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In this thesis we study the spin or pseudospin singlet pair condensation of

two different kinds of polarized fermion systems. Using generalized BCS mean-field

theories we study how pairing adapts to unequal spin or pseudospin populations.

After briefly reviewing the basic physics of superconductivity in Chapter 2, in Chap-

ter 3 the mean-field theory for electron-hole bilayer systems is derived to describe

the condensation of excitons which is analogous to the Cooper pair condensation in

superconductors. Self-consistent solution of the exciton system gap equation shows

that the excitation energy spectrum is qualitatively the same as in superconductors.

In Chapter 4 the role of the spin degree of freedom in the bilayer system is inves-

tigated by generalizing the two-component mean-field theory developed in Chapter
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3 to four-component cases. The main consequence is that population polarization

leads to ferromagnetism. The interplay between exciton condensation and sponta-

neous spin-order is the most important consequence of the presence of both spin

and pseudospin degrees of freedom in excitonic condensates. In a sense that we

explain in this Chapter, both normal and condensed fluids are present in the fer-

romagnetic excitonic state. Using the Rashba spin-orbit interaction model derived

in the appendix, we show that an external electric field can alter the character-

istics of the ferromagnetic condensate phase. The spin splitting by the spin-orbit

interaction and its different spin state structures lead to qualitatively different mag-

netic properties for electron and hole layers. In Chapter 5 we turn our attention

to a second class of polarized fermion systems that is of great current interest. A

fully quantum mechanical treatment of a rotating fermion atom cloud is developed

and implicit equations determining the critical temperatures for all center-of-mass

Landau level pairings are obtained. In Chapter 6 the condition for the realization

of higher center-of-mass Landau level pairing, which corresponds to FFLO state in

spin split superconductors, is determined by calculating the critical temperatures

for all possible pairing channels. It is shown that FFLO states can be realized in

the strong interaction and low rotation frequency regimes in parameter space, where

the pairing energy can survive the high polarization.
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Chapter 1

Introduction

Since the observation of superconductivity [1] and the successful microscopic ex-

planation of the phenomena [2], pair condensation has been one of the most active

topics of condensed matter physics. In superconductors, electrons form a bound

pair due to the effective attractive interaction through the retarded electron-phonon

interaction. The pairing mechanism in high Tc superconductors, however, is not

so clear. The mechanism is believed to be electron-electron interactions but not

certain yet. For recent reviews on this intriguing topic, see [3], [4]. In conventional

superconductors with local interactions, electrons form spin-singlet pairs composed

of opposite spins due to the antisymmetry of fermions. Other pairings are also pos-

sible. In superfluid 3He, the pairs have p-wave and spin-triplet symmetry due to

the hard core repulsion. In systems where superconducting order and ferromagnetic

order coexist, the exchange field of the magnetic moments act as pair breakers since

it tends to put the electron spins in the same direction. It is thought [5], however,

that near the quantum critical point of the ferromagnetism, quantum spin fluctua-

tions can lead to spin-triplet pairing where electrons with the same spin form pairs.

In this thesis we consider opposite (pseudo)spin pairing which is the appropriate

pairing mechanism for the systems we will consider as will be discussed later.
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The Cooper pairing can occur regardless of the interaction strength because

of the background Fermi sea [6]. This pairing mechanism can be applied to any

fermion system as long as the effective interaction is attractive. Pairing with zero

total momentum is usually the lowest energy pairing when the Fermi surfaces of

the two components are identical. If there is population difference between the

constituents, the pairing mechanism is expected to be different depending on how

many fermion components are in the system. These population polarized systems

are the main topic of this thesis. Population polarized two-component fermion

systems tend toward finite pair momentum condensates. In superconductors, elec-

tron spin-polarization can be induced by the application of an external field or by

proximity coupling to a ferromagnet. Finite-momentum Cooper pair condensates

in spin-polarized superconductors, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states,

were first proposed in the early 1960’s [7, 8]. One important consequence of finite-

momentum pairing in an isolated superconductor is a spatially inhomogeneous order

parameter. There have been many efforts in various solid state systems to detect

this exotic state, including recent ones [9, 10], but its definitive identification has re-

mained elusive. If there is a degeneracy for each pairing component, each component

can adjust itself to regain the Fermi surface matching by spontaneously breaking

the degeneracy. This leads to the ferromagnetism for spin degenerate systems. In

this thesis we study two different types of polarized fermion systems: electron-hole

semiconductor bilayer systems and cold fermion atom systems.

Electrons and holes (or absence of electrons normally near the top of the va-

lence band of a semiconductor) have natural attractive Coulomb interaction which

makes the system a good candidate for the fermion pair condensation. An exciton

is an elementary excitation of semiconductors in which an electron and a hole form

a bound state. Like Cooper pairs, excitons can condense under appropriate circum-

stances. The broken symmetry associated with exciton condensation is spontaneous

2



phase coherence between conduction and valence band states in a semiconductor.

Excitonic condensation is one of the most sought-for fermion pair condensates and

has been looked for since first predicted in early 1960’s [11, 12, 13, 14, 15]. The tra-

ditional method of creating excitons is by optically exciting valence band electrons

in semiconductors. The main obstacle for realization of the exciton condensate has

been the finite life time of excitons due to optical recombination of excited exci-

tons accompanied by the emission of a photon. It was proposed [16, 17] some time

ago that the exciton life-time can be substantially increased by spatially separating

electrons and holes in a bilayer configuration. Progress in fabrication techniques in

semiconductors made it feasible to realize bilayer electron-hole systems with great

flexibility. When the distance between the two layers is smaller than the average

distance between particles in one layer, it undergoes excitonic condensation [18].

There have been many experimental works which have attempted to verify exciton

condensation by photoluminescence measurements [19, 20, 21, 22, 23, 24, 25] in cou-

pled quantum well structures where holes are created optically, then separated by

external electric fields.

If electrons and holes could be created in equilibrium they could be studied

using transport properties. The essential technical ability required for transport

measurements related to exciton condensation is to make separate contacts with

each layer [26]. Coherent transport behavior in electron-electron bilayers [27, 28],

rather than electron-hole bilayers, in strong magnetic field such that the total filling

factor is one can be attributed to the excitonic condensation. The theory looks more

like the standard theory of exciton condensation if a particle-hole transformation is

made for a Landau level in one of the two layers [29]. Another essential advantage

of bilayer systems with independent contacts is that we can create electron-hole

systems electrically by controlling the gate voltage without optically exciting the

system. In this way, we can even create density polarized electron-hole systems

3



which is one of the main topics of this thesis. Since both conduction and valence

bands are spin degenerate, it has been expected that the population polarization

between electrons and holes can lead to a ferromagnetic phase [30, 31].

While sufficiently clean, low density, electron-hole bilayers have not yet been

realized in solid state systems, experimental progress [32, 33, 34, 35] in fermion atom

systems provides a new kind of polarized fermion system, which has given rise to a

new strategy for realizing the FFLO state or the related Sarma state [36] and has

stimulated a great deal of theoretical activity [37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51]. The tunability of the interaction between atoms via a Feshbach

resonance [52, 53] has made it possible to increase the strength of fermion pairing and

has even made the BEC-BCS crossover [54, 55, 56] experimentally accessible. On the

Bose-Einstein condensate (BEC) side of a Feshbach resonance fermionic atoms form

bosonic molecules which condense at low temperatures. On the Bardeen-Cooper-

Schrieffer (BCS) side, the effective attractive interaction between fermion atoms

leads to BCS-type pairing. In between lies the so-called unitarity limit [57] in which

no weakly-interacting particle description applies. The change from the BEC side to

the BCS side is a smooth crossover and there are no phase transitions between the

BCS weak-coupling paired state and the molecular paired state. The same smooth

crossover is expected to occur in excitons as the ratio of the electron-hole interaction

strength to the Fermi energy changes.

Easy control over the population of two hyperfine states in a trapped atom

cloud makes cold-atom systems a promising candidate for FFLO state realization.

The FFLO state competes [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51] with

a number of other states, including in cold atom systems states with phase separated

regions that are respectively unpolarized and unpaired. The FFLO state is expected

to occur on the BCS side of the BEC-BCS crossover, at temperatures and pressures

close to the normal/superfluid phase boundary. Population imbalance in cold atoms
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plays essentially the same role as a Zeeman or exchange field in superconductors since

pairing is dependent on energy measured from the Fermi energy for each species of

fermion. While the Zeeman field in superconductors enforces a chemical potential

difference, it is really a population difference that is enforced in cold atoms. In

both cases the Fermi radius of the majority species exceeds the Fermi radius of

the minority species and pairs at the Fermi energy necessarily have non-zero total

momentum.

In this thesis a generalized mean-field theory for the polarized fermion sys-

tems is presented. After a brief review of the BCS theory and phenomenological

Ginzburg-Landau (GL) theory of superconductivity in Chap. 2, we generalize the

BCS theory to derive a mean-field Hamiltonian for the bilayer electron-hole systems

in Chap. 3. We carefully consider the electrostatic interactions between the electrons

and holes as well as the outside charge distribution, that maintains the overall charge

neutrality in polarized systems. In Chap. 4, we apply the mean-field theory includ-

ing the spin degree of freedom. The mean-field solution of polarized electron-hole

systems are shown to be ferromagnetic as expected. In two-dimensional quantum

well structures, the spin-orbit (SO) interaction that arises due to the structural in-

version asymmetry, Rashba SO interaction [58, 59], can play an important role. We

introduce this Rashba SO interaction and present its effects on the ferromagnetic

exciton condensate. Since the SO interaction breaks the isotropic spin rotational

symmetry, it leads to qualitatively different ferromagnetic ground states. In Chap. 5,

we apply the mean-field theory to the cold fermion atom systems. We develop a

mean-field theory for rotating atom clouds since rotation is essential for the realiza-

tion of the vortex lattice structures which is one of the most definitive experimental

evidence for the superfluidity. In rotating systems, we can work in a co-rotating

frame with effective orbital magnetic field. We derive an implicit equation for the

critical temperature including the Landau quantization effect due to the effective

5



magnetic field. The non-zero pairing momentum in FFLO states then corresponds

to higher center-of-mass(COM) Landau level (LL) and the implicit Tc equation gives

the critical temperature for each COM LL pairing. Using the Tc equation developed

in Chap. 5, we determine the phase in the parameter space spanned by rotation

frequency, interaction strength and the polarization in Chap. 6. Finally a brief

summary and some suggestions for promising future work are given in Chap. 7.
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Chapter 2

BCS Theory and

Ginzburg-Landau Theory of

Superconductivity

2.1 Introduction

Classic superconductivity is perhaps the best understood example of fermion pair

condensation. The hallmark properties of superconductors are perfect conductivity

and perfect diamagnetism, which was explained fully microscopically by Bardeen,

Cooper and Schrieffer(BCS) [2]. The microscopic BCS theory is most easily applica-

ble for the case of constant order parameter ∆. For spatially inhomogeneous states

like type II superconductors, however, the application of BCS theory becomes com-

plex. Ginzburg-Landau(GL) theory [60] gives a good alternative for such cases. The

phenomenological GL theory was originally derived, with the assistance of a large

dose of physical intuition, even before the microscopic BCS theory was in place.

Later, it was shown that it can be derived from the microscopic theory as a limiting

case [61]. The GL theory is applicable when the temperature is close to Tc and
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the spatial variations of the pseudowavefucntion ψ and the vector potential A are

not too rapid. In sec. 2.2, we introduce the basic phenomenology of superconduc-

tivity using the London equations and derive the BCS theory using the canonical

transformation approach in Sec. 2.3. In Sec. 2.4 we derive the BCS gap equation

and numerically calculate the temperature dependence of the gap. In Sec. 2.5, we

review the phenomenological GL theory In Sec. 2.6, we explain the appearance of

vortices in type II superconductors and discuss the vortex lattice states that form

when many vortices are present. For general introductions to superconductivity,

see [62], [63], [64].

2.2 Phenomenology

When we cool down a metallic sample such as aluminum, lead or tin below a critical

temperature Tc the electrical resistance suddenly drops to zero. This perfect con-

ductivity can be demonstrated by persistent current in superconducting rings which

can flow without measurable decay for years. While this phenomenon is the most ob-

vious characteristic of superconductors, Meissner and Ochsenfeld [65] demonstrated

that all magnetic flux is expelled from bulk superconductors below Tc, which implies

that superconductors are perfect diamagnets too. These two basic properties can be

described by two phenomenological equations that govern the microscopic electric

and magnetic fields [66], which are called London equations.

∂Js

∂t
=

nse
2

m
E (2.1)

∇× Js = −nse
2

mc
B . (2.2)

Here ns is the superconducting electron density and electron charge is −e. These

equations can be understood as follows (see, for example, [64]). The first London

equation [Eq. (2.1)] is simply Newton’s law F = ma for a free electron system
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without scattering mechanism.

(−e)E = mv̇s = − m

nse

∂Js

∂t
(2.3)

⇒ ∂Js

∂t
=

nse
2

m
E . (2.4)

This describes the perfect conductivity. Takin the curl of the above equation and

using one of Maxwell equations,

∇×E = −1
c

∂B
∂t

, (2.5)

we obtain after integrating over time,

∇× Js = −nse
2

mc
(B−B0) (2.6)

where B0 is a constant of integration. London proposed [67] that Meissner effect

could be explained by setting B0 to zero obtaining the second London equation

[Eq. (2.2)]. The second London equation explains the Meissner effect, which can be

seen by taking the curl of one of the Maxwell equation,

∇×∇×B =
4π

c
∇× Js

⇒ ∇2B =
1
λ2

L

B , (2.7)

where λL = (mc2/4πnse
2)1/2 is the London penetration depth. If we apply Eq. (2.7)

to a plane boundary at z = 0, the normal component of the magnetic field vanishes

at the boundary and the parallel component decays exponentially over the length
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scale λL,

Bz = 0 (2.8)

B‖(z) = B‖(0)e−z/λL , (2.9)

which explains the Meissner effect.

These two London equations can be understood from quantum mechanical

point of view. Since the average of the momentum in the absence of an applied

field is zero for the ground state, arguing that the same holds for the canonical

momentum p = mvs − e/cA in the presence of an applied field, we have

〈vs〉 =
e

mc
A . (2.10)

Then the current is

Js = ns(−e)〈vs〉 = −nse
2

mc
A . (2.11)

Takin time derivative of both sides leads to the first London equation [Eq. (2.1)]

and taking the curl of both sides we obtainthe second London equation [Eq. (2.2)].

The more general phenomenological Landau-Ginzburg theory will be discussed in

Sec 2.5.

2.3 Bogoliubov Transformation and the BCS Ground

State

As first demonstrated by Cooper [6], the Fermi sea of electrons is unstable against

the formation of bound pairs called Cooper pairs, as long as the effective interac-

tion between electrons is attractive. In classical superconductors, electron-phonon

interactions give rise to this attractive effective interaction. For translationally in-

variant systems, pairing between two electrons with opposite momenta and spins
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leads to the lowest energy of the system and these pairs are strongly correlated via

the Pauli exclusion principle. The ground state is then a phase-coherent superposi-

tion of many-body states where Bloch states with opposite momenta and spins are

either both occupied or both unoccupied. Because the radius of each pair is usually

much larger than the average distance between electrons, the total Hamiltonian of

the system can be simplified using a mean-field approximation,

c†k↑c
†
−k↓ = 〈c†k↑c†−k↓〉+

(
c†k↑c

†
−k↓ − 〈c†k↑c†−k↓〉

)
, (2.12)

with the assumption that the fluctuation around the expectation value is very small

so that we can keep only up to the first order terms of the fluctuation. Then the

Hamiltonian becomes

ĤBCS =
∑

k,σ

ξkσc†kσckσ −
∑

k

(
∆kc†k↑c

†
−k↓ + ∆∗

kc−k↓ck↑ −∆k〈c†k↑c†−k↓〉
)

, (2.13)

where

∆k = −
∑

k′
V (k,k′)〈c−k′↓ck′↑〉 (2.14)

ξkσ = εkσ − µ , (2.15)

and εkσ is the band energy of the Bloch state |k, σ〉 and µ is the chemical potential.

In the normal state, the order parameter ∆k vanishes since the expectation value

〈c−k′↓ck′↑〉 averages to zero. In the Nambu-Gorkov representation [68, 69],

ĤBCS = E0 +
∑

k

(
c†k↑ c−k↓

)

 ξk↑ −∆k

−∆∗
k ξ−k↓





 ck↑

c†−k↓


 (2.16)
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where

E0 =
∑

k

(
ξ−k↓ + ∆k〈c†k↑c†−k↓〉

)
. (2.17)

Now we introduce new Fermi operators αk and βk such that


 ck↑

c†−k↓


 =


 u∗k vk

−v∗k uk





 αk

β†k


 ≡ U


 αk

β†k


 . (2.18)

The new Fermi operators should satisfy the fermion commutation relations

{α†k, αk} = |uk|2 + |vk|2 = 1 (2.19)

{β†k, βk} = |vk|2 + |uk|2 = 1 (2.20)

{α†k, βk} = {β†k, αk} = 0 (2.21)

{α†k, β†k} = {αk, βk} = 0 . (2.22)

We choose uk and vk so that the Hamiltonian is diagonal in terms of the new

operators αk and βk.

ĤBCS = E0 +
∑

k

(
α†k βk

)
U†


 ξk↑ −∆k

−∆∗
k ξ−k↓


U


 αk

β†k




= E0 +
∑

k

(
α†k βk

)

 E1k 0

0 E2k





 αk

β†k


 (2.23)
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where

E1k =
√

ξ2
k + |∆k|2 ≡ Ek (2.24)

E2k = −
√

ξ2
k + |∆k|2 = −Ek (2.25)

|uk|2 =
1
2

(
1 +

ξk
Ek

)
(2.26)

|vk|2 =
1
2

(
1− ξk

Ek

)
(2.27)

u∗kvk =
∆k

2Ek
. (2.28)

We assume that the Bloch state band energy is degenerate, ξk↑ = ξ−k↓ ≡ ξk. The

Hamiltonian then reduces to

ĤBCS = E0 −
∑

k

Ek +
∑

k

Ek

(
α†kαk + β†kβk

)
. (2.29)

The first two constant terms give the condensation energy of the system at zero

temperature and the last term describes the quasi-particle excitation of the system.

The two species of quasi-particles have the same positive excitation energy Ek. The

ground state |ΨG〉 is, therefore, the vacuum state for the quasi-particle operators,

〈ΨG|α†kαk|ΨG〉 = 〈ΨG|β†kβk|ΨG〉 = 0 . (2.30)

(In electron-hole systems where the band energies of conduction and valence bands

are different due to the different effective masses, the quasi-particle excitation en-

ergies are also different. This property will play a central role in the excitonic

condensation as will be discussed later.) The ground state that satisfies Eq. (2.30)

can be obtained as follows. Define |ΦF 〉 to be a state that all the Bloch states are

completely occupied,

|ΦF 〉 ≡
∏

k

c†k↑c
†
−k↓|0〉 (2.31)
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where |0〉 is the electron vacuum state. Then the BCS ground state can be obtained

by annihilating all the quasi-particles present in |ΦF 〉.

|ΨG〉 =
∏

k

αkβk|ΦF 〉

=
∏

k

(
ukck↑ − vkc†−k↓

)(
vkc†k↑ + ukc−k↓

)
c†k↑c

†
−k↓|0〉

= −
∏

k

uk

(
uk + vkc†k↑c

†
−k↓

)
|0〉 . (2.32)

After applying the normalization condition 〈ΨG|ΨG〉 = 1, we obtain

|ΨG〉 =
∏

k

(
uk + vkc†k↑c

†
−k↓

)
|0〉 . (2.33)

2.4 Gap Equation and Critical Temperature

BCS theory is a self-consistent mean-field theory. The self-consistency is encoded

in the definition of the order parameter ∆k, which depends on the solution of the

problem.

∆k = −
∑

k′
V (k,k′)〈c−k′↓ck′↑〉

= −
∑

k′
V (k,k′)〈

(
−vk′α

†
k′ + u∗k′βk′

)(
u∗k′αk′ + vk′β

†
k′

)
〉

= −
∑

k′
V (k,k′)

(
−vk′u

∗
k′〈α†k′αk′〉+ u∗k′vk′〈βk′β

†
k′〉

)

= −
∑

k′
V (k,k′)u∗k′vk′

(
1− 〈α†k′αk′〉 − 〈β†k′βk′〉

)

= −
∑

k′
V (k,k′)

∆k′

2Ek′

(
1− 〈α†k′αk′〉 − 〈β†k′βk′〉

)
. (2.34)

This is the self-consistent gap equation. The trivial solution ∆k = 0 corresponds

to the normal Fermi gas and we expect nontrivial solution with lower energy for
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attractive interactions. If we adopt the simple model invented by BCS in their

seminal articles,

V (k,k′) =




−V0 if |ξk| and |ξk′ | ≤ ~ωc

0 otherwise
(2.35)

where ωc is the cut-off frequency, the solution of the gap equation at T = 0 is

∆k =





∆0 for |ξk| < ~ωc

0 for |ξk| > ~ωc

, (2.36)

where ∆0 satisfies

1 =
∑

k

′ V0

2
√

ξ2
k + ∆2

0

(2.37)

and
∑′

k indicates that the summation is over k that satisfies |ξk| < ~ωc. Here the

overall phase of ∆0 is set such that ∆0 is real and positive. Changing the summation

into an integration, we obtain

1
V0

=
∫ ~ωc

−~ωc

dξ
N(ξ)

2
√

ξ2 + ∆2
0

(2.38)

where N(ξ) is the density of states for electrons of one spin orientation. Assuming

N(ξ) is slowly varying over the range of |ξ| < ~ωc,

1
N(0)V0

=
∫ ~ωc

0
dξ

1√
ξ2 + ∆2

0

= ln
~ωc +

√
(~ωc)2 + ∆2

0

∆0
, (2.39)

where N(0) is the density of states at the Fermi level. Thus we find the gap ∆0 at

zero temperature

∆0 =
~ωc

sinh(1/N(0)V0)
' 2~ωce

−1/N(0)V0 (2.40)
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where the last step is for weak-coupling limit N(0)V0 ¿ 1. At finite temperatures,

the expectation value of the quasi-particle number operators in Eq. (2.34) is given

by the Fermi function

〈α†kαk〉 = 〈β†kβk〉 =
1

eβEk + 1
= f(Ek) (2.41)

where β = 1/kBT and using the same BCS effective interaction [Eq. (2.35)], the gap

equation becomes

∆k =





V0
∑′

k′
∆k′
2Ek′

(1− 2f(Ek′)) for |ξk| < ~ωc

0 for |ξk| > ~ωc

. (2.42)

Because the right-hand-side does not depend on k, ∆k is constant. Then

∆k =





∆ for |ξk| < ~ωc

0 for |ξk| > ~ωc

, (2.43)

where ∆ satisfies an implicit equation

1
V0

=
1
2

∑

k

′ tanh(βEk/2)
Ek

(2.44)

⇒ 1
N(0)V0

=
∫ ~ωc

0
dξ

tanh(β
2

√
ξ2 + ∆2)√

ξ2 + ∆2
. (2.45)

The critical temperature Tc is determined by setting ∆(T ) → 0.

1
N(0)V0

=
∫ βc~ωc

0
dx

tanhx

x
= ln

(
2eγ

π
βc~ωc

)
(2.46)

where γ = 0.577... is Euler’s constant. Therefore, the critical temperature

kBTc = β−1
c = 1.13~ωce

−1/N(0)V0 = 0.565∆0 (2.47)
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Figure 2.1: BCS gap ∆(T ) at finite temperatures, numerically evaluated by solving
the gap equation Eq. (2.45).

is of the same order as the zero-temperature gap ∆0. The similarity of critical

temperatures and zero temperature gaps is a hallmark of mean-field theories of order-

disorder phase transitions. At finite temperatures, the gap ∆(T ) can be calculated

by solving the gap equation Eq. (2.45) numerically. The result is shown in Fig. 2.1.

At low temperatures, ∆(T ) is almost constant because the hyperbolic tangent in

Eq. (2.45) is almost unity since e−∆/kBT ' 0. Near Tc, ∆(T )/∆0 ∝ (1− T/Tc)1/2.

2.5 GL Free Energy and Differential Equations

The basic postulates of GL theory are that there is a small and slowly varying

complex order parameter ψ(r) such that |ψ(r)|2 is the local density of the supercon-

ducting electrons, ns(r). The free energy density then can be expanded in powers

of |ψ|2 and |∇ψ|2,

f = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1
2m∗

∣∣∣∣
(
~
i
∇ +

e∗

c
A

)
ψ

∣∣∣∣
2

+
H2

8π
(2.48)
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where A is the vector potential. The effective charge e∗ of the superconducting

particle is easily identified as 2e of the Cooper pair, while the effective mass depends

on the crystal structures and the interaction between electrons and phonons. e∗

was originally set equal to e and only the subsequent microscopic theory made it

clear that e∗ should be 2e. The size of the ’superconducting’ flux quantum proves

experimentally that this parameter should be 2e as will be discussed in the next

section. In the absence of external fields and gradients of the pseudowavefunction,

we have

fs − fn = α|ψ|2 +
β

2
|ψ|4 . (2.49)

Note that β must be positive since otherwise the lowest free energy would occur for

arbitrarily large |ψ|2. If α is also positive, the lowest free energy occurs at |ψ|2=0,

corresponding to the normal state. If α is negative, the minimum occurs when

|ψ|2 = |ψ∞|2 ≡ −α

β
(2.50)

where |ψ∞|2 is |ψ|2 value in infinitely deep interior of the superconductor.

By carrying out functional derivative of Eq. (2.48) with respect to ψ = |ψ|eiϕ

and A, we obtain GL differential equations

αψ + β|ψ|2ψ +
1

2m∗
(
~
i
∇ +

e∗

c
A

)2

ψ = 0 (2.51)

J =
c

4π
∇×H = − e∗

m∗

(
~∇ϕ +

e∗

c
A

)
|ψ|2 = −e∗nsvs (2.52)

where

vs =
1

m∗

(
~∇ϕ +

e∗

c
A

)
(2.53)

is the supercurrent velocity. Taking the time derivative and the curl of Eq. (2.52)

recovers the first [Eq. (2.1)] and the second [Eq. (2.2)] London equations respectively.

There are two length scales for superconductors, the coherence length and
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the penetration depth. The coherence length is the length scale over which the order

parameter changes in space while the penetration depth is the length scale that the

magnetic field penetrates into the superconductor. In the absence of external fields

we can take ψ to be real and in one-dimension Eq. (2.51) becomes,

~2

2m∗|α|
d2f

dx2
+ f − f3 = 0 (2.54)

where f = ψ/ψ∞. Therefore the characteristic length scale for order parameter

variation is

ξ =
~√

2m∗|α| (2.55)

which is called GL coherence length. An expression for the penetration depth in

terms of the Landau parameters α and β can be obtained by substituting Eq. (2.52)

into the London equation Eq. (2.2) for constant ns. Using ∇×∇ϕ = 0 we obtain

for the penetration depth

λ2
eff =

m∗c2

4π|ψ|2e∗2 =
m∗c2β

4π|α|e∗2 . (2.56)

The GL parameter κ which is defined as the ratio of the two length scales

κ =
λeff

ξ
=

m∗c
e∗~

√
β

2π
(2.57)

determines whether the superconductor is type I or type II. There are many examples

of both types of superconductors.
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2.6 Vortex Lattices

The Helmholtz free energy of the normal state occupying volume V in the presence

of the field is

Fn = V fn0 + V
H2

8π
+ Vext

H2

8π
(2.58)

where fn0 is the free energy density of the normal state in the absence of the field

and Vext is the volume of the space outside the sample. For superconductors, since

the field is zero inside the sample,

Fs = V fs0 + Vext
H2

8π
(2.59)

where fs0 is the free energy density in the absence of the field. In the presence

of an external field, if we choose the external field H as the independent variable

the appropriate thermodynamic potential is the Gibbs free energy whose density is

given by

g = f − B ·H
4π

. (2.60)

Then the Gibbs free energy of the normal state and the superconducting state are

Gn = V fn0 − V
H2

8π
− Vext

H2

8π
(2.61)

Gs = V fs0 − Vext
H2

8π
(2.62)

because B = H in the normal state and outside the sample. The critical field Hc is

defined as the field where the Gibbs free energies of the normal and superconducting

states are the same. This leads to

fn0 − fs0 =
H2

c

8π
. (2.63)
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Using this relation combined with Eq. (2.49) and Eq. (2.50), we obtain

H2
c =

4πα2

β
. (2.64)

The superconducting order parameter cannot remain constant if field pene-

trates into a superconductor. The critical field defined above was for a first order

phase transition between superconducting and normal states assuming no field pene-

tration. If field does penetrate, the superconducting state can no longer be constant.

A second critical field can be defined by assuming a continuous phase transition be-

tween superconducting and normal states in which flux penetration is allowed. Near

the second critical field Hc2 where the order parameter ψ is very small, we can keep

only the first order terms from Eq. (2.51)

1
2m∗

(
~
i
∇ +

e∗

c
A

)2

ψ = −αψ . (2.65)

This equation has a nontrivial solution only if −α is larger than the lowest eigenvalue

~ωc/2 where ωc = 2eHc2/mc. Therefore the critical field Hc2 is defined by

Hc2 =
mc|α|

e~
. (2.66)

The ratio between these two critical field is

Hc2

Hc
=
√

2κ . (2.67)

If κ < 1/
√

2 (type I), Hc2 lies below Hc and has no physical meaning. On the other

hand if κ > 1/
√

2 (type II), Hc2 is larger than Hc and between these two critical

fields, it is energetically unfavorable to expel all magnetic flux while favorable to be in

the superconducting state. This corresponds to the negative surface energy between

the superconduting and the normal region. In a type II superconductor in the field
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Figure 2.2: Illustration of a single vortex in a type II superconductor. Shaded region
presents the vortex core where the superconducting order parameter vanishes. The
outside region is superconducting and the order parameter is almost constant. The
integration of ∇ϕ over the dotted contour which is deep in the superconducting
region must be a multiple of 2π. This property implies that the magnetic flux that
penetrates through the superconductor in the neighborhood of the vortex must be
a multiple of the quantum of magnetic flux.

range Hc < H < Hc2, the magnetic flux penetrates through the superconductor

and it forms as much surface as possible to minimize the energy. The magnetic flux

therefore split into the smallest possible unit in the superconductor, which leads to

the vortex lattice state where a flux quantum penetrates through a single vortex.

A single vortex is illustrated in Fig. 2.2. There is a vortex core region of

the size of about the coherence length where the order parameter vanishes in the

center. The magnetic flux penetrates through this core region. Outside of the core

region is the superconducting region where the order parameter is almost constant.

The minimum possible flux for a single vortex can be determined by demanding the

single-valued condition on the phase of the order parameter. If we integrate the

gradient of the phase along a contour around the vortex whose radius is larger than
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the penetration depth [dotted contour in Fig. 2.2],

2nπ =
∮

dl ·∇ϕ = − e∗

~c

∮
dl ·A

= − e∗

~c

∫
da ·B = − e∗

~c
Φ , (2.68)

which leads to the condition on the flux

Φ =
hc

2e
n =

n

2
Φ0 (2.69)

where n is any integer and Φ0 = hc/e is the quantum of magnetic flux. The factor

1/2 proves experimentally [70, 71] that superconductivity is a condensate of electron

pairs. Therefore, the smallest magnetic flux in a vortex is Φ0/2. If the total magnetic

flux Φ is much larger than the flux quantum Φ0, the vortices naturally form a lattice

configuration which has lower energy than the random configuration [72]. The most

favorable lattice structure was found to be the triangular lattice [73].
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Chapter 3

Mean-Field Theory of Fermion

Pair Condensation in

Electron-Hole Bilayers

3.1 Introduction

We consider a double-quantum-well structure composed of two GaAs quantum wells

separated by an GaAlAs spacer. The difference between the fundamental energy

gaps of GaAs and GaAlAs leads to potential profiles for the conduction and valence

bands which can be treated as confining potentials. A gate voltage is applied in

the perpendicular direction to the layers so that the valence band maximum can

move higher than the conduction band minimum, leading to a spatially separated

electron and hole gas system. In addition to making electron-hole systems stable,

the external field also affects [74, 75, 76, 77] the Rashba spin-orbit interaction [58,

59], which arises from the structural inversion asymmetry in quantum wells. The

Rashba SO interaction plays an important role in the ferromagnetic phase expected

to accompany excitonic condensation as will be discussed in the next chapter. We
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assume that there is external charge distributed outside of the bilayer system that

determines the external electric fields EL and ER and that the hole layer contains

uniform positive charges with charge density of en0 (see Fig. 3.1). Treating EL

and ER as experimentally controllable parameters rather than the electron and hole

densities, does a better job of representing real experimental condition. Once we fix

the external charge densities ρL and ρR, the density difference between electron and

hole ∆n = nc − nh is determined by overall charge neutrality, but nc and nh are

only self-consistently determined after we solve the problem. If EL and ER are the

same, ρL + ρR = 0 and therefore nc = nh, while if EL − ER 6= 0, then ρL + ρR 6= 0

and ∆n = −(ρA + ρB)/e = (ρL + ρR)/e. Therefore, by controlling the external

charge densities ρA and ρB or equivalently, the external electric fields EL and ER,

we can create density polarized electron-hole bilayer systems. Tuning the difference

between electron and hole populations will come for free as an experimental tuning

parameter in these experiments. This population polarization leads to interesting

new physics that will be discussed in the next chapter.

In this chapter, we generalize the BCS theory to more general fermion sys-

tems with more general attractive interactions, particularly to electron-hole systems

with natural attractive Coulomb interaction between electrons and holes. We con-

sider only a single conduction band and a single valence band in this chapter. For

population unpolarized systems, the spin degree of freedom does not change the

results of this chapter except for the spin-degeneracy of each bands. In Sec. 3.2, we

derive the mean-field Hamiltonian and the formal expression for the total energy for

the bilayer system. When all electrons are in the same layer, the charge density is

uniform and we can neglect all the direct Coulomb interactions. In bilayer systems

where charges are spatially separated, however, the Hartree energy that comes from

the direct Coulomb interactions must be included explicitly. This is quite a tricky

issue that is often treated incorrectly. In Sec. 3.3, we discuss how we treat the di-
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Figure 3.1: Cartoon depicting the bilayer system including the external charge dis-
tribution which gives rise to the external electric field. Layer A is the electron layer
and layer B is the hole layer. Layers L and R contain the external charge distribu-
tion. The overall charge is neutral so that ρL + ρA + ρB + ρR = 0. ρL and ρR are
purely external charge and lead to gate external fields EL and ER. ρA = −enc is
contributed by the conduction band electrons and ρB = −env +en0 = enh is the to-
tal charge density that comes from the valence band electrons and the background
positive charge in layer B. The electric field outside of the whole system is zero
because of overall charge neutrality.
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rect Coulomb interaction and the electrostatic energy due to the external charges.

Using the mean-field Hamiltonian, we derive a BCS-like gap equation in Sec. 3.4,

and present some numerical results for this 2-band model.

3.2 Mean-Field Hamiltonian for Excitonic Bilayer Sys-

tems

The total Hamiltonian of the bilayer system that has one conduction band and one

valence band is

Ĥ = Eext
ES +

∑

ak

(
ε
(0)
ak + V ext

a

)
c†akcak +

1
2Ω

∑

kk′q
aa′

V aa′(q)c†ak c†a′k′ ca′k′+q cak−q (3.1)

where a’s are the band indices for conduction band c in layer A and valence band v

in layer B, k is the two-dimensional wave vector, Ω is area of each layer and V aa′(q)

is the Fourier transform of the Coulomb interaction between electrons in band a and

band a′. Eext
ES is the electrostatic energy that comes from the Coulomb interaction

between the outside charge distribution and the positive background charge in layer

B, and V ext
a is the electric field the electrons in band a feel due to the outside charge

and the background charge in layer B. The bare band energies ε
(0)
ak ’s are assumed

to be parabolic for both conduction and valence bands,

ε
(0)
ck =

~k2

2mc
(3.2)

ε
(0)
vk = − ~k

2

2mv
− Eg , (3.3)

with the fundamental band gap Eg. V ext
a does not depend on k and only depends

on the z-coordinate of the layers. We neglect the small overlap of electron and hole

wavefunctions so that the interaction V conserves band indices. Using the mean-
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field approximation allowing inter-band coherence, the two-body interaction part of

the total Hamiltonian leads to the Hartree field and the exchange field.

ĤMF = Eext
ES + E0 +

∑

ak

(
ε
(0)
ak + V ext

a + εh
a + εex

ak

)
c†akcak −

∑

k

(
∆kc†ckcvk + h.c.

)

(3.4)

where

E0 = −1
2

∑

ak

(
εh
a + εex

ak

)
〈c†akcak〉+

1
2

∑

k

(
∆k〈c†ckcvk〉+ c.c.

)
(3.5)

εh
a =

1
Ω

V aa′(0)
∑

a′k

〈c†a′kca′k〉 (3.6)

εex
ak = − 1

Ω

∑

k′
V aa(k− k′)〈c†ak′cak′〉 (3.7)

∆k =
1
Ω

∑

k′
V cv(k− k′)〈c†vk′cck′〉 . (3.8)

Here εh
a is the Hartree field, εex

ak is the intra-band exchange field and ∆k is the

inter-band exchange field. The constant E0 is included to avoid double counting

of two-body interaction when we calculate the total energy. In bulk systems where

the total charge density is uniform, the Hartree term εh
a is exactly cancelled by the

background positive ions. In bilayer systems where electrons and holes are spatially

separated, the net electrostatic potential energy is not cancelled and the Hartree

term must be calculated self-consistently including all the electrostatic potentials

from the electrons and holes. This Hartree term for bilayer systems will be explicitly

calculated in the next section. Introducing the density matrix

ρa′a(k) ≡ 〈c†akca′k〉 , (3.9)
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Eq. (3.5) ∼ Eq. (3.8) can be rewritten as

E0 = −1
2

∑

ak

(
εh
a + εex

ak

)
ρaa(k) +

1
2

∑

k

(∆kρvc(k) + c.c.) (3.10)

εh
a =

1
Ω

V aa′(0)
∑

a′k

ρa′a′(k) (3.11)

εex
ak = − 1

Ω

∑

k′
V aa(k− k′)ρaa(k′) (3.12)

∆k =
1
Ω

∑

k′
V cv(k− k′)ρcv(k′) , (3.13)

We allow the inter-layer coherence which leads to non-vanishing expectation values

of 〈c†vk′ cck′〉, and ∆k is the resulting inter-layer momentum-dependent exchange in-

teraction term. The exchange term for the valence band diverges in general because

we assume that the valence band energy goes to the negative infinity for large k.

This problem can be removed by noticing that the experimentally measured valence

band effective mass presumably includes all the interaction effects in a normal state

with empty conduction band and full valence band, which we will define as |Φ0〉.
Thus

− ~k
2

2m∗
v

= − ~k
2

2mv
− 1

Ω

∑

k′
V vv(k− k′)ρvv

0 (k′)

= − ~k
2

2mv
− 1

Ω

∑

k′
V vv(k− k′) (3.14)

where ρ0 is the density matrix when the system is in state |Φ0〉,

ρaa′
0 (k) =





1 a = v, a′ = v

0 otherwise
. (3.15)
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It follows that

ε
(0)
vk + εex

vk = − ~k
2

2m∗
v

− Eg − 1
Ω

∑

k′
V vv(k− k′)

(
ρvv(k′)− 1

)
(3.16)

which remains finite.

The total energy of the ground state |ΨG〉 can be calculated as the expecta-

tion value of the mean-field Hamiltonian,

Etot[ΨG]≡ 〈ΨG|ĤMF |ΨG〉

=
∑

ak

(
ε
(0)
ak +

1
2
εex
ak

)
ρaa(k)− 1

2

∑

ak

(∆kρvc(k) + c.c.) + EES ,

(3.17)

where

EES = Eext
ES +

∑

ak

(
V ext

a +
1
2
εh
a

)
ρaa(k) (3.18)

is the electrostatic energy that comes from the direct Coulomb interaction of total

charge distribution and will be calculated in the next section. The first term in

Eq. (3.17) in general diverges again because the valence band energy goes to negative

infinity for large k where the occupancy is always very close to 1. To remove this

unphysical divergence, we introduce a new density matrix

ρ̃aa′(k) ≡ ρaa′(k)− ρaa′
0 (k) (3.19)

which goes to zero at large k because we subtract the density matrix of the no-

carrier |Φ0〉 state. Let us define a new band energy and a new exchange energy that
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correspond to this new density matrix:

ε̃
(0)
ck =

~k2

2mc
(3.20)

ε̃
(0)
vk = − ~k

2

2m∗
v

− Eg (3.21)

ε̃ex
ak = − 1

Ω

∑

k′
V aa(k− k′)ρ̃aa(k′) . (3.22)

Note that

ε
(0)
ak + εex

ak = ε̃
(0)
ak + ε̃ex

ak (3.23)

does not change with the new choice of the new density matrix. Then the total

energy minus the electrostatic energy becomes

Etot[ΨG]− EES

=
∑

ak

(
ε
(0)
ak + εex

ak

)
ρaa(k)− 1

2

∑

ak

εex
akρaa(k)− 1

2

∑

ak

(∆kρvc(k) + c.c.)

=
∑

ak

(
ε̃
(0)
ak +

1
2
ε̃ex
ak

)
ρ̃aa(k)− 1

2

∑

ak

(∆kρvc(k) + c.c.) + Etot[Φ0] (3.24)

where

Etot[Φ0] =
∑

ak

ε̃
(0)
akρaa

0 (k) +
1

2Ω

∑

k′
V aa(k− k′)ρaa

0 (k)ρaa
0 (k′) (3.25)

is the total energy of Φ0. Then the divergence can be removed by subtracting

Etot[Φ0] from the total energy. Therefore we have

Etot[ΨG]− Etot[Φ0]

=
∑

ak

(
ε̃
(0)
ak +

1
2
ε̃ex
ak

)
ρ̃aa(k)− 1

2

∑

ak

(∆kρvc(k) + c.c.) + EES (3.26)

which has finite value.
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3.3 Calculation of Hartree Potential and Electrostatic

Energy in Bilayer Systems

The Hartree potential defined as

εh
a =

1
Ω

V aa′(0)
∑

a′k

ρa′a′(k) (3.27)

gives

εh
c = lim

q→0

2πe2

εq

(
nc + nve

−qd
)

= lim
q→0

2πe2

εq

(
nc − nhe−qd + n0e

−qd
)

(3.28)

εh
v = lim

q→0

2πe2

εq

(
nv + nce

−qd
)

= lim
q→0

2πe2

εq

(
n0 − nh + nce

−qd
)

(3.29)

for the Coulomb interaction with dielectric constant ε where nc(nv) is the electron

density of conduction(valence) band, nh = n0 − nv is the hole density and n0 is

the total number of states per unit area in the valence band. This Hartree term

is not well defined because V aa′(q) goes to infinity as q goes to zero. To remove

this divergence, we have to include the Coulomb interaction with the background

positive ions that maintain the overall charge neutrality. The external field V ext
a

which consists of the direct Coulomb interactions from ρL, ρR and the background

charge en0 in the hole layer can be formally written as

V ext
c = − lim

q→0

2πe2

εq

(ρL

e
e−qD +

ρR

e
e−q(D+d) + n0e

−qD
)

(3.30)

V ext
v = − lim

q→0

2πe2

εq

(ρL

e
e−q(D+d) +

ρR

e
e−qD + n0

)
. (3.31)
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Then the total electrostatic field for the conduction band electrons is

εh
c + V ext

c = lim
q→0

2πe2

εq

(
nc − nhe−qd − nLe−qD − nRe−q(D+d)

)

=
2πe2

ε
(nhd + nLD + nR(D + d))

=
2πe2ncd

ε
+

2πe2

ε
((nc − nh)(D − d) + nRd)

≡ 2πe2ncd

ε
+ ε0 (3.32)

and for the valence band electrons,

εh
v + V ext

v = lim
q→0

2πe2

εq

(
−nh + nce

−qd − nLe−q(D+d) − nRe−qD
)

=
2πe2

ε
(−ncd + nL(D + d) + nRD)

= −2πe2nhd

ε
+

2πe2

ε
((nc − nh)(D − d) + nLd)

= −2πe2nhd

ε
+ ε0 +

2πe2

ε
(nL − nR)d

≡ −2πe2nhd

ε
+ ε0 + εv0 . (3.33)

With fixed ρL and ρR, ε0 is just a constant energy shift of both bands so we can set

ε0 = 0 and εv0 determines the relative position of the conduction band minimum

and the valence band maximum. Then we can define new Hartree potentials and

external fields as

ε̃h
c =

2πe2ncd

ε
(3.34)

ε̃h
v = −2πe2nhd

ε
(3.35)

Ṽ ext
c = 0 (3.36)

Ṽ ext
v = εv0 . (3.37)
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The total electrostatic energy EES includes the Coulomb interaction among

charges in layer L, layer R and the positive background charge in layer B as well as

the electrostatic energy of the electrons in both layers A and B.

EES

Ω
=

(
V ext

c +
1
2
εh
c

)
nc +

(
V ext

v +
1
2
εv
c

)
nc +

Eext
ES

Ω
(3.38)

where

Eext
ES

Ω
= lim

q→0

2πe2

εq

(
n2

L + n2
R + n2

0

2
+ nLnRe−q(2D+d) + nLn0e

−q(D+d) + nRn0e
−qD

)

(3.39)

and nL = ρL/e, nR = ρR/e. After some algebra we obtain

EES

Ω
=

1
2

2πe2d

ε

(
n2

c + n2
h

)
+ ε0(nc − nh) + εv0(−nh)

+
2πe2d

ε

(
d

(
(nc − nh)2

2
− nLnR

)
− 2DnLnR

)
. (3.40)

With fixed ρL and ρR, and setting ε0 = 0,

EES

Ω
=

1
2

(
ε̃h
c nc − ε̃h

vnh

)
+ Ṽ ext

v (−nh) + const. (3.41)

which can be obtained up to a constant by replacing εh
a, V ext

a and ρaa in Eq. (3.18)

with new ones in Eq. (3.34) ∼ Eq. (3.37),

EES =
∑

ak

(
Ṽ ext

a +
1
2
ε̃h
a

)
ρ̃aa(k) . (3.42)

The total electrostatic energy can be calculated alternatively by solving the Poisson

equation for the charge distribution in Fig. 3.1. Using Gauss theorem, we find the
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electric field

EL =
4πe

ε
nL (3.43)

E =
4πe

ε
(nL − nc) (3.44)

ER =
4πe

ε
(nL − nc + nh) . (3.45)

We can see the difference of the electrostatic field in the conduction and the valence

bands is the same with the difference in the Hartree field and the external field in

Eq. (3.34) ∼ Eq. (3.37),

(
ε̃h
v + Ṽ ext

v

)
−

(
ε̃c
v + Ṽ ext

c

)
=

4πe2d

ε
(nL − nc) = eEd . (3.46)

The total electrostatic energy is given by the integration

EES

Ω
=

1
Ω

∫
d3r

1
8π

ε|E|2

=
2πe2

ε

(
d(nL − nc)2 + D(n2

L + n2
R)

)
(3.47)

which can be shown to be equal to Eq. (3.40) up to a constant.

3.4 Gap Equation

In this section we derive the gap equation for the bilayer system with equal densities

of electrons and holes. The mean-field Hamiltonian in matrix form is,

ĤMF =
∑

k

( c†ck c†vk )


 εck −∆k

−∆∗
k εvk





 cck

cvk


 (3.48)

where

εak = ε̃
(0)
ak + Ṽ ext

a + ε̃h
a + ε̃ex

ak (3.49)
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with the definitions of new variables in the previous section. We can diagonalize

the Hamiltonian ĤMF by introducing the new Fermi quasi-particle operators using

a Bogoliubov transformation:

ĤMF =
∑

k

(
α†k β†k

)

 ε

(1)
k 0

0 ε
(2)
k





 αk

βk


 (3.50)

where


 αk

βk


 =


 uk −vk

v∗k u∗k





 cck

cvk


 (3.51)

ε
(1,2)
k =

1
2
(εck + εvk)±

√
ε2
k + |∆k|2 (3.52)

|uk|2 =
1
2


1 +

εk√
ε2
k + |∆k|2


 (3.53)

|vk|2 =
1
2


1− εk√

ε2
k + |∆k|2


 (3.54)

u∗kvk =
∆k

2
√

ε2
k + |∆k|2

(3.55)

εk =
1
2

(εck − εvk) , (3.56)

and the ground state is given by

|ΨG〉 =
∏

k

β†k|0〉 =
∏

k

(
vkc†ck + ukc†vk

)
|0〉 , (3.57)

where |0〉 is the vacuum states. This canonical transformation is analogous to the

canonical transformation of the BCS theory if we perform the electron-hole trans-

formation to the valence band electrons. In conduction-valence band picture, these

new fermion operators correspond to the superposition of the conduction band states
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and valence band states that diagonalize the self-consistent mean-field Hamiltonian.

In this language our mean-field calculation is just standard Hartree-Fock theory

in which special care is required in how the electrostatic energy is treated to ex-

tract the finite energy of an electrically neutral system in a consistent way. We

will consistently use conduction-valence band picture of electrons rather than the

electron-hole picture throughout all the calculations for bilayer systems because it

is easier to avoid confusions about how the cancelling Coulombic divergences are

handled. The self-consistent gap equation at zero temperature is obtained from the

definition of the inter-band exchange field,

∆k =
1
Ω

∑

k′
V cv(k− k′)〈c†vk′ cck′〉

=
1
Ω

∑

k′
V cv(k− k′)u∗k′vk′

=
1
Ω

∑

k′
V cv(k− k′)

∆k′

2
√

ε2
k′ + |∆k′ |2

. (3.58)

The total energy of the ground state is given by Eq. (3.26) and Eq. (3.42), with

ρ̃a′a(k) = 〈ΨG|c†akca′k|ΨG〉 − ρa′a
0 (k) . (3.59)

We numerically solve the gap equation [Eq. (3.58)] self-consistently for a

system with an equal density of electrons and holes. The effective masses are mc =

0.067m0 and m∗
v = 0.11m0. The inter-layer distance d = 100Å and the dielectric

constant ε = 13 in the calculation. We choose the density difference ∆n = nc − nh

and the initial band overlap µ0 = εv0 − Eg as two controllable parameters and set

∆n = 0 for the following calculations. There is close analogy to the BCS theory for

a superconductor and we obtain a similar energy spectrum with a gap [Fig.3.2]. The

gap function ∆k has a maximum around the Fermi wave vector and it decreases as

density increases [Fig.3.3]. At very high densities, the ground state converges to the
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Figure 3.2: Excitation energy ε
(1,2)
k of a 2-band excitonic condensate. µ0 = 10meV

and nc − nh = 0. The calculated densities are nc = nh = 1.0× 1011cm−2. εF is the
Fermi energy.
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Figure 3.3: ∆k in the 2-band model for various µ0 values. The calculated densities
are n = 0.8 × 1011cm−2, 1.0 × 1011cm−2, 1.4 × 1011cm−2 and 1.7 × 1011cm−2 for
µ0 = 5.7meV to 23meV, respectively.
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electron-hole plasma state and the gap goes to zero. These results agree with the

previous work by Zhu et al [78]. Even though the attractive interaction is now the

Coulomb interaction rather than the BCS-like short range interaction[Eq. (2.35)],

the gap function shows similar behavior, which implies that the pairing is most

significant for electrons and holes near the Fermi surface.
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Chapter 4

Ferromagnetic Excitonic

Condensation

4.1 Introduction

In this chapter, we restore the spin degree of freedom in the bilayer systems to study

its effects on excitonic condensation. In population polarized systems this additional

degree of freedom plays an important role in realizing the ferromagnetic phase. The

experimental observation of weak ferromagnetism in lightly doped divalent hexa-

borides [79] gave rise to some new interest in the ferromagnetic exciton condensate

as a possible explanation for the experiment [80, 81, 82]. This ferromagnetism is

driven by the condensation and has some unique symmetry properties related to

the approximate spin-rotational symmetry of the microscopic Hamiltonian. The

Rashba SO interaction that is caused by structural inversion asymmetry breaks this

spin-rotational symmetry of the system and leads to more complicated magnetic

symmetries.

In Sec. 4.2 we derive the mean-field Hamiltonian for the bilayer electron-hole

system with spin degrees of freedom and discuss the validity of the mean-field theory
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for different density regimes.. We then apply the mean-field theory to systems with

an equal density of electrons and holes, allowing spin-polarization of each layer. In

Sec. 4.3 we show that the ferromagnetic state can occur for population polarized

condensate systems where electron and hole densities are different. In Sec. 4.4, we

introduce the Rashba spin-orbit interaction and describe the effects of the Rashba

interaction on the ferromagnetic exciton condensate in Sec. 4.5.

4.2 Mean-Field Hamiltonian

When we allow different number of spin-up and spin-down electrons in a two-

dimensional system, the mean-field calculation generally overestimates the ten-

dency towards spontaneous spin polarization [83]. At low densities the total energy

of a completely spin-polarized state can be smaller than the energy of the spin-

unpolarized paramagnetic state since the exchange energy dominates the kinetic

energy. In the Hartree-Fock approximation the total energy of a two-dimensional

electron system in a narrow quantum well is given by

Etot(χ)
Ntot

=
εF0

4

(
(1 + χ)2 + (1− χ)2 − 16

3π

1
kF0a0

(
(1 + χ)3/2 + (1− χ)3/2

))
(4.1)

where Ntot is the total number of electrons in the system, εF0 and kF0 are the

Fermi energy and the Fermi wavevector of the unpolarized system, a0 = ε~2/me2

and χ = (N↑ −N↓)/Ntot. ε is the dielectric constant. This mean-field total energy

describes how the energy depends on the spin-polarization and the total density of

the system. Fig. 4.1 shows the total energy as a function of the spin-polarization χ

for various densities. At high densities[Fig. 4.1(a)], the kinetic energy is dominant

and the spin-unpolarized state is the ground state and the only stable state against

small spin-polarization. As we decrease the density, completely spin-polarized states

begin to be energetically favored at the critical density[Fig. 4.1(c)] where Etot(χ =
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Figure 4.1: Total energy of the two-dimensional electron gas as a function of the
spin-polarization χ for various densities under mean-field approximation. (a) is for
kF0a0=1.0, (b) 0.75, (c) 0.7032, (d) 0.68, (e) 0.637 and (f) 0.55. (c) is where the com-
pletely spin-polarized state begins to have lower energy than the spin-unpolarized
state. The critical density is determined by kF0a0=16(

√
2− 1)/3π. (e) is where the

paramagnetic state becomes unstable against a small polarization. The density is
determined by kF0a0=2/π.

1) = Etot(χ = 0), but the spin-unpolarized state is still stable against small spin-

polarization until the density further decreases to Fig. 4.1(e) where ∂2Etot(χ =

0)/∂χ2 begins to be negative. It is worth to note that the self-consistent mean-field

solutions can be obtained for any locally stable state. Self-consistent solutions of

the mean-field equations do not always yield the mean-field theory ground state.

Therefore, it can describe the behavior of the spin-unpolarized states for wider

range of densities, even below the critical density where the spin-polarized state

is the ground state in the mean-field approximation. We expect this argument

also applies to bilayer systems. For GaAs quantum wells which we use as our

model system throughout the calculations, the effective masses are mc = 0.067m0

and m∗
v = 0.11m0 where m0 is the bare electron mass, and the dielectric constant

ε = 13. Then the critical densities for the conduction band electron gas is nc '
7.5× 1010cm−2 and for the heavy hole gas, nh ' 2.1× 1011cm−2, but the instability
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of the spin-unpolarized state begins at nc ' 6.1×1010cm−2 and nv ' 1.7×1011cm−2

respectively. If the density is larger than the density where the instability occurs,

the mean-field calculation should describe, at least qualitatively, the behavior of

the spin-unpolarized states, not the behavior of the spin-polarized states, unless we

begin our iteration with a state with a large spin-polarization.

We now restore the spin degrees of freedom of the bilayer system from the

previous chapter. All operators get additional spin index σ and then the total

Hamiltonian is

Ĥ = Eext
ES +

∑

aσk

(
ε
(0)
ak + V ext

a

)
c†aσkcaσk

+
1

2Ω

∑

kk′q
aa′σσ′

V (q)c†aσkc†a′σ′k′ca′σ′k′+qcaσk−q . (4.2)

Using the mean-field approximation we obtain,

ĤMF = Eext
ES + E0 +

∑

aσk

(
ε
(0)
ak + V ext

a + εh
a + h(0)

ak

)
c†aσkcaσk

+
∑

aσσ′k

(hak · τσσ′) c†aσkcaσ′k −
∑

σσ′k

(
∆σσ′

k c†cσkcvσ′k + h.c.
)

(4.3)

where

E0 = −1
2

∑

aσk

(
εh
a + h(0)

ak

)
ρaa

σσ(k)− 1
2

∑

aσσ′k

(hak · τσσ′) ρaa
σ′σ(k)

+
1
2

∑

σσ′k

(
∆σσ′

k ρvc
σ′σ(k) + c.c

)
(4.4)
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is the constant term that takes care of the double counting and

εh
a =

1
Ω

V aa′(0)
∑

a′σk

ρa′a′
σσ (k) (4.5)

h(0)
ak = − 1

Ω

∑

σk′
V aa(k− k′)ρaa

σσ(k′) (4.6)

hak = − 1
2Ω

∑

σσ′k′
V aa(k− k′)ρaa

σσ′(k
′)τσ′σ (4.7)

∆σσ′
k =

1
Ω

∑

k′
V cv(k− k′)ρcv

σσ′(k
′) (4.8)

ρaa′
σσ′(k) = 〈c†a′σ′kcaσk〉 . (4.9)

Here h
(0)
ak is the spin-independent part of the intra-band exchange interaction, hak

is the intra-band exchange spin-splitting field and τ is a vector whose components

are Pauli spin matrices. As in the previous chapter where we use new density

operators to remove the unphysical divergence that originates from the negative

infinite valence band energy for large k, we define new density operators

ρ̃aa′
σσ′(k) = ρaa′

σσ′(k)− 〈c†a′σ′kcaσk〉0 (4.10)

where 〈...〉0 means the expectation value with respect to the state

|Φ0〉 ≡
∏

σk

c†vσk|0〉 , (4.11)

where all the valence band states are occupied and all the conduction band states
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are empty. Then we solve the mean-field Hamiltonian

ĤMF =
(

c†c↑k c†c↓k c†v↑k c†v↓k

)
H




cc↑k

cc↓k

cv↑k

cv↓k




(4.12)

where

H =




εck + h̃z
ck h̃x

ck − ih̃y
ck −∆↑↑

k −∆↑↓
k

h̃x
ck + ih̃y

ck εck − h̃z
ck −∆↓↑

k −∆↓↓
k

−∆∗↑↑
k −∆∗↓↑

k εvk + h̃z
vk h̃x

vk − ih̃y
vk

−∆∗↑↓
k −∆∗↓↓

k h̃x
vk + ih̃y

vk εvk − h̃z
vk




(4.13)

is a matrix representation of the mean-field Hamiltonian. The entries that appear

in Eq. (4.13) are defined by the following expressions:

εak = ε̃
(0)
ak + Ṽ ext

a + ε̃h
a + h̃(0)

ak (4.14)

Ṽ ext
c = 0 (4.15)

Ṽ ext
v = εv0 (4.16)

ε̃h
c =

2πe2ncd

ε
(4.17)

ε̃h
v = −2πe2nhd

ε
(4.18)

ε̃
(0)
ck =

~k2

2mc
(4.19)

ε̃
(0)
vk = − ~k

2

2m∗
v

− Eg (4.20)

h̃(0)
ak = − 1

Ω

∑

σk′
V aa(k− k′)ρ̃aa

σσ(k′) (4.21)

h̃ak = − 1
Ω

∑

σσ′k′
V aa(k− k′)ρ̃aa

σσ′(k
′)τσσ′ . (4.22)
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The total energy of the ground state ΨG is given by

Etot[ΨG]−Etot[Φ0]

= EES +
∑

aσk

(
ε̃
(0)
ak +

1
2
h̃(0)

ak

)
ρ̃aa

σσ(k) (4.23)

+
1
2

∑

aσσ′k

(
h̃ak · τσσ′

)
ρ̃aa

σ′σ(k)− 1
2

∑

σσ′k

(
∆σσ′

k ρ̃vc
σ′σ(k) + c.c

)

where the electrostatic energy is

EES =
∑

aσk

(
Ṽ ext

a +
1
2
ε̃h
a

)
ρ̃aa

σσ(k) , (4.24)

as derived in the previous chapter.

Unlike the 2-band model, the diagonalization of this 4×4 matrix is not trivial.

We numerically diagonalize this matrix self-consistently, which is equivalent to solv-

ing a generalized Hartree-Fock equation of the system allowing coherence between

conduction and valence bands, as well as the spontaneous intra-band spin polariza-

tion. We use µ0 = εv0 −Eg and ∆n = nc − nh as two parameters for the numerical

calculations. We choose the inter-layer distance d = 100Å. With same number of

electrons and holes the essential physics does not change except that we get dou-

bly degenerate bands (The effective magnetic field due to the intra-band exchange

term h̃ak disappears in this case). Fig. 4.2 shows the eigenvalues of the Hartree-

Fock matrix which are the quasi-particle excitation energies. Each quasi-particle

band is doubly degenerate as expected. Note that the hole density nh is below

the critical density where the hole gas would be completely spin-polarized. One

reason the spin-polarization does not occur is the stability of the spin-unpolarized

state as mentioned before, and another reason is the coherence between the conduc-

tion and valence bands favors spin-unpolarized states because the Fermi surfaces

are equal for spin-unpolarized systems while they would be drastically different for
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Figure 4.2: Quasi-particle excitation energy for an excitonic condensate state with
µ0 = 25meV and ∆n = 0. The calculated densities are nc = nh = 2.04× 1011cm−2.

the spin-unpolarized electron gas and the spin-polarized hole gas, hence making the

condensation more difficult.

4.3 Ferromagnetism of Population Polarized States

If we have different densities of electrons and holes, the Fermi surfaces of the conduc-

tion band and the valence band have different Fermi wave vectors and we have two

competing effects due to this mismatch. First, the inter-band coherence favors both

bands having exactly the same Fermi surfaces to maximize the energy gain by the

condensation. Fermi surface matching can be restored for one conduction-valence

band pair by splitting the spin-degenerate bands so that one conduction-valence

band pair forms a condensed state and the other pair remains in the normal state.

On the other hand, this spin-polarization causes the kinetic energy to increase.

Therefore, for not so large population polarizations, we expect to have spontaneous
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spin polarization which leads to a ferromagnetic excitonic condensate state. See

Fig. 4.3 for an illustrative explanation. Fig. 4.4 shows the quasi-particle excita-

tion energy spectrum for a system with number polarization for µ0 = 25meV and

∆n = 5.0 × 1010cm−2. The splitting of the spin degeneracy indeed occurs and one

pair of bands shows an energy gap due to the condensation and the other pair shows

no such energy gap which indicates they are in the normal state. Since the valence

band effective mass is larger than the conduction band effective mass, the splitting

in the valence band is much larger than that of the conduction band to minimize

the kinetic energy cost.

In bulk samples, there is a small overlap of electron and hole wave functions

which is usually neglected(dominant term approximation). If this small overlap can-

not be neglected, it gives nonzero electron-hole exchange interactions. When these

exchange interactions are ignored, the Hamiltonian is invariant under independent

spin-rotations in the two bands. When they are included it is invariant only under

simultaneous spin-rotations and it favors spin triplet states [84]. In bilayer systems,

the overlap is exponentially small and we can neglect it for large enough inter-layer

distances or for high enough barriers between the two layers. Since we neglect the

small overlap the interaction conserves the band indices. Therefore the system has

the spin-rotational symmetry for each band and this SU(2)×SU(2) symmetry leads

to the degeneracy of spin singlet and triplet states. The terms in the Hamiltonian

that break this continuous symmetry are extremely small compared to the bulk case.

Thus we have infinitely degenerate ground states which differ only in the direction of

the spontaneous magnetization of each layer. This family of ground states have the

same magnitude of magnetization for each layer but total magnetization magnitudes

are in general different depending on the configuration of the magnetization direc-

tions of each layer. The intra-layer interaction h̃ak plays an important role here to

stabilize the ferromagnetic state since it favors spin polarized state. As mentioned
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Figure 4.3: Schematic diagram of the Fermi surfaces and the energy bands for the
spontaneous spin splitting in ferromagnetic exciton condensates. (a) For different
number of electrons and holes, the conduction band Fermi surface(solid blue circle)
does not coincide with the valence band Fermi surface (dotted red circle). (b)
Conduction band electrons with spin χc flip to spin state χ̄c so the Fermi surface
of χc electrons shrinks and the Fermi surface of χ̄c electrons expands. Similarly, χv

valence band electrons flip to χ̄v state so that the Fermi surface of the χv electrons
increases until it matches the χc Fermi surface. The χcconduction band and χv

valence band electrons (dot-dashed violet circle in the middle) then condense to
form excitonic condensates while the χ̄c and χ̄v electrons remain in the normal
state. The spin repopulation necessary to achieve Fermi surface nesting leads to
ferromagnetism, i.e. to spontaneous spin polarization.
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Figure 4.4: Quasi-particle excitation energy for a ferromagnetic condensate state
with µ0 = 25meV and ∆n = nc − nh = 5.0 × 1010cm−2. The calculated densities
are nc = 2.33× 1011cm−2 and nh = 1.83× 1011cm−2.

previously the mean-field theory overestimates the stability of the ferromagnetic

state for the normal electron systems. This is true in bilayer electron-hole systems

as well. It is problematic particularly in very low density regimes, but it is likely not

as large an issue in the density regimes we consider here. To verify that really only

one pair of bands forms a condensate and the other pair remains normal, we change

the spin basis states from spin-up and spin-down to χc and χ̄c for the conduction

bands and χv and χ̄v for the valence bands. These new quantization directions can

be determined by the total magnetization of each layer, because the magnetization

and the spin direction of the electrons participating in the condensation are the

same. Let the magnetization for the conduction (valence) band has polar angle θc

(θv) and azimuthal angle φc (φv). We define a unitary operator U †
a that connects

the two spin bases, 
 caχa

caχ̄a


 = U †

a


 ca↑

ca↓


 (4.25)
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where

U †
a =


 cos θa

2 sin θa
2 e−iφa

sin θa
2 − cos θa

2 e−iφa


 (4.26)

for a=c, v. The order parameters in the new basis are

∆αcαv
k =

1
Ω

∑

k′
V cv(k− k′)〈c†vαvk′ccαck′〉

=
1
Ω

∑

k′
V cv(k− k′)

(
U †

v

)∗
αvσv

(
U †

c

)
αcσc

〈c†vσvk′ccσck′〉

=
(
U †

c

)
αcσc

∆σcσv
k (Uv)σvαv

(4.27)

where αa is χa or χ̄a and σa is spin up or down. Hence we obtain,


 ∆χcχv

k ∆χcχ̄v

k

∆χ̄cχv

k ∆χ̄cχ̄v

k


 = U †

c


 ∆↑↑

k ∆↑↓
k

∆↓↑
k ∆↓↓

k


Uv . (4.28)

Only ∆χcχv is nonzero and all the other order parameters are zero[Fig. 4.5] in the

new basis, which verifies that only χc and χv spin bands form a condensate. The

Hamiltonian can now be separated into normal part and condensation part.

ĤMF = ĤN + ĤC (4.29)

where

ĤN =
∑

k

(
c†cχ̄ck

c†vχ̄vk

)

 εck − h̃χc

ck 0

0 εvk − h̃χv

vk





 ccχ̄ck

cvχ̄vk


 (4.30)

ĤC =
∑

k

(
c†cχck

c†vχvk

)

 εck + h̃χc

ck −∆k

−∆∗
k εvk + h̃χv

vk





 ccχck

cvχvk


 , (4.31)

and h̃χa

ak is the χa-parallel component of the intra-layer exchange field in the new
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Figure 4.5: The magnitudes of ∆k in different spin bases. (a) is in the spin up
and down basis and (b) is in the new basis where the spin quantization direction is
chosen to be parallel to the calculated total magnetization of each layer. In the new
basis, the only non-vanishing ∆ is ∆χcχv .

spin basis, which is the only non-vanishing component of the exchange field. The

condensate part can be diagonalized using the Bogoliubov transformation as in the

2-band model studied in the previous chapter, which leads to the eigenstates

|1k〉 = |cχ̄ck〉 (4.32)

|2k〉 = |vχ̄vk〉 (4.33)

|3k〉 = u∗k|cχck〉 − v∗k|vχvk〉 (4.34)

|4k〉 = vk|cχck〉+ uk|vχvk〉 (4.35)
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with eigenvalues

ε1k = εck − h̃χc

ck (4.36)

ε2k = εvk − h̃χv

vk (4.37)

ε3k = E
(1)
k (4.38)

ε4k = E
(2)
k (4.39)

where

E
(1,2)
k =

1
2

(
εck + εvk + h̃χc

ck + h̃χv

vk

)
±

√
ε2
k + |∆k|2 (4.40)

εk =
1
2

(
εck − εvk + h̃χc

ck − h̃χv

vk

)
(4.41)

and

|uk|2 =
1
2


1 +

εk√
ε2
k + |∆k|2


 (4.42)

|vk|2 =
1
2


1− εk√

ε2
k + |∆k|2


 (4.43)

u∗kvk =
∆k

2
√

ε2
k + |∆k|2

. (4.44)

The ground state |ΨG〉 is given by

|ΨG〉 =
∏

k<kFc

c†1k
∏

k>kFv

c†2k
∏

k

c†4k |0〉 (4.45)

where |0〉 is the vacuum state with no electrons and kFc (kFv) is the fermi wavevector

for the normal conduction(valence) band.

When the density difference is very small, the pair of bands with different
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Fermi surfaces can also form a condensate and the spin repopulation would be

readjust to minimize the total energy. On the other hand if the density difference

is very large, the kinetic energy cost accompanying the spin repopulation will be

larger than the condensation energy gain. Then there will be no condensation at

all and the system will remain in the normal paramagnetic state. In between we

have the mixed state where one pair of bands forms a condensate and the other pair

remains normal.

4.4 Rashba SO Interaction

In 2D layers, the Rashba SO interaction appears due to the structural inversion

asymmetry of the confining potential. The strength of the SO coupling can be tuned

by applying an external electric field perpendicular to the layers [74, 75, 76, 77]. The

Rashba Hamiltonian can be derived using Löwdin perturbation theory [85, 86] up

to the third order [87] (see Appendix A for an explicit derivation of the Rashba

Hamiltonian). The effective Rashba SO interactions for the conduction band and

the heavy hole valence band are respectively

ĤR
c = αk× ẑ · ~τ

= α


 0 ike−iφk

−ikeiφk 0




= hR
ck · τ (4.46)
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and

ĤR
hh = iβ(τ+k3

− + τ−k3
+)

= β


 0 ik3e−i3φk

−ik3ei3φk 0




= hR
vk · τ (4.47)

where τ ’s are the Pauli matrices, τ± = 1/2(τx ± iτy), k± = kx ± iky and tanφk =

ky/kx. The effective magnetic fields due to the Rashba SO interaction are defined

by

hR
ck = α (kyx̂− kxŷ) (4.48)

hR
vk = βk3 (sin 3φkx̂− cos 3φkŷ) (4.49)

which changes direction in spin-space as the direction changes in momentum space

(see Fig. 4.6(a) and Fig. 4.7(a)). For the conduction band, the energy dispersion

gets an additional linear term ε
(±)
ck = ε

(0)
ck ± αk and the corresponding spin states

are

|ck±〉 =
1√
2

(
|ck ↑〉 ∓ ieiφk |ck ↓〉

)
(4.50)

which are shown in Fig. 4.6(b). For the heavy hole valence band, we get an additional

term proportional to k3, ε
(±)
vk = ε

(0)
ck ± βk3 and the corresponding spin states are

|vk±〉 =
1√
2

(
|vk ↑〉 ∓ ie3iφk |vk ↓〉

)
(4.51)

which are shown in Fig. 4.7(b).

Unlike the electron gas without Rashba SO interactions, the ground state of

the free electron gas does not solve the Hartree-Fock equation of the system with

Rashba SO interaction. The spin states for each k is determined by the total effective

55



Figure 4.6: (a) Rashba SO effective magnetic field hR
ck and (b) the spin states for

the conduction band. The spin direction is φk−π/2 for |ck+〉(inner circle and blue
arrows) and φk + π/2 for |ck−〉(outer circle and red arrows).

Figure 4.7: (a) Rashba SO effective magnetic field hR
vk and (b) the spin states for

the heavy hole valence band. The spin direction is 3φk − π/2 for |vk+〉(outer circle
and blue arrows) and 3φk + π/2 for |vk−〉(inner circle and red arrows).
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magnetic field heff
ak consisting of the intra-band exchange field h̃ak and the Rashba

SO field hR
a . For higher energy band with energy ε

(+)
ak = εak+ |heff

ak|, the spin state is

parallel to the total effective magnetic field and for lower energy band with energy

ε
(−)
ak = εak − |heff

ak|, the spin state is antiparallel to the total effective magnetic field.

The self-consistency conditions for the intra-band exchange field then lead to

h̃ak = − 1
2Ω

∑

k′
V

(
k− k′

) heff
ak′

|heff
ak′ |

(
ρ̃aa
++ − ρ̃aa

−−
)

, (4.52)

where the spinor of the state |ak±〉 is parallel(+) or antiparallel(-) to the total

effective field heff
ak, not just the Rashba field. The total spin Sa of band a is given

by

Sa =
1
2

∑

k

heff
ak

|heff
ak|

(
ρ̃aa
++(k′)− ρ̃aa

−−(k′)
)

. (4.53)

4.5 Effects of SO Interaction on Ferromagnetic Exciton

Condensates

The Rashba SO Hamiltonian breaks the spin-rotational symmetry around an ar-

bitrary axis, but keeps the symmetry of simultaneous spin and orbital rotations

around z-direction and the inversion symmetry z → −z. Thus we expect the total

spin of the ferromagnetic exciton condensate has a fixed polar angle θa or π−θa but

the total energy is the same for states with different azimuthal angle φa. In addi-

tion the conduction band magnetization and the valence band magnetization are no

longer independent. In spin-degenerate systems, we can increase the Fermi surface

of one spin species and decrease the other by simply repopulating the spins as de-

scribed previously. In systems with Rashba SO interactions, there are two kinds of

mechanisms to deform the Fermi surfaces. If θa = 0 or π, the ground state has the

rotational symmetry around the z-direction because we have only two directions(±ẑ)

and all physical quantities have rotational symmetry around the z-direction. In this
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case the Fermi surfaces can only change their radii just like the spin-degenerate sys-

tems. On the other hand, if θa 6= 0 or π, the Fermi surfaces deform their shapes in

addition to changing their radii. By deforming the Fermi surfaces, a pair of Fermi

surfaces, one from the conduction band and one from the valence band, can have

some regions in k space in which the two surfaces are closer and some regions where

they are more widely separated than the undeformed surfaces. Condensation then

occurs mainly in the region in which the two surfaces are close together. To clarify

the physics, we consider systems with the Rashba SO interaction only in one layer.

Fig. 4.8 shows a result for a case where θc ' 0 with α 6= 0 and β = 0. Since β = 0,

the magnetization direction of the valence band layer is arbitrary. We show the

constant-energy surfaces[Fig. 4.8(b) and (c)] in momentum space to verify that the

surfaces are rotationally symmetric. All the constant-energy surfaces are concentric

circles which implies the density matrices depend only on the magnitude of k. Then

the intra-band exchange field for the conduction band h̃ck whose in-plane compo-

nents are constant times the Rashba field hR
ck solves the self-consistency equation

Eq. (4.52). The total effective field of the conduction band has a form

heff
ck = h⊥(k) (sin φkx̂− cosφkŷ) + hz(k)ẑ . (4.54)

Then the in-plane components of the total spin [Eq. (4.53)] vanishes and we get

total magnetization along the z-direction. Similarly for the case α = 0 and β 6= 0

[Fig. 4.9], we get concentric constant-energy surfaces and the total effective field of

the valence band has a form

heff
vk = h⊥(k) (sin 3φkx̂− cos 3φkŷ) + hz(k)ẑ . (4.55)

and again, the in-plane components of the total spin [Eq. (4.53)] vanishes and we

get total magnetization along the z-direction. For these uniaxial cases, we calculate
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Figure 4.8: (a) Quasi-particle excitation energy for a ferromagnetic condensate state
with Rashba SO interaction in the conduction band with coefficient α = 0.05 eVÅ
and no SO interaction in the valence band β = 0. System parameters are µ0 =
30meV and ∆n = nc − nh = 4.0 × 1010cm−2. The calculated densities are nc =
2.59 × 1011cm−2 and nh = 2.19 × 1011cm−2. The direction of the total spin of the
conduction band layer is θc = 0.04π and φc = 1.72π. (b) and (c) are constant-energy
surfaces in momentum space, corresponding to the energies shown in (a). (b) is for
0.025 eV (red dot-dashed line in (a)) and (c) is for 0.012 eV (blue dotted line in
(a)).
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Figure 4.9: (a) Quasi-particle excitation energy for a ferromagnetic condensate state
with Rashba SO interaction in the valence band with coefficient β = 500 eVÅ3

and no SO interaction in the conduction band α = 0. System parameters are
µ0 = 30meV and ∆n = nc − nh = −4.0 × 1010cm−2. The calculated densities
are nc = 2.24 × 1011cm−2 and nh = 2.64 × 1011cm−2. The direction of the total
spin of the conduction band layer is θv = 0.99π and φv = 0.85π. (b) and (c) are
constant-energy surfaces in momentum space. (b) is for 0.023 eV and (c) is for 0.01
eV.

60



0 0.2 0.4 0.6 0.8 1

cos
2 θ

c

E
ne

rg
y 

( 
ar

bi
tr

ar
y 

un
it 

) (a)

0.2 0.4 0.6 0.8 1

cos
2 θ

v

E
ne

rg
y 

( 
ar

bi
tr

ar
y 

un
it 

) (b)

Figure 4.10: Magnetic anisotropy of uniaxial systems. µ0=30meV and ∆n=5.0 ×
1010cm−2. (a)α = 0.05 eVÅ , β = 0, (b)α = 0, β = 700 eVÅ3.

the total energy of the system for different magnetization angles θa. We apply

external magnetic field to change the magnetization direction, then subtract the

magnetization energy M·Hext from the total energy. Fig. 4.10 shows the numerically

evaluated total energy for (a)α 6= 0, β = 0 and (b)α = 0, β 6= 0, as a function of

cos2 θa for uniaxial cases. It shows that the total energy of the uniaxial system is

roughly proportional to cos2 θa. Because the magnetic anisotropy energy is very

small that Fig. 4.10 looks somewhat noisy. We can derive this linear behavior by

doing perturbation theory treating the Rashba SO interaction as a perturbation.

The zeroth order ground state is given by Eq.(4.45). We calculate the perturbed

energy for each k using the states Eq. (4.32) ∼ Eq. (4.35) as the unperturbed states.

The total perturbed energy is evaluated by summing the corrections for each k up to

the Fermi energy of the unperturbed ground state, assuming that the Fermi energy

does not change much by the Rashba SO interaction. The first order correction
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vanishes and up to the second order we obtain

Etot = E
(0)
tot + δE + Aα2 cos2 θc + Bβ2 cos2 θv (4.56)

where δE is the energy correction that does not depend on the magnetization angles

and A, B are constants. Depending on the signs of A and B, the system can have

an easy axis(θa = 0 or π) or an easy plane(θa = π/2). In the easy plane case the

dependence of energy on cos2 θa should also be linear, but the slope should change

sign.

In cases where the total spin has nonzero in-plane components, the total

energy is independent of the azimuthal angel. For a given spontaneously chosen

azimuthal angle the 2D band structure is anisotropic. This broken XY symmetry

leads to intricate and quite interesting properties of quasi-particles. Fig. 4.11 shows

a case with α 6= 0 and β = 0 where the total spin of the conduction band has

θc = 0.45π. The quasi-particle excitation energy dispersions are not rotationally

symmetric for the conduction band as can be seen in Fig. 4.11(b) and (c). The

constant-energy surfaces for the conduction band shifts so that the two bands are

closer in one direction and farther apart in the opposite direction in k space. This

corresponds to the intra-band field that points in the same direction as the Rashba

field but the magnitude of the intra-band field is not just a function of k but also

depends on φk. To get nonzero in-plane components of the total spin along the φc

direction, the total effective magnetic field is stronger when the azimuthal angle of

the spin states of the majority species(|ck−〉 for the conduction band) is φc and

weaker when the azimuthal angle the spin states of the minority species(|ck+〉 for

the conduction band) is φc. The constant-energy surfaces are farther in the direction

where the effective field is stronger and closer where the effective field is weaker since

the energy difference between the two spin bands is the magnitude of the effective

magnetic field. Therefore, we obtainthe condition for the closer(farther) constant-
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Figure 4.11: (a) Quasi-particle excitation energy for a ferromagnetic conden-
sate state with Rashba SO interaction in the conduction band with coefficient
α = 0.03 eVÅ and no SO interaction in the valence band β = 0. System parameters
are µ0 = 30meV and ∆n = nc − nh = 4.0 × 1010cm−2. The calculated densities
are nc = 2.59 × 1011cm−2 and nh = 2.19 × 1011cm−2. The direction of the total
spin of the conduction band layer is θc = 0.45π and φc = 1.72π. (b) and (c) are
constant-energy surfaces in momentum space. (b) is for 0.025 eV and (c) is for 0.014
eV. The black solid arrow depicts the direction of the total spin in the conduction
layer and the blue dashed arrow depicts the direction of φk = φc + π/2.
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Figure 4.12: (a) Quasi-particle excitation energy for a ferromagnetic condensate
state with Rashba SO interaction in the valence band with coefficient β = 400 eVÅ3

and no SO interaction in the conduction band α = 0. System parameters are
µ0 = 20meV and ∆n = nc − nh = −4.0 × 1010cm−2. The calculated densities are
nc = 1.59× 1011cm−2 and nh = 1.99× 1011cm−2. The direction of the total spin of
the valence band layer is θv = 0.63π and φv = 0.85π. (b) and (c) are constant-energy
surfaces in momentum space. (A) is for 0.015 eV and (B) is for 0.005 eV. The black
solid arrow depicts the direction of the total spin in the valence band layer and the
blue dashed arrows depict the direction φk = φv/3 + π/6 + 2nπ/3 for integer n.
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energy surfaces 



φc = φk − π
2 ; closer

φc = φk + π
2 ; farther

. (4.57)

The blue dashed arrow in Fig. 4.11(b) and (c) shows the φk that satisfy the closer

condition, which agrees with the numerically calculated constant-energy surfaces.

Fig. 4.12 shows a case with α = 0 and β 6= 0 where θv = 0.63π. For the

valence band, the majority species has spin state |vk−〉 and minority species has

|vk+〉 because the valence band has opposite energy dispersion curve compared to

the conduction band. So the majority band has spin states that points to 3φk +π/2

and the minority species has spin states that point to 3φk − π/2. Thus there are 3

closer directions and 3 farther directions that satisfy





φv + 2nπ = 3φk − π
2 ; closer

φv + 2nπ = 3φk + π
2 ; farther

. (4.58)

Fig. 4.12(b) and (c) shows the directions of the closer condition by blue dashed ar-

rows, which again agrees with the numerical results very well. These systems[Fig. 4.11

and Fig. 4.12] spontaneously break the rotational symmetry around the z-direction

to make the Fermi surfaces of one conduction band and one valence band close to-

gether so that they can form the excitonic condensate while the other two bands

remain normal.

4.6 Conclusion

In summary, we studied the electron-hole pair condensation in spatially separated

bilayer systems. The population polarization and the subsequent Fermi surface mis-

match leads to a unique ferromagnetism with SU(2)×SU(2) spin-rotational symme-

try and the condensate and the normal state coexist in the system. The Rashba
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SO interaction which arise naturally in two-dimensional systems with structural in-

version asymmetry breaks the spin-rotational symmetry and leads to a fixed polar

angle of the magnetization of each layer in the system. The relation between the

magnetization direction and the system parameters such as density, density polar-

ization between electrons and holes and the strength of the Rashba SO interaction

is not clear yet. One of the reason for this seems to be that the magnetic anisotropy

energy is very small compared to other energy scales so that the magnetization is

very sensitive to the parameters. The in-plane component of the magnetization

implies anisotropic energy spectra in SO systems, which will be interesting for the

study of excited states.
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Chapter 5

Fermion Pair Condensation in

Magnetic Field

5.1 Introduction

In the previous chapter, we saw that the interplay of population polarization and

fermion pair condensation leads to some interesting features, due to the Fermi sur-

face mismatch. In this chapter and the following chapter, we study a different

population polarized fermion system, a cold fermion atom system. Unlike the 4-

component bilayer electron-hole systems where we can restore Fermi surface match-

ing for one pair of bands, while leaving the other pair normal, the population im-

balance in superconductors and cold fermion atom systems where we have only two

components can lead to finite-momentum Cooper pair condensation. These states

are called FFLO states [7, 8].

One of the most obvious signatures of superfluidity in fermionic cold-atom

systems is the appearance of vortices and vortex lattices when the system is ro-

tated [88]. Indeed recent experiments [32, 33] have observed vortex-lattice structures

in fermionic cold-atom systems close to the BEC-BCS crossover region (see Fig. 5.1).
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Figure 5.1: Vortex lattices observed in Ref. [33]. Population polarization is from
100% (left) to 0% (right). We can see the vortex lattices for both BEC and BCS
sides of the crossover and at a critical polarization, the vortex structures disappear.

For this reason an obvious potential signature of an FFLO state is the appearance

of the exotic vortex-lattice structures they are expected to form [89, 90, 91]. Rota-

tion is essential for the realization of the vortex lattice structures. Working in the

co-rotating reference frame, rotation is equivalent to an external magnetic field and

a reduction in radial confinement strength due to the centripetal potential. From

now on we use the language of the co-rotating frame so that the atoms experience

an effective field with cyclotron frequency Ωc = 2Ω where Ω is the rotation fre-

quency. In typical experiments the atomic Landau level splitting, equal to 2~Ω, is

much smaller than the Fermi energy. In this limit the Landau level index of the

condensate could be determined by finding the optimal pairing wavevector on the

BCS superfluid/normal phase boundary in the absence of rotation and using semi-

classical quantization to add rotation to the condensate effective action. Here we

use a fully quantum-mechanical approach, including Landau quantization even at

the level of the underlying unpaired fermions. This approach is still relatively easy,

partly because of the short-range of the atom-atom attractive effective interaction,

and has of the advantage of determining the condensate Landau level index more
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Figure 5.2: Vortex lattices of FFLO states for COM LL n = 0 to n = 6 reported in
Ref. [91]. Lines indicate the unit cells.

accurately, and allows us to comment on the rapid rotation regime which might be

approached experimentally in the future. FFLO vortex lattices (see Fig. 5.2) can be

wildly different from the usual hexagonal Abrikosov vortex lattice. The structure of

the vortex lattice is determined mainly [89, 90, 91] by the Landau level index of its

condensed fermion pairs; the Abrikosov lattice forms when the Landau level index

j = 0, which is the closest approximation to zero-total-momentum pairing allowed

in a system that has come to equilibrium in a rotating frame. FFLO states in the

absence of rotation can imply j > 0 Fermion pair condensation in rotated systems.

Vortices have been observed in systems with population imbalance [33], but so far

no unusual vortex structures have been observed (This could be due to the fact that

these experiments realize the gapless Sarma phase [51] and another reason could be

that the FFLO state is predicted by weak-coupling theory while all experiments are

in the unitary limit).

In this chapter we develop a mean-field theory for rotating atom clouds. We

derive an implicit equation for the critical temperature including the Landau quan-
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tization effect due to the effective magnetic field. The non-zero pairing momentum

in FFLO states then corresponds to higher center-of-mass(COM) Landau level (LL)

and the implicit Tc equation gives the critical temperature for each COM LL pair-

ing. We consider three-dimensional systems for the sake of definiteness, although

two-dimensional systems could also be interesting experimentally. All our explicit

calculations are for a uniform three-dimensional system and do not account for

confinement. In Sec. 5.2 we introduce the FFLO states for spin-polarized fermion

systems and describe the relation with Landau level quantization. In Sec. 5.3 we con-

sider the transformation between individual particle and COM and relative states for

two rotating atoms and derive the Bethe-Salpeter equation whose instability gives

an implicit Tc equation. In Sec. 5.4 we derive COM Landau level index dependent

linearized gap equations for the critical temperature of the rotating system.

5.2 FFLO States in Orbital Magnetic Field

Pairing is most effective when the states to be paired are as close to the Fermi energy

as possible. When there is no population imbalance, pairs formed from electrons

with opposite momentum (zero total momentum) are abundant at low energies as

illustrated schematically in Fig. 5.3. For unbalanced populations the lowest energy

pairs have total momentum equal to the difference between Fermi wavevectors. In

systems with an orbital magnetic field linear momentum is not a good quantum

number, but the motion of a pair can still be separated into center-of-mass and

relative motion degrees-of-freedom. In a magnetic field, momentum space collapses

into Landau levels whose degeneracy is illustrated in Fig. 5.4 by partitioning of

momentum space into equal area segments centered on ~Ωc(N + 1/2). A pair of

electrons with given Landau level indices N and N ′ has finite quantum amplitudes

for all center of mass Landau level indices from 0 to N +N ′ which correspond closely

to the distribution of center of mass (COM) kinetic energy values that would be
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Figure 5.3: Low energy pairings for population balanced and unbalanced systems.
Shaded regions indicate participating states for the low energy pairings in k-space.
Q is the total momentum of the pairs, which is 0 for balanced systems and equal to
the difference between Fermi wavevectors in unbalanced systems.

Figure 5.4: Degeneracy of Landau levels. States between two dotted circles collapse
into the solid circle. All the areas between two adjacent dotted circles are the same
and solid circles have radii given by ~2k2/2m = ~Ωc(N + 1/2). The arrows show
the maximum and minimum momentum differences between particles in LL N = 1
and N = 2, which correspond qualitatively to the maximum and minimum of the
COM momentum.
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Figure 5.5: BCS theory phase diagram for FFLO and BCS states as calculated, for
example, in Ref. [92]. Here, H is the ratio of the Zeeman energy (or normal state
chemical potential difference) to the zero-field energy gap. The dotted line marks
the Clogston limit where the energies of normal and the zero-pairing momentum
BCS state are identical. The FFLO state occurs near the boundary between normal
and BCS states.

obtained by averaging over the corresponding regions of momentum space illustrated

in Fig. 5.4. These quantum probability amplitudes are the key ingredient in the

linearized gap equations discussed below. We derive linearized gap equations which

implicitly define the critical temperature for a phase transition from the normal

to the superfluid state for each COM LL and determine the phase boundaries in

parameter space. If excited COM LL’s have a higher critical temperature than the

lowest-lying COM LL, this signals the occurrence of exotic vortex lattice states and

of FFLO states in the unrotated system. In Fig. 5.5 the phase diagram is shown for

a non-rotating homogeneous system. The maximum value of the exchange field (or

difference between normal state chemical potentials) for which pairing still occurs

is given approximately by H = ∆0/
√

2, where ∆0 is the BCS gap parameter at zero

exchange field and zero temperature. Beyond this so-called Clogston limit [93] the

BCS state is no longer stable. The FFLO state is expected to occur in this region

of the phase diagram.
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5.3 Bethe-Salpeter Equations

In this section we first consider the transformation between individual particle and

COM and relative states for two rotating atoms and then use this to derive the

Bethe-Salpeter equation.

To consider the pairing instability of a normal Fermi gas, we first turn our

attention to the description of scattering between two atoms in a rotating reference

frame. The rotation is represented by considering the atoms to be particles with

unit charge in an effective homogeneous orbital magnetic field. The Hamiltonian for

two particles is

ĥ =
1

2m
(−i~∇r1 −A(r1))

2 +
1

2m
(−i~∇r2 −A(r2))

2

=
1

2M
(−i~∇R − 2A(R))2 +

1
2µ

(
−i~∇r − A(r)

2

)2

,

(5.1)

where M = 2m, µ = m/2, R = (r1 + r2)/2 and r = r1 − r2. The vector potential

A(r) is defined by ∇ × A(r) = 2mΩ ẑ where Ω is the angular rotation frequency

of the system and we assume that the rotation is around the z-axis. In the Landau

gauge, A(r) = (0, 2mΩx, 0) and the individual atom eigenfunctions with eigenvalues

~Ω(2N + 1) are given by

ψN,ki,y ,ki,z(ri) = 〈ri|N, ki,y, ki,z〉

= ei(ki,yyi+ki,zzi)φN (xi + ki,yl
2
B)/(LyLz)1/2 , (5.2)

where φN (r) is the one-dimensional harmonic oscillator eigenfunction and the effec-

tive magnetic length lB is defined by ~2/ml2B = 2~Ω. The eigenfunctions are labeled

by the momenta in y and z directions, and by the LL index N . The eigenfunctions

for the COM and relative coordinates are the same, except that the effective mag-
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netic lengths are now lR = lB/
√

2 and lr =
√

2lB. In terms of ladder operators,

ĥ = ~Ωc(a
†
1a1 + a†2a2 + 1) = ~Ωc(a

†
RaR + a†rar + 1) , (5.3)

where ai = (lB/
√

2~)(πi,x − iπi,y), πi = i~∇i − A(ri), aR = (a1 + a2)/
√

2, ar =

(a1− a2)/
√

2, and ~Ωc = ~2/ml2B = 2~Ω. The ladder operators can then be used to

derive [94] an explicit expression for the unitary transformation between individual

particle and COM and relative two-atom states:

〈r1, r2|N, k1,y, k1,z;M, k2,y, k2,z〉 =
N+M∑

j=0

BNM
j 〈R, r|j,Ky,Kz; N + M − j, ky, kz〉 ,

(5.4)

where

Ky = k1,y + k2,y , Kz = k1,z + k2,z , (5.5)

ky = (k1,y − k2,y)/2 , kz = (k1,z − k2,z)/2 , (5.6)

and

BNM
j =

[
j!(N + M − j)!N !M !

2N+M

]1/2 j∑

m=0

(−)M−m

(j −m)!(N + m− j)!(M −m)!m!
. (5.7)

It follows that BNM
j is the probability amplitude for two atoms in LLs N and M ,

respectively to have COM LL j and the relative motion LL N + M − j. When

N = M , |BNM
j |2 has maxima for j = 0 and j = N + M . However, if N 6= M ,

|BNM
j |2 can have a maximum for intermediate j, which means that for two atoms

in different LLs, the most probable COM LL can be different from zero or N +M as

shown in Fig. 5.6. The smooth envelope apparent in these figures is simply the zero-

field probability distribution of the COM kinetic energies given the Fermi momenta

of two individual particles. The COM energy is maximum for parallel momentum
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Figure 5.6: |BNM
j |2 vs j with N + M = 100 for different N ’s. The horizontal axes

are j and the vertical axes are |BNM
j |2.

and minimum for oppositely oriented individual particle momenta. This coefficient

plays an important role in determining the pairing COM LL in condensed states.

The pairing instability in a Fermi gas is signaled by a divergence of the

many-body scattering function [62], which we approximate using the Bethe-Salpeter

equation summarized by the finite-temperature Feynman diagrams illustrated in

Fig. 5.7. We consider a system consisting of two hyperfine species denoted by

↑ and ↓. For definiteness we assume that the two species have the same energy

spectrum but allow for different densities and therefore different chemical potentials.

Population imbalance is relatively easy to achieve experimentally and the life-time

of each hyperfine state is long enough compared to experimental time scales to

justify the use of equilibrium statistical mechanics with separate particle reservoirs

for the two species. The many-body scattering function is calculated by summing

the ladder diagrams [95, 94](see Fig. 5.7). Generalizing the calculations of Ref. [94]

to three dimensions from two we find that the total two-particle scattering function
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Figure 5.7: Ladder diagrams to be summed for scattering function Γ.

can be written as a sum over different COM Landau level index channels:

Γ(N, M, ky, kz; N ′, M ′, k′y, k
′
z; iω)

=
∑

j

BNM
j BN ′M ′

j γj(N,M, ky, kz, N
′,M ′, k′y, k

′
z; iω). (5.8)

where the partial scattering function for COM LL j

γj(N, M, ky, kz;N ′,M ′, k′y, k
′
z; iω)

= 〈N + M − j, ky, kz|V̂ |N ′ + M ′ − j, k′y, k
′
z〉

+
∑

N ′′,M ′′

∑

k′′y ,k′′z

∣∣∣BN ′′M ′′
j

∣∣∣
2
〈N + M − j, ky, kz|V̂ |N ′′ + M ′′ − j, k′′y , k′′z 〉

× KN ′′,M ′′,k′′z (iω)γj(N ′′,M ′′, k′′y , k′′z ;N ′,M ′, k′y, k
′
z.; iω) . (5.9)

In Eq. (5.9)

KN,M,kz(iω) =
1− f(ξN,kz ,↑)− f(ξM,−kz ,↓)

i~ω − ξN,kz ,↑ − ξM,−kz ,↓
; (5.10)

ξN,kz ,σ = εN,kz − µσ ; (5.11)

εN,kz = ~Ωc

(
N +

1
2

)
+
~2k2

z

2m
, (5.12)

and f(ξ) is the Fermi distribution function. In the case of a delta-function interaction
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V (r) = −V0δ(r) we have that

〈N + M − j, ky, kz|V̂ |N ′ + M ′ − j, k′y, k
′
z〉

= −V0φ
r
N+M−j(kyl

2
r)φ

r
N ′+M ′−j(k

′
yl

2
r)(1/LyLz) , (5.13)

where φr
N is the one-dimensional harmonic oscillator eigenfunction in relative coor-

dinates. Using this property and the orthogonality of the relative motion harmonic

oscillator wavefunctions we find that

γj(N,M, ky, kz; N ′,M ′, k′y, k
′
z; iω)

=
−V0

LyLz
φr

N+M−j(kyl
2
r)φ

r
N ′+M ′−j(k

′
yl

2
r)

×

1 +

V0

4πl2BLz

∑

N ′′,M ′′,k′′z

KN ′′,M ′′,k′′z (iω)
∣∣∣BN ′′M ′′

j

∣∣∣
2



−1

. (5.14)

5.4 Linearized Gap Equations

In this section we derive the linearized gap equation for condensation of Fermion

pairs with a definite COM Landau Level (LL) index. First we derive a relation

between the scattering length and the two-body transition matrix which is used to

remove the ultraviolet divergence of the Tc equation. Then we derive the implicit

equations for the critical temperatures of each COM LL channel.

5.4.1 Two-Body Transition Matrix and Scattering Length in Sys-

tems with Orbital Magnetic Field

In this subsection we derive the relation between the scattering length and the

strength of the delta-function like particle-particle interaction in a system with or-

bital magnetic field. The two-body transition operator for scattering at energy z is
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defined by

T̂ 2B(z) ≡ V̂ + V̂
1

z − Ĥ0

V̂ + · · ·

= V̂ + V̂
1

z − Ĥ0

T̂ 2B(z) , (5.15)

where V̂ is the particle-particle interaction and Ĥ0 is the non-interacting part of the

two-body Hamiltonian. The matrix elements of this transition operator satisfy the

Lippman-Schwinger equation. Noting that scattering conserves the COM motion,

we calculate the T -matrix elements in relative motion Hilbert space with COM LL

j and COM momenta Ky and Kz. Notice that the relative motion T -matrix does

not depend on the y-component of the total momentum Ky in the Landau gauge.

〈N + M − j, ky, kz| T̂ 2B(j, Kz; z) |N ′ + M ′ − j, k′y, k
′
z〉

= 〈N + M − j, ky, kz|V̂ |N ′ + M ′ − j, k′y, k
′
z〉

+
∑

N ′′,M ′′

∑

k′′y ,k′′z

〈N + M − j, ky, kz|V̂ |N ′′ + M ′′ − j, k′′y , k′′z 〉

× |BN ′′M ′′
j |2

z − εN ′′,Kz/2+k′′z − εM ′′,Kz/2−k′′z
〈N ′′ + M ′′ − j, k′′y , k′′z |V̂ |N ′ + M ′ − j, k′y, k

′
z〉

+ · · · . (5.16)
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Using Eq. (5.13) we have that,

〈N + M − j, ky, kz| T̂ 2B(j,Kz; z) |N ′ + M ′ − j, k′y, k
′
z〉

=
−V0

LyLz
φr

N+M−j(kyl
2
r)φ

r
N ′+M ′−j(k

′
yl

2
r)

×

1 +

−V0

4πl2BLz

∑

N ′′,M ′′,k′′z

|BN ′′M ′′
j |2

z − εN ′′,Kz/2+k′′z − εM ′′,Kz/2−k′′z
+ · · ·




=
−V0

LyLz
φr

N+M−j(kyl
2
r)φ

r
N ′+M ′−j(k

′
yl

2
r)

×

1− −V0

4πl2BLz

∑

N ′′,M ′′,k′′z

|BN ′′M ′′
j |2

z − εN ′′,Kz/2+k′′z − εM ′′,Kz/2−k′′z



−1

. (5.17)

For a dilute atomic gas, all the relevant energies are small compared to ~2/mr2
V

where rV is the interaction range. We are therefore allowed to neglect the energy

dependence of the two-body T -matrix [95]. (Note that the energy does not depend

on ky.) Hence we have that

〈N + M − j, ky, kz| T̂ 2B(j, Kz; z) |N ′ + M ′ − j, k′y, k
′
z〉

≈ 〈0, ky, 0| T̂ 2B(j = 0,Kz = 0; z = 0) |0, k′y, 0〉

=
−V0

LyLz
φr

0(kyl
2
r)φ

r
0(k

′
yl

2
r)


1 +

−V0

4πl2BLz

∑

N ′′,M ′′,k′′z

|BN ′′M ′′
0 |2

εN ′′,k′′z + εM ′′,−k′′z



−1

.(5.18)

To extract an expression for the scattering length we put the above matrix element

equal to the matrix element 〈N + M − j, ky, kz| Vpp |N ′ + M ′ − j, k′y, k′z〉 of the

pseudo-potential Vpp(r) = 4πasc~2δ(r)/m. From this we find that

m

4π~2asc
= − 1

V0
+

1
4πl2BLz

∑

N,M,kz

|BNM
0 |2

εN,kz + εM,−kz

. (5.19)
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5.4.2 Tc Equation

As mentioned before, the instability of the normal state due to pairing is signaled

by the divergence of the many body scattering function Γ(iω = 0), and therefore a

diverging γj(iω = 0) means that pairs with COM LL j are unstable to condensation.

This instability condition for the scattering function is equivalent to the linearized

gap equation which defines the critical temperature [62] in mean-field theory. (In

the mean-field-theory for the ordered state [96, 97] the order parameter can be

expressed in terms of partial contributions from each COM LL channel. When the

order parameter is small the various channels decouple and the partial contribution

from a given channel vanishes at the same point at which the normal state partial

scattering function diverges.) From Eq. (5.14), we get an implicit equation for the

critical temperature T j
c for each COM LL j, which reads

1
V0

=
1

4πl2BLz

∑

N,M,kz

1− f(ξN,kz ,↑)− f(ξM,−kz ,↓)
ξN,kz ,↑ + ξM,−kz ,↓

∣∣BNM
j

∣∣2 . (5.20)

Unlike the BCS superconductors, for which retarded phonon-mediated at-

tractive interactions have a natural ultraviolet cut-off, there is no cut-off in this

equation and the summation is over all states. Hence, as it stands, this equation

diverges, because of the assumption of a δ-function interaction. To remove this di-

vergence, we need to recognize that the true atom-atom interaction is short-ranged

compared to relevant atomic wavelengths but not a δ-function. Using the exact

relation between scattering length and interaction strength Eq. (5.19), we remove

the interaction strength V0 by renormalizing to the scattering length [95] in the T j
c

equation and obtain convergent sums over intermediate states. The equation for T j
c
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then becomes

− 1
kF0asc

=
~Ωc

2πkF0

∑

N,M

∫
dkz

[
1− f(ξN,kz ,↑)− f(ξM,−kz ,↓)

ξN,kz ,↑ + ξM,−kz ,↓

∣∣BNM
j

∣∣2

− 1
εN,kz + εM,−kz

∣∣BNM
0

∣∣2
]

, (5.21)

where kF0 is the Fermi wavevector of the unpolarized system without rotation.

The left-hand side of Eq. (5.21) is experimentally measurable. We determine Tc

as a function of 1/kF0asc by solving this implicit equation combined with implicit

equations for the temperature-dependent chemical potentials µσ

nσ =
1
V

∑

N,ky,kz

f(εN,kz − µσ) , (5.22)

where nσ is the density of atoms in hyperfine state σ, and V is the total volume

of the system. In summary, we have derived an equation for the superfluid critical

temperature in rotating fermionic cold-atom systems, incorporating Landau level

quantization effects. In the next chapter we present numerical results obtained by

solving these equations.
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Chapter 6

Rotating Polarized Cold

Fermion Atom Systems

6.1 Introduction

In this chapter we present the numerical solution of the Tc equations derived in

the previous chapter. We study the polarization and interaction strength regime

over which non-zero j pairing is expected in a rotating two-component Fermion

system. We consider only the BCS side of the Feshbach resonance, on which FFLO

physics occurs. In Sec. 6.2 we calculate the critical temperature as a function of the

scattering length for various polarizations. In Sec. 6.3 we show the phase diagrams

in a parameter space of the polarization and the scattering length. We finish in

Sec. 6.4 with a discussion of our results, and present our conclusions. We postpone

to this section a discussion of the competition between phase separated states and

FFLO states, which is an issue for cold atoms but not for electrons in a solid because

of long-range repulsive Coulomb interactions.
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6.2 Numerical Determination of Tc

In this section we calculate T j
c for each COM LL j for various rotation frequencies,

interaction strengths and polarizations. We fix the total density of the system ntot

and used the polarization p as a parameter. The polarization is defined by

p =
n↑ − n↓
n↑ + n↓

, (6.1)

where n↑ is the density of the majority species and n↓ is the density of the minority

species. Hence, the density of atoms in species σ [σ = +1 (−1) corresponds to ↑
(↓)] is given by

nσ =
1 + σp

2
· ntot . (6.2)

The relationship between T j
c and interaction strength is illustrated in Fig. 6.1.

The true critical temperature for the system is the largest value of T j
c .

Tc = max
{
T j

c

}
. (6.3)

At weak rotation [Fig. 6.1 (a)], the transition temperature Tc for zero polarization

shows the usual behavior [98] Tc ∝ exp(−1/kF0asc) and the highest T j
c is for the

j = 0 channel regardless of the interaction strength. In this circumstance we expect

the system will have a standard Abrikosov vortex lattice. The critical temperature

decreases as polarization increases and superfluidity is suppressed above some crit-

ical polarization. It is more easily suppressed at weak interaction. FFLO states,

which correspond to nonzero j, occur at strong interaction and high polarization.

We emphasize that these states will have very distinct [91] vortex lattices, more open

than the hexagonal Abrikosov lattices and qualitatively different for each value of

j. It should be quite obvious experimentally when a j 6= 0 vortex lattice occurs.

We caution, however, that as the temperature drops below the critical temperature,
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different values of j will mix in the condensate [94, 96, 97], the j = 0 component will

grow in weight even if it doesn’t have the maximum Tc. We speculate that the phase

transition between finite momentum FFLO states and zero-momentum BCS states,

which occurs at zero field, is replaced in a field by a smooth crossover between open

and close-packed hexagonal lattices. The best place to search experimentally for an

exotic vortex lattice is close to the superfluid/normal phase boundary as possible

by varying either temperature or interaction strength. Indeed it appears advisable

to conduct experiments in systems with the smallest order parameter strength for

which it is possible to reliably visualize the vortex lattice. Both the relatively large

polarizations and strong interactions required for the appearance of j 6= 0 solutions,

and the ability to tune parameters over wide ranges in atomic systems, demonstrate

the exceptional potential of tunable cold atom systems in the hunt for FFLO vortex

latices. The greatest obstacle to realization of the FFLO state is likely competition

with phase separated states. We return to this point again later.

The results reported in Fig. 6.1 (a) can be understood qualitatively using

quite simple considerations. When the temperature is low, weak pairing is expected

to be dominated by states at the Fermi energy. For that reason, the zero-field

pairing wavevector on the phase boundary is expected to be close to kF↑−kF↓ when

Tc → 0, i.e. when the interactions are just strong enough to cause pairing. Using

a small p approximation it follows that the pairing wavevector for Tc → 0 is given

approximately by

Q =
2kF0p

3
. (6.4)

The Landau level index at finite fields can be estimated by quantizing the pairing

wavevector. This gives

j ≈ (~2Q2)/4m

~Ωc
' εF0

~Ωc

2p2

9
. (6.5)

It is easy to check that this equation is quite consistent with the numerical results
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Figure 6.1: Critical Tc vs −1/kF0asc. (a) ~Ωc/εF0 = 0.02. The curves are for
different polarizations 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 from top to bottom. (b) ~Ωc/εF0 =
0.17. Polarizations are from 0.0 to 0.6. (c) ~Ωc/εF0 = 0.50. Polarizations are from
0.0 to 0.7.
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we have obtained. For smaller values of ~Ωc we therefore are confident that even

larger values of j should occur, although exotic vortex lattice may again be confined

even more strongly to the region close to the phase boundary. For a given value of

polarization, the value of j decreases with increasing interaction strength because

Tc moves to higher temperatures, reemphasizing the importance of pairing precisely

at the Fermi energy.

Fig. 6.1 (b) and (c) show results for systems with larger values of ~Ωc than

have been reported in experiments to date. One observation is that non-zero j

states are less likely to occur at large ~Ωc and appear only at very high polarization

and strong interactions. This property is explained by Eq. (6.5). Indeed one can

check that the appearance of non-zero j values is again consistent with this esti-

mate. Other new features that emerge in these figures are due mainly to large LL

quantization effects. At very high rotation frequency [Fig. 6.1 (c)], only the j = 0

COM LL is realized. Note that at high temperature, all the graphs look similar.(Tc

decreases monotonically as the polarization increases and as the interaction strength

decreases.) Tc is more weakly dependent on the rotation frequency. This is because

the thermal energy is comparable to or larger than the energy quantization due

to rotation. On the other hand, at low temperatures, the LL quantization effects

become important because the particles have one-dimensional densities-of-states for

each Landau level leading to peaks in pairing (at least in this mean-field-theory

calculation) when any Landau level is just slightly occupied. The non-monotonic

density of states becomes important when the LL spacing is much bigger than the

temperature. In this case, we expect non-monotonic behavior that is sensitive to the

density of both hyperfine species; we expect non-monotonic dependence on polariza-

tion and the occasional appearance of strong condensates at very large polarizations.

Some of this non-monotonic behavior is evident in Fig. 6.1 (c).
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Figure 6.2: Polarization vs Tc/εF0. (a) ~Ωc/εF0 = 0.02. Curves are for different
values of −1/kF0asc. (b) is for ~Ωc/εF0 = 0.17 and (c) is for ~Ωc/εF0 = 0.50.
Dashed lines in (a) and (b) shows the Tc curves for j = 0 and all the curves in (c)
corresponds to j = 0.

6.3 Phase Diagrams in Parameter Space

By using the critical temperature determined in the previous section, we determine

the phase boundaries in the parameter space spanned by ~Ωc, asc and the polariza-

tion.

In Fig. 6.2 we show the phase boundaries vs. polarization and temperature

for a series of interaction strengths. For slow rotation [Fig. 6.2 (a)] it is similar to the

usual BCS-FFLO phase diagram (compare with Fig. 5.5). At higher rotation fre-

87



0.00 0.05 0.10 0.15
0.40

0.45

0.50 T
c,j=0

T
c,j=1

T
c,j=2

T
c,j=3

T
c,j=4

T
c,j=5

T
c,max

j
c
=0

j
c
=1

j
c
=2

j
c
=3

j
c
=4 (a)

0.0 0.1 0.2
0.20

0.30

0.40 T
c,j=0

T
c,j=1

T
c,j=2

T
c,j=3

T
c,max

j
c
=1

j
c
=0

j
c
=2 (b)

Figure 6.3: Enlarged figures of Fig. 6.2 (a) for −1/kF0asc= (a) 0.6 and (b) 0.8 near
the phase boundaries between FFLO states and normal fluid. The horizontal axis
shows Tc/εF0 and the vertical axis is polarization. We calculate Tc for different j’s
and determine the optimal j that gives the highest Tc.

quencies, shown in Fig. 6.2 (b), FFLO states are less likely to occur. The transition

temperature still decreases monotonically as the polarization increases and above

some critical polarization, the normal state prevails. At very high rotation frequen-

cies, shown in Fig. 6.2 (c), the LL quantization effects become more important and

we observe reemergence of condensed states at around p = 0.4. The difference of

the Fermi energies at this polarization is exactly equal to the LL spacing and the

dominant pairing occurs between individual particles whose Landau level indices

differ by one.

In Fig. 6.3 we show an enlargement of the phase diagram for the FFLO

state, showing also the critical temperatures for a number of different COM LL index

channels j in addition to the one with the largest Tc. When the polarization is small,

j = 0 pairing leads to the highest Tc; that is j = 0 is the optimal pairing channel for

condensation which we denote as jc. As the polarization increases, T j
c for nonzero

j is larger than T j=0
c and jc increases with the polarization. This is analogous to

having an increasing pairing COM momentum with increasing polarization field in

the zero-field case. For a given value of ~Ωc, non-zero values of jc are more likely

when interactions are stronger, because the superfluid has to be able to withstand

the ill effects of polarization out to a sufficiently large value of p. If the interaction
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Figure 6.4: Polarization vs −1/kF0asc. We calculate Tc for polarizations from 0 to 1
with increment 0.01 and choose the largest one that has a finite Tc. (a) ~Ωc/εF0 =
0.02 (b) ~Ωc/εF0 = 0.17 and (c) ~Ωc/εF0 = 0.50. Solid blue curves show phase
boundary between normal fluid and superfluid and dashed blue curves in (a) and
(b) show phase boundary for COM LL j = 0.

is too weak, no non-zero j pairing can occur and jc is zero.

In Fig. 6.4 we plot the phase diagram vs. polarization and effective inter-

action space for slow, intermediate, and rapid rotations. The critical polarization

decreases as the interaction strength decreases for weak rotations [Fig. 6.4 (a)], as

seen in experiment [33]. The regions labeled FFLO in this figure have j 6= 0 con-

densates at the normal superfluid boundary. Quite generally this behavior occurs

only in a small region along the boundary between the superfluid and normal state

in the regime of large polarization and strong interactions. Faster rotation gener-
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ally suppresses FFLO states, as emphasized earlier, but the superfluid phase can be

realized at high polarization and weak interaction by tuning the system such that

the Fermi energy mismatch between majority and minority species is an integer

times the LL spacing, and the Fermi energies are close to a quantized LL energy.

In Fig. 6.4 (c), we see that big peaks occur if these conditions are met. At zero

polarization εF↑ = εF↓ = 1.96, in units of LL spacing, and the lowest LL is at 0.5.

For p = 0.41, εF↑ = 2.52 and εF↓ = 1.52 so that the Fermi energy difference is ex-

actly the LL spacing and each Fermi energy is very close to the LLs. For p = 0.72,

εF↑ = 2.80 and εF↓ = 0.80.

6.4 Discussion and Conclusions

In summary, using the Tc equation we have calculated the phase boundary between

the normal and superfluid phase considering pairing in different center-of-mass Lan-

dau levels. We find that states with higher Landau level condensates can occur

on the boundary between the normal and superfluid phase regions in a parameter

space that can in principle be explored systematically by taking advantage of Fes-

hbach resonances and of the ability to create arbitrary degrees of hyperfine state

polarization in an atom cloud. These FFLO vortex lattice states will have distinct

vortex lattices [89, 90, 91] which should aid their identification. High polarization

and strong interactions are required to realize the FFLO state. At high rotation

frequency, features that originate from rotational quantization effects play an im-

portant role and we find that for certain parameters the superfluid phase persists

to high polarization.

The regime where the FFLO state occurs in rotating systems seems accessible

to experiment, and hence we believe that these exotic vortex structures are observ-

able. The greatest obstacle to their observation may be competition with states in

which the atoms phase separate into regions with condensation but no polarization
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and regions with polarization but no condensation. We believe that FFLO physics

would almost certainly occur if phase separation could be suppressed. Phase sepa-

ration does not occur for electrons in a superconducting metal, and cannot because

of the large Coulomb energy price that would have to be paid. One possibility

for suppressing phase separation in atomic systems with attractive interactions, is

to artificially create the necessary weak but long range repulsive interactions by

electrically inducing dipoles [99] in a pancake shaped [100], but not necessarily

quasi-two-dimensional trapped atom system. The typical dipole-dipole interaction

energy is p2/R3 ∼ p2n ∼ α2E2n where p is the dipole moment induced by the

external electric field E, R is the average inter-atom distance, n is the density of

the atoms and α is the polarizability of the atom. If this energy is much smaller

than the typical atom-atom interaction energy εF0(kF0|asc|), then the physics on

short length scales does not change much. On the other hand, if the energy cost

of the whole system due to the long range dipole interaction when the system is

phase separated is much larger than the condensation energy gain, phase separation

can be suppressed. Thus, p2n2V À D(0)∆2
0 ∼ NεF0e

−π/kF0|asc| where D(0) is the

density of states at the Fermi level, N is the number of atoms and V is the volume

of the system. These conditions lead to a condition for the external electric field

e−π/kF0|asc| ¿ α2nE2

εF0
¿ kF0|asc| (6.6)

which can be easily satisfied for small kF0|asc|. FFLO states are most likely ex-

pected to occur near the critical temperature Tc while experimentally observed

phase-separated states are well below Tc. It is known that phase separation is

less likely at higher temperatures so it could be possible to observe FFLO states

near Tc without explicitly suppressing phase separation.

Finally we mention that peculiar additional interesting effects occur because

of Landau level quantization if the rotation frequency is sufficiently large. Very large
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rotation frequencies have been achieved in experiments with bosonic atoms [101].

We believe, therefore, that there is no fundamental obstacle to approaching the

rapid-rotation limit with Fermions. Although we have used mean-field-theory here

to study this regime, there is every reason to expect unanticipated properties to

emerge from strong quantum fluctuations and correlations. At sufficiently rapid

rotations, it should be possible to for the first time study the fractional quantum

Hall effect in fermion systems with attractive interactions [102].
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Chapter 7

Summary

We have studied two different polarized fermion systems focusing on how the pairing

mechanism adapts to a finite polarization. Our calculations use a generalized BCS

mean-field-theory approach to describe the superconducting state and are therefore

most reliable in the weak coupling limit. When there is spin degeneracy for each

constituent of the Cooper pair as in bilayer electron-hole systems, the Fermi surface

mismatch caused by the polarization gives rise to the spontaneous spin-polarization

of each species to maximize the energy gain obtained by condensation. This leads to

the uniformly mixed state of the condensate and the normal fluid. In this case the

Cooper pairs have zero total momentum since they are formed from the components

that now have the same Fermi surfaces due to spin-polarization. The SO coupling

lifts the spin degeneracy and can lead to the deformation of the energy spectrum.

The interplay between the ferromagnetic order parameter and the condensate order

parameter appears to be complicated in the presence of SO coupling and has not yet

been fully resolved. This is an important direction for future work. In addition to the

ground state characteristics we have studied, experimental evidence for the excitonic

condensation will most likely be the transport properties of separately contacted

bilayer systems. Once the system forms a condensate, the transport of each layer will
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be highly coherent, and the effect of SO interaction on the coherent transport will be

also interesting from a spintronics point of view. We considered only uniform order

parameters in this work. In principle FFLO-like pairing is also possible in polarized

electron-hole systems. We expect ferromagnetic phase is energetically favorable but

more careful consideration is required to exclude this possibility.

In atomic systems, there is no spin-degeneracy as in the bilayer systems.

The Cooper pairs then can have finite total momenta as the lowest energy state.

In view of the extreme controllability of the parameters in cold atom systems, the

observation of the FFLO state seems highly plausible. We have developed a mean-

field theory for the critical temperature of the rotating fermion atom systems and

the phase boundary determined by solving the implicit Tc equation suggests that

FFLO states are experimentally accessible. Even though the qualitative pictures of

the phase diagram may be also good for the confined systems, spatially nonuniform

theory is required to describe the effects of the confining potential.
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Appendix A

Derivation of the Rashba

Spin-Orbit Interaction in

Zinc-blende Semiconductors

In this appendix, we briefly review the Löwdin partitioning method [85, 86] and

the Luttinger Hamiltonian [103] for semiconductors and then explicitly derive the

Rashba Spin-orbit interaction Hamiltonian for two-dimensional electron and hole

systems. Using Löwdin partitioning technique, we can derive the effective Hamil-

tonian for a subspace with the effects from outside the subspace treated as pertur-

bations. The Rashba SO interaction for the conduction band comes from the third

order terms of the k · p interaction that couples the conduction band states and

the valence band states, and the Rashba SO for the heavy-hole valence band comes

from the off-diagonal terms in the 4 × 4 Luttinger Hamiltonian that describes the

valence bands.
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A.1 Partitioning Method

Consider an eigenvalue problem that can be represented in a matrix form

Hc = εc . (A.1)

Assuming that the system can be divided into two subspaces A and B,


 HAA HAB

HBA HBB





 cA

cB


 = ε


 cA

cB


 , (A.2)

we obtain two matrix equations,





HAAcA + HABcB = εcA

HBAcA + HBBcB = εcB

. (A.3)

Solving cB from the second equation and then substitute in the first equation, we

obtain

cB =
1

ε−HBB
HBAcA (A.4)

(
HAA + HAB

1
ε−HBB

HBA

)
cA = εcA

⇒ UAAcA = εcA , (A.5)

where

UAA ≡ HAA + HAB
1

ε−HBB
HBA . (A.6)

Eq. (A.5) is the reduced eigenvalue equation in subspace A. If we can divide HBB

into diagonal part Hd
BB and off-diagonal part H ′

BB, assuming H ′
BB is small, we can
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expand UAA in a power series in H ′
BB.

UAA = HAA +HAB
1

ε−Hd
BB

HBA +HAB
1

ε−Hd
BB

H ′
BB

1
ε−Hd

BB

HBA + · · · . (A.7)

The eigenvalue ε and the eigenvector cA can be evaluated by solving Eq. (A.5)

iteratively using Eq. (A.7) up to some finite order.

A.2 Luttinger Hamiltonian

Semiconductors with diamond- or zinc-blende-type structures can be described by

the Luttinger Hamiltonian [103] which can be derived from the k · p Hamiltonian

using the partitioning method. If there is a confining potential as in quantum wells,

we can use the envelope function approximation making use of the long length scale

of the confining potential. In this section, we derive the Luttinger Hamiltonian

for the conduction bands and the valence bands, and use the envelope function

approximation for the subbands in the presence of the confining potential. The

Rashba SO interaction will be derived in the next section using the subband states

of the envelope function approximation as basis states.

The Hamiltonian for an electron in a crystal in the presence of a confining

potential is given by

Ĥ = Ĥ0 + Vconf(r) (A.8)

with

Ĥ0 =
p2

2m
+ Vcr(r) + VSO (A.9)

where Vcr(r) is the crystal field, Vconf(r) is the confining potential and the atomic

spin-orbit interaction VSO is

VSO =
~

4m2c2
(∇Vcr × p) · σ . (A.10)
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We will use a complete orthonormal basis defined by

〈r|nk〉 = eik·run0(r) (A.11)

where un0(r) is related to the Bloch state ψnk ,which is the eigenstate of the Hamil-

tonian in the absence of the confining potential, by

ψnk(r) = eik·runk(r) . (A.12)

un0(r) is an eigenstate of Ĥ0 with eigenvalue εn0 and has the same periodic properties

as the crystal. n is the band index and k is the wavevector in the first Brillouin

zone. Once we know the band edge εn0 for k = 0, we can calculate the energy for

small k using the perturbation method. The matrix elements of Ĥ0 in this basis are

given by

〈nk|Ĥ0|n′k′〉 =
∫

V
dre−i(k−k′)·r u†n0(r)

(
Ĥ0 +

~
m

k · π +
~2k2

2m

)
un′0(r)

︸ ︷︷ ︸
≡f(r)

=
(

εn0 +
~2k2

2m

)
δnn′δkk′ +

~
m

(k · π)nn′δkk′ (A.13)

where π = p + ~(σ ×∇Vcr)/4mc2 and (k ·π)nn′ = 〈n0|k ·π|n′0〉. We assume that

the spin-dependent part of π gives negligible contribution so that k ·π ' k ·p. Here

we used a property that for the periodic function f(r), it can be expanded as a sum

98



∑
K eiK·rf̃(K) where K is a reciprocal lattice vector and then

∫

V
dre−i(k−k′)·rf(r) =

∫

V
dre−i(k−k′)·r ∑

K

eiK·rf̃(K)

=
∑

K

f̃(K)
∫

V
dre−i(k−k′−K)·r

=
∑

K

f̃(K)δk−k′,K

= f̃(0)δkk′

=
∫

V
drf(r)δkk′ (A.14)

because, for k and k′ both in the first Brillouin zone, k − k′ = K is only possible

for K = 0. The matrix elements of Vconf are

〈nk|Vconf |n′k′〉 =
∫

V
dre−i(k−k′)·ru†n0(r)Vconf(r)un′0(r)

=
∫

V
dre−i(k−k′)·r ∑

K

eiK·rcnn′(K)Vconf(r)

= V
∑

K

cnn′(K)Ṽconf(k− k′ −K) , (A.15)

where

cnn′(K) =
1
V

∫

V
dre−iK·ru†n0(r)un′0(r) . (A.16)

For a slowly varying confining potential, Ṽconf(k− k′ −K) is negligible for nonzero

K. Then

〈nk|Vconf |n′k′〉 = Ṽconf(k− k′)cnn′(0)

= Ṽconf(k− k′)δnn′ . (A.17)
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Figure A.1: Illustration of the band structure of bulk GaAs. The conduction
band(blue solid curve) edge has Γ6 symmetry and the valence band edge has Γ8

symmetry for heavy-hole and light-hole bands(red dotted curves) and Γ7 symmetry
for split-off bands(violet dot-dashed curve).

Combining Eq. (A.13) and Eq. (A.17) we obtain

〈nk|Ĥ|n′k′〉 =
(

εn0 +
~2k2

2m

)
δnn′δkk′ +

~
m

(k ·p)nn′δkk′ + Ṽconf(k−k′)δnn′ . (A.18)

We will use the partitioning method with Eq. (A.18) to find effective Hamiltonian

for the conduction and valence band subspaces.

The band structure and the band edge near Γ point for bulk GaAs are illus-

trated in Fig. A.1. The conduction band is doubly degenerate and has Γ6 symmetry,

so that the band edge states are

ucα(r) = uc0(r)α (A.19)

ucβ(r) = uc0(r)β (A.20)

where uc0(r) has s-orbital-like symmetry, and α(β) is spin up(down) state. The
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valence band edge states have j = 3/2-like symmetry and can be represented as

uv1(r) = 〈r|3
2
,
3
2
〉 = − 1√

2
(X + iY )α (A.21)

uv2(r) = 〈r|3
2
,
1
2
〉 = − 1√

6
((X + iY )β − 2Zα) (A.22)

uv3(r) = 〈r|3
2
,−1

2
〉 =

1√
6

((X − iY )α + 2Zβ) (A.23)

uv4(r) = 〈r|3
2
,−3

2
〉 =

1√
2
(X − iY )β (A.24)

uv5(r) = 〈r|1
2
,
1
2
〉 =

1√
3

((X + iY )β + Zα) (A.25)

uv6(r) = 〈r|1
2
,−1

2
〉 = − 1√

3
((X − iY )α− Zβ) (A.26)

where X,Y and Z are p-like states

X ∝ xf(r) (A.27)

Y ∝ yf(r) (A.28)

Z ∝ zf(r) , (A.29)

and uv1 and uv4 form the heavy hole bands, uv2 and uv3 form the light hole bands and

uv5 and vv6 form the split-off bands. Now we can calculate the matrix elements of

k·π. Due to the symmetry and the selection rule, the matrix elements of k·p between

conduction band states are zero. While the matrix elements between valence band

states give linear terms in k for systems without inversion symmetry, these linear

terms are relatively unimportant for valence bands so we will not consider these

terms further. The matrix elements we consider for k · p is therefore between the

conduction band states and the valence band states. Using Eq. (A.7) the effective
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Hamiltonian matrix elements for a subspace DA become

〈nk|ĤA|n′k′〉 =
(

εn0 +
~2k2

2m

)
δnn′δkk′ + Ṽconf(k− k′)δnn′

+
∑

m/∈DA

(
~
m

)2 (k · p)nm(k · p)mn′

ε− εm0
δkk′

≡ Dnn′(k)δkk′ + Ṽconf(k− k′)δnn′ (A.30)

up to second order. The eigenvalue ε is evaluated by solving

∑

n′k′∈Dc

〈nk|Ĥ|n′k′〉cn′k′ = εcnk . (A.31)

Multiplying eik·r and then summing over all k in the first Brillouin zone,

∑

nn′
Dnn′(−i∇)Fn′(r) +

∑

k,k′
Ṽconf(k− k′)eik·rcnk′ = εFn(r) (A.32)

where

Fn(r) ≡
∑

k

eik·rcnk . (A.33)

The second term can be simplified using

∑

k,k′
Ṽconf(k− k′)eik·rcnk =

∑
q

eiq·rṼconf(q)
∑

k′eik′·rcnk′ (A.34)

' Vconf(r)Fn(r) (A.35)

because Ṽconf(q) is negligible for large q. Thus, we obtainthe Schrödinger equation

for the envelope function Fn(r),

∑

nn′
Dnn′(−i∇)Fn′(r) + Vconf(r)Fn(r) = εFn(r) . (A.36)

Dnn′(k) itself depends on the eigenvalue ε, but we can replace ε with εn0 since the
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term containing ε dependence is already second order. Therefore, Dnn′(k) deter-

mines the bulk band structure up to second order, which is equivalent to the effective

mass approximation. In the presence of the confining potential, the j-th subband

eigenstate can be obtained by solving Eq. (A.36) and then by multiplying the band

edge states un0:

ψj
n(r) =

∑

nk

cnk〈r|nk〉

=
∑

nk

eik·rcnkun0(r) (A.37)

=
∑

n

Fn(r)un0(r) . (A.38)

For the conduction bands for bulk systems, Dnn′(k) is diagonal and we obtain

εck = εc0 +
~2k2

2m
+

∑

m/∈Dc

~2

m2

|(k · p)c,m|2
εc0 − εm0

(A.39)

= εc0 +
~2k2

2m∗
c

(A.40)

where m∗
c is the effective mass for the conduction bands. In the presence of the

confining potential, the wavevector in the direction of the confining potential is

quantized and the conduction band split into several subbands, but each subband

is still doubly spin-degenerate. The envelope function for the j-th subband is given

by solving (
εc0 − ~2

2m∗
c

∇2 + Vconf(r)
)

F j
c (r) = εcjF

j
c (r) . (A.41)

The situation is more complicated for the valence bands due to the 4-fold degeneracy

at the valence band edge. Dnn′(k) is not diagonal and it is given by 4× 4 Luttinger

Hamiltonian if we consider only the heavy hole and light hole bands, and 6 × 6
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Luttinger Hamiltonian if we include the split-off bands.

HL =




Hhh −iL −M 0 − iL√
2

√
2M

iL∗ Hlh 0 −M − (P−2Q)

3
√

2
−i

√
3L√
2

−M∗ 0 Hlh iL −i
√

3L∗√
2

− (P−2Q)

3
√

2

0 −M∗ −iL∗ Hhh

√
2M∗ − iL∗√

2

iL∗√
2

− (P−2Q)

3
√

2
i
√

3L√
2

√
2M P+Q

3 −∆SO 0
√

2M∗ i
√

3L∗√
2

− (P−2Q)

3
√

2
iL√

2
0 P+Q

3 −∆SO




(A.42)

where

Hhh = −~
2k2

z

2m
(γ1 − 2γ2)− ~2

2m
(γ1 + γ2)(k2

x + k2
y) (A.43)

Hlh = −~
2k2

z

2m
(γ1 + 2γ2)− ~2

2m
(γ1 − γ2)(k2

x + k2
y) (A.44)

L =
i
√

3~2

m
γ3kz(kx − iky) (A.45)

M = −
√

3~2

2m

(
γ2(k2

x − k2
y)− 2iγ3kxky

)
(A.46)

P = −~
2

m

(
(γ1 + γ2)(k2

x + k2
y) + (γ1 − 2γ2)k2

z

)
(A.47)

Q = − ~
2

2m

(
(γ1 − 2γ2)(k2

x + k2
y) + (γ1 + 4γ2)k2

z

)
(A.48)

and γ’s are the Luttinger parameters. For many materials, γ1 > γ2 ' γ3, so we

make an assumption that γ2 ' γ3 and replace γ2 and γ3 with the average value

γ̄ = (γ2 +γ3)/2. In this axial approximation, the bulk band structure of the valence

bands described by 4× 4 Luttinger Hamiltonian is isotropic and parabolic with the

effective masses

mhh =
m

γ1 − 2γ̄
(A.49)

mlh =
m

γ1 + 2γ̄
(A.50)
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for heavy hole and light hole bands respectively, which is illustrated in Fig. A.1. Each

band is doubly degenerate and 4-fold degenerate only at k = 0. In the presence of

a confining potential, the heavy hole and light hole bands are divided into several

subbands respectively, and the degeneracy of the heavy hole and light hole bands

at band edge k = 0 is lifted due to the different effective masses.

A.3 Rashba SO Interaction

In this section, we use the subband states as a basis to derive the Rashba SO

interaction in the presence of an external field. The Hamiltonian is

Ĥ = Ĥ0 + Vconf(r) + Vext(r) (A.51)

where

Ĥ0 =
p2

2m
+ Vcr(r) + VSO (A.52)

and the j-th subband state of band n we obtained using the envelope function

approximation for a system without the external field is

ψj
n(r) = F j

n(r)un0(r) ≡ 〈r|n; j〉 . (A.53)

The envelope function F j
n(r) is slowly varying function and changes little on a length

scale of the lattice vector, and the bulk band edge state un0(r) is periodic function

of the lattice vector. Making use of the two length scales, we calculate the matrix

105



elements of the Hamiltonian in this basis.

〈n; j|Ĥ|n′; j′〉

=
∫

V
dru†n0(r)F

j
n
∗(r)

[(
p2

2m
F j′

m(r)
)

um0(r)

+ F j′
m(r)

(
Ĥ0um0(r)

)

+
1
m

(
pF j′

m(r)
)
·
(
πum0(r)

)

+
(
Vconf(r) + Vext(r)

)
F j′

m(r)um0(r)

]

'
∑

R

[
F j

n
∗(R)

P 2

2m
F j′

m(R)
∫

Ωcell

dru†n0(r)um0(r)

+ F j
n
∗(R)F j′

m(R)
∫

Ωcell

dru†n0(r)Ĥ0um0(r)

+
1
m

F j
n
∗(R)PF j′

m(R) ·
∫

Ωcell

dru†n0(r)πum0(r)

+ F j
n
∗(R)

(
Vconf(R) + Vext(R)

)
F j′

m(R)
∫

Ωcell

dru†n0(r)um0(r)

]

' 〈〈n; j|
(

P 2

2m
+ Vconf(R)

)
|n; j′〉〉δnm + εn0δnmδjj′

+
~
m
〈〈n; j| − i∇R|m; j′〉〉 · pnm + 〈〈n; j|Vext(R)|n; j′〉〉δnm (A.54)

where Ωcell is the volume of a unit cell and we assumed πnm ' pnm with pnm ≡
〈n0|p|m0〉 as before. The double bracket means the expectation value with respect

to the envelope functions, that is,

〈〈n; j|Ô|m; j′〉〉 ≡ 1
V

∫

V
dRF j

n
∗(R)ÔF j′

m(R) (A.55)

for any operator Ô. Eq. (A.54) is formally equivalent to Eq. (A.18) , but in the new

basis. Note that k in Eq. (A.18) becomes an operator that acts on the envelope

function.
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Now we can use these matrix elements to apply the partitioning method

[Eq. (A.7)]. We assume that the confining potential only depends on z and an even

function of z, and the external potential is given by Vext(z) = eEz where E = Eẑ is

the effective electric field. Then all the envelope functions have a form

F j
n(r) = eik⊥·r⊥F j

n(z) (A.56)

where k⊥ and r⊥ are the projections of k and r, respectively, to a plane perpendicular

to the z-direction. For a subspace Dc;j=1 which is spanned by the lowest conduction

subbands |cα; j = 1〉 and |cβ; j = 1〉, the effective 2 × 2 Hamiltonian up to second

order is diagonal and reduces to the matrix form of the conduction band envelope

function Schrödinger equation [Eq. (A.41)]. The lowest non-zero off-diagonal term

comes form the third order term

〈cα; 1|Ĥ(3)
Dc;1

|cβ; 1〉 =
~2

m2

∑

m/∈Dc
j′ j′′

〈〈cα; 1| − i∇R|m; j′〉〉 · pcα,m

εc1 − εmj′

× 〈〈m; j′|Vext(R)|m; j′′〉〉pm,cβ · 〈〈m; j′′| − i∇R|cβ; 1〉〉
εc1 − εmj′′

,

(A.57)

where εµj is the j-th subband energy of the conduction(c), heavy hole(h), light

hole(l) and split-off(s) bands. We replaced ε with εc1 as a good approximation.

Since the envelope functions for α and β spin state conduction bands satisfy the

same equation, we can drop the spin indices for the conduction band in the double

bracket values. Considering the coupling with subbands from each valence bands
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(heavy hole, light hole and split-off bands), after some algebra we obtain

〈cα; 1|Ĥ(3)
Dc;1

|cβ; 1〉 = i(kx − iky)eEP 2
∑

j′j′′

(
Aj′j′′

cl

∆cl
1j′∆

cl
1j′′

− Aj′j′′
cs

∆cs
1j′∆

cs
1j′′

)

= iαRE(kx − iky)

=
[
αR(k×E) · σ

]
αβ

(A.58)

where P is Kane’s momentum matrix elements [104], ∆µµ′
ij = εµi − εµ′j and

Aj′j′′
cl =

2~2

3m2

(〈〈c; 1|∂z|l; j′〉〉〈〈l; j′|z|l; j′′〉〉〈〈l; j′′|c; 1〉〉
)

(A.59)

Aj′j′′
cs =

2~2

3m2

(〈〈c; 1|∂z|s; j′〉〉〈〈s; j′|z|s; j′′〉〉〈〈s; j′′|c; 1〉〉
)

, (A.60)

and the Rashba coefficient is

αR = eP 2
∑

j′j′′

(
Aj′j′′

cl

∆cl
1j′∆

cl
1j′′

− Aj′j′′
cs

∆cs
1j′∆

cs
1j′′

)
. (A.61)

Due to the parity of the envelope functions, nonvanishing contributions come from

only j′=even and j′′=odd. The Rashba interaction for the conduction band is

defined by

ĤR
c = αR(k×E) · σ . (A.62)

If the confining potential is a square well with infinite height, the envelope functions

are the same for all bands for the same j. Then Aj′j′′
cl = Aj′j′′

cs ≡ aj′j′′ and we obtain

αR = eP 2
∑

j′j′′
aj′j′′

(
1

∆cl
1j′∆

cl
1j′′

− 1
∆cs

1j′∆
cs
1j′′

)
, (A.63)

which is given in Ref. [87] for the largest contribution from j′=2 and j′′=1.

For the valence bands, the matrix elements of Ĥ0 + Vconf up to the second

order are the Luttinger Hamiltonian HL given by Eq. (A.42) if we treat the elements
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of the Luttinger Hamiltonian as operators such as

〈vi; j|(Ĥ0 + Vconf)|vi′; j′〉 = 〈〈vi; j|HL(−i∇)vi,vi′ |vi′; j′〉〉 . (A.64)

For the subspace Dh;1 which is spanned by the lowest heavy hole subband states

|v1; j = 1〉 and |v4; j = 1〉, Vext couples different subbands originating from the same

band and the Luttinger Hamiltonian gives the coupling between the heavy hole and

the light hole subbands. Then the third order off-diagonal term in Dh;1 is

〈v1; 1|Ĥ(3)
Dh;1

|v4; 1〉

=
∑

i=2,3
j′j′′

〈〈v1; 1|(HL)v1,vi|vi; j′〉〉〈〈vi; j′|Vext|vi; j′′〉〉〈〈vi; j′′|(HL)vi,v4|v4; 1〉〉
(εh,1 − εl,j′)(εh,1 − εl,j′′)

+
∑

i=2,3
j′j′′

〈〈v1; 1|Vext|v1; j′〉〉〈〈v1; j′|(HL)v1,vi|vi; j′′〉〉〈〈vi; j′′|(HL)vi,v4|v4; 1〉〉
(εh,1 − εh,j′)(εh,1 − εl,j′′)

+
∑

i=2,3
j′j′′

〈〈v1; 1|(HL)v1,vi|vi; j′〉〉〈〈vi; j′|(HL)vi,v4|v4; j′′〉〉〈〈v4; j′′|Vext|v4; 1〉〉
(εh,1 − εl,j′)(εh,1 − εh,j′′)

.

(A.65)

Luttinger parameters γ2 and γ3 in the expression of M will be replaced with their

average γ̄ for the axial approximation. After some algebra we obtain

〈v1; 1|Ĥ(3)
Dh;1

|v4; 1〉 = i(kx − iky)3eE
∑

j′j′′

(
Aj′j′′

1

∆hl
1j′∆

hl
1j′′

− Aj′j′′
2

∆hl
1j′∆

hh
1j′′

+
Aj′j′′

3

∆hl
1j′∆

hh
1j′′

)

= iβhhE(kx − iky)3

=
[
iβhhE(σ+k3

− + σ−k3
+)

]
v1,v4

(A.66)
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where σ± = 1/2(σx ± iσy), k± = kx ± iky and

Aj′j′′
1 =

3~4

2m2
γ3(γ2 + γ3)〈〈h; 1|l; j′〉〉〈〈l; j′|z|l; j′′〉〉〈〈l; j′′|∂z|h; 1〉〉 (A.67)

Aj′j′′
2 =

3~4

2m2
γ3(γ2 + γ3)〈〈h; 1|l; j′〉〉〈〈l; j′|∂z|h; j′′〉〉〈〈h; j′′|z|h; 1〉〉 (A.68)

Aj′j′′
3 =

3~4

2m2
γ3(γ2 + γ3)〈〈h; 1|z|h; j′〉〉〈〈h; j′|l; j′′〉〉〈〈l; j′′|∂z|h; 1〉〉 . (A.69)

Here h is v1 or v4, l is v2 or v3 in the double bracket. Due to the parity of the

envelope functions, Aj′j′′
1 and Aj′j′′

2 are nonzero only for j′=odd and j′′=even and

Aj′j′′
3 is nonzero only for j′=even and j′′=even. The Rashba coefficient is

βhh = e
∑

j′j′′

(
Aj′j′′

1

∆hl
1j′∆

hl
1j′′

− Aj′j′′
2

∆hl
1j′∆

hh
1j′′

+
Aj′j′′

3

∆hl
1j′∆

hh
1j′′

)
. (A.70)

Therefore the Rashba SO interaction for the heavy hole subbands is

ĤR
hh = iβhhE(σ+k3

− + σ−k3
+) . (A.71)
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[76] T. Schäpers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, and H. Lüth. J.
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