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Two-photon (2P) microscopy is a useful tool for studying structure and

function of biological samples. As optical optimizations occur in 2P systems

that allow imaging at deeper depths, there is a need to characterize the reso-

lution and the signal interactions with tissue at these depths. Here, we discuss

processes to determine the resolution of a 2P microscope using sub-resolution

sized micro-spheres to mimic point spread functions. Through this process,

the resolution of the microscope was determined to be about 0.942 µm in vitro

and about 1.08 µm in vivo, values that did not change with respect to depth.

Additionally, we investigated the relationship between contrast, background

intensity, and noise with depth in vivo. From this study, contrast decreased

with depth, while background intensity and noise both increased. These results

suggest that the decrease in resolving power at deep depths is likely due to the

inability to differentiate signal from background and not due to a decrease in

the overall resolution of the system.
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Chapter 1

Introduction

1.1 Two-Photon Microscopy

Fluorescent imaging has allowed researchers to examine biological struc-

ture and function. Relying on the process of fluorescence, fluorescent imaging

uses high-energy excitation light to generate low-energy emission light from a

sample. Fluorescence occurs when a fluorophore absorbs a photon of light and

is excited to a high energy state. Upon relaxation to its initial energy state,

the fluorophore emits a photon that can be detected. When many of these

photons are emitted, an image of the glowing items can be produced.

All fluorescent imaging in vivo requires fluorescent agents to be either

injected into or attached onto biological materials. Because the imaging relies

on a unique interaction between fluorophore type and wavelength of light, sep-

arate entities can be isolated by using different fluorophore types or distinct

excitation wavelengths and depicted simultaneously in the same image. Such

can be seen with vasculature and neurons in brain tissue depicted simultane-

ously [25]. The ability to isolate items of interest makes fluorescent microscopy

a powerful tool in the crowded environment of biological samples.

One particular issue with traditional wide-field fluorescent imaging arises
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when a large number of excitation photons bombard the sample. Because flu-

orophore throughout the sample can also be excited, incident light reaching

the detector may not be limited to a definite focal spot. Laser scanning tech-

niques, such as confocal microscopy and later two-photon (2P) microscopy,

address this issue by introducing scanning optics and additional methods to

reduce the detected fluorescence to within a specific focal volume. In particu-

lar, 2P microscopy works via simultaneous excitation of the fluorophore with

two lower-energy photons: fluorophores with a 400-500 nm excitation wave-

length can be excited with a light source of similar wavelength for traditional

fluorescence or with an NIR light source using 2P microscopy. Because 2P

excitation is a rare phenomenon under normal light intensities, mode-locked

lasers that produce short pulses (˜100 fs) of high intensity coherent light are

used to generate sufficient fluorescent signal. By focusing the short pulses into

a sample, large numbers of photons are localized temporally at the focal vol-

ume while fewer photons are present outside the focus, reducing the amount

of out-of-focus signal [14].

Using photons of lower energy, and thus increased wavelength, means

2P is more ideal than other fluorescent imaging techniques for imaging at

deeper depths, since longer wavelengths of light penetrate further into biolog-

ical tissue [20]. Recently, 2P microscopy has been used to generate images in

vivo of depths up to or over 1 mm in mouse brain tissue, with depth limits

that vary based on laser type [14,17,18,30].
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1.2 Resolution

Resolution is described as the minimal distance needed to distinguish

two items from one another. The value is related to the point spread function

(PSF), which describes how signal propagates from a point source. Images are

formed as the convolution of an object’s intensity profile with the PSF, mean-

ing that when two objects are within a PSF’s full width at half its maximum

value (FWHM) of each other, they cannot be resolved [23].

Resolution is related to the wavelength of light and to the diffraction of

light traveling through the imaging system. Diffraction in the optical system

limits the lateral resolution to

∆x,y ≈
λ

2 · NA
(1.1)

where λ is the wavelength and NA is the numerical aperture of the objec-

tive [3]. While the theoretical resolution equation provides an estimation of

resolution, the absolute resolution can be determined by measuring the PSF

seen in an image. For most images, however, separating the PSF from the

object is challenging. Without precise knowledge of the object’s shape, the

object cannot be deconvolved from the image. To get around this difficulty,

an object that approximates a point source can be used. Because a single

point represents a delta function in space, objects smaller than the theoretical

resolution can be used to isolate the PSF.

In a non-turbid medium, resolution is not expected to change with

respect to depth [10]. Though in a scattering sample, photons outside the focal
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point can reach the detector. In traditional fluorescent microscopy, this causes

a decrease in resolution with increased depth, as more scattering events occur

[10]. By solely exciting fluorophore within the focal volume, 2P microscopy

ensures only photons originating from the focus are seen by the detector [14].

This suggests that the as long as sufficient signal is present, resolution of 2P

microscopy is not influenced by image depth. Previous work has suggested

that the PSF does not significantly change in surface-level depths of turbid in

vitro samples [9]. However, depths similar to those in deep imaging and in in

vivo samples have not been presented.

The goal of this research is to characterize the 2P microscopy resolu-

tion in vivo. Without full understanding of how signal and resolution behave

throughout the sample, conclusions about objects near the resolution limit

cannot be considered valid. The identity of such small objects may be sus-

pected as artifact instead of a real object. Resolution characterization will be

performed to provide substantial evidence to our results. We will look at two

lasers: a 800-nm titanium:sapphire (Ti:S) laser (Mira 900, Coherent) and a

custom 1060-nm ytterbium (Yb) fiber laser [21]. With the two lasers, we will

investigate resolution based on PSF fitting with respect to depth in both in

vitro and in vivo turbid samples; resolution with respect to laser type; and

signal transmission through highly scattering media as related to laser type.

Through PSF and signal propagation analysis, we will provide definite limits

to the physiological items seen using our 2P imaging system.
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Chapter 2

In Vitro PSF Measurements

To understand of how turbidity and depth influence resolution, we first

looked at PSF characteristics in different in vitro samples. Phantom samples

were made with varying intralipid levels to mimic the scattering properties

of brain tissue. In the following experiments, we attempted to determine

which phantom sample was most similar to brain tissue through investigating

fluorescent signal decay. After determining decay rates, we then investigated

the effects of depth on the measured PSF width under experimental conditions

similar to those used for deep imaging. Phantom samples allowed us to not

only draw conclusions from optical properties similar to those in mouse brain,

but also with the in vitro samples, we investigated whether PSF trends differed

as a function of depth, under various, controlled scattering characteristics, or

with different laser illumination sources.

2.1 Microscope Setup

Both the Ti:S laser and the Yb laser tested were used independently

with the same upright custom microscope [16]. Laser light was scanned us-

ing xy-galvanometer mirrors (6125H, Cambridge Technologies) through a scan
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lens (SLP250, Thorlabs), a tube lens system (2 AC508-400-C lenses in a plossl

design, Thorlabs), and an objective (XLUMPLFLN 20x 0.95 NA, Olympus)

to the sample. Heavy water was used at the objective-sample interface to

minimize the amount of light scattering. From the sample, fluorescent light

returned through the objective and was redirected using a dichroic mirror

(FF775-Di01-52x58, Semrock) to a PMT (H10770PB-40, Hamamatsu Pho-

tonics) prefaced with a bandpass filter (FF01-609/181-25, Semrock). Data

from the PMT was finally collected using a multichannel DAQ (PCI-6259,

National Instruments), and images were reconstructed from PMT data using

custom software. All images used in this study are 512 x 512 pixels and have

been averaged over 3 frames to reduce noise.

2.2 Samples

Mice and phantom samples were prepared for experimentation. All

animal procedures were approved by The University of Texas at Austin Insti-

tutional Animal Care and Use Committee. To prepare a mouse (C57, male,

25-30 g, Charles River) for imaging, a bilateral craniotomy was performed to

replace a portion of skull with a glass window, leaving the dura mater intact.

The mouse was then given a minimum of three weeks recovery time to allow

any inflammation incurred during surgery to subside.

Phantom samples were made with 1.3% agarose, varying levels of in-

tralipid, and fluorescent micro-spheres. Agarose gave the sample some rigidity,

while the intralipid provided scattering to the sample. The micro-spheres mim-
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icked point sources for both lasers used, as the diffraction-based lateral focal

volume is expected to be about 400 nm and 530 nm for the Ti:S laser and

the Yb laser, respectively. To investigate the microscope’s resolution at var-

ious scattering levels, 0%, 0.5%, 1%, 2%, and 4% intralipid (Intralipid 20%,

Baxter) phantoms were created. Red 200-nm fluorescent micro-spheres (Fluo-

Spheres F8793, Thermo Fisher Scientific) were mixed into all phantoms prior

to agarose setting to allow even particle dispersion. Phantoms were covered

with water and stored in a refrigerator when not in use.

Initial investigation of the micro-spheres in the 0% intralipid phantom

showed the micro-sphere number as well as signal intensity did not vary sig-

nificantly in depths up to 2 mm during an imaging session performed with the

phantoms.

2.3 Fluorescent Decay

Scattering and absorption in the sample cause an exponential decay of

light over penetration depth [10]. Samples with higher turbidity have shallower

light penetration, while in lower scattering samples, light can reach greater

depths [10]. We aimed to investigate the amount of signal decay in different

scattering levels to give us a better understanding of how much scattering is

present in brain tissue.
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2.3.1 Experiment

Fluorescent decay rates were first collected for both the mouse brain

tissue and the intralipid phantoms. During 2P imaging, the mouse was anes-

thetized with 80% N2/O2 vaporized isofluorane and kept at 37 °C in a stereo-

tactic apparatus. A 50-µL retro-orbital injection of fluorescein (F2456, Sigma

Aldrich) was administered to allow fluorescent imaging of the brain vascula-

ture. The laser was focused at the brain surface, and power was adjusted

to provide sufficient signal-to-background for imaging. With laser power held

constant for the remainder of the imaging session, 2P images were taken into

the brain in 5-µm-sized steps until no fluorescent signal was present. Image

stacks were taken with three different mice to take into account physiological

differences in brain tissue. The same imaging process was performed with

each of the intralipid phantoms to allow comparison between live tissue and

phantom sample. Both laser types were tested to analyze differences in illu-

mination.

2.3.2 Analysis

Vasculature images were analyzed to determine how fluorescent signal

degrades through brain tissue. After removing pixels indicating saturation

of the image detector (defined as pixels of maximum bit value), the top 1%

of pixel intensity values were averaged for each vascular image. The natural

logarithm of the mean top 1% intensity values were then taken, and the rela-

tionship between the intensity values and depth was found using least-squares
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linear fitting. This process was performed on all three mice, and the slope val-

ues were averaged to give an estimate of the fluorescent signal decay in brain

tissue.

For the phantom images, each micro-sphere was isolated from the back-

ground by looking for local maxima in each image’s intensity values. The

micro-spheres were then discarded if they contained any saturated pixels, so

the fitting function would be more accurate. Additionally, the distance be-

tween local maxima and the roundness of the suspected micro-sphere was

measured to ensure a single micro-sphere was being considered instead of close

neighboring micro-spheres. A distance between local maxima less than 30 pix-

els caused both micro-spheres in question to be discarded. Roundness, a metric

of how circular a two-dimensional object is, was also calculated:

R =
4Aπ

P2
(2.1)

where R is the roundness coefficient, A is the area of a binary object, and

P is object’s perimeter. In using this measure of roundness, a value of 1

is considered perfect circle, and values deviating from 1 suggest a reduction

in how ’round’ an item is. A 15x15 pixel box was drawn around the local

maxima with the local maxima approximately centered in the box, and the

intensity values were thresholded to create a binary 15x15 box where the top

20% of the pixel intensity values were considered signal and the remaining

were background. Any micro-spheres with a roundness coefficient less than

0.85 were removed from processing.
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From there, the remaining micro-spheres were fitted to a two-dimensional

Gaussian function using a mixture of a moment method and least-squares (LS)

fitting [1, 7]. The two-dimensional Gaussian is used to approximate light pro-

pagation from a point source:

f(x, y) = A exp−(a(x− x0)
2 + 2b(x− x0)(y − y0) + c(y − y0)

2) (2.2)

where A is the amplitude, x0 and y0 are the center indices, and a, b, and c

represent 0.5 over the covariance matrix:[
a b
b c

]
(2.3)

The LS method attempts to find the parameters A, x0 , y0 , a, b, and c that

minimize the sum of the residual squares, where the residuals represent the

difference between the actual intensity value seen the image compared to the

expected intensity value based on the two-dimensional fitting.

In an attempt to decrease computation time of the LS Gaussian fitting

function, the moment method was used to find the Gaussian center points.

Cx =

∑
i

∑
j(xi × Iij)∑
i

∑
j Iij

(2.4)

Cx defines the center, xi describes the position, and Iij is the intensity of a

given pixel [7]. Once the center x and the center y were found, the values were

introduced as the centers to the LS fitting function. From there, LS fitting

was used to estimate only the remaining Gaussian parameters, as outlined in

Figure 2.1.
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Moment Method + 

Least Squares Fitting

Figure 2.1: Micro-spheres are isolated from each image and then fitted to a
two-dimensional Gaussian with a mixture of a Moment Method and LS Fitting

The fitted micro-sphere amplitudes were then averaged for each image,

granted that at least 20 viable micro-spheres were counted. A plot of the aver-

age logarithm of micro-sphere amplitude as a function of depth was generated,

and linear slopes were determined for each intralipid phantom to investigate

fluorescent intensity decay.

2.3.3 Results

There are three noticeable portions of the signal decay in the brain:

a large drop in signal near the surface, a signal decrease at a more linear

rate, and a signal plateauing (Figure 2.2). Initially, the fluorescent signal

near the surface is strong (Figure 2.2, bottom left panel). However, the signal

decreases quickly, likely due to the intact dura mater [8]. Past the initial signal

degradation, the logrithmic signal decay is linear until it reaches a steady state
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plateau. Signal plateauing is due to the lack of adequate fluorescence and a

dominance of background once the imaging limit is reached (Figure 2.2, bottom

right panel). Because the penetration depth limitations often occur at points

below the dura mater, we were interested in signal transmission through this

area below, corresponding to approximately 100 µm to 200 µm in Figure 2.2.

10 µm 100 µm 250 µm

Figure 2.2: Fluorescent signal decay in mouse vasculature for single mouse
imaged with the Ti:S laser

The mean slope of this area determined via linear regression for the
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three mouse images was found to be -9.69 x10-4 µm-1 for the Ti:S laser and

-4.27 x10-4 µm-1 for the Yb laser.

Unlike in the vasculature images, the logrithmic signal decay in the

phantom images is linear due to consistent turbidity throughout each sample.

To find the amount of signal decay in the phantoms, we were able to perform

a simple linear regression on the mean logrithmic micro-sphere amplitude over

depth for the entire phantom, instead of having to isolate a specific depth

range. We compared the vasculature slopes to those found with the micro-

spheres’ amplitudes in the phantoms (Table 2.1).

Intralipid Ti:S Yb

0.5% -5.02 -1.35

1% -9.87 -4.50

2% -18.4 -7.07

4% -58.4 -37.2

Table 2.1: Slopes (x10-4 µm-1) of logrithmic fitted intensity vs. depth

From this comparison, 1% intralipid seems to most closely approximate

the scattering properties of mouse brain for both lasers. While signal decay in

intralipid amounts greater than 1% suggests the phantoms do not mimic scat-

tering properties, utilizing these phantoms to investigate resolution trends is

useful, as we gain a better insight as to whether turbidity influences resolution.
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2.4 PSF Width Measurements

Rather than maintaining the level of laser power incident on the sample,

as with the fluorescent decay measurements, PSF widths were measured from

images were the laser power was adjusted throughout the imaging experiment.

Increasing the amount of laser power entering the sample as focal volume’s

depth increases reduces the amount of signal loss, meaning deeper imaging

can take place. Mimicking the experimental protocols needed to maximize the

depth of collected fluorescence gave us a better understanding of how resolution

behaves further from the surface.

2.4.1 Experiment

Light scatters and is absorbed into the sample as the imaging depth is

increased, causing the light that eventually reaches the detector to decrease

exponentially with depth. Compensating for the decrease in signal by increas-

ing the power of the light entering the sample allows deeper imaging. With

the same phantom samples as described for fluorescent decay measurements,

the incident laser power was increased using a half-wave plate as images were

taken at greater depths to provide sufficient power levels during the entirety

of the experiment [18].

2.4.2 Analysis

The same processing methods outlined above were performed to collect

PSF characteristics for the micro-spheres. In the cases of the 2% and the
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4% intralipid phantoms, the data from two sets of three-dimensional image

stacks were combined together to increase the number of viable micro-spheres

for processing. The x and y standard deviations were found and were then

averaged. The full width at half the maximum (FWHM) value was calculated

as 2.36 times the average of the two standard deviations [6]. These FWHM

measurements are considered from this point on as the PSF’s width.

Plots of mean width over depth were generated for all phantom types

for each laser. Widths were compared for each intralipid concentration over

depth, across intralipid amounts, and across laser types. The slopes of each

plot were determined via linear regression to look for any significant resolution

trends in the data. From there, the mean of all widths over all depths were

compared between phantom types and between laser types using an ANOVA

analysis. Through the investigation of each, we will gain a full understanding

of how depth, turbidity, and wavelength influence resolution.

2.4.3 Results

Investigation of PSF width over depth is shown in Figures 2.3 and

2.4 for the Ti:S laser and in Figures 2.5 and 2.6 for the Yb laser. In each

of these plots, points represent the mean of at least 20 PSF widths. Gaps

in plot points are indicative of fewer than 20 individual micro-spheres being

isolated for fitting. The standard deviation between widths are represented

by vertical error bars. The y-axes are scaled the same for phantoms in their

respective laser type; however, the x-axes are scaled differently for ease of data
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visualization.

From the plots of mean micro-sphere widths, there is no significant

degradation in resolution as depth is increased. This is exemplified through

the data’s slopes, where none are greater than 6x10-4 µm-1 for the Ti:S laser

or 1x10-4 µm-1 for the Yb laser.

To investigate resolution relationships with intralipid and with laser

type, the total width means for each intralipid amount and for both laser

types were found (Table 2.2). Each value in the table represents the mean of

all the mean micro-sphere widths collected for the specific sample, no matter

the depth.

Intralipid Ti:S Yb

0.5% 0.933 0.945

1% 0.932 0.938

2% 0.937 0.938

4% 0.942 0.948

Table 2.2: PSF widths (µm) averaged across the range of depths imaged

The widths in all intralipid types for both lasers are around 0.93 to 0.94

µm. These values seem to be in line with the theorectical 2P FWHM widths

of 0.88 µm for the red micro-spheres used in our phantoms [24].

Both our ANOVA tests on the varying intralipid phantoms suggest that

is not a statistically significant difference between the average width of the

micro-spheres embedded in any intralipid concentration tested (with p-values
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of 0.17 and 0.10 for the Ti:S and the Yb laser, respectively).

When performing an ANOVA on the overall widths across all intralipid

amounts and depths for each laser type, a p-value smaller than 0.05 (p-value

= 0.0014) suggests that there is a significant difference between the PSF mea-

surements of each laser type.

2.5 Discussion

Our in vitro phantom tests between varying turbidity provide a number

of conclusions relevant to the resolution investigation. Firstly, the amount of

turbidity generated with 1% intralipid in our phantom samples seems to most

closely match that of mouse brain tissue for both laser types. This discovery

gives us an understanding of which phantom would be appropriate for use in

future in vivo investigations.

In measuring the PSF, there was no evidence of a large decrease in

resolution (increase in PSF width) as a function of depth. In 0.5% intralipid

phantoms, widths up to 1 mm with the Ti:S laser and up to 2 mm with the Yb

laser were measured (although only 1 mm depths are shown for both lasers)

and maintained size similarities. No changes in width measurements were

seen for any intralipid phantoms. The trend not only indicates that optical

resolution is not dependent on material properties, but suggests that in a more

sample with greater heterogeneous turbidity, such as brain tissue, there should

not be any changes in resolution in the different tissue types.
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Although both laser types produced images with PSF widths similar to

the estimated theoretical value of 0.88 [24], the PSF widths were not found to

be the same. The Ti:S averages centered around 0.942 µm, while the Yb width

means were around 0.936 µm. One possible reason for the discrepany between

the two lasers is that the Ti:S laser produces visibly noisier images. Increases

in noise have been shown to decrease the accuracy of fitting functions [1].

Regardless, both laser types produced images with PSF widths similar to the

estimated theoretical value of 0.88 [24], with an error of about 7% and about

6% for the Ti:S and the Yb lasers, respectively.

One note to make about isolating the micro-spheres at greater depths is

that the signal produced by the micro-spheres would not be enough to isolate

accurately. This led to fewer numbers of micro-spheres being isolated deeper

in the phantom samples, especially for the samples with greater amount of

intralipid. Also, we did notice that noisier background signal levels produced

large Gaussian fit inaccuracies. While maintaining sufficient signal levels for

PSF width fitting in these experiments, we did not give a full analysis of

how signal propagation behaves in brain tissue. The following chapter aims

to outline how signal, background, and noise relate in vivo to give us an

understanding of the true limits of resolution.

2.6 Conclusions

All being said, we did not find significant difference in resolution for the

Ti:S or the Yb laser between intralipid amounts as found by measuring the PSF
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width. There was a statistically significant difference in the resolution between

the two lasers, but the widths were about 0.006 µm different. From this, we

can conclude that the PSF width is not heavily influenced by environment or

excitation source, as long as adequate signal-to-noise is achieved.
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a

Figure 2.3: Mean micro-sphere widths for phantoms with (a) 0.5% intralipid
and with (b) 1% intralipid recorded using the Ti:S laser
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d

Figure 2.4: Mean micro-sphere widths for phantoms with (c) 2% intralipid
and with (d) 4% intralipid recorded using the Ti:S laser
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Figure 2.5: Mean micro-sphere widths for phantoms with (a) 0.5% intralipid
and with (b) 1% intralipid recorded using the Yb laser
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Figure 2.6: Mean micro-sphere widths for phantoms with (c) 2% intralipid
and with (d) 4% intralipid recorded using the Yb laser
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Chapter 3

Line Scans

Investigating line scan measurements allowed us to determine how sig-

nal, background, and noise change as a function of depth in vivo. Line scanning

to collect blood flow measurements is a process where the 2P laser beam is

scanned repetitively back and forward along a vessel filled with fluorescent

dye. Intensity values are collected during the scanning process and are recon-

structed to give an image representing the intensities through the line scan

distance with respect to the time over which the scans were performed (Figure

3.1). If the vessel is small enough, individual blood cells can be seen as dark

bands in the line scan as the cells do not absorb the dye injected into the

vasculature, and the remaining plasma is seen as bright signal. Flow measure-

ments can then be made to measure how the individual cells move through

the vessel over time [4].

For our studies, we will instead be looking at the relationship between

the plasma region (’signal’) and the cell region (’background’) in line scan

measurements. We will also investigate how noise changes over the same con-

ditions. All line scan points are located in a small region, making it useful for

signal and background comparisons because things such as out-of-focus fluo-
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Figure 3.1: A 2P image and the resulting line scan

rescence and vignetting will not uniquely impact intensity values. As with any

signal attenuation in vivo, the intensity of signal compared to the intensity of

background changes with respect depth (Figure 3.2). By comparing signal,

background, and noise over a variety of depths, we will see how the signal-

to-background and signal-to-noise (SNR) are impacted as images are taken at

deeper levels. As with our other experiments, both the Ti:S laser and the Yb

laser will be used to investigate how wavelength influence signal propagation.

100 µm 300 µm 550 µm

Figure 3.2: The contrast of the line scans changes with respect to depth
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3.1 Experiment

Line scans were collected from an anesthetized mouse. The cranial

window insertion and the anesthetization process follow the same protocol as

was outlined in Chapter 2. To cause fluorescence in the vasculature, a 100-

µL retro-orbital fluorescein injection was administered to provide fluorescent

signal in the vessels when imaging with the Ti:S laser; a 100-µL retro-orbital

Texas Red (A2348, Sigma Aldrich) injection was performed for the Yb laser.

At each depth, line scans were performed such that 200 back-to-back scans

were taken at a rate of 450 kHz along a minimum of three vessels. Vessels

were chosen based on their size and their curvature: blood cells are generally

easier to see in small vessels and straight segments are easier to scan the

laser beam across. Laser power was increased with depth to compensate for

the exponential signal drop off that occurs in brain tissue. Line scans were

performed at increasing depths until signal could no longer be distinguished

from the background.

3.2 Analysis

Analysis of the line scan data was used to collect information about

signal quality in vivo. Line scan images with portions of the scan that fell

outside the vessel or images that did not have any intensity distinction between

signal and background were removed from image analysis. For pre-processing,

the angle at which the blood cell lines were moving across the line scan was

found from the radon transform. The image was then rotated to compensate
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for the cell line angle such that the final line scan image was a series of bright

and dark horizontal lines. Contrast, signal, and background measurements

described below were found using the average of ten equally spaced vertical

intensity profiles along the rotated line scan image, ignoring the black border

added during the rotation process (Figure 3.3).

Signal

Background

Rotate

Profile

Figure 3.3: A sample profile taken from the rotated line scan image, along
with threshold values for signal and background
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Contrast, or the difference between the signal intensity and the back-

ground intensity, was measured as:

C =
max [I ] −min[I ]

max [I ] + min[I ]
(3.1)

where C is the contrast value, max [I ] is the maximum intensity value of the

line, and min[I ] is the minimum intensity value of the line. The contrast

values across the line scans were averaged for each depth, and a plot of the

mean contrast over depth was created.

Additionally, the components that contribute to contrast, the signal

and background regions of the line scan image, were investigated. Signal was

defined as the brightest 30% of pixels in the line scan, with saturated pixels

excluded. Background was defined as the darkest 30% of the pixels. By

looking at only the extreme regions of the pixel intensity range, we were able

to ensure that minimal signal was labeled as background or vice versa. For

both the signal and the background, values were averaged across the line scans

for all depths.

Lastly, the amount of noise for each image was quantified. To do this,

the standard deviation of the background pixels for the entire 512 x 512 image

plane that the vessel used for the line scan was found. Mean standard deviation

values were found and compared over depth.
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3.3 Results

Contrast, signal, background, and noise plots for the Ti:S laser are

shown in Figures 3.4 and 3.5 and for the Yb laser in Figures 3.6 and 3.7. In

the plots, data points are the mean values across line scans. Error bars indicate

the standard deviation between line scans. The dashed gray line depicts the

least-squares linear regression line associated with the data. The x-axes are

scaled with respect to laser type; the y-axis for each plot is not specifically

scaled.

For each data set, the Pearson correlation coefficient was determined

between data type and depth to investigate the strength of the linear relation-

ships. Values for the correlations as well as their corresponding p-values are

shown in Table 3.1.

Ti:S Yb

corr p-value corr p-value

Contrast -0.922 0.0001 -0.894 0.0005

Signal 0.336 0.3418 -0.429 0.2156

Background 0.869 0.0011 0.709 0.0217

Noise 0.826 0.0033 0.649 0.0421

Table 3.1: Pearson correlation coefficients
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Figure 3.4: (a) Contrast and (b) average signal intensity of line scans taken
using the Ti:S laser
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Figure 3.5: (c) Average background intensity and (d) average noise taken using
the Ti:S laser
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Figure 3.6: (a) Contrast and (b) average signal intensity of line scans taken
using the Yb laser
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c

Figure 3.7: (c) Average background intensity and (d) average noise taken using
the Yb laser

33



3.4 Discussion

Determining a correlation coefficient for each analytic measure, the con-

trast seems to have significant evidence (p-value less than 0.05) that indicates

that there is a strong, negative linear relationship between contrast and depth.

The signal intensity, with a p-value much greater than 0.05, suggests that the

null hypothesis that there is zero correlation between the two should not be

rejected; there is no real correlation between signal intensity and depth. The

lack of relationship is reasonable, as the laser power is adjusted to allow greater

penetration depth. When looking at the background intensity and noise, how-

ever, we see a positive correlation between the background and depth and

noise and depth, as both conditions have positive correlation coefficients and

small p-values. These trends were seen when using both laser types, indicat-

ing that excitation wavelength does not change the overall fact that contrast,

background intensity, and noise change with respect to depth.

Degradation of background signal is potentially caused by the high tur-

bidity of the brain tissue. Studies have shown that when the scattering coeffi-

cient of a sample reaches at least 1.4 mm−1, fluorescent light originally excited

at the focal volume scatters so much before exiting the surface of the sample

that more fluorescent signal is present toward the surface than is present at

the focal volume [32]. The movement of the fluorescent light outside of the

focal volume could cause the overall background to appear brighter as the fo-

cal volume is shifted out of the imaging plane. This trend is exacerbated as

the imaging depth in increased [32]. Brain tissue has greater scattering coeffi-
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cients than 1.4 mm−1 [5], indicating that there are likely some high scattering

events occurring in sample. All this means that the fluorescence generated by

2P excitation in highly turbid samples could be more distributed outside the

focal volume and could lead to messier images.

The background increase as well as the noise increase with depth also

suggest that there may be difficulty determining PSF widths at great depths.

Because background intensity increases, thus leading to a decrease in contrast,

there is difficulty distinguishing fluorescent items in a sample from the back-

ground. This was seen in with the micro-sphere measurements in Chapter

2, where low signal-to-background distinction prevented many micro-spheres

from being isolated. Additionally, the increase in noise with the signal mainte-

nance indicates that the SNR decreases with depth. The decay suggests that

fitting functions may become less accurate as depth increases [1]. Overall, the

changes in background and in noise over depth could lead to inaccuracies in

PSF fitting as the depth limit is reached.

It is worth noting the difference in penetration depth between the Ti:S

laser and the Yb laser. Because longer wavelengths penetrate more deeply into

biological tissue [20], we would expect the Yb laser to allow deeper imaging

when performing line scans. This discrepancy is partially due to the Yb laser

pulse width used for line scans. Unlike for remaining chapters, where the pulse

with was measured to be around 120 fs, the pulse width for the Yb laser when

performing the line scans was measured at 221 fs. The broadening of the pulse

width has been shown to influence both image quality and depth [26,28]. Also,
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the age of the mice used for imaging likely had effects on the imaging depth.

The mice imaged with the Yb laser were much older than those images with

the Ti:S laser. Research has shown that mature mice have greater attenuation

of the fluorescent signal generated when using 2P imaging [20]. Both these

likely affected the imaging session, as we noticed a sharper decrease in signal

intensity over depth. No matter the pulse width or the mouse’s age, however,

the same trends between signal and background were seen in all mice and both

laser types used.

3.5 Conclusions

In this section, we investigated how contrast, signal, background, and

noise change as a function of depth. We controlled laser power into the sample

to maintain signal values. Doing this, we saw a decrease in contrast and an

increase in both background intensity and noise as we took images at greater

depths. Because contrast is a function of signal intensity and background

intensity, the degradation in background lead to the decrease in contrast. The

trends all indicate that in deep imaging experiments, signal-to-background

and SNR decrease with imaging depth. These decreases are likely to degrade

image quality and make image analysis difficult.
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Chapter 4

In Vivo PSF Measurements

Investigating the PSF width in mouse brain tissue will give the final

conclusion of how resolution changes based on depth in vivo. Because the

potential biological items in the brain available to approximate a point source

are either too abundant to isolate at the 2P expected resolution or have sizes

with a range that spans above and below the point source size requirement

[15,33], we attempted to insert fluorescent micro-spheres into the brain directly.

Experimental procedures similar to those used for deep imaging were then

utilized to collect images. In vivo samples allowed us to draw conclusions

about how the heterogeneous properties of brain tissue affect PSF width.

4.1 Samples

Micro-spheres were injected into the mouse brain during the cranial

window process so they could diffuse into the brain tissue. First the skull

was removed. A 1-mm diameter glass capillary was pulled, cut at its tip to

allow fluid flow, and attached to a micro-injector (NANOLITER2010, World

Precision Instruments) for tissue injections. The glass capillary was inserted

1050 µm into the brain tissue and was then moved toward the brain surface
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by 50 µm. A 9.2 nL volume of micro-spheres was injected into the tissue

at that point. Injections were performed every 50 µm in this manner until

the capillary was situated at the brain surface. Anywhere from one to three

injection sites were used for each mouse. All injection sites were placed near

vascular branch points and were photographed, so they could be found again

during experimentation. After injections, the cranial window was attached,

and the mouse was given a minimum of three weeks to recover.

The injection process was not as effortless as originally thought. In

almost all mice injected, the micro-spheres would be largely collected near the

brain surface, with few individuals at larger depths (Figure 4.1).

50 µm 60 µm

70 µm 80 µm

Figure 4.1: Beads collect at the surface of in vivo samples
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Furthermore, in select mice we would see cellular bodies filled with

fluorescent material toward the surface of the brain (Figure 4.2). In certain

cases, the granular items in the cells looked like the micro-spheres used for

injections.

Figure 4.2: Cells at the brain surface appear to have engulfed fluorescent
material

In the end, we were not able to perform injections in which a large

number of micro-spheres were present for PSF width analysis. We could not

find evidence in our samples of micro-spheres residing at depths greater than

about 300 µm below the brain surface. Regardless, a small number of indi-

vidual micro-spheres were isolated from experimental images. In vivo width

39



analysis was performed using the Ti:S laser on these samples. With the re-

sults, we began to get an idea of how the PSF width is influenced in living

tissue.

4.2 Experiment

For imaging, the micro-sphere-injected mouse was anesthetized and

placed in a stereotactic frame. A laser speckle image was taken of the brain

surface to make a map of the surface vasculature using a 785-nm laser diode

(L785P090, Thorlabs) and a camera (acA2040-90umNIR, Basler) attached ad-

jacent to the 2P microscopy setup [2]. Also, a 50-µL retro-orbital injection of

fluorescein was administered, and 2P images, with a smaller field-of-view, were

taken of the surface vessels. The laser speckle image and the 2P vasculature

images were then compared to the images taken during the craniotomy to help

position the mouse near the injection location.

Once an injection site was located, we used similar experimental pro-

cesses to those used for determining the PSF widths in the phantom samples.

Laser power was adjusted to compensate for signal decay as images were taken

in 1 µm steps into the tissue sample in locations adjacent to the injection path.

4.3 Analysis

Because 1 µm steps were taken, single micro-spheres would appear in

multiple images. To avoid a micro-sphere being counted more than once, the
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isolation portion of the analysis was modified to choose local maxima over

three-dimensions. Similar analysis for determining a single micro-sphere and

for fitting the PSF width was performed as was outlined in Chapter 2.

Because too few micro-spheres were found during imaging to provide

a minimum of 20 micro-spheres for averaging, the widths were averaged for

whatever number of micro-spheres were found. The widths were then plotted

across depth. The slope of the linear regression between width and depth was

measured to determine whether there was a trend between the two. The mean

in vivo width was then compared to the Ti:S laser in vitro widths found using

the phantoms.

4.4 Results

The PSF widths found for brain tissue are shown in Figure 4.3. No

standard deviation bars are present because there were many instances where

only one micro-sphere was found at a specific depth.

Because the slope of the linear regression between the width and depth

was small (9x10-4 µm-1), we determined there was no real trend between width

and depth. The average of the micro-spheres across all depths was 1.03 µm,

larger than the mean width for all intralipids foun with the Ti:S laser of 0.936

µm. The width we would expect given the micro-sphere is 0.88 µm [24].
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Figure 4.3: Micro-sphere widths for in vivo mouse brain tissue recorded using
the Ti:S laser

4.5 Discussion

Our goal of inserting numerous micro-spheres into mouse brain up to

the imaging depth limit was not achieved. Instead, we encountered many

difficulties that reduced the number of micro-spheres we had for resolution

measurements. Firstly, micro-spheres had congregated around the exterior of

the injection site in many of our samples. This issue was present no matter

the number of micro-spheres injected (from 4,000 micro-spheres per total in-

jection to 400,000 micro-spheres per total injection). The superficial collecting

at all injection numbers suggests that the micro-spheres had moved back up

through the injection site toward the surface instead of diffusing into the brain

tissue. Micro-sphere congregation would not be devastating, had there been
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enough individual micro-spheres to isolate and fit. However, the micro-sphere

congregation in many cases made them indistinguishable from one another.

In the initial injections, we used the same 200-nm carboxylate micro-

spheres we had used for the phantom samples, as the micro-spheres were bright

and easy to fit. The properties of these micro-spheres, however, turned out

not to be ideal for tissue diffusion. In the phantoms, micro-spheres simply

needed to be suspended in agarose for sufficient imaging. However, brain

tissue contains winding, narrow spaces between cell membranes that the micro-

spheres need to spread through. The amount of diffusion has been seen to be

limited by extracellular space (ECS) tortuosity and by particle interactions

with cell walls [27]. Groups have suggested that particles smaller than 100

nm and with a positively-charged coating would have the greatest chance of

diffusing away from the injection site into the ECS of the mouse brain [19,31].

For future injections, smaller, streptavidin-coated micro-spheres may provide

better diffusion and reduce the amount of surface collection.

Another issue was the microsphere filled cells, resembling macrophages,

seen in some of the mouse samples. Macrophages in in vivo systems clear cell

debris and foreign bodies from a host [12,22]. In the case of the microspheres,

macrophages could have potentially reduced the number present for imaging.

Using a coating that would make the micro-spheres ’invisible’ in the brain could

minimize the chances of macrophages collecting the microspheres [12]. Addi-

tionally, imaging sooner so the mouse’s immune response is not yet activated

could reduce the number of macrophages [12]; although tissue inflammation
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due to the craniotomy may be present.

One final possibility for increasing the number of micro-spheres in brain

tissue is to use a different injector. Other groups have injected similar micro-

spheres to measure PSF in living tissue with a pressurized injector [11, 29]

rather than an injector that uses a fine-tuned plunger to move liquid out of

a capillary. With a pressurized injector, the liquid volume is injected with

pressurized air [13] that forces the liquid into the sample. Diffusion may be

more likely with the liquid moving into the sample with greater force.

Despite the troubles we experienced preparing in vivo samples, we were

able to collect some PSF width data in living mouse brain with the Ti:S laser.

Results indicate the PSF width in tissue is about 1.03 µm and there is no

significant change in width up to 288 µm. This width is slightly larger than

both the mean width of 0.936 µm for all intralipids found with the Ti:S laser

and the expected width produced from the red micro-spheres of 0.88 µm [24].

Differences could be due to the increased noise of the in vivo environment

compared to the phantom samples. Further, the small number of micro-spheres

used for fitting likely reduced the overall accuracy of the results, as the number

of samples needed to represent the population was not reached.

4.6 Conclusions

For future mouse brain injections, the goal should be to increase the

number of individual micro-spheres present for isolation. Smaller micro-spheres

with streptavidin coating could be tried to increase the amount of diffusion into
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the tissue. A pressurized injector may also be useful in increasing diffusion in

tissue. If the presence of macrophages is a concern, imaging closer to the time

of injection could reduce the chances of the cells eliminating micro-spheres.

In the end, our results showed a slight difference between the PSF width

in vivo and in vitro, with the in vivo width being larger. We can speculate

that there will likely not be a change in resolution as a function of depth in

the mouse brain, although more data would need to be collected to confirm

these specific findings.
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Chapter 5

Conclusions

The goal of our research was to investigate resolution and signal of

our 2P imaging system as a function of depth. Through our experiments, we

investigated resolution based on PSF fitting with respect to depth in both in

vitro and in vivo samples, determined resolution with respect to laser type, and

investigated signal transmission through highly scattering media with respect

to depth. Through this, we provide a better understanding of physiological

size limitations that can be investigated with our 2P microscope.

To determine resolution of our 2P microscope, we used 200 nm micro-

spheres to mimic point sources and found the widths of the PSF to measure

resolution. Using our in vitro samples, we determined our resolution to be

about 0.942 µm for the Ti:S laser and 0.936 µm for the Yb laser in intralipid

phantom samples. These values were fairly close to the theoretical PSF width

of 0.88 µm, giving us errors of 7% and 6% for the Ti:S laser and the Yb laser,

respectively. These tests suggested little difference in the resolution when

using either laser type or when looking at increased levels of scattering in our

samples in depths throughout the imaging range.

For the in vivo samples, we found the resolution to be a little larger,
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about 1.08 µm, giving a 23% error from the theoretical resolution. Although

we were only able to measure our in vivo samples with the Ti:S laser, the

similarities between the resolution measurements for both laser types with the

in vitro samples suggests that there will not be a large difference in resolution

in vivo for the Yb laser.

For further experimentation, finding better methods to create in vivo

samples will be necessary. Although we were able to isolate a handful of micro-

spheres in our mouse samples, more would need to be used to create confident

results. Change in micro-sphere coatings and size as well as a different in-

jection tool could prove fruitful in future studies. Either way, nothing in our

current studies suggest that 2P resolution has either in vitro or in vivo depth

dependencies.

To investigate the signal propagation, we collected vasculature line

scans over a variety of depths in mouse samples. Through maintaining signal

intensity over depth, we saw a decrease in the contrast of our line scans over

depth, as well as an increase in background intensity and in noise. Increase in

background and the decrease in contrast hint that the decrease in image qual-

ity over depth may be due to the inability to distinguish between signal and

background. Further, the increase in noise in the sample suggests a decrease

in overall SNR as images are taken deeper in the mouse sample. Relating

to the PSF measurements, changes in PSF width calculated via LS could be

partially attributed to the increase in noise as noise impacted the LS fitting

function. Both these trends, as well as the resolution measurements we per-
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formed, suggest that the challenges faced when using 2P microscopy at deep

depths will likely be due to signal propagation trends and not to the decrease

in resolution.
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