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MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL 
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Supervisor: Benito R. Fernández 

 

For the successful deployment of task-achieving multi-robot systems 

(MRS), the interactions must be coordinated among the robots within the MRS 

and between the robots and the task environment. There have been a number of 

impressive experimentally demonstrated coordinated MRS. However it is still of a 

premature stage for real world applications. 

This dissertation presents an MRS control scheme using Artificial Immune 

Systems (AIS). This methodology is firmly grounded in the biological sciences 

and provides robust performance for the intertwined entities involved in any task-

achieving MRS. Based on its formal foundation, it provides a platform to 

characterize interesting relationships and dependencies among MRS task 

requirements, individual robot control, capabilities, and the resulting task 

performance. 

The work presented in this dissertation is a first of its kind wherein the 

principles of AIS have been used to model and organize the group behavior of the 
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MRS. This has been presented in the form of a novel algorithm. In addition to the 

above, generic environments for computer simulation and real experiment have 

been realized to demonstrate the working of an MRS. These could potentially be 

used as a test bed to implement other algorithms onto the MRS. 

The experiment in this research is a bomb disposal task which involves a 

team of three heterogeneous robots with different sensors and actuators. And the 

algorithm has been tested practically through computer simulations. 
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Chapter 1: Introduction 

1.1 FROM SINGLE TO MULTI-ROBOT SYSTEMS1 

The field of multi-robot systems (MRS) has received increased attention 

since the mid 1990's. Earlier research efforts had concentrated on either single 

robot systems (SRS) [Cao el al., 1995] or distributed problem-solving systems 

that did not involve robotic components [Carver et al., 1991]. This is not 

surprising as continually improving technology and infrastructure have made the 

deployment of MRS consisting of increasingly larger numbers of robots possible. 

With the growing interest in MRS comes the expectation that, at least in some 

important respects, multiple robots will be superior to a single robot in achieving 

a given task. Some potential advantages of MRS over SRS are summarized 

below: 

 

• Total system cost may be reduced by utilizing multiple simple and cheap 

robots as opposed to a sophisticated and expensive robot.  

• Some tasks may be accomplished more efficiently by a group of robots by 

decomposing the particular task into subtasks and performing each in 

parallel.  

• The inherent complexity of some task environments may require the use 

of multiple robots as the required capabilities are too substantial to be met 

by a single robot.  

                                                 
1 [Jones and Mataric, 2005; Arai et al., 2005]. 
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• Multiple robots are often assumed to increase system robustness by taking 

advantage of inherent parallelism and redundancy. Therefore, negative 

effects on task performance caused by individual robot failure or the 

dynamic addition or removal of individual robots can be minimized. 

 

1.2 DERIVING INSPIRATION FROM NATURE 

Since the age of reason, man has looked to nature for inspiration to solve 

problems. Biologically-inspired computing is one area of research that inspired 

fields such as Genetic algorithms (GA) [Goldberg, 1989], Artificial Neural 

Networks (ANN) [Haykin, 1994], Evolutionary Programming, Artificial Immune 

Systems, and etc. These tools are the most popular to solve difficult, sometimes 

hard to model engineering problems.  

Other fields of study that seek to mimic intelligent behavior of organisms 

and incorporate them in machines are Artificial Life (Alife) and swarm 

intelligence. An example of Alife is animats [Kodjabachian and Meyer, 1996] and 

they are artificial animals. Researchers have talked about scenarios where animats 

are capable of independent learning about their environment through application 

and evolution of pattern matching rules. Swarm intelligence is a technique based 

around the study of collective behavior in decentralized yet organized systems. 

Examples of systems like this can be found in nature, including ant colonies 

[Dorigo et al., 1996], bird flocking2, animal herding [Schultz et al., 1996], and 

                                                 
2 http://www.red3d.com/cwr/boids/ 
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fish schooling3. In swarm intelligence interactions among entities lead to an 

emergence of a common global system behavior.  

An Artificial Immune System (AIS) is a type of optimization algorithm 

inspired from the principles and processes of the vertebrate immune system 

[Manning, 1979]. The algorithms typically exploit the immune system's 

characteristics of learning and memory to solve a problem. The field of AIS is 

fairly new and began in the mid 80`s with Farmer, Packard and Perelson`s papers 

on immune system networks [Farmer et al., 1986]. Further details are enunciated 

in the relevant chapters.  

 

1.3 RESEARCH MOTIVATION 

Even though MRS may produce robust solutions, the utilization of MRS 

poses potential disadvantages and additional challenges that must be addressed if 

MRS are to present a viable and effective alternative to SRS in an important 

subset of domains. A poorly designed MRS, with individual robots working 

toward opposing goals, can be less effective than a carefully designed coordinated 

SRS [Jones, 2005]. The opposing goals can be analogous to conflicting objectives 

in multi-objective optimization, e.g. in a gear train design problem, higher gear 

ratio and cost are opposing objectives.  

Many researchers have come to realize that the design of MRS is in many 

critical respects a very different challenge from the design of single robot 

systems. In most cases just taking a suitable SRS design and scaling it up to 

                                                 
3 http://freshaquarium.about.com/cs/beginnerinfo/a/schooling.htm 
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multiple robots is not adequate [Arai et al., 2005]. A paramount challenge in the 

design of effective MRS is managing the complexity of a group’s control 

introduced by multiple, interacting robots as well as conflicting individual goals. 

To date, the design of MRS has remained ad hoc. and, as such, few formal 

methodologies have been devised. This lack of design procedures has limited the 

usefulness of MRS and has prohibited the growth of MRS solutions for many 

potential domains. 

In the mean while, Artificial Immune Systems (AIS) have appeared as a 

new computational approach for the computational intelligence community. Like 

other biologically inspired techniques, it tries to extract ideas from a natural 

system, in particular the vertebrate immune system, with an aim to develop a 

computational platform for solving engineering problems. There are many things 

in common between AIS and MRS in terms of distributed entities and processing, 

which is discussed later. In this research, AIS’s distributed learning structures will 

be studied and applied to orchestrate the group of robots. 

 

1.4 RESEARCH CONTRIBUTION 

The work presented in this dissertation is a first of its kind wherein the 

principles of AIS have been used to model and organize the group behavior of 

MRS. This result is presented in the Chapter 3 in the form of a novel algorithm. In 

addition to the above, generic environments for the virtual and real experiments 

were realized to demonstrate the working of a MRS. This could potentially be 

used as a platform to implement other algorithms onto the MRS. The proposed 
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algorithm has been implemented experimentally. The test bed scenario that has 

been proposed for final experiments involves a bomb disposal task which has 

been successfully performed by three robots with different sensors and actuators. 

 

1.5 DISSERTATION OUTLINE 

The remainder of this dissertation is organized as follows. The current 

chapter discussed a brief introduction and outline.  

Chapter 2 presents a brief literature review of background concepts and 

previous work related to MRS and AIS. 

Chapter 3 proposes the control architecture which is used to control MRS 

using AIS. 

Chapter 4 presents the software and hardware environments to realize and 

verify the proposed algorithm. 

Chapter 5 shows the results and discussion of the virtual environment 

experiment. 

Chapter 6 draws conclusion of this dissertation with a summary of 

contributions and directions for future work. 
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Chapter 2: Background Concepts and Related Work 

2.1 MULTI-ROBOT SYSTEMS (MRS) 

2.1.1 System Description 

Figure 2.1 shows an example of a MRS, where many robots are searching 

for food and taking it home. They have sensors to find food and to detect 

obstacles. They can communicate with each other to exchange information. Also, 

there is a home area where they can rest (battery recharge, maintenance) and store 

food. 

Cooperative autonomous robot groups may have a number of advantages 

over a single complex robot system. Robot groups can readily exhibit the 

characteristics of structural flexibility, reliability through redundancy, simple 

hardware, adaptability, reconfigurability, and easy maintainability [Liu et al., 

1998]. Real-life applications of such autonomous robot groups can be found in 

literature. Some examples include: explosive ordinance disposal [McLurkin, 

1996], welfare robots [Yamaguchi et al., 1998], etc. 
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Figure 2.1: Example of a Multi-robot system (MRS) searching for food 

There are robots (white circle) looking for foods (black squares). The 
robots collect food and carry it to the area denoted as “Home”. 

 

• Typical system requirements and constraints 

In MRS, robots sometimes must give up attaining the best possible 

individual solutions in favor of “collective efficiency” of the group of robots. In 

general, MRS are designed such that, at least in theory, it is in the interest of each 

: Food : Robot

: Obstacle

Home
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of the individuals to try and attain the group objective since, on the average; their 

individual efficiency will be improved as well.  

However, since the connection between individual and collective benefit is 

not always obvious, the problem of implementing a common overall goal is a 

difficult one. Usually there is no central unit to orchestrate the overall movement 

or plan of each robot, therefore, their individual decision depends totally on 

distributed resources and restricted communication. The communication is in 

some instances limited to a local area or by bandwidth. The global position of 

each robot and the environmental model are sometimes not usually available for 

each robot. The conditions above can be easily found in many applications of 

multi-agent robot systems. For example, when a robot colony is to explore 

another planet, there are not enough computational resources; hence local 

memory should be utilized with minimal overload.  

This kind of system is called an autonomous decentralized system (ADS) 

[Ishida and Adachi, 1996]. Self-organizing economic systems of free market, 

organization of nations, and development of enterprises are good examples of 

ADS, not to mention self organizing biological systems such as the human 

immune system. The difference is, in MRS, the agents (robots) are equipped with 

relatively poor intelligence (as compared to huge computational resources of a 

company) and limited sensors (as compared to well distributed sensory organs of 

animals). 

 

• Implementation Barriers 
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When scaling the robot system from single-agent to multi-agent domain, 

the dimension of the global state space  grows exponentially with the number of 

robots: | | = sa, where, s is the size of the state space of each robot and a is the 

number of robots [Mataric, 1994]. Here s is assumed to be equal for all robots or 

at worst the maximum for all robots4. This makes the problem of on-line planning 

intractable for all but the smallest group sizes. Furthermore, since global planning 

requires communication between the robots and the controller, the bandwidth 

requirements grow with the number of robots. Additionally, the uncertainty in 

perceiving states grows with the increased complexity of the environment. All of 

these properties conspire against global planner-based approaches5 for problems 

involving multiple robots acting in real-time in dynamic, noisy environments. 

 

2.1.2 MRS Taxonomy 

2.1.2.1 MRS Research Communities 

There have been many researchers from many different research 

communities who have studied MRS from different perspectives. It is difficult to 

distinctly identify those research domains as they greatly overlap with each other. 

Fig 2.2 is a brief diagram on research communities about MRS. The figure 2.2a 

depicts ideas that have been derived from nature and implemented in the form of 

Animats and Swarm robotics. The figure 2.2b shows the analogy of figure 2.2a in 

the engineering domain. 

                                                 
4 s = max i {si} where si is the size of the state space for some robot i. 
5 Use a centralized mathematical world model for verifying sensory information and generating 
actions in the world. 
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(a) (b) 

Figure 2.2: Research communities of MRS 

 

2.1.2.2 Overall Structure of MRS 6 

 Multi robot systems are defined by several key characteristics. Most of 

these have been described below: 

• Cooperative vs. Non-cooperative 

In cooperative MRS individual robots assist each other in reaching the overall 

common goal while this is not true of non-cooperative MRS. 

• Coordinated 

                                                 
6 Summarized and rephrased from [Iocchi et al., 2001] and http://www-scf.usc.edu/~csci445/ 
 

ALife 
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This feature essentially means that there is a clear cut internal hierarchy among 

the individual robots of a MRS. This hierarchy influences properties such as 

decision making, social roles etc. 

• Centralized vs. Distributed 

MRS can be centralized similar to the central nervous system in a human body 

under the command of a brain or distributed similar to the distributed immune 

system of the human body. 

• Direct communication vs. Indirect communication 

The individual robots in a MRS may communicate directly with each other 

using some standard protocol or they may upload and download data from a 

centralized server like blackboard.  

• Homogeneous vs. Heterogeneous 

A homogenous MRS usually has all robots which are exactly the same in size, 

shape and functionality. A heterogeneous MRS has individual robots which 

may differ from each other in size, shape or some other feature such as 

processing power, control algorithms, sensors/actuators, locomotion, etc. 

• Reactive vs. Deliberative 

A reactive MRS is one where the individual robots perform actions based upon 

information from sensors, and in a deliberative MRS the individual robots 

work based both upon sensor data and either historic data (state machine) 

and/or data from other robots and/or commands. This is performed by the 

behavioral algorithm imposed upon it. 

• Hybrid Control vs. Behavior Based Control 
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Finally MRS can be categorized depending on how to combine reactive and 

deliberative schemes: hybrid or behavior based. 

 

2.1.2.3 Action Selection Mechanism (ASM)7 

An Action Selection Mechanism (ASM) is a decision making process 

based on sensory information, hierarchy or other variables. ASM’s ability to 

accommodate multiple behaviors simultaneously divides ASM’s into two main 

groups: Arbitration and Command fusion as in Figure 2.3.  

Arbitration ASMs (a-ASMs), allow one behavior at a time to take control 

for a period of time until another set of behaviors is activated. In priority-based a-

ASMs, an action is selected by a central module based on priorities that have been 

assigned a priori. Thus, behaviors with higher priorities are allowed to take 

control of the robot superseding behaviors lower in the priority rank. State-based 

a-ASMs select the set of behaviors that is adequately competent of handling the 

situation corresponding to the given state. Winner-take-all arbitration action 

selection results from the interaction of a set of distributed behaviors that compete 

until one behavior wins the competition and takes control of the robot. 

 

 

                                                 
7 Summarized and rephrased from [Pirjanian, 2005]. 
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(a-ASM) (f-ASM) 

 

Figure 2.3: ASM classifications8 

 

Command fusion ASMs (f-ASMs), allow multiple behaviors to contribute 

to the final control of the robot. Voting f-ASM techniques interpret the output of 

each behavior as votes which are combined by tallying the votes and then utilize 

this vote ranking. Fuzzy f-ASMs are very similar to voting techniques however 

fuzzy inferencing techniques [Ross, 1995] are used to implement fusion among 

possible actions. Finally, superposition f-ASM techniques combine behavior 

recommendations using linear combinations. 

 

2.1.3 Related Work 

Social and ecological systems exhibit a structure that is desirable for multi 

robot systems. For example, insect colonies achieve organized group behaviors in 

                                                 

8 [Pirjanian, 2005] 
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complete absence of centralized control and an environmental model. Therefore, 

many ideas inspired from biological and social systems are applied to MRS. 

Mataric [Mataric, 1995] extended Brooks' [Brooks, 1987] work to the 

multi-robot case. First, she defined basic primitive social behaviors for the robots, 

and made them learn social behaviors with a reinforcement learning algorithm. 

Her approach basically is that each robot can gradually understand its social rules 

(defined by a human). 

McLurkin [McLurkin, 1996] applied behavior-based approach to small 

micro-robots. Liu et al. [Liu, 1998] developed Mataric's work further by adding 

evolving group behavior function using a genetic algorithm. 

Jun and Sim [Jun and Sim, 1997] used fuzzy inference based 

reinforcement learning and a distributed genetic algorithm for behavior learning. 

Their interests were learning processes not social behaviors. Maeda [Maeda, 

1997] developed a very simple evolutionary algorithm, which mimics genetic 

algorithms, to train collision avoidance and target reaching behaviors. The study 

of Goldberg [Goldberg, 1996] was on heterogeneous robot group behavior. 

Kelly and Keathy [Kelly and Keathy, 1998] used reinforcement learning 

and showed that sharing robots' experiences results in faster and more repeatable 

learning of each robot's behavioral parameters. Ashiru and Czarnecki [Ashiru and 

Czarnecki, 2002] focused on the communication between robots, and used genetic 

algorithm to evolve communication protocol. Floreano and Noli [Floreano and 

Noli] modeled competing co-evolving species (e.g., prey and predator). 
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Yamaguchi et al. [Okura et al., 2003] took chaotic dynamics as an evolutionary 

computational method for robot learning. 

In this section, an overview of the work done in MRS related areas has 

been briefly covered. This overview is not exhaustive rather it summarizes some 

of the major efforts in the field of robotics which are related to action selection 

and uncertainty handling of MRS. 

 

 

2.2 ARTIFICIAL IMMUNE SYSTEMS (AIS) 

2.2.1 Immune System Basics 

• What is an Immune system (IS)? 

The IS is a very complex biochemical system with several mechanisms for 

defense against pathogenic organisms, toxins and other foreign molecules, 

collectively known as antigens. The main function of the IS is to recognize all 

cells (or molecules) within the body and categorize those cells as self or nonself. 

The nonself cells are futher categorized in order to induce an appropriate type of 

defensive mechanism. The IS learns through evolution to distinguish between 

dangerous foreign antigens and the body's own cells or molecules. 

The atomic or fundamental constituents of the IS are the lymphocytes 

which circulate throughout the body, mainly of two types, namely B-lymphocytes 

(B-cells) and T-lymphocytes (T-cells). B-lymphocytes are the cells that mature in 

the bone marrow and T-lymphocytes are the cells maturing in the thymus. Each of 

them has a distinct molecular structure and functionality. 
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• How does the IS work9? 

There are two kinds of immunities: innate and adaptive immunity. The 

Innate IS is a primitive system of defense against the pathogens. It is nonspecific; 

that is, it is not directed against specific invaders but any pathogens that enter the 

body. On the other hand, the adaptive IS (performed by cooperation of B-cells 

and T-cells) is an additional and more sophisticated system of defense 

mechanism, and can recognize and destroy specific substances. The way B-cells 

and T-cells can identify specific substances is called a key and key hole 

relationship. 

 

   

 

Figure 2.4a: Immune system working 

 

 

                                                 
9 Summarized and rephrased from [Dasgupta and Attoh-Okine, 1997], [Jun and Sim, 1997], 
[Kondo et al., 1998] and [Mitsumoto et al., 1997]. 
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Figure 2.4b: Immune system working 

This figure shows various stage of immune system (IS) process when 
antigen invades the IS. The numbers on the arrows represent reaction 
process. 

 

Figure 2.4a shows the receptor areas at the surface of each cell. The shape 

of the receptors uniquely define the kind of other antibody cells or antigens it can 

identify. Each process of IS (the numbered arrow in Figure 2.4b) will be 

mentioned in detail. 

When an antigen invades the human body, innate IS will try to neutralize 

it first (2). If the receptor shape of the antigen matches with the shape of the B-

cell, B-cell production is stimulated and through processes (6) and (8), a lot of 

antibodies are generated. If the shape of the antigen does not match perfectly with 

the receptor of the B-cells, a strong learning process called hypermutation can 

make B-cells match the antigen. The role of the T-cells is to regulate the 



 18

stimulation of B-cells (4). After the learning process, some of B-cells are “stored” 

as memory cells to prepare antibodies upon appearance of the same antigen (5). If 

the same antigens show up again in the body, IS can react very fast via process 

(7). 

 

2.2.2 Models on AIS 

There are three major models on IS for use with engineering applications 

[Dasgupta and Attoh-Okine, 1997]: Negative Selection, Clonal Selection and 

Immune Network. Each of them will be described in this section. 

 

2.2.2.1 Negative Selection10 

The human immune system makes use of gene libraries from two types of 

organs called the thymus and the bone marrow. When a new antibody is 

generated, the gene segments of different gene libraries are randomly selected and 

concatenated in a random order. The main idea of this gene expression 

mechanism is that a vast number of new antibodies can be generated from new 

combinations of gene segments in the gene libraries. 

However, this mechanism introduces a critical problem. The new antibody 

can bind not only to harmful antigens but also to essential self cells. To help 

prevent such serious damage, the human immune system employs negative 

selection. This process eliminates immature antibodies, which bind to self cells 

passing by the thymus and the bone marrow. From newly generated antibodies, 

                                                 
10 Summarized and rephrased from [Kim and Bentley, 2001]. 
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only those which do not bind to any self cell are released from the thymus and the 

bone marrow and distributed throughout the whole human body to monitor other 

living cells. 

Inspired by this idea, Forrest et al. [Forrest et al., 1994] developed an 

anomaly detection algorithm based upon the negative selection of T-cells within 

the thymus and applied it for computer security systems. The interesting aspect of 

this algorithm is that it can be used to perform tasks like pattern recognition by 

storing information about the set of patterns that are unknown to the system. 

 

2.2.2.2 Clonal Selection11 

When the antibodies on a B-cell recognize an antigen with a certain 

affinity (degree of match), the B-cell will be stimulated to proliferate (divide) and 

eventually mature into terminal (non-dividing) antibody secreting cells, called 

plasma cells. Proliferation of the B-cells is a mitotic process whereby the cells 

divide themselves, creating a set of clones identical to the parent cell. The 

proliferation rate is directly proportional to the affinity level, meaning that B-cells 

with higher affinity levels will be more readily selected for cloning and cloned in 

larger numbers compared to others. More specifically, during asexual 

reproduction, the B-cell clones experience somatic hyper-mutation; a random 

structural change.  

                                                 
11 Summarized and rephrased from [Ong et al., 2005] and [Engin and Döyen, 2004]. 
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Figure 2.5: Clonal selection process12 

 

The mutation on the cloned cells occurs at a rate which is inversely 

proportional to the antigen-affinity. Clones of higher affinity cells are subjected to 

less mutation compared to those from cells which exhibit lower affinity. This 

process of constant selection and mutation of only the B-cells with antibodies 

which can better recognize specific antigens is known as affinity maturation. 

Though the repertoire of antibodies in the immune system is limited; through 

affinity maturation, it is capable of evolving antibodies to successfully recognize 

and bind with known and unknown antigens, leading to their eventual elimination. 

                                                 
12 [de Castro and Von Zuben, 1999] 
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The immune system also possesses memory properties as a portion of the 

B-cells will differentiate into memory cells, which do not produce antibodies but 

instead remembers the antigenic pattern in anticipation of future re-infections. 

These memory cells circulate within the host body. In response to a second 

antigenic stimulus, they differentiate into plasma cells to produce antibodies 

which have high affinity. This feature of the clonal selection is not integrated into 

the proposed algorithm, so it will no longer be mentioned in the paper. The whole 

clonal selection principle has been shown as in Figure 2.5. 

These immunological processes of clonal selection (and affinity 

maturation) have been used for inspiration in AIS, the most common abstraction 

being Clonalg [de Castro and Von Zuben, 1999]. Clonalg currently exists in two 

similar but distinct forms—one for optimization and one for pattern matching—

but in both cases the B-cell is implemented as a single real-valued vector and no 

two B-cells are allowed to interact. 

 

2.2.2.3 Immune Network13 

In 1974 Jerne [Jerne, 1974] proposed the immune system network 

hypothesis as a mechanism for regulating the antibody repertoire, although it has 

not gained wide acceptance within the field of immunology partly because of the 

implementation complexity. The hypothesis is based on the fact that similar to 

paratopes (for epitope recognition), antibodies also possess a set of epitopes and 

so are capable of being recognized by other antibodies even in the absence of 
                                                 
13 Summarized and rephrased from [Whitbrook, 2005]. 
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antigens. Under the clonal selection theory all immune responses are triggered by 

the presence of antigens, but under the network theory antibodies can be 

internally stimulated. (Experiments have shown that the number of activated 

lymphocytes in germ free mice is similar to that of normal mice, which supports 

the argument.) 

Paratopes and epitopes (Figure 2.4a) are complimentary and are analogous 

to keys and locks. Paratopes can be viewed as master keys that may open a set of 

locks (epitopes), with some locks being opened by more than one key (paratope). 

Epitopes that are unique to an antibody type are termed idiotopes and the group of 

antibodies that share the same idiotope belong to the same idiotype. 

When an antibody type is recognized by other antibodies it is suppressed 

that is, its concentration is reduced, but when an antibody type recognizes self 

antibodies or antigens it is stimulated and its concentration increases. The theory 

explains the suppression and elimination of self-antibodies and presents the 

immune system as a complex network of paratopes that recognize idiotopes and 

idiotopes that are recognized by paratopes (Figure 2.6). This implies that B-cells 

are not isolated, but are communicating with each other via collective dynamic 

network interactions. 
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Figure 2.6: Idiotyping network14 

 

 

2.2.3 Related Work 

Luh and Liu [Luh and Liu, 2004] used a reactive immune network for 

robot obstacle avoidance, trap escapement and goal reaching in an unknown and 

complex environment with both static and dynamic obstacles. Their architecture 

consisted of a combination of previously observed behavior based components 

and an adaptive component modeled on the immune network theory.  

Krautmacher and Dilger [Krautmacher and Dilger, 2004] applied Farmer’s 

immune network model to robot navigation in a simulated maze world in which a 

                                                 
14 [Whitbrook, 2005] 
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building had collapsed due to an earthquake. The robot’s task was to find victims, 

determine their situation and location and record the information on a data sheet. 

No a priori knowledge of the maze or object locations was given; fuzzy 

identification of objects was achieved through image processing and comparison 

with stored information. Location and identification of a given object was 

analogous to the presence of an antigen, and its type and location were used as 

epitopes. Many potentially useful antibodies representing basic behaviors were 

used and as the system evolved new antibodies emerged and were added to the 

system. 

Vargas et al. [Vargas et al., 2003] constructed a hybrid robot navigation 

system (CLARINET) that merged ideas from learning classifier systems, 

(introduced by Holland in the mid seventies, see [Holland, 1986]) and the immune 

network model of Farmer et al. [Farmer et al., 1986].  

Learning classifier systems have been linked to artificial immune systems 

by Farmer et al. [Farmer et al., 1986] and Vargas et al. [Vargas et al., 2003]. 

Antibodies can be thought of as classifiers with a condition and action part (the 

paratope) and a connection part (the idiotope). The action part must be matched to 

a condition (antigen epitope) and the connections show how the classifier is 

linked to others. The presence of environmental conditions causes variations in 

classifier concentration levels in the same way that antigens disturb antibody 

dynamics. 

Learning classifier systems have frequently been used to solve mobile 

robotics problems. Stolzmann [Stolzmann, 1999] applied them to robot learning 
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in a T-shaped maze environment and Carse and Pipe [Carse and Pipe, 2004] used 

a fuzzy classifier system. Webb et al. [Webb et al., 2003] used classifiers with 

reinforcement learning for the autonomous navigation of simulated mobile 

Khepera robots15 that were required to find and travel to target locations.  

 

 

                                                 
15 http://www.k-team.com/kteam/index.php?rub=3&site=1&version=EN&page=3 
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Chapter 3: Proposed Architecture for MRS 

There can be many factors influencing MRS control architecture design 

like other design problems. If there are specific robot mission requirements, detail 

design procedures should be focused to meet those requirements. Also, in some 

case, there can be a need for an exhaustive benchmarking among specific MRS 

control algorithms. 

However, the proposed architecture in this research is based on how to 

implement a control architecture using current AIS model and verify it while 

considering our research institute resources. And it is not designed for any 

specific mission. 

 

3.1 STRUCTURE FOR THE MRS 

In Chapter 2, various aspects of MRS taxonomy were discussed. In this 

section, MRS structure will be discussed keeping in mind scalability issues and 

combining the AIS for the learning role.  

3.1.1 Overall Structure 

To improve the robustness of the MRS for a particular mission, distributed 

organization instead of a central organization is preferred vis-à-vis the group 

behavior. This scheme offers physical and logical redundancy. For cooperative 

and robust group behavior, a distributed control algorithm will be adopted. To 

reduce the gap between reactive and deliberative decision making, a behavior-

based control scheme will be used. 
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Most behavior-based systems are also reactive, which means they use 

relatively little internal variable states to model the environment, most of the 

information is gleaned from the input of the robot's sensors. The robot uses that 

information to react to the changes in its environment. Behavior-based robots 

(BBR) usually show more biologically analogous actions than their computing 

intensive counterparts, which are very deliberate in their actions. 

 

3.1.2 Internal Structure 

Figure 3.1 shows the block diagram of the proposed MRS control scheme. 

There are sensors to detect the environment and other robots, and a 

communication agent to share information with other robots. A blackboard 

[Carver and Lesser, 1994] has been added to help the robot to share previous 

experiences with other robots. All robots write their knowledge on this board that 

is shared. The robot’s current condition depends on the sensor readings, 

communication information and the contents of the blackboard. There are basic 

behaviors prepared in advance for the whole mission of the robots (BBR), and 

actuators move or act depending on individual behaviors. 

 Considering the scalability issue to control many robots, condition and 

behavior mapping has the merit to reduce the number of states to train a robot, for 

example, there are many sensor inputs to define each robot current state. If those 

are considered for many robot cases, the sensor state space will be dramatically 

increased. However, current approaches use conditions that lump the sensor state 

space reducing the number of conditions when considering other robots. 
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In this research, a lookup table (Table 3.1) is used to map conditions to 

behaviors. From the taxonomy view point developed in the previous chapter, the 

proposed control architecture can be categorized as a behavior based and state 

based ASM structure. This lookup table is tuned by using AIS during robot 

learning process. And learning process will be discussed in the next section. 

 

 
Sensors

Condition Mapping Behaviors

Actuators

Environment
&

Other Robots

Black
Board

Communication
agent

Other 
Robots  

Figure 3.1: MRS internal control schema 

 

 
Condition     Basic Behaviors   

 BB1 BB2 BB3 BB4 BB5 

000000 1 0 0 0 0 
000001 0 0 1 1 0 
000010 0 0 1 0 0 

. . . . . . 

. . . . . . 

. . . . . . 
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111101 0 1 0 0 0 
111110 0 0 0 1 0 
111111 0 6 1 0 0 

Table 3.1: Mapping between condition and basic behaviors 

Condition is based on the current robot states. Robot has 5 basic 
behaviors in this table. 

 

 

3.2 LEARNING ALGORITHM FOR THE MRS 

Three main streams of AIS research has been covered in the previous 

chapter. From the paper survey for this research, clonal selection is the most 

adequate solution for the organization of each robot behavior. That is because the 

negative selection is naturally suited for fault detection or virus detection 

application. On the other hand, the immune network theory is still early stage of 

its development. 

 

3.2.1 Applying Clonal Selection16 

In order to apply Clonal Selection to control the MRS, an antibody is 

represented as a vector. The elements of the vector are deduced from the lookup 

table. The following are the steps (modeled after [He et al., 2005]) integral to the 

learning algorithm (Figure 3.3): 

 

• Initialization (1) 
                                                 
16 Modified from [He et al., 2005]. 
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The initial population containing a set of feasible solutions, or antibodies is 

created randomly regardless to their affinity measurement value. 

 

 

Figure 3.3: Computational procedure for clonal selection17 

 

• Selection (2) 

The selection process by running robots during computer simulation or 

experiment begins with the evaluation (running robots in this research) of the 

affinity of each antibody: These antibodies are then sorted increasingly according 
                                                 
17 [He et al., 2005] 
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to the affinity calculated. The first antibody in the sorted list has the lowest 

affinity and the last one has the highest affinity. The affinity measurement 

function is defined as 

 

1
1/(1 )k

i ii
f w n

=
= + ⋅∑            eq (3.1) 

where; 

 k = total number of the soft constraints defined. 

 in = number of a certain kind of soft constraints within a particular 

 antibody. 

 iw = attached penalty or weight. 

 

After the ordering of antibodies, the n highest affinity antibodies are 

selected to produce a new population nP . If we choose n = N, that is, the number 

of highest affinity individuals equals to the number of candidates, each member of 

the population will constitute a potential candidate solution locally, characterizing 

a greedy search. In addition, if all the individuals are accounted locally, their 

clones will have the same size. The value of the parameter n is in general 

determined empirically. 

 

• Cloning (3) 

Antibodies in the population will be duplicated proportional to their 

affinity and enter the clone population C (Figure 3.2) of size cN , which is 

computed by equation (3.2) 
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1
( )n

c i

NN round
i

β
=

⋅
=∑       eq (3.2) 

 

where; 

cN = total amount of clones generated. 

 β = multiplying factor. 

 N = total amount of antibodies.  

 round(·) = operator that rounds its argument towards the closest integer. 

 

 Each term of this sum corresponds to the clone size of each selected 

antibody, for example, for N = 100 and β = 1, the highest affinity antibody (i = 1) 

will produce 100 clones, while the second highest affinity antibody produces 50 

clones, and so on. 

 

• Maturation (4) 

The mutation rate of a cell is inversely proportional to the affinity of the 

cell. It gives the chance for low affinity cells to “mutate” more in order to 

improve their affinity. Since the mutations can result in better affinity antibodies, 

the immune system searches to climb up the hill towards higher affinity antibody, 

leading to local optima. 

A lookup Table 3.1 picked from the selection process will be mutated with 

mutation rate inversely proportional to its affinity function measure.  
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• Reselection and Diversity Introduction (5) 

The n highest affinity antibody clones will then be selected after running 

robots during simulation or experiment to compose the new population of nP , and 

low affinity antibodies are to be replaced by the diversity introduction process. 

 

Figure 3.2 shows a block diagram how a robot can be learned while 

interacting with other robots. The clonal selection generates antibodies during 

learning and they are evaluated in the robot environment to evaluate affinities for 

further generation of antibodies depending on the stage of the learning. 
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Figure 3.2: MRS overall control schema 

Robot is interacting with other robots and the world. Robot 
communication is done via blackboard. A learning algorithm (clonal 
selection) tunes the lookup table during robot learning. 
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3.2.1 Comparison of the proposed algorithm using Clonal Selection (CS) with 
Genetic Algorithm (GA)18 

[He et al., 2005] used a clonal selection algorithm to solve the university 

timetabling problem which is very similar to the lookup table problem of this 

research. They also benchmarked with GA. Their preliminary experimental 

results indicate that the CS performs better than GA when tested on the university 

timetabling benchmark data. From the data, it is noticed that CS maintains a 

diverse set of local optimal solutions, while GA tends to polarize the whole 

population of individuals towards the best one. This is mainly due to the selection 

and reproduction schemes adopted by the CS. 

From [de Castro and Von Zuben, 1999], compared the decoded average 

value of a multi-modal sinusoidal function, for the whole population, evolved by 

the GA and the CS algorithms. The GA approach presented a greater average 

value, indicating a less diverse set of individuals. Both strategies successfully 

determined the global optimum.  

While the GA uses a vocabulary borrowed from natural genetics and is 

inspired in the Darwinian evolution, the CS makes use of the shape-space 

formalism, along with immunological terminology to describe antigen antibody 

interactions and cellular evolution. The CS performs its search, through the 

mechanisms of somatic mutation and receptor editing, balancing the exploitation 

of the best solutions with the exploration of the search-space. Essentially, CS’s 

                                                 
18 [He et al., 2005] and [de Castro and Von Zuben, 1999] 
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encoding scheme is not different from that of GA but their evolutionary search 

differs from the viewpoint of inspiration, vocabulary and fundamentals. 

Next chapter describes how to implement the proposed algorithm for 

simulation and experiment to verify the algorithm. 
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Chapter 4: Test Environment Setups  

In this chapter, two different setups to test the proposed algorithm will be 

explained. A group of heterogeneous robots were developed. And infrastructures, 

such as communication and positioning systems, to support their evolutionary 

learning were made. 

Five computers (named: Cyberspace, DefuserBot, ScannerBot, 

InspectorBot and Satellite) are used for the experiments. They are running 

Microsoft Windows XP Professional 2002 as an operating system and 

specifications are as followings: 

• Cyberspace: AMD Athlon, 1.2 GHz, 640 MB RAM 

• DefuserBot: Intel Pentium 4, 1.7 GHz, 512 MB RAM 

• ScannerBot: Pentium 4, 1.49 GHz, 512 MB RAM 

• InspectorBot: Intel Pentium III, 863 MHz, 512 MB RAM 

• Satellite: Intel Pentium 4, 1.7 GHz, 512 MB RAM 

 

4.1 SIMULATION SETUP 

4.1.1 Overview 

To prove the efficiency and robustness of the proposed AIS algorithm for 

the MRS, this section describes a computer simulation environment as shown in 

Figure 4.1. There are five computers (named: Cyberspace, DefuserBot, 

ScannerBot, InspectorBot and Satellite) connected to a local area network (LAN) 
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via Ethernet. In the Cyberspace, there is a 3D visualization tool called Webots19 

to simulate the situated robots. Each robot is controlled independently by the 

individual personal computers (PC) assigned to it. Matlab is used to make the 

robots learn and evolve, while C language is used for communication among PC’s 

(robots in other words) and between Webots and Matlab. Robots can share their 

knowledge via blackboard using the network connection. The Satellite is in 

charge of collecting position information of all the robots from the supervisor in 

the Webots and can pass that to other PC’s upon their requests. Satellite can also 

reset each robot to its initial position during learning and the blackboard. Figure 

4.2 is a screen shot of Webots with three robots in the simulation environment. 

 

                                                 
19 http://www.cyberbotics.com/ 
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Figure 4.1: Overall control diagram of MRS 

In the Figure, the PC for DefuserBot is exploded to show its internal 
details. All robots are similar in terms of blocks. They differ in their 
functionality. 

 

• Webots 
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Webots is a robot simulation software from Cyberbotics, Ltd. It contains a 

virtual design tool allowing the user to create 3D virtual worlds complete with the 

physics. The user can add simple inert objects such as an obstacle or active 

objects. These robots can have different locomotion mechanisms and they can be 

equipped with a number of sensor and actuator devices, such as distance sensors, 

motor wheels, cameras, servos, touch sensors, grippers, emitters, receivers, etc. 

Finally the user can program each robot individually to exhibit a desired behavior. 

 

 

 

 

World boundaries

Robots

Obstacles
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Figure 4.2: Screen shot of Webots for MRS 

 

4.1.2 Entities 

4.1.2.1 Robots 

There are three different robots built and modeled in Webots for the 

purposes of this doctoral research (Figure 4.3). They are DefuserBot, ScannerBot 

and InspectorBot. They have basically the same actuator to drive two wheels for 

navigation. Also, they are equipped with communication systems to access the 

server: Satellite. However, their sensors are different from each other. The goal 

was to create a group of heterogeneous robots such that to perform some tasks 

would require cooperation. 
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Figure 4.3: DefuserBot, ScannerBot, InspectorBot 

 

• DefuserBot 

DefuserBot depicted in Figure 4.3 is equipped with two short range infra 

red sensors and one bumper sensor to detect objects at the front of the robot. 

• ScannerBot 

ScannerBot shown in Figure 4.3 has two bumper sensors at the front. It 

also has a long range infra red sensor (IR) that can measure distance from the 

object. This IR sensor has far more coverage than the IR sensor of the 

DefuserBot. 
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• InspectorBot 

InspectorBot has a mechanical gripper at the front. At the gripper front tip, 

there are four short range infra red sensors. In Figure 4.3 there are four red rays 

representing the IR sensor directions and the ranges that they can detect. 

 

4.1.2.2 Objects 

There are three types of objects other than robot itself that robots can 

detect with their built-in sensors. Those are world boundaries, dummies and 

bombs. Figure 4.4 shows screen shot of a dummy and a bomb. 

 

 

bombdummy 
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Figure 4.4: Screen shot of a dummy and a bomb. 

 

4.1.2.3 Supervisor 

Supervisor is a Webots node that enables to keep track of any solid nodes 

such as robots in the Webots environment. Therefore, robot positions can be 

monitored continuously. This Supervisor is controlled by matlab programs in the 

Satellite PC so that it can run a local positioning system server. Supervisor can 

also move or rotate any object in the scene which is essential for learning process.  

 

4.1.3 Communication 

There are two kinds of communication involved in this simulation. The 

first one is communication among PC’s to exchange information about the current 

situation, sensor information or their knowledge. The second one is to interface 

two different software packages which are Webots and Matlab.  

There is a common standard communication mechanism called socket 

provided by programming environments of the respective entities in their own 

style. Therefore, processes can seamlessly exchange their messages via this 

interface whether they are located in the same machine or distributed over the 

network, regardless of their operating systems and programming languages. 
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4.1.3.1 Socket Interface 

Socket is a name given to the package of subroutines that provide access 

to TCP/IP (Transmission Control Protocol/Internet Protocol) on the system. It is a 

network programming interface and a collection of library functions that request 

TCP/IP operations of the underlying operating system via system call 

mechanisms. Figure 4.5 represents the sequence and architecture for PC 

communication between the server and client. In the communication, one process 

plays a role of server that invokes bind, listen, and accept calls in addition to the 

common calls of socket, close, and data exchange functions. Oppositely, the client 

process invokes connect system call to establish a reliable connection to the server 

process. In the data exchange part, each process sends or receives data via 

corresponding read and write calls. 
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Figure 4.5: Server/Client communication between PC’s 

 

4.1.3.2 TCP/IP Communication among PC’s 

There are three PC’s involved in this research for three robot 

communication. Each PC runs Windows XP as an operating system and Matlab as 

a primary platform for numerical calculation. Besides the command-line 

instructions, Matlab provides an external programming language extension 

including C/C++ or Java. A new Matlab command can be implemented by coding 

a C source program and then compiling to generate a DLL (dynamic link library) 

using MEX utility. After all, the communication functions can be developed using 

socket API and then called from the Matlab command line. 
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Figure 4.6: Components for Server/Client communication between PC’s 

Shaded components are realized for this research. 
Ssock.dll, csock.dll : complied with Matlab mex utility 

 

With socket, diverse communication topologies are possible, for example, 

one-to-one architecture or one-to-many architecture as shown in Figure 4.7. One-

to-one architecture needs connections between every pair of processes, so its 

scalability is much limited. On the other hand, one-to-many communication 

architecture needs only (n-1) connections, where n is the number of processes. 

Correspondingly, this model is used for this research to accommodate blackboard 

described in previous chapter and for the scalability toward many robots. There is 

one process relaying communication to the rest. In terms of socket primitive, this 

process will function as a socket server, and the rest of them function as socket 
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clients in the connection setup procedure. As the server has to listen to multiple 

clients, it blocks on the select function to switch among the three different clients. 

Figure 4.6 shows components realized for the PC-to-PC’s communication. And 

they are for the sequences as shown in the Figure 4.5. 

 

         

Figure 4.7: Topology for sever and client connection 

 

Finally, Matlab uses column-major matrix with additional information 

fields to represent data structure, which is so different from that of C language. 

Therefore, the DLL’s developed in this research execute some conversion when 

they are called and return to the caller. It is assumed that each dimension of the 

data matrix to communicate with is known in priori. 
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4.1.3.3 TCP/IP Communication between Matlab and Webots 

The TCP/IP communication between Matlab and Webots is similar to the 

communication among PC’s as described in the previous section. The difference 

is that Webots is fixed as a server and Matlab is fixed as a client and only two 

parties are involved in this communication. After Webots side first creates a 

socket server and binds to the port, it listens for any connection and accepts a 

connection request from the Matlab side. Another difference is that since the 

Webots software is implemented as a form of super loop, one process without 

multithreading, the blocking call in the loop can not be used. Therefore, the 

arrival of data is checked periodically via select function and then the data is 

exchanged asynchronously. Figure 4.8 is the diagrams for the communication 

protocol. 

 

Figure 4.8: Components for Matlba and Webots communication 

Shaded components are realized for this research. 
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Tcp.exe : compiled with visual C++ 6.0 
Csock.dll : complied with Matlab mex utility 

 

4.2 EXPERIMENT SETUP 

4.2.1 Overview 

To demonstrate the proposed AIS algorithm for the MRS, a hardware 

environment has been set up as depicted in Figures 4.9 and 4.10. It is very similar 

in structure to the computer simulation environment so as to minimize the 

transition effort from the simulation to the experiment. There are four computers 

(named: Satellite, DefuserBot, InspectorBot and ScannerBot) connected to a local 

area network via Ethernet in this setup.  

There is an arena with walls for robots to navigate as in Figure 4.10. Each 

robot is controlled independently by a PC connected via radio frequency (RF) 

wireless communication. There is an embedded control system in each robot 

which uses a BASIC Stamp20 and programmed in BASIC language. TCP/IP 

communication among PC’s (which essentially represent individual robots) is 

identical to the simulation case. 

The Satellite is achieved with the aide of a bird’s eye view of the field 

(containing the position of robot) obtained via an overhead camera. Image data is 

then transmitted back to the PC and processed by LabVIEW. LabVIEW extracts 

necessary information and passes the data to Matlab via an ActiveX server 

application. Matlab performs the control algorithm calculations and sends 

                                                 
20 http://www.parallax.com/html_pages/products/basicstamps/basic_stamps.asp 
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instructions via wireless RF communication to the robot’s servos to move 

accordingly. Robots send sensory information back to the PC’s and vice versa. 
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Figure 4.9: Experimental setup block diagram 

The PC for DefuseBot is exploded to show its internal details. All robots 
are similliar in terms of blocks. They differ in their functionality. 
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Figure 4.10: Experimental setup side view (NERDLab) 

There are Boe-Bots and obstacle inside the arena boundary. Ceiling 
cameras are installed to pin-point the positions of robots. 
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lightings

Boe-Bots

arena boundary 

obstacle



 53

 

• Boe-Bot 

The robots used in this experiment are Board of Education Robot (Boe-

Bot) a simple mobile robot kit developed by Parallax Inc.21, with a BASIC Stamp 

microcontroller as its processing unit (Figure 4.11). The base model comes with 

the Board of Education (BOE) Rev. C carrier board, the BASIC Stamp 2 (BS2) 

microcontroller, and two servomotors. A BASIC Stamp microcontroller is a 

single-board computer that runs the Parallax PBASIC language interpreter in its 

microcontroller. The developer's code is stored in an EEPROM, which can also be 

used for data storage. The BS2 is programmed using Parallax BASIC (PBASIC). 

There is a DB-9 serial port that allows the microcontroller to communicate with a 

computer. The BASIC Stamp 2P (Figure 4.12) microcontroller module is an 

extremely fast chip (20 MHz, 12000 instructions/sec) that allows the Boe-Bot to 

perform relatively complex decision-making capabilities and this is an upgrade 

from the previously used BASIC Stamp 2 (20 MHz, 4000 instructions/sec). 

 

                                                 
21 http://www.parallax.com 
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Figure 4.11: Parallax Boe-Bot and BASIC Stamp 222 

 

                                                 
22 http://www.parallax.com 
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Figure 4.12: Parallax BASIC Stamp2 and BASIC Stamp2P23 

                                                 
23 http://www.parallax.com 
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4.2.2 Entities 

4.2.2.1 Robots 

There are three different robots built with Boe-Bots for the purposes of 

this doctoral research (Figure 4.13). They are named as DefuserBot, ScannerBot 

and InspectorBot. They have basically the same actuators to drive two wheels for 

navigation. There is a radio RF transceiver for the wireless communication 

between each robot and corresponding host PC. Also, the PCs are equipped with 

communication systems to access the Satellite. However, their sensors are 

different from each other depending on their roles of their mission. The goal is to 

create a group of heterogeneous robots such that to perform some tasks would 

require cooperation. 
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Figure 4.13: DefuserBot, ScannerBot, InspectorBot 

 

The logic loop of PBASIC programs, as shown in Figure 4.14 for servo 

actuation downloaded onto the BASIC Stamp microcontroller, starts with the 

servos being at an idle state. Next, the microcontroller invokes for input data from 

the pin which is assigned to communicate with the wireless device. If no actuation 

command is sent by Matlab at that moment, the servos will remain idle. 

Otherwise, the input data will be processed to determine rotation speed and 

direction. Servo rotation will take place continuously until a new input is received 
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by the RF receiver. Next, the Stamp reports sensor data to the matlab running in 

the PC. 
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Figure 4.14: Logic loop of Boe-Bots controller 

 

• DefuserBot 

This robot has two IR sensors for the front right and front left direction 

obstacle detection purpose. The IR detectors are 15.8 mm x 18.2 mm boards that 
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incorporate both an IR LED and a 40 kHz IR receiver. The detectors work by 

having the LED emit light, and if an object is close enough, the light will reflect 

back to the detector. When the IR is not detecting an object it reads a value of 1, 

and when it is detecting an object it reads a value of 0. Regardless, the IR 

detectors are very good at detecting objects several inches in front of the robot, 

allowing it to avoid them quickly. 

In the front middle part of the robot, a bumper sensor is installed to cover 

the center area that IR sensors can not detect. And this bumper sensor emulates 

defuse of a bomb. It was modified from the Twinkle Toes Bumper Sensor by 

Parallax, Inc.24 for this research. 

 

• ScannerBot 

This robot has two bumper sensors and one distance sensor, and both of 

them are facing forward. This distance sensor is used for the obstacle avoidance 

during navigation and the scanning the arena for bomb search. It is Sharp 

GP2D1225, an analog distance sensor, that uses infrared to detect an object 

between 10 cm and 80 cm away. It provides a non-linear voltage output in 

relation to the distance an object is from the sensor. 

The GP2D12 is wired to an ADC083126, 8-bit analog to digital converter, 

as shown in the circuit of Figure 4.15. Two resistors of 217 Ohm connected to the 

Vref pin on the ADC0831 are a voltage divider to set the reference voltage to 2.55 

                                                 
24 http://www.parallax.com/detail.asp?product_id=27312 
25 http://www.acroname.com/robotics/parts/SharpGP2D12-15.pdf 
26 http://robotics.me.jhu.edu/~llw/courses/me530420/lab/adc0831.pdf 
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volts. On the ADC0831 this will give a value of 0 to 255 for an input voltage of 0 

to 2.55 volts. Figure 4.16 shows calibration result of the distance sensor by 

measuring the output of the GP2D12 at given fixed distances, in centimeters.  

 

 

 

Figure 4.15: Wiring diagram of ADC0831 and GP2D12 27 

 

                                                 
27 http://www.parallax.com/dl/docs/prod/acc/SharpGP2D12Snrs.pdf 
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Distance vs. Sensor Reading
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Figure 4.16: Distance sensor reading vs. Distance 

 

Finally, if an object in front of the robot is out of the distance sensor’s 

field of view, two bumper sensors in front of the robot can detect it whenever it is 

bumped. They are originally from Gazbot28 and modified for this research. 

 

• InspectorBot 

                                                 
28 http://www.gazbot.com/products.asp 
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This robot’s gripper, produced by Parallax, Inc., allows the Boe-Bot to 

pick up and move objects. The assembly consists of two arms controlled by a 

standard servomotor to allow the gripper to hold its open or closed position 

without continuously needing a power supply.  

It was modified for this research by adding two more IR sensors and a 

touch sensor to fulfill the task of inspection of two different types of objects. A 

total of four IR sensors were installed on the gripper. Front-left and front-right IR 

detectors detect objects in front of the robot. Side-left and side-right IR detectors 

detect objects at the side of the robot. And they operate exactly as the IR detectors 

on the DefuserBot. Also, a touch sensor to detect whether the gripper is closed or 

not is additionally installed. 

 

4.2.2.2 Objects 

There are three types of objects other than robot itself that robots can 

detect with their built-in sensors. Those are world boundaries, dummies and 

bombs. Figure 4.17 shows a dummy and a bomb. 

The arena boundary walls are made with plywood and top areas are 

painted in dull black for better image processing purposes. Inner sides are covered 

with gray papers for better robot IR sensor object sensing purposes.  
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Figure 4.17: A dummy and a bomb (experiment) 

 

4.2.2.3 Webcam 

The overhead camera (Figure 4.18), installed 10 ft above ground, is 

connected to the PC through the Universal Serial Bus (USB) port. The USB port 

provides serial bus standard for device connection from one to another. The 

overhead camera used in the experiment is the Creative NX Pro webcam29. 

 

                                                 
29 http://www.creative.com/welcome.asp?bypass=1 
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Figure 4.18: Creative NX Pro webcam 

 

4.2.3 Local Positioning System (LPS) 

The visual data is acquired by the data acquisition software, LabVIEW, 

and processed by image filtering LabVIEW add-on software named IMAQ 

Vision30, to determine the position of the individual robots. By communicating 

via ActiveX, LabVIEW passes the state information to Matlab31 upon request.  

To determine the relative position of robots in real-time and have the data 

ready for input to the control system, the following tasks need to be 

accomplished:  

• Image acquisition: capture continuous streams of images using compatible 

cameras. 

                                                 
30 http://www.ni.com/http://www.ni.com/ 
31 http://www.mathworks.com/ 
 



 65

• Image processing: filter raw images, cancel noise, and extract useful 

information. 

• The system must be calibrated with the robot scale and the accuracy 

determined. 

 

4.2.3.1 Image Acquisition 

Vision of the field is obtained via overhead cameras. The camera was 

selected for its sufficiently high video resolution and suitable video format, 

necessary to ensure fine image quality captured by the camera. High frame rate of 

15 fps is also needed to reduce time delay and ensure real-time data processing. 

Automatic exposure control and color balance options allows less filtering to be 

done by the image processing software, thus reducing computation time. Lastly, a 

40o field-of-view allows optimal capture of the 5’ x 7’ field below the camera. 

Figure 4.19 describes the architecture of application for LPS. NI-IMAQ 

for USB Cameras is a free software driver for acquiring images from any 

DirectShow imaging device into LabVIEW. These devices include USB cameras, 

webcams, microscopes, scanners, and many consumer-grade imaging products. 

NI Vision Assistant, a software product by National Instruments, is a 

configurable, interactive prototyping application, which allows machine vision 

software development easier. 
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Figure 4.19: Architecture of applications for LPS 

A camera with DirectShow Filter (USB webcam) is connected to the 
Satellite.`LabVIEW and add-on software IMAQ Vision can capture 
the camera images. Vision Assistant is used for off-line software 
development purpose. 

  

4.2.3.2 Image Processing 

NI Vision Assistant software is used to create a LabVIEW compatible 

script containing sequential steps to filter noise from the image and eventually 

determine the object’s position within a desired accuracy. The main difficulty 
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encountered while programming the LabVIEW algorithm with Vision Assistant 

was the enormous number of variables that have to be taken into account. Many 

factors affect image quality and the robot’s ability to distinguish objects in an 

image. Figure 4.20 shows a snapshot of the original image as captured by the 

camera. The primary image operation is to perform exposure control which 

applies brightness, contrast, and gamma correction to each color plane separately 

to remove initial noise from the raw image.   

 

 

 

 

Figure 4.20: Snapshot of an original, untouched image, showing four 
different markers (paired shapes of different sizes) with 
different colors 
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Figure 4.21 below shows the transformation sequence of the raw image in 

Figure 4.20 to processed images as the image undergoes filtering steps by IMAQ 

Vision. Figure 4.22 shows the flow chart of the image process. 

. 

   

Figure 4.21: Filtration steps to remove noise and isolate red objects in the 
image and filter circular objects 

Shown from left to right are: original image after noise removal; 
yellow and green objects filtered out; circular shape filtered out. 
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Figure 4.22: Filtration steps to remove noise and isolate red objects in the 
image and filter circular objects 
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4.2.3.3 Data Interpretation for Coordinate Determination 

Using IMAQ Particle Analysis VI32, LabVIEW is capable of determining 

the pixel coordinate (x,y) of objects seen through the camera. When an overhead 

camera is used, the robot is identified by placing a marker (two circular colored 

papers of different sizes) on the robot. Particle analysis tool can sort binary image 

by its size. Bigger size is number one and smaller size is number 2. The smaller 

paper is situated “in front” of the larger one, allowing to determine the robot’s 

direction; size differentiation is necessary to allow determination of robot 

orientation.   

From the pixel coordinate of each object outputted by LabVIEW, the real-

world coordinates of robots are as follows: 
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where kC is the calibration coefficient which indicates the number of 

pixels that corresponds to the length in feet in real world measurement. For the 

                                                 
32 http://zone.ni.com/devzone/cda/tut/p/id/3169 
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overhead camera, Cxk  for the x direction = 3.04 pixels/ft and Cyk  for the y 

direction = 3.14 pixels/feet which were deduced by calibration. 

Also, the heading of a robot can be calculated as follows: 

 

tan( / )a x yθ =                                     eq(4.3) 

where θ  is the heading in radians. 

 

 

4.2.4 Communication 

There are three kinds of communication involved in the experimental 

setup. The first is communication among PC’s to exchange information about the 

current situation, sensor information or their knowledge. The second is 

communication between a Boe-Bot and a corresponding PC. The one is 

communication between Matlab and LabVIEW. 

 

4.2.4.1 TCP/IP Communication among PC’s 

The communication protocol among PC’s is identical to the case for the 

computer simulation described in Section 4.1.3.1. 
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4.2.4.2 Serial Communication between Boe-Bot and PC 

Serial communication (RS-232C) 33  is the most common low level 

protocol for communicating between two or more devices. As the name suggests, 

the serial port sends and receives bytes of information in a serial fashion: one bit 

at a time. These bytes are transmitted using either a binary format or a text 

(ASCII) format. The serial data format includes one start bit, between five and 

eight data bits, and one stop bit. A parity bit and an additional stop bit might be 

included in the format as well. Figure 4.23 illustrates the serial data format. 

 

  

Figure 4.23: Serial data format 

 

There are two pins for bi-directional data transfer (Tx, Rx) and the other 

pins for control of the communication flow at a DB9 serial connector. Because a 

sender and receiver can't always process data at the same rate, some technique of 

negotiating when to start and stop transmission is required. One method relies on 

the serial port hardware; the other is implemented in software. Both methods are 

types of flow control. The hardware flow control uses two of the serial port lines 

to control data transmission.  

                                                 
33 http://www.taltech.com/TALtech_web/resources/intro-sc.html 
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For the wireless communication between the Matlab of a PC and the on-

board PBASIC program of a Boe-Bot, a set of SureLink 900 MHz RF Modules 

and QuickLink Demo Board all by Parallax Inc. are used. Figure 4.24 shows a 

block diagram of wireless communication between Boe-Bot and PC. One RF 

module is directly connected to the Basic Stamp on the robot side, and another RF 

transceiver module is slotted into the QuickLink Demo Board unit, which is 

connected to the PC via serial cable.   

 

 

   

Figure 4.24: Communication between Boe-Bot and PC 

 

Serial Baud Rate (data communication speed between the SureLink RF 

module and host that can be Basic Stamp or PC) is ranged between 1200 Baud 

and 115k Baud. The RF Data Rate, the speed at which the RF data is transmitted 

between SureLink RF modules wirelessly, is from 48 kbps to 76.8kbps. Higher 

RF data rates will decrease the distance of operation, while lower RF data rates 

will increase it. The maximum distance is up to 1000 feet. For this research three 

pairs of wireless communication with different channels are built for each of the 

three independent robot navigations.  
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Many trial and error attempts have been made to fine tune the software to 

maximize the communication performance almost reaching hardware upper 

limits. However, difficulties with timing on the serial ports were one of the most 

frustrating aspects of developing stamp applications.34 It is partly because of the 

intrinsic characteristics of this distributed robotic system where each device uses 

its own internal clock. Therefore, the communication protocol is asynchronous. 

Due to additional overhead in the BASIC Stamp, and the fact that the BASIC 

Stamp has no hardware receive buffer for serial communication, received data 

may sometimes be missed or garbled. 

To optimize the serial communication, BASIC Stamp chips have been 

upgraded to the BASIC Stamp 2P for faster communication speed. Also lowering 

the baud rate, RF data rate, adding extra stop bits, not using formatters in the 

SERIN command, and using simple variables (not arrays) increased the chance 

that the BASIC Stamp can receive the data properly. A type of data flow control 

called hardware handshaking is used to prevent data loss during transmission. For 

this experiment, serial baud rate of 57.6 kbps, RF data rate of 76.8 kbps, eight 

data bits, no parity bit, and one stop bit has been used. 

Figure 4.25 shows a schematic sketch of serial communication between 

two different software platforms.  

 

                                                 
34 http://www.emesystems.com/BS2rs232.htm 
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Figure 4.25: Serial communication flow chart 

 

 

4.2.4.3 Communication between Matlab and LabVIEW via ActiveX 

After each completion of image processing LabVIEW, IMAQ Particle 

Analysis outputs measurement values of requested parameters about the object, 
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such as object pixel area, object dimension (width and height), and object 

coordinate within the image. These parameter values are essential inputs to the 

control algorithm which runs in Matlab. For Matlab to receive this data from 

LabVIEW, ActiveX technology needs to be incorporated. ActiveX is a distributed 

object system and protocol used to manage compound documents and data 

transfer between applications, which is accomplished via Object Linking and 

Embedding (OLE). 

LabVIEW software has integrated ActiveX Automation functionality that 

allows other programs to use and control the LabVIEW VI. Commands and data 

can be sent to different applications in a single format by means of invoking and 

getting and setting properties. Matlab can access LabVIEW VI through its 

ActiveX Server, whereby an Application Object exports the properties of 

LabVIEW [Johnson, 2004].   
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Chapter 5: Test Conditions, Results and Discussion 

5.1 ROBOT MISSION DESCRIPTION 

In order to validate the power of the AIS algorithm proposed in this thesis, 

a bomb disposal scenario was developed. The mission that has been simulated for 

the purposes of this doctoral research is for a group of heterogeneous robots to 

detect and dispose of bombs in a robot arena. The disposal unit consists of a team 

of three robots labeled by their expertise: DefuserBot, ScannerBot and 

InspectorBot. These robots will explore the environment and, inspired by the 

immune system, evolve from experiences creating a set of behaviors such that 

they can cooperate with each other to detect, inspect, defuse and dispose of the 

bombs. 

Although bomb disposal is the “main” reason for existence, they have 

other individual goals such as the energy needed for operation and survival. 

Therefore, each robot in the group should meet the global (group) goals and the 

local (individual) goals at the same time. Each robot has a physical space 

designated as its “home” and in order to promote periodic visits, the “home 

energy” decreases with time and is replenished when visited by the owner robot. 

Also, each robot loses its own “robot energy” as time goes by and actions are 

performed.  

To replenish the robot’s energy, there is an energy source (charging 

station) that each robot can use to get charged one at a time. The robot is able to 
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transfer some of this energy to its home for home usage. Figure 5.1 shows a 

graphical representation of the arena and the different areas described above.  

 

 

Figure 5.1: Mockup of the arena used by the robot unit  

Shown are the important locations: each robot’s home (robots need to 
visit regularly), charging station (energy source where robots get 
charged to survive and provide energy to their homes), bombs (that 
robots need to detect, inspect, defuse, and dispose), and a dummy 
(obstacle, diffused bomb or dummy). Not shown are the robots. 

 

The ScannerBot uses its range finder sensor to scan the arena and locates 

the potential bombs. When it finds a bomb, it writes the location to the 

blackboard. The InspectorBot has an ability to discern a bomb from other objects 

of a similar shape, i.e., dummies. It can get information on objects found, which 

was left in the blackboard by the ScannerBot. The InspectorBot can also request a 

rescan job to the ScannerBot, if it is not a bomb after the inspection. The 
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InspectorBot posts the location of the bomb to-be-defused in the blackboard (for 

the DefuserBot to read and take action) when the (up to that moment unknown) 

object is identified as a bomb. Finally, the DefuserBot defuses and disposes the 

bombs listed in the blackboard. The DefuserBot can request a rescan job to the 

ScannerBot if it can not defuse it. This information flow is explained in detail 

later (Figure 5.18). 

There are two sources of these rescan orders from the DefuserBot and the 

InspectorBot. One is from the scanning error. The other one is due to the 

movement of the bomb itself. The bombs are designed to absorb the impact 

energy during the collision against the robots to protect the robot hardware. 

Therefore, this internal feedback loops between robots work as a mutual error 

correction mechanism for the robot mission. Figure 5.2 shows the information 

flow for the bomb disposal mission. It also shows the flow of energy among the 

different actors. 
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Figure 5.2: Energy and information flow of the robot group 

Messages (information) are shown as blue lines and energy flow as red 
lines. The ScannerBot searches for objects and marks an entry in the 
blackboard of the object’s location and is listed as “unknown” 
(basically requesting the InspectorBot to inspect the object – adds the 
object to the InspectorBot queue). The InspectorBot, after completing 
its current task, checks the blackboard for unidentified objects, goes to 
their location and inspects the object. If the object is a bomb, it updates 
the blackboard labeling the object as “bomb” (this is basically sending 
a message to the DefuserBot to defuse the bomb). The DefuserBot, after 
done with its current task, looks in the blackboard for bombs-to-be-
defused, goes to their location, and defuses them. Robots go to the 
Charging Station and take energy from this source. They use the energy 
to move and perform tasks. Each robot should go periodically to its 
home and give some of its energy to the home supply. 

 



 81

5.2 ROBOT LEARNING CONDITIONS 

A simulation environment was developed using Webots software. The 

basic idea of the simulator was to reproduce the arena environment and simulate 

different scenarios, learning and evolution algorithms before deploying the robots 

in the real arena. This virtual world was also used as a teaching laboratory for the 

different robot brains to initialize their behaviors. Figure 5.3 shows a screen shot 

of the computer simulation of a typical bomb disposal mission and Figure 5.4 

shows the experimental setup for a similar scenario. There are two different types 

of objects, bombs and dummies.  
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Figure 5.3: Computer simulation of a bomb disposal mission 

The virtual world (developed using Webots® software) mimics the real 
experimental setup (see Figure 5.4). Avatars of the physical robots were 
created in the virtual arena. Simulated are also the different areas and 
objects found in the real arena. 
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Figure 5.4: Experimental setup showing a typical bomb disposal mission 

The arena shows the different areas (Homes for each robot, charging 
station) and objects (bombs, dummy). A virtual world (developed using 
Webots® software, see Figure 5.3) was developed to mimic the real 
experimental setup.  

 

5.2.1 Robot Basic Behaviors 

In this section, basic behaviors (BBs) for the robots, which are essential 
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experiment case. These BBs are coded in a Matlab environment and tested in 

advance in the virtual world arena (VA). 

Figure 5.5 shows the robot detection range for different entities. Locations 

farther than their range limit can not be detected. When robot battery level gets 

low, the sensor coverage is reduced. Therefore, each robot should maintain 

battery level to accomplish the mission. 

Since the range that robot can detect is limited, each robot uses the wander 

behavior. Given the robot’s mobility, by wandering, the robot is able to cover 

more terrain and effectively explore the whole physical arena (PA). The robots 

can go to any location in the arena using information of their location from the 

Satellite server (a LPS – Local Positioning System) and the target location if it is 

within robot detection range.  

Robots can not differentiate between different objects such as bombs, 

dummies and wall boundaries with their built-in sensors. When the ScannerBot 

logs possible bomb locations, robots can then interpret them as locations of 

interest to them. 
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Figure 5.5: Robot detection range 

It is assumed that the on-board sensors of the robots have limited 
range. And the range depends on robot battery level. Shown are two 
different ranges for a threat (bomb) and home and charging station. 
The difference in range is intended to be qualitatively proportional to 
the relative entity sizes. When robot battery level gets low, there is a 
decrease in the range. The range is assumed unidirectional. 

 

• Common Behaviors 

o Wander (time_limit, detect_range) 

Since the robots’ sensors detection range is limited, robots should navigate 

the arena first until they find something of interest while avoiding collisions 

with any other objects (including other robots). This wander behavior is 

embedded into other basic behaviors. It uses their built-in sensor information 

to detect anything in the way for navigation.  
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However, their sensors are not good enough to detect other robots 

especially in the experiment case. Routines to check the distances from other 

robots are added by looking up the robot position information from the 

Satellite server. Figure 5.6 shows zones such as left, front and right to 

represent an other robot within detect range. The front zone has a sector of 60-

degree range. Each side zone (right, left) has a 30-degree range of coverage. 

Wander has two input arguments: time_limit for the wander time limit and 

detect_range for detecting an other robot. Both can be changed when it is 

called by other behaviors. 

 

 

Figure 5.6: Robot detection range to avoid collision 

The sensors are frontal, left and right. By detecting presence in either 
or both, the sector (Left, Front, Right) may be discerned. The actual 
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value of the proximity sensor estimates the distance. After a certain 
distance, the sensor input doesn’t change. 

 

o goForEnergy&getEnergy (destination, time_limit) 

Each robot internal energy level decreases with time. For a Robot to 

survive, it needs to find the energy source and charge itself. When, the 

charging station is occupied by another robot, the robot should wait until the 

charging process of the current occupant is over. The dynamics of charging 

process is modeled as a linear time delay for this research. Figure 5.7 shows 

the robot’s internal energy change before and after the charging station visit. 

goForEnergy&getEnergy has time_limit to break this behavior loop after 

time_limit has elapsed. Robot energy level is bounded by its maximum 

battery capacity. 
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Figure 5.7: Robot charging at the charging station 
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The robot’s internal energy decreases continuously until visiting the 
energy source. While at the charging station, the robot replenishes its 
energy fast. The function goForEnergy&getEnergy has as input 
arguments the time_limit which represents the time to break the loop 
after time_limit has passed. 

 

o goHome&chargeHomeORgetEnergy(destination, time_limit) 

Robots may have two reasons to go home. One is to charge its home and 

the other one is to charge itself. Figure 5.8 shows two cases of robot and home 

energy interactions. The rate at which a robot loses energy is modeled much 

faster than that of a home. When a robot reaches home, the resulting energy of 

home and robot will be the mean value of before the robot reaches home. The 

dynamics of the charging process is modeled as a time delay for this research. 

Home energy level is bounded by its maximum battery capacity. 

Robots take wander behavior to find their home when the destination can 

not be detected. goHome&chargeHomeORgetEnergy has an input argument 

of time_limit to break the loop after time_limit has passed. 
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Figure 5.8: Robot/Home energy exchange 

Shown are energies before and after home visit. It is assumed that the 
resulting energy after the exchange is the average of the energies at 
encounter. The rate of energy consumption of the home is slower than 
that of the robot. 

 

• ScannerBot 

o scanField&logPosition(time_limit) 
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This is a unique behavior of the ScannerBot. It will randomly wander the 

arena and scan the field to find possible bomb locations. Figure 5.9 (a) shows 

the ScannerBot scanning the environment to locate possible bomb locations. 

The polar plot in Figure 5.9 (b) enables finding out the possible bomb location 

based on scan signatures. Figure 5.10 shows an experimental version of 

Figure 5.9. A numeric filter was designed to filter out all the other signals 

(with signatures different than bombs) based on the slope and height versus 

width ratio of the signal’s features. Figures 5.11 and 5.12 show the filter 

results for sequences of scanned signals for both cases. 

 

 

 

  (a) ScannerBot scanning surrounding   (b) Polar plot scan of environment 

Figure 5.9: ScannerBot scanning behavior (simulation) 

On the left (a), a typical scenario is shown, where the robot is near a 
corner with a bomb and a dummy in its viewing area. On the right (b), 
a polar plot showing the sensor output. The signatures of different 
features are shown. The wall boundaries signature shape is different 
than the ones for dummies and bombs. A similar scenario for the 
experimental case is shown in Figure 5.10. 
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 (a) ScannerBot scanning surrounding     (b) Polar plot scan of environment 

Figure 5.10: ScannerBot scanning behavior (experiment) 

The experiment shown is similar to the simulation case of Figure 5.9. 
On the left (a), the robot is near a corner with a bomb and a dummy in 
its viewing area. On the right (b), the polar plot showing the sensor 
output with the different. 

 

If the robot finds something, it posts the object’s location on the 

blackboard for other robots to access it. The scanField&logPosition function 

has one input argument, time_limit, to break the loop after the time_limit 

has passed. This routine can filter out objects already posted in the blackboard 

by calculating the distance between new findings and locations in the list. 
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Figure 5.11: ScannerBot numeric filter result for a simulation sequence 

The polar plot scanned data is unwrapped linearly (top-right) and 
then filtered (bottom-right). The filter is basically a high-pass filter 
that searches for the bomb’s signature that is a sharp peak. Walls and 
dummies are shallow or “fat” features. A similar result for the 
experimental setup is shown in Figure 5.12. 
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Figure 5.12: ScannerBot numeric filter filtration sequence (experiment) 

The experiment is similar to the simulation shown in Figure 5.11. The 
polar plot scanned data is unwrapped linearly (top-right) and then 
filtered (bottom-right).  

 

o goForBomb&rescan(destination, time_limit) 

The ScannerBot may post wrong information on the blackboard. In this 

case, the InspectorBot posts a rescan request on the board. After the rescan, 

the ScannerBot can correct the initial posting (for example, update the 
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position or delete the position in the black board) or can ask the InspectorBot 

for another work (inspection) order. The goForBomb&rescan function has 

input arguments of destination to find the location and time_limit to 

break the loop after time_limit has passed. 

 

• InspectorBot 

o goForBomb&inspect(destination, time_limit ) 

This is a unique behavior of the InspectorBot. It checks the blackboard for 

postings on new items found that have not been classified and are considered 

candidates for bombs. The InspectorBot finds the locations (posted by the 

ScannerBot) in the blackboard and goes to the tagged location to validate 

(inspect) whether the object is a bomb or not. Figure 5.13 and 5.14 show the 

behavior of the InspectorBot while inspecting objects. Based on the diameter 

of the objects, it can differentiate between those objects. If its inspection result 

is a bomb, it will post a request to the DefuseBot on the blackboard. If it is not 

a bomb, it will request a rescan to the ScannerBot. 
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     (a)  bomb                         (b)  dummy 

Figure 5.13: InspectorBot inspecting potential bombs (simulation) 

The InspectorBot finds the locations (posted by the ScannerBot) in the 
blackboard and goes to the tagged location to validate (inspect) 
whether the object is a bomb or not. Based on the diameter of the 
objects, it can differentiate between bombs and dummy objects. If its 
inspection result is a bomb, it will post a request to the DefuseBot on 
the blackboard. 

 

   

     (a)  bomb                         (b)  dummy 
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Figure 5.14: InspectorBot inspecting potential bombs (experiment) 

This is an experimental equivalent to Figure 5.13. Based on the 
diameter of the objects, it can differentiate between those objects. 

 

• DefuserBot 

o goForBomb&defuse(destination, time_limit) 

This is a unique behavior of the DefuserBot. It will find the locations posted 

in the blackboard by the InspectorBot and defuse the bomb at the location. 

Figures 5.15 and 5.16 show the behavior of the DefuserBot while defusing a 

bomb. It will approach the bomb until the bumper sensor at the front detects it, 

which emulates bomb defusing process. The bomb becomes a dummy after this 

behavior is successful. If the DefuserBot can not defuse the bomb, it will 

request a rescan order to the ScannerBot for updated position information. 
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Figure 5.15: DefuserBot defusing a bomb (simulation) 

It will find the locations posted in the blackboard by the 
InspectorBot, go to that location and defuse the bomb. 
 

 



 98

Figure 5.16: DefuserBot defusing a bomb (experiment) 

This is the experiment of the equivalent simulation in Figure 5.15. It 
will find the locations posted in the blackboard by the InspectorBot, go 
to that location and defuse the bomb. 

 

• Basic Behaviors in summary 

The basic behaviors explained so far can be categorized as in Table 5.1. 

Figure 5.17 shows flow charts of two types of behaviors. The type1 BB is a time-

limited where the robot navigates avoiding obstacles until the time_limit is 

reached at which point the behavior is executed. The type2 BB has a destination 

as a parameter. The robot wanders until the destination is reached or the 

time_limit is exceeded. If the location is reached, the behavior is executed, but if 

the time_limit is exceeded, the behavior is aborted. 
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Figure 5.17: Two types of basic behaviors 

The behavior on the left is time-limited where the robot navigates 
avoiding obstacles until the time_limit is reached at which point the 
behavior is executed. The other behavior has a destination as a 
parameter. For this type of behavior, the robot wanders until the 
destination is reached or the time_limit is exceeded. If the location is 
reached, the behavior is executed, but if the time_limit is exceeded, 
the behavior is aborted. 
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Robot name Basic Behaviors type 
  wander(time_limit, detect_range) 1 
  goForEnergy&getEnergy(destination, time_limit) 2 

ScannerBot goHome&chargeHomeORgetEnergy(destination, time_limit) 2 
  scanField&logPosition(time_limit) 1 
  goForBomb&rescan(destination, time_limit) 2 
  wander(time_limit, detect_range) 1 

InspectorBot goForEnergy&getEnergy(destination, time_limit) 2 
  goHome&chargeHomeORgetEnergy(destination, time_limit) 2 
  goForBomb&inspect(destination, time_limit) 2 
  wander(time_limit, detect_range) 1 
  goForEnergy&getEnergy(destination, time_limit) 2 

DefuserBot goHome&chargeHomeORgetEnergy(destination, time_limit) 2 
  goForBomb&defuse(destination, time_limit) 2 

Table 5.1: Robot basic behaviors 

 

5.2.2 Learning in Detail 

• Robot states 

Robots have their own way of describing their world using states. Table 

5.2 shows each robot’s states. The states are represented using Boolean logic. 

A state is defined as ‘robot battery low’ when its battery level reaches 

below 30. Robot battery level can vary from 0 to 100 depending on robot’s visit to 

home and charging station. When the ‘robot battery low’ is ‘1’, the robot’s 

detection ranges for other locations (for example home, charging station and 

bomb locations) are decreased as described in Figure 5.5.  

There are five states representing location availability information for the 

robots. When these states are ‘1’s, robot can reach the locations directly without 
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executing wander behavior while searching the location. And the last three states 

in the Table are from the blackboard and represent requests among robots during 

the bomb disposal process. 

 

States ScannerBot InspectorBot DefuserBot 

robot battery low 1/0 1/0 1/0 

ScannerBot Home near 1/0 N/A N/A 

InspectorBot Home near N/A 1/0 N/A 

DefuserBot Home near N/A N/A 1/0 

charging station near 1/0 1/0 1/0 

location on the board near 1/0 1/0 1/0 

request to rescan exists 1/0 N/A N/A 

request to inspect exists N/A 1/0 N/A 

request to defuse exists N/A N/A 1/0 

Table 5.2: Robot states 

Shown are the possible values of the different variables. Most of the 
values are binary {0,1}.  

 

• Blackboard 

As described in Chapter 3, the blackboard is used for the robots to share 

their information collected during their navigation in the arena. The blackboard is 

managed in the Satellite PC by running a server. Table 5.3 shows data structure of 

the blackboard. Each bomb position is represented using Cartesian coordinate 

system. And each disposal process is represented in Boolean logic. 

Figure 5.18 shows information transition of the blackboard depending on 

each process of the bomb disposal. Shaded areas (SCAN and RESCAN by the 
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ScannerBot, INSPECT by the InspectorBot, DEFUSE by the DefuserBot) 

represent various stages of bomb disposal process. And each process is done by 

the robot in charge of each process. Solid arrows indicate a bomb disposal and 

broken arrows show internal feedback loops in the group to correct their postings. 

When experiment starts, the server at the Satellite initialize the blackboard matrix 

with rows of [999 999 0 0 999]. 

 

 
bomb x y inspected defused rescanned 

1 … … 1/0 1/0 1/0 

2 … … 1/0 1/0 1/0 

3 … … 1/0 1/0 1/0 

4 … … 1/0 1/0 1/0 

. … … . . . 

. … … . . . 

Table 5.3: Data structure of the blackboard 

Shown are the possible values of the different variables. Most of the 
values are binary {0,1}. 
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x       x       1       0       999

x       x       1       0       1

x       x       1       1       0

x       x       1       0       0

x       x       0       0       1

x      x      0      0      999

x       x       1       1       1

x       x       1       1       999

999     999      0      0     999

RESCAN INSPECT

DEFUSE
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Figure 5.18: Bomb information transition in the blackboard 

Shaded areas represent various stages of bomb disposal process. And 
each process is done by the robot in charge of each process. Solid 
arrows indicate a bomb disposal. Broken arrows show internal 
feedback loops in the group to correct their postings. The postings in 
the blackboard are changed depending on the stage of the disposal by 
robots. 

 

• Robot learning 

Figure 5.19 shows a block diagram of a robot during the learning 

sequence. It checks its own states continuously, which are affected by other robots 

and the world. During learning, the lookup table will be changed as the antibodies 

in the clonal selection evolve. Table 5.4 shows a lookup table. If the lookup table 

generates a solution with more than one behavior (for example, condition 000001 

and 111111 in Table 5.4) for the robot, it will engage the wander behavior. 
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Figure 5.19: Block diagram of a robot during learning 

The robot checks its own states continuously, which are affected by 
other robots and the world. Given its current state, the robot selects a 
BasicBehavior (BB) from the Lookup Table and executes it. As a 
result, the state will change. During learning, the lookup table will be 
changed as the antibodies in the clonal selection evolve. 

 

 
Condition     Basic Behaviors   

 BB1 BB2 BB3 BB4 BB5 
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000000 1 0 0 0 0 
000001 0 0 1 1 0 
000010 0 0 1 0 0 

. . . . . . 

. . . . . . 

. . . . . . 
111101 0 1 0 0 0 
111110 0 0 0 1 0 
111111 0 1 1 0 0 

Table 5.4: Lookup table 

First column represents condition reflecting current robot states. The 
rest of columns are Basic Behaviors (BB).  

 

Figure 5.20 shows a block diagram where all three robots are involved. 

The blackboard is a media for them to communicate. During learning, there 

should be a synchronized way to reset the blackboard and robot positions every 

time, when the selection or reselection process of the clonal selection starts, as 

shown in Figure 5.20. In this research, the server running in the Satellite PC 

performs this function. During the real environment experiment, this 

synchronization routine can be used to replace the robot’s batteries.  

During the learning, if robots try BB’s of type2 with null destination, they 

are engaged to the wander BB. If the ScannerBot can not find potential bombs 

during the time window of the learning session (the posting of the initial bomb 

information totally rely on the ScannerBot’s random search), there will not be any 

opportunities for the rest of them to develop their learning to inspect and defuse 
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bombs. Therefore, locations of bombs with false information are initially posted 

in the blackboard to speed up the learning process.  

Table 5.5 summarizes the items that are used for the affinity evaluation of 

each generation of antibody. Affinity can be measured by assigning weight to 

each item and combining them in various ways (for example, linear combination). 

The bottom line is how to reflect the global and local interest of the robot group 

with these items in the table.  

                                                            
To be used for Affinity DefuserBot ScannerBot InspectorBot 

robot energy maintain level maintain level maintain level 
home energy maintain level maintain level maintain level 
no. of request executed maximize maximize maximize 
  bomb defused bomb rescanned bomb inspected
bomb found N/A maximize N/A 

Table 5.5: States or other conditions for affinity evaluation functions 
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Figure 5.20: Three robot learning 

From the signals from the clonal selection affinity evaluation routine 
of each robot, the server controls the execution of each learning 
process. At the same time, the blackboard is reset after each affinity 
evaluation process ends. Webots or Boe_Bots are reset depending on 
the experiment. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Simulation Results and Discussion 

Figure 5.21 shows a simulation screen shot. There was false bomb 

information put on the blackboard for each robot on purpose, which worked as 

vaccines during AIS learning to speed up the learning. Considering simulation 

time, following assumptions are made: 

robot knows all the locations 

robot can take batteries one by one at the charging station and bring home. 
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Figure 5.21: Simulation condition 

Conditions for the learning algorithm are: 

population size: 30 

number of generation: 25 

hypermutation probability: 0.1 

lookup table size: 4 x 3 

vaccines: 

1 false bombs information for the DefuserBot 
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bomb scanned 

object to be 
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object to be 
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1 false bombs information for the InspectorBot 

1 true bombs information for the InspectorBot 

1 false bombs information for the ScannerBot 

weights for the selection process: 

 ScannerBot 

  battery picked: 50 

  battery brought home: 150 

  rescan: 200 

 InspectorBot 

  battery picked: 50 

  battery brought home: 150 

  inspection: 300 

 DefuserBot 

  battery picked: 50 

  battery brought home: 150 

  defuse: 300 

 

 
robot antigen   antibody  

 carrying battery work order exists go for battery bring battery home rescan 

 0 0 0 1 1 
ScannerBot 0 1 1 0 0 

 1 0 0 0 0 
 1 1 0 0 1 
   go for battery bring battery home inspect 

 0 0 1 0 0 
InspectorBot 0 1 0 0 1 

 1 0 1 1 0 
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 1 1 1 0 0 
   go for battery bring battery home defuse 

 0 0 1 0 0 
DefuserBot 0 1 1 0 0 

 1 0 0 0 1 
 1 1 0 1 1 

Table 5.6: Antigens and antibodies for robots during simulation 

Table 5.6 shows antigens and antibodies during robot learning. Antigens 

represent robot condition and antibodies are equivalent to the lookup table. Each 

robot has three basic behaviors. Tables 5.7, 5.8 and 5.9 represent actual robot 

behaviors during affinity measurement for corresponding antibodies during 

learning. 

 

 

 

 

 

 

Table 5.7: Change of InspectorBot behaviors during learning 

 

 

 

 

 

InspectorBot    
antigen antibody equivalent action affinity 

(0 1) 0 0 1 inspect 300 
(0 1) 0 0 1 inspect 300 
(0 0) 1 0 0 go for battery 50 
(1 0) 1 1 0 waste time 0 
(1 0) 1 1 0 waste time 0 

time expired   650 

ScannerBot    
antigen antibody equivalent action affinity 

(0 1) 1 0 0 go for battery 50 
(1 1) 0 0 1 rescan 200 
(1 1) 0 0 1 rescan 200 
(1 0) 0 0 0 waste time 0 
(1 0) 0 0 0 waste time 0 
(1 0) 0 0 0 waste time 0 

time expired   450 
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Table 5.8: Change of ScannerBot behaviors during learning 

 

 

Table 5.9: Change of DefuserBot behaviors during learning 

 

Figure 5.22 shows ScannerBot evolution of antibodies during learning. 

Maximum and mean affinities were calculated during the leaning. Figure 5.23 

shows how ScannerBot processed bombs and batteries and represented in average 

numbers during learning. 
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DefuserBot    
antigen antibody equivalent action affinity 

(0 1) 1 0 0 go for battery 50 
(1 1) 0 1 1 waste time 0 
(1 1) 0 1 1 waste time 0 
(1 1) 0 1 1 waste time 0 
(1 1) 0 1 1 waste time 0 
(1 1) 0 1 1 waste time 0 
(1 1) 0 1 1 waste time 0 

time expired   50 
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Figure 5.22: ScannerBot affinity evolution during simulation 
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Figure 5.23: ScannerBot behavior evolution during simulation 

 

Table 5.10 shows ScannerBot’s antibodies representing maximum affinity 

for each generation. Table 5.11 is showing average antibodies for each generation. 

These tables show how actual learning has been done. 

 
1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 0 0 0 0 1 0 
1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 1 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 1 1 0 0 0 1 0 0 1 0 
0 0 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 0 0 0 1 0 0 1 1 0 1 
1 0 1 1 0 0 1 0 1 0 1 0 
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1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 1 1 0 0 1 1 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 

Table 5.10: ScannerBot best antibodies for the generation during simulation 

 
0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5 

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5 

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5 

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4 

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4 

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4 

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5 

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5 

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5 

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5 

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5 

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667
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0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333

Table 5.11: ScannerBot mean antibodies for the generation during 
simulation 

Figure 5.24 shows InspectorBot evolution of antibodies during learning. 

Maximum and mean affinities were calculated during the leaning. Figure 5.25 

shows how InspectorBot processed bombs and batteries and represented in 

average numbers during learning. 
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Figure 5.24: InspectorBot affinity evolution during simulation 
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Figure 5.25: InspectorBot behavior evolution during simulation 

 

Table 5.12 shows InspectorBot’s antibodies representing maximum 

affinity for each generation. Table 5.13 is showing average antibodies for each 

generation. These tables show how actual learning has been done. 

 

1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 0 0 0 0 1 0 
1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 1 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 1 1 0 0 0 1 0 0 1 0 
0 0 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 0 0 0 1 0 0 1 1 0 1 
1 0 1 1 0 0 1 0 1 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 1 1 0 0 1 1 0 0 1 0 
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1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 

Table 5.12: InspectorBot best antibodies for the generation during 
simulation 

 
0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5 

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5 

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5 

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4 

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4 

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4 

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5 

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5 

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5 

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5 

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5 

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667

0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333
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Table 5.13: InspectorBot mean antibodies for the generation during 
simulation 

 

Figure 5.26 shows DefuserBot evolution of antibodies during learning. 

Maximum and mean affinities were calculated during the leaning. Figure 5.27 

shows how DefuserBot processed bombs and batteries and represented in average 

numbers during learning. 
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Figure 5.26: DefuserBot affinity evolution during simulation 
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Figure 5.27: DefuserBot behavior evolution during simulation 

 

Table 5.14 shows DefuserBot’s antibodies representing maximum affinity 

for each generation. Table 5.15 is showing average antibodies for each generation. 

These tables show how actual learning has been done. 

 

1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 0 0 0 0 1 0 
1 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 1 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 1 1 0 0 0 1 0 0 1 0 
0 0 1 1 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 1 0 1 0 1 0 
1 0 0 0 0 1 0 0 1 1 0 1 
1 0 1 1 0 0 1 0 1 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 1 1 0 0 1 1 0 0 1 0 
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1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 1 0 
1 1 1 1 0 0 1 0 0 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 
1 0 0 1 0 0 0 0 1 0 1 0 

Table 5.14: DefuserBot best antibodies for the generation during simulation 

 

0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5 

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5 

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5 

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4 

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4 

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4 

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5 

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5 

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5 

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5 

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5 

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667

0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333
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Table 5.15: DefuserBot mean antibodies for the generation during simulation 

InspectorBot and DefuserBot show good evolution results of mean 

affinity. However, considering the maximum possible fitness values based on the 

weight conditions, it is still premature stage and it needs more generations of 

evolution. 

The result of ScannerBot shows too much fluctuation and it is due to the 

weighting of excessive bomb found reward. 

 

5.3.2 Preliminary Experiment Results 

The proposed hardware setup was tested for actual robot basic behavior 

development. Since the architecture for both the simulation and experiment are 

very similar, the codes for the simulation could be transferred to the experiment 

without any difficulties. Machine vision system was good enough to pick up robot 

position information and communication systems seamlessly bridged between 

different modules and platforms. However, due to fast battery drain, intensive 

experiment could not be done. 
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Chapter 6: Conclusions and Future Work 

6.1 SUMMARY AND CONCLUSIONS 

This research has shown that the proposed distributed control architecture 

using CS of AIS can provide a suitable methodology for the autonomous solution 

of highly confined goal-seeking problems targeted in this research. This document 

has also highlighted some of the factors such as communication using blackboard 

involved in robot communication. 

Computer simulation has shown the feasibility of AIS as a possible 

measure for control of a group of robots. The methodology is firmly grounded in 

the biological sciences and provides robust performance for the intertwined 

entities involved in most task-achieving MRS. Based on its formal foundation, it 

provides a platform to characterize interesting relationships and dependencies 

among MRS task requirements, individual robot control, capabilities, and 

resulting task performance. 

In this research, we do not advocate that the CS performs better than the 

GA in any application, instead we demonstrate that it is also composed of a 

biologically inspired algorithm, which performs learning and multi-modal search 

along the space. Like the GA, the CS algorithm is highly parallel. 

The architecture proposed enables a robot group to navigate in an 

unknown environment. The implementation results are still in a very early state, 

so it is not advisable to draw major conclusions; the simulation results obtained so 

far show that based on the proposed modeling of the environment an AIS 

promises to be a good candidate solution to the problem of robot navigation in 
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unstructured and unknown environments. We did not exhaust all features that are 

usually defined in AIS, offering ways of extensions to the proposed approach. 

 

6.2 RESEARCH CONTRIBUTIONS 

The work presented in this dissertation is a first of its kind wherein the 

principles of AIS have been used to model and organize the group behavior of the 

MRS. This has been presented in the form of a novel algorithm. In addition to the 

above, generic environments for computer simulation and real experiment have 

been realized to demonstrate the working of an MRS with considerably low 

budget. These could potentially be used to implement other algorithms onto the 

MRS. Therefore can provide a valuable test-bed for AIS ideas, and a useful tool 

for MRS research. 

 

6.3 FUTURE WORK 

Possible future research can be categorized and summarized as follows: 

• Learning algorithm 

There should be a sensitivity analysis to tune the clonal selection parameters 

affecting the convergence rate. And to speed up the learning, reinforcement 

learning methods should be studied. 

• Experiment 

After the learning algorithm has been improved especially to speed up the 

learning, experiment should be performed using the setup developed in this 

research. 
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• MRS formalism 

The basic behaviors for this research are all static and prepared separately for the 

mission. For real-world deployment, several additions that have been used before 

in our lab [Westlake, 2005] are suggested. For example, implementing some 

evolutionary methods that make these behaviors evolve in real-time will be a 

more practical goal for real world applications. Also, agent technology can be 

applied to utilize the mobility of the robots.  

• Benchmarking 

Comparison with other evolutionary methods especially for multi-objective 

optimization purpose should be followed after this research to compare the 

performance of the proposed algorithm. 

• Hardware 

For more flexible robot missions, robots with better built-in sensors and actuators; 

autonomous charging system should be developed. 
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