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Multicolor fluorescence in-situ hybridization (M-FISH) techniques pro-

vide color karyotyping that allows simultaneous analysis of numerical and

structural abnormalities of whole human chromosomes. Chromosomes are

stained combinatorially in M-FISH. By analyzing the intensity combinations

of each pixel, all chromosome pixels in an image are classified. Often, the

intensity distributions between different images are found to be considerably

different and the difference becomes the source of misclassifications of the pix-

els. Improved pixel classification accuracy is the most important task to ensure

the success of the M-FISH technique. Along with a reliable pixel classification

method, automation of the karyotyping process is another important goal.

The automation requires segmentation of chromosomes, which not only in-

volves object/background separation but also involves separating touching and
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overlapping chromosomes. While automating the segmentation of partially oc-

cluded chromosomes is an extremely challenging problem, a pixel classification

method that satisfies both high accuracy and minimum human intervention

has not been realized.

The main contributions of this dissertation include development of a

new feature normalization method for M-FISH images that reduces the differ-

ence in the feature distributions among different images, and development of

a new decomposition method for clusters of overlapping and touching chromo-

somes. A significant improvement was achieved in pixel classification accuracy

after the new feature normalization. The overall pixel classification accuracy

improved by 40% after normalization. Given a cluster, a number of hypothe-

ses was formed utilizing the geometry of a cluster, pixel classification results,

and chromosome sizes, and a hypotheis that maximized the likelihood function

was chosen as the correct decomposition. Superior decomposition results were

obtained using the new method compared to the previous methods.

Contributions also include development of a color compensation method

for combinatorially stained FISH images (including M-FISH images) based on

a new signal model for multicolor/multichannel FISH images. The true sig-

nal was recovered based on the signal model after color compensation. The

resulting true signal does not have color spreading (channel crosstalk) among

different color channels. Two new unsupervised nonparametric classification

methods for M-FISH images are also introduced in this dissertation: a fuzzy

logic classifier and a template matching method (a minimum distance clas-
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sifier). While both methods produce an equivalent accuracy compared to a

supervised classification method, their computation time is significantly less

than a Bayes classifier.

Highly sophisticated and practical algorithms have been developed through

this research. Using the developed methods, the amount of human intervention

required will be significantly reduced: chromosomes are reliably and accurately

segmented from the background, pixels are accurately classified, and clusters

of overlapping and touching chromosomes are automatically decomposed.
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Chapter 1

Introduction

1.1 Motivation

The fluorescence in-situ hybridization (FISH) microscopic imaging mod-

ality has been widely used for the analysis of genes and chromosomes. Multiple

fluorophores are often used combinatorially to visualize several biological spec-

imens simultaneously. Using combinatorial labeling methods, 2N−1 specimens

can be discriminated using N fluorophores. When three fluorophores are used,

seven specimens can be analyzed by binary combinations (presence or absence)

of the fluorophores. N gray scale images of each specimen, stained with N

fluorophores, can be obtained using a monochrome camera and a set of optical

bandpass filters that are specifically designed for the excitation and emission

wavelengths of the fluorophores.

In particular, multicolor (multiplex) fluorescence in-situ hybridization,

called M-FISH, uses five fluorophores to uniquely identify all 24 chromosome

types of the human genome. A sixth fluorophore, DAPI (4’-6-diamidino-2-

phenylindole, a blue fluorescent dye), is used to counterstain the chromo-

somes [5, 6]. Thus, each pixel of an M-FISH image is composed of 6 values

that correspond to the intensities of six fluorophores. Figure 1.1 shows an
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(a) DAPI (b) Aqua (c) Green

(d) Gold (e) Red (f) Far Red

Figure 1.1: An M-FISH image. Chromosomes are combinatorially labeled
using 5 fluorophores and counterstained using DAPI. Each gray scale image
corresponds to the intensity of the emission wavelength of each fluorophore.

example of M-FISH images. By analyzing the combinations of the six spec-

tral intensities, all of the chromosome pixels in an image are identified, and a

pseudocolor is assigned based on the class the pixel belongs to [7, 8]. After the

pixel classification, chromosomes are displayed in a standard format called the

karyogram.

The M-FISH technique has been used for the characterization of struc-

tural rearrangements, such as translocations, to search for cryptic rearrange-

ments, to study mutagenesis, tumors, and radiobiology [9]. In cancerous cells,

translocations, or exchanges of chromosomal material between chromosomes,

are extremely common.
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Currently available M-FISH systems still exhibit misclassifications of

multiple pixel regions due to a number of factors, including non-homogeneity

of staining, variations of intensity levels within and between image sets, and

emission spectra overlaps between fluorophores. The size of the misclassified

regions are often larger than the actual chromosomal rearrangement. To re-

liably detect subtle and cryptic chromosomal aberrations, a highly accurate

pixel classification method has to be developed. Along with a reliable pixel

classification method, automation of the karyotyping process is another im-

portant goal. The automation requires segmentation of chromosomes, which

not only involves object/background separation but also involves separating

touching and overlapping chromosomes. While automating the segmentation

of partially occluded chromosomes is an extremely challenging problem, a pixel

classification method that satisfies both high accuracy and minimum human

intervention has not been realized.

The grand goal of this research is to develop a completely automated

and accurate chromosome analysis system. The scope of automation will ex-

pand as the technology progresses. However, based on currently available

technologies, the envisioned automated system will be composed of three ma-

jor parts: 1) automatic image capture, 2) automatic image analysis, and 3)

statistical data analysis from the collection of previously analyzed data. Once

a large batch of specimens is placed under a microscope, high quality in-

focused images will be captured automatically for all specimens. During im-

age capture, each specimen will be automatically identified (using e.g. bar

3



code) and registered with the patients’ medical information. In parallel with

the image capture, images will be analyzed automatically, producing accurate

karyotypes. A user can verify the results at this point and interpret the data,

which will be stored along with the patients’ information. After a substan-

tial amount of information is accumulated, various statistical analyses can be

performed, which will lead to a better understanding of the genes and the

diseases.

My research objectives were to develop algorithms for improved pixel

classification and algorithms for automated segmentation of touching and over-

lapping chromosomes.

1.2 Contributions

The contributions of this dissertation are as follows:

1. A new feature normalization method for M-FISH images [10], that

reduces the difference in the feature distributions among different images

using the expectation-maximization algorithm, is developed. In order to

obtain a high classification accuracy in pattern recognition, feature nor-

malization is a crucial part of classification after feature selection. In

particular, when features are obtained independently, the normalization

must be performed in order to reduce the intra-variance of the feature

distribution among different images. In M-FISH, each channel is cap-

tured independently, and each channel has a different integration time

4



due to different signal strengths of fluorophores. As the relative intensity

values across the six channels are used as features, intensity variations

should be normalized prior to the pixel classification. The developed

normalization method significantly increased the classification accuracy.

2. Color compensation method [11] for combinatorially stained FISH

images is developed. FISH images including M-FISH images contain

a certain amount of crosstalk between the color channels due to the

overlap of excitation and emission spectra and the broad sensitivity of

image sensors. This phenomenon is called color spread. Thus in M-

FISH images, all chromosomes are visible on all channels with different

intensity levels (Fig. 1.1). Furthermore, each fluorophore has a different

sensitivity to the excitation wavelength. Thus some fluorophores require

a short integration time while others require a long exposure time. A

new signal model for M-FISH images is proposed and the true signal

without the crosstalk is recovered based on the model.

3. Two new unsupervised nonparametric classification methods [10,

12] are developed. In an early stage of investigation regarding the struc-

ture of the data based on some features, an unsupervised method is

desired since the samples are unlabeled. A fuzzy logic classifier and a

template matching algorithm are the two methods. Both methods pro-

vide a significant advantage in terms of computation time compared to

supervised methods, and their accuracies are comparable to that of a

maximum-likelihood classifier.

5



4. A new decomposition method [13, 14] for overlapping and touching M-

FISH chromosomes is developed. Automatic segmentation of partially

occluded and/or touching objects is an extremely challenging task. Chro-

mosome images are inherent with the partial occlusion and touching of

chromosomes. This is one of the major factors that hinders automating

the analysis. Previous chromosome decomposition methods utilized par-

tial information of chromosome clusters resulting in limited success. A

cluster was better decomposed by incorporating more knowledge. Mul-

tiple hypotheses were formed utilizing the geometry of a cluster, pixel

classification results, and chromosome sizes. Basic elements of overlap

and touching cases are proposed. These basic elements yield hypotheses

of possible overlapping and/or touching cases. Given a cluster, multiple

hypotheses are evaluated and the most likely hypothesis is chosen as the

correct decomposition.

5. A new postprocessing method [12], that effectively corrects misclassi-

fied pixels while keeping the translocated pixels intact, is developed. By

utilizing chromosome size and the likelihoods of pixel membership, the

most likely class that an unknown chromosome belongs to is identified,

and then pixels are reclassified with an increased prior for the most likely

class. With an increased prior probability for a class, misclassified pixels

are effectively corrected while translocated pixels remain intact.

6



1.3 Organization

The rest of the dissertation is structured as follows. In Chapter 2, his-

torical, biological, and medical aspects about chromosomes and their analysis

methods are described. In Chapter 3, several normalization methods includ-

ing image registration, background correction, color compensation, and a new

normalization method that uses the expectation maximization algorithm are

discussed. Various supervised and unsupervised pixel classification methods

are discussed in the Chapter 4, and a new unsupervised nonparametric clas-

sification method for M-FISH images are described in the same chapter. An

automatic foreground and background segmentation method is also described

in Chapter 4. In Chapter 5, a new decomposition method for overlapping

and touching M-FISH chromosome images is described. Finally Chapter 6

concludes the dissertation.
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Chapter 2

Background

2.1 Chromosomes

Chromosomes, the coiled strands of deoxyribonucleic acid (DNA), ap-

pear inside the nucleus during cell division (mitosis). Three billion base pairs

(A, C, T, and G) that make up human DNA are organized into twenty four

chromosome types: 22 autosomes and the X and Y sex chromosomes. Since

chromosomes exist as a pair (one from each parent), there are 46 chromosomes

(44 autosomes plus XX or XY) in almost every cell in the body. Mitotic cell di-

vision undergoes four phases: prophase, metaphase, anaphase, and telophase.

During cell division, two strands of DNA double helix, which have complemen-

tary sequences to each other, are separated and make complementary strands

of themselves. Then a new strand and a complementary old strand combine,

resulting in two pairs of two strands of double helix (interphase). Those pairs

of strands are compactly coiled forming chromosomes (in prophase), and chro-

mosomes line up on the equatorial plane (metaphase). A typical chromosome

structure is illustrated in Fig. 2.1. The position of the centromere varies from

one chromosome to the next, and chromosomes are categorized by its position:

metacentric - centromere placed in the middle, submetacentric - centromere

placed between the middle and the terminal, acrocentric - centromere placed
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Figure 2.1: Illustration of cell division and chromosome structure. Top row:
chromosomes before cell division. Bottom row: chromosomes are duplicated
for cell division. Different colors indicate that each copy of a chromosome (a
homologous) is inherited from a parent.

nearly at the terminal, and telocentric - centromere placed truly at the termi-

nal (this does not occur in humans). Along with size, the centromere position

is an important feature of identifying chromosomes. As the cell divides into

two, each chromosome segregates at the centromere and the two halves move

to each daughter cell (anaphase). The division completes in telophase.

2.1.1 Chromosomal Aberrations

The human genome (complete set of DNA) is estimated to contain

20,000-25,000 genes, which encode instructions on how to make proteins. Chro-

mosomes are comprised of 50 million to 250 million base pairs. Thus each

chromosome contains many genes. Any structural or numerical abnormality
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of chromosomes corresponds to a genetic disease. Over 4000 known diseases

are linked to genetic abnormalities, and these diseases are currently a major

cause of infant mortality [15].

Chromosomal aberrations occur in various forms, and can be catego-

rized into: numerical and structural aberrations.

Numerical aberrations can occur when one of two daughter cells receives

both chromosomes of a pair and the other daughter cell receives none during

cell division due to, for example, a malfunction of the spindle apparatus. If

a chromosome is missing from a pair, it is called monosomy. If an extra

chromosome is present, it is called a trisomy. A common autosomal trisomy

in humans is Down’s syndrome (trisomy 21). Approximately one in every

800 births is affected with Down’s syndrome [15]. Other trisomies include

trisomy 8, trisomy 9, trisomy 18, trisomy 22, Triplo-X syndrome (47,XXX),

and Klinefelter’s syndrome (47,XXY). All other autosomal trisomies are lethal

in the embryonic or fetal stage. A common monosomy is Turner’s syndrome

(monosomy X). Approximately 1 in 2000 female births is affected with Turner’s

syndrome [16]. Women with this syndrome are usually short in height and are

infertile.

Structural aberrations include translocations, insertions, deletions, and

inversions. Translocation is a rearrangement of a chromosome in which a

segment is moved from one location to another, either within the same chro-

mosome or to another chromosome. A segment of a chromosome also can be

deleted (deletion) from a chromosome, and inserted into another chromo-
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some (insertion). When a segment including the centromere is inverted, it

is called a paracentric inversion, and inversion of another region is called a

pericentric inversion.

Like other genetic diseases, cancer also results from gene mutations.

However, with a few exceptions, cancer is not an inherited genetic disease.

Cancer is defined as uncontrolled growth of mutated cells (malignant tumor).

Cancer is the second leading cause of death in America after heart disease. Half

the cancers occur in three organs: lung (28%), colon (13%), and breast (9%).

It is estimated that approximately 90% of all cancers are due to environmental

factors [15].

Complex chromosomal aberrations are commonly found in cancerous

cells. In order to study which genes are responsible for, and to reliably di-

agnose the disease, many karyotyping techniques have been developed. Using

older staining methods, chromosomes could not be uniquely identified. After

a staining method that visualized the chromosome banding patterns became

available, all chromosomes were uniquely identified, and even their segments

could be analyzed, with limitations. The resolving power of chromosomal ab-

normalities was greatly enhanced as the techniques of molecular cytogenetics

evolved. The following section describes the brief historical background of

karyotyping techniques.
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Group Chromosome number
A 1 2 3
B 4 5
C 6 7 X 8 9 10 11 12
D 13 14 15
E 16 17 18
F 19 20
G 21 22 Y

Table 2.1: Nomenclature and chromosome classification [1].

2.1.2 Brief History of Karyotyping

Scientists believed the right chromosome number for human was 48

until Tjio and Levan in 1956 found that it was 46 [16]. In 1960, a number

of investigators in human cytogenetics met in Denver, Colorado, to propose

standard system of chromosome nomenclature of human mitotic chromosomes.

The karyotyping techniques available before 1971 did not reveal the internal

structure of chromosomes, and thus chromosomes were classified into only

seven groups based on the length and the position of the centromere. The

nomenclature and the classification are shown in Table 2.1.

In 1968, T. Caspersson and his colleagues in Stockholm reported that

certain fluorescent derivatives of quinacrine bind differentially to different parts

of chromosomes [17]. This discovery lead to development of Q-banding staining

techniques. Giemsa banding (G-banding), developed in 1971, created a unique

pattern of bands on each chromosome, making it possible to identify every

chromosome and even segments of chromosomes. Since then, Giemsa banding

has been used as a standard technique in pre- and postnatal diagnostics.
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However, when structural abnormalities such as a translocation, in-

sertion, deletion, or inversion are present, G-banding alone cannot reliably

decipher the information.

In the late 1980’s, fluorescence in situ hybridization (FISH), the tech-

nique which uses fluorescent molecules to paint genes or whole chromosomes,

was developed [18]. FISH provides visualization and analysis of multiple genes

and chromosomes simultaneously in a sample using either combinatorial or

ratio-labeling methods. Ever since, FISH has greatly grown in popularity for

chromosome or gene identification and analysis.

In 1996, Speicher et al. [7] and Schröck et al. [6] introduced systems uti-

lizing multicolor fluorescence in-situ hybridization technique (M-FISH), which

is a combinatorial labeling technique developed for the simultaneous analysis

of all human chromosomes. To be able to distinguish 24 human chromosomes

simultaneously, a minimum of 5 fluorophores are required. Each chromosome

is stained with a unique combination of fluorophores, and thus every chromo-

some is uniquely and simultaneously identified. A sixth fluorophore, DAPI,

is counterstained to all chromosomes [9]. In particular, a system developed

by Speicher et al. is called multiplex-FISH (M-FISH) and a system developed

by Schröck et al. is called spectral karyotyping (SKY). Both systems have

been proven to be useful for the characterization of complex chromosomal

rearrangements in cancer cells and for detecting cryptic translocations.
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2.1.3 Multicolor FISH Karyotyping systems: M-FISH and SKY

Currently, there are two types of multicolor FISH imaging systems:

a system developed by Speicher et al., so called ‘multiplex fluorescence in

situ hybridization’ (M-FISH), which uses a set of optical filters, and a system

developed by Schröck et al., so called ‘spectral karyotyping’ (SKY), which

uses an interferometer. In a set of optical filter based system (M-FISH), six

images per metaphase spread of corresponding fluorophores are captured using

optical bandpass filters. In contrast, the spectral imaging system (SKY) uses a

Sagnac interferometer to record the emission spectra of the chromosomes and

assigns each pixel a pseudocolor based on its spectrum. Applied Imaging and

Metasystems are the major companies that produce M-FISH systems. Applied

Spectral Imaging (ASI) is the only producer of the SKY system. Each system

has advantages. While the SKY system requires only a single exposure, the M-

FISH system takes 6 images with a change of optical filters. However usually

SKY needs a longer exposure time than M-FISH. It is easy and inexpensive to

add a set of optical filters to an existing microscope to perform the M-FISH

analysis whereas the SKY camera is complex and expensive. In addition, the

M-FISH system provides an opportunity to users to examine each spectral

image in order to verify the classification results. Neither the classification

accuracy nor the resolution limit of both systems has been well established.

In my research, images from the optical filter based system were used.
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2.2 Conventional Karyotyping

Conventional karyotyping uses Giemsa-staining on chromosomes which

produces bright and dark patterns (Figure 2.2). The banding patterns are

unique to the each type of chromosomes. These bandings are called G-banding.

G-banding based chromosome analysis is a standard method for pre and post-

natal chromosome analysis, which is routinely performed in clinical labora-

tories. The relevant image processing, feature extraction, feature normaliza-

tion, and classification methods have been studied in the past for over 30

years [17, 19–24]. The size, shape, centromere position, and banding patterns

are commonly used as features for the chromosome classifications. The gen-

eral procedure of the classification is to first reduce the noise in the images,

enhance the chromosomes [25, 26], segment chromosomes from the background

automatically or semi-automatically [2, 3, 27], extract features [28–31], classify

chromosomes, and display them in a specific format called karyogram. The

classification is usually performed after the chromosome segmentation. Once

chromosomes are segmented, the medial axis [32] of chromosomes are found to

straighten the chromosome and thus extract the banding patterns [29]. The

banding pattern based technique is effective and accurate in determining if the

cell line is aneuploid (condition of having abnormal number of chromosomes).

However, it is almost impossible to perform the analysis of complex structural

abnormalities based on the banding patterns. With recent advances in molec-

ular cytogenetic techniques, a variety of FISH assays have been developed.

Since the introduction of M-FISH, it has significantly gained in popularity as
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an alternative for chromosome analysis.

2.3 Multichannel/Multispectral Image Classification

Since M-FISH images are multispectral images, it is worthwhile to in-

vestigate segmentation methods in other multispectral images produced by

different modalities. Multispectral or multidimensional images are common

in medical imaging modalities such as MRI and in geoscience remote sensing.

Numerous image segmentation methods based on pixel classification have been

developed for various multispectral images.

Depending on the modalities, N number of images are captured, where

N ranges from 2 to more than a hundred. Imaging modalities for remote sens-

ing are satellite, multiple band sensors operated from a spaceborne or an air-

borne platform such as landsat seven-band Thematic mapper (TM), four-band

Multispectral Scanner (MSS), and three-band Satellite Pour l’Observation de

la Terra (SPOT). In MRI imaging, spin-lattice relaxation time (T1), spin-spin

relaxation time (T2), and proton density (PD) are used to capture differences

on chemical shifts. The purpose of image segmentation in remote sensing is

to study minerals, crops, urban structure and growth, etc. In medical im-

ages, different tissue sections are segmented to study anatomy and functions

of organs or to diagnose diseases.

Most segmentation approaches in both areas avoid supervised meth-

ods due to the expensive process of collecting ground truth. In unsupervised

segmentation of multispectral images, virtually all classification techniques
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(a) G-banded chromosome image

(b) Karyogram

Figure 2.2: Conventional G-banded chromosome image and its karyogram
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currently known have been tried such as Markov random field model based

method [33], neural network based methods [34–38], hierarchical clustering

and fuzzy classification [39], and k-means clustering [40]. In [40], k-means

clustering was used to group the unlabeled data. From the clustered data the

class parameters were extracted, and pixels were classified using a supervised

method.

Support vector machine (SVM) based approaches have been tried when

the number of labeled data points are small, where SVM subsequently refines

the support vector (SV) by actively querying for the most ambiguous point in

the data [41]. A subspace projection method such as an orthogonal subspace

projection (OSP) was also tried in remote sensing for hyperspectral images [42].

While quite useful, OSP has a limitation that the number of spectral bands

should be larger than the number of classes. To overcome the limitation of

OSP, a Kalman filter based linear mixing approach was developed [43].

Shackelford et al. [44] tried combining fuzzy pixel-based and object-

based methods for the classification of high-resolution multispectral data over

urban areas, and they showed that the fuzzy classifier performed better than

the maximum-likelihood classifier, and using the object based approach, cor-

rect classification rates increased further, ranging from 76% to 99% depending

on the objects. Raghu et al. [45] used textural features as well as the spec-

tral information. Each spectral image was filtered by Gabor wavelets and the

resulting images concatenated to form new feature vectors.

Different classifiers will produce different accuracies depending on the
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feature distribution and the amount of variances between image sets. Most of

methods only focus on applying different classification methods to obtain high

accuracy instead of preprocessing the signal in a proper way to reduce noise

in the features and variances between image sets.

2.4 Previous M-FISH Pixel Classification Methods

The first M-FISH system described in the literature was introduced

by Speicher et al. [5] in 1996. Their classification method was based on the

binary combinations of fluorophore intensities at each pixel. Binary values

were obtained after thresholding each channel. This method is simple and fast

(considering only the pixel classification time, excluding the time involved in

manual corrections of the segmentation map), and does not require generation

of a training data set. Their approach demonstrated the usefulness of the

M-FISH technique.

In 1998 Eils et al. [46] introduced a method called the adaptive region-

oriented approach. An image was initially divided into forty Voronoi polygons,

and the polygons were subdivided iteratively until all polygons satisfied a

homogeneity criteria. Neighboring polygons were merged if they were closer

than a threshold distance in feature domain (six dimensional space).

Recently, a supervised 6-feature, 25-class maximum likelihood classifi-

cation method was introduced in [47–49]. Twenty five classes included twenty

four chromosome types and the background. Class distributions were assumed

to be normal, and the class parameters were extracted from the training set,
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a subset of ADIR’s M-FISH database (available at http://www.adires.com/05/

Project/MFISH_DB/MFISH_DB.shtml). By classifying every pixel in the image in-

cluding both background and chromosome pixels, chromosomes were success-

fully segmented from the background. The pixel classification accuracy of this

method was about 90% on a small number of images (the list of images and

rates are shown in Table 4.3 in Section 4.5).

Schwartzkopf et al. [8] developed a joint pixel classification and seg-

mentation method which can handle overlapping and touching chromosomes,

using a maximum likelihood framework. After chromosome pixels were clas-

sified using a 6-feature, 24-class maximum likelihood classification method,

touching and overlapping chromosomes were separated into single chromo-

somes by maximizing the likelihood of pixel membership and chromosome.

While separating overlapping and touching chromosomes, misclassified pixels

were corrected resulting in an increased classification accuracy from the ini-

tial pixel classification. The initial pixel classification accuracy significantly

varied depending on the images, ranging from 20% to 90%. The mean pixel

classification accuracy was 68% with a standard deviation of 17.5% [4]. The

pixel classification error rate decreased by nearly 50% after using the joint

segmentation and classification method [8].

Choi et al. [49] have emphasized the importance of feature normaliza-

tion, and performed background correction and color compensation in order

to reduce the background elevation and channel crosstalk. A detailed descrip-

tion of M-FISH image color compensation can be found in [11]. Wang and
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Castleman [50] also performed background correction as a normalization step,

and reported that after testing on five images, the pixel classification accuracy

increased on average from 83% to 91% (the list of images and rates are shown

in Table 4.3 in Section 4.5).

2.5 ADIR M-FISH Database

All our research was conducted using the ADIR M-FISH database. The

database contains M-FISH images of 203 metaphase spreads from 33 slides.

Applied Spectral Imaging, PSI (predecessor to ADIR), and Vysis are the three

probe sets that were used for the specimen preparation. Three sets of image

file formats are available: PSI format (requires PSI’s software to read), PNG

format, and JPEG format. Each image is accompanied by ground truth, except

for 17 images that are marked as extreme (EX). The set of PNG format images

were used in our experiment, and a total of 185 images were tested (85 images

for Vysis, 71 images for ASI, and 29 images for PSI). There are 86 Vysis

probe images but V1301XY and V1304XY are the same (only V1301XY was

used). In the ground truth image, background pixels are assigned value 0,

pixels in overlapped region are assigned value 255, and chromosome pixels are

assigned a value from 1 to 24 depending on chromosome type. In the case

of a translocation, the whole chromosome is labeled as the class which makes

up most of the chromosome. The dimension of the images is 647×517×6 for

all images except for two images, V261054 and V270659, whose dimension is

768×568×6.
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Chapter 3

Normalization Methods for M-FISH Images

3.1 Introduction

In order to achieve a high accuracy in pattern recognition, selection

and extraction of good features is the most important design factor. Different

classifiers may produce different accuracies, but the accuracy is fundamen-

tally bounded by the sample distribution in the feature space. Thus, feature

normalization is also a crucial part of classification after feature selection. In

particular, when features are obtained independently, the normalization must

be performed in order to reduce the intra-variance of the feature distribu-

tion among different images. In M-FISH, each channel is captured indepen-

dently, and each channel has a different integration time due to different signal

strengths of fluorophores. As the relative intensity values across the six chan-

nels are used as features, intensity variations should be normalized prior to

the pixel classification.

In this chapter, normalization methods for M-FISH images are de-

scribed, which include image registration, background correction, color com-

pensation, and expectation maximization normalization. The expectation

maximization normalization significantly increased the pixel classification ac-
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curacy.

3.2 Motivation

In M-FISH, 6 fluorophores are combinatorially used to discriminate 24

chromosome types. The color map of the Vysis probe set is shown in Table

3.2. According to the color map, chromosome 1, for example, is stained with

DAPI and spectrum Gold dyes. Ideally chromosome 1 should be observed

only in the DAPI and Gold channels and should not be visible in the other

channels. However, due to the overlap of excitation and emission spectra

and the broad sensitivity of image sensors, the obtained images contain a

certain amount of crosstalk between the color channels. This phenomenon is

called color spread [51]. Thus all chromosomes are visible on all channels with

different intensity levels (see Fig. 1.1). Furthermore, each fluorophore has

a different sensitivity to the excitation wavelength. Thus some fluorophores

require a short integration time while others require a long exposure time.

Especially Aqua and Gold dyes require long exposure times in order to visualize

the hybridized chromosomes. An example of integration times is [DAPI, Aqua,

Green, Gold, Red, Far Red] = [0.14, 6, 0.76, 6, 2.96, 1.4] seconds. When a pixel

belongs to chromosome 1, the obtained intensity values are expected to have a

pattern of [High, Low, Low, High, Low, Low] for Vysis probes. Unfortunately

this pattern can be easily broken when each channel is independently acquired.

A long exposure time amplifies the leaked intensity, and in some cases it can

be higher than the chromosome intensities on other channels at the same pixel
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location. The different DC offset levels of each channel of the imaging device

(e.g., three channel color CCD) and non-flat background elevation also bias the

signal intensity upward. Furthermore, chromosomes appearing in one spectral

channel exhibit different intensity levels: some are darker or brighter than

others, partially because of the non-flat background, but more substantially

because of the different fluorophore sensitivities for different chromosomes.

Examples of real pixel values of chromosome 1 across multiple images are

shown in Table 3.1. As shown in the table, there is no obvious pattern in the

feature values for the preceding reasons.

When the variation of the feature distribution across images is sig-

nificant, which means the feature distribution of an unknown image is unpre-

dictable, classification methods that rely on the estimation of class parameters

will yield low accuracy.

As long as k classes are grouped separately in the feature space even

if the feature distribution differs from image to image, pixels can be ac-

curately classified without estimating class parameters using unsupervised-

nonparametric clustering methods such as k -means clustering or fuzzy k -means

clustering. However, when the number of classes is not fixed (e.g. chromosome

images: the number of chromosome classes differs by gender or diseases), find-

ing the right number of classes after the clustering by cluster validation adds

complexity and may cause inaccuracy. Pixels can be clustered into a maxi-

mum number of classes (24 clusters for M-FISH data) using these methods,

and clusters that are closer than a threshold should be merged. The threshold
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Images
Location

(x,y)
Spectrum

DAPI Aqua Green Gold Red Far Red
v1301xy 243,172 79 75 56 79 52 51
v1312xy 352,194 54 75 54 101 48 50
v1401xy 251,314 176 75 60 44 50 27

Table 3.1: Pixel values of chromosome 1. Even though chromosome 1 is stained
with DAPI and Gold, there is no obvious pattern in feature values because of
channel crosstalk and independent integration time per channel.

will be again data dependent, which will be different for different images.

Therefore, regardless of the choice of classifiers the variations of the fea-

ture distribution should be minimized in order to obtain overall high accuracy

in pixel classification.

3.3 Image Registration

The misalignment of spectral images is an inevitable phenomenon due

to the fundamental optical properties of the microscopic imaging system.

When it occurs, it adversely affects the classification accuracy on pixels, es-

pecially on the edges of chromosomes. However we found only four images

in the database that exhibited a noticeable misalignment, which are not from

the optical properties but from some other unknown source of errors (possibly

errors from the software or hardware of the image capturing devices). While

image registration of multichannel or multitemporal images is an active re-

search area [52, 53], we do not find a need for an image registration algorithm

for M-FISH images. Therefore in this section we will briefly discuss the fun-
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Chromosome
Spectrum

DAPI Aqua Green Gold Red Far Red
1 x x
2 x x
3 x x
4 x x x
5 x x x
6 x x
7 x x
8 x x x
9 x x x
10 x x x x
11 x x x
12 x x x
13 x x x
14 x x x x
15 x x x x
16 x x x
17 x x x x
18 x x x x
19 x x x x
20 x x x x
21 x x x x
22 x x x x
X x x x
Y x x x

Table 3.2: Chromosome Labeling Chart of Vysis M-FISH Probe
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damental cause of misalignment of M-FISH images, and present an example

of misaligned M-FISH images and its effect of classification accuracy due to

misalignment.

3.3.1 Source of Misalignment

A basic principle of optics states that the focal length changes depend-

ing on wavelength [54]. Thus when wavelength changes, the in-focus plane of

an object changes, resulting in axial chromatic aberration. Also the magni-

fication is inversely proportional to the focal length. Thus depending on the

wavelength, the magnification also changes, which results in lateral chromatic

aberration. Both aberrations can be found, even in the best currently available

objectives. Therefore, when multiple emission wavelengths are used to image

the same object, as in fluorescence imaging, chromatic aberration is inevitable.

Furthermore, mechanical vibration induced by filter changes may cause mis-

alignment. Classification accuracy on pixels near the edges of chromosomes

are affected when misalignment occurs.

Misalignment due to chromatic aberration should be consistent through-

out all images. Variations in the amount of misalignment should be due to

other factors such as any mechanical vibrations. Fig. 3.1 shows an arbitrarily

selected image from the database. Three channels are displayed as a color

image: (DAPI in blue, Gold in green, and Far red in red channel). DAPI and

Far red are selected since they have the farthest distance in wavelength, and

the corner of an image is shown since the lateral chromatic aberration becomes
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more severe as the distance gets further from the optical axis. As the figure

shows, the amount of misalignment is negligible (even not noticeable). In fact,

all the images we have observed in the database had a negligible amount of

misalignment. The misclassifications on the edges of chromosomes commonly

occur because intensities on those pixels are weak, making less certain of their

memberships, and also when a chromosome appears larger due to blooming

on one channel than on another channel, the non-overlapping area around the

edge of the chromosome is misclassified. The intensity profiles at a chromo-

some in Fig. 3.1 (a) are shown in Fig. 3.1 (b). Channel 2, 4, and 6 are colored

as R, G, and B. As the profiles show, there is no particular shift of one channel

compared to the other, and as mentioned earlier chromosome widths appear

differently.

3.3.2 Image Registration of M-FISH Images

Only four images were identified as having severe misalignment (list is

shown in Table 4.4 on 94), but the source of misalignment on those images is

none of above. Channels were misaligned by simple translations of different

amounts.

Fig. 3.2 shows images of before and after image registration. The

DAPI channel was used as the reference and all other channels were registered

to DAPI. Since the channels are misaligned by translation only, image regis-

tration is a rather a simple problem: a whole channel needs to move relative to

the DAPI channel to locate the best matching place. Image registration was
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(a) R: Far red, G: Gold, B: DAPI
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(b) R: Aqua, G: Gold, B: Far red

Figure 3.1: Chromatic aberration among different channels is negligible in
M-FISH images.
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performed using a recently developed metric called SSIM [55], which effectively

measures the distance of the qualities of two images. SSIM is 1 only when two

images are identical. As the degree of misalignment of two image increases,

the quality between two images degrades. Since the amount of degradation

in quality measured by SSIM highly correlates with human perception, SSIM

values do not respond sensitively to small translations. However it serves our

purpose of finding the amount of translation between two images. Fig. 3.3

shows the SSIM values between DAPI and Gold, where Gold was moved 25×25

pixels about the center of DAPI channel.

As a conclusion, image misalignment due to chromatic aberrations and

mechanical vibrations in M-FISH was negligible in my study. However when

misalignment should happen due to other reasons, it can severely affect the

pixel classification accuracy. Misalignment due to translations can be corrected

using SSIM.

3.4 Background Correction and Color compensation

In this section, a signal model for M-FISH images is introduced in order

to recover the true signal based on the model [11]. Note that the true signal

may not be exactly the same as the real true signal, but instead it means the

ideal signal that we want to obtain after the signal processing. The signal

model and its processing is described as follows.
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(a) Channel 1, 4, and 5 before registration

(b) Registration of (a)

Figure 3.2: Image registration before and after. Channels 1, 4, and 5 are
displayed as a color image. The misalignments of channel 4 and 6 are corrected,
and as a result the classification accuracy increased from 43.45% to 66.81%.
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Figure 3.3: SSIM values were computed between DAPI and Gold to find the
amount of translation. Two images are registered where the SSIM value is the
maximum.
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3.4.1 Signal Model

Castleman [51] has modeled the observed signal at a pixel, y, as

y = ECx + b (3.1)

where C is the N × N color spread matrix that specifies how the colors are

spread among the channels, x is the N×1 vector of true fluorophore intensities,

b is the N × 1 vector of black-level offsets of the imaging sensors (e.g. three

channel color CCD or monochrome CCD), and E is the N×N diagonal matrix

of exposure times of each channel. This model assumes that the gray levels

are linear with brightness of the fluorophores.

Then the true signal x can be found, given y, E, C, and b by

x = C−1E−1{y − b}. (3.2)

Normally, y, E, and b are given but the color spread matrix is not.

Without the color spread matrix, the true signal cannot be recovered. When

the specimens are uniquely stained, estimating the color spread matrix is rel-

atively simple. As an example, suppose three biological objects are uniquely

stained with three fluorophores as shown in Table 3.3. Then eq. (3.1) can be

written
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The color spread matrix, which is dependent on the filter sets, fluo-

rophores, and imaging sensors, can be found from three y vectors from three

specimens. In this example, the intensities of the observed signal yi∈R,G,orB

are [80, 15, 10]T for red dye, [5, 80, 30]T for green dye, and [10, 10, 160]T for

blue dye respectively, and [Er, Eg, Eb] = [1, 1, 2] and b = [0, 0, 0]T . R, G,

or B is a set of indices of the specimen stained with red, green, or blue dye

respectively. Knowing that the intensities of yi are originated only from the

intensity of red, green, or blue dye, the true pixel values are found by xi∈R =

[yr + yg + yb/2, 0, 0]T = [100, 0, 0]T , similarly xi∈G = [0, 100, 0]T , and xi∈B

= [0, 0, 100]T . Here yb is divided by 2 because of the integration time. After

plugging xi into (3.3), the nine unknowns of C can be found by solving nine

linear equations from E−1yi = Cxi. Simply calculating the intensity ratios of

yi is the solution in this case. Thus, the color spread matrix in this example

is

C =





0.8 0.05 0.1
0.15 0.8 0.1
0.05 0.15 0.8





The first column of the color spread matrix tells that 15% and 5% of the red

intensity is spread to the green and blue channels respectively. The inverse

matrix of the color spread matrix, called the color compensation matrix, cor-

rects these color spreadings and recovers the true signal intensities. Once the

color spread matrix is computed, it can be used for all other images that are

captured using the same optical system and fluorophores.

When the specimens are combinatorially stained, the estimate of the

true intensities from the observed signal cannot be done in the same way as
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Fluor spectra
R G B

1 x 0 0
Objects 2 0 x 0

3 0 0 x

Table 3.3: Color map: object 1 is stained with red dye, object 2 is stained
with green dye, and object 3 is stained with blue dye

when uniquely stained specimens are available. In M-FISH, 6 fluorophores are

combinatorially used to discriminate 24 chromosome types. According to the

color map shown in Table 3.2, chromosome 1, for example, is stained with

DAPI and spectrum gold dyes. In the following sections, the computation of

the color spread matrix C from only the observed signal y and the exposure

times, E is explained.

We have modeled the measured signal y of the M-FISH images as

y = E{Cx + b} + n (3.4)

where y is the 6×1 vector of the observed signal at a pixel, x is the 6×1 vector

of the true signal, C is the 6× 6 color spread matrix, b includes the DC-offset

of the CCD and various factors that cause background (non-chromosome area)

intensity elevation, n is the noise of the imaging device such as white noise

and shot noise, and E is the 6 × 6 diagonal matrix of exposure times. The

difference between Castleman’s model and our model is that we assume that as

the exposure time increases, the background intensity also increases linearly.

Six channels of the M-FISH image are first median filtered with a 3× 3
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kernel in order to eliminate the shot noise from n, and then lowpass filtered

with a 3×3 kernel to remove the high frequencies which are mostly dominated

by the white noise. Thus, the term n is minimized from eq. (3.4).

3.4.2 Background Correction

The background intensity, b, is mostly affected by the auto-fluorescence

of the slide, the DC offset of the CCD, unattached free fluorescent molecules,

the intensity of the defocused objects from out of depth of field, etc. Also,

regions having a high density of objects usually have an elevated background

intensity relative to regions without objects because of the flair effect. All these

factors contribute to the non-flat intensity distribution of the background.

A two-dimensional cubic surface was estimated from the background

pixels in order to approximate and remove b. The surface that has the min-

imum mean square error relative to the background pixels is the estimated

two-dimensional cubic surface [51].

The background pixels for each channel are found by a k-means cluster-

ing method (k = 2), in which the threshold is found while iteratively regrouping

pixels into two classes until the class means converge. Given a grayscale im-

age I, the intensity distribution is assumed to be a mixture of two gaussians:

p(y|ω1) ∼ N(µ1, σ1), p(y|ω2) ∼ N(µ2, σ2), and further assumed that σ1 = σ2.

D is a set {y|y ∈ I} of n unlabeled samples drawn independently from the

mixture density

p(y) = p(y|ω1)P (ω1) + p(y|ω2)P (ω2)
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The decision boundary that partitions D into two groups, D1 and D2, is com-

puted by minimizing the sum-of-squared error

J =
2
∑

i=1

∑

y∈Di

‖y − µi‖2 .

µ1 and µ2 that minimize J are found iteratively using

T = µ1P (ω1) + µ2P (ω2) (3.5)

where, T is the decision boundary, µ1 and µ2 are the class means, and P (ω1)

and P (ω2) are the prior probabilities (P (ω1) + P (ω2) = 1). Given the initial

estimates of µ1 and µ2, the initial T is found. Using the initial T , the new

means are found. This minimization process is repeated until the class means

or T converges. min{y} and max{y} are chosen as the initial values for µ1 and

µ2 respectively. The samples in D1, pixels below the threshold T , represent

the background pixels.

Given the background pixels, the two-dimensional cubic surface is esti-

mated as follows. The function for a two-dimensional cubic surface is

f(x, y) = c0 +c1x+c2y+c3xy+c4x
2 +c5y

2 +c6x
2y+c7xy

2 +c8x
3 +c9y

3 (3.6)

where c0 ∼ c9 are the coefficients that determine the surface shape, x and y are

the coordinates, and f(x, y) is the intensity value at (x, y). The ten coefficients

are estimated from the given N background pixels by solving f = Bc, where

f is a N × 1 column vector containing intensity values, B is a N × 10 matrix

containing x and y coordinates, and c is a 10×1 column vector containing the
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ten unknowns:

f =







f(x1, y1)
...

f(xN , yN)






c =







c0
...
c9







B =







1 x1 y1 x1y1 x2
1 y2

1 x2
1y1 x1y

2
1 x3

1 y3
1

...
...

...
...

...
...

...
...

...
...

1 xN yN xNyN x2
N y2

N x2
NyN xNy

2
N x3

N y3
N







The least squares solution for c that minimizes the sum of the mean

square error (E = f − Bc) is determined by

c =
[

BTB
]−1 [

BT f
]

.

Using the coefficients c and eq. 3.6, a two-dimensional cubic surface that

best fits the given background pixels is obtained. Finally, the surface is then

subtracted from each channel of the image removing the above mentioned

noises in b from eq. 3.4.

3.4.3 Color Compensation

After the background correction, the signal model becomes

y = ECx. (3.7)

The formation of this signal can be viewed as in Figure 3.4. Six original signals

of x are linearly mixed by the spread matrix C. The observed signal before

the exposure times are applied can be written E−1Y. The goal is to solve for

X and C given the observation E−1Y. Finding the linear mixing matrix C

and the original signal X from the observed signal is a problem similar to the
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Figure 3.4: Signal formation of M-FISH images. The measured signal
Y = ECX. xc is a true color channel and yc is a captured color channel
corresponding to a specific fluorophore. The matrices C and X are unknown.

cocktail-party problem, where there are N speakers and N recording devices,

and the N recorded signals are weighted sum of the N true signals. The

recently developed technique called Independent Component Analysis (ICA)

has been used quite successfully to estimate the mixing channel parameters, C,

from the mixed signal Y based on the assumption that xi[n] are statistically

independent of each other at every index n. ICA can also be used to separate

the M-FISH mixed signal Y into 6 different statistically independent signals.

However, the X that ICA estimates for M-FISH is not the same as the true

signals since the combinatorial labeling causes dependencies among the true

signals.

Let yi∈1 be an observed signal that belongs to chromosome 1. A realistic

set of pixel values of yi∈1 may be [170, 65, 45, 189, 70, 76]T . From yi∈1 and

the color table, we know that at least four values in xi∈1 should be zero,

i.e. xi∈1 = [x1(1), 0, 0, x1(4), 0, 0]T . Values for x should be zero where the
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staining is not present, and values remain unknown where fluorophores are

present. Repeating the same exercise for all twenty-four chromosomes, we get

76 unknowns for the true signal, X, where X = {x1, . . . ,x24}, a collection of

true samples from twenty four classes. All 36 values in the color spread matrix

are unknown. Thus, the total number of unknowns are 112. Realistically, we

may not find a unique solution given only the observed signal, but we can

derive an optimal solution utilizing as much information as possible about the

signal.

As shown in eq. (3.7), a pixel value from object 1 is y1 = ECx1.

However, in practice, even after the careful noise removal, y1 will differ from

ECx1: y1 = ECx1 + ǫ, where ǫ may include factors not considered in our

system model such as non-uniform hybridization inside of each chromosome,

unremoved noise after median and lowpass filtering and background subtrac-

tion, and saturation of the pixels. Twenty four y vectors are needed to form

the linear equations and to solve for 112 unknowns. Y is a collection of the

observed samples from twenty four classes ωi∈(1,...,24), Y = {y1, . . . ,y24}, and

yi is a sample drawn from a normal distribution, i.e. p(y|ωi) ∼ N(µyi
,Σyi

).

Instead of selecting an arbitrary sample from each class, µyi
are used in eq.

3.7 to compute the maximum likely color spread matrix C given the data

(training images).
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The matrix Y is

YT =

















µy1
= 1

P1

∑P1

k=1 y1,k

µy2
= 1

P2

∑P2

k=1 y2,k

µy3
= 1

P3

∑P3

k=1 y3,k
...

µy24
= 1

P24

∑P24

k=1 y24,k

















where Pi∈1,2,3,··· ,24 are the number of pixels that belong to each chromosome i,

and yik is the kth pixel value in chromosome i, yik = [yik(1), yik(2), yik(3), · · · ,

yik(6)]T . If ǫ becomes negligible in Y, Y can be expressed

Y = ECX. (3.8)

The matrices C and X contain the unknowns. In order to form a system

of linear equations, eq. (3.8) is written as

C−1E−1Y − X = 0. (3.9)

The solution for eq. (3.9) should satisfy the following constraints.

1. The solution should satisfy eq. (3.9).

2. We assume that the intensity of all chromosomes stained with a partic-

ular dye should be the same in the original signal. For example, there

are 10 chromosomes that are stained with green dye (see Table 3.2),

and the mean intensity of each chromosome should be the same. This

assumes that all objects have the same hybridization sensitivity to the

same fluorophore. However, if there are differences in the sensitivity and
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information is not given, then our assumption will give the best estimate.

If the information is given, then the sensitivity ratios should be and can

be incorporated into the equations.

3. The intensity between the input and output signals should be preserved,

i.e. the sum along each column of E−1Y should be the same as the sum

along each column of X,
∑

E−1Yi =
∑

Xi.

4. To satisfy the constraint (3), each column of the color spread matrix

should sum to 1.

Using these constraints, a nonhomogeneous linear system of 244 equa-

tions is formed as Au=b. The solution for 36 unknowns of C and 76 unknowns

of X that optimally satisfy the equations is found. A is the 244 × 112 coef-

ficient matrix, u is a column vector of the 112 unknowns, and b is a column

vector of 214 zeros and 30 non-zero values. Among 30 non-zero values in b, 24

values are sums of intensities of each chromosome across spectra and 6 values

are 1s, representing sums of each column of the spread matrix. The optimal

solution that gives the minimum least squares error of this over-determined

problem is computed by u = (ATA)−1ATb. In practice, A will not be error

free. The amount of perturbation in A is directly related to the level of noise

in Y. Thus, pixels should be carefully selected, and especially saturated pixels

should be avoided since saturation is a nonlinear phenomenon. In actual com-

putation, QR decomposition of A is used to find the solution and avoid the

calculation of ATA, since ATA is strongly influenced by round off error [56].
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QR decomposition is a matrix factorization method that factorizes A as A =

QR, where Q is an orthogonal matrix (QTQ = I) and R is an upper triangular

matrix. The solution is then found by backsubstitution from Ru = QTb.

Once the color spread matrix C is found, it can be applied to other

images to correct color spreading. An image I is a set of {yj|yj ∈ I}, where

j ∈ (1, . . . , N) and N is the number of pixels in an image. An image without

the channel crosstalk is computed by xj = C−1E−1yj for all j. To account for

the fluorophore sensitivities, exposure times E can be multiplied to xj.

The color spread matrix can only be estimated when the number of

specimen is equal to or larger than the number of fluorophores.

3.5 Results of Color Compensation of M-FISH Images

In this section, an example of calculating the color spread matrix is

shown, and results of color compensated M-FISH images and are shown. In

addition we quantitatively show the improvement in image quality after the

color compensation using mean squared error (MSE) and the structural sim-

ilarity index (SSIM), a recently developed metric that has been shown to

significantly surpass the MSE as a means for quantifying structural similari-

ties between two images [55]. Given two signals x and y, SSIM includes the

luminance, contrast, and structure terms, and it is expressed

SSIM(x, y) =
(2µxµy)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.10)
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Spectra
1 2 3

1 x x 0
Objects 2 x 0 x

3 x x x

Spectra
1 2 3

1 0.8 0.05 0.1
2 0.15 0.8 0.1
3 0.05 0.15 0.8

1 2 3
1 4 0 0
2 0 1 0
3 0 0 2

Table 3.4: Example. Color labeling table (L), color spread matrix (M), and
exposure times (R)

where C1 = (K1L)2 and C2 = (K2L)2, and L is the dynamic range of the

pixel values (255 for 8-bit images). For the constants, we used K1 = 0.01 and

K2 = 0.03 (refer to [55] for the details). SSIM is calculated within a circular

moving window, which moves pixel-by-pixel over the entire image. It is easily

shown [55] that 0 ≤ SSIM(x,y) ≤ 1, where SSIM(x,y) = 1 if and only if x

= y.

3.5.1 Example of Computing the Color Spread Matrix

Formulating a linear system of equations from the observed signal Y

is illustrated in this example. Suppose three objects are stained with three

fluorophores combinatorially according to the color map shown in Table 3.4,

and the color spread matrix of the imaging system combined with those three

fluorophores is also defined in Table 3.4. The color map shows that object one

is stained with fluorophore 1 and 2, and object three is stained with all three

fluorophores. The color spread matrix indicates that, for each fluorophore,

twenty percent of the original signal intensity is spread to the other channels.
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Let’s define the original signal X as

XT =





50 200 0
50 0 100
50 200 100



 .

Rows in XT represent objects and columns represent spectra. The observed

signal Y is defined as Y = ECX. Remember that the matrix Y is a set of

means of each object, i.e.

YT =







µy1
= 1

P1

∑P1

k=1 y1k

µy2
= 1

P2

∑P2

k=1 y2k

µy3
= 1

P3

∑P3

k=1 y3k







where Pi∈1,2,3 are the number of pixels that belong to each object and yik =

[yik(1), yik(2), yik(3)]. A pixel value from object 1 is y1 = ECx1. Then the

matrix of means of the observed signal is

YT =





200 167.5 65
200 17.5 165
240 177.5 225



 .

Now, given Y, E, and the color table, we will estimate the color spread matrix

C and the original signal X. We have nine unknowns for the color spread

matrix and seven unknowns for the true signal. The solution for the total of

sixteen unknowns can be found by solving the following equation C−1E−1Y−

X = 0 with conditions defined in 3.4.3. The equation can be written




u1 u2 u3

u4 u5 u6

u7 u8 u9









50 50 60
167.5 17.5 177.5
32.5 82.5 112.5



−





u10 u12 u14

u11 0 u15

0 u13 u16



 =





0 0 0
0 0 0
0 0 0



 (3.11)

Eq. (3.11) can be written as a linear system of m equations in 16

unknowns, Au = b, where A is the coefficient matrix, u is the column vector
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of the unknowns, and b is an m × 1 column vector. From eq. (3.11), nine

equations are formed. The sums of columns of E−1Y should be the same as

the sums of columns of X. This gives three equations. The sum of each column

of C−1 should be 1. This gives three more equations. Further, values in a row

of X should be the same, yielding four more equations. Thus, a total of 19

equations are formed. A linear system of m equations in n unknowns has a

unique solution if the coefficient matrix A and the augmented matrix Ã has

the same rank, and the rank equals n. In this example, rank(A) = rank(Ã)

= 16. The solution is found by the QR decomposition. u(1 · · · 9) contains the

solution for C−1. Then the estimated color spread matrix is

Ĉ =





0.8 0.05 0.1
0.15 0.8 0.1
0.05 0.15 0.8





u(10 · · · 16) contains the solution for the unknown X values. The true signal

estimated is

X̂
T

=





50 200 0
50 0 100
50 200 100





Ĉ = C and X̂ = X. Thus, the MSE between the estimation and the truth is

zero. The proposed method finds the unknowns with no error in this example.

3.5.2 Quantification of Image Quality Improvement After Color
Compensation

Six-channel synthetic images, representing the ideal color compensa-

tion result, are generated using the ground truth from the database in order

to quantify the image quality improvement. Non-overlapping pixels are as-
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Images MSEB MSEA MSSIMB MSSIMA

v1301xy 2196 534 0.074 0.693
v1303xy 922 184 0.074 0.765
v1309xy 1339 482 0.081 0.779
v1310xy 847 157 0.072 0.800
v1311xy 700 145 0.072 0.784
v1313xy 767 190 0.079 0.800
Average 1128 282 0.075 0.770

Table 3.5: Image quality improvement. Subindex B represents before color
compensation, and subindex A represents after color compensation

signed 128 and overlapping pixels are assigned 255 on corresponding channels

of synthetic images. The MSE and the mean SSIM (MSSIM) are measured

from before and after color compensated images against the synthetic images.

An average of MSEs and MSSIMs across six channels per image is shown in

Table 3.5. MSSIM becomes one when two images are identical. As shown in

Table 3.5, the MSE reduced by a factor of 4 and the MSSIM increased by a

factor of 10 after the color compensation.

3.5.3 Background Correction and Color Compensation Results

Figure 3.5 shows the result of background correction. The original

image in Fig. 3.5 has an elevated background and displays channel crosstalk.

The estimated cubic surface of the background is shown in Fig. 3.5(c). The

background corrected image shown in Fig. 3.5(b) is obtained after subtracting

Fig. 3.5(c) from Fig. 3.5(a). Fig. 3.5(d) is a profile drawn from rows in the

middle of Fig. 3.5(a) and Fig. 3.5(b), and it clearly shows that the background

elevation is effectively removed.
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(a) Original aqua channel (b) Background corrected image

(c) Estimated cubic surface (d) A profile: Top-before,
Bottom-after

Figure 3.5: Background correction. Elevated background intensity is removed
after the background correction, but the channel crosstalk still remained.
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(a) Original image (b) Background correction (c) Color compensation

Figure 3.6: Color compensation. The color compensation removed the channel
crosstalk effectively. A significant increase in image quality is achieved on
image (c).

After correcting the background of five images that are captured from

the same slide, pixels from each chromosome class are collected from those

images. The means of each class are computed to form the matrix Y. Then

the color spread (compensation) matrix is calculated. Fig. 3.6(c) shows the

color compensation result, and as shown in the figure, all the crosstalk was

effectively removed. A significant improvement in image quality is achieved

after the color compensation.

Color compensation is an effective method of improving the quality

of M-FISH images by removing the channel crosstalk. Figure 3.7 shows an

example of before and after the color compensation: (a) Green, Aqua, and

DAPI channels of V1301XY are combined as a color image, (b) Far red, Red,

and Gold channels are combined and shown as a color image, (c) and (d) show

the result of background correction, (e) and (f) show the color compensation

result (Simple scaling has been applied to the color compensated image). As

shown in (e) and (f) the quality of the image has been improved significantly by
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removing channel crosstalk. Pixel values numbered on (b) are shown in Table

3.6. It is not easy to distinguish which chromosomes are truly hybridized and

which are due to crosstalk in Fig. 3.7 (b). Chromosomes marked with number

1 and 2 are due to crosstalk and they are effectively removed in Fig. 3.7 (f).

Table 3.6 shows pixel values after the background correction and color

compensation. NP, BC, and CC means no processing, background correction,

and color compensation respectively. As the values show, the intensity cor-

responding to the channel crosstalk has been removed effectively. The back-

ground correction helps reveal the pattern and color compensation further

enhances the pattern as shown in Fig. 3.7 and in Table 3.6. Accordingly, pixel

classification accuracy also increased significantly after the background correc-

tion (results are shown in Section 4.5). However our experiments on a small

number of images showed that color compensating images after the background

correction did not improve the overall classification accuracy. This suggests

that revealing the pattern helps classification but enhancing the pattern is

not enough. The pattern must satisfy certain criteria, which is explained in

the following section. One more drawback of color compensation with respect

to pixel classification is that the color spread matrix should be recalculated

for images with different intensity (feature) distributions. To summarize, the

color compensation improves the image quality significantly but may not be a

useful preprocessing step for pixel classification.

50



(a) Before color compensation

1

2

3

4

(b) Before color compensation

(c) Background correction of (a) (d) Background correction of (b)

(e) Color compensation of (a) (f) Color compensation of (b)

Figure 3.7: Color compensation result on image V1301XY.
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Pixel
Spectrum

Processing Aqua Green Gold Red Far Red Class
NP 191 57 38 44 55

1 BC 133 26 11 17 34 3
CC 196 1 0 0 11

Pattern 1 0 0 0 0
NP 137 219 75 84 85

2 BC 61 173 32 43 50 6
CC 18 208 1 27 16

Pattern 0 1 0 0 0
NP 95 154 60 128 53

3 BC 30 118 27 97 28 4
CC 0 151 0 163 0

Pattern 0 1 0 1 0
NP 104 77 120 80 71

4 BC 29 29 76 37 34 1
CC 0 0 128 0 1

Pattern 0 0 1 0 0

Table 3.6: Pixel values numbered on Fig. 3.7 (b).
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3.6 Expectation Maximization Normalization

Even after background correction and color compensation, intensity

variations within a chromosome and among chromosomes in a channel and

between channels, caused by uneven hybridization in a chromosome and un-

equal fluorophore sensitivities depending on chromosomes, remain as a source

of classification error. Within a channel, chromosomes that are supposed to

be bright are expected to have a similar intensity level, but often chromosome

intensities differ considerably. The bright chromosomes in one channel are

not consistently brighter than other chromosome in other channels where they

are supposed to appear. For example, a chromosome labeled with three fluo-

rophores show significantly different intensity levels across those three channels

due to unequal fluorophore sensitivities and unequal exposure times. These

intensity differences across channels are also inconsistent across images. This

inconsistency causes classification errors since the feature vector y becomes

inconsistent. Given an individual feature value, e.g. gray level of 60, it is un-

certain whether it comes from a hybridized chromosome or from noise. Only

when a feature vector is formed does the relative intensity difference among

feature values deliver meaningful information about the pixel membership.

The relative intensity difference among feature values in a feature vector is

called texture, which is independent of the mean value of the vector. Note

that the texture here is defined as the shape of dark and bright pattern in a

feature vector. Two feature vectors y1 = [1, 0, 1, 0, 1] and y2 = [100, 60, 100,

60, 100] have the identical texture, while a third vector y3 = [68, 5, 240, 10,
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210] has a similar pattern as y1 and y2 but has a different texture, if we define

the texture as (yj − µyj
)/σyj

.

Suppose that y3 ∈ ω10 (chromosome 10), and the pattern of y3 is con-

sistent throughout all y ∈ ω10, then a supervised classification method should

work well without further normalizing the data. Even though background cor-

rection significantly reduces the variations in yi ∈ ωi, for all i, there are pix-

els misclassified due to the aforementioned variations. Therefore, hybridized

chromosomes must have a high intensity level across all spectral channels, and

at the same time, unhybridized sections, including intensity due to spectral

crosstalk, should have a certain intensity level that is lower than the intensity

of hybridized chromosomes across all spectral channels. The normalization

process should minimize the difference of the intensity distributions for all

images. This can be achieved by normalizing the variables (the features).

An M-FISH image M is composed of six gray scale images {I1, I2, I3, I4,

I5, I6}, each corresponding to a spectral channel. Each gray scale image Ik

contains gray scale values y that belong to background Ib(k) and chromosomes

Ic(k), i.e. Ik = {y|y ∈ Ib(k)∪y ∈ Ic(k)}, and Ic(k) = {y|y ∈ ω1∪y ∈ ω2}, where

ω1 = intensity due to no fluorophore and ω2 = intensity due to a fluorophore.

The distribution of y in Ic(k) is assumed to be a mixture of two gaussians:

p(y|ω1) ∼ N(µ1, σ1) and p(y|ω2) ∼ N(µ2, σ2), and µ1 < µ2. Then Ic(k) is a

set of unlabeled samples drawn independently from the mixture density

p(y) = p(y|ω1)P (ω1) + p(y|ω2)P (ω2). (3.12)
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Since the models are identical for all channels, the channel index k is not

specified for y. A parameter vector θ contains (µ1, µ2, σ1, σ2, P (ω1), P (ω2)).

P (ω1) and P (ω2) are prior probabilities and also called mixing parameters.

The separation between Ic(k) and Ib(k) can be obtained by a new au-

tomatic segmentation method [12], which combines global and local intensity,

spectral information, and edge information to segment chromosomes from the

background. Cells are also removed, based on their size and circularity (see

Fig. 3.8).

Following segmentation, only pixels that fall inside chromosomes are

classified. Among the 6 features, the DAPI channel provides information re-

garding whether a pixel belongs to chromosomes or to background. Since

chromosome-background classification (segmentation) is already accomplished,

DAPI information becomes redundant when classifying only chromosome pix-

els. Thus the remaining five features are normalized and used for classification.

Figure. 3.9 shows an example of the mixture density distributions of

Ic(k) of an M-FISH image, V1401XX. The black bars in Fig. 3.9 represent

the range of gray scale values for a pixel that has a [High Low High Low

High] labeling pattern. As one can notice, a significant portion of High val-

ues in Ic(3) overlaps with Low values in Ic(2) and Ic(4), resulting in a totally

unexpected pattern. This unexpected pattern will result in a low classifica-

tion accuracy simply because the distributions of this image and the training

data (or expected patterns) are different. We want to emphasize that this

low classification accuracy comes from the difference in the patterns between
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(a) V130740XY DAPI Channel

(b) Segmentation result

Figure 3.8: Segmentation result. Chromosomes are automatically segmented
from background by utilizing 6 spectral information, global and local intensity,
and edge information. Cells are also removed based on the size and circularity.
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the training and the testing data, and the accuracy is less dependent on the

fundamental error rate (Bayes error) of the testing data. In other words, the

joint distribution of five features of the testing data may have extremely small

overlaps (low errors) among classes, but has its own patterns that are different

from the training data, which will result in a low classification accuracy.

Figure. 3.10 further illustrates this point. Suppose that each feature

has a bimodal distribution, and there are two features describing four classes.

The straight lines in the figure are the decision boundaries for the four classes.

As one can see, the fundamental error rate of each data set is determined

by the distribution of its marginal density functions. As the overlap between

the two modes in each feature increases, the error rate of the data increases.

Both of the data in Fig. 3.10 seem to have small error rates. However the

testing data’s classification accuracy will be low because the distribution is

considerably different from the distribution of the training data set. The

two distributions should be made as similar as possible by the normalization

process in order to minimize the classification error.

Given a bimodal marginal density function (eq. (3.12)) and its param-

eters, the normalization process should cause y ∈ ω1 and y ∈ ω2 to fall within

certain ranges and the decision boundary between ω1 and ω2 to lie at a certain

point. The parameters θ = (µ1, µ2, σ1, σ2, P (ω1), P (ω2)) are unknown, and the

samples are unlabeled. θ can be found by the maximum-likelihood estimation

procedure.

When all parameters are unknown, and if no constraints are placed on
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Figure 3.9: The mixture density distribution of Ic(k) of V1401XX.
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Figure 3.10: Distributions of training data and testing data. x and y axes
are the feature values (thus, a feature vector forms a point in the figure).
Each data set has its own fundamental error rate by its own distribution,
but the classification accuracy for the testing data will be low because the
distributions are different between the two data sets. The distributions should
be normalized in order to obtain a high classification accuracy.
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the covariance matrix (for multi-dimensional data), the maximum-likelihood

principle yields useless singular solutions. However, meaningful solutions can

still be obtained if we restrict our attention to the largest of the finite local max-

ima of the likelihood function, assuming that the likelihood function is well-

behaved at such maxima [57]. Then the parameter vectors θi = (µi,Σi, P (ωi))

can be estimated iteratively using the following equations:

P̂ (ωi) =
1

N

N
∑

j=1

P̂ (ωi|yj, θ̂) (3.13)

µ̂i =

∑N
j=1 P̂ (ωi|yj, θ̂)yj
∑N

j=1 P̂ (ωi|yj, θ̂)
(3.14)

Σ̂i =

∑N
j=1 P̂ (ωi|yj, θ̂)(yj − µ̂i)(yj − µ̂i)

T

∑N
j=1 P̂ (ωi|yj, θ̂)

(3.15)

where N = number of unlabeled samples drawn independently from the mix-

ture density of c classes, i = 1, . . . , c, and

P̂ (ωi|yj, θ̂) =
p(yj|ωi, θ̂i)P̂ (ωi)

∑c
l=1 p(yj|ωl, θ̂l)P̂ (ωl)

=
|Σ̂i|−1/2exp

[

−1
2
(yj − µ̂i)

T Σ̂
−1

i (yj − µ̂i)
]

P̂ (ωi)

∑c
l=1 |Σ̂l|−1/2exp

[

−1
2
(yj − µ̂l)

T Σ̂
−1

l (yj − µ̂l)
]

P̂ (ωl)
.(3.16)

Among the various techniques that can be used to obtain a solution,

one approach is to use an initial estimate to evaluate (3.16) for P̂ (ωi|yj, θ̂),

then use (3.13) - (3.15) to update the estimate [57]. This iterative method is

also called expectation-maximization (EM). Since the solution depends on the

initial estimates and to obtain fast convergence, a k-means clustering method
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is used to estimate the initial parameters. k-means clustering is a simple but

popular method of finding the c mean vectors µ1, . . . ,µc. Given the c initial

mean vectors µm, the samples are classified to the nearest µm. Then by

approximating P̂ (ωi|yj, θ̂) in (3.14) as

P̂ (ωi|yj, θ̂) ∼=
{

1 if i = m
0 otherwise

new estimates of the c mean vectors are obtained. The iteration repeats until

the means converge. Usually c randomly chosen samples are used as the initial

c means. In our case, the minimum and the maximum gray scale values in

each channel are used as the initial mean values. Once µ̂1 and µ̂2 are found via

the k-means clustering, the values σ̂2
i are estimated from the samples classified

to ω1 and ω2. These means and variances along with equal priors are used as

initial estimates for (3.13) - (3.15). Once the parameters are estimated by the

EM method, the decision boundary between ω1 and ω2 is found by

T =
−B ±

√
B2 − 4AC

2A
(3.17)

where

A = σ̂2
2 − σ̂2

1

B = 2σ̂2
1µ̂2 − 2σ̂2

2µ̂1

C = σ̂2µ̂2
1 − σ̂2

1µ̂
2
2 − 2σ̂2

2ln(
σ̂2P̂ (ω1)

σ̂1P̂ (ω2)
).

Given the parameter vectors and the decision boundary, the sample distribu-

tion is normalized by piece-wise linear transformations as shown in Fig. 3.11.
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Figure 3.11: A marginal density function in (a) is normalized as in (c) by
the piece-wise linear gray level mapping function in (b). The horizontal axes
represent gray scale range.

The input intensity r is mapped to the output intensity s by

f(r) =



















64
µ1−min(r)

(r −min(r)) if min(r) ≤ r < µ1
64

T−µ1

(r − µ1) + 64 if µ1 ≤ r < T
64

µ2−T
(r − T ) + 128 if T ≤ r < µ2

63
max(r)−µ2

(r − µ2) + 192 if µ2 ≤ r < max(r)

(3.18)

where min(r) is the minimum intensity level and max(r) is the maximum

intensity level in r.

3.7 Results of EM Normalization

Each data set has its own unique error rate (Bayes error) based on the

feature distribution. While the fundamental error rate of each data set is one

problem that causes classification error, the significant error comes from having

different distributions for different data sets. The EM normalization process is

focused on reducing the distribution differences among the different data sets.

Thus, the classification accuracy improves significantly after normalization

(rates are shown in the following section).
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The mixture density parameters for each feature were found by (3.13)

- (3.15), and then the decision boundary between the modes was found by

(3.17). Given the parameters and the decision boundary T , the features were

normalized by (3.18).

In particular, Fig. 3.12 shows the intensity distributions of the features

of V290562 before and after EM normalization. As the figure shows, the

uncertainty of a gray scale at a channel being High (hybridized) or Low (not

hybridized) is removed in the normalized data.

Figure 3.13 shows the gray scale images before and after the EM nor-

malization. As the figure shows, chromosomes that are hybridized have higher

intensity levels than the intensities due to non-hybridized chromosomes. This

normalization ensures that the patterns become consistent throughout all im-

ages.

3.8 Conclusion

We have shown a method of estimating the color spread matrix for M-

FISH images. Examples of formulating a linear system of equations in order

to estimate the color spread matrix were presented. The color compensated

M-FISH images provide superior image quality compared to the unprocessed

images. The image quality improvement is also quantitatively shown using

SSIM and MSE. MSSIM improved by a factor of 10, and MSE reduced by a

factor of four on average after the color compensation. The new technique can

be applied easily to any fluorescence microscopy images where specimens are
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Figure 3.12: Feature distribution (normalized histogram) of V1290562 before
and after the EM normalization. x axis represents gray scale and y axis rep-
resents the normalized frequency of a gray level. The EM normalized images
are shown in Fig. 3.13, and the classification result is shown in Fig 4.6.
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Figure 3.13: EM normalization result of V1290562 before and after the EM
normalization.
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uniquely or combinatorially stained, and it can be extended to any multichan-

nel images that exhibit a signal formation pattern that is similar to M-FISH

images.

We also introduced a new normalization method using the expectation

maximization algorithm. Previously the variation in the feature distributions

among the different M-FISH images was not emphasized as a source of mis-

classification. Even if it was recognized, there was no good method of reducing

the variation. Assuming the distribution of each feature in the chromosome

region is a mixture of two normal density functions, the maximum-likelihood

parameters were estimated for the mixture density and each feature was nor-

malized based on the parameters. In the following chapter we show that the

overall pixel classification accuracy improved by 40% after EM normalization

from 50% (with no proprocessing) to 70% (with EM normalization), and also

show that the improvement is statistically significant with no preprocessing

and with background correction.
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Chapter 4

Pixel Classification Methods For M-FISH

Images

In this chapter, various pixel classification methods for M-FISH images

are described, which include supervised parametric, supervised nonparamet-

ric, and unsupervised nonparametric methods including two new classification

methods for M-FISH images that do not require training of a classifier (unsu-

pervised) nor require class parameter estimation (nonparametric).

Given a number of objects, the choice of classifier depends on the knowl-

edge about the samples in the feature domain such as the number of classes,

the prior probabilities, the forms for the class-conditional probability density

functions, the values for the density functions, and the category labels of the

samples.

When the labels are available, we can learn the statistical proper-

ties of the samples and design a classifier that utilizes that knowledge. The

maximum-likelihood classifier is one kind, which estimates the class pa-

rameters from the training data and an unknown sample is classified to a

class that yields the maximum likelihood of the sample belonging to the class.

When the number of samples representing classes is large, the estimation of

67



the parameters will become close to the true parameters. On the contrary,

when the number of training samples is small (e.g. the face recognition prob-

lem where only a few images are available for each class), the estimation of

the class parameters will be inaccurate or even impossible. For such cases, the

nearest neighbor classifier or k-nearest neighbor classifier is a suitable

choice, which assigns samples to the class of the nearest training sample.

If the labels are not available, the class parameters can be estimated

using an unsupervised method. The samples can be grouped into a number

of classes without estimating the parameters, and this is called an unsuper-

vised nonparametric method. These include k-means clustering and fuzzy

k-means clustering. These clustering methods cluster the data into a fixed

number of groups regardless of the true number of classes in the data. If

the clustering method is the only option, when the number of classes changes

depending on a set of data or depending on time, then the right number of

classes should be validated. If the labels are not available but the patterns for

each class are expected to have ideal prototypes, then the template match-

ing method (similar to the nearest neighbor method) or the fuzzy-logic

classifier can be used.

M-FISH images have six channels. Each channel contains the intensity

of a corresponding fluorophore. Since each chromosome is uniquely stained,

the intensity combinations across 6 channels are unique for each chromosome

type. Previously, we have designed a 6-channel 25-class maximum likelihood

classifier [48, 49]. 25 classes include 24 chromosomes plus background. By clas-
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sifying every pixel in the image using this maximum-likelihood classifier, both

segmentation and classification of chromosomes were achieved simultaneously.

The overall accuracy of the segmentation was about 90% on a small number of

images using this method. When a portion of the chromosome pixels are clas-

sified as background or vice versa, the lost region cannot be recovered without

prior knowledge about the chromsome boundaries. Furthermore, classifying

every pixel in the images is wasteful since chromosome pixels only occupy less

than 10% of the image. Thus, prior to the pixel classification, an accurate

segmentation method is desired.

4.1 Foreground-background segmentation

In order to compute reliable boundaries between objects and back-

ground, we combined multiple methods that utilize not only spectral informa-

tion but also edge information. Laplacian of Gaussian (LoG) edge detection

performed on the DAPI channel provides nice closed boundaries of chromo-

somes that correspond well to human perception. However, it also picks up

unwanted artifacts from the background. In general, chromosome intensities

are brighter than the neighboring background, although the background sur-

face is not globally uniform. When object intensity is brighter than the neigh-

boring pixels, adaptive thresholding is an effective segmentation method. This

method effectively separates chromosomes from background. Due to its sim-

plicity and effectiveness, adaptive thresholding is widely used for chromosome

image segmentation. However, when a number of pixels in the foreground are
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darker than neighboring foreground pixels, adaptive thresholding creates holes

inside the chromosome or disconnects the chromosome into pieces. To utilize

the spectral information, 6-feature 2-class K-means clustering method is used.

This clustering method is preferable to the maximum-likelihood method be-

cause it does not require training. It groups six dimensional data into two

classes while iteratively regrouping the data points until the class means con-

verge. Its classification results are similar to those of the maximum-likelihood

classifier since they both utilize the same information. Adaptive thresholding,

LoG edge detection, K-means clustering, and global thresholding methods are

combined together to achieve a final segmentation result. A composite binary

image is obtained after voting among those 4 methods. For example, a pixel

becomes foreground when a majority (3 out of 4) are foreground.

Prior to the segmentation, a non-uniform background was corrected by

fitting a cubic surface to the estimated background pixels and subtracting it

from each channel [51]. The background pixels for each channel were estimated

by a global thresholding method, an iterative clustering method, in which the

threshold was found while iteratively grouping pixels into two classes until the

class means converge. The decision boundary between the two classes was

the threshold (eq. 3.5 on page 37). Pixels below threshold were used for the

surface estimation. After the background correction, cells are identified based

on the circularity and size measures (the detailed procedure of cell removal is

given in the following section). Once the background was corrected and cells

are removed from the image, adaptive thresholding, LoG edge detection, and
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(a) DAPI channel (b) Ground truth (c) Segmentation Result

Figure 4.1: Segmentation result. Notice that the cell is effectively removed.

6-feature 2-class K-means clustering were performed. A composite threshold

image was created after voting. An example is shown in Fig. 4.1. Fig. 4.1

(b) the ground truth was generated by thresholding the DAPI channel and

by manually correcting mistakes. During the manual correction, some chro-

mosomes were mistakenly drawn larger than their proper sizes such as the

chromosome indicated by an arrow in Fig. 4.1 (b). Fig. 4.1 (c) agrees well

with human perception. The segmentation accuracy was also quantitatively

measured by comparing with the ground truth. Among 10 images, the low-

est and the highest correct rates were 97.5% and 98.7%, and the average was

98.2%.

4.1.1 Detailed Procedure for Cell Removal

The cell identification procedure is as follows.

1. All six channels are summed together and scaled to fit 8bit grayscales
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(a) DAPI channel (b) Global Threshold (c) Adaptive Threshold

(d) LoG Threshold (e) k-Means Clustering

(f) Ground Truth (g) Segmentation Result

Figure 4.2: Segmentation steps.
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since the cells do not always appear in the DAPI channel.

2. This composite image is thresholded using the iterative global thresh-

olding method having the prior of 0.4 for the lower gray scales.

3. The holes inside cells are filled.

4. A morphological open operation with a 5×5 circular structuring element

is applied to smooth the boundary. Let’s call the resulting image T1.

5. A morphological erode operation with a 51×51 circular structuring ele-

ment is applied to T1 to remove objects smaller than 25 pixels in width.

The structuring element is chosen to ensure that most of the chromo-

somes are removed and only cells are left. Let’s call the resulting image

T2.

6. Each blob (found by 8-connectivity) on T2 are examined for the circu-

larity. Let’s call a blob T3.

7. T3 is further smoothed by the open operation using a 7×7 circular struc-

turing element, creating T4.

8. The circularity of T4 is measured using S = 4πA/P 2, where A = area

of T4 and P = length of perimeter. The length P is measured using

Freeman’s chaincode by tracking the boundary, and P = α ×Ne + β ×

No + γ × Nc, where α, β, and γ are 0.980, 1.406, -0.091 respectively

and Ne = number of even chaincode, No = number of odd chaincode,
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and Nc = number of corners where the chaincode changes. Let’s call the

circularity of T4 S1.

9. If S1 is larger than 0.65, the corresponding blob on T1 is examined for its

circularity. If its circularity is larger than 0.75 then the blob is identified

as a cell.

4.2 Supervised Classification Methods

4.2.1 Maximum-Likelihood Classifier

Unknown samples can be classified by the statistical properties of the

samples, if the number of classes, the forms for the class-conditional density

functions, the class parameters for the density functions, and the prior prob-

abilities of the classes are known. However in practice, all these parameters

and the density functions are not given. Instead, they can be learned from the

training data. In chromosome classification, the maximum number of classes is

known since the number of chromosome types is fixed. The prior probabilities

of the classes can be estimated from the training data or estimated by assuming

that an equal number of male and female specimens will be encountered. The

parameters for the density functions can be estimated once the forms for the

density functions are given. One can visually confirm the forms for the den-

sity functions by plotting the sample distributions or using the Parzen window

density estimation [57]. However as the dimensionality of the feature space

increases, the required number of samples grows exponentially, and visualiza-

tion is impossible when the dimensionality is more than three. In general, one
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can assume the form of the density functions based on knowledge of the data.

These forms can be chosen from standard unimodal density functions that

best describe the true underlying densities. In M-FISH pixel classification, we

assume the sample distributions are normal i.e. p(x|ω) ∼ N(µ,Σ).

Given the labeled samples, we estimate the maximum-likelihood values

for θ = (µ,Σ) for all classes. Suppose that n samples in a training data set

Di are independently drawn from p(x|ωi), where i = 1, . . . , c and c = number

of classes. The likelihood of θi with respect to the set of samples is

p(Di|θi) =
n
∏

k=1

p(xk|θi). (4.1)

The maximum-likelihood estimate of θi is the value θ̂i that maximizes p(Di|θi).

The log-likelihood function can be used for the analytical convenience since it

is monotonically varying. The estimation is identical for all classes. Thus eq.

4.1 can be written as

l(θ) =
n
∑

k=1

ln p(xk|θ), (4.2)

and the maximum-likelihood estimate for θ can be obtained from a set of

equations

∇θl = 0. (4.3)

The log-likelihood function of the normal density function in one di-

mension is written as

ln p(xk|θ) = −1

2
ln 2πθ2 −

1

2θ2

(xk − θ1)
2 (4.4)
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where θ1 = µ and θ2 = σ2. By solving eq. 4.3, we obtain the following

maximum-likelihood solution for µ and σ2:

µ̂ =
1

n

n
∑

k=1

xk

and

σ2 =
1

n

n
∑

k=1

(xk − µ̂)2.

With a similar analysis, the maximum-likelihood solution for µ and Σ

for the multivariate case are

µ̂ =
1

n

n
∑

k=1

xk

and

Σ̂ =
1

n

n
∑

k=1

(xk − µ̂)(xk − µ̂)T .

This process of estimating the class parameters is called the training of

the classifier. Once the classifier is trained, unknown samples can be classified.

The likelihood of an unknown sample x belonging to a class ωi is written in

Bayes formula as

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(4.5)

where

p(x) =
c
∑

i=1

p(x|ωi)P (ωi).

The Bayes decision rule (Bayes classifier) assigns an unknown sample

x is to class ωj if the posterior probability for ωj is the maximum compared
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to all other posterior probabilities. The expression can be written as following

without p(x) since it does not affect the decision:

p(x|ωj)P (ωj) > p(x|ωi)P (ωi) for all i 6= j.

In our case, we assumed the equal prior for all chromosomes. Thus the decision

rule is solely based on the likelihoods p(x|ωi), i.e. assign x to class ωj if

p(x|ωj) > p(x|ωi) for all i 6= j.

4.2.2 k Nearest Neighbor Classification

For the maximum-likelihood classifier, we have assumed the underlying

density functions to be normal (unimodal). However, in many practical prob-

lems the density functions may not be unimodal. In such cases, two approaches

can be possible: 1) the multimodal density functions can be modeled as having

multiple sub-classes if the forms of the densities can be verified somehow, 2) in

cases where the dimensionality prohibits density estimation, a nonparametric

method can be used with arbitrary distributions without assuming a form for

the density functions.

A popular nonparametric method is the nearest neighbor or the k near-

est neighbor method. Given a set of training data, a test sample x is assigned

to a class ωi when the nearest neighbor of x in the training data belongs to

the class ωi. The error rate of the nearest neighbor method is greater than

the Bayes rate, and never worse than twice the Bayes rate when an unlimited

number of training samples is used. A simple extension of the nearest neighbor
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method is the k nearest neighbor method, which assign a test sample x to the

most frequent class that its k nearest neighbors belong. As the value of k grows

toward infinity, the error rate becomes the Bayes rate. However, in practice

the aforementioned is not always true since the number of training samples is

limited. In fact, the error rate can even increase as k increases. However it

is a useful method when the number of training samples is so small that the

class parameters cannot be estimated, or the underlying density functions do

not fit a simple unimodal density function.

4.3 Unsupervised Classification Methods

Supervised classification methods, such as the Bayes classifier (para-

metric) and k-nearest neighbor clustering (nonparametric), require train-

ing data. If the number of classes and the form of the class-conditional prob-

ability density functions are known, the class parameters can be estimated

from the training data, and a parametric classification method can be used.

If the number of classes is known but the form of the class-conditional proba-

bility functions are unknown, then a nonparametric method such as k-nearest

neighbor clustering can be used. In general, collecting and labeling a large

set of samples can be extremely costly and even prohibitive for some cases.

Fortunately we have a large collection of M-FISH images with ground truth.

Thus the use of a supervised method is an adequate approach here. However,

in an early stage of investigation regarding the structure of the data based

on some features, an unsupervised method is desired since the samples are

78



unlabeled. Then unsupervised methods can be used to generate the training

data set and further to extract useful features. Popular unsupervised methods

are k-means clustering and fuzzy k-means clustering, which group the

samples into k clusters whether or not k classes actually exist in the data.

These methods can be readily used for normal XX (23 classes) or XY (24

classes) samples where the number of classes is fixed and known. When only

the maximum number of classes is known, the use of one of these methods

requires the cluster validation to assess the right number of classes by finding

the right threshold, which may or may not be feasible depending on the data.

4.3.1 Minimum Distance Classifier

In order to overcome the limitation of these unsupervised methods, we

introduce a simple but effective unsupervised and nonparametric classification

method for M-FISH images. The concept arises from the fact that a set of

samples bound to a particular probe set has an expected intensity pattern

for each class. Those fundamental patterns can be used as templates or ideal

prototypes for the classes. If our normalization process is effective, then the

distance between a normalized sample and its correct class mean (template)

should be as small as possible. If that is true, then the minimum-distance

classifier [57], without actually training the classifier, can be used to classify

pixels, and the classification accuracy can be used to evaluate the effectiveness

of the normalization.

The derivation of the minimum-distance classifier is as follows. In
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Bayesian decision theory, the minimum-error-rate classification can be achieved

by using a set of discriminant functions gi(y), i = 1, . . . , c, and the classifier

assigns y to class ωi if

gi(y) > gj(y) for all j 6= i (4.6)

where

gi(y) = ln p(y|ωi) + lnP (ωi).

If the density functions are multivariate normal in d dimensions, the class-

conditional probability density functions are expressed as

p(y|ωi) =
1

(2π)d/2|Σi|1/2
exp

[

−1

2
(y − µi)

TΣ−1
i (y − µi)

]

,

and then the discriminant functions can be written as

gi(y) = −1

2
(y − µi)

TΣ−1
i (y − µi) −

d

2
ln 2π − 1

2
ln |Σi| + lnP (ωi).

If we assume that the features are statistically independent and have the same

variance σ2, then the discriminant functions become

gi(y) = −‖y − µi‖2

2σ2
+ lnP (ωi)

after ignoring the additive constants. After further simplification, we obtain

linear discriminant functions whose decision boundary is the hyperplane per-

pendicular to the line linking the class means. If the prior probabilities are

assumed to be the same for all c classes, then the classifier assigns a feature

vector y to the class that yields the minimum Euclidean distance ‖y − µi‖.
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This classifier is essentially the same as the nearest neighbor classifier. In

general, multiple samples are used per class to represent a class in the nearest

neighbor method, and after computing the distances to all those samples from

an unknown sample y, the sample y is assigned to the most frequent class

among k-nearest neighbors. In the template matching case, only one sample

(ideally the class mean) per class is used to represent the class.

In our case, the template patterns are determined by the color table

(e.g. Table 3.2). Let a template sample from class ω1 be x1 = [0, 0, x, 0, 0],

from ω2 be x2 = [0, 0, 0, x, 0], and so on, where x can be any positive real

number, then the template patterns are defined as

µt
i =

xi − µxi

σxi

.

After normalization (by EM or background correction), it is important that

the samples y should be further normalized for this classifier, before pixel

classification, by y′ = (y− µy)/σy. Thus an unknown sample y is assigned to

ωi if
∥

∥y′ − µt
i

∥

∥ <
∥

∥y′ − µt
j

∥

∥ for all j 6= i. (4.7)

4.3.2 Fuzzy Logic Classifier

A fuzzy-logic classifier is an unsupervised classification method that

does not need to assume an underlying distribution, nor does it estimate the

distribution. Furthermore, the computational complexity is far less (at least 10

times) than that of the maximum-likelihood classifier, while the classification
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accuracy is comparable. It only requires information regarding the labeling of

each class (e.g. Table 3.2).

The discriminant functions of the fuzzy logic classifier are formulated

as follows:

gi(x) =
6
∏

j=1

f(xj)P (ωi) (4.8)

where i is the class index (i = 1 ∼ 24), and j is the spectrum index (j = 1 ∼ 6),

P (ωi) is the a priori probability for class i, and x is a sample vector.

f(xj) =

{

xj if T (i, j) = 1

1 − xj if T (i, j) = 0
(4.9)

where T is the color table (e.g. Table 3.2). For example, the discriminant

function for class 1 will be (assuming equal priors)

g1(x) = x1 × (1 − x2) × (1 − x3) × x4 × (1 − x5) × (1 − x6) (4.10)

A pixel x belongs to class ωi if gi(x) > gj(x) for all j 6= i. Only pixels inside

foreground are classified using this classifier.

4.4 Postprocessing Methods

4.4.1 Majority and Plurality Filtering

Since many misclassified pixels are surrounded by correctly classified

pixels, small local pixel misclassifications can be corrected using neighborhood

information. A kernel of a proper size is applied, pixel by pixel, to the initial

classification result. In majority filtering, a pixel value is replaced with

a majority of the pixel values under the kernel, if the majority exists. If a
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majority is not found, then the pixel values remains unchanged. Given an

N × N kernel, a majority is the value that occurs more than N2/2 times.

In plurality filtering, a pixel value is replaced with the most common value

under the kernel. If there is a tie, the pixel value remains unchanged. When

the kernel is placed near the boundaries, the background pixels are ignored

for the counting. Caution needs to be used when selecting the proper kernel

size. However, there is always the danger of removing translocations using

these methods. Plurality filtering was used as an intermediate step in the

chromosome decomposition process (Chapter 5). An alternative method of

correcting misclassifications without removing the translocations is described

in the following section.

4.4.2 Prior Adjusted Reclassification

The boundary information is extremely useful when correcting pixel

misclassifications. Misclassifications usually occur where chromosomes touch

or overlap and near the boundaries of chromosomes. Here we introduce a

method that eliminates misclassifications effectively, while preserving translo-

cations, when the boundary information is available.

The majority and plurality filters correct misclassifications regardless of

the likelihoods of the pixel being evaluated. The confidence level of a pixel be-

longing to a class can vary significantly. A pixel may belong to several classes

almost equally likely, or only to a particular class with a high likelihood com-

pared to belonging to any other class. Interestingly, we have observed that
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when a pixel x1 belongs to ω1 but is misclassified as ω2, the posterior proba-

bility difference is small, P (ω2|x1) > P (ω1|x1) and P (ω2|x1) − P (ω1|x1) = ǫ.

The posterior probability is derived from Bayes rule as follows:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
.

When x1 truly belongs to ω2, the posterior probability difference is usually

large: P (ω2|x1) >> P (ω1|x1). In the former case, x1 could be easily reclas-

sified as ω1 by a small increase in the prior for ω1. In the later case, a small

increase in the prior for ω1 would not change the classification result. There-

fore, the misclassified pixels can be effectively corrected by increasing the prior

probability for the correct class. Of course, for this method to work, the right

class to increase the prior must be determined for a given chromosome.

A set of pixels that belongs to a boundary Bi is defined as Si. Si

may contain pixels that belong to multiple classes due to misclassifications

or a translocation. Given Bi, there exists the most likely class ωm among

{ω1, . . . , ω24} that Si belongs to. Given Bi, m is found by the following for-

mula:

m = arg max
m

{

Ps(ωm|s)
24
∑

i=1

Pp(ωm|xi)PN(ωm)

}

(4.11)

where Ps(ωm|s) is the posterior probability given s, s is the normalized size

of Bi, Pp(ωm|xi) is the posterior probability given a vector that belongs to

class ωi, and PN(ωm) is the normalized number of pixels that belong to ωm.

Three factors are considered in determining the most likely class: the chromo-

some size, the sum of a posteriori probabilities for each class, and the class
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population. These three factors are effectively incorporated in order to cor-

rect errors. Once ωm is found, all pixels in Bi are reclassified with a higher

prior for ωm. Note that this method preserves translocations (because those

pixels will not be easily reclassified as ωm, even though the prior for ωm, a

different class from the translocated pixels, is increased) while correcting the

misclassifications effectively. An example of prior adjusted misclassification is

shown in Fig. 4.3. Pixels are initially classified using the fuzzy-logic classifier

(explained in Section 4.3.2).

Fig. 4.4 shows another example of the prior adjusted reclassification

(image: V240452). The pixel classification accuracy improved from 86.15% on

Fig. 4.4 (b) to 93.26% on Fig. 4.4 (c) while preserving the existing transloca-

tion. Chromosome 4 has a translocation of chromosome 9. The translocated

segmented is not affected by the increased prior on chromosome 4. However,

since this chromosome 4 has an added segment from chromosome 9, its size

is much closer to that of chromosome 2. Thus the second chromosome 4 was

misidentified as chromosome 2. Subsequently, the wrong prior was increased

on the second chromosome 4. In such cases, the right prior can be assigned

interactively. This problem should be corrected in the future.

4.5 Accuracies of Classification Methods Before and Af-
ter Normalization

The pixel classifications were performed with three different condi-

tions: no preprocessing, background correction, and EM normalization. Both
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(a) Ground truth (b) Karyogram of (a)

(c) Initial classification (d) Karyogram of (c)

(e) Reclassification (f) Karyogram of (e)

Figure 4.3: Fuzzy logic classification and prior adjusted reclassification

86



1 1 2 2 3 3 4 4 5 5 6 6

7 7 8 8 9 9 10 10 11 11 12 12

13 13 14 14 15 15 16 16 17 17 18 18

19 19 20 20 21 21 22 22 23 23

(a) Karyogram of ground truth

1 1 2 2 3 3 4 4 5 5 6 6
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(b) Karyogram of initial pixel classification

1 1 2 2 3 3 4 4 5 5 6 6

7 7 8 8 9 9 10 10 11 11 12 12

13 13 14 14 15 15 16 16 17 17 18 18

19 19 20 20 21 21 22 22 23 23

(c) Karyogram of prior adjusted reclassifi-
cation

Figure 4.4: Fuzzy logic classification and prior adjusted reclassification. The
pixel classification accuracy improved from 86.15% to 93.26%. The chromo-
some 4 has a translocation of 9. The translocated segmented is not affected
by the increased prior on chromosome 4.
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Vysis ASI PSI
V1301XY A0101XY P0801XY
V1302XY A0102XY P0802XY
V1303XY A0103XY P0803XY
V1305XY A0104XY P0804XY
V1306XY A0105XY P0805XY
V1801XY A0201XY P0808XY
V1802XY A0202XY P1102XY
V1803XY A0205XY P1103XY
V1805XY P1104XY

Table 4.1: Training images

unsupervised-nonparametric (the minimum-distance classifier) and supervised-

parametric (the maximum-likelihood classifier) methods were used for classi-

fication.

Since the maximum-likelihood classifier requires training, a set of im-

ages of normal male specimens was selected as training samples for each probe

set as shown in Table 4.1. A total of 26 out of 185 images were used for

training: 9 out of 85 images for Vysis images, 8 out of 71 images for ASI im-

ages, and 9 out of 29 images for PSI images. All 185 images were tested using

both classification methods. Eq. 4.6 was used for the maximum-likelihood

classifier assuming the distributions were normal and eq. 4.6 was used for the

minimum-distance classifier to classify pixels.

As table 4.2 shows, the overall classification accuracy without any nor-

malization was about 50%, which increased significantly after background cor-

rection to about 60%, and further improved with EM normalization to about
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Minimum-distance classifier Maximum-likelihood classifier
Methods NP BC EM NP BC EM

Accuracy [%] 47.12 60.11 68.70 47.86 62.46 72.72

Table 4.2: The overall classification accuracy. NP = no preprocessing, BC =
background correction, and EM = expectation maximization normalization.

70% for both classification methods. EM normalization increased the classifi-

cation accuracy from 50% to 70%, which is a 40% increase in accuracy.

Table 4.3 shows the classification accuracies of the commonly cited

images in previous papers regarding M-FISH pixel classification. Note that

the results shown in this paper are the initial pixel classification accuracies

without any post-processing to correct obvious misclassifications using such

methods as majority filtering, and also note the rates are regarding the chro-

mosome pixels only. Since chromosomes occupy less than 10% of the image,

even if the entire pixels in the image are classified, the rates for background

and chromosomes should be reported separately. Our results are by far the

most accurate compared to the other classification methods, such as the fuzzy

logic classifier (unsupervised nonparametric method) [12], fuzzy k-means clus-

tering (supervised nonparametric method) [50], k-nearest neighbors method

(supervised nonparametric method) [58], and the maximum-likelihood classi-

fier (supervised parametric method) [49]. All of these classifiers will show an

improved classification accuracy after EM normlization.

In order to evaluate the statistical significance of the effect of the EM

normalization, bootstrap estimation was used. Given 185 data points for clas-
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Minimum-distance classifier Maximum-likelihood classifier
Images NP BC EM NP BC EM

V1301XY 63.77 88.51 90.81
V1302XY 83.35 92.35 92.99
V1303XY 81.15 90.13 92.77
V1305XY 93.01 92.36 94.72
V1306XY 87.64 89.81 94.66
V1308XY 77.95 86.63 96.28 84.45 93.89 96.49
V1309XY 56.16 83.58 84.50 70.34 84.55 86.29
V1310XY 80.57 88.00 84.19 86.03 88.50 86.90
V1311XY 94.01 93.48 94.50 90.79 90.99 94.54
V1312XY 87.31 93.44 94.83 95.09 95.25 95.20
V1313XY 89.92 91.69 94.53 93.76 94.82 94.88
Average 81.35 90.00 92.25 86.74 91.33 92.38

Table 4.3: Classification accuracies [%] of the commonly cited images. Images
with empty values in the ML method are used as training.

sification accuracies per method, 185 samples were selected at random (from

a uniform distribution) iteratively for 1000 times, and at each iteration the

mean was calculated. The distribution of the means for each method is shown

in Fig. 4.5. The error bars represent the 95th percentile of the means. As

the graph shows, the accuracies after the EM normalization are statistically

significant. The difference between the two classifiers are not significant except

after the EM normalization. However we should mention that 26 images were

used for training and their classification results are also included in the ML

accuracy. Therefore, it is reasonable to assume that the difference is slightly

smaller than 4%, and whether it is statistically significant or not, the difference

is marginal between the two classifiers.

90



1 2 3 4 5 6
40

45

50

55

60

65

70

75

80

46.85
47.75

59.97

62.32

68.57

72.62

No Preprocessing

Background correction

EM normalization

Figure 4.5: Statistical significance of each classification method. The boot-
strapping of each method. Left to right: NP MD, NP ML, BC MD, BC ML,
EM MD, and EM ML. The error bars are drawn at the 95th percentile.

Fig. 4.6 shows an example of a color coded classification result (its

spectral images are shown in Fig 3.13). The classification accuracies using the

MD classifier without preprocessing, with background correction, and with EM

normalization were 55.34%, 75.64%, and 84.03% respectively. This particular

image has 6 translocations but they are unmarked in the ground truth in

the database. After carefully examining all six spectral images and manually

constructing the new ground truth, the recalculated accuracy was 91.52%.

There are 104 images that contain abnormalities, and among them 63 images

contain translocations. If the ground truth in the databse were marked with

translocations, the true overall classification accuracy may have been slightly

higher.

There are many images that give low classification accuracies even af-

ter EM normalization. The common factor among those images is that the
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(a) Ground truth (b) Corrected ground truth (c) EM MD

Figure 4.6: Classification result of V290562 (spectral channels are shown in
Fig. 3.13).

image quality is poor for various reasons. All 185 images were individually

self trained and tested to evaluate the quality of the feature distribution. The

mean accuracy was 89.95% with 51.30% as the minimum and 99.00% as the

maximum (see Fig. 4.7). Images that gave lower than 85% correct classifica-

tion rate were identified (also visually confirmed) as bad images. In addition,

three images that had higher than 90% rate were added to the bad ones be-

cause they had wrong probe labeling. They were labeled as Vysis when, in

fact, they were hybridized using the PSI probe. A total of 40 images were

identified as bad, and the list is shown in Table 4.4.

In M-FISH, all 6 spectral channels are expected to be perfectly aligned

to each other. While that is true for most cases, four images were identified as

misaligned. The misalignment can come about from various reasons including

mechanical shift during image capture and the use of poor quality lenses with

spherical and chromatic aberration. The misalignment in V291562 was a ver-

tical shift of 10 pixels only in channels 4 and 6. The misalignment in P080628,
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Figure 4.7: Correct classification rate of individually self trained and tested
images. Ten bins are used from 0 to 10, 10 to 20, . . . , 90 to 100.

P080729, and P0804XY was found in the DAPI channel only.

It is interesting that the image quality varied depending on the probes.

Images with the Vysis probe were captured with a good quality in general.

Many ASI probe images displayed a poor quality. In many cases, at least one

or more spectral channels occupied only a low intensity range. The cause of it

can be either that the hybridization process was done poorly, or the exposure

times were not set correctly. Many PSI probe images showed low SNR as

the signals do not have the high contrast. However, this comparison may not

generalize the quality of the probes, since the image quality will depend on the

quality of the specimen preparation and the settings in the microscope. Since

images in the database were collected from five different labs, we do not know

whether the image quality difference comes from the human error or from the

probe difference.

Excluding the bad images, the classification accuracy of the remaining

145 images are shown in Fig. 4.8. The mean accuracies were 51.66%, 52.42%,
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File name Condition File name Condition File name Condition File name Condition
V250253 PQ A020818 PQ A0507XY PQ P070218 PQ
V260754 CT A0202XY PQ A0604XY PQ P080628 PQ, MA(1)
V260856 CT A0205XY PQ A0609XY PQ P080729 PQ, MA(1)
V290162 CT A0206XY PQ A0614XY PQ P080930 PQ
V290362 CT A0207XY PQ A0621XY PQ P0802XY PQ
V290962 CT A0209XY PQ A200344 PQ P0804XY PQ, MA(1)
V291562 MA(4,6) A0402XY PQ A200444 PQ P0808XY PQ
A0102XY PQ A0403XY PQ A200544 PQ V1701XY WP
A020402 PQ A0503XY PQ A200644 PQ V1702XY WP
A020315 PQ A0506XY PQ P070109 PQ V1703XY WP

Table 4.4: List of bad quality images. PQ = poor quality due to either ill-
hybridization or wrong exposure times, CT = channel crosstalk, MA = mis-
alignment, WP = wrong probe.

65.40%, 67.58%, 74.49%, and 77.80% for NP MD, NP ML, BC MD, BC ML,

EM MD, and EM ML respectively.
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Figure 4.8: Histogram of classification accuracies. x axis represents the classi-
fication accuracy [%], y axis represents the frequency. Ten bins are used from
0 to 10, 10 to 20, . . . , 90 to 100. Top to bottom: NP MD, NP ML, BC MD,
BC ML, EM MD, and EM ML respectively.
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Chapter 5

Decomposition of overlapping and touching

M-FISH chromosomes

5.1 Introduction

Automatic segmentation of partially occluded and/or touching objects

is an extremely challenging task. Chromosome images are subject to the par-

tial occlusion and touching of chromosomes. This is one of the major factors

that hinders automating the analysis. There have been numerous segmenta-

tion (decomposition) methods developed for conventional banded chromosome

images. Among them, some methods only handle touching cases and some

handle both cases with limited success. Most of the methods utilize only ge-

ometry information of chromosome clusters, such as curvature, skeleton, and

convex hulls [2, 3]. The geometry based methods only analyze the boundary

shape of a chromosome cluster. Even though the boundary shape contains

rich information about the cluster formation, there are many cases where the

boundary information itself is not sufficient such as a touching of two chromo-

somes by their short sides or long sides forming a long chromosome or a thick

chromosome. These touching cases can be easily discerned when the pixel

memberships are presented by two distinctive colors, as in M-FISH. When

the pixel classification accuracy is high, the color information itself may be
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sufficient for the chromosome segmentation for most cases. Schwartzkopf et

al. [8] proposed a maximum likelihood decomposition method using the pixel

classification results and chromosome size for M-FISH images. Authors com-

pared their results to that of commercially available software (Cytovision), and

reported that much better results were achieved for touching cases and less

reliable results for overlapping cases. When only the colors are used, touchings

or overlaps of the same type of chromosomes cannot be segmented, and the

segmentation accuracy heavily relies on the initial pixel classification accuracy.

Thus the both geometry and pixel classification results have to be merged in

order to achieve better segmentation results.

In this chapter, we present a novel decomposition method for overlap-

ping and touching chromosomes that utilizes the geometry of a cluster, pixel

classification results, and chromosome sizes. We also introduce basic elements

of overlap and touching cases. These basic elements yield hypotheses of pos-

sible overlapping and/or touching cases. Given a cluster, multiple hypotheses

are evaluated, and the most likely hypothesis is chosen as the correct decom-

position.

5.2 Background

5.2.1 G-banded Chromosome Decomposition

Ji [2] had developed a simple but effective method to segment touch-

ing chromosomes based on two hypotheses: (a) at points where chromosomes

touch, the optical density is relatively low; (b) where chromosomes touch, the
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(a) Result 1 (b) Result 2

(c) Result 3

Figure 5.1: Separation results of Ji’s method [2].

cluster boundary tends to form an acute angle. Based on these ideas, touch-

ing chromosomes were effectively segmented. This algorithm is implemented

in one of the current commercially available karyotyping systems. Some of the

results are shown in Fig. 5.1. As shown in the figure, overlapping chromosomes

are not segmented.

Agam and Dinstein [3] developed a method that can handle both over-

lapping and touching chromosomes by analyzing the concave points on the

boundary. After connecting all concave points as shown in Fig. 5.2, pairs of

parallel lines are retained as valid cut lines (Fig. 5.2 right). A polygon that

is contracted and bent on one point was fitted to chromosomes, and among

all possible combinations, a combination that satisfied the best criteria was
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Figure 5.2: Possible separation lines of Agam and Dinstein’s method [3]

Figure 5.3: Several hypotheses for a cluster of three chromosomes [3].

chosen as the correct separation. Three possible combinations for a cluster of

three touching chromosomes are shown in Fig. 5.3. A rectangle was drawn

when a chromosome does not satisfy a certain condition for fitting the polygon.

The developed method was tested on 25 selected images that were suitable for

the analysis. The accuracies for two, three, and more than four chromosome

clusters were 88%, 68%, and 63% respectively.

5.2.2 M-FISH Chromosome Decomposition

Since the pixel membership information is available for M-FISH im-

ages, Schwartzkopf et al. [8] developed a joint pixel classification and seg-

mentation method which can handle overlapping and touching chromosomes

for M-FISH images, utilizing the color information in a maximum likelihood

framework. After the initial pixel classification using a 6-feature, 24-class
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(a) Initial pixel classifi-
cation

(b) Majority filtering (c) Segmentation result

Figure 5.4: Segmentation results of an M-FISH image by Schwartzkopf’s
method [4].

maximum-likelihood classifier, a 17×17 majority filtering was applied to cor-

rect small misclassifications. Touching and overlapping chromosomes were

separated into a set that maximizes the overall likelihood with respect to

pixel membership and chromosome size. An example result is shown in Fig.

5.4. Figure 5.5 (a) shows that Schwartzkopf’s method successfully segmented

a touching case that appeared as a long chromosome, which could not be

segmented using the commercial Cytovision software. Figure 5.5 (b) shows

that Schwartzkopf’s method did not work because two overlapping chromo-

somes belonged to the same class. The separated chromosomes result in an

increased pixel classification accuracy since the algorithm corrects misclassi-

fications while merging color blobs. However the merging process is greedy

instead of optimal: given a number of blobs, the method joins the pair that

yields the maximum likelihood compared to all other pairs, and this may not

lead to the correct segmentation.
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(a)

(b)

Figure 5.5: (a) Schwartzkopf’s method successfully decomposed touching chro-
mosomes, whereas grayscale based method (using Cytovision software) could
not since two chromosomes appear as a long chromosome. (b) Grayscale based
method could decompose, whereas Schwartzkopf’s method could not since two
overlapping chromosomes belong to the same class [4].
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5.3 Methods

The limitations of the geometry-based and color-based methods can be

overcome by incorporating information from both. The new method utilizes

the geometry of a cluster, pixel classification results and chromosome sizes.

This section describes the details of the implementation.

After chromosome segmentation from the background, only the chro-

mosome pixels are normalized using EM normalization and are classified using

an unsupervised nonparametric method, or the minimum-distance classifier,

which is described in Section 4.3.1.

5.3.1 Elements of clusters

We define a group of connected pixels by 4-connectivity as a cluster,

Si. Clusters are found after segmenting the chromosomes from background

using the segmentation method described in Section 4.1, and eroding the seg-

mentation result with a 3 × 3 structuring element. The erosion is performed

to avoid evaluating simple touching cases where chromosomes are connected

by one pixel. Each cluster is dilated back before being evaluated for touching

and overlapping.

A cluster can be formed by one chromosome or multiple chromosomes.

Whether a cluster is formed by one or multiple chromosomes, every cluster is

subjected to evaluation.

We define three sets of basic elements for clusters as follows (see Fig.
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Case 1 Case 2 Case 3 Case 4 Case 5

Case 1 Case 2 Case 3 Case 1 Case 2

(a) Cross shape clusters

(b) T shape clusters (c) I shape clusters

Figure 5.6: Elements of clusters.

5.6)

1. Cross shape cluster

2. T shape cluster

3. I shape cluster

Most of the cluster formations can be decomposed into the basic ele-

ments. Given a cluster, we also define the landmarks such as cut points (Cp),

cross points (Xp), and end points (Ep) on the skeleton and on the boundary

of the cluster as shown in Fig. 5.7. There exists an Xp that is connected to

an Ep, and an Ep connects two boundary segments b. Given {Ep,Xp} and

two boundary segments, the closest points on b’s from the Xp are the cut

points associated with the Xp. A cluster can have multiple Xp’s and each Xp
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Figure 5.7: Landmarks of a cross shape cluster

has three or four cut points. Once all the landmarks are found, all possible

decompositions are evaluated.

The cross shape cluster has 5 cases: case 1 is an overlap of two chromo-

somes, case 2 is a touching of four chromosomes, case 3 is a touching of two

chromosomes, and case 4 and 5 are touchings of three chromosomes (see Fig.

5.6). Two chromosomes are found by connecting {Cp1 − Cp4, Cp2 − Cp3}

and {Cp1 − Cp2, Cp4 − Cp3} for case 1. Four chromosomes are found by

connecting {Cp1 − Xp − Cp3, Cp2 − Xp − Cp4} for case 2. Case 3 has two

subcases, where two chromosomes are found by connecting {Cp1−Xp−Cp3}

for one case, and {Cp2 − Xp − Cp4} for another case. The same analogy

can be applied to case 4 and 5. Case 4 has two subcases and case 5 has four

subcases. In total, there are ten hypotheses to evaluate in the cross case.

The T shape cluster has 3 cases: case 1 is a touching of two chromo-

somes (three subcases), case 2 is a partial overlap of two chromosomes (three

104



Ep1

Ep2

Ep3

Cp1

Cp2

Xp
Cp3

Cp1'

Cp2'

(a) Landmarks of T
shape cluster

Ep1

Ep2

Cp11

Cp12

Cp21

Cp22

Cp23

Cp1i Cp2j

...
 ...

(b) Land-
marks of
I shape
cluster

Figure 5.8: Landmarks of clusters

subcases), and case 3 is a touching of three chromosomes at the center. In

total there are seven hypotheses to evaluate in T case. Case 1 is evaluated by

connecting {Cp1−Cp2}, {Cp1−Cp3}, or {Cp2−Cp3}. Case 2 is evaluated

by connecting {Cp1 − Cp1′, Cp2 − Cp2′} and {Cp1′ − Cp2′, Cp1 − Cp2} (see

Fig. 5.8). Cp1′ and Cp2′ are found by extending lines from Cp1 and Cp2 with

the slope of a line between Xp and Ep2. In fact, any shape that has three

end points is a T shape cluster (imagine a Y shape cluster). Thus, Cp1′ and

Cp2′ are evaluated from all three arms. Case 3 is evaluated by connecting

{Cp1 −Xp− Cp2}.

Not all of these shapes occur equally likely. Forming a cross shape

cluster with four different chromosomes by their short sides will certainly have

a lower chance of occurring than the case of two chromosomes crossing each

other. We have examined all chromosome clusters in the database. There were
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Cluster shape Case 1 Case 2 Case 3 Case 4 Case 5 Total
Cross shape 99 0 13 5 0 117

T shape 132 32 0 156
I shape 127
Extra 7

Table 5.1: The number of occurrences of the basic shapes.

117 Cross shape clusters: 99 for case 1, 0 for case 2, 13 for case 3, 5 for case 4,

and 0 for case 5. There were 156 T shape clusters: 132 for case 1, 32 for case

2, and 0 for case 1. These are tabulated in Table 5.1. These values act as a

prior probability for a given hypothesis. Thus, the cases that have zero prior

probability is removed from the hypothesis evaluation for this study.

We define a cluster that does not have a cross point as an I shape cluster

which may have touchings of the same chromosomes or different chromosomes.

The I shape cluster has an arbitrary number of cases. The number of segments

are determined by the number of concave points on the boundary. There are

two end points in I shape cluster that divide the boundary into two segments.

Concave points across each boundary are connected and the minimum num-

ber of pairs of which have minimum distances determine the final number of

chromosome segments. For example, Fig. 5.8 (b) will have three segments

separated by two lines, {Cp11−Cp21} and {Cp12−Cp22}. In general there

can be i and j number of convex points on each side of boundaries. Given N

segments, 2N−1 combinations are evaluated. If three segments are found, for

example, then there are four possible chromosome formations: {1-2-3}, {1-2,

3}, {1, 2, 3}, and {1, 2-3}, i.e. in words, all three segments form a chro-
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mosome, segments 1 and 2 form a chromosome and segment 3 form another

chromosome, and so on. In order to account I shape clusters that are formed by

different chromosomes but have no obvious concave points, chromosome seg-

ments are determined by the pixel classification results (color). An area with

a homogeneous color forms a segment. Again, given M segments, 2M−1 − 1

combinations are evaluated (evaluation of all segments as one chromosome is

considered in concave points based method). Thus, a total of (2N +2M)/2− 1

hypotheses are evaluated for an I shape cluster.

5.3.2 Concave Points Detection

Concave points are found by analyzing the angle changes of the bound-

ary points. Boundaries are first smoothed using a wavelet denoising method.

x and y are the coordinates of boundary points. x and y are independently

decomposed up to 3 decomposition levels, and the corresponding wavelet coef-

ficients are soft thresholded at each level. Then the inverse wavelet transform

of those coefficients yields the smoothed boundaries made up of non-interger x

and y values, to avoid sampling grid effects. A result of boundary smoothing

is shown in Fig. 5.9.

After the boundary is smoothed, the tangents α at every point are cal-

culated from vectors that connect the current point to the second neighboring

point:

α(i) = tan−1

(

y(i+ 2) − y(i)

x(i+ 2) − x(i)

)

[rad].

The second neighbors are used in the equation to further reduce the effect of
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Figure 5.9: Boundary is smoothed using a wavelet denoising method.

noise in the boundary. The direction of the boundary tracking can be either

clockwise or counterclockwise. Regardless of the tracking direction, a segment

of boundary can be either concave or convex depending on the perspective.

Depending on whether the inside of an object is on the left or on the right of

the tracking direction, the angle changes on the boundary are found by

θ(i) =

{

180 + ∆α(i) if the inside is on the left
−180 + ∆α(i) otherwise

(5.1)

where ∆α(i) = α(i+ 1) − α(i).

Given the boundary shown in Fig. 5.9, θ, the derivative of the tangent

of the boundary is shown in Fig. 5.10. Given θ, the concave regions are found

where
{

θ < 180 if the inside is on the left
θ > −180 otherwise
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Figure 5.10: The derivative of the tangent of the boundary shown in Fig. 5.9.

The points that are marked by ∗ are concave regions on the boundary, and

the points marked by circles, which are the points of interest, are found where

the second derivative of θ in concave regions crosses zero from negative to

positive. The concave regions are mapped on the downslope of θ, and the

convex regions are mapped on the up-slope of θ. Thus using this method, the

convex or concave regions can be found simultaneously. The results of concave

point finding are shown in Fig. 5.11.

The detected concave points are rotation invariant. Even though an

example is shown with an overlap case, the concave point finding is performed
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(a) Concave regions and concave points (b) Concave points

Figure 5.11: Concave point detection. (a) Solid line is the original boundary,
green circles are the smoothed boundary, ∗s represent the concave regions,
and circles show the concave points of the boundary. (b) The concave points
detected and are marked with red stars on the original boundary.
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only on the I shape clusters.

5.3.3 Evaluation of the hypothesis

Given a cluster, there are a number of hypotheses, and each of them is

composed of single or multiple chromosomes. The best possible cut is achieved

when a cluster is decomposed into the right number of chromosomes with the

right sizes and at the same time maximizing the homogeneity of the pixel mem-

berships within each chromosome. Among Nk hypotheses for a given cluster,

a hypothesis that maximizes the following posterior probability is chosen as

the most likely decomposition of the cluster:

P (Sk|ψk) =
p(ψk|Sk)P (Sk)

p(ψk)
(5.2)

where

Sk = the state of nature of the kth hypothesis,

ψk = (si, P (ωi)) = (size, weight), i = (1, . . . , Nc(k)),

Nc(k) = number of chromosomes in the kth hypothesis,

p(ψk|Sk) = the likelihood of Sk with respect to ψk,

P (Sk) = the prior probability of the kth hypothesis, and

p(ψk) = the evidence,
∑Nk

k=1 p(ψk|Sk)P (Sk).

The variable S is described by the parameter vector ψ, which contains the

sizes of all chromosomes si and their weights P (ωi) given a hypothesis, where
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ω is the variable for chromosome categories. Note that P (ωi) are different from

the actual prior probabilities of each chromosome. They are the weights of the

segmented chromosomes in a cluster. P (ωi) becomes larger as more pixels in

chromosome i are classified as ωi. Also note that chromosome i here means a

group of connected pixels being evaluated as a chromosome in a cluster.

The likelihood of a hypothesis is computed by

p(ψk|Sk) =

Nc(k)
∏

i=1

p(si|ωi)P (ωi) (5.3)

where,

P (ωi) = Ni

Nci
,

ωi = the most popular class in chromosome i,

Ni = the number of pixels belong to ωi in chromosome i,

Nci = the total number of pixels belong to chromosome i,

si = Nci

NT
, normalized size of chromosome i,

NT = total number of chromosome pixels in an image, and

p(si|ωi) = class-conditional probability density function for chromosome

size si given class ωi.

The prior probabilities for hypotheses P (Sk) are computed from the

Table 5.1 (e.g. the prior for the T shape, case 1 is 132/156). Among all
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hypotheses, the one that has the maximum posterior probability is chosen as

the correct decomposition of the cluster: the hypothesis Sk is chosen when

P (Sk|ψk) > P (Sj|ψj) for all j 6= k (5.4)

Since p(ψk) in eq. 5.2 is a normalization factor that does not affect the decision

in eq. 5.4, it is factored out from eq. 5.4.

For clusters with a combination of multiple shape elements and I shape

clusters, the equal priors are used for P (Sk) (for computational simplicity,

P (Sk) = 1 was used for these cases).

The class-conditional probability density functions for the size are de-

fined as

p(s|ωi) =
1√
2πσi

exp

(

−1

2

(

si − µi

σi

)2
)

(5.5)

The class parameters, µi and σi (1 ≤ i ≤ 24), were initially calculated from

16 images in the database (the list is shown in Table 5.2). A caution needs

to be taken when computing the size parameters from the database since the

database does not provide information of the pixel memberships where pixels

overlap. The pixels belonging to multiple chromosomes should be counted

as many times as the number of chromosomes to which they belong. The

mean sizes calculated from the database did not exactly match the standard

chromosome sizes in order (shown in Table 5.3, note that parameters were

estimated from the normal chromosomes), because the segmentation results

in the database were not perfect. Also, the variance in size was large: the

size probability of a chromosome becomes unreliable whenever the size of a
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v1301xy v1303xy v1309xy v1310xy
v1311xy v1313xy v1302xy v1305xy
v1306xy v1308xy v1312xy v1701xy
v1702xy v1703xy v1902xy v2704xy

Table 5.2: Training images used for the size parameter estimation.

chromosome deviates much from its mean size. However, the large variance is

somewhat desirable since we are not dealing only with normal chromosomes.

The chromosome sizes vary due to structural abnormalities (e.g. deletions,

insertions, and translocations) and segmentation errors. Therefore, the mean

values were adjusted based on the standard chromosome sizes (obtained from

NCBI’s website, and shown as chromosome sizes [Mbps] in Table 5.3). Among

24 chromosome types, the normalized sizes of large chromosomes calculated

from the M-FISH database correlated well with the standard sizes (not the

exact numbers but the relative sizes and their orders). Thus, seven chromo-

somes (chromosome 1 to 7) were used to calculate the unit megabase pairs per

pixel. The mean unit Mbps/pixel was 2.3154 for the images in the database.

Using the mean unit Mbps the normalized chromosome sizes were recalculated

as shown in column NS NCBI in Table 5.3. The probability density functions

of chromosome sizes are shown in Fig. 5.12. Instead of using the estimated σi,

which were different for different chromosomes, the equal variance of 5× 10−5

was used for all chromosomes.
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Chromosome Chromosome length [Mbps] NS NCBI NS Database
1 245203898 0.0414 0.0417
2 243315028 0.0411 0.0404
3 199411731 0.0337 0.0344
4 191610523 0.0323 0.0326
5 180967295 0.0305 0.0302
6 170740541 0.0288 0.0286
7 158431299 0.0267 0.0267
8 145908738 0.0246 0.0238
9 134505819 0.0227 0.0216
10 135480874 0.0229 0.0217
11 134978784 0.0228 0.022
12 133464434 0.0225 0.0224
13 114151656 0.0193 0.0198
14 105311216 0.0178 0.0179
15 100114055 0.0169 0.0178
16 89995999 0.0152 0.0143
17 81691216 0.0138 0.013
18 77753510 0.0131 0.0135
19 63790860 0.0108 0.01
20 63644868 0.0107 0.0106
21 46976537 0.0079 0.0088
22 49476972 0.0084 0.0093
X 152634166 0.0258 0.026
Y 50961097 0.0086 0.0118

Table 5.3: Normalized mean chromosome sizes. NS NCBI represents normal-
ized mean chromosome sizes calculated using the known chromosome lengths
(obtained from NCBI’s website). NS database represents the normalized mean
chromosome sizes calculated from the ADIR M-FISH database.
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Figure 5.12: Probability density functions of the normalized chromosome sizes.

5.3.4 Decomposition Steps

Given a group of pixels and their class memberships, the landmarks are

found on the boundary as shown in Fig. 5.13. Based on the landmarks, the

cluster is identified as Cross shape, T-shape, I-shape, or Multiple-shape. If the

cluster is defined as either Cross or T shape, then the corresponding subcases

are evaluated. Among the subcases, the case that has the maximum-likelihood

is chosen as the best separation of the cluster given the shape constraint. Then,

the individual chromosomes in the best subcase are evaluated for touchings (I-

shape evaluation). An example of the decomposition procedure for a cluster of

two chromosomes that belong to the same class crossing each other is shown

in Fig. 5.14. The overlaps of the same class chromosomes are decomposed

successfully using the developed method. Fig. 5.15 shows the decomposition

steps for a T-shape cluster.

If the landmarks of a cluster include more than one cross point, Xp,

the cluster is identified as a Multiple-shape. Ignoring all the other Xp’s,
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Figure 5.13: Landmarks of a cross shape cluster

the decomposition is evaluated at only one Xp and its associated cutpoints.

The initial evaluation results in multiple single chromosomes and multiple

clusters. Those multiple clusters are decomposed in the same manner. This

process repeats until all Xp’s in all clusters are evaluated. Then the set of

single chromosomes that yields the maximum-likelihood is chosen as the best

decomposition of all the evaluations. Then finally the single chromosomes in

the best decomposition are evaluated for the touchings.

5.4 Results

Chromosomes are first segmented from the background using the new

segmentation method explained in Section 4.1. Then chromosome pixels are

classified using the minimum-distance classifier after the EM normalization

[10]. Given a cluster, the landmarks on the boundary and skeleton are com-

puted as shown in Fig 5.16, and the cluster is decomposed into multiple hy-

potheses and the likelihood of each hypothesis is computed by eq. 5.3. When

there are multiple Xp’s, hypotheses are evaluated at each Xp consecutively.
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Final Result

. . .

. . .

Touching

5.933271e-004

9.945259e-003

Figure 5.14: Decomposition of a Cross shape cluster. Two chromosomes that
belong to the same class crossing each other are successfully decomposed using
the developed method.
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a cluster
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Figure 5.15: Decomposition of a T-shape cluster. No previous methods could
decompose this kind of partial overlaps correctly.
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Ncc NC NWD Accuracy [%]
1 428 0 100
2 47 5 89
3 9 1 89

≥ 4 3 1 67

Table 5.4: Decomposition results. Ncc = number of chromosomes in a cluster,
NC = number of clusters, and NWD = number of wrong decomposition

After decomposing at all Xp’s, the maximum likely hypothesis is chosen as

the best decomposition of the cluster.

We have tested our algorithm on 12 images from ADIR’s M-FISH image

database. A total of 487 clusters were evaluated. Outstanding results were

obtained as shown in Table 5.4. Among 487 clusters, most of them were single

chromosomes and they were all correctly identified instead of breaking into

multiple chromosomes. Among clusters that have 2 or more chromosomes,

about 95% was less than three chromosome cases. About 90% of accuracy was

obtained for those cases.

Figure 5.17 and Fig. 5.18 show decomposition results of various clus-

ters, and Fig. 5.19 and Fig. 5.20 show an example of automatic foreground-

background segmentation, classification, and chromosome decomposition re-

sults.

5.5 Conclusion

We have presented a new decomposition method for overlapping and

touching M-FISH chromosomes. Previous chromosome decomposition meth-
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(a) T and Cross
case

(b) Landmarks of
the cluster

Figure 5.16: Landmarks of a cluster.

(d)

Cluster Segmentation result

(a)

(c)

(b)

(e)

(f)

Figure 5.17: Decomposition results. (a) Cross case, (b) T case, (c) I case, (d)
T and I case, (e) Cross and T case, and (f) Cross and T case
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(c)

(d)

Figure 5.18: More results of chromosome cluster decomposition. The devel-
oped decomposition method is robust to misclassification errors.
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Figure 5.19: Automatic karyotyping
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(a) Karyogram of ground truth
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(b) Karyogram

Figure 5.20: Automatic karyotyping, continued from Fig. 5.19. In (b) translo-
cation between 4 and 9 are shown, and overlapping chromosomes are seg-
mented correctly and automatically.
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ods utilized partial information of chromosome clusters resulting in limited

success. Clusters are better decomposed by incorporating more knowledge.

Multiple hypotheses were formed based on color and the geometry defined by

the basic elements of a cluster, and then evaluated based on the pixel classifi-

cation results and chromosome sizes. The hypothesis that has the maximum-

likelihood is chosen as the best decomposition of a given cluster. About 90%

accuracy was obtained for two and three chromosome clusters, which comprize

about 95% of all clusters of two or more chromosomes, and 100% accuracy was

obtained for clusters with a single chromosome.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this dissertation, methods of improving pixel classification accuracy

and automating decomposition of overlapping and touching chromosomes were

presented. Using the new feature normalization method, the intra-variance

of the feature distribution among different images was reduced, and thus the

classification accuracy significantly improved after normalization. A new color

compensation method for combinatorially stained FISH images was presented.

The color compensation removed the channel crosstalk effectively and im-

proved the image quality significantly. Two new unsupervised nonparametric

classification methods for M-FISH images were presented, which are a fuzzy

logic classifier and a template matching algorithm. Both methods provide

a significant advantage in terms of computation time compared to super-

vised methods, and their accuracies were comparable to that of a maximum-

likelihood classifier. Overlapping and touching chromosomes were effectively

decomposed using the developed decomposition method. Given a cluster, a

number of hypotheses were formed utilizing the geometry of a cluster, pixel

classification results, and chromosome sizes, and a hypothesis that maximized

the likelihood function was chosen as the correct decomposition. After chromo-
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somes are individually identified, misclassified pixels were effectively corrected

while preserving the translocated pixels, using the prior adjusted reclassifica-

tion method.

6.2 Future Work

Developing a completely automated karyotyping system is near real-

ization. Highly sophisticated and industrially useful algorithms have been

developed through this research. Using the developed methods, the amount

of human intervention will be significantly reduced: chromosomes are reliably

and accurately segmented from the background, pixels are accurately classi-

fied, and clusters of overlapping and touching chromosomes are automatically

separated. However, there still remains room for improvement.

6.2.1 Pixel classification accuracy

The average self trained and tested accuracy was about 90%, but the

average classification accuracy after normalization was about 73%. The accu-

racies were over 95 % for a set of images that exhibit good quality while bad

quality images produced below 30% of accuracy.

Specimen preparation:

This suggests that the most important part of achieving good classification

results is to prepare the specimens with a great care. Preparation of specimens

should strictly follow the protocols in order to minimize the chemical noise and

to ensure the production of high quality signals.
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Image quality control:

Image capture should also be performed carefully in order to obtain high qual-

ity images. Sharp, in-focus images should be captured for each spectral chan-

nel with a proper exposure time that does not saturate the signals. For an

automated system, the proper parameters of image capturing process for a

microscope can be learned from the good quality images. Images that do not

satisfy the quality criteria can be discarded automatically. The quality criteria

can include the mean intensity, fitness of a bimodal density function, and vari-

ances of each mode in the mixture density function. The DAPI channel should

exhibit a bimodal function, representing intensity distributions of background

and chromosome pixels. The intensity distribution under the pixels identified

as chromosomes should exhibit a bimodal density function in each channel,

representing intensity distributions of channel crosstalk and signal from truly

hybridized chromosomes.

6.2.2 Automatic chromosome cluster decomposition

While the developed method in this dissertation can decompose many

cases of overlapping and touching chromosomes, this part still needs to be

improved. As the chromosomes form a cluster, the signal intensities of each

chromosome affect the intensity of other chromosomes making the pixel mem-

bership less certain. Misclassifications usually occur where chromosomes are

close to each other and when they overlap. One can investigate the signal in-

tensities of the presumed misclassified pixels to determine whether the signal
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intensity is affected by the nearby chromosomes or due to a true chromosomal

aberration. However, there are only 31 possible color combinations in M-FISH

when 5 spectra are used, and 24 of them are assigned for chromosomes. Only

7 unused combinations are left to identify a few cases of chromosome over-

laps when there are many more overlap cases. As the amount of overlaps and

touching increase, the analysis of a particular metaphase spread becomes unre-

liable or even useless. Therefore, the importance of sample preparation should

be emphasized again. It will be ideal if the spreading of chromosomes can be

controlled so that chromosomes are spread out with a minimum number of

overlaps.

The new developed foreground/background segmentation method for

M-FISH images does not produce many touching cases as compared to the

technique that Ji [2] used in his touching chromosome segmentation method.

However, Ji’s method still can be incorporated into our method when evalu-

ating multiple touching cases. The decomposition results will also improve if

a shape constraint, such as in [3], is incorporated.
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