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Facilitate collaboration in Internet of things (IoT)

proximity networks

Chenguang Liu, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Christine Julien

The popularity and reduced cost of low-power multi-sensor Internet of

Things (IoT) devices provide many opportunities for human-centered ubiqui-

tous computing. These personal and environmental embedded systems con-

tinuously collect the context information about the user activity or the en-

vironment, and provide digital assistance (e.g., turn up the A/C, unlock a

door).

While many existing always-connected IoT solutions rely on the success

of cloud computing, there is a growing interest in discovering the benefits of

utilizing local resources and on-device processing. To make the IoT applica-

tions work without global connectivity, we need to overcome the limitation of

the IoT devices in terms of sensor equipment and energy consumption. On the

other hand, the manners of device interactions have changed with advances in

wireless communication. Today nearly all mobile devices are capable of short-

range wireless communication (e.g., via Bluetooth, Zigbee, etc). This provides
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a great opportunity for allowing the co-located IoT devices to communicate

and interact free of user intrusion.

In this thesis, I advocate that we utilize the pervasive and opportunistic

connections around us for facilitating collaboration in the internet of things.

With the help from IoT proximity networks, the costly sensing tasks can be

distributed to improve sustainability. Heterogeneous devices can leverage each

other’s capability in the spontaneous context neighborhoods. This dissertation

details the technical solutions to the following challenges:

• A key enabler of collaboration in IoT proximity networks is the ability

to continuously identify nearby resources. We develop a low duty cycle

protocol BLEnd to let the IoT hosts automatically discover neighboring

devices in range of wireless communication.

• To effectively coordinate context sensing tasks among the IoT devices via

device-to-device (D2D) communication, we propose a generic collabora-

tive sensing framework SCENTS which enables application-transparent

collaboration for context sharing. SCENTS incorporates an active request-

response model to let devices in proximity sense context information as

a fleet, while balancing sensing fulfillment and the fairness of energy

consumption.

• In complement to the request-response approach of SCENTS we archi-

tect the PINCH framework, which proactively distributes the context

information in local network based on various context demand models.
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To further optimize the sensing task assignment in an ad hoc grouping of

devices, we develop the Stacon system. It entails a distributed algorithm

that quickly adjusts the neighborhood’s sensing task assignments based

on the heterogeneity and dynamics of resources in proximity.

• To exhibit the real world implications of the proposed solutions, we de-

ploy a IoT sensor testbed and acquire a data collection from user-carried

mobile devices. In the end, we evaluate the sensing collaboration with

this rich-context, real-life dataset.
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Chapter 1

Introduction

The recent decade has seen the rise of highly integrated IoT devices

with multiple low-powered commodity sensors and the ability to communi-

cate wirelessly with other nearby devices. These emerging computing systems

can be found in nearly every application domain, from wearables (e.g., sport

watches and medical wearables) to home automation (e.g., thermostats and

smart cameras), to smart city infrastructure (e.g., providing environmental

monitoring or civic services).

The IoT devices use their on-device electronics to sense the object

attributes or user activities from the physical world and provide personal or

industrial assistance digitally. From a sensing perspective, how an IoT device

operates is typically simple: it periodically queries the embedded sensors and

sends readings to an on-device application, to a paired device, or to the “cloud”

via a nearby gateway. This design works unsurprisingly well for enterprise

applications and smart home settings. However, the full potential of personal

IoT applications are constrained by this computing model. The tight binding

between the application and the hardware forms a star topology and blocks the

embedded sensor kit from being utilized by multiple applications [73]. Besides,
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cloud-based context processing and service delivery pose an strong dependency

on the hub or global connectivity. According to Gartner1, the number of such

IoT devices surpassed the human population in 2017 and is expected to grow

to 20.4 billion by 2020. This means there will be a massive deluge of sensor

data generated by the IoT devices and we need an alternative to offloading

everything to the cloud.

Because of all these problems, there is a growing interest in discover-

ing the benefits of utilizing local resources and on-device processing [22, 117].

However, the global connectivity and cloud-based coordination have to be sub-

stituted properly [26, 113]. Otherwise the usefulness of the IoT application will

be damaged by the extreme resource limitations in terms of hardware equip-

ment and energy consumption. Unlike Android or iOS applications, which

typically have a sensor equipment known a priori to the developers, IoT ap-

plications often meet the problem of missing needed sensing capability, simply

because a user may have a device that cannot perform every sensing task. For

example, if a smart office application needs both accelerometer and microphone

for detecting the user’s working situation, then it would not be able to run on a

device that lacks either of the physical sensors. Applications designed for user

carried devices (e.g. smart phones, wearables) face the constraint of energy

consumption. For instance, querying a costly sensor frequently on a battery

powered system-on-chip (SoC) will inevitably drain the battery. One promis-

ing alternative to the cloud coordination is the local area interactions [1, 26];

1https://www.gartner.com/newsroom/id/3598917
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that is, coordinating the co-located IoT devices with pro-active interactions

and providing the IoT service collectively.

With the advances in wireless communication, the manners of IoT de-

vice interactions have changed from tag based technologies (e.g., scanning

QR codes 2, near-field communication cards 3) to WPAN (e.g., ANT, Blue-

tooth, Zigbee). Physically nearby devices now have the chance to interact

non-intrusively and securely [10, 88, 121]. They can also form proximity net-

works to further optimize the context collection and service delivery processes.

Instead of offloading all sensed data to a third-party and relying on cloud ser-

vices and remote service invocations (e.g. turning up the A/C through a Nest

thermostat 4), the whole computation flow can then be achieved by local col-

laboration since the sensing and consumption both occur in the same physical

area. The key of this collaboration is sharing the context data among co-

located IoT devices efficiently. Without the assumption of any-to-any reliable

communication between the nodes or a fixed network topology, it is challeng-

ing for IoT devices to coordinate asynchronously at low duty cycles with the

underlying dynamic and unreliable connections.

For all these reasons, the effectiveness of local area interactions is crucial

to the collaborative IoT applications. Distributing the sensing cost can help

the mobile and wearable systems to be sustainable. Heterogeneous devices can

2https://en.wikipedia.org/wiki/QR_code
3https://en.wikipedia.org/wiki/Near-field_communication
4https://nest.com/thermostats/nest-learning-thermostat/overview/
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trade-off their sensors and connectivities in exchange for mitigating their own

incapabilities and limitations.

In this dissertation, I present a series of core technical challenges in the

opportunistic collaboration among IoT devices in proximity networks, along

with their proposed solutions. The collective goal of these works is to identify

the key building blocks caused by hardware constraints and network dynam-

ics, to mitigate or solve the technical difficulties from a software perspective,

and to encapsulate the solutions as generic, system-level software components

which can be easily ported to the existing IoT embedded systems without

encumbering hardware resources. To summarize, the research contributions

include the following:

• To enable a mobile IoT device to communicate, compute and collabo-

rate with other co-located peers, our first work along this path aimed to

give them the ability to continuously discover what digital resources are

located in the surrounding environment [58]. The primary challenge of

identifying “who is around” is a neighbor discovery problem, i.e., to find

a low duty cycle schedule of transmitting and receiving operations which

can let the IoT node to automatically discover its neighboring devices

(e.g. sensing peers, stationary sensors) in range of wireless communi-

cation. In addition to solving the problem on an abstraction level, we

investigate a popular WPAN technology Bluetooth Low Energy(BLE)

and developed a continuous neighbor discovery protocol BLEnd tailored

4



to the real constraints. We evaluate the its performance against state-

of-the-art protocols on the TI CC2650 5 platform. The ultimate goal of

BLEnd is to directly empower developers with the ability of integrating

resource discovery into their applications without mastering the domain

knowledge of wireless communication. We open source the implementa-

tion of BLEnd scheduler for the Nordic nRF52 system-on-chip family 6.

• To effectively coordinate sensing and sharing tasks among mobile IoT

device via D2D communication, we formulate a dynamic sensor selection

problem and develop a generic collborative sensing framework SCENTS [76].

This framework is designed to use commonly available communication

technologies to share sensing capabilities directly among co-located het-

erogeneous IoT devices. Its sensing partner selection algorithm accounts

for sensing and communication costs, and predicting and adapting to

mobility-induced failures.

• As a complement to the request-response model used in SCENTS, we

explore the implicit approaches where the context information is proac-

tively distributed in the network neighborhood. The PINCH framework

exploits self-organizing features in the context sharing schemes to oppor-

tunistically disseminate the context of choice [80]. In PINCH, a set of

self-organizing heuristics is derived to use limited local views of the state

of a one-hop neighborhood to determine the most useful type of context

5http://www.ti.com/product/cc2650
6https://www.nordicsemi.com/
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information for a device to sense and share. We build PINCH on the

BLEnd protocol, directly considering how aspects of BLEnd influence

our heuristic for context sharing.

• While developing the context sharing strategies, we model the sensor

and communication characteristics of a state-of-the-art IoT sensor kit

and evaluate the collaboration in several smart city settings. A sys-

tematic evaluation software is built to simulate the mobile IoT nodes

in real 3D city-level environments with 2.4GHz wireless communication

technologies 7. It supports customizable mobility patterns and trajecto-

ries. The buildings, which serve as signal obstacles, are extracted and

transformed from the real map data source 8.

• To exhibit the feasibility of context sharing in everyday environments,

we explore the self-stabilizing nature of the context neighborhood with

a low-power system-on-chip. With the BLEnd middleware we are able

to showcase the resilience of distributed sensing collaboration with op-

timized task assignments using the Stacon system [75]. Further, we

deploy a testbed with anchor nodes at 24 locations inside a university

academic building and 7 human-carried beacons to collect a dataset with

real spontaneous connections [78]. We use the acquired dataset to verify

the usefulness and utilization of the sensing collaboration in IoT prox-

imity networks.

7INeT framework: https://inet.omnetpp.org/
8OpenStreetMap: https://www.openstreetmap.org
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Chapter 2

BLEnd: Practical Continuous Neighbor

Discovery for Bluetooth Low Energy

The ability to continuously discover neighboring devices in range of

wireless communication is a key building block of many Internet of Things

(IoT) scenarios. Smart spaces require the ability to detect the proximity of

users to devices deployed in the space, to trigger interactions. Smart retail

systems need to detect the time a person spends in each area of the store;

information acquired via device discovery serves both to orchestrate interac-

tion with the user and to analyze long-term shopping behavior to improve the

retail experience. Smart cities take these capabilities to a larger geographical

scale, enabling the automatic triggering of personalized services on a smart-

phone based on physical proximity to designated places (e.g., monuments or

exhibits [84]) hosting fixed nodes.

Neighbor discovery can also be used as a stepping stone for services

concerned with proximity among people, e.g., to ensure that tourists do not get

separated from their tour group, to enable proximity-based authentication [88],

or to ensure that children on the way to school are always close enough to

at least one responsible adult [45, 111]. Studies on behavioral analytics are

7



fueled by the ability to non-invasively detect proximity among humans [29]

or animals [98]. In general, the continuous and unsupervised (i.e., without

explicit user interaction, such as pairing) ability to detect proximity to other

nearby, potentially mobile, devices enables new interaction patterns, unlocking

novel application domains.

Continuous Neighbor Discovery: State of the Art. Most state-of-the-

art continuous neighbor discovery protocols divide time into equal-sized slots,

during which a node is either active or inactive. When the active slots of two

nodes overlap, discovery occurs. The protocols are evaluated by assessing the

discovery latency, defined as the number of slots until a neighbor is detected; a

protocol’s duty cycle, defined as the number of active slots over a unit of time,

serves as an indirect measure of energy consumption. Protocols are described

relative to the mechanisms they use to determine which slots are active, with

the result being either probabilistic or deterministic discovery. In the Birthday

protocol [86], nodes randomly make a slot active with a given probability, offer-

ing good average case performance but not providing guarantees on discovery

latency. Instead, Disco [37] and U-Connect [61] space active slots according

to prime numbers, relying on the properties of the Chinese Remainder The-

orem to guarantee discovery within a tight time bound. Searchlight [13] and

BlindDate [124] offer hybrid approaches, placing some active slots for deter-

ministic discovery, then adding more in a pseudo-random manner to improve

performance.

Nihao [101] departs from these protocols by specifying that a slot can
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either be for listening or transmitting, where the latter behavior is defined by

a single, short beacon at the beginning of the slot. By observing that a single

short beacon costs much less than listening for the entire slot, Nihao proposes

to “talk more and listen less”, resulting in a protocol with more active slots,

but with competitive consumption as most slots are cheaper, transmission-only

slots.

Theory vs. Practice. Research on continuous neighbor discovery has been

hitherto characterized by a strong slant towards theory, with most protocols

taking the slotted approach described earlier and assuming slots of arbitrary

length. Much work has focused on relating protocols to one another at the

model level, based entirely on a fixed size slot. As a consequence, details

concerning the actual behavior within a slot are often abstracted away.

Unfortunately, these assumptions overlook system-level constraints that

significantly change tradeoffs and may even prevent the use of a given protocol

with a given network technology. For instance, an average discovery latency

of 10,000 slots or more is common [101]. This is acceptable when slots are

small; a common slot length is 10 ms, yielding a latency of minutes. However,

the Bluetooth Low Energy (BLE) standard, available on many commodity de-

vices, prescribes that advertisements are separated by at least 20ms (and even

100ms for some advertisement types). This places a hard lower bound on slot

duration and can increase discovery latencies by up to an order of magnitude,

rendering them unacceptable in practice. Further, existing protocols’ models

ignore the density of nearby nodes, a factor that can increase the potential for
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beacon collisions that hinder discovery, as discussed next.

Our Perspective. We take a view motivated by a desire for a practical

approach to continuous neighbor discovery.

First, we do not neglect system-level concerns; instead they are the

starting point of our endeavor. We choose BLE as our reference platform as it

is pervasive on many consumer electronics. On top of BLE, we devise a con-

tinuous neighbor discovery protocol, called BLEnd (BLE neighbor discovery),

that is compatible with BLE’s technological constraints and features, as out-

lined in Section 2.1.

Moreover, we emphasize metrics that impact the use of BLEnd in real

environments. Specifically, we recognize that packet collisions reduce discov-

ery rates, making it difficult if not impossible to reach 100% discovery. State-

of-the-art protocols ignore this aspect, simultaneously aiming to reach this

unattainable goal and failing to provide application designers with informa-

tion about the concrete, negative effects of collisions. Instead, BLEnd enables

designers to express requirements as a service level agreement that includes

the target discovery latency plus two parameters related to collisions: expected

node density and target discovery probability. An optimizer tool automatically

derives the BLEnd parameters that meet these requirements with the lowest

energy costs, allowing application designers to both tune BLEnd to their spe-

cific needs and to use it with a precise understanding of its actual performance.

Our Protocol: BLEnd. In a system without energy constraints, discov-
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ery can be achieved with an always-on receiver and periodic broadcasts to

announce presence. As long as messages do not collide, discovery is guaran-

teed. Alternatively, if nodes are synchronized, they can exchange discovery

messages at predetermined times, allowing the radio to be otherwise turned

off. Unfortunately, most real systems have tight power budgets and providing

perfect synchronization is expensive. Therefore our goal is to make guarantees

about discovery latency while minimizing power consumption, allowing neigh-

bor discovery to be continuous. As with other protocols, the key is scheduling

transmitting and listening, whose spatio-temporal overlaps enable discovery.

However, our design departs from the state of the art in many respects.

Existing approaches focus exclusively on bi-directional discovery (i.e.,

node A discovers node B and vice versa). While this is intuitive, we observe

that, for many applications, uni-directional discovery, in which only one node

in a pair discovers the other, is sufficient. For example, when discovery serves

as the core mechanism for recording proximity in the human or animal so-

cial studies above, uni-directional detection is sufficient to demonstrate that

A and B were in range at some point in time. Offline analysis can later infer

that a bi-directional contact has taken place from a single uni-directional dis-

covery. Unidirectional detection can also serve as a cornerstone for triggering

communication, with one device detecting the other then initiating a separate

bi-directional communication.

Based on these motivations, and in contrast with the state of the

art, we design the core of BLEnd to support uni-directional discovery. This
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application-level choice has deep system-level implications, as it unlocks op-

portunities for energy optimization currently missed by the state of the art.

As we discuss in Section 2.2, the focus on uni-directional discovery allows us to

define a periodic schedule where each node can be duty-cycled during slightly

more than half of the period and be completely inactive for the remaining

portion, significantly reducing energy consumption. This is achieved without

any assumptions about time synchronization and yet provides deterministic

discovery latency guarantees at low duty cycles. This design decision does not

affect BLEnd’s generality or applicability; while uni-directional discovery is

the fundamental building-block, it can be efficiently extended to bi-directional

discovery.

We depart from dominant trends in the state of the art in two other

respects. First, we completely remove the concept of slot. The primary advan-

tage is in added flexibility for BLEnd to meet application requirements with

the lowest possible energy consumption. Second, we directly account for con-

straints from the BLE stack and the nature of communication in dense mobile

environments. We create an optimizer (Section 2.3) that determines the pa-

rameter settings that provide optimal continuous neighbor discovery w.r.t. a

node’s battery lifetime, given an application-desired service level agreement.

This optimizer is built around a novel analytical model (Section 2.4) that

accounts for i) idiosyncrasies of BLE, including accurate power consumption

of BLE operations derived from laboratory experiments, and ii) packet colli-

sions, which profoundly affect the behavior of neighbor discovery. Alongside
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this mathematical model, we provide an accurate simulator that we exploit

to show the protocol functionality in a variety of scenarios (Section 2.5) as

well as its performance in comparison to two reference protocols (Section 2.6).

Finally, we describe our implementation of BLEnd on a standard, unmodified

BLE stack (Section 2.7), and analyze its performance (Section 2.8). Our ex-

perimental results confirm not only that BLEnd is more versatile and efficient

than its competitors, but also that our model, simulator, and implementation

are in good agreement, enabling the immediate use of BLEnd in applications.

Section 2.9 ends the paper with brief concluding remarks.

2.1 Background and Motivation

One of our motivations for BLEnd is that existing continuous neighbor

discovery approaches are incompatible with BLE in various ways. This section

discusses elements of BLE that are critical when using it for neighbor discovery.

We then describe how neighbor discovery is commonly done in BLE, notably

not in a continuous manner. We discuss the possibilities of using BLE as the

underlying technology for existing approaches, laying the foundation for our

novel continuous neighbor discovery protocol, BLEnd.

BLE in the Abstract. BLE is an obvious candidate to support continuous

neighbor discovery for commodity applications, due to its low power and wide

availability [81, 114]. We take as a premise the need to work with and around

the BLE standard [19]. Figure 2.1 overviews key elements of BLE discovery,

in which one side acts as an observer and the other as a broadcaster. The
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Figure 2.1: BLE discovery.

broadcaster emits an advertisement event, typically 1-3ms long depending on

hardware, during which it sends a beacon on one of the three advertisement

channels then waits briefly for a scan response on the same channel. Each

advertisement event may perform this process on one, two, or all three of BLE’s

advertisement channels. Advertisement events are triggered periodically based

on the advertisement interval. BLE also automatically adds a 0-10ms random

slack to the advertisement interval. This slack is engineered into BLE to

reduce the potential for simultaneous advertisers to collide many times in a

row.

On the receiving side, a BLE observer listens continuously for a scan

duration, repeating this scan event periodically based on a scan interval.

The scan duration must be shorter than the scan interval; the advertisement

and scan interval must be at least 20ms long; all three values are parameters

from the application layer. Each scan event listens on exactly one advertise-

ment channel; subsequent scan events are required to cycle through the three

advertising channels. A scan event detects an advertising event only if the ad-

vertisement is sent on the matching channel; therefore, in mapping continuous
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neighbor discovery onto BLE, we send every beacon on all three advertisement

channels to guarantee that it is captured by any listening device, regardless of

the listener’s scan channel.

BLE in the Concrete. Our approach to continuous neighbor discovery

is generic to devices supporting the BLE specification [19], including many

modern Android devices. Our evaluation uses TI SensorTag (www.ti.com/

sensortag), an inexpensive sensing device with a complete BLE radio and

networking stack representative of many realizations of the BLE specification,

especially on IoT-style devices. Here, we highlight elements of the SensorTag

BLE implementation relevant to continuous neighbor discovery.

Basic “off-the-shelf” BLE discovery expects one or more nodes to act

as broadcasters and another to act as observer. However, the specification

allows a single device to assume both roles, if supported by the hardware. The

SensorTag does support applications that take on the multiple roles, switching

between them without restarting the BLE stack. This capability is common

in many other BLE implementations, both on lightweight devices and on An-

droid.

Figure 2.2 shows an oscilloscope trace of a segment of BLE operation on

a CC2650STK SensorTag. Oscilloscope measurements in this paper were cap-

tured with a Picoscope 2204A acquisition device. Current traces result from

measuring the voltage drop over a 10Ω low side shunt resistor placed in series

with the SensorTag. In this trace, our device begins as an observer, scanning

one advertisement channel. At time 994.84ms, the application instructs the
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Figure 2.2: Oscilloscope trace showing scanning then advertising on the
SensorTag.

device to cease observing and start advertising. Here and throughout the paper

we use non-connectable advertisements, as the intent is simply to announce

presence, not to initiate a connection for sending data. The advertisement

event starts at 996.26ms and ends at 999.46ms, sending a single advertise-

ment on each of BLE’s advertising channels. This advertisement event lasts

for b = 3.2ms. Using this measurement setup, we recover the instantaneous

currents of scanning and advertising, respectively, as Iscan = 6.329mA and

Iadv = 5.725mA. We also measured a stand-by current Iidle = 80.64µA, al-

though the TI SensorTag datasheet indicates an expected value of 1µA.

2.2 BLEnd

We start from the premise that many applications require only one

node of a pair to detect the other’s presence and design support for uni-

directional discovery (U-BLEnd). We then show how this is easily adapted
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Figure 2.3: U-BLEnd: Uni-directional discovery.

to bi-directional discovery. In both cases, the goal is to achieve continuous

neighbor discovery without the device’s radio having to be continuously ac-

tive.

Uni-directional Discovery: U-BLEnd. Our initial goal is to guarantee

that one of every pair of devices will discover the other within a given time,

the discovery latency, while simultaneously minimizing the energy consumed

in discovery activities. The protocol behavior is a simple, repeating sequence

of listening intervals (scans, in BLE) and beacon transmissions (advertisement

events). We term the duration of this repeating sequence the epoch, E.

On a node, U-BLEnd exploits the first half of every epoch to attempt

to discover or be discovered, then remains inactive for the second half, with

the radio in stand-by. The radio is also switched to stand-by whenever the

node is not listening or transmitting during the first half epoch, conserving as

much energy as possible.

As shown in Figure 2.3, an epoch always begins with a listening in-

terval whose length depends on application requirements, most critically the
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Figure 2.4: F-BLEnd: Full-epoch bi-directional discovery.

Figure 2.5: B-BLEnd: Efficient bi-directional discovery.

discovery latency. Immediately following the listen interval, BLEnd begins a

sequence of beacon transmissions that lasts for the remainder of the first half

of the epoch, with the last scheduled beacon falling just inside the second half

of the epoch. The interval between the beginning of adjacent beacons is at

most the length of the listen interval, thus ensuring that if the listening inter-

val of another node overlaps with the active portion of this node, the listener

receives at least one beacon and discovery occurs, as shown with arrows. Fur-

ther, the active portion of the epoch, defined as the time from the beginning

of the listening interval to the end of the last beacon, is greater than half of

the epoch. This configuration guarantees that the active portions of two inde-

pendent nodes overlap, resulting in detection. Interestingly, it may also result

in bi-directional discovery, as shown in Figure 2.3 for A and C.
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A key element of BLEnd relative to existing continuous neighbor dis-

covery protocols is its direct consideration of the practical constraints of BLE.

In the context of uni-directional discovery, there are two important elements.

First, to provide guarantees on discovery latency, a node’s beacon must be

entirely contained within a listener’s listening interval, and BLE beacons have

non-negligible duration. Setting A = L, i.e., the beaconing interval equal to

the listening interval does not consider the case in which the listener might

receive a partial beacon at either the beginning or the end of its listening

interval, a situation that may prevent discovery.

Second, BLE adds random slack to the application-specified advertising

interval. Therefore, when U-BLEnd specifies an advertising interval of A,

beacons may be spread as much as A + s apart, where s is the maximum

random slack added. Because this may make A greater than L, a listening

interval may fall entirely between two beacons, preventing discovery.

We cater to these observations by defining A = L− b− s.

Full-epoch Bi-directional Discovery: F-BLEnd. To näıvely implement

bi-directional discovery, one can simply continue beaconing throughout the

entire epoch; we call this variant full-epoch BLEnd, F-BLEnd. In Figure 2.3,

B would not discover A in U-BLEnd as B’s listening interval falls inside the

inactive portion of A’s epoch. Instead, as shown in Figure 2.4, discovery

happens in F-BLEnd, as B’s listening interval overlaps one of A’s additional

beacons.
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Efficient Bi-directional Discovery: B-BLEnd. Adding all of the beacons

in the inactive half of the epoch is unnecessary; a more efficient strategy is

employed by our last protocol variant, B-BLEnd. Consider discovery between

two nodes A and B. If the U-BLEnd schedule allows A to detect B in one

epoch, the goal of B-BLEnd is for B to detect A in the next epoch. To this

end, any beacon added by B is unnecessary, as B has already been detected

by A. Instead, it is sufficient that A adds exactly one beacon—the one falling

in B’s listening interval, as shown in Figure 2.5. This is possible if beacons

include a small bit of information, i.e., the time between the start of the epoch

and the beacon transmission. Combining this information with the knowledge

about the duration of the epoch and of the advertisement interval enables a

receiving node (A in our case) to compute the start time of the discovered

node’s next listening interval and selectively schedule only the one beacon,

out of all those that F-BLEnd would add, that lands inside the other node’s

listening interval, thus allowing bi-directional discovery.

In scenarios with more than two nodes, the worst case requires a node

to activate all of the beacons in the inactive half of the epoch, as in F-BLEnd.

However, we observe that a single added beacon may allow discovery by more

than one neighboring node if the listening intervals of multiple neighbors over-

lap with the beacon. Put another way, a new beacon is not necessarily needed

for every neighbor. On the other hand, when a node is among few neighbors,

correspondingly few beacons will be activated by B-BLEnd—none if the node

is alone. It is this observation that makes BLEnd particularly suitable for con-
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tinuous operation: to reduce the energy cost of continuous neighbor discovery,

BLEnd effectively adapts to the natural dynamics in the density of neighboring

nodes.

2.3 Optimizing Latency vs. Lifetime

Using BLEnd in real applications requires that trade-offs between la-

tency and energy consumption are made explicit. Application developers often

expect zero latency and infinite lifetime, which is clearly impossible. The tool

we describe next, the BLEnd optimizer, enables developers to quickly explore

these tradeoffs and select a protocol configuration most suited to the applica-

tion requirements.

The latter may vary widely. An application that monitors proximity of

visitors to museum exhibits [84] targets a discovery latency of seconds, which

is more expensive in terms of energy but acceptable since devices can be easily

recharged after each museum visit. On the other hand, wildlife monitoring [98]

must accept a discovery latency of up to a minute, as devices are animal-borne

and expected to last months, if not years. In our experience, neither latency

nor lifetime requirements are cast in stone; they are selected as a compromise

between application- and system-level concerns.

In this respect, our work has two assets relative to the state-of-the-

art. First, the configuration space of existing protocols is severely limited

by the coarse-grained discretization induced by slots and other constraints

(e.g., choosing prime numbers [37, 61]). In contrast, BLEnd’s slotless opera-
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Table 2.1: Parameters used in model and optimizer.

Parameter Description

Input parameters: Application requirements

mode uni-directional vs. bi-directional discovery

Λ maximum discovery latency

P minimum discovery probability

N maximum number of nodes in a collision domain

Input parameters: BLE stack

b duration of an advertisement event (beacon)

s maximum random slack for an advertisement event

Output parameters: BLEnd configuration

E duration of the epoch

A duration of the advertising interval

Derived output parameters

L duration of the scan interval (listening)

nb number of advertisements per epoch

tion provides remarkably more configuration options. Second, the impact of

collisions, which directly result in missed discoveries, is routinely neglected by

models underlying existing protocols; their latency and lifetime estimates are

therefore deceptive, as they do not match what is possible in actual imple-

mentations. In contrast, the BLEnd model in Section 2.4 explicitly accounts

for collisions, enabling the optimizer to more realistically determine the best

BLEnd configuration.

Application requirements constitute a service-level agreement of sorts

that must be honored by the BLEnd configuration generated by the optimizer.

The requirements input to the optimizer are shown in Table 2.1, along with the

expected outputs. A developer must specify the maximum discovery latency Λ

and minimum discovery probability P allowed in the application, along with
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the maximum number N of nodes in a collision domain. P is defined for

B-BLEnd and F-BLEnd as the probability that each node discovers all of its

neighbors within Λ; for U-BLEnd, instead, P is the probability that at least

one node in a pair discovers the other.

The inputs also include system-level parameters. The duration b of a

BLE advertisement event may change depending on the hardware. Hereafter

we consider b = 3.2ms as measured on our platform when using all three chan-

nels, which yields lower discovery latency and better resilience to collisions.

The random slack introduced by the BLE stack is set to s = 10ms as per the

specification [19].

The optimizer returns a configuration 〈E,A〉, i.e., the advertisement

interval and epoch length, that satisfies the application requirements and min-

imizes energy consumption. For instance, assume the developer requires bi-

directional discovery with Λ = 2000ms, P = 0.95, N = 15. The output

configuration E = 667ms, A = 71ms guarantees that i) in the worst case

where 15 nodes are all within range of one another, each of them has a 95%

probability of discovering the others within 2s, and ii) this is achieved with the

minimal energy consumption. The optimizer also outputs derived parameters:

the scan interval L = A + b + s and the number of advertisements, which is

nb = b E
2A
c−1 in the uni-directional case and nb = bE

A
c−1 in the bi-directional

(worst) case.

The optimizer has two fundamental components. The first is a model
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of the drain of electrical charge during one epoch:

Q(E,A) = IscanL+ Iadvnbb+ Iidle(E − L− nbb) (2.1)

where Iadv is the (average) instantaneous current consumed by the radio when

advertising, Iscan when scanning, and Iidle when not engaged in neighbor dis-

covery. These values must be measured for a given hardware, as we did for

the SensorTag in Section 2.1. Iidle is determined by application specifics, e.g.,

whether the device senses, computes, or engages in other communication. In

Section 2.5, we report lifetime values derived with Iidle = 0µA, as we are

focused on the application-independent neighbor discovery functionality, and

Iidle = 80.64µA, as measured on the SensorTag.

The second component of the optimizer is a model that, for a given

BLEnd configuration 〈E,A〉, estimates the discovery probability Pd as a func-

tion of all the optimizer inputs, by considering collisions. This model is one

of the contributions of this paper, and is presented in detail in Section 2.4.

Based on these components, the optimizer performs an exhaustive search

across all possible 〈E,A〉 configurations. We test each possible epoch value

smaller than the target latency, E ≤ Λ; for each value E, we test all advertise-

ment intervals allowed by the BLE specification [19], i.e., A ≥ 20ms. Further

constraints trivially rule out degenerate combinations, e.g., E ≤ A or when an

epoch cannot accommodate a complete BLEnd schedule. For each pair 〈E,A〉

the optimizer computes the expected discovery probability Pd according to

the model in Section 2.4. If Pd ≤ P , i.e., the expected discovery probabil-
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ity does not satisfy the one targeted by application requirements, the 〈E,A〉

configuration is discarded as invalid. Otherwise, the current drain Q(E,A) is

computed; the optimizer outputs a valid 〈E,A〉 that minimizes this value.

The search space determined by the values of E and A is explored in

(configurable) increments of 1ms, as this is close to the resolution of timers

commonly found in BLE devices. Along with the other constraints mentioned

above, this limits the computational overhead; our R implementation of the

optimizer computes the optimal configurations for the scenarios considered in

this paper in at most a few minutes on a common laptop.

2.4 Modeling Discovery Probability

We next derive a model of the discovery probability Pd using the pa-

rameters in Table 2.1. Discovery probability is intimately intertwined with

the probability of colliding beacons. Other factors, most notably interference

in the crowded 2.4GHz band that BLE uses, can also cause a beacon to be

lost. However, the three channels (37–39) used for advertising are defined by

the BLE specification [19] i) to be different from those used for actual com-

munication, and ii) to avoid interference with the most commonly used WiFi

channels. Further, to the best of our knowledge, no existing work analyzes the

impact of collisions of the beacons within continuous neighbor discovery; these

collisions are the primary source of beacon loss, and we analyze these impacts

in Section 2.4.1. The discovery probability is also affected by specifics of the

BLE communication stack, most notably the random slack, as we discuss in
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Section 2.4.2.

2.4.1 Analyzing the BLEnd Schedule

We first derive discovery probability by considering the chance that

beacons collide due uniquely to the BLEnd schedule.

In the following, the same model handles uni-directional and bi-directional

discovery; the only difference is the number C of nodes in the collision do-

main. In the uni-directional case (U-BLEnd), C = N
2

on average because a

node’s schedule does not have beacons in the second half of the epoch. In

the bi-directional case we assume C = N . F-BLEnd always schedules beacons

throughout the second epoch, while B-BLEnd schedules beacons on-demand

only if and when needed. However, B-BLEnd intends that all N − 1 nodes

that are not the listener attempt to “hit” the listen interval with a beacon.

Therefore, our model focuses on F-BLEnd because i) it provides the worst case

for both collisions and energy consumption, and ii) it yields a more tractable

model.

Within an epoch, collisions among beacons are harmful only when they

occur within another node’s listen interval; beacon collisions not overlapping

with the listen interval of some node are irrelevant. Therefore, we focus on

the listen interval and observe that, due to the structure of a BLEnd schedule,

there are at most C − 1 other nodes that have a beacon scheduled within

another given node’s listen interval.

Consider one of these C−1 senders, with a beacon start time t falling in
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the listen interval. Because successful discovery requires the listen interval to

overlap entirely with the beacon, this sender is not discovered by the listener

if another beacon (from another sender) overlaps even partially with the first

one. This collision happens if the other sender chooses a beacon start time

in the interval (t − b, t + b). Therefore, 2b of the possible options for beacon

start times cause collisions. Because beacon start times must be chosen in

the interval [0, L − b] to ensure that the entire beacon is received before the

listening interval ends, the probability that some other sender collides with

our selected sender is 2b
L−b .

The discovery probability can therefore be computed as

Pnc =

(
1− 2b

L− b

)γ
(2.2)

where γ = C−2 is the number of beacons potentially colliding with the chosen

sender within the given listen interval. Since each sender is expected to send

exactly one beacon during the listen interval, γ is simply the number C of

nodes in the collision domain, minus the listener and the sender for which we

are computing the discovery probability.

2.4.2 Accounting for BLE Specifics

The model above assumes that two consecutive beacons are spaced

exactly by the advertisement interval A. However, if this were the case in

BLE, two colliding advertisements would collide forever. To avoid this, BLE

adds a “random slack” r ∈ [0, s] to the start time of all advertisements in
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a sequence, except the first one [19]. This slack has a subtle yet significant

impact on discovery probability.

Discovery Is Possible Across Epochs. Arguably, the most important

effect of the slack is that it unlocks the possibility that a beacon experiencing

a collision in the first epoch is discovered in a later epoch, as the random

slack moves the colliding beacons slightly relative to each other. Therefore,

we model the discovery probability across epochs and its interplay with the

maximum latency Λ.

In principle, based on (2.2), the probability of discovering a given node

across k epochs is simply:

Pd ,k = 1− (1− Pnc)
k (2.3)

where (1 − Pnc)
k is the probability that a node is not discovered across k

epochs.

On the other hand, the only constraint relating the maximum latency

and the epoch is that E ≤ Λ, to guarantee that a complete BLEnd schedule

can unfold. As a consequence, Λ is not necessarily a multiple of E. This

implies that a node not discovered in the first k epochs may be discovered in

the “spillover” Λ − kE; Figure 2.6 shows the relationship between Λ, E, and

this spillover.

We observe that, within a given epoch, the rate at which nodes discover

each other is constant, as the phases between nodes’ epochs are independent.

Therefore, the discoveries that occur in the spillover can be quantified simply
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Figure 2.6: Relationship between Λ, E, and the “spillover”.

by multiplying the discovery probability Pnc by the fraction of epoch Λ−kE
E

corresponding to the spillover. Moreover, the spillover increases the likelihood

of discovery only if the node was not discovered in the first k epochs. Therefore,

the probability that a node is discovered for the first time in the spillover is

Pd ,sp = (1− Pnc)
k

(
Λ− kE
E

)
Pnc (2.4)

and the overall probability of discovery within Λ is

Pd = Pd ,k + Pd ,sp (2.5)

We next extend this simple formulation to account for other subtleties

induced by the random slack.

Extra Beacons. In the presence of random slack, a listen interval of L = A+b

could miss discoveries even in the absence of collisions. Figure 2.7 shows an

example, where a sender’s beacon scheduled at the very end of a listen interval

is “pushed out” of it by a slack r > 0. This is why BLEnd sets the listen interval

to L = A+ b+ s, to guarantee that a beacon always overlaps a listen interval.

On the other hand, this choice may lead to situations where two beacons from

the same sender fall in the listen interval of the same listener, as also shown
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Figure 2.7: Compensating for slack.

in Figure 2.7. As a result, the number of beacons potentially colliding in (2.2)

becomes γ > C − 2.

To quantify the impact of these extra beacons, we observe that they

may occur only when a beacon is within s of the beginning (or end) of the

listen interval. The sum b + A of the beacon duration and the advertisement

interval leaves enough room for the next (or previous) beacon to fall within L.

Each node has a s
L−b chance of choosing such a beacon starting time. However,

the extra beacon is generated only in half of the cases, on average. To see why,

consider Figure 2.7. The first beacon occurs at a start time t = 0 w.r.t. the

beginning of the listen interval, and only the choice of the maximum slack

r = s prevents an extra beacon from occurring; in the dual case where the first

beacon is sent at t = s into the listen interval, only a slack of r = 0 causes an

extra beacon.
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This fraction of extra beacons can therefore be modeled as

σ =
1

2

(
s

L− b

)
(2.6)

and must be added to those potentially colliding “naturally”, i.e., because of

the base BLEnd schedule, as discussed in Section 2.4.1. This is accounted for

by modifying the exponent of (2.2) into

γ = (C − 2)(1 + σ) (2.7)

Beacon Start Time Dependence. In Section 2.4.1, two beacons colliding in

one epoch would collide in all subsequent ones. In essence, it is as if we modeled

the discovery probability in the first epoch, which then remains the same

because each node behaves according to its periodic schedule. The random

slack introduced by BLE mitigates this situation by randomly “nudging” each

beacon; beacons that collide in an epoch are no longer always colliding in

the subsequent ones, and can be discovered across multiple epochs. However,

the beacons that collided in the first epoch are still more likely to collide

also in subsequent epochs, simply because they are kept close to each other

by the random slack. The model in (2.3)–(2.5) does not account for this

dependency across epochs, as it assumes that colliding beacons may always

appear anywhere across the entire interval L− b.

The probability Pnc of not colliding in the first epoch is the same as

in (2.2). However, for epochs k > 1, this probability becomes Pnc,W ≤ Pnc,

due to the fact that the starting time of beacons is constrained by the schedule
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in the first epoch. The discovery probability across k epochs in (2.3) becomes

Pd ,k = 1− (1− Pnc)(1− Pnc,W )k−1 (2.8)

To derive the expression of Pnc,W , we observe that a beacon occurring

at time ti in the first epoch occurs within an interval W centered on ti in

subsequent epochs, due to the presence of the random slack. W represents

the new window of contention for colliding beacons. If W ≥ (L − b), then

the window is the same size or larger than the window used when assuming

the beacons were randomly tossed in the interval [0, L − b], and therefore

Pnc in (2.2) still holds. However, when W < L, the probability of collisions

increases, i.e., Pnc,W ≤ Pnc, because beacons that collided once are more likely

to collide again as they are somewhat loosely synchronized.

Estimating W is complicated by the fact that the slack introduced by

BLE is added relative to the start time of the previous beacon, and therefore

the offset among the same beacons in different epochs compounds across all

beacons within an epoch. Consider the situation in Figure 2.8 and recall that,

as per the BLE specification, the first beacon has no slack. Assume the extreme

case where the value of the slack for all four remaining beacons is r = 0 for

Figure 2.8: BLEnd compound slack. In epoch 2, positions of beacons from
epoch 1 are shown with dashed lines.

32



epoch 1 and r = 10 for epoch 2. Looking at the start time of a given beacon in

each epoch, it is clear that the offset across epochs increases with the position

of the beacon; beacon 2 occurs 10ms later in epoch 2 w.r.t. epoch 1, while

beacon 5 occurs 40ms later. This of course could go either direction; swapping

the choice of r for the two epochs would result in beacon 5 occurring 40ms

earlier in epoch 2 w.r.t. epoch 1.

More generally, assume that a sender’s ith beacon is sent at time ti

in the listener’s first epoch. Then the sending time for the same sender’s ith

beacon in the listener’s second epoch (or any epoch k > 1) falls in the interval:

[ti − (i− 1)× s, ti + (i− 1)× s]

This expression captures the maximum window of contention for the same

beacon across two consecutive epochs. The average interval is only half of the

above, since it is 0 for the first beacon, s for the second one, 2s for the third,

and s(i− 1) for the ith beacon.
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Figure 2.9: Model-simulator validation for F-BLEnd.

Using these insights, and the fact that nb is the total number of beacons

sent in an epoch, we compute the average size W of the window of contention
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across all beacons in the epoch:

W =
s
∑nb−1

i=1 i

nb − 1
= s

nb
2

(2.9)

We can then compute the probability of not having a collision in an epoch

k > 1 as

Pnc,W =

{(
1− 2b

W

)ω
if W < (L− b)

Pnc otherwise
(2.10)

The first expression is similar to (2.2), with the denominator L − b replaced

by W . The number of beacons potentially colliding within the window W is

ω = 1 +
W

L− b
(γ − 1) (2.11)

Recall that Pnc,W accounts for the discovery probability after a beacon collision

in the first epoch; the first term represents such a collider, which is bound to

fall within W . The second term represents the fraction of the γ beacons

from (2.7) that may fall in the window W surrounding the sender’s beacon,

minus the collider already considered in the first term. This formulation may

underestimate the case where multiple beacons collide in the first epoch; in

practice, this model already returns good estimates, as shown in Sections 2.5

and 2.8.

The complete expression of the discovery probability Pd remains the

one in (2.5). However, its component due to the spillover Pd ,sp in (2.4) must

also be modified along the same reasoning that led to the modified expression

of Pd ,k in (2.8):

Pd ,sp = (1− Pnc)(1− Pnc,W )k−1

(
Λ− kE
E

)
Pnc,W (2.12)
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Table 2.2: Model validation via simulation. Λ is in seconds; E and A are
in milliseconds; probabilities P , Psim and duty cycle DC are in percentage;
lifetime is in days, assuming a battery capacity of 320mAh. We show the
lifetime for both Iidle = 0µA (LT0) and Iidle = 80.64µA (LT80).

Configuration (optimizer) Simulation results

Input Output F-BLEnd B-BLEnd
N Λ P E A Psim Psim−P DC LT0 LT80 Psim Psim−P DC LT0 LT80

3 4 95 3995 111 98.06 +3.06 5.93 37.45 30.61 97.16 +2.16 4.58 47.69 37.12

8 4 95 2430 106 95.25 +0.25 7.89 27.82 23.85 93.56 −1.44 6.74 32.21 27.01

15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68

20 4 95 1335 91 95.36 +0.36 11.27 19.34 17.34 94.36 −0.64 10.54 20.59 18.34

15 2 95 667 71 95.74 +0.74 17.09 12.70 11.80 95.51 +0.51 16.32 13.25 12.28

15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68

15 10 95 5363 149 95.11 +0.11 5.14 42.94 34.17 93.02 −1.98 4.36 50.12 38.57

15 30 95 29969 555 95.04 +0.04 2.49 86.93 57.22 93.37 −1.63 2.25 95.35 60.75

15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68

15 4 90 2309 110 90.58 +0.58 8.22 26.70 23.03 88.28 −1.72 7.30 29.81 25.31

15 4 85 4000 174 85.51 +0.51 6.50 33.43 27.87 82.69 −2.31 5.95 36.30 29.83

15 4 80 3939 128 80.74 +0.74 5.96 37.00 30.30 76.97 −3.03 5.08 42.96 34.19

The first two factors account for the probability that the beacon collides in all

the first k epochs, and the last captures the probability that the beacon does

not collide in the spillover, accounting for the loose synchronization due to the

slack.

The final expression of discovery probability across k epochs from (2.5)

can therefore be rewritten as:

Pd = 1− (1− Pnc)(1− Pnc,W )k−1

(
1−

(
Λ− kE
E

)
Pnc,W

)
(2.13)
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2.5 Simulating BLEnd

To confirm the correctness of our model, we created a discrete event

simulator in Java that steps through the BLEnd schedules of multiple nodes,

simulating discoveries. The simulator accounts for collisions (or optionally

ignores them), considers the three BLE advertisement channels, and imple-

ments all three versions of BLEnd. The simulator allows us to cross-validate

the model underlying the optimizer with the protocol behavior observed in

simulation.

Simulation Setup. We ran our simulations using the same assumptions made

in the model. Further, we guarantee that any two nodes’ epochs do not start

within b time of each other, as this aspect is currently not captured by our

model. Our evaluation tests the three dimensions of application requirements

(i.e., discovery latency, node density, and discovery probability) by fixing two

of them and varying the other. For each combination, we plot the cumulative

distribution function (CDF) of discovery latencies and show target probabili-

ties (as horizontal, dashed lines) and target latencies (as vertical, dashed lines);

each curve represents 10,000 independent simulation runs. For lifetime, we as-

sume a battery capacity of 320mAh—the same of the SensorTag we use in

Section 2.8.

Model-simulator Validation: Bi-directional Discovery. Figure 2.9 shows

the simulation results for F-BLEnd, which, among the BLEnd variants, is most

accurately represented by the model in Section 2.4. We note a number of in-
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flection points in each curve, caused by the fact that the target latency may

be composed of multiple epochs; inside each epoch, BLEnd shows a constant

discovery rate that decreases in each subsequent epoch as fewer nodes remain

to be discovered. In all tested scenarios, our simulator produces discovery

probabilities and latencies in line with the established targets. This is seen in

Figure 2.9 by noting the difference between each CDF and the target discov-

ery probability (horizontal line) at the target latency (vertical line). Table 2.2

shows the same data numerically, showing that the simulated F-BLEnd dis-

covery probability is always higher than the target for the associated latency;

the difference is always below 1%, except for the first combination.

Table 2.2 shows also the results for B-BLEnd, whose CDFs are here

omitted due to space limitations, confirming that the model and the associated

optimizer are effective at generating realistic BLEnd configurations enabling

bi-directional discovery while accounting for BLE constraints and beacon col-

lisions. Further, Table 2.2 also allows us to quantify the benefits brought by

the on-demand beacon scheduling of B-BLEnd w.r.t. the näıve solution pro-

vided by F-BLEnd. B-BLEnd offers 4 to 27% improvement in lifetime w.r.t

F-BLEnd in the configurations studied, therefore confirming quantitatively

that it provides a more efficient solution.

In the case of B-BLEnd, however, Table 2.2 shows that the simulator

yields a discovery probability slightly lower than the target, except for two of

the combinations. This is due to the fact that our model and the associated

optimizer are based on F-BLEnd, for the reasons mentioned in Section 2.4,
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and therefore do not completely capture all intricacies of B-BLEnd.

In particular, a subtle dependence among beacons occurs in B-BLEnd

that does not exist in F-BLEnd. Remember that F-BLEnd schedules all bea-

cons in all cases and that, in general, when P < 100% the optimization does

not require discovery of all nodes. Therefore, a valid configuration output

by the optimizer may allow A to not detect B due to a collision. While this

results in a discovery loss that is properly accounted in F-BLEnd, in B-BLEnd

it may lead to a secondary loss that the model does not consider. Specifically,

bi-directional discovery is achieved in B-BLEnd by the explicit addition of a

beacon, triggered by detection. Therefore, if A does not detect B due to a

collision, the additional beacon is not scheduled and B does not discover A,

thus reducing the discovery rate. This motivates future work to improve the

accuracy of our model and optimizer by explicitly considering the subtleties

of B-BLEnd.

Model-simulator Validation: Uni-directional Discovery. We now in-

vestigate the relative performance of U-BLEnd. Although the use cases of

uni-directional and bi-directional discovery differ, the expectation is that uni-

directional discovery will save a significant amount of energy. These measure-

ments also validate the application of the model to uni-directional U-BLEnd.

Figure 2.10 and Table 2.2 show that our simulation results come very

close to the target discovery probability P in most cases. Recall that P is com-

puted in U-BLEnd as the probability that at least one of each pair of nodes

discovers the other within Λ time. U-BLEnd does miss the target discovery
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Figure 2.10: Model-simulator validation for U-BLEnd.

latency by a small amount in all but two parameter combinations. The reason

is similar to the one discussed for B-BLEnd; essentially, the discovery rate

in U-BLEnd is penalized twice for each missed detection. Nevertheless, these

results do indicate that, when bi-directional discovery can be ascertained of-

fline, U-BLEnd provides significant benefits over B-BLEnd. Meeting the same

application requirements in terms of N , Λ, P with U-BLEnd and B-BLEnd

yields comparable discovery rates, but U-BLEnd lifetime that is up to 1.8x

longer than the one of B-BLEnd.

2.6 Comparing to the State of the Art

In our simulator, we also implemented both Searchlight [13] and Ni-

hao [101] exactly as described in the literature. This allows us to compare

against these recent protocols that are considered the best performing state of

the art protocols but do not directly support BLE and whose implementations

are not publicly available.
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Table 2.3: Model validation via simulation, for U-BLEnd. Units are the same
as in Table 2.2.

Configuration (optimizer) Simulation results

Input Output U-BLEnd
N Λ P E A Psim Psim−P DC LT0 LT80

3 4 95 3999 80 98.51 +3.51 4.24 52.27 39.84

8 4 95 3983 83 93.26 −1.74 4.25 51.98 39.66

15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09

20 4 95 1998 72 94.58 −0.42 6.42 34.07 28.31

15 2 95 1001 51 94.74 −0.26 9.39 23.24 20.40

15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09

15 10 95 10000 232 94.24 −0.76 3.15 68.71 48.71

15 30 95 29951 234 94.26 −0.74 1.51 146.59 78.15

15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09

15 4 90 3995 111 88.97 −1.03 4.52 48.30 37.48

15 4 85 3999 80 84.89 −0.11 4.24 52.27 39.84

15 4 80 3999 80 84.89 +4.89 4.24 52.27 39.84

In both protocols, a key parameter is the slot duration, which is also

the “unit of measure” of latency and duty cycle. Recall that duty cycle is

a commonly used proxy for energy consumption; for clarity we report both

duty cycle and battery lifetime for all protocols. Unfortunately, neither paper

provides guidance on selecting an appropriate slot size. However, in Nihao

α captures the ratio between the advertisement event duration and the slot

duration; the value α = 0.054 is used in [101]. In our hardware, a BLE

advertisement event lasts 3.2ms, yielding a slot duration of 59.26ms. We use

this value for both protocols.

Searchlight builds a schedule around a fixed period of t slots, which

contains one “anchor” active slot at the beginning and a second “probe” slot
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somewhere in the first half of the period. The value of t relates directly to the

schedule’s duty cycle (2
t
) and target discovery latency ( t

2

2
). A (Balanced) Nihao

schedule is instead built around a parameter n; one period of the schedule

consists of n2 active slots. The node beacons at the beginning of every nth

active slot and then listens for the first n slots. The value of n is similarly

tied to duty cycle (1+α
n

) and latency (n2). In the following, we leverage these

relationships to set t and n based on a target discovery latency (or duty cycle)

equivalent to that achieved by BLEnd in a given configuration.

Protocol comparison. Since Searchlight and Nihao both provide bi-directional

discovery, we compare only our F-BLEnd and B-BLEnd variants against them.

For all protocols, we use a target latency Λ = 4s. For BLEnd, we set a target

discovery probability of P = 95% with N = 15 nodes; the other protocols at-

tempt to reach 100% because, unlike BLEnd, they do not offer any alternative.

Figure 2.11a shows the results; notably, neither Searchlight nor Nihao

reach 100% discovery, despite that this is their goal. The reason is two-fold: if

two nodes choose nearly aligned slot start times, the nodes are always sending

simultaneously and never discover each other; and the probability of collisions

among beacons is not accounted for in these protocols. Instead, the BLEnd

variants do take these aspects into account, via the model in Section 2.4;

BLEnd succeeds in meeting a discovery rate around around the 95% targe.

Figure 2.11a also shows that Searchlight most quickly discovers nodes at the

beginning, though all protocols reach better than 92% discovery probability

at or before the target latency. Nihao reaches its inflection point before the
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Figure 2.11: Comparing BLEnd against the state of the art.

target discovery because its period is computed as n2 slots; to hit a target

latency, one must divide the latency into slots then take the square root. We

conservatively choose n to be less than the square root as doing otherwise

would cause Nihao to miss the target. In Figure 2.11a, Nihao uses n = 8; with

a value of n = 9, Nihao misses the target latency by 850ms. This highlights

the significant benefit that BLEnd is not artificially constrained by a rigid

slotted structure.

Although all protocols, despite their different goals and configurations,

have roughly the same discovery probability at the target latency, it is worth

analyzing the expended energy. Table 2.4 shows the percentage of neighbors

discovered, duty cycle, and resulting lifetime (based on different values of

Iidle as in Table 2.2) when all protocols are configured with a target latency

Λ = 4s, as considered thus far. Both BLEnd variants clearly outperform the

competitors, with an expected lifetime for B-BLEnd that is 1.5x and 2x higher
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than Nihao and Searchlight, respectively.

To offer a dual perspective, we configured Searchlight and Nihao with

a target duty cycle instead of a target latency, to observe their performance

when given roughly the same energy budget of B-BLEnd. Therefore, we con-

figured both to achieve a target duty cycle as close as possible to DC = 8.68%.

The results are shown in the last two rows of Table 2.4 and in Figure 2.11b,

and show that BLEnd clearly outperforms the competition; both Searchlight

and Nihao discover almost half of the nodes when given roughly the same en-

ergy budget as BLEnd. The duty cycles of Searchlight and Nihao are actually

slightly higher than B-BLEnd; this is because their slotted operation signif-

icantly reduces the configuration options for these protocols. We chose the

closest matching configuration, which while having a slightly higher energy

usage still perform significantly worse in terms of discovery probability. This

confirms that BLEnd, thanks to its flexible unslotted operation and the ability

to take into account collisions, efficiently uses the available energy budget to

Table 2.4: Discovery probability vs. lifetime for Λ = 4s. BLEnd variants
are configured with N = 15, P = 95%. Notation and units are the same as in
Table 2.2.

Protocol Psim DC LT0 LT80

F-BLEnd 95.37 9.38 23.19 20.37

B-BLEnd 93.91 8.68 24.91 21.68

Searchlight (target: latency) 90.96 18.52 11.53 10.79

Nihao (target: latency) 92.16 13.20 16.12 14.70

Searchlight (target: duty cycle) 56.36 9.66 22.11 19.53

Nihao (target: duty cycle) 44.19 8.81 24.16 21.11
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Table 2.5: Implementation validation. Λ is in seconds; E and A in millisec-
onds; P and Peval are percentages.

Configuration (optimizer) Results

Input Output F-BLEnd B-BLEnd
N Λ P E A Peval Peval − P Peval Peval − P
3 2 95 2000 77 97.70 +2.70 95.98 +0.98

8 2 95 1055 66 95.18 +0.18 95.72 +0.72

3 4 95 3995 108 96.58 +1.58 94.16 −0.83

8 4 95 2430 106 95.48 +0.48 94.39 −0.61

3 10 95 9975 172 97.22 +2.22 93.16 −1.84

8 10 95 9986 253 96.26 +1.26 93.00 −2.00

Configuration (optimizer) Results

Input Output U-BLEnd
N Λ P E A Psim Peval − P
3 2 95 2000 53 95.90 +0.90

8 2 95 1991 83 92.86 −2.14

3 4 95 4000 77 96.43 +1.43

8 4 95 3983 83 95.28 +0.28

3 10 95 9999 122 98.81 +3.81

8 10 95 9999 122 94.89 −0.11

meet the target discovery and latency application requirements.

A Stress-Test for BLEnd. To push the limits of B-BLEnd, we considered a

configuration inspired by a small conference scenario (N = 100, Λ = 10s and

P = 90%). First, when the configuration from the optimizer is fed to the simu-

lator, B-BLEnd reaches 91.94% discovery by the target latency, exceeding the

target discovery probability. Next, we observe that optimizer output yields an

epoch E = 3334ms and an advertising interval A = 444ms. This implies that

each epoch contains only 6 advertisements, a surprising result given the high

node density. This schedule goes against the talk more, listen less principle
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driving Nihao, showing that “talking more” is not required at high density, as

the same beacon enables discovery by multiple nodes. Interestingly, BLEnd

is flexible enough to accommodate the advertising strategy best suited to the

node density at hand, as configured via the optimizer.

2.7 A Practical Implementation

In this section, we relate the abstract description of the BLEnd pro-

tocols in Section 2.2 to our specific implementation on the TI CC2650STK

SensorTag. The latter is based on the CC2650 wireless MCU, which contains

a 32-bit ARM Cortex-M3 processor, a 128kB programmable memory, 20kB

of SRAM, and a complete system-on-chip BLE solution. The radio module

uses a 2.4GHz RF transceiver fully compatible with BLE 4.2, with a receiver

sensitivity of -97dBm and a range up to 50m/160ft.

Uni-directional Discovery. Our implementation of U-BLEnd delegates the

protocol timing largely to the timers available in the BLE stack. An epoch

always begins with a listening interval, implemented by initiating a BLE scan

for the scanDuration established by the optimizer, L = A + b + s. As soon

as the listening interval ends (indicated by the GAP DEVICE DISCOVERY EVENT

generated by the BLE stack), the protocol initiates advertising, with the

advertisingInterval from the optimizer, A. A single BLE advertisement

event duplicates the advertisement on BLE’s three advertising channels (37,

38, and 39).
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Bi-directional Discovery. To implement F-BLEnd atop U-BLEnd, we sim-

ply let the BLE advertising continue until the end of the epoch. However,

the more efficient B-BLEnd requires each advertisement beacon to include

the time until the next listen. The receiver uses this to activate the cor-

rect additional beacon for bidirectional discovery. Unfortunately, updating

advertisement data inside a BLE beacon is non-trivial. Advertising must be

stopped, the data updated, then advertisement can be restarted. As a result,

in B-BLEnd, all timing between beacons (including BLE’s random slack) is

handled in application space.

Storing Data into Advertisements. A major constraint of implement-

ing continuous neighbor discovery on BLE without pairing is that all ex-

changed information must fit inside an advertisement. In BLE, an entire

beacon is always sent, regardless of whether it contains usable application

data. Practically, SensorTag BLE advertisements have 31B of application-

writeable data [19, 120]. In BLEnd, we use 5B to identify packets as belonging

to the BLEnd protocol (though less could conceivably be used) and 2B to carry

a unique node identifier, enabling other nodes to determine which node has

been discovered. B-BLEnd also needs to include the time to the next listen

interval (2B) to enable receivers of the beacon to opportunistically schedule

their beacons in the second half epoch.
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2.8 Real-world Evaluation

In this section, we report results from experiments with the SensorTag

using the implementation described above. Our goal is to verify that our

implementation matches the results from the simulator and the predictions

of the model in terms of meeting the application requirements concerning

discovery probability P within a given latency Λ and for a given node density

N . We setup an indoor testing environment with 8 SensorTags in a 4× 2 grid

with inter-node spacings of 30cm/11.8in. We used an additional node that

continually scanned the three BLE advertisement channels. This node was

connected to a desktop computer for data collection.

In a run, each node first performs an initialization (e.g., setting BLEnd

parameters, initializing the BLE stack, etc.) then emulates a random arrival

in which it remains inactive for a random time tr ∈ (0, E) before starting

to run the BLEnd protocol. This process simulates a real scenario in which

participants move into range of one another at different times. To achieve

randomness, we use the True Random Number Generator (TRNG) from the

CC2650 MCU.

In our evaluation, we use the remaining space available in beacons to

carry information useful to our experiments. To monitor energy consump-

tion, we include the SensorTag battery level (2B) in each beacon. In addition,

when a node discovers a new neighbor for the first time, it adds the corre-

sponding timestamp (2B) to the beacon payload. Given the available space in

the beacon, a node can convey information for up to 10 discovered neighbors.
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However, note that this 10-node limitation is only an artifact of data collection

for our experimental setup and is not a restriction on BLEnd itself, which can

support an arbitrarily large number of nodes. In our experiments, the sink

node scans for these beacons and transfers the results to the desktop using the

SimpleLink Debugger DevPack 1.

Table 2.5 reports tests for 3- and 8-node experiments with a target

discovery probability P = 95% and different values for the target latency Λ.

We used the optimizer to generate the 〈E,A〉 configuration for each BLEnd

variant. The results are the average of 30 experiments for each combination

of parameters. By considering the difference Peval − P between the measured

and target discovery probability we see that our experiments track the tar-

get discovery rate within a few percentage points and, for all three protocols

are in line with the expectations from the simulation. F-BLEnd always ex-

ceeds the target discovery probability as in simulation, while B-BLEnd and

U-BLEnd narrowly miss the target in some cases, again similar to the results

from simulation. As already discussed, this stems from the fact that the model

in Section 2.4 does not capture all the subtleties of these two BLEnd variants.

Figure 2.12 provides a finer-grained perspective by showing the empir-

ical CDFs of all three BLEnd variants for 3- and 8-node experiments with a

fixed target latency Λ=4s and discovery probability of P = 95%. We again

show the target latency as a vertical dashed line and target discovery proba-

1http://www.ti.com/tool/cc-devpack-debug
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bility as a horizontal dashed line. Figure 2.12a shows that, with N = 3, the

discovery rate of all protocols steadily increases up to the target. This is a

consequence of the fact that the epoch identified by the optimizer is very close

(E = 3995ms for F-BLEnd and B-BLEnd) or equal (U-BLEnd) to the target

latency Λ, as collisions are rare. Increasing the density to N = 8 bears little

effect on U-BLEnd, whose epoch E = 3983ms remains close to Λ, and whose

discovery rate is only marginally affected, as shown in Figure 2.12b. On the

other hand, the optimal epoch becomes significantly smaller (E = 2430ms) for

the bi-directional cases, to account for the increase in number of beacons and

therefore collisions. F-BLEnd shows an inflection point precisely at that this

point; discoveries occurring in the second epoch are due to collisions in the

first one. In contrast, the discovery rate in B-BLEnd is smoother as this pro-

tocol sends significantly fewer beacons than F-BLEnd in the second half of the

epoch. However, discoveries occur at a slower rate, precisely due to the fewer

beacons in the first epoch and the need to explicitly schedule beacons in the

second epoch to enable discovery. This is visualized effectively by Figure 2.12b,

showing that the rate at which nodes are discovered in B-BLEnd sits between

F-BLEnd and U-BLEnd—a consequence of its design that trades off the speed

at which nodes are discovered for better energy consumption. In any case,

for all BLEnd variants, the shape of the discovery rate curves matches very

closely the results from simulation, as shown, e.g., in Figure 2.12a and 2.12b.
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Figure 2.12: Experimental evaluation of BLEnd.

2.9 Conclusion

We presented BLEnd, a protocol designed with practical concerns in

mind. On one hand, we choose BLE as a communication platform and design

a protocol that, at its core, takes BLE’s peculiar constraints into account. On

the other hand, we put application users at the center and devise a protocol

that is easily configurable to meet application requirements. These require-

ments include a target discovery latency, and consider, for the first time in the

literature, the practical impact of collisions on continuous neighbor discovery.

The cornerstone of BLEnd is the realization that unidirectional discov-

ery can be accomplished very efficiently without precluding its extension to

bidirectional discovery, if and when needed. Further, the resulting protocol is

adaptive, in that it automatically adjusts the amount of beaconing as density

increases. Our evaluation in simulation shows quantitatively that BLEnd is

significantly more performant than state of the art protocols once the latter

are placed in the context of real practical constraints. Our design is reified in
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an implementation on TI SensorTags, but the key element enabling practical

use is the companion optimizer, which enables users to identify the best con-

figuration for a given set of application requirements. The optimizer is based

on an analytical model of BLEnd, and we showed that model, simulator, and

implementation are in good agreement, thereby enabling immediate use in

applications.
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Chapter 3

SCENTS: Collaborative Sensing in Proximity

IoT Networks

The past decade has seen a rise of IoT devices with multiple low-

powered commodity sensors and the ability to communicate wirelessly with

nearby devices. Such devices are found in myriad domains, from wearables to

home automation and smart city infrastructure. From a sensing perspective,

an IoT device periodically sends readings from on-board sensors to a locally

hosted application, to a paired device, or to the “cloud” via a gateway. This

design works well for enterprise applications and smart homes. However, the

popularity of applications that rely on personal devices remains low. Many

of these devices are battery-operated, which limits the number of on-device

sensors and the sampling frequencies. On the communication front, nearly all

mobile devices are capable of short range wireless communication (e.g., via

Bluetooth, ZigBee, etc.), and for some devices short-range connections are the

only option. However, the use of these links to make sensed data available in

the vicinity is underdeveloped.

Many envisioned pervasive computing applications rely on continuously

sensed information about the surroundings, but the cost of continuous sensing
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on battery-operated devices can be prohibitively high [14]. It is therefore rea-

sonable to enable devices to collaborate to sense a collective context state. For

instance, children participating in a walking school bus may share movement

or activity patterns, indicating a shared route to school [97]. The use of a

device-to-device network to allow co-located IoT devices to collaborate could:

(1) enable user-facing applications to leverage sensing capabilities of nearby

devices when the local device lacks some capability; (2) allow nearby devices

to save energy spent on sensing “similar” values; and (3) enable sensing-heavy

applications to be less reliant on infrastructure connections. In addition to

bringing computation closer to the user [1], this last point eases concerns as-

sociated with offloading potentially private data to a third party [121].

Section 3.1 describes existing work in collaborative context sensing,

which often involve cloud-based control [43, 112]. Rather than addressing an

off-line data collection goal, we aim to satisfy local needs for sensed context

using local sensing resources. We propose SCENTS (Sensing Collaboratively in

Everyday NeTworkS), which allows devices to leverage local, device-to-device

communication to actively request and supply locally sensed context. The key

contributions of SCENTS are:

• We construct a framework that utilizes commonly available connection-

less communication to share sensing capabilities directly among co-located

heterogeneous IoT devices.

• We devise a heuristic to identify the best mechanisms for sensing, ac-

53



counting for sensing and communication costs, and predicting and adapt-

ing to mobility-induced failures.

• We evaluate SCENTS on an extensive set of IoT scenarios using an

expressive and realistic smart city simulator.

3.1 Related Work and SCENTS Vision

To motivate SCENTS, we introduce two application scenarios that we

revisit throughout the paper. We then discuss efforts related to SCENTS,

described in the next section.

Application Scenarios. Consider a walking tour group [109] whose

participants carry smartphones that inform them about the surroundings:

weather, nearby crowds, wait times for points of interest, etc. Participants’

devices could individually collect all of the needed information. However, these

devices need to communicate simply to maintain the group’s digital connect-

edness. By leveraging these group messages, devices can also share the burden

of sensing needed ambient context.

As a second scenario, imagine a jogger in a smart city. The jogger

does not desire to carry a bulky smartphone but instead wears only a simple

watch with wireless connectivity but no sensing capabilities. This device can

opportunistically collect information from devices embedded in the municipal

infrastructure [3]. In this way, the jogger can log run details, from pace to the

weather or crowd conditions. This information is similar to the details that
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smartphone running apps currently collect, but with less cost and burden to

the jogger.

Related Work. The IoT raises new challenges in both sensing and col-

laborating among highly-capable yet battery-operated devices [1, 26]. Many

efforts simplify applications by abstracting or virtualizing their use of sen-

sors [23, 74] or by enabling access to sensors on nearby devices [6, 136]. Even

given these efforts, sensing remains a major cost of IoT applications [3]. Other

approaches allow devices to rely on edge services to perform sensing on their

behalf [102] or intelligently task sensors based on predicted high-level context

values, thereby reducing sensing cost [62, 92].

Cloud-assisted collaborative sensing aims to maximize sensing coverage

or improve data quality [43, 64, 112]. Most approaches collect information for

use offline; a few push data back to distributed devices [25, 87]. In sensor

networks, local neighborhoods [91, 129] aggregate collected data before sending

it to a gateway. The challenge of uncoordinated collaboration in a frequently

changing network using only a local view remains open. Work in device-to-

device collaboration [53, 99] sets the stage for our efforts, and defining long-

lived groups of co-located users for the purpose of sharing local information

has a growing interest in smart cities [35, 71, 109]. Yet opportunistic context

sharing over highly dynamic links demands transient light-weight abstractions.

Our own prior work shares context among co-located devices [28, 80].

These prior efforts are passive and opportunistic. In SCENTS, in contrast,

the surroundings become an extension of the device’s own capabilities that
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applications on the device can abstractly access on-demand.

Background. In SCENTS, devices must opportunistically discover

what sensing capabilities are available nearby. An important technical building

block is continuous neighbor discovery, made possible by the myriad commu-

nication capabilities in the IoT (e.g., BLE, IEEE 802.15.4). These widely used

protocols create schedules of sending and receiving beacons to enable discovery

of nearby devices [13, 37, 67]. SCENTS places contents related to shared sens-

ing in these protocols’ periodic beacons sent by the BLEnd protocol(section

2.2).

3.2 Collaborative Sensing in SCENTS

In SCENTS, we consider the application and the device hardware as

two layers of an IoT node, where an application generates queries for sen-

sor information, and the device uses sensing and communication capabilities

to satisfy queries. SCENTS sits between the two and governs collaboration

among nodes. We first formulate the dynamic collaborative sensing problem

and then present the details of SCENTS.

3.2.1 Problem Formulation

We start by establishing some terminology.

• IoT node d: a device capable of sensing and wireless communication. We

indicate a neighborhood as d1, . . . , dn.
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• Context type s: a type of context a sensor provides (e.g., location).

Each node di provides Si ⊆ S; the complete set of context types, S =

{s1, . . . , sm}, is known a priori.

• Sensing energy cost e: the value ek is an averaged energy cost for sensing

type sk.

• Link stability li,j(t): how stable the link between di and dj is at time t;

li,j ∈ [0, 1].

• Device sensing cost Ei: node di’s energy cost of sensing.

• Energy capability capi: denotes to the energy capability of di. It is either

di’s battery capacity or ∞, if di is hardwired.

We now define the problem of dynamic collaborative sensing, using two

metrics. The Fulfillment Ratio is defined as:

FR =
Number of queries that receive a valid response

Number of queries generated
(3.1)

The Unfairness of Energy Consumption metric captures the difference be-

tween the normalized energy consumption of different devices.

UEC = max(i,j)∈{n×n}

(∣∣∣∣ Eicapi
− Ej

capj

∣∣∣∣) (3.2)

Problem (Dynamic Collaborative Sensing): A set of nodes D =

{d1, d2, . . . dn} with heterogeneous sensors (Si ⊆ {s1, . . . , sm}) move in a shared

physical space. Each di ∈ D hosts one or more applications that periodically
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generate sensing queries. For each query qi(t), the node di must decide the best

node (either itself or a neighbor) to fulfill the query such that: for a given time

period T , (1) as many queries as possible are answered, i.e., FR is maximized;

and (2) the unfairness of the normalized sensing cost of the participants is

minimized, i.e., UEC is minimized.

Most sensed context that SCENTS targets, e.g., attributes of the am-

bient environment, can be made public without privacy concerns. Other data

may be sensitive or could lead to privacy breaches through context inference.

Previous study shows sharing these data only with people in close proximity

raises fewer concerns [130]. Also, efforts exist to protect sensed data through

encryption [131] and obfuscation [79]. SCENTS remains useful even consider-

ing only ambient context that is not privacy sensitive, including sensing that

a device can delegate to a nearby device for cost reasons.

3.2.2 System Overview

As shown in Fig. 3.1, SCENTS sits between applications and the device

hardware and has two primary components: the neighborhood agent and the

collaboration agent. The former continuously detects arriving and departing

neighbor devices using beacons. The latter intercepts applications’ queries, se-

lects and invokes the best approach to satisfy a query, and delivers data back

to applications. It sends sensing requests by updating the beacon content of

the neighborhood agent and receives sensing responses when the neighborhood

agent receives fulfillers’ beacons. The best approach to satisfy a query could

58



Collaboration 
Agent

Sensing 
Request/ 
Response

MAC

Message
from/to Neighbor

Sensors

Application 
Layer

Running 
App

Cycling 
App Map CIMEnv. 

Monitor

Sensing 
Query/Answer

Sensor
Reading

SCEN
TS

H
ardw

are
Layer

Neighborhood 
Agent

neighbor discovery

Figure 3.1: SCENTS system overview.

be to (1) sense the desired context using local hardware; (2) return a recent ob-

servation; or (3) communicate with neighboring devices to request and receive

context.

3.2.3 Neighborhood Agent

When current IoT systems use a remote device for sensing (e.g., a

smartphone using a wearable fitness sensor), the communication requires a

pairing process. Once paired, the devices enter a “central/peripherals” model,

where access to a peripheral’s sensing capability is restricted to a single appli-

cation (process) at a time. In SCENTS, all devices act as equals and direct

their own behaviors. Any sensing participant can opportunistically communi-

cate with any peer in range.

To support mobile applications, the neighborhood agent must quickly
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adapt to changes in the surrounding network and its sensing resources. We

presume the use of the BLEnd protocol for continuous neighbor discovery [58].

This protocol is characterized by a repeating schedule of short beacons and one

longer scanning period that captures beacons from other nodes. The size of the

beacon fixed by the underlying BLE technology, but only the id of the sender

is necessary for the BLEnd protocol, leaving the remaining beacon payload

unused. The neighborhood agent leverages these unused bits for sensing ex-

changes. The most relevant parameter of the underlying protocol is Λ, the

expected maximum latency to discover a neighbor with high probability; for

our purposes, Λ equates to the expected maximum time for a node to receive

a neighbor’s sensing request, r, or sensing response, p.

The neighborhood agent must also detect node departures. When di

receives a beacon from dj, the neighborhood agent infers the distance between

di and dj from the received signal strength (RSS) value PRx,i. We use the log

distance path loss model [16, 41] to estimate distance from RSS:

PL(dBm) = PTx ,j − PRx ,i = PL0 + 10 · γ · log(ai,j/a0) +X (3.3)

where PL is the path loss signal strength, ai,j is the distance between di and dj,

γ is the path loss exponent, X denotes a zero-mean Gaussian variable caused

by flat fading, and PL0 is the path loss signal strength at reference distance

a0. Node di creates a distance queue, Aj, to keep time-stamped distances

60



from di to dj based on recently received radio frames. The neighborhood

agent computes the (relative) velocity of dj:

Vj(t) =
dAj
dt

(3.4)

Using this relative velocity, the neighborhood agent estimates the sta-

bility of dj relative to a sensing task using the safe distance [53] to determine

how likely dj is to move out of range before the sensing request and response

complete. We denote the estimated communication range of dj as Rj, calcu-

lated using equation 3.3. If di and dj have different transmission ranges, di can

still calculate the communication range of dj at no additional cost1. Because

SCENTS requires bidirectional communication, the neighborhood agents at di

and dj use the minimum of the two ranges. The neighborhood agent computes

a smaller range, rth(t), that accounts for the times to send, receive, and re-

spond to a sensing request, relying on the worst case delay in each direction

(i.e., Λ):

rthj (t) = R− Λ · |Vj(t)| (3.5)

We use a logistic function to model the fact that the computed stability

of a sensing partner decreases as the two nodes move away from each other:

1For instance, TxPower field in the BLE extended header.
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lj(t) =
1

1 + e
1
10
·(ai,j−

rth
j

(t)

2
)

(3.6)

where lj(t) is node di’s stability value for dj at time t.

The neighborhood agent later uses stability to compute whether a

neighbor makes a good collaborating partner. To account for the potential

change in lj(t) over time, we compute Lj(t
′), the aged stability of dj at time t′

. The aging factor uses an exponential decay; the exponential decay constant

Λ is the maximum latency used above:

Lj(t
′) = lj(t) · e−Λ(t′−t) (3.7)

The neighborhood agent receives beacons, computes stability values,

and passes beacon contents on to the collaboration agent, which is SCENTS’s

decision-making process.

3.2.4 Collaboration Agent

The collaboration agent has three main components: a query interface,

a neighbor cache, and a decision process.

Query Interface. Interactions with the collaboration layer are driven

by queries created by application; applications remain agnostic to how or where

context is sensed. The interface contains a query method that takes a context

type sk and a handle to a callback to be invoked when the context is ready.
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The collaboration agent maintains a local view of nodes in proximity, build-

ing and maintaining a neighbor cache over time using information from the

neighborhood agent.

Neighbor Cache. In the neighborhood agent’s schedule of scanning

and beaconing, the default beacon content is a bitmap indicating the on-board

sensors. That is, dj’s beacon contains a compressed vector of its capabilities,

Sj, in which each bit uniquely identifies a type of context. The collaboration

agent logically maintains a matrix C ∈ Bn×m in which bit Cjk denotes whether

dj is capable of sensing sk. This matrix is updated whenever the neighborhood

agent receives a beacon.

The neighbor cache also learns from the content of received beacons.

If the beacon contains a response directed from dj to this node, then the

node delivers the data to the application. The neighbor cache also stores

received context values in case they are useful for another application in the

near future. It creates an entry 〈sk, value, t〉 ∈ Store, where sk is the type,

value is the measured value, and t is the time of the measurement. Expired

entries are eliminated periodically given a mapping of type sk to the expected

duration of its validity.

The beacon could also contain a sensing request for di. The node first

checks its local Store for a valid sample; if it finds one, it sends the cached

value as a reused value. Otherwise, di samples the requested sensor, sends a

response, and updates the Store with the new reading.
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Finally, if the beacon contains a response for a node other than di, the

content is still used to update di’s Store if the value is newly sensed, i.e., not

marked as reused. This allows di to cache sensor readings for future application

requests. In addition, the collaboration agent monitors the estimated energy

expenditure for sensing on nearby nodes. If a received beacon indicates that dj

recently sensed sk, then di updates its local estimate of dj’s energy expenditure

by updating a vector Ej ∈ Rn to be Ej + ek. Over time, di’s estimate of Ej

accumulates the energy cost of dj’s sensing actions that di observes.

Decision Process. The final obligation of the collaboration agent is

to resolve local application queries. When the collaboration agent receives a

query q(t) for type sk, it checks the Store to see if a valid reading exists. If

so, the query is fulfilled immediately. Otherwise, it determines the best way

to use sensing resources in the vicinity to satisfy the query using the following

guidelines:

• If the best node to answer the query is the local node, the collaboration

agent requests the value from the local sensor. It also creates an artificial

response hat it passes to the neighborhood agent to insert in the outgoing

beacon for the next Λ time. This proactively shares sensed context.

• If the best node to answer the query is neighbor dj, the collaboration

agent creates places a sensing request, r in the outgoing beacon for Λ

time. When dj receives r, it responds as described above. All other

neighbors that receive r use the contained information to update C.
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Algorithm 1: Sensing candidate selection algorithm

1 Function SelectCandidate: query q(t), α
2 sk ← q(t)

3 Lj(t)← lj(t
′) · e−Λ(t−t′) for j = 1 . . . n

4 construct w ∈ Rn s.t. wk ←
∑n

j=0 ¬Cjk·Lj(t)

n
, k = 1 . . .m

5 construct D ∈ Rm×m s.t. Dkk = wk, for k = 1 . . .m
6 H ← CD ∈ Rn×m

7 H̃ ← row normalize H //each H̃j,: is a probability vector

8 y = fα(H̃:,k, E) //affine combination
9 return ∃dj.yj > 0 ∧ yj = min(y)

10 end

Our algorithm relies on the neighbor cache (i.e., Cn×m, En, and Ln×2),

the query, and a parameter α ∈ [0, 1] that represents local dynamics (i.e., the

rate of change in links to neighbors). Algorithm 1 attempts to maximize the

Fulfillment Ratio (FR) while evenly distributing energy costs (i.e., minimizing

the UEC metric). Line 2 pulls the desired context type from the query. Line 3

computes the time-decayed stability for each neighbor using Equation 3.7.

Next, the algorithm computes the rarity of the each type. Line 4 computes

a vector, w, in which wk combines the existence of a sensing capability on

a neighbor with the link stability, then divides this by the total number of

neighbors. Lines 5 through 7 transform the sensor availability matrix Cn×m

into a local view of sensing preferences H̃, in which H̃jk indicates how suitable

dj is for sensing sk, from di’s perspective. The intuition is to avoid assigning

a widely available sensing task sk to a node that is capable of sensing some

other rarer context type. The set of 〈H̃:,k, E〉 gives a partially ordered list

of preferences for the capable sensing nodes. Our algorithm then applies an
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Figure 3.2: Collaborative sensing in SCENTS.

affine mapping function (Line 8) to generate a total ordering of these pairs.

The optimal candidate is given by the infimum of the set of 〈H̃:,k, E〉 pairs

(Line 9), which gives the positive minimum in the mapped outcome, if it

exists.

3.2.5 An Example of SCENTS Interaction Flow

Figure 3.2 provides an example of sensing task coordination in SCENTS

by showing a hypothetical series of interactions among four nodes 2. Note that

nodes are not synchronized in time, so the notations of t0 . . . t4 are simply for

convenience of explanation. Each node is illustrated with three layers, which

represent, from top to bottom, the application layer, the SCENTS layer, and

the hardware sensing layer. The status of each layer in each node is denoted

by color: inactive is gray; active layers are shown in color; when a node is

only participating in neighbor discovery, the SCENTS layer is depicted in blue

2Colored areas indicate activation in the given time step. At t1, node d1 generates a
sensing query that is resolved locally and its result is shared proactively with neighboring
nodes. At t2, the collaboration agent at node d2 determines that the best way to resolve
the application’s query is through a sensing request to node d3. At t3, node d3 acquires the
data and adds the result to the beacon, which is received by d2 but also overheard by other
nodes. Finally, at time t4, the collaboration layer at node d4 determines that an application
query can be resolved by cached values.
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stripes. The example walks through an application request satisfied by local

sensing (at t1), an application request satisfied by remote sensing (at t2-t3)

and an application query satisfied by a cached context value (at t4).

3.3 SCENTS Experimental Evaluation

3.3.1 IoT Device Power Profiling

We first profile the capabilities of an off-the-shelf IoT device: the Nordic

Thingy 52 sensor kit [94]. This multi-sensor lightweight device is equipped

with BLE and powered by a rechargeable Li-Po battery with a capacity of

1440 mAh. The Thingy allows fine-grained control over BLE beaconing and

scanning, which is required by continuous neighbor discovery. We extended

the on-board sensors with an external GPS module [2]. We used this setup

to create a power consumption model for the Thingy using a profiling pro-

gram that executes a series of operations (i.e., transmitting beacons, scanning

advertising channels, and sampling sensors).

We sampled the current at 10KHz using an Infiniium DSO9404A oscil-

loscope, then reconstructed the current measurements into pairs of power and

device behavior. Table 3.1 shows the measurement results. The first row (Idle)

is the power consumption when the Thingy is battery-powered but inactive

(i.e., radio and all sensors are disabled). We then sample different operations’

consumption in isolation.

2Volatile organic compounds (VOC) https://www.epa.gov/

indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality
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Table 3.1: Power consumption

Operation Power (mW)

Idle 0.05387

Scanning 16.86997
Beaconing 3.49649

GPS locating 95.34249

Humidity 1.87975
Air pressure/altitude 2.39284
Air quality (VOCs) 0.14427
Motion 6.74112
Color and light intensity 7.55269
Temperature 4.44521

3.3.2 System Implementation

To evaluate SCENTS, we built a street-level simulated world, including

heterogeneous and dynamic sensing resources. The core of our simulation is

the OMNeT++ v.5.4.1 discrete event simulator [122]. The wireless physical

and MAC layers are based on the INET Framework v.4.0 [55]. Geographic

coordinates and 3D physical obstacles rely on Open Scene Graph [95] and

Open Street Map [96]. Algorithm 1 is implemented using the Eigen3 template

library [38].

Simulated IoT devices use the device profile above, including multiple

sensors, low-radio duty cycle, and short-range device-to-device communication.

The available sensors include all the sensors in the Thingy52, plus a position

sensor.

For the link layer, we modified INET’s IEEE802.15.4 narrow band bea-
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Figure 3.3: A suburban scene in the simulator for SCENTS.

con operation. In particular, the node mimics BLE beaconing by adding a

random slack to the beacon intervals. Within this networking framework, we

implemented the BLEnd protocol [58], with which our neighborhood agent in-

terfaces to send and receive beacons. Fig. 3.4 shows the structure of a SCENTS

beacon, which fits in the 31 byte payload of a BLE advertisement. The first

three bytes are used for required identity information for neighbor discovery.

Each beacon also contains the node’s sensing capabilities (4 bytes), followed by

exchange segments, which encapsulate sensing requests and responses. Each

exchange segment contains the source and destination ids (each 1 byte), the

context type (5 bits) and a context value (4 bytes). Some context types have

values larger than 4 bytes (e.g., GPS readings); SCENTS supports an extended
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exchange segment of up to 8 bytes.

3.3.3 Scenarios

We use three realistic and parameterizable real-world scenarios for our

evaluation3:

Fleet: a set of IoT devices are carried by a group of people (whose size may

vary). The group members have nearly identical trajectories.

Commuters: a set of devices follow partially overlapped trajectories. A subset

move toward the same destination along partially different paths. The

remaining share the trajectory at the start then diverge to a different

destination.

Individual: a user carrying an IoT device moves through a smart space with

embedded sensing resources.

3Code repository: https://github.com/UT-MPC/collab-sensing-simulation
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Figure 3.5: Query fulfillment comparison.

3.3.4 Collaboration Analysis

Our first experiments evaluate the effectiveness of collaboratively shar-

ing the sensing task. Specifically: (1) Does collaboration mitigate missing

sensing capabilities using proximal sensing resources? (2) How are sensing

queries resolved (i.e., individually or collaboratively), and how do distribu-

tions of capabilities across devices impact performance?

We compare our algorithm with two näıve strategies. In the indepen-

dent strategy, each device fends for itself, answering queries only with on-board

sensing capabilities. In the random strategy, nodes randomly choose a capable

neighbor to collaborate. The results we report use six nodes in the Fleet sce-

nario. We vary sensing capabilities by assigning each node a random subset of

sensors; the size (r) of the subset varies from 20% of the available types up to
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100%. Each node hosts an application that randomly generates a query every

10s. Each simulation lasts for 850s, and we repeat each experiment five times

with different random seeds. Each query can result in one of the five states:

• RS1 (cached reading): query fulfilled by a cached value

• RS2 (answered request): query fulfilled by an answered sensing request

• RS3 (self-sensing): query fulfilled by local sensors.

• RS4 (failure: no response): unanswered sensing request

• RS5 (failure: no capability): lack of required sensor in the neighborhood

In Fig. 3.5, each bar is the summed for all runs of each setting. The

settings are grouped first by the fraction of capabilities allocated to each node,

then by strategy. The differences between the individual and both the random

and optimized (i.e., SCENTS) strategies highlight the benefits of collaboration.

By leveraging the heterogeneous capabilities in proximity, significantly many

more application queries can be satisfied. As r increases, slightly more re-

quests can be satisfied by cached values when using algorithm 1 than random

selection, reducing the energy cost of sensing in the local network neighbor-

hood.

To further evaluate SCENTS’s performance when devices have hetero-

geneous capabilities, we use the same scenario but with 10 nodes and a wider
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Figure 3.6: Fulfillment ratio with mixed capabilities. Query interval = 5s
(left), 10s (right)

range of capability settings. This time we analyze the Fulfillment Ratio met-

ric from Equation 3.1. We generated the configurations by iterating over two

parameters. The first, o, captures the fraction of nodes that are fully capable,

i.e., can directly sense all context types. The second parameter, r, is the same

random ratio as above. We vary the interval of each node generating sensing

queries between 5s (the same as Λ) and 10s. These parameters generate 242

different configurations; we repeat each run three times. Fig. 3.6 shows the

results.

Except in the extreme case (when o = 0 and r = 0, i.e., there are no

sensing capabilities in the neighborhood), the Fulfillment Ratio climbs quickly

as either parameter increases. Over 63% and 79% of queries are satisfied with

the help of collaboration (in o = 10%, r = 0 and o = 0 r = 10% cases).

73



3.3.5 Quality-of-Service Analysis

We next assess SCENTS’s quality-of-service (QoS) under increased dy-

namics in the neighborhood’s sensing resources: (1) How adaptive is SCENTS

to realistic dynamics in a smart city IoT scenario? (2) To what extent is sens-

ing quality traded for increased capability and reduced energy consumption?

We use the Commuters scenario4 with 10 devices that follow different yet

overlapping trajectories; six start and end at the same locations and deviate in

the middle; the remaining devices start with the others but head to a different

destination.

We assess the faithfulness of SCENTS in sensing a device’s position

when the simulated devices collaborate. We compute the freshness of sensed

values and their error from the ground truth. We define Freshness (F) to be

the time that elapses between sensing and delivering a query response and the

Error (E) to be the magnitude of the difference between the sensed value and

the ground truth. We varied the interval between queries using a parameter

θ. In particular, node di receives one sample for each desired context type

within the time window θ×Λ. Smaller values of Λ are associated with higher

sampling frequencies and therefore higher total energy costs for sensing. We

repeat each experiment five times, resulting in a total of 17729 queries for each

setting.

In Fig. 3.7a each box shows quartiles of freshness in seconds, while the

4https://youtu.be/KPqtK9t2efs
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Figure 3.7: Freshness and error analysis (commuter scenario).

whiskers extend to show the distribution. The dashed line marks the maximum

discovery latency Λ (5s). Most queries are nearly as fresh as Λ, meaning the

parameters of neighbor discovery dominate delays in receiving sensed values.

The medians are above Λ but within 15%. While motion related context types

(e.g., orientation) may be affected by this freshness, the majority of context

types (e.g., humidity) do not vary at the second scale in the nearby physical

world.

Next, we evaluate the error caused by sensing delay. Fig. 3.7b depicts

the kernel density estimation of the errors (in meters) for varying sensing

frequencies. The majority of errors are less than 10 meters. The median

errors are all less than 5 meters. SCENTS tends to choose nearby resources

to collaborate with, and these resources are likely to have context values close

to the ground truth since the context types are spatially correlated. Errors do

not increase as query frequency changes.
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Figure 3.8: Energy cost distribution (E) and UEC.

As our goal is to maximize query fulfillment while evenly distributing

energy costs of sensing, we measure the distribution of E values and the UEC

from Equation 3.2. Fig. 3.8 shows these values for the Fleet scenario with 10

nodes for both the individual strategy (blue) and SCENTS (orange). We first

compute the average power consumption per second for each node, then aver-

age over all runs. Not only does collaboration save substantial energy across

all values of θ, but the burden of context sensing is more evenly distributed

(as indicated by the tighter box and whisker plots for SCENTS). However,

there is still some variance, especially at high query frequencies, indicating

that refining the way Algorithm 1 considers the energy costs of collaborative

sensing is an area for future work.
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Figure 3.9: Energy cost (individual scenario).

3.3.6 Energy cost Analysis

Our final experiments analyze the energy savings of collaborative sens-

ing. We use the Individual scenario, a smart city with situated environmental

sensing beacons. Such devices commonly have a power source that frees them

from worry about energy costs. In the experiments, the stationary nodes are

placed randomly in the smart city space; we vary the density of stationary

nodes as the number of devices per 100 ∗ 100m2. The SCENTS layer used on

these devices is otherwise the same as described previously. The mobile de-

vice is fully capable and hosts an application that queries a randomly selected

context type every 10s. We measure the energy savings afforded the mobile

device from collaboration with the stationary sensors.

Figure 3.9 shows the energy consumption, comparing a mobile device

using only on-board sensors to fulfill queries (the backing gray bar) to the en-

ergy consumption when employing SCENTS. In each bar, the orange depicts

the energy spent on sensing, while the blue depicts energy spent on commu-
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nication. We compute the average power consumption per second for each

node, then average over all nodes. Starting from a density of one device, the

user node receives a significant benefit from collaborative sensing and fulfills

its sensing demands with 70% power savings.

3.4 SCENTS Conclusion

We demonstrated the practical benefits of collaboratively sensing con-

text in highly dynamic IoT environments. SCENTS leverages the context

sensing capabilities of opportunistically encountered devices in a non-intrusive

manner. Because SCENTS encapsulates access to both local and remote sen-

sors, individual sensors are no longer tied to specific applications or application

schedules, allowing much more flexibility in utilizing IoT sensing resources.
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Chapter 4

PINCH: Self-Organized Context

Neighborhoods for Smart Environments

In applications for smart cities, smart homes, smart transportation,

etc., mobile and situated devices often need to discover other devices in the

surroundings. A user entering a smart building needs to discover what em-

bedded devices are available to be accessed or controlled. A tourist in a

smart city may need to connect to other tourist’s devices [109] or to situ-

ated beacons in the city that give information about interesting sights [47, 84].

Devices in smart cars may coordinate with other cars, roadside kiosks, or

pedestrians. In smart wildlife applications, devices on wild animals discover

one another to monitor behavior patterns [98]. Enabling these applications

requires continuous neighbor discovery, and protocols for neighbor discovery

have received significant attention, from wireless sensor networks to smart-*

applications [13, 37, 58, 61, 67, 86, 101, 124, 126].

These neighbor discovery protocols simply exchange identifiers of one-

hop neighbors; how to coordinate with discovered neighbors is left to applica-

tions. Some application-specific approaches use the beacon payload to carry

additional information, for instance to give a multi-hop view of a group [109,
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134]. However, many applications that rely on continuous neighbor discovery

also demand a view of local context information that goes beyond identities

of neighboring devices. For instance, many applications use physical location.

Smart building applications may use ambient temperature or lighting to adapt

behavior; smart wildlife applications may correlate ambient information to an-

imal contacts; smart tourism applications may use information about crowds

or nearby available services.

The lightweight devices common in these applications often lack on-

board sensors. Even if these capabilities are present, leveraging them contin-

uously can be energy intensive. However, given the presence of other devices

in the surroundings and the fact that context is often correlated to a device’s

physical location, the burden of sensing context could be shared within a net-

work neighborhood. This can reduce the energy burden of context sensing for

individual devices as well as extend the capabilities of sensor-limited devices.

We explore allowing devices to use available payload in periodic neighbor dis-

covery beacons to opportunistically share sensed context in the local network.

Many approaches support resource-efficient context sensing by intelli-

gently tasking on-board sensors based on applications’ high-level needs [62, 92].

Using co-located devices to extend a device’s sensing capabilities has also been

explored. ChitChat [28] supports lightweight sharing of complete snapshots

of devices’ contextual situations. Other approaches allow devices to discover

and leverage sensors and I/O capabilities on neighboring devices [6, 136]. As

described in more detail in Section 4.1, these approaches are all driven ex-
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plicitly by applications’ requests for context information. Instead, we take a

self-organizing approach to proactively infer what context information might

be useful to others in the network neighborhood.

We develop PINCH (Proactive Implicit Neighborhood Context Heuris-

tics), which assumes that devices in smart-* deployments participate in con-

tinuous neighbor discovery. In these protocols, detailed in Section 4.1, there is

often unused payload in the periodic neighbor discovery beacons, and PINCH

packs valuable context information into this unused payload, constructing a

sort of neighborhood-wide sensor. We build PINCH on the BLEnd protocol,

directly considering how aspects of BLEnd influence our self-organizing algo-

rithms for context sharing. Section 4.2 describes these algorithms in detail,

incrementally constructing algorithms that rely on the minimal information

that can be shared in the periodic beacons. As such, PINCH is: (1) self-

organizing, i.e., individual devices make individual decisions in a heuristic ap-

proach that attempts to optimize for the local neighborhood; (2) implicit, i.e.,

devices do not explicitly request or respond to requests for particular sensed

values; and (3) inexpensive, i.e., the approach entails no additional communi-

cation overhead beyond what is already consumed by neighbor discovery. The

contributions of this chapter are the following:

• We describe PINCH, a self-organizing heuristic for implicitly sharing context

using neighbor discovery beacons.

• We derive algorithms for deciding what context type a device should share,
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given the state of the neighborhood.

• We evaluate PINCH using an expressive smart city simulator in with real-

world application scenarios.

Our evaluation demonstrates that PINCH increases the coverage of context

information in the local network neighborhood when devices have limited sens-

ing capabilities and reduces the overall cost of context sensing in cases when

devices have overlapping redundant sensing capabilities.

4.1 Background and Related Work

We begin with a concise survey of related work on local and collab-

orative context sensing, showing the gap that PINCH addresses. We then

overview continuous neighbor discovery, detailing BLEnd, which PINCH re-

lies on.

4.1.1 Related Work

Efficiently acquiring context is essential in smart-* applications that

rely on lightweight battery-operated devices. A wealth of approaches solve

this problem for a single device, e.g., leveraging on-device sensors to monitor

high-level context changes rather than blindly sensing raw values [62, 63, 92,

104, 138]. While these approaches consider how best to use on-board resources

to determine the lcoal context state, we broaden the perspective and ask how

wirelessly connected devices can leverage their resources in aggregate.
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Several early works in wireless sensor networks offered the ability to

share context information among co-located devices [31, 44, 56, 129]. However,

these systems PINCH spread context sensing capabilities to neighboring de-

vices, then responded to one-time queries or established persistent queries to

receive changes in context values. In contrast, PINCH incurs no cost above

that of continuous neighbor detection and works seamlessly with changing

neighbor sets.

Work addressing user-facing applications has promoted the use of device-

to-device links to exchange context. ChitChat [28] packages an application-

specified view of a device’s context in a lightweight data structure to dissemi-

nate locally. It focuses on compact data packaging and does not consider how

or when that information is disseminated, nor what context may be most use-

ful in the neighborhood. Other approaches allow devices to discover sensing

or actuaion resources on neighboring devices then to request those discov-

ered resources [7, 136]. Our work is complementary; instead of assuming an

application-directed request and response, we opportunistically self-organize

the network neighborhood into an aggregate context sensor based on pre-

sumptions of needed context information. The key enabler of our approach is

that the communication of the context values comes virtually for free, under

the assumption that devices are already participating in a local continuous

neighbor discovery protocol.
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epoch

primary beacons secondary beacon scan/listen

Figure 4.1: BLEnd schedule of two devices. Solid rectangles are scanning
(listening) periods; skinny rectangles are beacons. Discovery occurs when one
device receives another’s beacon. Beacons are scheduled in the second half of
an epoch as a result of receiving a primary beacon; these secondary beacons
enable bi-directional discovery.

4.1.2 Neighbor Discovery and BLEnd

Neighbor discovery enables devices to discover other devices within

communication range. We focus on an entirely infrastructureless solution

in which each device plays both sides of the discovery role: announcing its

presence and scanning for the presence of others. As introduced in section

2.2, BLEnd [58] is a continuous neighbor discovery protocol designed to work

within the constraints of BLE and to offer a clear service-level agreement for

probabilistic discovery latency guarantees with minimal radio active time. In

BLEnd, time is divided into repeating epochs. At the beginning of each epoch,

the device listens for a specified period. It then sends a sequence of beacons,

enabling other devices to discover it. The BLEnd schedule allows the radio to

remain inactive for a significant period of time, dramatically reducing energy

consumption. Figure 4.1 shows an example of two devices’ BLEnd schedules.

The optimal BLEnd schedule is based on the desired service-level agree-

ment, including: (1) desired discovery latency (Λ); (2) desired probability of
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Figure 4.2: Asymmetric neighborhoods defined by BLEnd beacon exchange.
Device 1 exchanges beacons with 2, 3, and 4; device 4 exchanges beacons with
1, 5, and 6.

discovery (pd); and (3) beacon technology details (e.g., energy costs of bea-

coning and listening, etc.). The generated schedule includes the length of an

epoch, the length of a listen, and the time between beacons. It minimizes the

protocol’s energy consumption while guaranteeing that a device will discover

any neighbor within Λ time with a probability of pd.

Devices employing BLEnd receive beacons of neighboring devices; i.e.,

devices in one-hop communication range, identifying the device’s one-hop

neighborhood. Figure 4.2 shows two, asymmetric neighborhoods where de-

vices 1 and 4 are both in each other’s neighborhood but each neighborhood

contains devices that the other’s does not.

4.2 The PINCH Approach

PINCH exploits the fact that neighbor discovery must use fixed-length

beacons that are larger than required for neighbor discovery. It leaverages

the unused space to allow a neighborhood of devices to self-organize into an
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aggregate context sensor in which each device independently determines a

context sharing task that supplies situational context to other devices in the

neighborhood. Devices thereby share the burden of context sensing, resulting

in lower aggregate energy usage and higher coverage of hard-to-sense context

types. In PINCH, individual devices make individual decisions to provide

aggregate benefit to the network neighborhood. These decisions are informed

by limited information shared in neighbor discovery beacons. Figure 4.3 shows

the overall operation of PINCH.

beacon 
repository

context 
demand 
model

bbbb

sensing

b
BLEnd

choose 
context 

type

choose 
duration

create 
beacon

Figure 4.3: Overall PINCH operation

We assume that the set of context types is of size k and known a

priori to all devices. A device’s sensing capabilities is a subset of these types

represented as a k-bit vector in which each bit indicates whether the device can

provide the context type indicated by that index. We refer to this as a device’s

context capability vector (cap). We assume that each device is participating in

BLEnd neighbor discovery.

A device stores the most recently received beacons in a beacon repos-

itory, removing them when devices move out of range. Information from re-
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Figure 4.4: PINCH beacon payload

ceived beacons is combined with a context demand model that captures neigh-

boring devices’ needs for context. The context demand model is either static

and known a priori or built from information in beacons. Together the beacon

repository and context demand model serve as inputs to two algorithms. The

first determines what type of context this device should sense and share, while

the second determines the length of time for this sensing and sharing task,

after which the device reevaluates its context sharing activity. Based on the

outputs of these algorithms, the device constructs the BLEnd beacon.

4.2.1 Beacons for Self-Organized Context Sharing

In the BLEnd beacon of Figure 4.4, gray elements are used by the

BLEnd protocol and treated as header data. We assume PINCH can access

to data but may not modify it as doing so would change neighbor discovery

behavior.

To support self-organized context dissemination in PINCH, we add four

components to each beacon b, stored in the beacon repository B. The first new
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component describes the sending device’s selected context sensing task (i.e.,

the result of the algorithms in Figure 4.3), which itself has two components:

the type of context shared in this beacon, b.type (an index into the context

capability vector, which requires dlog ke bits) and a duration of this selected

task, counted in BLEnd discovery periods (i.e., increments of Λ), b.tts . The

latter indicates how much longer this device will make this type of context

available to its neighborhood, making it a kind of countdown timer, decreasing

each Λ. When the value reaches 0, the device reevaluates its context sharing

task. The beacon also contains two k-bit vectors: the sending device’s context

capability vector b.cap, and (optionally) the context needs of the applications

on the device, b.a. The latter, if included, can contribute to the construction

of the neighborhood’s context demand model, described in Section 4.2.2. The

remaining payload (the red portion in Figure 4.4) is used for the value of

the sensed context. This can be a simple or composite value, e.g., carrying

additional data such as error or units.

4.2.2 Neighborhood Context Demand Model

Our algorithms use a neighborhood context demand model, which ex-

presses the importance of each of the k context types. We start our investi-

gation with a demand model that is fixed and known to all devices a priori.

We then build a dynamic model that captures the instantaneous requirements

of neighboring devices. Finally, we specify an egocentric model in which each

device assumes others have needs similar to its own.
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In all cases, we assume that the model assigns each context type c ∈

[1..k] a weight wc. A higher value of wc indicates a higher (relative) importance

of context type c. For simplicity, we constrain wc to the interval [0, 1], and

require the sum of all k wc values to be one, i.e.:
∑k

c=1 wc = 1.

4.2.2.1 A Static Context Demand Model

In the simplest case, all devices can assume a context model in which all

context types are equally important. To achieve this, we simply set wc = 1/k

for all c. An alternate static context demand model could use a look-up table

shared a priori among all devices, mapping each context type to a fixed weight.

In any case, sharing the context demand model with all devices makes neighbor

behavior more predictable.

4.2.2.2 A Dynamic Context Demand Model

Including the application needs vector in the beacon enables PINCH’s

context demand model to respond to changing context demands arising from

mobility or from changing application conditions. For instance, to express a

context demand model in which the weight of a type is proportional to the

number of neighboring devices that require that type, we use:

wc =
ηc∑k
i=1 ηi

(4.1)

where ηi is the number of devices in the neighborhood that require context i.

We compute ηc using the application needs carried in beacons (Figure 4.4) as
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b.a. Specifically, ηc is:

ηc =
n∑
j=1

|j.b.a& 2c| (4.2)

We use the notation |V| to denote the Hamming weight of the bit vector V,

i.e., the number of bits in V set to one.

Eq. 4.1 is a general form of the basic static context demand model in

which all types are equally important. In fact, this context demand model

is quite flexible. For instance, if one wishes to define a more tailored static

model, this can be done simply by assigning integer importance values to each

of the k context types, then using those values in place of ηc in Eq. 4.1 to

generate normalized context weights wc.

4.2.2.3 An Egocentric Context Demand Model

An alternative dynamic model that can be employed even without send-

ing b.a in the beacons uses a local devices’ context needs as a proxy for the

neighborhood’s needs. This reserves additional space in the beacon for con-

text data. More importantly, however, it ensures that a device does not share

context values that its applications’ will not directly use. This reduces the

altruism of the device (i.e., it does not perform context sensing that is not also

locally useful) but also decreases the energy burden for the device.

4.2.3 Selecting a Context Type to Share

We now turn our attention to the context selection algorithms, which

deal with selecting a context type to share using information received in other
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devices’ beacons.

4.2.3.1 Basic Greedy Algorithm

To begin, consider an algorithm that relies on just the first two compo-

nents of all of the other devices’ beacon payloads: the sharing task description

and the sensed context value.

This algorithm first looks the sharing tasks selected by neighbors to

determine uncovered context types in the local neighborhood. By examining

the type in each received beacon, a device determines the aggregate of its

neighborhood’s context tasks using a multi-way bit-wise OR:

T =
n∨
j=1

2j.b.type (4.3)

where T is a bit vector, indexed in the same way as the beacons’ cap vectors.

Recall that neighborhoods are asymmetric; the context neighborhood of a de-

vice contains the devices from which beacons are received. To compute T, we

use each beacon’s type as an index into the capability types (i.e., 2j.b.type). In-

tuitively, T represents the context types that are “covered” within the device’s

local neighborhood.

We start by computing the negation of this aggregate neighborhood

context to generate a bit vector indicating context types that are not currently

shared by any neighboring device. When ANDed with this device’s capability

vector, cap, we are left with types this device could sense and share that would
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add to the neighborhood’s covered types:

S = ¬T & cap (4.4)

Conceptually, S identifies sensing gaps in the local neighborhood. The device

chooses the uncovered type of greatest importance as indicated by the context

demand model, i.e., s = 〈max c : c ∈ S :: wc〉1. The device then senses and

shares the value of type s for the next Λ time, i.e., for a period of time equal

to the BLEnd discovery latency.

Choosing to sense and share the value for Λ ensures that all devices

within discovery range will receive the context value with a probability equal

to BLEnd’s discovery probability, i.e., pd. Concretely, in the device’s created

beacon, the sharing task description’s first value will indicate the index s (the

selected type) and a task duration of 1Λ.

As an alternative equivalent definition of s, we specify a value P (s) for

each context type s:

P (s) =

{
1, if 〈max c : c ∈ S :: wc〉 = ws

0, otherwise
(4.5)

where P (s) indicates the probability that the selected context sensing task is

to share context type s. In this simple case, only the uncovered context type

with the max weight will have a value P (s) = 1; all other probabilities will be

0. However, this generic formulation of the problem enables straightforward

extensions of the selection algorithm.

1We use the shorthand c ∈ S to denote the fact that the index of c carries a one in the
bit vector S; i.e., c ∈ S↔ (S & 2c = 2c).
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4.2.3.2 Randomizing the Choice

When all devices are working from the same (or similar) context de-

mand model, two devices with the ability to provide the same (important)

context type may choose cover the same thing. This is especially likely for

two devices that are not in each other’s neighborhoods but are connected to

a shared neighbor. Our next refinement adds a small amount of randomness

to the choice of type to share, while still giving a weighted preference to more

important types according to the context-demand model. In particular, we

use a function for P (s) that assigns a probability of selecting s proportional

to the weight ws from the context demand model:

P (s) =

{
ws∑
c∈S wc

, if s ∈ S

0, otherwise
(4.6)

where uncovered types are assigned a non-zero probability; context types that

are either covered in the neighborhood or that the device cannot sense are

assigned a probability of 0.

This strategy can also be employed when there are no sensing gaps in

the neighborhood (i.e., |S| is 0). Because the device will send neighbor dis-

covery beacons anyway, it is productive to include some context information.

Such a device can choose a context type according to the context demand

model, considering all of its capabilities:

P (s) =

{
ws∑

c∈cap wc
, if s ∈ cap

0, otherwise
(4.7)
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4.2.3.3 Rarity-Weighted Algorithms

When devices have widely varying sensing capabilities, some capabili-

ties might be much more rare than others. In these situations, a device with a

rare capability should favor it over others with higher weights in the context

demand model, especially when those more common types can be covered by

other neighbors.

Using the capability vectors in received beacons, each device can com-

pute how common each of its capabilities is in the neighborhood. We refer to

this as a type’s prevalence:

prev(c) =

∑n
j=1 |(j.b.cap& 2c)|

n
(4.8)

The value of prev(c) is between 0 and 1 and captures the fraction of neigh-

borhood devices capable of sensing type c. To consider only the rarity of a

context type in selecting the device’s sensing task, we compute P (s) as:

P (s) =

{
1−prev(s)∑

c∈S(1−prev(c))
, if s ∈ S

0, otherwise
(4.9)

Combining the prevalence and weight from the previous refinement,

P (s) becomes:

P (s) =


(1− α)

(
ws∑
c∈S wc

)
+ α

(
1−prev(s)∑

c∈S(1−prev(c))

)
,

if s ∈ S

0, otherwise

(4.10)

where α balances the degree to which the algorithm favors rarity vs. simply

selecting an uncovered type. This strategy can also be employed even when

there are no sensing gaps by replacing S with cap in the definitions of P (s).
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4.2.4 Selecting a Duration for Sharing

The above selection algorithms assume that a device selects the type of

context to share and then shares that value for the exactly one Λ time, after

which the device reevaluates the situation, potentially selecting a different con-

text sharing task for the next Λ period. However, Λ might be relatively short

(especially relative to a neighborhood’s contextual dynamics), and it may be

reasonable for a device to choose a context type to share for a longer dura-

tion. Further, reevaluating the context sensing choice frequently could lead

pairs or groups of devices to swap sensing tasks every Λ time; because context

neighborhoods are asymmetric, these changes then ripple through the adjacent

neighborhoods. Further, initializing a particular sensor (e.g., a GPS unit) may

have overhead, so this switching may be quite expensive. We therefore allow

devices to select a multiple m of Λ as the duration of a sharing task.

Intuitively, a device should reevaluate its sensing task less frequently if

the capabilities and needs in the neighborhood change infrequently. To account

for this, we make the selected task duration proportional to the neighborhood’s

dynamics. That is, we compare the neighborhood’s capabilities at time t to

those that were available at time t− Λ.

Similar to the computation of T, we compute the aggregate (unweighted)

capabilities of a device’s neighborhood:

C =
n∨
j=1

j.b.cap (4.11)

where C is a bit vector of length k, indexed in the same way as T and the
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devices’ cap vectors. We extend this notation slightly to account for time;

C(t) indicates the aggregate capabilities in the neighborhood at time t. We

define the distance between C(t) and C(t − Λ) to be the Hamming weight of

C(t)⊕ C(t− Λ):

distance = |(C(t)⊕ C(t− Λ)| (4.12)

We then use distance to determine the duration multiple for the selected con-

text task. Because we want smaller values of distance to result in larger val-

ues of m; in particular, we could, for example define m as: m = max(2d −

distance, 1), where d is the number of bits allocated to the duration field in

each beacon. This is conservative, favoring m = 1 in cases with any significant

change in the neighborhood’s capabilities. Alternatively, we can more evenly

distribute the duration selection among the possible choices:

m =

{
(2d − 1), if distance = 0⌊
(2d − 1)×

(
1− distance

k

)⌋
+ 1, otherwise

(4.13)

4.2.5 Collision-Aware Context Task Selection

Because BLEnd is probabilistic, devices receive beacons from neighbors

every Λ interval only with a probability equal to the pd in the BLEnd service-

level agreement. Up to this point, our algorithms have not considered that

this directly implies that a beacon only covers the selected context task (for a

given neighbor) with probability (1− pd).

In this section, we examine a final selection algorithm that accounts

for this. We rely on a target probability of coverage (pc) for each context type
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c. If pc = pd (i.e., the target probability of coverage is the same as BLEnd’s

probability of discovery), then we probabilistically achieve the target in every

Λ interval. However, when pc > pd, multiple devices in the neighborhood must

share the same context type in order to achieve the target probability.

First, we redefine T. Instead of computing a boolean coverage for each

type, we determine how many neighbors are providing each type. We define

Tcoll to be a vector whose digits are base 2n, where n is the number of neighbors.

This prevents carries when summing bit vectors representing each beacon’s

context type. With this formulation, we compute:

Tcoll =
n∑
j=1

2j.b.type (4.14)

and we refer to the count for a particular context type c as Tcoll [c]. Next, we

estimate the neighborhood’s achieved coverage probability using the counts in

Tcoll :

p′c = 1− (1− pd)Tcoll [c] (4.15)

where pd is the BLEnd neighbor discovery probability.

We compute the intermediate T∗coll as:

T∗coll [c] =

{
1, if p′c < pc

0, otherwise
(4.16)

Finally, Scoll captures the context types that this device is capable of sensing

and whose estimated probability of coverage (p′c) has not reached the target

(pc):

Scoll = ¬T∗coll & cap (4.17)
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and used in the algorithms in Section 4.2.3 in place of S.

4.3 PINCH Implementation

PINCH builds directly on BLEnd, whose existing implementation relies

on Bluetooth Low Energy (BLE) for beacon exchange. We are therefore con-

strained by the BLE advertisement PDU for the beacon, which has 31 octets

of application-writeable data [120]. BLEnd [58] uses five octets for identifying

the BLEnd protocol, two octets for carrying a unique node identifier, and two

octets to announce the time to the start of the node’s next epoch. This leaves

22 octets of writeable data that is unused by BLEnd.

We assume a maximum of 32 context types (i.e., k = 32) and allocate

four octets to a beacon’s context capability vector (and to its application

needs vector, when it is included). We use another octet for the context

sharing task: five bits as an index into the capability vector and three bits

for the duration countdown, yielding a maximum duration of 7Λ. Finally, we

allocate the remaining space (ten octets when the application needs vector

is included) to the context data. The context data is formatted in a type-

specific way, but this space is sufficient for commonly encountered context

types in smart-* applications. For instance, while many representations of

location (i.e., latitude/longitude pairs) use 16 octets, more recent lightweight

devices use just six octets, resulting in ∼2m accuracy. In other cases, some

of the space allocated to the context data may be used to provide meta-data,

e.g., sensor precision or data freshness.
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4.4 Evaluation

To benchmark PINCH and demonstrate its applicability, we use a cus-

tom smart-city simulator, based on the OMNeT++ v.5.2 discrete event simula-

tor2. The wireless physical and MAC layers are based on the INET Framework

v.3.6.23. We integrated support for geographic coordinates and 3D graphics

using Open Scene Graph4 and Open Street Map5. The algorithms are imple-

mented using the Eigen3 library6. We used a map of pedestrian-friendly areas

of Trento, Italy, and modeled devices moving on streets at walking speeds

(i.e., two meters per second) as if carried by people. To realistically model the

impact of the urban environment on wireless communication, the simulator

computes the influence of building material properties on radio signals.

We configure the BLEnd parameters described in Section 4.1 to target

one-hop network neighborhoods with around 10 devices, i.e., n = 10 in BLEnd.

We set a target discovery probability of pd = 0.9 and a target discovery latency

of Λ = 10s. We use the beacon technology specifications of the TI SensorTag

(www.ti.com/sensortag), an inexpensive sensing device with a complete BLE

radio and networking stack that is representative of many IoT devices. The

resulting optimal settings for BLEnd dictate an epoch length of 9.995s, with

a listen duration of 217ms at the start of every epoch and a beacon interval of

2https://www.omnetpp.org/
3https://inet.omnetpp.org/
4http://www.openscenegraph.org/
5http://www.openstreetmap.org/
6http://eigen.tuxfamily.org/
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204ms (Figure 4.1).

4.4.1 Benchmarking the Algorithms

We measure the coverage percentage of context, i.e., the percentage of

types a device receives relative to its needs:

coverage percentage(c) =
# covered demands for c

total # demands for c
(4.18)

Because some types have more value in the neighborhood than others,

i.e., they have higher wc values, we also compute a weighted coverage quality:

coverage quality =
k∑
c=1

[(
# covered demands for c

total # demands for c

)
wc

]
(4.19)

We define a scenario that controls the size of each device’s one-hop

neighborhood to isolate the impact of parameters to our algorithms. A group

of (ten) devices starts together at one side of the city and follows a shared

trajectory through the city streets7. As the devices navigate the urban space,

they can become transiently disconnected, e.g., because of building obstruc-

tions near corners. This scenario is representative of many smart-city applica-

tions, e.g., those that support groups of tourists [109], school children, family

members, or friends moving together.

4.4.1.1 Context Sharing for Improved Context Coverage

Figure 4.5 shows the coverage percentage for each context type with

various parameter settings. Figures 4.5(a) and (b) use relatively few possible

7https://youtu.be/TOVtlOpgbNg

100



0 1 2 3 4 5 6 7 8 9
Context Types

  0%

 20%

 40%

 60%

 80%

100%
Co

ve
ra

ge
Greedy
Randomized
#Epoch

(a) k = 10, CR = 20, all wc equal

.

0 1 2 3 4 5 6 7 8 9
Context Types

  0%

 20%

 40%

 60%

 80%

100%

Co
ve

ra
ge

Greedy
Randomized
#Epoch

(b) k = 10, CR = 20, wc decreases lin-
early

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Context Types

  0%

 20%

 40%

 60%

 80%

100%

Co
ve

ra
ge

Greedy
Randomized
#Epoch

(c) k = 20, CR = 20, all wc equal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Context Types

  0%

 20%

 40%

 60%

 80%

100%

Co
ve

ra
ge

Greedy
Randomized
#Epoch

(d) k = 20, CR = 20, wc decreases lin-
early

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Context Types

  0%

 20%

 40%

 60%

 80%

100%

Co
ve

ra
ge

Greedy
Randomized
#Epoch

(e) k = 20, CR = 20, DR = 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Context Types

  0%

 20%

 40%

 60%

 80%

100%

Co
ve

ra
ge

Greedy
Randomized
#Epoch

(f) k = 20, CR = 20, DR = 60

Figure 4.5: Benchmarking coverage of greedy and randomized selection.

context types (i.e., k = 10). All devices demanded values for all types (i.e., a

demand ratio (DR) of 100), and every device could sense a randomly selected

20% of the types (i.e., a capability ratio (CR) of 20). We show the coverage

percentage for both the greedy (Eq. 4.5) and randomized selection algorithms

(Eq. 4.6). Figure 4.5(a) employs the static context demand model in which

all context types are equally important (Eq. 4.1); Figure 4.5(b) employs a
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static demand model in which weights decay linearly for higher indexed types

(i.e., w1 = 0.22, w2 = 0.19, ... w8 = 0.03). The results are nearly identical

because a device’s neighborhood almost always has ten devices (including the

device itself), and each device can choose a different one of the ten sensing

tasks; PINCH implicitly fosters this diversity since a device uses the neighbors’

sensing tasks to inform its own selection.

In Figures 4.5(c) and (d), we increase k to 20. In Figure 4.5(c), all

context types are equally important. The greedy algorithm favors the lower

indexed types (it chooses greedily), while the randomized algorithm spreads

coverage more evenly. In Figure 4.5(d), where we employ the linearly decaying

demand model, the model itself is apparent in the trend for the randomized

algorithm, whose selection of types to share follows the weights in the model.

In Figures 4.5(e) and (f), we employ a dynamic context demand model.

In Figure 4.5(e), every device selects a random subset of 20% of the context

types it needs (i.e., DR = 20); in Figure 4.5(f), we increase this demand to

60% of the types. In both cases, CR = 20. In Figure 4.5(e), the simple

greedy algorithm is unable to adjust when the capabilities are constrained;

this is further highlighted in Figure 4.5(f), where the context demands are

even higher, and the greedy algorithm favors lower indexed context types,

while the randomized selection algorithm provides more uniform coverage.
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Figure 4.6: The pressure of increasing numbers of context types (CR = 20,
DR = 60).

4.4.1.2 Increasing Context Types

We next evaluated PINCH’s ability to handle a growing number of

context types, since smart environments may have many types of sensors or

many high-level context abstractions. Using the same set of ten devices moving

together and the same demand and capability models as in Figure 4.5(f), we

varied the number of context types (k) from 8 to 32. Figure 4.6 shows the

average coverage quality for the greedy and randomized algorithms. PINCH

maintains relatively high coverage quality, even with many more context types

than sensing-capable neighbors. The randomized algorithm performs better

because it chooses from across all possible types instead of focusing greedily

on (only) the most important.

4.4.1.3 Adapting to Dynamic Needs

PINCH is designed to adapt to the neighborhood’s changing needs and

capabilities. To assess this adaptation, we used our group mobility model with
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Figure 4.7: Adapting to changing context demands (k = 16, CR = 20,
DR = 20).

ten devices, with k = 16, and with capability and demand ratios both of 20%,

where the demanded types were not necessarily the same as the capabilities.

Periodically, in this case, every 30 seconds, every device randomly re-selects

its needed context types. We also statically set the duration of the context to

either the minimum possible (1Λ) or the maximum possible (7Λ). Figure 4.7

shows the coverage percentage in both cases. With a shorter duration, PINCH

is able to achieve a slightly higher coverage, but, as evidenced by the sharp

peaks, the devices are switching context sensing tasks more frequently. This

figure demonstrates the tradeoff between sensing stability and sensing cover-

age; while a higher coverage is obviously preferred, as described previously,

there is overhead to activating a context sensor that also increases the energy

cost of sensing.8

8The coverage transiently rises when devices change their sensing task as a result of a
device receiving different beacons (with different context types) from the same neighbor in
a given epoch. This is an artifact of our measurement approach, but it indicates a potential
avenue of exploration: if devices change their sensing task within an epoch, it is possible
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4.4.1.4 Benefits and Costs

PINCH uses the neighborhood’s sensing capabilities to fulfill sensing

tasks a device is incapable of or simply to leverage energy used for sensing on

nearby devices. To that end, we measured the benefit and cost of sharing the

sensing task. For the benefit, we compute the percentage of a device’s needed

types that were covered by some other device. For the cost, we compute

the percentage of the time that the context value a device was sharing was

something the node itself did not need.

Figure 4.8 shows the benefit devices received from participating in

PINCH as we varied the capability ratio from 100% down to 10%. Even

when the device can sense all of the context types on its own, it still garners

a significant benefit from PINCH. With higher values of CR, the benefit to

the device is a reduced context sensing and therefore energy burden. Instead,

when the device’s context sensing capabilities decrease (lower values of CR),

the device gains access to context values that it cannot sense itself.

Figure 4.9(b) shows the cost to devices as their demands for context

types increase from 10% to 100%. When a device is capable of sensing all of

the context types but only needs a random 10% of those types, the device is

often contributing something to the neighborhood that is not useful to itself.

However, as the device’s needs grow, the context type that PINCH chooses for

the device to sense and share is more likely to be useful to the device.

that BLEnd can be manipulated to achieve even higher levels of context coverage. This
investigation is left for future work.
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Figure 4.8: Benefits of PINCH (k = 10, DR = 100).
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Figure 4.9: Costs of PINCH (k = 10, CR = 100),

4.4.1.5 Considering the Rarity of Context Types

The rarity-weighted algorithm in Eq. 4.10 allows a device to favor se-

lecting a context type that it alone in the neighborhood can provide, even if

it is not the most important according to the context demand model. We

evaluate this with the group mobility scenario and assume every device needs

every type. We vary the distribution of capabilities: for k = 16, we make every

device capable of sensing the first eight context types plus, randomly, one of

the remaining types. Figure 4.10 shows the coverage percentage of the rare
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Figure 4.10: Rarity weighting in PINCH.

(colored bars) and common (gray bars) types while varying α. We consider

only the coverage contributed to by other devices (and not the device itself).

Coverage of the rare context types increases with increasing α; this does come

at some cost–devices that are sharing rare types cannot also share common

types. Because all devices were outfitted with all eight of the common sensors,

the rarity weighted algorithm allows the device to use the neighborhood’s sens-

ing resources to fill in the types that it cannot sense on its own. Some of the

remaining common types are filled in by neighborhood sharing (e.g., because a

second device in the neighborhood can provide the same rare type as another),

and the device can use its own sensors to complete its coverage.

4.4.1.6 Collision Awareness

The prior experiments simply use BLEnd off-the-shelf without consid-

ering the implications of its probabilistic discovery guarantees. To evaluate the

collision-aware algorithm of Section 4.2.5 we use the same settings as those in

Figure 4.5(d) but with increased capabilities (CR=60) and an increased num-
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Figure 4.11: Collision awareness (CR = 60, n = 20).

ber of nodes (20) to make collisions even more likely. Instead of assuming

that the probability of coverage is the same as BLEnd’s discovery probability,

we set pc = {0.93, 0.99, 0.999}9 Figure 4.11 shows the results. As the figure

shows, PINCH achieves the higher target pc for the more important context

types (i.e., those with lower indices); this comes at a cost of lower coverage

for the less important types. In especially dense networks or when BLEnd

is parameterized with a low target discovery probability, applications can use

this collision-aware protocol as another option for achieving high coverage of

important context types.

9Though we used a target discovery probability pd = 0.9, the optimal settings actually
have a theoretical discovery rate of 0.92; in the simulator, we achieved a BLEnd beacon
reception rate of 0.93.
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Figure 4.12: Snapshot of the central meeting point scenario based in Trento,
Italy.

4.4.2 Realistic Smart-City Scenarios

The remainder of our evaluation explores more dynamic scenarios, both

in terms of scenario and device capabilities.

4.4.2.1 A Central Meeting Point

We defined a central point in the city as a meeting place; devices travel

towards this meeting point, remain for a period of time, then move away before

repeating the process. Figure 4.13 shows the average coverage percentage for

all of the devices. The figure shows three “meeting times”; when the devices

have congregated, their coverage is high; when the devices are isolated, their

coverage drops to only what they can individually sense.
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Figure 4.13: Trace of coverage percentage for congregating devices (CR = 20,
DR = 100, k = 10).

4.4.2.2 Leveraging Situated Beacons

PINCH also has potential benefit in enabling mobile devices to collect

context from fixed devices. To demonstrate this potential, we present a sce-

nario in which a single mobile device connects opportunistically to embedded

stationary beacons in a city. In this scenario, the situated sensors can pro-

vide all context types. The mobile device has no sensing capabilities, yet,

as Figure 4.14 shows, the device is able to achieve some coverage of context

as it moves. Figure 4.14 shows the randomized algorithm’s context coverage

quality at the mobile device as we vary a, the number of context types the

mobile device demands. The x-axis plots the average number of neighbors in

a run (i.e., density of 1 indicates that the mobile device is connected to, on

average, a single beacon at any given time). Note that, although the number

of situated beacons the device can contact is determined by the density, be-

cause the device is connected to a beacon for multiple epochs as it passes by,

the beacon can change its contents over time, improving the coverage for the

mobile device.
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Figure 4.14: PINCH with situated beacons.

4.5 Conclusions

This chapter introduces PINCH, a system that embodies a suite of

heuristics to enable devices to opportunistically share sensed context informa-

tion within their local network neighborhoods. Such sharing has significant

potential when context values are physically correlated. PINCH’s heuristics

leverage empty space in the periodic beacons of the BLEnd neighbor discovery

protocol. As such, PINCH entails no additional energy costs beyond context

sensing itself. We show that devices participating in PINCH can self-organize

to provide very high degrees of coverage of context types. This sharing has

multiple benefits in smart-* applications, e.g., allowing a device to collect con-

text information it cannot sense on its own, or sharing the energy burden of

context sensing across a neighborhood.

This initial work on PINCH opens several avenues of exploration. We

can change the beacon contents, for instance, to include more than just a sin-

gle context type (if the data types themselves can be represented compactly).
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We could also explore exposing additional information about devices’ needs,

e.g., explicitly exposing uncovered types or sharing the needs of neighboring

devices. The latter would allow PINCH to extend beyond a one-hop network

neighborhood to provide larger coverage. Importantly, the algorithms we de-

rived so far do not explicitly account for the cost of context sensing itself.

Incorporating this information into the selection algorithm might change the

decisions made (e.g., automatic device selection[52]). In summary, PINCH

enables distributed cooperative context sensing without explicit collaboration

between devices; such an approach has wide potential applicability as smart-*

applications become commonplace.
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Chapter 5

Facilitate IoT Sensing Collaboration in

Deployments

In this chapter we focus on the real-world implications of facilitating

sensing collaboration in proximity networks. We start with introducing a fully

automated context-sharing system Stacon in section 5.1. In section 5.2, we

assess the feasibility, cost-effectivenes, and privacy factors of real-world sens-

ing collaboration system. To showcase the potential of the proposed systems

throughout this thesis, we deploy a context-sensing system in an academic

building and collect an extensive dataset with real traces and people’s both

implicit and explicit interactions with the smart environment to encourage fur-

ther studies. In the last section of this chapter, we verify the performance of

the SCENTS collaboration framework (section 3) using the collected dataset.

5.1 Stacon: Context Neighborhood Automation in the
Internet-of-Things

5.1.1 Motivation: Self-stabilizing Neighborhood Dynamics

In the past decade, sensor-equipped systems have been pervasively de-

ployed in our world. These low-powered devices sense physical attributes of

their surrounding environments and provide digital services accordingly as a
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Figure 5.1: Dynamics in a context neighborhood.

form of calm computing [127]. As previously discussed in section 3.2 and 4.1,

there is an emerging sub-field that leverages coordination among smart agents

hosted on co-located devices and explores the potential of building more flex-

ible and sustainable systems using multi-agent collaboration.

As the beginning section of this chapter, we evaluate the real-world

implications of sensing collaboration in IoT proximity networks. We start from

a context neighborhood scenario similar to the PINCH storyline, focus on the

network dynamics in real-life environments and derive a generic framework to

enable fully-automated sensing collaboration on off-the-shelf SoCs.

We introduce Stacon, a framework for low-powered mobile IoT devices

to share sensing capabilities. Stacon enables devices to automatically detect

other nearby sensing resources and to self-select sensing tasks based on the

device’s own needs, the capabilities of the environment, and the needs of other

nearby devices. The goal is to maximize the context fulfillment of the neigh-

borhood as a whole. Here we use the term context neighborhood to refer a set

of participating devices that are mutually reachable in one-hop network.

Fig. 5.1 shows a schematic of the Stacon framework. The figure shows
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five available sensing devices (numbered one through five), each with het-

erogeneous sensing capabilities (depicted as colored squares underneath each

numbered device). The neighborhood also has a context demand model (sec-

tion 4.2.2), which characterizes the needs of the neighborhood for the various

sensable attributes (the location attribute is the most important to devices in

the neighborhood, while humidity is least important). The goal of Stacon is

to enable each device to make a local decision about which attribute to sense

(these choices are depicted as the colors of devices in the figure) based on

information other devices share about their needs, capabilities, and selected

tasks. Achieving a self-stabilizing behavior in this environment is plagued by

challenges that are largely tied to network dynamics. When devices enter

and leave the neighborhood, the neighborhood’s needed context types, sensing

capabilities, and selected tasks all change.

We build the Stacon middleware with the complete software stack on

Nordic Thingy sensor kits[94]. The underlying wireless communication sub-

strate is built on top of BLEnd from chapter 2. In Stacon, the neighbor

discovery beacons carry descriptions about capabilities, needs, and tasks to

aid in the self-stabilizing algorithm (Section 5.1.2). The middleware supports

performing sensing tasks on the SoC mentioned before with the extension of

customized development boards (Section 5.1.3). Besides the Stacon embed-

ded systems, we also include an Android tablet scanner that sniffs the BLE

beacons nearby to monitor the context neighborhood, to visualize the hetero-

geneous sensing configurations of each IoT device, and to analyze the sharing

115



strategies in comparison to global optimal in real-time.

5.1.2 Self-stabilization in Distributed Stacon

We next formalize a self-stabilizing context neighborhood. We then

describe Stacon in detail.

Problem (Self-stabilization of context neighborhood): A

network of sensing devices D = {d1, . . . , dn} collaboratively construct a context

neighborhood via device-to-device communication. C = {c1, . . . , cm} context

attributes can potentially be sensed, and each device di can sense Ci ⊆ C

depending on its on-board sensors. C is known a priori, and every cj has an

associated weight wj that indicates its demand in the neighborhood. We define

a device-context pair (i, j) to mean that di is sensing and sharing cj. At time

t, an assignment St is a set of pairs (i, j) such that cj ∈ Ci for all (i, j) ∈ St,

and, for each di, there is at most one pair (i, j) ∈ St. The goal of Stacon is

to stabilize the network neighborhood such that: (1) the neighborhood’s context

demands are fulfilled (i.e., max
St

∑
j:∃i,(i,j)∈St

wj), and (2) the self-stabilization

process finishes within the discovery latency (Λ) with probability pd.

System overview. BLE requires fixed-length beacons, but continuous

discovery information does not use the entire beacon payload. We therefore

encode Stacon-specific information into the unused beacon space, as described

in Section 5.1.3. As shown in Fig. 5.2, Stacon receives packets from the scan

reports of the underlying BLEnd protocol. Every beacon b received during

the BLEnd scan period will be stored into a beacon repository B. At the end
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of each scan period, Stacon removes outdated beacons from B and computes

the current sensing capabilities and demands of the neighborhood. Using

this update, Stacon then re-selects a context type as its new task, queries

the corresponding sensor if necessary, and encodes the new packet into the

neighbor discovery beacon payload.

      BLEnd

bbbb
beacon 

repository

context 
demands

nearby
capabilities

context
type

selection
Sensing

Stacon

update beaconreceive beacon

Figure 5.2: Stacon overview.

Self-stabilization. The above self-stabilization problem can be mapped

to a classic bipartite matching where the device is one party and the context

sensing task is the other. Like bipartite matching, each device can select only

one context type to sense in a round, and each context should only be sensed

and shared by one device since repeated sensing in a neighborhood is not op-

timal; instead a device should conserve energy. In common IoT settings, a

practical number of devices for slot-less symmetric discovery is typically under

50 [58, 101, 135]. For a battery-powered IoT device with limited computation

resources (e.g., a Cortex M4 based system-on-chip runs at 64MHz), the worst

case time complexity of a O(n3) algorithm for bipartite matching is acceptable.

Stacon’s self-stabilization algorithm is shown in Algorithm 2. Each de-

vice calls the AfterScan function every epoch. The device uses information
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received in beacons to maintain a capability list for the other devices in the

neighborhood; this list uses hashes to succinctly describe other devices’ sensing

capabilities. During self-stabilization, each device updates the list using the

beacons it receives in this epoch. If there are changes in the received beacons

relative to the previous epoch, i.e., a device has left, arrived, or changed its

capabilities or task, the sensing capability of the neighborhood has changed

and Stacon runs a matching algorithm similar to the Hungarian algorithm to

solve the bipartite matching problem and get the optimal assignment Soptimal.

Each device di chooses their context cj as in the optimal assignment, i.e.,

(i, j) ∈ Soptimal. As we have mapped the problem to bipartite matching, the

max
St

∑
j:∃i,(i,j)∈St

wj of a fully-connected neighborhood is guaranteed by the

Hungarian algorithm in a distributed fashion. Since BLEnd guarantees dis-

covery within a target latency (Λ) and target probability (pd), Stacon will

stabilize with the same probability and the same latency, satisfying the second

condition in the problem formulation.

Algorithm 2: Self-stabilization Algorithm

1 Function AfterScan: device di, B, snapprev
2 Compute capability list Cj s.t. j 6= i from B.
3 Take a snapshot of local < C1, · · · , Cn, D > as snapnew.
4 if snapnew 6= snapprev then
5 Compute Soptimal using matching algorithm.
6 Select cj as its type of context where (i, j) ∈ Soptimal.
7 snapprev ← snapnew
8 end

118



5.1.3 System Implementation

Stacon Beacon Payload

We implemented Stacon on top of the BLEnd scheduler1. BLEnd uses

BLE to exchange wireless packets on 2.4GHz channels. The user beacon pay-

load is 31 bytes; BLEnd uses only 5 bytes for neighbor discovery purposes.

Therefore, we put information to support Stacon’s self-stabilization into the

26 unused bytes. We use one byte to identify the Stacon and one byte for the

local id. Following that are two bit vectors of two bytes each, encoded from the

sensors of the device and the context demand of its upper-layer applications.

The shared sensor reading is placed in the next five to nine bytes. The first

byte is used for a header and is followed by four bytes of the actual sensor

reading. While four bytes are generally sufficient for most types of context,

sometimes we need additional space to contain richer values (e.g., location);

for those cases we allocate four more bytes as optional content. Fig. 5.3 shows

the complete 15 bytes used in Stacon and its placement in the BLEnd beacon

payload.

Network Dynamics Emulation

The prototype Stacon framework is integreated with the Nordic nRF52

series platform including Thingy52 [94] and nRF52840 development kits.The

device has 8 on-board sensors and is able to provide even more types of fine-

grained context information about the environment (e.g., air quality, ambient

1Code repository https://github.com/UT-MPC/BLEnd_Nordic.
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Figure 5.3: Stacon payload structure.

noise level). Thingy52 is equipped with BLE for wireless connectivity and a

rechargeable lithium polymer battery of 1440 mAh (nominal capacity) The

nRF52840 DK is capable of wide range of sensor extension. In our proto-

type system we use it to provide location information using an Adafruit GPS

module 2. In addition we provided an Android application to visualize the

wireless beacons that are exchanged and the context fulfillment of the network

neighborhood compared to the optimal task allocation on-the-fly.

To simulate heterogeneous networks, each IoT sensor kit has only a ran-

dom subset of sensors enabled. Context types are assigned with distinguish-

able RGB color values and we use the on-board LED lightwells to visualize the

sensing task a device is currently executing. Together with user-triggered de-

vice arrival and departure events (triggered by power cycling the devices), this

lightwell representation essentially shows Stacon’s stablizing process (shown

in fig 5.4).

The instantaneous system status and estimated energy cost(based on

2https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf
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Figure 5.4: Prototype of Stacon.

section 3.3.1) is monitored on the Android tablet application 3 as shown in

fig 5.5. Based on the Stacon beacons received from the nearby hosts, the mid-

dle panel of the monitor displays the sensing tasks that each host is currently

performing with the result sensor reading, sensing capability, context demands

and other basic device information. The bottom region of the monitor shows

the neighborhood from a “centralized” perspective. From left to right, each

column details the most recent capability snapshot of the neighborhood, con-

text demand model, and the task assignments from centralized computation.

One can easily compare and identify the discrepancy between the actual sens-

ing tasks of decentralized IoT nodes and the ideal assignment. We tested

the system in a radio-noisy environment4 and verified Stacon’s effectiveness in

3Code repository: https://github.com/UT-MPC/BeaconObserverAndroid
4A conference room with hundreds of mobile devices sharing the bandwidth.
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Figure 5.5: Monitoring a Stacon neighborhood.

adapting neighborhood dynamics towards ideal sensing task assignments with

expected latency (i.e., Λ).
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5.2 Smart-building Deployment and User-side Data Ac-
quisition

We envision a world where people-centric sensing and personalized ser-

vices can be achieved without centralized data collection and processing or the

reliance on video-based surveillance. To help assess the feasibility of building

context-aware applications while allowing users to fully control their poten-

tially sensitive data, in this section we study the feasibility of people-centric

sensing using only user-side data acquisition. Using off-the-shelf, energy re-

stricted sensor kits in a smart environment together with an energy-efficient

message exchange scheme implemented on top of BLE, the collected dataset

provides insight on a continuous cyber-physical view from users’ individual

perspectives. The availability of the dataset encourages further studies of

users’ activities, for instance to perform distributed inference on users’ social

interactions and activity trajectories.

5.2.1 Support Opportunistic Collaboration in People-centric Sens-
ing

In people-centric sensing [22], individuals utilize sensors to learn and

share information about themselves and their environments to enable person-

alized digital services or contribute to a social good. With technological ad-

vances in embedded systems and wireless communication, today’s low power

IoT devices enable numerous, formerly impossible opportunities for sensing

and sharing information about the ambient environment. In this work, we

are interested to how user-side data acquisition can stimulate the fusion of
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personal, public, and social sensing in a privacy-preserving way.

Wireless fingerprinting, in particular via Bluetooth technology, is known

to be useful to provide distance estimations in indoor localization [42, 83]. Re-

cent years have also seen an increasing interest in leveraging Bluetooth beacons

as a tool for device interaction in many application-specific contexts, includ-

ing tourism [84, 109], device-to-device collaboration [75, 76, 80], social interac-

tions [17], security [89], smart buildings [106], and smart cities [3]. However,

most publicly available datasets are collected from service-side devices (e.g.,

devices connected on unmetered networks). There is a lack of datasets di-

rectly acquired from the user side with context information that can correlate

to device-to-device or human-to-device interactions.

In this section we focus on the idea of people-centric sensing and provide

a dataset containing continuous views of users’ digital surroundings with rich

contextual information. We introduce the setup of our data acquisition in

Section 5.2.2. Section 5.2.3 provides details of the presented dataset. Lastly

we discuss the potential usage of this dataset in Section 5.2.4.

5.2.2 Hardware Setup and Continuous Collection

To keep our study focused on data collection and make it easy to

repeat in other environments, our hardware setup uses off-the-shelf Nordic

Thingy52 IoT sensor kits as previously described in section 3.3.1. Once again,

BLEnd [58] is implemented on top of the BLE stack as the communication

substrate. In the deployment, the devices continuously transmit beacons that
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Figure 5.6: Static beacon deployment.

can be received by other devices in range. In particular, we parameterize the

BLEnd protocol on each device to achieve a 95% guarantee that each neigh-

boring device receives that device’s beacon every four seconds.

In our deployment, we programmed and deployed 55 IoT sensor kits

during the 6-week data collection period. Of these kits, 48 were placed as

anchor nodes at 24 locations inside a university academic building5. These

stationary beacons (illustrated in Figure 5.6) were programmed as pairs; at

any time, one device in a pair was deployed at the anchor location, while

the other was pulled for battery charging. The remaining 7 sensor kits were

carried by the human participants in the data collection. All devices beaconed

5http://www.ece.utexas.edu/about/facilities/eerc
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as described above. Each human participant also carried an Android device

that also collected any overheard beacons and stored the data from all received

beacons into a local SQLite database. Finally, the deployment also included

three Android tablets installed at three separate building locations (the two

doors to an interior space and an open cubicle work area). The deployment

used these tablets to collect participants’ explicit “check-ins,” which served as

ground truth participant location information.

5.2.3 Data Description

We collected the beacon data from the local databases on the partici-

pants’ Android devices into a single merged database. Within this database,

each “row” contains information about one received beacon, as shown in Ta-

ble A1 (in appendix). These are indexed by the identifier of the participant

device that received the beacon (i.e., HostId, a value in the range [0..6]). Each

row contains information about the received beacon: a description of the re-

ceived beacon including the timestamp, the received signal strength indicator

(RSSI), the sender’s Bluetooth address, and the receiver’s id. The data also in-

cludes the summary of the sensor information read from the sender’s on-board

sensors, including sound level indicators (peak and average), temperature, air

quality measurements (eCO2 particles per million and volatile organic com-

pound particles per billion), air pressure, and humidity.

During the data collection period, it was possible for a device to receive

more than one beacon from a given neighboring device within a short time
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period. Because the phenomena being sensed were unlikely to change at a

very high frequency, we down sampled the beacons received to one second (i.e.,

each device stores at most one beacon from any other device each second).

Our participants also carried the Android devices for 24 hours; we pruned

any data collected off-campus for privacy reasons. The main table in our

final dataset contains 20,612,286 entries. As described above, we used tablet

check-in locations to collect additional ground truth labels for the data set; we

stored these events in a second table as a time series of ParticipantId, check-in

location, and timestamp.

5.2.4 Uses and Conclusion

The data set has a variety of potential use cases.

Composition: This dataset leverages user-side acquired beacons that

carry a rich set of ambient context information that can be useful, for exam-

ple, for mining the correlation between context snapshots and human activity

recognition and prediction [34, 92]. Context snapshots can be derived from

the beacon entries in the main beacon table at any aggregation level as needed.

Inter-human encounters can be inferred from the senders’ Bluetooth addresses,

which are cross-referenced in the device description table. While the relative

location of the hosts could be estimated using the RSSI of the beacons sent

from the stationary nodes (category provided as part of device description),

the check-in table offers explicit human-to-machine interactions.
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Beacon Carried Context: The sensed attributes contained in each

beacon are sampled with the same interval from the device (identified by its

Bluetooth address). Note that time consumption for sampling can vary be-

tween different types of sensors. Most sensors can return the readings back to

the controller with negligible delay. The air quality sensor and microphone,

however, need more sampling time. The accuracy of the embedded sensors

are referred to the hardware specification in [94]. Depending on the use case,

certain pre-processing or noise reduction should be applied when extracting

higher-level contexts from the raw data. For instance, characteristics of RSSI

(e.g., multi-path fading) [132] need to be considered when deriving proximity

information.

Example Usage: The presented dataset can be explored from both

user and environment perspectives. The nature of user-side acquisition makes

it straightforward to navigate the context changes for a given user through

time. For instance, one of the things the first row in table A1 can tell us is

that host #4 is relatively close to a device di(C1:DA:6A:2A:4E:D5) at time

t. Then we can do a simple filter on the HostId and timestamp columns to

figure out what other devices host #4 had encountered in an arbitrary look

back time(e.g., last five minutes). Alternatively, we could make predictions on

what host #4 would encounter in the next five minutes and the subsequently

assess the accuracy of these predictions. From the environment perspective, we

have leveraged the dataset to develop an approach for continuous authorization

in smart buildings [60]. The dataset allows us to use the frequency of beacons
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within a given interval of time to reflect the “presence” of a device from the

perspective of a host. The density of beacons in the dataset is sufficient for

us to generate useful access control rules at the smart building scale, based on

attributes derived from this “presence” information. Existing datasets do not

provide the necessary granularity of beacons necessary to support these types

of applications.

In this sub-section, we presented dataset that provides a new perspec-

tive on studying people-centric sensing that is essential in continuous context-

aware applications. The people-centric nature of the dataset lends itself to

the development of privacy conscious applications, where the sensors take a

passive role and the users are in control of the sensor aggregation. The data

collection is publicly available on the Zenodo open science platform and can

be found at [77].

5.3 Collaboration Performance in the Real World

5.3.1 Opportunistic Connection Extraction and Experimental Setup

In section 3.3 and 4.4, we evaluate the performance of sensing collab-

oration with realistic scenarios using our smart-city simulator. The SCENTS

framework takes an active request-response approach and we evaluated its

sensor selection performance in the fleet, commuter, and individual scenarios.

The PINCH framework opportunistically distributes context information in a

local area with proactive exchange schemes. Unlike the SCENTS approach,

decisions are made locally based on the (potential) anticipations for context
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data. The two approaches have different goals. SCENTS aims to balance

sensing fulfillment and the fairness of energy consumption. PINCH proac-

tively determine the most useful type of context to sense and share, based on

the estimated neighborhood status and demand model. But they both utilize

the opportunistic connections between the nearby devices and use BLEnd un-

der the surface. This provides a chance for us to evaluate the two collaboration

schemes with the data collection as described in section 5.2.1. The extensive,

context-rich dataset collected from our testbed contains the real user traces

and their opportunistic connections with each other and environmental IoT

devices. Through the experiments and analysis in the rest of this chapter we

will be able to evaluate the benefits of proximity-based sensing collaboration

over a long time period of hybrid scenarios.

To simulate the collaboration operations, we first need to extract the

opportunistic connections between IoT devices from the dataset [78]. Fig-

ure 5.7 highlights the key concept of this extraction process. Because of the

Merged 
Dataset

Host Beacons 

Environment Beacon

Real Timeline

Virtual Timeline 1

Virtual Timeline 2

Virtual Timeline 3

Ephemeral Group

Figure 5.7: Extract opportunistic connections from the dataset.
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data set is merged from the data collection from individual devices, distance

between the beacons in the time-series does not reveal the spatial relation of

two devices. In order to simulate the behaviors of the mobile hosts without

running separate simulations for each individual, we split the beacons into mul-

tiple virtual timelines such that the spatiotemporal aspects of received beacons

can be revealed for the spontaneous group extraction. This process is done

with the help of environmental beacons. The simplest approach is illustrated

in figure 5.7. For instance, the purple host6 receiving a environmental beacon

from the green stationary indicates the co-existence between the two. Later on

the leaving of the same host can be determined when it visits the location that

has yellow beacons(i.e., purple host transit to virtual timeline 2). Similarly,

the host leaves this ephemeral group when it comes to the range of red sta-

tionary (i.e., enters virtual timeline 3). In this way, we are able to recover the

opportunistic wireless connections, between the IoT devices in proximity, and

grouping the beacons into ephemeral co-located groups (denoted as rectangles

with pink background).

Then we implemented a Python version of SCENTS and a trace execu-

tor in the Google Colaboratory Python3 runtime to simulate the sensing col-

laboration based on the user-side collected beacons presented in section 5.2.1.

Similar to the previous evaluation of SCENTS in the street scenarios (sec-

tion 3.3.4), we build the trace executor with the flexibility of changing the

on-board sensing capability of the IoT devices and the query frequency of

6The mobile host with purple beacons in the figure.
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each host. This allows us to simulate the SCENTS behavior with real life user

events.

5.3.2 Sensing Collaboration in the Smart-building

5.3.2.1 Weekday Evaluation

As discussed in section 5.2.3, the data collection contains more than

20 million beacon entries after we filtered out the off-campus beacons for pri-

vacy preservation. For the remaining on-campus entries, there are numerous

scenarios beyond what we have considered with the smart-city simulator in

section 3.3.3 and 4.4. Thus, simulating the SCENTS system with the more

organic traces between users and the environment and between the user them-

selves, which provided from the dataset, can give us more insights on how

SCENTS benefits IoT sensing applications in the real world.

In the first experiment, we focus on the workday scenarios of the sensing

collaboration between the IoT devices. The IoT hosts are the mobile devices

carried by the participants during the data collection period. Each host is

capable of sensing 70% of the context types that the tenant application is

interested in, using its on-device sensor equipment. The other stationary de-

vices, that were attached to 22 places in the building, are fully capable for all

sensors.

The applications running on the mobile hosts are set to randomly query

the SCENTS framework every minute. In other words, each SCENTS agent

expects to receive a sensing query of random context type from the upper-layer
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at the intervals of 60 seconds. Note that we filtered out the some beacons for

privacy reasons as described in section 5.2.3. An interaction is captured only

when they are co-located with a stationary device or another participant in the

data-set. So if a group of participants leave the building to have lunch, their

simulated applications will continue to query SCENTS framework for context

information as long as there is another participant in proximity.

In this experiment, the query result is classified into four categories:

1) answered original means the query is fulfilled with on-device sensors, 2)

failed denotes a query that is not fulfilled because of no capable candidate

nearby or communication failure, 3) fulfilled original indicates that the query

is fulfilled by collaborating with a nearby device, which queried its own sensor

and delivered the result back using BLEnd beacons, and 4) fulfilled reused

denotes the query is answered through collaboration and the context is reused

from a valid sensor reading.

Next we use the trace executor to run SCENTS on the weekdays in the

week of April 15, 2019. To intuitively visualize the collaboration performance

we resampled the time series over one hour frequency and stacked the result

of four categories respectively. The result is shown in figure 5.8. The x-axis is

the hourly ticked timeline of the week and the y-axis is the number of times

queries were generated in each hour. The colored segments of each bar denote

the number of times the sensing queries resulted in the corresponding status

(within that hour). The bars are separated into five clusters since those are

the times when most participants at work or stay with other participants.
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Figure 5.8: SCENTS query results over a week.

The most noticeable portions of the bars are colored in red (fulfilled reused

status), which indicates that a significant portion of the sensor readings are

saved from the caching values through direct or indirect collaboration. The

second greatest portion of the result status is in green (fulfilled original), which

means the query is sent to a nearby device where the peer executes the sensing

task and broadcasts the result reading back to the requester. The peer device

can be either a mobile host or a stationary device in proximity. The energy

consumption in the latter case is ignored since the environmental sensor kits

can easily have external power source. As we can see these two status, enabled

by SCENTS collaboration, contributed most of the sensing fulfillment. There

is a small portion of the queries are answered with on-device sensors (showing

in blue). The yellow colored failures cases are rare.

From above analysis, we developed the impression of how sensing col-
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laboration of SCENTS benefits the mobile IoT applications in a real world

smart-building setting over a week’s time. In the next section, we are going

to parameterize the potential requirements of the upper-layer applications as

well as the SCENTS middleware settings to deep dive into the performance of

sensing collaboration over the whole six weeks’ data.

5.3.2.2 SCENTS Performance Over Six Weeks

Up to this point, we have gained some insights on how SCENTS can

help the collaboration among the opportunistically connected devices. In order

to evaluate SCENTS thoroughly, we conduct three sets of experiments over the

entire data collection. These experiments are parameterized with three con-

trol variables: 1) device capability, 2) sensing frequency, and 3) combination

coefficient α of algorithm 1.

Varying device capability: In the first set of experiments, we simulate the diver-

sity of the participating devices in our system. The common foundation of the

different collaboration approaches presented in this thesis is the continuous

discovery protocol from section 2.2. One of the advantages of BLEnd is that

the underlying wireless communication technology BLE is pervasively avail-

able. From this perspective we simulate the heterogeneity in device sensing

capability with random ratios varying from 10% to 90%. At the beginning of

each run, each IoT host is assigned with the capability of every context type

based on the given ratio. A static context demand model ,with equal impor-

tance of the context types described in section 5.2.3, is used throughout all
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runs. Other parameters are set the same as in the previous section. The two

million entries from the data set are iterated repetitively with each setting.

Table 5.1: Fulfillment with various capability ratios.

Capability
Ratio

Num. of
Queries

Num. of
Failures

Num. of Sensor
Readings (mobile)

Num. of Cache
Readings

90% 84707 924 (1.09%) 22027 48653

70% 84707 1084 (1.28%) 22141 48214

50% 84707 1767 (2.09%) 19999 46513

30% 84707 3254 (3.84%) 12774 39487

10% 84707 8417 (9.94%) 1087 42612

Table 5.1 highlights the collaboration performance across the decreasing

capability ratios in the first column. The numbers of generated sensing queries

are the same since the total valid time passed in the user-collected traces are

the same. The third column lists the numbers of sensing failures in each

execution. The ratio of encountered failures increase as the sensing capabliity

cr decreases as expected. The collaboration benefits are obvious given the fact

that the failure ratios in all settings are significantly lower than (1−cr), where

the sensing queries of individual hosts could only read on-device sensors. Even

with cr = 10% (i.e., last row of the table), the vast majority of the queries can

still be fulfilled with the help from SCENTS. This matches the previous result

analysis from section 3.3.4. The total time of sensor readings on the mobile

hosts reduces as the device capability decreases. This may indicate that in

the lack of on-device sensing capabilities, the sensor selection algorithm favors

environmental sensor kits regardless of possible failures caused by movements 7.

7Staying closely with co-workers at in the building is one of the common scenarios in the
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Table 5.2: Fulfillment with various query frequencies.

Query In-
terval

Num. of
Queries

Num. of
Failures

Num. of Sensor
Readings (mobile)

Num. of Cache
Readings

20 sec. 243598 3580 (1.47%) 27170 174442

1 min. 84707 1084 (1.28%) 22141 48214

3 min. 28712 433 (1.51%) 10005 7715

10 min. 8821 316 (3.58%) 5287 1169

30 min. 3058 174 (5.69%) 1836 169

Varying query frequency: In the second set of experiments, we simulate the

various sensing frequencies from the tenant applications, which are hosted on

top of the SCENTS middleware. The system architecture is introduced in

section 3.2.2. Without loss of generality, we assume a uniform distribution of

in the interested context types. Because the entries are merged from user-side

acquired collections, we do not have a universal timeline in the dataset. In-

stead, we work on the (parallel) proximity-based traces which are extracted

from mobile hosts’ perspectives of the nearby events. This process is concep-

tually depicted in figure 5.7. As a result, we orchestrate the query scheduler

on each hosts to issue a context request within the ephemeral proximity-based

group at the intervals from 20s, 1min, ..., to 30min.

The key statistics of the result are shown in table 5.2. The numbers

of issued queries (the second column) reduce proportionally as the sensing

frequency reduces throughout out the six week’s period. Both the absolute

numbers of failures (third column) and on-device sensor readings (fourth col-

data collection.
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umn) show the same trend, while failure rates increase as the sensing interval

grows longer. One possible explanation is rooted from the design of the query

scheduler. Devices are deemed to be idle when none of the participants is ex-

pressing context interests in proximity. This case could be mitigated with the

environmental devices proactively execute sensing queries based on presumed

context demand model and share the results, similar to how we build context

neighborhoods with the PINCH approach (section 4.2).

Varying Combination Coefficient: SCENTS offers the flexibility of balancing the

sensing preferences H̃ and the cost estimation E. We introduced the coefficient

α to generate total ordering in the set of 〈H̃:,k, E〉 pairs in section 3.2.4. This

minor caveat is used in algorithm 1. We conduct the last set of experiments

with α ∈ {0.3, 0.6, 0.9}. The results are shown in table 5.3. With the query

interval set to one minute per query and a 70% capability ratio, the failure

rates across three simulations are below 2%. As the coefficient α increases(i.e.,

prioritizes cost distribution), the number of mobile sensor readings decreases

in the third column. This might indicate that the mobile hosts are affected

to depend more on the stationary sensor kits with a higher α value and less

concerned about mobility-induced failures (failure rate increases in the sceond

column).
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Table 5.3: Fulfillment with various SCENTS α parameters.

SCENTS
Alpha(α)

Num. of
Queries

Num. of
Failures

Num. of Sensor
Readings (mobile)

Num. of Cache
Readings

0.3 84707 1066 (1.26%) 16024 38653

0.6 84707 1196 (1.41%) 15442 45624

0.9 84707 1435 (1.69%) 11676 54464
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Chapter 6

Conclusion

With the continuous growth of sensor-integrated IoT devices, the re-

quirement for context information has increased dramatically in the ubiquitous

computing paradigm. Smart devices are emerging at every corner, interact-

ing with human carried devices, and providing digital assistance. In order to

help these context-aware applications to seamlessly acquire sensed information

anytime and anywhere, we explored several approaches in this dissertation to

facilitate collaboration among the co-located IoT devices.

We started by creating a key building block of collaboration in IoT

proximity networks: a continuous neighbor discovery protocol. We acknowl-

edged the fact that low-power wireless communication technologies are com-

monly equipped in today’s IoT devices, and introduced a lower-level software

BLEnd to enable the automatic and energy-efficient peer discovery using wire-

less beacons. By incorporating the BLEnd with BLE characteristics, this low

duty-cycle protocol enables the mobile devices to be constantly aware of the

digital resources in the nearby environment (i.e. in range of wireless commu-

nication) with significantly improved sustainability.

From the second part, BLEnd began to serve as the energy-efficient
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communication substrate for building collaborative middlewares that allow us

to take advantage of the pervasive yet opportunistic wireless connections. To

mitigate the sensing incapabilities of individual devices and distributing the

sensing cost in proximity, we presented SCENTS as a generic collaborative

sensing framework. SCENTS encapsulates access to both on-device and re-

mote sensors in a non-intrusive manner, and breaks the tight binding between

the hardware equipment and IoT application. Each context query from the

upper-layer tenants is handled by the SCENTS middleware with the proper

fulfilling method at the moment. Besides optimizing towards energy distri-

bution and fulfillment rate, it also uses the notion of safe distance to tackle

mobility-induced failures.

Besides the active context requesting and sharing approach, we took a

step further to allow the ad hoc neighbors to act in fidelity and concordance

with their self-organized context neighborhoods. The PINCH framework em-

ploys several heuristics and make the host device proactivly sense and dissem-

inate the context of choice, based on their limited view of the neighborhood.

We then built a OMNeT-based simulator to showcase the potential of implicit

context sharing in multiple realistic smart-city scenarios.

We further explored the sensing task assignment in a distributed set-

ting and studied the software integration with off-the-shelf, energy restricted

IoT sensor kits using the Stacon system. We showcased its resilience against

network dynamics in a radio-noisy environment and its ability to adjust the

sensing assignments as from a centralized scheduler, with expected latency.
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Lastly, we deployed an IoT sensing testbed with 48 environmental bea-

cons and 7 mobile nodes in a university building. The acquired context-rich,

real-life dataset helped us to assess the feasibility, cost-effectiveness, and pri-

vacy factors of sensing systems. The extensive dataset is publicly available

to encourage further context-awareness studies in a smart-building setting.

Based on the extracted the opportunistic connections, we examined the per-

formance of SCENTS in weekdays. The benefits of SCENTS collaborative

sensing approach are evaluated in various settings over a six-week duration.
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