

Copyright

by

Jaeho Hur

2007

The Dissertation Committee for Jaeho Hur Certifies that this is the approved

version of the following dissertation:

MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL

IMMUNE SYSTEM

Committee:

Benito R. Fernández, Supervisor

Michael D. Bryant

Richard H. Crawford

Alfred E. Traver

Risto Miikkulainen

MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL

IMMUNE SYSTEM

by

Jaeho Hur, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2007

Dedication

I dedicate this dissertation to my parents.

 v

MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL

IMMUNE SYSTEM

Jaeho Hur, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Benito R. Fernández

For the successful deployment of task-achieving multi-robot systems

(MRS), the interactions must be coordinated among the robots within the MRS

and between the robots and the task environment. There have been a number of

impressive experimentally demonstrated coordinated MRS. However it is still of a

premature stage for real world applications.

This dissertation presents an MRS control scheme using Artificial Immune

Systems (AIS). This methodology is firmly grounded in the biological sciences

and provides robust performance for the intertwined entities involved in any task-

achieving MRS. Based on its formal foundation, it provides a platform to

characterize interesting relationships and dependencies among MRS task

requirements, individual robot control, capabilities, and the resulting task

performance.

The work presented in this dissertation is a first of its kind wherein the

principles of AIS have been used to model and organize the group behavior of the

 vi

MRS. This has been presented in the form of a novel algorithm. In addition to the

above, generic environments for computer simulation and real experiment have

been realized to demonstrate the working of an MRS. These could potentially be

used as a test bed to implement other algorithms onto the MRS.

The experiment in this research is a bomb disposal task which involves a

team of three heterogeneous robots with different sensors and actuators. And the

algorithm has been tested practically through computer simulations.

 vii

Table of Contents

List of Tables... x

List of Figures .. xi

List of Figures .. xi

Chapter 1: Introduction ... 1
1.1 From Single to Multi-Robot Systems... 1
1.2 Deriving Inspiration from Nature... 2
1.3 Research Motivation .. 3
1.4 Research Contribution.. 4
1.5 Dissertation Outline.. 5

Chapter 2: Background Concepts and Related Work.. 6
2.1 Multi-Robot Systems (MRS) ... 6

2.1.1 System Description .. 6
2.1.2 MRS Taxonomy ... 9

2.1.2.1 MRS Research Communities ... 9
2.1.2.2 Overall Structure of MRS .. 10
2.1.2.3 Action Selection Mechanism (ASM) 12

2.1.3 Related Work.. 13
2.2 Artificial Immune Systems (AIS) .. 15

2.2.1 Immune System Basics .. 15
2.2.2 Models on AIS ... 18

2.2.2.1 Negative Selection.. 18
2.2.2.2 Clonal Selection ... 19
2.2.2.3 Immune Network.. 21

2.2.3 Related Work.. 23

 viii

Chapter 3: Proposed Architecture for MRS .. 26
3.1 Structure for the MRS .. 26

3.1.1 Overall Structure .. 26
3.1.2 Internal Structure.. 27

3.2 Learning Algorithm for the MRS... 29
3.2.1 Applying Clonal Selection ... 29
3.2.1 Comparison of the proposed algorithm using Clonal

Selection (CS) with Genetic Algorithm (GA)............................ 35

Chapter 4: Test Environment Setups... 37
4.1 Simulation Setup .. 37

4.1.1 Overview .. 37
4.1.2 Entities.. 41

4.1.2.1 Robots... 41
4.1.2.2 Objects.. 43
4.1.2.3 Supervisor... 44

4.1.3 Communication .. 44
4.1.3.1 Socket Interface.. 45
4.1.3.2 TCP/IP Communication among PC’s 46
4.1.3.3 TCP/IP Communication between Matlab and Webots .. 49

4.2 Experiment Setup ... 50
4.2.1 Overview .. 50
4.2.2 Entities.. 56

4.2.2.1 Robots... 56
4.2.2.2 Objects.. 62

4.2.3 Local Positioning System (LPS) .. 64
4.2.3.1 Image Acquisition .. 65
4.2.3.2 Image Processing.. 66
4.2.3.3 Data Interpretation for Coordinate Determination 70

4.2.4 Communication .. 71

 ix

4.2.4.1 TCP/IP Communication among PC’s 71
4.2.4.2 Serial Communication between Boe-Bot and PC 72
4.2.4.3 Communication between Matlab and LabVIEW via

ActiveX ... 75

Chapter 5: Test Conditions, Results and Discussion... 77
5.1 Robot Mission Description... 77
5.2 Robot Learning Conditions .. 81

5.2.1 Robot Basic Behaviors ... 83
5.2.2 Learning in Detail... 100

5.3 Results and Discussion... 108
5.3.1 Simulation Results and Discussion .. 108
5.3.2 Preliminary Experiment Results... 121

Chapter 6: Conclusions and Future Work ... 122
6.1 Summary and Conclusions... 122
6.2 Research Contributions .. 123

Bibliography.. 125

Vita……………… .. 130

 x

List of Tables

Table 3.1: Mapping between condition and basic behaviors29

Table 5.1: Robot basic behaviors ...100

Table 5.2: Robot states..101

Table 5.3: Data structure of the blackboard...102

Table 5.4: Lookup table ..105

Table 5.5: States or other conditions for affinity evaluation functions106

Table 5.6: Antigens and antibodies for robots during simulation111

Table 5.7: Change of InspectorBot behaviors during learning.....................111

Table 5.8: Change of ScannerBot behaviors during learning112

Table 5.9: Change of DefuserBot behaviors during learning........................112

Table 5.10: ScannerBot best antibodies for the generation during simulation

...114

Table 5.11: ScannerBot mean antibodies for the generation during

simulation ...115

Table 5.12: InspectorBot best antibodies for the generation during

simulation ...117

Table 5.13: InspectorBot mean antibodies for the generation during

simulation ...118

Table 5.14: DefuserBot best antibodies for the generation during simulation

...120

Table 5.15: DefuserBot mean antibodies for the generation during simulation

...121

 xi

List of Figures

Figure 2.1: Example of a Multi-robot system (MRS) searching for food7

Figure 2.2: Research communities of MRS ..10

Figure 2.3: ASM classifications..13

Figure 2.4a: Immune system working ...16

Figure 2.4b: Immune system working...17

Figure 2.5: Clonal selection process...20

Figure 2.6: Idiotyping network ..23

Figure 3.1: MRS internal control schema ...28

Figure 3.3: Computational procedure for clonal selection30

Figure 3.2: MRS overall control schema...34

Figure 4.1: Overall control diagram of MRS ...39

Figure 4.2: Screen shot of Webots for MRS ...41

Figure 4.3: DefuserBot, ScannerBot, InspectorBot..42

Figure 4.4: Screen shot of a dummy and a bomb. ..44

Figure 4.5: Server/Client communication between PC’s.................................46

Figure 4.6: Components for Server/Client communication between PC’s47

Figure 4.7: Topology for sever and client connection48

Figure 4.8: Components for Matlba and Webots communication49

Figure 4.9: Experimental setup block diagram ..51

Figure 4.10: Experimental setup side view (NERDLab)52

Figure 4.11: Parallax Boe-Bot and BASIC Stamp 2 ..54

Figure 4.12: Parallax BASIC Stamp2 and BASIC Stamp2P55

Figure 4.13: DefuserBot, ScannerBot, InspectorBot..57

Figure 4.14: Logic loop of Boe-Bots controller...58

Figure 4.15: Wiring diagram of ADC0831 and GP2D1260

 xii

Figure 4.16: Distance sensor reading vs. Distance ...61

Figure 4.17: A dummy and a bomb (experiment) ..63

Figure 4.18: Creative NX Pro webcam..64

Figure 4.19: Architecture of applications for LPS ...66

Figure 4.20: Snapshot of an original, untouched image, showing four

different markers (paired shapes of different sizes) with different colors.....67

Figure 4.21: Filtration steps to remove noise and isolate red objects in the

image and filter circular objects ..68

Figure 4.22: Filtration steps to remove noise and isolate red objects in the

image and filter circular objects ..69

Figure 4.23: Serial data format ..72

Figure 4.24: Communication between Boe-Bot and PC73

Figure 4.25: Serial communication flow chart ...75

Figure 5.1: Mockup of the arena used by the robot unit78

Figure 5.2: Energy and information flow of the robot group80

Figure 5.3: Computer simulation of a bomb disposal mission82

Figure 5.4: Experimental setup showing a typical bomb disposal mission....83

Figure 5.5: Robot detection range ...85

Figure 5.6: Robot detection range to avoid collision..86

Figure 5.7: Robot charging at the charging station ...87

Figure 5.8: Robot/Home energy exchange ..89

Figure 5.9: ScannerBot scanning behavior (simulation)90

Figure 5.10: ScannerBot scanning behavior (experiment)91

Figure 5.11: ScannerBot numeric filter result for a simulation sequence92

Figure 5.12: ScannerBot numeric filter filtration sequence (experiment)93

Figure 5.13: InspectorBot inspecting potential bombs (simulation)...............95

Figure 5.14: InspectorBot inspecting potential bombs (experiment)96

Figure 5.15: DefuserBot defusing a bomb (simulation)97

 xiii

Figure 5.16: DefuserBot defusing a bomb (experiment)..................................98

Figure 5.17: Two types of basic behaviors ..99

Figure 5.18: Bomb information transition in the blackboard.......................103

Figure 5.19: Block diagram of a robot during learning.................................104

Figure 5.20: Three robot learning ...107

Figure 5.21: Simulation condition..109

Figure 5.22: ScannerBot affinity evolution during simulation113

Figure 5.23: ScannerBot behavior evolution during simulation...................113

Figure 5.24: InspectorBot affinity evolution during simulation115

Figure 5.25: InspectorBot behavior evolution during simulation.................116

Figure 5.26: DefuserBot affinity evolution during simulation118

Figure 5.27: DefuserBot behavior evolution during simulation119

 1

Chapter 1: Introduction

1.1 FROM SINGLE TO MULTI-ROBOT SYSTEMS1

The field of multi-robot systems (MRS) has received increased attention

since the mid 1990's. Earlier research efforts had concentrated on either single

robot systems (SRS) [Cao el al., 1995] or distributed problem-solving systems

that did not involve robotic components [Carver et al., 1991]. This is not

surprising as continually improving technology and infrastructure have made the

deployment of MRS consisting of increasingly larger numbers of robots possible.

With the growing interest in MRS comes the expectation that, at least in some

important respects, multiple robots will be superior to a single robot in achieving

a given task. Some potential advantages of MRS over SRS are summarized

below:

• Total system cost may be reduced by utilizing multiple simple and cheap

robots as opposed to a sophisticated and expensive robot.

• Some tasks may be accomplished more efficiently by a group of robots by

decomposing the particular task into subtasks and performing each in

parallel.

• The inherent complexity of some task environments may require the use

of multiple robots as the required capabilities are too substantial to be met

by a single robot.

1 [Jones and Mataric, 2005; Arai et al., 2005].

 2

• Multiple robots are often assumed to increase system robustness by taking

advantage of inherent parallelism and redundancy. Therefore, negative

effects on task performance caused by individual robot failure or the

dynamic addition or removal of individual robots can be minimized.

1.2 DERIVING INSPIRATION FROM NATURE

Since the age of reason, man has looked to nature for inspiration to solve

problems. Biologically-inspired computing is one area of research that inspired

fields such as Genetic algorithms (GA) [Goldberg, 1989], Artificial Neural

Networks (ANN) [Haykin, 1994], Evolutionary Programming, Artificial Immune

Systems, and etc. These tools are the most popular to solve difficult, sometimes

hard to model engineering problems.

Other fields of study that seek to mimic intelligent behavior of organisms

and incorporate them in machines are Artificial Life (Alife) and swarm

intelligence. An example of Alife is animats [Kodjabachian and Meyer, 1996] and

they are artificial animals. Researchers have talked about scenarios where animats

are capable of independent learning about their environment through application

and evolution of pattern matching rules. Swarm intelligence is a technique based

around the study of collective behavior in decentralized yet organized systems.

Examples of systems like this can be found in nature, including ant colonies

[Dorigo et al., 1996], bird flocking2, animal herding [Schultz et al., 1996], and

2 http://www.red3d.com/cwr/boids/

 3

fish schooling3. In swarm intelligence interactions among entities lead to an

emergence of a common global system behavior.

An Artificial Immune System (AIS) is a type of optimization algorithm

inspired from the principles and processes of the vertebrate immune system

[Manning, 1979]. The algorithms typically exploit the immune system's

characteristics of learning and memory to solve a problem. The field of AIS is

fairly new and began in the mid 80`s with Farmer, Packard and Perelson`s papers

on immune system networks [Farmer et al., 1986]. Further details are enunciated

in the relevant chapters.

1.3 RESEARCH MOTIVATION

Even though MRS may produce robust solutions, the utilization of MRS

poses potential disadvantages and additional challenges that must be addressed if

MRS are to present a viable and effective alternative to SRS in an important

subset of domains. A poorly designed MRS, with individual robots working

toward opposing goals, can be less effective than a carefully designed coordinated

SRS [Jones, 2005]. The opposing goals can be analogous to conflicting objectives

in multi-objective optimization, e.g. in a gear train design problem, higher gear

ratio and cost are opposing objectives.

Many researchers have come to realize that the design of MRS is in many

critical respects a very different challenge from the design of single robot

systems. In most cases just taking a suitable SRS design and scaling it up to

3 http://freshaquarium.about.com/cs/beginnerinfo/a/schooling.htm

 4

multiple robots is not adequate [Arai et al., 2005]. A paramount challenge in the

design of effective MRS is managing the complexity of a group’s control

introduced by multiple, interacting robots as well as conflicting individual goals.

To date, the design of MRS has remained ad hoc. and, as such, few formal

methodologies have been devised. This lack of design procedures has limited the

usefulness of MRS and has prohibited the growth of MRS solutions for many

potential domains.

In the mean while, Artificial Immune Systems (AIS) have appeared as a

new computational approach for the computational intelligence community. Like

other biologically inspired techniques, it tries to extract ideas from a natural

system, in particular the vertebrate immune system, with an aim to develop a

computational platform for solving engineering problems. There are many things

in common between AIS and MRS in terms of distributed entities and processing,

which is discussed later. In this research, AIS’s distributed learning structures will

be studied and applied to orchestrate the group of robots.

1.4 RESEARCH CONTRIBUTION

The work presented in this dissertation is a first of its kind wherein the

principles of AIS have been used to model and organize the group behavior of

MRS. This result is presented in the Chapter 3 in the form of a novel algorithm. In

addition to the above, generic environments for the virtual and real experiments

were realized to demonstrate the working of a MRS. This could potentially be

used as a platform to implement other algorithms onto the MRS. The proposed

 5

algorithm has been implemented experimentally. The test bed scenario that has

been proposed for final experiments involves a bomb disposal task which has

been successfully performed by three robots with different sensors and actuators.

1.5 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. The current

chapter discussed a brief introduction and outline.

Chapter 2 presents a brief literature review of background concepts and

previous work related to MRS and AIS.

Chapter 3 proposes the control architecture which is used to control MRS

using AIS.

Chapter 4 presents the software and hardware environments to realize and

verify the proposed algorithm.

Chapter 5 shows the results and discussion of the virtual environment

experiment.

Chapter 6 draws conclusion of this dissertation with a summary of

contributions and directions for future work.

 6

Chapter 2: Background Concepts and Related Work

2.1 MULTI-ROBOT SYSTEMS (MRS)

2.1.1 System Description

Figure 2.1 shows an example of a MRS, where many robots are searching

for food and taking it home. They have sensors to find food and to detect

obstacles. They can communicate with each other to exchange information. Also,

there is a home area where they can rest (battery recharge, maintenance) and store

food.

Cooperative autonomous robot groups may have a number of advantages

over a single complex robot system. Robot groups can readily exhibit the

characteristics of structural flexibility, reliability through redundancy, simple

hardware, adaptability, reconfigurability, and easy maintainability [Liu et al.,

1998]. Real-life applications of such autonomous robot groups can be found in

literature. Some examples include: explosive ordinance disposal [McLurkin,

1996], welfare robots [Yamaguchi et al., 1998], etc.

 7

Figure 2.1: Example of a Multi-robot system (MRS) searching for food

There are robots (white circle) looking for foods (black squares). The
robots collect food and carry it to the area denoted as “Home”.

• Typical system requirements and constraints

In MRS, robots sometimes must give up attaining the best possible

individual solutions in favor of “collective efficiency” of the group of robots. In

general, MRS are designed such that, at least in theory, it is in the interest of each

: Food : Robot

: Obstacle

Home

 8

of the individuals to try and attain the group objective since, on the average; their

individual efficiency will be improved as well.

However, since the connection between individual and collective benefit is

not always obvious, the problem of implementing a common overall goal is a

difficult one. Usually there is no central unit to orchestrate the overall movement

or plan of each robot, therefore, their individual decision depends totally on

distributed resources and restricted communication. The communication is in

some instances limited to a local area or by bandwidth. The global position of

each robot and the environmental model are sometimes not usually available for

each robot. The conditions above can be easily found in many applications of

multi-agent robot systems. For example, when a robot colony is to explore

another planet, there are not enough computational resources; hence local

memory should be utilized with minimal overload.

This kind of system is called an autonomous decentralized system (ADS)

[Ishida and Adachi, 1996]. Self-organizing economic systems of free market,

organization of nations, and development of enterprises are good examples of

ADS, not to mention self organizing biological systems such as the human

immune system. The difference is, in MRS, the agents (robots) are equipped with

relatively poor intelligence (as compared to huge computational resources of a

company) and limited sensors (as compared to well distributed sensory organs of

animals).

• Implementation Barriers

 9

When scaling the robot system from single-agent to multi-agent domain,

the dimension of the global state space grows exponentially with the number of

robots: | | = sa, where, s is the size of the state space of each robot and a is the

number of robots [Mataric, 1994]. Here s is assumed to be equal for all robots or

at worst the maximum for all robots4. This makes the problem of on-line planning

intractable for all but the smallest group sizes. Furthermore, since global planning

requires communication between the robots and the controller, the bandwidth

requirements grow with the number of robots. Additionally, the uncertainty in

perceiving states grows with the increased complexity of the environment. All of

these properties conspire against global planner-based approaches5 for problems

involving multiple robots acting in real-time in dynamic, noisy environments.

2.1.2 MRS Taxonomy

2.1.2.1 MRS Research Communities

There have been many researchers from many different research

communities who have studied MRS from different perspectives. It is difficult to

distinctly identify those research domains as they greatly overlap with each other.

Fig 2.2 is a brief diagram on research communities about MRS. The figure 2.2a

depicts ideas that have been derived from nature and implemented in the form of

Animats and Swarm robotics. The figure 2.2b shows the analogy of figure 2.2a in

the engineering domain.

4 s = max i {si} where si is the size of the state space for some robot i.
5 Use a centralized mathematical world model for verifying sensory information and generating
actions in the world.

 10

(a) (b)

Figure 2.2: Research communities of MRS

2.1.2.2 Overall Structure of MRS 6

 Multi robot systems are defined by several key characteristics. Most of

these have been described below:

• Cooperative vs. Non-cooperative

In cooperative MRS individual robots assist each other in reaching the overall

common goal while this is not true of non-cooperative MRS.

• Coordinated

6 Summarized and rephrased from [Iocchi et al., 2001] and http://www-scf.usc.edu/~csci445/

ALife

Animat

Multi-Agent
System

Swarm
Robotics

MRS

Software
Agent

 11

This feature essentially means that there is a clear cut internal hierarchy among

the individual robots of a MRS. This hierarchy influences properties such as

decision making, social roles etc.

• Centralized vs. Distributed

MRS can be centralized similar to the central nervous system in a human body

under the command of a brain or distributed similar to the distributed immune

system of the human body.

• Direct communication vs. Indirect communication

The individual robots in a MRS may communicate directly with each other

using some standard protocol or they may upload and download data from a

centralized server like blackboard.

• Homogeneous vs. Heterogeneous

A homogenous MRS usually has all robots which are exactly the same in size,

shape and functionality. A heterogeneous MRS has individual robots which

may differ from each other in size, shape or some other feature such as

processing power, control algorithms, sensors/actuators, locomotion, etc.

• Reactive vs. Deliberative

A reactive MRS is one where the individual robots perform actions based upon

information from sensors, and in a deliberative MRS the individual robots

work based both upon sensor data and either historic data (state machine)

and/or data from other robots and/or commands. This is performed by the

behavioral algorithm imposed upon it.

• Hybrid Control vs. Behavior Based Control

 12

Finally MRS can be categorized depending on how to combine reactive and

deliberative schemes: hybrid or behavior based.

2.1.2.3 Action Selection Mechanism (ASM)7

An Action Selection Mechanism (ASM) is a decision making process

based on sensory information, hierarchy or other variables. ASM’s ability to

accommodate multiple behaviors simultaneously divides ASM’s into two main

groups: Arbitration and Command fusion as in Figure 2.3.

Arbitration ASMs (a-ASMs), allow one behavior at a time to take control

for a period of time until another set of behaviors is activated. In priority-based a-

ASMs, an action is selected by a central module based on priorities that have been

assigned a priori. Thus, behaviors with higher priorities are allowed to take

control of the robot superseding behaviors lower in the priority rank. State-based

a-ASMs select the set of behaviors that is adequately competent of handling the

situation corresponding to the given state. Winner-take-all arbitration action

selection results from the interaction of a set of distributed behaviors that compete

until one behavior wins the competition and takes control of the robot.

7 Summarized and rephrased from [Pirjanian, 2005].

 13

(a-ASM) (f-ASM)

Figure 2.3: ASM classifications8

Command fusion ASMs (f-ASMs), allow multiple behaviors to contribute

to the final control of the robot. Voting f-ASM techniques interpret the output of

each behavior as votes which are combined by tallying the votes and then utilize

this vote ranking. Fuzzy f-ASMs are very similar to voting techniques however

fuzzy inferencing techniques [Ross, 1995] are used to implement fusion among

possible actions. Finally, superposition f-ASM techniques combine behavior

recommendations using linear combinations.

2.1.3 Related Work

Social and ecological systems exhibit a structure that is desirable for multi

robot systems. For example, insect colonies achieve organized group behaviors in

8 [Pirjanian, 2005]

 14

complete absence of centralized control and an environmental model. Therefore,

many ideas inspired from biological and social systems are applied to MRS.

Mataric [Mataric, 1995] extended Brooks' [Brooks, 1987] work to the

multi-robot case. First, she defined basic primitive social behaviors for the robots,

and made them learn social behaviors with a reinforcement learning algorithm.

Her approach basically is that each robot can gradually understand its social rules

(defined by a human).

McLurkin [McLurkin, 1996] applied behavior-based approach to small

micro-robots. Liu et al. [Liu, 1998] developed Mataric's work further by adding

evolving group behavior function using a genetic algorithm.

Jun and Sim [Jun and Sim, 1997] used fuzzy inference based

reinforcement learning and a distributed genetic algorithm for behavior learning.

Their interests were learning processes not social behaviors. Maeda [Maeda,

1997] developed a very simple evolutionary algorithm, which mimics genetic

algorithms, to train collision avoidance and target reaching behaviors. The study

of Goldberg [Goldberg, 1996] was on heterogeneous robot group behavior.

Kelly and Keathy [Kelly and Keathy, 1998] used reinforcement learning

and showed that sharing robots' experiences results in faster and more repeatable

learning of each robot's behavioral parameters. Ashiru and Czarnecki [Ashiru and

Czarnecki, 2002] focused on the communication between robots, and used genetic

algorithm to evolve communication protocol. Floreano and Noli [Floreano and

Noli] modeled competing co-evolving species (e.g., prey and predator).

 15

Yamaguchi et al. [Okura et al., 2003] took chaotic dynamics as an evolutionary

computational method for robot learning.

In this section, an overview of the work done in MRS related areas has

been briefly covered. This overview is not exhaustive rather it summarizes some

of the major efforts in the field of robotics which are related to action selection

and uncertainty handling of MRS.

2.2 ARTIFICIAL IMMUNE SYSTEMS (AIS)

2.2.1 Immune System Basics

• What is an Immune system (IS)?

The IS is a very complex biochemical system with several mechanisms for

defense against pathogenic organisms, toxins and other foreign molecules,

collectively known as antigens. The main function of the IS is to recognize all

cells (or molecules) within the body and categorize those cells as self or nonself.

The nonself cells are futher categorized in order to induce an appropriate type of

defensive mechanism. The IS learns through evolution to distinguish between

dangerous foreign antigens and the body's own cells or molecules.

The atomic or fundamental constituents of the IS are the lymphocytes

which circulate throughout the body, mainly of two types, namely B-lymphocytes

(B-cells) and T-lymphocytes (T-cells). B-lymphocytes are the cells that mature in

the bone marrow and T-lymphocytes are the cells maturing in the thymus. Each of

them has a distinct molecular structure and functionality.

 16

• How does the IS work9?

There are two kinds of immunities: innate and adaptive immunity. The

Innate IS is a primitive system of defense against the pathogens. It is nonspecific;

that is, it is not directed against specific invaders but any pathogens that enter the

body. On the other hand, the adaptive IS (performed by cooperation of B-cells

and T-cells) is an additional and more sophisticated system of defense

mechanism, and can recognize and destroy specific substances. The way B-cells

and T-cells can identify specific substances is called a key and key hole

relationship.

Figure 2.4a: Immune system working

9 Summarized and rephrased from [Dasgupta and Attoh-Okine, 1997], [Jun and Sim, 1997],
[Kondo et al., 1998] and [Mitsumoto et al., 1997].

Ag

epitope

idiotope

paratope

AntigenAntibody

 17

Figure 2.4b: Immune system working

This figure shows various stage of immune system (IS) process when
antigen invades the IS. The numbers on the arrows represent reaction
process.

Figure 2.4a shows the receptor areas at the surface of each cell. The shape

of the receptors uniquely define the kind of other antibody cells or antigens it can

identify. Each process of IS (the numbered arrow in Figure 2.4b) will be

mentioned in detail.

When an antigen invades the human body, innate IS will try to neutralize

it first (2). If the receptor shape of the antigen matches with the shape of the B-

cell, B-cell production is stimulated and through processes (6) and (8), a lot of

antibodies are generated. If the shape of the antigen does not match perfectly with

the receptor of the B-cells, a strong learning process called hypermutation can

make B-cells match the antigen. The role of the T-cells is to regulate the

 18

stimulation of B-cells (4). After the learning process, some of B-cells are “stored”

as memory cells to prepare antibodies upon appearance of the same antigen (5). If

the same antigens show up again in the body, IS can react very fast via process

(7).

2.2.2 Models on AIS

There are three major models on IS for use with engineering applications

[Dasgupta and Attoh-Okine, 1997]: Negative Selection, Clonal Selection and

Immune Network. Each of them will be described in this section.

2.2.2.1 Negative Selection10

The human immune system makes use of gene libraries from two types of

organs called the thymus and the bone marrow. When a new antibody is

generated, the gene segments of different gene libraries are randomly selected and

concatenated in a random order. The main idea of this gene expression

mechanism is that a vast number of new antibodies can be generated from new

combinations of gene segments in the gene libraries.

However, this mechanism introduces a critical problem. The new antibody

can bind not only to harmful antigens but also to essential self cells. To help

prevent such serious damage, the human immune system employs negative

selection. This process eliminates immature antibodies, which bind to self cells

passing by the thymus and the bone marrow. From newly generated antibodies,

10 Summarized and rephrased from [Kim and Bentley, 2001].

 19

only those which do not bind to any self cell are released from the thymus and the

bone marrow and distributed throughout the whole human body to monitor other

living cells.

Inspired by this idea, Forrest et al. [Forrest et al., 1994] developed an

anomaly detection algorithm based upon the negative selection of T-cells within

the thymus and applied it for computer security systems. The interesting aspect of

this algorithm is that it can be used to perform tasks like pattern recognition by

storing information about the set of patterns that are unknown to the system.

2.2.2.2 Clonal Selection11

When the antibodies on a B-cell recognize an antigen with a certain

affinity (degree of match), the B-cell will be stimulated to proliferate (divide) and

eventually mature into terminal (non-dividing) antibody secreting cells, called

plasma cells. Proliferation of the B-cells is a mitotic process whereby the cells

divide themselves, creating a set of clones identical to the parent cell. The

proliferation rate is directly proportional to the affinity level, meaning that B-cells

with higher affinity levels will be more readily selected for cloning and cloned in

larger numbers compared to others. More specifically, during asexual

reproduction, the B-cell clones experience somatic hyper-mutation; a random

structural change.

11 Summarized and rephrased from [Ong et al., 2005] and [Engin and Döyen, 2004].

 20

Figure 2.5: Clonal selection process12

The mutation on the cloned cells occurs at a rate which is inversely

proportional to the antigen-affinity. Clones of higher affinity cells are subjected to

less mutation compared to those from cells which exhibit lower affinity. This

process of constant selection and mutation of only the B-cells with antibodies

which can better recognize specific antigens is known as affinity maturation.

Though the repertoire of antibodies in the immune system is limited; through

affinity maturation, it is capable of evolving antibodies to successfully recognize

and bind with known and unknown antigens, leading to their eventual elimination.

12 [de Castro and Von Zuben, 1999]

 21

The immune system also possesses memory properties as a portion of the

B-cells will differentiate into memory cells, which do not produce antibodies but

instead remembers the antigenic pattern in anticipation of future re-infections.

These memory cells circulate within the host body. In response to a second

antigenic stimulus, they differentiate into plasma cells to produce antibodies

which have high affinity. This feature of the clonal selection is not integrated into

the proposed algorithm, so it will no longer be mentioned in the paper. The whole

clonal selection principle has been shown as in Figure 2.5.

These immunological processes of clonal selection (and affinity

maturation) have been used for inspiration in AIS, the most common abstraction

being Clonalg [de Castro and Von Zuben, 1999]. Clonalg currently exists in two

similar but distinct forms—one for optimization and one for pattern matching—

but in both cases the B-cell is implemented as a single real-valued vector and no

two B-cells are allowed to interact.

2.2.2.3 Immune Network13

In 1974 Jerne [Jerne, 1974] proposed the immune system network

hypothesis as a mechanism for regulating the antibody repertoire, although it has

not gained wide acceptance within the field of immunology partly because of the

implementation complexity. The hypothesis is based on the fact that similar to

paratopes (for epitope recognition), antibodies also possess a set of epitopes and

so are capable of being recognized by other antibodies even in the absence of

13 Summarized and rephrased from [Whitbrook, 2005].

 22

antigens. Under the clonal selection theory all immune responses are triggered by

the presence of antigens, but under the network theory antibodies can be

internally stimulated. (Experiments have shown that the number of activated

lymphocytes in germ free mice is similar to that of normal mice, which supports

the argument.)

Paratopes and epitopes (Figure 2.4a) are complimentary and are analogous

to keys and locks. Paratopes can be viewed as master keys that may open a set of

locks (epitopes), with some locks being opened by more than one key (paratope).

Epitopes that are unique to an antibody type are termed idiotopes and the group of

antibodies that share the same idiotope belong to the same idiotype.

When an antibody type is recognized by other antibodies it is suppressed

that is, its concentration is reduced, but when an antibody type recognizes self

antibodies or antigens it is stimulated and its concentration increases. The theory

explains the suppression and elimination of self-antibodies and presents the

immune system as a complex network of paratopes that recognize idiotopes and

idiotopes that are recognized by paratopes (Figure 2.6). This implies that B-cells

are not isolated, but are communicating with each other via collective dynamic

network interactions.

 23

Figure 2.6: Idiotyping network14

2.2.3 Related Work

Luh and Liu [Luh and Liu, 2004] used a reactive immune network for

robot obstacle avoidance, trap escapement and goal reaching in an unknown and

complex environment with both static and dynamic obstacles. Their architecture

consisted of a combination of previously observed behavior based components

and an adaptive component modeled on the immune network theory.

Krautmacher and Dilger [Krautmacher and Dilger, 2004] applied Farmer’s

immune network model to robot navigation in a simulated maze world in which a

14 [Whitbrook, 2005]

1
2

3

Antigen

Stimulation

Suppression

Antibody1

Antibody2

Antibody3

epitope

idiotope

paratope

 24

building had collapsed due to an earthquake. The robot’s task was to find victims,

determine their situation and location and record the information on a data sheet.

No a priori knowledge of the maze or object locations was given; fuzzy

identification of objects was achieved through image processing and comparison

with stored information. Location and identification of a given object was

analogous to the presence of an antigen, and its type and location were used as

epitopes. Many potentially useful antibodies representing basic behaviors were

used and as the system evolved new antibodies emerged and were added to the

system.

Vargas et al. [Vargas et al., 2003] constructed a hybrid robot navigation

system (CLARINET) that merged ideas from learning classifier systems,

(introduced by Holland in the mid seventies, see [Holland, 1986]) and the immune

network model of Farmer et al. [Farmer et al., 1986].

Learning classifier systems have been linked to artificial immune systems

by Farmer et al. [Farmer et al., 1986] and Vargas et al. [Vargas et al., 2003].

Antibodies can be thought of as classifiers with a condition and action part (the

paratope) and a connection part (the idiotope). The action part must be matched to

a condition (antigen epitope) and the connections show how the classifier is

linked to others. The presence of environmental conditions causes variations in

classifier concentration levels in the same way that antigens disturb antibody

dynamics.

Learning classifier systems have frequently been used to solve mobile

robotics problems. Stolzmann [Stolzmann, 1999] applied them to robot learning

 25

in a T-shaped maze environment and Carse and Pipe [Carse and Pipe, 2004] used

a fuzzy classifier system. Webb et al. [Webb et al., 2003] used classifiers with

reinforcement learning for the autonomous navigation of simulated mobile

Khepera robots15 that were required to find and travel to target locations.

15 http://www.k-team.com/kteam/index.php?rub=3&site=1&version=EN&page=3

 26

Chapter 3: Proposed Architecture for MRS

There can be many factors influencing MRS control architecture design

like other design problems. If there are specific robot mission requirements, detail

design procedures should be focused to meet those requirements. Also, in some

case, there can be a need for an exhaustive benchmarking among specific MRS

control algorithms.

However, the proposed architecture in this research is based on how to

implement a control architecture using current AIS model and verify it while

considering our research institute resources. And it is not designed for any

specific mission.

3.1 STRUCTURE FOR THE MRS

In Chapter 2, various aspects of MRS taxonomy were discussed. In this

section, MRS structure will be discussed keeping in mind scalability issues and

combining the AIS for the learning role.

3.1.1 Overall Structure

To improve the robustness of the MRS for a particular mission, distributed

organization instead of a central organization is preferred vis-à-vis the group

behavior. This scheme offers physical and logical redundancy. For cooperative

and robust group behavior, a distributed control algorithm will be adopted. To

reduce the gap between reactive and deliberative decision making, a behavior-

based control scheme will be used.

 27

Most behavior-based systems are also reactive, which means they use

relatively little internal variable states to model the environment, most of the

information is gleaned from the input of the robot's sensors. The robot uses that

information to react to the changes in its environment. Behavior-based robots

(BBR) usually show more biologically analogous actions than their computing

intensive counterparts, which are very deliberate in their actions.

3.1.2 Internal Structure

Figure 3.1 shows the block diagram of the proposed MRS control scheme.

There are sensors to detect the environment and other robots, and a

communication agent to share information with other robots. A blackboard

[Carver and Lesser, 1994] has been added to help the robot to share previous

experiences with other robots. All robots write their knowledge on this board that

is shared. The robot’s current condition depends on the sensor readings,

communication information and the contents of the blackboard. There are basic

behaviors prepared in advance for the whole mission of the robots (BBR), and

actuators move or act depending on individual behaviors.

 Considering the scalability issue to control many robots, condition and

behavior mapping has the merit to reduce the number of states to train a robot, for

example, there are many sensor inputs to define each robot current state. If those

are considered for many robot cases, the sensor state space will be dramatically

increased. However, current approaches use conditions that lump the sensor state

space reducing the number of conditions when considering other robots.

 28

In this research, a lookup table (Table 3.1) is used to map conditions to

behaviors. From the taxonomy view point developed in the previous chapter, the

proposed control architecture can be categorized as a behavior based and state

based ASM structure. This lookup table is tuned by using AIS during robot

learning process. And learning process will be discussed in the next section.

Sensors

Condition Mapping Behaviors

Actuators

Environment
&

Other Robots

Black
Board

Communication
agent

Other
Robots

Figure 3.1: MRS internal control schema

Condition Basic Behaviors

 BB1 BB2 BB3 BB4 BB5

000000 1 0 0 0 0
000001 0 0 1 1 0
000010 0 0 1 0 0

.

.

.

 29

111101 0 1 0 0 0
111110 0 0 0 1 0
111111 0 6 1 0 0

Table 3.1: Mapping between condition and basic behaviors

Condition is based on the current robot states. Robot has 5 basic
behaviors in this table.

3.2 LEARNING ALGORITHM FOR THE MRS

Three main streams of AIS research has been covered in the previous

chapter. From the paper survey for this research, clonal selection is the most

adequate solution for the organization of each robot behavior. That is because the

negative selection is naturally suited for fault detection or virus detection

application. On the other hand, the immune network theory is still early stage of

its development.

3.2.1 Applying Clonal Selection16

In order to apply Clonal Selection to control the MRS, an antibody is

represented as a vector. The elements of the vector are deduced from the lookup

table. The following are the steps (modeled after [He et al., 2005]) integral to the

learning algorithm (Figure 3.3):

• Initialization (1)

16 Modified from [He et al., 2005].

 30

The initial population containing a set of feasible solutions, or antibodies is

created randomly regardless to their affinity measurement value.

Figure 3.3: Computational procedure for clonal selection17

• Selection (2)

The selection process by running robots during computer simulation or

experiment begins with the evaluation (running robots in this research) of the

affinity of each antibody: These antibodies are then sorted increasingly according

17 [He et al., 2005]

dN rP

M

nP

C

*C

Select
Reselect

CloneMaturate

(1)

(3)

(2)

(6)

(5)

(4)

 31

to the affinity calculated. The first antibody in the sorted list has the lowest

affinity and the last one has the highest affinity. The affinity measurement

function is defined as

1
1/(1)k

i ii
f w n

=
= + ⋅∑ eq (3.1)

where;

 k = total number of the soft constraints defined.

 in = number of a certain kind of soft constraints within a particular

 antibody.

 iw = attached penalty or weight.

After the ordering of antibodies, the n highest affinity antibodies are

selected to produce a new population nP . If we choose n = N, that is, the number

of highest affinity individuals equals to the number of candidates, each member of

the population will constitute a potential candidate solution locally, characterizing

a greedy search. In addition, if all the individuals are accounted locally, their

clones will have the same size. The value of the parameter n is in general

determined empirically.

• Cloning (3)

Antibodies in the population will be duplicated proportional to their

affinity and enter the clone population C (Figure 3.2) of size cN , which is

computed by equation (3.2)

 32

1
()n

c i

NN round
i

β
=

⋅
=∑ eq (3.2)

where;

cN = total amount of clones generated.

 β = multiplying factor.

 N = total amount of antibodies.

 round(·) = operator that rounds its argument towards the closest integer.

 Each term of this sum corresponds to the clone size of each selected

antibody, for example, for N = 100 and β = 1, the highest affinity antibody (i = 1)

will produce 100 clones, while the second highest affinity antibody produces 50

clones, and so on.

• Maturation (4)

The mutation rate of a cell is inversely proportional to the affinity of the

cell. It gives the chance for low affinity cells to “mutate” more in order to

improve their affinity. Since the mutations can result in better affinity antibodies,

the immune system searches to climb up the hill towards higher affinity antibody,

leading to local optima.

A lookup Table 3.1 picked from the selection process will be mutated with

mutation rate inversely proportional to its affinity function measure.

 33

• Reselection and Diversity Introduction (5)

The n highest affinity antibody clones will then be selected after running

robots during simulation or experiment to compose the new population of nP , and

low affinity antibodies are to be replaced by the diversity introduction process.

Figure 3.2 shows a block diagram how a robot can be learned while

interacting with other robots. The clonal selection generates antibodies during

learning and they are evaluated in the robot environment to evaluate affinities for

further generation of antibodies depending on the stage of the learning.

 34

Black
Board

Robot

Lookup
Table

Clonal
Selection

World

RobotRobotRobotRobots

Figure 3.2: MRS overall control schema

Robot is interacting with other robots and the world. Robot
communication is done via blackboard. A learning algorithm (clonal
selection) tunes the lookup table during robot learning.

 35

3.2.1 Comparison of the proposed algorithm using Clonal Selection (CS) with
Genetic Algorithm (GA)18

[He et al., 2005] used a clonal selection algorithm to solve the university

timetabling problem which is very similar to the lookup table problem of this

research. They also benchmarked with GA. Their preliminary experimental

results indicate that the CS performs better than GA when tested on the university

timetabling benchmark data. From the data, it is noticed that CS maintains a

diverse set of local optimal solutions, while GA tends to polarize the whole

population of individuals towards the best one. This is mainly due to the selection

and reproduction schemes adopted by the CS.

From [de Castro and Von Zuben, 1999], compared the decoded average

value of a multi-modal sinusoidal function, for the whole population, evolved by

the GA and the CS algorithms. The GA approach presented a greater average

value, indicating a less diverse set of individuals. Both strategies successfully

determined the global optimum.

While the GA uses a vocabulary borrowed from natural genetics and is

inspired in the Darwinian evolution, the CS makes use of the shape-space

formalism, along with immunological terminology to describe antigen antibody

interactions and cellular evolution. The CS performs its search, through the

mechanisms of somatic mutation and receptor editing, balancing the exploitation

of the best solutions with the exploration of the search-space. Essentially, CS’s

18 [He et al., 2005] and [de Castro and Von Zuben, 1999]

 36

encoding scheme is not different from that of GA but their evolutionary search

differs from the viewpoint of inspiration, vocabulary and fundamentals.

Next chapter describes how to implement the proposed algorithm for

simulation and experiment to verify the algorithm.

 37

Chapter 4: Test Environment Setups

In this chapter, two different setups to test the proposed algorithm will be

explained. A group of heterogeneous robots were developed. And infrastructures,

such as communication and positioning systems, to support their evolutionary

learning were made.

Five computers (named: Cyberspace, DefuserBot, ScannerBot,

InspectorBot and Satellite) are used for the experiments. They are running

Microsoft Windows XP Professional 2002 as an operating system and

specifications are as followings:

• Cyberspace: AMD Athlon, 1.2 GHz, 640 MB RAM

• DefuserBot: Intel Pentium 4, 1.7 GHz, 512 MB RAM

• ScannerBot: Pentium 4, 1.49 GHz, 512 MB RAM

• InspectorBot: Intel Pentium III, 863 MHz, 512 MB RAM

• Satellite: Intel Pentium 4, 1.7 GHz, 512 MB RAM

4.1 SIMULATION SETUP

4.1.1 Overview

To prove the efficiency and robustness of the proposed AIS algorithm for

the MRS, this section describes a computer simulation environment as shown in

Figure 4.1. There are five computers (named: Cyberspace, DefuserBot,

ScannerBot, InspectorBot and Satellite) connected to a local area network (LAN)

 38

via Ethernet. In the Cyberspace, there is a 3D visualization tool called Webots19

to simulate the situated robots. Each robot is controlled independently by the

individual personal computers (PC) assigned to it. Matlab is used to make the

robots learn and evolve, while C language is used for communication among PC’s

(robots in other words) and between Webots and Matlab. Robots can share their

knowledge via blackboard using the network connection. The Satellite is in

charge of collecting position information of all the robots from the supervisor in

the Webots and can pass that to other PC’s upon their requests. Satellite can also

reset each robot to its initial position during learning and the blackboard. Figure

4.2 is a screen shot of Webots with three robots in the simulation environment.

19 http://www.cyberbotics.com/

 39

Robot
controller

Cyberspace

Webots

Matlab

Scanner

Inspector

Defuser

Robot
communicator

On-line
learning

Network
server

Supervisor
controller

Robot
communicator

DefuserBot

InspectorBot

ScannerBot

Supervisor

Matlab

C

C

C

C

stop
reset

restart

Satellite

C

C

Network
server

Network
server

Network client

C

LAN

Network client

Network
server

Network client

LAN

Network
server

C

LAN

LAN

LAN

LAN

Learning
synchronizer

Lookup
table

Blackboard

LPS
LAN

Figure 4.1: Overall control diagram of MRS

In the Figure, the PC for DefuserBot is exploded to show its internal
details. All robots are similar in terms of blocks. They differ in their
functionality.

• Webots

 40

Webots is a robot simulation software from Cyberbotics, Ltd. It contains a

virtual design tool allowing the user to create 3D virtual worlds complete with the

physics. The user can add simple inert objects such as an obstacle or active

objects. These robots can have different locomotion mechanisms and they can be

equipped with a number of sensor and actuator devices, such as distance sensors,

motor wheels, cameras, servos, touch sensors, grippers, emitters, receivers, etc.

Finally the user can program each robot individually to exhibit a desired behavior.

World boundaries

Robots

Obstacles

 41

Figure 4.2: Screen shot of Webots for MRS

4.1.2 Entities

4.1.2.1 Robots

There are three different robots built and modeled in Webots for the

purposes of this doctoral research (Figure 4.3). They are DefuserBot, ScannerBot

and InspectorBot. They have basically the same actuator to drive two wheels for

navigation. Also, they are equipped with communication systems to access the

server: Satellite. However, their sensors are different from each other. The goal

was to create a group of heterogeneous robots such that to perform some tasks

would require cooperation.

 42

Figure 4.3: DefuserBot, ScannerBot, InspectorBot

• DefuserBot

DefuserBot depicted in Figure 4.3 is equipped with two short range infra

red sensors and one bumper sensor to detect objects at the front of the robot.

• ScannerBot

ScannerBot shown in Figure 4.3 has two bumper sensors at the front. It

also has a long range infra red sensor (IR) that can measure distance from the

object. This IR sensor has far more coverage than the IR sensor of the

DefuserBot.

DefuserBot
ScannerBot

InspectorBot

IR sensor

bumper
sensors

gripper

IR sensors

IR sensor

 43

• InspectorBot

InspectorBot has a mechanical gripper at the front. At the gripper front tip,

there are four short range infra red sensors. In Figure 4.3 there are four red rays

representing the IR sensor directions and the ranges that they can detect.

4.1.2.2 Objects

There are three types of objects other than robot itself that robots can

detect with their built-in sensors. Those are world boundaries, dummies and

bombs. Figure 4.4 shows screen shot of a dummy and a bomb.

bombdummy

 44

Figure 4.4: Screen shot of a dummy and a bomb.

4.1.2.3 Supervisor

Supervisor is a Webots node that enables to keep track of any solid nodes

such as robots in the Webots environment. Therefore, robot positions can be

monitored continuously. This Supervisor is controlled by matlab programs in the

Satellite PC so that it can run a local positioning system server. Supervisor can

also move or rotate any object in the scene which is essential for learning process.

4.1.3 Communication

There are two kinds of communication involved in this simulation. The

first one is communication among PC’s to exchange information about the current

situation, sensor information or their knowledge. The second one is to interface

two different software packages which are Webots and Matlab.

There is a common standard communication mechanism called socket

provided by programming environments of the respective entities in their own

style. Therefore, processes can seamlessly exchange their messages via this

interface whether they are located in the same machine or distributed over the

network, regardless of their operating systems and programming languages.

 45

4.1.3.1 Socket Interface

Socket is a name given to the package of subroutines that provide access

to TCP/IP (Transmission Control Protocol/Internet Protocol) on the system. It is a

network programming interface and a collection of library functions that request

TCP/IP operations of the underlying operating system via system call

mechanisms. Figure 4.5 represents the sequence and architecture for PC

communication between the server and client. In the communication, one process

plays a role of server that invokes bind, listen, and accept calls in addition to the

common calls of socket, close, and data exchange functions. Oppositely, the client

process invokes connect system call to establish a reliable connection to the server

process. In the data exchange part, each process sends or receives data via

corresponding read and write calls.

 46

Figure 4.5: Server/Client communication between PC’s

4.1.3.2 TCP/IP Communication among PC’s

There are three PC’s involved in this research for three robot

communication. Each PC runs Windows XP as an operating system and Matlab as

a primary platform for numerical calculation. Besides the command-line

instructions, Matlab provides an external programming language extension

including C/C++ or Java. A new Matlab command can be implemented by coding

a C source program and then compiling to generate a DLL (dynamic link library)

using MEX utility. After all, the communication functions can be developed using

socket API and then called from the Matlab command line.

 47

Figure 4.6: Components for Server/Client communication between PC’s

Shaded components are realized for this research.
Ssock.dll, csock.dll : complied with Matlab mex utility

With socket, diverse communication topologies are possible, for example,

one-to-one architecture or one-to-many architecture as shown in Figure 4.7. One-

to-one architecture needs connections between every pair of processes, so its

scalability is much limited. On the other hand, one-to-many communication

architecture needs only (n-1) connections, where n is the number of processes.

Correspondingly, this model is used for this research to accommodate blackboard

described in previous chapter and for the scalability toward many robots. There is

one process relaying communication to the rest. In terms of socket primitive, this

process will function as a socket server, and the rest of them function as socket

 48

clients in the connection setup procedure. As the server has to listen to multiple

clients, it blocks on the select function to switch among the three different clients.

Figure 4.6 shows components realized for the PC-to-PC’s communication. And

they are for the sequences as shown in the Figure 4.5.

Figure 4.7: Topology for sever and client connection

Finally, Matlab uses column-major matrix with additional information

fields to represent data structure, which is so different from that of C language.

Therefore, the DLL’s developed in this research execute some conversion when

they are called and return to the caller. It is assumed that each dimension of the

data matrix to communicate with is known in priori.

 49

4.1.3.3 TCP/IP Communication between Matlab and Webots

The TCP/IP communication between Matlab and Webots is similar to the

communication among PC’s as described in the previous section. The difference

is that Webots is fixed as a server and Matlab is fixed as a client and only two

parties are involved in this communication. After Webots side first creates a

socket server and binds to the port, it listens for any connection and accepts a

connection request from the Matlab side. Another difference is that since the

Webots software is implemented as a form of super loop, one process without

multithreading, the blocking call in the loop can not be used. Therefore, the

arrival of data is checked periodically via select function and then the data is

exchanged asynchronously. Figure 4.8 is the diagrams for the communication

protocol.

Figure 4.8: Components for Matlba and Webots communication

Shaded components are realized for this research.

 50

Tcp.exe : compiled with visual C++ 6.0
Csock.dll : complied with Matlab mex utility

4.2 EXPERIMENT SETUP

4.2.1 Overview

To demonstrate the proposed AIS algorithm for the MRS, a hardware

environment has been set up as depicted in Figures 4.9 and 4.10. It is very similar

in structure to the computer simulation environment so as to minimize the

transition effort from the simulation to the experiment. There are four computers

(named: Satellite, DefuserBot, InspectorBot and ScannerBot) connected to a local

area network via Ethernet in this setup.

There is an arena with walls for robots to navigate as in Figure 4.10. Each

robot is controlled independently by a PC connected via radio frequency (RF)

wireless communication. There is an embedded control system in each robot

which uses a BASIC Stamp20 and programmed in BASIC language. TCP/IP

communication among PC’s (which essentially represent individual robots) is

identical to the simulation case.

The Satellite is achieved with the aide of a bird’s eye view of the field

(containing the position of robot) obtained via an overhead camera. Image data is

then transmitted back to the PC and processed by LabVIEW. LabVIEW extracts

necessary information and passes the data to Matlab via an ActiveX server

application. Matlab performs the control algorithm calculations and sends

20 http://www.parallax.com/html_pages/products/basicstamps/basic_stamps.asp

 51

instructions via wireless RF communication to the robot’s servos to move

accordingly. Robots send sensory information back to the PC’s and vice versa.

Robot
controller

Real world arena

Matlab

Scanner

Inspector

Defuser

Robot
communicator

On-line
learning

LPS

Robot
communicator

DefuserBot

InspectorBot

ScannerBot

Matlab

C

C

Satellite

Wireless
communicator

RF comm

Network client
USB

connection

Network
server

RF comm

RF comm

LAN

LAN

LAN

Matlab

Webcam

PBASIC

Local
Positioning

System

LabVIEW
Matlab

Link

LabVIEW ActiveX

Lookup
table

Blackboard

Learning
synchronizer

stop, reset, restart

Figure 4.9: Experimental setup block diagram

The PC for DefuseBot is exploded to show its internal details. All robots
are similliar in terms of blocks. They differ in their functionality.

 52

Figure 4.10: Experimental setup side view (NERDLab)

There are Boe-Bots and obstacle inside the arena boundary. Ceiling
cameras are installed to pin-point the positions of robots.

ceiling cameras for LPS

lightings

Boe-Bots

arena boundary

obstacle

 53

• Boe-Bot

The robots used in this experiment are Board of Education Robot (Boe-

Bot) a simple mobile robot kit developed by Parallax Inc.21, with a BASIC Stamp

microcontroller as its processing unit (Figure 4.11). The base model comes with

the Board of Education (BOE) Rev. C carrier board, the BASIC Stamp 2 (BS2)

microcontroller, and two servomotors. A BASIC Stamp microcontroller is a

single-board computer that runs the Parallax PBASIC language interpreter in its

microcontroller. The developer's code is stored in an EEPROM, which can also be

used for data storage. The BS2 is programmed using Parallax BASIC (PBASIC).

There is a DB-9 serial port that allows the microcontroller to communicate with a

computer. The BASIC Stamp 2P (Figure 4.12) microcontroller module is an

extremely fast chip (20 MHz, 12000 instructions/sec) that allows the Boe-Bot to

perform relatively complex decision-making capabilities and this is an upgrade

from the previously used BASIC Stamp 2 (20 MHz, 4000 instructions/sec).

21 http://www.parallax.com

 54

Figure 4.11: Parallax Boe-Bot and BASIC Stamp 222

22 http://www.parallax.com

 55

Figure 4.12: Parallax BASIC Stamp2 and BASIC Stamp2P23

23 http://www.parallax.com

 56

4.2.2 Entities

4.2.2.1 Robots

There are three different robots built with Boe-Bots for the purposes of

this doctoral research (Figure 4.13). They are named as DefuserBot, ScannerBot

and InspectorBot. They have basically the same actuators to drive two wheels for

navigation. There is a radio RF transceiver for the wireless communication

between each robot and corresponding host PC. Also, the PCs are equipped with

communication systems to access the Satellite. However, their sensors are

different from each other depending on their roles of their mission. The goal is to

create a group of heterogeneous robots such that to perform some tasks would

require cooperation.

 57

Figure 4.13: DefuserBot, ScannerBot, InspectorBot

The logic loop of PBASIC programs, as shown in Figure 4.14 for servo

actuation downloaded onto the BASIC Stamp microcontroller, starts with the

servos being at an idle state. Next, the microcontroller invokes for input data from

the pin which is assigned to communicate with the wireless device. If no actuation

command is sent by Matlab at that moment, the servos will remain idle.

Otherwise, the input data will be processed to determine rotation speed and

direction. Servo rotation will take place continuously until a new input is received

DefuserBot ScannerBot InspectorBot

IR sensor
bumper
sensors IR sensors

gripper

IR sensorRF
transceiver

RF
transceiver

 58

by the RF receiver. Next, the Stamp reports sensor data to the matlab running in

the PC.

Start

Initialize

Any
command?

Move acuators
based on
command

Read command

Report sensor
data

Collect sensor
data

From PC

To PC

Figure 4.14: Logic loop of Boe-Bots controller

• DefuserBot

This robot has two IR sensors for the front right and front left direction

obstacle detection purpose. The IR detectors are 15.8 mm x 18.2 mm boards that

 59

incorporate both an IR LED and a 40 kHz IR receiver. The detectors work by

having the LED emit light, and if an object is close enough, the light will reflect

back to the detector. When the IR is not detecting an object it reads a value of 1,

and when it is detecting an object it reads a value of 0. Regardless, the IR

detectors are very good at detecting objects several inches in front of the robot,

allowing it to avoid them quickly.

In the front middle part of the robot, a bumper sensor is installed to cover

the center area that IR sensors can not detect. And this bumper sensor emulates

defuse of a bomb. It was modified from the Twinkle Toes Bumper Sensor by

Parallax, Inc.24 for this research.

• ScannerBot

This robot has two bumper sensors and one distance sensor, and both of

them are facing forward. This distance sensor is used for the obstacle avoidance

during navigation and the scanning the arena for bomb search. It is Sharp

GP2D1225, an analog distance sensor, that uses infrared to detect an object

between 10 cm and 80 cm away. It provides a non-linear voltage output in

relation to the distance an object is from the sensor.

The GP2D12 is wired to an ADC083126, 8-bit analog to digital converter,

as shown in the circuit of Figure 4.15. Two resistors of 217 Ohm connected to the

Vref pin on the ADC0831 are a voltage divider to set the reference voltage to 2.55

24 http://www.parallax.com/detail.asp?product_id=27312
25 http://www.acroname.com/robotics/parts/SharpGP2D12-15.pdf
26 http://robotics.me.jhu.edu/~llw/courses/me530420/lab/adc0831.pdf

 60

volts. On the ADC0831 this will give a value of 0 to 255 for an input voltage of 0

to 2.55 volts. Figure 4.16 shows calibration result of the distance sensor by

measuring the output of the GP2D12 at given fixed distances, in centimeters.

Figure 4.15: Wiring diagram of ADC0831 and GP2D12 27

27 http://www.parallax.com/dl/docs/prod/acc/SharpGP2D12Snrs.pdf

 61

Distance vs. Sensor Reading

y = 14207x-1.4012

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

Sensor Reading

Di
st

an
ce

 [c
m

]

Series1
Power (Series1)

Figure 4.16: Distance sensor reading vs. Distance

Finally, if an object in front of the robot is out of the distance sensor’s

field of view, two bumper sensors in front of the robot can detect it whenever it is

bumped. They are originally from Gazbot28 and modified for this research.

• InspectorBot

28 http://www.gazbot.com/products.asp

 62

This robot’s gripper, produced by Parallax, Inc., allows the Boe-Bot to

pick up and move objects. The assembly consists of two arms controlled by a

standard servomotor to allow the gripper to hold its open or closed position

without continuously needing a power supply.

It was modified for this research by adding two more IR sensors and a

touch sensor to fulfill the task of inspection of two different types of objects. A

total of four IR sensors were installed on the gripper. Front-left and front-right IR

detectors detect objects in front of the robot. Side-left and side-right IR detectors

detect objects at the side of the robot. And they operate exactly as the IR detectors

on the DefuserBot. Also, a touch sensor to detect whether the gripper is closed or

not is additionally installed.

4.2.2.2 Objects

There are three types of objects other than robot itself that robots can

detect with their built-in sensors. Those are world boundaries, dummies and

bombs. Figure 4.17 shows a dummy and a bomb.

The arena boundary walls are made with plywood and top areas are

painted in dull black for better image processing purposes. Inner sides are covered

with gray papers for better robot IR sensor object sensing purposes.

 63

Figure 4.17: A dummy and a bomb (experiment)

4.2.2.3 Webcam

The overhead camera (Figure 4.18), installed 10 ft above ground, is

connected to the PC through the Universal Serial Bus (USB) port. The USB port

provides serial bus standard for device connection from one to another. The

overhead camera used in the experiment is the Creative NX Pro webcam29.

29 http://www.creative.com/welcome.asp?bypass=1

 64

Figure 4.18: Creative NX Pro webcam

4.2.3 Local Positioning System (LPS)

The visual data is acquired by the data acquisition software, LabVIEW,

and processed by image filtering LabVIEW add-on software named IMAQ

Vision30, to determine the position of the individual robots. By communicating

via ActiveX, LabVIEW passes the state information to Matlab31 upon request.

To determine the relative position of robots in real-time and have the data

ready for input to the control system, the following tasks need to be

accomplished:

• Image acquisition: capture continuous streams of images using compatible

cameras.

30 http://www.ni.com/http://www.ni.com/
31 http://www.mathworks.com/

 65

• Image processing: filter raw images, cancel noise, and extract useful

information.

• The system must be calibrated with the robot scale and the accuracy

determined.

4.2.3.1 Image Acquisition

Vision of the field is obtained via overhead cameras. The camera was

selected for its sufficiently high video resolution and suitable video format,

necessary to ensure fine image quality captured by the camera. High frame rate of

15 fps is also needed to reduce time delay and ensure real-time data processing.

Automatic exposure control and color balance options allows less filtering to be

done by the image processing software, thus reducing computation time. Lastly, a

40o field-of-view allows optimal capture of the 5’ x 7’ field below the camera.

Figure 4.19 describes the architecture of application for LPS. NI-IMAQ

for USB Cameras is a free software driver for acquiring images from any

DirectShow imaging device into LabVIEW. These devices include USB cameras,

webcams, microscopes, scanners, and many consumer-grade imaging products.

NI Vision Assistant, a software product by National Instruments, is a

configurable, interactive prototyping application, which allows machine vision

software development easier.

 66

Figure 4.19: Architecture of applications for LPS

A camera with DirectShow Filter (USB webcam) is connected to the
Satellite.`LabVIEW and add-on software IMAQ Vision can capture
the camera images. Vision Assistant is used for off-line software
development purpose.

4.2.3.2 Image Processing

NI Vision Assistant software is used to create a LabVIEW compatible

script containing sequential steps to filter noise from the image and eventually

determine the object’s position within a desired accuracy. The main difficulty

Camera
with

DirectShow Filter

NI-IMAQ for USB Cameras

IMAQ DirectShow
Library Vision Assistant

LabVIEW
with

IMAQ Vision

Transmit to Matlab

 67

encountered while programming the LabVIEW algorithm with Vision Assistant

was the enormous number of variables that have to be taken into account. Many

factors affect image quality and the robot’s ability to distinguish objects in an

image. Figure 4.20 shows a snapshot of the original image as captured by the

camera. The primary image operation is to perform exposure control which

applies brightness, contrast, and gamma correction to each color plane separately

to remove initial noise from the raw image.

Figure 4.20: Snapshot of an original, untouched image, showing four
different markers (paired shapes of different sizes) with
different colors

 68

Figure 4.21 below shows the transformation sequence of the raw image in

Figure 4.20 to processed images as the image undergoes filtering steps by IMAQ

Vision. Figure 4.22 shows the flow chart of the image process.

.

Figure 4.21: Filtration steps to remove noise and isolate red objects in the
image and filter circular objects

Shown from left to right are: original image after noise removal;
yellow and green objects filtered out; circular shape filtered out.

 69

Figure 4.22: Filtration steps to remove noise and isolate red objects in the
image and filter circular objects

 70

4.2.3.3 Data Interpretation for Coordinate Determination

Using IMAQ Particle Analysis VI32, LabVIEW is capable of determining

the pixel coordinate (x,y) of objects seen through the camera. When an overhead

camera is used, the robot is identified by placing a marker (two circular colored

papers of different sizes) on the robot. Particle analysis tool can sort binary image

by its size. Bigger size is number one and smaller size is number 2. The smaller

paper is situated “in front” of the larger one, allowing to determine the robot’s

direction; size differentiation is necessary to allow determination of robot

orientation.

From the pixel coordinate of each object outputted by LabVIEW, the real-

world coordinates of robots are as follows:

, ,

,

1
2 small pixel large pixel

robot real
Cx

x x
x

k

⎡ ⎤+⎣ ⎦
=

 eq (4.1)

, ,

,

1
2 small pixel large pixel

robot real
Cy

y y
y

k

⎡ ⎤+⎣ ⎦
=

 eq (4.2)

where kC is the calibration coefficient which indicates the number of

pixels that corresponds to the length in feet in real world measurement. For the

32 http://zone.ni.com/devzone/cda/tut/p/id/3169

 71

overhead camera, Cxk for the x direction = 3.04 pixels/ft and Cyk for the y

direction = 3.14 pixels/feet which were deduced by calibration.

Also, the heading of a robot can be calculated as follows:

tan(/)a x yθ = eq(4.3)

where θ is the heading in radians.

4.2.4 Communication

There are three kinds of communication involved in the experimental

setup. The first is communication among PC’s to exchange information about the

current situation, sensor information or their knowledge. The second is

communication between a Boe-Bot and a corresponding PC. The one is

communication between Matlab and LabVIEW.

4.2.4.1 TCP/IP Communication among PC’s

The communication protocol among PC’s is identical to the case for the

computer simulation described in Section 4.1.3.1.

 72

4.2.4.2 Serial Communication between Boe-Bot and PC

Serial communication (RS-232C) 33 is the most common low level

protocol for communicating between two or more devices. As the name suggests,

the serial port sends and receives bytes of information in a serial fashion: one bit

at a time. These bytes are transmitted using either a binary format or a text

(ASCII) format. The serial data format includes one start bit, between five and

eight data bits, and one stop bit. A parity bit and an additional stop bit might be

included in the format as well. Figure 4.23 illustrates the serial data format.

Figure 4.23: Serial data format

There are two pins for bi-directional data transfer (Tx, Rx) and the other

pins for control of the communication flow at a DB9 serial connector. Because a

sender and receiver can't always process data at the same rate, some technique of

negotiating when to start and stop transmission is required. One method relies on

the serial port hardware; the other is implemented in software. Both methods are

types of flow control. The hardware flow control uses two of the serial port lines

to control data transmission.

33 http://www.taltech.com/TALtech_web/resources/intro-sc.html

 73

For the wireless communication between the Matlab of a PC and the on-

board PBASIC program of a Boe-Bot, a set of SureLink 900 MHz RF Modules

and QuickLink Demo Board all by Parallax Inc. are used. Figure 4.24 shows a

block diagram of wireless communication between Boe-Bot and PC. One RF

module is directly connected to the Basic Stamp on the robot side, and another RF

transceiver module is slotted into the QuickLink Demo Board unit, which is

connected to the PC via serial cable.

Figure 4.24: Communication between Boe-Bot and PC

Serial Baud Rate (data communication speed between the SureLink RF

module and host that can be Basic Stamp or PC) is ranged between 1200 Baud

and 115k Baud. The RF Data Rate, the speed at which the RF data is transmitted

between SureLink RF modules wirelessly, is from 48 kbps to 76.8kbps. Higher

RF data rates will decrease the distance of operation, while lower RF data rates

will increase it. The maximum distance is up to 1000 feet. For this research three

pairs of wireless communication with different channels are built for each of the

three independent robot navigations.

 74

Many trial and error attempts have been made to fine tune the software to

maximize the communication performance almost reaching hardware upper

limits. However, difficulties with timing on the serial ports were one of the most

frustrating aspects of developing stamp applications.34 It is partly because of the

intrinsic characteristics of this distributed robotic system where each device uses

its own internal clock. Therefore, the communication protocol is asynchronous.

Due to additional overhead in the BASIC Stamp, and the fact that the BASIC

Stamp has no hardware receive buffer for serial communication, received data

may sometimes be missed or garbled.

To optimize the serial communication, BASIC Stamp chips have been

upgraded to the BASIC Stamp 2P for faster communication speed. Also lowering

the baud rate, RF data rate, adding extra stop bits, not using formatters in the

SERIN command, and using simple variables (not arrays) increased the chance

that the BASIC Stamp can receive the data properly. A type of data flow control

called hardware handshaking is used to prevent data loss during transmission. For

this experiment, serial baud rate of 57.6 kbps, RF data rate of 76.8 kbps, eight

data bits, no parity bit, and one stop bit has been used.

Figure 4.25 shows a schematic sketch of serial communication between

two different software platforms.

34 http://www.emesystems.com/BS2rs232.htm

 75

Figure 4.25: Serial communication flow chart

4.2.4.3 Communication between Matlab and LabVIEW via ActiveX

After each completion of image processing LabVIEW, IMAQ Particle

Analysis outputs measurement values of requested parameters about the object,

 76

such as object pixel area, object dimension (width and height), and object

coordinate within the image. These parameter values are essential inputs to the

control algorithm which runs in Matlab. For Matlab to receive this data from

LabVIEW, ActiveX technology needs to be incorporated. ActiveX is a distributed

object system and protocol used to manage compound documents and data

transfer between applications, which is accomplished via Object Linking and

Embedding (OLE).

LabVIEW software has integrated ActiveX Automation functionality that

allows other programs to use and control the LabVIEW VI. Commands and data

can be sent to different applications in a single format by means of invoking and

getting and setting properties. Matlab can access LabVIEW VI through its

ActiveX Server, whereby an Application Object exports the properties of

LabVIEW [Johnson, 2004].

 77

Chapter 5: Test Conditions, Results and Discussion

5.1 ROBOT MISSION DESCRIPTION

In order to validate the power of the AIS algorithm proposed in this thesis,

a bomb disposal scenario was developed. The mission that has been simulated for

the purposes of this doctoral research is for a group of heterogeneous robots to

detect and dispose of bombs in a robot arena. The disposal unit consists of a team

of three robots labeled by their expertise: DefuserBot, ScannerBot and

InspectorBot. These robots will explore the environment and, inspired by the

immune system, evolve from experiences creating a set of behaviors such that

they can cooperate with each other to detect, inspect, defuse and dispose of the

bombs.

Although bomb disposal is the “main” reason for existence, they have

other individual goals such as the energy needed for operation and survival.

Therefore, each robot in the group should meet the global (group) goals and the

local (individual) goals at the same time. Each robot has a physical space

designated as its “home” and in order to promote periodic visits, the “home

energy” decreases with time and is replenished when visited by the owner robot.

Also, each robot loses its own “robot energy” as time goes by and actions are

performed.

To replenish the robot’s energy, there is an energy source (charging

station) that each robot can use to get charged one at a time. The robot is able to

 78

transfer some of this energy to its home for home usage. Figure 5.1 shows a

graphical representation of the arena and the different areas described above.

Figure 5.1: Mockup of the arena used by the robot unit

Shown are the important locations: each robot’s home (robots need to
visit regularly), charging station (energy source where robots get
charged to survive and provide energy to their homes), bombs (that
robots need to detect, inspect, defuse, and dispose), and a dummy
(obstacle, diffused bomb or dummy). Not shown are the robots.

The ScannerBot uses its range finder sensor to scan the arena and locates

the potential bombs. When it finds a bomb, it writes the location to the

blackboard. The InspectorBot has an ability to discern a bomb from other objects

of a similar shape, i.e., dummies. It can get information on objects found, which

was left in the blackboard by the ScannerBot. The InspectorBot can also request a

rescan job to the ScannerBot, if it is not a bomb after the inspection. The

Energy source

Bomb

Bomb

Home for
DefuserBot

Home for
ScannerBot

Home for
InspectorBot

Dummy

 79

InspectorBot posts the location of the bomb to-be-defused in the blackboard (for

the DefuserBot to read and take action) when the (up to that moment unknown)

object is identified as a bomb. Finally, the DefuserBot defuses and disposes the

bombs listed in the blackboard. The DefuserBot can request a rescan job to the

ScannerBot if it can not defuse it. This information flow is explained in detail

later (Figure 5.18).

There are two sources of these rescan orders from the DefuserBot and the

InspectorBot. One is from the scanning error. The other one is due to the

movement of the bomb itself. The bombs are designed to absorb the impact

energy during the collision against the robots to protect the robot hardware.

Therefore, this internal feedback loops between robots work as a mutual error

correction mechanism for the robot mission. Figure 5.2 shows the information

flow for the bomb disposal mission. It also shows the flow of energy among the

different actors.

 80

DefuserBot

Energy
source

InspectorBotScannerBot

Bomb

Defuser
Home

Scanner
Home

Inspector
Home

Bomb

Defuse
bomb

Hunt for
bombs

Defuse
bomb

Inspect
bomb

Request for
Inspection

via
Blackboard

Request for
Rescan

via
Blackboard

Request for
Defuse

via
Blackboard

Rescan
bomb

Request for
Rescan

via
Blackboard

Figure 5.2: Energy and information flow of the robot group

Messages (information) are shown as blue lines and energy flow as red
lines. The ScannerBot searches for objects and marks an entry in the
blackboard of the object’s location and is listed as “unknown”
(basically requesting the InspectorBot to inspect the object – adds the
object to the InspectorBot queue). The InspectorBot, after completing
its current task, checks the blackboard for unidentified objects, goes to
their location and inspects the object. If the object is a bomb, it updates
the blackboard labeling the object as “bomb” (this is basically sending
a message to the DefuserBot to defuse the bomb). The DefuserBot, after
done with its current task, looks in the blackboard for bombs-to-be-
defused, goes to their location, and defuses them. Robots go to the
Charging Station and take energy from this source. They use the energy
to move and perform tasks. Each robot should go periodically to its
home and give some of its energy to the home supply.

 81

5.2 ROBOT LEARNING CONDITIONS

A simulation environment was developed using Webots software. The

basic idea of the simulator was to reproduce the arena environment and simulate

different scenarios, learning and evolution algorithms before deploying the robots

in the real arena. This virtual world was also used as a teaching laboratory for the

different robot brains to initialize their behaviors. Figure 5.3 shows a screen shot

of the computer simulation of a typical bomb disposal mission and Figure 5.4

shows the experimental setup for a similar scenario. There are two different types

of objects, bombs and dummies.

 82

Figure 5.3: Computer simulation of a bomb disposal mission

The virtual world (developed using Webots® software) mimics the real
experimental setup (see Figure 5.4). Avatars of the physical robots were
created in the virtual arena. Simulated are also the different areas and
objects found in the real arena.

Home for
InspectorBot

Dummy

Dummy

Bomb Bomb

Home for
DefuserBot

Home for
ScannerBot

Energy
source

InspectorBot

DefuserBot

ScannerBot

 83

Figure 5.4: Experimental setup showing a typical bomb disposal mission

The arena shows the different areas (Homes for each robot, charging
station) and objects (bombs, dummy). A virtual world (developed using
Webots® software, see Figure 5.3) was developed to mimic the real
experimental setup.

5.2.1 Robot Basic Behaviors

In this section, basic behaviors (BBs) for the robots, which are essential

for Behavior Based Robotics (BBR), are discussed. BBs for the experiment have

the same functionalities as described in simulation case, but are tuned for the real

Home for
InspectorBot

Home for
ScannerBot

Home for
DefuserBot

Bomb

Bomb

Dummy

Energy
source

 84

experiment case. These BBs are coded in a Matlab environment and tested in

advance in the virtual world arena (VA).

Figure 5.5 shows the robot detection range for different entities. Locations

farther than their range limit can not be detected. When robot battery level gets

low, the sensor coverage is reduced. Therefore, each robot should maintain

battery level to accomplish the mission.

Since the range that robot can detect is limited, each robot uses the wander

behavior. Given the robot’s mobility, by wandering, the robot is able to cover

more terrain and effectively explore the whole physical arena (PA). The robots

can go to any location in the arena using information of their location from the

Satellite server (a LPS – Local Positioning System) and the target location if it is

within robot detection range.

Robots can not differentiate between different objects such as bombs,

dummies and wall boundaries with their built-in sensors. When the ScannerBot

logs possible bomb locations, robots can then interpret them as locations of

interest to them.

 85

Home,
Charging station

Potential
Bomb

Robot Heading

Robot

Home,
Charging station

Potential
Bomb

Robot Heading

Robot

Robot Battery
Level

Normal

Robot Battery
Level
Low

Figure 5.5: Robot detection range

It is assumed that the on-board sensors of the robots have limited
range. And the range depends on robot battery level. Shown are two
different ranges for a threat (bomb) and home and charging station.
The difference in range is intended to be qualitatively proportional to
the relative entity sizes. When robot battery level gets low, there is a
decrease in the range. The range is assumed unidirectional.

• Common Behaviors

o Wander (time_limit, detect_range)

Since the robots’ sensors detection range is limited, robots should navigate

the arena first until they find something of interest while avoiding collisions

with any other objects (including other robots). This wander behavior is

embedded into other basic behaviors. It uses their built-in sensor information

to detect anything in the way for navigation.

 86

However, their sensors are not good enough to detect other robots

especially in the experiment case. Routines to check the distances from other

robots are added by looking up the robot position information from the

Satellite server. Figure 5.6 shows zones such as left, front and right to

represent an other robot within detect range. The front zone has a sector of 60-

degree range. Each side zone (right, left) has a 30-degree range of coverage.

Wander has two input arguments: time_limit for the wander time limit and

detect_range for detecting an other robot. Both can be changed when it is

called by other behaviors.

Figure 5.6: Robot detection range to avoid collision

The sensors are frontal, left and right. By detecting presence in either
or both, the sector (Left, Front, Right) may be discerned. The actual

Robot Heading

Left Right

Front

Robot

Detect range

 87

value of the proximity sensor estimates the distance. After a certain
distance, the sensor input doesn’t change.

o goForEnergy&getEnergy (destination, time_limit)

Each robot internal energy level decreases with time. For a Robot to

survive, it needs to find the energy source and charge itself. When, the

charging station is occupied by another robot, the robot should wait until the

charging process of the current occupant is over. The dynamics of charging

process is modeled as a linear time delay for this research. Figure 5.7 shows

the robot’s internal energy change before and after the charging station visit.

goForEnergy&getEnergy has time_limit to break this behavior loop after

time_limit has elapsed. Robot energy level is bounded by its maximum

battery capacity.

R
ob

ot
 e

ne
rg

y
le

ve
l

Figure 5.7: Robot charging at the charging station

 88

The robot’s internal energy decreases continuously until visiting the
energy source. While at the charging station, the robot replenishes its
energy fast. The function goForEnergy&getEnergy has as input
arguments the time_limit which represents the time to break the loop
after time_limit has passed.

o goHome&chargeHomeORgetEnergy(destination, time_limit)

Robots may have two reasons to go home. One is to charge its home and

the other one is to charge itself. Figure 5.8 shows two cases of robot and home

energy interactions. The rate at which a robot loses energy is modeled much

faster than that of a home. When a robot reaches home, the resulting energy of

home and robot will be the mean value of before the robot reaches home. The

dynamics of the charging process is modeled as a time delay for this research.

Home energy level is bounded by its maximum battery capacity.

Robots take wander behavior to find their home when the destination can

not be detected. goHome&chargeHomeORgetEnergy has an input argument

of time_limit to break the loop after time_limit has passed.

 89

time

E
ne

rg
y

le
ve

l

Robot
reached
home

Robot
leaving
home

Robot
energy

Home
energy

time

E
ne

rg
y

le
ve

l

Robot
reached
home

Robot
leaving
home

Robot
energy

Home
energy

robot energy > home energy

robot energy < home energy

Figure 5.8: Robot/Home energy exchange

Shown are energies before and after home visit. It is assumed that the
resulting energy after the exchange is the average of the energies at
encounter. The rate of energy consumption of the home is slower than
that of the robot.

• ScannerBot

o scanField&logPosition(time_limit)

 90

This is a unique behavior of the ScannerBot. It will randomly wander the

arena and scan the field to find possible bomb locations. Figure 5.9 (a) shows

the ScannerBot scanning the environment to locate possible bomb locations.

The polar plot in Figure 5.9 (b) enables finding out the possible bomb location

based on scan signatures. Figure 5.10 shows an experimental version of

Figure 5.9. A numeric filter was designed to filter out all the other signals

(with signatures different than bombs) based on the slope and height versus

width ratio of the signal’s features. Figures 5.11 and 5.12 show the filter

results for sequences of scanned signals for both cases.

 (a) ScannerBot scanning surrounding (b) Polar plot scan of environment

Figure 5.9: ScannerBot scanning behavior (simulation)

On the left (a), a typical scenario is shown, where the robot is near a
corner with a bomb and a dummy in its viewing area. On the right (b),
a polar plot showing the sensor output. The signatures of different
features are shown. The wall boundaries signature shape is different
than the ones for dummies and bombs. A similar scenario for the
experimental case is shown in Figure 5.10.

bomb

dummy
wall
boundary

wall
boundary

bomb

dummy

 91

 (a) ScannerBot scanning surrounding (b) Polar plot scan of environment

Figure 5.10: ScannerBot scanning behavior (experiment)

The experiment shown is similar to the simulation case of Figure 5.9.
On the left (a), the robot is near a corner with a bomb and a dummy in
its viewing area. On the right (b), the polar plot showing the sensor
output with the different.

If the robot finds something, it posts the object’s location on the

blackboard for other robots to access it. The scanField&logPosition function

has one input argument, time_limit, to break the loop after the time_limit

has passed. This routine can filter out objects already posted in the blackboard

by calculating the distance between new findings and locations in the list.

bomb

dummy
wall
boundary

wall
boundary

bomb

dummy

 92

Figure 5.11: ScannerBot numeric filter result for a simulation sequence

The polar plot scanned data is unwrapped linearly (top-right) and
then filtered (bottom-right). The filter is basically a high-pass filter
that searches for the bomb’s signature that is a sharp peak. Walls and
dummies are shallow or “fat” features. A similar result for the
experimental setup is shown in Figure 5.12.

 93

Figure 5.12: ScannerBot numeric filter filtration sequence (experiment)

The experiment is similar to the simulation shown in Figure 5.11. The
polar plot scanned data is unwrapped linearly (top-right) and then
filtered (bottom-right).

o goForBomb&rescan(destination, time_limit)

The ScannerBot may post wrong information on the blackboard. In this

case, the InspectorBot posts a rescan request on the board. After the rescan,

the ScannerBot can correct the initial posting (for example, update the

 94

position or delete the position in the black board) or can ask the InspectorBot

for another work (inspection) order. The goForBomb&rescan function has

input arguments of destination to find the location and time_limit to

break the loop after time_limit has passed.

• InspectorBot

o goForBomb&inspect(destination, time_limit)

This is a unique behavior of the InspectorBot. It checks the blackboard for

postings on new items found that have not been classified and are considered

candidates for bombs. The InspectorBot finds the locations (posted by the

ScannerBot) in the blackboard and goes to the tagged location to validate

(inspect) whether the object is a bomb or not. Figure 5.13 and 5.14 show the

behavior of the InspectorBot while inspecting objects. Based on the diameter

of the objects, it can differentiate between those objects. If its inspection result

is a bomb, it will post a request to the DefuseBot on the blackboard. If it is not

a bomb, it will request a rescan to the ScannerBot.

 95

 (a) bomb (b) dummy

Figure 5.13: InspectorBot inspecting potential bombs (simulation)

The InspectorBot finds the locations (posted by the ScannerBot) in the
blackboard and goes to the tagged location to validate (inspect)
whether the object is a bomb or not. Based on the diameter of the
objects, it can differentiate between bombs and dummy objects. If its
inspection result is a bomb, it will post a request to the DefuseBot on
the blackboard.

 (a) bomb (b) dummy

 96

Figure 5.14: InspectorBot inspecting potential bombs (experiment)

This is an experimental equivalent to Figure 5.13. Based on the
diameter of the objects, it can differentiate between those objects.

• DefuserBot

o goForBomb&defuse(destination, time_limit)

This is a unique behavior of the DefuserBot. It will find the locations posted

in the blackboard by the InspectorBot and defuse the bomb at the location.

Figures 5.15 and 5.16 show the behavior of the DefuserBot while defusing a

bomb. It will approach the bomb until the bumper sensor at the front detects it,

which emulates bomb defusing process. The bomb becomes a dummy after this

behavior is successful. If the DefuserBot can not defuse the bomb, it will

request a rescan order to the ScannerBot for updated position information.

 97

Figure 5.15: DefuserBot defusing a bomb (simulation)

It will find the locations posted in the blackboard by the
InspectorBot, go to that location and defuse the bomb.

 98

Figure 5.16: DefuserBot defusing a bomb (experiment)

This is the experiment of the equivalent simulation in Figure 5.15. It
will find the locations posted in the blackboard by the InspectorBot, go
to that location and defuse the bomb.

• Basic Behaviors in summary

The basic behaviors explained so far can be categorized as in Table 5.1.

Figure 5.17 shows flow charts of two types of behaviors. The type1 BB is a time-

limited where the robot navigates avoiding obstacles until the time_limit is

reached at which point the behavior is executed. The type2 BB has a destination

as a parameter. The robot wanders until the destination is reached or the

time_limit is exceeded. If the location is reached, the behavior is executed, but if

the time_limit is exceeded, the behavior is aborted.

 99

Figure 5.17: Two types of basic behaviors

The behavior on the left is time-limited where the robot navigates
avoiding obstacles until the time_limit is reached at which point the
behavior is executed. The other behavior has a destination as a
parameter. For this type of behavior, the robot wanders until the
destination is reached or the time_limit is exceeded. If the location is
reached, the behavior is executed, but if the time_limit is exceeded,
the behavior is aborted.

 100

Robot name Basic Behaviors type
 wander(time_limit, detect_range) 1
 goForEnergy&getEnergy(destination, time_limit) 2

ScannerBot goHome&chargeHomeORgetEnergy(destination, time_limit) 2
 scanField&logPosition(time_limit) 1
 goForBomb&rescan(destination, time_limit) 2
 wander(time_limit, detect_range) 1

InspectorBot goForEnergy&getEnergy(destination, time_limit) 2
 goHome&chargeHomeORgetEnergy(destination, time_limit) 2
 goForBomb&inspect(destination, time_limit) 2
 wander(time_limit, detect_range) 1
 goForEnergy&getEnergy(destination, time_limit) 2

DefuserBot goHome&chargeHomeORgetEnergy(destination, time_limit) 2
 goForBomb&defuse(destination, time_limit) 2

Table 5.1: Robot basic behaviors

5.2.2 Learning in Detail

• Robot states

Robots have their own way of describing their world using states. Table

5.2 shows each robot’s states. The states are represented using Boolean logic.

A state is defined as ‘robot battery low’ when its battery level reaches

below 30. Robot battery level can vary from 0 to 100 depending on robot’s visit to

home and charging station. When the ‘robot battery low’ is ‘1’, the robot’s

detection ranges for other locations (for example home, charging station and

bomb locations) are decreased as described in Figure 5.5.

There are five states representing location availability information for the

robots. When these states are ‘1’s, robot can reach the locations directly without

 101

executing wander behavior while searching the location. And the last three states

in the Table are from the blackboard and represent requests among robots during

the bomb disposal process.

States ScannerBot InspectorBot DefuserBot

robot battery low 1/0 1/0 1/0

ScannerBot Home near 1/0 N/A N/A

InspectorBot Home near N/A 1/0 N/A

DefuserBot Home near N/A N/A 1/0

charging station near 1/0 1/0 1/0

location on the board near 1/0 1/0 1/0

request to rescan exists 1/0 N/A N/A

request to inspect exists N/A 1/0 N/A

request to defuse exists N/A N/A 1/0

Table 5.2: Robot states

Shown are the possible values of the different variables. Most of the
values are binary {0,1}.

• Blackboard

As described in Chapter 3, the blackboard is used for the robots to share

their information collected during their navigation in the arena. The blackboard is

managed in the Satellite PC by running a server. Table 5.3 shows data structure of

the blackboard. Each bomb position is represented using Cartesian coordinate

system. And each disposal process is represented in Boolean logic.

Figure 5.18 shows information transition of the blackboard depending on

each process of the bomb disposal. Shaded areas (SCAN and RESCAN by the

 102

ScannerBot, INSPECT by the InspectorBot, DEFUSE by the DefuserBot)

represent various stages of bomb disposal process. And each process is done by

the robot in charge of each process. Solid arrows indicate a bomb disposal and

broken arrows show internal feedback loops in the group to correct their postings.

When experiment starts, the server at the Satellite initialize the blackboard matrix

with rows of [999 999 0 0 999].

bomb x y inspected defused rescanned

1 … … 1/0 1/0 1/0

2 … … 1/0 1/0 1/0

3 … … 1/0 1/0 1/0

4 … … 1/0 1/0 1/0

. … … . . .

. … … . . .

Table 5.3: Data structure of the blackboard

Shown are the possible values of the different variables. Most of the
values are binary {0,1}.

 103

x x 1 0 999

x x 1 0 1

x x 1 1 0

x x 1 0 0

x x 0 0 1

x x 0 0 999

x x 1 1 1

x x 1 1 999

999 999 0 0 999

RESCAN INSPECT

DEFUSE

SCAN

Figure 5.18: Bomb information transition in the blackboard

Shaded areas represent various stages of bomb disposal process. And
each process is done by the robot in charge of each process. Solid
arrows indicate a bomb disposal. Broken arrows show internal
feedback loops in the group to correct their postings. The postings in
the blackboard are changed depending on the stage of the disposal by
robots.

• Robot learning

Figure 5.19 shows a block diagram of a robot during the learning

sequence. It checks its own states continuously, which are affected by other robots

and the world. During learning, the lookup table will be changed as the antibodies

in the clonal selection evolve. Table 5.4 shows a lookup table. If the lookup table

generates a solution with more than one behavior (for example, condition 000001

and 111111 in Table 5.4) for the robot, it will engage the wander behavior.

 104

Figure 5.19: Block diagram of a robot during learning

The robot checks its own states continuously, which are affected by
other robots and the world. Given its current state, the robot selects a
BasicBehavior (BB) from the Lookup Table and executes it. As a
result, the state will change. During learning, the lookup table will be
changed as the antibodies in the clonal selection evolve.

Condition Basic Behaviors

 BB1 BB2 BB3 BB4 BB5

 105

000000 1 0 0 0 0
000001 0 0 1 1 0
000010 0 0 1 0 0

.

.

.
111101 0 1 0 0 0
111110 0 0 0 1 0
111111 0 1 1 0 0

Table 5.4: Lookup table

First column represents condition reflecting current robot states. The
rest of columns are Basic Behaviors (BB).

Figure 5.20 shows a block diagram where all three robots are involved.

The blackboard is a media for them to communicate. During learning, there

should be a synchronized way to reset the blackboard and robot positions every

time, when the selection or reselection process of the clonal selection starts, as

shown in Figure 5.20. In this research, the server running in the Satellite PC

performs this function. During the real environment experiment, this

synchronization routine can be used to replace the robot’s batteries.

During the learning, if robots try BB’s of type2 with null destination, they

are engaged to the wander BB. If the ScannerBot can not find potential bombs

during the time window of the learning session (the posting of the initial bomb

information totally rely on the ScannerBot’s random search), there will not be any

opportunities for the rest of them to develop their learning to inspect and defuse

 106

bombs. Therefore, locations of bombs with false information are initially posted

in the blackboard to speed up the learning process.

Table 5.5 summarizes the items that are used for the affinity evaluation of

each generation of antibody. Affinity can be measured by assigning weight to

each item and combining them in various ways (for example, linear combination).

The bottom line is how to reflect the global and local interest of the robot group

with these items in the table.

To be used for Affinity DefuserBot ScannerBot InspectorBot

robot energy maintain level maintain level maintain level
home energy maintain level maintain level maintain level
no. of request executed maximize maximize maximize
 bomb defused bomb rescanned bomb inspected
bomb found N/A maximize N/A

Table 5.5: States or other conditions for affinity evaluation functions

 107

ScannerBot

Black
Board

Lookup
Table

CS Learning
Algorithm

DefuserBot

Lookup
Table

CS Learning
Algorithm InspectorBot

Lookup
Table

CS Learning
Algorithm

World

WorldWorld

Learning
Syncronizer

Reset

Webots
 or

Boe-Bots

Reset

Figure 5.20: Three robot learning

From the signals from the clonal selection affinity evaluation routine
of each robot, the server controls the execution of each learning
process. At the same time, the blackboard is reset after each affinity
evaluation process ends. Webots or Boe_Bots are reset depending on
the experiment.

 108

5.3 RESULTS AND DISCUSSION

5.3.1 Simulation Results and Discussion

Figure 5.21 shows a simulation screen shot. There was false bomb

information put on the blackboard for each robot on purpose, which worked as

vaccines during AIS learning to speed up the learning. Considering simulation

time, following assumptions are made:

robot knows all the locations

robot can take batteries one by one at the charging station and bring home.

 109

Figure 5.21: Simulation condition

Conditions for the learning algorithm are:

population size: 30

number of generation: 25

hypermutation probability: 0.1

lookup table size: 4 x 3

vaccines:

1 false bombs information for the DefuserBot

bomb defused

bomb not
detected yet

bomb scanned

object to be
inspected

object to be
rescanned

object to be
defused

 110

1 false bombs information for the InspectorBot

1 true bombs information for the InspectorBot

1 false bombs information for the ScannerBot

weights for the selection process:

 ScannerBot

 battery picked: 50

 battery brought home: 150

 rescan: 200

 InspectorBot

 battery picked: 50

 battery brought home: 150

 inspection: 300

 DefuserBot

 battery picked: 50

 battery brought home: 150

 defuse: 300

robot antigen antibody

 carrying battery work order exists go for battery bring battery home rescan

 0 0 0 1 1
ScannerBot 0 1 1 0 0

 1 0 0 0 0
 1 1 0 0 1
 go for battery bring battery home inspect

 0 0 1 0 0
InspectorBot 0 1 0 0 1

 1 0 1 1 0

 111

 1 1 1 0 0
 go for battery bring battery home defuse

 0 0 1 0 0
DefuserBot 0 1 1 0 0

 1 0 0 0 1
 1 1 0 1 1

Table 5.6: Antigens and antibodies for robots during simulation

Table 5.6 shows antigens and antibodies during robot learning. Antigens

represent robot condition and antibodies are equivalent to the lookup table. Each

robot has three basic behaviors. Tables 5.7, 5.8 and 5.9 represent actual robot

behaviors during affinity measurement for corresponding antibodies during

learning.

Table 5.7: Change of InspectorBot behaviors during learning

InspectorBot
antigen antibody equivalent action affinity

(0 1) 0 0 1 inspect 300
(0 1) 0 0 1 inspect 300
(0 0) 1 0 0 go for battery 50
(1 0) 1 1 0 waste time 0
(1 0) 1 1 0 waste time 0

time expired 650

ScannerBot
antigen antibody equivalent action affinity

(0 1) 1 0 0 go for battery 50
(1 1) 0 0 1 rescan 200
(1 1) 0 0 1 rescan 200
(1 0) 0 0 0 waste time 0
(1 0) 0 0 0 waste time 0
(1 0) 0 0 0 waste time 0

time expired 450

 112

Table 5.8: Change of ScannerBot behaviors during learning

Table 5.9: Change of DefuserBot behaviors during learning

Figure 5.22 shows ScannerBot evolution of antibodies during learning.

Maximum and mean affinities were calculated during the leaning. Figure 5.23

shows how ScannerBot processed bombs and batteries and represented in average

numbers during learning.

max vs mean affinities

0

200

400

600

800

1000

1 4 7 10 13 16 19 22 25

generation

af
fin

ity mean affinity

max affinity

DefuserBot
antigen antibody equivalent action affinity

(0 1) 1 0 0 go for battery 50
(1 1) 0 1 1 waste time 0
(1 1) 0 1 1 waste time 0
(1 1) 0 1 1 waste time 0
(1 1) 0 1 1 waste time 0
(1 1) 0 1 1 waste time 0
(1 1) 0 1 1 waste time 0

time expired 50

 113

Figure 5.22: ScannerBot affinity evolution during simulation

Objects processed through the
generation

0
0.5

1
1.5

2
2.5

1 4 7 10 13 16 19 22 25

generation

nu
m

be
r o

f o
bj

ec
ts

bombs
rescanned

batteries
brought

batteries picked
up

Figure 5.23: ScannerBot behavior evolution during simulation

Table 5.10 shows ScannerBot’s antibodies representing maximum affinity

for each generation. Table 5.11 is showing average antibodies for each generation.

These tables show how actual learning has been done.

1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 1 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 0 0 0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0 1 0 1 0

 114

1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 1 1 0 0 1 1 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0

Table 5.10: ScannerBot best antibodies for the generation during simulation

0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667

 115

0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333

Table 5.11: ScannerBot mean antibodies for the generation during
simulation

Figure 5.24 shows InspectorBot evolution of antibodies during learning.

Maximum and mean affinities were calculated during the leaning. Figure 5.25

shows how InspectorBot processed bombs and batteries and represented in

average numbers during learning.

max vs mean affinities

0

200

400

600

800

1000

1 4 7 10 13 16 19 22 25

generation

af
fin

ity mean affinity

max affinity

Figure 5.24: InspectorBot affinity evolution during simulation

 116

Objects processed through the
generation

0

0.5

1

1.5

2

1 4 7 10 13 16 19 22 25

generation

nu
m

be
r o

f o
bj

ec
ts

bombs
inspected

batteries
brought

batteries picked
up

Figure 5.25: InspectorBot behavior evolution during simulation

Table 5.12 shows InspectorBot’s antibodies representing maximum

affinity for each generation. Table 5.13 is showing average antibodies for each

generation. These tables show how actual learning has been done.

1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 1 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 0 0 0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 1 1 0 0 1 1 0 0 1 0

 117

1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0

Table 5.12: InspectorBot best antibodies for the generation during
simulation

0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667

0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333

 118

Table 5.13: InspectorBot mean antibodies for the generation during
simulation

Figure 5.26 shows DefuserBot evolution of antibodies during learning.

Maximum and mean affinities were calculated during the leaning. Figure 5.27

shows how DefuserBot processed bombs and batteries and represented in average

numbers during learning.

max vs mean affinities

0
200
400
600
800

1000
1200

1 4 7 10 13 16 19 22 25

generation

af
fin

ity mean affinity

max affinity

Figure 5.26: DefuserBot affinity evolution during simulation

 119

Objects processed through the
generation

0
0.5

1
1.5

2
2.5

1 4 7 10 13 16 19 22 25

generation

nu
m

be
r o

f o
bj

ec
ts

bombs defused

batteries
brought

batteries picked
up

Figure 5.27: DefuserBot behavior evolution during simulation

Table 5.14 shows DefuserBot’s antibodies representing maximum affinity

for each generation. Table 5.15 is showing average antibodies for each generation.

These tables show how actual learning has been done.

1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 1 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 1 0 1 0
1 0 0 0 0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0 1 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 1 1 0 0 1 1 0 0 1 0

 120

1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0

Table 5.14: DefuserBot best antibodies for the generation during simulation

0.6 0.56667 0.63333 0.7 0.56667 0.4 0.36667 0.53333 0.46667 0.4 0.56667 0.5

0.56667 0.5 0.66667 0.66667 0.46667 0.33333 0.4 0.43333 0.43333 0.36667 0.46667 0.46667

0.6 0.46667 0.56667 0.6 0.46667 0.3 0.33333 0.43333 0.36667 0.43333 0.53333 0.5

0.56667 0.53333 0.6 0.63333 0.36667 0.36667 0.36667 0.36667 0.43333 0.46667 0.56667 0.46667

0.5 0.46667 0.6 0.7 0.33333 0.4 0.4 0.5 0.4 0.46667 0.56667 0.5

0.53333 0.43333 0.63333 0.63333 0.33333 0.46667 0.46667 0.5 0.4 0.53333 0.53333 0.43333

0.56667 0.4 0.66667 0.6 0.3 0.43333 0.46667 0.56667 0.43333 0.5 0.53333 0.4

0.5 0.4 0.73333 0.56667 0.26667 0.4 0.46667 0.5 0.46667 0.5 0.53333 0.4

0.56667 0.4 0.73333 0.56667 0.23333 0.46667 0.5 0.46667 0.46667 0.46667 0.5 0.4

0.53333 0.43333 0.66667 0.56667 0.2 0.46667 0.56667 0.5 0.56667 0.5 0.46667 0.36667

0.6 0.43333 0.56667 0.53333 0.16667 0.43333 0.56667 0.46667 0.6 0.4 0.43333 0.36667

0.63333 0.46667 0.46667 0.53333 0.13333 0.43333 0.5 0.43333 0.56667 0.43333 0.4 0.33333

0.63333 0.5 0.43333 0.5 0.13333 0.5 0.6 0.43333 0.53333 0.43333 0.36667 0.36667

0.7 0.46667 0.43333 0.46667 0.066667 0.5 0.53333 0.43333 0.6 0.43333 0.36667 0.36667

0.73333 0.5 0.43333 0.46667 0.033333 0.53333 0.6 0.43333 0.5 0.4 0.43333 0.43333

0.7 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.5 0.53333 0.36667 0.43333 0.46667

0.73333 0.43333 0.5 0.43333 0.033333 0.56667 0.6 0.53333 0.56667 0.36667 0.43333 0.5

0.73333 0.5 0.5 0.46667 0.033333 0.53333 0.56667 0.53333 0.6 0.46667 0.43333 0.5

0.7 0.53333 0.46667 0.46667 0.033333 0.53333 0.5 0.53333 0.56667 0.46667 0.43333 0.5

0.73333 0.5 0.46667 0.46667 0.033333 0.53333 0.46667 0.5 0.46667 0.5 0.4 0.46667

0.7 0.46667 0.53333 0.46667 0 0.56667 0.5 0.43333 0.5 0.46667 0.46667 0.5

0.66667 0.53333 0.53333 0.46667 0 0.56667 0.53333 0.43333 0.43333 0.36667 0.46667 0.5

0.66667 0.5 0.5 0.46667 0 0.53333 0.43333 0.46667 0.4 0.33333 0.56667 0.36667

0.73333 0.5 0.46667 0.46667 0 0.53333 0.46667 0.43333 0.43333 0.33333 0.6 0.43333

0.7 0.5 0.46667 0.46667 0 0.53333 0.43333 0.4 0.4 0.33333 0.6 0.43333

 121

Table 5.15: DefuserBot mean antibodies for the generation during simulation

InspectorBot and DefuserBot show good evolution results of mean

affinity. However, considering the maximum possible fitness values based on the

weight conditions, it is still premature stage and it needs more generations of

evolution.

The result of ScannerBot shows too much fluctuation and it is due to the

weighting of excessive bomb found reward.

5.3.2 Preliminary Experiment Results

The proposed hardware setup was tested for actual robot basic behavior

development. Since the architecture for both the simulation and experiment are

very similar, the codes for the simulation could be transferred to the experiment

without any difficulties. Machine vision system was good enough to pick up robot

position information and communication systems seamlessly bridged between

different modules and platforms. However, due to fast battery drain, intensive

experiment could not be done.

 122

Chapter 6: Conclusions and Future Work

6.1 SUMMARY AND CONCLUSIONS

This research has shown that the proposed distributed control architecture

using CS of AIS can provide a suitable methodology for the autonomous solution

of highly confined goal-seeking problems targeted in this research. This document

has also highlighted some of the factors such as communication using blackboard

involved in robot communication.

Computer simulation has shown the feasibility of AIS as a possible

measure for control of a group of robots. The methodology is firmly grounded in

the biological sciences and provides robust performance for the intertwined

entities involved in most task-achieving MRS. Based on its formal foundation, it

provides a platform to characterize interesting relationships and dependencies

among MRS task requirements, individual robot control, capabilities, and

resulting task performance.

In this research, we do not advocate that the CS performs better than the

GA in any application, instead we demonstrate that it is also composed of a

biologically inspired algorithm, which performs learning and multi-modal search

along the space. Like the GA, the CS algorithm is highly parallel.

The architecture proposed enables a robot group to navigate in an

unknown environment. The implementation results are still in a very early state,

so it is not advisable to draw major conclusions; the simulation results obtained so

far show that based on the proposed modeling of the environment an AIS

promises to be a good candidate solution to the problem of robot navigation in

 123

unstructured and unknown environments. We did not exhaust all features that are

usually defined in AIS, offering ways of extensions to the proposed approach.

6.2 RESEARCH CONTRIBUTIONS

The work presented in this dissertation is a first of its kind wherein the

principles of AIS have been used to model and organize the group behavior of the

MRS. This has been presented in the form of a novel algorithm. In addition to the

above, generic environments for computer simulation and real experiment have

been realized to demonstrate the working of an MRS with considerably low

budget. These could potentially be used to implement other algorithms onto the

MRS. Therefore can provide a valuable test-bed for AIS ideas, and a useful tool

for MRS research.

6.3 FUTURE WORK

Possible future research can be categorized and summarized as follows:

• Learning algorithm

There should be a sensitivity analysis to tune the clonal selection parameters

affecting the convergence rate. And to speed up the learning, reinforcement

learning methods should be studied.

• Experiment

After the learning algorithm has been improved especially to speed up the

learning, experiment should be performed using the setup developed in this

research.

 124

• MRS formalism

The basic behaviors for this research are all static and prepared separately for the

mission. For real-world deployment, several additions that have been used before

in our lab [Westlake, 2005] are suggested. For example, implementing some

evolutionary methods that make these behaviors evolve in real-time will be a

more practical goal for real world applications. Also, agent technology can be

applied to utilize the mobility of the robots.

• Benchmarking

Comparison with other evolutionary methods especially for multi-objective

optimization purpose should be followed after this research to compare the

performance of the proposed algorithm.

• Hardware

For more flexible robot missions, robots with better built-in sensors and actuators;

autonomous charging system should be developed.

 125

Bibliography

Arai, T., Pagello, E. and Parker, L. E., 2002, “Editorial: Advances in Multi-Robot
Systems”, IEEE Transactions ON Robotics and Automation, Vol. 18, No. 5, pp
655-661.

Ashiru, I. and Czarnecki, C. A., 1998, “Experiments in Evolving Communicating
Controllers for Teams of Robots,” Proceedings of the 1998 IEEE International
Conference on Robotics and Automation, pp. 3498-3503.

Brooks, R. A., 1987, “A Robust Layered Control System for a Mobile Robot,”
IEEE Journal of Robotics and Automation, pp. 264-271.

Brooks, R. A., 1991, “Intelligence without Representation,” Artificial
Intelligence, Vol.47, pp.139-159.

Burnet, F.M., 1959, The Clonal Selection Theory of Acquired Immunity,
Cambridge University Press, Cambridge.

Carver, N. and Lesser, V., 1994, “Evolution of blackboard control architectures.
Expert Systems with Applications,” Expert Systems with Applications, pp. 1-30.

Carver, N., Cvetanovic, Z. and Lesser, V., 1991, “Sophisticated cooperation in
FA/C distributed problem solving systems,” Proceedings of the Ninth National
Conference on Artificial Intelligence, pp. 191-198.

Cao, Y., Fukunaga, A. S., Kahng, A. B., and Meng, F., 1995, “Cooperative
Mobile Robotics: Antecedents and Directions,” IEEE/TSJ International
Conference on Intelligent Robots and Systems, pp. 7-23.

de Castro, L. N. and Von Zuben, F. J., 1999, Artificial Immune Systems: Part I-
Basic Theory and Applications, FEEC/Univ. Campinas, Brazil.

Dasgupta, D. and Michalewicz, Z., 1997, Evolutionary Algorithms in Engineering
Applications, Springer-Verlag, Berlin, Heidelberg.

 126

Dasgupta, D. and Attoh-Okine, N., 1997, "Immunity-based systems: A survey,"
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, Vol. 1, pp. 369-374.

Dorigo, M., Maniezzo, V. and Colorni, A., 1996, "The ant system: optimization
by a colony of cooperating agents," IEEE Transactions on Systems, Man, and
Cybernetics--Part B, vol. 26, No. 2, pp. 29-41.

Dutta, I., Bogobowicz, A. D. and Gu, J. J., 2004, “Collective Robotics-A Survey
of Control and Communication Techniques”, Proceedings of International
Conference on Intelligent Mechatronics and Automation, pp. 505-510.

Engin, O. and Döyen, A., 2004, “New approach to solve hybrid flow shop
scheduling problems by artificial immune system,” Future Generation Computer
Systems, Volume 20, Issue 6, pp. 1083-1095.

Farmer, J. D., Parkard, N. H. and Perelson, A. S., 1986, “The Immune System,
Adaptation, and Machine Learning”, Physica, 22D, pp. 187-204.

Farinelli, A., Iocchi, L. and Nardi, D., 2004, “Multirobot systems: a classification
focused on coordination”, IEEE Transactions on Systems, Man and Cybernetics,
Part B, Volume 34, Issue 5, pp. 2015 – 2028.

Floreano, D. and Nolfi, S., 1997, “Adaptive Behavior in Competing Co-Evolving
Species,” Proceedings of the Fourth Conference on Artificial Life, pp. 378-387.

Forrest, S., Perelson, A. S., Allen, L. and Cherukuri, R., 1994, “Self-Nonself
Discrimination in a Computer”, Proceedings of IEEE Symposium on Research in
Security and Privacy, pp. 202-212.

Goldberg, D. E., 1989, Genetic Algorithms in search, Optimization and Machine
Learning, Addison-Wesley, Reading, Massachusetts.

Goldberg, D., 1996, "Heterogeneous and homogeneous robot group behavior,"
Proceedings of the National Conference on Artificial Intelligence, Vol. 2, p. 1390.

Haykin, S., 1994, Neural Networks: A Comprehensive Foundation, Macmillan,
New York.

He, Y., Hui, S. C. and Lai, E. M., 2005, “Automatic Timetabling Using Artificial
Immune System,” AAIM 2005, LNCS 3521, pp. 55-65.

 127

Holland, J. H., 1986, “Escaping Brittleness: The Possibilities of General Purpose
Learning Algorithms Applied to Parallel Rule Based Systems,” Machine
Learning: An Artificial Intelligence Approach, Vol. 2, pp. 593-624.

Iocchi, L., Nardi, D. and Salerno, M., 2001, “Reactivity and Deliberation: A
Survey on Multi-Robot Systems”, Balancing Reactivity and Deliberation in
Multi-Agent Systems (LNAI 2103), pp. 9--32.

Ishida, Y. and Adachi, N., 1996, “Active Noise Control by an Immune Algorithm:
Adoption in Immune System as an Evolution,” Proceedings of 1996 IEEE
International Conference on Evolutionary Computation, pp.150-153.

Jerne, N. K., 1973, “The Immune System”, Scientific American, 229, pp. 52-60.

Jerne, N. K., 1974, “Towards a network theory of the immune system”, Ann.
Immunol., 125C, pp. 373-389.

Jones, C. V., 2005, A Principled Design Methodology for Minimalist Multi-Robot
System Controllers, PhD Dissertation, Univ. of Southern California, California.

Jones, C. V. and Mataric, M. J., 2005, "Behavior-Based Coordination in Multi-
Robot Systems", Autonomous Mobile Robots: Sensing, Control, Decision-
Making, and Applications, Sam S. Ge and Frank L. Lewis, eds., Marcel Dekker,
Inc..

Jun, H. and Sim, K., 1997, “Behavior Learning and Evolution of Collective
Autonomous Mobile Robots based on Reinforcement Learning and Distributed
Genetic Algorithms,” Proceedings of the 1997 IEEE International Workshop on
Robot and Human Communication, pp.248-253.

Kelly, I. D. and Keating, D. A., 1998, “Increased Learning Rates Through the
Sharing of Experiences of Multiple Autonomous Mobile Robot Agents,”
Proceedings of the 1998 IEEE International Conference on Fuzzy Systems,
pp.129-134.

Kim, J. and Bentley, P., 2001, “An evaluation of negative selection in an artificial
immune for network intrusion detection,” Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1330-1337.

Kodjabachian, J. and Meyer, J., 1995, “Evolution and development of control
architectures in animats”, Robotics and Autonomous Systems, 16(2-4).

 128

Kennedy, J. and Eberhart, R. C., 1995, “Particle swarm optimization”,
Proceedings of IEEE International Conference on Neural Networks, pp. 1942-
1948.

Kondo, T., Ishiguro, A., Watanabe, Y., Shirai, Y. and Uchikawa, Y., 1998,
“Evolutionary Construction of an Immune Network-Based Behavior Arbitration
Mechanism for Autonomous Mobile Robots,” Electrical Engineering in Japan,
Vol.123, No.3, pp.865-873.

Krautmacher, M. and Dilger, W., 2004, “AIS Based Robot Navigation in a
Rescue Scenario,” Lecture Notes in Computer Science, Volume 3239, pp. 106-
118.

Lee-Johnson, C. P., 2004, “The Development of a Control System for an
Autonomous mobile Robot” University of Waikato.

Liu, J., Wu, J. and Tang, Y.Y., 1998, “On Emergence of Group Behavior in a
Genetically Controlled Autonomous Agent System,” Proceedings of the 1998
IEEE International Conference on Evolutionary Computation, pp.470-475.

Luh, G. and Liu, W., 2004, “Reactive Immune Network Based Mobile Robot
Navigation,” Lecture Notes in Computer Science, Volume 3239, pp. 119-132.

Maeda, Y., 1997, “Behavior Learning and Group Evolution for Autonomous
Multi-Agent Robot”, Proceedings of the 1997 IEEE International Conference on
Fuzzy Systems, pp.1355-1360.

Manning, M. J., 1979, “Evolution of the vertebrate immune system,” J R Soc
Med, 72(9), pp. 683–688.

Mataric, M. J., 1994, Interaction and Intelligent Behavior, Ph.D. Dissertation,
MIT, Massachusetts.

McLurkin, J. D., 1996, “Using Cooperative Robots for Explosive Ordnance
Disposal,” Technical Document, MIT, Artificial Intelligence Lab, MA.

Mitsumoto, N., Fukuda, T., Arai, F. and Ishihara, H., 1997, “Control of the
Distributed Autonomous Robotic System based on the Biologically Inspired
Immunological Architecture,” Proceedings of the 1997 IEEE International
Conference on Robotics and Automation, pp.3551-3556.

Okura, M., Ogura, A., Matsumoto, A., Ikeda, H., Islam, M.M. and Murase, K.,

 129

2003, “Chaotic dynamics in evolutionary autonomous mobile robot and fitness
evaluation with complexity measure,” SICE 2003 Annual Conference, Volume 3,
Issue 4-6, pp. 2847-2851.

Ong, Z. X., Tay, J.C. and Kwoh, C.K., 2005, “Applying the Clonal Selection
Principle to Find Flexible Job-Shop Schedules,” Lecture Notes in Computer
Science, Volume 3627, pp. 442-455.

Pipe1, A.G. and Carse1, B., 2002, “ First Results from Experiments in Fuzzy
Classifier System Architectures for Mobile Robotics,” Lecture Notes in Computer
Science, Volume 2439, pp. 578-587.

Pirjanian, P., 1998, Mutiple Objective Action Selection Behavior Fusion Using
Voting, Ph.D. Dissertation, Aalborg University, Denmark.

Ross, T. J., 1995, Fuzzy Logic with Engineering Applications, McGraw-Hill, New
York.

Schultz, A., Grefenstette, J. and Adams, W., 1996, “RoboShepherd: Learning
Complex Robotic Behaviors,” In Proceedings of the International Symposium on
Robotics and Automation, pp. 763-768.

Stolzmann, W., 1999, “Latent learning in Khepera robots with Anticipatory
Classifier Systems,” International Workshop on Learning Classifier Systems
(2.IWLCS) on the Genetic and 22 Evolutionary Computation Conference, pp.
290-297.

Sycara, K., Decker, K., Pannu, A., Williamson, M. and Zeng, D., 1996,
“Distributed intelligent agents,” IEEE Expert, 11(6), pp. 36-46.

Vargas, P. A., de Castro1, L. N., Michelan, R. and Von Zuben, F. J., 2003, “An
Immune Learning Classifier Network for Autonomous Navigation,” Lecture
Notes in Computer Science, Volume 2787, pp. 69-80.

Webb, A., Hart, E., Ross, P. and Lawson, A., 2004, “Controlling a Simulated
Khepera with an XCS Classifier System with Memory,” Lecture Notes in
Computer Science, Volume 2801, pp. 885-892.

 130

Vita

Jaeho Hur was born in Seoul, Korea on May 14th, 1965, the son of Mr.

Baik Hur and Mrs. Hyunkyung Song. He was admitted to the undergraduate

program in Mechanical Engineering at the Seoul National University, Seoul,

Korea in March, 1983 and received the degree of Bachelor of Science in

February, 1987. He entered the graduate program in Mechanical Design and

Production Engineering at the Seoul National University, Seoul, Korea in March,

1987 and received the degree of the Master of Science in February, 1989. After he

finished his military service as a second lieutenant in 1990, he worked as a

research scientist at the Korea Institute of Science and Technology, Seoul, Korea.

In August, 1992, he started the program for Doctor of Philosophy in Mechanical

Engineering at the University of Texas at Austin.

Permanent address: 108-307, Mi-Do, Dae-Chi 2 Dong, Gang-Nam Gu, Seoul,

Korea, 135-307.

This dissertation was typed by Jaeho Hur.

	The Dissertation Committee for Jaeho Hur Certifies that this is the approved version of the following dissertation:
	MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL IMMUNE SYSTEM
	MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL IMMUNE SYSTEM
	by
	Jaeho Hur, B.S., M.S.
	Dissertation
	Doctor of Philosophy
	The University of Texas at Austin
	December 2007
	Dedication
	MULTI-ROBOT SYSTEM CONTROL USING ARTIFICIAL IMMUNE SYSTEM
	 Table of Contents
	 List of Tables
	 List of Figures
	Chapter 1: Introduction
	1.1 From Single to Multi-Robot Systems
	1.2 Deriving Inspiration from Nature
	1.3 Research Motivation
	1.4 Research Contribution
	1.5 Dissertation Outline

	Chapter 2: Background Concepts and Related Work
	2.1 Multi-Robot Systems (MRS)
	2.1.1 System Description
	Figure 2.1: Example of a Multi-robot system (MRS) searching for food

	2.1.2 MRS Taxonomy
	2.1.2.1 MRS Research Communities
	Figure 2.2: Research communities of MRS

	2.1.2.2 Overall Structure of MRS
	2.1.2.3 Action Selection Mechanism (ASM)
	Figure 2.3: ASM classifications

	2.1.3 Related Work

	2.2 Artificial Immune Systems (AIS)
	2.2.1 Immune System Basics
	Figure 2.4a: Immune system working
	Figure 2.4b: Immune system working

	2.2.2 Models on AIS
	2.2.2.1 Negative Selection
	2.2.2.2 Clonal Selection
	Figure 2.5: Clonal selection process

	2.2.2.3 Immune Network
	Figure 2.6: Idiotyping network

	2.2.3 Related Work

	 Chapter 3: Proposed Architecture for MRS
	3.1 Structure for the MRS
	3.1.1 Overall Structure
	3.1.2 Internal Structure
	Figure 3.1: MRS internal control schema
	Table 3.1: Mapping between condition and basic behaviors

	3.2 Learning Algorithm for the MRS
	3.2.1 Applying Clonal Selection
	Figure 3.3: Computational procedure for clonal selection
	Figure 3.2: MRS overall control schema

	3.2.1 Comparison of the proposed algorithm using Clonal Selection (CS) with Genetic Algorithm (GA)

	Chapter 4: Test Environment Setups
	4.1 Simulation Setup
	4.1.1 Overview
	Figure 4.1: Overall control diagram of MRS
	Figure 4.2: Screen shot of Webots for MRS

	4.1.2 Entities
	4.1.2.1 Robots
	Figure 4.3: DefuserBot, ScannerBot, InspectorBot

	4.1.2.2 Objects
	Figure 4.4: Screen shot of a dummy and a bomb.

	4.1.2.3 Supervisor

	4.1.3 Communication
	4.1.3.1 Socket Interface
	Figure 4.5: Server/Client communication between PC’s

	4.1.3.2 TCP/IP Communication among PC’s
	Figure 4.6: Components for Server/Client communication between PC’s
	Figure 4.7: Topology for sever and client connection

	4.1.3.3 TCP/IP Communication between Matlab and Webots
	Figure 4.8: Components for Matlba and Webots communication

	4.2 Experiment Setup
	4.2.1 Overview
	Figure 4.9: Experimental setup block diagram
	Figure 4.10: Experimental setup side view (NERDLab)
	Figure 4.11: Parallax Boe-Bot and BASIC Stamp 2
	Figure 4.12: Parallax BASIC Stamp2 and BASIC Stamp2P

	4.2.2 Entities
	4.2.2.1 Robots
	Figure 4.13: DefuserBot, ScannerBot, InspectorBot
	Figure 4.14: Logic loop of Boe-Bots controller
	Figure 4.15: Wiring diagram of ADC0831 and GP2D12
	Figure 4.16: Distance sensor reading vs. Distance

	4.2.2.2 Objects
	Figure 4.17: A dummy and a bomb (experiment)
	Figure 4.18: Creative NX Pro webcam

	4.2.3 Local Positioning System (LPS)
	4.2.3.1 Image Acquisition
	Figure 4.19: Architecture of applications for LPS

	
	4.2.3.2 Image Processing
	Figure 4.20: Snapshot of an original, untouched image, showing four different markers (paired shapes of different sizes) with different colors
	Figure 4.21: Filtration steps to remove noise and isolate red objects in the image and filter circular objects
	Figure 4.22: Filtration steps to remove noise and isolate red objects in the image and filter circular objects

	4.2.3.3 Data Interpretation for Coordinate Determination

	4.2.4 Communication
	4.2.4.1 TCP/IP Communication among PC’s
	4.2.4.2 Serial Communication between Boe-Bot and PC
	Figure 4.23: Serial data format
	Figure 4.24: Communication between Boe-Bot and PC
	Figure 4.25: Serial communication flow chart

	4.2.4.3 Communication between Matlab and LabVIEW via ActiveX

	Chapter 5: Test Conditions, Results and Discussion
	5.1 Robot Mission Description
	Figure 5.1: Mockup of the arena used by the robot unit
	Figure 5.2: Energy and information flow of the robot group

	5.2 Robot Learning Conditions
	Figure 5.3: Computer simulation of a bomb disposal mission
	Figure 5.4: Experimental setup showing a typical bomb disposal mission
	5.2.1 Robot Basic Behaviors
	Figure 5.5: Robot detection range
	Figure 5.6: Robot detection range to avoid collision
	Figure 5.7: Robot charging at the charging station
	Figure 5.8: Robot/Home energy exchange
	Figure 5.9: ScannerBot scanning behavior (simulation)
	Figure 5.10: ScannerBot scanning behavior (experiment)
	Figure 5.11: ScannerBot numeric filter result for a simulation sequence
	Figure 5.12: ScannerBot numeric filter filtration sequence (experiment)
	Figure 5.13: InspectorBot inspecting potential bombs (simulation)
	Figure 5.14: InspectorBot inspecting potential bombs (experiment)
	Figure 5.15: DefuserBot defusing a bomb (simulation)
	Figure 5.16: DefuserBot defusing a bomb (experiment)
	Figure 5.17: Two types of basic behaviors
	Table 5.1: Robot basic behaviors

	5.2.2 Learning in Detail
	Table 5.2: Robot states
	Table 5.3: Data structure of the blackboard
	Figure 5.18: Bomb information transition in the blackboard
	Figure 5.19: Block diagram of a robot during learning
	Table 5.4: Lookup table
	Table 5.5: States or other conditions for affinity evaluation functions
	Figure 5.20: Three robot learning

	5.3 Results and Discussion
	5.3.1 Simulation Results and Discussion
	Figure 5.21: Simulation condition
	Table 5.6: Antigens and antibodies for robots during simulation
	Table 5.7: Change of InspectorBot behaviors during learning
	Table 5.8: Change of ScannerBot behaviors during learning
	Table 5.9: Change of DefuserBot behaviors during learning
	Figure 5.22: ScannerBot affinity evolution during simulation
	Figure 5.23: ScannerBot behavior evolution during simulation

	Table 5.10: ScannerBot best antibodies for the generation during simulation
	Table 5.11: ScannerBot mean antibodies for the generation during simulation
	Figure 5.24: InspectorBot affinity evolution during simulation
	Figure 5.25: InspectorBot behavior evolution during simulation

	Table 5.12: InspectorBot best antibodies for the generation during simulation
	Table 5.13: InspectorBot mean antibodies for the generation during simulation
	Figure 5.26: DefuserBot affinity evolution during simulation
	Figure 5.27: DefuserBot behavior evolution during simulation

	Table 5.14: DefuserBot best antibodies for the generation during simulation
	Table 5.15: DefuserBot mean antibodies for the generation during simulation

	5.3.2 Preliminary Experiment Results

	6.1 Summary and Conclusions
	6.2 Research Contributions

	Bibliography
	 Vita

