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In decision analysis, analysts must often encode an expert’s uncertainty of a 

quantity (e.g., the volume of oil reserves in a proven, but undeveloped oil field) using a 

probability distribution. This is commonly done by eliciting a triplet of low-base-high 

percentile assessments, such as the {10
th

, 50
th

, 90
th

} percentiles, from the expert, and then 

fitting a probability distribution from a well-known family (e.g., lognormal) to the 

assessed quantile-probability (or QP) pairs. However, curve fitting often requires non-

linear, non-convex optimization over a distribution parameter space, and the fitted 

distribution often never honors the assessed QP pairs – reducing both the fidelity of the 

model, and trust in the analysis. The development of quantile-parameterized distributions 

(or QPDs), distributions that are parameterized by, and thus precisely honor the assessed 

QP pairs, is a very important yet nascent topic in decision analysis, and contributions in 

the literature are sparse. This dissertation extends existing work on QPDs by strategically 

developing a new smooth probability distribution system (known as J-QPD) that is 

parameterized by (and honors) assessed QP pairs. J-QPD also honors various natural 

support regimes – for example: bounded (e.g., fractional uncertainties, such as market 

shares, are necessarily bounded between zero and one); semi-bounded (e.g., volume of oil 

reserves is necessarily non-negative, but may have no well-defined upper bound); etc. We 
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then show that J-QPD is maximally-feasible, highly flexible, and approximates the 

shapes of a vast array of commonly-named distributions (e.g., normal, lognormal, beta, 

etc.) with potent accuracy, using a single system. This work also presents efficient, high-

fidelity methods for capturing dependence between two or more uncertainties by 

combining J-QPD with modern correlation assessment and modeling techniques. We then 

provide an application of J-QPD to a famous decision analysis example, demonstrating 

how J-QPD facilitates rapid Monte Carlo simulation, and how its implementation can aid 

actual decisions that might otherwise be made wrongly if commonly-used discrete 

methods are used. We conclude by noting important tradeoffs between J-QPD and 

existing QPD systems, and offer several extensions for future research, including a first 

look at designing new discrete distributions using J-QPD. 
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Chapter 1 :  Introduction 

BACKGROUND 

Any decision consists of three components, which Howard (1988a) jointly refers to as the 

decision basis: alternatives; information; preferences. Alternatives are what a decision 

maker can do. Information refers to what the decision maker knows (or does not know). 

Preferences specify what the decision maker wants (or does not want). This dissertation is 

about the information component of the decision basis, and more specifically, about 

introducing tools for quantifying uncertainty in decision problems. 

 Many complex decisions involve the assessment of some uncertain quantity, or 

uncertainty. Uncertainties can be continuous, such as the volume of oil reserves in a 

proven, but undeveloped oil field, or discrete, such as the presence or absence (yes/no) of 

hydrocarbons in a newly-explored subsea region. This dissertation focuses on continuous 

uncertainties. In the absence of historical data (e.g., the monthly returns of the S&P500 

over the past twenty years), partial information of an uncertainty is often elicited from an 

expert in the form of quantile-probability (or QP) pairs, as illustrated in Figure 1.1. In this 

case, a decision analyst (or analyst) has assessed an expert’s {0.1, 0.5, 0.9} quantiles, or 

{10
th

, 50
th

, 90
th

} percentiles, for the volume of oil reserves in a proven, but undeveloped 

field to be {2.5, 5, 9} million barrels (MMbbl), respectively. 



2 

 

 

Figure 1.1. An Expert’s Distribution for Reserves and Assessed QP Pairs. 

 As a formal discipline, decision analysis adopts a Bayesian perspective, in which 

an individual’s knowledge, or subjective uncertainty, can be encoded into a probability 

distribution1. In Figure 1.1, the continuous dashed curve is the expert’s distribution for 

the uncertain volume of oil reserves, denoted X. The left (right) curve is the expert’s 

cumulative distribution function (probability density function), or CDF (PDF). Adopting 

the nomenclature of Howard (1988b), if the expert were a clairvoyant, then his 

probability distribution for X would be a point mass on the actual volume of reserves in 

the field, having a probability of one, and zero for all other values of X. The fact that 

Figure 1.1 displays a distribution indicates that the expert is uncertain about the value of 

X that will be realized upon observation at some future time. 

 In practice, an analyst obtains information about the expert’s distribution for X by 

assessing several QP pairs, as shown by the points in Figure 1.1. QP pairs are obtained by 

                                                 
1 For example, see Matheson and Howard (1968). 
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asking the expert questions like: “What is your2 probability that X is less than 20?”; or 

“What value of X is so small, that you believe there is only a 10% chance that the realized 

value for X will be less than this number?”. The first question is referred to as a “fixed 

value” type question, while the second is referred to as a “fixed probability” type 

question3. The latter question might be used to elicit the expert’s response of 2.5 million 

barrels in the example of Figure 1.1. 

The answer to each such question provides the analyst with a new QP pair; i.e., a 

new point lying precisely on the expert’s CDF for X, presuming that there is no 

assessment error. Assessment error corresponds to elicited QP pairs that do not precisely 

lie on the expert’s true CDF, as depicted in Figure 1.2, where the analyst has elicited 

perfect responses for the expert’s {10
th

, 50
th

, 90
th

} percentiles (depicted by solid points), 

but imperfect responses for the 30
th

 and 70
th

 percentiles (depicted by hollow points). In 

this case, the expert’s true {30
th

, 70
th

} percentiles are {3.81, 6.44} MMbbl, but the expert 

instead reported these numbers to be {4, 6} MMbbl. 

                                                 
2 We say “your” (rather than “the”) to emphasize probability as a state of belief, and that distributions are 

expected to be person-specific; e.g., your distribution is probably different from mine. By contrast, “the 

distribution” is often used in classical statistics, suggesting that there is only one “true” distribution for a 

given uncertainty, but that it is unknown. 
3 According to Abbas et al. (2008). 
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Figure 1.2. Example Involving Assessed QP Pairs Subject to Assessment Error. 

Assessment error can arise from cognitive biases noted by Tversky and 

Kahneman (1974), or by motivational biases noted by Winkler and Matheson (1976). 

Such biases can yield sets of QP pairs that Spetzler and Staël von Holstein (1975) refer to 

as incoherent – they do not conform to the axioms of probability. Figure 1.3 provides an 

example of incoherent QP data. In this case, the assessed QP pairs shown in Figure 1.3 

(right) are incoherent since the 30
th

 percentile exceeds the 50
th

 percentile. In the absence 

of biases, assessment error may still arise simply due to imprecision of the elicited 

responses with respect to the expert’s true values4. In this dissertation, unless explicitly 

noted otherwise, we assume that we have a coherent set of perfectly-assessed QP pairs. 

                                                 
4 For models quantifying assessment errors due to imprecision, see, for example, Hammond and Bickel 

(2017) and Wallsten and Budescu (1983). 
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Figure 1.3. Examples of Coherent and Incoherent Assessment Data. 

In practice, eliciting authentic QP pairs can be a timely and costly process5, since 

special procedures6 may be needed to eliminate cognitive7 and motivational biases. 

Consequently, analysts cannot assess the infinite number of points on an expert’s CDF, 

and are constrained to gathering only a small, finite number of QP pairs for each 

uncertainty. However, given a set of QP pairs, analysts want a complete characterization 

of the expert’s distribution, depicted by the dashed line in Figure 1.2 and Figure 1.4, and 

must decide how to build some continuous approximation (shown by the solid line in 

Figure 1.4) for the expert’s true distribution. 

                                                 
5 For example, see Merkhofer (1987). 
6 For example, see Selvidge (1980). 
7 For example, see Spetzler and Staël von Holstein (1975). 
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Figure 1.4. Approximating the Expert’s True Distribution with a Model. 

 A simple, but widely-used approach for assigning a distribution to a set of QP 

pairs is by systematically constraining the uncertainty to a finite number of discrete 

possible outcomes, and then choosing probabilities to assign to those outcomes – a 

process known as discretization, as illustrated in Figure 1.5. Discretization presents 

several practical advantages. First, as noted by Bickel et al (2011), and Willigers (2009), 

discretization can greatly reduce the computational burden faced in problems with 

increasingly large numbers of uncertainties, by reducing the number of possible outcomes 

to a few systematically-chosen scenarios. Also, reducing the space of outcomes to several 

discrete scenarios allows an analyst to easily communicate the problem with decision 

makers by use of a decision tree, as depicted in Figure 1.6.  

In this example, reading the tree from left to right, the decision maker first decides 

whether to explore. The decision not to explore yields a sure $0 MM in net present value 



7 

 

(NPV), while the decision to explore is subject to a discrete (binary) uncertainty – 

whether hydrocarbons are present. If hydrocarbons are absent, the decision maker incurs 

a net loss of $10MM, since money is invested in exploration, but no value is 

subsequently realized. If hydrocarbons are present, then the decision to explore is subject 

to a continuous uncertainty upon volume of reserves (represented in Figure 1.1), given 

the presence of hydrocarbons, which has been discretized into three scenarios: {2.5, 5.0, 

9.0} MMbbl, with estimated NPV outcomes of {-$10MM, $20MM, $50MM}, 

respectively. The discrete scenarios depicted in the tree8 enable decision makers or 

laypeople to intuitively visualize risks surrounding a decision. 

                                                 
8 For more on decision trees, see Clemen (2014), or McNamee and Celona (1990). 
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Figure 1.5. A Discrete Approximation for an Expert’s Distribution on Reserves. 

 

Figure 1.6. A Decision Tree for an Exploration Decision. 

The example in Figure 1.5 and Figure 1.6 implements a common discretization 

method used in the oil and gas industry known as the Extended Swanson-Megill (ESM) 

shortcut, which assigns probabilities of {0.3, 0.4, 0.3} to the {10
th

, 50
th

, 90
th

} percentiles. 
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However, the competitive tractability of discretization comes at the cost of potentially 

large approximation errors, which could misguide decision making. Keelin (2016), for 

example, illustrates how discretization yields poor decision making in a real-world 

bidding problem involving a portfolio of real-estate assets. We also demonstrate how 

discretization can induce poor decision making later in this dissertation using a famous 

decision analysis example problem. Theoretical treatment of discretization is widely 

covered in the literature9, and its applications are pervasive10. In this dissertation, 

however, we focus primarily on methods for assigning continuous distributions to 

assessed QP pairs, and we briefly cover several extensions to discretization in the 

concluding chapter.  

MOTIVATION 

In terms of existing methods for assigning continuous distributions to assessed QP pairs, 

a common approach is to fit a distribution (e.g., by least-squares) from a well-known 

family (e.g., beta, gamma, normal, lognormal, etc.), as shown in Figure 1.7, where the 

solid curve represents a least-squares fit for a normal distribution with respect to the 

assessed QP pairs. While this gives us a continuous approximation for the expert’s true 

distribution (dashed), two clear limitations of fitting approximations are:  

 The fitted distribution usually does not honor (pass through) the assessed 

percentiles, as illustrated in Figure 1.7, which can reduce model fidelity and trust 

in the analysis. 

                                                 
9 For recent contributions, see: Hammond and Bickel (2017); Hammond and Bickel (2013a, b); Bickel et 

al. (2011); Hammond (2014). Also, see: McNamee and Celona (1990); Miller and Rice (1983); Keefer and 

Bodily (1983); Smith (1990, 1993); Zaino and D’Errico (1989); Hurst et al. (2000). 
10 For applications, see: Willigers (2009); Hurst et al. (2000); Stonebraker and Keefer (2009); Pflug (2001); 

Wang and Dyer (2012); Tauchen and Hussey (1991); Stonebraker (2002); Keefer (1995); Keeney (1987), 

Upadhyay and Ezekoye (2008). 
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 Least-squares fits require solving an optimization problem for the distribution 

parameters, which some analysts may find inconvenient or difficult to implement. 

 

Figure 1.7. A Least-Squares Fit Normal Distribution for the Assessed QP Pairs. 

Alternatively, Abbas (2003a and 2003b) assigns distributions by maximizing 

Jaynes’ (1968) entropy, subject to honoring assessed QP pairs, as shown in Figure 1.8, 

where an expert provides {10
th

, 50
th

, 90
th

} percentile assessments for the peak market 

share of a new product (if launched) – a quantity which is necessarily bounded between 

zero and one. For bounded uncertainties, as in Figure 1.8, maximum-entropy assigns a 

conditional uniform distribution (“straight-line”) between adjacent assessments, making 

it a mathematically-tractable method for approximating an expert’s distribution. Also, 

maximum-entropy distributions honor the assessed QP pairs, unlike least-squares fits. 

However, if an experts’ knowledge changes smoothly (has continuous derivatives) over 
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its domain, as illustrated by the dashed curves in Figure 1.8, then straight-line poorly-

approximates the expert’s distribution. 

  

Figure 1.8. A Maximum Entropy Distribution (solid curve) for QP Pairs on [0, 1]. 

Runde (1997) takes a different approach by using Hermite tension splines to 

assign distributions to QP pairs. As Powley (2013) notes, however, while this method 

generates smooth and flexible distributions, it provides little basis for performing 

subsequent Monte Carlo simulation. In response to these limitations, Keelin and Powley 

(2011) (KP), Powley (2013), and Keelin (2016) pioneered the notion and development of 

quantile-parameterized distributions (QPDs). QPDs represent a major advance in 

decision analysis, since they present several key advantages over other existing methods: 

 QPDs are parameterized by, and thus precisely honor, a given set of QP pairs, 

eliminating the need to solve a non-linear optimization problem for distribution 

parameters, unlike with many curve-fitting procedures. More importantly, 

however, the QPD passes through the QP pairs, unlike a fitted distribution. 
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 QPDs can closely approximate many commonly-named distributions, such as 

normal, lognormal, beta, etc. 

 QPDs are characterized by their quantile function, which makes them convenient 

for subsequent Monte Carlo sampling via inverse-transform-sampling11.  

However, QPDs are subject to several issues, perhaps the most notable of which is 

infeasibility, meaning that there exist many sets of coherent QP pairs for which there 

exists no valid QPD assignment. We discuss infeasibility in more detail later. 

CONTRIBUTIONS 

This dissertation makes several contributions to the literature on methods for encoding an 

expert’s knowledge of a given uncertainty, given a set of QP pairs. Like the work of 

Keelin and Powley (2011), and Keelin (2016), we present a new system, known as “J-

QPD”, of smooth probability distributions that are directly parameterized by assessed QP 

pairs. This is incredibly helpful in practice, since it allows an analyst to go directly from a 

finite set of QP pairs to a complete continuous representation of an expert’s knowledge of 

a given uncertainty, without the need to apply curve-fitting. Unlike the QPDs developed 

by Keelin and Powley (2011), however, we demonstrate that our new system satisfies our 

notion of maximally-feasible, which means that we can always find a distribution 

assignment for any coherent set of specified QP pairs, and satisfying a specific structure, 

which we discuss in more detail later. 

 We also rigorously demonstrate the ability of our new system to closely-

approximate a vast set of commonly-named distributions (e.g., beta, gamma, lognormal, 

etc.) sharing the same set of QP pairs and support, by using four different measures of 

closeness: the absolute percent difference in means by inter-decile range (APDM); 

                                                 
11 We discuss quantile functions and touch on inverse-transform sampling in more detail in Chapter 2. 
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absolute percent difference in variance (APDV), the Kolmogorov-Smirnov (KS) distance; 

and the cross-entropy or Kullback-Leibler (KL) divergence. The APDV, KS distance, and 

KL divergence measures of closeness are well-known. However, the APDM measure is a 

relatively new approach for comparing the mean of two distributions. We demonstrate 

and justify the use for all four closeness measures. Also, in our analysis of the closeness 

of J-QPD to well-known families of distributions, we provide a novel and rigorous 

approach for performing the comparison, inspired by Hammond and Bickel (2013a). 

 We then demonstrate the flexibility of our new J-QPD system, as depicted in 

Pearson’s well-known moment-ratio space, and generate several additional new 

probability distribution systems occurring as parametric limiting cases to J-QPD. We then 

show that one of these new systems, having semi-bounded support, is also maximally-

feasible, and capable of capturing heavier-tailed shapes than its parent counterpart. 

 Finally, we combine J-QPD with existing methods to generate two new 

approaches for encoding dependence between uncertainties: the marginal procedure 

(MP), and the conditional procedure (CP). By augmenting J-QPD assignments with well-

known methods for assessing dependence, we demonstrate that MP is an efficient, high-

fidelity method for encoding (and simulating from) a continuous joint distribution among 

a set of dependent uncertainties. 

 Of integral importance in our concluding observations is our list of strengths and 

weaknesses of our new J-QPD systems, compared to the QPDs developed by Keelin and 

Powley (2011), Powley (2013), and Keelin (2016). For example, Keelin and Powley’s 

QPDs are more directly extendible to larger sets of QP pairs, while our J-QPDs specify a 

prescribed number of QP pairs of a specific structure. However, given our prescribed QP 

structure, our J-QPD system is maximally-feasible, whereas Keelin and Powley’s QPDs 

cannot handle many sets of coherent QPDs. Also, additional steps are needed to engineer 
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the support of Keelin and Powley’s QPDs, such as by use of transformations, some of 

which may yield distributions with undefined or infinite moments. 

ORGANIZATION 

This work is organized as follows. Chapter 2 is a reference chapter, providing 

background information on the fundamentals of quantile functions, since they serve as a 

foundation for all subsequent chapters of this dissertation. Chapter 3 reviews the notion 

of quantile-parameterized distributions (QPDs) pioneered by Keelin and Powley (2011), 

and its extensions by Powley (2013) and Keelin (2016), since their work most closely 

relates to, and is the primary motivation for the distribution systems we develop herein. 

In Chapter 4, we construct our new J-QPD probability distribution systems based on our 

stated desiderata. In Chapter 5, we show that our new J-QPD systems satisfy our notion 

of maximally-feasible, and provide a comparative visual depiction of the feasibility span 

of various commonly-named distributions compared to J-QPD. In Chapter 6, we 

demonstrate that J-QPD can closely approximate a vast array of commonly-named 

distributions with potent accuracy, using our four measures of closeness. In Chapter 7, we 

examine the flexibility of the J-QPD system, as measured by Pearson (1895, 1901, and 

1916). Chapter 8 introduces a “logistic version” of our J-QPD systems, which we refer to 

as “L-QPD”, using the logistic distribution in place of the normal distribution as its basis 

for construction, along with important tradeoffs between the two systems. Chapter 9 

provides two separate and detailed methodologies for encoding dependence between 

uncertainties using J-QPD. In Chapter 10, we partially walk through an illustrative 

decision analysis example to more comprehensively demonstrate how J-QPD might be 

implemented in practice, and where existing approaches might fail in place of J-QPD. 

Chapter 11 concludes with a summary of the main contributions presented in this 
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dissertation, recommendations and guidelines for practice, and several avenues for future 

research.
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Chapter 2 :  Some Basics of Quantile Functions 

Most all concepts on quantile functions in this chapter are not new, except where 

explicitly stated. However, inclusion of this chapter is essential in developing a basic 

understanding and intuition for quantile functions, particularly since most of our 

contributions beginning in Chapter 4 largely build on these concepts. This applies to 

readers across a broad range of experience and education in probability theory, in large 

part because the quantile function representation of probability distributions generally 

enjoys much less coverage than do CDFs and PDFs in the teaching of probability theory 

– see Gilchrist (2000). We hope that this chapter provides great illumination upon the 

utility of quantile functions for the novice reader in probability, while refreshing interest 

and basic technical understanding for more advanced readers. 

Unless explicitly noted, most all definitions and propositions in this chapter are 

adopted from Gilchrist (2000) or Powley (2013). For a supplemental overview of quantile 

functions, along with proofs of some of the propositions stated herein, we refer the 

interested reader to Powley (2013). For a more detailed and extensive examination of 

quantile functions, we refer the interested reader to Gilchrist (2000). 

DEFINITION OF A QUANTILE FUNCTION 

Let F(x) denote the CDF for random variable, X. The quantile function, Q(p), is defined 

as: 

 ( ) inf | ( ) .Q p x p F x    (2.1) 

This definition for a quantile function provides a generalization of the inverse of F, for 

cases in which the inverse may be undefined1. Like a CDF or PDF, a quantile function 

                                                 
1 This happens, for example, with discrete distributions. 
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fully characterizes a probability distribution. For many commonly-named distributions 

(e.g., normal, lognormal, gamma, Weibull, beta, etc.), the quantile function is the inverse 

of the CDF, which we assume throughout this dissertation, unless explicitly noted 

otherwise. A given function, Q(p), must meet two attributes to be a quantile function:  

(1) It must be defined over the domain: p ∈ (0, 1). 

(2) It must be non-decreasing over this domain. 

Figure 2.1 (left) shows the quantile function for the standard normal distribution, while 

Figure 2.1 (right) shows its inverse, the CDF for the standard normal distribution. Notice 

that Q takes a percent point in decimal form as input (say p = 0.2, denoting 20%), and 

returns the 100p
th

 percentile of the distribution. 

 

Figure 2.1. Quantile Function and CDF for the Standard Normal Distribution. 

For example, in Figure 2.1 (left), Q(0.2) = –0.8412 is the 20
th

 percentile for the standard 

normal distribution. Alternatively, we say that if X has a standard normal distribution, 

then the probability that X is less than or equal to –0.8412 is 0.2, as conveyed in Figure 

2.1 (right). Table 2.1 presents the quantile function characterization for several well-
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known elemental distributions. Unless explicitly noted, throughout this dissertation, Ф
–

1
(p) refers to the quantile function for the standard normal distribution. Now we introduce 

the concept of transformations upon a quantile function. 

QUANTILE FUNCTIONS FOR SOME COMMONLY-NAMED DISTRIBUTIONS 

Distribution Quantile function, Q(p)  Parameters 

Normal µ + σ∙Ф
-1

(p)  µ, σ > 0 

Uniform l + (u – l)∙p l, u 

Exponential –λ∙log(1–p)  λ > 0 

Lognormal exp(µ + σ∙Ф
-1

(p)) µ, σ > 0 

Logistic log
1

p

p
 

 
   

 
 µ, σ > 0 

Weibull  log(1 )
a

p    λ > 0, a > 0 

Table 2.1. Quantile Functions for Several Commonly-Named Distributions. 

SOME BASIC TRANSFORMATION RULES FOR QUANTILE FUNCTIONS 

Q-Transformations 

The Q-Transformation Rule: If T(x) is a non-decreasing function of x, and Q(p) is a 

quantile function, then T(Q(p)) is a quantile function. Moreover, suppose X has quantile 

function, Q(p), and that Y has the quantile function, T(Q(p)). Then Y = T(x).     

The Q-transformation rule is particularly useful since we often perform many 

mathematical operations upon uncertain quantities. When the operator T is non-

decreasing, the Q-transformation rule provides a simple mapping from the distribution 

(quantile function) of one random variable (X) to that of the transformed random variable 

(Y). For example, referencing Table 2.1, the lognormal distribution results from applying 

the “exp” transformation, T(x) = e
x
, to the quantile function for the normal distribution. 

Alternatively, the Weibull distribution results from applying the transformation, T(x) = 

x
a
, to the quantile function for the exponential distribution. 
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One of the simplest Q-transformations is the positive affine transformation, T(X) 

= aX + b, where a > 0. Define the transformed variable: Y = T(X) = aX + b. Figure 2.2 

provides an illustration showing the quantile function, CDF, and PDF for Y = 3X + 5 for 

the case in which X has a standard normal distribution. 

 

Figure 2.2. Quantile Functions, CDFs, and PDFs for X, and Y = 3X + 5. 

Notice that the PDF and CDF of X shift to the right by 5 units, and then are scaled 

(stretched in this case) by a factor of 3. The PDF shortens in height to maintain the Law 

of Total Probability – the integral of the PDF over its domain must equal one. Thus, the 

positive affine transformation produces effects on location (with 𝑏) and scale (with a > 

0), but not on shape – the distribution is only shifted or stretched/squeezed. 

Notice that the Q-transformation function, T, operates directly on Q(p), which is 

equivalent to applying the operator directly to X itself, mapping the random variable, X, 

into the new random variable, Y = T(X). Based on this observation, if X has support on 

{a, b}, then Y has support on {T(a), T(b)}. This fact leads to powerful methods for 

engineering the support of an uncertainty by use of Q-transformations. 

Table 2.2 lists a few well-known Q-transformations for various support scenarios. 

Note the effect of these transformations on distribution support. For example, if X has a 

normal distribution, then using the “exp” transformation, Y = e
X
, induces a lognormal 
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distribution for Y. This is especially useful if an uncertainty is required to be non-

negative. Alternatively, the logit and probit transformations might be useful for modeling 

a bounded uncertainty, such as market share, which is bounded between zero and one. 

Transformation name T(x) Support of X Support of Y=T(X) 

Positive affine ax + b, a > 0 [l, u] [al + b, au + b] 

Exponential (“exp”) e
x 

(–∞, ∞) (0, ∞) 

Logit 
1

x

x

e

e
 (–∞, ∞) (0, 1) 

Probit Φ(x) (–∞, ∞) (0, 1) 

Table 2.2. Some Well-Known Transformations for Controlling Support. 

In addition to affecting support, many Q-transformations, other than simple affine 

transformations, affect distribution shape. Figure 2.3 (Figure 2.4) illustrates the effects of 

applying the “exp” (logit) transformation to a random variable, X, having a standard 

normal distribution. The “exp” transformation maps normal distributions to lognormal 

distributions, which are known to exhibit varying degrees of right-skew, unlike normal 

distributions. Alternatively, the probit and logit transformations map distributions on (-∞, 

∞) (such as the normal distribution) to distributions with support on (0, 1). 
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Figure 2.3. Quantile Functions, CDFs, and PDFs for X, and Y = exp(X). 

 

Figure 2.4. Quantile Functions, CDFs, and PDFs for Y=exp(X)/(1+exp(X)). 

While the Q-transformation operates directly on Q(p), and thus directly on X, 

there are other useful types of transformations that manipulate Q in other ways. 

The Reciprocal Rule: Suppose X has quantile function, Q(p), and that Y = 1/X. 

The quantile function for Y is 1/Q(1–p). 

The Uniform Transformation Rule: If U has a uniform distribution on [0, 1], 

and Q(p) is a non-decreasing function of p, then X = Q(U) has the quantile function, Q(p). 

The Uniform Transformation Rule provides a basis for inverse-transform 

sampling. Specifically, if 1 2{ , , , }nu u u  is a random sample of n observations drawn from 

a uniform distribution on [0, 1], then  1 2( ), ( ), , ( )nQ u Q u Q u  is a random sample of n 
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observations drawn from the probability distribution with quantile function, Q. This 

sampling procedure is the essence of inverse-transform sampling. Figure 2.5 provides an 

example showing a histogram of 10,000 observations drawn from the exponential 

distribution. We further implement inverse-transform sampling in conjunction with our 

new J-QPD probability distributions in subsequent chapters. 

 

Figure 2.5. Histogram for an Exponential Distribution via Inverse-Transform Sampling. 

The Reflection Rule: Suppose X has quantile function, Q(p), and that Y has 

quantile function, –Q(1–p). Then the PDF of Y is the reflection of the PDF of X about the 

line, x = 0. Figure 2.6 shows an illustration of the reflection rule applied to the 

exponential distribution. In this case, since the quantile function for the exponential 

distribution is Q(p) = –λlog(1–p), the reflection rule implies that the quantile function for 

the reflected exponential distribution is Q(p) = λlog(p). Also, note that under the 

reflection rule, if the PDF for X is f(x), then the PDF for Y is f(–x). 
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Figure 2.6. QFs and PDFs for the Exponential and Reflected Exponential Distributions. 

The Addition Rule: If Q1(p) and Q2(p) are quantile functions, then 

1 2( ) ( )Q p Q p  is also a quantile function. 

The Linear Combination Rule: If Q1(p) and Q2(p) are quantile functions, a > 0, 

and b > 0, then aQ1(p) + bQ2(p) is also a quantile function. 

The p-Transformation Rule: If Q(p) is a quantile function, and a > 0, then Q(p
a
) 

is a quantile function. 

The logistic distribution presented in Table 2.1 results from applying the addition 

rule to the quantile functions for the exponential distribution and the reflected exponential 

distribution. That is, the logistic distribution is built from the exponential distribution, the 

addition rule, and the reflection rule2. Although the logistic distribution is symmetrical 

and similar in shape to a normal distribution, Gilchrist (2000) produces a skewed logistic 

distribution by applying the linear combination rule to the exponential- and reflected 

                                                 
2 For more on the logistic distribution, see Balakrishnan (1992). 
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exponential distributions. Later, we present well-known distributions whose construction 

involves the p-Transformation rule. 

COMPUTING MOMENTS USING QUANTILE FUNCTIONS 

It is often useful to compute the moments of a probability distribution directly from its 

quantile function. As with PDFs, computation of moments using quantile functions is 

straightforward. The k
th

 raw moment for the quantile function, Q, is given by: 

 

1
'

0
( ) .k

k Q p dp    (2.2) 

Thus, the mean is given by: 
1

'

1
0

( ) .Q p dp     (2.3) 

Using this notation, the computation for the k
th

 central moment is given by: 

 
1

0
( ) .

k

k Q p dp    (2.4) 

We can use these expressions to build the variance, skewness, and kurtosis of Q, as 

shown in Table 2.3. Unlike PDFs and CDFs, one advantage of computing moments with 

quantile functions is that we need not specify lower and upper bounds of support in the 

integral computations, since the quantile function always ranges from 0 to 1. 
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Moment Symbol Computation 

Variance σ
2  

1 2

0
( ) .Q p dp  

Skewness γ1 
 

1 3

0

3

( )Q p dp




 

Kurtosis γ2 
 

1 4

0

4

( )Q p dp




 

Table 2.3. Computation of Higher-Order Moments Using Quantile Functions. 

Variance is a measure of distribution spread or scale, and is not a measure of 

shape, since it only involves stretching or squeezing of the distribution. Traditional shape 

measures of skewness and kurtosis are defined such that they are invariant to affine 

transformations (shifting or scaling) of a distribution. Specifically, the subtraction of μ in 

the numerator of these two measures removes location (shifting) effects, while the σ
3
 and 

σ
4
 terms in the denominator (respectively) remove the effects of scale (stretching or 

squeezing). We revisit skewness and kurtosis in Chapter 7, where we evaluate the 

flexibility of our new J-QPD distribution system.   

ADVANCED DISTRIBUTIONS WITH QUANTILE FUNCTION REPRESENTATIONS 

We now briefly cover several advanced quantile probability distribution systems. By 

“advanced”, we allude to two specific attributes of the system:    

 Its quantile function representation is built upon the quantile functions for one or 

more of the elemental distributions listed in Table 2.1. 

 It has at least two separate (and independent) shape parameters. That is, these two 

parameters must affect more than simple location and scale changes upon the 

distribution. For example, the beta distributions have two shape parameters. 
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The Exponentiated Weibull (EW) Distribution 

We now revisit the quantile function for the Weibull distribution listed in Table 2.1: 

 ( ) log(1 ) ,  0.
a

Q p p a     (2.5) 

The Weibull distribution is formed by applying the Q-transformation, T(x) = x
a
 (a > 0), to 

the quantile function for the exponential distribution. The Weibull distribution has its 

roots in system reliability theory, and is often used to model the time between system 

failures. While it is arguably flexible, the Weibull distribution has only one shape 

parameter (represented by a), like the gamma and lognormal distributions. This shape 

parameter can capture an increased frequency of failures in a system over longer periods 

of time due to system aging and “wear-and-tear”, but is not capable of capturing 

increased failures associated with infant mortality in the early life of a system. 

To remedy this shortcoming, Mudholkar and Srivastava (1993) developed the 

Exponentiated Weibull (EW) distribution by introducing a second shape parameter into 

the standard Weibull quantile function as follows: 

 ( ) log(1 ) ,  0,  0.
a

kQ p p a k      (2.6) 

Thus, the EW quantile function is formed by additionally applying a p-transformation to 

the Weibull quantile function, resulting in the second shape parameter, k. The EW system 

of distributions has support on [0, ∞), and is quite flexible. We revisit the EW system 

further in Chapter 5, where we compare it to our new J-QPD system. 

The Burr and Dagum Distributions 

Burr (1973) introduced a system defined on (0, ∞), also known as the Singh-Maddala 

(1976) distribution, which is used to model household income in the United States. The 

Burr distribution quantile function is given by: 

 ( ) (1 ) 1 ,  0,  0.
a

kQ p p a k      (2.7) 
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The Burr system is a generalization of the log-logistic distribution3, and includes the 

Pareto Type II distribution as a special case. The Burr distributions are smooth and 

unimodal in shape, mostly having heavy tails. Another distribution system used to model 

income, which stems from the Burr distribution, is the Dagum (1977) distribution, 

characterized by the quantile function: 

 ( ) 1 ,  0,  0.
a

kQ p p a k


     (2.8) 

The Dagum distribution results from applying the Reciprocal Rule to the Burr 

quantile function. That is, if X is an uncertainty having a Burr distribution with 

parameters {k, a}, then 1/X has a Dagum distribution with parameters {k, a}. 

The Simple Q-Normal (SQN) Distribution 

Keelin and Powley (2011) developed a system of quantile-parameterized distributions 

(QPDs), known as the Simple Q-Normal (SQN) system, specified by its quantile function: 
1 1( ) ( ) ( ),SQNQ p a b p c p d p p          (2.9) 

where Ф
–1

(p) is the quantile function for the standard normal distribution. SQN 

distributions have support on (–∞, ∞). The joint requirements on the allowable values for 

the parameters, {a, b, c, d}, are quite complicated, since not all combinations of values 

for {a, b, c, d} result in QSQN(p) being a quantile function, as required. We discuss the 

SQN system in more detail in Chapter 3. 

The Johnson Distribution System 

Perhaps one of the most well-known of the advanced quantile distribution systems is the 

Johnson (1949) system, which consists of three subfamilies of distributions: 

 The SU family, with support on (–∞, ∞). 

 The SB family, with bounded support. 

                                                 
3 For more on the log-logistic distributions, see Tadikamalla and Johnson (1982), and Tadikamalla (1980). 



28 

 

 The SL family, or lognormal distributions, having positive support. 

The Johnson system is attractive since it is highly flexible, has well-defined 

moments, and has simple mathematical expressions for its: quantile functions; CDFs; 

PDFs. The Johnson quantile functions arise from Q-transformations applied to Ф
-1

(p), the 

quantile function for the standard normal distribution. Table 2.4 provides the quantile 

function for each subfamily, including support, and associated Q-transformations applied 

to Ф
-1

(p) in each case. For SU and SB distributions, ξ and λ are location and scale 

parameters, respectively, and {γ, δ} are shape parameters. We revisit the Johnson system 

in Chapter 4, where we develop our new J-QPD distribution system. 

Subfamily Quantile function Support Requirements Q-Transformation    

SU   1sinh ( )p       (–∞, ∞) λ, δ > 0  Hyperbolic sine 

SB 
  
  

1

1

exp ( )

1 exp ( )

p

p

  


 





 


  
 (ξ, ξ + λ) λ, δ > 0 Logit 

SL  1exp ( )p     (0, ∞) σ > 0 “Exp”   

Table 2.4. Quantile Functions for the Johnson SU, SB, and SL Subfamilies. 

THE ADVANTAGES OF QUANTILE FUNCTIONS OVER CDFS AND PDFS 

We close this chapter by noting several key advantages to having simple (e.g., closed-

form) quantile functions for a probability distribution: 

 We can easily calculate any percentile of the distribution. 

 We can directly use the quantile function to perform Monte Carlo simulation 

via inverse-transform sampling. 

 We can easily build other distribution forms by direct application of 

transformations; e.g., Q-transformations. 

 When computing moments via analytical or numerical integration, we need 

not specify the support, since quantile functions range from 0 to 1.
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Chapter 3 :  Quantile-Parameterized Distributions (QPDs)1 

In decision analysis practice, it is very helpful to have a tool that enables an analyst to go 

directly from assessed points to a distribution, without the need for a fit procedure. Recall 

our goal of developing a distribution system that is parameterized by, and thus precisely 

honors, a set of assessed QP pairs, such as the {10
th

, 50
th

, 90
th

} percentiles. That is, no 

fitting approximation, such as least-squares, is needed. Toward achieving this goal, 

Keelin and Powley (2011) pioneered the notion of quantile-parameterized distributions 

(QPDs), which amount to probability distributions that are parameterized by the assessed 

points, 1 2 3{ ,  ,  , }x x x , along with their corresponding cumulative probabilities, 

1 2 3{ ,  ,  , }p p p . In this chapter, we discuss QPDs in more detail, since they most closely 

relate to our new J-QPD system, which we develop in Chapter 4.  

QUANTILE-PARAMETERIZED DISTRIBUTIONS 

QPDs characterize probability distributions in quantile function form, expressed as a 

linear combination of strategically-selected basis functions. As formalized by Powley 

(2013), QPDs are probability distributions whose quantile function can be written: 

1

( ) ( ),  0 1,
n

i i

i

Q p g p p


    (3.1) 

Where n  , and  ( ) | 1: ,  (0,1)ig p i n p   is a regular set of basis functions. Based 

on this definition, the uniform, normal, exponential, logistic, and skewed-logistic 

distributions are all QPDs. For example, a normal distribution having mean (standard 

deviation), µ (σ), is a QPD with basis functions,    1

1 2( ),  ( ) 1,  ( )g p g p p  , and 

parameters given by: {β1, β2} = {µ, σ}. Also, this definition of a QPD implies that a basis 

                                                 
1 This is a background chapter, and borrows heavily from Keelin and Powley (2011), Powley (2013), and 

from Keelin (2016). 
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function, gi(p), need not be non-decreasing, as long as Q(p) is strictly increasing – as 

imposed by Powley (2013). 

Linearity of QPD Parameters and Assessed Quantiles 

Since a QPD’s quantile function is a linear combination of a given set of basis functions, 

the vector of parameters, β, can be solved for via solution to a linear system of equations, 

given a set of distinct QP pairs, whose number of pairs is equal to the cardinality of β. 

Powley (2013) formalizes this concept with the Quantile Parameters Theorem: 

The Quantile Parameters Theorem 

A set of n distinct QP pairs,   , | 1:i ix p i n , uniquely determines n   of a 

QPD by the matrix equation, β = Y
-1

x, where the set of basis functions, 

 ( ) | 1: ,  (0,1)ig p i n p  , is regular, and  

1 1 1

1

( ) ( )

( ) ( )

n

n n n

g p g p

Y

g p g p

 
 

  
 
 

 

if and only if: 

i. the  matrix, Y, is non-singular (invertible) 

ii. 
1

( )
0,    (0,1).

n
i

i

i

dg p
for all p

dp




   

Note that (ii) implies that Q(p) must be a valid (non-decreasing) quantile function. 

AN EXAMPLE QPD: THE SIMPLE Q-NORMAL (SQN) DISTRIBUTION 

One of the first such QPDs developed by Keelin and Powley (2011) is the Simple Q-

Normal (SQN) distribution, having the following quantile function representation: 

( ) ( ) ( ),SQN N NQ p a b p c Q p d p Q p         (3.2) 

where QN ≡ Φ
–1

 is the standard normal quantile function. In this case, the basis functions 

are: {1, p, QN(p), pQN(p)}. The parameters, {a, b, c, d}, uniquely determine a distribution 
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within the SQN system, by solution to a linear system. For example, if the {x0.25, x0.50, 

x0.75, x0.90} quantiles (i.e., 25
th

, 50
th

, 75
th

, and 90
th

 percentiles) are given, then we can 

easily obtain {a, b, c, d} by solving: 
1 1

0.25

1 1
0.50

1 1
0.75

1 1

0.90

1 0.25 (0.25) 0.25 (0.25)

1 0.50 (0.50) 0.50 (0.50)
.

1 0.75 (0.75) 0.75 (0.75)

1 0.90 (0.90) 0.90 (0.90)

x a

x b

x c

dx

 

 

 

 

      
    

     
     
              

Figure 3.1 shows an example SQN for {x0.10, x0.50, x0.90, x0.99} = {10, 14, 25, 35}, 

including quantile function and sample histogram. Notice, by design, that the distribution 

precisely honors the specified points, making QPDs particularly powerful for analysts. 

 

Figure 3.1. QF and Histogram for the SQN with {x0.10, x0.50, x0.90, x0.99}={10, 14, 25, 35}. 

FEASIBILITY OF QPDS 

Recall that Q(p) must be non-decreasing, as formally expressed by: 

1

( )
( ) 0,    (0,1).

n
i

i

i

dg p
Q p for all p

dp




    (3.3) 

Given a set of basis functions,  ( ) | 1: ,  (0,1)ig p i n p  , this implies that not all vectors, 

n  , are feasible – i.e., result in (3.3) being satisfied for the given set of basis 
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functions. Furthermore, this implies that some sets of distinct QP pairs,   , | 1:i ix p i n

, are infeasible for the given set of basis functions, meaning that the function, Q(p), 

generated is not a quantile function. 

 Figure 3.2 provides an example of infeasibility for the SQN, where the QP pairs 

are: {x0.10, x0.50, x0.90, x0.99} = {10, 20, 30, 70}. Since part of Q(p) is decreasing, and thus 

Q(p) is not a quantile function in this case. 

 

Figure 3.2. An SQN that Yields Infeasibility: {x0.1, x0.5, x0.9, x0.99} = {10, 20, 30, 70}. 

THE METALOG DISTRIBUTIONS 

Keelin (2016) extended the work of Keelin and Powley (2011) and Powley (2013) by 

developing a much broader set of QPDs known as the Metalog (ML) system. ML is 

arguably the most flexible distribution system to-date, since it can be parameterized by an 
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arbitrarily large number of QP pairs, by systematically appending the required number of 

basis functions. When constructing these QPDs, however, nontrivial issues faced are: 

 Choice of basis functions – For example, the choice of basis functions can 

affect both support and tail behavior. 

 Feasibility – Some sets of QP pairs, while coherent2, may yield a function 

that is not a quantile function. 

 Engineering distribution support – monotonic Q-transformations can be 

applied to a QPD to obtain the desired support. For example, if X is a random 

variable having a QPD with doubly-unbounded support (such as SQN), but 

non-negative support is desired, then taking Y = e
X
 may suffice. However, 

different transformations have different effects on tail behavior, and some 

transformations may yield undefined moments. Thus, the appropriate choice 

of transformation is not always clear.  

While motivated by the major advances of Keelin and Powley (2011), Powley 

(2013), and Keelin (2016), we take an alternative approach to QPDs in this dissertation, 

when we develop our new J-QPD system in Chapter 4. Ultimately, we compare the pros 

and cons of both QPDs and the new J-QPD system.

                                                 
2 By coherent, we mean that the QP pairs satisfy the axioms of probability. For example, a 50

th
 percentile 

cannot be less than a 25
th

 percentile. 
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Chapter 4 :  The New J-QPD Distribution Systems1 

In this chapter, we develop a new family of smooth probability distributions that are 

parameterized by their quantiles, based on two support regimes: bounded; semi-bounded. 

Our focus on the bounded and semi-bounded cases is based on the presumption that many 

physical quantities have a finite and known lower (but not necessarily upper) limit of 

support (e.g., oil reserves cannot be negative). However, we also generate several 

unbounded distributions as parametric limiting cases to our new distribution system in 

Chapter 7.    

Our system is an extension of the Johnson distribution system (JDS), and can 

honor any symmetric percentile triplet (SPT), which we formally define shortly. We refer 

to our new family of probability distributions as the “Johnson Quantile-Parameterized 

Distribution” (or “J-QPD”) system, which serves as the central contribution in this 

dissertation. We also show that our J-QPD system can closely approximate a vast array of 

commonly-named distributions (e.g., beta, gamma, lognormal, Weibull, etc.) using a 

single system. While our system is new, we stress that it is not unique, since there are an 

infinite number of distributions that can honor any finite set of QP pairs. As we explain 

more fully below, our objective is to develop a family of smooth distributions that honor 

assessed quantiles, are straight-forward to implement in practice, and closely approximate 

a wide array of commonly-named distributions. 

INTRODUCTION AND MOTIVATION 

Suppose X is a continuous random variable with cumulative distribution function (CDF)  
( ) ( ),Xp F x P X x    (4.1) 

                                                 
1 Summaries of the results of this chapter are published with my advisor, Eric Bickel, in the following: 

Hadlock, Christopher and J. Eric Bickel. 2017. Johnson Quantile-Parameterized Distributions. Decision 

Analysis 14(1) 35-64. 
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and quantile function  

( ) inf{ : ( )}.p Xx Q p x p F x     (4.2) 

If Fx is continuous and increasing over the support of X, which we assume here, then QX 

is the inverse-CDF of X. We refer to xp as the p-level quantile of X or the (p ∙100)
th 

percentile of X. For example, x0.5 = QX(0.5) denotes the 0.5-level quantile, or 50
th

 

percentile (P50) of X. 

In many decision analysis applications, analysts assess uncertainty by eliciting a 

limited number (three is common) of (p, xp) pairs from an expert. For example, it is 

common to assess the 0.10-, 0.50-, and 0.90-level quantiles or, equivalently, the 10
th

, 50
th

, 

and 90
th

 percentiles2. As noted in Chapter 1, we assume that the (p, xp) pairs are coherent 

– they satisfy the axioms of probability. Recall that analysts cannot assess the infinite 

number of QP pairs on an expert’s CDF for a continuous uncertainty. Instead, given a 

finite set of assessments in the form of QP pairs, analysts may then fit a continuous CDF 

to these points. As noted in Chapter 1, such fitting often requires solving a non-linear 

optimization problem for the distribution parameters, a process which some analysts may 

find inefficient or difficult to implement. More importantly, however, recall that the best-

fit CDF often never honors the assessed QP pairs. For example, if the best-fit distribution 

is specified by two parameters, such as the mean and variance, then it is likely that the 

selected distribution will not pass through any points provided by the expert – Recall the 

normal distribution fit in Figure 1.7. This can cause confusion and decrease trust in the 

analysis. 

                                                 
2 For examples, see McNamee and Celona (1990), Hammond and Bickel (2013a, b), and Hurst et al. 

(2000). 
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The QPD work initiated by Keelin and Powley (2011), and the extensions by 

Powley (2013) and Keelin (2016) are arguably the most notable contributions to the 

decision analysis literature, in terms of providing smooth distributions that are 

parameterized by (and precisely honor) a set of QP pairs. Also, as we saw in Chapter 3, 

Keelin and Powley’s notion of QPDs can handle any arbitrary positive integer number 

(say “n”) of assessed QP pairs, by constructing a QPD with n basis functions. However, 

recall that several issues must be addressed by the analyst when employing these QPDs: 

(1) Feasibility – As we saw in Chapter 3, not all sets of coherent QP pairs yield a 

valid quantile function (distribution) – Recall the example of Figure 3.2. We 

further address this point in more detail shortly. 

(2) Choosing Basis Functions – While the SQN and certain Metalog distributions 

contain a prescribed set of basis functions, the choice of basis functions is 

generally unclear when an arbitrary set of n QP pairs of assessments are collected. 

(3) Engineering Support – Recall that in standard form, QPDs (such as SQN and 

Metalog) have unbounded support on (–∞, ∞). For uncertainties such as market 

share forecasts, the standard-form SQN or Metalog distributions violate the 

bounds of 0% to 100% (0 to 1) – i.e., they allow for negative market shares or 

shares that exceed the size of the market. This is problematic for practical 

applications. As noted in Powley (2013) and Keelin (2016), a monotonic Q-

transformation must be applied to the standard-form QPD that yields the 

appropriate support for the given uncertainty. A logit or probit Q-transformation 

can be applied to yield a bounded quantile function, whereas the log (“exp”) Q-

transformation can be applied to yield a semi-bounded quantile function. 

In this chapter, we take a slightly different approach in developing a new quantile-

parameterized distribution system, which directly resolves issue (1) within a specific (but 
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important) context, while circumventing issues (2) and (3). Ultimately, we offer our 

system as an advantageous tool within the popular context of assessing symmetric 

percentile triplets (SPTs), which we define below. 

In this chapter, we first specify five desiderata that guide the development of our 

new distribution family. Next, we extend the JDS to design our new J-QPD distribution 

system, which serves as the central contribution of this chapter. In the chapters 

immediately following the development of our new system, we examine the feasibility of 

the J-QPD system, and we also rigorously quantify the ability of J-QPD to closely 

approximate a vast array of commonly-named distributions. We then examine the 

flexibility of the J-QPD system, and identify several limiting distributions. 

DESIDERATA 

Given the wide array of potential continuous distribution families from which one may 

choose, it is helpful to have some criteria or desiderata that the distribution family should 

meet, if possible. Keelin (2016) notes three criteria for measuring the desirability of a 

probability distribution in the modern environment of decision analysis practice, building 

upon earlier criteria suggested by Johnson (1949), Mead (1965), and Johnson et al. 

(1994): flexibility; simplicity; ease/speed of use. In this section, we more precisely 

outline a set of desiderata that seem, to us, desirable from the perspective of decision 

analysis practice. We begin with some definitions that make our development more 

efficient.  

Definitions 

When assessing an uncertainty from an expert, a common practice is to elicit a triplet of 

low-base-high quantile values of the form: xα = (xα, x0.50, x1–α). For example, x0.1 = (x0.10, 
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x0.50, x0.90) denotes the vector of 10
th

, 50
th

, and 90
th

 percentiles. To streamline the 

discussion, we begin with several definitions: 

Definition 1. Consider any α ∈ (0, 0.50), and define an α-level symmetric 

percentile triplet (α-SPT) as a vector, xα = (xα, x0.50, x1–α), where xα denotes the α-level 

quantile for the random variable, X. 

Definition 2. Presume that the lower, l, and upper, u, support bounds (l < u) of X 

are specified and that an expert provides xα = (xα, x0.50, x1–α), for some α ∈ (0, 0.50). 

Collectively, define: θα = (l, xα, u) = (l, xα, x0.50, x1–α, u). 

Definition 3. The vector θα = (l, xα, u) is compatible if and only if α ∈ (0, 0.50) 

and l < xα < x0.50 < x1–α < u. 

Definition 4. Define Q(p;θα) as a quantile function on p ∈ [0, 1] for some 

probability distribution, and having distribution parameters given by: θα = (l, xα, u). 

While the QPDs developed by Keelin and Powley can take on sets of QP pairs 

that are of non-SPT structure, we focus upon the SPT context in developing our new 

system, not simply for mathematical tractability, but because of the prevalence of the 

SPT structure in practice. For examples, see McNamee and Celona (1990), Hammond 

and Bickel (2013a), and Hurst et al. (2000). 

Desiderata 

We seek a smooth probability distribution system, denoted Q(p;θα), satisfying five 

desiderata:  
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(1) Quantile-Parameterized: The distribution is characterized in closed-form3 by 

Q(p;θα), which is directly parameterized by θα, the assessed quantiles and 

specified support bounds. This has several benefits:  

a. No fit procedure (e.g., solving an optimization problem) is needed. 

b. Q(p;θα) honors θα, the assessed quantiles and support bounds.  

c. Having Q(p;θα) in closed-form allows the analyst to efficiently 

implement Monte Carlo simulation via inverse transform sampling.  

d. Having Q(p;θα) in closed-form allows for efficient computation of 

additional quantiles, allowing the analyst to verify the assessment with 

an expert by checking additional points. 

e. Having Q(p;θα) in closed-form facilitates efficient construction of 

discrete distributions via a process of discretization; see Bickel et al. 

(2011) and Hammond and Bickel (2013a, 2013b), for a review of 

discretization methods, along with recent extensions.        

(2) Availability of CDF: Q(p;θα) is invertible, so that the CDF, denoted F(p;θα), is 

readily available in closed-form. This allows the analyst to efficiently verify 

assessments with an expert by checking additional points, similar to Q(p;θα). 

Also, density functions (pdfs) can readily be obtained from F(p;θα) via 

differentiation. 

(3) Maximally-Feasible: For any compatible θα, the quantile function given by 

Q(p;θα) satisfies: Q(0;θα) = l, Q(α;θα) = xα , Q(0.5;θα) = x0.5, Q(1–α;θα) = x1–α, 

and Q(1;θα) = u. That is, the distribution characterized by Q(p;θα) honors both 

the specified support bounds, and the assessed quantiles given by xα, for any 

                                                 
3 Due to its pervasiveness, we include cumulative probability and quantile function computations for the 

standard normal (Gaussian) distribution in our definition for “closed-form”. Under this setup, the Johnson 

SB, SU, and SL (lognormal) distributions, for example, all have closed-form CDFs and quantile functions. 
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compatible θα. We refer to this as the maximally-feasible (MF) property, 

within the context of our SPT structure. In this context, it is important to note 

that maximally-feasible (MF) does not necessarily guarantee that there exists a 

J-QPD distribution that satisfies a set of five consistent (p, xp) pairs that are 

not of the SPT structure defined in Definitions 1 and 2; for example, the {0
th

, 

25
th

, 50
th

, 95
th

, 100
th

} percentiles, which [collectively] are not of SPT form for 

some α ∈ (0, 0.50).    

(4) Closeness to Commonly-Named Distributions: Q(p;θα) closely approximates 

the quantile function of numerous commonly-named distributions that share 

the same θα; i.e., the same α-SPT and support. In the case of bounded support, 

we would like the distribution family to closely approximate the ∩- (bell-), J-, 

and U-shaped distributions contained in the beta family. For semi-bounded 

support, we would like the distribution family to closely approximate the 

shapes of the lognormal, gamma, inverse-gamma, and beta-prime 

distributions. We introduce measures of closeness in Chapter 6. 

(5) Highly Flexible: By flexibility, we specifically refer to the span of a system 

within the skewness-kurtosis space developed by Pearson (1895, 1901, 1916), 

which we discuss in more detail in Chapter 6.  

There are several recently-proposed distributions that nearly meet these five 

desiderata. Maximum-entropy methods presented in Abbas (2003a and 2003b) seek to 

add no additional information to an uncertainty other than the assessed quantile-

probability pairs, by assigning uniform conditional distributions between adjacent 

percentile assessments – recall the example in Figure 1.8. These methods (and their 

variants) are maximally-feasible within our construct, and have closed-form PDFs, CDFs, 

and quantile functions. The same applies to the General Segmented Distributions (GSD) 
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proposed by Vander Wielen and Vander Wielen (2015), among others4, and to discrete 

approximations. However, if knowledge of smoothness is present, then the unwarranted 

“kinks” (discontinuous derivatives) inherent in these distributions may less-accurately 

represent an expert’s knowledge, as suggested in Keelin (2016) and Garthwaite et al. 

(2005). 

Also, due to their lumpy nature, these distributions generally fail to satisfy 

Desiderata 4, which is motivated in part by the desire for our distributions to be able to 

capture phenomena whose distribution is derived from a well-known underlying physical 

process – what Keelin (2016) refers to as Type I distributions. Examples include: the 

normal (lognormal) distributions, which approximately occur as the summation (product) 

of independent or weakly-dependent random variables due to Central Limit Theorem 

(CLT) effects; exponential distributions for inter-arrival times within a Poisson Process; 

Weibull distributions, and related extensions5, in reliability theory for modeling the time 

between adjacent component failures in complex systems. Unlike straight-line, maximum 

entropy, GSD, etc., our inherently smooth J-QPD distributions presented in this chapter 

precisely subsume the pervasive normal and lognormal distributions as special cases, but 

can also approximate Weibull, gamma, beta, and numerous other commonly-named 

distributions with potent accuracy, using a single system. Moreover, we show that J-

QPD, while smooth, can approximate triangular distributions with reasonable accuracy. 

Illustrative Examples 

In this chapter, we rely on two illustrative examples (bounded and semi-bounded support) 

to demonstrate our new distribution system. In the case of bounded support, suppose an 

expert has been asked to assess peak market share for a new product and provides {10
th

, 

                                                 
4 See, for example: Kotz and Van Dorp (2002a, 2002b, 2006), and Herrerias-Velasco et al. (2009).  
5 For example, see Mudholkar and Srivastava (1993). 
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50
th

, 90
th

} percentiles of {60, 70, 90} %, respectively, so that in this case, θ0.10 = (0, 0.6, 

0.7, 0.9, 1) in decimal form. Figure 4.1 presents the CDF for the best fit beta distribution 

for this SPT of assessments, subject to honoring the bounds6. There is no beta distribution 

satisfying all five points in θ0.10, since generalized beta distributions are specified by four 

points, and thus the best we can do is fit a distribution through these five given points. 

 

Figure 4.1. Beta Least-Squares Fit for θ0.10 = (0, 0.32, 0.40, 0.60, 1). 

Alternatively, Figure 4.2 presents an example with semi-bounded support. In this 

case, an expert is assessing the uncertainty surrounding the capital expenditures 

                                                 
6 We want to eliminate the possibility of negative market shares, or shares that exceed market size. 



43 

 

(CAPEX) of a drilling venture and provides θ0.10 = (0, 30, 40, 60, ∞) $MM7. Figure 4.2 

shows least-squares fits for θ0.10 = (0, 30, 40, 60, ∞) using lognormal and Weibull 

distributions. In this case, there is no distribution within the Weibull or lognormal 

families that honors θ0.10. Also, while not shown, no gamma or beta-prime distribution 

honors θ0.10 either. 

In the market share (CAPEX) example, the least-squares fit entails solving a non-

linear optimization problem over the shape parameters for the beta (lognormal, Weibull) 

distribution(s), to minimize mean-squared error. More importantly, however, the 

commonly-named distributions selected for the fit in each case do not honor θ0.10. Thus, 

the beta, Weibull, lognormal, and gamma distributions fail to satisfy Desideratum 1 

(quantile-parameterized) and 3 (maximally-feasible). More generally, distributions within 

the flexible family developed by Pearson (1895, 1901, and 1916) also fail to satisfy 

Desiderata 1 and 3, including: beta, beta-prime, gamma, inverse-gamma, and Type IV. 

                                                 
7 Of course, CAPEX cannot be infinite. Assuming it is unbounded above is a modeling decision 

representing the fact that the upper bound is unknown and possibly several orders of magnitude larger than 

the 90
th

 percentile. 
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Figure 4.2. Least-Squares Fits for θ0.10 = (0, 30, 40, 60, ∞). 

We could, however, find distributions for the market share and CAPEX examples 

by using the Metalog distributions. To compare apples to apples, we use the bounded 

three-term Metalog distribution for the market share example, and the semi-bounded 

three-term Metalog distribution for the CAPEX example. Figure 4.3 displays the CDFs 

for the corresponding Metalog assignments for both the market share and CAPEX 

examples, including their corresponding quantile function expressions8. 

                                                 
8 See Keelin (2016), pages 269–271, for more information on how to obtain these distribution assignments. 
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Figure 4.3. Metalog Assignments (CDFs) for Market Share and CAPEX Examples. 

Thus, unlike the beta distribution, the Metalog satisfies Desideratum 1 (quantile 

parameterized), by design. However, the quantile function expressions shown in Figure 

4.3 are not invertible, and thus Metalog does not satisfy Desideratum 2 (availability of the 

CDF). More importantly, however, Metalog does not satisfy Desideratum 3 (maximally-

feasible). To illustrate, consider a more skewed version of the market share example 

where the expert instead provides θ0.10 = (0, 0.7, 0.75, 0.95, 1). Figure 4.4 shows the 

corresponding bounded three-term Metalog assignment for θ0.10 in this case. Although 

this Metalog assignment satisfies θ0.1, it is not a valid CDF because it is not a function 

and violates the monotonicity of percentiles; for example, the 20
th

 percentile shown is 

less than the 10
th

 percentile shown. Thus, we say that θ0.10 = (0, 0.7, 0.75, 0.95, 1) is 

infeasible for the three-term Metalog system, thus illustrating that the Metalog system 

does not satisfy Desideratum 3 (maximally-feasible) as defined in terms of our α-SPT 

context. Alternatively, as we show in the next section, our new J-QPD system meets our 

desiderata outlined above. The J-QPD system consists of two major subfamilies: 
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(1) J-QPD-B (bounded): Has finite lower and upper support bounds, [l, u], and is 

parameterized by any compatible θα = (l, xα, u). 

(2) J-QPD-S (semi-bounded): Has support on [l, ∞) and is parameterized by any 

compatible θα = (l, xα, u). 

 

Figure 4.4. Bounded 3-Term Metalog Assignment for θ0.1 = (0, 0.7, 0.75, 0.95, 1). 

DESIGNING THE NEW J-QPD DISTRIBUTION SYSTEM 

In this section, we design our new J-QPD system, using the Johnson SU system as a basis 

for construction, and the five desiderata as a basis of design. 

Engineering the Support of the JDS 

One of the most powerful methods for engineering the support of a distribution is by the 

use of a Q-transformation. Recall the Q-Transformation Rule (QTR), adopted from 

Gilchrist (2000), is as follows: 
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The Q-Transformation Rule (QTR) – If T(x) is a non-decreasing function of x, 

and Q(p) is a quantile function, then T(Q(p)) is a quantile function. 

A corollary of the QTR is that if X is a random variable with quantile function 

given by Q(p), then the quantile function of the transformed variable, Y=T(X), is T(Q(p)) 

(Gilchrist 2000). One well-known Q-transformation used to transform a distribution with 

support on (-∞, ∞) into a distribution with support on [0,1], is by applying the inverse-

probit Q-transformation (IP-QT) to its quantile function. The IP-QT is simply the CDF of 

the standard normal distribution: T(x) = Ф(x). 

The J-QPD-B Distributions 

Recall that SU distributions have support on (-∞, ∞). To obtain a distribution having 

arbitrary, finite support bounds, {l, u}, a natural idea is to apply the well-known IP-QT to 

the SU quantile function, followed by shifting and scaling to satisfy {l, u}: 

     1

1( ) ( ) ( ) ( ) sinh ( ) .SUQ p l u l Q p l u l p               (4.3) 

The QTR guarantees that Q1(p) is a quantile function, corresponding to a distribution 

with support on [l, u], as long as we maintain the SU parameter requirements: λ > 0, δ > 

0. Now, we desire for Q1(p) to be fully parameterized by any compatible θα. By 

inspection, l and u correspond to the 0
th

 and 100
th

 percentiles, respectively, as desired.  

With {l, u} specified, we have four unknowns: {λ, δ, γ, ξ}. However, we can only 

produce three non-degenerate equations with the low-base-high assessments given in the 

SPT9: xα. A natural idea is to fix one of the parameters, but it is not immediately obvious 

what constitutes good choices for the fixed parameter and corresponding value(s). Since 

Q1(p) is invertible (Desideratum 2), we focus on Desideratum 1 (quantile-parameterized) 

                                                 
9 Recall that the SU distributions have two shape parameters in {δ, γ}. Applying the inverse-probit Q-

transformation transforms the location and scale parameters, {ξ, λ}, into shape parameters as well, yielding 

a total of four shape parameters in the transformed distribution. However, since an SPT on (0, 1) amounts 

to three shape parameters, we seek to remove one of the four shape parameters from Q1(p). 
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and 3 (maximally-feasible) in making a strategic selection for the choice of the fixed 

parameter. In particular, the choice of the fixed parameter and value should yield a 

quantile function that: 

i. Can accommodate any compatible θα (Desideratum 3).  

ii. Is easy to re-parameterize in terms of θα = (l, xα, u) (Desideratum 1).  

Consider any given real number, c > 0. As we soon show, allowing γ to assume 

one of three possible values, {-c, 0, c}, yields a quantile function that satisfies (i) for any 

c > 0. It turns out that this property does not hold when fixing values for {λ, δ, ξ}. In 

choosing a specific value for c, we now bear (ii) in mind. Letting c = Φ
–1

(1–α) results in a 

simple, explicit solution to the distribution parameters in terms of θα = (l, xα, u). For 

assessments and bounds jointly given in θα = (l, xα, u), the resulting quantile function for 

the J-QPD-B distributions, is: 

   1( ) ( ) sinh ( ) .BQ p l u l p nc           (4.4) 

where, 

1(1 )c   , 

1 1 10.50 1,  ,  ,
x l x l x l

L B H
u l u l u l

           
         

       
 

sgn( 2 ),n L H B    

,  1

= ,  0

,  1

L n

B n

H n







  

 

11
cosh ,

2min( , )

H L

c B L H B
    
   

    
 

.
sinh(2 )

H L

c





  

Note the following observations regarding equation (4.4):   
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(1) {λ, δ, ξ} are all specified directly in terms of θα, along with constant c and 

parameter n (which assumes {-1, 0, 1}, depending on the values of (l, xα, u). 

(2) One can easily verify that: 

 QB(0) = l 

 QB(α) = xα        

 QB(0.5) = x0.50               

 QB(1–α) = x1–α         

 QB(1) = u                     

(3) Given the simple invertible form of the J-QPD-B quantile function, we can 

also produce the CDF (Desideratum 2): 

1 11 1
( ) sinh .B

x l
F x nc

u l


 

 
        

                     

 (4.5) 

(4) Recall that sgn(0) = 0. Examining the expression for n in (4.4) above, this 

occurs (n = 0) when: L + H – 2B = 0. 

L + H – 2B = 0 → δ = 0, λ = ∞. 

Thus, this case violates the parameter requirements (δ > 0) as is. However, we 

note the following: 

  
 

1

10 0

sinh ( )sinh( )
lim 1 lim 1.

( )y

p ncy

y p nc

 





 

 
  

 
 

However,  

0 0

( )
lim lim .

sinh(2 ) 2

H L H L

c c 




 

 
   

Therefore, for the special case in which n = 0, we define the quantile function 

in (4.4) as follows: 

1( ) ( ) ( ) .
2

B

H L
Q p l u l B p

c

  
       

  
 (4.6) 
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Illustrative Example 

To illustrate, we now revisit the market share example. Given θ0.10 = (0, 0.6, 0.7, 0.9, 1), 

and using the expressions given in (4.4), we compute the parameters and construct the 

corresponding J-QPD-B quantile function assignment as follows: 

1 1(1 ) (0.90) 1.2816,c       

 1 1 0.6 0.2533,
x l

L
u l

  
    

 
 

 1 10.50 0.7 0.5244,
x l

B
u l

  
     

 
 

 1 11 0.9 1.2816,
x l

H
u l

   
    

 
 

sgn( 2 ) sgn(0.2533 1.2816 2(0.5244)) 1,n L H B        

,  1

= ,  0 0.2533,

,  1

L n

B n L

H n






   
  

 

11
cosh 0.9794,

2min( , )

H L

c B L H B
    
   

    
 

0.1682,
sinh(2 )

H L

c





   

1( ) ( ) ( sinh( ( ( ) )))BQ p l u l p nc          . 

Thus, 

   1( ) 0.2533 0.1682 sinh 0.9794 ( ) 1.2816 .BQ p p       

Figure 4.5 provides a plot of this J-QPD-B assignment. Using this newly-constructed 

quantile function, one can easily confirm that: 

(0) 0,  (0.10) 0.6,  (0.50) 0.7,  (0.90) 0.9,  (1) 1.B B B B BQ Q Q Q Q      
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Figure 4.5. J-QPD-B Assignment for θ0.10 = (0, 0.6, 0.7, 0.9, 1). 

The J-QPD-S Distributions 

While a finite lower limit of support is sensible for many physical quantities (e.g., non-

negativity), experts and/or analysts may not always deem it appropriate to impose a finite 

value for an upper bound, u. Thus, we now develop the J-QPD-S distributions, designed 

to have support on [l, ∞), by once again starting with the SU distributions.  

Since SU distributions have support on (–∞, ∞), to obtain a distribution having 

support on [l, ∞) (for some specified l), a natural idea is to apply the well-known 

exponential Q-transformation (Exp) to the SU quantile function, along with shifting to 

satisfy l: 

 

 

1

1

1

( ) exp sinh( ( ( ) ))

exp sinh( ( ( ) )) ,  0,  0,  exp( ).

Q p l p

l p

   

       





    

      
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Q1(p), as given, has infinite positive moments (see Appendix B for discussion). 

We thus embed one more strategically-chosen transformation within this quantile 

function, along with a re-parameterization analogous to the one we used for J-QPD-B10. 

Given θα = (l, xα, ∞), where l is presumed specified and finite, the resulting quantile 

function for the J-QPD-S distributions, is: 

   1 1 1( ) exp sinh sinh ( ) sinh ( ) ,SQ p l p nc        
 

(4.7) 

where, 

1(1 )c   , 

0.5 1log( ),  log( ),  log( ),L x l B x l H x l        

sgn( 2 )n L H B    

0.50

1

,  1

,  0

,  1

x l n

x l n

x l n









 


  
     

11
sinh cosh ,

2min( , )

H L

c B L H B
 

   
    

       
1

min( , ).H B B L
c




 
   
   

(5) The application of the sinh
–1

 operator11 in (4.7) results in all moments being 

finite (see Appendix C for a proof). Also, if L + H – 2B = 0, then n = sgn(L + 

H – 2B) =sgn(0) = 0, in which case we have: 

     1 1 1( ) exp sinh sinh ( ) exp ( ) .SQ p l p l p           
 

(4.8) 

                                                 
10 Recall that the SU distributions have two shape parameters in {δ, γ}. In this case, applying the “Exp” Q-

transformation transforms only the scale parameter, λ, into a shape parameter, yielding a total of three 

shape parameters in the transformed distribution. However, since an SPT on (0, ∞) amounts to two shape 

parameters, we seek to remove one of the three shape parameters from Q1(p). 
11 This work does not represent the first characterization of a distribution quantile function using a 

combination of the sinh and arcsinh operators. See Jones and Pewsey (2009) for the development and 

application of a “sinh-arcsinh” type transformation upon random variables to generate new probability 

distributions. To the best of our knowledge, however, our particular combination of sinh and arcsinh 

applications, along with our strategic re-parameterization amounts to a novel probability distribution 

system parameterized by quantiles. 
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That is, we precisely recover a lognormal distribution with μ = log(θ) = log(x0.5 – l) and σ 

= λδ = (H–B)/c, and shifted to have support on [l, ∞). Thus, J-QPD-S is a generalization 

of lognormal distributions, but parameterized by any compatible SPT and specified lower 

bound (Desideratum 1), and effectively having two shape parameters, (λ, δ), whereas 

lognormal distributions only have the single shape parameter, σ. Recall that the Burr, 

Dagum, and Exponentiated Weibull distributions all have semi-bounded support and two 

shape parameters, like J-QPD-S. However, we illustrate in Chapter 5 that unlike J-QPD-

S, these systems are not maximally-feasible. 

As with J-QPD-B, we can obtain the CDF (Desideratum 2) of J-QPD-S by 

inverting its quantile function given in (4.7). This yields: 

 1 11 1
( ) sinh sinh log sinhS

x l
F x nc

  

 
        

                     

(4.9) 

Illustrative Example 

We now apply J-QPD-S to the CAPEX example introduced previously, in which θ0.10 = 

(0, 30, 40, 60, ∞) $MM. Using the expressions given in (4.7), we obtain the following 

quantile function assignment: 

   1 1( ) 30 exp 0.4282 sinh 0.6294 sinh 0.5242 ( ) .SQ p p     
 

Figure 4.6 shows the CDF and PDF for the CAPEX example. Like J-QPD-B in 

the market share example, notice in Figure 4.6 that the J-QPD-S assignment precisely 

honors the low-base-high assessments – in this case, the {10
th

, 50
th

, 90
th

} percentile 

assessment values of {30, 40, 60} $MM – and the specified lower limit of support (zero, 

in this case). Thus far, we have demonstrated that J-QPD-S satisfies Desiderata 1 and 2. 

In the next chapter, we demonstrate its conformity to Desideratum 3, the maximally- 

feasible (MF) property.
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Figure 4.6. J-QPD-S Assignment for the CAPEX Example. 
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Chapter 5 :  The Maximally-Feasible Property of the J-QPD System1 

We now establish the maximally-feasible (MF) property for the J-QPD-B (bounded) and 

J-QPD-S (semi-bounded) distribution systems, and then compare the extent of their 

feasibility to that of several commonly-named distributions. We begin with J-QPD-S, 

since it has one less degree of freedom (four parameters instead of the five needed for J-

QPD-B, not counting α, which is also a shape parameter), and can thus be more 

intuitively described in terms of feasibility than J-QPD-B.  

THE MF PROPERTY FOR THE J-QPD-S DISTRIBUTIONS 

We present the MF property for J-QPD-S (Desideratum 3), and then lend intuition to the 

property by providing a visual comparison of the feasibility of J-QPD-S distributions 

with respect to several named distributions. 

Proposition 1 (MF Property). Consider any compatible θα = (l, xα, ∞). There 

exists a unique quantile function, Q, characterized by (4.7), that satisfies: 

 QS(0) = l, 

 QS(α) = xα,        

 QS(0.5) = x0.5,        

 QS(1–α) = x1–α,         

 QS(1) = ∞. 

Proof. See Appendix D. 

Proposition 1 implies that J-QPD-S provides a unique (and feasible) probability 

distribution assignment for each compatible θα = (l, xα, ∞) vector. Since J-QPD-S has 

semi-bounded support and two shape parameters (for each given α), we can compare the 

                                                 
1 Summaries of the results of this chapter are published with my advisor, Eric Bickel, in the following: 

Hadlock, Christopher and J. Eric Bickel. 2017. Johnson Quantile-Parameterized Distributions. Decision 

Analysis 14(1) 35-64. 
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extent of their feasibility to several existing distribution systems also having semi-

bounded support and two shape parameters, using a two-dimensional region. Without loss 

of generality, we normalize J-QPD-S by removing location and scale. Fix any α ∈ (0, 

0.50), and consider the following normalizing measures: 

0.50

1

,
x l

s
x l









 (5.1) 

0.50

.
x l

t
x l








 

(5.2) 

Note that sα and tα are normalized quantities used to depict the span of a distribution’s 

feasibility – the span of compatible θα vectors that a system can satisfy, within the 

context of our SPT setup - rather than direct measures of “shape” (e.g., skewness, or tail-

width). Reference Chapter 2 and the footnotes in Chapter 7 for measures of shape. Note 

the following important observations: 

 sα and tα are invariant to changes of location or scale. 

 Since l = Q(0), by the monotonicity of percentiles, sα and tα are bounded between 

zero and one. 

 For each (0,0.50) , all non-degenerate univariate probability distributions live 

in the unit square defined by: [0,1],  [0,1]s t   . 

Figure 5.1 shows the span of the Burr, Dagum, EW, and J-QPD-S systems in the 

{sα, tα} space2 for α = 0.1. The normal and exponential distributions occur as points in the 

{sα, tα} space, since they lack shape parameters. Recall that exponential distributions are 

a special case of Weibull distributions, which are a special case of the EW system. The 

normal distribution occurs as a limiting case for the Burr, Dagum, and J-QPD-S 

distributions. Since the Weibull (lognormal) distributions have one shape parameter, they 

                                                 
2 We also present the span of the beta-prime distributions in Chapter 6, where we compare the closeness of 

J-QPD to commonly-named distributions. 
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occur as curves in the {sα, tα} space shown in panel c (d) of Figure 5.1. The lognormal 

distributions occur as the line segment, sα = tα, in the {sα, tα} space, for each α ∈ (0, 0.50). 

a) The Burr Distribution System 

 

b) The Dagum Distribution System 

 
c) The Exponentiated-Weibull System 

 

d) The J-QPD-S Distribution System 

 

Figure 5.1. Span of the Burr, Dagum, EW, and J-QPD-S systems in the 
0.1 0.1{ , }s t  Space.    

Due to the presence of two shape parameters, the entirety of the Burr, Dagum, and 

EW systems occupy a two-dimensional (shaded) area within the {sα, tα} space, as shown 

in panels a, b, and c of Figure 5.1 (respectively). Since Dagum distributions correspond to 
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the reciprocal of Burr-distributed random variables, their span within the {sα, tα} space 

occurs as the mirror image of the span of the Burr system about the line: sα = tα. Since the 

Burr, Dagum, and EW systems do no occupy the entire interior of the unit square defined 

by: (0,1)s  , (0,1)t  , this implies that they are not maximally-feasible. By contrast, the 

MF property of the J-QPD-S system implies that these distributions span the entire 

interior of the {sα, tα} space, as shown in Figure 5.1 (panel d). We revisit the {sα, tα} 

space in Chapter 6, where we compare the closeness (Desideratum 4) of J-QPD 

distributions to a vast array of commonly-named distributions. 

Figure 5.2 provides several examples of J-QPD-S PDFs, parameterized by various 

{s0.10, t0.10} pairs, for the case in which l = 0 (i.e., support on (0, ∞)) and x0.50 = 1. The 

yellow and purple curves are precisely lognormal distributions, since they both 

correspond to the special case in which sα = tα. However, since J-QPD-S distributions 

possess an additional shape parameter over lognormal distributions (two additional shape 

parameters if we count α), we can produce additional shapes. The green curve represents 

a “near-lognormal” shape, the blue curve a bimodal shape, and the orange curve 

corresponds to transitional shapes between unimodal and bimodal forms. 
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Figure 5.2. Examples of Additional Shapes Produced by J-QPD-S Distributions. 

THE MF PROPERTY FOR THE J-QPD-B DISTRIBUTIONS 

Recall that the J-QPD-B distributions have a total of five degrees of freedom – location, 

scale, and three shape parameters, not counting α. Thus, the MF property for the J-QPD-

B distributions essentially has the same conceptual definition as that for the J-QPD-S 

distributions, but instead applies to the five-dimensional vector given in: θα = (l, xα, u) = 

(l, xα, x0.50, x1–α, u). 

Proposition 2 (MF Property). Consider any compatible θα = (l, xα, u) = (l, xα, 

x0.50, x1–α, u). There exists a unique quantile function, Q, characterized by (4.4), that 

satisfies: 

 QB(0) = l, 

 QB(α) = xα,        
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 QB(0.5) = x0.5,        

 QB(1–α) = x1–α,         

 QB(1) = u.       

Proof. See Appendix A. 

Since J-QPD-B distributions possess three shape parameters (again, for each 

given α), we need a three-dimensional space to visually depict the MF property in this 

case. Without loss of generality, we can remove location and scale by only considering 

vectors, θα = (l, xα, u) = (l, xα, x0.50, x1–α, u), having {l, u} = {0, 1}. For any given α ∈ (0, 

0.50), Figure 5.3 shows the polyhedron corresponding to every such compatible θα; i.e., 

every possible triplet, {xα, x0.50, x1–α}, such that 0 < xα, < x0.50, < x1–α < 1, which 

corresponds to the span of the J-QPD-B system (by the MF property). 
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Figure 5.3. Span of the J-QPD-B system for {l, u} = {0, 1} and any (0,0.5) . 

There are no commonly-named distributions having bounded support and three 

shape parameters. Alternatively, most named distributions having bounded support have 

two shape parameters. These include, to name a few: 

 The beta distributions. 

 The Johnson (1949) SB distributions. 

 The logit-normal distributions3. 

 The Kumaraswamy (1980) distributions. 

Illustrative Examples 

Recall the revised market share example from Figure 4.4, where θ0.1 = (0, 0.7, 0.75, 0.95, 

1), and where the three-term bounded Metalog results in infeasibility. If we apply the J-

QPD-B distribution to these five points, we obtain the following quantile function: 

                                                 
3 See Aitchison and Shen (1980), or Mead (1965). 
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   1( ) 0.5244 0.0417 sinh 1.5542 ( ) 1.2816 .BQ p p       

Figure 5.4 provides a plot of this J-QPD-B assignment. The odd shape is due to the 

unusual percentile spacing in this example. However, the point is to illustrate the MF 

property, by showing that the J-QPD-B distribution produces a valid quantile function 

exactly honoring θα, where the Metalog fails, as we saw in Figure 4.4. 

 

Figure 5.4. J-QPD-B CDF for θ0.1 = (0,0.7,0.75,0.95,1). 

J-QPD-B distributions are sort of like a three-shape-parameter version of beta 

distributions (four shape parameters when we include α), except that in addition to having 

more shape parameters than beta distributions, J-QPD-B distributions are quantile-

parameterized (by SPT and bounds) and maximally-feasible. Figure 5.5 provides 

additional examples of J-QPD-B PDFs (right), parameterized by θ0.10 (in this case, the 

{10
th

, 50
th

, 90
th

} percentiles, and the support bounds of [0, 1]) for the corresponding beta 
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distributions shown in the left panel4. Note that J-QPD-B captures the J-, U-, and 

symmetric/skewed bell-shapes inherent in beta distributions, and that differences in shape 

in Figure 5.5 are nearly indiscernible. We more rigorously compare the closeness of beta 

distributions to their corresponding J-QPD-B assignments (approximations) in Chapter 6. 

 

Figure 5.5. Examples of J-QPD-B Parameterized by θ0.10 for Several Beta Distributions. 

However, due to the added shape parameters, J-QPD-B distributions can generate more 

shapes than the beta-type shapes shown in Figure 5.5, as illustrated in Figure 5.6. We 

refer to the green, purple, and red densities in Figure 5.6 as having “double-hooked bell-

shaped” distributions of varying skewness, due to their sharp adhesion to either end of 

support. The blue density is a left-skewed bell-shaped distribution that more closely 

resembles a beta distribution than does the other curves, except that it is more triangular. 

Finally, the yellow density in Figure 5.6 has a right-skewed “boot” shape. 

                                                 
4 These are the examples shown on the Wikipedia page for beta distributions: 

https://en.wikipedia.org/wiki/Beta_distribution. 

https://en.wikipedia.org/wiki/Beta_distribution
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Figure 5.6. Examples of Additional Shapes Produced by J-QPD-B. 

ADDITIONAL COMPARISONS TO J-QPD 

Still, it is useful to consider two-shape parameter bounded distributions within the {sα, tα} 

space. Recall that both J-QPD-B and J-QPD-S distributions presume a specified and 

finite lower bound, l. Although our default suggestion is to employ J-QPD-S when an 

expert cannot comfortably provide a hard (finite) upper bound, an approach sometimes 

used in practice is to assign a bounded distribution (such as beta) with a specified lower 

bound (such as zero), but with an unspecified upper bound that is determined ex post.  

Using this latter case as context, Figure 5.7 shows the span of the beta and 

Johnson SB distributions5 within the {sα, tα} space for α = 0.10. The uniform and 

                                                 
5 Like the J-QPD-S system, it is possible to parameterize a Johnson SB distribution using four QP pairs. 

For examples, see Johnson (1949), and see Mage (1980), following earlier work by Bukac (1972). 
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exponential distributions correspond to a single point within this space, since they lack 

shape parameters. Alternatively, the lognormal and gamma distribution systems each 

have a single shape parameter, and thus correspond to a curve within the {sα, tα} space. 

The family of lognormal distributions lies along the line segment, sα = tα, within the {sα, 

tα} space, for any value of α ∈ (0, 0.50). Since the family of beta distributions (with 

unspecified upper bound) has two separate shape parameters, it is contained in the two-

dimensional (shaded) area within the {sα, tα} space, for each value of α. Finally, the SB 

distributions occupy the lower half of the unit square in Figure 5.7, defined by sα > tα. By 

contrast, the MF property of the J-QPD system implies that these distributions span the 

entire interior of the unit square defined by: (0,1)s  , (0,1)t  . 

a) The Beta (and Limiting) Distributions 

 

b) The SB (and Limiting) Distributions 

 

Figure 5.7. Span of the Beta and SB Systems in the {sα, tα} Space for α = 0.10. 

We have established conformity of J-QPD distributions to Desiderata 1-3. We 

revisit the {sα, tα} space in Chapter 6, where we compare the closeness of J-QPD 

distributions to a vast array of commonly-named distributions – Desideratum 4.
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Chapter 6 :  The Closeness of J-QPD to Named Distributions1 

We have seen that J-QPD satisfies Desiderata 1 through 3, of those presented in Chapter 

4. However, a natural question is how close the J-QPD distributions are to commonly-

named distributions (Desideratum 4). In this chapter, we compare: 

(1) J-QPD-B to beta distributions, including gamma as a limiting case, assuming 

(without loss of generality) support on [0, 1]. 

(2) J-QPD-S to beta-prime distributions, including gamma and inverse-gamma 

distributions as limiting cases, assuming support on [0, ∞)2. 

In both cases, we perform the comparison with respect to two common SPTs – the {10
th

, 

50
th

, 90
th

} and the {5
th

, 50
th

, 95
th

} percentiles. To give context, suppose an expert 

provides {10
th

, 50
th

, 90
th

} or {5
th

, 50
th

, 95
th

} percentile assessments consistent with each 

commonly-named distribution, presumed to represent the “true” distribution. We then 

compare each commonly-named distribution to the corresponding J-QPD-B (J-QPD-S) 

assignment, sharing the same SPT, and support on [0, 1] ([0, ∞)). 

MEASURES OF CLOSENESS  

To compare each commonly-named distribution, assumed to be the “true” distribution, to 

the corresponding J-QPD assignment, we introduce several measures of closeness: 

(1) APDM – Absolute percent difference in means by inter-decile range: (P90-P10). 

(2) APDV – Absolute percent difference in variance with respect to the true variance. 

(3) KS – The Kolmogorov-Smirnov (KS) distance. 

                                                 
1 Summaries of the results of this chapter are published with my advisor, Eric Bickel, in the following: 

Hadlock, Christopher and J. Eric Bickel. 2017. Johnson Quantile-Parameterized Distributions. Decision 

Analysis 14(1) 35-64. 
2 We do not compare J-QPD-S to the lognormal distributions, since we showed in Chapter 4 that J-QPD-S 

subsumes the lognormal family as a special case. 
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(4) KL – The Kullback-Leibler (KL) divergence. 

APDM 

When comparing mean values for two distributions, the error measure should be invariant 

to changes of location and scale. Let µ denote the mean of the true (commonly-named) 

distribution, and   denote the mean of the corresponding J-QPD assignment. The 

‘absolute percent difference by mean’, or APDM error measure is:  

90 10

100 .APDM
x x

  
 


 (6.1) 

APDM, as defined, is invariant to location and scale, as desired. It is more 

common to divide by the standard deviation, σ, of the true distribution. However, we use 

x90 – x10 as the normalizing measure of spread since σ is typically unknown in practice, 

and since the standard deviations of the true and assigned (J-QPD) distributions will be 

different – recall that we are matching percentiles, and not standard deviations. 

APDV 

Alternatively, when comparing the variance of two distributions, we remove location and 

scale by comparing with respect to the variance of the true distribution. Thus, using v and 

v  to denote the two variances in analogous fashion, the ‘absolute percent difference by 

variance’, or APDV error measure is: 

100 .
v v

APDV
v

 
   (6.2) 

KS Distance 

While APDM and APDV measure the closeness of two distributions based on moments, 

they do not necessarily tell us how close the shape of the J-QPD assignment is to the true 

distribution. Figure 6.1 provides an illustration of two distributions sharing the same first 
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six moments (including mean, variance, skewness, and kurtosis). However, we can see 

from their CDFs that these two distributions have drastically different shapes3. 

 

Figure 6.1. Distributions with Similar Moments but very Different Shapes. 

One conventional approach used to measure the degree to which two distributions 

differ in shape is via the Kolmogorov-Smirnov (or KS) distance4. For two separate CDFs, 

denoted F(x) and G(x), the KS distance between them is: 
( , ) sup | ( ) ( ) | .KS

x

D F G F x G x   (6.3) 

                                                 
3 The example distinction here is intentionally extreme. The smooth distribution shown is a J-QPD-S 

having θ0.1 = (0, 10, 20, 35, ∞), while the dashed distribution is its three-point Gaussian quadrature 

(moment matching) discretization using the algorithm proposed by Miller and Rice (1983) 
4 For more detailed discussion, see Darling (1957). 
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The KS distance is the largest absolute vertical deviation between F(x) and G(x), as 

depicted in Figure 6.2. There is also a “quantile way” of computing the KS distance 

between F and G. Letting p = F(x), if F is invertible, then we can also express the KS 

distance between F and G as: 

 1

(0,1)

( , ) sup ( ) .KS
p

D F G p G F p



   (6.4) 

 

 

Figure 6.2. Illustration of the KS Distance between CDFs F and G. 

We consider both the KS distance, and moment-based differences, since these 

measures are not always closely correlated. Figure 6.1 provides an example where two 

distributions are close based on moments, but differ greatly in shape, based on the KS 
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metric. Figure 6.3 provides an example of the opposite extreme, where two distributions 

are quite close in shape (based on the KS metric), but differ drastically in terms of 

moments. This is because one is a heavy-tailed, Student’s t distribution with 3 degrees of 

freedom, and the other is a normal distribution, intentionally scaled so that both 

distributions have the same {10
th

, 50
th

, 90
th

} percentiles. Although the KS distance 

between the two distributions is 0.025, the percent difference in the variance (kurtosis) 

with respect to the normal distribution is 84% (∞ %). The latter is because the kurtosis of 

a Student’s t distribution with three degrees of freedom is infinite. The examples of 

Figure 6.1 and Figure 6.3 jointly suggest that the KS and moment-based metrics provide 

very alternative measures of closeness between two distributions, and that one metric 

should not supplant the other as an “end-all” measure of closeness. 



71 

 

 

Figure 6.3. Distributions with Similar Shapes but very Different Moments. 

KL Divergence 

Finally, another important closeness measure used in probability theory is the Kullback-

Leibler (KL) divergence, or cross-entropy between two probability distributions. KL 

divergence measures the information lost when approximating a reference distribution, F, 

with another distribution, G. Letting f and g denote the PDFs for F and G, respectively, 

the KL divergence is given by: 

( )
( , ) log ( ) .

( )
KL

x

f x
D F G f x dx

g x

 
  

 
  (6.5) 

Unlike KS distance, KL divergence is reference-dependent. That is, DKL(F, G) ≠ DKL(G, 

F), whereas DKS(F, G) = DKS(G, F). However, like KS distance, there is a “quantile way” 

of computing DKL(F, G), as noted by Powley (2013): 
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     
1 1

0 0

( , ) log ( ) log ( ) ,KL G F F

p p

D F G Q G Q p dp Q p dp
 

     (6.6) 

Where QF and QG denote the quantile functions for F and G, respectively, and where Q  

denotes the derivative of Q with respect to p. For more background information on KL 

divergence, see Kullback and Leibler (1951), and Kullback (1959). 

METHODOLOGY FOR COMPARING J-QPD TO COMMONLY-NAMED DISTRIBUTIONS 

Figure 6.4 displays the span of the beta distributions in the {s0.1, t0.1} space. Each point in 

the shaded region corresponds to a specific beta distribution; i.e., a specific pair of {a, b} 

parameters. The beta distributions are partitioned into several key subfamilies: ∩-shaped 

(region I-∩, where a ≥ 1, b ≥ 1), U-shaped (region I-U, where a < 1, b < 1), right-skewed 

J-shaped (region I-J, with a < 1, b ≥ 1), and left-skewed J-shaped (region I-J, with a ≥ 1, 

b < 1). The uniform distribution (a = 1, b = 1) occurs as the intersection of the four 

subfamilies, while the exponential distribution is a special case of the gamma 

distributions, and occurs as a limiting case of right-skewed J-shaped distributions. 

We construct a grid of approximately 104,000 points covering the feasible region 

shown in Figure 6.4, spaced 0.002 in each dimension. For each point, we identify the 

corresponding beta distribution by solving for the corresponding {a, b} parameter pair. 

Next, we compute θα = (0, xα, x0.50, x1–α, 1) for this beta distribution, and construct the 

corresponding J-QPD-B distribution, parameterized by θα. Then, we compute the mean 

and variance for both the beta distribution, and its corresponding J-QPD-B assignment, 

and then compute the APDM and APDV errors. Finally, we compute the KS (KL) 

distance (divergence) between the beta distribution, and its corresponding J-QPD-B 

assignment. 
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Figure 6.4. Feasible Region for Beta Distributions in the {s0.1, t0.1} Space. 

THE CLOSENESS OF J-QPD-B TO COMMONLY-NAMED DISTRIBUTIONS 

Before rigorously comparing J-QPD-B to beta distributions, we provide several examples 

to build context and intuition. Figure 6.5 (Figure 6.6) provides PDFs (CDFs) for nine J-

QPD-B distributions, each parameterized by θ0.10 = (0, x0.10, x0.50, x0.90, 1) for some 

commonly-named distributions. Figure 6.6 also displays closeness measures in each case. 

Except for the two triangular distributions, PDFs for J-QPD-B (dashed) are barely 

discernible from the named distributions. CDFs are nearly indiscernible in all nine cases. 

Except for the two J-shaped beta distributions, beta(10, 1) and beta(0.7, 5), APDM 

(APDV) errors are less than 0.03% (1%). Except for the two triangular distributions, KS 

(KL) distances (divergences) are no greater than 0.0035 (0.0021). Excluding the J-shaped 

beta distributions, KS (KL) distances (divergences) are no greater than 0.0017 (0.0003) 

for all other beta distribution examples. 
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Figure 6.5. J-QPD-B PDFs Parameterized by θ0.1 for Some Named Distributions (solid). 
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Figure 6.6. J-QPD-B CDFs Parameterized by θ0.1 for Some Named Distributions (Solid). 

We now compare J-QPD-B to the uniformly-spaced grid of roughly 104,000 beta 

distributions, covering the region depicted in Figure 6.4. Figure 6.7 depicts the span of 

the beta distributions in the {s0.05, t0.05} and {s0.10, t0.10} spaces, along with shaded error 

contours for APDM, APDV, and KS (KL) distances (divergences) of the J-QPD-B 

distributions with respect to the corresponding beta distribution sharing the same SPT. 

Recall from Figure 5.7 that due to the presence of two separate shape parameters, the beta 

distributions occupy a region for each α within the {sα, tα} space, while the gamma 

distributions occupy a curve at the boundary. 



76 

 

a) APDM using θ0.05 = (0, x0.05, x0.50, x0.95, 1) 

 

b) APDM using θ0.10 = (0, x0.10, x0.50, x0.90, 1) 

 

c) APDV using θ0.05 = (0, x0.05, x0.50, x0.95, 1) 

 

d) APDV using θ0.10 = (0, x0.10, x0.50, x0.90, 1) 
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e) KS distance using θ0.05=(0, x0.05, x0.5, x0.95, 1) 

 

f) KS distance using θ0.1 = (0, x0.10, x0.50, x0.90, 1) 

 

g) KL divergence for θ0.05=(0, x0.05, x0.5, x0.95, 1) 

 

h) KL divergence for θ0.1 = (0, x0.1, x0.5, x0.9, 1) 

 

Figure 6.7. Error Measures of J-QPD-B w.r.t. Beta: θ0.05 (left) and θ0.10 (right). 

Table 6.1 provides summary statistics for each error measure across the grid of 

104,000 points in Figure 6.7. For the I-∩ region, APDM (APDV) values are generally 

less than 0.2% (5%), which are comparable to the “Beta (3,7)” panel in Figure 6.6, and 
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errors grow largest as we approach the exponential distribution at the boundary in Figure 

6.7. KS (KL) distances (divergences) for the I-∩ region are generally less than 0.003 

(0.001), a value comparable to the “Beta (10,1)” panel of Figure 6.6. 
Metric (by region) Min. Median Max. Mean 

I-∩ (Beta)     

APDM (θ0.05) 0.0% 0.0% 0.6% 0.0% 

APDM (θ0.10) 0.0% 0.0% 1.6% 0.1% 

APDV (θ0.05) 0.0% 0.1%    51.7%     0.3% 

APDV (θ0.10) 0.0% 0.3% 46.6% 1.1% 

KS distance (θ0.05) 0.000 0.001 0.014 0.001 

KS distance (θ0.10) 0.000 0.001 0.007 0.001 

KL divergence (θ0.05) 0.000 3.4e-5 0.0017 1.1e-4 

KL divergence (θ0.10) 0.000 8.0e-5 0.0033 2.4e-4 

I J(Beta)      

APDM (θ0.05) 0.0% 0.1% 2.5% 0.2% 

APDM (θ0.10) 0.0% 0.0% 9.7% 0.2% 

APDV (θ0.05) 0.0%     0.6%   445.0%     2.3% 

APDV (θ0.10) 0.0% 1.0% 809.0% 4.1% 

KS distance (θ0.05) 0.000 0.005 0.032 0.006 

KS distance (θ0.10) 0.000 0.003 0.014 0.003 

KL divergence (θ0.05) 0.000 8.3e-4 0.0122 0.0014 

KL divergence (θ0.10) 0.000 0.0013 0.0175 0.0021 

I U(Beta)      

APDM (θ0.05) 0.0% 0.3% 2.0% 0.4% 

APDM (θ0.10) 0.0% 0.1% 2.2% 0.2% 

APDV (θ0.05) 0.0%     1.7%     9.8%     2.0% 

APDV (θ0.10) 0.0%     0.7%    9.3%     1.1% 

KS distance (θ0.05) 0.000 0.007 0.042 0.007 

KS distance (θ0.10) 0.000 0.005 0.042 0.006 

KL divergence (θ0.05) 0.000 0.0011 0.0125 0.0015 

KL divergence (θ0.10) 0.000 0.0017 0.0434 0.0026 

Table 6.1. Error Measures for J-QPD-B w.r.t. Beta Distributions. 

Errors are generally larger for the I-J and I-U regions, compared to the I-∩ region. 

For example, based on APDM and APDV in Table 6.1, error values grow rapidly for 

distributions at the boundaries of the I-J and I-U regions, while overall errors across these 
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regions are small based on median values. For example, for the I-J region, errors only 

increase rapidly as a→0 and b→∞, or vice versa. Such distributions exist at the lower left 

and upper right corners of the region depicted in Figure 6.4.    

THE CLOSENESS OF J-QPD-S TO COMMONLY-NAMED DISTRIBUTIONS 

This section parallels the previous section, except that we now compare J-QPD-S to the 

beta-prime distributions. We first build context with several examples. Figure 6.8 (Figure 

6.9) provides PDFs (CDFs) for six J-QPD-S distributions, each parameterized by θ0.10 = 

(0, x0.10, x0.50, x0.90, ∞) for the PDFs (CDFs) of the six commonly-named distributions 

shown, all having semi-bounded support. Figure 6.9 also provides the APDM, APDV, 

and KS (KL) distances (divergences) in each case. 

Like the J-QPD-B comparisons, each J-QPD-S distribution is barely discernible 

from the corresponding named distribution, particularly with respect to CDFs. Note that 

errors are zero for the lognormal case shown in Figure 6.9, since J-QPD-S subsumes 

lognormal distributions as a special case. Among the six examples shown, APDM values 

are relatively the largest for the Weibull distribution examples. APDV values are 

relatively largest when the base distribution is Weibull, but also for highly-skewed, J-

shaped distributions, as in the examples for Weibull (10, 0.5) and Gamma (0.5, 1). 

Interestingly, KS distances and KL divergences are equal to four decimal places for the 

top three examples (panels) in Figure 6.9. Overall, the disparity in values for all four error 

measures across these six examples further suggests that no one of the four measures 

alone provides a complete notion of “closeness” between probability distributions. 
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Figure 6.8. J-QPD-S PDFs Parameterized by θ0.10 for Some Named Distributions (Solid). 

 

Figure 6.9. J-QPD-S CDFs Parameterized by θ0.10 for Some Named Distributions (Solid). 

We now compare J-QPD-S to beta-prime distributions, following a procedure 

analogous to the comparison between J-QPD-B and beta distributions. We construct a 
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grid of approximately 35,000 points across the feasible region for the beta-prime 

distributions, spaced 0.002 in each dimension. Figure 6.10 depicts the feasible region for 

the beta-prime distributions in the {s0.05, t0.05} and {s0.1, t0.1} spaces, along with shaded 

error contours for APDM, APDV, and KS (KL) distances (divergences) of the J-QPD-S 

distributions with respect to the corresponding beta-prime distribution sharing the same 

SPT and lower bound of zero. Like beta distributions, beta-prime distributions have two 

shape parameters, and thus occupy a region for each α in the {sα, tα} space, whereas the 

gamma and inverse-gamma distributions each occupy a curve at the boundary. 
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a) APDM using θ0.05 = (0, x0.05, x0.50, x0.95, ∞) 

 

b) APDM using θ0.10 = (0, x0.10, x0.50, x0.90, ∞) 

 

c) APDV using θ0.05 = (0, x0.05, x0.50, x0.95, ∞) 

 

d) APDV using θ0.10 = (0, x0.10, x0.50, x0.90, ∞) 
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e) KS distance with θ0.05=(0, x0.05, x0.5, x0.95, ∞) 

 

f) KS distance with θ0.1 = (0, x0.10, x0.50, x0.90, ∞) 

 

g) KL divergence for θ0.05=(0, x0.05, x0.5, x0.95,∞) 

 

h) KL divergence for θ0.1 = (0, x0.1, x0.5, x0.9, ∞) 

 

Figure 6.10. Error Measures of J-QPD-S w.r.t. Beta-Prime: θ0.05 (left) and θ0.10 (right).  

In panels “a” through “d” of Figure 6.10, there exists a white region within the 

span of the beta-prime system shown, labeled “undefined moments”. The mean and 

variance of the beta-prime distributions in these white regions are undefined, as are the 
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higher-order moments. Thus, we exclude them from our comparison to J-QPD-S based 

on APDM and APDV5. However, we include these distributions when comparing with 

respect to KS distance, since the KS distance between any two distributions is necessarily 

bounded between zero and one, regardless of whether the moments associated with the 

reference beta-prime distribution are defined. 

Table 6.2 provides summary statistics for each error measure across our grid of 

roughly 35,000 points in Figure 6.10. For all four measures, errors increase as both sα and 

tα decrease. For APDM and APDV, errors increase rapidly as we approach the 

“undefined moments” region shown, thus yielding the large maximum values shown for 

these measures in Table 6.2. This is because while J-QPD-S has finite moments, the 

moments of the beta-prime distribution diverge upwards near the “undefined moments” 

boundary. However, for most of the region shown in panels “a” and “b” of Figure 6.10, 

APDM errors are generally less than 2%. For the ∩-shaped gamma distributions, shown 

along the “gamma distributions” curve between the “exponential distribution” and 

“normal distribution” points, the worst-case APDM error is only 0.196% for α = 0.05, 

and only 0.048% for α = 0.1 – both corresponding to the exponential distribution. 

                                                 
5 For the KL comparisons in panels “g” and “h” of Figure 6.10, there is a white region like those in panels 

“a” through “d”, except smaller in area. In this case, these white regions correspond to those beta prime 

distributions for which the KL divergence integral does not converge. 
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Metric Min. Median Max. Mean 

APDM (θ0.05) 0.0% 0.1% 6.9% 0.5% 

APDM (θ0.10) 0.0% 0.5% 70.5% 1.2% 

APDV (θ0.05) 0.0% 5.2% 180.4% 17.3% 

APDV (θ0.10) 0.0% 11.2% 1.6e+03% 24.6% 

KS distance (θ0.05) 0.000 0.006 0.040 0.008 

KS distance (θ0.10) 0.000 0.005 0.031 0.006 

KL divergence (θ0.05) 0.0000 0.0014 0.0429 0.0031 

KL divergence (θ0.10) 0.0000 0.0032 0.0749 0.006 

Table 6.2. Error Measures for J-QPD-S w.r.t. Beta-Prime Distributions. 

For APDV, we evaluate the worst-case error for the bell-shaped gamma 

distributions to be only 0.742% for α = 0.05, and 1.461% for α = 0.1. Like APDM, 

APDV values grow large near the “undefined moments” boundary line. In panels “e” and 

“f” of Figure 6.10, KS distances are generally less than 0.02 for the entire region. To lend 

context, the mean value of 0.008 (0.006) shown in Table 6.2 and corresponding to panel 

“e” (“f”) is similar in magnitude to the “Weibull (2,5)”, “Exponential(1)”, and “Weibull 

(10,0.5)” examples provided in Figure 6.9. Finally, in panels “g” and “h” of Figure 6.10, 

KL divergences are generally less than 0.02 for the entire region. The mean value of 

0.006 shown in Table 6.2, corresponding to panel “h” is similar in magnitude to the 

“Weibull (2,5)”, “Exponential (1)”, and “Weibull (10,0.5)” examples in Figure 6.9. 

The main takeaway of this chapter is the notable conformity of J-QPD to 

Desideratum 4 based on the APDM, APDV, KS, and KL measures of closeness. We now 

examine the flexibility of the J-QPD-B (-S) systems – Desideratum 5.
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Chapter 7 :  The Flexibility of the J-QPD Distributions1 

We now examine J-QPD with respect to Desideratum 5 – flexibility. One of the earliest 

approaches for achieving this task originates with Pearson (1895, 1901, and 1916), in 

which he expresses the flexibility of the Pearson system2 by plotting its span within a 

two-dimensional space characterized by kurtosis (β2) versus squared-skewness (β1). 

Johnson subsequently plotted his own system within the same space. Figure 7.1 shows 

the span of both systems in the {β1, β2} space. 

Although the literature presents alternative ways for measuring distribution 

flexibility, we use Pearson’s moment-ratio space here due to its conventional use3. We 

first point out the distinction in the role of our {s, t} space introduced in Chapter 5, 

compared to Pearson’s {β1, β2} (i.e., squared-skewness, kurtosis) space. The latter refers 

to conventional measures of shape, whereas s and t are normalized quantities used to 

depict the span of a distribution’s feasibility – the span of compatible θα vectors that a 

                                                 
1 Summaries of the results of this chapter are published with my advisor, Eric Bickel, in the following: 

Hadlock, Christopher and J. Eric Bickel. 2017. Johnson Quantile-Parameterized Distributions. Decision 

Analysis 14(1) 35-64. 
2 The Pearson system contains most well-known distributions, including (but not limited to): normal, 

gamma (which includes the exponential distribution), beta (which includes the uniform distribution), 

inverse-gamma, and beta-prime distributions. We do not go into more mathematical detail of the Pearson 

system here since many of its distributions have complex mathematical forms, particularly for quantile 

functions (e.g., for beta, beta-prime, and Type IV distributions). Rather, we introduce the Pearson system 

since it serves as a basis for comparison against our new J-QPD distributions in later chapters. 
3 For examples in the statistics literature, see: Ord (1972); Johnson (1949); Johnson, Kotz, and 

Balakrishnan (1994); and Tadikamalla and Johnson (1982). In the decision analysis literature, see (for 

example), Hammond and Bickel (2013a and 2013b), and Keelin (2016). For alternative, percentile-based 

measures of flexibility, see (for example) Moors (1988) and Moors et al. (1996) in the statistics literature, 

and Powley (2013) in the decision analysis literature. 
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system can satisfy, within the context of our SPT setup4 – rather than direct measures of 

“shape”. 

 

Figure 7.1. Pearson and Johnson Systems in the {β1, β2} Space. 

Figure 7.2 (Figure 7.3) (left) shows the span of J-QPD-B (J-QPD-S) in light grey 

within the {β1, β2} space, over the region considered by Hammond and Bickel (2013a 

and 2013b). In both cases, we overlay Pearson’s [Type] distributions, and the curve of 

lognormal distributions. Since the {β1, β2} space extends toward infinity in both β1 and 

β2, we compactly visualize the entire space by implementing the following monotonic 

transformations: 

1

1

1
,

1
H





 (7.1) 

2

2

1
.H


  (7.2) 

                                                 
4 Thanks go to Tom Keelin and Brad Powley for holding a thoughtful discussion on the distinction between 

feasibility and flexibility. 
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The {H1, H2} space for J-QPD-B (J-QPD-S) is shown in the right panel of Figure 

7.2 (Figure 7.3). The triangle characterized by H2 ≤ H1 ∩ H1 ∈ (0,1) ∩ H2 ∈ (0,1) is the 

feasible region for all univariate distributions. Since J-QPD-B has three shape parameters 

for each α ∈ (0, 0.5), each point in the {H1, H2} or {β1, β2} space may correspond to more 

than one location-scale J-QPD-B subfamily. 
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Figure 7.2. Span of J-QPD-B in the {β1, β2} (left) and {H1, H2} Spaces. 

 

Figure 7.3. Span of J-QPD-S in the {β1, β2} (left) and {H1, H2} Spaces. 

LIMITING DISTRIBUTIONS 
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Table 7.1 lists several distributions that occur as parametric limiting cases for J-QPD-B, 

characterized in standard (no location or scale parameters) quantile function form. 

Perhaps the most notable of these is S-II, since it is the only subfamily that can be 

expressed in our SPT-QPD form and is maximally-feasible. Given θα = (l, xα, ∞), where l 

is a specified and finite lower bound of support, the quantile function for the S-II 

distributions is: 

   1

II ( ) exp sinh ( ) ,SQ p l nc p   

        (7.3) 

where, 

1(1 )c   , 

0.5 1log( ),  log( ),  log( ),L x l B x l H x l        

sgn( 2 )n L H B    

0.50

1

,  1

,  0

,  1

x l n

x l n

x l n









 


  
     

11
cosh ,

2min( , )

H L

c B L H B
 

   
    

     
 

1
min( , ).

sinh( )
H B B L

c




 
   
 

 

S-II has unbounded moments, except in the special case where it corresponds to 

lognormal distributions, and corresponds to the special case of J-QPD-B in which (l, xα) 

are fixed finite values, and where the upper bound (u) approaches infinity. S-II satisfies 

Desiderata 1 through 4, but is not applicable to the {β1, β2} space, due to its unbounded 

moments. Like J-QPD-S, S-II has semi-bounded support, two shape parameters, and is 

maximally-feasible in the {sα, tα} space. Figure 7.4 (Figure 7.5) provides CDFs (PDFs) 

for several S-II distributions, compared to the corresponding J-QPD-S distribution 

sharing the same θα vector in each case. Notice that S-II distributions are generally a 
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“more heavy-tailed version” of J-QPD-S, but can sometimes produce different shapes 

than J-QPD-S, as shown in Figure 7.5 for the case in which θ0.10 = (0, 10, 20, 25, ∞). 
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Figure 7.4. Comparison of Several S-II and J-QPD-S CDFs with the same θα. 
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Figure 7.5. Comparison of Several S-II and J-QPD-S PDFs with the same θα. 

The S-II distributions might be well-suited for modeling uncertainties with heavy, 

Pareto-type tails. The B-III distributions have unbounded support, a single shape 

parameter, and correspond to a special case of the Johnson-SU distributions. Finally, B-

IV distributions have bounded support and two shape parameters, and are similar in shape 

to the beta distributions. 
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Name Quantile function Parameters Also contains Comments 

S-II    1exp sinh ( )c p       
λ > 0, 

δ > 0 

Lognormal, 

normal 

distributions 

Moments are 

unbounded except in 

lognormal/normal 

cases 

B-III   1sinh ( )c p    δ > 0 
Normal 

distributions 

Special case of 

Johnson distributions 

B-IV  1( )p       λ > 0 

Lognormal, 

normal, 

uniform 

distributions 

  

Table 7.1. Limiting Distributions in the J-QPD-B System. 

Name Quantile function Parameters Also contains Comments 

S-III   1 1exp ( ) ( )p p        λ > 0 None None 

S-IV  1exp ( )p   σ > 0 
Normal 

distributions 

Lognormal 

distributions 

S-V   1 1 1sinh sinh ( ) sinh ( )p c      δ > 0 
Normal 

distributions 
None 

Table 7.2. Limiting Distributions in the J-QPD-S System. 

Alternatively, Figure 7.3 illustrates that the J-QPD-S partially spans the {H1, H2} 

and {β1, β2} spaces, partly due to the arc-sinh operator, which results in finite moments. 

Also, J-QPD-S has two shape parameters, as opposed to three in the case of J-QPD-B. It 

is important to note that while J-QPD-S is maximally-feasible, meaning that it can 

accommodate any θα vector, the fatness of its tails (in terms of kurtosis) is approximately 

limited by lognormal distributions. However, note that J-QPD-S covers the entire region 

corresponding to the bell-shaped beta distributions in the {β1, β2} space, most of the J-

shaped region shown, including the exponential distribution, and subsumes the normal 

and lognormal distributions as limiting cases. Recall that J-QPD-S also includes several 

bimodal forms. Table 7.2 lists several limiting distributions for J-QPD-S. The S-IV 
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distributions are the lognormal distributions. S-III represents hybrid distributions having 

a point mass at one end of support, and continuity elsewhere. S-III distributions are 

bounded (semi-bounded) when “+/-“ is replaced with “-“ (“+”). Finally, S-V are bell-

shaped distributions with one shape parameter (affecting both skewness and kurtosis) and 

unbounded support.
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Chapter 8 : A Logistic Alternative to the J-QPD Distributions 

Recall that our desiderata outlined in Chapter 4 require that our J-QPD systems have 

closed-form PDFs, CDFs, and quantile functions. Generally, there is some contention as 

to whether computations of cumulative probabilities and quantiles for a standard normal 

distribution (which is rooted within our J-QPD distributions) are admissible (for all 

practical purposes) as closed-form. In this chapter, we introduce a “logistic version” of J-

QPD, denoted “L-QPD1”, where Ф (Ф
-1

) instead refers to the CDF (quantile function) of 

the standard logistic distribution (rather than the standard normal distribution), given by: 

exp( )
( ) ,

1 exp( )

x
x

x
 


 (8.1) 

1( ) log .
1

p
p

p

  
   

 
 (8.2) 

In this case, quantile function and parameter expressions for L-QPD-B (bounded) 

and L-QPD-S (semi-bounded) are the same as given in (4.4) and (4.7), respectively, and 

all five desiderata remain preserved. Figure 8.1 provides several illustrative examples, 

based on beta distributions, comparing PDFs of L-QPD-B to J-QPD-B distributions 

sharing the same SPT and bounds. For example, “SPT based on beta (α = 10, β = 1)” 

means that we provide L-QPD-B and J-QPD-B distribution assignments sharing the same 

{10
th

, 50
th

, 90
th

} percentiles as a beta(10, 1) distribution, and having support on [0, 1]. 

                                                 
1 This follows the main idea of Tadikamalla and Johnson (1982), where Johnson distributions are 

transformed to have the standard logistic distribution as the root distribution in place of the standard normal 

distribution. More details for the L-QPD distributions are available from the authors upon request. 
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Figure 8.1. Examples Comparing L-QPD-B to J-QPD-B. 

Special Case for L-QPD-B (bounded) 

For J-QPD-B, recall that for the special case in which n = 0, the quantile function is: 

1( ) ( ) ( ) .
2

B

H L
Q p l u l B p

c

  
       

  
 (8.3) 

For L-QPD-B, (where Ф corresponds to the logistic distribution), (8.3) corresponds to the 

bounded “LB” distributions proposed by Tadikamalla and Johnson (1982), which are like 

beta distributions in terms of shapes and flexibility. 
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Special Case for L-QPD-S (semi-bounded) 

For J-QPD-S, recall that for the special case in which L+H–2B = 0, we have n = 

sgn(L+H–2B) = sgn(0) = 0, in which case: 

     1 1 1( ) exp sinh sinh ( ) exp ( ) .SQ p l p l p           
 

(8.4) 

Recall that for J-QPD-S, (8.4) corresponds to the lognormal distributions, shifted to have 

support on (l, ∞). For L-QPD-S, where Ф is the logistic distribution, (8.4) corresponds to 

the log-logistic distributions with scale (shape) parameter given by θ (β = 1/λδ), shifted to 

have support on [l, ∞). Thus, L-QPD-S is a generalization of log-logistic distributions, 

parameterized by any compatible SPT and finite lower bound, having two shape 

parameters, {λ, δ}, whereas log-logistic distributions only have one shape parameter. 

PROPERTIES AND TRADEOFFS BETWEEN L-QPD AND J-QPD 

There are several important tradeoffs to note between J-QPD and L-QPD. 

Computational Efficiency 

Since error functions (or their inverses) are replaced with log (or exp) computations, 

PDF, CDF, and quantile function calculations for L-QPD are computationally more 

efficient than those for J-QPD. Specifically, the computational efficiency of computing 

cumulative probabilities and quantiles for the logistic distribution is about an order-of-

magnitude better than when using the normal distribution. For example, computing 

normal quantiles with MATLAB using the method proposed by Cody (1969) takes over 

ten times longer than computing quantiles for the logistic distribution. 
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Moments 

Although J-QPD-S has finite moments (like lognormal distributions), L-QPD-S can have 

finite, infinite, or undefined moments, like log-logistic distributions2. The k
th

 raw moment 

for L-QPD-S exists if and only if: 

 21 ( ) 1.k nc cd      (8.5) 

For a proof, see Appendix E. 

Figure 8.2 shows boundary lines for L-QPD-S in the {s0.10, t0.10} space, beyond 

which mean and variance are undefined. For example, L-QPD-S distributions with {s0.10, 

t0.10} = {0.25, 0.7} have finite mean, but undefined variance. Note that the region for 

finite variance is smaller than that for finite mean. Higher-order moments have a smaller 

span in the {s0.10, t0.10} space for which they are finite. 

                                                 
2 For more on the log-logistic distributions, see Tadikamalla and Johnson (1982), and Tadikamalla (1980). 
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Figure 8.2. Mean and Variance Boundary Lines for L-QPD-S in the {s0.10, t0.10} Space. 

Flexibility in the Moment-Ratio Space 

Figure 8.3 (Figure 8.4) compares J-QPD-S to L-QPD-S in the {β1, β2} space for α = 0.1 

(for (0,0.5)  ). Note that while both J-QPD-S and L-QPD-S are maximally-feasible for 

each (0,0.5)  , L-QPD-S spans a larger portion of the {β1, β2} space than J-QPD-S3. 

                                                 
3 We do not include plots for L-QPD-B, since it spans the entire {β1, β2} space shown, like J-QPD-B. 
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Figure 8.3. Span of J-QPD-S (left) and L-QPD-S (right) in the {β1, β2} Space for α = 0.1. 

  

Figure 8.4. Span of J-QPD-S (left) and L-QPD-S (right) in the {β1, β2} Space for 

(0,0.5)  . 

Limiting Distributions 

Table 8.1 (Table 8.2) lists parametric limiting distributions for L-QPD-B (L-QPD-S), 

expressed in standard form – location and scale parameters omitted. Like the S-II system, 

LS-II is the only special case that can be quantile-parameterized by an SPT, and satisfies 
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our SPT-based notion of maximally-feasible. The quantile function is the same as that for 

S-II given in (7.3), except using our new definition for Ф
-1

.  

LS-II is the special case of L-QPD-B where {l, xα, x0.5, x1–α} are fixed finite 

values, and where the upper bound approaches infinity. Like S-II, LS-II meets Desiderata 

1 through 4, but cannot be expressed in the {β1, β2} space, since it has unbounded 

moments. LS-II distributions have semi-bounded support, two shape parameters, and 

shapes similar to L-QPD-S, but with fatter tails. Figure 8.5 (Figure 8.6) compares CDFs 

(PDFs) for several LS-II and L-QPD-S distributions sharing the same θα vector. 
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Name Quantile function Parameters Also contains Comments 

LS-II    1exp sinh ( )c p       
λ > 0, 

δ > 0 

Log-logistic, 

logistic 

distributions 

Moments are 

unbounded except 

in some cases of 

the log-logistic. 

LU-I   1sinh ( )c p    δ > 0 
Logistic 

distributions 

Special case of 

“LU” distributions 

LB-II  1( )p       λ > 0 

Log-logistic, 

logistic, uniform 

distributions 

 The “LB” 

distributions 

Table 8.1. Limiting Distributions in the L-QPD-B System. 

Name Quantile function Parameters Also contains Comments 

LH-II   1 1exp ( ) ( )p p        λ > 0 None None 

LS-III  1exp ( )p   σ > 0 
Logistic 

distributions 

Log-logistic 

distributions 

LU-II 
  1 1 1sinh sinh ( ) sinh ( )p c    

 
δ > 0 

Logistic 

distributions 
None 

Table 8.2. Limiting Distributions in the L-QPD-S System. 
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Figure 8.5. Comparison of Several LS-II and L-QPD-S CDFs with the same θα. 
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Figure 8.6. Comparison of Several LS-II and L-QPD-S PDFs with the same θα. 

The remaining subfamilies in Table 8.1 and Table 8.2 are not amenable to our 

QPD setup, but are worth mentioning briefly. LU-I distributions have unbounded support, 

a single shape parameter, and are a special case of the “LU” distributions – see 

Tadikamalla and Johnson (1982). LB-II distributions correspond to the “LB” 

distributions, which have bounded support and two shape parameters (like beta 

distributions), and are well-studied – see Tadikamalla and Johnson (1982) for more on 

the “LB” distributions. LS-III distributions are the log-logistic distributions. LH-II is a 

system of hybrid distributions having a point mass at one end of support, and continuity 

elsewhere. LH-II distributions are bounded (semi-bounded) when “+/-“ is replaced with 
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“-“ (“+”). Finally, LU-II distributions are bell-shaped, have one shape parameter 

(affecting both skewness and kurtosis), and unbounded support. 

Closeness to Commonly-Named Distributions 

Like J-QPD, L-QPD distributions are generally accurate at preserving the shapes of a 

wide array of commonly-named distributions (Desideratum 4). We compare both J-QPD-

B and L-QPD-B (J-QPD-S and L-QPD-S) to the beta (beta-prime) distributions, as 

depicted by their respective spans in the {s0.10, t0.10} space, using the four closeness 

measures from Chapter 6 – APDM, APDV, KS distance, and KL divergence. 

Comparison of L-QPD-B and J-QPD-B to Beta Distributions 

Figure 8.7 displays the span of the beta distributions in the {s0.10, t0.10} space, including 

shaded error contours for APDM, APDV, KS distance, and KL divergence for J-QPD-B 

and L-QPD-B with respect to the corresponding beta distribution sharing the same {10
th

, 

50
th

, 90
th

} percentiles and bounds. Table 8.3 provides summary statistics for each error 

measure across the grid of 104,000 points (distributions) on which the contours in Figure 

8.7 are generated. Highlighted cells in Table 8.3 indicate which distribution (J-QPD-B or 

L-QPD-B) better-approximates beta distributions overall for the given summary statistic. 

Based on median values for ∩- and J-shaped distribution regions, J-QPD-B more-closely 

approximates beta distributions than L-QPD-B by one or more orders of magnitude for 

all three error metrics. However, L-QPD-B and J-QPD-B perform almost equally well in 

proximity to the uniform distribution, since both systems contain the uniform 

distribution. Also, J-QPD-B and L-QPD-B approximate U-shaped distributions to nearly 

the same degree of closeness. Generally, the performance of L-QPD-B, relative to J-

QPD-B, degrades most notably near the gamma distributions at the boundary. 
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J-QPD-B more-closely approximates beta distributions for roughly 85% (80%) of 

the {s0.10, t0.10} space for APDM (APDV), and for about 95% of the {s0.10, t0.10} space for 

KS distance (KL divergence). Also, J-QPD-B better-approximates nearly all bell-shaped 

beta distributions than L-QPD-B, while L-QPD-B is generally a better approximation for 

highly skewed J- or U-shaped beta distributions than J-QPD-B. 

a) APDM (J-QPD-B) 

 

b) APDM (L-QPD-B) 

 
c) APDV (J-QPD-B) 

 

d) APDV (L-QPD-B) 
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e) KS distance (J-QPD-B) 

 

f) KS distance (L-QPD-B) 

 
g) KL divergence (J-QPD-B) 

 

h) KL divergence (L-QPD-B) 

 

Figure 8.7. Error Contours for J- and L-QPD-B w.r.t. Beta Distributions. 
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Metric (by region) Minimum Median Maximum Mean 

I-∩ (Beta)     

APDM (L-QPD-B) 0.0% 0.2% 45.7% 0.5% 

APDM (J-QPD-B) 0.0% 0.0% 1.6% 0.1% 

     

APDV (L-QPD-B) 0.0% 5.3%    1.2e6%     173.9% 

APDV (J-QPD-B) 0.0% 0.3% 46.6% 1.1% 

     

KS distance (L-QPD-B) 0.000 0.011 0.019 0.010 

KS distance (J-QPD-B) 0.000 0.001 0.007 0.001 

     

KL divergence (L-QPD-B) 0.0000 0.0089 0.0262 0.0092 

KL divergence (J-QPD-B) 0.0000 8e-5 0.0033 2.4e-4 

I J(Beta)      

APDM (L-QPD-B) 0.0% 0.1% 334.1% 0.8% 

APDM (J-QPD-B) 0.0% 0.0% 9.7% 0.2% 

     

APDV (L-QPD-B) 0.0%     3.6%   1.9e6%     252.3% 

APDV (J-QPD-B) 0.0% 1.0% 809.0% 4.1% 

     

KS distance (L-QPD-B) 0.000 0.012 0.033 0.012 

KS distance (J-QPD-B) 0.000 0.003 0.014 0.003 

     

KL divergence (L-QPD-B) 0.0000 0.0133 0.0608 0.0152 

KL divergence (J-QPD-B) 0.0000 0.0013 0.0175 0.0021 

I U(Beta)      

APDM (L-QPD-B) 0.0% 0.1% 1.4% 0.2% 

APDM (J-QPD-B) 0.0% 0.1% 2.2% 0.2% 

     

APDV (L-QPD-B) 0.0%     0.6%     27.3%     1.2% 

APDV (J-QPD-B) 0.0%     0.7%    9.3%     1.1% 

     

KS distance (L-QPD-B) 0.000 0.008 0.037 0.009 

KS distance (J-QPD-B) 0.000 0.005 0.042 0.006 

     

KL divergence (L-QPD-B) 0.0000 0.0055 0.0512 0.0083 

KL divergence (J-QPD-B) 0.0000 0.0017 0.0434 0.0026 

Table 8.3. Error Measures for J- and L-QPD-B w.r.t. Beta Distributions. 

Comparison of L-QPD-S and J-QPD-S to Beta-Prime Distributions 
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Since L-QPD-S and beta-prime have finite moments over small, non-coincident regions 

of the {s0.10, t0.10} space, Figure 8.8 compares J-QPD-S and L-QPD-S to beta-prime only 

on KS distance and KL divergence. Since J-QPD-S and beta-prime share the normal 

distribution, the KS distance is zero here for J-QPD-S. L-QPD-S exhibits larger errors 

near the upper right corner of Figure 8.8, since here it substitutes the logistic- for the 

normal distribution. However, L-QPD-S more accurately approximates beta-prime as s0.1 

and t0.1 decrease, corresponding to distributions of greater skew. 
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a) KS distance (J-QPD-S) 

 

b) KS distance (L-QPD-S) 

 
c) KL divergence (J-QPD-S) 

 

d) KL divergence (L-QPD-S) 

 

Figure 8.8. Error Contours for J- and L-QPD-S w.r.t. Beta-Prime Distributions. 

Table 8.4 gives summary statistics for KS distances and KL divergences 

computed across the grid of 35,000 points (distributions) on which contours in Figure 8.8 

are generated. Highlighted cells in Table 8.4 indicate which distribution (J-QPD-S or L-

QPD-S) better-approximates beta-prime overall – the smaller the closeness measure, the 

better the approximation. Note that while J-QPD-S generally better-approximates beta-

prime based on median values for KS distance and KL divergence, orders of magnitude 
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are similar. We note that L-QPD-B more closely approximates beta-prime for about 40% 

of the {s0.10, t0.10} space, mostly where s0.1 and t0.1 are small, corresponding to 

distributions with heavier tails and greater skew. 
Metric Min. Median Max. Mean 

KS distance (J-QPD-S) 0.000 0.005 0.031 0.006 

KS distance (L-QPD-S) 0.000 0.007 0.020 0.007 

     

KL divergence (J-QPD-S) 0.0000 0.0032 0.0749 0.006 

KL divergence (L-QPD-S) 0.0000 0.0036 0.0125 0.0039 

Table 8.4. Error Measures for J- and L-QPD-S w.r.t. Beta-Prime Distributions. 

SUMMARY AND RECOMMENDATIONS FOR PRACTICE 

In this chapter, we presented the L-QPD-B (bounded) and L-QPD-S (semi-bounded) 

distribution systems by replacing cumulative probability and quantile function operations 

for the normal distribution with those for the logistic distribution (respectively), within 

the expressions for J-QPD-B and J-QPD-S developed in Chapter 4. Like J-QPD, L-QPD 

distributions are smooth, and satisfy all five desiderata presented in Chapter 4. In 

particular, L-QPD distributions are conveniently parameterized by an SPT of low-base-

high assessments (e.g., 10
th

, 50
th

, 90
th

 percentiles), support bounds, and are maximally-

feasible – they can honor any SPT and bounds that satisfy the axioms of probability. 

Also, L-QPD is highly flexible in Pearson’s moment-ratio space, and closely-

approximates numerous commonly-named distributions, including: beta; beta prime; 

lognormal; logistic; log-logistic. 

We also presented several important tradeoffs between J-QPD and L-QPD. L-

QPD is more computationally-efficient than J-QPD, due to the simpler functional form of 

the logistic distribution compared to the normal distribution – computing cumulative 

probabilities and quantiles for L-QPD is about an order-of-magnitude faster than those 
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required for J-QPD. Also, L-QPD-S spans a wider area than J-QPD-S in Pearson’s (1895, 

1901, and 1916) moment-ratio space, which is noteworthy, since this space has become a 

standard for measuring distribution flexibility – as noted in Chapter 7. 

However, while J-QPD has finite moments (like lognormal distributions), L-

QPD-S can have finite, infinite, or undefined moments, depending on the 

parameterization – like log-logistic distributions. Also, L-QPD is slightly less accurate 

than J-QPD at approximating various commonly-named distributions. For L-QPD-B, 

examples include the beta distributions. For L-QPD-S, examples include the beta-prime 

and lognormal distributions. Also, L-QPD less-accurately approximates a normal 

distribution than J-QPD, since the root distribution in L-QPD is the logistic distribution 

rather than the Gaussian (normal). Still, L-QPD approximates these commonly-named 

distributions quite well in an absolute sense. 

Finally, it is important to mention that L-QPD-S has log-logistic tails in an 

asymptotic sense. If thinner tails are desired, then J-QPD-S may be a better modeling 

alternative, since it has lognormal tails. Conversely, if fatter tails are desired, and finite 

moments are not required, then the LS-II distributions presented in Table 8.1 may be a 

more appropriate modeling choice.
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Chapter 9 : Modeling Dependence with J-QPDs 

If an expert’s distribution for some uncertainty, X, changes with respect to observed 

values for another uncertainty, Y, then we say that X and Y are relevant, correlated, – or 

dependent. For example, adopting the example from Smith (1993), suppose we want to 

valuate a prospective drilling venture where X denotes the uncertain oil price, and Y 

denotes uncertain production costs. Figure 9.1 shows a partial influence diagram1 of the 

problem, where the arrow from Oil Price to Production Costs indicates that the 

distribution for Production Costs depends on (changes with) the observed value for Oil 

Price. 

 

Figure 9.1. Influence Diagram for the Wildcatter Example, adopted from Smith (1993). 

When the distributions for dependent uncertainties are discrete, we can depict 

their relationship quantitatively using a decision tree, and characterize the conditional 

probabilities using Bayes’ equation: 

                                                 
1 For more on influence diagrams, see Howard and Matheson (1981), and Shachter (1986, 1988). 
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 
   (9.1) 

Returning to the Wildcatter problem, for example, Figure 9.2 shows an event tree for 

Production Costs (PC) and Oil Price (OP) for the case in which both PC and OP|PC have 

a discrete distribution with two possible outcomes: low, high. Notice that Bayes’ equation 

is straightforward in the discrete case, and fully captures the joint distribution between 

pairs of uncertainties. 

 

Figure 9.2. Event Tree for the Wildcatter Example. 

Difficulty in encoding dependence among uncertainties arises when their joint and 

marginal distributions are continuous. So far, we have demonstrated the fidelity and 

efficiency of encoding marginal distributions, given QP pairs and specified support 

bounds, using J-QPD. In this chapter, we use J-QPD to develop efficient, high-fidelity 
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methods for encoding and sampling from a continuous joint distribution among a set of 

dependent uncertainties. 

INTRODUCTION 

Decision and risk analyses often involve the construction of probabilistic models by 

encoding a joint distribution among a set of uncertainties, and then simulating from this 

joint distribution. In the context of expert elicitation, two common approaches arise: (1) 

assess-and-assign marginal distributions, assess pairwise correlations (e.g., “Spearman’s 

rho”), and then couple the marginals with an underlying copula (e.g., normal) consistent 

with the pairwise correlation assessments. (2) assess-and-assign marginal and conditional 

distributions. A common way in which analysts carry out Approach (1) is with the 

following steps: 

- Assess quantile-probability (QP) data2 for the marginal distribution of each 

uncertainty. 

- Construct marginal distributions by fitting a distribution (e.g., by least-

squares) from a canonical family (e.g., normal, lognormal, beta, etc.) to the 

QP assessments for each uncertainty. 

- Assess pairwise rank-order correlations between uncertainties3, and then 

construct the underlying normal (Gaussian) copula specified by the matrix of 

assessed rank-order correlations4. 

                                                 
2 For the rest of this chapter, we assume {10

th
, 50

th
, 90

th
} percentiles for assessed QP data, unless explicitly 

noted otherwise. 
3 Rank-order correlations commonly refer to “Spearman’s ρ” or “Kendall’s τ”. Clemen, Fischer, and 

Winkler (2000) present six methods for assessing Spearman’s ρ or Kendall’s τ. 
4 A normal copula is fully specified by a matrix of rank-order correlations, provided that the corresponding 

Pearson product-moment correlation matrix is positive-definite. Clemen and Reilly (1999) discuss how to 

translate a matrix of rank-order correlations into a normal copula, and we touch on this computation in later 

sections. 
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Approach (1) applies well when it is relatively easy to directly assess marginal 

distributions. However, it is sometimes easier to conditionally assess some uncertainties 

with respect to others, rather than directly assess their marginal distributions, in which 

case Approach (2) is better suited. A common way in which analysts carry out Approach 

(2) is with the following steps: 

- Assess {10
th

, 50
th

, 90
th

} percentiles for marginal distributions that can be 

directly assessed.   

- Construct marginal distributions by fitting a distribution (e.g., by least-

squares) from a canonical family (e.g., normal, lognormal, beta, etc.) to the 

QP assessments for each directly-assessed uncertainty. 

- Discretize the fitted distributions for each directly-assessed marginal 

distribution5. 

- Assess several triplets of {10
th

, 50
th

, 90
th

} percentiles for the remaining 

uncertainties, conditioned on values of the discretized marginal distribution. 

Based on the above steps for both methods, Approach (1) and (2) for specifying joint 

distributions both present several practical issues, as listed in Table 9.1. Regarding 1a., 

we assume that analysts appropriately pursue Approach (2) for uncertainties that are 

difficult to assess directly, and thus we do not address 1a. in this chapter. We also do not 

address issue 2a. in this chapter. For the rest of this chapter, we use J-QPD for the 

assignment of marginal distributions, thus eliminating issues b., c., and d. in Table 9.1. 

The primary focus in this chapter is on addressing issues 1e. and 2e. in Table 9.1. 

We now elaborate on issue 1e. in more detail by first introducing some notation to 

streamline the discussion. Suppose we are using Approach (1), as outline above, using a 

                                                 
5 It is also possible to skip the “curve-fitting” step and just assign a discrete distribution directly to the 

assessed {10
th

, 50
th

, 90
th

} percentiles. See Bickel et al. (2011) and Hammond and Bickel (2013a, b) for a 

review of discretization methods and recent extensions. 
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normal copula. Let Φ and Φ
-1

 denote the CDF and quantile function, respectively, for the 

standard normal distribution. Furthermore, suppose we have n uncertainties, indexed i = 

1, …, n, and let Fi and Qi denote the marginal CDF and quantile function (respectively) 

for uncertainty i. Randomly sampling one vector of observations, x = (x1, x2, …, xn), from 

this joint distribution consists of the following steps: 

1. Generate a random vector, z = (z1, z2, …, zn), from a multivariate [standard] 

normal distribution6 whose correlation matrix is consistent with the matrix of 

assessed rank-order correlation coefficients. 

2. Generate the corresponding vector of correlated uniform random variates by 

applying Φ: u = Φ(z) = (Φ(z1), Φ(z2), …, Φ(zn)). 

3. Generate the vector of observations, x, by applying marginal quantile 

functions to u: x = (Q1(u1), Q2(u2), …, Qn(un)). 

Steps 2 and 3 can be “computationally-expensive” in many cases. For example, 

suppose the marginals are beta distributions. Given z, step 2 involves n evaluations using 

Φ, and worse, step 3 involves n evaluations of the quantile function for a beta 

distribution, each of which involves computing the inverse of the incomplete beta 

function. If the marginals are gamma distributions, then step 3 involves n evaluations of 

the quantile function for a gamma distribution, each of which involve the inverse of the 

incomplete gamma function. To put this in broader perspective, in a problem with twenty 

uncertainties, randomly sampling one million observations (vectors) from the joint 

distribution for the first example would involve a total of twenty-million evaluations 

using Φ, and twenty-million evaluations of the inverse of the incomplete beta function. 

                                                 
6 Methods for sampling from a multivariate normal distribution are well-known. For example, see Gentle 

(2009). Thus, simulation step 1 is not the focus of this chapter. 
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We develop a marginal procedure (MP) in this chapter for specifying a joint 

distribution that improves upon Approach (1) by using J-QPD for marginal distributions 

instead of curve-fitting. As addressed in Chapter 4, using J-QPD for marginal 

distributions in place of curve-fitting eliminates issues b., c., and d. in Table 9.1. 

However, as we demonstrate, since J-QPDs amount to simple, closed-form operations 

applied to a standard normal distribution, our MP approach also replaces simulation steps 

2 and 3 described above with these simple, closed-form operations. Thus, by eliminating 

issues b., c., d., and 1e. in Table 9.1, MP ultimately provides a method for specifying a 

joint distribution that not only encodes an expert’s beliefs with greater fidelity (issues b. 

and d.) than Approach (1), but that is also more computationally-efficient (issues c. and 

1e.) than Approach (1) in many cases. 

Approach (1) Approach (2) 

1a. Direct assessment of marginals can be 

difficult. 

2a. The number of required assessments 

grows exponentially with the number of 

conditioning uncertainties. 

b. Curve-fits often never honor the assessed QP pairs. 

c. Curve-fitting often requires nonlinear, nonconvex optimization. 

d. Curve-fits often violate natural support limits7. 

1e. Simulating from a joint distribution with 

normal copula can be computationally 

inefficient. 

2e. The hybrid discrete-continuous joint 

distribution may not realistically capture an 

expert’s beliefs. 

Table 9.1. Disadvantages of Approach (1) and (2) for Specifying Joint Distributions. 

We now elaborate on issue 2e. in Table 9.1, regarding Approach (2) for 

specifying a joint distribution among uncertainties. As noted by Hadlock and Bickel 

(2017) and by Keelin (2016), distributions exhibiting discontinuities may not reasonably 

                                                 
7 For example, if a normal distribution is fitted to market share assessments, then the resulting model can 

generate negative market shares, or shares that exceed the size of the market, thereby reducing model 

fidelity. 
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reflect an expert’s beliefs when knowledge of smoothness (continuous derivatives) is 

present. This applies to Approach (2), since the resultant joint distributions contain a 

combination of discretized marginal distributions, and continuous conditional 

distributions, and thus do not reasonably capture an expert’s joint distribution when 

knowledge of smoothness is present. 

We develop a conditional procedure (CP) in this chapter for specifying a joint 

distribution that improves upon Approach (2) in two ways. First, like MP, CP uses J-QPD 

for marginal distributions instead of curve-fitting. Second, CP uses J-QPD further to 

specify a smooth correlation structure consistent with all marginal and conditional 

assessments. Thus, by eliminating issues b., c., d., and 2e. in Table 9.1, CP ultimately 

provides a method for specifying a joint distribution that not only encodes an expert’s 

beliefs with greater fidelity (issues b., d., and 2e.) than Approach (2), but that is also more 

computationally-efficient (issue c.) than Approach (2). 

The rest of this chapter is organized as follows. In the next section, we develop 

and discuss MP in more detail, using a simple illustration. In the section that follows, we 

develop and discuss CP in more detail, using a simple illustration. We then highlight one 

noteworthy limitation of CP. Finally, the last section provides concluding remarks and 

recommendations for practice. 

A MARGINAL PROCEDURE (MP) FOR ENCODING DEPENDENCE 

In this section, we develop our marginal procedure (MP) for specifying a joint 

distribution among uncertainties, which uses J-QPD to improve upon Approach (1) in 

terms of model fidelity (issues b. and d. in Table 9.1) and computational efficiency 

(issues c. and 1e. in Table 9.1). To build context, we walk through the Eagle Airlines 

example problem presented by Clemen and Reilly (1999), using three approaches: the 
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traditional approach (Approach (1)) used by Clemen and Reilly (1999), our standard MP 

approach using J-QPD, a modified MP approach using transformations. 

Eagle Airlines 

Based on the problem in Clemen and Reilly (1999), involving the decision of whether to 

purchase a used aircraft, sensitivity analysis suggests modeling four key uncertainties: 

Price (P), Hours Flown (H), Capacity (C), and Operating Cost (O). In this section, we 

model the problem based on Approach (1). Specifically, an expert provides {10
th

, 50
th

, 

90
th} 

percentiles for all four uncertainties, and pairwise values for Spearman’s rank-order 

correlation coefficients (Spearman’s rho). Table 9.2 provides these assessment data, 

which are the same values used in Clemen and Reilly (1999). 
     Spearman’s rho Assessments 

Uncertainty Designation P10 P50 P90 P H C 

Price P $95 $100 $108 - - - 

Hours Flown H 500 800 1000 -0.5 - - 

Capacity C 40% 50% 60% -0.25 0.5 - 

Operating Cost O $230 $245 $260 0 0 0.25 

Table 9.2. Eagle Airlines – Assessment Data for Key Uncertainties. 

Model using Approach (1) 

In the original problem, Clemen and Reilly (1999) assign the marginal distributions 

shown in Table 9.3 to the {10
th

, 50
th

, 90
th

} percentile assessment data, which have 

approximately the same {P10, P50, P90} values shown in Table 9.2. Now, using 

Approach (1), a normal copula combined with the data in Table 9.2 and Table 9.3 fully 

specifies a joint distribution for the four uncertainties. Now, to simulate a random vector 

from this joint distribution, we first generate a random vector, z = (zp, zh, zc, zo) from the 

multivariate standard normal distribution corresponding to the matrix of Spearman’s rho 
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values given in Table 9.2. From simulation step 2, we then generate the corresponding 

vector of correlated uniform random variates by applying Φ: u = Φ(z) = (Φ(zp), Φ(zh), 

Φ(zc), Φ(zo)). Finally, following simulation step 3, we generate the random vector of 

observations, x, by applying marginal quantile functions to u: x = (Qp(up), Qh(uh), Qc(uc), 

Qo(uo)). Since P, H, and C all have beta distribution assignments, Qp, Qh, and Qc each 

involve one evaluation of the inverse of the incomplete beta function. Alternatively, since 

O has a normal distribution, Qo involves one evaluation of Φ
-1

. 

Uncertainty Distribution Parameters Bounds 

Price (P) Scaled beta α = 9, β = 15 $[81.94, 133.96] 

Hours Flown (H) Scaled beta α = 4, β = 2 [66.91, 1135.26] 

Capacity (C) Beta α = 20, β = 20 [0, 1] 

Operating Cost (O) Normal μ = 245, σ = 11.72 $(-∞, ∞) 

Table 9.3. Marginal Distribution Assignments for the Original Problem8. 

Model using MP 

We now consider our marginal procedure (MP) using J-QPD. Since C is a fractional 

quantity between zero and one, we shall assign a J-QPD-B distribution to C 

parameterized by 
0.1 0 0.1 0.50 0.90 1{ , , , , } {0,  0.4,  0.5,  0.6,  1}x x x x x θ . However, suppose that the 

analyst and expert are not comfortable imposing a hard (finite) upper bound for P, H, and 

O. Since P, H, and O are inherently nonnegative quantities, we provide J-QPD-S 

assignments for each of their marginal distributions, each having a lower bound of zero. 

The quantile functions for the J-QPD assignments for all four uncertainties are shown in 

Table 9.4. 

                                                 
8 See Clemen and Reilly (1999). 
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Uncertainty Type Quantile Function9 Bounds 

Price (P) J-QPD-S    195 exp 0.0684 sinh 0.6934 sinh 0.5855 z     $[0, ∞) 

Hrs. Flown (H) J-QPD-S    11000 exp 0.1878 sinh 1.0085 sinh 0.9273 z      [0, ∞) 

Capacity (C) 
J-QPD-

B10 
(0.1977 )z   [0, 1] 

Op. Cost (O) J-QPD-S    1260 exp 0.2345 sinh 0.2507 sinh 0.1977 z      $[0, ∞) 

Table 9.4. Marginal J-QPD Assignments using MP. 

Given the J-QPD quantile function assignments in Table 9.4, expressed as 

transformations applied to the standard normal distribution, we now reconsider our 

simulation steps using the MP approach for encoding a joint distribution. As in Approach 

(1), take as given some random vector, z = (zp, zh, zc, zo), drawn from the multivariate 

standard normal distribution. Let Ti(z) denote the transformation function for uncertainty 

“i”. Referencing Table 9.4, for example, the transformation function for P is: 

   1( ) 95 exp 0.0684 sinh 0.6934 sinh 0.5855PT z z    
. 

To generate a random vector of observations, x, from our joint distribution using MP, we 

simply take x = (Tp(zp), Th(zh), Tc(zc), To(zo)), in place of applying simulation steps 2 and 

3. Not counting closed-form operations, given z = (zp, zh, zc, zo), generating one x vector 

in this example involves only one evaluation of Φ, in the transformation function using J-

QPD-B for Capacity (C). By comparison, recall that Approach (1) above involved: four 

evaluations of Φ, three evaluations of the inverse of the incomplete beta function, and one 

evaluation of Φ
-1

. Moreover, in this example, Approach (1) above takes over twenty 

times as much runtime to generate x compared to the MP approach presented here. For 

example, using MATLAB’s built-in functions, generating ten million x vectors takes 

                                                 
9 In each quantile function shown in Table 9.4, z = Φ

-1
(p). We express the quantile functions in this way to 

emphasize that in our multivariate simulation using the normal copula, we will take advantage of the fact 

that the J-QPDs are direct transformations applied to the standard normal distribution. 
10 This quantile function corresponds to the special case of J-QPD-B given in Chapter 4. 
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about 70 seconds using modeling Approach (1), and about 3 seconds using the MP 

approach. 

Modified MP Approach using Transformations 

It is possible to increase the computational efficiency of MP further by using an 

appropriate transformation upon J-QPD-S distributions for uncertainties that are 

inherently bounded (such as market shares) instead of using a J-QPD-B distribution, as 

we do in Eagle Airlines above for Capacity (C). We first provide a generic description of 

our approach here, and then return to Eagle Airlines for a brief illustration. 

Consider some uncertainty, X, that is bounded on [0, 1], and having {10
th

, 50
th

, 

90
th

} percentiles of 0.1 0.5 0.9{ , , }x x x . Rather than directly assign a J-QPD-B distribution to 

X, we can define a new variable, Y = X/(1–X), which has support on [0, ∞), and assign it a 

J-QPD-S distribution with quantile function, QY(p), parameterized by: 

0.1 0.5 0.9
0.1

0.1 0.5 0.9

0, , , ,
1 1 1

x x x

x x x

 
  

   
θ

. 

Then, define the quantile function for X, denoted QX(p), as: 

( )
( )

1 ( )

Y
X

Y

Q p
Q p

Q p



 . 

Defining the marginal distribution for X in this way instead of directly assigning a 

J-QPD-B distribution eliminates the need to evaluate Φ in the case of bounded 

uncertainties when simulating from the joint distribution, given a random vector, z, of 

values drawn from a multivariate standard normal distribution specified by the normal 

copula – simulation step 1. More generally, if X has finite bounds specified by [l, u], and 

having {10
th

, 50
th

, 90
th

} percentiles of 0.1 0.5 0.9{ , , }x x x  then take Y = (X – l)/(u – X), which 

has support on [0, ∞), and assign it a J-QPD-S distribution with quantile function, QY(p), 

parameterized by: 
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0.1 0.5 0.9
0.1

0.1 0.5 0.9

0, , , ,
x l x l x l

u x u x u x

   
  

   
θ

. 

Then, define the quantile function for X, denoted QX(p), as: 

( )
( ) ( )

1 ( )

Y
X

Y

Q p
Q p l u l

Q p
   


 . 

As an illustration, let X be the Capacity (C) uncertainty in the Eagle Airlines 

example, where [l, u] = [0, 1], and where 0.1 0.5 0.9{ , , } {0.4,0.5,0.6}x x x  . As above, we 

define Y = X/(1–X), and assign the J-QPD-S distribution to Y parameterized by: 

0.1 0.5 0.9
0.1

0.1 0.5 0.9

0.4 0.5 0.6
0, , , , 0, , , , {0,0.667,1,1.5, }

1 1 1 1 0.4 1 0.5 1 0.6

x x x

x x x

   
        

       
θ

. 

In this case, the resultant J-QPD-S distribution for Y is a lognormal distribution11 

with μ = 0 and σ = 0.3164, which has the quantile function: QY(p) = exp(0.3164Φ
-1

(p)). 

Thus, the quantile function that we assign to Capacity is: 

 
   

1

1 1

exp 0.3164 ( ) 1
( )

1 exp 0.3164 ( ) 1 exp 0.3164 ( )
X

p
Q p

p p



 


 

    
. 

Figure 9.3 provides a comparison of the distribution for the previously-assigned J-QPD-B 

assignment above for Capacity (shown dashed), and this new assignment using 

transformations (shown solid). Note that the two approaches produce nearly indiscernible 

distributions. The main point, however, is to demonstrate a more computationally-

efficient method for assigning bounded distributions using a transformation upon J-QPD-

S, rather than assigning J-QPD-B directly, to eliminate the need to perform evaluations 

involving Φ when simulating from the joint distribution using a normal copula. 

                                                 
11 Recall from Chapter 4 that J-QPD-S subsumes the lognormal distributions as a special case. 
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Figure 9.3. J-QPD-B (dashed) and Transformed (solid) Distributions for Capacity (C). 

A CONDITIONAL PROCEDURE (CP) FOR ENCODING DEPENDENCE 

In this section, we provide a new conditional procedure (CP) for specifying a joint 

distribution among uncertainties, improving upon Approach (2), again using the Eagle 

Airlines example as an illustration. In this case, for the sake of illustration, suppose that 

the expert gives assessments for Hours Flown (H), conditional on the {10
th

, 50
th

, 90
th

} 

percentile assessments for Capacity (C) given in Table 9.2, yielding the following 

conditional assessments for H|P, shown in Figure 9.412: 

 {H10, H50, H90} | C10 = {405, 645, 885} hours13. 

 {H10, H50, H90} | C50 = {540, 800, 980} hours. 

 {H10, H50, H90} | C90 = {700, 920, 1050} hours. 

In this case, we presume that it is easier to assess H|C than H directly. For our 

example, we already have a J-QPD assignment for the marginal distribution for C, 

                                                 
12 These conditional assessment values are approximately consistent with those in the MP model. 
13 For example, this means that, given that Capacity (C) is equal to its 10

th
 percentile (C10 = 40%), the 

{10
th

, 50
th

, 90
th

} percentiles for Hours Flown (H) are {405, 645, 885} hours, respectively.  
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specified by 
0.1 0 0.1 0.50 0.90 1{ , , , , } {0,  40,  50,  60,  100}%x x x x x θ , and given in Table 9.4. Since 

our marginal distributions are characterized in quantile function form, we can easily 

simulate from the marginal distribution for C by inverse-transform sampling.  

 

Figure 9.4. Conditional Assessments for Capacity (C) and Hours Flown (H). 

Suppose we draw the random value, c = 54.13%, for C using inverse-transform 

sampling with its quantile function, Qc, given in Table 9.4. How can we assign a 

distribution to H|{C = 54.13%}? We have low-base-high assessments for H at the {10
th

, 

50
th

, 90
th

} percentiles for C, but we do not have low-base-high assessments for H at any 

arbitrary value of C, such as C = 54.13%, in this case. Assume the correlation structure 

between C and H is monotonically increasing in this example; i.e., that Hp|c is increasing 

in c for any fixed value of p ∈ (0, 1). For example, the 27
th

 percentile for H, given the 50
th

 

percentile of C, is greater than the 27
th

 percentile of H, given the 10
th

 percentile for C. 



128 

 

Since J-QPD quantile functions are increasing and maximally-feasible (MF), we use them 

to encode a correlation structure between C and H. 

 

Figure 9.5. Correlation C-Curves for C and H using Assessment Data. 

As before, suppose that the expert and analyst agree that H should have support 

on [0, ∞). Figure 9.5 provides an alternative visualization for Figure 9.4, showing percent 

points for C, (pc), on the horizontal axis rather than C. The solid points represent our 

conditional assessments. Since pc ∈ [0, 1], by our monotonicity assumption, we can 

construct the following J-QPD-S quantile function assignments to encode a correlation 

structure between C and H that precisely honors our conditional assessments and bound 

requirements. The correlation-curves, or C14-curves, shown Figure 9.5 are specified as 

follows: 

                                                 
14 Note that the designation “C” here in C-curves refers to correlation, and is not referring to the Capacity 

(C) uncertainty in our example. 
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 C0.1(pc): H10 | pc = J-QPD-S with 
0.10 {0,405,540,700, } θ  hours. 

 C0.5(pc): H50 | pc = J-QPD-S with 
0.10 {0,645,800,920, } θ  hours. 

 C0.9(pc): H90 | pc = J-QPD-S with 
0.10 {0,885,980,1050, } θ  hours. 

Given these C-curves, we have a complete correlation structure between C and H. 

Given c = 54.13%, construct a J-QPD-S assignment for H|{c = 54.13%} as follows:  

(1) From the marginal distribution for C, characterized by Qc, we infer that c = 

54.13% is the 70
th

 percentile for C, meaning that pc = 0.7. 

(2) Using our three correlation C-curves with pc = 0.7, we compute: 

H10 | {c = 54.13%} =  0.100.7;  {0,405,540,700, }Q   θ  602.51 hours. 

H50 | {c = 54.13%} =  0.100.7;  {0,645,800,920, }Q   θ  854.28 hours. 

H90 | {c = 54.13%} =  0.100.7;  {0,885,980,1050, }Q   θ  1011.82 hours. 

(3) Construct the J-QPD-S assignment for H | {c = 54.13%}, characterized by:  

 0.10 10 50 900,  { | 54.13%},  { | 54.13%},  { | 54.13%},  {0,602.5 854.3 1011., , , }.8  H c H c H c      θ

  

Given this 0.10θ  vector, construct the corresponding J-QPD-S quantile function: 

   1 1

|54.13% ( ) 1011.8 exp 0.146 sinh -0.990 sinh 0.906 ( ) .HQ p p     
 

Figure 9.6 shows the probability distribution for H|C = 54.13%. We provide generalized 

steps for CP for the bivariate case, where we directly assess the marginal distribution for 

one uncertainty, X, and then gather assessments for another uncertainty, Y, conditional on 

the low-base-high assessments for X. 

1. Obtain an SPT of assessments for the marginal distribution for uncertainty, X. 

2. Obtain conditional SPTs for: Y | Xlow, Y | Xbase, and Y | Xhigh. 

3. As a modeling decision, identify appropriate bounds for X and Y. 
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4. Construct a J-QPD for the marginal distribution for X, denoted QX, using the 

assessed SPT and chosen support bounds. If the support is bounded (semi-

bounded), use J-QPD-B (J-QPD-S). 

5. Assuming that Yp | x is increasing in x, construct three correlation curves15: 

a. Clow(x):   low 0.10 0 low low low base low high 100| ( );  ,  | ,  | ,  | ,XY x Q F x Y Y X Y X Y X Y θ  

b. Cbase(x):   base 0.10 0 base low base base base high 100| ( );  ,  | ,  | ,  | ,XY x Q F x Y Y X Y X Y X Y θ  

c. Chigh(x):   high 0.10 0 high low high base high high 100| ( );  ,  | ,  | ,  | ,XY x Q F x Y Y X Y X Y X Y θ  

6. Simulate an observation of X, x, using inverse-transform sampling with QX. 

7. Construct a J-QPD for Y |x, denoted QY|x, characterized by: 

 0.10 0 low base high 100,  ( ),  ( ),  ( ), .Y C x C x C x Yθ
 

8. Generate an observation for Y | x using inverse-transform sampling with QY|x. 

9. If the desired sample size for observations of {X, Y} is obtained, stop. 

Otherwise, go to step (6). 

                                                 
15If Yp | x is decreasing in x (negative correlation), then apply reflected C-curves about the line, px = 0.5. 
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Figure 9.6. J-QPD-S CDF and PDF for Hours Flown (H), Given Capacity (C) = 54.13%. 

For our example, Figure 9.7 provides a scatterplot of 500 joint observations for 

{C, H} using MP and CP, using the same random number seed in both cases, along with 

density contours using both approaches. We note the similarity of the MP- and CP-based 

joint distributions for our example, based on a visual comparison of the density contours 

in Figure 9.7, as well as the closeness of the rank-order correlation coefficients (Kendall 

and Spearman) and the Pearson product-moment correlation coefficients. 
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Figure 9.7. Scatterplot and Density Contours for C and H using MP (left) and CP (right). 

Limitation of CP 

We conclude this section by pointing out a noteworthy, but generally benign, limitation 

of encoding correlation CP. Figure 9.8 provides a “skewed” example where the 

monotonicity requirement is satisfied, but where there is overlap in the C-curves, 

meaning that this example violates coherence. Beyond about p = 0.95, for example, (y0.1 | 

px) > (y0.5 | px) > (y0.9 | px). Although we expect these overlap scenarios to be rare in many 
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practical applications, we suggest that analysts examine C-curves for overlap before 

going to step (6) of CP. 

 

Figure 9.8. Example where CP C-Curves Overlap. 

CONCLUSION AND RECOMMENDATIONS FOR PRACTICE 

In this chapter, we have provided two methods for specifying joint distributions among 

uncertainties: the marginal procedure (MP), and the conditional procedure (CP). MP 

applies to cases where marginal distributions are relatively easy to assess directly, and 

suggests gathering a set of quantile-probability (QP) pairs of assessments (e.g., 10
th

-50
th

-

90
th

 percentiles) for each uncertainty, and a matrix of Spearman’s rank correlation 

coefficient (“Spearman’s rho”) assessments. MP then assigns a J-QPD distribution to 

each set of marginal assessments, and produces an underlying normal copula between 

dependent variables, specified by “Spearman’s rho” estimates. Compared to the approach 
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of constructing marginal distributions by fitting a commonly-named distribution (e.g., 

beta, gamma, etc.) to the marginal QP assessment pairs, and then using these marginal 

distribution assignments in conjunction with a normal copula, the advantages of MP are: 

 MP encodes an expert’s beliefs with greater fidelity by providing smooth 

marginal distribution assignments that honor QP assessments and specified 

support bounds, unlike curve-fitting.  

 MP is more computationally-efficient since its marginal distribution assignments 

are directly parameterized by assessed QP pairs and bounds, and do not require 

nonlinear (and possibly nonconvex) optimization to parameterize, unlike many 

cases of curve-fitting. 

 Given marginal distribution assignments and a sample drawn from an underlying 

standard normal copula, based on assessed values for Spearman’s rho, MP is more 

computationally-efficient since J-QPDs are simple transformations applied to a 

standard normal distribution. 

Alternatively, CP is designed for situations where it is easier to assess QP pairs 

for a second uncertainty, conditioned on assessments for the first uncertainty (e.g., 10
th

-

50
th

-90
th

 percentiles). Like MP, CP assumes a monotonic relationship between dependent 

uncertainties, and uses J-QPDs to capture marginal distributions and correlation structure. 

CP precisely honors all marginally- and conditionally-assessed QP pairs, and provides a 

smooth description for the joint distribution for dependent uncertainties, unlike the more 

traditional approach of conditioning on a discretized marginal distribution. 

In practice, we suggest implementing MP by default wherever possible, since 

assessment of a single Spearman’s rho value can be sufficient to describe the correlation 

structure between two uncertainties in many cases, and since the accuracy for 

corresponding assessment procedures is well-documented. Alternatively, the number of 
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conditional assessments required for CP grows exponentially with the number of 

correlated uncertainties to which CP is applied. Also, since our CP procedure is defined 

based on the bivariate case, we suggest implementing CP only when necessary. A 

combination of MP and CP is possible, and might be appropriate in large-scale problems. 

Nevertheless, both MP and CP offer an improvement to current methods for encoding 

and simulating from joint distributions for uncertainties based on expert elicitation. 
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Chapter 10 : A Decision Analysis Using J-QPD 

In this chapter, we briefly present the application of J-QPD to two decision analysis 

problems. The first is a slightly-modified16 version of the illustrative Eagle Airlines 

problem presented by Reilly (1998), as an update to the problem introduced by Clemen 

(1996). The second is a slightly-modified version of a real-estate asset portfolio 

evaluation problem, based on the real-world application by Keelin (2016). There are two 

main objectives here: 

(1) Demonstrate how to implement J-QPD within a decision context, accounting for 

both marginal and joint uncertainty.  

(2) Show how J-QPD provides a more authentic representation of uncertainty in the 

context of decision modeling, compared to current practices of quantifying 

uncertainty. 

EAGLE AIRLINES – REVISITED 

The problem concerns Dick Carothers’ decision on whether to invest his $9,072 into a 

money market, or purchase a plane to add to his fleet. The influence diagram, adapted 

from Clemen and Reilly (1999), is shown in Figure 10.1, and marginal assessment data is 

presented in Table 10.1. Table 10.2 presents the matrix of assessments for Spearman’s 

rho among the uncertainties. The objective value for the problem is calculated as follows: 
(1 )TR CR HF CP CR HF CAP ns PL          (10.1) 

TC HF OC INS PP PF IR       (10.2) 

Profit TR TC   (10.3) 

Value Profit $9,072.   (10.4) 

CP refers to Charter Price, which is given by 3.25*PL, and ns is the number of seats, 

which is five. In Figure 10.1, we do not include relevance arrows linking all nine 

                                                 
16 We have only modified numbers, such as assessments and constants, but not the problem structure. 
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uncertainties in Table 10.1, since doing so overwhelms the figure with fourteen more 

arrows, corresponding to Spearman’s rho values in Table 10.2. 

 

 

Figure 10.1. Influence Diagram for Eagle Airlines, adopted from Reilly (1998). 

Uncertainty Tag P10 P50 P90 

Charter ratio (%) CR 45 50 70 

Capacity (%) CAP 40 50 75 

Price level ($) PL 190 200 240 

Hours flown (hrs) HF 500 700 1000 

Operating cost ($/hr) OC 500 520 605 

Percentage financed (%) PF 30 50 70 

Interest rate (%) IR 10 12 13 

Insurance ($) INS 43,200 49,700 54,000 

Purchase price ($) PP 183,600 194,400 216,000 

Table 10.1. Marginal Low-Base-High Assessment Data. 
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 CR CAP PL HF OC PF IR INS PP 

CR 1.0 -0.5 0.25 0.25 0.25 0 0 0 0 

CAP  1.0 -0.5 0.5 0.25 0 0 0 0 

PL   1.0 -0.25 0 0 0 0 0 

HF    1.0 0 0 0 0.25 0 

OC     1.0 0.25 0 0 0 

PF      1.0 -0.5 0.5 0.5 

IR       1.0 0 -0.25 

INS        1.0 0 

PP         1.0 

Table 10.2. Assessed Values for Spearman’s Rho. 

Quantifying the Uncertainty 

Given both marginal (low-base-high) and joint (Spearman’s rho) assessment data, the 

next step is to encode a complete joint distribution for all uncertainties in the problem. 

We begin with the marginal distributions. 

Encoding Marginal Distributions 

To assign a J-QPD for the marginal distribution of each uncertainty, we must first select 

the J-QPD type in each case (J-QPD-B or J-QPD-S), along with the corresponding 

bounds. Since CR, CAP, PF and IR correspond to fractional quantities (in percentages), 

we assign J-QPD-B distributions to all four of these uncertainties, each having support on 

[0, 1], or [0, 100] %. For PL, HF, OC, INS and PP, the only bound remarks that we can 

comfortably make are that these quantities are necessarily non-negative. Thus, we assign 

a J-QPD-S to the marginal distribution for each of these five uncertainties, each having a 

lower bound of zero. Table 10.3 provides the J-QPD assignments for all nine 

uncertainties, parameterized by the low-base-high assessments and bounds in all cases, 
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and Figure 10.2 (Figure 10.3) shows the PDFs (CDFs) for all nine J-QPD distribution 

assignments in Table 10.3. 
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Uncertainty Type Quantile Function Bounds 

CR J-QPD-B 
1(-0.1257 0.0527 sinh(1.2515 ( ( ) 1.2816)))p     

 
[0,100]% 

CAP J-QPD-B 
1( 0.2533 0.1652 sinh(0.9469 ( ( ) 1.2816)))p      

 
[0,100]% 

PL J-QPD-S    1 1190 exp 0.0251 sinh 1.4640 sinh 1.5965 ( )p      $[0, ∞) 

HF J-QPD-S    1 1500 exp 1.3630 sinh 0.2444 sinh 0.1926 ( )p    
 

[0, ∞) 

OC J-QPD-S    1 1500 exp 0.0177 sinh 1.5358 sinh 1.7282 ( )p    
 

$[0, ∞) 

PF J-QPD-B 
1(0.5244 2.5e7 sinh((1.64e 8) ( ( ) 1.2816)))p      

 
[0,100]% 

IR J-QPD-B 1( 1.1264 0.0391 sinh(0.8147 ( ( ) 1.2816)))p      
 

[0,100]% 

INS J-QPD-S    1 154 exp 0.0923 sinh -0.8080 sinh 0.7014 ( )p      $[0, ∞) 

PP J-QPD-S    1 1183.6 exp 0.0566 sinh 0.8888 sinh 0.7885 ( )p    
 

$[0, ∞) 

Table 10.3. Marginal J-QPD Assignments. 
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Figure 10.2. PDFs for the Input J-QPD Assignments. 
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Figure 10.3. CDFs for the Input J-QPD Assignments. 

Encoding Joint Distributions 

Given marginal distributions for each uncertainty, the next step is to encode a correlation 

structure between them, using the MP or CP procedure prescribed in Chapter 9. Since we 

have a matrix of assessed values for Spearman’s rho between uncertainty pairs, we use 

the MP approach. Let Rs denote the matrix of Spearman’s rho values given in Table 10.2. 

Using the transformation given by Kruskal (1958), we compute the matrix of Pearson’s 

product-moment correlation coefficients, denoted Rp, as: 

2 sin
6

s
p

 
   

 

R
R  (10.5) 

where the sine function is applied element-wise to Rs. Table 10.4 gives Rp. 
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 CR CAP PL HF OC PF IR INS PP 

CR 1.0 -0.518 0.261 0.261 0.261 0 0 0 0 

CAP  1.0 -0.518 0.518 0.261 0 0 0 0 

PL   1.0 -0.261 0 0 0 0 0 

HF    1.0 0 0 0 0.261 0 

OC     1.0 0.261 0 0 0 

PF      1.0 -0.518 0.518 0.518 

IR       1.0 0 -0.261 

INS        1.0 0 

PP         1.0 

Table 10.4. Matrix of Pearson Product-Moment Correlation Coefficients, Rp. 

The Pearson correlation matrix is positive semidefinite in this case, making it amenable 

for use with the normal copula in MAP. We implement the following simulation 

procedure to evaluate the expected value of the plane purchase: 

(1) Generate a vector of one-hundred million uniform random variates, one for each 

of the nine uncertainties, using standard Latin hypercube sampling17. 

(2) Pass the vectors of uniform random variates through a multivariate normal 

distribution with a nine-by-one vector of zeros for the mean vector, and 

covariance matrix equal to Rp
18. Let X denote the 100,000,000-by-9 matrix of 

observations generated from this joint normal distribution. 

(3) Generate the matrix of correlated uniform random variates: U = Ф(X). 

(4) For i = {1, … ,9}, let Qi denote the J-QPD quantile function for the i
th

 uncertainty 

in Table 10.3. We generate the vector of observations for uncertainty “i”, denoted 

Yi, using: Yi = Qi(Ui). 

                                                 
17 For more information, see: Iman et al. (1980 and 1981); McKay et al. (1979); Eglajs and Audze (1977).  
18 This is because we want marginal distributions for this multivariate normal distribution to be standard 

normal distributions (with a mean of zero, and a variance of one). 
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(5) For j = {1,…, 100,000,000}, generate the vector of “value” observations, Vj, using 

Equations (10.1) through (10.4). 

Figure 10.4 shows the CDF for ‘Value’ using MP, compared to that using the MCS 

discretization shortcut19, along with the expected value (EV) using both approaches. 

Notice that whereas MCS predicts an expected loss of $3,600 by purchasing the plane, 

our continuous approach using J-QPD with MP predicts an expected net gain of $1,900. 

                                                 
19 The McNamee-Celona shortcut (MCS) assigns probabilities of {0.25, 0.50, 0.25} to the {10

th
, 50

th
, 90

th
} 

percentiles, and is popular in practice. For detail, see McNamee and Celona (1990), or Bickel et al. (2011). 

The simulation procedure is the same here, except for step (4), where Qi now refers to the MCS quantile 

function for the i
th

 uncertainty. As an example, the MCS quantile function for CR is:  

45%,  0.00 0.25

( ) 50%,  0.25 0.75

70%,  0.75 1.00

CR

p

Q p p

p

 


  
  
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Figure 10.4. CDFs for ‘Value’ Using J-QPD/MP and MCS. 

The Reduced Model 

While the original model incorporates uncertainty for all nine input variables in Table 

10.1, in this section we only incorporate uncertainty for several of these nine variables. 

By doing so, the key tradeoff here is a reduction in model fidelity, but increased accuracy 

due to a reduction in simulation error. In the discretized model, for example, the decision 

tree for the original problem has 3
9
= 19,683 possible outcomes. The number of outcomes 

decreases exponentially as we reduce the number of uncertain variables. To gain insight 

into which variables should be locked to their deterministic base values, we first perform 

a one-way sensitivity analysis, by generating the tornado diagram shown in Figure 10.5. 
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Figure 10.5. Tornado Diagram for Value, in Tens of Thousands of Dollars. 

Tornado diagrams measure sensitivity of an output variable with respect to input 

variables based on low, base and high (e.g., P10, P50 and P90) percentile assessments of 

each individual input variable (these correspond to the low, base and high assessments of 

each input variable shown in Table 10.1. The development of the tornado diagram in 

Figure 10.5 involves adjusting each input parameter one-at-a-time, and then rerunning the 

model to obtain new values for ‘Value’ (i.e., net profit)20. 

Loosely speaking, and reading from top to bottom, input parameters are ranked 

from “most influential” (widest bar) to “least influential” (thinnest bar). However, the 

wideness of a bar can be due to a combination of two major factors. 

                                                 
20 For sensitivity analysis methods involving changing more than one variable at a time, see Clemen 

(2014). 
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(1) Uncertainty – The difference between high (P90) and low (P10) assessments for 

each input parameter. If this range is large, we might observe a large change in 

the output variable even if the input itself is only a moderate driver. 

(2) The influence of the input on the output – We are referring to the influence of the 

input on the output with respect to the actual “physics” of the underlying system. 

The argument for ranking key drivers with respect to bar widths, however, is 

based on the idea that we have “accurate” P10, P50 and P90 assessments for each input 

parameter; i.e., that these numbers correspond to good expert elicitation. If more 

information becomes available for these parameters, then practice is to refine these 

assessments based on updated expert elicitations, and then rerun the analyses. From this 

point forward, however, we assume that we have good expert assessments. 

We note several important insights gained from Figure 10.5. First, 

deterministically computing value by setting all nine uncertainties to their P50 yields a 

net loss of $31,936, compared to the expected net gain of $1,920 predicted by the 

stochastic simulation model using J-QPD/MP and shown in Figure 10.4. Interestingly, 

while INS and PP have large (P90-P10) ranges in an absolute sense, these variables 

contribute little (ranging them individually) toward changes in the output variable – 

‘Value’. Alternatively, adjusting the Price Level (PL) from $190 to $240 changes ‘Value’ 

from -$52,000 to +$48,600.  

Referencing Figure 10.5, we incorporate uncertainty only for the top five 

variables shown (CAP, PL, OC, HF, and CR), and we fix the bottom four variables (INS, 

PF, IR, PP) at their base (P50) values. For the discrete case, using MCS, ‘Value’ now has 

only 3
5
 = 243 possible outcomes, compared to the 19,683 possible outcomes in the 

original model – a reduction in outcomes by a factor of 81. We now perform the exact 

same simulation procedure as in the original model.  
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Figure 10.6 shows the CDFs for the output (‘Value’) using our J-QPD/MP 

approach (solid curve), compared to that using the MCS discretization shortcut, along 

with the expected value (EV) using both approaches. Again, notice that MCS predicts an 

expected loss (now of $4,310) by purchasing the plane, and the continuous J-QPD/MP 

approach estimates a net gain of $1,070. Notice that while the absolute values of the EV 

have changed significantly compared to the original model, the decision 

recommendations do not change in either case, lending compelling evidence that Dick 

Carothers should purchase the plane. This assumes, of course, that all marginal (low-

base-high) and correlation (Spearman’s rho) values are assessed with perfect accuracy. 



149 

 

 

Figure 10.6. CDFs for ‘Value’ Using J-QPD/MP versus MCS. 

ASSET PORTFOLIO EVALUATION PROBLEM 

We now briefly present the application of J-QPD to the asset portfolio evaluation 

problem introduced by Keelin (2016)21, which involves the decision on how much to bid 

for a portfolio of 259 real estate assets, offered by a financial institution via public 

auction. The decision maker in this problem is a potential bidder who engages a team of 

experts (representing “the analyst” in this case) to assess the value of the portfolio, which 

is the sum of the uncertain values of each asset. As part of the assessment process, the 

team extensively evaluated the uncertainty of each asset, ultimately providing the {10
th

, 

                                                 
21 We modify the numbers only slightly here. Also, while the problem in Keelin (2016) is a real-world 

application, we treat this modified version as a hypothetical problem. 
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50
th

, 90
th

} percentile assessments shown in Figure 10.7. In addition to the marginal 

assessments, the team concluded that all assets in the portfolio are positively-correlated. 

Specifically, the team estimated a Pearson product-moment correlation coefficient of 0.8 

between all pairs of assets.   

 

Figure 10.7. Low-Base-High Assessments by Asset (in $ 000s) 

Using the assessment data in Figure 10.7, the team decided to assign a J-QPD-S 

(semi-bounded) distribution to the {10
th

, 50
th

, 90
th

} percentile assessments for each asset. 

In the absence of further information, both the team and the potential bidder agreed that 

the lower bound for each asset should be zero. Obviously, asset values are inherently 

non-negative. However, the team had no justifiable reason to assign any other non-zero 

lower bound to any of the assets. Also, both the team and the decision maker felt 

uncomfortable imposing a finite upper bound on the value of any asset, thus lending them 

justification for using J-QPD-B. 

To capture correlation among all assets, the team used a normal copula consistent 

with the pairwise correlation values of 0.8, in conjunction with the MP approach for 

encoding joint distributions. A one-way sensitivity analysis ultimately revealed assets 1 

through 20, and asset 259 to be the key contributors of uncertainty in total portfolio 

value. Thus, the team modeled uncertainty in these assets, and fixed the remaining assets 
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at their base (median) values. Ultimately, the team constructed a distribution on total 

portfolio value in two ways: (1) using J-QPD-S in conjunction with the MP approach for 

the twenty-one key assets (assets 1 through 20, and asset 259); (2) using the traditional 

Extended Swanson-Megill22 (ESM) discretization shortcut, which assigns probabilities of 

{0.3, 0.4, 0.3} to the {10
th

, 50
th

, 90
th

} percentiles for each asset, in conjunction with 

sampling from the underlying normal copula. 

 

Figure 10.8. Simulation CDFs for Portfolio Value using ESM and J-QPD. 

The CDFs for total portfolio value using both methods is shown in Figure 10.8. 

As clearly shown, the greatest insight from the comparison was the fact that the CDF 

using discretization with ESM showing a near-zero probability of the portfolio value 

falling just below $170,000,000, and a near-zero value of it exceeding just over 

                                                 
22 See Hurst, et al. for more detail. 
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$200,000,000. Based on experience and judgment, the team concluded that while the 

CDF based on ESM well-captured portfolio value uncertainty in the body of the 

distribution, from roughly the 10
th

 percentile to the 90
th

 percentile shown in Figure 10.8, 

the sharp chop in tails beyond these values seemed unrealistic.  

This problem illustrates how conventional approaches to quantifying uncertainty, 

in this case discretization, can potentially mislead decision making based on inherently 

continuous uncertainties, compared to using J-QPD. For example, a bid based on the 5
th

 

percentile in Figure 10.8 would result in an overbid of between 2 and 3 million dollars 

using ESM instead of J-QPD. 
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Chapter 11 : Conclusion 

This chapter concludes with a summary of the main contributions and corresponding 

results presented in this dissertation, recommendations and guidelines for practice, and 

several avenues for future research. 

SUMMARY 

In this dissertation, we developed a new probability distribution system, known as J-

QPD, by applying well-known transformations to the Johnson SU distribution, followed 

by strategic re-parameterization. By design, the resulting J-QPD system is parameterized 

by a set of quantile-probability (QP) pairs, and consists of two sub-families: 

 J-QPD-B (bounded) distributions.  

 J-QPD-S (semi-bounded) distributions. 

Unlike existing probability distribution systems, J-QPD satisfies all five of our 

desiderata presented in Chapter 4. Specifically, the J-QPD system is conveniently 

parameterized by a symmetric percentile triplet (SPT) of low-base-high assessments (e.g., 

10
th

, 50
th

, 90
th

 percentiles), and specified support bounds, and is maximally-feasible 

(MF), in the sense that it can honor any valid SPT vector of low-base-high values, along 

with any compatible pair (lower and upper) of support bounds. Both the quantile function 

and CDF are readily available. J-QPD distributions have finite moments (like lognormal 

distributions), but also offer a highly flexible semi-bounded distribution with unbounded 

moments as a limiting case. J-QPD distributions are highly flexible in the sense of 

Pearson, and can also closely approximate distributions from a wide array of commonly-

named families, when parameterized by the same SPT and support bounds.  

For example, J-QPD-S subsumes the lognormal family as a special case, and 

effectively serves as a two-shape-parameter extension to the lognormal family, but in 
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quantile-parameterized form. Also, J-QPD-S is highly accurate at approximating Weibull 

and gamma distributions (including the exponential distribution), and most beta-prime 

distributions. The J-QPD-B (bounded) distributions approximate nearly all beta 

distributions with high accuracy, particularly the bell-shaped beta distributions, but also 

offer infinitely many other distributional forms than beta, due to having one additional 

shape parameter over beta23. Although inherently smooth, J-QPD-B distributions also 

approximate triangular distributions with reasonable accuracy.  

The J-QPD system provides a high-fidelity and efficient means of precisely 

assigning a smooth probability distribution to a triplet of low-base-high assessments, in 

conjunction with two possible support scenarios commonly encountered in practice: 

specified bounded support; semi-bounded support with specified lower bound. No fitting 

(optimization) is needed, such as with least-squares, and the J-QPD assignments precisely 

honor the QP pairs. Also, J-QPD quantile functions allow for direct Monte Carlo 

simulation via direct inverse transform sampling, as a means of generating output value 

distributions. 

We showed that the J-QPD distributions are particularly amenable to encoding 

dependence in two key ways. The first approach, known as the marginal assessment 

procedure (MP), uses a normal copula specified by a Spearman’s rank correlation 

coefficient (Spearman’s rho), assessed using methods outlined in Clemen, Fischer, and 

Winkler (2000). MP is a natural choice when marginal distributions are relatively easy to 

assess. The second approach, known as the conditional procedure (CP), naturally applies 

to cases where it is more natural to obtain low-base-high assessments of one uncertainty, 

conditioned upon assessed values of another uncertainty. CP uses J-QPD quantile 

                                                 
23 J-QPD-B distributions also have one additional shape parameter over the Logit- and Probit-normal 

distributions, among others. 
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functions for both marginal and conditional distribution assignments, and to encode the 

underlying correlation structure. 

RECOMMENDATIONS AND GUIDELINES FOR PRACTICE 

General Remarks on Using J-QPD 

Since J-QPD-S has lognormal tails, in the sense of Parzen (1979), we caution against its 

application when fatter tails, such as those of Pareto distributions, are needed. If a semi-

bounded distribution with heavy tails is needed, and finite moments are not required, then 

we suggest using the J-QPD-S II (or S-II) (limiting distribution) provided in Table 7.1. 

Both J-QPD-B and J-QPD-S are generally highly accurate at approximating bell-shaped, 

and modestly-skewed J-shaped distributions, as seen in Chapter 6. 

The appropriateness of implementing the J-QPD system should be judged 

according to the characteristics of the decision being modeled. In situations where there is 

inherent non-linearity in the value function, as with (e.g.) network investment 

applications (pipelines, communications, power transmission, etc.), an analyst may 

choose to implement the smooth J-QPD distribution assignments as a supplement to more 

conventional approaches – such as using discretization shortcuts. Indeed, Keelin (2016) 

presents a compelling real-world bidding problem involving a portfolio of real estate 

assets where use of discretization yields poor decision making. Also, recall the results of 

our illustrative example in Chapter 10. 

In other cases, a decision maker may want an estimate of the probability of 

incurring a loss (e.g., the probability that NPV is less than zero) in a risky alternative – 

beyond simply having estimates of expected values. In this case, an analyst may prefer to 

implement the smooth J-QPD distribution assignments to better capture the shape (e.g., 

percentiles) of the output distribution. 
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J-QPD versus Traditional QPDs 

A “recommendations and guidelines for practice” section is incomplete without 

mentioning the tradeoffs between our new J-QPD system and the broader definition of 

QPDs introduced by Keelin and Powley (2011), discussed in Chapter 3. We begin with a 

high-level comparison of the advantages of each approach over the other, shown in Table 

11.1, and then provide more detailed guidance. 
Advantages of J-QPD Advantages of QPD 

The Maximally-Feasible Property Can accept QP pairs of non-SPT form 

SPT assessments are common practice Extendable to more QP pairs 

Easier manipulation of support Includes doubly-unbounded support 

More amenable to both MP and CP More easily handles overdetermined QP pairs 

Finiteness of moments more easily managed  

Closer to named distributions  

Table 11.1. Comparing the Advantages of J-QPD to Traditional QPDs. 

(1) Since assessing QP pairs in SPT-form is common practice24, then J-QPD or L-

QPD are practical modelling choices among continuous distributions, by default, 

if at least a finite lower bound of support can be reasonably imposed, such as zero 

for inherently non-negative quantities (e.g., distance, time, volume, etc.). In these 

cases, the MF property guarantees a unique J-QPD or L-QPD assignment, 

obviating the need for coaching an analyst on how to deal with infeasibility. 

Also, where a finite lower bound of support can be reasonably specified, 

“engineering the support” is simply a matter of: 

 Choosing J-QPD-S when a finite upper bound cannot be easily specified. 

 Choosing J-QPD-B when a finite upper bound can also be specified, as 

with [0, 1] in the assessment of fractional quantities, such as market share. 

                                                 
24 For example, see McNamee and Celona (1990), Hammond and Bickel (2013a), and Hurst et al. (2000). 
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By contrast, traditional QPDs require the choice of an appropriate transformation 

(such as “Exp”) to achieve the desired support. However, as noted in Chapter 3 

and Chapter 4, different transformations affect shape differently, and some 

transformations can yield infinite or undefined moments. This could be 

problematic if an expert’s knowledge presumes finite moments. J-QPD 

circumvents this issue, since it has finite moments, except for the limiting 

distribution system: S-II.  

(2) Traditional QPDs may be more appropriate if one or more of the following 

situations is encountered:  

a. Assessed points contain incoherent QP pairs; e.g., the 50
th

 percentile is 

less than the 40
th

 percentile. In this case, Keelin and Powley (2011) offer a 

straightforward way of performing a least-squares fit for a given QPD type 

(e.g., SQN or Metalog) to the set of QP pairs, via a closed-form solution, 

using methods in Boyd and Vandenberghe (2009).  

b. The number of assessed QP pairs is greater than that required for J-QPD. 

Using SQN, for example, if the number of QP pairs is greater than four, 

then the least-squares approach mentioned in (a) is an option. For larger 

sets of QP pairs, consider using the Metalog system, since Keelin (2016) 

prescribes a means of appending an arbitrarily large number of basis 

functions to meet the number of assessed QP pairs. 

c. Assessed QP pairs are of non-SPT form. In this case, a QPD such as 

Metalog can be constructed having the same number of parameters (and 

basis functions) as the number of QP pairs. However, as illustrated in 

Chapter 3 and Chapter 4, there is no guarantee of feasibility.  
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d. Neither a finite lower nor upper bound of support cannot reasonably be 

imposed, suggesting use of doubly-unbounded support; e.g., log-returns on 

risky assets within financial markets. The standard SQN or Metalog 

distributions are natural candidates, since they have support on (–∞, ∞). 

SUGGESTIONS FOR FUTURE RESEARCH 

Reexamining Discretization Using J-QPD 

Recently, Hammond and Bickel (2013a and 2013b, henceforth “HB”) reexamined the 

accuracy of three-point discrete approximations to continuous distributions based on 

preserving the first several moments (mean, variance, skewness, and kurtosis) of the 

"true" continuous distribution, following earlier examination25. They constructed a fine 

grid of location-scale distributions across the portion of the {β1, β2} space shown in 

Figure 11.1, and for each distribution, computed the error between the moments of the 

"true" distribution selected from the grid, and the given discrete distribution intended to 

approximate it. This comparison procedure is like our closeness computations using the 

APDM and APDV measures in Chapter 6, with several key differences in the case of HB: 

 HB’s grid of “true” distributions is built upon the region of Pearson’s moment-

ratio ({β1, β2}) space shown in Figure 11.1, while the grids built in Chapter 6 

involve the beta and beta-prime distributions, as depicted in our new {sα, tα} 

space. 

 HB’s analysis compares several discrete approximation shortcuts, which we 

discuss in more detail shortly, to each “true” distribution in the {β1, β2} space 

                                                 
25 For examples, see: Pearson and Tukey (1965); Keefer and Bodily (1983); Miller and Rice (1983); Zaino 

and D’Errico (1989); and McNamee and Celona (1990); 



159 

 

based on error measures with respect to the mean, variance, skewness, and 

kurtosis of the true distribution. 

 

Figure 11.1. The Pearson System in the {β1, β2} Space. 

For example, suppose that the distribution selected from the {β1, β2} grid is beta 

(3,7), and the discretization under consideration is Extended Swanson-Megill (ESM), 

which assigns probabilities of {0.3, 0.4, 0.3} to the {10
th

, 50
th

, 90
th

} percentiles. In this 

case, the corresponding discrete approximation for beta (3,7) is as shown in Figure 11.2. 

The true mean (μ) and variance (σ
2
) for a beta (3,7) distribution are: μ = 0.3; σ

2
 = 0.0191. 

The mean ( ̂ ) and variance (
2̂ ) for the ESM discrete approximation in this case are: 

0.1 0.5 0.9
ˆ 0.3 0.4 0.3 0.3004,x x x       

2 2 2 2 2

0.1 0.5 0.9
ˆ ˆ0.3 0.4 0.3 0.0196x x x      . 
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Using this example as context, using ESM to approximate beta(3,7), several noteworthy 

error metrics that HB consider are: 

APDM based on standard deviation: 

ˆ 0.3004 0.3
100% 100% 0.2665 %

0.1382

 



    
      
   

  

APDV: 
2 2

2

ˆ 0.0196 0.0191
100% 100% 2.8565 %

0.0191

 



   
      

  
  

  

Figure 11.2. Extended Swanson-Megill (ESM) Discretization for Beta (3, 7). 

Continuing this process for the entire grid of {β1, β2} pairs (distributions) 

considered, HB then reported summary statistics for the sets of distributions occupying 

the different sub-regions of Figure 11.1. HB then developed new three-point discrete 

distributions, tailored to each region, by choosing the percentiles and weights 

(probabilities) that minimize the mean-squared-error (MSE) with respect to the mean, 

averaged across all distributions within the given region. 
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Extending Discretization Analysis with J-QPD 

Now that we have an arguably much broader set of distributions in J-QPD, we could 

naturally use the J-QPD system to extend HB's analysis of discretization. Consider J-

QPD-B as an example, since it has three shape parameters, and one degree of freedom 

more (an additional shape parameter) than the J-QPD-S distributions. We noted in 

Chapter 7 that due to the presence of three shape parameters for each α, it is possible to 

have more than one distinct location-scale J-QPD-B distribution for a given point in the 

{β1, β2} space. Therefore, instead of constructing a grid of points across various regions 

of Pearson’s {β1, β2} space, we construct a three-dimensional grid of points across the 

feasible region of {10
th

, 50
th

, 90
th

} percentile triplets for J-QPD-B distributions with 

support on [0, 1] (without loss of generality), corresponding to the tetrahedron shown in 

Figure 11.3. While Figure 11.3 below provides an illustration of such a grid for points 

spaced at 0.05 apart, our actual grid used for analysis has points spaced at 0.02 apart, for 

a total of 18,424 points (distributions) considered in our analysis. 
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Figure 11.3. Grid of Distributions Uniformly Spaced over the J-QPD-B Feasible Region. 

Let n = 18,424 (number of distributions considered), and let i = {1, 2, 3, …, n} 

denote the index for the i
th

 distribution in our set. For each of our 18,424 points 

considered, we perform the following computations: 

(1) Specify the J-QPD-B distribution assignment for the θ0.1 vector corresponding 

to the given point, by constructing the quantile function, denoted Qi(p), using 

the equations given in (4.4). 

(2) Compute the mean and variance of this J-QPD-B assignment by numerical 

integration: 
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Mean: 
1

0

( )i iQ p dp   , 

2
nd

 raw moment26:  
1

2

2

0

( )i

iQ p dp   , 

Variance: 2

2

i

i iv    . 

(3) Construct the three-point discrete approximations for this J-QPD-B assignment 

for ESM, MCS, and EPT. ESM (MCS) uses probabilities of {0.3, 0.4, 0.3} 

({0.25, 0.5, 0.25}) on the {10
th

, 50
th

, 90
th

} percentiles, while EPT uses 

probabilities of {0.185, 0.630, 0.185} on the {5
th

, 50
th

, 95
th

} percentiles. Let li, 

bi, and hi denote the {10
th

, 50
th

, 90
th

} percentiles for the i
th

 distribution, and let 

il
  and ih   denote its {5

th
, 95

th
} percentiles, respectively.    

(4) Compute the mean and variance for ESM, MCS, and EPT. 

Mean (ESM): 
ESM 0.3 0.4 0.3 ,i

i i il b h     

Mean (MCS): 
MCS 0.25 0.50 0.25 ,i

i i il b h     

Mean (EPT): EPT 0.185 0.63 0.185 ,i

i i il b h      

Variance (ESM):  
2

2 2 2

ESM ESM0.3 0.4 0.3 ,i i

i i iv l b h      

Variance (MCS):  
2

2 2 2

MCS MCS0.25 0.50 0.25i i

i i iv l b h     , 

Variance (EPT):  
2

2 2 2

EPT EPT0.25 0.50 0.25i i

i i iv l b h      . 

(5) Compute APDM and APDV between the J-QPD-B assignment and its discrete 

approximation for the given point, using expressions from Chapter 6 as follows:  

ESM
ESM 100 ,

i
i i

i i

APDM
h l

 
 


 

MCS
MCS 100 ,

i
i i

i i

APDM
h l

 
 


 

EPT
EPT 100 ,

i
i i

i i

APDM
h l

 
 


 

                                                 
26 Note the slight abuse of notation. Any presence of “i” refers to an index designation, and not an 

exponent, regardless of whether it appears as a superscript or subscript. 
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ESM
ESM 100 ,

i
i i

i

v v
APDV

v


   

MCS
MCS 100 .

i
i i

i

v v
APDV

v


   

EPT
EPT 100 .

i
i i

i

v v
APDV

v


   

After completing steps (1) to (5) for all 18,424 distributions, we compute the following 

summary statistics for these distributions: 

  
1

1
Mean

n

i

i

APDM APDM
n 

 
  
 

 , 

    P50 Med i
i

APDM APDM , 

    Max Max i
i

APDM APDM , 

  
1

1
Mean

n

i

i

APDV APDV
n 

 
  
 

 , 

    P50 Med i
i

APDV APDV , 

    Max Max i
i

APDV APDV . 

The ‘Mean(APDM)’ (‘Mean(APDV’) statistics correspond to the average of the 

individual ‘APDMi’ (‘APDVi’) values, taken over all “i”; i.e., over all 18,424 

distributions. The ‘P50(APDM)’ (‘P50(APDV’) statistics correspond to the median, 

evaluated over all of the individual ‘APDMi’ (‘APDVi’) values. Finally, the 

‘Max(APDM)’ (‘Max(APDV’) statistics correspond to the maximum, evaluated over all 

individual ‘APDMi’ (‘APDVi’) values. Note that each value for APDMi and APDVi is 

both distribution-specific, as indexed by “i”, and dependent upon the discretization under 

consideration. These statistics are presented in Table 11.2. We include the P50 statistics 

since in the limiting case, as J-QPD-B distributions approach the S-II distributions, 

moments diverge upward toward infinity. Thus, the mean and max statistics for MSE are 
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more sensitive to these extreme cases than the median statistic for MSE, as noted in Table 

11.2. 
 Mean(APDM) P50(APDM) Max(APDM) Mean(APDV) P50(APDV) Max(APDV) 

ESM 2.63% 1.86% 11.12% 20.66% 16.16% 78.12% 

MCS 1.34% 0.79% 10.78% 18.25% 13.91% 81.00% 

EPT 1.50% 0.78% 12.17% 19.92% 12.24% 91.01% 

Table 11.2. Summary Statistics for ESM and MCS for all 18,424 Distributions. 

Note that our analysis of discretization accuracy with respect to J-QPD-B, while 

much broader than that performed by HB (since J-QPD-B has three shape parameters), 

examines the entire feasible region for J-QPD-B; e.g., we do not distinguish between 

bell- or U-shaped distributions. Thus, this analysis is representative of the situation in 

which all we know about our distribution is that it is smooth27, and well-represented by a 

distribution within the J-QPD-B system, properly shifted and scaled as needed. 

Examining the performance of discretization with respect to the mean in Table 

11.2, MCS outperforms ESM an all three error metrics, particularly with respect to the 

mean and median values for APDM, and outperforms EPT on the mean and max values 

of APDM; it is essentially a tie with respect to P50 (APDM). This suggests that when 

preserving the mean is important, but that we are not sure whether an expert’s 

distribution is unimodal (e.g., bell-shaped) or multimodal (such as U-shaped) in shape 

(only that it has a smooth characterization), then MCS might be a relatively safe bet. This 

result contrasts with HB’s examination of the bell-shaped beta distributions, for example, 

wherein they find that EPT (not counting their own optimal discrete distributions) is the 

                                                 
27 We mean that the degree to which an expert’s knowledge changes over its domain is smooth (continuous 

derivatives), unlike the TSP distribution proposed by Kotz and Van Dorp (2006), for example. 
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superior choice in preserving the mean, and ESM is preferred when considering discrete 

distributions using {10
th

, 50
th

, 90
th

} percentiles. 

 Alternatively, examining the performance of discretization with respect to the 

variance in Table 11.2, neither one of these three discrete distributions is generally 

superior to the others. However, with respect to mean and median values for APDV, 

MCS and EPT are comparable, and that both are generally superior to ESM. This is also 

in direct contrast to HB’s analysis of the bell-shaped beta distributions, wherein they find 

that EPT is generally considerably superior to both ESM and MCS at preserving 

variance. 

Constructing New Discrete Distributions with J-QPD 

Another natural extension is to follow HB’s lead in creating new three-point discrete 

distributions, optimized (for example) to minimize one or more of our summary statistics 

over all 18,424 points (distributions). Unlike HB, however, we choose as our objective to 

minimize the median (rather than the mean) value of mean-squared error (MSE) over all 

18,424 distributions, which we define as: 
2

100 .i i
i

i i

MSE
h l

  
  

  

 

The first approach follows that of HB for symmetric discrete approximations, by finding 

an SPT ( (0,0.5)  ) and probability vector, {p, 1–2p, p}, (0,0.5)p , so that MSE is 

minimized over all 18,424 points (distributions). The second approach, motivated by the 

results in Table 11.2, differs from the first approach only in that the objective is to 

minimize the median squared error across all points. In both cases, we also consider the 

variant in which the SPT (α) is specified (in this case, we use {10
th

, 50
th

, 90
th

} 

percentiles), and the decision variable is simply "p". For the first approach, in which the 

mean squared error is minimized over all distributions, the two formulations are: 
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2
18,424

,
1

( ) (1 2 ) (0.5) (1 )100
min  

18,424

s.t.     0 0.5,

         0 0.5

i i i i

p
i i i

p Q p Q p Q

h l

p



  





        
  

 

 

 



                         (GP1) 

 
2

18,424

1

(1 2 )100
min  

18,424

s.t.     0 0.5,

       

i i i i

p
i i i

p l p b p h

h l

p





       
  

 

 



.                                                    

(SP1) 

For the second approach, in which the median squared error is minimized over all 

distributions, the two formulations are: 

 
2

,

( ) (1 2 ) (0.5) (1 )
min  100 Med

s.t.     0 0.5,

         0 0.5

i i i i

p i
i i

p Q p Q p Q

h l

p



  



          
   

   

 

 

                          (GP2) 

 
2

(1 2 )
min  100 Med

s.t.     0 0.5,

       

i i i i

p i
i i

p l p b p h

h l

p

         
   

   

  .                                                     (SP2) 

The operation, “Med”, means that the median value is taken over all i = {1, 2, 3, …, n}. 

Problem SP1 is a convex quadratic program with one decision variable (p) and one 

constraint, and is easily solved28. Alternatively, problems GP1, GP2, and SP2 are all non-

convex, non-linear programs. However, since these problems involve (at most) two 

decision variables (p, α), we find solutions that are arbitrarily close to the global optimum 

                                                 
28 See, for example, Boyd and Vandenberghe (2009) for details. 
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by constructing a fine grid of (p, α) pairs (e.g., for GP1 and GP2), computing the 

objective function for all such pairs, and then choosing the pair that minimizes the 

objective function in each case29. 

Table 11.3 specifies optimal three-point discrete distributions for all four cases. 

SP refers to the optimizations over p, while fixing points to the standard ({10
th

, 50
th

, 

90
th

}) percentiles (hence the name, “SP”), while GP refers to the optimization in which 

both p and α are decision variables. The augmented name, “mean” (“median”), means 

that the objective is to minimize the mean (median) value of MSE over all 18,424 points 

(distributions). Note the closeness of both SP discrete distributions to MCS, lending 

credence to MCS when preserving the mean over standard percentiles, and when little is 

known about distribution shape. Alternatively, GP distributions implement {α, p} pairs 

that are neither close to standard percentiles, nor those used by EPT. 

New Discretization Quantiles to use Probabilities to use 

GP_mean (GP1) {0.068, 0.500, 0.932} {0.1896, 0.6208, 0.1896} 

GP_median (GP2) {0.0675, 0.5000, 0.0675} {0.204, 0.592, 0.204} 

SP_mean (SP1) {0.1, 0.5, 0.9} {0.245, 0.510, 0.245} 

SP_median (SP2) {0.1, 0.5, 0.9} {0.24, 0.52, 0.24} 

Table 11.3. Optimized Symmetric Three-Point Discrete Distributions. 

 Table 11.4 is a duplicate of Table 11.2, except that now we have appended the 

performance metrics for all four optimal discrete distributions to compare their 

performance across all summary statistics, as compared to the existing discrete 

approximations. As before, the “winning” discretization for a given performance metric 

is shown in the highlighted cells. Notice that while the GP discrete distributions are 

                                                 
29 For GP1 and GP2, using MATLAB, we used a grid of (p, α) pairs, both taken from 0.002 to 0.498, and 

both spaced in increments of 0.002. For SP2, we simply used a vector of p values, ranging from 0.002 to 

0.498, spaced in increments of 0.002. 
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designed to minimize errors with respect to the mean across our distribution set, they also 

generally perform slightly better at preserving the variance. 
 Mean(|APDM|) P50(|APDM|) Max(|APDM|) Mean(|APDV|) P50(|APDV|) Max(|APDV|) 

ESM 2.63% 1.86% 11.12% 20.66% 16.16% 78.12% 

MCS 1.34% 0.79% 10.78% 18.25% 13.91% 81.00% 

EPT 1.50% 0.78% 12.17% 19.92% 12.24% 91.01% 

GP1 1.08% 0.74% 7.23% 16.89% 13.41% 68.64% 

GP2 1.14% 0.53% 8.24% 16.89% 10.27% 70.54% 

SP1 1.31% 0.75% 11.14% 18.76% 14.62% 81.32% 

SP2 1.30% 0.72% 11.50% 19.38% 15.39% 81.63% 

Table 11.4. Summary Errors for New and Existing Discretization Methods. 

Further Discretization 

We have extended HB’s analysis approach of discretization to J-QPD distributions, but 

implementing several differences: 

 We specify our comprehensive set of J-QPD distributions using the feasibility 

region, rather than the traditional {β1, β2} space introduced by Pearson. 

 We used a slightly modified version for errors with respect to the mean, the 

absolute percent difference in the means (APDM), by dividing the difference in 

means by the inter-decile range (P90-P10), so that the error measure is indifferent 

to changes of location or scale. 

 Like HB’s work, we identified new optimal discrete distributions by minimizing 

the mean value of APDM over our set of distributions, but also by minimizing the 

median value of APDM over this set. 

However, we have only touched the surface in terms of extending discretization using J-

QPD. First, we did not perform a similar analysis using J-QPD-S. Second, and similar in 

spirit to HB’s work, we did not yet delineate our results in terms of classes of distribution 
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shapes; e.g., bell-, U-, J-shaped, etc. An additional step here is to characterize the 

modality of J-QPD in terms of a θα vector. 

Extending J-QPD to Doubly-Unbounded Support 

We close by suggesting some natural extensions to our work. The first is to develop a 

distribution system similar to J-QPD, but with support on (-∞, ∞). However, more than 

three assessed points are required in this case, if it is important to characterize location, 

scale and both infinite tails. Also, the percentile-based flexibility space might need to be 

redefined in this case, since distributions with doubly-unbounded support all correspond 

to the point [1, 1] within the {sα, tα} space presented in Chapter 5. The {s, t} space 

offered by Powley (2013) is a viable approach in the case of four assessed points. 

However, this poses the challenge of extending our SPT and maximally-feasible concept 

to four assessed points. The mathematical form of the distribution, and the structure 

(spacing) of the four-point SPT vector needs to be carefully selected to satisfy the five 

desiderata. Again, the Johnson SU distribution might be a natural candidate. However, no 

one has identified four percentile points that are both commonly-accepted for assessment 

(e.g., 5
th

, 10
th

, 25
th

, 50
th

, 75
th

, 90
th

, 95
th

) and spaced so that there is an explicit analytical 

solution for the four parameters, thus allowing for quantile-parameterized representation. 

Extending the Maximally-Feasible Property Beyond SPT Form 

We saw in Chapter 5 that the J-QPD systems are maximally-feasible given our 

SPT/bound structure described in Chapter 4. However, J-QPD is not maximally-feasible 

whenever the low-base-high assessments are not of SPT form. For example, suppose we 

have an inherently non-negative uncertainty, and thus specify zero for the lower support 

bound. Also, suppose an expert provides {20
th

, 60
th

, 90
th

} percentiles of {30, 40, 200}, 

which are not of SPT form, and suggests using an upper bound of ∞. We face two issues 
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in this case when trying to implement J-QPD-S. The first issue is that when low-base-

high assessments are not of SPT form, Desideratum 1 is immediately violated, and thus 

we cannot specify a J-QPD-S distribution (by finding an (0,0.5)  , and a triplet, 0 < xα 

< x0.5 < x1–α) without solving a non-linear system of equations for these values. More 

importantly, however, for our specific non-SPT example, we face infeasibility; i.e., one 

can show that there exists no (0,0.5)   and triplet, 0 < xα < x0.5 < x1–α, satisfying {x0.2, 

x0.6, x0.9} = {30, 40, 200}. 

 Removing location and scale in our example, we have: 
0.6 0.2

0.9 0.6

0.2,  0.75. 
x x

x x
   

Figure 11.4 shows the feasible region of {P60/P90, P20/P60} pairs for J-QPD-S, taken 

across all possible values for (0,0.5)  , and all possible {sα, tα} pairs, based on a 

sampling of one million points; i.e., one million {α, sα, tα} randomly-sampled triplets, 

each of which corresponds to a unique location-scale J-QPD-S distribution. 
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Figure 11.4. Feasible Region of {P60/P90, P20/P60} Pairs for J-QPD-S. 

 A major ideal is to identify a new probability distribution system that is smooth 

and meets all five desiderata like J-QPD, but that is also quantile-parameterized by (and 

maximally-feasible for) any triplet of compatible low-base-high assessments, regardless 

of whether the triplet of assessments is of SPT form. The QPDs developed by Keelin and 

Powley can handle vectors of QP pairs of non-SPT form, given the linear relationship 

between quantile- and probability data vectors, but are not maximally-feasible, as we saw 

in the example of Figure 3.2. 

Fitting J-QPD to an Over-Specified Set of QP Pairs 

A second extension to our work is the development of a simple method for fitting J-QPD 

to an over-specified vector of assessed points. The linear form of the parameters in the 

SQN system allow Keelin and Powley (2011) to represent the least-squares fit problem as 
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a simple quadratic program in the four unknown parameters, giving SQN a tractability 

advantage over J-QPD in the case of an over-specified system. Perhaps it might be 

possible to develop a five-point version of an SPT, with percent points spaced so as to 

yield a tractable regression problem in solving for the three unknown parameters. 
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Appendix A: Proof of Proposition 2 

Proposition 2 (MF Property). Consider any compatible θα = (l, xα, u) = (l, xα, 

x0.50, x1–α, u). There exists a unique quantile function, Q, characterized by (4.4), that 

satisfies: 

o QB(0) = l, 

o QB(α) = xα,        

o QB(0.5) = x0.5,        

o QB(1–α) = x1–α,         

o QB(1) = u.       

Proof. Since we are given θα as compatible, it follows that l < xα < x0.50 < x1–α < u. 

Since θα is chosen arbitrarily, it suffices to show that the functional representation, Q(p), 

given in (4.4) corresponds to a quantile function for the given θα. The expression, 
1sinh( ( ( ) ))p n c        , in (4.4) corresponds to the quantile function for a Johnson 

SU distribution (by definition), provided that λ > 0 and δ > 0. Since Φ(x) is increasing 

over the real number line, it follows that Q(p) is an increasing quantile function for the 

given θα if and only if λ > 0 and δ > 0 in accordance with the parameter expression in (7). 

There are three cases to consider: 

Case 1: n = -1. 

Referencing the parameter expressions given in (4.4), we have: 

1 2 0 ,n L H B H B B L           and 1.
2( )

H L

H B





 

This implies that: 

11
cosh 0.

2( )

H L

c H B
    
   

     

0.
sinh(2 )

H L

c





  
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Case 2: n = 1. 

Referencing the parameter expressions given in (4.4), we have: 

1 2 0 ,n L H B H B B L           

and 1.
2( )

H L

B L





 

This implies that: 

11
cosh 0.

2( )

H L

c B L
    
   

     

0.
sinh(2 )

H L

c





  

 

Case 3: n = 0. 

For the case in which n = 0, Q(p) is defined as in (4.6): 

1( ) ( ) ( ) .
2

H L
Q p l u l B p

c

  
       

    

By inspection, Q(p) is non-decreasing as defined since (u – l) > 0, and since H – L 

> 0. 

This completes the proof of Proposition 2. ■ 
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Appendix B: Showing that S-II has Unbounded Moments 

Consider the following quantile function representation: 

 1( ) exp sinh( ( ( ) )) ,  0,  0,  0.Q p l p            
 

We seek to show that all positive moments of Q(p) are infinite. Without loss of 

generality, we set l = 0 and θ = 1, since these correspond to location and scale parameters, 

respectively. Let μk denote the k
th

 raw moment of Q(p), for any k > 0. By definition, the 

quantile representation of μk is given by:  

  
1 1

1

0 0

( ) exp sinh ( ( ) )k

k Q p dp k p dp            

 
21

exp sinh ( .
22

x
k x dx  







 
       

 
  

The integrand is non-negative, and we note that: 

 
2

lim exp sinh ( ,
2

x

x
k x  

  
          
    

since kλ > 0 and δ > 0. Thus, the integral diverges, which implies that μk is infinite for 

Q(p) whenever k > 0. ■ 
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Appendix C: Finiteness of J-QPD-S Moments 

As defined in (4.7), the quantile function for the J-QPD-S distribution is given by: 

   1 1 1( ) exp sinh sinh ( ) sinh ( ) .SQ p l p n c            
 

We seek to show that all positive moments of QS(p) are finite. There are three 

cases to consider: n = {-1, 0, 1}. For n = 0, recall that we recover a lognormal 

distribution, which is well-known to have finite positive moments. We now consider n = 

{-1, 1}. Without loss of generality, we remove location and scale. Consider: 

   1 1 1( ) exp sinh sinh ( ) sinh ( ) ,  0,  0.SQ p p n c             
 

Let μk denote the k
th

 raw moment associated with QS(p), for any k > 0. By 

definition, the quantile representation of μk is given by:  

   
1 1

1 1 1

0 0

( ( )) exp sinh sinh ( ) sinh ( )k

k SQ p dp k p n c dp             
 

 
1

2
1 2 1

0

exp ( ) 1 ( ) 1 ( ) .k p c n c p dp       
            

  


 

Now, let us first consider n = –1. 

Case 1: n = -1. 

We have: 

 
1

2
1 2 1

0
0

exp ( ) 1 ( ) 1 ( )k k p c c p dp      



  
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  

  

  
1

1 2

0

exp ( ) 1 ( )k p c dp         

   
1

2 1 2 2 2 2

0

1
exp 1 ( ) ( ) exp 1 ( ) .

2
k c p dp k c        

                 
  


  ∎ 

Case 2: n = 1. 

In this case, we have: 

   
2

1 2 1( ) exp ( ) 1 ( ) 1 ( ) .
k

SQ p k p c c p       
            

    
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We note the following: 

         
1 1/2 1 1/2 1

0 0 1/2 0 1/2

( ) ( ) ( ) (0.5) ( )
k k k k k

k S S S S SQ p dp Q p dp Q p dp Q dp Q p dp         
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Appendix D: Proof of Proposition 1 

Proposition 1 (MF Property). Consider any compatible θα = (l, xα, ∞) = (l, xα, x0.50, x1–α, 

∞). There exists a unique quantile function, Q, characterized by (4.7), that satisfies: 

o QS(0) = l, 

o QS(α) = xα,        

o QS(0.5) = x0.5,        

o QS(1–α) = x1–α,         

o QS(1) = ∞. 

Proof. Since we are given θα as compatible, it follows that l < xα < x0.50 < x1–α < ∞. 

Since θα is chosen arbitrarily, it suffices to show that the functional representation, QS(p), 

given in (4.7) corresponds to a quantile function for the given θα. Since Φ
–1

(p) is 

increasing over p, and since the “Exp”, “sinh”, and “sinh
-1

” operators are all non-

decreasing over the real number line, it follows that QS(p) is an increasing quantile 

function for the given θα if and only if θ > 0, λ > 0 and δ > 0 in accordance with the 

parameter expression in (4.7). There are three cases to consider: 

Case 1: n = -1. 

Referencing the parameter expressions given in (4.7), we first note that θ = x1–α – l 

> 0, due to the given compatibility of θα. Next, we observe that: 

1 2 0 ,n L H B H B B L           and 1.
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
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( ) 0.H B
c




 
     
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Case 2: n = 1. 
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Referencing the parameter expressions given in (4.7), we first note that θ = xα – l 

> 0, due to the given compatibility of θα. Next, we observe that: 

1 2 0 ,n L H B H B B L           and 1.
2( )

H L

B L





 

This implies that: 
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( ) 0.B L
c




 
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   
Case 3: n = 0. 

For the case in which n = 0, QS(p) is given as in (4.8): 

 1( ) exp ( ) ,SQ p l p      with 

θ = x0.5 – l > 0, 

0.
H B B L

c c


 
    

Thus, QS(p) is non-decreasing over p in this case, and is thus a quantile function. 

This completes the proof of Proposition 1. ∎   
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Appendix E: Finiteness of L-QPD-S Moments 

Consider the quantile function for the L-QPD-S distributions, given by: 

   1 1 1( ) exp sinh sinh ( ) sinh ( ) ,  0,  0,  0,SQ p l p nc                

1where ( ) log .
1

p
p

p

  
   

 
 

For k > 0, the k
th

 raw moment associated with Qs exists if and only if: 

 21 ( ) 1.k nc cd       

Proof. Without loss of generality, let l = 0, and θ = 1, so that we have: 

   1 1 1( ) exp sinh sinh ( ) sinh ( ) , 0,  0,SQ p p nc            

which can also be expressed as: 

 
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1 2 1( ) exp ( ) 1 ( ) 1 ( ) .SQ p p c nc p     
       

  
 

For this proof, we make use of the following facts: 

(1) 
21 1 ,  x x x x      

(2) For a log-logistic distribution with shape parameter, β, the k
th

 raw moment exists 

if and only if k < β30.  

There are three cases to consider: 

Case 1:  n = 0. 

In this case, Qs reduces to:  

 
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This corresponds to a log-logistic distribution with shape parameter: 
2

1

1 ( )c


 



, 

and thus the k
th

 raw moment exists if and only if 
21 ( ) 1k c   . Since n = 0 in this 

                                                 
30 For more details, see Tadikamalla and Johnson (1982), and Tadikamalla (1980). 
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case, it follows that the k
th

 raw moment exists if and only if  21 ( ) 1k nc cd     , 

thus establishing the proof for Case 1. 

Case 2: n = 1. 

Letting ϕ denote the PDF for the standard logistic distribution, and 
21 ( )M c  , we 

can express the k
th

 raw moment associated with Qs, denoted μk, as: 

  2
( ) exp 1 .x k Mx c x dx  





 
    

 
  

Since c > 0, δ > 0, and λ > 0, then if μk exists and is finite, we note that: 

      ( ) exp ( ) exp 1 .k

LHS RHS

x k Mx c x dx x k Mx c x dx      
 

 

          

Now, 

  ( ) exp .LHS x k M c x dx  




    

Thus, LHS is the k
th

 raw moment of a log-logistic distribution with shape parameter: 

 

1

M c


 



, which exists if and only if kλδ(M + cδ) < 1. 

Also, 

       
0

0

( ) exp 1 ( ) exp 1RHS x k Mx c x dx x k Mx c x dx     




          

       
0 0

( ) exp 1 ( ) exp 1x k Mx c x dx x k Mx c x dx     
 

           

       
0

2 ( ) exp 1 2 ( ) exp 1x k Mx c x dx x k Mx c x dx     
 



            

    

'

2 exp ( ) exp .

RHS

k c x k M c x dx    




      

Notice that 'RHS LHS , and that 'RHS  is just a constant multiplied by RHS. Thus, if 

RHS converges, which is equivalent to the condition that kλδ(M + cδ) < 1, then μk exists. 
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Conversely, if μk exists, then LHS converges, which is equivalent to the condition: kλδ(M 

+ cδ) < 1. This completes the proof for Case 2. 

Case 3: n = -1. 

Letting ϕ denote the PDF for the standard logistic distribution, and 
21 ( )M c  , we 

can express the k
th

 raw moment associated with Qs, denoted μk, as: 

  2
( ) exp 1 .x k Mx c x dx  





 
    

 
  

Since c > 0, δ > 0, and λ > 0, then if μk exists and is finite, we note that: 

      ( ) exp 1 ( ) exp .k

LHS RHS

x k Mx c x dx x k Mx c x dx      
 

 

          

Now, 

  ( ) exp .RHS x k M c x dx  




    

Thus, RHS is the k
th

 moment of a log-logistic distribution with shape parameter: 

 

1

M c


 



, which exists if and only if kλδ(M – cδ) < 1. 

Also, 

       
0

0

( ) exp 1 ( ) exp 1LHS x k Mx c x dx x k Mx c x dx     




          

 

        
0 0

( ) exp 1 exp ( ) expx k Mx c x dx k c x k M c x dx      
 

           

    
 

  
0

'

exp
exp ( ) cosh ( ) exp .

2

LHS

k c
k c x k M c x dx x k M c x dx


      

 




         

Notice that 'LHS RHS , and that 'LHS  is just a constant multiplied by LHS. Now, if 

RHS converges, which is equivalent to the condition that kλδ(M + cδ) < 1, then μk exists. 

Conversely, if μk exists, then LHS converges, which is equivalent to the condition: kλδ(M 

+ cδ) < 1. This completes the proof for Case 3, and thus the proof. ∎ 
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Appendix F: MATLAB Scripts for J-QPD 

This appendix provides the MATLAB function (.m) files for quantile function (QF), 

cumulative distribution function (CDF), and probability density function (PDF) 

evaluations for the J-QPD-B, J-QPD-S, and J-QPD-S II distributions. All functions take a 

θα vector as input, as well as a p (x) value for quantile (CDF and PDF) functions. 

J-QPD-B QUANTILE FUNCTION 

function x = JQPDB(p,low,x50,high,per,lower_bound,upper_bound)  
%JQPDB Quantile function of the JQPDB (bounded) distribution. 
%   X = JQPDB(p,low,x50,high,per,lower_bound,upper_bound) returns the  
%   p-level quantile of the JQPDB distribution with {per,0.5,1-per}-

level  
%   quantiles given by {low,x50,high} (respectively) and specified 

finite 
%   lower and upper bounds given by 'lower_bound' and 'upper_bound' 
%   (respectively). 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDBcdf, JQPDBpdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
T =@(p) norminv(p); 
TI =@(x) normcdf(x); 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
    upper_bound=1; % default upper bound is one  
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & high < upper_bound 

& per > 0 & per < 0.5); 
k = (okAB & (0 <= p & p <= 1)); 
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
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if ~allOK 
    if isa(p,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') || 

isa(upper_bound,'single') 
       x = NaN(size(k),'single');  
    else 
       x = NaN(size(k)); 
    end 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(p) > 1, p = p(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
        if numel(upper_bound) > 1, upper_bound = upper_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDB parameters-----% 
lb=lower_bound; 
ub=upper_bound; 

  
c=T(1-per); % a constant  

  
L=T((low-lb)./(ub-lb)); 
B=T((x50-lb)./(ub-lb)); 
H=T((high-lb)./(ub-lb)); 

  
g=sign(L+H-2.*B); 
d=(1./c).*acosh((L-H)./(2.*max(B-H,L-B))); 
lam=(H-L)./sinh(2.*d.*c); 
theta=(1/2).*(L.*(1+g)+H.*(1-g));  
%-----Compute x-----% 
q=lb+(ub-lb).*TI(lam.*sinh(d.*(T(p)+g.*c))+theta); % general quantile 

function 
if(g==0) % special case 
    q=lb+(ub-lb).*TI(B+((H-L)./(2.*c)).*T(p)); 
end  

  
if allOK 
    x = q; 
else 
    x(k) = q; 
end 
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J-QPD-B CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

function y = JQPDBcdf(x,low,x50,high,per,lower_bound,upper_bound)   
%JQPDBcdf JQPDB (bounded) cumulative distribution function. 
%   Y = JQPDBcdf(x,low,x50,high,per,lower_bound,upper_bound) returns 

the  
%   cumulative probability of the JQPDB distribution with  
%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower and upper bounds given by 'lower_bound' 

and 
%   'upper_bound'(respectively) at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDB, JQPDBpdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
T =@(p) norminv(p); 
TI =@(x) normcdf(x);  

  
if nargin < 5  
    lower_bound=0; % default lower bound is zero 
    upper_bound=1; % default upper bound is one  
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & high < upper_bound 

& per > 0 & per < 0.5); 
k = (okAB & (lower_bound <= x & x <= upper_bound)); 
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') || 

isa(upper_bound,'single') 
       y = NaN(size(k),'single');  
    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 
    y(okAB & x > upper_bound) = 1; 
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    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
        if numel(upper_bound) > 1, upper_bound = upper_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDB parameters-----% 
lb=lower_bound; 
ub=upper_bound; 

  
c=T(1-per); % a constant 

  
L=T((low-lb)./(ub-lb)); 
B=T((x50-lb)./(ub-lb)); 
H=T((high-lb)./(ub-lb)); 

  
g=sign(L+H-2.*B); 
d=(1./c).*acosh((L-H)./(2.*max(B-H,L-B))); 
lam=(H-L)./sinh(2.*d.*c); 
theta=(1/2).*(L.*(1+g)+H.*(1-g)); 
%-----Compute y-----% 
f=TI(-g.*c+(1./d).*asinh((1./lam).*(-theta+T((x-lb)./(ub-lb))))); 
if(g==0) % special case 
    f=TI((2.*c./(H-L)).*(-B+T((x-lb)./(ub-lb))));   
end 

  
% Broadcast the values to the correct place if need be.   
if allOK 
    y = f; 
else 
    y(k) = f;  
end 

J-QPD-B PROBABILITY DENSITY FUNCTION (PDF) 

function y = JQPDBpdf(x,low,x50,high,per,lower_bound,upper_bound)  
%%JQPDBpdf JQPDB (bounded) probability density function. 
%   Y = JQPDBpdf(x,low,x50,high,per,lower_bound,upper_bound) returns 

the  
%   probability density of the JQPDB distribution with  
%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower and upper bounds given by 'lower_bound' 

and 
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%   'upper_bound'(respectively) at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDB, JQPDBcdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
T =@(p) norminv(p); 
ti =@(x) normpdf(x); 

  
if nargin < 5  
    lower_bound=0; % default lower bound is zero 
    upper_bound=1; % default upper bound is one  
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & high < upper_bound 

& per > 0 & per < 0.5); 
k = (okAB & (lower_bound <= x & x <= upper_bound)); 
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') || 

isa(upper_bound,'single') 
       y = NaN(size(k),'single');  
    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 
    y(okAB & x > upper_bound) = 0; 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
        if numel(upper_bound) > 1, upper_bound = upper_bound(k); end 
    else 
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        return; 
    end 
end 
%-----JQPDB parameters-----% 
lb=lower_bound; 
ub=upper_bound; 

  
c=T(1-per); % a constant  

  
L=T((low-lb)./(ub-lb)); 
B=T((x50-lb)./(ub-lb)); 
H=T((high-lb)./(ub-lb)); 

  
g=sign(L+H-2.*B); 
d=(1./c).*acosh((L-H)./(2.*max(B-H,L-B))); 
lam=(H-L)./sinh(2.*d.*c); 
theta=(1/2).*(L.*(1+g)+H.*(1-g)); 
%-----Compute y-----% 
f=(1./d).*(1./(ub-lb)).*ti(-g.*c+(1./d).*asinh((1./lam).*(-theta+T((x-

lb)./(ub-lb))))).*(1./ti(T((x-lb)./(ub-lb))))./sqrt((lam.^2)+((-

theta+T((x-lb)./(ub-lb))).^2)); 
if(g==0) % special case 
    f=((2.*c)./((H-L).*(ub-lb))).*ti((2.*c./(H-L)).*(-B+T((x-lb)./(ub-

lb))))./(ti(T((x-lb)./(ub-lb))));   
end 

  
% Broadcast the values to the correct place if need be.  
if allOK 
    y = f; 
else 
    y(k) = f;  
end 

J-QPD-S QUANTILE FUNCTION 

function x = JQPDS(p,low,x50,high,per,lower_bound)  
%JQPDS Quantile function of the JQPDS (semi-bounded) distribution. 
%   X = JQPDS(p,low,x50,high,per,lower_bound,upper_bound) returns the  
%   p-level quantile of the JQPDS distribution with {per,0.5,1-per}-

level  
%   quantiles given by {low,x50,high} (respectively) and specified 

finite 
%   lower bound given by 'lower_bound'. 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDScdf, JQPDSpdf. 
% 
%   Reference: 
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%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (0 <= p & p <= 1)); 
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(p,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       x = NaN(size(k),'single');  
    else 
       x = NaN(size(k)); 
    end 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(p) > 1, p = p(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS parameters-----% 
lb=lower_bound;  
c=norminv(1-per); % a constant  

  
L=log(low-lb); 
B=log(x50-lb); 
H=log(high-lb); 

  
g=sign(L+H-2.*B); 
theta=(1./2).*((low-lb).*(1+g)+(high-lb).*(1-g)); 
d=(1./c).*sinh(acosh((H-L)./(2.*min(B-L,H-B))));  
lam=(1./(d.*c)).*min(H-B,B-L); 
%-----Compute x-----% 
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q=lb+theta.*exp(lam.*sinh(asinh(d.*norminv(p))+asinh(g.*c.*d))); % 

general quantile function  
if(g==0) % special case - a lognormal distribution 
    q=lb+x50.*(s1.^(-norminv(p)./c)); 
end 

  
% Broadcast the values to the correct place if need be. 
if allOK 
    x = q; 
else 
    x(k) = q;  
end 
 

J-QPD-S CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

function y = JQPDScdf(x,low,x50,high,per,lower_bound)  
%JQPDScdf JQPDS (semi-bounded) cumulative distribution function. 
%   Y = JQPDScdf(x,low,x50,high,per,lower_bound) returns the  
%   cumulative probability of the JQPDS distribution with  
%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower bound given by 'lower_bound' at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDS, JQPDSpdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (lower_bound <= x));  
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       y = NaN(size(k),'single');  



192 

 

    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end  
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS parameters-----% 
lb=lower_bound;  
c=norminv(1-per); % a constant  
L=log(low-lb); 
B=log(x50-lb); 
H=log(high-lb); 

  
g=sign(L+H-2.*B); 
theta=(1./2).*((low-lb).*(1+g)+(high-lb).*(1-g)); 
d=(1./c).*sinh(acosh((H-L)./(2.*min(B-L,H-B))));  
lam=(1./(d.*c)).*min(H-B,B-L); 
%-----Compute y-----% 
f=normcdf((1./(lam.*d)).*(sqrt(1+((c.*d).^2)).*log((x-lb)./theta)-

g.*c.*d.*sqrt((lam.^2)+((log((x-lb)./theta)).^2)))); 
if(g==0) % special case - a lognormal distribution 
    f=normcdf((-c./log(s1)).*log((x-lb)./x50));   
end 
f(x==lb)=0; 
f(x==inf)=1; 
% Broadcast the values to the correct place if need be.  
if allOK 
    y = f; 
else 
    y(k) = f; 
end 
 

J-QPD-S PROBABILITY DENSITY FUNCTION (PDF) 

function y = JQPDSpdf(x,low,x50,high,per,lower_bound)  
%%JQPDSpdf JQPDS (semi-bounded) probability density function. 
%   Y = JQPDSpdf(x,low,x50,high,per,lower_bound) returns the  
%   probability density of the JQPDS distribution with  
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%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower bound given by 'lower_bound' at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDS, JQPDScdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (lower_bound <= x));  
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       y = NaN(size(k),'single');  
    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end  
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS parameters-----% 
lb=lower_bound;  
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c=norminv(1-per); % a constant  
L=log(low-lb); 
B=log(x50-lb); 
H=log(high-lb); 

  
g=sign(L+H-2.*B); 
theta=(1./2).*((low-lb).*(1+g)+(high-lb).*(1-g)); 
d=(1./c).*sinh(acosh((H-L)./(2.*min(B-L,H-B))));  
lam=(1./(d.*c)).*min(H-B,B-L); 
%-----Compute y-----% 
f=(1./(lam.*d)).*(1./(x-lb)).*(sqrt(1+((c.*d).^2))-g.*c.*d.*log((x-

lb)./theta)./sqrt((lam.^2)+((log((x-

lb)./theta)).^2))).*normpdf((1./(lam.*d)).*(sqrt(1+((c.*d).^2)).*log((x

-lb)./theta)-g.*c.*d.*sqrt((lam.^2)+((log((x-lb)./theta)).^2)))); 
if(g==0) % special case - a lognormal distribution 
    f=normpdf((-c./log(s1)).*log((x-lb)./x50));   
end 

  
% Broadcast the values to the correct place if need be.  
if allOK 
    y = f; 
else 
    y(k) = f; 
end 

J-QPD-S II QUANTILE FUNCTION 

function x = JQPDS2(p,low,x50,high,per,lower_bound)  
%JQPDS2 Quantile function of the JQPDS2 (semi-bounded) distribution. 
%   X = JQPDS2(p,low,x50,high,per,lower_bound,upper_bound) returns the  
%   p-level quantile of the JQPDS2 distribution with {per,0.5,1-per}-

level  
%   quantiles given by {low,x50,high} (respectively) and specified 

finite 
%   lower bound given by 'lower_bound'. 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDS2cdf, JQPDS2pdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 
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% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (0 <= p & p <= 1)); 
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(p,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       x = NaN(size(k),'single');  
    else 
       x = NaN(size(k)); 
    end 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(p) > 1, p = p(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS2 parameters-----% 
lb=lower_bound;  
c=norminv(1-per); % a constant  

  
low=low-lb; % re-locate the lower bound to zero  
x50=x50-lb; % re-locate the lower bound to zero 
high=high-lb; % re-locate the lower bound to zero 
s1=x50./high; % first quantile-based shape parameter 
s2=low./x50; % second quantile-based shape parameter 

  
g=sign(log(s2./s1)); 
theta=(1/2).*(low.*(1+g)+high.*(1-g)); 
d=(1./c).*acosh(log(s1.*s2)./(2.*log(max(s1,s2))));  
lam=-log(max(s1,s2))./sinh(d.*c); 
%-----Compute x-----% 
q=lb+theta.*exp(lam.*sinh(d.*(norminv(p)+g.*c))); % general quantile 

function 
if(g==0) % special case - a lognormal distribution 
    q=lb+x50.*(s1.^(-norminv(p)./c)); 
end 

  
% Broadcast the values to the correct place if need be. 
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if allOK 
    x = q; 
else 
    x(k) = q; 
end 

J-QPD-S II CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

function y = JQPDS2cdf(x,low,x50,high,per,lower_bound)  
%JQPDS2cdf JQPDS2 (semi-bounded) cumulative distribution function. 
%   Y = JQPDS2cdf(x,low,x50,high,per,lower_bound) returns the  
%   cumulative probability of the JQPDS2 distribution with  
%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower bound given by 'lower_bound' at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDS2, JQPDS2pdf. 
% 
%   Reference: 
%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (lower_bound <= x));  
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       y = NaN(size(k),'single');  
    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
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        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS2 parameters-----% 
lb=lower_bound;  
c=norminv(1-per); % a constant  
low=low-lb; % re-locate the lower bound to zero  
x50=x50-lb; % re-locate the lower bound to zero 
high=high-lb; % re-locate the lower bound to zero 
s1=x50./high; % first quantile-based shape parameter 
s2=low./x50; % second quantile-based shape parameter 
g=sign(log(s2./s1)); 
theta=(1./2).*(low.*(1+g)+high.*(1-g)); 
d=(1./c).*acosh(log(s1.*s2)./(2.*log(max(s1,s2)))); 
lam=-log(max(s1,s2))./sinh(d.*c); 
%-----Compute y-----% 
f=normcdf((1./d).*asinh((1./lam).*log((x-lb)./theta))-g.*c); 
if(g==0) % special case - a lognormal distribution 
    f=normcdf((-c./log(s1)).*log((x-lb)./x50));   
end 
f(x==lb)=0; 
% Broadcast the values to the correct place if need be. 
if allOK 
    y = f; 
else 
    y(k) = f; 
end 

J-QPD-S II PROBABILITY DENSITY FUNCTION (PDF) 

function y = JQPDS2pdf(x,low,x50,high,per,lower_bound)  
%%JQPDS2pdf JQPDS2 (semi-bounded) probability density function. 
%   Y = JQPDS2pdf(x,low,x50,high,per,lower_bound) returns the  
%   probability density of the JQPDS2 distribution with  
%   {per,0.5,1-per}-level quantiles given by {low,x50,high} 

(respectively) 
%   and specified finite lower bound given by 'lower_bound' at "x". 
% 
%   The size of X is the common size of the input arguments. A scalar 

input   
%   functions as a constant matrix of the same size as the other 

inputs. 
% 
%   See also JQPDS2, JQPDS2cdf. 
% 
%   Reference: 
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%      [1]     Hadlock, C.C., J.E. Bickel. 2017. Johnson 
%      Quantile-Parameterized Distributions. Decision Analysis. 14(1). 
% 
%   by Christopher C. Hadlock. 

  
if nargin < 5 
    lower_bound=0; % default lower bound is zero 
end 

  
% Weed out any out of range parameters or probabilities. 
okAB = (lower_bound < low & low < x50 & x50 < high & per > 0 & per < 

0.5); 
k = (okAB & (lower_bound <= x));  
allOK = all(k(:)); 

  
% Fill in NaNs for out of range cases. 
if ~allOK 
    if isa(x,'single') || isa(low,'single') || isa(x50,'single') || 

isa(high,'single') || isa(per,'single') || isa(lower_bound,'single') 
       y = NaN(size(k),'single');  
    else 
       y = NaN(size(k)); 
    end 
    y(okAB & x < lower_bound) = 0; 

  
    % Remove the out of range cases.  If there's nothing remaining, 

return. 
    if any(k(:)) 
        if numel(x) > 1, x = x(k); end  
        if numel(low) > 1, low = low(k); end 
        if numel(x50) > 1, x50 = x50(k); end 
        if numel(high) > 1, high = high(k); end 
        if numel(per) > 1, per = per(k); end 
        if numel(lower_bound) > 1, lower_bound = lower_bound(k); end 
    else 
        return; 
    end 
end 
%-----JQPDS2 parameters-----% 
lb=lower_bound;  
c=norminv(1-per); % a constant  
low=low-lb; % re-locate the lower bound to zero  
x50=x50-lb; % re-locate the lower bound to zero 
high=high-lb; % re-locate the lower bound to zero 
s1=x50./high; % first quantile-based shape parameter 
s2=low./x50; % second quantile-based shape parameter 
g=sign(log(s2./s1)); 
theta=(1/2).*(low.*(1+g)+high.*(1-g)); 
d=(1./c).*acosh(log(s1.*s2)./(2.*log(max(s1,s2)))); 
lam=-log(max(s1,s2))/sinh(d.*c); 
%-----Compute y-----% 
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f=(1./d).*normpdf((1./d).*asinh((1./lam).*log((x-lb)./theta))-

g.*c).*(((((1./lam).*log((x-lb)./theta)).^2)+1).^(-0.5)).*(1./((x-

lb).*lam)); 
if(g==0) % special case - a lognormal distribution 
    f=normpdf((-c./log(s1)).*log((x-lb)./x50));   
end 

  
% Broadcast the values to the correct place if need be. 
if allOK 
    y = f; 
else 
    y(k) = f; 
end 
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