

Copyright

by

Lin Wan

2005

The Dissertation Committee for Lin Wan Certifies that this is the approved version

of the following dissertation:

Staff Planning and Scheduling in the Service Industry:

An Application to US Postal Service Mail Processing and

Distribution Centers

Committee:

Jonathan F. Bard, Supervisor

J. Wesley Barnes

John Hasenbein

Erhan Kutanoglu

Leon Lasdon

Staff Planning and Scheduling in the Service Industry:

An Application to US Postal Service Mail Processing and

Distribution Centers

by

Lin Wan, B. Eng.; B. Law; M. Eng.

Dissertation

Presented to the Faculty of the Graduate School of

University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2005

This dissertation is dedicated to my grandfather.

 v

Acknowledgments

There are many people that have played important role in supporting me in

writing this dissertation. First and foremost is Dr. Jonathan F. Bard, who not only served

as my advisor but also encouraged and challenged me throughout my doctoral study. He

patiently guided me through the dissertation process and helped me to pursue my ideas.

My thanks also go to all other members of my doctoral committee, Dr. Wesley

Barnes, Dr. John Hasenbein, Dr. Erhan Kutanoglu, and Dr. Leon Lasdon, for their

invaluable comments and suggestions.

The friendship of Hadi Purnomo is much appreciated and has led to many

interesting and good-spirited discussions relating to this research. I am also grateful to

my friends Guzin Bayraksan and Yang-Chi Chen for their help and support.

I would also like to thank Planmatics Inc. for providing support for my study on

staff scheduling in USPS. Mr. Andres Granados, Ms. Nilufer Uyanik and Mr. Robert

Carignan are especially thanked for providing all the data, documents, and their opinions

on the research. I also want to thank Zhan Goloborodko, Shankar Dhanaraj, and Mehmet

Gurbuz for helping me to implement the results of my research and perform tests.

Last, but not least, I would like to thank my wife Lily for her support and love in

the past few years. I am also grateful to my parents, Huiyi and Meilan, for their endless

love, care, and support.

 vi

Staff Planning and Scheduling in the Service Industry:

An Application to US Postal Service Mail Processing and

Distribution Centers

Lin Wan, PhD

University of Texas at Austin, 2005

Supervisor: Jonathan F. Bard

 This research addresses weekly personnel planning and scheduling problems that

arise at various service facilities staffed by full-time and part-time employees. In

response to demand fluctuations, expected leave, training assignments, and other

contingencies, weekly adjustments are often required to better match available personnel

with demand over the planning horizon. Unlike manufacturing where uniform 8-hour

shifts are the rule, service organizations may experience several busy periods during the

day that do not fit a standard shift. In such cases, supervisors must adjust employee

schedules by assigning overtime, increasing the number of part-time hours, and calling in

temporary workers. The situation is complicated by union contracts, labor rules, and

company policies.

 To find solutions that can be implemented in a real-world environment, a two-

phase approach was developed. In the first phase, the adjustment problem is formulated

as a large-scale integer program and solved to generate the adjusted shift schedules. In

the second phase, the shift schedules are post-processed to provide daily task assignments

for each worker.

 vii

An integrated model that combines the shift scheduling and task assignment is

also proposed to incorporate base group requirements and movement restrictions. Since

only relatively small problems could be solved by commercial solver, two decomposition

heuristics––network splitting and column generation––were designed to deliver good

feasible solutions in a more timely manner. In conjunction with this problem, the impact

of the workgroup restrictions on long-term staff planning was also investigated.

An analysis of the problems is presented for an application involving weekly and

long-term scheduling at a mail processing and distribution center. The results indicate

that high quality solutions can be obtained within a reasonable amount of time.

 viii

Table of Contents

Page

Acknowledgement ..v

Abstract... vi

List of Tables .. xi

List of Figures... xiii

Chapter 1. Introduction..1

1.1 Hierarchy of Staff Planning Problems ..2
1.2 Components of the Weekly Staff Scheduling...4

1.2.1 Weekly Shift Scheduling ...4
1.2.2 Task Assignment..5
1.2.3 Workstation Group Restrictions ..5

1.3 Guide of the Dissertation..6

Chapter 2. Literature Review ..7

2.1 Tour Scheduling Problem ...7
2.2 Task Assignment Problem and WSG Restrictions ...10

Chapter 3. Weekly Shift Scheduling. ..14

3.1 The Weekly Scheduling Model ..14
3.1.1 Model Components..14
3.1.2 Notation and Formulation ..15
3.1.3 Overtime Constraints ...22

3.2 Solution Methodology ..24
3.2.1 Solving the MILP...24
3.2.2 Break Assignments ..26
3.2.3 Days-off and Weekly Scheduling ..27
3.2.4 Daily Task Assignments ..28

3.3 Experimental Design and Analysis...28
3.3.1 Analysis of First Set of Experiments – Benefit of Weekly Adjustments ..31
3.3.2 Comparative Results for Target Heuristic ...35
3.3.3 Analysis of Third Set of Experiments – Staff Shortages37

Chapter 4. Task Assignment Problem ..42

4.1 Problem Description ...42
4.2 Model Formulation ...45

4.2.1 Basic Model ...45

 ix

4.2.2 Model with Idle Time and Lunch Breaks ..52
4.3 Solution Methodology ..54

4.3.1 Delayed Idle Period Assignment and Daily Decomposition Algorithm....55
4.3.2 Tabu Search ...58

4.4 Computational Experience..65
4.4.1 Results for Small Data Sets..67
4.4.2 Results for Large Data Sets..70
4.4.3 Initializing Tabu Search...71

Chapter 5. Weekly Staff Scheduling with Workstation Group Restrictions74

5.1 Problems Description and Formulation ..74
5.1.1 WSG restrictions..75
5.1.2 Notation and Formulation ..76
5.1.3 Workforce Priorities...78
5.1.4 Need for Decomposition ..79

5.2 Network Splitting..79
5.3 Column Generation Heuristic ...83

5.3.1 Master Problem..84
5.3.2 Pricing Subproblem ...85
5.3.3 Initial Columns, Column Management, and Feasible Solutions86
5.3.4 Heuristic for Set-covering Problem ...87
5.3.5 Post-processor ..89
5.3.6 Details of Column Generation Algorithm..90

5.4 Experimental Results ..92
5.4.1 Small Data Set..93
5.4.2 Medium and Large Data Sets...98
5.4.3 Column Generation Post-processor ...101

Chapter 6. Long-term Staff Scheduling with Workstation Group Restrictions ..103

6.1 Problem Definition..103
6.1.1 Workstation Group Restrictions ..104
6.1.2 Current System...106
6.1.3 Model Development...107

6.2 Sequential Procedure ..107
6.3 Iterative Procedure ..114

6.3.1 Complexity Issues..118
6.3.2 Solving the Integer Programming Representation of WGAP..................123

6.4 Computational Experience..126
6.4.1 General Results ..128
6.4.2 Variable Fixing Results..132

Chapter 7. Summary, Future Work, and Conclusions..136

 x

Appendixes
 A. Graphical User Interface ...140
 B. Definition of Worker Categories and Equipment in a P&DC.........................142

Bibliography ...143

VITA..147

 xi

List of Tables

Table Page

3.1. Model Size for First Group of Tests for Skill Category P5-MPC30

3.2a. Basic Staffing Results for First Group of Tests for Skill Category P5-MPC32

3.2b. Normalized Staffing Results for First Group of Tests for Skill Category P5-MPC.......32

3.3. Computational Results of First Group of Tests ...34

3.4a. CPLEX Results ..36

3.4b. Solutions with Approximation Methods..36

3.5. Model Size for Third Group of Tests -- Three Skill Levels38

3.6a. Basic Staffing Results for Third Group of Tests -- Three Skill Levels39

3.6b. Average Staffing Results for Third Group of Tests -- Three Skill Levels...........40

3.7. Comparison of CPLEX with Approximation Method 141

4.1. Approaches Investigated..65

4.2. Data Sets for Computational Experiments...66

4.3. Size of Weekly Problem for Model (4-2) ..67

4.4. Computational Result of Small Data Sets..68

4.5. Computational Results for Large Data Sets...71

4.6. Tabu Search Started from Different Solutions...73

5.1. Small Data Set Problem Sizes..93

5.2. Computational Results Obtained with CPLEX for Small Data Set.....................94

5.3. Computational Results for Small Data Set Obtained with Heuristics96

 xii

5.4. Medium and Large Data Set Problem Sizes ..99

5.5. Computational Results for Medium Data Set ..100

5.6. Computational Results for Large Data Set ..100

5.7. Effectiveness of Post-processing ...102

6.1. Lower Bound for Each Data Set ..129

6.2. Results for Sequential and Iterative Procedures ..130

6.3. Performance of Variable Fixing Algorithm for Model (6-1)...............................134

6.4. Influence of Fixing Rate on Uncovered Demand ..134

B.1. Definition of Worker Categories and Equipment in a P&DC142

 xiii

List of Figures

Figure Page

1.1. Three Levels of Personnel Scheduling ..3

3.1. Computational Steps in Solution Methodology...25

4.1. Multi-period, Single-commodity Network Representation for a Week...............47

4.2. Various Types of Transitions for Given Schedules ...56

4.3. Heuristic for Assigning Idle Time ...57

4.4. Sequential Shortest Route Method...59

4.5. Example of Swap Move...60

4.6. Tabu search procedure ...64

4.7. Objective function comparisons for small data sets ..69

4.8. Run time comparisons for small data sets..70

5.1. Example of Movement Restrictions Network ...75

5.2. Permissible Skill Downgrading ...76

5.3. Results from Network Splitting Algorithm..82

5.4. Movement Restriction Network for Small Data Set ..94

5.5. Comparison of Costs for Small Data Set ...97

5.6. Movement Restriction Networks for Medium and Large Data Sets....................98

6.1. Examples of workstation group restrictions ..105

6.2. Schematic of the computation flow in SOS...106

6.3. Movement restrictions network for example ...111

 xiv

6.4. Network after clustering Network after clustering ..112

6.5. Networks after breaking loops ...113

6.6. Network after removing the two clusters...113

6.7. Multicommodity flow network used in proof of Theorem 6.1120

6.8. Movement restrictions networks for data set 1 ..127

6.9. Movement restrictions networks for data set 2 ..127

6.10. Movement restrictions networks for data set 3 ..128

6.11. Comparison of sequential and iterative procedures ...132

6.12. Parametric analysis of variable fixing fraction, ρ ..135

A.1. Graphical user interface for WSO..141

 1

Chapter 1

Introduction

A distinguishing characteristic of organizations in the service industry is that

customer demand varies sharply from one period to the next. Hour-to-hour and day-to-

day fluctuations make staff scheduling much more difficult than in manufacturing where

demand, for the most part, is steady and predictable. In general, the goal of management

is to find the best mix of hourly employees so that demand is satisfied at minimum cost.

The problem is complicated in the service industry by labor laws, union contracts, and

local company policies.

The purpose of this research is to investigate the issues surrounding staff

scheduling in organizations that face changing demand patterns that peak for short

periods during the day. Examples of such organizations include hospitals, restaurants,

airlines, and call centers as well as mail processing and distribution centers (P&DCs), the

application of interest. In particular, the United States Postal Service (USPS) is the third

largest employer in the U.S. with over 800,000 operational and clerical personnel on its

payroll. When a letter is posted, its first stop is the local P&DC where it is cancelled,

sorted, and then dispatched to either the addressee or another P&DC. More than a third

of the USPS workforce is needed to run the 275 P&DCs nationwide, a number that has

remained steady despite the decline in mail volume and the introduction of advanced

technology in the form of optical character readers, barcode sorters, and computerized

material handling systems.

Mail processing centers are like high volume factories that run 24 hours a day, 7

days a week, and are staffed by a skilled workforce comprising full-time, part-time, and

casual employees. On a typical day, a medium facility might receive as many as 5

million letters, 0.5 million flats, and thousands of parcels. The analysis in this research

begins with a fixed workforce whose composition has been determined to meet long-term

performance and budgetary goals. For the USPS, the sizing of the career workforce is a

 2

well-studied problem, primarily because of the constant pressure it faces to be financially

self-supporting. Over the last 25 years, several comprehensive analyses have been

undertaken to determine optimal staffing levels as well as the optimal equipment

configurations; e.g., see Bard et al. (1993), Berman et al. (1997), Jarrah et al. (1994),

Showalter et al. (1977). Most recently, the USPS has embarked on a new effort to

streamline its operations and reduce the number of employees nationwide. At the heart

of this effort is a decision support system that includes a long-term staff planning module

[called the Scheduling Optimization System (SOS)] developed by Bard et al. (2003). In

this research, a second module is designed to make weekly adjustments to the staff

schedule to account for changes in demand, seasonal factors, and planned leave.

1.1 Hierarchy of Staff Planning Problems

Typical issues in personnel scheduling include days-off assignments, lunch break

determination, leave management, part-time flexible labor and casual labor management,

overtime allocation, personnel assignment to various work centers, as well as the

difficulties associated with large fluctuations in hourly and daily demand. Some

variations of the basic problem include a non-homogeneous workforce in terms of skill

categories, various labor requirements such as maximum work stretches, break

definitions, off-days and off-weekend policies (Aykin 1996, Bechtold and Jacobs 1990,

Burns and Carter 1985, Emmons 1985), and management considerations such as

customer priority, service standards, start time rules, and objective function definitions

(Beaumont 1997, Mason et al. 1998).

In the most general sense, workforce planning problems can be viewed temporally

and decomposed along the time axis (see Fig. 1.1). This suggests a hierarchical analytic

approach. In the long run, the goal is to find the optimal size of the workforce as well as

regular weekly schedules or tours for each employee in a given skill category. This

means specifying the work days, their length, the daily start time, and the lunch break. At

processing and distribution centers these specifications constitute a “bid job” (Jarrah et al.

1994).

 3

At the next level in the hierarchy, given the regular workforce, adjustments must

be made on a weekly basis to account for planned absenteeism and expected departures

from average demand. To accomplish this, critical resources must be tracked and

evaluated. The goal is to provide weekly schedules that balance overtime and the use of

part-time labor so that all requirements are met at minimum cost and at minimum

deviation from the bid jobs. This can be thought of as a replanning problem and is the

focus of this research.

Finally, at the day-to-day level, supervisors must deal with unplanned

absenteeism, machine breakdowns, and unexpected spikes in demand; i.e., uncertainty.

This is a real-time scheduling problem that falls under the heading of control. In the

airline industry where bad weather, for example, can occasion flight delays and

cancellations (Bard et al. 2001, Clausen et al. 2001), the goal is to get back on track as

soon as possible at minimum cost and with minimum deviation from the original

schedule.

Long-term planning
-- Workforce design
-- Shifts
-- Days off

Weekly scheduling
-- Vacations, leave
-- Overtime
-- Part-timers
-- Task assignments

Real-time control
-- Emergencies
-- Daily activities
-- Sick leave
-- Overtime

Figure 1.1. Three Levels of Personnel Scheduling

 4

1.2 Components of Weekly Staff Scheduling

Several related problems surrounding the weekly staff scheduling are investigated in this

research, including weekly shift scheduling, task assignment, and staff scheduling with

workstation group (WSG) restrictions.

1.2.1 Weekly Shift Scheduling

Weekly shift scheduling needs to produce weekly schedules or tours for each employee

in the workforce. Three problems must be solved to construct tours. The base problem is

called the “shift-scheduling” problem. The objective of this problem is to find the optimal

crew-size and the optimal work schedule for every member of the crew. A shift is a set of

consecutive time periods within a workday and the shift length is the total amount of time

it covers. In this study, the work period of every employee is referred to as his shift and

the problem of finding the optimal work schedule is referred to as the problem of finding

the optimal shift lengths. The shift-scheduling problem starts by defining a set of shifts,

their start-times and their lengths, and then determines the number of employees that

should be assigned to each shift so as to satisfy the demand in each period.

The second part of the problem is named as the “days-off” problem. Every worker

needs to be given some days off in a workweek. The number of off-days or the

characteristics of these days (weekend days, weekdays or combinations thereof) varies

according to the organization and the type of industry in which it operates. The

organization needs to provide enough slack within its workforce throughout the week to

satisfy the off-day requirements that have been taken into account while determining the

optimal workforce size. The implicit modeling of the “days-off” problem is possible with

the addition of extra constraints.

 The third part of the problem is called the “breaks” problem. Almost every shift,

except those that are shorter than a specific length, deserves a lunch break. Labor

contracts determine the latest start time and the duration of this break. To assign lunch

breaks a break window, which is a set of possible periods for the break in every shift, is

first created and workers are provided with a lunch break within their break windows. In

 5

order not to use a worker in those periods in which he gets his break, there should be

enough capacity to cover for him. Therefore, the model has to provide the necessary

amount of slack, and also make sure that everybody is taking his break in the prescribed

window. This means that the “shift-scheduling” problem also must take the break

allowance into account while assigning employees to shifts. The implicit modeling of

break allowances for each employee is possible with the use of additional variables and

constraints. However, the additions to the model will only guarantee that there are a

sufficient number of idle periods for every worker, which can be assigned as breaks.

Determining who takes which period off is a separate assignment problem called the

“break assignment” problem.

1.2.2 Task Assignment

At the weekly level, it is also common to specify individual task assignments for each

shift in fixed time increments. In many industries this is an easy problem to solve

because workers spent the majority of their day in one location. When demand varies

from one time period to the next or when different products are assembled in a flexible

environment, it is necessary to reposition the workforce periodically to maximize the use

of both equipment and manpower. However, this presents two minor difficulties. First, it

is easier to supervise a stationary workforce than a mobile one, and second, it is

impossible to avoid the loss of some productivity due to travel time and the reorientation

that takes place after each move.

These issues give rise to what is called the task assignment problem (e.g., see

Ernst et al. 2004). The objective is to construct daily schedules for each member of the

workforce that minimize the weighted sum of transitions between WSGs while ensuring

that all demand is satisfied.

1.2.3 Workstation Group Restrictions

To match the layout of a facility or to ease the management of the workforce, constraints

are often placed on the movement of employees between different WSG even though the

 6

same skills are required at each. A WSG is usually associated with a certain location or

job activity and it is common to assign every employee a base WSG or home base where

they must spend the plurality of their time. Nevertheless, when the workforce is

homogeneous or when higher skilled employees can be downgraded to work at lower

skilled jobs, it is desirable to reassign them to other WSGs when idle time exists in their

schedules. Such movement may be subject to restrictions, though, as a result of, say,

physical distance or other special requirements. For example, it may be possible to

reposition an employee whose home base is WSG A to work in WSG B when he or she is

idle, but not in WSG C. The presence of these types of restrictions vastly complicates the

weekly staff scheduling problem.

1.3 Guide to This Dissertation

The contents of this dissertation are arranged as follows: Chapter 2 extensively reviews

the literature related with staff scheduling in general and the specific problems that were

the focus of this research. In the following three chapters, the details of the weekly shift

scheduling, task assignment, and weekly staff scheduling with WSG restrictions are

presented respectively, including the models, the solution approaches, and the

computational results. Since the workstation group restrictions are also present in long-

term staff planning, the long-term scheduling problem with workgroup restrictions is

investigated in Chapter 6. Chapter 7 summarizes the dissertation and suggests future

work. The problems discussed in the different chapters are related because all of them

were motivated by a staff scheduling project associated with USPS mail processing and

distribution centers. However, each of the problems has other independent applications,

so each of the chapters (Chapters 3-6) has its own set of notation and formulations.

 7

 Chapter 2

Literature Review

Typical issues in staff scheduling include days-off assignments, break

assignments, leave management, and the use of part-time and casual labor. Overtime

allocation and personal preferences are also management concerns. Variations of the

basic personnel scheduling problem include non-homogeneous workforce in terms of

skill, various labor requirements such as maximum work stretches, break definitions, off-

days and off weekend policies, as well as maximum and minimum workforce constraints,

start time regulations, and objective function definitions (e.g., see Nanda and Browne

1992). Although the literature on staff planning and scheduling is vast, most of research

has concentrated on the long-term problems associated with shift scheduling. Both exact

and heuristic methods have been developed for problems arising in such industries as

transportation, healthcare, and retail services. Ernst et al. (2004) provide a state-of-the-

art review.

2.1 Tour Scheduling Problem

In the last two decades, major breakthroughs in modeling and computation techniques

have led to more integrative methodologies for solving the tour scheduling problem. The

components of this problem include shift and days-off scheduling, break and task

assignments, and in some cases, overtime allocation and individual preference

considerations.

Burns and Carter (1985) were the first to provide a comprehensive solution to the

days-off assignment problem. They derived a set of lower bounds on the workforce size

that took into account days-off requirements as well as the requirement for A out of B

weekends off. Their results assumed a maximum work stretch of six consecutive days

for each employee. In related work, Alfares (1997) proposed an efficient algorithm for

assigning two consecutive days off to employees in tour scheduling problems. He first

 8

developed lower bounds on the workforce size and then introduced them as additional

constraints in a linear programming model. This was sufficient to ensure integer

solutions.

The implicit modeling of breaks was first proposed by Bechtold and Jacobs

(1990) who derived three constraints that collectively ensured feasible break assignments.

Aykin (1996) used a similar objective function for the shift scheduling problem,

extending the model to allow for multiple, rather than single, breaks and break windows.

His approach called for a new set of decision variables to represent every possible

combination of breaks. The resultant model was significantly smaller than its

predecessors.

Jarrah et al. (1994) were the first to address the days-off scheduling and shift

scheduling in a unified manner. They presented a new methodology for solving the large-

scale combined shift and days-off scheduling problem when the labor requirements span

less than 24 hours per day. They begin with an integer programming formulation and

then introduce a set of aggregate variables and related cuts. When the aggregate variables

are fixed the original problem decomposes into seven sub-problems (one for each day of

the week) that are much easier to solve. Solutions were obtained for problems with up to

1,400 integer variables and 1,500 constraints. The approach was further refined by Bard

et al. (2003).

Brusco and Jacobs (1998) presented a 2-stage solution procedure for the restricted

start time tour scheduling problem, which may be described as the determination of

appropriate subsets of shift starting times for full-time and part-time employees, as well

as the assignment of employees to tours associated with these starting times. To find

solutions, they developed a construction/improvement heuristic and a three-stage

procedure for reducing the density of the A-matrix. Computational experience was

presented for a large set of real-world problems that contained on the order of 1344 pure

integer variables, 192 binary variables, and 867 constraints.

Beaumont (1997) took a more expansive view and included worker availability,

the maximum number of workers who can start at the same time, the relative efficiency

 9

of a worker, the cost of making a customer wait, annual leave factors, the expected

number of jobs an employee can complete in each period, the number of contractors, and

the maximum number of jobs that can be done in each period, as parameters. His model

also permitted a limited amount of queueing of customers, but ultimately was too large to

be of practical value.

Berman et al. (1997) proposed a Markovian network model to determine

permanent workforce requirements and daily assignments in a high volume factory, while

simultaneously scheduling the flow of work. Because of the complicated nature of the

workplace and the variety of labor rules that had to be considered, they formulated the

problem as a linear program and used expected values as input. The primarily purpose of

the model was for long-term planning rather than schedule generation.

Looking at more advanced computational approaches, Brusco (1998) evaluated

the performance of dual all-integer cutting planes for solving the tour scheduling

problem. He showed that a cutting plane enhanced by an LP objective cut and a

sophisticated row selection rule improved solution times with respect to a commercial

branch and bound code.

With weekly scheduling in mind, McManus (1977) investigated how best to

allocate overtime in the British Post Office. His main goal was to identify the optimal

level of staffing for given fluctuations in daily demand. By making assumptions about

how the workload changes from day to day, he was able to derive a series of optimal

scheduling rules. The approach starts with an estimate of the daily workload distribution

for a given level of staffing and then determines the need for overtime. This research

significantly extends this approach by considering a mix of options for dealing with

periods of both high and low demand. In reality, it is necessary to take into account the

myriad rules and regulations that make standard shift scheduling methods intractable.

Berman and Larson (1993) introduced the idea of ‘just-in-time personnel’ when

trying to configure a workforce in an environment characterized by high absenteeism and

daily workload variability. A system that makes use of just-in-time personnel attempts to

meet its labor requirements at minimum cost by reducing both excess worker inventory

 10

and worker shortages. The analysis assumed three types of equally skilled workers: full-

timers, part-timers and on-call temporaries whose workload varied randomly according to

a normal distribution from day to day. Shortages due to random absenteeism were

managed with overtime and the use of temporaries. An algorithm specially tailored for

the problem was developed to find the optimal workforce composition.

Lewis et al. (1998) model an administrative office as a closed queuing network

and work towards the allocation of a given number of workers across tasks. The

allocation component of the problem was formulated as a nonlinear integer program with

the assumption that all tasks in the office are interdependent rather than independent or

serial. The proposed solution approach first identifies the bottleneck workstation and

then allocates workers optimally.

The literature on the midterm adjustment problem is more limited with most of

the work focusing on nurse and crew rostering (e.g., see Burke et al. 2004, Dawid et al.

2001). In a call center application, Caprara et al. (2003) developed a column generation

approach that relied on solving a simplified network subproblem to find feasible

schedules.

Others, such as Easton and Rossin (1997), have proposed similar models when

overtime is the only option for meeting spikes in demand. They argue that the increasing

per capita labor expenses have forced service sector employers to increase the use of

overtime and decrease the use of part-time labor. They evaluated the effects of alternative

overtime staffing and scheduling policies on critical performance measures, such as total

labor costs, labor utilization and workforce size, and found that even small amounts of

premium pay for overtime provided significant savings. An important conclusion was

that the ideal workforce size and proportion of overtime allocated for a given scheduling

policy seems to be relatively insensitive to changes in per capita labor costs.

2.2 Task Assignment Problem and WSG Restrictions

While much has been written on the classical assignment problem and its variants, little

research exists on the type of assignment problem addressed in this research. The task

 11

assignment problem can be viewed as a special case of the multidimensional assignment

problem. Early on, Pierskalla (1968) formulated the three-dimensional assignment

problem as an IP and solved it with branch and bound. More recently, Gilbert and

Hofstra (1988) categorized certain higher dimensional assignment models and showed

that the general class was NP-hard.

At the mid-term planning level, Mukherjee and Gilbert (1997) considered the

problem of scheduling instructors in executive development programs run by universities

and other institutions. They developed a 0-1 integer programming formulation but the

many restrictions and the dynamic nature of the environment led to an unsolvable model.

As an alternative, they developed four heuristics based on Lagrangian relaxation. Under

various conditions, each was shown to be fast, accurate and reasonably suitable for both

random and real problems that required the scheduling of up to 547 classes.

Applications of the assignment problem somewhat related to this work can be

found in the field of transportation. Hall and Lotspeich (1996), for example, present a

multi-commodity network flow model for lane assignment on an automated highway,

where the commodities represent trip destinations (i.e., exit onto ramps). A static

formulation was given that did not consider the time distribution of demand. Apart from

the normal network flow constraints, the model incorporated bundle constraints to

account for traffic that enters, exits and passes through each lane within a segment of the

highway. The objective was to maximize total flow, subject to a fixed origin/destination

pattern expressed on a proportional basis. Tests were conducted for highways with up to

80 segments, 20 destinations and 5 lanes.

Another generic problem that is closely related is the multi-period assignment

problem. Miller and Franz (1993) studied the problem of assigning medical residents to

training rotations and clinic stints. The objective was to maximize the residents’ schedule

preferences while meeting the hospital’s training goals. A decision support system was

designed to review naturally occurring infeasibilities due to the complexity of the

scheduling problem and to make decisions about altering conflicting constraints.

 12

Aronson (1986) developed a branch and bound algorithm for the multi-period

assignment problem by transforming it into a multi-commodity network flow problem.

His model included the cost of assigning a person to an activity in each time period as

well as the cost of transferring a person from one activity to another in successive time

periods. Arc capacities prohibited the assignment of an activity to more than one person

in each period while the pure minimum cost network flow structure limited the

assignment of a person to no more than one activity in each time period. An exact

algorithm was proposed to find solutions based on solving a relaxation of the multi-

commodity network flow problem obtained by eliminating the mutual capacity

constraints. The relaxation led to a series of shortest path subproblems whose solutions

were used to establish branching rules and to provide a lower bound on the original

objective function.

To the best of the author’s knowledge, there has been little if anything published

on the WSG restrictions problem. There has been some work, though, on cross-training

and the use of higher skilled workers to fill in for lower skilled workers when idle time

exists in their schedules (e.g., see Bard 2004a, Malhotra and Ritzman 1994, Misra et al.

2004).

Campbell and Diaby (2002) developed an assignment heuristic for allocating

cross-trained workers to multiple departments at the beginning of a shift. Each worker

had different qualifications with respect to each department. The problem was

formulated as a variant of the generalized assignment problem with a concave objective

function that measured department preferences. The authors present a comparison of their

linear approximation heuristic with a greedy approach and a Lagrangian heuristic.

With regard to postal operations, most of the existing research has centered on

tour construction. In an early study, Showalter et al. (1977) developed a simple building

heuristic aimed at specifying shift start times, work center assignments, and mail class

responsibility for each employee. Assignments were made subject to a number of

constraints, including days off requirements, work center capacities, mail arrival volumes,

and mail flow patterns through the system. For more recent work, see Bard et al. (2003),

 13

Berman et al. (1997), and Malhotra et al. (1992).

Despite the abundant research on the various components of staff scheduling,

most concentrated on long-term problems associated with tour scheduling. Models that

address weekly adjustment problem are very limited. In addition, WSG restrictions are

also absent in the literature. This research tries to incorporate this practical feature into

the general framework of weekly staff scheduling. Although models in this research are

based on P&DC operations, the results should be applicable to a wide range of

applications.

 14

Chapter 3

Weekly Shift Scheduling

In long-term staff planning, the goal is to find the optimal crew-size and the

optimal shift schedule while allowing for the days-off and break requirements. The

solution of this stage yields the minimum number of employees for each shift necessary

to satisfy the demand in each period of each day. The demand requirements assumed in

this model are representative of a typical weekly demand. In essence, long-term planning

is needed to fix the workforce levels. The demand data used for the long-term analysis

are really average values and are likely to vary from week-to-week and day-to-day.

Moreover, vacations, sick leave and other types of absenteeism reduce the size of the

regular workforce on a daily basis. Re-planning is necessary to accommodate more

accurate estimates of weekly demand and planned leave. To do this, the long-term model

must be modified to account for the available workforce and expected demand.

3.1. The Weekly Scheduling Model

The weekly scheduling problem is to develop a weekly staffing plan that makes the most

efficient use of the current workforce size augmented by the use of part-time flexibles,

casuals and overtime. To provide every worker with a descriptive schedule of his own,

this solution needs to be integrated with a post-processing algorithm to pick the periods

that would be taken as breaks for each employee. Attempts would also be made to

develop a pre-processing algorithm to handle leave.

3.1.1 Model Components

The workforce in a P&DC is composed of full-timer regulars (FTRs), part-time regulars

(PTRs), part-time flexibles (PTFs), and casuals (CAS). A regular employee has a

predetermined start time for every working day. Flexible employees and casuals are not

necessarily given a 5-day a week schedule, but are called in when needed. Nevertheless,

 15

the goal is to provide each PTF with at least a minimum number of hours per week in

order to promote job satisfaction and retention. Unlike casuals, PTRs and PTFs receive

benefits and are considered career employees. Generally speaking, all employees prefer a

constant start time from one day to the next, if for no other reason than fluctuating

schedules make it difficult to establish a stable personal regime.

A full-timer works 8½ consecutive hours, which includes a ½ hour allowance for

a lunch break (in reality, he is off the clock for the ½ lunch). A part-timer, on the other

hand, may be assigned one of a variety of possible shift lengths. Note that a shift is a set

of consecutive time periods within a workday and the shift length is the total amount of

time it covers. In this study, lengths from 4 to 12½ hours (including the lunch breaks

where applicable) are considered. All employees working more than 6 hours per day must

be given a ½ hour lunch break.

3.1.2 Notation and Formulation

At the weekly level, the goal is to derive schedules for each full-time and part-time

employee that minimize personnel costs subject to bid job assignments and contractual

agreements. For FTRs, overtime that can vary from 1 to 4 hours on a normal working

day and up to 8 hours on a day off. This is further discussed in the next subsection.

The notation used in the formulation of the model are presented below. The

extensive list of symbols is primarily due to the need to distinguish the various categories

of workers.

Indices

 d days of the week; d = 1,…,7

 t time periods during a day; t = 1,…,48

 k full-time regular, part-time regular and part-time flexible employees, k ∈ K

 s shifts associated with the regular workforce or part-time flexibles, s ∈ S(k,d); for

casuals, s = 1,…,nC

 16

Parameters
1
kdsc cost when employee k works shift s on day d (~$30/hr for a regular employee

and $25/hr for a flexible part-time employee)

2
kc penalty overtime hourly rate for regular employee k (twice the straight rate)

3
kc regular overtime hourly rate for part-time employee k (one-and-a-half the

straight rate)

4
kc penalty overtime hourly rate for part-time employee k (twice the straight rate)

5
sc cost for casual shift s (~$12/hr)

kdstH 1 if shift s on day d covers period t for employee k; 0 otherwise

stC 1 if casual shift type s covers period t; 0 otherwise

dtD demand for period t on day d

sl length of part-time shift s

kso amount of overtime associated with shift s for employee k

min
kPD minimum number of days per week that must be assigned to part-time worker k

(= 2 for PTFs)

max
kPD maximum number of days per week that can be assigned to part-time worker k

(= 6 for PTFs)

min
kPH minimum number of hours per week that must be assigned to part-time worker k

max
kPH maximum number of hours per week that can be assigned to part-time worker k

 e earliest period a break can begin for any of the permissible shifts

 q latest period a break can begin for any of the permissible shifts

 17

Sets

 K set of all employees, K=KF ∪ KP ∪ KL

 KF set of full-time regular employees

KP set of all part-time regular employees

 KL set of part-time flexible employees

W(k) set of days employee k is scheduled to work as defined by his or her bid job

 ()W k set of days employee k is off (complement of W(k))

()E d set of regular employees that are not scheduled to work on day d

S(k,d) set of shifts that employee k is permitted to work on day d

ˆ(,)S k d set of overtime shifts that employee k is permitted to work on day d

 krB { j : break window for regular shift j for employee k lies entirely between period r

and q}

C
rB { j : break window for casual shift j lies entirely between period r and q}

kr

F { j : break window for regular shift j for employee k lies entirely between periods e

and r}

C
rF { j : break window for casual shift j lies entirely between periods e and r}

 kdT set of shifts that regular employee k is permitted to work on day d that require a

break

 CT set of casual shift types that require a break

 M set of initial periods of the break windows, in ascending order

 N set of final periods of the break windows, in ascending order

Decision variables

kdsx (binary) 1 if employee k works shift s on day d; 0 otherwise

 18

dsν number of casual shifts of type s required on day d

dtβ total number of breaks initiated in period t on day d

 kdγ amount of penalty overtime (double time) worked by employee k on day off d

 kdδ (binary) 1 if d is the first off day for employee k; 0 if d is the second day off

 kµ number of hours that part-time employee k works in a week that exceeds 40 but

occurs during the first 8 hours of a shift

 kτ number of hours that part-time employee k works in a week that exceeds 56 but

occurs during the first 10 hours of a shift

Model

 Minimize
7 7

1 2 3

1 (,) 1 () P L
kds kds k kd k k

d k K s S k d d k E d k K K

z c x c cγ µ
= ∈ ∈ = ∈ ∈ ∪

= + +∑∑ ∑ ∑ ∑ ∑

7

4 5

1 1

C

P L

n

k k s ds
d sk K K

c cτ ν
= =∈ ∪

+ +∑ ∑∑ (3-1a)

 subject to

 , 1, , 48 , 1, , 48 1,
(, 1) (,) 1

Cn

k d s t k d s kdst kds s t d s
k K s S k d k K s S k d s

H x H x C ν− + − + −
∈ ∈ − ∈ ∈ =

+ +∑ ∑ ∑ ∑ ∑

 1, 48
1

 ,
Cn

st ds d t dt dt
s

C Dν β β− +
=

+ − − ≥∑ d = 1,…,7; t = 1,…,48 (3-1b)

 0
C

rkr

r

dt kds ds
t e k K s F s F

xβ ν
= ∈ ∈ ∈

− − ≥∑ ∑ ∑ ∑ , Nr ∈∀ ; d = 1,…,7 (3-1c)

 0
C
rkr

q

dt kds ds
t r k K s B s B

xβ ν
= ∈ ∈ ∈

− − ≥∑ ∑ ∑ ∑ , Mr ∈∀ ; d = 1,…,7 (3-1d)

 0
C

kd

q

kds ds dt
k K t es T s T

x ν β
∈ =∈ ∈

+ − =∑ ∑ ∑ ∑ , d = 1,…,7 (3-1e)

(,)

1kds
s S k d

x
∈

=∑ , k ∈ KF ∪ KP; d ∈ W(k) (3-1f)

 19

(,)

1kds
s S k d

x
∈

≤∑ , k ∈ KL; d = 1,…,7 or k ∈ KF ∪ KP; d ∈ ()W k (3-1g)

 min
kPD

7

1 (,)
kds

d s S k d
x

= ∈

≤ ≤∑ ∑ max
kPD , k ∈ KP ∪ KL (3-1h)

 min
kPH

7

1 (,)
s kds

d s S k d
l x

= ∈

≤ ≤∑ ∑ max
kPH , k ∈ KP ∪ KL (3-1i)

 }1,0{∈kdsx , 0dsν ≥ and integer, 0kdγ ≥ and integer,

 kµ ≥ 0, 0dtβ ≥ , , , ,k d s t∀ (3-1j)

The objective function (3-1a) minimizes the total weekly cost of the existing

workforce. For FTRs and PTRs, the cost coefficient 1
kdsc is a function of the particular

employee k, the day of the week d, whether or not d is a day off, and the shift s worked.

The definition of the set S(k,d) allows for straight and overtime shifts, each with

appropriate costs. Permissible shifts for regular employee k depend on whether he is

scheduled to work on day d, and are determined from his bid job. Time-and-a-half is

paid for the first two hours of overtime and double time is paid for the second two hours

on a scheduled day. Similarly, PTFs can work shifts of various lengths, but because a

shift is not associate with a particular day, only the cost of part-time shift s for employee

k, 1
kdsc , must be specified. To simplify the formulation, 1

kdsc is still used for part-time

shifts even though it is not a function of the day d.

The second term in the objective function adds penalty overtime for FTR shifts

assigned on off days. The rule is that all hours worked above 8 on the first day off as

well as all hours worked on the second day off are paid at twice the normal rate. The

variable γkd captures the amount of overtime that is entitled to double pay. The

constraints needed to enforce this rule are discussed below.

The overtime rules for PTRs and PTFs are slightly different because these

employees are not required to have 2 days off every week. In addition to the general

requirement that all hours worked in a day that exceed 8 be counted as overtime, it is also

 20

required that all hours worked in a week that are above 40 be counted as overtime, and all

hours that are above 56 be counted as penalty overtime. The first requirement is included

in the definition of the cost coefficient 1
kdsc . To account for the second, it is necessary to

introduce the variable µk, which is defined as the cumulative number of non-overtime

hours that exceed 40 hours in a week, and τk, which is defined as the cumulative number

of non-penalty hours that exceed 56 hours in a week. For an FTR, µk and τk are always 0

but they can be positive for part-time employees. The third and fourth terms in the

objective function represent the cost of these overtime hours.

When the weekly demand is much higher than the demand used by SOS to

determine the optimal workforce size, shortages may exist. In this case, casuals are hired

to fill in. The last term in the objective function is the total cost associated with the use

of casual shifts to cover the excess demand.

Regarding the constraints, (3-1b) assures that the net workforce is sufficient to

cover the demand for each period, each day of the week. The net workforce is the total

number of part-time and full-time employees whose shift definitions cover a specific

period t, less those who have a break during period t or t + 48 if the shift started on the

previous day. The 0-1 matrices (H and C) filter out employees and shifts that do not

cover the period under consideration. Because some shifts will actually spill over to the

next day, it is necessary to adjust the indexing scheme so that it goes beyond 48 periods.

A corresponding number of additional break variables, ,dtβ are required to implement this

approach. If τ is the last period in a break window of an 8½-hour shift, then ,dtβ ≡ 0 for t

> 47 + τ.

To account for breaks, in fact, three more constraints are needed. The first, (3-1c),

is referred to as the forward pass constraint by Bechtold and Jacobs (1990). It assures

that the total number of breaks initiated from period e up to a given period r exceeds the

total number of employees who should have taken their breaks by that period. The

employees included in the constraint are those whose break windows are fully covered

through r, but not the ones who have the option of a break in some future period.

 21

The second constraint (3-1d) is referred to as the backward pass constraint and

ensures that the total number of breaks that are initiated from some specific period r

through the end of the day (or until the last period that can be taken as a break, which is

period q) exceeds the number of employees who are entitled to a break during this

interval. In other words, there should be sufficient breaks in the future to satisfy the

break requirement for the rest of the day.

These two constraints are needed to provide every employee with a 1-period

break, but they are not sufficient to enforce the requirement that exactly one break be

assigned to each shift entitled to one. Furthermore, they do not limit the break

assignments to their respective ranges. Constraint (3-1e), which is known as the balance

equation, is needed to ensure that every shift is assigned a break and that it is within its

permitted window. To allow for spillover from one day to the next, it is necessary to

allow the elements in the sets M and N to extend beyond period 48.

The set S(k,d) contains all the shifts that employee k is permitted to work on day d.

When employee k is either a FTR or a PTR, he would ordinarily work the shift associated

with his bid job. To allow for overtime, if d is one of the 5 scheduled work days, S(k,d)

would include shifts that extend the assigned shift up to, say, 4 hours. If d is an off day,

S(k,d) might include a range of shifts with different lengths and start times. To further

increase the options, earlier start time than specified by the bid job are considered. At the

USPS, the union contract allows a shift to start 4 hours earlier than normal provided that

overtime is paid for the additional hours. Including all possibilities greatly increases the

size of S(k,d).

With this in mind, constraint (3-1f) ensures that one and only one shift is assigned

to regular employee k each day of the week while constraint (3-1g) ensures that each PTF

is given at most one shift per day, and the same for regular employees on their off-days.

The next two inequalities, (3-1h) and (3-1i), limit the weekly schedule for part-time

employee k to at most max
kPD days and max

kPH hours, respectively. Lower bounds can

also be placed on days and hours worked per week.

 22

The model does not guarantee that each PTF will be given a 5- or 6-day a week

schedule. In fact, when volume is low, some PTFs may be given a light schedule or

maybe not even be called in at all during the week. In general, the number of variables

required to account for PTFs and CAS is much greater than the number for the regular

workforce because there are many more part-time shift options. This number increases

by a factor of four when overtime shifts are considered.

Variable restrictions are given in (3-1j). Note that βdt will be integral in an

optimal solution so it is not necessary to impose this requirement explicitly.

3.1.3 Overtime Constraints

Rules for assigning overtime are somewhat complicated but, in general, the USPS limits

it to no more than 6% of the total hours worked by career employees. The 6% does not

refer to a maximum in any week but to an annual average. Nevertheless, this value is

used as the default in computations.

 To model regular and penalty overtime, let OTXk be the maximum number of

overtime hours permitted per week for employee k (= 20), let ODXk be the maximum

number of scheduled days of overtime for employee k (= 4), let OTratio be the fraction of

the total hours worked that can be overtime (= 0.06), let qs be the number of regular hours

associated with shift s, i.e., qs = ls if ls ≤ 8, otherwise qs = 8, and let ps be the number of

non-penalty hours associated with shift s, i.e., ps = ls if ls ≤ 10, otherwise qs = 10. The

following constraints need to be added to the model.

7

ˆ1 (,)
ks kds k

d s S k d

o x µ
= ∈

+ ≤∑ ∑ OTXk , k ∈ K (3-1k)

7

1 (,)
 40k s kds

d s S k d
q xµ

= ∈

≥ −∑ ∑ , k ∈ KP ∪ KL (3-1l)

7

1 (,)
 56k s kds

d s S k d
p xτ

= ∈

≥ −∑ ∑ , k ∈ KP ∪ KL (3-1m)

ˆ() (,)

kds
d W k s S k d

x
∈ ∈

≤∑ ∑ ODXk , k ∈ K (3-1n)

 23

7 7

ratio
ˆ1 1 (,)(,) P L R

ks kds k s kds
k K d d s S k ds S k d k K K k K

o x OT l xµ
∈ = = ∈∈ ∈ ∩ ∈

+ ≤∑ ∑ ∑ ∑ ∑ ∑ ∑ (3-1o)

ˆ (,)

8ks kds kd kd
s S k d

o x γ δ
∈

≤ +∑ , d ∈  ()W k k ∈ KF (3-1p)

()

1kd
d W k

δ
∈

≤∑ , k ∈ KF (3-1q)

kdδ ∈ {0, 1}, d ∈  ()W k k ∈ KF (3-1r)

An upper bound on weekly overtime for each employee is enforced by constraint

(3-1k). Constraint (3-1l) counts the additional overtime hours, kµ , for each part-time

employee k. If PTF k works 7-hour shifts for 6 days, for example, then 2kµ = .

Similarly, Constraint (3-1m) counts the additional penalty overtime hours, τk, for each

part-time employee k. At the USPS, there is an upper bound on the number of days that

an employee can work overtime in a week. This is taken into account by constraint (3-

1n). Constraint (3-1o) ensures that the percentage of overtime hours with respect to the

total scheduled hours associated with the regular workforce does not exceed the limit

denoted by OTratio. Finally, constraints (3-1p) and (3-1q) determine which of the two

days off for FTR employee k, if either, should be considered the first day and which

should be considered the second day from the point of view of minimizing penalty

overtime. The binary variable δkd along with constraint (3-1r) are used to determine these

designations. Because kµ and kτ will always be integral in an optimal solution, they can

be treated as continuous.

What is missing from the formulation is a constraint on the use of casuals. In

general, the USPS limits the number of casuals to no more than 5.9% of the total

workforce over the year, excluding the December holiday season. Rather than trying to

include a surrogate for such a constraint in the model, it is accommodated by setting the

cost coefficient 5
sc to an arbitrarily large value ($40/hour).

 24

3.2. Solution Methodology

Model (3-1) is a large-scale mixed-integer linear program (MILP) whose degree of

difficulty depends mainly on the number of career employees, the shift definitions, the

length of the planning horizon, and the number of time periods per day. For problems as

complex as staff scheduling at P&DCs, it is rare that all factors can be included in a

single model. In this case, once a solution is found to the MILP, individual weekly

schedules must be constructed. This means assigning breaks to each shift more than 6

hours in length. For casuals, this also means combining shifts into 1- to 6-day tours.

Lastly, each worker must be given a set of tasks to perform during each ½-period he or

she is enrolled in a shift. In some case, one or more persons may be idle for a number of

periods.

The components of the methodology are depicted in Fig. 3.1. The procedures

used at each step are discussed below.

3.2.1 Solving the MILP

Initial attempts to solve model (3-1) with CPLEX were mostly successful except for

those cases in which a large number of casuals were required and the actual demand

differed sharply from the demand used to derive the permanent workforce. Success was

judged by convergence to within 1% of optimality prior to reaching a 1-hour time limit.

To deal with the difficult cases, a “target” solution strategy was developed, which

involves constructing a feasible solution from the linear programming relaxation solution.

This is done by defining an optimization problem whose objective is to minimize the sum

of the absolute deviations of the integer component of the solution from a target solution

given by the LP relaxation. Loosely speaking, the objective is to find a feasible solution

as “close” as possible to the LP solution.

Target solutions have been used mostly in nonlinear programming to find good

starting points (e.g., see Cai et al. 2001). With regard to integer programming, their use

is believed to create an asymmetry in the problem structure that helps reduce the size of

 25

the branch and bound tree but there have been few studies to support this. The algorithm

follows.

Figure 3.1. Computational Steps in Solution Methodology

Target_Heuristic

Input: Permanent workforce composition and days-off schedule; demand requirements

for each ½-hour period in the week; ε arbitrarily small positive number.

Output: Shift assignments for full-time, part-time, and casual employees, including

overtime allocations for full-timers.

Step 1: Solve the LP relaxation of the original problem (3-1). Denote the solution by
LP
kdsX = (), , , , , ,LP LP LP LP LP LP LP

kds dt ds kd kd k kx vβ γ δ µ τ for all k, d, s.

Step 2: Solve the following MILP.

Model
(Java)

Workforce
complement

Equipment
schedule

CPLEX

Optimization
engine

FT & PT
shifts and
overtime

Days-off
Scheduling
for casuals

Weekly
schedules

Daily
tasks

Break
assignments

Report
generation

Post-processing

 26

 Minimize z =
7

1
kds

d k K s S= ∈ ∈
∑ ∑ ∑ ∆ +

7 7
1 2

1 (,) 1 ()
kds kds k kd

d k K s S k d d k E d
c x cε γ

= ∈ ∈ = ∈


+


∑ ∑ ∑ ∑ ∑

7

3 4 5

1 1

Cn

k k k k s ds
d s

c c cµ τ ν
= =


+ + + 


∑ ∑ ∑∑ (3-2a)

subject to (3-1b) – (3-1o) and

 LP
kds kds kdsx X X≥ −∆ k ∈ K; d = 1,…,7; s ∈ S (3-2b)

 LP
kds kds kdsX X≥ −∆ k ∈ K; d = 1,…,7; s ∈ S (3-2c)

 0kds ≥∆ k ∈ K; d = 1,…,7; s ∈ S (3-2d)

where S is the set of all possible shifts that may be worked by at least one

employee. Note that , and LP
kds kds kdsX X∆ are 7-component vectors and really

should be written out component-wise in (3-2).

Constraints (3-2b) and (3-2c) together define LP kds kds kdsX X= −∆ , the L1-norm.

The objective (3-2a) is to minimize a combination of the deviations (term 1) and the

original objective function (term 2). As in goal programming, term 1 serves as the

primary objective function and term 2 as the secondary objective, which is designed to

restrict the current search to a neighborhood of the solution to model (3-1). Test results

are reported in the next section for model (3-2) as well as two other schemes. In

particular, setting the target in (3-2a) to the nearest integer LP
kdsX   is also tried, as well as

solving the original problem with only the casual variables relaxed and using the resultant

values as the target.

3.2.2 Break Assignments

Each shift longer than 6 hours is ensured a break within its prespecified break window by

Eqs. (3-1c) – (3-1e), but the actual period during which the break occurs is not specified

by the solution. There is a 5-period window centered in the middle of the shift. The

assignment of a break to a period is essentially a transportation problem so a bi-partite

 27

network can be used as a post-processor. In fact, all that is really needed is a feasible

solution since no priorities are given for any of the periods with respect to a shift. Thus

all arcs in the network have the same cost and bounds, implying that the objective

function is constant.

Rather than set up a transportation model to solve the problem, a simple greedy

heuristic was used. The first step is to array the breaks and shifts in ascending order. For

the first break in the array, all eligible shifts are identified along with the latest period in

their break window that is eligible. If possible, the assignment is made to the shift whose

latest eligible period is the last period in its break window. Ties are broken arbitrarily,

and if it is not possible to make the assignment to the last period of any shift, the next to

last period is considered, and so on. The process is repeated until all breaks are assigned.

The forward and backward equations, (3-1c) and (3-1d), guarantee the feasibility of this

approach.

3.2.3 Days-off and Weekly Scheduling

In its current form, model (3-1) does not have sufficient constraints to guarantee that each

casual can be given a weekly schedule with 5 working days and 2 days off. If this is

desirable, constraints of the following form must be added to the formulation.

7

1
5

1
s ds

d
vθ

=

≥ ∑ , s = 1,…,nC (3-3a)

 s dsvθ ≥ , s = 1,…,nC; d = 1,...,7 (3-3b)

Here, the integer variable θs is the number of casuals who work shift s during the week.

For a given s, Eq. (3-3a) says that the number of shifts in a week must be less than or

equal to 5 times the number of casuals who work that shift. Eq. (3-3b) says that the

number of casuals must be greater than or equal to the number of shifts scheduled for any

day d. The Burns-Carter (1985) algorithm is used to construct the weekly schedules with

vds as the demand on day d. In practice, however, (3-3a) – (3-3b) are too restrictive, and

must be relaxed to allow the start time of a casual to vary from one day to the next. This

 28

is further discussed by Bard et al. (2003) as are the constraints needed to guarantee each

worker two days off in a row, if this is a requirement.

For this research, a heuristic is used to string together shifts to form a 5- or 6-day

schedule of 39 hours or less. The only restriction is that the start times of a casual’s daily

shifts fall within a 6-hour time band. In the heuristic, the casual shifts are grouped by

time band and arrayed in nondecreasing order of their start time. The first available shift

on day 1 is selected. On each subsequent day, the next available shift is selected until a

5-day schedule is obtained. If no shifts remain on a particular day, the next day will be

searched until one can be found.

3.2.4 Daily Task Assignments

The demand requirements specified by the parameter Ddt in Eq. (3-1b) represent an

aggregation of demand on day d for time period t. In a P&DC, clerks fall into one of

several categories, the most prevalent being automation. A clerk working in automation

can run MLOCRs, BCSs, or perform manual casing. The post-processing problem is to

assign each employee a series of tasks in ½-hour increments so that the number of

transitions from one machine group to another is minimized over a shift. By constructing

a network in which each node represents a time period - machine group combination with

demand Ddt, it is possible to formulate the problem as variant of a minimum cost, multi-

commodity network flow program, where each worker is a separate commodity. The

inputs to the problem are the weekly schedules including breaks and days off, and the

daily demand by period and machine group. The output is a period-by-period machine

group assignment for each worker. The detail of the task assignment problem will be

discussed further in next chapter.

3.3. Experimental Design and Analysis

A series of tests was performed to determine the tractability of the weekly scheduling

model (3-1) and the effectiveness of the target heuristic (3-2a) – (3-2d). The main

purpose is to evaluate the computational effort involved in finding high quality solutions

 29

and the cost implications associated with seasonal fluctuations in demand. All input data

were provided by the Dallas P&DC.

The first group of tests was designed to check the response of the model when the

permanent workforce was fixed and the demand was varied from 85% to 125% of the

baseline. The second group of tests was intended to evaluate the target heuristic. Several

different options were compared. The third group was aimed at assessing the impact of

leave on system performance, as measured by overtime hours, number of casuals, and

total cost. In this analysis, the permanent workforce was reduced in 5% increments

starting with the baseline and ending with a 20% reduction.

Before running the model it was necessary to determine the size and composition

of the permanent workforce. This was done by running the long-term planning model

now being used by the USPS called the scheduling optimization system (SOS). For an

average week, SOS takes the demand for labor by workstation as input and determines

the optimal mix of FTRs, PTRs, and PTFS along with bid jobs for all FTRs and PTRs,

and nominal schedules for PTFs. It does not consider the use of casuals or overtime.

In each scenario investigated, SOS was first run with the following parameter

settings: no requirement for consecutive days off, a 6-hour start time window for each

FTR tour, a lunch break for all shifts greater than 6 hours, FT/PT ratio ≥ 4, a 6-hour start

time window for all PTF shifts (one every ½ hour), no option for the use of PTRs, and no

overtime or casuals. In the first set of experiments, the staffing demand was generated

with a complementary system known as the equipment scheduling optimizer (ESO)

developed by Zhang and Bard (2005). Using P&DC volume arrival profiles and end-of-

run reports for a typical week, EOS produces equipment schedules and staffing

requirements in ½-increment by skill category. In general, workers are classified as

either mail processors or mail handlers, and each subgroup is scheduled separately. This

analysis focused primarily on the P5-MPCs who are mainly responsible for running the

automation equipment; i.e., various types of bar-code sorters and optical character

readers. The mail processors in this category form one of the largest subgroups in a

facility.

 30

 Table 3.1 identifies the seven scenarios used to evaluate changes in demand. The

first four were derived using a two-step process. First, a baseline was determined by

running SOS to fix the composition of the permanent workforce in terms of FTRs and

PTFs. Second, the weekly scheduling optimization system (hereafter referred to as

WSO) was run for each of the four different levels of demand shown in the third column

of the table. These values are expressed as a percentage of the baseline defined by

scenario 2. Scenarios 5, 6 and 7 reflect the staffing levels determined by SOS for the

corresponding demand requirements, similarly given in the third column. Scenario 2 is

repeated after Scenario 5 for ease of reference. To generate the demand data, the mail

volume arrival profiles were modified by the appropriate percentages and then ESO was

run. The last two columns in the table give the size of the permanent workforce for each

scenario.

Table 3.1. Model Size for First Group of Tests for Skill Category P5-MPC

Scenario
Staff

(SOS)
Demand
(ESO)

No. of
variables

No. of
constraints

Density of
A-matrix

No. of
FTR

No. of
PTF

Fixed workforce size
1 100% 85% 57,895 2861 1.72% 120 30
2 100% 100% 57,895 2861 1.72% 120 30
3 100% 115% 57,895 2861 1.72% 120 30
4 100% 125% 57,895 2861 1.72% 120 30

Variable workforce size
5 85% 85% 53,515 2738 1.79% 112 27
2 100% 100% 57,895 2861 1.72% 120 30
6 115% 115% 61,519 2975 1.67% 128 32
7 125% 125% 68,767 3195 1.57% 144 36

All computations were performed on a PC with a P-4 2.4G CPU, 512mb memory,

running Windows XP. The implementation was done in Java SDK 1.3, which calls

CPLEX 8.1 to solve the integer programs (see Appendix A for a description of the

interface). Concert Technology was used to set up the model.

For FTR k, the set S(k,d) consisted of the nine shifts associated with his bid job,

while the set ˆ(,)S k d included eight overtime shifts of length 9, 9½ , 10, …,12½ hours

 31

each day d ∈ W(k). For PTF k, S(k,d) consisted of 10 shift types of length 4, 4½, 5, 5½,

6, 6½, 7, 7½, 8 and 8½ hours, each with twelve different starting times set a half hour

apart. Identical shifts were included in the set S(k,d) on each day d. The start time of the

first shift was set to the earliest start time of all the shifts assigned to PTF k by the long-

term scheduler, SOS. The twelve starting times correspond to a 6-hour band. Average

wage rates for the P5-MPCs at the Dallas facility were used to compute the cost

coefficients for the FTRs and PTFs; the cost coefficients for the casuals were based on an

hourly rate slightly above that of penalty overtime to ensure that overtime and PTF hours

are used before casual hours. Finally, all PTFs were given at least 2 days per week, and

between 10 and 39 hours.

3.3.1 Analysis of First Set of Experiments – Benefit of Weekly Adjustments

Tables 3.2a and 3.2b report the scheduling results for the first set of experiments. The

second column in Table 3.2a gives the costs produced by WSO, while the third column

gives the percentage increase or decrease with respect to the baseline, scenario 2. The

fourth column lists the costs produced by SOS for those scenarios where it was possible

to perform the computations. Recall that SOS is used to generate the optimal workforce

for a given level of demand. In scenario 1, 3 and 4, the workforce was fixed at the level

obtained by SOS for 100% demand so there is no output to report in column 4. In all

cases, the values listed represent the ‘true’ costs based on a rate of $12/hr for casuals

rather than the exaggerated rate, which, as mentioned is used in the model to ensure that

casuals are called in only after all other options are exhausted.

Because the SOS solution is always feasible to model (3-1), the slight

improvement evidenced by WSO was expected and serves to verify, in part, that the

computations are being performed correctly. For the first scenario, the limited amount of

overtime used (12 hours) replaces several part-time shifts. No penalty overtime or casual

hours are used in either the first or second scenario. The large number of total idle hours

is due to a combination of the 15% reduction in demand, the inability to change the bid

jobs, and the requirement to give each PTF the minimum of either 2 days or 10 hours of

 32

work a week. Idle time increases a bit in scenarios 3 and 4 because more workers are

required to meet the increased demand. Idle rates shown in Table 3.2b remain about the

same. Although it would be more efficient to first meet some of the increased demand

with casual hours rather than overtime or PTF hours, the cost structure does not permit

this.

Table 3.2a. Basic Staffing Results for First Group of Tests for Skill Category P5-MPC

Scenario
True weekly

cost

Percent
w.r.t.

baseline

Weekly
cost

(SOS)

Total
regular
FTR
hours

Total
PTF

hours

Total
regular

overtime
hours

Total
penalty

overtime
hours

Total
casual
hours

Total
idle

hours
Fixed workforce size

1 $149,193 97.6% -- 4800 567.5 11.5 0.5 0.0 1074.5
2 $152,888 100.0% $153,609 4800 749.0 0.0 0.0 0.0 554.0
3 $174,697 114.3% -- 4800 873.5 303.5 28.5 46.5 589.0
4 $183,509 120.0% -- 4800 923.5 297.5 65.0 552.5 576.5

Variable workforce size
5 $140,054 91.6% $141,780 4480 584.5 2.0 0.0 0.0 761.5
2 $152,888 100.0% $153,609 4800 749.0 0.0 0.0 0.0 554.0
6 $164,092 107.3% $164,788 5120 823.5 7.5 0.0 0.0 488.0
7 $183,476 120.0% $184,311 5760 870.0 12.5 0.0 0.0 580.5

Table 3.2b. Normalized Staffing Results for First Group of Tests

for Skill Category P5-MPC

Scenario

Average
PTF
hours

Average
regular

overtime
hours

Average
penalty

overtime
hours

Average
idle

hours
Overtime

usage
Casual
usage

Idle rate
(WSO)

Idle rate
(SOS)

Fixed workforce size
1 18.92 0.10 0.00 7.16 0.22% 0.00% 19.97% --
2 24.97 0.00 0.00 3.69 0.00% 0.00% 9.98% 10.50%
3 29.12 2.53 0.24 3.66 5.49% 0.77% 9.73% --
4 30.78 2.48 0.54 2.10 5.46% 8.32% 8.68% --

Variable workforce size
5 21.65 0.02 0.00 5.48 0.04% 0.00% 15.03% 16.30%
2 24.97 0.00 0.00 3.69 0.00% 0.00% 9.98% 10.50%
6 25.73 0.06 0.00 3.05 0.13% 0.00% 8.20% 8.80%
7 24.17 0.09 0.00 3.23 0.19% 0.00% 8.74% 9.40%

 33

Scenarios 5, 6, and 7 indicate the benefits of being able to adjust the permanent

workforce on a weekly basis as the demand changes. Comparing scenarios 1 and 5, for

example, it can be seen from Table 3.1 that the optimal complement of FTRs and PTFs is

112 and 27, respectively, for a 15% decrease in demand. From the data in Table 3.2a, it

is observed that the corresponding cost savings is $9149 or 6.13% per week. Similar

results were obtained when the demand was increased by 15%, but the cost saving

became very small when the increase was 25%. In this case, there were much more

casual hours, which is relatively cheap, in scenario 4 used to satisfy the additional

demand, while in scenario 7, more FTRs and PTFs were used. As expected, no penalty

overtime and no casuals are used in scenarios 5, 6 and 7; the small amount of regular

overtime appearing in the solution replaces a few part-time shifts.

If few or no casuals are used when the staffing level is fixed, as is the case in

scenarios 1 and 3, the costs are always higher than when the staffing level is allowed to

vary to better match the demand. As soon as the number of casual hours becomes more

than a few percentage points of the total, however, a fixed workforce size produces about

the same cost. This can be seen by comparing scenarios 4 and 7.

Table 3.2b gives a slightly different perspective of the results. Comparing the

first four scenarios, it is obvious that when demand is low, part-timers are assigned fewer

hours than in the long-term schedule (18.92 hr vs. 24.97 hr on average), and when

demand goes up, part-timers are assigned more and more work until the 39-hour limit is

reached. The percentage of workers who are actually assigned 39 hours is 0, 0, 6.7%,

and 30%, respectively. For scenarios 3 and especially 4, the use of regular overtime,

penalty overtime, and casual hours becomes significant. The 6% overtime limit is almost

reached in both cases. The number of penalty hours, however, is always very small

because of the 6% limit on total overtime hours does not provide much opportunity for

double overtime.

Table 3.3 presents the computational results for the first set of experiments. A 10-

minute time limit was placed on all runs, but the program was halted if a 1% optimality

gap was reached before then. In all cases, CPLEX’s default settings were used except

 34

that the MIP emphasis was set to ‘feasibility’ and the frequency of heuristic was set to

once per 15 nodes. The solution times listed were obtained from calls to the internal

clock of the PC by the Java code. Although CPU times would have been preferable,

CPLEX does not have a system call for this purpose.

In Table 3.3, the ‘IP solution’ column lists the actual objective values obtained

from CPLEX when the exaggerated costs were used for the casual wage rate. The ‘IP –

LP gap’ column reports the percentage gap between the IP solution and the LP solution

found at the first node of the branch and bound tree. In general, this gap is extremely

small, implying that the LP relaxation is tight. This partially explains why problems of

such size can be solved so quickly.

Table 3.3. Computational Results of First Group of Tests

Scenario IP solution

Solution
time
(sec)

Node
best

solution
found†

LP
solution

LP
solution

time
(sec)

IP – LP
gap

Optimality
gap

Fixed workforce size
1 $149,193 20.1 0 $148,221 6.3 0.65% 0.65%
2 $152,888 37.0 60 $152,683 4.7 0.13% 0.13%
3 $177,858 143.5 330 $176,180 9.4 0.94% 0.94%
4 $221,079 219.2 345 $219,174 33.5 0.86% 0.86%

Variable workforce size
5 $140,054 21.4 0 $139,797 4.5 0.18% 0.18%
2 $152,888 37.0 60 $152,683 4.7 0.13% 0.13%
6 $164,092 37.0 0 $163,770 12.9 0.20% 0.20%
7 $183,476 32.6 0 $183,211 15.6 0.14% 0.14%

† In each case, the solution was found by CPLEX’s heuristic; node 0 is the root
node in the search tree.

In four of the seven scenarios, the optimal solution was found at the first node of

the tree, and in all cases, it was the optimum (within the 1% tolerance). In fact, all

feasible solutions were uncovered with CPLEX’s heuristic using a frequency setting of

once per 15 nodes, and somewhat surprisingly, were always within the 1% optimality

gap. This is shown in the last column of the table. The reason why the last two columns

 35

differ slightly is because after solving the LP relaxation, CPLEX adds cuts at node 0 and

then re-solves the augmented problem. In general, the lower bound increases due to the

cuts, but the resultant solution is rarely if ever integral. At this point, the heuristic is

called in an attempt to find a feasible solution. As an example, 14 GUB cover cuts, 17

cover cuts, and 19 Gomory fractional cuts were added at node 0 for scenario 1.

3.3.2 Comparative Results for Target Heuristic

The IP-LP gap reported in Table 3.3 indicates that the LP bound is very tight. A closer

examination of the raw output data revealed that while the number of integer variables

(after CPLEX presolve) in each problem instance is more 50,000, the number of variables

with a fractional value in an LP solution is always under 500. This suggests that there

may be many very good integral solutions within the neighborhood of the LP solution

and offers an explanation why in some cases (i.e., when the workforce is varied to match

the change in demand, as in scenarios 5, 6, 7) optimal solutions are found by CPLEX’s

heuristic at the first node. When the workforce remains fixed and the demand changes,

however, it becomes much harder for the heuristic to find feasible solutions so more time

is needed for convergence. This has motivated the development of an optimization-based

heuristic aimed at reducing the computational effort by trying to find a good feasible

solution in the neighborhood of the LP solution. As mentioned, three slightly different

approaches have been investigated.

Method 1: First solve the LP relaxation. Then, using the fractional solution as a target,

minimize the sum of the deviations of the IP solution from the LP solution.

Method 2: Instead of using the LP solution as the target, round each variable in the LP

solution to the nearest integer, and use this integer solution as the target in the

second step.

Method 3: Relax the integrality constraints for the shift variables, dsν , corresponding

to casual workers, solve the resulting mixed-integer linear program, and then use

the solution of the relaxation as the target in second step.

 36

To gauge performance, the three methods were used to solve the problems

associated with scenarios 1 – 4. Table 3.4a lists the objective function values and

solution times found by CPLEX using a 1% optimality gap as the stopping criterion. The

last two columns report the results for the first feasible solution found in the process. The

percentage under each entry is the ratio of that number to the corresponding number in

the ‘Optimal solution’ column.

Table 3.4a. CPLEX Results

Optimal solution
First feasible

integer solution

 Scenario
Objective

value
Solution

time (sec)
Objective

value
Solution

time (sec)
$149,193 20 $149,193 20 1

-- -- 100.00% 100.00%
$152,888 37 $154,844 25 2 -- -- 101.28% 66.16%
$177,858 144 $180,809 135 3 -- -- 101.66% 94.18%
$221,079 219 $226,059 62 4 -- -- 102.25% 28.24%

Table 3.4b. Solutions with Approximation Methods

Method 1 Method 2 Method 3

Scenario
Objective

value
Solution

time (sec)
Objective

value
Solution

time (sec)
Objective

value
Solution

time (sec)
$149,169 45 $149,525 40 $149,337 35 1 99.98% 223.85% 100.22% 197.47% 100.10% 172.78%
$153,112 44 $154,213 41 $153,639 76 2 100.15% 119.36% 100.87% 109.75% 100.49% 204.73%
$179,372 53 $180,615 74 $178,658 368 3 100.85% 36.64% 101.55% 51.52% 100.45% 256.39%
$223,654 57 $223,152 70 $223,790 306 4
101.16% 26.12% 100.94% 32.16% 101.23% 139.76%

 37

Table 3.4b presents the results obtained with the approximation methods in the

same format. As shown, method 3 has the worst performance, primarily because it

requires the solutions of two mixed-integer programs rather than one LP and one IP as is

the case with the two others. Looking at the results for scenarios 3 and 4, which are the

more difficult instances, method 1 appears to be the better choice compared to method 2.

With regard to the easier problems, the statistics in Table 3.4a indicate that the

optimal solution for scenario 1 is found at node 1 in 20 seconds and for scenario 2 at node

61 in 37 seconds. Although method 1 finds very good solutions to these problems in a

short amount of time, it can never beat CPLEX when the optimum is found at node 1, nor

is likely to do as well when the branch and bound tree is small. Nevertheless, for the

harder problems in scenarios 3 and 4, CPLEX required over 300 nodes just to find

feasible solutions, while method 1 found good solutions quickly. In fact, the performance

of method 1 was stable in all cases tested. This is further evidenced by the results

reported in the next section.

3.3.3 Analysis of Third Set of Experiments – Staff Shortages

The third set of experiments was designed to simulate the impact of a reduction in

personnel for reasons such as sick leave, vacations or training. The scenarios were

generated by (randomly) removing a fixed percentage of the permanent workforce

determined by running SOS. Table 3.5 identifies the five cases examined for the

following three skill categories: P5-MPCs, P5-DCs and P5-FSMOs. Reductions ranged

from 5 to 20%. In each case, the input demand data reflected the equipment schedules

produced for the Dallas P&DC using their tool called SiteMeta rather than ESO data.

Because the input data for running ESO is only available for letter mail, it can only be

used at this time to generate equipment schedules for P5-MPCs. Therefore, SiteMeta was

used to provide schedules for this phase of the analysis.

As an aside, a comparison of scenario 2 in Table 3.1 with scenario 8 in Table 3.5

suggests the extent of staff reductions that is achievable when SiteMeta is replaced by

ESO. When SiteMeta is used to produce the equipment schedule for P5-MPCs, the

 38

results indicate that a total of 189 FTRs and 47 PTFs are required to run the facility.

When ESO is used, the comparable numbers are 120 FTRs and 30 PTFs, respectively, a

36% drop in each category.

Table 3.5. Model Size for Third Group of Tests -- Three Skill Levels

Scenario
Leave
rate

Demand
(Dallas)

No. of
variables

No. of
constraints

Density of
A-matrix

No. of
FTR

No. of
PTF

8 0 100% 88,963 3815 1.33% 189 47
9 5% 100% 84,319 3683 1.38% 179 46
10 10% 100% 80,167 3551 1.42% 171 45
11 15% 100% 76,279 3430 1.47% 160 39

P5-MPC

12 20% 100% 72,127 3298 1.52% 146 40

13 0 100% 129,091 5036 1.02% 278 69
14 5% 100% 123,127 4849 1.06% 262 65
15 10% 100% 116,407 4561 1.13% 258 62
16 15% 100% 110,443 4464 1.15% 253 58

P5-DC

17 20% 100% 104,479 4277 1.20% 204 57

18 0 100% 51,439 2678 1.83% 107 26
19 5% 100% 48,607 2601 1.88% 100 26
20 10% 100% 47,023 2535 1.92% 95 19
21 15% 100% 44,191 2458 1.97% 94 21

P5-
FSMO

22 20% 100% 41,359 2381 2.02% 71 20

Table 3.6a and 3.6b give the staffing results for all 15 scenarios. Scenarios 8, 13,

and 20 correspond to the baseline for the respective skill categories. For example, the

weekly cost for P5-MPCs obtained by running SOS was $242,488 while the same cost

obtained with WSO was $241,139, a difference of $1349. This 0.56% reduction is due to

the increased flexibility available in WSO with respect to the use of overtime and part-

time hours. As shown, reducing the size of the permanent workforce does not noticeably

increase the cost associated with the P5-MPCs and may even reduce it, suggesting that

the original complement of FTRs and PTFs for this category was too large. Similar

results were obtained for the P5-DCs and P5-FSMOs. As the percentage reduction in the

workforce increases, the overall costs generally remain even because better use is made

 39

of PTF hours. For the scenarios that specify 20% reductions, the corresponding solutions

call for a large increase in the number of casual hours which happen to cost much less

than either FTR or PTF hours.

Table 3.6a. Basic Staffing Results for Third Group of Tests -- Three Skill Levels

Scenario

True

weekly cost
Percent of
baseline

Weekly
cost (SOS)

Total
regular
FTR
hours

Total
PTF
hours

Total
regular

overtime
hours

Total
penalty

overtime
hours

Total
casual
hours

Total
idle

hours
8 $241,139 100.00% $242,488 7560 1177.5 7.0 0.0 0.0 1099.0
9 $240,352 99.67% -- 7200 1443.5 58.5 1.0 0.0 1057.5

10 $243,705 101.06% -- 6800 1614.0 231.0 20.0 0.0 1019.5
11 $247,404 102.60% -- 6440 1548.5 473.5 36.0 90.5 943.0

P5-MPC

12 $237,507 98.49% -- 6040 1476.0 402.5 73.5 548.5 895.0

13 $376,019 100.00% $378,759 11120 1517.5 19.5 0.0 0.0 1511.0
14 $373,731 99.39% -- 10560 1851.5 91.0 12.0 30.0 1398.5
15 $377,654 100.43% -- 10000 2047.5 308.0 55.0 56.0 1320.5
16 $382,632 101.76% -- 9440 2093.5 597.5 105.5 128.0 1218.5

P5-DC

17 $369,699 98.32% -- 8880 2052.0 556.5 140.5 616.0 1099.0

18 $146,528 100.00% $146,417 4280 665.0 0.0 0.0 0.0 307.0
19 $147,355 100.56% -- 4080 801.5 39.5 14.5 0.0 297.5
20 $150,179 102.49% -- 3840 892.5 141.0 44.5 4.5 284.5
21 $150,375 102.63% -- 3640 853.0 233.5 53.0 118.0 259.5

P5-
FSMO

22 $143,565 97.98% -- 3440 778.0 157.5 111.5 383.0 232.0

The average results shown in Table 3.6b are also in line with expectations. For

the more extreme cases investigated, the overtime percentage is near the 6% limit and the

use of casuals is critical for meeting the demand. It is worth noting that as the number of

workers decreases, the use of part-time hours goes up dramatically, approaching the 39-

hour limit in most cases. On another matter, the high idle rates in the last column for the

P5-MPCs and P5-DCs suggest that either the equipment schedule is not very good, or

that it is not possible to fit shifts to demand efficiently for these data sets.

 40

Table 3.6b. Average Staffing Results for Third Group of Tests -- Three Skill Levels

Scenario

Average
PTF

hours

Average
over-
time
hours

Average
penalty
hours

Average
idle

hours

Over
-time
usage

Casual
usage

Idle rate
(WSO)

Idle rate
(SOS)

8 25.05 0.04 0.00 4.66 0.08% 0.00% 12.57% 13.20%
9 32.81 0.33 0.01 4.72 0.68% 0.00% 12.15% --
10 38.43 1.36 0.12 4.81 2.90% 0.00% 11.77% --
11 38.71 2.94 0.22 4.29 5.93% 1.05% 10.98% --

P5-MPC

12 38.84 2.67 0.49 2.96 5.57% 6.42% 10.48% --

13 21.99 0.07 0.00 4.35 0.15% 0.00% 11.94% 12.80%
14 28.05 0.34 0.05 4.15 0.82% 0.24% 11.15% --
15 33.02 1.23 0.22 4.08 2.91% 0.45% 10.59% --
16 35.48 2.53 0.45 3.80 5.69% 1.04% 9.85% --

P5-DC

17 36.64 2.51 0.63 2.71 5.69% 5.03% 8.98% --

18 25.58 0.00 0.00 2.31 0.00% 0.00% 6.21% 6.10%
19 33.40 0.39 0.14 2.36 1.09% 0.00% 6.03% --
20 37.19 1.47 0.46 2.35 3.77% 0.09% 5.78% --
21 38.77 2.57 0.58 1.88 5.85% 2.41% 5.30% --

P5-
FSMO

22 38.90 1.83 1.30 1.25 5.52% 7.86% 4.76% --

It is also investigated how method 1 performs on the more difficult instances.

Table 3.7 presents the computational results for the scenarios corresponding to staffing

reductions of 10%, 15% and 20%. The ‘CPLEX’ column and the ‘First feasible solution’

column respectively list the objective function values and solution times obtained when

model (3-1) was solved directly. Again, the percentage under each entry is the ratio of

the associated value with the corresponding value in the ‘CPLEX’ column. As shown,

the target heuristic always find a feasible solution within 2% of the optimum within a

fraction of the time. In addition, the solution times associated with method 1 do not

increase dramatically as the difference between the staffing level and demand grows, a

phenomenon observed when model (3-1) is solved. For the difficult problems, then, the

target heuristic appears to be an acceptable compromise, especially when time is an

important factor.

 41

Table 3.7. Comparison of CPLEX with Approximation Method 1

CPLEX First feasible solution Method 1

Scenario
Objective

value
Solution

time (sec)
Objective

value
Solution

time (sec)
Objective

value
Solution

time (sec)
$243,705 733.2 $244,229 591.0 $245,211 169.9 10 -- -- 100.22% 80.61% 100.62% 23.18%
$253,558 3193.2 $255,582 158.0 $256,728 224.7 11 -- -- 100.80% 4.95% 101.25% 7.04%
$274,805 1528.1 $276,489 336.9 $278,102 163.2 12

-- -- 100.61% 22.05% 101.20% 10.68%

$381,462 361.9 $386,329 344.2 $382,424 395.6 15
-- -- 101.28% 95.12% 100.25% 109.32%

$391,336 445.0 $391,336 445.0 $391,722 257.0 16
-- -- 100.00% 100.00% 100.10% 57.75%

$411,587 694.2 $413,553 649.6 $413,142 191.8 17
-- -- 100.48% 93.58% 100.38% 27.62%

$150,485 112.4 $150,485 112.4 $152,003 51.4 20

-- -- 100.00% 100.00% 101.01% 45.73%
$158,399 1444.5 $158,880 161.4 $160,984 91.3 21

-- -- 100.30% 11.17% 101.63% 6.32%
$169,609 528.6 $171,110 334.3 $172,261 191.8 22

-- -- 100.88% 63.24% 101.56% 36.28%

 42

Chapter 4

Task Assignment Problem

Having solved the weekly shift scheduling problem, each full-time regular (FTR)

and part-time flexibles (PTF) worker must be given a daily assignment of tasks for each

day he or she is scheduled to work. Generally, these tasks are associated with a specific

machine or workstation. It is desirable, but not mandatory, that each worker be assigned

to a single machine for a full shift. In most cases, however, this is not possible because

equipment schedules, which are derived from mail arrival profiles, do not match shift

lengths. Some operations might only be two or three hours long while others may run up

to 12 hours.

A “good” assignment of tasks is characterized by as few switches among

machines as possible; that is, one that minimizes some function of the total number of

transitions over the day for each worker category. It is not possible to take transitions

into account in the weekly staff-scheduling model that determines the daily shift for each

worker because demand is specified by worker category only.

4.1 Problem Description

In defining the problem, the following assumptions are made.

1. Each shift longer than 6 hours includes a ½-hour lunch break.

2. Demand requirements for a particular category of worker (e.g., clerks, mail

handlers) can be partitioned into a finite number of groups so the problem

decomposes by worker category.

3. All demand must be satisfied.

4. Shifts can spill over from one day to the next so the problem does not decompose

by day.

5. The assignment of workers to a specific workgroup in numbers greater than the

demand in any particular period represents idle time.

 43

In the solution to the weekly scheduling problem, a sufficient number of shifts are

generated to guarantee that assumption 3 can be met. Also, if there is only one

workgroup, there is no need to make assignments because all transitions between

machines in a workgroup have zero cost. In the more general case, when there are, say,

m workgroups, the following result holds.

Theorem 4.1 The task assignment problem is NP-hard in the strong sense.

Proof. It will be shown that the quadratic assignment problem (QAP) can be

polynomially transformed into the task assignment problem (TAP). In particular, Sahni

and Gonzalez (1976) showed that a version of QAP with only xjxj+1 nonlinear terms is

NP-complete by transformation from Hamiltonian circuit. Their proof is valid for the

model that is being considered as well.

To define the QAP of interest, let n be the number of workers, t the number of

time periods over which assignments are to be made, and m(p) the number of jobs in

period p, where n ≥ m(p) for p = 1, . . . , t. Let k
jpc be the cost of assigning worker k to

job j in period p and k
jlps the cost of transferring worker k from job j in period p to job l in

period p + 1. The objective is to minimize the cost of assigning workers to jobs over the

planning horizon, where the decision variable k
jpx = 1 if worker k is assigned job j in

period p, 0 otherwise. This leads to the following QAP:

 Minimize
() () (1)1

, 1
1 1 1 1 1 1 1

m p m p m pt n t n
k k k k k
jp jp jlp jp l p

p k j p k j l
c x s x x

+−

+
= = = = = = =

+∑ ∑ ∑ ∑ ∑ ∑ ∑ (4-1a)

 subject to
1

1
n

k
jp

k
x

=

=∑ , j = 1, . . . , m(p); p = 1, . . . , t (4-1b)

()

1
1

m p
k
jp

j
x

=

≤∑ , k = 1, . . . , n; p = 1, . . . , t (4-1c)

 k
jpx = 0 or 1, k = 1, . . . , n; j = 1, . . . , m(p); p = 1, . . . , t (4-1d)

 44

 The objective function in (4-1a) sums the cost of each assignment. Eq. (4-1b)

ensures that all jobs are covered in every time period, and Eq. (4-1c) prevents a worker

from being assigned more than one job in each period. Note that it is an easy matter to

convert (4-1c) to an equality by adding n – m(p) dummy jobs with zero cost coefficients

in each period p to obtain the equality form of the model.

 Now, given any instance of QAP, construct the following instance of TAP. Let

there be n workers, t time periods, and m workgroups, where the mth workgroup

corresponds to either the lunch break or the time when a worker is off duty. Let djp be the

demand for workers associated with workgroup j in period p and set m(p) =
1

m
jpj

d
=∑ .

For the mth workgroup, dmp is the number of workers whose shifts do not cover period p

plus those who are scheduled for lunch during period p. Let k
jlps be the cost of

transferring worker k from job j in period p to job l in period p + 1. If jobs j and l are in

the same workgroup or if either is in workgroup m, then k
jlps = 0. Also, let the cost of

worker k being assigned to a job j in workgroup m during his designated lunch break and

when he is not scheduled to work be k
jpc = 0; at all other times p let k

jpc = µ, where µ is

an arbitrarily large constant.

 It is not difficult to see that an optimal solution to QAP with these cost

coefficients can be transformed into an optimal solution to TAP in linear time. All jobs

will be covered by exactly one worker, and in periods where there are more workers then

jobs, the surplus workers will be assigned to a job in workgroup m. In all other periods,

the arbitrarily large value of µ assures that they will be assigned to a workgroup other

than m. Sorting out whether a worker is at lunch or idle is straightforward.

Similarly, a solution to TAP can be translated directly into a solution of QAP.

Moreover, the simple observation that any assignment for TAP can be checked for

feasibility in O(nt) time implies that it is in NP. This leads to the conclusion that the

workgroup assignment problem is NP-hard.

 45

Mail processing environment. Each day, mail arriving at a P&DC undergoes the

following three high-level operations: (i) if a stamp exists, it is cancelled, (ii) the address

is read and a bar code is sprayed on the envelop, and (iii) each piece of mail is sorted to

its final destination. Four types of automation equipment are used for these activities: (1)

an advanced face-canceller system (AFCS); (2) a multi-line optical character reader

(MLOCR); (3) a remote barcode sorter (RBCS); and (4) a delivery barcode sorter

(DBCS). WSGs are typically formed by combining similar pieces of equipment located

in the same area; e.g., all AFCSs may constitute a single workgroup. When a large

number of machines of the same type are present, they may be partitioned into several

workgroups.

4.2. Model Formulation

The task assignment problem has several different generic interpretations. It can be

viewed as a variant of the minimum cost multi-commodity network flow problem in

which the individual workers are the commodities.

4.2.1 Basic Model

Let n be the number of workers, m the number of workgroups, and t the number of time

periods. For each worker k ∈ K a directed subgraph Gk = {Nk, Ak} is defined with node

set Nk and arc set Ak. Each node i ∈ Nk represents a WSG - time period pair, which

collectively, form a rectangular grid, or t-layered network. For completeness, it is

necessary to add source and sink nodes (sk and tk) for each worker. In all, |Nk| = 2 + tm.

Each arc (i, j) ∈ Ak represents a permissible transition from one workgroup to another in

adjacent time periods and has “cost” k
ijc , which may be viewed more appropriately as a

penalty. At a minimum, this value includes the cost of switching from workgroup i to

workgroup j but may also include the cost of being assigned to j. It is assumed that cost

is not a function of time.

 Figure 4.1 depicts a “complete” graph for one worker for 336 periods or 1 week.

The numbers in square brackets adjacent to the nodes represent demand djp, while the

 46

numbers inside the nodes denote the workgroup j and the period p, respectively. In

reality, it is only necessary to include nodes that correspond to the shifts that worker k is

assigned over the week. Accordingly the nodes that correspond to the predetermined

lunch breaks and the periods between shifts can be omitted. This greatly reduces the size

of Nk.

 The full graph Gk for each worker k has the same node set except for sk and tk.

The arc sets, however, are all disjoint. The full graph for the problem is G = (N, A) =

{ } { }()1 1,k n nk K
G N N A A

∈
= ∪ ∪ ∪ ∪" "∪ and is likely to be very sparse because arcs

only exist between nodes in successive periods, except for the two situations just

mentioned. That is, when there is a lunch break in period p, the nodes and arcs associated

with period p can be skipped for this worker and new arcs added that join the nodes in

period p – 1 to the nodes in period p + 1. Similarly, when a shift ends in period p and the

next shift starts in period p + q, the intermediary arcs and nodes can be skipped.

If a supply of 1 is specified at the source node sk and a demand of 1 at the sink

node tk for all k ∈ K, the task assignment problem is to find a minimum cost flow from

each sk to each tk such that the demand, djp, at each intermediate node jp is satisfied.

When djp = 0 for all nodes but sk and tk, the overall problem decomposes into n shortest

path problems, one for each worker.

For the TAP to be feasible, it must have
1

m
jpj

d
=∑ ≤ n for all p. When ω(p) ≡ n –

1

m
jpj

d
=∑ > 0, ω(p) workers in period p will be idle. The only remaining modeling issue

concerns the initial conditions. There are two ways to view the overall problem, which

leads to two different formulations. If a new solution is required every week because the

demand changes, it is necessary to take into account the last assignment of each worker k

in the last period (t = 336) of the previous week and define the arc costs, ,k

k
s jc ,

accordingly. Assuming that there is no transition cost when a shift starts, if worker k is

off in period 336, ,k

k
s jc = 0 for j = 1,…,m; otherwise, ,k

k
s jc will reflect the cost of going

 47

from the workgroup he is assigned period 336 in the previous week to perhaps a new

workgroup period 1 in the current week.

0

1,2

2,1

1,1

m,1

1

m,2

2,2

1,335

m,3

2,3

1,3

2,336

1,336

m,335

2,335

m,336

.

.

.

.

.

.

. . .

Periods
1 2 3 335 336

[5]

[2]

[2]

[0]

[2]

[0]

[5]

[2]

[2]

[5] [5]

[2] [0]

[2] [2]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Source Sink

M
a
c
h
i
n
e

g
r
o
u
p
s

Figure 4.1. Multi-period, Single-commodity Network Representation for a Week

Alternatively, if the demand remains constant from week to week, then the

problem only has to be solved once. In this case, all source and sink nodes would be

removed, arcs would be added between the nodes associated with the last working period

and the nodes associated with the first working period, and the solution would be

interpreted as a circulation thereby obviating the need to account for initial conditions.

The model presented below reflects the first view because it is more general. In the

developments, the following notation is used, which is somewhat different than the

notation previously defined.

Indices

 i, j = indices for nodes

 k = index for workers

Sets

 I = set of nodes

 48

 K = set of workers

 A(k) = set of nodes corresponding to the periods during the week that worker k is on

duty

 F(k, i) = set of nodes that are immediate successors of node i for worker k

 P(k, i) = set of nodes that are immediate predecessors of node i for worker k

Parameters

 k
ijc = cost of a transition from node i to node j for worker k

 Di = demand at node i

Decision variables

 k
ijx = (binary) equal to 1 if node i is immediate predecessor of node j for worker k; 0

otherwise

Model

 Minimize z =
(,)

k k
ij ij

k K i I j F k i
c x

∈ ∈ ∈
∑ ∑ ∑ (4-2a)

 subject to
(,) (,)

0k k
ij ji

j F k i j P k i
x x

∈ ∈

− =∑ ∑ , for all k∈K, i∈A(k) (4-2b)

(,)

1
k

k

k
s j

j F k s
x

∈

=∑ , for all k∈K (4-2c)

(,)

1
k

k

k
jt

j P k t
x

∈

=∑ , for all k∈K (4-2d)

(,)

k
ij i

k K j F k i
x D

∈ ∈

≥∑ ∑ , for all i∈I (4-2e)

 k
ijx = 0 or 1, for all k∈K, i∈A(k), j∈F(k, i) (4-2f)

The objective function (4-2a) minimizes the total transition costs for the

workforce during the week. The coefficient k
ijc is defined for each employee k and

appropriate nodes i and j. It is positive only if i and j are in different workgroups. For

the calculations, if i and j correspond to successive working periods, set k
ijc = 1; if there is

a lunch break period between nodes i and j, k
ijc = 0.5; and if there is a shift break between

i and j, k
ijc =0.1. Alternative definitions are possible. For example, if it were more

 49

desirable for worker k to be assigned to workgroup g1 than g2,
k
ijc could be adjusted so

that solutions were biased towards g1.

The inherent network structure of the problem is embodied in the definition of the

set A(k) which is of size O(mt). Constraint (4-2b) requires conservation of flow at each

node, while Eqs. (4-2c) and (4-2d) ensure that exactly one unit of flow is allowed in the

network for each commodity from source to sink. Constraint (4-2e) ensures that all the

demand is met and constraint (4-2f) places binary restrictions on the variables.

Model (4-2) is not a pure minimum cost multi-commodity network flow problem

for at least two reasons (see Garey and Johnson 1979 for a definition). First, the network

on which it is defined has a special structure; second, such problems require that the flow

on each arc be restricted to some upper bound, u(i,j). Although it would be possible to

split each node i in model (4-2) into two nodes [say, i1 and i2], join them by a single arc,

and then associate the demand Di with the arc capacity [say, u(i1,i2)], the sense of the

inequality in constraint (4-2e) would be in the wrong direction. Nevertheless, several

special cases arise when some workers have the same schedule.

Proposition 4.1 Let K1 ∪ K2 ∪ . . . ∪ Kb = K be a partition of K into b sets such that the

each worker in Kk, k = 1, . . . , b has the same schedule. Then k ∈ K can be replaced with

k = 1, . . . , b in model (4-2) and Eqs. (4-2c) and (4-2d) can be replaced with

(,)

| |
k

k

k
s j k

j F k s
x K

∈

=∑ , for all k = 1, . . . , b (4-3a)

(,)

| |
k

k

k
jt k

j F k t
x K

∈

=∑ , for all k = 1, . . . , b (4-3b)

where k
ijx = 1 now denotes a transition from node i to node j for a worker in set Kk.

Proof: Eq. (4-3a) and (4-3d) represents the aggregation of Eq. (4-2c) and (4-2d) for all

workers in a particular set Kk so any point that is feasible to the new formulation is

feasible to model (4-2). The right-hand side of (4-3a) and (4-3b) indicates that there must

be |Kk | units of flow in the corresponding aggregated network. Because the |Kk | workers

 50

are indistinguishable from each other, any feasible solution to (4-2b), (4-3a), (4-3b), (4-

2e), (4-2f) obtained after replacing k ∈ K with k = 1, . . . , b will be feasible to (4-2b) –

(4-2f); that is, the flow in the aggregated network maps directly into the flows in the

individual networks.

 Note that if the two workers have the same shift schedule but different lunch

breaks, Proposition 1 is not valid. If the two networks were combined, it might happen

that one worker took two lunch breaks and the other none, or that they both took lunch

breaks in the same period rather than different periods. Either situation could lead to an

incorrect solution.

Proposition 4.2 When each worker k has the same schedule, model (4-2) can be

transformed into a pure min-cost flow problem.

Proof: When all the workers have the same schedule, they are indistinguishable from one

another so the index k ca be dropped from the formulation and set A(k) = I, sk = s, tk = t,

F(k, i) = F(i), and P(k, i) = P(i). To guarantee that there are n units of flow in the network,

the right-hand sides of (4-2c) and (4-2d) is set to n. Finally, to ensure that all demand is

met the node splitting idea is used and a lower bound is set on the arc that joins the two

new nodes, say, nodes i1 and i2, to Di1. Letting I ' be the set of nodes in the new network

and E be the set of arcs that join the split nodes, model (4-2) becomes

 Minimize z =
' ()

ij ij
i I j F i

c x
∈ ∈
∑ ∑ (4-4a)

 subject to
() ()

0ij ji
j F i j P i

x x
∈ ∈

− =∑ ∑ , for all i∈I '\{s, t} (4-4b)

()

sj
j F s

x n
∈

=∑ (4-4c)

()

jt
j P t

x n
∈

=∑ (4-4d)

 51

 ij ix D≥ , for all (i,j)∈E (4-4e)

 ijx ≥ 0 and integer, for all i∈I ', j∈F(i) (4-4f)

which is a pure min-cost network flow problem.

 When solving integer programs with exact methods, it is often helpful to add valid

inequalities that remove symmetry in the problem definition (Sherali and Smith 2001).

The goal is to prevent fractional solutions that look different but are actually reflections

of each appearing at different nodes in the branch and bound tree. For the TAP,

symmetry is present when two or more workers have the same schedule for all or part of

the week. The following result addresses this issue.

Proposition 4.3 (Symmetry) For the TAP defined for a single week only, assume that

workers k and k + 1 have the same schedules and lunch breaks from period q through

period 336. Let Ip = {ip1,…,ipm} (p = q,…,336) represent the set of nodes in the network

during period p and let Jp = Ip+s, where p + s is the first working period after p. Then the

following constraints are valid for model (4-2) for all values of p = q,…,336 that

correspond to working periods.

pg ph

k
i jx ≥ 1

pg pl

m
k
i j

l h
x +

=
∑ , ∀ ipg ∈ Ip; jph ∈ Jp; g,h = 1,…,m (4-5)

Proof: For period p, when workers k and k + 1 are at node ipg and worker k transits from

workgroup g to workgroup h, constraint (4-5) restricts worker k + 1 to transitions from

workgroup g to workgroup h or higher. This prevents workers k and k + 1 from

switching assignments in period p + s and hence breaks the symmetry. Because k and k +

1 have exactly the same schedule from period p through the end of the week they appear

in the model to be identical from p forward, so no advantage can be gain by

interchanging their assignments after node ipg. This validates the introduction of

constraint (4-5).

 52

Corollary 4.1 For the TAP defined as a circulation, a sufficient for constraint (4-4) to be

valid for model (4-2) is that workers k and k + 1 have exactly the same schedule for the

entire week.

4.2.2 Model with Idle Time and Lunch Breaks

The objective of the task assignment problem is to minimize the number of transitions

between different workgroups for all employees. The following are the most common

types of transitions:

 1. immediate, from one WSG to another

 2. after lunch break (different WSG before and after lunch)

 3. after idle period (different WSG before and after idle period)

 4. between shifts (changing WSGs)

The first is the most undesirable because it involves a change of location, supervisor, and

job content for the employee. The others are less costly as measured by time and

inconvenience. The easiest way to represent this preference structure is to assign unique

costs to the coefficients in (4-2a). This approach is possible for transitions after the lunch

break, between workgroups, and between shifts because the schedule of each worker is

known in advance. However, the idle periods cannot be identified until a solution is

found.

In the network description of model (4-2), each node is associated with a

workgroup-time period pair (j,p). To accommodate idle time explicitly, when the

number of workers who are available in time period p is greater than the total demand in

period p, the corresponding node is devided in two creating a work node and an idle node.

In a solution, if a worker is assigned to the former, it means that he is active in the period

under consideration; if he is assigned to the latter, he is idle.

In the multi-commodity network, these two nodes are distinguished only by the

costs on their leaving arcs. If nodes i and j are in different workgroups and i is an idle

node, then arc (i, j) corresponds to a transition after an idle period and should be assigned

 53

a cost that reflects this type of transition. Note that it is not necessary for a worker to

move to the idle node in another workgroup because the worker can always choose

moving to the idle node in current workgroup without increasing the total cost. So the

corresponding arcs can be removed except when there is a lunch break or a shift break

right after the associated period. Because the size of model (4-2) is proportional to the

square of the number of workgroups, the augmented model is roughly twice larger than

the original model when the unnecessary arcs are omitted.

A second extension of model (4-2) involves the option of assigning lunch breaks

along with the tasks. In the USPS application, the lunch break is part of the bid job and is

scheduled in advance by SOS. In practice, management has some discretion in

rescheduling the lunch break to better match the current day’s supply and demand of

labor. For an 8-hour shift, the break can be assigned any time within a 3-hour window

starting two hours into the shift.

Because a transition after the lunch break is more acceptable than an immediate

transition, the rescheduling option may yield better results. To build this into the model,

it would be necessary to add a lunch break node in each time period covered by the break

window of a shift. As was the case for idle periods, one additional node would be needed

for each workgroup. This construction is based on the assumption that the transition cost

is a function of the workgroup assigned just prior to the lunch break. If there is no

transition cost after the lunch break, it could be modeled as just another workgroup. To

guarantee that one and only one break is assigned to each shift, the following constraint

should be added to model (4-2):

(,) (,)

1k
ij

i E k d j F k i
x

∈ ∈

=∑ ∑ , for all k∈K, d∈C(k) (4-2g)

where E(k,d) is the set of lunch break nodes in the break window of worker k on day d

and C(k) is the set of days in which worker k requires a lunch break.

In the remaining sections, the focus is on the explicit representation of idle time

only. Because the lunch breaks can be treated in a similar manner, they don’t affect the

nature of the problem or the solution methodology.

 54

4.3. Solution Methodology

The first algorithm developed for the TAP at P&DCs was a greedy heuristic (referred to

as the SOS heuristic) that viewed the week as a circular array of 336 (= 48×7) ½-hour

periods. In this design, no starting point exists so every element in the array always has a

successor (all integers ≥ 0 are valid indices and all indices whose modulo 336 give the

same number represent the same element). The two data structures used by the heuristic

are as follows.

1. A list of workstations with corresponding demand. The demand is represented by

an array of 336 integers that give the number of workers required for each period

of the week. The workstations are grouped in sections or workgroups.

2. A list of shifts satisfying all demand for the given week. Each shift is associated

with a single worker and has a starting period (a value between 0 and 335), a

length, and possibly a lunch period. Shifts are grouped by starting period giving

rise to 336 <shift/period> lists; the shift/period list[p] contains all the shifts

starting at period <p>. During execution, a shift starting at <p> may be assigned

to a workstation for a duration <d> which is less than the shift length <l>. In this

case, the partially assigned shift is added to the shift/period list[p + d] for further

assignment during the remaining <l – d> periods. Thus, each shift/period list

contains two types of shifts: (1) unassigned shifts that can be assigned to a

workstation in any section, and (2) partially assigned shifts that should be

assigned, if possible, to a workstation in the same section.

The first step is to compute the period of the week with least demand. Let

 pmin = argmin{ }1
: 0,...,335m

jpj
d p

=
=∑

The greedy SOS heuristic cycles through the circular array of 336 shift/period lists,

starting at pmin. For each period, an assignment is give to all the shifts on the shift/period

list thereby emptying it. However, each shift not completely full is added to a later

shift/period list. Processing the last few lists re-introduces shifts to the first few lists so it

 55

is necessary cycle through the circular array until all lists are empty. Additional data

structures are needed to track partial assignments and unsatisfied demand; additional

logic is needed to determine which workstation to select for the next shift assignment in

light of the objective of minimizing the number of transitions. The details are available

from the authors.

 In an effort to improve on this heuristic, two separate approaches that can be

combined into a single methodology have been developed. Each is discussed below.

4.3.1 Delayed Idle Period Assignment and Daily Decomposition Algorithm

When idle time is included in model (4-2) explicitly, the number of nodes in the multi-

commodity network doubles. This leads to a linear increase in the number of constraints,

which is O(nmt), and a quadratic increase in the number of variables, which is O(nm2t).

Computational experiences have shown that only very small instances can be solved

optimally at this level of generality. As a compromise, model (4-2) is solved as

originally described and schedule the idle time in a post-processing phase. Although this

approach should be viewed as a heuristic, the often negligible impact of idle time

suggests that the resultant solutions should be near-optimal.

The problem of assigning idle time in the post-processing phase can be modeled

as an integer program but for the reason just mentioned, a greedy approach is taken. In

particular, when there is a surplus of workers in a period it must be decided which of

them should be considered active and which should be considered idle. To resolve the

issue, it is noted that the only way that the objective function can be reduced at this point

is by inserting an idle period immediately before or after a transition from one workgroup

to another in a worker’s schedule. This means that the priority for assigning idle time in

a particular period should be given to those workers who have immediate transitions right

before or after the period in which a surplus of idle time exists. If no workers have such

schedules, then the idle periods can be assigned arbitrarily.

Figure 4.2 illustrates the types of transitions that might occur for a worker during

the week. The numbers in the boxes represent the workgroup, “L” denotes a lunch break,

 56

and “R” indicates an unscheduled period. Given the following cost structure: immediate

transition = 1.0, transition after lunch = 0.5, transition after idle time = 0.5, transition

between shifts = 0.1, suppose that workgroup 4 has a demand of three during period 24,

and that the solution to model (4-2) assigns all four workers to that workgroup. As

shown in the figure, worker 1 has a lunch break in the preceding period with a cost of 0.5,

while worker 2 is scheduled to begin a new shift at this time (in the example, worker 2’s

assignment in the last period of the previous shift does not affect the results). Therefore,

no benefit can be gained by allowing either of them to be idle in period 24. The same can

be said for worker 3 who is assigned to workgroup 4 during periods 23, 24 and 25.

Making period 24 an idle period will not affect the cost of his schedule because he is

assigned to workgroup 4 in periods 23 and 25. As such, no cost will be incurred by the

transition from the idle period.

. . .

. . .

. . .

. . .

. . .
2

2

3344444L2

34444222 3

. . .

292827262524232221

2

R

334444L22

34444RRR 3

. . .

. . .

. . .

. . .20Period

Worker 1

Worker 2

Worker 3

Worker 4

Figure 4.2. Various Types of Transitions for Given Schedules

The best choice is to assign the idle time to worker 4 who has an immediate

transition in period 23. Because the transition will now be after an idle period rather than

a workgroup, the objective function will decrease from its current value by the difference

between the two costs; that is, cost reduction = 1 – 0.5 = 0.5. Summarizing, the cost for

each worker before idle time is assigned is given by the vector (1.5, 1.0, 1.5, 2.0); the

costs after are (1.5, 1.0, 1.5, 1.5).

 57

The algorithm used in the post-processing phase to assign idle time is given in

Fig. 4.3.

 Let Wi = set of workers assigned to node i, and let pi = time period associated with i ∈I.
 Set no_priority = false
 For (all nodes i ∈ I){
 While (|Wi| > Di) {
 For (all workers k ∈ Wi){
 If (k has a transition right before or after period pi or no_priority = true){
 Assign k idle time during period pi
 Wi Wi \ {k}
 Continue
 }
 }
 If (all workers have been checked at node i and Wi ≠ ∅) {
 no_priority = true
 }
 }
 }

Figure 4.3. Heuristic for Assigning Idle Time

A second method to reduce the problem size is to decompose model (4-2) into

seven subproblems, one for each day. When this is done, the solution from the first day

provides the initial conditions for the second day, and so on. These conditions are a

function of the shifts that spill over from one day to the next, where day 7 can be thought

of as day 0. Because the number of arcs in the network (and hence the number of

variables) grows linearly with the number of periods t in the planning horizon, the

complexity of the integer program (4-2) grows exponentially with t.

Although solving the daily subproblems separately cannot be expected to yield

the optimal solution for the week, the decomposition approach, combined with delayed

idle period assignment, does yield high quality solutions quickly for instances with up to

300 workers and 7 workgroups. Larger instances require a smaller grid than a day if

solutions are to be obtained in a reasonable amount of time. Combining these two ideas

 58

leads to even greater reductions in problem size and run times without much degradation

in solution quality, as shown in the section on computational results.

4.3.2 Tabu Search

Tabu search (Glover and Laguna 1997) is a powerful meta-heuristic that has been used

successfully in solving many types of large-scale optimization problems that have

resisted exact methods. In the computations, the neighborhood of the incumbent is

explored and the best feasible solution found becomes the new incumbent, regardless of

quality. To prevent returning to the same local solution within a fixed number of

iterations, recently visited points are placed on a tabu list.

The essential components of the procedure are the (1) initial solution, (2)

neighborhood definition, (3) tabu list, and (4) search strategy. Although there has been

continued debate as to whether a good initial solution leads to greater overall efficiency,

computational experiences have shown that the better the initial solution, the better the

results, at least for the TAP under reasonable run time limits. Three options were

investigated: (1) the solution obtained with the SOS heuristic, (2) the solution obtained

with the delayed idle period assignment and daily decomposition (DIPA&DD) algorithm,

and (3) the solution obtained by solving a series of shortest route problems (SSRA). The

first two have already been discussed; the third is explain below.

Initial Solution with Shortest Route Algorithm

An implication of Proposition 4.2 is that when the demand constraints (4-2e) are relaxed,

model (4-2) can be decomposed into n independent pure network flow problems with

integral solutions. Because each network is cyclic and contains only one unit of flow, the

problem is equivalent to finding the shortest loop in the network. CPLEX was used to

solve this problem.

 Of course, ignoring the demand constraints and solving all n flow problems

separately is not likely to produce a feasible solution to (4-2). To achieve feasibility, a

simple greedy algorithm is used, in which the workers, arbitrarily ordered, are scheduled

 59

in series (see Fig. 4). For the first worker, the shortest route problem is solved and the

demand associate with each node in the solution is reduced by 1. When the demand at a

node reaches 0, it is removed from the network. The process is repeated until all

workers have been scheduled.

 For (all workers k ∈ K){
 Set up the single-commodity network shown in Fig. 1 for current worker k.
 For (all nodes i ∈ I) {
 If (remaining demand at node i = 0){
 Remove node i and all arcs connected to it from the network.
 }
 }
 Solve the shortest loop problem to get the schedule for current worker k
 For (all nodes i ∈ I) {
 If (node i is on the schedule of worker k){
 Deduct 1 from the remaining demand at node i.
 }
 }
 }

Figure 4.4. Sequential Shortest Route Method

Neighborhood Definition

A neighborhood is defined as a set of points that can be reached from the current solution

by performing one or more exchanges, which characterize a move. The algorithm

proceeds from an initial feasible solution or incumbent to a new solution by searching the

current neighborhood for the “best” solution. Depending on the strategy used, the new

solution may or may not be feasible.

For the task assignment problem, a neighborhood is defined as all feasible points

that can be reached by a swap move that switches the positions of two workers in the

same period. To ensure that only neighborhood points that are feasible and different than

the current solution are considered, some restrictions must be placed on a move. First, at

least two workers must be scheduled in the period under consideration or no swap can

take place. Second, the selected workers must be assigned to different workgroups in the

chosen period otherwise the exchange will have no effect on the solution.

 60

2

2

334442L22

344L4222 3

............
......

Worker 1

20 292827262524232221Period

2.0

2.0

Penalty

2

2

334444L22

344L2222 3

............
......

20 292827262524232221Period

1.5

1.5

Penalty

Before swap

After swap

Worker 2

Worker 2

Worker 1

Figure 4.5. Example of Swap Move

Figure 4.5 gives an example of a swap move for workers 1 and 2 in period 24.

This is an admissible move because they are assigned to different workgroups in this

period. Before the swap, both workers have two immediate transitions in this part of

schedule, which induces a penalty of 2.0 for each. After the swap, the first immediate

transition in both cases is replaced by a transition after lunch, which brings the penalty

down to 1.5 for each worker. Therefore, the value of the swap (move_value) is –1.0. In

the algorithm, all feasible moves are considered and the one with the smallest value is

chosen, giving the new incumbent.

 The size of the neighborhood is O(n2t), where n is the number of workers and t is

the number of periods, so it is reasonable to conduct an exhaustive search. A second

advantage is that every feasible point in the solution space can be reached if enough

iterations are performed. Nevertheless, a significant amount of effort may still be

required to conduct one neighborhood search for t fixed even though the size of the

 61

neighborhood is only quadratic in n. Finally, it should be mentioned that more complex

neighborhoods were considered, including three way swaps and multiple period swaps,

but they proved to be more time consuming and no more effective than the one selected.

Tabu List and Aspiration Criterion

The fundamental process that tabu search uses to transcend local optimality is to make

certain moves forbidden (tabu) on a temporary basis. The process is operationalized with

a tabu list whose length determines how many iterations a certain move is forbidden.

Each entry on the list is a combination of a worker and a period; i.e., (worker i, period p).

During execution, any move that leads to a solution that includes a combination on the

list is disallowed. After the current neighborhood is searched and a new incumbent is

identified, the two workers associated with the move and time period in which it occurs

are added to the tabu list.

Nevertheless, the tabu status of a move can be overridden when a certain

aspiration criterion is satisfied. In this implementation, a move on the tabu list is

accepted if it leads to a solution better than the best solution found so far.

Search Strategy

There are two important characteristics for a successful tabu search procedure:

exploration and exploitation. Exploration is the ability of the algorithm to diversify the

search throughout the solution space, while exploitation is the ability of the algorithm to

intensify the search in the areas of the solution space that show promise. In practice,

long-term memory in conjunction with the short-term memory provided by the tabu list,

are used to implement the exploration strategy. The long-term memory in this algorithm

is in the form of an n × 336 matrix M, where an element Mip represents the number of

times the pair (worker i, period p) has been involved in a move. Any move associated

with this pair is additionally penalized in accordance with the value of Mip. For example,

if a candidate swap calls for workers i and j to change positions in period p, then the

 62

actually value used in the neighborhood comparisons is move_value + 0.1(Mip+Mjp)

rather than move_value alone.

As mentioned, the size of the neighborhood is polynomial in n but still large for

most real-world instances. To reduce the computational effort, it is common to limit the

search to a certain number of randomly selected candidates within a neighborhood. The

certain number, candidate_num, is a parameter that is set adaptively according to the size

of the problem and the progress of the algorithm, and represents the exploitation strategy.

In this implementation, it oscillates between two values: smallscan and bigscan.

Whenever an improved solution is encountered, candidate_num is increased to bigscan to

allow the neighborhood of the solution to be searched more thoroughly; it is reset to

smallscan after 200 consecutive iterations without improvement.

Algorithm Description

Figure 4.6 highlights the major components of the tabu search procedure. The first step

is to generate an initial feasible solution with one of the methods described above. The

results are saved as both the current solution and the best solution found so far; the

corresponding objective function value is used to initialize the data element best_cost.

The move_value and the tabu_list are also initialized.

Given an initial solution, the algorithm iterates until a prespecified limit

(max_iterations) is reached or there is no improvement in max_no_improve iterations.

The move to be made at a given iteration is found by computing the sum of move_value

and move_penalty of all candidate swaps in the neighborhood of the current solution.

Because it is the transition cost that is being minimized, the best candidate move is the

one associated with the smallest sum. A move is admissible if (1) it is not tabu or (2) its

tabu status can be overridden by the aspiration criteria. The best_move is then performed

and the tabu data structures are updated. The best overall solution (best_soln) is updated

if the current value of the total cost is less than the objective value of the incumbent.

The data structures used to describe the heuristic are as follows.

• num_iterations: current iteration number

 63

• max_iterations: limit on total number of iterations that can be performed

• curr_cost: sum of the cost of transitions for all workers in a week (objective

function value)

• best_cost: best total transition cost for all workers obtained so far (incumbent

objective function value)

• curr_soln: current solution obtained after executing the best move

• best_soln: best solution obtained so far (incumbent

• move_value: difference in the cost of a transition before and after the swap of the

two workers being considered in a certain period

• best_move_value: lowest move_value among all candidate moves

• move_penalty: additional penalty imposed by the long-term memory freq_matrix

M; when workers i and j are selected two switch positions in period p,

move_penalty = 0.1(Mip+Mjp)

• best_move_penalty: move_penalty for the best move of all candidate moves

• no_improve: number of consecutive iterations during which no better solutions

are found

• max_no_improve: maximum number of consecutive iterations permitted during

which no better solutions are found: 5,000 for all data sets

• tabu_size: total number of iterations for which a move is held tabu: 20 in this

implementation

• tabu_list: short-term memory function that stores recent moves that are forbidden

in subsequent iterations

• freq_matrix: long-term memory function that records the number of times that

each possible move is revisited

• candidate_num: number of candidate moves that are scanned during each iteration

(can be one of two values, smallscan = n2/100 and bigscan = n2/50, depending

on the situation)

• candidate move: solution that results when two workers assigned to different

workgroups in the current period swap position

 64

• admissible move: candidate move that either satisfies the aspiration level criterion

or is not tabu

1. Generate initial feasible solution and save it as curr_sol and best_sol.
2. Evaluate curr_cost and set best_cost = curr_cost.
3. Initialize tabu_list and freq_matrix.
4. Set candidate_num = smallcan.
5. Set no_improve = 0.
6. Do{
 best_move_value = ∞
 for (all candidate moves)
 {
 if (move_ status ≠ tabu or move_ value is improving)
 {
 if (move_value + move_penalty < best_value +
best_move_penalty)
 {
 best_move_value = move_value
 best_move_penalty = move_penalty
 best_move = current_move
 }
 }
 }
 execute best_move [update current solution by swapping]
 curr_cost = curr_cost + best_move_value

update tabu_list
update freq_matrix
if (curr_cost < best_cost)
{
 best_cost = curr_cost
 best_soln = curr_soln
 candidate_numb = bigscan
 no_impove = 0
}else{
 no_impove = no_improve + 1
}

 } While (num_iterations < max_iterations or no_improve < max_no_improve)

Figure 4.6. Tabu search procedure

 65

4.4. Computational Experience

The various algorithms and initialization procedures developed for solving the task

assignment problem were tested using data obtained from the Boston P&DC. Table 4.1

lists each approach. All algorithms were coded in Java and run on a Linux workstation

with dual Xeon 1.8G CPUs and 1 gigabyte of memory. (Our licensing agreement,

however, did not allow for parallel processing.) CPLEX 9.0 was used to solve the

embedded IPs and LPs. For the IPs, setting the CPLEX emphasis parameter to

“feasibility” rather than “optimality” worked best, as did setting the heuristic frequency

parameter to every 15 nodes.

Table 4.1. Approaches Investigated

Methodology Abbreviation
Solve model (4-2) with idle period nodes EXACT
Delayed idle period assignment DIPA
Delayed idle period assignment and daily
decomposition DIPA&DD
Tabu search TS
Greedy SOS heuristic SOS
Sequential shortest route algorithm SSRA

The data sets used in the computations are shown in Table 4.2 and reflect the

range of problem sizes that might be encountered in a large facility. Five different

worker categories are included with anywhere from 17 to 311 workers and 3 to 28

workgroups. This diversity should allow draw some general conclusions to be drawn

from the results.

Of the two groups of data sets in Table 4.2, the instances associated with the first

group are relatively small and can be solved to optimality with EXACT within 1 hour.

For EXACT, DIPA and DIPA&DD, a 1% optimality gap was used as the stopping

criterion for small data sets to ensure that high quality solutions were found within an

acceptable amount of time. For discussion purposes, the solution provided by EXACT

will be termed the “optimal solution” and used as the reference point for evaluating the

performance of the other algorithms.

 66

The instances associated with the second group of data sets are larger than those

in the first and could not be solved to within 10% of optimality using a 2-hour stopping

criterion. In many cases, not even a lower bound could be found after several hours of

computations because their LP relaxations could not be solved. Nevertheless, it is still

useful to compare the results obtained with the other methods to get a relative

understanding of their performance.

Table 4.2. Data Sets for Computational Experiments

Problem no. Worker category Number of workers (n) Number of workgroups (m)
Small data sets

1 P5-MPC 17 5
2 P5-FSMO 34 7
3 P5-PPDMO 45 3
4 P5-MPC 85 3
5 P5-MPC 93 3
6 P5-MPC 105 3
7 P5-MPC 116 4
8 MH5-EO 68 10

Large data sets
9 P5-MPC 197 4
10 MH4 33 10
11 P5-MPC 222 6
12 P5-MPC 311 6
13 P5-MPC 288 7
14 MH4 171 28

Table 4.3 lists the number of variables, number of constraints, and number of

nonzero elements in the A matrix of the IP associated with model (4-2) for all data sets.

The first set of statistics includes idle time nodes in the formulation and the second does

not. The exclusion of idle time nodes reduced the dimensions of these problems by

approximately 50%. The symmetry constraints (4-5) were not included in the testing

because the size of the LPs and not the number of nodes in the branch and bound trees

was the limiting factor. Adding these constraints would have only aggravated the

situation.

 67

Table 4.3. Size of Weekly Problem for Model (4-2)

Model (4-2) with idle periods Model (4-2) without idle periods
Data
Set

No. of
Variables

No. of
constraints

No. of
nonzeros

No. of
variables

No. of
constraints

No. of
nonzeros

Small data sets
1 27,736 9,186 68,049 13,077 5,520 29,598
2 20,417 7,493 51,330 7,246 3,211 17,317
3 23,345 11,417 55,870 13,385 7,660 31,134
4 97,722 42,088 221,875 49,825 27,395 113,404
5 123,823 51,548 281,878 57,741 31,443 131,372
6 154,363 62,356 351,605 66,825 35,981 151,850
7 186,408 70,563 427,638 90,504 44,284 204,464
8 110,852 37,390 249,636 50,041 26,252 112,399

Large data sets
9 380,172 137,358 866,920 168,261 78,686 377,552
10 132,335 27,321 331,790 80,899 21,481 195,628
11 1,059,070 259,894 2,328,239 624,624 186,411 1,351,720
12 1,387,969 248,252 3,073,161 647,369 209,292 1,405,198
13 1,223,668 308,335 2,733,587 718,946 219,333 1,558,397
14 7,482,642 547,204 36,518,862 3,217,536 383,043 16,433,488

4.4.1 Results for Small Data Sets

The objective function values and solution times obtained with all methods for the small

instances are reported in Table 4.4. When EXACT and DIPA were used, a 1-hour time

limit was set for solving model (4-2) for the week. For DIPA&DD, the time limit was set

to 5 minutes for each single-day problem. When tabu search was used, the SOS solution

served as the starting point, and “no improvement in 5,000 consecutive iterations” served

as the stopping criterion.

The EXACT solutions provided the baseline against which the other solutions

were compared. In Table 4.4, the percentage under each “objective value” and “solution

time” entry represents the ratio between the EXACT result and results obtained from the

respective heuristics. For example, the best solution provided by DIPA&DD for data set

4 is 53.9, which is 115.91% of the optimal solution, 46.5. Similarly, the time for

DIPA&DD to find this solution was 4.0 seconds, which is 1.51% of the time used by

EXACT.

 68

Because of the need to perform “what if” analysis in the real operating

environment, the EXACT solution times are acceptable for only the very small data sets.

Empirically speaking, any data set that has an nm value larger than 1,000 cannot be

solved by EXACT, and most of the time, even the LP relaxation cannot be solved within

several hours. In fact, the optimal solution is found by CPLEX build-in heuristic at the

first node of branch and bound tree for most problems, except problem 3 and 8. Most of

the computational effort went into solving the LP relaxations, generating cuts, and

performing build-in heuristics.

Table 4.4. Computational Result of Small Data Sets

EXACT DIPA DIPA&DD TS
Data
set

Objective
value

 Solution
time (sec)

Objective
value

Solution
time (sec)

Objective
value

Solution
time (sec)

Objective
value

Solution
time (sec)

1 72.5 56.3 78.8 11.4 78.7 3.2 83.8 118.7

 100.00% 100.00% 108.69% 20.25% 108.55% 5.68% 115.59% 210.83%

2 94.6 9.0 98.8 3.6 99 5.2 98.5 245.2

 100.00% 100.00% 104.44% 40.18% 104.65% 58.04% 104.12% 2736.61%

3 68.6 12.5 78.3 8.5 74.2 3.8 94.1 71.6

 100.00% 100.00% 114.14% 68.00% 108.16% 30.40% 137.17% 572.80%

4 46.5 265.0 48.5 30.6 53.9 4.0 60.7 110.2

 100.00% 100.00% 104.30% 11.55% 115.91% 1.51% 130.54% 41.58%

5 74.3 547.9 81.6 59.7 88.6 6.8 95.4 115.0

 100.00% 100.00% 109.83% 10.90% 119.25% 1.24% 128.40% 20.99%

6 81.3 1762.5 85.2 55.5 86.8 5.2 108.2 245.1

 100.00% 100.00% 104.80% 3.15% 106.77% 0.30% 133.09% 13.91%

7 89.9 2722.7 97.1 126.7 103.3 12.7 141.4 175.2

 100.00% 100.00% 108.01% 4.65% 114.91% 0.47% 157.29% 6.43%

8 27.2 3268.2 28.0 484.5 36.1 15.9 43.7 173.8

 100.00% 100.00% 102.94% 14.82% 132.72% 0.49% 160.66% 5.32%

Avg 100.00% 100.00% 107.14% 21.69% 113.86% 12.26% 133.36% 451.06%

The size of model (4-2) without idle period nodes is about 50% of the size of the

exact model, and thus can be solved much faster. On average, DIPA found solutions that

were only 7.14% above the optimum, on average, in approximately 1/5 of the time. For

 69

the small data sets, this method is effective but cannot be relied on as the problem size

increases, as discussed in the next section. DIPA&DD is more efficient in terms of the

solution time, which is under 13% of the time required by EXACT, on average, while

objective function values remained within 14% of the optimum. Finally, tabu search

showed no advantage with respect to solution quality for small instances. In part, this

was due to the relatively poor quality of the initial solution provided by the SOS

heuristic. This issue is further examined below.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8

Data Set

%
 o

f O
pt

im
al

 S
ol

ut
io

n

EXACT

DIPA

DIPA&DD

TS

Figure 4.7. Objective function comparisons for small data sets

The graphs in Figs. 4.7 and 4.8 plot the performance of the different methods for

the small data sets. From Fig. 4.7, it is easy to see that relative solution quality with

respect to the objective function value remains the same for most instances. EXACT

gives the best results in general, while DIPA consistently provides solutions that are very

close to the optimum. The DIPA&DD solutions are close to or even better than those

obtained with DIPA for data sets 1, 2, 4 and 6, but are noticeably worse for data sets 3, 5,

 70

7 and 8. The tabu search results were consistently inferior to those obtained with the

other methods.

 Figure 4.8 depicts relative run times. For the first three problems, tabu search

took much longer than the other methods due to the nonproductive time required to

satisfy the termination criteria “no improvement in 5,000 consecutive iterations.” The

corresponding points are out range. For the remaining problems, tabu search was more

competitive but still not as effective. Of the IP approaches, DIPA&DD provided the

fastest times, EXACT the slowest times, and DIPA was somewhere in between. The

relative run time for tabu search decreased steadily as the problem size increased, and

eventually dropped below that of DIPA for data set 8.

-10

10

30

50

70

90

110

130

150

1 2 3 4 5 6 7 8

Data Set

%
 o

f O
pt

im
al

 S
ol

ut
io

n
Ti

m
e

EXACT

DIPA

DIPA&DD

TS

Figure 4.8. Run time comparisons for small data sets

4.4.2. Results for Large Data Sets

Table 4.5 presents the computational results obtained with DIPA, DIPA&DD, TS and

SOS for the large data sets. The SOS results are included to provide a baseline for the

more difficult instances, and reflect the performance of the system now in use at P&DCs.

 71

Because none of the LP relaxations were solvable by EXACT, no lower bounds are

available.

The relative performance of the four methods tested was the same as was

observed for the small data sets. DIPA provided the best solutions but could solve only

the first two instances; i.e., data sets 9 and 10. Using a 20-minute time limit for each

single-day problem, DIPA&DD was able to find relatively good solutions in acceptable

time, except for the largest instance – data set 14. None of the daily LP relaxations could

not be solved within the allotted time.

The solutions found by tabu search, again, were not as good as those provided by

DIPA or DIPA&DD, but it did manage to improve the initial SOS solution by an average

of 13.15%. As a consequence of the randomness inherent in the search strategy, no

correlation between problem size and computational effort was evident.

Whether the additional time required by any of the proposed methods to improve

the initial solution can be justified, depends on the time available for the analysis. In the

current system, the SOS heuristic runs in a matter of seconds. This represents a

negligible amount time when compared with the options being considered here.

Table 4.5. Computational Results for Large Data Sets

DIPA DIPA&DD TS
Data
Set

Objective
value

Solution
time (sec)

Objective
value

Solution
time (sec)

Objective
value

Solution
time (sec)

SOS
objective

value
9 52.7 2468.2 61.2 20.2 102.8 753.5 119.8
10 181.9 5785.8 185.4 141.6 200.3 105.8 223.3
11 – – 300.4 1105.2 421.3 1002.3 451.9
12 – – 323.0 153.4 440.4 4139.5 551.2
13 – – 415.6 2948.6 556.7 2008.3 657.2
14 – – – – 815.0 801.7 929.0

4.4.3 Initializing Tabu Search

As opposed to implicit enumeration methods, metaheuristics such as tabu search, require

a feasible solution to get started. Although this might be viewed as a disadvantage, when

 72

coupled with other methods, they can be used in a complementary way to improve upon

results obtained from those methods. In addition, because the computations can be

stopped at any point, metaheuristics are often the best alternative for solving real-world

problems that are intractable and not subject to decomposition.

Table 4.6 reports the improvements obtained with tabu search when started from

the “final” solutions given in Table 4.5 for DIPA, DIPA&DD and SOS. Also included

are the results obtained when started with the SSRA solutions. In each case, the final

objective value, the run time, and the percentage improvement are listed.

The first observation is that the better the quality of the initial solution, the less

improvement provided by tabu search. This is seen in the bottom row of Table 4.6 and is

consistent with intuition; i.e., poorer solutions leave more room for improvement,

although more improvement usually means that more time must be spent on the search.

A second observation is that while tabu search can improve a solution quite a bit, the

quality of the final solution is a function of the quality of the starting solution. For

example, tabu search improved the SSRA solutions by 43.84% on average, but only

improved the DIPA solutions by 1.82%. Despite this huge difference, the objective

function values at termination were respectively 2.7 and 1.3 times greater when the tabu

search was started with the SSRA solutions for data sets 9 and 10 than when it was

started with the DIPA solutions.

 73

Table 4.6. Tabu Search Started from Different Solutions

 DIPA DIPA&DD SOS SSRA

Data set
Obj.
value

Time
(sec)

Improve
-ment

Obj.
value

Time
(sec)

Improve
-ment

Obj.
value

Time
(sec)

Improve
-ment

Obj.
value

Time
(sec)

Improve
-ment

9 52.2 258.5 0.95% 60.7 273.4 0.82% 102.8 753.5 14.19% 140.2 1317.9 61.18%
10 177.0 62.8 2.69% 179.3 92.1 3.29% 200.3 105.8 10.30% 232.8 175.4 29.11%
11 − − − 292.8 929.6 2.53% 421.3 1002.3 6.77% 684.2 2420.2 42.85%
12 − − − 307.2 1897.1 4.89% 440.4 4139.5 20.10% 572.4 1253.8 51.97%
13 − − − 407.2 1586.5 2.02% 556.7 2008.3 15.29% 897.9 1723.5 38.19%
14 − − − − − − 815.0 801.7 12.27% 1036.3 1200.3 39.75%

Avg − − 1.82% − − 2.71% − − 13.15% − − 43.84%

 74

Chapter 5

Weekly Staff Scheduling with Workstation

Group Restrictions

As described in previous two chapters, the weekly staff planning problem can

solved in a two-phase manner if WSG restrictions are not required. First, a weekly shift

scheduling problem is solved for the entire facility to decide the work days, their length,

the daily start times, and the lunch breaks for each employee. Second, the task

assignment problem is solved to derive individual job assignments for each employee by

period over the planning horizon. Sufficient constraints are included in the shift

scheduling model to ensure overall feasibility. When WSG restrictions are part of the

input, the two-step approach fails because it is not possible to incorporate them in the full

model.

5.1. Problems Description and Formulation

As mentioned, most of the mail arriving daily at a P&DC is processed by automated

equipment that includes delivery bar-code sorters (DBCSs), multiline optical character

readers (MLOCRs), the input subsystem (ISS), and the output subsystems (OSS). This

equipment is arranged in WSGs and operated by different categories of employees. To

develop a model, let G = {WSG1,…,WSGν } be the set of ν WSGs and let R = (rgh) be a ν

× ν matrix that embodies the authorized movements between each pair (g, h) of elements

in G, where rgh = 1 if a worker with home base g ∈ G is allowed to move to h ∈ G, and 0

otherwise. An additional constraint is that each employee must spend at least as much

time at his home base as at any other WSG.

The matrix R can be represented graphically as a directed network. Figure 5.1

shows an example in which the nodes are the WSGs, the numbers in square brackets refer

to the number of workers whose home base is that WSG, and the arcs show the allowed

 75

movement. The absence of a link between two nodes, such as from BCS to OSS, implies

that a worker based at BCS cannot be repositioned to OSS even when there is idle time in

his schedule. In contrast, a worker whose home base is ISS can be sent to DBCS or OSS

as needed, but must spend a plurality of his time at ISS. It is important to note that such a

worker, once repositioned at OSS, for example, cannot then be assigned to BCS. This

constraint is one of the factors that greatly increase the difficulty of the scheduling

problem.

BCS
[76]

DBCS
[81]

OSS
[42]

ISS
[16]

MLOCR
[27]

Figure 5.1. Example of Movement Restrictions Network

5.1.1 WSG restrictions

In general, there are two types of restrictions. The first type is imposed by the skill

requirement of each WSG. An employee can move from his home base to another WSG

only if he is qualified to perform the operation at the new WSG. Figure 5.2 identifies the

18 skill levels in a P&DC, along with the permissible downgrading options. An “×” in a

cell means that a worker with the higher skill indicated on the left can substitute for a

worker with the lower skill indicated at the top, but not vice versa. For example, a P6-

FSMO flat sorting machine operator has greater skill than a P5-MPC mail processing

clerk, and so can be downgraded to perform the tasks associated with P5-MPC job

assignments.

The second type of restriction is managerial related and is typically a function of

 76

the facility layout. Even when two WSGs require the same skill level, movement

between them may be prohibited, or restricted to one direction only, due to physical

barriers or transit considerations. Irrespective of the rationale, both types of restrictions

are treated the same in the following model.

P6
-F

S
M

O

P
6-

G
E

P
6-

P
PD

M
O

P
6-

SS
M

O

P5
-M

P
C

P5
-F

SM
O

P5
-P

P
D

M
O

P4
-D

C
O

M
H

5

M
H

5-
EQ

M
H

5-
T

M
H

5-
M

PM
O

M
H

5-
S

SM
O

M
H

4

M
H

4-
SS

M
O

P6-FSMO N/A X X
P6-GE N/A X X
P6-PPDMO N/A X
P6-SSMO N/A X
P5-MPC N/A
P5-FSMO X N/A
P5-PPDMO X N/A
P4-DCO N/A
MH5 N/A X
MH5-EQ N/A X
MH5-T N/A X
MH5-MPMO N/A X
MH5-SSMO N/A X
MH4 N/A
MH4-SSMO X N/A

H
ig

he
r S

ki
ll

Lower Skill

Figure 5.2. Permissible Skill Downgrading

5.1.2 Notation and Formulation

The weekly staff scheduling model with WSG restrictions shares most notations and

constraints with the weekly shift scheduling model (3-1) because it also embodies the full

set of labor union, legal, and organization constraints specified by the USPS. In addition,

new variables and constraints are needed to take WSG restrictions into account. The

additional notation and the new model are presented as below.

Indices

g workstation groups, g ∈ G

e (dummy) idle WSG

Parameters

dtgD demand of WSG g for period t on day d

 77

 g(k) home base of employee k

 G(k) WSGs to which employee k can be assigned other than his home base

Sets

K(g) set of employees who can be assigned to group g

S(k,d,t) set of shifts that employee k is permitted to work on day d that cover period t

B(k,d,s) set of periods in the break window of shift s on day d for employee k

Sc set of casual shifts; each shift is 6 hours

Sc(t) set of casual shifts that cover period t

Decision variables

kdtgy (binary) 1 if employee k is assigned to WSG g for period t on day d; 0 otherwise

 dsgθ number of casual shifts of type s assigned on day d for WSG g

Model

 Minimize
7 7

1 2 3

1 (,) 1 () P L
kds kds k kd k k

d k K s S k d d k E d k K K

z c x c cγ µ
= ∈ ∈ = ∈ ∈ ∪

= + +∑∑ ∑ ∑ ∑ ∑

7

4 5

1P L
c

k k s dsg
d s S g Gk K K

c cτ θ
= ∈ ∈∈ ∪

+ +∑ ∑ ∑ ∑ (5-1a)

 subject to Eq. (3-1f)-(3-1r).

() ()c

kdtg dsg dtg
k K g s S t

y Dθ
∈ ∈

+ ≥∑ ∑ , d = 1,…,7; t = 1,…,48; g ∈ G (5-1b)

(, ,)

,kdtg kds
g G s S k d t

y x
∈ ∈

=∑ ∑ k ∈ K, d = 1,…,7; t = 1,…,48 (5-1c)

(, ,)

kdte kds
t B k d s

y x
∈

≥∑ , k ∈ K, s ∈ S(k, d), d = 1,…,7 (5-1d)

7 48 7 48

()
1 1 1 1

kdtg k kdtg
d t d t

y y
= = = =

≥∑∑ ∑∑ , k K∈ , ()g G k∈ (5-1e)

 {0,1}kdtgy ∈ , 0dtgθ ≥ and integer, , ,k d t∀ ,g (5-1f)

The objective function (5-1a) minimizes the total weekly cost of the existing

workforce. It is almost identical to (3-1a) except that the casual shift variable dsgθ is

 78

defined for each WSG. The full explanation of each item in the objective function can be

found in Section 3.1.2.

Regarding the constraints, (5-1b) ensures that the net workforce is sufficient to

cover the demand of each WSG for each period, each day of the week. The net

workforce is the total number of part-time and full-time employees who are assigned to

WSG g in period t, plus the number of casual shifts that are required when demand

exceeds supply. To ensure that the model does not grow without bounds, only 6-hour

casual shifts are considered. Constraint (5-1c) connects the shift assignment variables x

and task assignment variables y. Employee k can be assigned a task in period t only if he

is assigned to a shift that covers this period.

To account for breaks, (5-1d) guarantees that an employee spends at least one

period in the idle WSG during the break window of a shift that requires a break.

Constraint (5-1e) enforces the home base restriction for each employee. The left-hand

side represents the number of periods that employee k spends at his home base g(k),

which must be greater than or equal to the number of periods he spends elsewhere. The

set G(k) is derived from the matrix R. Variable constraints are defined in (5-1f).

5.1.3 Workforce Priorities

The staff scheduling problem addressed in this paper involves not only a multi-skilled

workforce, but cost-sensitive worker categories with different hourly rates for FTRs,

PTRs, PTFs, overtime and casuals. Although a manager would generally be driven to

minimize overall cost when constructing weekly schedules, labor agreements and

company policies may require that work be assigned in an order that conflicts with this

objective. For example, the contract between the USPS and its craft union prohibits

departures from the bid job assignments unless overtime is paid. The schedules of

flexible workers, however, can be adjusted with wide latitude to match demand. In some

situations, overtime can be allocated only when no more PTF hours are available; in all

cases, casuals can be called in only when there are no other options.

 79

If the cost structure is consistent with the priority ordering of the organization,

then model (5-1) will always provide the least cost solution and the priority requirements

will be satisfied automatically. In this case, casuals actually have the lowest hourly rates

but also have the lowest priority. To enforce priority requirements in general, it is

necessary to replace all the cost coefficients in (5-1a) with artificial, scaled values.

Suppose there are P wage categories and each is assigned a priority level p (0 ≤ p ≤ P

– 1), where the smaller the level the higher the priority. If a variable associated with

priority p in (1) has unit cost c0, then the penalized cost is set for this variable to c0 × 5p.

5.1.4 Need for Decomposition

The proposed model integrates the shift scheduling and task assignment problems, and

increases in size in proportion to the number of workers |K| and the number of WSGs |G|

for |T| and |D| fixed. For a moderate size problem with 200 workers and 4 WSGs, model

(1) – (18) includes about 200,000 integer variables and 100,000 constraints, and is

essentially unsolvable with a commercial code. The experience with CPLEX 8.1 shows

that more than 30 minutes just to solve the LP relaxation. To deal with this limitation,

two decomposition approaches will be introduced.

5.2. Network Splitting

The size of model (5-1) is O(|K|.|G|.|D|.|T|). The simplest and most natural idea is to

decompose it by WSG and solve the weekly scheduling problem for each WSG

separately. This strategy, however, removes the permissible links between WSGs so the

combined solution is likely to be far from optimal (some flow can be maintained by

downgrading idle time, but testing showed that this does not much benefit).

As an alternative, the WSGs can be partitioned into several mutually exclusive

subsets, G = ∪κ Gκ, depending on the value of |K| × |G|, and solve the resultant problems

in turn. The goal is to preserve as many links in the movement restriction network N =

(G, A) as possible while ensuring that feasible solutions to the original problem can be

 80

obtained quickly. As part of the procedure, idle time will be downgraded from one

subset to another, as permitted by the matrix R.

To find the best way to split the network N, a second IP is solved sequentially to

create the subsets. At iteration κ, the WSGs selected for subset Gκ are removed from the

network along with all arcs between Gκ and G \ Gκ in either direction.

Before presenting the model, some additional notations are introduced

Indices and parameters

g, h indices for WSGs

rgh 1 if there is a directed link from WSG g to WSG h; 0 otherwise

ng number of employees whose home base is WSG g

CL lower bound of the size of the subset

CU upper bound of the size of the subset

Wmax maximal number of WSGs that can be selected for a subset

Decision variables

χg (binary) 1 if WSG g is selected for the current subset; 0 otherwise

ψgh (binary) 1 if WSG g is selected and WSG h is not; 0 otherwise

Model

 Minimize z = ()0.5 g gh h hg gh
g G h G

n r n r ψ
∈ ∈

+∑∑ (5-2a)

 subject to L g g h U
g G h G

C n Cχ χ
∈ ∈

 
≤ ≤ 

 
∑ ∑ (5-2b)

 maxg
g G

Dχ
∈

≤∑ (5-2c)

 g h ghχ χ ψ− ≤ , , , g h G g h∀ ∈ ≠ (5-2d)

 { }, 0,1g ghχ ψ ∈ , , , g h G g h∀ ∈ ≠ (5-2e)

The objective in (5-2a) is to minimize the total weighted sum of the links affected

when the subset is identified. To see how this works, suppose that WSG g is selected to

 81

be in the current subset and WSG h is not, so ψgh = 1 and the links between g and h are

removed. In general, removing a link will lead to a suboptimal solution but determining

the actual degree of degradation is difficult. Because the possibility of movement along

link (g,h) is related to the number of workers whose home base is WSG g, this number,

ng, is used to weight the variable ψgh in the objective function. On the other hand, the

outbound links associated with the selected WSGs are not as critical as the inbound links

because idle time will be used to partially satisfy the demand of the remaining WSGs. To

take this into account, the weights on the outbound links are discounted by 50%.

The number of workers included in each subset is controlled by constraint (5-2b).

The upper bound, CU, is intended to limit the size of model (5-1) that will eventually be

solved to derive weekly schedules, while the lower bound, CL, is used to avoid

unnecessarily small subsets and the continuing need to split the network. This constraint

assumes a quadratic form that reflects the proportionality of problem with the product of

the total number of workers and the number of WSGs in a subset. Of course, all

quadratic terms can be linearized by introducing auxiliary variables and constraints as

follows: replace the term g hχ χ with the binary variable ξgh and add gh gξ χ≤ , gh hξ χ≤ ,

and 1gh g hξ χ χ≥ + + to the formulation. The 0-1 integer linear program that results can

be solved easily with a commercial code.

Because problem difficulty is more dependent on the number of WSGs than on

the number of workers, constraint (5-2c) is included to limit the size of Gκ. Constraint

(5-2d) coupled with the minimization objective, guarantees that ψgh equals 1 if and only

if WSG g is selected and WSG h is not. The χ and ψ variables are defined to be binary in

(5-2e).

 After solving the linearized version of (5-2), a check is made to see whether the

remaining WSGs satisfy the upper bound constraint (5-2b). If not, the network is split

again. All subsets are placed in a queue Q and solved in the same order in which they

were generated.

 82

Network_Splitting_Algorithm

Input: Set of WSGs G, movement restriction matrix R = (rgh), number of workers ng

for all g ∈ G, bounds CL and CU on the size of the subsets, and bound Dmax on

the number WSGs in a subset

Output: Queue Q comprised of subsets Gκ ⊆ G, such that Gκ ∩ Gl = ∅ and G = ∪κ Gκ

Step 0: (Initialization) Set up the movement restriction network N = (G, A), where A =

{(g, h) : rgh = 1 for all g ≠ h ∈ G }; set Q = ∅ and κ = 1.

Step 1: If 1G = or g U
g G

n C
∈

≤∑ , put Q ← Q ∪ G and stop; otherwise go to Step 2.

Step 2: Set up network splitting IP (5-2) and solve to get (),κ κχ ψ .

2a. Let Gκ = {g : 1g
κχ = for all g ∈ G} and put Q ← Q ∪ {Gκ}

2b. Put G ← G \ Gκ, A ← A \ {(g, h) : g ∈ Gκ or h ∈ Gκ}, and κ ←κ + 1; go to

Step 1.

BCS
[76]

DBCS
[81]

OSS
[42]

ISS
[16]

MLOCR
[27]

First cut Second
cut

Figure 5.3. Results from Network Splitting Algorithm

 IP (5-2) for the network given in Figure 5.1 contains 45 variables and 83

constraints. Using parameter values of CL = 100 and CH = 200, CPLEX is able to find a

solution in less than a second. The subset that is identified is G1 = {DBCS, ISS}, which

is placed in Q. After updating the network and solving, the subset generated is G2 =

 83

{MLOCR, OSS}. Because only one WSG remains, the algorithm terminates with Q =

({DBCS, ISS},{MLOCR, OSS}, {BCS}) . Figure 5.3 shows the two cuts.

5.3. Column Generation Heuristic

An interesting observation about model (5-1) is that it decomposes by worker when the

demand (5-1b) and overtime ratio (3-1o) constraints are dropped. This suggests that it

may be possible to solve much larger instances by applying Dantzig-Wolfe (D-W)

decomposition (i.e., column generation) to the LP relaxation of (5-1) and then branch and

price to solve the IP (Wolsey 1998). The advantage of this approach is twofold: first, the

LP bound obtained at the root node of the search tree with D-W is usually much better

than the bound obtained by solving the LP relaxation of the original model; and second,

much less memory is required with D-W because the subproblems (one for each worker

here) are solved separately. The subproblem results are used to construct the master

problem, which typically has relatively few constraints but potentially a large number of

columns. In this case, the master problem consists of the demand and overtime ratio

constraints.

Although memory limitations are not a concern with D-W, there is still a need to

solve, what turns out to be, an extremely large master problem. For model (5-1), trying

to use CPLEX to solve the master problem as an IP proved fruitless for all but the

smallest instances, so the idea of obtaining exact solutions with branch and price was

ruled out. Nevertheless, it was found that by using column generation in a limited way,

good feasible solutions can be identified in reasonable amount of time. When the

subproblems are solved iteratively, they produce individual weekly schedules that are

used to populate the master problem. In the formulation discussed presently, the master

problem is designed to select one schedule per worker in a way that satisfies the overtime

ratio constraint and as much demand as possible. Because all uncovered demand can be

assigned to casuals, a feasible solution can be readily generated from the current columns

of the master problem.

 84

5.3.1 Master Problem

In D-W decomposition, each column in the master problem represents a complete weekly

schedule for a worker, including the shift assignment for each workday, the break period,

and the task assignment by WSG for each period in the week. Let c be the index for

columns and let all other indices and parameters be the same as previously defined. In

addition, the following notations are introduced.

Parameters and sets
c
ks staffing cost of schedule associated with column c for worker k

c
ko overtime hours in schedule associated with column c for worker k

c
kl total number of working hours in schedule associated with column c for

worker k
c
kdtgX mapping parameter, 1 if schedule c associated with worker k covers period

t on day d in group g, 0 otherwise

C(k) set of columns associated with worker k

M large number

Decision variables
c
kλ (binary) 1 if column c associated with worker k is selected, 0 otherwise

Master problem (MP)

 Minimize
() c

c c
k k dsg

k K c C k d D s S g G
z s Mδ θ

∈ ∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑ ∑ (5-3a)

 subject to
() ()c

c c
kdtg k dsg dtg

k K c C k s S t
X Dλ θ

∈ ∈ ∈

+ =∑ ∑ ∑ , , , d D t T g G∀ ∈ ∈ ∈ (5-3b)

 Ratio
() ()

c c c c
k k k k

k K c C k k K c C k

o OT lλ λ
∈ ∈ ∈ ∈

≤∑ ∑ ∑ ∑ (5-3c)

()

1c
k

c C k

λ
∈

=∑ , k K∀ ∈ (5-3d)

 { }0,1c
kλ ∈ , ,c k∀ , 0dtgu ≥ and integer , ,d t g∀ (5-3e)

 85

The objective in (5-3a) is to minimize the total staffing cost. Because casuals

generally have the lowest priority, the second term is multiplied by a big M. Constraints

(5-3b) and (5-3c) are the equivalent of (5-1b) and (3-1o), respectively, but written in

terms of the schedule variables c
kλ instead of the original variables (xkds, γkd, µk, τk). The

parameters ()c
kdtgX are derived from the solution of the pricing subproblems, which are

presented next. The convexity constraint (5-3d) ensures that that exactly one scheduled is

selected for each worker.

5.3.2 Pricing Subproblem

The intent of the subproblem, which is defined in part by constraints (5-1c) – (5-1f), (3-1f)

–(3-1n) and (3-1p) – (3-1r), is to identify “promising” columns for MP. In the context of

linear programming, a promising column is one with a negative reduced cost. When MP

is re-solved with this column included, the new solution should be an improvement over

the current solution. If such a column exists for worker k, then it can be found by

minimizing a generic representation of the reduced cost for that worker. To formulate the

objective function for subproblem k, let 1
dpgα be the dual variable associated with the

demand constraint (5-3b), 2α the dual variable associated with the overtime ratio

constraint (5-3c), and 3
kα the dual variable associated with the convexity constraint (5-3d).

For each worker k, the reduced cost for column c in MP is

 ()1 2 3
ratio

c c c c c
k k dtg kdtg k k k

d D t T g G

s s X OT l oα α α
∈ ∈ ∈

= − − − −∑∑∑ (5-4)

 To put (5-4) into a form that can be used as an objective function, the coefficients

(), , ,c c c c
k kdtg k ks X l o must be expressed in terms of the original problem variables. Making

the appropriate substitutions and removing the column index c gives

 ks =
7 7

1 2 3 4

1 (,) 1
kds kds k kd k k k k

d s S k d d
c x c c cγ µ τ

= ∈ =

+ + +∑ ∑ ∑ 1
dtg kdtg

d D t T g G
yα

∈ ∈ ∈

−∑∑∑

 86

 2 3
ratio

(,) (,)
s kds ks kds k k

d D s S k d d D s S k d
OT l x o xα µ α

∈ ∈ ∈ ∈

 
− − − − 

 
∑ ∑ ∑ ∑ (5-5)

The first four components in (5-5) represent the weekly cost for worker k, while

the remaining components are the adjustments imposed by the MP dual values. In

formulating the subproblems, all the constraints in the original formulation (5-1) except

(5-1b) and (3-1o) are retained. However, several of those constraints decompose by

worker type and so are only included when applicable; e.g., constraint (3-1f) is for

regular workers, while (3-1g) is for flexible workers.

Subproblem k (SPk)

 SP
kz = Minimize{ ks : (5-1c) – (5-1f), (3-1f) – (3-1n), and

 (3-1p) – (3-1r) for k fixed} (5-6)

 Although (5-6) can generally be solved to within 1% of optimality by CPLEX in

less than 1 second, some cases take up to 10 minutes. When a problem instance contains

several hundred workers, this can be excess, so to prevent spending too much time

generating columns, the solution time of each subproblem is limited to 0.5 seconds. With

this restriction, it is possible that the solution to (5-6) will be suboptimal, or not even

integral, at termination. If the reduced cost associated with a feasible solution is negative,

then the corresponding column can still be added to MP; if no feasible solution is found

or the reduced cost of the feasible solution is nonnegative (this usually happened only

when there were a few columns in MP), then no columns are generated by the

subproblem. Because of the large number of subproblems, early termination of (5-6) was

not a limiting factor in optimizing MP.

5.3.3 Initial Columns, Column Management, and Feasible Solutions

Solving the LP relaxation of the master problem with D-W can be accelerated when the

process is initiated with good columns. In this case, each worker has a regular weekly

 87

schedule provided by SOS, so the corresponding columns, call them

(){ }1 1 1 1, , , : , , ,k kdtg k ks X l o k d t g∀ , can be used to start the computations. When the weekly

demand { }: , ,dtgD d t g∀ is close to the demand used by SOS to determine the permanent

workforce, these columns are close to optimal and provide much better convergence than

realized with a phase I procedure.

For problems with a large number of workers, the number of columns in MP

increases rapidly, eating up memory and reducing computational efficiency. To avert this

situation, the following column management procedure has been implemented. Each

time MP is re-solved, the basis status of each column is checked and the columns with an

“at lower” status for five consecutive iterations are removed. The status “at lower”

means that the variable is nonbasic at its lower bound. With this procedure, the number

of columns increases much more slowly and remains stable after a dozen or so iterations.

Approximately 10 columns per worker was the norm.

Most applications of column generation exhibit what is called a “tailing off

effect” where improvement slows as more columns are added. It is also experienced in

this problem, so rather than trying to solve the LP master to optimality, the D-W

computations is stopped if convergence did not occur within 10 – 30 minutes, depending

on the problem size. Based on the LP solution at that point, the three columns with

highest fractional c
kλ values were then selected for each k ∈ K and the corresponding

version of (5-3) was solved as an IP to get a feasible solution to (5-1). Even with only 3

× |K| columns for the λ variables, though, the resultant problem may still be beyond an

exact solution due to the large number of θ variables as well as the large number of

demand constraints in (5-3b).

5.3.4 Heuristic for IP Master Problem

If the overtime (OT) ratio constraint (5-3c) in MP is momentarily ignored, a set-

partition/set-covering-type problem with SOS constraints (5-3d) results. This observation

suggests that it may be possible to find good feasible solutions of much larger instances

 88

with a set-covering heuristic. The one proposed by Chvatal (1979) was adapted for this

purpose. The basic idea is to rank the columns according to their benefit-to-cost ratio and

pick the one with the highest ratio. The costs and benefits are then recomputed and the

process is repeated until all demand is covered. The idea can be combined with a

randomized procedure, such as GRASP (see Feo and Bard 1989), with just a bit more

effort.

 When D-W terminates, the first step is to compute the benefit-to-cost ratio of each

column in MP, including the columns that represent casual shifts. If column c for worker

k covers the demand of group g in period t of day d, then the marginal benefit of selecting

that column is 1/Ddtg. The total benefit is the sum of the marginal benefits over all days,

periods and groups, i.e.,
, ,

/c
kdtg dtgd t g

x D∑ . The ratio is computed as:

(), ,
/ /c c c

k kdtg dtg kd t g
r x D s= ∑ . Next a restricted candidate list consisting of the nlist highest

ratio values is constructed and one is selected randomly at the current iteration (nlist = 5

was used in the implementation). The corresponding column is added to the solution and

the demand Ddtg is updated for all d, t, g. Because only one column can be selected for

each worker in accordance with constraint (5-3d), all other columns for that worker are

removed from MP.

 To ensure that constraint (5-3c) is satisfied, the OT ratio associated with the

current solution is calculated after a column is selected and, if it is above 6%, only

columns with an OT ratio less than or equal to 6% will be considered in the next round.

Otherwise, all remaining columns are eligible. Note that with this scheme, it is possible

that the final OT ratio will be slightly higher than 6% in some cases.

 The process is repeated until all the demand is covered, implying that the selected

columns constitute a feasible solution. The entire process is repeated a predetermined

number of times to see whether a better solution can be found.

 89

5.3.5 Post-processor

A weekly schedule for each worker consists of as set of shift assignments and

complementary days off, overtime, and task assignments by WSG. Each of these

components is encoded either directly or indirectly in the parameters ()c
kdtgX that define

the columns in MP. Because of the flexibility in assigning tasks, however, it may be

possible to improve the results by removing some of the casual shifts once the tours are

determined. This is done by solving the task assignment problem separately with a post-

processor.

The task assignment problem can be viewed as a reduced version of model (5-1)

in which the shift variables (xkds, γkd, µk, τk) are fixed in accordance with the set of tours

found by the IP heuristic. As such, the working periods are known for each employee.

Let T(k, d) be the set of working periods for employee k on day d and let s(k, d) be the

shift specified for employee k on day d. To minimize the number of casual shifts

required for the week, the following IP is used to reassign tasks.

 θ* = Minimize
c

dsg
d D s S g G

θ
∈ ∈ ∈
∑ ∑ ∑ (5-7a)

 subject to
() ()c

kdtg dsg dtg
k K g s S t

y Dθ
∈ ∈

+ ≥∑ ∑ , d ∈ D, t ∈ T, g ∈ G (5-7b)

 1kdtg
g G

y
∈

=∑ , t ∈ T(k, d), k ∈ K, d ∈ D (5-7c)

(, , (,))

1kdte
t B k d s k d

y
∈

≥∑ , k ∈ K, d ∈ D (5-7d)

 ()kdtg k kdtg
d D t T d D t T

y y
∈ ∈ ∈ ∈

≥∑∑ ∑∑ , k K∈ , ()g G k∈ (5-7e)

 {0,1}kdtgy ∈ , 0dsgθ ≥ and integer , , , ,k d t g s∀ (5-7f)

 Model (5-7) is still quite large but much easier to solve than the original problem.

Computational experiences indicated that in most cases, it could be solved by CPLEX

within 10 minutes using a 1% stopping criterion. Regardless of optimality, though, the

 90

value of θ* in (5-7a) was always less than the comparable value in (5-3a) found by the IP

heuristic.

5.3.6 Details of Column Generation Algorithm

Following is the combined procedure that includes the solution of the master problem MP,

the subproblems SPk, the IP heuristic, and the post-processor.

Input: Permanent workforce K along with their bid jobs, updated weekly demand

{Ddtg : ∀ d, t, g}, workgroup restrictions R, remaining parameters and sets that

define model (5-1)

Output: Weekly schedules for the workforce S* = { }* :ks k K∈ , where ks =

(){ }, , , , , : , , (), (,)kds kdtg kd kd k kx y d D t T g G k s S k dγ δ µ τ ∈ ∈ ∈ ∈

Step 0: (Initialization) Let C(k) be the set of columns for worker k and let S(k) be the set

of schedules corresponding to columns in C(k). Let 0
ks be the long-term

schedule of employee k determined by SOS, and set C(k) = {0} and S(k) = { }0
ks .

Set up MP (5-3) with initial columns C(k) for all k ∈ K.

Step 1: (Column generation) Let c
kν be the number of iterations that column c associated

with employee k has been “at lower” basis status. Set c
kν = 0.

1a. Solve the LP relaxation of MP.

1b. For all k ∈ K and c ∈ C(k), if the basis status is “at lower,” then put c
kν ←

c
kν + 1; otherwise, put c

kν ← 0. If c
kν ≥ 5, then put C(k) ← C(k) \ {c} and

S(k) ← S(k) \ { }c
ks

1c. For all k ∈ K, solve SPk (5-6). Let SP
kz be the optimal objective function

value and let c
ks be the column that corresponds to the solution. If SP

kz < 0,

put C(k) ← C(k) ∪{c} and S(k) ← S(k) ∪ { }c
ks .

 91

1d. If SP
kz ≥ 0 for all k ∈ K or time limit is reached, go to Step 2. Otherwise, go

to Step 1a.

Step 2: (IP Heuristic)

2a. For all k ∈ K, let ()C k and ()S k be the set of columns and schedules,

respectively, for worker k selected for the IP master. Set ()C k = ∅, ()S k =

∅.

2b. Let i = argmax{ }: ()c
k c C kλ ∈ . Put ()C k ← ()C k ∪ {i}, ()S k ← ()S k ∪

{ }i
ks , and c

kλ = 0. If ()C k = 3, go to Step 2c; otherwise repeat.

2c. For all k ∈ K, remove all columns c∈ C(k) \ ()C k from MP.

2d. Solve MP as an IP with columns ()
k K

C k
∈∪ . Call the solution

()* * :c
k k Kλ λ= ∈ and denoted by c* ∈ ()C k , the corresponding columns.

2e. Extract *c
ks from ()S k and set *

ks = *c
ks for all k ∈ K.

Step 3: (Post-processing)

3a. Construct T(k, d) and s(k, d) from *c
ks for all k ∈ K and d ∈ D, and set up

the task assignment problem (5-7).

3b. Solve to get ()* *
ky y= and update the value of the corresponding

components in *
ks for all k ∈ K. Return S*.

The tour found in Step 2 and the task assignments found in Step 3 represent the

solution to the original problem. While several alternatives to Steps 1 and 2 were

explored in the development stages, they did not lead to any noticeable improvement, and

thus their results are not include in the computational report. One example was the

application of a GRASP, as described in Section 5.3.4, to solve MP using all the columns

in the final LP solution rather than just three for each worker.

 92

5.4. Experimental Results

A series of tests was performed to evaluate the tractability of the models and the

effectiveness of the network splitting and column generation heuristics in finding high

quality solutions. Three data sets were used corresponding to small, medium, and large

instances, respectively. With a few exceptions, only those associated with the small data

set could be solved directly with CPLEX. For the large data set instances, CPLEX was

not able to find any feasible integer solutions after several hours of computations.

Recall that in weekly scheduling at P&DCs, the size of the workforce and the bid

jobs are fixed, so overtime, extended part-time hours, and casuals are the options

available to meet changing demand. For each data set, five related scenarios were

investigated, each corresponding to a different level of demand with respect to the

baseline. They are denoted by 80%, 90%, 100%, 110%, and 120%, respectively, where

the “percentage” refers to the ratio of the actual weekly demand to the long-term demand

used by SOS to determine the permanent workforce. The former is obtained by

increasing or decreasing the mail arrival volumes by the given percentages and then

generating a new equipment schedule using the model developed by Zhang and Bard

(2005). In other words, the actual demand is not a period-by-period fixed multiple of the

long-term demand.

 In general, problems are easier to solve when the demand is close to or lower

than the baseline; i.e., the 100% scenario. In these cases, the optimal schedules are either

close to the bid job assignments or can be obtained simply by reducing part-time hours.

When the demand is above the baseline, the full set of options may be needed, making

the problem much more difficult to solve. Interesting, even when the demand is set to

100%, it is not always possible for either the network splitting algorithm or column

generation algorithm to find the optimal solution (which is the solution provided by SOS)

due to the presence of WSG restrictions. When the long-term problem is solved by SOS,

the solution includes the home base designation; when the weekly problem is solved, the

home base is fixed so additional constraints exist. The feasible region that results when

the network splitting algorithm is applied is likely to be tighter than the feasible region

 93

associated with the original problem so the optimal solution may not be feasible. The

fact that the column generation algorithm stops short of solving the full master problem

as an IP implies suboptimality.

All data used in the testing were provided by the Dallas P&DC. The algorithms

were coded in Java and run on a Dell PC with a P4-2.53G processor and 512mb of

memory. CPLEX 8.1 was used to solve all LPs and IPs included in the procedures. For

the latter computations, the MIP emphasis option was set to ‘feasibility’ and the built-in

feasibility heuristic was called at every 5 nodes in the search tree. Finally, it should be

mentioned that many more problem instances than those presented here were solved

during the development phase of the project. Because the results were invariant, the

summary is limited to examining the effect of model size on computational performance.

5.4.1 Small Data Set

The movement restriction network for the small data set is shown in Figure 5.4, which is

the same as the network in Figure 5.1 but with the BCS node and connecting arcs

removed. There are four WSGs and 80 workers, 65 being FTRs and 15 being PTFs. The

number of workers in each WSG is given in the square brackets.

In general, the size of a problem instance varies with the number for workers |K|,

the number of workgroups |G|, and the connectivity of the matrix R. Therefore, each

instance arising from the same data set should have the same dimensions. Table 5.1 lists

the size of the small data set problems after being tightened by CPLEX’s preprocessor.

Even with only 80 employees, they are already overwhelmingly large, with over 65,000

variables and 35,000 constraints.

Table 5.1. Small Data Set Problem Sizes

Demand
level

Number of
variables

Number of
constraints

Number of
non-zeros

Density of
A matrix

80% 66,524 35,831 834,678 0.04%
90% 67,199 36,045 838,183 0.03%
100% 67,163 36,009 837,793 0.03%
110% 66,934 35,957 837,229 0.03%
120% 67,358 36,081 838,499 0.03%

 94

DBCS
[50]

OSS
[15]

ISS
[6]

MLOCR
[9]

Figure 5.4. Movement Restriction Network for Small Data Set

 Table 5.2 displays the computational results obtained by solving (5-1) directly

with CPLEX. A 1-hour time limit and a 1% optimality gap were used as the stopping

criteria for all scenarios, which are listed in the first column. The second column gives

the IP solution and the third column the solution time in seconds. The next column

identifies the node in the search tree at which the best (optimal) was found. A “+”

signifies that the built-in heuristic found the solution. The column “Opt. gap” gives the

percentage gap between the feasible solution at termination and the best lower bound

using the artificial cost coefficients discussed in Section 5.1.3. In all experiments, the

order was part-time hours, (full-time and part-time) overtime, then casuals. As expected,

instances with 100% or less demand were easily solved to within 1% of optimality in less

than 65 seconds. In contrast, when the demand level was 10% above the baseline, more

than 11 minutes were required, and when it was 20% above the baseline, the best that

could be achieved was a 7.39% gap after the full hour.

Table 5.2. Computational Results Obtained with CPLEX for Small Data Set
Demand

level
IP

solution
Solution

time (sec)
Node best
solution

Opt.
gap

Weekly
cost

Average
PTF hours

OT
ratio

CAS
ratio Idle rate

80% $77,170 24.6 0+ 0% $77,170 11.87 0% 0% 27.61%
90% $78,071 29.4 0+ 0% $78,071 14.20 0% 0% 20.30%

100% $78,141 64.4 0+ 0.09% $78,141 14.47 0% 0% 16.77%
110% $80,610 689.2 500+ 0.53% $80,610 19.40 0% 0% 14.84%
120% $98,852 3609.7 735+ 7.39% $83,108 23.20 0.81% 0% 13.41%

 95

Because artificial cost coefficients are used in the objective function, the value of

the solution reported in column 2 of Table 5.2 does not reflect the true costs, which are

given in column 6. For the first four scenarios, these costs exactly match the IP value

because none of the options associated with the penalized costs is included in the

solutions. In particular, PTF hours in column 7 are well below the maximum, and both

the OT ratio (percentage of overtime with respect to total working hours) in column 8 and

the CAS ratio (percentage of casual hours with respect to total working hours) in column

9 are 0%. As desired, overtime kicks in only when the PTF hours are nearly exhausted.

For the 120% scenario, the average PTF hours approach the limit of 24 hours/week and

overtime is used to satisfy extra demand. No casuals are needed. The idle rate reported

in the last column is the percentage of total idle hours with respect to total working hours,

and is seen to decrease with demand.

 The network splitting and column generation algorithms were also tested on the

small data set instances in order to compare the quality of their solutions with the

solutions obtained with CPLEX The results are reported in Table 5.3. When the

network splitting algorithm was run, it produced the following two subsets: {DBCS, OSS}

and {AFCS, MLOCR}. Not surprisingly, this partition is different than one produced by

the first cut shown in Figure 5.3.

Using a time limit 10 minutes for each subset, the full problem can again be

solved quickly when the demand is low, but is much more difficult for the 110% and

120% scenarios (see column 3). The solution quality reported in column 2 also

deteriorates rapidly. Column 4 gives the percentage gap with respect to the solution

found by CPLEX, which goes as high as 357%. A comparison of the true weekly costs,

though, gives a much more favorable picture because the gap is only 4% on average. The

remaining four statistics are in line with the results in Table 5.1.

In contrast, the column generation algorithm is not noticeably affected by the

level of demand. The majority of time reported in column 3 is used to solve the LP

relaxation of MP, which, if left unchecked takes more than an hour due to the tailing off

effect. As a consequence, a time limit of 10 minutes was placed on the D-W

 96

computations for the small data set instances. The LP solution obtained at that point was

always within 5% of the optimal LP solution. In Step 2 of the algorithm, a 5-min time

limit was imposed when solving MP as an IP. CPLEX required anywhere from a fraction

of a second to several seconds to solve each subproblem (5-6), SP.

From column 3 in Table 5.3, it can be seen that the column generation heuristic

invariably required more time than the network splitting algorithm, especially for the

easy cases where the demand is low. This relative inefficiency is overshadowed by the

improved solution quality, with the difference increasing as the demand increased. On

average, the gap between the true weekly cost obtained with CPLEX and the column

generation heuristic was 3%.

Table 5.3. Computational Results for Small Data Set Obtained with Heuristics

Demand
level

Obj.
value

Solution
time (sec)

Gap
with IP

Weekly
cost

Average
PTF hours

OT
ratio

CAS
ratio

Idle
rate

Network splitting
80% $78,469 30.2 1.68% $78,469 15.4 0% 0% 28.70%
90% $91,299 28.8 16.94% $80,297 17.8 0.80% 0% 22.15%
100% $80,857 47.8 3.48% $79,339 17.4 0.14% 0% 17.91%
110% $241,503 625.6 199.59% $86,648 20.6 4.80% 0.20% 19.06%
120% $452,386 616.1 357.64% $89,105 22.6 5.86% 0.64% 17.15%

Column generation
80% $78,901 766.8 2.24% $78,902 16.6 0% 0% 29.16%
90% $87,149 933.6 11.63% $80,453 20.9 0% 0.15% 22.91%
100% $79,171 678.2 1.32% $79,171 17.4 0% 0% 17.79%
110% $120,904 940.5 49.99% $84,674 23.3 2.26% 0.49% 18.32%
120% $209,035 932.2 111.46% $86,605 23.3 3.15% 2.15% 16.42%

 When demand is low, the solutions found by either heuristic are still comparable

with the optimal solutions found by CPLEX. For the high demand scenarios, the gap gets

quite large primarily because of the use of scaled cost coefficients. A detailed

examination of the heuristic solutions revealed that the regular workforce was not used as

efficiently as possible due to the decomposition. As a consequence, it was necessary to

cover the increased demand with overtime, part-time hours, and casuals, which have

 97

lower priority than the regular workforce and hence higher costs. Ideally, the lower

priority options are used only after the regular workforce is fully engaged.

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

$450,000

$500,000

80% 90% 100% 110% 120%

Demand level

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IP

NS

CG

$70,000

$72,000

$74,000

$76,000

$78,000

$80,000

$82,000

$84,000

$86,000

$88,000

$90,000

$92,000

80% 90% 100% 110% 120%

Demand level

W
ee

kl
y

co
st

IP

NS

CG

 (a) (b)

Figure 5.5. Comparison of Costs for Small Data Set

Even with cost coefficient scaling, it was still difficult to find solutions with either

heuristic that strictly followed the priority order. For network splitting, while the

priorities are satisfied in each subset by design, they were rarely satisfied in the aggregate

because of the way the demand is distributed among the WSGs. On the other hand, the

column generation heuristic can accommodate the priority order of all options except for

the use of casuals, which are not included in the subproblems. In all other cases, the

subproblem solutions take into account the priorities and hence produce columns for MP

with appropriately weighted cost coefficients. When MP was solved as an IP at Step 2,

however, it was occasionally necessary to use casuals despite their high costs. The

reasons were twofold. First, the columns generated by D-W did not always contain

sufficient overtime or part-time hours. Second, the LP solution rarely required overtime

even when demand was high, so the three best columns almost never included it. The

results would probably have been the same if all the columns were used at Step 2.

 98

Without a full branch-and-price implementation, suboptimality can be expected for

virtually all data sets above the baseline.

Figures 5.5a and 5.5b plot the IP solution and the actual weekly costs,

respectively, as a function of demand. A close examination of the graphs reveals that the

differences are much less dramatic than indicated by the IP objective function values

when viewed separately.

5.4.2 Medium and Large Data Sets

The value of the heuristics is not obvious for the small data set instances because CPLEX

can find optimal or good solutions in a relatively small amount of time. For larger

problems, however, CPLEX was not able to find feasible solutions within several hours

of computations. To further test the heuristics, two additional data sets were investigated.

The medium data set is associated with the network in Figure 5.6a (the same as in Figure

5.1) and consists of 242 workers and 5 WSGs. The large data set consists of 228 workers

and 8 WSGs. The accompanying movement restriction network is displayed in Figure

5.6b.

BCS
[76]

DBCS
[81]

OSS
[42]

AFCS
[16]

MLOCR
[27]

BCS3
[23]

DBCS1
[37]

OSS
[42]

AFCS
[16] MLOCR

[27]

DBCS2
[28]

BCS1
[27]

BCS2
[26]

 (a) (b)

Figure 5.6. Movement Restriction Networks for Medium and Large Data Sets

 99

The network splitting algorithm divided the medium problems into 3 subgroups as

mentioned, and the large problems into 4 subgroups in the following order: {AFCS,

OSS}, {BCS2, MLOCR}, {DBCS1, DBCS2}, {BSC1, BCS3}. The solution time for

each subgroup was again limited to 10 minutes. For the column generation algorithm, a

time limit for solving the LP relaxation with D-W at Step 1 was set at 20 and 30 minutes,

respectively, for the two data sets. These values were halved to 10 and 15 minutes apiece

at Step 2 for solving MP as an IP.

Table 5.4. Medium and Large Data Set Problem Sizes

Demand
level

Number of
variables

Number of
constraints

Num of non-
zeros

Density of
A matrix

Medium data set
80% 202,138 104,861 2,608,147 0.01%
90% 205,375 134,635 2,816,463 0.01%
100% 206,830 105,744 2,629,689 0.01%
110% 207,437 105,784 2,632,936 0.01%
120% 207,667 105,904 2,634,778 0.01%

Large data set
80% 258,170 107,332 2,876,676 0.01%
90% 272,722 108,799 2,941,095 0.01%
100% 275,478 108,875 2,952,205 0.01%
110% 276,972 108,981 2,959,689 0.01%
120% 280,109 109,121 2,973,273 0.01%

The problem sizes for both data sets are listed in Table 5.4 and are seen to be

extremely large on all measures except the density of the A matrix. CPLEX could only

find an optimal solution to the medium 80% instance in less than an hour (1771 sec with

a 0.78% optimality gap) and to the medium 100% instance in 4005 sec with a 2.21%

optimality gap. For the 110% and 120% instances in the large data set, almost an hour

was needed just to solve the LP relaxation.

The computational results for the medium and large data sets are summarized in

Tables 5.5 and 5.6, respectively. The results are consistent with what was observed for

the small data set. In general, both heuristics can find feasible solutions in the time

allotted, but the gap between the solution and the LP lower bound is excessive in many

 100

cases, especially when the demand is high. In terms of solution quality, the column

generation heuristic found better feasible solutions than the network splitting algorithm in

most cases, as reported in column 7, ‘Weekly cost.’ However, the network splitting

algorithm runs quite a bit faster, especially for the low demand scenarios.

Table 5.5. Computational Results for Medium Data Set

Demand
level

LP
solution

LP time
(sec) Obj. value

Total
time (sec)

Gap with
LP

Weekly
cost

Average
PTF hours

OT
ratio

CAS
ratio Idle rate

Network splitting
80% $231,817 83.8 $233,769 110.8 0.84% $233,769 13.3 0% 0% 28.11%
90% $234,292 118.3 $301,327 704.7 28.61% $240,477 18.2 0.32% 0.05% 22.32%

100% $233,634 139.8 $351,443 736.2 50.42% $238,594 16.5 0.33% 0.09% 18.04%
110% $242,108 175.3 $687,049 1885.5 183.78% $253,736 23.1 2.29% 0.30% 18.52%
120% $293,491 277.0 $1,361,464 1856.9 363.89% $263,747 22.6 4.80% 0.68% 16.63%
Column generation
80% $231,817 83.8 $250,869 1954.6 8.22% $238,965 17.9 0% 0.09% 29.99%
90% $234,292 118.3 $316,606 1956.4 35.13% $242,049 19.7 0.14% 0.55% 23.20%

100% $233,634 139.8 $237,559 1438.0 1.68% $237,559 16.7 0% 0% 17.81%
110% $242,108 175.3 $411,687 1996.4 70.04% $261,154 22.7 4.24% 0.44% 22.29%
120% $293,491 277.0 $490,992 1979.5 67.29% $286,098 23.2 5.12% 0.59% 17.18%

Table 5.6. Computational Results for Large Data Set

Demand
level

LP
solution

LP time
(sec) Obj. value

Total time
(sec)

Gap with
LP

Weekly
cost

Average
PTF hours

OT
ratio

CAS
ratio

Idle
rate

Network splitting
80% $220,563 1002.5 $298,229 262.0 35.21% $229,942 16.5 1.99% 0.00% 26.37%
90% $224,702 1249.8 $776,023 1411.4 245.36% $240,845 19.3 4.17% 0.16% 20.97%

100% $223,382 897.6 $943,712 1854.9 322.47% $244,605 21.0 4.46% 0.35% 18.63%
110% $254,689 3408.0 $2,362,614 1927.7 827.65% $247,973 21.9 4.71% 1.56% 16.02%
120% $371,012 3275.8 $4,903,786 2450.0 1221.73% $253,829 22.5 5.16% 3.78% 14.60%

Column generation
80% $220,563 1002.5 $255,144 3471.6 15.68% $226,872 19.9 0.00% 0.23% 26.46%
90% $224,702 1249.8 $337,256 3681.1 50.09% $233,836 22.4 1.10% 0.76% 23.18%

100% $223,382 897.6 $225,661 3105.5 1.02% $225,661 19.0 0.00% 0.00% 13.67%
110% $254,689 3408.0 $438,428 4976.9 72.14% $251,993 23.1 5.05% 0.49% 16.02%
120% $371,012 3275.8 $1,082,380 3914.1 191.74% $258,978 23.9 5.72% 4.15% 16.18%

Another advantage of the column generation heuristic is that it does a better job at

solving the problem when the actual demand is close to or equal to the long-term

demand. This is because the bid job of each worker is used to initialize MP, and some or

all of these columns can be used to construct a good feasible solution. For both the

 101

medium and large data sets, no overtime or casuals were used for the 100% scenario.

Regarding the priority order, little more can be said than it is difficult for either

method to enforce it exactly. For the high demand scenarios, the results are very close to

the desired order. For the lower demand scenarios, a curious observation was made.

Depending on the algorithm and the particular data set, both the LP solution in column 2

and weekly cost corresponding to the IP solution in column 7 were higher for the 80%

and 90% scenarios than for the 100% scenario. This can explained by a combination of

suboptimality and a mismatch between the hourly demand patterns that are associated

with the 80% and 90% scenarios and the bid jobs of the permanent workforce. In the

latter case, the implication is that it may be better to maintain the same equipment

schedule that was used to construct the permanent workforce than to adjust it when the

weekly mail arrival volume falls.

5.4.3 Column Generation Post-processor

As discussed in Section 5.3.5, a post-processor is used to reduce the number of casual

shifts found by the IP heuristic. Table 5.7 gives the column generation results before and

after post-processing, which are seen to be quite impressive. Columns 2 and 3 indicate

that quite a few casual shifts were eliminated at Step 3 of the algorithm. In general, this

was almost always the case because many different task assignments exist for each one-

day schedule. In other words, the full MP may have columns with identical one-day shift

patterns but with different task assignments for each worker. Because the LP relaxation

of MP is not solved to optimality, the column with the best task assignment may not be

generated, which leaves room for improvement during post-processing.

In addition, the casual shifts have the lowest priority among all the scheduling

options but have the largest cost coefficients so the objective function value in (5-3a)

decreases markedly as casual shifts are eliminated. The output data in column 6 shows

that the objective function value decreased by approximately 45% on average. After

rescaling the cost coefficients, however, the true weekly cost only decreased by an

average of 1.5%.

 102

Table 5.7. Effectiveness of Post-processing

No. of casual shifts Objective function value Weekly cost Demand
level Before After Before After Decrease Before After Decrease

 Small data set
80% 9 0 $159,902 $78,902 50.66% $79,550 $78,902 0.81%
90% 18 1 $242,399 $87,149 64.05% $81,677 $80,453 1.50%
100% 0 0 $79,171 $79,171 0% $79,171 $79,171 0%
110% 31 3 $377,404 $120,904 67.96% $86,690 $84,674 2.33%
120% 44 13 $504,535 $209,035 58.57% $88,837 $86,605 2.51%

 Medium data set
80% 14 2 $364,869 $250,869 31.24% $239,829 $238,965 0.36%
90% 37 11 $576,856 $316,606 45.12% $243,921 $242,049 0.77%
100% 0 0 $237,559 $237,559 0% $237,559 $237,559 0%
110% 65 7 $943,437 $411,687 56.36% $265,330 $261,154 1.57%
120% 75 10 $1,082,743 $490,993 54.65% $290,778 $286,098 1.61%

 Large data set
80% 17 4 $379,644 $255,144 32.79% $227,808 $226,872 0.41%
90% 108 11 $1,225,256 $337,256 72.47% $240,820 $233,836 2.90%
100% 0 0 $225,661 $225,661 0% $225,661 $225,661 0%
110% 126 8 $1,507,179 $438,429 70.91% $260,489 $251,993 3.26%
120% 286 70 $3,075,880$1,082,380 64.81% $274,530 $258,978 5.66%

 103

Chapter 6

Long-term Staff Planning with WorkStation

Group Restrictions

In previous chapters, the problems surrounding weekly staff scheduling are

investigated. In the weekly stage, i.e. mid-term, the permanent workforce is given as an

input from the long-term scheduling, which determines the optimal size and composition

of a permanent workforce. The long-term scheduling problem has been studied

intensively and a decision support system known as SOS has been developed for long-

term planning at P&DCs. However, the workstation group restrictions have never been

addressed in any related researches. The purpose of this chapter is to investigate the

impact of WSG restrictions on the long-term staff scheduling.

6.1. Problem Definition

For a specific P&DC, given a set J = {WSG1,…,WSGn} of n workstation groups and an n

× n matrix R that embodies the movement restrictions between each pair (j,k) of elements

in J, the workstation group restriction-assignment problem (WGAP) is to find the

minimum size workforce required to meet the staffing demand over the planning horizon.

Here, R = (rjk), where rjk = 1 if a worker with home base j ∈ J is permitted to move to k ∈

J and 0 otherwise. An additional constraint imposed on the problem is that each worker

must spend at least as much time at his home base as at any other WSG. For example, if

worker 1 is assigned to WSG1 for 40% of the week, WSG2 for 15% of the week, and

WSG3 for 45% of the week, then WSG3 must be his home base.

The USPS planning model, which is highlighted below, was designed to construct

bid jobs for full-time regular employees and to develop weekly schedules for part-time

flexible employees. In the model, the workday is divided into 48 periods, each 30

minutes long. A regular employee works a shift of a predefined length and may start

during one of three intervals (used for accounting purposes only). This gives rise to 48

 104

different shifts, each 17 periods (8½ hrs) long including the lunch break, for full-timers.

For part-timers, there are generally 24 different start times and five different shift lengths,

making 120 different part-time shift types in all. Allowable shift lengths are 8, 10, 13, 15

and 17 periods, including the breaks where applicable. Model options include two

consecutive days off in a row for each bid job, the specification of a time band in which a

full-timer must start each of his or her shifts during the week, a lunch break window, a

minimum ratio of full-timers to part-timers, the assignment of 10-hour shifts four days a

week, and the use of downgrading. By choice, overtime and temporary labor are

excluded from the planning problem [see Bard et al. (2003) for the details, and Lin et al.

for an alternative system (2000)].

 While the solution to the tour scheduling problem specifies the work days and

shift assignments for each employee, it is often necessary to specify how that person will

be spending his or her time on a period-by-period basis. The corresponding task

assignment problem (e.g., see Campbell and Diaby 2002, Ernst et al. 2004, Wan 2005) is

typically solved in a post-processing stage of the computations. When a hierarchy of

skill categories exists, it may be possible to assign idle time in the schedule of a higher

skilled worker to cover demand of a lower skilled worker. This is known as downgrading

and can provide substantial cost savings (Bard 2004a, Bard and Purnomo 2005, Dawid et

al. 2001). Both of the algorithms proposed in the next section make use of this option.

6.1.1 Workstation Group Movement Restrictions

In P&DCs, task assignments are generally associated with a specific machine or WSG,

such as a DBCS or MLOCR (see Table B.1 for definitions). Although it is desirable that

each employee be assigned to a single machine for a full shift, this is not possible in most

cases because equipment schedules, which are derived from mail arrival profiles, do not

match shift lengths. Some operations might only be two or three hours long while others

may run up to 12 hours.

When skill substitution is permitted or when the same skills are used at different

WSGs, a certain amount of movement is necessary to avoid excess idle time. A ‘good’

 105

assignment of tasks is characterized by as few switches among WSGs as possible; that is,

one that minimizes some function of the total number of switches over the day for each

worker category.

 When demand is specified by WSG, the layout of a facility or a supervisor’s wish

to keep tight control over those in his or her area are two factors that may vastly

complicate the design and use of the workforce, regardless of its inherent flexibility. If

movement between all WSGs is possible, then the aggregate demand can be used and a

single problem can be solved. If there are some restrictions, then the situation becomes

much more challenging. For example, consider a facility comprised of three WSGs (G1,

G2, G3) with the following restrictions (see Figure 6.1a).

i. G1 ↔ G2 (workers in G1 can transit to G2 and vice versa)

ii. G1 → G3 (workers in G1 can transit to G3)

iii. G2 → G3 (workers in G2 can transit to G3)

G1

G2 G3

G1

G2 G3

 (a) (b)

Figure 6.1. Examples of workstation group restrictions

The scheduling problem for the facility can be approached sequentially by first merging

the demand at nodes G1 and G2, and then finding a solution for the combined data. Any

idle time in the solution for the workers assigned to G1 and G2 can be used to satisfy

demand at G3 before the problem associated with G3 is solved.

 Now consider the scheduling problem with the restrictions depicted by Figure

6.1b. Combining the demand of all three WSGs is inappropriate because workers whose

home base is G2 are not permitted to be assigned tasks at G3. If G1 and G2 are

combined and the corresponding problem solved, idle time of workers whose home base

is G1 can be allocated to satisfy demand at G3, but the opportunity to allocate idle time of

workers whose home base is G3 to satisfy demand at G1 will be lost. This can lead to

 106

suboptimal solutions. An additional complication arises due to the requirement that each

worker must spend a plurality of his time at his home base. No mathematical formulation

exists for this case, or the more general case in which the home base and the tasks

assignments must be determined concurrently.

6.1.2 Current System

A decision support system known as SOS has been developed for long-term planning at

P&DCs. The major computations involve the solution of a series of large-scale integer

programs (IPs) to determine overall workforce size and shift requirements, and the post-

processing of the results to construct tours (see Figure 6.2). The objective is to minimize

the cost of the permanent workforce. Principal inputs include demand in the form of a

weekly equipment schedule, and a set of parameter values that define the scenario under

investigation [see Bard (2004b) for a discussion of demand]. When the user requests

that ‘skill substitution’ be applied, SOS has the ability to move people across WSGs

during the solution of the task assignment problem. The hierarchical structure for doing

this is embedded in the downgrading matrix shown in Figure 5.2. Cells with an ‘×’

indicate that the skill identified on the far left in the corresponding row can substitute for

the skill listed in the top row of the corresponding column (see Table B.1 for skill

definitions). The shaded cells indicate that as a general rule, no substitution is permitted

between mail processors (P) and mail handlers (MH).

Equipment
schedule

 Initial
output

WSG
movement

restrictions

Days off
scheduling

Weekly
schedules
(FT, PT)

Staff levels
and shifts
(FT, PT)Scenario

parameters

Daily
assignments

Post-processing Input

Breaks

Figure 6.2. Schematic of the computation flow in SOS

 107

When the shift scheduling problem is solved, SOS does not distinguish WSGs

within the same skill category, so in the post-processing stage, workers are moved freely

from one WSG to another (in any direction) notwithstanding the substitution matrix. For

example, SOS will assign a worker from a DBCS group to an MLOCR group, or vice

versa, when idle time exists, because any P5-MPC can operate either of these machines.

The resultant task assignments, however, may violate the local movement restrictions,

implying that the solution provided by the tour scheduling model is infeasible. This issue

is addressed now.

6.1.3 Model Development

In theory, virtually all planning and scheduling problems can be formulated as set-

covering-type models in which each column represents a feasible assignment. In practice,

this is likely to produce problem instances with an impossibly large number of columns

(e.g., see Bechtold and Jacobs 1990). A constraint-based formulation has been used for

the tour scheduling problem which is manageable up to the point of including the

constraints associated with the task assignments and the WSG movement restrictions.

The former are handled with a heuristic that does not take into account the locations of

individual machines or the transit time between them. Hence, solutions may violate the

WSG movement restrictions. Two approaches are proposed to ensure feasibility. To

simplify the presentation, only a single worker category will be addressed, such as P5-

MPC, with the understanding that the ideas are completely general.

6.2. Sequential Procedure

The simplest way to accommodate movement restrictions is to treat each WSG separately

and solve the corresponding tour scheduling problems in turn. Unfortunately, the

aggregate solution is not likely to be very good due to the absence of any movement

between WGSs, even when permitted. A slight modification where idle time is allocated

appropriately after obtaining a solution for a particular WSG may only lead to a marginal

improvement in the overall results. Of course, if the movement restrictions matrix R

 108

indicates that all WSGs are completely connected, then it is optimal to solve a single

aggregate problem, post-process the results to obtain the task assignments, and then fix

the home base of each worker by determining where he spends the plurality of his time.

 For the intermediate cases, the procedure begins by representing R as a directed

network G = (V, A) similar to those depicted in Figure 6.1. The first step is to generate

clusters by combining nodes that are completely connected. For discussion purposes, a

cluster may include a single node, but when two or more nodes are included, there will be

two-way arcs between each pair in the graph.

At an intermediary stage in the aggregation process let C be the set of clusters and

denote the modified network by Ĝ = (C, A). A c1 ∈ C is selected arbitrarily and each

remaining cluster is scanned to see if one can be merged with c1. A cluster c2 ∈ C \ {c1}

can be merged with c1 if and only if every node j ∈ c1 has a two-way link with every

node k ∈ c2. If such a c2 is found, then all nodes in c2 are merged into c1 (i.e., c1 ← c1 ∪

c2) as well as the arcs associated with these nodes, and c2 is deleted from Ĝ . The search

is repeated starting with the new c1 and continuing until no pair of clusters can be found

that satisfies the merging conditions. When two clusters are merged to form c1, all arcs

between the nodes in c1 and the nodes in the original graph G, excluding the nodes in c1

(i.e., V \ c1), are retained.

The next step is to identify clusters with outbound arcs only and place them in a

queue Q. All such clusters are removed from Ĝ . It may be necessary to loop through Ĝ

several times because removing c and arcs (c, I(c)), where I(c) is the set of clusters that

have inbound arcs originating from cluster c, may produce additional clusters with

outbound arcs only.

When no more clusters can be removed from Ĝ , the search for loops begins.

Placing the remaining K clusters in the set C = {c1,…,cK} in arbitrary order, the step starts

with, say cluster c1, and select a c2 ⊂ C \ c1 such that at least one arc in the set {(c2, c1)}

exists. The process is repeated starting this time from c2 until a loop is identified, i.e.,

until a cluster is selected for the second time. The loop does not necessarily have to

include cluster c1. Let L = {c1,…,ck–1,ck}be the ordered set of clusters in the loop, where

 109

c1 = ck. The particular cluster c* in L that is being looked for is the one that has the

minimum number of inbound arcs from its immediate predecessor cluster, p(c*), in the

loop and remove all such arcs from Ĝ ; i.e., find c* = argmin{|{(p(c), c)}| : c ∈ L} and

remove arcs {(p(c*), c*)} from Ĝ . This breaks the loop. If c* in the resultant graph has

outbound arcs only, then it is removed from Ĝ and placed in Q. As mentioned, multiple

passes through Ĝ may be required because removing c* and its outbound arcs may

produce additional clusters with outbound arcs only.

 If there are still clusters that cannot be removed from the network, the process

continue to search for and break loops as described until all clusters are placed in Q. Let

A be the set of arcs that are dropped when merging two clusters and breaking loops, and

let A* \A A= be the set of remaining arcs. As desired, the graph G* = (Q, A*) is a

directed network without loops. The algorithm is now formally stated followed by a

justification of the reduction and loop breaking components. An example to highlight

each step is given at the end of the subsection.

Network_Reduction_Algorithm

Input: Movement restrictions matrix R

Output: Queue Q of independent nodes and clusters

Notation: P = path vector, E = set of inbound arcs along a path, Ai = set of arcs joining

cluster ci to its immediate successor cluster c* in path P, A* = set of arcs in

final directed network

Step 1: (Initialization) Use R to construct the directed graph G = (V, A) and the sets of

nodes O(j) and I(j) that have outbound links to and inbound links from node j,

respectively, for all j ∈ V. Put A* = A, C = ∅ and Q = ∅.

Step 2: (Cluster formation)

1. For each j ∈ V, create a cluster cj = {j} and put C ← C ∪ {cj}.

 110

2. For c ∈ C, find a cluster ĉ ∈ I(c) with two-way arcs between all j ∈ c and all

k ∈ ĉ . Put c ← c ∪ ĉ , C ← C \ { ĉ }, A ← A \ {(c, ĉ), (ĉ , c)}, and A* ← A* \

{(c, ĉ), (ĉ , c)}. Repeat until no more merging is possible.

Step 3: (Cluster ordering)

a. Let Ĝ = (C, A) and construct sets O(c) and I(c) for all c ∈ C

b. (Independent clusters) For all c ∈ C, if O(c) = ∅, put Q ← Q ∪ {c}, C ← C

\ {c}, A ← A \ {(c, ĉ) : ĉ ∈ I(c)}. Repeat until there is no c ∈ C such that

O(c) = ∅. If C ≠ ∅, go to Step 3c, otherwise stop.

c. (Finding and breaking loops) Let P = ∅, E = ∅. Start from any c ∈ C and let

c* = c.

i. If c* ∉ P, then go to Step ii, else go to Step iii.

ii. (Loop not found). P ← (P, c*). Pick any ci ∈ I(c*), let Ai = {(ci, c*)},

and put E ← E ∪ {Ai}. Let c* = ci and go to Step i.

iii. (Loop found). Let i* = argmin{|Ai| : Ai ∈ E}. Put A ← A \ Ai*, A* ← A* \

Ai*, and go to Step 2b.

It is straightforward to show the following.

Proposition 6.1. If the network G has no clusters with outbound arcs only, then

1. at least one loop exists in G, and

2. the reduction algorithm is guaranteed to find a loop at Step 3.

The algorithm terminates with C = ∅ and the ordered set Q. Also available are

the sets I(c) and O(c) for all c ∈ Q and A*, which can be used construct the graph G* = (Q,

A*). The final step is to solve the tour scheduling and task assignment problems for each

c ∈ Q in the appropriate order. Any idle time that exists in a shift that is associated with

a worker in cluster c is used to satisfy demand at nodes j ∈ I(c) as long as the home base

 111

constraint is not violated. Of course, idle time at leaf nodes cannot be assigned to other

clusters.

Example. The network in Figure 6.3 will be used to illustrate the algorithm. Each WSG

is represented by a node and the authorized movements are represented by the directed

arcs. The abbreviations in Table B.1 are used to identify the WSGs. The first step is to

convert all nodes to clusters and to place all clusters with outbound arcs only in Q. None

exists so the process goes to Step 2 and begin the merging procedure. Two choices are

available: either combine DBCS and AFCS or combine AFCS and MLOCR. The first

option is chosen, giving the reduced network shown in Figure 6.4. Further clustering is

not possible because no three nodes are completely connected.

BCS

DBCS OSS

AFCS MLOCR

Figure 6.3. Movement restrictions network for example

 Going to Step 3, loops must be broken in Ĝ and construct Q by ordering the four

clusters {DBCS-AFCS, BCS, OSS, MLOCR}. At each iteration, the ordering process

tries to find a cluster with no inbound links. If no such clusters exist, then one or more

loops are present in the network. To identify a loop, the search starts from any cluster c

and tries to build a path by joining c with a cluster in Ψ(c), and so on. If a cluster enters

the path twice, then a loop has been found. Because every cluster has at least one

 112

inbound link, Proposition 6.1 guarantees that a loop exists and that the algorithm will find

it.

BCS

DBCS-
AFCS

OSS

MLOCR

Figure 6.4. Network after clustering

Suppose the loop search starts from BCS. Then O(BCS) = {DBCS-AFCS, OSS}

and either one can be chosen to be the next cluster in the path. Suppose OSS is picked,

which gives the path BCS ← OSS. The current cluster is OSS and O(OSS) = {DBCS-

AFCS} which is added to the path to get BCS ← OSS ← DBCS-AFCS. Similarly,

MLOCR is added next to give the path BCS ← OSS ← DBCS-AFCS ← MLOCR. Note

that O(MLOCR) = {OSS, DBCS-AFCS }, OSS is picked arbitrarily, which is already in

the path so a loop has been found: OSS ← DBCS-AFCS ← MLOCR ← OSS.

Referring to Figure 6.4, it can be seen that there are two links from DBCS-AFCS

to OSS, two links from MLOCR to DBCS-AFCS, and one link from OSS to MLOCR, so

the loop is broken between OSS and MLOCR; i.e., the least number of links is removed.

The resultant network Ĝ is displayed in Figure 6.5(a).

 At this point, only MLOCR needs to be checked to see if it has any inbound links;

i.e., whether O(MLOCR) = ∅. Since this set is not empty, it cannot be removed from the

network and placed in Q. Repeating the loop identification process at Step 3 yields

 113

DBCS-AFCS ← MLOCR ← DBCS-AFCS, which is broken by removing the link from

DBCS-AFCS to MLOCR. The resultant network is shown in Figure 6.5(b) where

MLOCR now has no inbound links. Therefore, MLOCR is removed from Ĝ along with

its outbound arcs, and placed in the queue giving Q = {MLOCR}. Figure 6.6(a) depicts

the reduced network. The next cluster to be removed is DBCS-AFCS (see Figure 6.6b),

followed by OSS, and then BCS. The final ordering in Q is {MLOCR, DBCS-AFCS,

OSS, BCS}.

BCS

DBCS-
AFCS

OSS

MLOCR
(b)(a)

BCS

DBCS-
AFCS

OSS

MLOCR

Figure 6.5. Networks after breaking loops

(a)

BCS

DBCS-
AFCS

OSS

BCS

OSS

(b)
Figure 6.6. Network after removing the two clusters

 114

6.3. Iterative Procedure

A second approach to solving WGAP is to formulate it as an optimization problem.

Some compromise is needed, though, because an aggregate solution to the tour

scheduling problem (see Figure 6.2) in terms of workforce size and shift assignments, is

not likely to be feasible to the WSG constraints. Recall that the aggregate solution is

always feasible to the task assignment constraints so that problem can be solved with a

post-processor.

 In iterative procedure, the WSG constraints are ignored and a solution to the

relaxed tour scheduling problem is obtained. a second IP is then solved, which assigns

each worker in the solution to a home base as well as to a set of tasks over each shift that

is included in his or her tour. The objective is to minimize the number of uncovered

periods. If the optimal objective function value is greater than zero, then the solution is

not feasible to the WSG constraints and a new problem is solved with this demand as

input. Two options are considered.

1. The new demand new
jpd in period p for WSG j is the old demand old

jpd plus the

shortage sjp; i.e., new old
jp jp jpd d s= + for all p ∈ P, j ∈ J. The optimization process is

repeated until a feasible solution is obtained.

2. The new demand new
jpd = jps for all p ∈ P, j ∈ J and the sequential procedure is

called.

 In the developments, the following notation is used.

Indices and sets

i index for workers; i ∈ I

j, k index for workstation groups; j ∈ J

p index for periods; p ∈ P

P(i) set of periods that worker i is scheduled to be on duty during the week

I(j) set of WSGs that have inbound links to WSG j

O(j) set of WSGs to which a worker whose home base is WSG j can move

 115

Parameters

djp (demand) number of workers that are needed in WSG j during period p

Decision variables

xij (binary) 1 if WSG j is the home base of worker i, 0 otherwise

yijp (binary) 1 if worker i is assigned to WSG j in period p, 0 otherwise

sjp uncovered demand in WSG j during period p

Model

 Minimize z = jp
j J p P

s
∈ ∈
∑∑ (6-1a)

 subject to 1ij
j J

x
∈

=∑ , i I∀ ∈ (6-1b)

 1ijp
j J

y
∈

≤∑ , , ()i I p P i∀ ∈ ∀ ∈ (6-1c)

 ijp jp jp
i I

y s d
∈

+ ≥∑ , , j J p P∀ ∈ ∀ ∈ (6-1d)

 yijp ≤ xij +
()

ik
k I j

x
∈
∑ , , , ()i I j J p P i∀ ∈ ∀ ∈ ∀ ∈ (6-1e)

 {0,1}ijx ∈ , , i I j J∀ ∈ ∀ ∈ , {0,1}ijpy ∈ , , , ()i I j J p P i∀ ∈ ∀ ∈ ∀ ∈

 sjp ≥ 0, , j J p P∀ ∈ ∀ ∈ (6-1f)

 The objective function in (6-1a) sums the unmet demand determined by constraint

(6-1d). Constraint (6-1b) assigns each worker i to exactly one home base, while (6-1c)

limits the number of WSGs to which i can be assigned to at most one in period p. The set

P(i) is obtained from the solution of the relaxed tour scheduling problem and is

equivalent to the shift assignments for i over the week. When a solution to the tour

scheduling problem satisfies the WSG constraints, sjp = 0 for all j and p in (6-1d). This

implies that all demand can be covered by the available workforce I.

Constraint (6-1e) ensures that the movement restrictions specified by the matrix R

and embodied in the set I(j) are satisfied in a solution. If WSG j is the home base of

worker i, which is the case when xij = 1, then worker i can be assigned to any WSG k ∈

 116

O(j) ∪ {j} during each period p ∈ P(i). To guarantee that a worker spends more time at

his home base than at any other WSG one more constraint is needed:

 ()
() ()

| () | 1ijp ikp ij
p P i p P i

y y P i x
∈ ∈

≥ − −∑ ∑ , i I∀ ∈ , j J∀ ∈ , () \{ }k O j j∀ ∈ (6-1g)

If a worker is required to spend at least 50% of his time at the home base, then (6-1g)

should be replaced with

 ()
() () ()

| () | 1ijp ikp ij
p P i k O j p P i

y y P i x
∈ ∈ ∈

≥ − −∑ ∑ ∑ , i I∀ ∈ , j J∀ ∈ (6-2)

where the first summation on the right-hand side of (6-2) can be extended to k ∈ J \{j} to

strengthen the inequality.

If the inclusion of (6-1g) in the model makes the problem too unwieldy, a two-

stage heuristic might be a reasonable way to proceed. In the first stage, the optimal

solution (x*, y*, s*) to (6-1a) – (6-1f) would be found; in the second stage, x would be

fixed at x* and new values for (y*, s*) would be found with (6-1g) included for each

 i I∈ . This approach reduces the number of additional constraints by a factor of O(|J|).

a variation of this idea is used below.

Symmetry. In the task assignment problem, workers are indistinguishable from each other

so there can be a vast number of alternative optima. This kind of symmetry may

seriously undermine the performance of a branch and bound algorithm, as evidenced by

an extended search tree in which the same solutions appear repeatedly at different nodes.

One way to deal with this difficulty is to augment the basic model with suitable

symmetry-breaking hierarchical constraints. These constraints will tighten the LP

formulation of the problem, and therefore, have the potential to significantly reduce the

extent of the feasible region that must be explored during branch and bound. For the task

assignment component of the problem, the following constraint

 xij ≥ xi+1,j – 1,
\{ }

i k
k J j

x −
∈
∑ , i = 2,…,|I |–1, j J∀ ∈ (6-3)

 117

can be added to partially eliminate symmetric assignments of workers to home bases.

The second term on the right-hand side of (6-3) is 1 when worker i – 1 is assigned to a

home base other than j. In this case, the constraint is redundant; otherwise, it only

permits worker i + 1 to be assigned to WSG j if i is also assigned to j. As a consequence,

it is not possible for i and i + 2 to be assigned to WSG j but not i + 1. Nevertheless, it

does not rule out the case where i and i + k are assigned to WSG j and not i + 1, i + 2,…, i

+ k – 1, where k ≥ 3. To ensure that consecutive workers are assigned to the same home

base, it would be necessary to expand constraint (6-3) by including logic variables for

each of the prior workers and WSGs. This would add O(|I |·|J |) variables to the model.

 An alternative approach to the objective in (6-1a) is to minimize the number of

“switches” from one WSG to another; i.e., where worker i is assigned to WSG j and

worker i + 1 is assigned to WSG k. Let γij be a nonnegative variable equal to 1 if worker

i + 1 is assigned to WSG j and worker i is assigned to WSG k ≠ j, and 0 otherwise. The

following constraint is added to the model

 xij – xi+1,j + γij ≥ 0, i = 1,…, |I |–1, j J∀ ∈

and modify the objective function (6-1a) to be

 Minimize z = jp
j J p P

s
∈ ∈
∑∑ +

| | 1

1

I

ij
i j J

γ
−

= ∈
∑∑ (6-1a')

 Fortunately, γij can be treated as a continuous variable because it will always be 0

or 1 in an optimal solution. Also, it is not necessary to multiple the second term in (6-1a')

by a small positive constraint to ensure that the number of uncovered periods is

minimized before the number of switches, as in goal programming. Because the workers

are indistinguishable from each other, there is always an optimal solution in which the

minimum number of switches is achieved. A bound on this number is
, iji j

γ∑ ≤ |J | – 1.

WSG demand. If it is assumed that the number of workers assigned to a WSG is

proportional to its demand, then a constraint can be added to the model to tighten the

feasible region. Let Dj = jpp P
d

∈∑ be the total demand for WSG j, and order the WSGs

 118

such that D[j] ≥ D[j+1], where [j] is the WSG in position j. The following constraint

ensures that the number of workers assigned to [j] is greater than or equal to the number

assigned to [j+1].

 ,[] ,[1]i j i j
i I i I

x x +
∈ ∈

≥∑ ∑ , j J∀ ∈ \ {[J]} (6-4)

Although (6-4) is not a valid inequality for WGAP, if including it in model (6-1)

reduces the computational burden significantly, then the resultant degradation in the

solution may be justified. Moreover, solving the problem with (6-4) will provide an

upper bound that may be close to the optimal objective function value.

6.3.1 Complexity Issues

The WGAP addressed below is the one represented by model (6-1) in which the objective

is to minimize the number of uncovered periods. To see its complexity, the recognition

version of the problem is defined as follows.

Instance of WGAP: A finite number or workers m that must be assigned to one of n

WSGs, a set of periods P(i) that defines worker i’s schedule, a set of restrictions I(j) that

limit the movement of workers assigned to WSG j ∈ J, a list of nonnegative integers djp

specifying the demand for workers in period p for WSG j, and a list of nonnegative

integers sjp indicating the amount of demand not covered in period p at WSG j.

Question: Is there an assignment of workers to WSGs and then to periods within their

schedule such that at least jpj J p P
d

∈ ∈∑ ∑ – jpj J p P
s

∈ ∈∑ ∑ of the demand is covered?

Theorem 6.1 The recognition version of WGAP is NP-complete in the strong sense.

Proof. The proof starts with an instance of the directed m-commodity integral flow

problem (DmCIF) problem and show that it can be polynomially transformed into an

instance of WGAP in which a worker can be assigned to multiple WSGs. The

 119

recognition version of DmCIF is defined on a directed graph G = (V, A) with specific

vertices si and ei, capacity c(a) ∈ Z+ for each a ∈ A, and requirements Ri ∈ Z+, i = 1,…,m.

The following question is asked: Are there m flow functions fi : A → 0Z + such that

(a) for each a ∈ A, f1(a) + . . . + fm(a) ≤ c(a),

(b) for each v ∈ V \{s, e}, flow is conserved at v, and

(c) for i = 1,…,m, the net flow into ei under flow fi(a) is at least Ri?

Even et al. (1976) showed that D2CIF is NP-complete in the strong sense by

transformation from 3SAT and remains so when s1 = s2, e1 = e2 and when arcs are

restricted to carry only one commodity.

 To simplify things a bit, let Hi = |P(i)| be the number of periods in worker i’s

schedule and assume that i jpi I j J p P
H d

∈ ∈ ∈
=∑ ∑ ∑ ; that is, no worker has idle time (this

assumption is made to obviate the need to define a dummy WSG to take up the slack).

From a general instance of DmCIF the corresponding instance of WGAP is constructed

as depicted in Figure 6.7. In the network, there is one source node for each commodity

(worker) which is connected to n successor nodes J1, . . . , Jn -- one for each WSG. To

avoid introducing m more nodes, it is assumed that source node i has external supply Hi.

Following each WSG node j ∈ J is a subnetwork of size |J | × |P |. Let the flow

through this subnetwork represent the schedule of workers who are based at j (many arcs,

such as those from the n WSGs to periods 47 and 48, are not shown). In the example, a

worker whose home base is J1 cannot be assigned to Jn.

A node in the subnetwork is denoted by (j, p) and each entering arc has capacity

c(a) = 1 (not shown). These arcs are depicted in bold because they really represent up to

m arcs, one for each worker. For each i ∈ I individual arcs needed are those go from

each WSG node Jk to each subnetwork node (j, p) and from each node (j, p) to the other

nodes in the subnetwork as long as j ∈ ()kO J and p ∈ P(i); that is, as long as the WSG

restrictions are satisfied and i is scheduled to work in period p.

 120

1

 e1

J1 (1,1) (1,2) (1,3) (1,48)(1,47). . .

J2 (2,1) (2,2) (2,3) (2,48)(2,47). . .

Jn (n,1) (n,2) (n,3) (n,48)(n,47). . .

.

.

.
m

Workers

Workstation
groups

Periods

Sink

H1

H1

H1

Hm

Hm

Hm

d1,1

d1,2

d1,3

d2,3

d2,2

d2,1

dn,1

dn,2

dn,3

dn,47
dn,48

d2,47

d2,48

d1,48
d1,47[H1]

[Hm]

[R1]

Figure 6.7. Multicommodity flow network used in proof of Theorem 6.1

At the far right of Figure 6.7 there is a single sink node 1e that is connected to

each node in the subnetwork (not all arcs are shown). The capacity of the arc joining (j, p)

to 1e is djp and the capacity of each arc leaving source node i is Hi. Thus the maximum

flow into the sink node 1e is jpj J p P
d

∈ ∈∑ ∑ . Note that it is not required that all the flow

out of source node i ∈ I go to only one WSG node j ∈ J. This is a relaxation of

constraint (1g), which means that x is being treated as a continuous variable. To finish

the description of the general WGAP, set the parameter R1 = quantity of demand covered.

 These developments lead to the following observations.

1. If R1 = jpj J p P
d

∈ ∈∑ ∑ , a question should be asked: can all the demand be covered

with the existing restrictions; i.e., can sufficient flow be sent through the network so

 121

that no period is left uncovered? By setting R1 to a smaller value, say,

jpj J p P
d

∈ ∈∑ ∑ – jpj J p P
s

∈ ∈∑ ∑ , the equivalent question: can this portion of the

demand be covered?

2. There is always a solution in which there is no flow between any two nodes in the

subnetwork. This follows because such flow does not contribute to the total amount

of flow that arrives at e1.

3. The constructed instance of WGAP has a “yes” answer if and only if the recognition

version of DmCIF does.

4. The network in Figure 6.7 can be constructed in O(|I | × |J | × |P |) time so the

transformation is polynomial. Moreover, any candidate solution to WGAP can be

evaluated in O(|I | × |P |) time so it is in NP.

As a consequence, the version of the general WGAP where workers can be

assigned to more than a single WSG is NP-complete. Because that problem is a

relaxation of model (6-1a) – (6-1f) the result follows.

 Next question is what happens when the WSG assignments are fixed prior to

scheduling the workers.

Corollary 6.1 If xij is fixed for all i ∈ I, j ∈ J, then WGAP (6-1) reduces to a series of |P |

transportation problems.

Proof. Fixing the x variables means that each worker is assigned to a home base. The

general WGAP then reduces to

 Minimize z = jp
j J p P

s
∈ ∈
∑∑ (6-5a)

 subject to 1ijp
j J

y
∈

≤∑ , , ()i I p P i∀ ∈ ∀ ∈ (6-5b)

 ijp jp jp
i I

y s d
∈

+ ≥∑ , , j J p P∀ ∈ ∀ ∈ (6-5c)

 {0,1}ijpy ∈ , , , ()i I j J p P i∀ ∈ ∀ ∈ ∀ ∈ ,

 122

 sjp ≥ 0, , j J p P∀ ∈ ∀ ∈ (6-5d)

where the y variables only exist if they satisfy constraint (6-1e).

Model (6-5) decomposes by p. To see how a transportation problem results for

each p ∈ P, a bipartite network is identified, which has one source node with unit supply

for each i if p ∈ P(i), one dummy source node denoted by 0 with supply jpj J
d

∈∑ , and n

destination nodes with demand djp, j = 1,…,n. An arc exists between source node i and

destination node j if worker i is permitted to move to WSG j. All such arcs have zero

cost.

The supply at node 0 is used to cover any unmet demand in period p and the

leaving arcs all have unit cost. The associated flow is represented by the variable sjp.

Minimizing the cost of satisfying all the demand gives rise to a transportation problem.

Corollary 6.2 When xij is fixed for all i ∈ I, j ∈ J, WGAP given by (6-1g), (6-5) remains

NP-complete.

Proof. When constraint (6-1g) is added to (6-5), it is no longer possible to decompose the

problem by period. If worker i is assigned to WSG j (that is, xij = 1), this constraint

requires that the sum of the flow leaving WSG j and going to any other WSG in J \{j} be

less than flow going to the nodes (j, p) in the subnetwork associated with worker i. The

resultant problem is equivalent to what is called integral flow with bundles and is NP-

complete in the strong sense (Garey and Johnson 1979).

 To see the equivalence, assume that there are two WSGs and m workers, all of

whom are assigned to WSG J1 (this will be the source node). Let bundle Bi be the set of

arcs leaving the source node J1 and going to nodes (k, p) for k ∈ J\{j}, p ∈ P(i). Also, let

Bm+1 be the set of all arcs leaving the source node and Bm+2 all the other arcs in the

network. For 1 ≤ i ≤ m, () / 2
i

ia B
f a H

∈
≤∑ , for bundle m + 1,

1
() / 2

m
ia B i I

f a H
+∈ ∈

≤∑ ∑ ,

and for bundle m + 2,
2

()
ma B

f a
+∈

≤ ∞∑ . At the sink node e1, the requirement R1 is

 123

jpj J p P
d

∈ ∈∑ ∑ – jpj J p P
s

∈ ∈∑ ∑ . Thus, this special case of problem (6-1g), (6-5) has a

solution with no more than jpj J p P
s

∈ ∈∑ ∑ periods uncovered if and only if there is a

function f : A → 0Z + that satisfies the bundle requirements for the integral flow problem

defined above.

Because there is nothing in the proof of Corollary 6.2 that depends on worker

movement restrictions I(j), the following is true.

Corollary 6.3 When xij is fixed for all i ∈ I, j ∈ J, and movement between WSGs is

unrestricted; i.e., the set I(j) = J for all j ∈ J, the task assignment problem given by (6-1g),

(6-5) remains NP-complete.

6.3.2 Solving the Integer Programming Formulation of WGAP

Initial testing indicated that problem instances with more than about 70 workers and 3

WSGs with any number of restrictions could not be solved with CPLEX 9.0 within an

hour. To generate feasible solutions within an acceptable amount of time, it was

therefore necessary to design an approximation method. In model (6-1), there are three

sets of decision variables: x = (xij), y = (yijk), and s = (sjk). (Note that constraints (6-3) and

(6-4) are not included in the implemetation.) When the x variables are fixed, implying

that the home base of each worker has been decided, the model can be solved very easily.

Choosing the home base is a critical decision because it determines the permissible task

assignments, which may dramatically affect the objective value.

A two-stage approach is taken to the problem. In the first stage, the LP relaxation

of WGAP is solved to obtain the solution (), , ijx i I j J∀ ∈ ∈ and j* =

argmax{ }: ijx j J∈ for all i ∈ I. For a given fraction ρ ∈ [0,1], the home bases of ρ ×

100% of the workers are then fixed, beginning with those whose fractional solutions *ijx

 124

are the largest. Fixing all of the x variables would sacrifice too much in solution quality

and has not been necessary in practice.

Variable_Fixing_Algorithm

Input: Set of workers I, set of WSGs J, fixing ratio 0 ≤ ρ ≤ 1

Output: Set of home bases B = {bi, for all Ii ∈ } for the workforce

Initialization: Let Iω ρ= × be the number of workers to be fixed, set bi = –1 for all

Ii ∈ , L = ∅, and Z = ∅.

Step 1: Solve model (1) as an LP to get (), , ijx i I j J∀ ∈ ∈ .

Step 2: For all Ii ∈ , zi = { }max : ijx j J∈ , and Z ← Z ∪ {zi}.

Step 3: Reorder all zi ∈ Z from largest to smallest; break ties arbitrarily.

Step 4: Identify the first ω elements in Z and put their indices into L.

Step 5: For all i ∈ L, set bi = argmax{ }: ijx j J∈ and construct B.

If bi ≠ –1 in the output set B, then the home base of worker i is set such that *
ijx =

bi. In the second stage of the iterative procedure, model (6-1) is solved for y and s and

the remaining x variables. The collective steps for obtaining a solution to the original

problem are as follows.

Iterative_Algorithm

Input: Demand in form of equipment schedule {djp : ∀ j ∈ J, p ∈ P}, movement

restrictions matrix R, value of logical parameter SEQ, threshold parameter 0ρ

for calling variable fixing algorithm, and all other data elements that define the

long-term planning model SOS

Output: Size and composition of permanent workforce W*, including bid jobs, home

base (){ }* : ,ijx i j∀ , and task assignments (){ }* : , ,ijpy i j p∀

 125

Step 1: (Relaxed solution) Solve the shift scheduling component of SOS to generate the

workforce WSOS, and put W* ← WSOS.

Step 2: (Find home base and task assignments) Set up model (6-1) using WSOS, {djp : ∀ j,

p}, and R as input.

If (|I| × |G| ≤ 0ρ), then set ρ = 0; otherwise, set ρ ∈ [0.4, 0.6]

Call Variable_Fixing_Algorithm to get home bases B.

Solve model (1) with B to get optimal home bases, task assignments, and

uncovered demand: (){ }* : ,ijx i j∀ , (){ }* : , ,ijpy i j p∀ , (){ }* : ,jps j p∀ .

If U ≡ (){ }* : ,jps j p∀ = ∅, stop; otherwise go to Step 3.

Step 3: If (SEQ = <true>), then put new
jpd ← jps for all p ∈ P, j ∈ J and call the

sequential procedure to get WSEQ. Put W* ← W* ∪ WSEQ, update (){ }* : ,ijx i j∀

and (){ }* : , ,ijpy i j p∀ , and stop.

Otherwise, put jp jp jpd d s← + for all p ∈ P, j ∈ J and go to Step 1.

 At Step 1, the long-term tour scheduling problem is solved without WSG

movement restrictions to get a tentative permanent workforce, WSOS. The home base and

task assignments are made at Step 2, where the variable fixing algorithm is called if the

size of the problem, as measured by the number of workers times the number of WSGs

(|I| × |G|), is greater than some threshold 0ρ . As a guideline, 0ρ is usually set to be

around 200. If there is any uncovered demand, then go to Step 3 and use either the

sequential procedure to find the number of additional workers required to satisfy that

demand, or return to Step 1 with the original demand augmented by the uncovered

demand, and repeat the entire process.

 In the development of the algorithm, several variations are tried, including the

replacement of the demand variables sjp with shift variables, and an adaptive strategy for

setting the fraction ρ in the variable fixing algorithm. In the case of the former, the

 126

objective was to minimize the number of additional shifts needed to satisfy the uncovered

demand. In the case of the latter, no specific rule worked best. In general, it is found that

values of ρ smaller than 0.4 led to instances that were almost as difficult as when no xij

variables were fixed; for values larger than 0.6, it is also found that the solution quality

was not much better than obtained by fixing all the xij variables.

Example (cont’d). Consider again the network in Figure 6.3. When the iterative

algorithm is applied, the size of the workforce found by SOS in Step 1 is WSOS = 45. The

IP problem solved by SOS has 1529 variables and 1120 constraints. The optimality gap

is 1.3% after 302 seconds. At Step 2, model (1) is set up with WSOS. The model has

27,748 columns and 12,611 rows, and LP relaxation is solved in 310 seconds with 0

objective value. The fix rate ρ is set to 0.6, and model (1) is resolved with 60% of the x

variables fixed to generate the set of uncovered demand U. The problem is solved in

about 10 minutes, and the result shows that the number of uncovered demand is 2. At

Step 3, the sequential procedure is called to generate additional workforce to cover

demand U, and the additional workforce WSEQ = 1. So, the total workforce needed to

operation the facility is W* = WSOS + WSEQ = 46.

6.4. Computational Experience

To assess the performance of the two procedures, a series of tests was conducted using

data provided by USPS Dallas P&DC. For each of the three data sets, four closely

related scenarios were generated and compared. All scenarios had the same number of

WSGs but a different restriction matrices R. The networks for data set 1 are shown in

Figure 6.8 and are displayed in descending order according to the number of links in each.

Similarly, the networks for data sets 2 and 3 are shown in Figures 6.9 and 6.10,

respectively.

All computations were performed on a PC with dual Xeon 1.8G CPU, 1gb

memory, running SuSE Linux 9.0. The implementation was done in Java SDK 1.3,

 127

which calls CPLEX 9.0 to solve the integer programs. The barrier option was used at the

root node of all search trees to solve the first LP relaxation.

BCS

ISS MLOCR

(a)

(d)(c)

(b)

BCS

ISS MLOCR

BCS

ISS MLOCR

BCS

ISS MLOCR

Figure 6.8. Movement restrictions networks for data set 1

DBCS OSS

ISS MLOCR

DBCS OSS

ISS MLOCR

DBCS OSS

ISS MLOCR

DBCS OSS

ISS MLOCR

(a)

(d)(c)

(b)

Figure 6.9. Movement restrictions networks for data set 2

 128

DBCS OSS

ISS M LOCR

(a)

(d)(c)

(b)

BCS

DBCS OSS

ISS M LOCR

BCS

DBCS OSS

ISS M LOCR

BCS

DBCS OSS

ISS M LOCR

BCS

Figure 6.10. Movement resections networks for data set 3

6.4.1 General Results

Table 6.1 gives the tour scheduling solutions found by SOS when the WSG movement

restrictions are omitted from WGAP, i.e., the WSG networks are completely connected.

In this case, the aggregate WSG demand can be used to solve the tour scheduling

problem, and it will always be possible to post-process the results to obtain a feasible

solution. When restrictions are present, these solutions provide a lower bound on WGAP.

Although the lower bound is the same for all scenarios in a particular data set because the

demand is the same for each scenario, its quality is a function of the number of links in

the corresponding network and may be different for each scenario. When running SOS,

no PTRs were allowed and the FTR/PTF ratio was set to be ≥ 4.

 129

Table 6.1. Lower Bound for Each Data Set

Data set
Number of

workers
Number of

FTRs
Number of

PTFs
Total staffing

cost
Idle time Solution

time (sec)
1 205 165 40 $204,539 11% 305
2 72 58 14 $71,922 9.8% 302
3 45 36 9 $44,701 11% 304

The staff scheduling results obtained from the sequential and iterative procedures

are given in Table 6.2. In the case of the iterative algorithm, SEQ is set to be <true> at

Step 3 because this always proved to be the better choice. The column “No. of workers”

indicates the total number of employees needed to satisfy all the demand when the WSG

restrictions are enforced. The next two columns indicate how the workforce broken

down with respect to FTRs and PTFs. By design, each FTR was scheduled for exactly 40

hours, while the PTFs were assigned up to 24 hours per week on average, with their

number of workdays and shift lengths varying in the solution. This is reason why the

staffing costs are different among the various scenarios even though the workforce

composition is the same. For data set 2, for example, the solutions generated by the

sequential procedure for scenarios a, c and d all call for 63 FTRs and 15 PTFs, but total

staffing the costs differ by a fraction of a percent.

The quality of the solutions in Table 6.2 can be judged, in part, by their distance

from the lower bound provided by the SOS solutions in Table 6.1. From the data in

column 6, the average gap between the solutions found by the sequential procedure and

the lower bound is computed to be about 12%. In general, as the number of links in the

networks shown in Figure 6.8 – 6.10 decreases, the gap increases, although not uniformly.

What can be observed from the data is that the ability to merge WSGs into clusters helps

to improve the solution quality. In particular, see scenarios a and b for data set 1, and

scenario a for data set 3. For data sets 1 and 3 no merging is possible for scenarios c and

d. For data set 2, merging is only possible for scenario a but no advantage is gained, at

least with respect to scenarios c and d.

 130

Table 6.2. Results for Sequential and Iterative Procedures

Sequential procedure Iterative procedure
Scena
-rios

No. of
workers

No. of
FTRs

No. of
PTFs

Staffing
cost

Gap
with LB

Idle
time

No. of
workers

No. of
FTRs

No. of
PTFs

Staffing
cost

Gap
with LB

Idle
time

 Date set 1
a 221 178 43 $220,427 7.77% 17.4% 205 165 40 $204,539 0% 11.0%
b 229 184 45 $223,521 9.28% 18.3% 205 165 40 $204,539 0% 11.0%
c 235 189 46 $229,996 12.45% 20.6% 205 165 40 $204,539 0% 11.0%
d 235 189 46 $230,159 12.53% 20.7% 215 174 41 214866 5.05% 15.0%

 Data set 2
a 78 63 15 $77,355 7.55% 16.0% 72 58 14 $71,922 0% 9.8%
b 80 65 15 $79,171 10.08% 17.8% 74 60 14 $74,170 3.13% 12.4%
c 78 63 15 $77,157 7.28% 15.7% 75 61 14 $75,294 4.69% 12.4%
d 78 63 15 $77,297 7.47% 15.9% 75 61 14 $75,294 4.69% 13.5%

 Data set 3
a 50 41 9 $49,842 11.50% 19.9% 45 36 9 $44,701 0% 11.0%
b 54 44 10 $52,699 17.89% 24.0% 45 36 9 $44,701 0% 11.0%
c 54 45 9 $53,484 19.65% 25.0% 45 36 9 $44,701 0% 11.0%
d 55 45 10 $53,449 19.57% 24.9% 53 44 9 $53,693 20.12% 24.1%

The solutions found by the iterative procedure were significantly better than those

found by the sequential procedure. Using a 1% optimality gap or 30 minutes as the

stopping criteria, and variable fixing fractions of 0.6, 0.6, and 0.2, respectively, for the

three data sets, the next to last column in Table 6.2 indicates that seven out of the 12

instances reached their lower bound (LB) when model (1) was solved. Thus the optimal

solution was obtained at Step 2 without requiring any additional computations. For these

scenarios, the data in column 7 represents the true optimality gap for the sequential

procedure. Of course, when the “Gap with LB” reported in Table 6.2 is greater than 0,

there is no way of confirming whether the current solution actually minimizes the cost of

the workforce, the original objective. Figure 6.11 plots the results for the two procedures.

For the seven scenarios solved to optimality, it might appear that the WSG

movement restrictions played no part in the problem. The number of workers and the

cost, however, do not give the full picture. The fact that there is roughly 10% idle time in

the LB solutions (see Table 6.1) suggests that there are multiple optima to the

 131

unrestricted task assignment problem. The one found by the algorithm built into SOS

rarely, if ever, satisfied the WSG restrictions, hence the need to solve model (6-1). In the

remaining five scenarios, the gap between the iterative solution and the lower bound

ranged from about 3% to 20%. In only one scenario did the sequential procedure to

better.

$190,000

$195,000

$200,000

$205,000

$210,000

$215,000

$220,000

$225,000

$230,000

$235,000

a b c d

Scenario

S
ta

ffi
ng

 c
os

t

Sequential
Iterative
LB

(a)

$68,000

$70,000

$72,000

$74,000

$76,000

$78,000

$80,000

a b c d

Scenario

S
ta

ffi
ng

 c
os

t

Sequential
Iterative
LB

(b)

 132

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

a b c d

Scenario

S
ta

ffi
ng

 c
os

t

Sequential
Iterative
LB

(c)

Figure 6.11. Comparison of sequential and iterative procedures

Another observation that can be made about the iterative solution is that it is

highly correlated with the number of links in the network––the fewer the links, the larger

the gap. Fewer links mean more restrictions, so it is less likely that the relaxed solution

will be feasible when the movement restrictions are considered in model (6-1). Situations

in which the sequential procedure might do better occur when the difference between the

SOS solution and the iterative solution is large, which would be evidenced by a large

amount of uncovered demand at Step 2. In particular, when there are few links in the

network, the optimal size of the workforce may be far from the SOS solution so

uncovered demand will be high. Because the corresponding instances of (6-1) are more

difficult to solve for these scenarios, the solutions obtained may not be optimal,

especially when a high fraction of variables is fixed (i.e., ρ close to 1). In any case, the

workers added at Step 3 usually have a very large amount of idle time in their schedules,

which suggests that the sequential approach may provide a smaller workforce.

6.4.2 Variable Fixing Results

The computational results obtained by attempting to solve model (6-1) with both CPLEX

and the variable fixing algorithm are displayed in Table 6.3. In all cases, a 30-minute

 133

time limit was placed on CPLEX for all values of ρ and CPLEX’s built in heuristic was

called every 10 nodes. When the variable fixing algorithm was used, additional time was

allowed at Step 1 of the iterative algorithm for solving the LP (which could take several

minutes) and at Step 3 for running the sequential procedure (which took a few seconds at

most).

The data in columns 2, 3 and 4 indicate that large-scale instances are the norm

even when there are relatively few restrictions in the network. Nevertheless, column 7

shows that seven out of the 12 scenarios were solved to optimality within 30 minutes by

CPLEX. A 0% gap was always achieved, with the feasible solution always being found

by the CPLEX heuristic. In the same amount of time, a feasible solution with about a

90% gap was obtained for scenario d in data set 3. For the four remaining scenarios,

CPLEX was not able to find an integer feasible solution. The corresponding LP bounds

were all 0 or close to 0, and closing the (relatively large) gaps proved difficult.

The variable fixing rates for the different data sets are listed in column 10. For

larger instances, it is generally more difficult to find optimal or even feasible solutions, so

more variables must be fixed to make them tractable. As shown in column 11, the

variable fixing (V-F) algorithm found the optimal solution for the same seven scenarios

that were solved by CPLEX (i.e., when ρ = 0). With respect to solution time, variable

fixing does not provide any advantage for these cases because the LP relaxation needs to

be solved first to decide which variables to fix. The real advantage is apparent for the

remaining cases where good feasible solutions were found. For scenario d in data set 3,

for example, the number of uncovered periods fell from 169 to 60.

 For the variable fixing algorithm, the fraction ρ must be decided in advance. If

this value is too low, the resultant problem may be too difficult to solve; if it is too high,

the quality of the solution may suffer because many good assignments may be ruled out.

Tables 6.4 gives the solutions for different values of ρ for data set 2. The results for the

other two data sets are not shown because most of the instances were solvable with ρ = 0.

 134

Table 6.3. Performance of Variable Fixing Algorithm for Model (6-1)
Scen
-ario

No. of
columns

No. of
rows

No. of
non-zeros

LP obj.
value

LP time
(sec)

CPLEX
obj. value

CPLEX
time (sec)

Opt.
gap

Fix
rate

V-F
solution

Solution
time (sec)

 Data set 1
a 32,883 25,304 167,779 0 12.4 0 173.0 0% 0.6 0 703.7
b 30,798 23,718 145,067 0 12.1 0 167.4 0% 0.6 0 175.9
c 30,769 33,600 159,940 0 27.3 0 151.2 0% 0.6 0 145.4
d 30,770 37,671 159,732 9.9 26.2 – 1800.0 – 0.6 34 1881.6

 Data set 2
a 15,603 14,497 109,186 0 10.3 0 1772.5 0% 0.6 0 1265.1
b 15,651 19,515 113,230 0 18.5 – 1800.0 – 0.6 5 1856.4
c 15,651 19,488 108,963 0 15.8 – 1800.0 – 0.6 7 1835.2
d 15,651 19,416 98,685 0 19.8 – 1800.0 – 0.6 15 2026.9

 Data set 3
a 12,607 12,359 102,250 0 13.3 0 618.9 0% 0.2 0 626.2
b 12,611 15,115 102,830 0 14.3 0 1024.2 0% 0.2 0 1029.1
c 12,611 15,070 94,716 0 17.1 0 1324.4 0% 0.2 0 1659.3
d 12,611 15,003 84,649 13.8 20.9 169 1808.4 89.45% 0.2 60 1834.8

Table 6.4. Influence of Fixing Rate on Uncovered Demand

Value of fixing parameter, ρ
Scenario 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a 0 0 0 0 0 0 0 0 0 102 330
b – 18 211 12 12 7 5 7 14 31 235

c – 27 19 26 10 10 7 13 25 28 440
d – 21 21 31 25 16 15 20 24 36 314

 Figure 6.12 plots the uncovered demand as a function of the fixing rate ρ. As

expected, solution quality deteriorates rapidly for large values of ρ, say above 0.8. When

the fixing rate is low, the solutions are good for all scenarios except b when ρ = 0.2.

Although this appears to be an anomaly, it becomes much more difficult in general to

find good solutions as the problem size grows, so setting ρ too low may yield poor results.

For this data set, the best solutions were obtained by setting ρ = 0.6 for all instances.

However, the “optimal” fixing rate is not necessary the same for all scenarios and

problem sizes. According to the computational experience, though, solution quality was

relatively stable for ρ between 0.4 and 0.6.

 135

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fixing rate

U
nc

ov
er

ed
 d

em
an

d

a b c d

Figure 6.12. Parametric analysis of variable fixing fraction, ρ

 136

Chapter 7

Summary, Future Work, and Conclusions

This research addressed the issues surrounding staff scheduling in organizations

that face changing demand patterns that peak for short periods during the day. The

results validate the use of optimization as a decision aid for managers who must

continually adjust their staffing levels in light of changing demand and absenteeism. In

the service industry, short-term adjustments play a critical role in both minimizing

operational costs and meeting business objectives. For the USPS, these are ever-present

concerns due to declining mail volumes, a fixed permanent workforce, and limited

scheduling flexibility. Strict labor laws and union agreements prevent management from

altering the size of the permanent workforce or even modifying the bid jobs. As a

consequence, they must try to exploit the other options available to them such as the use

of overtime, the extension of part-time hours, and the use of casuals as a last resort.

 A new model was developed and tested for the weekly shift scheduling problem

in Chapter 3. The analysis indicated that instances two to three times larger than any of

those described in the literature can be solved with the proposed methodology, well

within 5 – 10 minutes in most cases. This represents a sizable leap in capability, and is

expected to result in tens of millions of dollars in annual saving for the USPS when

implemented nationwide over the next three years. With respect to the performance of

the feasibility heuristic, it is believed that one of the reasons why convergence was so

rapid is because the search is indirectly limited to a small neighborhood of the target

solution. That is, a local rather than a global solution is being sought. For large-scale

integer programs, however, minimizing some measure of the deviation from a target may

be more difficult than solving the original problem directly because of the additional

constraints and variables needed to linearize the deviation terms. Nevertheless, one of

the benefits offered by this type of approach is that it allows the user to strike a balance

between the computational effort required to solve large-scale MILPs and the quality of

solutions obtained. For practical purposes, when the actual demand is close to the

 137

planned demand, solving the problem directly with a commercial code is recommended.

For the more difficult cases, the target heuristic embodied in method 1 looks like the

better choice.

In Chapter 4, both exact and heuristic methods were developed and tested for

solving the task assignment problem. Included were a delayed idle period assignment

algorithm, a daily decomposition algorithm, and tabu search. The computational results

indicated that the exact method is only practical for very small instances, while daily

decomposition can reliably provide near-optimal solutions for problems of moderate size.

The advantages of tabu search only came into play for the large instances that were not

solvable with the other methods.

As part of the analysis, the effectiveness of tabu search was also investigated

when started from different feasible solutions. The results underscored the importance of

good initial solutions, at least for the TAP. Although tabu search has the ability to

transcend local optimality, it was found that an excessive amount of time was needed to

make up the difference in objective function values when started from a poor solution

compared with starting from a good solution.

 In Chapter 5, a new model was presented for the weekly staff scheduling problem

with workstation group restrictions. Finding optimal solutions with a commercial code

proved difficult for all but relatively small instances. The size of the integer program that

had to be solved was considerably larger than existing formulations due to the need to

account for the position of each worker during each period of the week.

 In light of this difficulty, two heuristics were developed that were shown to

provide good feasible solutions in a reasonable amount of time. The first splits the

movement restriction network into manageable pieces and then solves the scheduling

problem for each piece in turn. The second takes advantage of problem structure and

uses Dantzig-Wolfe decomposition to generate good weekly schedules for each worker.

Feasible solutions were then constructed by solving a restricted version of the D-W

master problem to optimality. Although the network splitting algorithm found feasible

 138

solutions in less time, the solution quality of the column generation heuristic was

consistently better.

 The focus of this research was mainly on the weekly scheduling problems.

However, the workstation group restrictions discussed in Chapter 5 is also commonly

encountered in long-term staff planning. In Chapter 6, two procedures were developed as

part of the process of constructing a permanent workforce to directly account for the need

to limit the movement of workers when assigning them tasks during the day. The first

approach is based on the idea of converting a general description of the problem into a

directed network in which each node represents a workstation group and each arc

represents the permissible flow. In the derivation of the network, some compromise was

needed to obtain feasible solutions. In the second approach, a relaxed solution to the shift

scheduling problem is computed which serves as input to a second integer program

whose objective is to minimize the uncovered demand over the planning horizon. Any

shortages that are identified are handled with one of two ways: either they are added back

to the original demand and the process is repeated until all requirements are satisfied, or

the first approach is applied with the incremental demand as input. Extensive

computational testing showed that the iterative procedure with variable fixing provided

the better results. Problem instances with hundreds of employees and five workstation

groups were solved to (near) optimality within 30 minutes in most cases.

Future Work

The biggest challenges for this research are due to the full set of labor union, legal, and

organization constraints specified by the USPS, and the intimidating sizes of the

optimization problems encountered. More advanced computational approaches might be

worth trying.

Other approaches to solving model (4-2) exactly that might be worth investigating

include branch and price and Lagrangian relaxation. Both of these methodologies have

the potential to exploit the fact that when the demand constraint (4-2e) is removed from

the model, the TAP decomposes into n shortest route problems, one for each worker.

 139

Although neither branch and price nor Lagrangian relaxation will provide better lower

bounds than the LP relaxation, they are likely to reduce the overall computational effort

because the accompanying subproblems would be much smaller than the full LP

relaxation. With some additional computations, they may also provide good feasible

solutions for initializing tabu search or some other metaheuristic.

 The priority in which scheduling options should be used to meet demand was

discussed in Section 5.1.3. Neither heuristic presented in Chapter 5 could guarantee strict

enforcement in all cases. With this in mind, areas of future research might include the

development of more robust methods for generating individual schedules, the use of

intelligent heuristics for solving a larger-scale master problem, and a more adaptive

approach to splitting and then partially reconstructing the network to allow more links to

be considered in a solution.

 Although the results shown in Chapter 6 are promising, from a methodological

point of view, it is still desired to be able to solve larger instances with the same degree

of accuracy. One possible approach would be to develop a column generation scheme

based on decomposing the problem by either workstation group or employee. Another

area for future research concerns post-processing the solution with the goal of reducing

the number of shifts and workers. Initial attempts at implementing a tabu search

algorithm for this purpose were not successful because of the complexity of the neighbor

definition and the fact that before a full-time employee can be eliminated, all five of his

shifts must be converted to idle time.

 140

Appendix A

Graphical User Interface

Figure A-1 presents a snapshot of the graphical user interface (GUI) designed as the front

for the WSO. It is written in java to be web-enabled and consists of six tabs: ‘Shift

Types,’ ‘Workstations,’ ‘Schedule,’ ‘Wages,’ ‘Movement,’ and ‘Model Runs.’ A brief

explanation of each follows:

Shift Types: specify input requirements related to the shifts that are to be used in

developing the weekly schedule; e.g., shift durations, union and legal

restrictions, overtime considerations, and start time bands.

Workstations: user is given the option to either import the equipment schedule

generated by ESO or enter a new one; the schedule is transformed into the

demand requirements for the weekly model – Eq. (1b).

Schedule: user imports the long-term staffing schedule generated by SOS; this

schedule serves as the baseline for the weekly model.

Wages: define or select pay rate data sets (cost coefficients) for different worker

categories such as P5-MPC, P5-DC and different classes, i.e., full-time,

part-time, overtime, and casual.

Movement: specify workgroup restrictions to be imposed on some or all worker

categories; i.e., limit the movement between specified workgroups or

workstations.

Model Run: submit and solve new problem; report results.

 The use of the application is straightforward. The first five tabs are designed for

data and the sixth to run the model. The weekly schedules produced for each FTR, PTF

and selected casuals are displayed under the ‘Model Runs’ tab when the computations

terminate. It is also possible to export the weekly schedules to an Excel file.

 141

Figure A.1. Graphical user interface for WSO

 142

Appendix B

Definition of Worker Categories and

Equipment in a P&DC

Table B.1. Definition of Worker Categories and Equipment in a P&DC
Worker category Abbreviation Equipment Abbreviation

Types of mail processors: Advanced facer-canceller system AFCS
Flat sorting machine operator P6-FSMO Barcode sorter BCS
General expeditor P6-GE Delivery barcode sorter DBCS
Parcel post distribution machine operator P6-PPDMO Flat sorting machine FSM
Sack sorting machine operator P6-SSMO Input subsystem ISS
Mail processing clerk P5-MPC Manual operations MANUAL
Flat sorting machine operator P5-FSMO Multi-line optical character reader MLOCR
Parcel post distribution machine operator P5-PPDMO Output subsystem OSS
Data Conversion Operator P4-DCO Remote encoding center REC

Types of mail handlers:
Mail handler MH5
Mail handler Equipment Operator MH5-EO
Mail handler Technician MH5-T
Mail processing machine operator MH5-

MPMO

Sack sorting machine operator MH5-
SSMO

Mail handler MH4
Sack sorting machine operator MH4-

SSMO

 143

Bibliography

Alfares, H.K. 1997. An Efficient Two-Phase Algorithm for Cyclic Days-Off Scheduling.
Computers & Operations Research 25(11) 913-923.

Aronson, J.E. 1986. The Multi-Period Assignment Problem: A Multi Commodity
Network Flow Model and Specialized Branch and Bound Algorithm. European Journal
Of Operational Research 23 367-381.

Aykin, T. 1996. Optimal Shift Scheduling with Multiple Break Windows. Management
Science 42(4) 591-602.

Bard, J.F. 2004a. Staff Scheduling in High Volume Service Facilities with Downgrading.
Working paper, Graduate Program in Operations Research & Industrial Engineering, The
University of Texas, Austin.

Bard, J.F. 2004b. Selecting the Appropriate Input Data Set When Configuring a
Permanent Workforce. Working paper, Graduate Program in Operations Research &
Industrial Engineering, The University of Texas, Austin.

Bard, J.F., Binici, C. and deSilva, A.H. 2003. Staff Scheduling at the United States Postal
Service. Computers & Operations Research 30(5) 745-771.

Bard, J.F., deSilva, A.H., Feo, T.A. and Wert, S.D. 1993. Design of Semi-Automated
Mail Processing Facilities. IIE Transactions on Design & Manufacturing 25(4) 88-101.

Bard, J.F. and Feo, T.A. 1991. An Algorithm for the Manufacturing Equipment Selection
Problem. IIE Transactions 23(1) 83-92.

Bard, J.F. and Purnomo, H.W. 2005. A Column Generation-Based Approach to Solve the
Preference Scheduling Problem for Nurses with Downgrading. Working paper, Graduate
Program in Operations Research & Industrial Engineering, The University of Texas,
Austin.

Bard, J.F., Yu, G. and Argüello, M.F. 2001. Optimizing Aircraft Routings in Response to
Groundings and Delays. IIE Transactions on Operations Engineering 33(10) 931-947.

Beaumont, N. 1997. Scheduling Staff Using Mixed Integer Programming. European
Journal of Operational Research 98(3) 473-484.

Bechtold, S.E. and Jacobs, L.W. 1990. Implicit Modeling of Flexible Break Assignments
in Optimal Shift Scheduling. Management Science 36(11) 1339-1351.

 144

Berman, O. and Larson, R.C. 1993. Optimal Workforce Configuration Incorporating
Absenteeism and Daily Workload Variability. Socio-Economic Planning Sciences 27(2)
91-96.

Berman, O., Larson, R.C. and Pinker, E. 1997. Scheduling Workforce and Workflow in a
High Volume Factory. Management Science 43(2) 158-172.

Brusco, M.J. 1998. Solving Personnel Tour Scheduling Problems Using the Dual All-
Integer Cutting Plane. IIE Transactions on Operations Engineering 30(9) 835-844.

Brusco, M.J. and Jacobs, L.W.1998. Personal Tour Scheduling when starting time
restrictions are present. Management Science 44 (4) 534-547.

Burke, E.K., Causmaecker, P.D., Vanden Berghe, G. and Van Landeghem, H. 2004. The
State of the Art of Nurse Rostering. Journal of Scheduling 7(6) 441- 499.

Burns, R.N. and Carter, M.W. 1985. Work Force Size and Single Shift Schedules with
Variable Demands. Management Science 31(5) 599-607.

Cai, X., McKinney, D.C. and Lasdon, L.S. 2001. Piece-By-Piece Approach to Solving
Large Nonlinear Water Resources Management Models. Journal of Water Resources
Planning and Management 127:6 363-368.

Caprara, A., Monaci, M. and Toth, P. 2003. Models and Algorithms for a Staff
Scheduling Problem. Mathematical Programming Series B 98 445-476

Campbell, G.M. and Diaby, M. 2002. Development and Evaluation of an Assignment
Heuristic for Allocating Cross-Trained Workers. European Journal of Operational
Research 138 (1) 9-20.

Chvatal, V. 1979. A Greedy Heuristic for the Set-covering Problem. Mathematics of
Operations Research 4(3) 233-235.

Clausen, J., Hansen, J., Larsen, J. and Larsen, A. 2001. Disruption Management. OR/MS
Today 28(5) 40-43.

Dawid, H., Konig, J. and Strauss, C. 2001. An Enhanced Rostering Model for Airline
Crews. Computers & Operations Research 28 671-688.

Easton, F. F. and Rossin, D.F. 1997. Overtime Schedules for Full Time Service Workers.
Omega 25(3) 285-299.

Emmons, H. 1985. Work-force Scheduling with Cyclic Requirements and Constraints on
Days Off, Weekends Off, and Work Stretch. IIE Transactions 17(1) 8-15.

 145

Ernst, A.T., Jiang, H., Krishnamoorthy, M. and Sier, D. 2004. Staff Scheduling and
Rostering: A Review of Applications, Methods and Models. European Journal of
Operational Research 153(1) 3-17.

Even, S., Ital, A. and Shamir, A. 1976. On the Complexity of Timetable and
Multicommodity Flow Problems. SIAM Journal on Computing 5 691-703.

Feo, T. A. and Bard, J. F. 1989. Flight Scheduling and Maintenance Base Planning.
Management Science 35(12) 1415-1432.

Garey, M.R. and Johnson, D.S.1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman: New York. NY.

Gilbert, K.C. and Hofstra, R.B.1988. Multidimensional Assignment Problems. Decision
Science 19 306-321.

Glover, F. and Laguna, M. 1997. Tabu Search, Kluwer Academic Publishers: Boston.
MA.

Hall, R.W. and Lotspeich, D. 1996. Optimized Lane Assignment on an Automated
Highway. Transportation Research, Part C: Emerging Technology 4(4) 211-229.

Jarrah, A.I.Z., Bard, J.F. and deSilva, A.H.1994. Solving Large-Scale Tour Scheduling
Problems. Management Science 40(9) 1124-1145.

Lewis, L.H., Srinivasan, A., and Subramanian, E.1998. Staffing and Allocation of
Workers in an Administrative Office. Management Science 44(4) 548-570.

Malhotra, M.K. and Ritzman, L.P. 1994. Scheduling Flexibility in the Service Sector: A
Postal Case Study. Production and Operations Management 3 100-117.

Malhotra, M.K., Ritzman, L.P., Benton, W.C. and Leong, G.K.1992. A Model for
Scheduling Postal Distribution Employees. European Journal of Operational Research
58 374-385.

Mason, A.J., Ryan, D.M. and Panton, D.M. 1998. Integrated Simulation, Heuristic and
Optimization Approaches to Staff Scheduling. Operations Research 46(2) 161-175.

McManus, I.M. 1977. Optimum use of Overtime in Post Offices. Computers &
Operations Research 4(4) 271-278.

 146

Miller, J.L. and Franz, L.S. 1993. Scheduling Medical Residents to Rotations: Solving
the Large-Scale Multi-Period Staff Assignment Problem. Operations Research 41(2)
269-279.

Misra, S., Pinker, E.J. and Shumsky, R.A. 2004. Salesforce Design with Experience-
based Learning. IIE Transactions on Logistics & Scheduling 36(10) 941-952.

Mukherjee, A.K. and Gilbert, K.C. 1997. Lagrangian Heuristics for Instructor Scheduling
in Executive Development Programmes. Journal of Operations Research Society 48(4)
373-382.

Nanda, R. and Browne, J.1992. Introduction to Employee Scheduling, Van Nostrand
Reinhold: New York. NY.

Pierskalla, W.P. 1968. The Multidimensional Assignment Problem. Operations Research
15(2) 422-431.

Sahni, S. and Gonzalez, T. 1976. P-complete Approximation Problems. Journal of the
Association for Computing Machinery 23 555-565.

Sherali, H.D. and Smith, J. C. 2001.Improving Discrete Model Representations via
Symmetry Considerations. Management Science 47(10) 1396–1407.

Showalter, M.J., Krajewski, L.J. and Ritzman, L.P. 1977. Manpower Allocation in US
Postal Facilities: A Heuristic Approach. Computers & Operations Research 4(4) 257-269.

Wolsey, L.A. 1998. Integer Programming. John Wiley & Sons. New York. NY.

Zhang, X. and Bard, J.F. 2005. Equipment Scheduling at Mail Processing and
Distribution Centers. Working paper, Graduate Program in Operations Research &
Industrial Engineering, The University of Texas, Austin.

 147

 VITA

Lin Wan was born in Wuhan, China on April 16,1975, the son of Huiyi Wan and

Meilan Lei. After completing his work at No.1 High School Affiliated to Huazhong

Normal University, Wuhan, China, in 1993, he entered Huazhong University of Science

and Technology in Wuhan , China. He received the degrees of Bachelor of Engineering

and Bachelor of Law from Huazhong University of Science and Technology in June 1997.

During the following year, he was employed as a student adviser in Huazhong University

of Science and Technology. In September 1998, he entered the Graduate School of

Huazhong University of Science and Technology and got his Master Degree of

Engineering in June 2001.

In August 2001, he started his doctoral study in Operations Research and

Industrial Engineering at University of Texas, Austin.

Permanent Address: 33 Caimao St., Apt. 1-2

 Wuhan, Hubei, China, 430063

