝐻1(𝑖)}(𝑇𝑛 − 𝑇𝑛)] | 𝐴, 𝑋] =
1
𝑛

var{𝐻̃1(𝑖) | 𝐴, 𝑋}.

Now we calculate the third term in Eq B.3,

E
{
(𝑇𝑛 − 𝑇𝑛)2 | 𝐴, 𝑋

}
= E


[
1
𝑛

𝑛∑︁
𝑖=1
{𝐻̃1(𝑖) − 𝐻1(𝑖)}

]2

| 𝐴, 𝑋
 =

∑𝑛
𝑖=1 var{𝐻̃1(𝑖) | 𝐴, 𝑋}

𝑛2 .

For the first term, we also have,

𝐸
[
{𝐻̃1(𝑖) − 𝐻1(𝑖)}2 | 𝐴, 𝑋

]
= var{𝐻̃1(𝑖) | 𝐴, 𝑋}.

Collecting all terms in Eq B.5, we have

𝜎̃2
𝑛,𝑖 =

(
1 − 2

𝑛

)
var{𝐻̃1(𝑖) | 𝐴, 𝑋} +

∑𝑛
𝑖=1 var{𝐻̃1(𝑖) | 𝐴, 𝑋)}

𝑛2 + 𝑔̂1(𝑖)2. (B.4)

Since the first two terms in Eq B.4 are always positive for 𝑛 > 2,
∑
𝑖 𝜎̃

2
𝑛,𝑖
≥ 𝑛𝜏2

𝑛 .

Also, by Lemma B.4.3, we have 𝑛𝜏2
𝑛 = 𝑐𝑛𝜌2𝑠

𝑛 (1 + 𝑜𝑃 (1)) for some constant 𝑐.
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Now we compute 𝛾̃3
𝑖
. Observe that,∑︁

𝑖

𝛾̃3
𝑖 ≤ 𝐶

(∑︁
𝑖

𝐸
[
|𝐻̃1(𝑖) − 𝐻1(𝑖) |3 |𝐴, 𝑋

]
+

∑︁
𝑖

|𝐻1(𝑖) − 𝑇𝑛 |3 +
∑︁
𝑖

𝐸 [|𝑇𝑛 − 𝑇𝑛 |3 |𝐴, 𝑋]
)

(B.5)

Note that for the last term in Eq B.5, using Jensen’s inequality for convex

function 𝑓 (𝑥) = |𝑥 |3, for some constant 𝐶0∑︁
𝑖

𝐸 [|𝑇𝑛 − 𝑇𝑛 |3 |𝐴, 𝑋] ≤ 𝑛 ×
1
𝑛

∑︁
𝑖

𝐸 [|𝐻̃1(𝑖) − 𝑇𝑛 |3 |𝐴, 𝑋]

≤ 𝐶0

(∑︁
𝑖

𝐸
[
|𝐻̃1(𝑖) − 𝐻1(𝑖) |3 |𝐴, 𝑋

]
+

∑︁
𝑖

|𝐻1(𝑖) − 𝑇𝑛 |3
)
,

which are just the first two terms in Eq B.5. So now we bound the first two terms in

Eq B.5.

From Lemma B.4.5, we have with probability going to one, the second term

in the above equation
∑
𝑖 |𝐻1(𝑖) − 𝑇𝑛 |3 ≤ 𝑐𝑛𝜌3𝑠

𝑛 , for some constant 𝑐.

Now we look at the first term in Eq B.5. Using Rosenthal’s inequality, for

some constant 𝐶1 and 𝐶2, we have∑︁
𝑖

𝐸
[
|𝐻̃1(𝑖) − 𝐻1(𝑖) |3 |𝐴, 𝑋

]
≤ 𝐶1

(∑︁
𝑖

1
𝑁3

∑︁
𝜋

𝐸 [|𝐻𝜋 (𝑖) − 𝐻1(𝑖) |3 |𝐴, 𝑋]
)

︸                                                   ︷︷                                                   ︸
𝑌1

+ 𝐶2
©­«
∑︁
𝑖

1
𝑁3

(∑︁
𝜋

𝐸 [(𝐻𝜋 (𝑖) − 𝐻1(𝑖))2 |𝐴, 𝑋]
)3/2ª®¬︸                                                           ︷︷                                                           ︸

𝑌2

.
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Now, we bound 𝐸 (𝑌1). Let 𝜃 (𝑖) = 𝐸 [𝐻 (𝐴𝑆∪𝑖) | 𝑋𝑖] and observe that 𝐸 |𝐻1(𝑖)−

𝜃 (𝑖) |𝑐 ≤ 𝐸 |𝐻 (𝐴𝑆∪𝑖) − 𝜃 (𝑖) |𝑐 for 𝑐 ≥ 1 via Jensen’s inequality. Moreover, conditionally

on 𝑋𝑖, note that for 𝑆 ∈ S𝜋, 𝐻 (𝐴𝑆∪𝑖) are mutually independent since their node sets

are disjoint. Now for 𝑌1, we use Rosenthal again to bound the third absolute moment

of the Bernoulli sum:

𝐸 ( |𝐻𝜋 (𝑖) − 𝐻1(𝑖) |3 |) ≤
𝐶𝑟3

𝑛3
1

(𝑛 − 1)!
∑︁
𝜋

𝐸

[
𝐸

(�� ∑︁
𝑆∈S𝜋

𝐻 (𝐴𝑆∪𝑖) − 𝜃 (𝑖)
��3���� 𝑋𝑖)]

≤ 𝐶1

𝑛2 𝐸 |𝐻 (𝐴𝑆∪𝑖) − 𝜃
(𝑖) |3 + 𝐶2

𝑛3/2𝐸 [𝐸 (𝐻 (𝐴𝑆∪𝑖) − 𝜃
(𝑖))2 |𝑋𝑖)3/2]

= 𝑂

(
𝜌𝑠𝑛

𝑛2

)
+𝑂

(
𝜌

3𝑠/2
𝑛

𝑛3/2

)
Now, to bound 𝐸 (𝑌2), we first check,

𝐸
©­«
𝑁∑︁
𝑗=1

𝐸
[
(𝐻𝜋 (𝑖) − 𝐻1(𝑖))2 |𝐴, 𝑋

]ª®¬
2

≤ 𝐶1𝑁

𝑁∑︁
𝑗=1

𝐸

(
𝐸

[(
𝐻𝜋 𝑗
(𝑖) − 𝐻1(𝑖)

)2
|𝐴, 𝑋

] )2

≤ 𝐶′1𝑁
2(𝜌2𝑠

𝑛 /𝑛2 + 𝜌4𝑠−2
𝑛 /𝑛2)

= 𝑂 (𝑁2𝜌2𝑠
𝑛 /𝑛2)

(B.6)

To obtain the last step, observe that

𝐸

(
𝐸

[
(𝐻𝜋 (𝑖) − 𝐻1(𝑖))2 |𝐴, 𝑋

] )2
= 𝐸

(
1

(𝑛 − 1)!
∑︁
𝜋

(𝐻𝜋 (𝑖) − 𝐻1(𝑖))2
)2

= 𝐸

(
1

(𝑛 − 1)!
∑︁
𝜋

(𝐻𝜋 (𝑖) − 𝜃 (𝑖))2 − (𝐻1(𝑖) − 𝜃 (𝑖))2
)2

≤ 2𝐸

(
1

(𝑛 − 1)!
∑︁
𝜋

(
𝐻𝜋 (𝑖) − 𝜃 (𝑖)

)2
)2

+ 2𝐸
[(
𝐻1(𝑖) − 𝜃 (𝑖)

)4
]
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(𝑖)
≤ 4𝐸

(
1

(𝑛 − 1)!
∑︁
𝜋

(
𝐻𝜋 (𝑖) − 𝜃 (𝑖)

)2
)2

≤ 4𝐸
©­­­«

1
𝑛2(𝑛 − 1)!

∑︁
𝜋

©­­­«
∑︁

𝑆∈S𝜋 (𝑖)

(
𝐻 (𝐴𝑆∪𝑖 − 𝜃 (𝑖)

)2
+

∑︁
𝑆∩𝑇=𝜙

𝑆,𝑇∈S𝜋 (𝑖)

(𝐻 (𝐴𝑆∪𝑖) − 𝜃 (𝑖)) (𝐻 (𝐴𝑇∪𝑖) − 𝜃 (𝑖))
ª®®®¬
ª®®®¬

2

≤ 4𝐸

(
𝐶𝐻1(𝑖) + 𝜃 (𝑖)

2

𝑛
+ 𝐶′𝐻′1(𝑖)

)2

= 𝑂

(
𝜌2𝑠
𝑛

𝑛2

)
+𝑂

(
𝜌4𝑠−2
𝑛

𝑛2

)
Note that:

𝐸 (𝐻′1(𝑖)
2 |𝑋𝑖)

=
𝐶

𝑛4(𝑟−1)

∑︁
𝑆∩𝑇=𝜙
𝑆′∩𝑇 ′=𝜙

𝐸

[
𝐻 (𝐴𝑆∪𝑖) − 𝜃 (𝑖))𝐻 (𝐴𝑇∪𝑖) − 𝜃 (𝑖))𝐻 (𝐴𝑆′∪𝑖) − 𝜃 (𝑖))𝐻 (𝐴𝑇 ′∪𝑖) − 𝜃 (𝑖)) |𝑋𝑖

]
= 𝑂

(
𝜌4𝑠−2
𝑛

𝑛2

)
+𝑂

(
𝜌2𝑠
𝑛

𝑛2(𝑟−1)

)
The last line is true because the terms with the largest contribution are those with

|𝑆 ∩ 𝑆′| = 1 and |𝑇 ∩ 𝑇 ′| = 1. The latter term corresponds to the variance terms (i.e.

𝑆 = 𝑆′, 𝑇 = 𝑇 ′), which is 𝑂
(
𝜌2𝑠
𝑛

𝑛2

)
for 𝑟 ≥ 2.

Step (i) follows from Jensen’s inequality:(
𝐻1(𝑖) − 𝜃 (𝑖)

)2
≤ 1
(𝑛 − 1)!

∑︁
𝜋

(
𝐻𝜋 (𝑖) − 𝜃 (𝑖)

)2

Using the fact that ∥𝑋 ∥3/2 ≤ ∥𝑋 ∥2, we have for some constant 𝐶,

𝐸 (𝑌2) ≤
𝐶𝑛𝜌

3𝑠/2
𝑛

𝑁3/2𝑛3/2 .
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Therefore, combining 𝐸 (𝑌1) and 𝐸 (𝑌2), we have, for some constant 𝐶1 and

𝐶2,

𝐸

(∑︁
𝑖

𝐸
[
|𝐻̃1(𝑖) − 𝐻1(𝑖) |3 |𝐴, 𝑋

] )
≤ 𝐶1

𝑛𝑁

𝑁3 ×
(
𝜌𝑠𝑛

𝑛2 +
𝜌

3𝑠/2
𝑛

𝑛3/2

)
+ 𝐶2

𝑛𝜌
3𝑠/2
𝑛

𝑁3/2𝑛3/2

= 𝐶1
𝜌𝑠𝑛

𝑛𝑁2 + 𝐶1
𝜌

3𝑠/2
𝑛

𝑁2𝑛1/2 + 𝐶2
𝜌

3𝑠/2
𝑛

𝑁3/2𝑛1/2 .

Note that we always have 𝜌
3𝑠/2
𝑛

𝑁2𝑛1/2 ≪
𝜌

3𝑠/2
𝑛

𝑁3/2𝑛1/2 , and 𝜌𝑠𝑛
𝑛𝑁2 ≪ 𝜌

3𝑠/2
𝑛

𝑁3/2𝑛1/2 if 𝑁 ≫ 1
𝑛𝜌𝑠𝑛

.

So as long as 𝑁 ≫ 1
𝑛𝜌𝑠𝑛

, the dominating term is 𝜌
3𝑠/2
𝑛

𝑁3/2𝑛1/2 .

Thus, combining all terms in Eq B.5 in expectation, for some constant 𝐶3

and 𝐶4, under the condition that 𝑁 ≫ 1
𝑛𝜌𝑠𝑛

, we have

𝐸

(∑︁
𝑖

𝛾3
𝑖

)
≤ 𝐶3

𝜌
3𝑠/2
𝑛

𝑛1/2𝑁3/2 + 𝐶4𝑛𝜌
3𝑠
𝑛 .

Since
∑
𝑖 𝛾

3
𝑖

is 𝑂𝑃 (𝐸
(∑

𝑖 𝛾
3
𝑖

)
), and note that

∑
𝑖 𝜎̃

2
𝑛,𝑖
≥ 𝑐𝑛𝜌2𝑠

𝑛 (1 + 𝑜𝑃 (1)) for

some constant 𝑐, we are ready to present an upper bound for 𝜓𝑁 ,

𝜓𝑁 =

∑𝑛
𝑖=1 𝛾

3
𝑖

(∑𝑛
𝑖=1 𝜎̃

2
𝑛,𝑖
)3/2

= 𝑂𝑃
©­«
𝐶3

𝜌
3𝑠/2
𝑛

𝑛1/2𝑁3/2 + 𝐶4𝑛𝜌
3𝑠
𝑛

(𝑛𝜌2𝑠
𝑛 )3/2

ª®¬ = 𝑂𝑃

(
1

𝑁3/2𝑛2𝜌
3𝑠/2
𝑛

)
+𝑂𝑃 (𝑛−1/2).

(B.7)

Note that 1
𝑁3/2𝑛2𝜌

3𝑠/2
𝑛

≪ 1
𝑛1/2 under the same condition that 𝑁 ≫ 1

𝑛𝜌𝑠𝑛
.

Thus we have, under the condition that 𝑁 ≫ 1
𝑛𝜌𝑠𝑛

,

sup
𝑢∈𝑅

����𝑃 ©­­«
𝑛1/2(𝑇∗

𝑛,𝐿
− 𝑇𝑛)

𝑟

√︃∑𝑛
𝑖=1 𝜎̃

2
𝑛,𝑖

≤ 𝑢 | 𝐴, 𝑋
ª®®¬ −Φ(𝑢)

���� = 𝑂𝑃

(
𝑛−1/2

)
. (B.8)
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Thus we have proof of Theorem 5 a).

Proof of Theorem 5 (b): Note that

var(𝑇∗𝑛,𝐿 − 𝑇𝑛 |𝐴, 𝑋) =
𝑟2

𝑛2

∑︁
𝑖

𝜎̃2
𝑛,𝑖

Using Lemma B.2.1 we have the following result for its expectation.

E
[
var{𝐻̃1(𝑖) | 𝐴, 𝑋)}

]
= 𝑂

(
𝑟𝜌𝑠𝑛

𝑁𝑛

)
.

Now it follows from Eq B.4 that:∑
𝑖 𝜎̃

2
𝑛,𝑖

𝑛
= 𝜏2

𝑛 +𝑂𝑃

(
𝑟𝜌𝑠𝑛

𝑁𝑛

)
. (B.9)

Using Lemma B.4.3 (a), it follows that 𝜏2
𝑛/𝜏2 = 1 +𝑂𝑃 (1/𝑛𝜌𝑛).

Proof of Theorem 5 (c): For the un-approximated linear bootstrap, there is no

randomness in 𝐻̃1(𝑖), since it equals 𝐻̂1(𝑖). Thus var(𝐻̃1(𝑖) |𝐴, 𝑋) = 0. So the result

follows from Eq B.4. □

Lemma B.2.1.

E
[
var{𝐻̃1(𝑖) | 𝐴, 𝑋}

]
= 𝑂

(
𝑟𝜌𝑠𝑛

𝑁𝑛

)
.

Proof. Let 𝜃𝑖 denote 𝐸 [𝐻𝜋 (𝑖) |𝑋𝑖]. Then, we have

𝐸 (var(𝐻̃1(𝑖) − 𝐻1(𝑖) | 𝐴, 𝑋)) =
1
𝑁

{
1

(𝑛 − 1)!
∑︁
𝜋

𝐸 (𝐻𝜋 − 𝜃𝑖)2 − 𝐸 (𝐻1(𝑖) − 𝜃𝑖)2
}

=
1
𝑁
{𝐸 (var(𝐻𝜋) | 𝑋𝑖) − 𝐸 (var(𝐻1(𝑖) | 𝑋𝑖))}

= Θ

(
𝜌𝑠𝑛

𝑁𝑛

)
−𝑂

(
𝜌2𝑠
𝑛

𝑁𝑛

)
= 𝑂

(
𝑟𝜌𝑠𝑛

𝑁𝑛

)
.
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□

B.3 Proof of Proposition 3

Proof. In what follows, we prove Proposition 3 holds for Edgeworth expansion of a

standardized count functional. Our argument here is closely related to Zhang and Xia

(2020), thus we do not present the complete proof here. They have showed in Theorem

3.1 in the above reference, that under same conditions, Edgeworth Expansion for

studentized 𝑇𝑛, denote as 𝐺̃𝑛 (𝑢) here, has the same property as Proposition 3. We

have first derived our Edgeworth Expansion formula in eq 3.20 for standardized

𝑇𝑛 instead of studentized 𝑇𝑛 and we state the form of the characteristic function of

𝐺𝑛 (𝑢) below:

Proposition B.3.1. We have:

𝜓𝐺 (𝑛) (𝑡) :=
∫

𝑒𝑖𝑡𝑢𝑑𝐺𝑛 (𝑢)

= 𝑒−
𝑡2
2

(
1 − 𝑖𝑡3 1

6𝑛1/2𝜏3
𝑛

[
𝐸{𝑔3

1 (𝑋1)} + 3(𝑟 − 1)𝐸{𝑔1(𝑋1)𝑔1(𝑋2)𝑔2(𝑋1, 𝑋2)}
] )
.

Our standardized 𝑇𝑛, denote as 𝑇𝑛 can be decomposed into

𝑇𝑛 :=
𝑇𝑛 − 𝜇𝑛
𝜎𝑛

=
𝑇𝑛 − 𝜇𝑛
𝜎𝑛

+ 𝑇𝑛 − 𝑇𝑛
𝜎𝑛

= 𝑇𝑛,1 + 𝑇𝑛,2 +𝑂𝑃

(
1
𝑛

)
+ 𝑅𝑛,

where

𝑇𝑛,1 =
1

𝑛1/2𝜏𝑛

𝑛∑︁
𝑖=1

𝑔1(𝑋𝑖), 𝑇𝑛,2 =
𝑟 − 1

𝑛1/2(𝑛 − 1)𝜏𝑛

∑︁
𝑖< 𝑗

𝑔2(𝑋𝑖, 𝑋 𝑗 ), 𝑅𝑛 =
𝑇𝑛 − 𝑇𝑛
𝜎𝑛

.

We will begin by bounding 𝑅𝑛. Similar to the theory for U-statistics, the

behavior is largely determined by a linear term.
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Let:

𝑅𝑛,1 = Linear part of
𝑇𝑛 − 𝑇𝑛
𝜎𝑛

.

where the linear part has the form:

𝑅𝑛,1 =
1(𝑛
2
) ∑︁
𝑖< 𝑗

𝑐𝑖 𝑗
{
𝐴𝑖 𝑗 − E(𝐴𝑖 𝑗 | 𝑋𝑖, 𝑋 𝑗 )

}
for 𝑐𝑖 𝑗 = 𝑐𝑖 𝑗 (𝑋𝑖, 𝑋 𝑗 , 𝜌𝑛) ≍ 𝜌−1

𝑛 𝑛
−1/2 defined in Section 7 of the above reference.

Theorem 3.1(b) of the above authors establishes that:

𝑅𝑛 − 𝑅𝑛,1 = 𝑂𝑃 (M(𝑛, 𝜌𝑛, 𝑅)),

Under the assumed sparsity conditions, given X, the distribution of 𝑅𝑛,1 permits the

following (uniform) approximation by a Gaussian-distributed variable 𝑍𝑛:

sup
𝑢

����𝐹𝑅𝑛,1 |𝑋 (𝑢) − 𝐹𝑍𝑛
���� = 𝑂𝑃

(
1

𝜌
1/2
𝑛 𝑛

)
,

where 𝑍𝑛 ∼ 𝑁 (0, 𝜎
2
𝑤

𝑛𝜌𝑛
) and 𝜎2

𝑤 is defined as the variance of Eq B.3. Note that 𝜎𝑤 ≍ 1

when 𝑛 −→ ∞.

Now to prove our theorem, we will show the three equations below.

sup
𝑢

����𝐹𝑇𝑛 (𝑢) − 𝐹𝑇𝑛,1+𝑇𝑛,2+𝑅𝑛

���� = 𝑂 (M(𝑛, 𝜌𝑛, 𝑅)) , (B.10)

sup
𝑢

����𝐹𝑇𝑛,1+𝑇𝑛,2+𝑅𝑛
(𝑢) − 𝐹𝑇𝑛,1+𝑇𝑛,2+𝑍𝑛

���� = 𝑂 (
1

𝜌
1/2
𝑛 𝑛

)
, (B.11)

sup
𝑢

����𝐹𝑇𝑛,1+𝑇𝑛,2+𝑍𝑛 − 𝐺𝑛 (𝑥)
���� = 𝑂 (

1
𝑛

)
, (B.12)
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We prove Eq B.12 using Esseen’s smoothing lemma from Section XVI.3 in

Feller (1971),

sup
𝑢

����𝐹𝑇𝑛,1+𝑇𝑛,2+𝑍𝑛 (𝑢) − 𝐺𝑛 (𝑥)
����

≤ 𝑐1

∫ 𝛾

−𝛾

1
𝑡

����𝜓𝐹𝑇𝑛,1+𝑇𝑛,2+𝑍𝑛 (𝑢) − 𝜓𝐺𝑛
(𝑡)

����𝑑𝑡 + 𝑐2 sup
𝑢

𝐺′𝑛 (𝑢)
𝛾

,

(B.13)

where 𝜓 is the characteristic function. 𝛾 is set to 𝑛. We omit the proof here as it is

not hard to check by breaking the integral into |𝑡 | ∈ (0, 𝑛𝜖 ),(𝑛𝜖 , 𝑛1/2) and (𝑛1/2, 𝑛).

Using similar arguments as Lemma 8.3 of Zhang and Xia (2020), we have Eq B.13

and thus Eq B.12 hold for our characteristic function in Proposition B.3.1. It is

also not hard to check that, using similar arguments of the above reference, under

Assumption 2, Eq B.10 and Eq B.11 hold given Eq B.12. □

B.4 Edgeworth Expansion for Weighted Bootstrap - Proofs of
Theorem 6 and Corollary 6.1

Using Eq (10), we express our quadratic bootstrap statistic as:

𝑇∗𝑛,𝑄 =

∑
𝑖 (𝜉𝑖 − 1)𝑔̂1(𝑖)
𝑛1/2𝜏𝑛

+
(𝑟 − 1)∑1≤𝑖< 𝑗≤𝑛 (𝜉𝑖𝜉 𝑗 − 𝜉𝑖 − 𝜉 𝑗 + 1)𝑔̃2(𝑖, 𝑗)

𝑛1/2(𝑛 − 1)𝜏𝑛
(B.14)

We will first prove Theorem 6. However in order to prove it we state a slightly

different version of Theorem 3.1 in Wang and Jing (2004). The main difference is

that one condition in the original lemma is not fulfilled in our case. In particular,

Bernoulli noise with 𝜌𝑛 → 0 blows up some terms that are needed to bound the error

associated with the Edgeworth expansion. However, a thorough examination reveals

that the argument carries through with some modifications.
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Let

𝐾2,𝑛 =
1

𝑛3/2𝐵2
𝑛

∑︁
1≤𝑖< 𝑗≤𝑛

𝑏𝑛𝑖𝑏𝑛 𝑗𝑑𝑛𝑖 𝑗E{𝑌1𝑌2𝜓(𝑌1, 𝑌2)} (B.15a)

𝐿1,𝑛 (𝑥) =
𝑛∑︁
𝑗=1

{
EΦ(𝑥 − 𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛) −Φ(𝑥)

}
− 1

2
Φ′′(𝑥) (B.15b)

𝐿2,𝑛 (𝑥) = −𝐾2,𝑛Φ
′′′(𝑥) (B.15c)

𝐸2𝑛 (𝑥) = Φ(𝑥) + 𝐿1,𝑛 (𝑥) + 𝐿2,𝑛 (𝑥), (B.15d)

Lemma B.4.1. Consider the following expression.

𝑉𝑛 =
1
𝐵𝑛

∑︁
𝑗

𝑏𝑛 𝑗𝑌 𝑗 +
1
𝑛3/2

∑︁
𝑖< 𝑗

𝑑𝑛𝑖 𝑗𝜓(𝑌𝑖, 𝑌 𝑗 ), (B.16)

where 𝐵2
𝑛 =

∑
𝑗 𝑏

2
𝑛 𝑗

. Let 𝛽 := E( |𝑌1 |3) and 𝜆 = E{𝜓2(𝑌1, 𝑌2)}, and let E(𝑌1) = 0,

E(𝑌2
1 ) = 1 and 𝜅(𝑋1) > 0 . Furthermore, let E{𝜓(𝑌1, 𝑌2) | 𝑌𝑡} = 0 for all 1 ≤ 𝑡 ≤ 𝑛.

For some constants ℓ1, ℓ2, ℓ3 the sequence 𝑏𝑛,𝑖 satisfies

1
𝑛

𝑛∑︁
𝑖=1

𝑏2
𝑛,𝑖 ≥ 𝑙1 > 0,

1
𝑛

𝑛∑︁
𝑖=1
|𝑏𝑛,𝑖 |3 ≤ 𝑙2 ≤ ∞, (B.17)

Furthermore, define 𝛼𝑖 := 1
𝑛

∑
𝑗≠𝑖 𝑑

2
𝑛𝑖 𝑗

. and for sufficiently large 𝑘 , define:

𝑙4,𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝛼𝑖, 𝑠2
𝑛 =

1
𝑛

∑︁
𝑖

𝛼2
𝑖 − (𝑙4,𝑛)2, 𝑙5,𝑛 = 𝑙4,𝑛 + 𝑘𝑠𝑛 (B.18)

If 𝛽, 𝜅(𝑌1) and 𝜆 are bounded, then,

sup
𝑥

|𝑃(𝑉𝑛 ≤ 𝑥) − 𝐸2𝑛 (𝑥) | = 𝑂
(
𝑙5,𝑛 log 𝑛
𝑛2/3

)
,

Intuitively, arguments for establishing rates of convergence for the Edgeworth

expansions require comparing the characteristic function of the random variable of
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interest with the Fourier transform of the Edgeworth expansion. To this end, the

respective integrals are broken up into several pieces. The bounds required in (B.17)

are used to estimate the error of the Edgeworth expansion in some of these steps, but

appear as constants and are suppressed in the Big-O notation.

On the other hand, as previously mentioned, it turns out that certain terms

that appear as constants in Wang and Jing (2004) blow up when perturbed by sparse

network noise and appear in the rate. In particular, the term 𝑙5,𝑛 arises from needing

to bound 1
𝑚

∑𝑚
𝑖=1 𝛼𝑖 for all 𝑚 ≤ 𝑀 for some 𝑀 large enough.

Since the data is fixed, we may view 𝛼1, . . . , 𝛼𝑛 as constants. We therefore

have the liberty of choosing a “good set" in which 𝛼𝑖 are well-behaved. Without

loss of generality, we may label these elements {𝛼1, . . . , 𝛼𝑀}; the corresponding

multiplier random variables are still independent. Even when there is no randomness,

it turns out that a large proportion of {𝛼1, . . . 𝛼𝑛} must be within 𝑘 sample standard

deviations of the sample mean 𝑙4,𝑛 for 𝑘 large enough. This observation, which we

believe is novel in the bootstrap setting, allows us to establish a tight bound for
1
𝑚

∑𝑚
𝑖=1 𝛼𝑖 for all 𝑚 ≤ 𝑀 . We state this lemma below.

Lemma B.4.2. Let 𝑥1, . . . , 𝑥𝑛 be constants in R and let 𝑥𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 and 𝑠2

𝑛 =

1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2 Define the set:

Γ𝑘 = {𝑥𝑖 ≥ 𝑥𝑛 + 𝑘𝑠𝑛}

Then,

|Γ𝑘 | ≤
𝑛

𝑘2
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Proof. Observe that:

𝑠2
𝑛 ≥

1
𝑛

∑︁
𝑖∈Γ𝑘
(𝑥𝑖 − 𝑥𝑛)2

≥ 1
𝑛

∑︁
𝑖∈Γ𝑘

𝑘2𝑠2
𝑛 =⇒ |Γ𝑘 | ≤

𝑛

𝑘2

□

Remark B.4.1. Our lemma is closely related to concentration of sums sampled without

replacement from a finite population. In fact, it implies the without-replacement

Chebychev’s inequality; see, for example, Corollary 1.2 of Serfling (1974).

We will show that 𝑇∗
𝑛,𝑄

can be written as Eq B.16, with carefully chosen {𝑏𝑛𝑖}

and {𝑑𝑛𝑖 𝑗 }’s. We now present some accompanying Lemmas to show that Eq B.17 is

satisfied with probability tending to 1. Proofs of Lemmas B.4.1, B.4.5, and B.4.6 are

provided in following subsections.

We present some useful results shown in Zhang and Xia (2020) which we

will use later in proofs of our theorems.

Lemma B.4.3. Let 𝜏2
𝑛 =

∑
𝑖 𝑔̂1(𝑖)2/𝑛. We have,

1. For acyclic graphs, if 𝑛𝜌𝑛 →∞, and for cyclic graphs, if 𝑛𝜌𝑟𝑛 →∞, we have:

𝜏2
𝑛

𝜏2
𝑛

= 1 +𝑂𝑃

(
1
𝑛𝜌𝑛

)
+𝑂𝑃

(
1
√
𝑛

)
(B.19)

𝐸 ( |𝑔̂1(𝑖) − 𝑔1(𝑋𝑖) |/𝜌𝑠𝑛)2 = 𝑂 (1/𝑛𝜌𝑛) (B.20)

2. Under Assumption 2, we have�����∑ 𝑗 𝑔̂1(𝑖)3

𝑛
− E{𝑔1(𝑋1)3}

����� = 𝑂𝑃

(
𝜌3𝑠−0.5
𝑛 𝑛−1/2

)
(B.21)
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�����∑𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̂2(𝑖, 𝑗)(𝑛
2
) − E{𝑔1(𝑋1)𝑔1(𝑋2)𝑔2(𝑋1, 𝑋2)}

����� = 𝑂𝑃

(
𝜌3𝑠−0.5
𝑛 𝑛−1/2

)
,

(B.22)

and

|𝜏3
𝑛 − 𝜏3

𝑛 | = 𝑂𝑃 (𝜌3𝑠/𝑛1/2). (B.23)

Lemma B.4.4. Under the sparsity assumptions in Assumption 2, for large enough 𝐶,

𝑃

(
1
𝑛2

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑔̃2(𝑖, 𝑗)2 ≥ 𝐶𝜌2𝑠−1
𝑛

)
→ 1

Lemma B.4.5. Under the sparsity conditions in Assumption 2 and for some arbitrary

𝜖 > 0,

𝑃

(∑
𝑖 |𝑔̂1(𝑖)/𝜌𝑠𝑛 |3

𝑛
≤ 𝑐

)
→ 1

𝑃

(∑
𝑖 |𝑔̂1(𝑖)/𝜌𝑠𝑛 |2

𝑛
≥ 𝑐′

)
→ 1,

for positive constants 𝑐, 𝑐′ not depending on 𝑛.

Lemma B.4.6. Let 𝜉1 be generated from the Gaussian product distribution. We have

E|𝜉1 − 1|3 < ∞.

Now we are ready to provide the proof.

Proof of Theorem 6. It is easy to see from Eq B.14 that 𝑇∗
𝑛,𝑄

can be expressed as:

𝑇∗𝑛,𝑄 =

∑
𝑖 𝑏𝑛,𝑖𝑌𝑖

𝐵𝑛
+ 1
𝑛1/2(𝑛 − 1)

∑︁
1≤𝑖< 𝑗≤𝑛

𝜓(𝑌𝑖, 𝑌 𝑗 )𝑑𝑛,𝑖 𝑗 ,
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where we have:

𝑌𝑖 = 𝜉𝑖 − 1, (B.24a)

𝑏𝑛,𝑖 =
𝑔̂1(𝑖)
𝜌𝑠𝑛

, (B.24b)

𝐵2
𝑛 =

𝑛∑︁
𝑖=1

𝑏2
𝑛,𝑖, (B.24c)

𝑑𝑛,𝑖 𝑗 =
𝑟 − 1
𝜏𝑛

𝑔̃2(𝑖, 𝑗) ×
𝑛

𝑛 − 1
, (B.24d)

𝜓(𝜉𝑖, 𝜉 𝑗 ) = 𝜉𝑖𝜉 𝑗 − 𝜉𝑖 − 𝜉 𝑗 + 1. (B.24e)

Note that since 𝜏2
𝑛 =

∑
𝑖 𝑔̂1(𝑖)2/𝑛. Thus we use 𝐵2

𝑛 = 𝑛𝜏2
𝑛/𝜌2𝑠

𝑛 . Thus, 𝐵2
𝑛 =

∑
𝑖 𝑏

2
𝑛,𝑖

.

Furthermore, Lemma B.4.6 shows that our 𝜉𝑖 − 1 random variables have finite

E{|𝜉𝑖 − 1|3}.

Lemma B.4.5 shows that the conditions in Eq B.17 are satisfied on a high

probability set of 𝐴, 𝑋 .

Using Lemma B.4.5, we see that the first two conditions in Eq B.17 are

satisfied with probability tending to one under Assumption 2. Since 𝐵2
𝑛/𝑛 =

∑
𝑖 𝑏

2
𝑛,𝑖
/𝑛

converges to a positive constant (see Lemma B.4.3), the first condition holds. Now,

we need to bound ℓ4,𝑛 and 𝑠𝑛 as defined Eq B.18. First, let 𝛽𝑛,𝑖 :=
∑
𝑗≠𝑖 𝑔̃2(𝑖, 𝑗)2/𝑛

and 𝛽𝑛 =
∑
𝑖 𝛽𝑛,𝑖/𝑛. Also let 𝛾𝑛 =

∑
𝑖 𝛽

2
𝑛,𝑖
/𝑛 − 𝛽2

𝑛. Then ℓ4,𝑛 = 𝐶𝛽𝑛,𝑖/𝜏2
𝑛 . Note that

using Lemma B.4.4, we have, with probability tending to one, ℓ4,𝑛 ≤ 𝐶𝜌−1
𝑛 . From

Lemma B.4.3, we have 𝜏𝑛 isΘ(𝜌𝑠𝑛). Furthermore, let 𝐺̂2(𝑖, 𝑗) := 𝐻̂2(𝑖, 𝑗)−ℎ2(𝑋𝑖, 𝑋 𝑗 ).

We have

𝐺̂2(𝑖, 𝑗)2 = 𝐺̂2(𝑖, 𝑗)2 − E{𝐺̂2(𝑖, 𝑗)2 | 𝑋}︸                               ︷︷                               ︸
𝛿𝑖 𝑗

+E{𝐺̂2(𝑖, 𝑗)2 | 𝑋}︸               ︷︷               ︸
𝑂 (𝜌2𝑠−1

𝑛 )
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We now will establish the 𝑂 (𝜌2𝑠−1
𝑛 ) bound stated above for the second term. Let S𝑖 𝑗𝑟

denote all subsets of size 𝑟 not containing 𝑖, 𝑗 .

E{𝐺̂2(𝑖, 𝑗)2 | 𝑋} =
∑
𝑆,𝑇∈S𝑖 𝑗

𝑟
E{𝐻 (𝐴𝑖 𝑗∪𝑆)𝐻 (𝐴𝑖 𝑗∪𝑇 ) | 𝑋}(𝑛−2

𝑟−2
)2

In the above sum the terms with |𝑆 ∩ 𝑇 | = 0 dominate, and for each of them the

conditional expectation is bounded a.s. by 𝑂 (𝜌2𝑠−1
𝑛 ) because of the boundedness of

the graphon. Now note that:

𝑔̃2(𝑖, 𝑗)2 ≤ 3
[
{𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 )}2 + {ℎ2(𝑋𝑖, 𝑋 𝑗 ) − 𝜃𝑛}2 + (𝑇𝑛 − 𝜃𝑛)2

]
≤ 3{𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 )}2 +𝑂 (𝜌2𝑠−1

𝑛 )

𝛽𝑛,𝑖 ≤
1
𝑛

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗 +𝑂 (𝜌2𝑠−1)

𝛾2
𝑛 ≤

1
𝑛

∑︁
𝑖

𝛽2
𝑛,𝑖 ≤

1
𝑛

∑︁
𝑖

{
1
𝑛

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗 +𝑂 (𝜌2𝑠−1)
}2

≤ 𝑂 (𝜌4𝑠−2) + 1
𝑛

∑︁
𝑖

1
𝑛

∑︁
𝑗≠𝑖

𝛿2
𝑖 𝑗︸            ︷︷            ︸

𝐴

Now note that, E(𝛿𝑖 𝑗 ) = E{E(𝛿𝑖 𝑗 | 𝑋)} = 0. Thus, for all 𝑖,

E(𝐴) = 1
𝑛

∑︁
𝑖

E

{
1
𝑛

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗

}2

=
1
𝑛

∑︁
𝑖

var

(
1
𝑛

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗

)
= 𝑂 (𝜌4𝑠−3/𝑛)

Thus, we have, for a large enough 𝐶,

𝑃

(
𝛾2
𝑛 ≥ 𝐶𝜌4𝑠−2

𝑛

)
≤ 𝑃

(
𝐴 ≥ 𝐶′𝜌4𝑠−2

𝑛

)
≤ 𝑂

(
E(𝐴)
𝜌4𝑠−2
𝑛

)
= 𝑂

(
1
𝑛𝜌𝑛

)
Therefore, since 𝑠2

𝑛 =
(𝑟−1)2𝑛2

(𝑛−1)2 𝛾𝑛/𝜏
2
𝑛 , we have with probability tending to one,

𝑙4,𝑛 + 𝑘𝑠𝑛 = 𝑂 (𝜌−1
𝑛 ).
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Since the first two conditions in Eq B.17 are satisfied with probability tending

to one, from Wang and Jing (2004) Theorem 3.1, we have,

sup
𝑢

����𝐿1𝑛 (𝑢) +
𝐸 (𝜉𝑖 − 1)3

6𝐵3
𝑛

𝑛∑︁
𝑖=1

𝑏3
𝑛,𝑖Φ

′′′(𝑢)
���� = 𝑜𝑃 (𝑛−1/2),

Now we see that, using the definitions of 𝐿1𝑛, 𝐿2𝑛 in Eq B.15a, plugging in

definitions of 𝑏𝑛𝑖 and 𝑑𝑛𝑖 𝑗 ’s from Eq B.24, and using the fact that E[𝑌𝑖𝑌 𝑗𝜓(𝑌𝑖, 𝑌 𝑗 )] =

E[(𝜉𝑖 − 1)2(𝜉 𝑗 − 1)2] = 1,

sup
𝑢

|𝐸2𝑛 (𝑢) − 𝐺̂𝑛 (𝑢) | = 𝑜𝑃 (𝑛−1/2).

Therefore, putting all the pieces together we see that

sup
𝑢

����𝑃∗ (𝑇∗𝑛,𝑄 − 𝑇𝑛𝜎̂𝑛
≤ 𝑢

)
− 𝐺̂𝑛 (𝑢)

���� = 𝑜𝑝 (
𝑛−1/2

)
+𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
(B.25)

□

Now we are ready to finish the proof of Corollary 6.1.

Proof of Corollary 6.1. Here we take care of the error term in the Hoeffding projec-

tion in Eq 3.11. Set 𝑋 =
𝑇∗
𝑛,𝑀
−𝑇𝑛

𝜎̂𝑛
, 𝑌 = 𝑇∗

𝑛,𝑄
. From Eq 3.11, we see that 𝑋 = 𝑌 + 𝑅𝑛,

where 𝑅𝑛 = 𝑂𝑃 (𝛿(𝑛, 𝜌𝑛, 𝑅)). Using Eq B.25, we see that on a high probability set,

𝐹𝑌 (𝑢 + 𝑎) − 𝐹𝑌 (𝑢)

≤ |𝐹𝑌 (𝑢 + 𝑎) − 𝐺̂𝑛 (𝑢 + 𝑎) | + |𝐺̂𝑛 (𝑢 + 𝑎) − 𝐺̂𝑛 (𝑢) | + |𝐺̂𝑛 (𝑢) − 𝐹𝑌 (𝑢) |

≤ 𝐶𝑎 +𝑂
(

log 𝑛
𝑛2/3𝜌𝑛

)
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Therefore, using Lemma 8.2 in Zhang and Xia (2020),

sup
𝑢

�����𝑃∗
(
𝑇∗
𝑛,𝑀
− 𝑇𝑛
𝜎̂𝑛

≤ 𝑢
)
− 𝐺̂𝑛 (𝑢)

����� = 𝑜𝑃 (𝑛−1/2) +𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
.

□

Proof of Lemma 7. If we can establish Eq B.22 and Eq B.23 from Lemma B.4.3

for our empirical moments, we will get the desired result. Note that our empirical

moments involve the first term as well as a slight variation of the second term, which

is given below.

𝐸𝑛{𝑔1(𝑖)𝑔1( 𝑗)𝑔2(𝑖, 𝑗)} =
∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
)

We will show that this follows from Eq B.22.∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̂2(𝑖, 𝑗)(𝑛

2
)

=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗) (𝑔̃2(𝑖, 𝑗) − 𝑔̂1(𝑖) − 𝑔̂1( 𝑗))(𝑛

2
)

=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
) −

∑
𝑖≠ 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗) (𝑔̂1(𝑖) + 𝑔̂1( 𝑗))

2
(𝑛
2
)

=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
) −

∑
𝑖≠ 𝑗 𝑔̂1(𝑖)2𝑔̂1( 𝑗)(𝑛

2
)

=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
) −

(∑𝑖 𝑔̂1(𝑖)2) (
∑
𝑗 𝑔̂1( 𝑗)) −

∑
𝑖 𝑔̂1(𝑖)3(𝑛

2
)

(𝑖)
=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
) +

∑
𝑖 𝑔̂1(𝑖)3(𝑛

2
)

(𝑖𝑖)
=

∑
𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛

2
) +𝑂𝑃

(
𝜌3𝑠
𝑛

𝑛

)
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(i) uses the fact that
∑
𝑖 𝑔̂1(𝑖) = 0. (ii) uses the fact that E{𝑔1(𝑋1)3} = 𝑂 (𝜌3𝑠

𝑛 ) along

with Eq B.21. Hence from Eq B.22 we have:�����∑𝑖< 𝑗 𝑔̂1(𝑖)𝑔̂1( 𝑗)𝑔̃2(𝑖, 𝑗)(𝑛
2
) − E{𝑔1(𝑋1)𝑔1(𝑋2)𝑔2(𝑋1, 𝑋2)}

�����
= max

{
𝑂𝑃

(
𝜌3𝑠
𝑛

𝑛

)
, 𝑂𝑃

(
𝜌3𝑠− 1

2𝑛−1/2
)}

= 𝑂𝑃

(
𝜌3𝑠− 1

2𝑛−1/2
)
.

This, along with Eqs B.21 and B.23 yields the result. □

B.4.1 Proof of Lemma B.4.4

Proof. Recall the definition of 𝐻̂2(𝑖, 𝑗) from Eq B.1.

𝑔̃2(𝑖, 𝑗) = 𝐻̂2(𝑖, 𝑗) − 𝑇𝑛 = {𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 )} + {ℎ2(𝑋𝑖, 𝑋 𝑗 } − 𝜃𝑛) − (𝑇𝑛 − 𝜃𝑛)

𝑔̃2(𝑖, 𝑗)2 ≤ 3
[
{𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 )}2 + {ℎ2(𝑋𝑖, 𝑋 𝑗 ) − 𝜃𝑛}2 + (𝑇𝑛 − 𝜃𝑛)2

]
.

Since var(𝑇𝑛) = 𝑂 (𝜌2𝑠
𝑛 /𝑛) and the second term is bounded a.s. due to our boundedness

assumption. We will just prove that
∑
𝑗≠𝑖{𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 )}2/(𝑛 − 1)𝜌2𝑠 is

bounded with high probability. It is not hard to check that

E{(𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 ))2/𝜌2𝑠
𝑛 } = 𝑂 (1/𝜌𝑛)

Therefore, ∑︁
𝑗≠𝑖

E{𝑔̂2(𝑖, 𝑗)2/(𝑛𝜌2𝑠) = 𝑂 (1/𝜌𝑛)}
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Furthermore, let 𝐺̂2(𝑖, 𝑗) := 𝐻̂2(𝑖, 𝑗) − ℎ2(𝑋𝑖, 𝑋 𝑗 ). We have

𝐺̂2(𝑖, 𝑗)2 = 𝐺̂2(𝑖, 𝑗)2 − E{𝐺̂2(𝑖, 𝑗)2 | 𝑋}︸                               ︷︷                               ︸
𝛿𝑖 𝑗

+E{𝐺̂2(𝑖, 𝑗)2 | 𝑋}︸               ︷︷               ︸
𝑂 (𝜌2𝑠−1

𝑛 )

We now will establish the 𝑂 (𝜌2𝑠−1
𝑛 ) bound stated above for the second term. Let S𝑖 𝑗𝑟

denote all subsets of size 𝑟 not containing 𝑖, 𝑗 .

E{𝐺̂2(𝑖, 𝑗)2 | 𝑋} =
∑
𝑆,𝑇∈S𝑖 𝑗

𝑟
E{𝐻 (𝐴𝑖 𝑗∪𝑆)𝐻 (𝐴𝑖 𝑗∪𝑇 ) | 𝑋}(𝑛−2

𝑟−2
)2

In the above sum the terms with |𝑆 ∩ 𝑇 | = 0 dominate, and for each of them the

conditional expectation is bounded a.s. by 𝑂 (𝜌2𝑠−1
𝑛 ) because of the boundedness of

the graphon.

We will analyze
∑
𝑖

∑
𝑗≠𝑖 𝛿𝑖 𝑗 . Note that E(𝛿𝑖 𝑗 | 𝑋) = 0.

var

(
1
𝑛2

∑︁
𝑖

∑︁
𝑗

𝛿𝑖 𝑗 | 𝑋
)
=

∑
𝑖

∑
𝑗 var(𝛿𝑖 𝑗 | 𝑋) +

∑
𝑖,𝑘,𝑘≠𝑖

∑
𝑗 ,ℓ, 𝑗≠ℓ cov(𝛿𝑖𝑘 , 𝛿 𝑗ℓ | 𝑋)

𝑛4

(B.26)

𝛿𝑖 𝑗 =
1(𝑛−2

𝑟−2
)2

∑︁
𝑆,𝑇∈S𝑖 𝑗

𝑟

𝐻 (𝐴𝑖 𝑗∪𝑆)𝐻 (𝐴𝑖 𝑗∪𝑇 ) − E{𝐻 (𝐴𝑖 𝑗∪𝑆)𝐻 (𝐴𝑖 𝑗∪𝑇 ) | 𝑋}︸                                                           ︷︷                                                           ︸
𝐻 ′
𝑖 𝑗
(𝑆,𝑇)

For variance, we have:

var(𝛿𝑖 𝑗 ) = E{var(𝛿𝑖 𝑗 | 𝑋)}

=

∑
𝑆1≠𝑇1,𝑆2≠𝑇2∈S𝑖 𝑗

𝑟

E{cov(𝐻′
𝑖 𝑗
(𝑆1, 𝑇1), 𝐻′𝑖 𝑗 (𝑆2, 𝑇2) | 𝑋)}(𝑛−2

𝑟−2
)4
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The dominant term in the above sum is the one with 𝑆1, 𝑆2, 𝑇1, 𝑇2 all disjoint.

Consider any other term in the above sum where any pair of the subsets have

𝑝 nodes, 𝑑 edges in common and the rest are disjoint. In this case there are

2(𝑟 − 2− 𝑝) + 2(𝑟 − 2) + 𝑝 = 4(𝑟 − 2) − 𝑝 choices of nodes and the number of edges

are lower bounded by 4(𝑠 − 1) + 1 − 𝑑 = 4𝑠 − 3 − 𝑑 (since all pairs have {𝑖, 𝑗} in

common). When 𝑝 ≥ 1, for acyclic graphs, 𝑑 ≤ 𝑝 − 1 and for general subgraphs

with a cycle, 𝑑 ≤
(𝑝
2
)
. Thus, for 𝑝 ≥ 0, we have:

𝑂

(
𝑛4(𝑟−2)−𝑝𝜌4𝑠−3−𝑑

𝑛

)
(𝑛−2
𝑟−2

)4 = 𝑂 (𝜌4𝑠−3
𝑛 ) ×𝑂

(
1

𝑛𝑝𝜌𝑑𝑛

)
Note that for acyclic graphs, it is easy to see that under our sparsity conditions the

above is dominated by 𝑝 = 0. For general cyclic graphs, since 𝜌𝑛 = 𝜔(𝑛−1/𝑟), note

that, since 𝑝 ≤ 𝑟,

𝑛𝑝𝜌𝑑𝑛 ≥ 𝑛𝑝𝜌
𝑝(𝑝−1)/2
𝑛 ≥ 𝑛𝑝

(
1− 𝑝−1

2𝑟

)
≥ 𝑛

𝑝 (𝑟+1)
2𝑟 →∞

So, var(𝛿𝑖 𝑗 ) = 𝑂 (𝜌4𝑠−3
𝑛 ).

For covariance, for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ ℓ, we have:

cov(𝛿𝑖𝑘 , 𝛿 𝑗ℓ) = E{cov(𝛿𝑖𝑘 , 𝛿 𝑗ℓ | 𝑋)}

=

∑
𝑆1≠𝑇1∈S𝑖𝑘

𝑟 ,𝑆2≠𝑇2∈S 𝑗ℓ
𝑟

E{cov(𝐻′
𝑖 𝑗
(𝑆1, 𝑇1), 𝐻′𝑖𝑘 (𝑆2, 𝑇2) | 𝑋)}(𝑛−2

𝑟−2
)4

Consider any two pairs of subsets with 𝑝 nodes and 𝑑 edges in common. First note

that 𝑝 ≥ 2 in order to have a nonzero covariance. In this case there will be 4(𝑟−2) − 𝑝
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choices for nodes, and (2𝑠 − 𝐴𝑖𝑘 ) + (2𝑠 − 𝐴 𝑗ℓ) − 𝑑 ≥ 4𝑠 − 3 − 𝑑 edges.

=

𝑂

(
𝑛4(𝑟−2)−𝑝𝜌4𝑠−2−𝑑

𝑛

)
(𝑛−2
𝑟−2

)4 = 𝑂

(
𝜌4𝑠−3
𝑛

𝑛2

)
×𝑂

(
1

𝑛𝑝−2𝜌𝑑−1

)
.

Note that, for acyclic graphs 𝑑 ≤ 𝑝 − 1 and hence the above is maximized at

𝑝 = 2, 𝑑 = 1 as long as 𝑛𝜌𝑛 →∞.

For general cyclic subgraphs, 𝑑 ≤
(𝑝
2
)
. Furthermore, since 𝑝 + 2 ≤ 𝑟, and

𝜌𝑛 = 𝜔(𝑛−1/𝑟), we have, for 𝑝 > 2:

𝑛𝑝−2𝜌𝑑−1
𝑛 = 𝑛

𝑝−2− 1
𝑟

(
𝑝 (𝑝−1)

2 −1
)

= 𝑛𝑝−2− (𝑝−2) (𝑝+1)
2𝑟 = 𝑛

(𝑝−2)
(
1− 𝑝+1

2𝑟

)
≥ 𝑛(𝑝−2) 𝑟+12𝑟 →∞

Thus under the conditions of Assumption 2, we have:

cov(𝛿𝑖𝑘 , 𝛿 𝑗ℓ) = 𝑂 (𝜌4𝑠−3
𝑛 /𝑛2)

Step (i) is true, because conditioned on 𝑋 , there needs to be at lease two nodes

𝑢1, 𝑢2 in common between {𝑖, 𝑘 ∪ 𝑆1 ∪ 𝑇1} and { 𝑗 , ℓ ∪ 𝑆2 ∪ 𝑇2} to have a nonzero

covariance. This leads to only 4(𝑟 − 2) − 2 choices, which dominates the sum. This

along with Eq B.26 gives us:

var

(
1
𝑛2

∑︁
𝑖

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗

)
= E

{
var

(∑︁
𝑖

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗/𝑛2 | 𝑋
)}

= 𝑂 (𝜌4𝑠−3
𝑛 /𝑛2).

Thus we have for large enough 𝐶, we have

𝑃

(
1
𝑛2

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑔̃2(𝑖, 𝑗)2 ≥ 𝐶𝜌2𝑠−1
𝑛

)
≤ 𝑃

(����∑︁
𝑖

∑︁
𝑗≠𝑖

𝛿𝑖 𝑗/𝑛2 +𝑂 (𝜌2𝑠−1
𝑛 )

���� ≥ 𝐶𝜌2𝑠−1
𝑛

)
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≤ 𝑃
(∑︁
𝑖

����∑︁
𝑗≠𝑖

𝛿𝑖 𝑗/𝑛2
���� ≥ 𝐶′𝜌2𝑠−1

𝑛

)
≤ 𝐶′′

𝜌4𝑠−3
𝑛 /𝑛2

𝜌4𝑠−2
𝑛

= 𝑂

(
1

𝑛2𝜌𝑛

)
.

□

B.4.2 Proof of Lemma B.4.5

Proof. Let Δ𝑖 := |𝑔̂1(𝑖) − 𝑔1(𝑋𝑖) |/𝜌𝑠𝑛. We have:∑
𝑖 |𝑔̂1(𝑖)/𝜌𝑠𝑛 |3

𝑛

≤
∑
𝑖 Δ

3
𝑖

𝑛
+ 3

∑
𝑖 |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 |Δ2

𝑖

𝑛
+ 3

∑
𝑖 |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 |2Δ𝑖

𝑛
+

∑
𝑖 |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 |3

𝑛

= 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 (B.27)

First note that using the boundedness condition on the graphon, |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 | is

bounded. Hence 𝐵4 ≤ 𝑐 a.s. Using Lemma B.4.3, we know that 𝐸 (Δ𝑖)2 = 𝑂 (1/𝑛𝜌𝑛).

Since
∑
𝑖 Δ𝑖 ≤ 𝑛1/2∑

𝑗 Δ
2
𝑗
, for the second term we have, for some 𝐶 > 0 :

𝑃(𝐵2 ≥ 𝜖) ≤
𝑛1/2𝐸

∑
𝑖 Δ

2
𝑖

𝑛𝜖2 ≤ 𝐶

𝑛1/2𝜌𝑛𝜖2 (B.28)

Furthermore,

𝑃(𝐵3 ≥ 𝜖) ≤
𝐸

∑
𝑖 Δ

2
𝑖

𝑛𝜖2 ≤ 𝐶

𝑛𝜌𝑛𝜖
2 . (B.29)

By repeated application of Cauchy-Schwarz inequality, we have (∑𝑖 𝑥
3
𝑖
)2 ≤ ∑

𝑖 𝑥
2
𝑖

∑
𝑖 𝑥

4
𝑖
≤

(∑𝑖 𝑥
2
𝑖
)3, we also have:

𝑃(𝐵1 ≥ 𝜖) ≤
𝐸

∑
𝑖 Δ

3
𝑖

𝑛𝜖2 ≤
(∑𝑖 𝐸Δ

2
𝑖
)3/2

𝑛𝜖2 ≤ 𝐶

𝑛𝜌
3/2
𝑛 𝜖2
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Therefore, using the sparsity conditions in Assumption 2, we see that the first equation

in the lemma statement is proved.

For the second, we use:∑
𝑖 |𝑔̂1(𝑖)/𝜌𝑠𝑛 |2

𝑛
≥

∑
𝑖 |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 |2

𝑛
+

∑
𝑖 Δ

2
𝑖

𝑛
− 2

∑
𝑖 |𝑔1(𝑋𝑖)/𝜌𝑠𝑛 |Δ𝑖

𝑛

= 𝐶1 + 𝛼𝐵2 − 𝛽𝐵3,

where 𝛼, 𝛽 are positive constants, and 𝐵2, 𝐵3 were defined in Eq B.27. Using

Assumption 2 part 1, we see 𝐶1 > 0, a.s. Also, now for a small enough constant 𝜖 ,

using Eqs B.28 and B.29, we see that the second equation in the lemma statement is

proven.

□

B.4.3 Proof of Lemma B.4.1

Proof. Define the following quantities.

𝛾 𝑗 (𝑡) = E{exp(𝑖𝑡𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛)}

Also define 𝜙1,𝑛 and 𝜙2,𝑛 as:

𝜙1,𝑛 (𝑡) = 𝑒−𝑡
2/2

[
1 +

∑︁
𝑗

{𝛾 𝑗 (𝑡) − 1} + 𝑡
2

2

]
𝜙2,𝑛 (𝑡) = −𝑡2𝐾2,𝑛𝑒

−𝑡2/2.

Finally define,

𝑆𝑛 =
1
𝐵𝑛

∑︁
𝑗

𝑏𝑛 𝑗𝑌 𝑗 , Δ𝑛,𝑚 =
1
𝑛3/2

𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑑𝑛𝑖 𝑗𝜓(𝑌𝑖, 𝑌 𝑗 )
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As in the original proof, we define:∫ ∞

−∞
𝑒𝑖𝑡𝑥𝑑{Φ(𝑥) + 𝐿1,𝑛}𝑑𝑥 = 𝜙1,𝑛 (𝑡) (B.30a)∫ ∞

−∞
𝑒𝑖𝑡𝑥𝑑𝐿2,𝑛𝑑𝑥 = 𝑖𝑡𝜙2,𝑛 (𝑡) (B.30b)∫ ∞

−∞
𝑒𝑖𝑡𝑥𝐸2𝑛 (𝑥) = 𝜙1,𝑛 (𝑡) + 𝑖𝑡𝜙2,𝑛 (𝑡) (B.30c)

Now, for some 𝑐 > 0 to be chosen later, from Esseen’s smoothing lemma Petrov

(2012) and Eq B.30 we have:

sup
𝑥

����𝑃(𝑉𝑛 ≤ 𝑥) − 𝐸2𝑛 (𝑥)
����

≤
∫
|𝑡 |≤𝑛1−𝑐

|𝑡 |−1 |E(𝑒𝑖𝑡𝑉𝑛) − 𝜙1,𝑛 (𝑡) − 𝑖𝑡𝜙2,𝑛 (𝑡) |𝑑𝑡 + 𝐶𝑛𝑐−1 sup
𝑥

����𝑑𝐸2,𝑛 (𝑥)
𝑑𝑥

����
≤

∫
|𝑡 |≤𝑛1−𝑐

|𝑡 |−1 |E(𝑒𝑖𝑡𝑉𝑛) − 𝜙1,𝑛 (𝑡) − 𝑖𝑡𝜙2,𝑛 (𝑡) |𝑑𝑡 +
𝐶1( |𝐾2,𝑛 | + 𝛽)

𝑛1−𝑐 (B.31)

The last line is true due to the following argument. Note that, for some 𝑣 𝑗 in

the |𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛 | ball in the neighborhood of 𝑥, for 𝑗 ∈ {1, . . . , 𝑛},

𝑑𝐿1,𝑛 (𝑥)
𝑑𝑥

=

𝑛∑︁
𝑗=1

[
E{𝜙(𝑥 − 𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛)} − 𝜙(𝑥)

]
− 1

2
Φ′′′(𝑥)

=

𝑛∑︁
𝑗=1

E
{
−𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛𝜙′(𝑥) + 𝑏2

𝑛 𝑗𝑌
2
𝑗 /2𝐵2

𝑛𝜙
′′(𝑥) − 𝑏3

𝑛 𝑗𝑌
3
𝑗 /6𝐵3

𝑛𝜙
′′′(𝑣 𝑗 )

}
− 1

2
Φ′′′(𝑥).

Thus, we have:

sup
𝑥

����𝑑𝐿1,𝑛 (𝑥)
𝑑𝑥

���� ≤ 𝑛∑︁
𝑗=1
𝑐1

{
𝑏2
𝑛 𝑗/𝐵2

𝑛 |𝜙′′(𝑥) | + 𝑐2 |𝑏𝑛 𝑗/𝐵𝑛 |3E( |𝑌3
𝑗 |) |𝜙′′′(𝑣 𝑗 ) |

}
+ 1

2
|Φ′′′(𝑥) |
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≤ 𝐶 + E( |𝑋1 |3)
(∑︁
𝑗

|𝑏𝑛 𝑗/𝐵𝑛 |3
)
+ 𝐶′

≤ 𝐶 + 𝛽/𝑛1/2 ≤ 𝐶𝛽 Since 𝛽 ≥ 1

Also note that, for any 𝜖 > 0, for 𝑛 large enough,∫
|𝑡 |>𝑛𝜖

|𝜙1,𝑛 (𝑡)/𝑡 |𝑑𝑡 = 𝑂 (1/𝑛1−𝑐)∫
|𝑡 |>𝑛𝜖

|𝜙2,𝑛 (𝑡)/𝑡 |𝑑𝑡 = 𝑂 ( |𝐾2,𝑛 |/𝑛1−𝑐)

Thus the main idea is that 𝐸 (𝑒𝑖𝑡𝑉𝑛) behaves like 𝐸 (𝑖𝑡𝑆𝑛) + 𝑖𝑡𝐸 (𝑖𝑡𝑆𝑛Δ𝑛,𝑛).∫
|𝑡 |≤𝑛1−𝑐

|𝑡 |−1 |E(𝑒𝑖𝑡𝑉𝑛) − 𝜙1,𝑛 (𝑡) − 𝜙2,𝑛 (𝑡) |𝑑𝑡 ≤
4∑︁
𝑗=1

𝐼 𝑗 ,𝑛

Going back to Eq B.31, we break up the first part of the RHS into four parts,

and the remainder gets absorbed into 𝑂 ( |𝐾2,𝑛 + 𝛽 |/𝑛1−𝑐) term in Eq B.31.

|𝐼1,𝑛 | =
∫
|𝑡 |<𝑛𝜖

|𝑡 |−1 ��E(𝑒𝑖𝑡𝑉𝑛) − 𝐸 (𝑖𝑡𝑆𝑛) − 𝑖𝑡𝐸 (𝑖𝑡𝑆𝑛Δ𝑛,𝑛)�� 𝑑𝑡
|𝐼2,𝑛 | =

∫
|𝑡 |<𝑛𝜖

|𝑡 |−1 ��E(𝑒𝑖𝑡𝑆𝑛) − 𝜙1,𝑛 (𝑡)
�� 𝑑𝑡

|𝐼3,𝑛 | =
∫
|𝑡 |<𝑛𝜖

��E(Δ𝑛,𝑛𝑒𝑖𝑡𝑆𝑛) − 𝜙2,𝑛 (𝑡)
�� 𝑑𝑡

|𝐼4,𝑛 | =
∫
𝑛𝜖 ≤|𝑡 |<𝑛1−𝑐

|𝑡 |−1 ��E(𝑒𝑖𝑡𝑉𝑛)�� 𝑑𝑡
First we will bound some terms which will be used frequently. Since 𝑎𝑏 ≤ (𝑎2+𝑏2)/2.

|𝐾2,𝑛 | ≤
𝐶

𝑛3/2𝐵2
𝑛

∑︁
1≤𝑖< 𝑗≤𝑛

(𝑏2
𝑛𝑖𝑏

2
𝑛 𝑗 + 𝑑2

𝑛𝑖 𝑗 ) (1 + 𝜆)
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≤ 𝐶 (1 + 𝜆)
𝑛3/2𝐵2

𝑛


(∑︁
𝑗

𝑏2
𝑛 𝑗

)2

+
∑︁
𝑖< 𝑗

𝑑2
𝑛𝑖 𝑗


≤ 𝐶 (1 + 𝜆)

𝑛3/2𝐵2
𝑛

(
𝐵4
𝑛 + 𝑙4,𝑛𝑛2

)
≤ 𝐶

′(1 + 𝜆)𝑙4,𝑛
𝑛1/2 (B.32)

As for Δ𝑛,𝑛, we have:

𝐸Δ2
𝑛,𝑛 =

𝜆

𝑛3

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑑2
𝑛𝑖 𝑗 =

𝜆𝑙4,𝑛

𝑛

Furthermore we will use:

𝑅(𝑧) := 𝑒𝑖𝑧 − 1 − 𝑖𝑧 |𝑅(𝑧) | ≤ |𝑧 |𝛼 for all 𝛼 ∈ [1, 2] (B.33)

We will first bound 𝐼1,𝑛. Using Taylor expansion, for some |𝜂 | ≤ 1,

|𝐼1,𝑛 | ≤
∫
|𝑡 |<𝑛𝜖

|𝑡 |−1𝑡2/2|E(Δ2
𝑛,𝑛𝑒

𝑖𝑡𝑆𝑛𝑒𝑖𝑡Δ𝑛,𝑛𝜂) |𝑑𝑡

≤ 1/2
∫
|𝑡 |<𝑛𝜖

|𝑡 |E(Δ2
𝑛,𝑛)𝑑𝑡 ≤ 𝐶

(1 + 𝜆)𝑙4,𝑛
𝑛1−2𝜖

Next we bound 𝐼2,𝑛. Using a similar argument in the proof of the original

version of this theorem, we have:

|𝐼2,𝑛 | ≤
𝐶1

𝐵4
𝑛

∑︁
𝑗

𝑏4
𝑛 𝑗 + 𝐶2

(
1
𝐵3
𝑛

∑︁
𝑗

|𝑏𝑛 𝑗 |3𝐸 ( |𝑋1 |3)
)2

≤ 𝐶1𝑛
−2/3 + 𝐶2𝜆

2/𝑛

Now we do 𝐼3,𝑛. Denote 𝑍 𝑗 = 𝑏𝑛 𝑗𝑌 𝑗/𝐵𝑛 and 𝜓𝑖 𝑗 = 𝑑𝑛𝑖 𝑗𝜓(𝑌𝑖, 𝑌 𝑗 ). First note that

E{𝜓𝑖 𝑗𝑒𝑖𝑡 (𝑍𝑖+𝑍 𝑗 )} = −𝑡2ℓ𝑖 𝑗 + 𝜃1𝑖 𝑗 (𝑡), (B.34)
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where we have:

ℓ𝑖 𝑗 = E
(
|𝜓𝑖 𝑗𝑍𝑖𝑍 𝑗 |

)
≤ |𝑏𝑛𝑖𝑏𝑛 𝑗𝑑𝑛𝑖 𝑗 |/𝐵2

𝑛 |E{𝑌𝑖𝑌 𝑗𝜓(𝑌𝑖, 𝑌 𝑗 )}| ≤ 𝜆1/2(𝑏2
𝑛𝑖𝑏

2
𝑛 𝑗 + 𝑑2

𝑛𝑖 𝑗 )/𝐵2
𝑛.

(B.35)

Using Eq B.33 and the fact that E{𝜓(𝑌𝑖, 𝑌 𝑗 )} = 0 and E{𝜓(𝑌𝑖, 𝑌 𝑗 ) | 𝑌𝑖} = 0,

𝜃1,𝑖, 𝑗 = E(𝜓𝑖 𝑗 [𝑖𝑡{𝑍𝑖𝑅(𝑡𝑍 𝑗 ) + 𝑍 𝑗𝑅(𝑡𝑍𝑖)) + 𝑅(𝑡𝑍𝑖)𝑅(𝑡𝑍 𝑗 )}])

≤ 𝐶 |𝑡 |2.5E
(
|𝜓𝑖 𝑗𝑍𝑖𝑍1.5

𝑗 | + |𝜓𝑖 𝑗𝑍 𝑗𝑍1.5
𝑖 |

)
≤ 𝐶 |𝑡 |2.5E{|𝑌1𝑌

1.5
2 𝜓(𝑌𝑖, 𝑌 𝑗 ) |}

(
|𝑑𝑛𝑖 𝑗𝑏𝑛𝑖𝑏1.5

𝑛 𝑗 /𝐵2.5
𝑛 | + |𝑑𝑛𝑖 𝑗𝑏1.5

𝑛𝑖 𝑏𝑛 𝑗/𝐵2.5
𝑛 |

)
≤ 𝐶 |𝑡 |2.5(𝜆𝛽)1/2

(
𝑑2
𝑛𝑖 𝑗 + 𝑏2

𝑛𝑖 |𝑏𝑛 𝑗 |3 + |𝑏𝑛𝑖 |3𝑏2
𝑛 𝑗

)
𝑛−5/4

Using Eq B.34, and setting
∏
𝑘≠𝑖, 𝑗 𝛾𝑘 (𝑡) = 𝑒−𝑡

2/2 + 𝜃2,𝑖, 𝑗 we see:

𝐸 (Δ𝑛,𝑛𝑒𝑖𝑡𝑆𝑛) = 𝑛−3/2
∑︁
𝑖< 𝑗

E(𝜓𝑖 𝑗𝑒𝑖𝑡𝑆𝑛) = 𝑛−3/2
∑︁
𝑖< 𝑗

E{𝜓𝑖 𝑗𝑒𝑖𝑡 (𝑍𝑖+𝑍 𝑗 )}
∏
𝑘≠𝑖, 𝑗

𝛾𝑘 (𝑡)

= 𝑛−3/2
∑︁
𝑖< 𝑗

{−𝑡2ℓ𝑖, 𝑗 + 𝜃1,𝑖, 𝑗 (𝑡)}
(
𝑒−𝑡

2/2 + 𝜃2,𝑖, 𝑗

)
= 𝑛−3/2

∑︁
𝑖< 𝑗

{−𝑡2ℓ𝑖, 𝑗𝑒−𝑡
2/2 + 𝜃3,𝑖, 𝑗 (𝑡)} = −𝐾2,𝑛𝑡

2𝑒−𝑡
2/2︸          ︷︷          ︸

𝜙2,𝑛 (𝑡)

+ 𝑛−3/2
∑︁
𝑖< 𝑗

𝜃3,𝑖, 𝑗︸           ︷︷           ︸
𝑅𝑛,4

,

where using Lemma A.4 in Wang and Jing (2004), for |𝑡 | < 𝑛𝜖 << 𝑛1/6

|𝜃2,𝑖, 𝑗 | ≤
𝐶

𝑛1/2

(
𝛽 +

𝑏2
𝑛 𝑗
+ 𝑏2

𝑛𝑖

𝑛1/2

)
(𝑡2 + 𝑡4)𝑒−𝑡2/8

Furthermore, using Lemma A.4 and
∑
𝑖 |𝑏𝑛𝑖 |3 ≤ ℓ2𝑛

|𝜃3,𝑖, 𝑗 | ≤ 𝑡2 |ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 | + |𝜃1,𝑖, 𝑗 |
∏
𝑘≠𝑖, 𝑗

𝛾𝑘 (𝑡) ≤ 𝑡2 |ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 | + 4|𝜃1,𝑖, 𝑗 |𝑒−𝑡
2/8
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|ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 | ≤
𝐶

𝑛1/2 |ℓ𝑖, 𝑗 |
(
𝛽 +

𝑏2
𝑛 𝑗
+ 𝑏2

𝑛𝑖

𝑛1/2

)
(𝑡2 + 𝑡4)𝑒−𝑡2/8

Summing the above expression over 𝑖 < 𝑗 , we also have,∑︁
𝑖< 𝑗

|ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 |

≤ 𝐶𝜆1/2
(
𝛽
𝐵4
𝑛 + 𝑙4,𝑛𝑛2

𝑛3/2 +
∑
𝑖< 𝑗 |𝑑𝑛𝑖 𝑗 | ( |𝑏3

𝑛𝑖
𝑏𝑛 𝑗 | + |𝑏𝑛𝑖𝑏3

𝑛 𝑗
|)

𝑛2

)
(𝑡2 + 𝑡4)𝑒−𝑡2/8

≤ 𝐶𝜆1/2


𝛽
𝐵4
𝑛 + 𝑙4,𝑛𝑛2

𝑛3/2 + 𝑐

𝑛2

{(∑︁
𝑖< 𝑗

𝑑2
𝑛𝑖 𝑗

) (∑︁
𝑖< 𝑗

𝑏6
𝑛𝑖𝑏

2
𝑛 𝑗

)}1/2

︸                                ︷︷                                ︸
𝐴


(𝑡2 + 𝑡4)𝑒−𝑡2/8 (B.36)

To bound (A) we see:

(𝐴) ≤
{
(𝑛2𝑙4,𝑛) (𝑛ℓ2)

∑︁
𝑖< 𝑗

𝑏3
𝑛𝑖𝑏

2
𝑛 𝑗

}1/2

≤ 𝑛3/2(ℓ2𝑙4,𝑛)1/2
{(∑︁

𝑖

𝑏3
𝑛𝑖

) (∑︁
𝑗

𝑏2
𝑛 𝑗

)}1/2

≤ 𝑐′𝑛5/2𝑙1/24,𝑛 ℓ2

Plugging this back in Eq B.36, and assuming WLOG 𝑙4,𝑛 ≥ 1,∑︁
𝑖< 𝑗

|ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 | ≤ 𝐶′𝜆1/2
(
𝛽
𝐵4
𝑛 + 𝑙4,𝑛𝑛2

𝑛3/2 + 1
𝑛2𝑛

5/2ℓ2𝑙
1/2
4,𝑛

)
(𝑡2 + 𝑡4)𝑒−𝑡2/8

≤ 𝐶′𝑙4,𝑛𝜆1/2𝛽𝑛1/2(𝑡2 + 𝑡4)𝑒−𝑡2/8

Finally, we also have:∑︁
𝑖< 𝑗

|𝜃1,𝑖, 𝑗 | ≤ 𝐶 |𝑡 |2.5(𝜆𝛽)1/2
(
𝑙4,𝑛𝑛

2 + 2ℓ2𝑛𝐵
2
𝑛

)
𝑛−5/4 ≤ 𝐶 |𝑡 |2.5(𝜆𝛽)1/2𝑙4,𝑛𝑛1/4

Finally we have, since 𝑡4 ≤ |𝑡 | + |𝑡 |6, and |𝑡 |2.5 ≤ |𝑡 | + |𝑡 |6,

𝑅𝑛,4 ≤ 𝑛−3/2
∑︁
𝑖< 𝑗

|𝜃3,𝑖, 𝑗 | ≤ 𝑛−3/2
(∑︁
𝑖< 𝑗

𝑡2 |ℓ𝑖, 𝑗𝜃2,𝑖, 𝑗 | + 4
∑︁
𝑖< 𝑗

|𝜃1,𝑖, 𝑗 |𝑒−𝑡
2/8𝑒−𝑡

2/8
)
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≤
(
𝑡2𝑙4,𝑛𝜆

1/2(𝑡2 + 𝑡4)𝑒−𝑡2/8𝑛−1 + |𝑡 |2.5(𝜆𝛽)1/2𝑙4,𝑛𝑛−3/4𝑒−𝑡
2/8

)
≤ 𝑙4,𝑛

(
𝜆1/2𝛽𝑛−1 + (𝜆𝛽)1/2𝑛−3/4

)
( |𝑡 | + |𝑡 |6)𝑒−𝑡2/8

≤ 𝐶′𝑙4,𝑛
(
𝛽2𝑛−1 + (𝜆 + 𝛽)𝑛−3/4

)
( |𝑡 | + |𝑡 |6)𝑒−𝑡2/8

Finally, for 𝐼3,𝑛, we have:

|𝐼3,𝑛 | ≤
∫
|𝑡 |≤𝑛𝜖

|𝑡 |−1𝑅𝑛,4𝑑𝑡

≤ 𝐶′𝑙4,𝑛
(
𝛽2𝑛−1 + (𝜆 + 𝛽)𝑛−3/4

) ∫
|𝑡 |≤𝑛𝜖
(1 + |𝑡 |5)𝑒−𝑡2/8𝑑𝑡

≤ 𝐶′1′𝑙4,𝑛
(
𝛽2𝑛−1 + (𝜆 + 𝛽)𝑛−3/4

)
Now we will bound 𝐼4,𝑛.

Define Ω := {𝑘 : min(1/2, ℓ2/ℓ3/2
1 ) ≤ 𝑛1/2𝑏𝑛,𝑘/𝐵𝑛 ≤ 2ℓ2/ℓ3/2

1 }. Using

Lemma A.5 in Wang and Jing (2004), we see that |Ω| ≥ 𝑐0𝑛, for some 𝑐0 ∈ (0, 1).

Now, let Γ := {𝑖 | 𝛼𝑖 ≥ 𝛼̄ + 𝑘𝑠𝑛}. Applying Lemma B.4.2 and setting

𝑘 =
√︁

2/𝑐0, we see that |Γ𝑐 | ≥ 𝑛(1 − 𝑐0/2). Therefore, |Γ𝑐 ∩ Ω| ≥ 𝑛𝑐0/2. Let

𝑘0 = ⌊𝑐0/2⌋ .

WLOG assume 𝑏𝑛,1 . . . 𝑏𝑛,𝑘0𝑛 ∈ Ω ∩ Γ𝑐 and ℓ2/ℓ3/2
1 ≥ 1/2. Now for 𝑚 ∈

[2, 𝑘0𝑛], we have:

𝑆𝑚 =
1
𝐵𝑛

𝑚∑︁
𝑘=1

𝑏𝑛𝑘𝑌𝑘 𝑆
𝑖, 𝑗
𝑚 :=

1
𝐵𝑛

∑︁
𝑘≠𝑖, 𝑗

𝑏𝑛𝑘𝑋𝑘
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For 1, . . . , 𝑚 ≤ 𝑘0𝑛, we have:

1
𝑚𝑛

∑︁
𝑖=1

∑︁
𝑗=1, 𝑗≠𝑖

𝑑2
𝑛𝑖 𝑗 =

1
𝑚

𝑚∑︁
𝑖=1

𝛼𝑖 ≤ 𝑙4,𝑛 + 𝑘𝑠𝑛 =: ℓ5,𝑛

As for Δ𝑛,𝑚, we have:

𝐸 (Δ2
𝑛,𝑚) =

𝜆

𝑛3

𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑑2
𝑛𝑖 𝑗 ≤ 𝜆𝑙5,𝑛

𝑚

𝑛2 (B.37)

Now we use the decomposition in Bickel et al. (1986) (17)-(22).

E(𝑒𝑖𝑡𝑉𝑛) = E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚)𝑒𝑖𝑡Δ𝑛,𝑚}

= E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚) (1 + 𝑖𝑡Δ𝑛,𝑚)} + 𝑅𝑛,5

= E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚) (1 + 𝑖𝑡Δ𝑛,𝑚)} + 𝐶𝑡2𝜆𝑙5,𝑛𝑚/𝑛2

= E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚)} + 𝑖𝑡

𝑛3/2

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚)𝜓𝑖 𝑗 }︸                ︷︷                ︸
𝐷𝑖 𝑗

+𝐶𝑡2𝜆𝑙5,𝑛
𝑚

𝑛2

where the last line is obtained using Eqs B.33 and B.37, as follows:

𝑅𝑛,5 ≤ |E{𝑒𝑖𝑡 (𝑉𝑛−Δ𝑛,𝑚)𝑡2Δ2
𝑛,𝑚}| ≤ 𝐶𝑡2𝜆𝑙5,𝑛𝑚/𝑛2

Note that 𝑉𝑛 − Δ𝑛,𝑚 can be written as 𝑆𝑚−1 + 𝑌𝑚,𝑛, where 𝑌𝑚,𝑛 does not depend on

𝑌1, . . . , 𝑌𝑚−1. So we will write:������𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1
(𝐷𝑖 𝑗 )

������ =
������𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E{𝑒𝑖𝑡 (𝑆
𝑖 𝑗

𝑚−1+𝜓𝑖 𝑗+𝑌𝑚,𝑛)𝜓𝑖 𝑗 }

������
=

������𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E{𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1}E{𝑒(𝜓𝑖 𝑗+𝑌𝑚,𝑛)𝜓𝑖 𝑗 }

������
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≤ sup
𝑖< 𝑗

|E(𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1) |
𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E( |𝜓𝑖 𝑗 |)

≤ sup
𝑖< 𝑗

|E(𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1) |
𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1
|𝑑𝑛𝑖 𝑗 |E{|𝜓(𝑌𝑖, 𝑌 𝑗 ) |}

≤ 𝜆1/2 sup
𝑖< 𝑗

|E(𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1) |

√√√
𝑚𝑛

𝑚−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑑2
𝑛𝑖 𝑗

≤
√︁
𝜆𝑙5,𝑛 sup

𝑖< 𝑗

|E(𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1) |𝑚𝑛

Plugging it back, we have:

|E(𝑒𝑖𝑡𝑉𝑛) | ≤ |E(𝑒𝑖𝑡𝑆𝑚−1) | + |𝑡 |
𝑛3/2

√︁
𝜆𝑙5,𝑛 sup

𝑖< 𝑗

|E(𝑒𝑖𝑡𝑆
𝑖 𝑗

𝑚−1) |𝑚𝑛 + 𝐶𝑡2𝜆𝑙5,𝑛
𝑚

𝑛2 (B.38)

Now, we have for |𝑡 | ≤ 1/4𝑛1/2/E( |𝑌1 |3)

|E(𝑒𝑖𝑡𝑆𝑚) | ≤ 𝑒−𝑐0𝑚𝑡
2/𝑛 |E(𝑒𝑖𝑡𝑆

𝑖 𝑗
𝑚 ) | ≤ 𝑒−𝑐0 (𝑚−2)𝑡2/𝑛

Taking 𝑚 = [6𝑛 log 𝑛/𝑐0𝑡
2] + 1 (for a large enough 𝜖 , this is still smaller than 𝑘0𝑛),

from Eq B.38 we have:∫
𝑛𝜖 ≤|𝑡 |<1/4𝑛1/2/E( |𝑌1 |3)

|𝑡 |−1 ��E(𝑒𝑖𝑡𝑉𝑛)�� 𝑑𝑡
≤

∫
𝑛𝜖 ≤|𝑡 |<1/4𝑛1/2/E( |𝑌1 |3)

(
𝑒−𝑐0𝑚𝑡

2/𝑛

|𝑡 | + 𝑚

𝑛1/2

√︁
𝜆𝑙5,𝑛𝑒

−𝑐(𝑚−2)𝑡2/𝑛 + 𝐶 |𝑡 |𝜆𝑙5,𝑛
𝑚

𝑛2

)
𝑑𝑡

≤ 𝐶′𝜆𝑙5,𝑛
log2 𝑛

𝑛

Now we will deal with the range 1/4𝑛1/2/E( |𝑌1 |3) ≤ |𝑡 | ≤ 𝑛1−𝑐. Since 𝜅(𝑌1) > 0,

and hence for large enough 𝑛,

|𝛾𝑘 (𝑡) | ≤ 1 − 𝜅(𝑌1)
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|E(𝑒𝑖𝑡𝑆𝑚) | ≤ 𝑒−𝑚𝜅(𝑌1)

E(𝑒𝑖𝑡𝑆
𝑖 𝑗
𝑚 ) | ≤ 𝑒−(𝑚−2)𝜅(𝑌1)

Using this in conjunction with Eq B.38, and setting 𝑚 = [4 log 𝑛/𝜅(𝑌1)] + 2,∫
1/4𝑛1/2/E( |𝑌1 |3)≤|𝑡 |≤𝑛1−𝑐

|𝑡 |−1 ��E(𝑒𝑖𝑡𝑉𝑛)�� 𝑑𝑡∫
1/4𝑛1/2/E( |𝑌1 |3)≤|𝑡 |≤𝑛1−𝑐

(
𝑒−𝜅(𝑌1)𝑚

|𝑡 | + 𝑚

𝑛1/2

√︁
𝜆𝑙5,𝑛𝑒

−𝜅(𝑌1) (𝑚−2) + 𝐶 |𝑡 |𝜆𝑙5,𝑛
𝑚

𝑛2

)
≤ 𝐶′

𝜌𝑛𝑙5,𝑛

𝜅(𝑌1)
log 𝑛
𝑛2 𝑛2(1−𝑐) = 𝐶′

𝜆𝑙5,𝑛

𝜅(𝑌1)
log 𝑛
𝑛2𝑐

Thus, using the bounds on 𝐼1,𝑛, 𝐼2,𝑛, 𝐼3,𝑛 and 𝐼4,𝑛 along with Eq B.31, Eq B.32

we get:

sup
𝑥

|𝑃(𝑉𝑛 ≤ 𝑥) − 𝐸2𝑛 (𝑥) |

≤
4∑︁
𝑖=1

𝐼𝑛,𝑖 + 𝐶′
𝛽 + (1 + 𝜆)𝑙4,𝑛/𝑛1/2

𝑛1−𝑐

≤ 𝐶
( (1 + 𝜆)𝑙4,𝑛

𝑛1−2𝜖 + 𝑛−2/3 + 𝑙4,𝑛 (𝜆 + 𝛽 + 𝛽2)𝑛−3/4 +
𝜆𝑙5,𝑛

𝜅(𝑌1)
log 𝑛
𝑛2𝑐

)
+ 𝐶′ 𝛽 + (1 + 𝜆)𝑙4,𝑛/𝑛

1/2

𝑛1−𝑐

≤ (𝑙4,𝑛 + 𝑘𝑠𝑛)
log 𝑛
𝑛2/3

The last line assumes 𝛽, 𝜆 and 𝜅(𝑌1) are all bounded. □

B.4.4 Proof of Lemma B.4.6

Proof. Let 𝑋 ∼ 𝑁 (1, 𝑐2
1) and 𝑌 ∼ 𝑁 (1, 𝑐2

2) be two independent random variables.

We have 𝜉1 = 𝑋𝑌 .

E( |𝑋𝑌 − 1|3) ≤ E( |𝑋𝑌 |3) + 1 + 3E(𝑋2 |𝑌 |) + 3E( |𝑋 |𝑌2)
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= E( |𝑋 |3)E( |𝑌 |3) + 3E(𝑋2)E( |𝑌 |) + 3E( |𝑋 |)E(𝑌2)

< ∞

The last step is true because both E( |𝑋 |3) and E( |𝑌 |3) are bounded for bounded

𝑐1, 𝑐2. □

B.5 Detailed Results for Smooth Functions of Counts

In this section, we establish Edgeworth expansions for smooth functions

of counts for the bootstrap and show that they are close to Edgeworth expansions

of the conditional expectation of the count statistic, which is a U-statistic. To our

knowledge, Edgeworth expansions for smooth functions are not explicitly stated

in the literature even for U-statistics. It turns out that the non-negligible terms

arising from a Taylor approximation of the smooth functional are of a form where

a flexible Edgeworth expansion result of Jing and Wang (2010) may be invoked.

Edgeworth expansions for smooth functionals are also considered in Hall (2013),

but the argument provided there requires multivariate Edgeworth expansions and

depends heavily on the properties of cumulants of independent random variables,

complicating extensions even to U-statistics.

Since the Edgeworth expansion of the conditional expectation requires a

non-lattice condition, it is assumed below. However, it is likely that this condition can

be removed if one derives an Edgeworth expansion for the count functional directly

and uses a proof strategy similar to Zhang and Xia (2020) that exploits the smoothing

nature of Bernoulli noise.
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B.5.1 Edgeworth Expansion for Smooth Functions of Counts

In what follows, let 𝑓 : R𝑑 ↦→ R denote the smooth function of interest, 𝑢

denote a 𝑑-dimensional vector of conditional expectations corresponding to scaled

count functionals {𝑇
(1)
𝑛

𝜌
𝑠1
𝑛

, . . . ,
𝑇
(𝑑)
𝑛

𝜌
𝑠𝑑
𝑛

} given 𝑋 , and 𝜇 = 𝐸 (𝑢). In this section, we consider

Edgeworth expansions for the statistic:

𝑆𝑛 = 𝑛
1/2( 𝑓 (𝑢) − 𝑓 (𝜇))/𝜎 𝑓 ,

where 𝜎2
𝑓

is the asymptotic variance of 𝑆𝑛. The standard Delta Method involves a

first-order Taylor expansion, resulting in a Normal approximation with rate 𝑂 (1/
√
𝑛)

when the gradient is not equal to 0 at 𝜇. To attain higher-order correctness, we need

to consider a second-order expansion. Recall the derivatives of interest 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑑

and 𝑎𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑 defined in Eq A.8. Furthermore, define the following analog the

moments of the linear component of the U-statistic:

𝜆𝑖1,...,𝑖 𝑗 = 𝐸

{(
𝑟𝑖1𝑔

(𝑖1)
1 (𝑋𝑙)
𝜌
𝑠𝑖1
𝑛

)
. . .

(
𝑟𝑖𝑑𝑔

(𝑖𝑑)
1 (𝑋𝑙)
𝜌
𝑠𝑖𝑑
𝑛

)}
.

In the proposition below, we state the form of the Edgeworth for an appropri-

ately smooth function 𝑓 .

Proposition B.5.1. Suppose that 𝜎 𝑓 > 0, the function 𝑓 has three continuous

derivatives in a neighbourhood of 𝜇, and
∑𝑑
𝑖=1 𝑎𝑖𝑔

(𝑖)
1 (𝑋𝑙) is non-lattice. Then,

𝑃(𝑆𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑝1(𝑥)𝜙(𝑥) + 𝑜
(

1
𝑛1/2

)
,

𝑝1(𝑥) = −{𝐴1𝜎
−1
𝑓 +

1
6
𝐴2𝜎

−3
𝑓 (𝑥

2 − 1)},
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where 𝜎2
𝑓
, 𝐴1 and 𝐴2 are given by:

𝜎2
𝑓 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎𝑖𝑎 𝑗𝜆𝑖 𝑗 ,

𝐴1 =
1
2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎𝑖 𝑗𝜆𝑖 𝑗 ,

𝐴2 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑎𝑖𝑎 𝑗𝑎𝑘𝜆𝑖 𝑗 𝑘 + 3
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑑∑︁
𝑡=1

𝑎𝑖𝑎 𝑗𝑎𝑘𝑡𝜆𝑖𝑘𝜆 𝑗 𝑡

+ 3
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝑎𝑖𝑎 𝑗𝑎𝑘𝐸

(
𝑟𝑖𝑔
(𝑖)
1 (𝑋𝑖1)
𝜌𝑠𝑖

𝑟 𝑗𝑔
( 𝑗)
1 (𝑋𝑖2)
𝜌𝑠 𝑗

𝑟𝑘 (𝑟𝑘 − 1)𝑔(𝑘)2 (𝑋𝑖1 , 𝑋𝑖2)
𝜌𝑠𝑘

)
.

Before stating the proof in detail we add an auxiliary lemma, which is needed

to the bound the contribution of a remainder term.

Lemma B.5.1. Let 𝑆𝑛 = 𝑉𝑛+𝑐/
√
𝑛. Let 𝑃(𝑉𝑛 ≤ 𝑥) = Φ(𝑥)+𝑝1(𝑥)𝜙(𝑥)/

√
𝑛+𝑜(1/

√
𝑛).

Then we have:

𝑃(𝑆𝑛 ≤ 𝑥) = Φ(𝑥) + (𝑝1(𝑥) + 𝑐)𝜙(𝑥)/
√
𝑛 + 𝑜(1/

√
𝑛) (B.39)

Proof. We have:

𝑃(𝑆𝑛 ≤ 𝑥) = 𝑃(𝑉𝑛 ≤ 𝑥 − 𝑐/
√
𝑛)

= Φ(𝑥 − 𝑐/
√
𝑛) + 𝑝1(𝑥 − 𝑐/

√
𝑛)

√
𝑛

𝜙(𝑥 − 𝑐/
√
𝑛) + 𝑜(1/

√
𝑛)

Note that sup𝑥 |𝜙(𝑥) | ≤ 𝐶 for some universal constant 𝐶. So we have:

Φ(𝑥 − 𝑐/
√
𝑛) = Φ(𝑥) − 𝑐/

√
𝑛𝜙(𝑥) +𝑂 (1/𝑛),

and

|𝜙(𝑥 − 𝑐/
√
𝑛) − 𝜙(𝑥) | = 𝑂 (1/𝑛).
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Using the above two equations with Eq B.39, we attain the stated result. □

Now we present the result in Proposition B.5.1.

Proof. A second-order Taylor expansion yields:

𝑛1/2( 𝑓 (𝑢) − 𝑓 (𝜇)) = 𝑛1/2 < 𝑢−𝜇,∇ 𝑓 (𝜇) > +1
2
𝑛1/2(𝑢−𝜇)𝑇𝐻 (𝜇) (𝑢−𝜇) +𝑂𝑃

(
1
𝑛

)
.

(B.40)

Furthermore, by a multivariate Hoeffding Decomposition for 𝑢 − 𝜇:

𝑢 − 𝜇 =
1
𝑛


𝑟1
𝜌
𝑠1
𝑛

∑𝑛
𝑖=1 𝑔

(1)
1 (𝑋𝑖)

...
𝑟𝑑

𝜌
𝑠𝑑
𝑛

∑𝑛
𝑖=1 𝑔

(𝑑)
1 (𝑋𝑖)

 +
1
𝑛2


𝑟1 (𝑟1−1)
𝜌
𝑠1
𝑛

∑
𝑖< 𝑗 𝑔

(1)
2 (𝑋𝑖, 𝑋 𝑗 )

...
𝑟𝑑 (𝑟𝑑−1)
𝜌
𝑠𝑑
𝑛

∑
𝑖< 𝑗 𝑔

(𝑑)
2 (𝑋𝑖, 𝑋 𝑗 )

 +𝑂𝑃

(
1
𝑛3/2

)
=

1
𝑛
𝑢𝐿 +

1
𝑛2𝑢𝑄 +𝑂𝑃

(
1
𝑛3/2

)
, (B.41)

where

𝑛−1/2 | |𝑢𝐿 | | = 𝑂𝑃 (1),
1
𝑛3/2 | |𝑢𝑄 | | = 𝑂𝑃

(
𝑛−1/2

)
.

Now for the first term in Eq B.40, we have

𝑛1/2 < 𝑢 − 𝜇,∇ 𝑓 (𝜇) >= 𝑛−1/2 < 𝑢𝐿 ,∇ 𝑓 (𝜇) > +
1
𝑛3/2 < 𝑢𝑄 ,∇ 𝑓 (𝜇) > +𝑂𝑃

(
1
𝑛

)
.

The second term in Eq B.40 is

𝑛1/2(𝑢 − 𝜇)𝐻 (𝜇) (𝑢 − 𝜇)

= 𝑛1/2
{

1
𝑛
𝑢𝐿 +

1
𝑛2𝑢𝑄 +𝑂𝑃

(
1
𝑛3/2

)}𝑇
𝐻 (𝜇)

{
1
𝑛
𝑢𝐿 +

1
𝑛2𝑢𝑄 +𝑂𝑃

(
1
𝑛3/2

)}
= 𝑛1/2

{
1
𝑛2𝑢

𝑇
𝐿𝐻 (𝜇)𝑢𝐿 +

2
𝑛3𝑢

𝑇
𝐿𝐻 (𝜇)𝑢𝑄 +𝑂𝑃

(
1
𝑛3/2

)}
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=
1
𝑛3/2𝑢

𝑇
𝐿𝐻 (𝜇)𝑢𝐿 +𝑂𝑃

(
1
𝑛

)
Now Eq B.40 may be expressed as:

𝑛1/2( 𝑓 (𝑢) − 𝑓 (𝜇)) = 𝑛−1/2 < 𝑢𝐿 ,∇ 𝑓 (𝜇) >

+ 1
𝑛3/2

{
< 𝑢𝑄 ,∇ 𝑓 (𝜇) > +

1
2
𝑢𝑇𝐿𝐻 (𝜇)𝑢𝐿

}
+𝑂𝑃

(
1
𝑛

)
.

We have,

𝑆𝑛 =
𝐴1√
𝑛𝜎 𝑓
+ 𝑛−1/2𝛼(𝑋𝑙) + 𝑛−3/2

∑︁
𝑙<𝑚

𝛽(𝑋𝑙 , 𝑋𝑚) +𝑂𝑃

(
1
𝑛

)
, (B.42)

where

𝛼(𝑋𝑙) =
1
𝜎 𝑓

𝑑∑︁
𝑖=1

𝑎𝑖𝑔
(𝑖)
1 (𝑋𝑙)

𝑟𝑙

𝜌
𝑠𝑙
𝑛

,

𝛽(𝑋𝑙 , 𝑋𝑚) =
1
𝜎 𝑓

{
𝑑∑︁
𝑖=1

𝑎𝑖
𝑟𝑖 (𝑟𝑖 − 1)

𝜌
𝑠𝑖
𝑛

𝑔
(𝑖)
2 (𝑋𝑙 , 𝑋𝑚) +

∑︁
𝑖, 𝑗

𝑎𝑖 𝑗
𝑟𝑖𝑟 𝑗

𝜌
𝑠𝑖+𝑠 𝑗
𝑛

𝑔
(𝑋𝑖)
1 (𝑙)𝑔( 𝑗)1 (𝑋𝑚)

}
Applying Theorem 2.1 of Jing and Wang (2010), under the conditions of

proposition B.5.1, we have

sup
𝑥

����𝑃 (
𝑆𝑛 −

𝐴1√
𝑛𝜎 𝑓

≤ 𝑥
)
− 𝐸𝑛 (𝑥)

���� = 𝑜(𝑛−1/2),

where

𝐸𝑛 (𝑥) = Φ(𝑥) − (𝑥
2 − 1)𝜙(𝑥)

6
√
𝑛

{𝐸𝛼(𝑋𝑙)3 + 3𝐸𝛼(𝑋𝑙)𝛼(𝑋𝑚)𝛽(𝑋𝑙 , 𝑋𝑚)}.

Using Lemma B.5.1 and definition of 𝐴2, we can simply 𝐸𝑛 (𝑥), yielding:

𝑃(𝑆𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛1/2𝜙(𝑥)𝑝1(𝑥) + 𝑜(𝑛−1/2),

𝑝1(𝑥) = −
{
𝐴1𝜎

−1
𝑓 +

1
6
𝐴2𝜎

−3
𝑓 (𝑥

2 − 1)
}
.

□
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B.5.2 Proposed Bootstrap for Smooth Functions of Counts

In this section, we consider Edgeworth expansions of smooth functions for

the bootstrap. Recall from Section 3.5.3 that 𝑢∗ denotes a d-dimensional vector of

bootstrapped counted functionals generated by either the multiplier bootstrap 𝑇∗
𝑛,𝑀

or the the quadratic bootstrap 𝑇∗
𝑛,𝑄

; in the latter case, one may ignore an additional

𝑂𝑃 (𝑛−3/2) term that arises from approximating a U-statistic by the first two terms of

the Hoeffding decomposition. Now recall the bootstrap analogue 𝑆∗𝑛 from Eq 3.25,

the gradients of the smooth function evaluated at the empirical counts from Eq 3.27.

Let 𝑃∗ denote the bootstrap measure conditioned on 𝐴 and 𝑋 , with randomness

arising from the multiplier weights 𝜉. Furthermore, let 𝑃̂𝑛 denote the the empirical

measure 𝑃̂𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖 . It will turn out these two measures are closely related.

With a slight abuse of notation, the expectation operator corresponding to 𝑃̂𝑛 will be

denoted by 𝐸̂𝑛 𝑓 (𝑋) = 1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑋𝑖).

We define the following empirical analogues of the moments of interest:

𝜆̃𝑖1,...,𝑖 𝑗=𝐸
∗
{(
𝑟𝑖1
𝑔̂
(𝑖1)
1 (𝑙)𝑉𝑙
𝜌
𝑠𝑖1
𝑛

)
. . .

(
𝑟𝑖𝑑
𝑔̂
(𝑖𝑑)
1 (𝑙)𝑉𝑙
𝜌
𝑠𝑖𝑑
𝑛

)}
=

1
𝑛

𝑛∑︁
𝑙=1

(
𝑟𝑖1
𝑔̂
(𝑖1)
1 (𝑙)
𝜌
𝑠𝑖1
𝑛

)
. . .

(
𝑟𝑖𝑑
𝑔̂
(𝑖𝑑)
1 (𝑙)
𝜌
𝑠𝑖𝑑
𝑛

)
= 𝐸̂𝑛

{(
𝑟𝑖1
𝑔̂
(𝑖1)
1 (𝑙)
𝜌
𝑠𝑖1
𝑛

)
. . .

(
𝑟𝑖𝑑
𝑔̂
(𝑖𝑑)
1 (𝑙)
𝜌
𝑠𝑖𝑑
𝑛

)}
.

Now recall that the empirical analogue of the asymptotic variance from

Eq 3.29. We now prove Theorem 8, which establishes an Edgeworth expansion for

𝑃∗(𝑆∗𝑛 ≤ 𝑥).
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B.5.3 Proof of Theorem 8

Proof. We will start by establishing Eq 3.30. Let 𝑉𝑙 be 𝜉𝑙 − 1 and let 𝑉 denote the

vector:

𝑉 = (𝜉1 − 1, . . . , 𝜉𝑛 − 1)𝑇 .

Given 𝐴 and 𝑋 , we have

𝑢∗ − 𝑢̂ =
1
𝑛


𝑟1
𝜌
𝑠1
𝑛

∑𝑛
𝑙=1 𝑔̂

(1)
1 (𝑙)𝑉𝑙

...
𝑟𝑑

𝜌
𝑠𝑑
𝑛

∑𝑛
𝑙=1 𝑔̂

(𝑑)
1 (𝑙)𝑉𝑙

 +
1
𝑛2


𝑟1 (𝑟1−1)
𝜌
𝑠1
𝑛

∑
𝑙<𝑚 𝑔̃

(1)
2 (𝑙, 𝑚)𝑉𝑙𝑉𝑚
..

𝑟𝑑 (𝑟𝑑−1)
𝜌
𝑠𝑑
𝑛

∑
𝑙<𝑚 𝑔̃

(𝑑)
2 (𝑙, 𝑚)𝑉𝑙𝑉𝑚

+𝑂𝑃

(
1
𝑛3/2

)
=

1
𝑛
𝑢∗𝐿 +

1
𝑛2𝑢

∗
𝑄 +𝑂𝑃

(
1
𝑛3/2

)
.

Using a second-order Taylor expansion analogous to EqB.40, we have:

𝑛1/2( 𝑓 (𝑢∗) − 𝑓 (𝑢̂)) = 𝑛−1/2 < 𝑢∗𝐿 ,∇ 𝑓 (𝑢̂) >

+ 1
𝑛3/2

{
< 𝑢∗𝑄 ,∇ 𝑓 (𝑢̂) > +

1
2
𝑢∗𝑇𝐿 𝐻 (𝑢̂)𝑢∗𝐿

}
+𝑂𝑃

(
1
𝑛

)
. (B.43)

We also have, by definition,

𝐸∗{𝑔̂(𝑖)1 (𝑙)𝑔̂
( 𝑗)
1 (𝑚)𝑔̃

(𝑘)
2 (𝑙, 𝑚)𝑉𝑙𝑉𝑚} = 𝐸̂{𝑔̂

(𝑖)
1 (𝑙)𝑔̂

( 𝑗)
1 (𝑚)𝑔̃

(𝑘)
2 (𝑙, 𝑚)}.

Then, by Eq B.43 and definition of 𝜎̃ 𝑓 and 𝐴̃1, we have,

𝑆∗𝑛 =
𝑛1/2( 𝑓 (𝑢∗) − 𝑓 (𝑢̂))

𝜎̃ 𝑓

=
𝐴̃1√
𝑛𝜎̃ 𝑓
+ 1
𝐵𝑛

𝑛∑︁
𝑙=1

𝑏𝑛,𝑙𝑉𝑙 +
1
𝑛3/2

∑︁
𝑙<𝑚

𝑑𝑛,𝑙𝑚𝜓(𝑉𝑙 , 𝑉𝑚) +𝑂𝑃

(
1
𝑛

)
,
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where

𝑏𝑛,𝑙 =
1
𝜎̃ 𝑓

𝑑∑︁
𝑖=1

𝑎̂𝑖 𝑔̂
(𝑖)
1 (𝑙)

𝑟𝑖

𝜌
𝑠𝑖
𝑛

, (B.44a)

𝐵2
𝑛 =

𝑛∑︁
𝑙=1

𝑏2
𝑛,𝑙 = 𝑛, (B.44b)

𝑑𝑛,𝑙𝑚 =
1
𝜎̃ 𝑓

{
𝑑∑︁
𝑖=1

𝑎̂𝑖
𝑟𝑖 (𝑟𝑖 − 1)

𝜌
𝑠𝑖
𝑛

𝑔̃
(𝑖)
2 (𝑙, 𝑚) +

∑︁
𝑖, 𝑗

𝑎̂𝑖 𝑗
𝑟𝑖𝑟 𝑗

𝜌
𝑠𝑖+𝑠 𝑗
𝑛

𝑔̂
(𝑖)
1 (𝑙)𝑔̂

( 𝑗)
1 (𝑚)

}
, (B.44c)

𝜓(𝑉𝑙 , 𝑉𝑚) = 𝑉𝑙𝑉𝑚 . (B.44d)

Using Lemma B.4.1 and similar arguments therein if

1
𝑛

𝑛∑︁
𝑙=1

𝑏2
𝑛,𝑙 ≥ 𝑙1 > 0,

1
𝑛

𝑛∑︁
𝑙=1
|𝑏𝑛,𝑙 |3 ≤ 𝑙2 ≤ ∞, (B.45)

then

sup
𝑥

|𝑃∗
(
𝑆∗𝑛 −

𝐴̃1√
𝑛𝜎̃ 𝑓

≤ 𝑥
)
− 𝐺̃ (𝑥) | = 𝑂

(
𝑙5,𝑛 log 𝑛
𝑛2/3

)
, (B.46)

where and 𝛼𝑙 := 1
𝑛

∑
𝑚≠𝑙 𝑑

2
𝑛,𝑙𝑚

. and for sufficiently large 𝑘:

𝑙4,𝑛 =
1
𝑛

𝑛∑︁
𝑙=1

𝛼𝑙 , 𝑠2
𝑛 =

1
𝑛

∑︁
𝑙

𝛼2
𝑙 − (𝑙4,𝑛)

2, 𝑙5,𝑛 = 𝑙4,𝑛 + 𝑘𝑠𝑛

and

𝐺̃𝑛 (𝑥) = Φ(𝑥) + 𝐿̃1,𝑛 (𝑥) + 𝐿̃2,𝑛 (𝑥),

𝐿̃1,𝑛 =
𝐸𝑉3

𝑙

6𝐵3
𝑛

𝑛∑︁
𝑙=1

𝑏3
𝑛,𝑙 (𝑥

2 − 1)𝜙(𝑥),

𝐿̃2,𝑛 =
1

𝑛3/2𝐵2
𝑛

∑︁
𝑙<𝑚

𝑏𝑛,𝑙𝑏𝑛,𝑚𝑑𝑛,𝑙𝑚𝐸 (𝑉𝑙𝑉𝑚𝜓(𝑉𝑙 , 𝑉𝑚)) (𝑥2 − 1)𝜙(𝑥).
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Since
∑
𝑖 𝑏

2
𝑛,𝑖
/𝑛 = 1, the first condition in EqB.45 is satisfied. Let 𝑐 𝑗 := 𝑟 𝑗

𝜌
𝑠 𝑗
𝑛 𝜎̂ 𝑓

.

For the second condition, note that since |.|3 is convex,

1
𝑛

∑︁
𝑖

|𝑏𝑛,𝑖 |3 ≤
𝑑2

𝜎̂3
𝑓

𝑑∑︁
𝑗=1
𝑐3
𝑗

1
𝑛

∑︁
𝑖

|𝑎̂𝑖 𝑔̂1(𝑖) |3

Since the function 𝑓 has three gradients in the neighborhood of 𝜇, Lemma B.4.5

shows that the above is bounded, thereby satisfying the second condition in Eq B.45.

Simplifying 𝐿̃1,𝑛 and 𝐿̃2,𝑛 using Eq B.44, we have

𝐺̃𝑛 (𝑥) = Φ(𝑥) + 𝑛−1/2𝜙(𝑥)1
6
𝐴̃2𝜎̃

−3
𝑓 (𝑥

2 − 1).

Now we bound the remainder term by bounding 𝑙5,𝑛. We write 𝛼𝑙 as

𝛼𝑙 =
1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙


𝑑∑︁
𝑖=1

𝑎̂𝑖
𝑟𝑖 (𝑟𝑖 − 1)

𝜌
𝑠𝑖
𝑛

𝑔̃
(𝑖)
2 (𝑙, 𝑚)︸                          ︷︷                          ︸

𝑌1,𝑙𝑚

+
∑︁
𝑖, 𝑗

𝑎̂𝑖 𝑗
𝑟𝑖𝑟 𝑗

𝜌
𝑠𝑖+𝑠 𝑗
𝑛

𝑔̂
(𝑖)
1 (𝑙)𝑔̂

( 𝑗)
1 (𝑚)︸                             ︷︷                             ︸

𝑌2,𝑙𝑚



2

. (B.47)

Expanding (𝑌1,𝑙𝑚+𝑌2,𝑙𝑚)2 in Eq B.47, it is straightforward that, by Lemma B.4.4,

𝑙4,𝑛 is 𝑂𝑃 (𝜌−1
𝑛 ).

Now we bound 𝑠𝑛. Since 𝛼𝑙 ≥ 0 and (𝑌1,𝑙𝑚 + 𝑌2,𝑙𝑚)2 ≤ 2(𝑌2
1,𝑙𝑚 + 𝑌

2
2,𝑙𝑚), we

write

𝑠2
𝑛 ≤

1
𝑛

𝑛∑︁
𝑙=1

𝛼2
𝑙 ≤

4
𝑛

𝑛∑︁
𝑙=1

(
1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙

𝑌2
1,𝑙𝑚 +

1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙

𝑌2
2,𝑙𝑚

)2

≤ 8×1
𝑛

𝑛∑︁
𝑙=1

(
1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙

𝑌2
1,𝑙𝑚

)2

︸                          ︷︷                          ︸
𝑍1

+8 × 1
𝑛

𝑛∑︁
𝑙=1

(
1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙

𝑌2
2,𝑙𝑚

)2

︸                       ︷︷                       ︸
𝑍2

.
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To estimate 𝑍1, we use:

𝑍1 =
1
𝑛

𝑛∑︁
𝑙=1

©­« 1
𝑛𝜎̃2

𝑓

∑︁
𝑚≠𝑙

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎̂𝑖 𝑎̂ 𝑗

𝑟𝑖𝑟 𝑗 (𝑟𝑖 − 1) (𝑟 𝑗 − 1)
𝜌
𝑠𝑖+𝑠 𝑗
𝑛

𝑔̃
(𝑖)
2 (𝑙, 𝑚)𝑔̃

( 𝑗)
2 (𝑙, 𝑚)

ª®¬
2

.

Using the fact that

1
𝜌
𝑠𝑖+𝑠 𝑗
𝑛

𝑔̃
(𝑖)
2 (𝑙, 𝑚)𝑔̃

( 𝑗)
2 (𝑙, 𝑚) ≤

1
2

(
1
𝜌

2𝑠𝑖
𝑛

𝑔̃
(𝑖)
2 (𝑙, 𝑚)

2 + 1

𝜌
2𝑠 𝑗
𝑛

𝑔̃
( 𝑗)
2 (𝑙, 𝑚)

2

)
,

by the same arguments in the proof of Theorem 6, it is easy to check that 𝑍1 =

𝑂𝑃 (𝜌−1
𝑛 ).

For 𝑍2, let 𝑐𝑖 𝑗 𝑘𝑡 = 𝑎𝑖 𝑗𝑎𝑘𝑡𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑡/𝜌
𝑠𝑖+𝑠 𝑗+𝑠𝑘+𝑠𝑡
𝑛 and 𝑐𝑖 𝑗 𝑘𝑡 = 𝑎̂𝑖 𝑗 𝑎̂𝑘𝑡𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑡/𝜌

𝑠𝑖+𝑠 𝑗+𝑠𝑘+𝑠𝑡
𝑛 .

Consider the estimate:

𝑍2 ≤
2
𝑛𝜎̃4

𝑓

𝑛∑︁
𝑙=1

©­«1
𝑛

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

(𝑐𝑖 𝑗 𝑘𝑡 − 𝑐𝑖 𝑗 𝑘𝑡)𝑔̂(𝑖)1 (ℓ)𝑔̂
( 𝑗)
1 (𝑚)𝑔̂

(𝑘)
1 (ℓ)𝑔̂

(𝑡)
1 (𝑚)

ª®¬
2

︸                                                                                  ︷︷                                                                                  ︸
𝑍
(1)
2

+ 2
𝑛𝜎̃4

𝑓

𝑛∑︁
𝑙=1

©­«1
𝑛

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

𝑐𝑖 𝑗 𝑘𝑡 𝑔̂
(𝑖)
1 (ℓ)𝑔̂

( 𝑗)
1 (𝑚)𝑔̂

(𝑘)
1 (ℓ)𝑔̂

(𝑡)
1 (𝑚)

ª®¬
2

︸                                                                      ︷︷                                                                      ︸
𝑍
(2)
2

We will start by establishing the order of the 𝑍 (2)2 term. Observe that:

1
𝑛
𝐸

∑︁
ℓ

©­«1
𝑛

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

𝑐𝑖 𝑗 𝑘𝑡 𝑔̂
(𝑖)
1 (ℓ)𝑔̂

( 𝑗)
1 (𝑚)𝑔̂

(𝑘)
1 (ℓ)𝑔̂

(𝑡)
1 (𝑚)

ª®¬
2

≤ 𝑑
4

𝑛2

∑︁
ℓ

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

𝑐2
𝑖 𝑗 𝑘𝑡𝐸

[
𝑔̂
(𝑖)
1 (ℓ)

2𝑔̂
( 𝑗)
1 (𝑚)

2𝑔̂
(𝑘)
1 (ℓ)

2𝑔̂
(𝑡)
1 (𝑚)

2
]

≤ 𝑑
4

𝑛2

∑︁
ℓ

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

𝑐2
𝑖 𝑗 𝑘𝑡

(
𝐸

[
𝑔̂
(𝑖)
1 (ℓ)

4𝑔̂
( 𝑗)
1 (𝑚)

4
]
𝐸

[
𝑔̂
(𝑘)
1 (ℓ)

4𝑔̂
(𝑡)
1 (𝑚)

4
] )1/2
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≤ 𝑑
4

𝑛2

∑︁
ℓ

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

𝑐2
𝑖 𝑗 𝑘𝑡

(
𝐸

[
𝑔̂
(𝑖)
1 (ℓ)

8
]
𝐸

[
𝑔̂
( 𝑗)
1 (𝑚)

8
]
𝐸

[
𝑔̂
(𝑘)
1 (ℓ)

8
]
𝐸

[
𝑔̂
(𝑡)
1 (𝑚)

8
] )1/4

Due to Lemma B.5.2 and Eq B.50, since 𝑑 is finite, we see that the above is

𝑂 (1). To complete our bound for 𝑍2, observe that:

𝑃(𝑍 (2)2 > 𝑀)

≤𝑃
©­­«max
𝑖, 𝑗 ,𝑘,𝑡

(𝑐𝑖 𝑗 𝑘𝑡 − 𝑐𝑖 𝑗 𝑘𝑡)2
2
𝑛𝜎̃4

𝑓

∑︁
ℓ

©­«1
𝑛

∑︁
𝑚≠ℓ

∑︁
𝑖, 𝑗 ,𝑘,𝑡

���𝑔̂(𝑖)1 (ℓ)𝑔̂
( 𝑗)
1 (𝑚)𝑔̂

(𝑘)
1 (ℓ)𝑔̂

(𝑡)
1 (𝑚)

���ª®¬
2

> 𝑀
ª®®¬

Since max𝑖, 𝑗 ,𝑘,𝑡 (𝑐𝑖 𝑗 𝑘𝑡 − 𝑐𝑖 𝑗 𝑘𝑡)2 is lower-order and the second term in the product

inside the probability statement may be viewed as a variant of 𝑍 (1)2 with 𝑐𝑖 𝑗 𝑘𝑡 = 1, we

can conclude 𝑍2 = 𝑂 (1). Combining 𝑍1 and 𝑍2, we have, with probability tending

to one, 𝑠2
𝑛 ≤ 𝐶𝜌−1

𝑛 and 𝑙5,𝑛 = 𝑙4,𝑛 + 𝑠𝑛 ≤ 𝐶′𝜌−1
𝑛 for some universal positive constants

𝐶 and 𝐶′.

Thus, from Eq B.46 and Lemma B.5.1, we have Eq 3.30.

□

We now state and prove Lemma B.5.2, which we had used in the proof of the

above theorem.

Lemma B.5.2. Under the sparsity conditions in Assumption 2,

𝐸 (𝑔̂1(𝑙)8) = 𝑂 (𝜌8𝑠
𝑛 )

.
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Proof. We decompose 𝑔̂1(𝑙) into

𝑔̂1(𝑙) = 𝐻̂1(𝑙) − ℎ1(𝑙) + 𝑔1(𝑙) − (𝑇𝑛 − 𝜃).

Then for some constant 𝐶,

𝑔̂1(𝑙)8 ≤ 𝐶{(𝐻̂1(𝑙) − ℎ1(𝑙))8 + 𝑔1(𝑙)8 + (𝑇𝑛 − 𝜃)8}. (B.48)

𝑔1(𝑙)8 is 𝑂 (𝜌8𝑠
𝑛 ). Now for (𝑇𝑛 − 𝜃)8,

(𝑇𝑛 − 𝜃)8 ≤ 𝐶{(𝑇𝑛 − 𝑇𝑛)8 + (𝑇𝑛 − 𝜃)8},

where (𝑇𝑛− 𝜃)8 = Θ(𝜌8𝑠
𝑛 ) by boundness of graphon and we investigate 𝐸{(𝑇𝑛−𝑇𝑛)8}.

Let S𝑟 denote all 𝑟-node subsets from node {1, . . . , 𝑛},

𝐸{(𝑇𝑛 − 𝑇𝑛)8} =

∑
𝑆1,...,𝑆8∈S𝑟

𝐸 [{𝐻̂ (𝑆1) − ℎ(𝑆1)} . . . {𝐻̂ (𝑆8) − ℎ(𝑆8)}](𝑛
𝑟

)8 .

Consider any term in the above sum where each of the four pairs of the

subsets have 𝑝𝑖, 𝑖 = 1, . . . , 4 nodes, 𝑑𝑖, 𝑖 = 1, . . . , 4 edges in common. In this case

there are 8𝑟 −∑
𝑖 𝑝𝑖 choices of nodes and the number of edges are at least 8𝑠 −∑

𝑖 𝑑𝑖.

First note that 𝑝𝑖 ≥ 2, to have non-zero contribution. For acyclic graphs, 𝑑𝑖 ≤ 𝑝𝑖 − 1

and for general subgraphs with a cycle, 𝑑𝑖 ≤
(𝑝𝑖

2
)
. Thus, for 𝑝𝑖 ≥ 2, we have:

𝑂

(
𝑛8𝑟−∑𝑖 𝑝𝑖 𝜌

8𝑠−∑𝑖 𝑑𝑖
𝑛

)
(𝑛
𝑟

)8 = 𝑂 (𝜌8𝑠
𝑛 ) ×𝑂

(
1

𝑛
∑

𝑖 𝑝𝑖 𝜌
∑

𝑖 𝑑𝑖
𝑛

)
.

For acyclic graphs, it is easy to see that under our sparsity conditions the above is

dominated by 𝑝 = 2. For general cyclic graphs, since 𝜌𝑛 = 𝜔(𝑛−1/𝑟) and 𝑝 ≤ 𝑟 ,

𝑛𝑝𝑖 𝜌𝑑𝑖𝑛 ≥ 𝑛
𝑝𝑖

(
1− 𝑝𝑖−1

2𝑟

)
≥ 𝑛

4𝑝𝑖 (𝑟+1)
𝑟 →∞.

198



So, 𝐸{(𝑇𝑛 − 𝑇𝑛)8} = 𝑂 (𝜌8𝑠
𝑛 ).

To finish bounding 𝐸 [𝑔̂1(𝑙)8], we look into the first term of Eq B.48. Let S𝑙𝑟
denote all 𝑟 − 1 node subsets from node {1, . . . , 𝑛} excluding node 𝑙,

𝐸{(𝐻̂1(𝑙) − ℎ1(𝑙))8}

=

∑
𝑆1,...,𝑆8∈S𝑙𝑟

𝐸 [{𝐻̂ (𝑙 ∪ 𝑆1) − ℎ(𝑙 ∪ 𝑆1)} . . . {𝐻̂ (𝑙 ∪ 𝑆8) − ℎ(𝑙 ∪ 𝑆8)}](𝑛−1
𝑟−1

)8 .

Similarly, consider any term in the above sum where each of the four pairs of the

subsets have 𝑝𝑖, 𝑖 ≤ 4 nodes (besides node 𝑙), 𝑑𝑖, 𝑖 ≤ 4 edges in common. In this case

there are 4(2𝑟 − 2) −∑
𝑖 𝑝𝑖 choices of nodes and the number of edges are 8𝑠 −∑

𝑖 𝑑𝑖.

(since each subset already share node 𝑙). When 𝑝𝑖 ≥ 1, each pair share node 𝑙 and

another 𝑝𝑖 nodes, then for acyclic graphs, 𝑑𝑖 ≤ 𝑝𝑖, and for general subgraphs with a

cycle, 𝑑𝑖 ≤
(𝑝𝑖+1

2
)
. Thus, for 𝑝𝑖 ≥ 1, 𝑑𝑖 ≥ 0, we have

𝑂

(
𝑛4(2𝑟−2)−∑𝑖 𝑝𝑖 𝜌

8𝑠−∑𝑖 𝑑𝑖
𝑛

)
(𝑛−1
𝑟−1

)8 = 𝑂 (𝜌8𝑠
𝑛 ) ×𝑂

(
1

𝑛
∑

𝑖 𝑝𝑖 𝜌
∑

𝑖 𝑑𝑖
𝑛

)
,

where as we showed above for acyclic graphs, under our sparsity conditions the

above is dominated by 𝑝 = 1. For general cyclic graphs, since 𝜌𝑛 ≫ 𝑛1/𝑟 and 𝑝𝑖 ≤ 𝑟 ,

𝑛𝑝𝑖 𝜌
𝑑𝑖
𝑛 →∞. Thus, 𝐸{(𝐻̂1(𝑙) − ℎ1(𝑙))8} is also 𝑂 (𝜌8𝑠

𝑛 ).

Thus, combining all terms in Eq B.48, 𝐸 [𝑔̂1(𝑙)8] is 𝑂 (𝜌8𝑠
𝑛 ). □

B.5.4 Comparing Bootstrap Edgeworth Expansion with the U-statistic Edge-
worth Expansion

Finally, we show that the bootstrap Edgeworth expansion is close to that of

the conditional expectation, which was established in Proposition B.5.1.
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Proposition B.5.2. Suppose that 𝜎 𝑓 > 0, the function 𝑓 has three continuous

derivatives in a neighbourhood of 𝜇, and
∑𝑑
𝑖=1 𝑎𝑖𝑔

(𝑖)
1 (𝑋𝑙) is non-lattice. Furthermore,

suppose that the weights 𝜉1, . . . , 𝜉𝑛 are generated from a non-lattice distribution

such that E(𝜉1) = 1, E{(𝜉1 − 1)2} = 1, E{(𝜉1 − 1)3} = 1. Then we have:

𝑃∗(𝑆∗𝑛 ≤ 𝑥) = 𝑃(𝑆𝑛 ≤ 𝑥) + 𝑜𝑃
(
𝑛−1/2

)
+𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
. (B.49)

Proof. Now we show that 𝜎̃ 𝑓 , 𝐴̃1 and 𝐴̃2 converge to 𝜎 𝑓 , 𝐴1 and 𝐴2. We first show

𝜆̃𝑖 𝑗 and 𝜆̃𝑖 𝑗 𝑘 converge to 𝜆𝑖 𝑗 and 𝜆𝑖 𝑗 𝑘 .

𝜆̃𝑖 𝑗 = 𝑟𝑖𝑟 𝑗 𝐸̂

{
𝑔̂
(𝑖)
1 (𝑙)𝑔̂

( 𝑗)
1 (𝑙)

𝜌
𝑠𝑖
𝑛 𝜌

𝑠 𝑗
𝑛

}
,

𝜆𝑖 𝑗 = 𝑟𝑖𝑟 𝑗E

{
𝑔
(𝑖)
1 (𝑋𝑙)𝑔

( 𝑗)
1 (𝑋𝑙)

𝜌
𝑠𝑖
𝑛 𝜌

𝑠 𝑗
𝑛

}
.

Using the fact that E(𝑉𝑙) = 0,E(𝑉𝑙)2 = 1, E{𝑔(𝑖)1 } = 0, and an analogous argument as

in the proof of Lemma 3.1d) in Zhang and Xia (2020), we have:

𝜆̃𝑖 𝑗 − 𝜆𝑖 𝑗 = 𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
.

Similarly, expanding 𝜆̃𝑖 𝑗 𝑘 and 𝜆𝑖 𝑗 𝑘 , using the fact that E(𝑉3
𝑙
) = 1, E{𝑔(𝑖)1 } = 0,

𝜆̃𝑖 𝑗 𝑘 − 𝜆𝑖 𝑗 𝑘 = 𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
.

Using the same argument in the proof of Lemma 7, we have

𝐸̂{𝑔̂(𝑖)1 (𝑙)𝑔̂
( 𝑗)
1 (𝑚)𝑔̃

(𝑘)
2 (𝑙, 𝑚)} − 𝐸{𝑔

(𝑖)
1 (𝑋𝑙)𝑔

( 𝑗)
1 (𝑋𝑚)𝑔

(𝑘)
2 (𝑋𝑙 , 𝑋𝑚)} = 𝑂𝑝 (𝑛−1/2𝜌−1/2

𝑛 ).

Furthermore, under the assumption that 𝑓 has three continuous derivatives in the

neighbourhood of 𝜇, we know that

𝑎̂𝑖 = 𝑎𝑖 +𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
, 𝑎̂𝑖 𝑗 = 𝑎𝑖 𝑗 +𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
. (B.50)
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Thus, together with Eq B.50, we have,

𝜎̃2
𝑓 − 𝜎

2
𝑓 = 𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
,

𝐴̃1 − 𝐴1 = 𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
,

𝐴̃2 − 𝐴2 = 𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
.

Finally we have,

𝑝1(𝑥) = −{ 𝐴̃1𝜎̃
−1
𝑓 +

1
6
𝐴̃2𝜎̃

−3
𝑓 (𝑥

2 − 1)} = 𝑝1(𝑥) +𝑂𝑃

(
𝑛−1/2𝜌−1/2

𝑛

)
.

Therefore, under the same condition of Proposition B.5.1, from Eq 3.30, we have,

𝑃∗(𝑆∗𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑝1(𝑥)𝜙(𝑥) +𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
= 𝑃(𝑆𝑛 ≤ 𝑥) + 𝑜𝑃

(
𝑛−1/2

)
+𝑂𝑃

(
log 𝑛
𝑛2/3𝜌𝑛

)
.

□

B.6 Detailed Results of Confidence Interval Bias Correction for
Smooth Functions of Counts

B.6.1 Edgeworth Expansion for Studentized Smooth Function of Counts

In order to write 𝜎2
𝑓

as a function of 𝜇 and 𝜎̂2
𝑓

as function of 𝑢, we have

to expand the vector of 𝑢 by including terms such that the variance can be written

as a function of the expectation. For example, for simple mean, one needs to add

(𝑥1, 𝑥2) = (𝑥, 𝑥2) for data point 𝑥, since the variance is then 𝑥2 − 𝑥2
1. For i.i.d random

variables, this is simple, but for U statistics, the dependence makes this more nuanced.

201



We expand the vector of 𝑢 into 𝑢̌. Given 𝑋 , the uncentered 𝑢̌ is

𝑢̌ =

{
𝑇
(1)
𝑛

𝜌
𝑠1
𝑛

, . . . ,
𝑇
(𝑑)
𝑛

𝜌
𝑠𝑑
𝑛︸            ︷︷            ︸

𝑑 terms

,
𝑟1𝑟2

∑𝑛
𝑖=1 ℎ̂

(1)
1 (𝑋𝑖) ℎ̂

(2)
1 (𝑋𝑖)

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

, . . . ,
𝑟𝑑−1𝑟𝑑

∑𝑛
𝑖=1 ℎ̂

(𝑑−1)
1 (𝑋𝑖) ℎ̂(𝑑)1 (𝑋𝑖)

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛︸                                                                               ︷︷                                                                               ︸

(𝑑2) terms

,

𝑟2
1
∑𝑛
𝑖=1 ℎ̂

(1)
1 (𝑋𝑖)

2

𝑛𝜌
2𝑠1
𝑛

, . . . ,
𝑟2
𝑑

∑𝑛
𝑖=1 ℎ̂

(𝑑)
1 (𝑋𝑖)

2

𝑛𝜌
2𝑠𝑑
𝑛︸                                                ︷︷                                                ︸

𝑑 terms

}
,

(B.51)

where

ℎ̂1(𝑋𝑖) =
1(𝑛−1
𝑟−1

) ∑︁
1≤𝑖1<...<𝑖𝑟≤𝑛,𝑖1,...,𝑖𝑟≠𝑖

ℎ̂(𝑋𝑖, 𝑋𝑖1 , . . . , 𝑋𝑖𝑟 ).

Denote 𝜇̌ = 𝐸𝑢̌, and u′ = 𝑢̌ − 𝜇̌. Define ℎ(𝜇) = 𝜎 𝑓
2, ℎ(𝑢̌) = 𝜎̂2

𝑓
and

𝑐𝑖 = ∇ℎ( 𝜇̌) (𝑖) .

Proposition B.6.1. Define 𝑆′𝑛 = 𝑛1/2( 𝑓 (𝑢) − 𝑓 (𝜇))/𝜎̂ 𝑓 . Under the condition that

the function 𝑓 has three continuous derivatives in a neighbourhood of 𝜇, and∑𝑑
𝑖=1 𝑎𝑖𝑔

(𝑖)
1 (𝑋1), is non-lattice, we have:

𝑃(𝑆′𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑞1(𝑥)𝜙(𝑥) + 𝑜
(

1
𝑛1/2

)
,

𝑞1(𝑥) = −{𝐵1 +
1
6
𝐵2(𝑥2 − 1)},

where 𝐵1 and 𝐵2 are

𝐵1 = 𝐴1𝜎
−1
𝑓 −

1
2
𝜎−3
𝑓 𝑛

𝑑 ′∑︁
𝑖=1

𝑑 ′∑︁
𝑗=1
𝑎𝑖𝑐 𝑗E{u′(𝑖)u′( 𝑗)},

202



𝐵2 = 6𝐵1 − 6𝐴1 +
𝐴2

𝜎3
𝑓

.

𝐴1 and 𝐴2 are defined in Proposition B.5.1. The regularity conditions are to ensure

the remainders in the stated order uniformly in 𝑥.

Proof. Now, we define 𝐴(𝑢̌) = 𝐴(𝑢) = 𝑓 (𝑢) − 𝑓 (𝜇), 𝐵(𝑢̌) = ( 𝑓 (𝑢) − 𝑓 (𝜇))/ℎ(𝑢̌).

Then by Taylor Expansion we have,

𝐵(𝑢̌) = 𝐴(𝑢̌)/ℎ(𝑢̌)1/2 = 𝐴(𝑢̌) ∗ ℎ(𝑢̌)−1/2

= 𝐴(𝑢̌)
{
ℎ( 𝜇̌)−1/2 + (𝑢̌ − 𝜇̌)𝑇∇(ℎ( 𝜇̌)−1/2) + (𝑢̌ − 𝜇̌)𝑇 𝐻 (ℎ( 𝜇̌)

−1/2)
2

(𝑢̌ − 𝜇̌) + 𝑜𝑃
(
1
𝑛

)}
= 𝐴(𝑢̌)/ℎ( 𝜇̌)−1/2 − 1

2
𝐴(𝑢̌)ℎ( 𝜇̌)−3/2(∇ℎ( 𝜇̌))𝑇 (𝑢̌ − 𝜇̌) +𝑂𝑃

(
1
𝑛3/2

)
= 𝐴(𝑢̌)/𝜎 𝑓 −

1
2
(𝑢̌ − 𝜇̌)𝑇𝜎−3

𝑓 ∇ 𝑓 ( 𝜇̌) (∇ℎ( 𝜇̌))
𝑇︸               ︷︷               ︸

𝐷

(𝑢̌ − 𝜇̌) +𝑂𝑃

(
1
𝑛3/2

)

= 𝐴(𝑢)/𝜎 𝑓 −
1
2
(𝑢̌ − 𝜇̌)𝑇𝜎−3

𝑓


𝑎1𝑐1 ... 𝑎1𝑐𝑑
... ... ...

𝑎𝑑𝑐1 ... 𝑎𝑑𝑐𝑑

︸                    ︷︷                    ︸
𝐷

(𝑢̌ − 𝜇̌) +𝑂𝑃

(
1
𝑛3/2

)
,

where

(𝑢̌ − 𝜇̌)𝑇𝐷 (𝑢̌ − 𝜇̌) =
𝑑 ′∑︁
𝑖=1

𝑑 ′∑︁
𝑖=1

𝑎𝑖𝑐 𝑗u′(𝑖)u′( 𝑗) ,

𝑎𝑑+1 = 𝑎𝑑+2 = . . . = 𝑎𝑑 ′ = 0.

We have 𝑆′𝑛 = 𝑛1/2 𝑓 (𝑢)− 𝑓 (𝜇)
ℎ(𝑢̌) = 𝑛1/2𝐵(𝑢̌). Thus we can write 𝑆′𝑛 into

𝑆′𝑛 = 𝑛
1/2𝐴(𝑢)/𝜎 𝑓 −

1
2
𝜎−3
𝑓 𝑛

1/2
𝑑 ′∑︁
𝑖=1

𝑑 ′∑︁
𝑖=1

𝑎𝑖𝑐 𝑗u′(𝑖)u′( 𝑗) +𝑂𝑃

(
1
𝑛

)
. (B.52)
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Since 𝑎𝑖 = 0 for 𝑖 > 𝑑, we only discuss here u′(𝑖)u′( 𝑗) for 𝑖 ≤ 𝑑, 𝑗 ≤ 𝑑 and

u′(𝑖)u′( 𝑗) for 𝑖 ≤ 𝑑, 𝑑 < 𝑗 ≤ 𝑑′. We first prove that

u′(𝑖)u′( 𝑗) = E{u′(𝑖)u′( 𝑗)} + 𝑛−2
∑︁
𝑙<𝑚

𝛾(𝑋𝑙 , 𝑋𝑚) +𝑂𝑃

(
1
𝑛3/2

)
(B.53)

holds for both cases, where 𝛾 is some symmetric function of 𝑋𝑙 and 𝑋𝑚.

For 𝑖 ≤ 𝑑, 𝑗 ≤ 𝑑, since u′(𝑖) = 𝑢
(𝑖)
𝐿

𝑛
+
𝑢
(𝑖)
𝑄

𝑛2 + 𝑂𝑃

(
1
𝑛3/2

)
, u′( 𝑗) = 𝑢

( 𝑗)
𝐿

𝑛
+
𝑢
( 𝑗)
𝑄

𝑛2 +

𝑂𝑃

(
1
𝑛3/2

)
,

u′(𝑖)u′( 𝑗) =
𝑢
(𝑖)
𝐿
𝑢
( 𝑗)
𝐿

𝑛2 +𝑂𝑃

(
1
𝑛3/2

)
=

𝑟𝑖𝑟 𝑗

𝑛2𝜌𝑠𝑖𝑛 𝜌
𝑠 𝑗
𝑛

𝑛∑︁
𝑙=1

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

( 𝑗)
1 (𝑋𝑙) +

2𝑟𝑖𝑟 𝑗
𝑛2𝜌𝑠𝑖𝑛 𝜌

𝑠 𝑗
𝑛

∑︁
𝑙<𝑚

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

( 𝑗)
1 (𝑋𝑚) +𝑂𝑃

(
1
𝑛3/2

)
.

Thus,

𝐸u′(𝑖)u′( 𝑗) =
𝑟𝑖𝑟 𝑗

𝑛2𝜌𝑠𝑖𝑛 𝜌
𝑠 𝑗
𝑛

𝑛∑︁
𝑙=1

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

( 𝑗)
1 (𝑋𝑙),

and Eq B.53 follows.

For 𝑖 ≤ 𝑑, 𝑑 < 𝑗 ≤ 𝑑′, u′(𝑖) = 𝑢
(𝑖)
𝐿

𝑛
+
𝑢
(𝑖)
𝑄

𝑛2 +𝑂𝑃

(
1
𝑛3/2

)
, while

u′( 𝑗) =
𝑟𝑘𝑟𝑡

𝑛𝜌
𝑠𝑘
𝑛 𝜌𝑛𝑠𝑡

𝑛∑︁
𝑙=1

ℎ̂
(𝑘)
1 (𝑋𝑙) ℎ̂

(𝑡)
1 (𝑋𝑙) − 𝐸

{
𝑟𝑘𝑟𝑡

𝜌
𝑠𝑘
𝑛 𝜌

𝑠𝑡
𝑛 𝑛

𝑛∑︁
𝑙=1

ℎ̂
(𝑡)
1 (𝑋𝑙) ℎ̂

(𝑘)
1 (𝑋𝑙)

}
,

for some 𝑘, 𝑡 ∈ {1, . . . , 𝑑}. Denote E{ℎ̂𝑘 (𝑋𝑙)} = 𝜃 (𝑘) , Hoeffding decomposition of

ℎ̂𝑘 (𝑋𝑙) yields,

ℎ̂
(𝑘)
1 (𝑋𝑙) − 𝜃

(𝑘)
𝑛

𝜌
𝑠𝑘
𝑛

= ℎ
(𝑘)
1 (𝑋𝑙) − 𝜃

(𝑘)
𝑛 +

𝑟 − 1
𝑛 − 1

∑︁
𝑠≠𝑙,1≤𝑠≤𝑛

{𝑔(𝑘)2 (𝑋𝑙 , 𝑋𝑠) + 𝑔
(𝑘)
1 (𝑋𝑠)} +𝑂𝑃

(
1
𝑛

)
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= 𝑔
(𝑘)
1 (𝑋1) +

𝑟 − 1
𝑛 − 1

∑︁
𝑠≠𝑙,1≤𝑠≤𝑛

{𝑔(𝑘)2 (𝑋𝑙 , 𝑋𝑠) + 𝑔
(𝑘)
1 (𝑋𝑠)} +𝑂𝑃

(
1
𝑛

)
.

(B.54)

Denote U (𝑖) =
∑𝑛

𝑙=1 𝑔
(𝑖)
1 (𝑋𝑙)
𝑛

, then

u′(𝑖)u′( 𝑗) =
𝑟𝑘𝑟𝑖𝑟𝑡

𝜌
𝑠𝑘+𝑠𝑖+𝑠𝑡
𝑛

{
𝜃 (𝑘)U (𝑖)U (𝑡) + 𝜃 (𝑡)U (𝑖)U (𝑘) + 1

𝑛2

𝑛∑︁
𝑙=1

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

(𝑘)
1 (𝑋𝑙)𝑔

(𝑡)
1 (𝑋𝑙)

+ 2
𝑛2

∑︁
𝑙<𝑚

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

(𝑘)
1 (𝑋𝑚)𝑔

(𝑡)
1 (𝑋𝑚) +

2
𝑛2

∑︁
𝑙<𝑚

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

(𝑘)
1 (𝑋𝑚)𝑔

(𝑡)
2 (𝑋𝑙 , 𝑋𝑚)

+ 2
𝑛2

∑︁
𝑙<𝑚

𝑔
(𝑖)
1 (𝑋𝑙)𝑔

(𝑡)
1 (𝑋𝑚)𝑔

(𝑘)
2 (𝑋𝑙 , 𝑋𝑚)

}
+𝑂𝑃

(
1
𝑛3/2

)
.

Taking Expectation, Eq B.53 easily follows.

Now that Eq B.53 holds, using Eq B.42 and Eq B.52, we have

𝑆′𝑛 =
𝐴1√
𝑛𝜎 𝑓
− 1

2
𝜎−3
𝑓 𝑛

𝑑 ′∑︁
𝑖=1

𝑑 ′∑︁
𝑗=1
𝑎𝑖𝑐 𝑗E{u′(𝑖)u′( 𝑗)}

+ 𝑛−1/2
𝑛∑︁
𝑙=1

𝛼(𝑋𝑙) + 𝑛−3/2
∑︁
𝑙<𝑚

{𝛽(𝑋𝑙 , 𝑋𝑚) + 𝛾(𝑋𝑙 , 𝑋𝑚)} +𝑂𝑃

(
1
𝑛

)
(B.55)

Therefore, using Lemma B.5.1, we know that

𝐵1 = 𝐴1𝜎
−1
𝑓 −

1
2
𝜎−3
𝑓 𝑛

𝑑 ′∑︁
𝑖=1

𝑑 ′∑︁
𝑗=1
𝑎𝑖𝑐 𝑗E{u′(𝑖)u′( 𝑗)}. (B.56)

From Eq B.55, we also have that Theorem 2.1 of Jing and Wang (2010)

applies to 𝑆′𝑛 under the same conditions of Proposition B.5.1. For the simplicity of

calculation, we note that 𝐵2 can be estimated using the identity 𝑝1(0) = 𝑞1(0) and

the forms of 𝐴1, 𝐴2, and 𝐵1, which gives us 𝐵2 = 6𝐵1 − 6𝐴1 + 𝐴2
𝜎3

𝑓

.
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Thus, under same conditions of Proposition B.5.1, we have

𝑃(𝑆′𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑞1(𝑥)𝜙(𝑥) + 𝑜
(
𝑛−1/2

)
,

where 𝐵1 and 𝐵2 are defined above, 𝑞1(𝑥) is as

𝑞1(𝑥) = −{𝐵1 +
1
6
𝐵2(𝑥2 − 1)}.

□

B.6.2 Estimating Confidence Interval Corretion for Smooth Function of Counts

In order correct the confidence intervals arising from the standardized

bootstrap, we need to estimate 𝑝1(𝑥) and 𝑞1(𝑥). This requires the calculation of 𝜎2
𝑓
,

𝐴1 and 𝐴2 are straightforward. In this section, we show how to compute 𝑞1(𝑥) for

transitivity.

While we only show in detail the calculations of transitivity (𝑑 = 2), they can

be easily used as building blocks to extend to other smooth functions of counts with

𝑑 ≥ 2.

In the case of transitivity, the original 𝑢 used for estimation of 𝑝1(𝑥) is of

length 𝑑 = 2. Recall that for estimating 𝑞1(𝑥) we need to expand this vector so that

the variance is a function of this vector. This expanded vector (see Eq B.51) is of

length 𝑑′ = 5. Denote 𝜇𝑖 𝑗 = 𝑛×𝐸u′(𝑖)u′( 𝑗) . We also have for𝑇 and𝑉 , 𝑟1 = 𝑟2 = 𝑟 = 3,

and 𝑠1 = 3 and 𝑠2 = 2.

To estimate 𝐵1 and 𝐵2, we first use the fact that 𝑐𝑘 for k in 1 ≤ 𝑘 ≤ 𝑑′ follows
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Hall (2013) Section 3.10.6 as follows:

𝑐𝑘 = 2
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑎𝑖𝑘𝑎 𝑗𝜇𝑖 𝑗 − 2𝑎𝑘

𝑑∑︁
𝑖=1

𝑎𝑖𝜇
(𝑖) +

𝑑,𝑑∑︁
𝑖=1, 𝑗=1,(𝑘)

𝑎𝑖𝑎 𝑗 , (B.57)

where
∑𝑑,𝑑

𝑖=1, 𝑗=1,(𝑘) denotes the pair (𝑖, 𝑗) in 𝑢̌(1),...,(𝑑) that 𝑢̌(𝑖) 𝑢̌( 𝑗) = 𝑢̌(𝑘) . For example,

in transitivity, 𝑢̌(3) = 𝑢̌(1) 𝑢̌(2) .

Now we simplify 𝐸u′(𝑖)u′( 𝑗) for 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑑′ for the purpose of

estimating 𝐵1 and 𝑐𝑘 in Eq B.56 and Eq B.57. We do not consider the case where

𝑖 > 𝑑 since 𝑎𝑖 for 𝑖 > 𝑑 is 0. By the definition of 𝑢′, using Hoeffding Decomposition

of ℎ̂(𝑖)1 (𝑋1) (𝑖 ∈ {1, 2}) showed in Eq B.54, simple algebra yields,

E{u′(𝑖)u′( 𝑗)} = 𝑟2

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

E{𝑔(𝑖)1 (𝑋1)𝑔( 𝑗)1 (𝑋1)} +𝑂
(

1
𝑛3/2

)
, 1 ≤ 𝑖, 𝑗 ≤ 2,

E{u′(1)u′(4)} = 𝑟3

𝑛𝜌
𝑠3

1
𝑛

[
E{𝑔(1)1 (𝑋1)𝑔(1)1 (𝑋1)2}

+ 2(𝑟 − 1)E{𝑔(1)1 (𝑋1)𝑔(1)1 (𝑋2)𝑔(1)2 (𝑋1, 𝑋2)}
]

+ 2𝑟4

𝑛𝜌
2𝑠1
𝑛

𝜇1𝐸{𝑔(1)1 (𝑋1)𝑔(1)1 𝑋1} +𝑂
(

1
𝑛3/2

)
,

E{u′(2)u′(5)} = 𝑟3

𝑛𝜌
3𝑠2
𝑛

[
E{𝑔(2)1 (𝑋1)𝑔(2)1 (𝑋1)2}

+ 2(𝑟 − 1)E{𝑔(2)1 (𝑋1)𝑔(2)1 (𝑋2)𝑔(2)2 (𝑋1, 𝑋2)}
]

+ 2𝑟4

𝑛𝜌
2𝑠2
𝑛

𝜇2𝐸{𝑔(1)1 (𝑋1)𝑔(2)1 𝑋1} +𝑂
(

1
𝑛3/2

)
,
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E{u′(1)u′(5)} = 𝑟3

𝑛𝜌
𝑠1
𝑛 𝜌

2𝑠2
𝑛

[
E{𝑔(1)1 (𝑋1)𝑔(2)1 (𝑋1)2}

+ 2(𝑟 − 1)E{𝑔(1)1 (𝑋1)𝑔(2)1 (𝑋2)𝑔(2)2 (𝑋1, 𝑋2)}
]

+ 2𝑟4

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

𝜇2𝐸{𝑔(1)1 (𝑋1)𝑔(2)1 𝑋1} +𝑂
(

1
𝑛3/2

)
,

E{u′(2)u′(4)} = 𝑟3

𝑛𝜌
2𝑠1
𝑛 𝜌

𝑠2
𝑛

[
E{𝑔(2)1 (𝑋1)𝑔(1)1 (𝑋1)2}

+ 2(𝑟 − 1)E{𝑔(2)1 (𝑋1)𝑔(1)1 (𝑋2)𝑔(1)2 (𝑋1, 𝑋2)}
]

+ 2𝑟4

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

𝜇1𝐸{𝑔(1)1 (𝑋1)𝑔(2)1 𝑋1} +𝑂
(

1
𝑛3/2

)
,

Now for the case of 𝑖 = 1 and 𝑗 = 3, applying the same technique, then we

will have,

E{u′(1)u′(3)} = 𝑟3

𝑛𝜌
2𝑠1
𝑛 𝜌

𝑠2
𝑛

[
E{𝑔(1)1 (𝑋1)2𝑔(2)1 (𝑋1)}

+ (𝑟 − 1)E{𝑔(1)1 (𝑋1)𝑔(1)1 (𝑋2)𝑔(2)2 (𝑋1, 𝑋2)}

+ (𝑟 − 1)E{𝑔(1)1 (𝑋1)𝑔(2)1 (𝑋2)𝑔(1)2 (𝑋1, 𝑋2)
]

+ 𝑟4

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

𝜇1𝐸{𝑔(1)1 (𝑋1)𝑔(2)1 𝑋1}

+ 𝑟4

𝑛𝜌
2𝑠1
𝑛

𝜇2𝐸{𝑔(1)1 (𝑋1)2} +𝑂
(

1
𝑛3/2

)
,

Similarly, for 𝑖 = 2 and 𝑗 = 3, we have
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E{u′(2)u′(3)} = 𝑟3

𝑛𝜌
𝑠1
𝑛 𝜌

2𝑠2
𝑛

[
E{𝑔(2)1 (𝑋1)2𝑔(1)1 (𝑋1)}

+ (𝑟 − 1)E{𝑔(2)1 (𝑋1)𝑔(1)1 (𝑋2)𝑔(2)2 (𝑋1, 𝑋2)}

+ (𝑟 − 1)E{𝑔(2)1 (𝑋1)𝑔(2)1 (𝑋2)𝑔(1)2 (𝑋1, 𝑋2)
]

+ 𝑟4

𝑛𝜌
𝑠1
𝑛 𝜌

𝑠2
𝑛

𝜇2𝐸{𝑔(1)1 (𝑋1)𝑔(2)1 𝑋1}

+ 𝑟4

𝑛𝜌
2𝑠1
𝑛

𝜇1𝐸{𝑔(2)1 (𝑋1)2} +𝑂
(

1
𝑛3/2

)
.

Now we can estimate 𝐵1 from Eq B.56 and 𝑐𝑖, 1 ≤ 𝑖 ≤ 5 from Eq B.57 by

estimating 𝐸{u′(𝑖)u′( 𝑗)} above using 𝑔̂(𝑖)1 (𝑋1) and 𝑔̂(𝑖)2 (𝑋1, 𝑋2), for 𝑖 ∈ {1, 2}. Using

the fact of 𝑝1(0) = 𝑞1(0), we can estimate 𝐵2 by

𝐵̂2 = 6𝐵̂1 − 6𝐴̂1𝜎̂
−1
𝑓 + 𝐴̂2𝜎̂

−3
𝑓 .

Then we have the estimated 𝑞1(𝑥),

𝑞1(𝑥) = −{𝐵̂1 +
1
6
𝐵̂2(𝑥2 − 1)}.

Now we show the studentized edgeworth expansion of some statistics 𝑓 (𝑇,𝑉)

using same 𝑢̌ as transitivity, including 𝑇 , 3𝑇 + 5𝑉 , 𝑇𝑉 , 3𝑇/𝑉(transitivity) and

𝑇2𝑉2. The 𝑞1(𝑥) of the Edgeworth expansion of the studentized version of these

statistics 𝑓 (𝑇,𝑉) share the same 𝐸{u′(𝑖)u′( 𝑗)} (𝑖 ∈ {1, 2}, j in {1,. . . ,5}. The the only

difference lies in evaluating different derivatives a of 𝑓 and thus having different 𝑐𝑘 ,

𝐵̂1 and 𝐵̂2.

Recall that err(𝐹, 𝐺) is defined in Section 3.6 as the maximum of |𝐹 (𝑥) −

𝐺 (𝑥) | over the range [−3, 3], over a grid size 0.1. In the following two tables,we

209



show this distance between the true CDF and our empirical edgeworth expansion and

the normal approximation for five different smooth functions. Tables B.1 and B.2

show these for the standardized and studentized statistics. The empirical edgeworth

expansion is estimated using a random graph with 𝑛 = 160, 𝜌𝑛 = 1, generated from

two graphons SBM-G and SM-G with the same parameters as in Section 3.6. The true

CDF is estimated by 106 size 160 graphs generated by the same graphons with same

model parameters.

Table B.1: Standardized EW Sup CDF error compared to N(0,1)

SBM SM-G
Studentized err(𝐹̂ (𝑆𝑛), 𝐹) err(Φ, 𝐹) err(𝐹̂ (𝑆𝑛), 𝐹) err(Φ, 𝐹)
T 0.002 0.018 0.004 0.030
3T+5V 0.003 0.011 0.002 0.018
TV 0.006 0.023 0.016 0.042
3T/V 0.005 0.027 0.006 0.051
𝑇2𝑉2 0.036 0.078 0.092 0.142

Table B.1 shows the standardized sup error sup𝑥 |𝐹̂ (𝑆𝑛 ≤ 𝑥) − 𝐹 (𝑥) |, where

𝑆𝑛 is the standardized statistic, 𝐹̂ (𝑆𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑝1(𝑥)𝜙(𝑥) and 𝐹 (𝑥) is the

true distribution of the standardized statistic. In Table B.2, we show sup𝑥 |𝐹̂ (𝑆𝑛 ≤

𝑥) − 𝐹′(𝑥) |, where 𝐹̂ (𝑆′𝑛 ≤ 𝑥) = Φ(𝑥) + 𝑛−1/2𝑞1(𝑥)𝜙(𝑥) and 𝐹′(𝑥) indicates the true

CDF of the studentized statistic.
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Table B.2: Studentized EW Sup CDF error compared to N(0,1)

SBM SM-G
Studentized err(𝐹̂ (𝑆′𝑛), 𝐹 ′) err(Φ, 𝐹 ′) err(𝐹̂ (𝑆′𝑛), 𝐹 ′) err(Φ, 𝐹 ′)
T 0.004 0.021 0.008 0.043
3T+5V 0.002 0.012 0.005 0.026
TV 0.006 0.029 0.015 0.054
3T/V 0.012 0.031 0.007 0.052
𝑇2𝑉2 0.022 0.058 0.045 0.106

We see that for both graphons the empirical edgeworth expansion has much

lower error than the Gaussian approximation. Also, the linear combinations of the

statistics typically have lower error than those which need the estimation of first and

second derivatives.

B.7 Additional experiments

In this section we provide additional experiment results that were left out

from the main text for better presentation.

B.7.1 Additional results for two-stars

We show in Figure B.1 the maximum of (absolute) difference of bootstrap

CDF 𝐹∗𝑛 over the [−3, 3] range (err(𝐹𝑛,𝐹∗𝑛 )) for two-star density from the true CDF

𝐹𝑛 for sparsity parameter 𝜌𝑛 varying from 0.05 to 1. We show the average of the

expected difference over 30 independent runs along with the error-bars. In Figure B.2,

we show the 95% CI coverage for two-stars. The results of two-stars are similar to

those of triangles in the main paper.
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Figure B.1: We plot err(𝐹𝑛,𝐹∗𝑛 ) for two-star density for all methods on the 𝑌 axis,
where 𝐹∗𝑛 (𝑡) corresponds to the appropriate resampling distribution. We vary the
sparsity parameter 𝜌𝑛 on the 𝑋 axis. Networks in the left column are simulated
from SBM-G and those in the right column are simulated from SM-G. The first row is
centered at bootstrap mean. The second row is centered by triangles density estimated
on the whole graph (MB-L-apx is centered at approximate triangle density estimated
from the whole graph) .
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Figure B.2: We present coverage of 95% Bootstrap Percentile CI with correction for
two-stars of the SBM-G (left) and SM-G (right) models in 𝜌 from 0.05 to 1.
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B.7.2 Additional timing results

In Figure B.3 we show logarithm of running time for four-cycles count against

growing 𝑛 for SM-G model.
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Figure B.3: Logarithm of running time for four-cycles in SM-G against sample size 𝑛.
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Appendix C

Supplementary Material for Separate Exchangeability
in Bayesian Nonparametrics

C.1 Proofs

We include a brief proof of (4.5).

Claim: Infinite partial exchangeability (4.4) entails

Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ) ≥ Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ′) 𝑗 ≠ 𝑗 ′, 𝑖 ≠ 𝑖′. (C.1)

Proof. We define𝑈𝑖 𝑗 B 𝑥𝑖 𝑗/Var(𝑥𝑖 𝑗 ) such that Cov(𝑈𝑖 𝑗 ,𝑈𝑖′ 𝑗 ) = Corr(𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗 ). By

de Finetti’s theorem (4.4) and law of total covariance

Cov(𝑈𝑖 𝑗 ,𝑈𝑖′ 𝑗 ) = 0 + Cov{E(𝑈𝑖 𝑗 | 𝑃 𝑗 )E(𝑈𝑖′ 𝑗 | 𝑃 𝑗 )}

≥ 0 + Cov{E(𝑈𝑖 𝑗 | 𝑃 𝑗 )E(𝑈𝑖′ 𝑗 ′ | 𝑃 𝑗 ′)} = Cov(𝑈𝑖 𝑗 ,𝑈𝑖′ 𝑗 ′),

□

Considering a trivial example with > in (C.1) proves the claim in (4.5).

C.2 Algorithm 1

Algorithm 1 below states the transition probabilities for posterior simulation

in model (4.20). The description makes use of the following notation. Let X denote
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a (𝐽 × 12) design matrix with x 𝑗 in row 𝑗 . the following quantities are used in the

description of Algorithm 1. We use a notational convention of marking quantities that

are cluster-specific with a tilde, as in (𝛽ℎ, 𝜎̃ℎ), etc. Let then ỹℎ, X̃ℎ and δ̃ℎ denote

𝑦𝑖 𝑗 , x 𝑗 and 𝛿𝑡 arranged by clusters. That is, ỹ is a (𝑛ℎ𝐽 × 1) vector stacking y𝑖 for

all 𝑖 ∈ 𝐶ℎ as ỹℎ = (𝑦𝑖 𝑗 , 𝑖 ∈ 𝐶𝐻; 𝑗 = 1, . . . , 𝐽); X̃ is an (𝑛ℎ𝐽 × 12) matrix with X

stacked 𝑛ℎ times on top of each other; and δ̃ℎ is a (𝑛ℎ𝐽 × 1) vector that concatenates

𝑛ℎ copies of δ = (𝛿𝑡1 , . . . , 𝛿𝑡𝐽 ).
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Algorithm 3. MCMC algorithm for posterior inference
Priors: We fixed hyperparameters: 𝜉 = 1, β0 = (0, 0, . . . , 0), 𝜎𝛽0 = 1,𝑎0 = 1,
𝑏0 = 1, 𝜁0 = 0, 𝜔0 = 0.01, 𝜇0 = 3, 𝜎2

0 = 5. Also, let 𝚺0 = 𝜎2
𝛽0𝐼.

for 1:M do
1. For each protein 𝑖, sample

𝑃(𝑠𝑖 = ℎ | ·) ∝ 𝜋ℎ
𝐽∏
𝑗=1

𝑁 (𝑦𝑖 𝑗 ;𝛼𝑖 + x′𝑗 𝛽ℎ + 𝛿𝑡 𝑗 , 𝜎̃2
ℎ)

2. Update 𝑉ℎ, ℎ = 1, . . . , 𝐻 − 1, keeping in mind that 𝑉𝐻 = 1 is fixed:

𝑉ℎ | · ∼ Be(1 + 𝑛ℎ, 𝜉 +
𝐻∑︁

ℓ=ℎ+1
𝑛ℓ), ℎ = 1, . . . , 𝐻 − 1

and set 𝜋ℎ = 𝑉ℎ
∏

ℓ<ℎ (1 −𝑉ℓ), ℎ = 1, . . . , 𝐻.
3. Update β̃ℎ and 𝜎̃2

ℎ
: Recall the definition of ỹℎ, X̃ℎ and δ̃ℎ as

cluster-specific combined vectors and matrices. See the text for a detailed
definition.

β̃ℎ | · ∼ 𝑁 (µ̃ℎ, 𝚺̃ℎ),
µ̃ℎ = 𝚺̃ℎ

{
X̃𝑇

ℎ 𝚺
−1
ℎ (ỹℎ − α̃ℎ − δ̃ℎ) + 𝚺−1

0 β0
}
,

𝚺̃ℎ = (𝚺−1
0 + X̃

𝑇
ℎ 𝚺
−1
ℎ X̃ℎ)−1 and 𝚺ℎ = Diag𝐽×𝑛ℎ (𝜎̃

2
ℎ),

𝜎̃2
ℎ | · ∼ InvGa(𝑎ℎ, 𝑏ℎ)

𝑎ℎ = 𝑎0 +
𝑛ℎ × 𝐽

2
and 𝑏ℎ = 𝑏0 +

∑
𝑖∈𝐶ℎ

∑𝐽
𝑗=1(𝑦𝑖 𝑗 − 𝑚𝑖 𝑗)2

2
𝑚𝑖 𝑗 = 𝛼𝑖 + x′𝑗 𝛽ℎ − 𝛿𝑡 𝑗

4. Update age-specific effect 𝛿𝑡 . Let 𝑚𝑡 =
∑𝐽

𝑗=1 1(𝑡 𝑗 = 𝑡). Sample

𝛿𝑡 | · ∼ 𝑁 (𝑚𝑡 , 𝑉𝑡 )

1
𝑉𝑡

=
1
𝜔2 +

∑︁
𝑗: 𝑡 𝑗=𝑡

𝐼∑︁
𝑖=1

1/𝜎2
𝑠𝑖
, 𝑚𝑡 = 𝑉𝑡

(
𝜁

𝜔2 +
∑

𝑗: 𝑡 𝑗=𝑡
∑𝐼

𝑖=1(𝑦𝑖 𝑗 − x′𝑗 𝛽𝑠𝑖 − 𝛼𝑖)2

𝜎̃2
𝑠𝑖

)
4. Update protein-specific intercept 𝛼𝑖 . Sample

𝛼𝑖 | · ∼ 𝑁
(
𝜇0/𝜎2

0 +
∑𝐽

𝑗=1
∑𝐼

𝑖=1(𝑦𝑖 𝑗 − x′𝑗β̃𝑠 𝑗 − 𝛿𝑡 𝑗 )2/𝜎̃2
𝑠 𝑗

1/𝜎2
0 + 𝐽/𝜎

2
𝑠𝑖

,

(
1/𝜎2

0 + 𝐽/𝜎̃
2
𝑠𝑖

)−1
)
.

end
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