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Probing the coupling mechanism of opposite polarity

motors

Phil Jack Holzmeister, M.A.

The University of Texas at Austin, 2010

Supervisor: George Shubeita

Molecular motors are responsible for all long range transport and or-

ganization of organelles within cells. However, little is known about the in-

teraction of multiple similar and dissimilar motors. In this thesis I describe

experiments to probe the coordination of the motors kinesin and dynein which

move towards the opposite ends of microtubules. Cargos they haul show bidi-

rectional movement at short scales yet there is net transport in one direction

or the other. Two distinct models for the bidirectional transport exist: regula-

tion and a tug-of-war. In order to differentiate between them, kinesin-specific

antibodies are injected into Drosophila embryos and the effect on transport

of lipid droplets is quantified and compared to unperturbed motion. The

function-blocking antibodies resulted in an increased run length of dynein-

mediated transport and a decrease in that of kinesin. Furthermore, reduced

velocities in both directions and a trend towards shorter pauses were observed.

Comparison of these results to predictions the models provide for this scenario

supports a tug-of-war model rather than regulation.
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Chapter 1

Introduction

One of the most remarkable abilities of cells is to precisely localize or-

ganelles in the cytoplasm to where they are needed in a timely fashion. Simple

diffusion of these cargos would lead to an even distribution over the whole cell.

To achieve local differences in concentrations, cells make use of their transport

machines - molecular motors (see 2) - which are proteins that transport cargo

along the cytoskeleton, its filament infrastructure. This transport is directed

and also has the advantage that it is faster than diffusion for long range trans-

port. While the root mean square displacement (RMSD)
√
〈x2〉 of diffusion is

proportional to
√
t, the RMSD for transport by motor proteins is linear in time.

Perhaps the most impressive example of this fast and directed motion occurs

in melanophores. These are skin pigment cells possessed by some animals that

enable them to quickly change their color from dark to light. To accomplish

this, a melanophore uses molecular motors to aggregate its melanin-filled pig-

ment granules in the center and therefore appear transparent within minutes.

This transport is reversible and allows the cell to redisperse the granules and

turn black again [15]

Among the various molecular motors (reviewed in the next chapter), the
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ones that are relevant to this work are kinesin and dynein. These two motors

move unidirectionally towards the opposite ends of microtubules. However, in

many different systems, individual cargos are observed to move bidirectionally

along these filaments, meaning that both types of motor contribute to their

motion. Nevertheless, this back-and-forth movement is biased in one or the

other direction in order to achieve a large scale trend in directionality of trans-

port like in the melanophores mentioned before. The big question addressed

in this work is how cells are able to achieve directed net large scale motion

despite the fact that all individual cargos experience bidirectional movement.

At present, there exist two fundamentally different models to explain

this behavior (see 3). One model, regulation, relies on a third party - a chemical

switch - responsible for chaning directions. Thus, only one type of motor

is engaged at a time. The other model assumes that the opposite polarity

motors stochastically engage in a tug-of-war and that the overall outcome of

this fight is determined only by the properties of the motors and small changes

to these properties. The models will be explained in more detail later with

emphasis on their differences. My goal, as detailed in this work, is to create

an experiment that is able to distinguish between these models. My approach

is to perturb the transport system in vivo by disabling one type of motor on

demand, and use the fact that the two models provide different predictions for

such a perturbation.
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Chapter 2

Background on molecular motors

2.1 Overview of molecular motors

Molecular motors are special proteins which fulfill various tasks inside

a cell. Despite being different in their purposes and abilities, they all share one

property: they are able to convert chemical energy, usually in form of ATP

(Adenosine Triphosphate), into mechanical work. The specific motor structure

determines the way this happens and allows classification into three groups of

molecular motors.

First, there are the rotary motors like the one that propells the flagella

of bacteria, thus enabling them to swim. Another example is the F0F1-ATP

Synthase, a motor present in the membrane of our mitochondria which works

the other way around - driven by a proton gradient across the membrane, it

rotates and synthesizes ATP in the process. It is noteworthy that this class

of motors look and work quite similar to rotary motors invented by mankind,

consisting of a rotor and a stator.

The second class of motors are the nucleic acid motors. Among them

are Helicases which separate DNA strands before transcription or replication.

Transcription and translation, in turn, are accomplished by RNA polymerase

3



and DNA polymerase by translocating along the nucleic acid strand. There-

fore, the usage and storing of genetic information would not be possible without

these proteins.

The last major group of motors are processive motors, which literally

walk on the cytoskeleton of the cell. Members of the Myosin-family walk

on actin filaments and are responsible for, amongst other things, muscle con-

traction. The Kinesin and Dynein families move on microtubules and as

mentioned earlier, transport different types of cargos to their destination. In

the next section I will review Kinesin-1, Cytoplasmic Dynein (see fig.2.1) and

microtubules in more detail since these proteins play a central role in my thesis.

2.2 Microtubules

Microtubules, a major part of the cell’s cytoskeleton, are tube-like fila-

ments with a diameter of 25nm and lengths ranging from hundreds of nanome-

ters to tens of micrometers. They are formed by heterodimers consisting of α-

and β-tubulin. Those polymerize into linear protofilaments and 13 of these,

aligned side by side, form a hollow cylinder, the microtubule. Due to their

heterodimeric nature, microtubules have a built-in polarity detectable at ev-

ery point along their length and it is this polarity that defines the direction in

which a certain motor can proceed. In the cell, the fast outward growing end

is named the plus-end, while the other end at the center of the cell (at the cen-

trosome from which they emerge) is called the minus-end. Knowledge of the

orientation of microtubules in the system being studied is important because
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each type of motor is only able to walk unidirectionally along the microtubule.

I will describe the microtubule orientation in my model system in 4.1.1.

2.3 Kinesin

Conventional Kinesin, or Kinesin-1, was first discovered in 1985 in

giant squid axoplasm [46] and has been recently identified as the plus-end

motor for lipid droplets in Drosophila [38], the model system in my experiments

(see 4.1). It is responsible for the majority of long-range transport in living

cells. It is a heterotetramer, consisting of two heavy chains (KHCs) and two

light chains (KLCs) with a total molecular weight of ∼ 380 kDa [19]. The

heavy chains form a dimer via a coiled coil (stalk) and contain the motor

domain, including the so called heads, which bind to the microtubule. The

light chains are the binding sites for various types of cargos (see fig.2.1).

Kinesin walks along the microtubule in a hand-over-hand mechanism,

alternating the front head, like humans walk (“head” → foot) [3]. One head

is always attached to the microtubule and for each step one molecule of ATP

is hydrolized [13]. With each step, the moving head proceeds about 16nm (∼

2 tubulin dimers), resulting in an 8nm displacement for the center of mass,

which corresponds to the length of one tubulin dimer [52]. The motor is highly

processive in vitro, moving cargos about 1000nm before detaching from the

microtubule [43] and, therefore, taking more than 100 steps on average. It

moves at a velocity of ∼ 600nm
s

at saturated ATP level [22] and is able to

exert a force of ∼ 5 pN [47]. Two motors or more more of the same type

5



on one cargo increase the processivity significantly (> 8µm) [47], but do not

influence the velocity unless opposing load is significant [20].

It has to be noted that velocities, run lengths and forces are usually

different in vivo due to the environment. The processivity is reduced by ob-

stacles on microtubules [41] and there are of course opposite polarity motors

present. Moreover, in vivo motor properties are likely modulated by motor

regulators. In addition, characteristics like run length vary not only between

different cell types, but also between different developmental phases in vivo.

Values relevant for my work are mentioned later and compared to my data.

Figure 2.1: This drawing shows the two main players in our system: conven-
tional kinesin (left) and cytoplasmic dynein (right). Both share similarities,
like the two microtubule binding domains (heads), a cargo binding site and a
motor domain that allows them two walk step by step. But dynein can only
walk towards the minus-end of microtubules, whereas kinesin unidirectionally
walks towards the plus-end. Dynein’s structure is more complex than Kinesin’s
and the motors also differ in the way their motor domains function. Picture
from [45] with permission from Elsevier
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2.4 Dynein

Cytoplasmic Dynein, even though discovered around the same time

(1987, [32]), is not as well-studied as Kinesin-1. It is a bigger protein, con-

sisting of two 530 kDa heavy chains (DHCs), three intermediate chains and

four light indermediate chains, adding up to about 1.2MDa [19]. The basic

layout - a cargo binding site, two heads, coiled coil in between - is similar to

Kinesin, but at a closer look the motor domain in particular differs signifi-

cantly. It is made out of a ring with 6 AAA+ ATPase-like domains [35] and

the microtubule binding site is located further away from the ATPase.

This motor also walks in hand-over-hand fashion [44], but the step

size is not fixed as it is for Kinesin. Dynein seems to be capable of varying

its stepsize between 8 − 32nm depending on the applied load [26], which is

comparable to switching gears in your car for driving uphill. Due to its long

“legs”, Dynein is also more likely to switch between protofilaments and nearby

microtubules. Similar to Kinesin, the processivity can be drastically increased

if more than one Dynein is present [27]. However, unlike kinesin, the force

dynein can exert is still a controversial issue. Reported values range from

1.1 pN [26] to ∼ 7 pN [44] in vitro and from 1.1 pN [51] to 2.4 pN [38] and

3− 5 pN [39] in vivo.

Dynein is typically associated with another protein cofactor which is

able to bind to microtubules and cargos: Dynactin. If Dynactin, which does

not cause motion on its own, is present in vitro, Dynein processivity is in-

creased from 0.7µm to 1.5µm, while the velocity does not change (700 nm
s

)

7



[21].

This all goes to show that a great deal of information has been gathered

for single and multiple motors of the same type in vitro. However, the actual

cellular environment is not as simple as in vitro experiments and this results

in differences between values obtained in vivo and in vitro. As both plus-

and minus-end motors are present on cargos, we are left with the question of

how this complex intracellular transport is coordinated. The next chapter will

therefore focus on which models exist to explain the observed transport and

their predictions.
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Chapter 3

Bidirectional transport - models and

predictions

So far, a lot of protein cofactors (like Tau [47], BicD [24] or NudE [29])

that influence intracellular transport are known, but the coupling mechanism

of opposite polarity molecular motors is not yet resolved. These motors, Ki-

nesin and Dynein, transport cargos along microtubules, which are part of the

cytoskeleton, and each can only walk specifically towards one end of the micro-

tubule. So, in many different systems one can observe bidirectional transport

along these filaments. All observed cargos like pigment granules in fish and

frogs [1], secretory vesicles [49], lipid droplets in Drosophila [14], mitochondria

[31] or mRNA [7] show a back-and-forth movement along microtubules. De-

spite this behavior, the cell manages to achieve net transport of the cargo to

the place where it is supposed to be. Understanding the mechanism behind

this has been investigated for years and, to date, there are two different ap-

proaches to explain the complex motion of cargos, a tug-of-war model and a

regulation model. These models and evidence for them will be explained in

the following. Differences between them and the way I want to benefit from

these differences in my own experiment will be emphasized.
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3.1 Regulation model

The regulation model explains the observed complex behavior with a

third party which is responsible for switching directions and therefore coordi-

nating transport. In this model, opposite polarity motors never interfere with

each other, meaning there is a regulation complex which makes sure, that only

one type of motor is engaged at a time. Thus, both kinesin and dynein are

present on the cargo at all times, but when kinesin (dynein) is active, dynein

(kinesin) is turned off. No matter how the regulation works in detail, the

motors never fight against each other. In fact, there are obviously non-motor

proteins affecting the transport, like dynactin (see 2.4). This candidate is

able to bind to microtubules and cargos as well as to motors, thus increasing

dynein’s processivity [21]. It has been shown that it also influences kinesin

motion and can only bind to one motor at a time [11]. However, it has not

been proven that it actively is responsible for switching the direction of mo-

tion. But discoveries like dynactin have led to a broad support of this model

and some other indications are reviewed in the next paragraphs.

Gross et al. [16] also predicted a switch: the average run length of

motors measured in Drosophila embryos, the same model system as used in

this thesis (see 4.1.2), turned out to be significantly lower than the one observed

in vitro. Especially if more than one motor is engaged, in vitro experiments

show a processivity which is basically limited by the length of the microtubule

[5]. Despite the fact that cargos carry several motors of the same type, runs

of this length are rare in vivo, suggesting some control mechanism. Because
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Figure 3.1: Illustration of the regulation model. First, kinesin (purple) is
active and carries the cargo towards the plus-end and dynein (green) is “off”.
After some signal (here blue) switches the direction of transport, kinesin is
inactive, while dynein is engaged and walks towards the minus-end. In this
scenario opposite polarity motors never fight. Only relevant proteins are shown
for simplification. The illustration reflects the basic concept of this model
rather than proposing an actual mechanism.

only a small part of their analyzed reversals (∼ 13%) were associated with

pauses, indicating immediate switching, they supported regulation rather than

a tug-of-war situation. But as mentioned below, this behavior has now been

reproduced using a tug-of-war simulation.

Another hint indicating a regulation model was found by reducing the

expression of kinesin via mutations in Drosophila embryos. This did not only

result in the expected decreased mean numbers of kinesin on cargos, but also

decreased the number of engaged dyneins [38]. As it is hard to explain with

a simple tug-of-war, this effect favors a regulation model and the authors

suggested a model where opposite polarity motors can only attach to cargos

in pairs. Even though this idea supports regulation, there is no direct proof

that there is the same amount of Kinesin and Dynein present on the cargo.
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They only determined the number of engaged motors with an optical trap.

Moreover, a recent study [2] proposes a mechanism where opposite polarity

motors engage each other mechanically which could explain the observations

too (see 3.2).

In a different approach, Kural et al. [23] measured step sizes using

fluorescent imaging with one nanometer accuracy (FIONA) of GFP-tagged

peroxisomes in drosophila cells. In their opinion a tug-of-war situation, where

motors walk into opposite directions and stretch, should displace the cargo

in steps smaller than the usual 8nm step size of motors. Because they re-

port steps of the cargo of multiples of 8nm, they discard a tug-of-war model.

However, a look at the supplement data reveals that the stepsize distribution

shows the claimed peaks at multiples of 8nm - but also a significant amount

of step sizes inbetween, especially around 0nm. Even in a tug-of-war model,

the normal motor step size is expected to be dominant. Only a small amount,

during reversals or pauses, should show reduced steps. Therefore, they can

not rule out a tug-of-war even with their own reasoning.

3.2 Tug-of-war model

The other possible way to explain bidirectional transport is the so called

tug-of-war -model . The idea behind this model is that - like in the sport - you

have two parties which try to pull in opposite directions. In the cell these

two teams consist of kinesin motors trying to pull towards the plus-end of

the microtubule and dynein motors trying to walk towards the minus-end.
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Obviously the number of motors and the force they can excert are important

factors which determine the winner of the fight. The detachment force and the

so called binding and unbinding rates serve as analogs to the grip of the players

in a tug-of-war. These describe the probability of the motors to attach to, or

detach from, microtubules. It has been shown, that even small changes in

these properties of the motors are able to explain the observed behavior [30].

These changes would still have to be arranged by a higher-order regualtory

mechanism of the cell, but the transport itself directly involves nothing but the

motors. The results include several motility states like fast plus- and minus-

end motion as well as no motion or switching with and without interspersed

pauses. (see fig.3.2).

The authors from the Lipowsky group modeled experimental data of

motor-driven lipid droplets in drosophila embryos. By fitting their parameters

to velocities, runlengths and stall forces for plus- and minus-end transport

as well as to pause durations, they obtained values of their parameters (stall

force, detachment force, binding rate, unbinding rate, forward and backward

velocity) that were in accordance to reported experimental results. If there

are more than just one or two motors on each side involved, it first sounds

unlikely that one team is completly detached and therefore enables the other

team to walk. To resolve this, they assumed an exponential increase of the

unbinding rate with increased load force (Bell model [4]). Therefore, as soon as

one motor is detached, the load force excerted by the opposite team increases

per motor, thus resulting in a cascade of detaching motors. However, even
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Figure 3.2: Examples for different possible configurations of a tug-of-war be-
tween two kinesin and two dynein motors. These result in plus- or minus-end
motion (bottom and top respectively) or in a state with no motion (center)
until one team of motors is detached. The black arrows represent the direc-
tion in which the motors are pulling while the red arrows indicate the direction
of motion. For simplification, only the motors involved are shown, all other
proteins attached to cargo or microtubules are left out.
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if this idea is intuitive, it is lacking experimental proof and a similar motor,

Myosin, has shown catch bond behavior [17], which means the lifetime of the

motor-filament complex increases with applied load. They also approximated

a linear force-velocity relation, where measurements have shown a different

relation [48]. Moreover, there have been different experimental values reported

since, for example for the stall-forces (see 2). But despite all of this, their

work demonstrated that a tug-of-war model is basically capable of explaining

bidirectional motion.

Recently Ally et al. [2] showed that transport in vivo needs both po-

larity motors to work. They replaced one motor with a substitute for which

they tuned its ability to bind to microtubules, the cargo and to hydrolyse

ATP. Motion in one or the other direction was only observed if the substi-

tute was capable of walking along microtubules, even though the unaltered

motor remained intact. This was the case for both kinesin and dynein re-

placements, suggesting that any pair of opposite polarity microtubule-based

motors can activate each other. The mechanical interaction presumably nec-

essary for activation of the motors seems to support a tug-of-war model. But

as an opposite polarity motor is not necessary in vitro, these results are not

completely conclusive and could also speak for regulation in vivo.

Further indication for a tug-of-war model was found by Soppina et al.

[40] by discovering stretching of endosomes in Dyctostelium cells during re-

versals. Combining this and a signature of motion during reversals with force

measurements in vitro, they assume a tug-of-war between one strong kinesin
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and multiple weaker dyneins. However, as they are not sure about the actual

microtubule orientation in vivo, they could only ascribe motion to the motors

in vitro using polarity labeled microtubules in a 200-fold diluted cell extract,

which might possibly have affected a regulatory complex. Furthermore only

32% of the observed tracks showed reversals at all and most of the remaining

tracks were runs towards the minus-end (81%). It is likely, then, that endo-

somes in vivo are transported by Dynein, and reversals in vitro are due to

spurious attachment of kinesin. This would lead to vesicle stretching due to

an imposed tug-of-war. Transport of these vesicles is different than typical

bidirectional transport of other cargos that reverse direction often. Thus, the

mechanisms that govern motor coupling are likely to diverge between these

systems.

3.3 Implications of differences between the two models

There are two main differences between these two models. One is that

the regulation model implies a direct involvement of a third player while for

the tug-of-war model variability of the properties of opposite polarity motors

is sufficient. This means that a higher order regulation mechanism, which

is mandatory for both models as the observed behavior changes over time,

targets either a coordination complex or the properties of the motors directly.

This can be used to probe the models by purifying cargos with motors from

the system and transferring them into an in vitro environment, where all the

additional components of the cytoplasm, and therefore the proposed regulatary
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complex should be missing.

Such an experiment has recently been reported by Hendricks et al.

[18]. The authours were able to reproduce the run length distribution ob-

served in neurons with purified vesicles in vitro. Run lengths are defined as

continuous motion in one direction until a reversal or pause occurs and their

distributions usually differ between plus- and minus-motion [14]. However,

their published data does not distinguish between directions. Nevertheless,

the relative amount of long runs and the ratio between plus- and minus-end

motion appear to be close to the in vivo results, which supports the idea of

a tug-of-war. A similar experiment is currently underway in our group, while

my approach targets the other main difference between the models described

next.

In the tug-of-war model, kinesin and dynein are trying to walk all the

time and therefore fight against each other as soon as both types of motors

are attached to the microtubule. Contrary to this a regulation model simply

switches between plus- and minus-end motion - without having them fight.

With this information one can start and make predictions about how cargo

is transported when one type of motor is inhibited from attaching to micro-

tubules.

The two models predict different outcomes if one motor is removed

from our system. Looking at the mechanism of a tug-of-war model we will

expect longer runs of the remaining motor as runs should be limited only by

the processivity of the motor which can be significantly larger than usually

17



observed in vivo (see 3.1). Unlike in the setup with both motors there should

be nothing stopping the movement unless the cargo gets stuck in the cyto-

plasm or the motor detaches by chance - still, the average length of runs will

increase. Hand in hand with longer duration of runs might go a decreased

pause frequency and we can also expect pauses, if caused by a tug-of-war, to

be resolved faster.

For a regulated transport we would not expect a significant change in

the length of runs and in the pause frequency. Because some regulatory com-

plex will determine how often motion is switched between plus-and minus-end,

removing one motor type will not affect the length of a single run in the other

direction. But what happens after a switching signal is received and there is

no motor to attach to the microtubule? It could either happen that the cargo

detaches and diffuses away or the cargo can pause at its position until the

next switching occurs. Neither would change run length distributions, but the

latter would increase pause durations. The last scenario is not unlikely consid-

ering dynactin is present and can bind both to cargos and microtubules [36],

therefore keeping cargos in place without motors attached to microtubules.

If it is not possible to remove all motors of one type, but only some of

them, one should still be able to detect these trends. In summary, increased

run lengths will support a tug-of-war model, while increased pause durations

of the transport will speak for a regulation model.
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3.4 The advantage of antibodies over genetics

Getting rid of one motor type can be achieved in two different ways.

In most cases so far, studies involved genetics as can be seen in some of the

examples above. Genetically altering one of the motors, be it either to make

it completely disfunctional or just reduce its ability to walk, surpressing its

expression or replacing it with synthetically built motor proteins, all have

a common problem: One can never be sure that an observed change in the

transport characteristics can be ascribed solely to the altered motor as opposed

to an indirect effect. It is often the case that the living cells compensate for

the lack of one protein by altering the expression or association of another,

making it difficult to tease out cause and result. This is especially the case in

my experimental system where it has been shown that reducing expression of

Kinesin simultaneously reduces Dynein association to the cargo [38]), making

it difficult to draw conclusions.

The other possibility to take out one polarity motor is using function

blocking antibodies. This way, the system is intact at the beginning and

cells develop completely normally. Introducing antibodies can perturb the

system and probe the predictions we made previously. For my experiment I

injected function-blocking antibodies against the kinesin heavy chain (KHC)

of kinesin-1 in Drosophila embryos. I am interested in the change of trans-

port characteristics of lipid droplets during a certain developmental phase, in

which transport by kinesin usually outweighs the one by dynein. Comparing

especially run length and velocity distributions, as well as pause durations to
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the predictions stated above, will enable me to favor one of the two models

presented in this chapter. More detailed information about the model sys-

tem, sample preparation, experimental setup and analysis of the data will be

provided in the following chapter.
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Chapter 4

Methods

4.1 The model system

4.1.1 The organism: Drosophila melanogaster

The system I used to test motor coordination is Drosophila melanogaster

(fruit fly). A big advantage of this species is that we already know its genome

[12] and a lot of mutants that target certain genes are characterized. Further

reasons for the popularity of Drosophila are a short life cycle (∼10 days) and

the small amount of effort it takes to maintain a large population. Our group

specifically uses the embryos of the fruit fly as a model system for intracellu-

lar transport. Approximately two and a half hours after the egg is laid, the

embryo enters a developmental phase where nuclei are aligned along the pe-

riphery prior to cellularization. Motor-driven cargo transport can be observed

in the vicinity of the nuclei. In order to ascribe motion to kinesin or dynein we

need to know the orientation of microtubules inside the embryo. It turns out

that microtubules form a basket around the nuclei with the centrosome at the

point closest to the periphery [50] (see fig.4.1). This is where the minus-ends

assemble and the plus-ends of the microtubules point inwards and allows us

to ascribe motion towards the outside(inside) to dynein(kinesin).
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Figure 4.1: Fluorescent images of the microtubule (green) and nuclei (blue)
orientation in Drosophila used in this work. The nuclei are aligned at the
periphery. Microtubules (green)grow from to the centrosome (outer side of
the nuclei) and point towards the center of the embryo (plus-end). Therefore
transport towards the periphery is accomplished by dynein whereas inward
transport is caused by kinesin. Image courtesy of Susan Tran and Michael
Welte.

4.1.2 The cargo: Lipid droplets

The cargo we use to characterize transport are lipid droplets which are

spherical agglomerates of lipids inside the embryo. Before the embryo enters

the developmental phase described above, these droplets are distributed ev-

erywhere in the vincinity of of nuclei. Bidirectional motion along microtubules

already exists, but there is no net transport (Phase I [51]). Consequently, dur-

ing the cellularization process, lipid droplets are transported into the center of

the embryo. This Phase II is referred to as “clearing”, because the periphery
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turns from opaque to transparent (fig. 4.2). This phase is useful for us be-

cause, due to the limited amount of lipid droplets present in this area, we are

able to track single droplets. It is also helpful for better imaging in general

and for force measurements using an optical trap. All of this would be much

harder if it was more crowded. Later on in development, the lipid droplets

distribute again all over the periphery which is the so called “clouding” or

Phase III.

Figure 4.2: Developmental phases of a drosophila embryo showing changes
in lipid droplet distribution. Within two hours post-fertilization of the egg,
droplets move bidirectionally with no net transport (left, Phase I). During
this phase the embryo is a syncytial blastoderm, which means all nuclei are
contained in a common cytoplasm. Right before cellularization starts, the
nuclei align at the periphery of the embryo and a net transport of lipid droplets
towards the inside can be observed (center, Phase II). This leads to a cleared
area at the periphery. Afterwards during gastrulation (right, Phase III) a net
transport towards the periphery can be seen. The microtubule orientation
from Phase II on can be seen in fig.4.1

4.2 DIC microscope and video recording

Differential interference contrast microscopy (DIC) is an optical mi-

croscopy contrast technique for transparent objects. The high contrast is

achieved by splitting linear polarized light with a Wollaston prism into two or-
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thogonally polarized, but mutually coherent beams and sending them through

the sample with a small spatial offset. After the objective, the beams are

reunited by a second Wollaston prism and interfere. Thus, there are basically

two brightfield pictures interfering, but as both experience different optical

pathlengths (index of refraction n times pathlength l) due to the offset, the

phase at each point of the beams is slightly different. The interference results

in a non-linear conversion of a phase difference into an intensity difference

which gives us the image we can record. The principle of the DIC microscope

is shown in fig.4.3. It can be easily shown, that a phase difference of ∆Φ

results in a intensity difference of ∆I(∆Φ) = I0 (1 + cos ∆Φ), meaning there

should be phase difference of not more than π in order to get clear pictures.

This makes it a suitable tool for imaging thin biological samples as there are

only small changes in the index of refraction.

Being able to detect these small changes is a huge advantage as the

differences of the index of refraction within the cell are only in the order of

0.1. Moreover, there is no need for staining the sample unlike with fluorescent

microscopy, the other main microscopy technique used in imaging of biological

samples. In order to achive a high signal-to-noise-ratio, samples should be as

thin as possible, because this reduces phase shifts due to layers above and below

the focal plane which will decrease the clarity of the image. As mentioned

above, our area of interest is mostly empty during phase II, resulting in a

good contrast for the few lipid droplets present there.

The DIC Microscope used is a Nikon TE2000-U with a 100x Objec-
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Figure 4.3: This schematic shows the principle of differential interference mi-
croscopy (DIC). One beampath is drawn as an example to explain the idea:
The light comes from the top and after a polarizer it passes through a Wollas-
ton prism. Here the beam is split into two beams with perpendicular polariza-
tions. These pass the sample with a small spacial offset and are reunited by
another prism. Now they interfere and the different optical pathlengths result
in an intensity difference.
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tive lens. Both condenser lens and objective lens use oil immersion for higher

numerical aperture. Illumination is provided by a mercury lamp (Nikon In-

tensilight C-HGFI ) and videos are recorded with a DAGE-MTI CCD100 at

30 frames per second on VHS and afterwards digitized. The relation between

actual distance and pixel size is determined with a ruler engraved on a glasslide

(0.1mm seperated in 2µm segments) to be 30.1nm in x- and 30.3nm in y-

direction, where x represents the horizontal axis and y the vertical axis. This

was achieved by taking snapshots of the ruler and determining the distance

between maxima of greyscale values along a line of pixels.

4.3 Sample preparation - reference data

In order to collect useful Drosophila embryos, some hundred flies are

collected in a plastic cup. The lid conists of a petri dish, filled with a mixture

of agar, dextrose and apple-juice. By placing a small amount of yeast on this

plate, the flies are triggered to lay eggs. Turning the cup upside down increases

the amount of embryos placed on the lid and not somewhere else in the cup.

The plate is exchanged by a new one after 2 1/2 hours, when the first embryos

are at the age we are interested in, while eggs laid later will develop to this

point during the next hours, which allows us to use one of these plates for ∼2

1/2 hours. Embryos of the correct age are determined by eye under a Nikon

SMZ800 microscope (magnification up to 63x) after covering the plate with

Halocarbon oil, which renders the embryo membranes translucent due to its

high refractive index. The desired developmental phase (phase II) appeares
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as a clear periphery with elongated nuclei and a membrane growing into the

embryo, visible as a thin line.

Figure 4.4: This shows a dechorneated embryo squashed in a groove between
two thin coverslips which are glued to the glass slide. The coverslip on top
flattens the periphery which extends to the sides of the groove. In this area,
good images of the cargos moved by molecular motors can be acquired.

Once an embryo is found, it is prepared following the procedure de-

scribed in [51]: using tweezers, the embryo is transferred onto double-sided

tape and dechorneated (the chorion is removed). After this it is placed in a

groove between two thin coverslips (Thermo Scientific No.0 thickness), which

is just slightly thinner than the embryo. After placing a spacer of a glass

coverslip on one side of the groove and covering the embryo with ∼ 20µl of

Halocarbon oil, another coverslip (Fisher Scientific, No.1 thickness) is put on

top of the spacer and embryo. This pushes most of the embryo down in the

groove, while the periphery is flattened out on both sides. Therefore, the area

we are interested in, is well prepared for DIC microscopy, as the sample there

27



is transparent and thin.

4.4 Injection

4.4.1 Antibody preparation

The antibodies used for injection are Cytosceleton AKIN01 (rabbit poly-

clonal, anti-KHC), which identifies Drosophila Kinesin-1 [34]. According to

FRAP experiments (Fluorescent Recovery After Photobleaching) this anti-

body inhibits Kinesin-mediated transport in chicken dorsal root ganglia [42].

They were prepared following the description in previous papers [37] [38]. The

antibody powder (50µg) is suspended in 200µl MilliQ water as instructed in

the data sheet, which gives us an initial concentration of 250 µg
ml

. After dyial-

izing for 6 hours against 1l of 1x PBS in a Slide-A-Lyzer Mini Dialysis Unit

(Pierce, 10kDa MWCO), the solution is concentrated using a Amicon Ultra-

0.5 mL Centrifugal Filter (Milipore, 30kDa NMWL). The centrifuge settings

for concentration are 1 hour at 14, 000xg, the concentrate is recovered after-

wards from the filter by spinning for 2 minutes at 1, 000xg. All preparation

steps are performed at 4◦C. The final concentration of antibodies is 2− 3 µg
µl

.

4.4.2 Microinjection system

The setup used for injections consists of a Xenoworks Microinjector

and a MP-285 Micromanipulator, both from Sutter Instruments. While the

manipulator is used to position the micropipette, the injector provides the

pressure for the injection.
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Consisting of 3 stepper motors, the micromanipulation stage can be

used to move the micropipette in steps of down to 0.04 µm
step

in X-, Y-, and Z-

direction of a cartesian coordinate system, with X and Y on the base plane and

Z perpendicular to it. For my purposes I defined a 4th axis to be able to inject

from a 45-angle and penetrate the membrane more easily. The stepper motors

are controlled with a remote control, which also allows to switch between fine

and coarse movement as well as between the predefined 3 axis and the self-

programmed 4th one. In addition to the range of 2.5 cm in each direction

provided by the manipulator itself, I mounted it on a stage that I designed to

allow more freedom in positioning the manipulator in all directions.

The second part of the injection system is the microinjector, which is

able to apply pressure of up to 15 psi above and 7 psi below air pressure. The

pressure output is attached with a plastic tube to the micropipette holder on

the manipulator stage. Applied pressure is controlled with a remote, which

enables us to not only apply static pressure, but also pulses. In addition to

the gradually variable static pressure, one has the option to define an injection

pressure. The solution is injected at this pressure as a pulse with adjustable

pulse width (0.01 s − 10 s), or as long as the injection button (or foot pedal)

is pressed.

4.4.3 Micropipette preparation

The last tool necessary for injection of the antibody solution, is a mi-

cropipette which can be moved by the micromanipulator stage and is con-
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Figure 4.5: Micromanipulator stage with a micropipette. The stage can be
remotely controlled and the injection is executed under the microscope. The
tubing on the back of the needle leads to the microinjector which controls the
applied pressure.
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nected to the microinjector. The pipette is produced from borosilicate glass

tubes (SUTTER, outer diameter: 1.0 mm, inner diameter 0.58 mm). The glass

is vertically fixed in a needle puller (NARISHIGE PB-7, Stein lab in Patterson

building), which basically consists of two clamps to attach the glass, a heating

filament around the glass in the center and some weight on the lower end. As

the pulling sequence is introduced the filament is heated in a predefined way

(maximum temperature and pace of heating) and the weight pulls the lower

part down, causing the glass tube to melt and rip apart. This results in two

pipettes, but usually only the upper one shows a promising tip.

Figure 4.6: The pipette puller (right) used to produce the needles for injections.
While the filament in the center is heated the glass melts and the weight pulls
the glass tube apart into two micropipettes. The resulting tips show variation
in shape (left). The tip diameter is < 10µm.
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Due to problems with their machine, the resulting tips were only to

a certain extent reproducible and changed therefore in shape and diameter

(see fig.4.6). But as the Stein group uses the pipettes for their work with

Drosophila, their settings can be used for my experiment, too. After producing

the pipette, the tip is usually still closed because of the melting process and

needs to get broken manually. This is done right before it is used for injection

to avoid getting dust in it. It can be broken under the microscope either by

using a tweezer or a razorblade or by rubbing it on the edge of the glass slide

using the micromanipulator. The resulting tip diameters are smaller than

10µm.

4.4.4 Sample preparation - injected embryos

Up to the point of dechorneation, embryos are prepared similar to 4.3,

but should be slightly younger in order to image them at the same age after

a longer preparation procedure. To achieve this, embryos which already show

the ingrowing membrane, but have it as close to the periphery as possible, are

chosen. After dechorionating it, the embryo is placed on a glass slide without

oil in order to dry and stick to the glass to faciliate injection. I found that ∼7

minutes is a good compromise between too long exposure to a dry environment,

which eventually damages the embryo, and too little time to stick, thus not

providing enough resistance against the pressure of the injection pipette.

During this time, the micropipette can be prepared and loaded with

antibody solution. The tip has to be broken as described above, followed by
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filling the needle. The latter can be achieved in two ways. The pipette can

either be loaded from the back or from the front. Back-loading provides an

advantage, if many embryos have to be injected in a short amount of time. In

my trials back-loading resulted in the formation of air bubbles close to the tip,

which is undesirable. Moreover, due to remains from the embryo’s cytoplasm,

the tip was often clogged and therefore useless after one or two injections.

Because of this, I preferred front-loading of small quantities, namely sucking

in antibody solution from a small drop placed on the slide by applying negative

pressure with the microinjector.

In order to get an idea of the ratio of antibodies to kinesin, we first need

to know the volume of an embryo. According to [10], the average length and

width are 400µm and 250µm respectively. Thus we can estimate a volume

of less than VE = 25 fl. The concentration of kinesin has been determined in

squid axoplasm to be 0.5µM [6]. The molar concentration of our antibody

solution is cmol = c
MAB

= 2 g/l
150 kg/mol

= 13µM for a conservative estimation with

low AB-concentration and a heavy antibody (the actual molecular weight is not

provided by Cytosceleton). The injected volume is estimated to be more than

1/20-th of the embryo volume, as dilution of the cytoplasm during injection

is clearly visible in the injection area. Therefore, the molar concentration of

antibodies (13
20
µM = 0.65µM) is comparable to the concentration of Kinesin.

Even if Kinesin is more abundant in our system, the fact that the antibodies

mostly remain around the injection area, due to limited diffusion as can be

seen in the next section (4.4.5), its local concentration will be higher than our
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estimate.

After the Drosophila embryo has attached to the glass and the pipette

is loaded, we lower the tip remotely with the manipulator stage until there is

contact with the embryo. The continuously applied pressure should be ∼0.8

psi (a value of 50-60 on the display) to equalize the pressure inside the embryo

and prevent backflow of cytoplasm into the needle. Consequently, we switch to

the diagonal axis of the manipulator and penetrate the emrbyo. The constant

pressure is then increased until dilution of the cytoplasm is visible, indicating

injection of the clear antibody solution. If this is not possible (due to clogging

of the tip), the injection pressure pulse is used, starting with low pressures and

increasing the settings until the effect occurs. Once this is done, the needle

is removed from the embryo and the latter is covered with Halocarbon oil 27

and a glass coverslip. The oil does not influence the further development of

the embryo, but increases the resolution. The sample is now ready for the

microscope.

4.4.5 Injection of food coloring

The injection of green food coloring is used as proof of principle for

my injection technique. The dye used is food coloring diluted in water and

injected into embryos of the age we are interested in. It can be seen that within

seconds the area around the injection turns green, whereas the other end of

the embryo remains unchanged (fig.4.7, 4.8). These pictures were taken with

an iPhone through the ocular of the microscope as the attached camera only
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records greyscale pictures. This accounts for the less-than-optimal quality of

the image. Injecting food coloring was also used as a control to insure that

there are no artifacts due to the injection process. Especially in fig.4.8 one can

see that the injection itself does not cause reclouding of the lipid droplets, even

though this picture was taken several minutes after the injection. Considering

these pictures we can expect a significant difference in the environment of the

motors in different parts of the embryo.

Figure 4.7: Embryo injected with food coloring, illumintated from above (re-
flection). The dye distributed quickly in the area of injection, while the dif-
fusion towards the other end was slow compared to the time scale we are
interested in.

4.5 Analysis

4.5.1 Tracking droplets

In order to quantify the motion of molecular motors from recorded

videos, we need to track the lipid cargos which are transported by them.

Considering their step-size (e.g. 8 nm for Kinesin, see 2), it is obvious that

the precision of our tracking has to be in that range, too. Otherwise we might
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Figure 4.8: Embryo injected with food coloring, illuminated from below (trans-
mission). This picture was taken ca. 15 minutes after injection and the dye
has not yet reached the opposite side. It is important to note that antibodies
are much larger molecules than food coloring molecules and are expected to
diffuse less in the embryo.

miss important information about the behavior of motors or might be led to

wrong conclusions. To achieve precise cargo tracking I used an algorithm for

single particle tracking based on cross-correlation combined with parabolic

interpolation as detailed in [9] and briefly described below.

As mentioned earlier, the pixel size in our images corresponds to about

30nm in the sample in the x- and y-directions. This would basically limit

us to determine the position of cargos only in 30nm jumps, which would

not reflect the behaviour of motors. However, given that the lipid droplets

have a diameter of several hundred nanometers and ,therefore, span over ∼10-

15 pixels, we can use the information contained in that extended region to

determine the center with a precision exceeding the pixel size. For that we use

cross-correlation in order to get around the restrictions set by the pixel-size:

our tracking program in LabView allows us to choose an area of interest and

saves it as a template. It then compares consecutive frames within a certain
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search area around our droplet and determines the position of the center of

the best match to the template (see fig.4.9). Correlation works best for well-

defined objects, which imposes criteria we have to consider when we choose

the droplets we want to track.

One important aspect is of course, that the object changes its appear-

ance as little as possible during the time we want to track it. Changes can

occur due to motion in and out of focus. If the object changes appearance,

the tracking program might simply not be able to follow the lipid droplet, or

it could also determine the center of the template inaccurately. Another cri-

terion is good contrast against the background. This obviously allows better

tracking than if you have only a blurry image of your droplet. After tracking,

one has to make sure that the track does not show pixel latching - repeated

clustering of the tracked position with jumps equal to the pixel size inbetween

- indicating bad tracking for reasons mentioned above.

In addition to these criteria concerning the imaging, there are some

other important things to consider. Due to the orientation of microtubules

in our experiment (see fig.4.1), only tracks from cargos moving along that

direction can be analyzed as we cannot be sure of the microtubule polarity

if the cargo moves in different directions. Cargos can only be tracked until

they run into other droplets or until they leave the field of view or the area

where microtubules are relatively straight. It does not make sense to track

them in the bulk of the embryo or right at the periphery where microtubules

are not oriented straight. Having these considerations in mind, we have to
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Figure 4.9: Tracking window of the LabView program used to track lipid
droplets. The red box is the area defined as a template to be used in the next
frame to look for the droplet within the green box using cross correlation. The
red line on the screen is the track our chosen cargo has gone through from the
start of the tracking process on.

track everything else in order to get a representative picture of the transport

characteristics. This guarantees unbiased results which can be undermined if

only large droplets or long travellers are selected.

4.5.2 Analyzing tracks

Once the tracks are available as *.txt files of position and time, we use

the program Marathon to split the tracks into segments of constant velocity.
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The program is described in detail by Petrov et al.[33] and is available on the

homepage of the group of Steve Gross (UC Irvine). Therefore, I will only give

a short overview of how this process of parsing tracks works.

First, the program fits a linear microtuble to the data via linear re-

gression. As the length of most tracks is in the order of some micrometers

and considering the geometry (fig.4.1), microtubules can be approximated as

straight filaments for this range. Subsequently, all data points are projected

onto this line, resulting in a description of the cargo position along the micro-

tubule as a function of time (fig.4.11). This projection is the best way we have

to determine the motor position from the position of the cargo. As motors are

almost 100nm long and the diameter of lipid droplets is a few 100 nanome-

ters, a displacement of the droplet center of around 200nm perpendicular to

the microtubule can be expected. If multiple motors as well as Dynactin are

attached to the cargo and the microtubule, the displacement of the droplet in

the direction of the microtuble can be expected to be smaller.

The program uses a Bayesian approach to split this new track into

segments of constant velocity. It starts with a large number of small segments.

Consecutive segments are then merged if in doing so the fit is affected the least.

This process is continued till the fit quality exceeds what would be expected

if one were to fit the position of a diffusing cargo that is tethered to the

microtubule but not being transported.

This procedure results in tracks split into short segments, but we are

mostly interested in properties of runs. A run in this context is defined as the
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Figure 4.10: Position of the cargo on the screen determined by the tracking
program (see 4.9).The green solid line represents the microtubule the motor is
supposed to walk on and is obtained by a least square fit. Microtubules can
be assumed to be straight in the range of some micrometers.

distance a cargo moves in one direction until it stops or reverses its motion.

Therefore, a run can consist out of several segments with different velocities.

Runs with velocities lower than 50nm
s

are considered pauses if they last for

at least 7 consecutive frames (∼ 0.23 s). This velocity threshold is well below

usual motor speeds of > 100nm
s

. To get a representative picture of the trans-

port, the first and last run of each track are dropped. This way, personal bias

in choosing droplets for tracking is reduced, because from the first pause or
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Figure 4.11: Position of cargo along the microtubule as a function of time. The
graph is obtained by projection of the tracking data onto a linear microtubule
(fig.4.10). The inset highlights an area, where the parsing by Marathon into
segments of constant velocity can be seen.

reversal on, the behavior is supposed to be independent of the history of mo-

tion. We split our data into runs in the plus- and minus-direction and pauses

and use these in our analysis.
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Chapter 5

Results

In this chapter, I first analyze the characteristics of lipid droplet trans-

port in my reference data consisting of wild-type embryos. I will then de-

termine the same transport characteristics for the data I obtained from the

embryos I injected with antibodies against Kinesin and identify changes. Sub-

sequently, in the discussion section, I will compare these results with my pre-

dictions described in 3.3 for the models for bidirectional transport.

5.1 Reference Data

I used wildtype Drosophila (OR-R) to compare the antibody-injected

embryos to. Using DIC microscopy, I recorded video footage of lipid droplet

transport in 15 embryos during phase II (see 4.1.1). Trajectories of 230 lipid

droplets were tracked and the tracks were split into segments of uninterrupted

motion in either direction or pauses using the methodology described in 4.5.

In the following, I sumarize the results I obtained by analyzing these tracks

to obtain a quantitative description of normal transport that I will use as a

reference for the antibody-injected embryos.
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5.1.1 Run length distributions

The distance a droplet travels in one direction until it reverses motion

or pauses is termed “run length”. This quantity is an important descriptor of

bidirectional transport since the direction having the larger mean run length

will be the direction of net transport. However, given that run lengths are not

normally distributed (fig.5.1), determining the mean does not necessarily give

a robust estimate because we only have a limited data set and small changes

in the number of very long runs (> 2µm) can have a significant influence on

the result. Given a certain intrinsic run length distribution of the transport

by motors, we might not be able to reproduce it even with a large amount of

measurements. The reason for this is that the crowded environment in the cell

will lead to obstacles for the motors on the microtuble, the droplet bumping

into other cargos, or cargos travelling out of the field of view. All of these will

decrease the amount of long runs, resulting in a high sensitivity of the mean

to fluctuations in the number of long runs.

To avoid this shortcoming, previous work [16] has fitted the run length

distributions for plus- and minus-end transport by the sum of two exponential

decays (fig.5.1, fig.5.2). The advantage of this method is that it is robust

against small changes at long run lengths as the fit parameters are mostly

determined by runs shorter than about 1.5µm. An exponential distribution

can be expected if there is a constant probability of a run to stop - due to

detachment and/or attachment of an opposite motor. Gross et al. justified

the choice of two exponentials with two different states of motion, a slow short-
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Figure 5.1: Plus- and minus-run length distributions of the reference data
from wildtype Drosophila embryos. Each histogram was fit with a double
exponential decay. The plus-end fit parameters wereD1+ = 701nm andD2+ =
124nm with a reduced χ2 value of 0.84 (top). Fitting the minus-runs (bottom)
resulted in D1− = 495nm and D2+ = 112nm at χ2 = 1.75.
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Figure 5.2: Plus-end run length distributions of the reference data from wild-
type Drosophila embryos on logarithmic scale. It shows the same fit as in 5.1.
As exponentials appear linear in this scaling, one can see that the data is well
fit by the sum of two exponentials.
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travel state (decay constant < 100nm) and a long-fast one (� 100nm). The

long runs have been shown to be faster on average and the corresponding large

decay constant determines the transport behavior as it changes significantly

between different developmental phases [16] while the small decay constant

remains essentially unchanged. Therefore both plus- and minus-end run length

distributions were fit by

y(l) = A1 exp
− l
D1 +A2 exp

− l
D2 (5.1)

with A1 and A2 being the amplitudes of the exponential decays with

decay constants D1 and D2. Only runs with velocities larger than 100 nm
s

were

included in the histograms. This is an arbitrary threshold, but everything

faster than 100 nm
s

is very likely due to active transport by motors. Moreover,

if there are details missed or missinterpreted by our parsing program due to

uncertainties in the tracking, they will mostly affect short segments. There-

fore, we only use runs that are longer than 100nm in the exponential fit. This

gives us reasonable fits (quality is described by reduced χ2 value) and charac-

teristic run lengths (decay contants) which are presented in tab.5.1 together

with values obtained previously using a similar method of data analyis [33].

Differences are likely due to the details of the analysis as described below.

The values in tab.5.1 are listed without uncertainties. This is because

these values, while being good measures of the run lengths, are likely influ-

enced by the way tracks are split into segments using Marathon (see 4.5.2).
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Table 5.1: Runlengths in plus- and minus-direction for reference (OR-R), con-
trol (YW) and from [33]

dataset plus-end transport minus-end transport
D1 [nm] D2 [nm] χ2 D1 [nm] D2 [nm] χ2

OR-R 701 124 0.84 495 112 1.75
YW 728 92 0.93 524 112 0.85
Petrov[33] 852 78 0.86 503 62 1.76

The calibration of the program as well as the thresholds used for parsing and

merging segments into runs can all influence the outcome. However, for a fixed

set of parameters, the measured decay lengths are robust. This was demon-

strated by analyzing two sets of data obtained from flies with no inherent

difference in the transport machinery (YW, wildtype with different eye color).

When analyzed the same way, the two sets gave run length values within a

few percent of each other.

The robustness of run length as described above implies that it can

be used to detect changes. This will be cruciual to test my predictions for

antibody-injected embryos. With no uncertainties, the significance of possible

changes will be quantified using a randomisation t-test as described in 5.3.1.

5.1.2 Pause durations

Pauses are defined as “runs” with velocities < 50 nm
s

that last for at

least 0.25 s, which corresponds to ∼ 7 frames of the video. Again, the as-
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Figure 5.3: Pause durations for the reference data. The pause durations were
fit by a single exponential decay. The fit resulted in a decay constant τALL =
0.49 s with χ2 = 3.12. Fitting only for pauses > 0.75 s improves the fitting
quality to χ2 = 1.04 and gives τR = 0.61 s. The bins start at 0.25 s because
this is our threshold for pauses.
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sumtion is that there exists a constant probability of the cargo to leave this

state [16]. Therefore we fitted the pause duration distribution with a single

exponential decay

y(t) = A0 exp−
t
τ (5.2)

with a characterisitc pause duration τ . Fitting an exponential to the

whole dataset gives us a pause duration of τALL = 0.49 s with a poor fitting

quality of χ2 = 3.12. The distribution itself does not seem to follow a single

exponential as proposed [16]. One reason might be the splitting of tracks into

runs/pauses of at least 0.25 s, which might result in a higher weight in the

first columns in the histogram. Therefore, I fit an exponential decay only

to the higher pause durations (> 0.75 s) - which are unlikely biased by data

processing - and thus obtain (fig.5.3) a pause duration of

τR = 0.61 s

with a significantly improved fitting quality of χ2 = 1.04. This value

is higher than that reported by Gross et al. for the same velocity threshold

of 50nm
s

(namely < 0.3 s) [16]. However, this difference is likely due to the

different parsing method used and the fact that the authors only analysed

pauses separating direction switching and excluded pauses during motion in

one direction. The latter cannot be excluded in our case given that predictions
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of the different models include a possible increase in pauses when one polarity

motor is impaired.

5.1.3 Pause frequency

The frequency of pauses will be another criterion we can use to distin-

guish between the two models of transport. Therefore, I determine the relative

amount of pauses compared to all runs as well as the number of pauses per

unit time. Fig.5.4 shows the relative number of runs for different velocity

ranges (i.e. the absolute number falling in a velocity range relative to the

total number of runs). I distinguished between runs in the plus- and minus-

directions, and pauses. For the sake of completeness I also included the regime

in between, but those segments are not used for the analysis as explained in

the figure caption. As one can see, 30.5% of all runs are pauses. The rela-

tive distribution for the different velocity ranges will enable us to distinguish

between changes in pause characteristics caused by an overall change in this

distribution and changes independent of it (e.g. if pauses are increased at the

expense of plus-end runs). In addition to the relative number of pauses, the

number of pauses per unit time, is also quantified:

fR =
Npause

T
=

1477

4085.06 s
= (0.362± 0.018) s−1

The total time measured has a negligible error compared to the abso-

lute number of pauses. The uncertainty of the latter depends on the parsing

process of the tracks and is hard to estimate. However, the pause frequency be-
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Figure 5.4: The relative number of runs as a percentage of the total number of
runs (n = 4842) are split for the different velocity ranges shown. 30.5% of the
runs are pauses and the ratio between plus- and minus-end runs is N+

N−
= 1.04.

Runs with velocities between 50nm
s

and 100nm
s

are not used for the analysis of
run lengths, given that they can be due to artifacts other than motor-driven
transport. Their relatively small number and equal distribution between the
opposite directions justifies their omission.
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tween different tracks does vary as well as the duration of the different tracks.

Therefore, I determined the error with a bootstrapping method: Having N

tracks, I randomly chose N tracks with repetition from the pool of all tracks

and determined their pause frequency. Continuous repetition of this results in

a gaussian distribution with a standard deviation determing my error. Fur-

thermore, I characterize the ratio of plus- and minus-end runs (faster than

> 100 nm
s

) to be

N+

N−
= 1.04

Even though the number of runs in each direction is almost equal, the

net transport during this phase of development is towards the plus-direction

because of the larger plus-end run length as determined above (fig.5.1).

5.1.4 Velocity distributions

The histograms in fig.5.5 show the velocity distributions for plus- and

minus-end transport during phase II of embryo developent. Given the lack

of a complete understanding of transport mechanisms, there is no general

agreement on which mathematical model describes these distributions. Some

report peaks in velocity histograms caused by integer numbers of motors (∼ 10)

[23][25]), working against opposing load, but these distributions are not typical

and can be a result of poor analysis [28]. No significant peaks are visible in

fig.5.5. To characterize velocities consistent with previous reports [51], I will
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use the mean velocity of the runs weighted by their duration. These values

have been published before [51], so I can compare my analysis to previous

experiments. The weighting was calculated as follows:

v+ =
∑
vi>vT

vi · wi

v− =
∑
|vi|>vT

vi · wi

∆v =

√
1

N2

∑
i

(vi · wi − v)2

(5.3)

where wi = ti∑
i ti

are the weights. Uncertainties ∆v are weighted stan-

dard errors of the mean. The weighted velocity is insensitive to the factors

detailed in 5.1.1 that render mean run length a poor descriptor of transport.

For the weighted velocity I again only consider runs faster than 100nm
s

. The

values are reported in tab.5.2 . I also included weighted velocity values of all

runs faster than 50nm
s

to be able to compare to previous work on the same

system. The mean weighted velocities of my reference data are, within errors,

in agreement with the previously published values [51]. The values for the

100nm
s

threshold are higher, as can be expected if you leave out the ambiguous

uncertain range 50− 100nm
s

(see fig.5.4).
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Figure 5.5: Histograms of the velocity distribution of runs (> 100nm
s

) for plus-
and minus-end transprt during Phase II. The mean velocities weighted by their
duration are v+ = 341± 9 nm

s
and v+ = 349± 10 nm

s
.
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Table 5.2: Weighted mean velocities of droplet transport for reference mea-
surements of Phase II embryos

threshold 100 nm
s

50 nm
s

vR [nm
s

] vR [nm
s

] Welte[51] [nm
s

]

plus 341±9 317±8 321±15
minus 349±10 315±8 359±50

5.2 Effect of injection of anti-Kinesin antibodies

5.2.1 Injection of antibodies - large scale

The image sequence in fig.5.6 shows the temporal evolution of an em-

bryo injected with antibodies against Kinesin. It can be clearly seen that the

injection area (right side of the embryo) develops differently and the transport

of droplets to the periphery (dark clouded periphery) only takes place on the

side of injection. This sample was imaged for a longer time than what is us-

able for particle tracking. Given that the embryo is still developing, it grows

past phase II in about 15 minutes post-injection. However, the effect was not

always this uniform. Usually, only smaller parts of the periphery close to the

injection point reclouded (fig.5.7) which is probably due to variations in the

injection volume, the antibody concentration and the injection efficiency. As I

mentioned above (see 4.3), the embryo is squashed between the glass slide and

a coverslip. Due to the injection process, the membrane of the embryo is al-

ready damaged and, therefore, some of the cytoplasm leaks out, which is likely

to contain part of the antibodies. For these reasons, high magnification videos
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only from areas that definitively showed reclouding were taken into account

for single particle tracking and analysis.

Figure 5.6: Development of an Embryo injected with antibodies against ki-
nesin. In the area of injection (right side) lipid droplets have been transported
to the ouside of the embryo making it appear cloudy (dark) while the pe-
riphery on the opposite side still remains clear. Indicated times are times
post-injection.

5.2.2 Injection of antibodies - single droplet scale

Using high magnification DIC microscopy, it was possible to detect the

injected areas of an embryo just by looking at the lipid droplets distribution

in the periphery. Unlike the distant unaffected areas or untreated embryos
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Figure 5.7: Image of an embryo injected with antibodies against Kinesin after
recording the high magnification images. The reclouding is only local and less
strong than for the example in fig.5.6. The reason for this is most likely leaking
out of antibody solution due to squashing the embryo between the coverslip
and glass slide for imaging. For many embryos, the reclouded area was even
smaller.

(fig.4.9), the periphery was already crowded with droplets during a develop-

mental phase where it usually is clear. Nevertheless, after recording the high

magnification videos, the effect of the antibody was double checked by looking

at the embryo as a whole, and only videos that showed a crowded peripheriy

both on large scale and single droplet scale were analyzed. The fact that it was

already crowded by the time I started imaging, was due to the time it took me

to prepare the sample, post injection, for DIC microscopy (∼ 2min). As one

can see from the tracks in fig.5.8, most of the droplets still show bidirectional

motion. This most likely means, that not all Kinesin was blocked with an

antibody. However, the overall transport has clearly changed. Hence, even if

Kinesin is only partially inhibited, I should still be able to detect changes in

the transport characteristics.

The crowded field of view has both advantages and disadvantages over

the sparse, uninjected images for the reference embryos: On the one hand
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Figure 5.8: Picture from a Phase II video of lipid droplet transport in the
periphery of a Drosophila embryo injected with anit-Kinesin antibodies. Un-
like embryos that were not injected with antibodies(fig.4.9), the field of view
is already crowded with lipid droplets, implying biased transport towards the
minus-end (top right). The purple lines represent the tracks obtained from this
video. The residual transport in the plus-end direction (bottom left) indicates
that not all Kinesin molecules were blocked. Nevertheless, global transport is
obviously favoring Dynein.

one has a large number of droplets for tracking. But on the other hand,

tracking them is a lot harder as the density of droplets leads to more bumps

between droplets and more motion of droplets in- and out-of-focus. In addition,

somtimes the videos were blurred by the leaked cytoplasm that was creating

a layer over the injected area. Therefore, tracks from these videos can be

expected to be - on average - shorter than for the reference. But as we discard

the first and last run of each track for analysis anyway, this should not bias
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our results given that most tracks are comprised of many runs and pauses.

Moreover, the supression of very long runs has no influencce given the way we

determine the characteristic run length (see 5.1.1).

5.3 Transport characteristics of embryos injected with
antibodies

5.3.1 Run lengths

The tracks obtained from the videos of injected embryos are analyzed

in the same way as the reference data. Again, a double exponential decay

is fitted to the run length distribution for motion towards the plus- and the

minus-end. The histograms with fits are shown in fig.5.9 and the fit paramters

are listed in tab.5.3 together with those of the reference data.

Table 5.3: Runlengths in plus- and minus-direction for samples injected with
antibodies and comparison to the reference data

reference [nm] injections [nm] χ2 p-value

plus D1 701 312 0.77 0.008
D2 124 57

minus D1 495 608 0.86 0.034
D2 112 82

Due to the antibodies against the kinesin heavy chain the plus-end run

length is decreased. Dynein-driven motion, on the other hand, is increased

compared to reference data. The longer run length for minus- compared to

plus-end transport in the injected embryos is expected given the crowded pe-
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Figure 5.9: Plus- and minus-end run length distributions of lipid droplets after
injection. Double exponential fits resulted in decay lengths of D1+ = 312nm
and D2+ = 57nm with a χ2 value of 0.77 for plus-end runs (top). The results
for minus-runs (bottom) are D1− = 608nm and D2+ = 82nm at χ2 = 0.86.
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riphery we see after injections. The dominance of plus-end (=inward) trans-

port is undermined by antibodies. To check if these changes, independently

from the exponential fit, are significant, I use a randomisation t-test : the two

data sets of run lengths are merged to one pool of data and then randomly

two groups of the size of the initial data sets are drawn from that pool. The

difference in their mean is determined and the whole process is repeated sev-

eral thousand times. This results in a normal distribution of differences in the

mean values which is compared to the difference between the mean values of

our initial data sets. Depending on the relative position to the distribution a

p-value is assigned, which indicates the probability that both data sets origi-

nated from the same distribution. Unlike in a normal t-test, the datasets do

not need to be normally distributed [8]

As I mentioned earlier, the mean is sensitive to fluctuations in long

run lengths, hence we do not include long runs for the significance test. We

just use a window in the distribution which is unlikely to be biased by the

data processing (i.e. short runs, and tail values in the distribution, where

the count is small). Therefore, I chose the range 250 − 1250nm to compare

plus-end runs and 250 − 1500nm for minus-end runs, resulting in p = 0.008

and p = 0.034 respectiveley. This means that both changes - decrease of plus-

end motion and increase of minus-end motion - are statistically significant. In

order to validate this test, I compared the distributions for plus- and minus-

end after injection (p = 0.034), which is expected given that the distributions

are unique. Moreover, to check the ability of the test to detect similar distri-
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butions, I randomly split each distribution in half and ran the test on both

halves. Comparison of the resulting datasets for plus-motion gave p = 0.977,

the ones for minus-motion p = 0.93 - thus proving that data from the same

distribution can actually be detected using the randomization t-test..

5.3.2 Pause durations

Figure 5.10: The pause durations of the lipid droplet tracks after injection of
the antibody were fit again to a single exponential decay. A pause duration of
τALL = 0.46 s with χ2 = 1.07 was obtained for the whole range and τI = 0.46 s
with χ2 = 0.82 for fitting pauses longer than 0.75 s.
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We determine the pause duration for the tracks after antibody injection

as described for reference data in 5.1.2. An exponential fit to pauses with

v < 50 nm
s

and a minimum duration of 0.25 s results in τALL = 0.46 s at

χ2 = 1.07. Even though this χ2 value implies a good fit, we can see the same

shoulder structure in the histogram observed for the reference data at about

0.7 s (fig.5.3). Therefore, we fit with an exponential decay only for pause

durations > 0.75 s (fig.5.10). This results in

τI = 0.51 s

with a reasonable fit quality of (χ2 = 0.82). This pause duration is

smaller than the value of τR = 0.61 s I determined for my reference data.

Just like in the paragraph above we use the randomization t-test to find the

probability that both datasets originate from the same distribution. With

p = 0.263 for the range I used for the fitting, this change is not statistically

different, even though one can see a trend to lower pause durations.

5.3.3 Pause frequency

Similar to uninjected embryos, I determined the relative number of

pauses and runs lying in the different velocity ranges. When compared to

fig.5.4, fig.5.11 shows that there is no major change due to the anitbody in-

jection for the relation between pauses and runs. Pauses comprise almost a

third of the events and the plus- and minus-runs are observed with equal por-

portions. This also means that the decreased pause duration is not caused by
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a shift of runs with a short duration into the pause region, but rather by a

change of the nature of pauses.

Figure 5.11: Relative number of runs in different velocity ranges compared to
the total number of runs (’n = 2253) after injection of antibodies. 28.8% of
the runs are pauses and the ratio between plus- and minus-runs is N+

N−
= 1.04.

There are no obious changes in this graph compared to the one obtained from
reference data (see fig.5.4

The pause frequency

fI =
648

1675.81 s
= (0.387± 0.025) s−1
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is slightly higher than the one for the reference data, but still within

the errors. The next values I probe for changes are the ratio between Kinesin

and Dynein mediated runs

N+

N−
= 1.04

The number of plus-end runs to minus-end runs remains constant com-

pared to the reference data.

5.3.4 Velocity distributions

The histograms for the velocity distributions after the injection of anti-

bodies are shown in fig.5.12. Compared to the wildtype data (fig.5.5), the

distribution appears to remain qualitatively similar. To quantify possible

changes, I calculated the mean weighted velocities for this dataset like de-

scribed in scetion 5.1.4. The results are presented in tab.5.4.

Table 5.4: Weighted mean velocities of droplet transport for Phase II embryos
after injection (velocity threshold 100nm

s
). vR and vI are the weighted mean

velocities for reference data and data after injections respectively

vR vI [nm
s

] change

plus 341±9 289±12 -15.0%
minus 349±10 325±13 -7.9%

65



Figure 5.12: Histograms of velocities of runs (> 100nm
s

) for plus- and minus-
end transprt during Phase II after injection of antibodies.
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The velocities in both directions are slightly reduced, more for Kinesin

(−15%) than for Dynein (−8%).

5.4 Discussion

At this point I first want to summarize the effect of antibody injec-

tion on transport characteristics, followed by a possibile interpretation. The

analysis in the sections above showed the following results:

• the minus-end run length is significantly increased (+23%)

• the plus-end run length has significantly decreased (−55%)

• pause durations after injection show the tendency to be shorter

• the frequency of pauses is barely increased

• the relative amount of pauses compared to all runs has slightly decreased

• the ratio between the number of runs in plus- and minus-direction re-

mains constant

• the velocity of runs is reduced, more for plus- than for minus-end (−15%/−8%)

First, I will compare these results to observations reported in previous

publications. In similar experiments, but different system the same antibodies

have been reported to inhibit both plus- and minus-end directed transport

[42]. But in their system (chicken dorsal root ganglia), Kinesin is responsible
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for the vast majority of transport, which could be the reason, that they barely

saw Dynein-mediated motion after injections. In my system on the contrary,

transport by Dynein is increased.

A similar, but more drastic decrease in velocities has been reported by

Brady et al [6] for transport of membrane bounded organelles in squid axo-

plasm, where they perfused their sample with an IgG antibody against the

heavy chain of squid kinesin. This resulted in a decreased velocity over time

for both plus-(−54%) and minus-end (−28%) transport after 30-60 minutes,

but also in an already significant velocity drop after 10 minutes (∼ −25%),

which is more comparable to my timescale, but still more velocity decrease

than I detect. The main points I am interested in, run lengths and pause du-

rations, were not measured in their experiment. However, another study using

antibodies against Dynein in order to check for attachment to microtubules of

purified vesicles in vitro did not report any velocity changes [18].

In the following, I discuss how these results fit to the predictions I made

for the two models of transport (see 3.3). Overall it has to be noted that the

bidirectional motion of most cargos indicates that only some of the Kinesins

have been impaired by antibodies. However, the changes in several transport

characteristics after the injection demonstrate the effect of the antibodies. For

several of the observed values the predictions of both models diverged.
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5.4.1 Comparison to regulation

For a regulation model we would have not expected that the minus-end

run length is increased because transport in each direction would be regulated

and thus, disabling Kinesin would not alter minus-end transport at all. The

decreased plus-end run length would only agree with a regulation model if

the run length depends on the number of Kinesins present on a cargo (less

motors=shorter distance). This is the case in vitro [47], but has been reported

not to be the case in my system in vivo [38]. However, given that the latter

work used genetic reduction of Kinesin dosages rather than disabling existing

ones as we do in this work, indirecct interference cannot be excluded.

Pauses tend to be shorter, even if the change is not statistically signi-

fant. This is contrary to the regulation model, which predicted an increase due

to additional pauses substituting plus-runs. But considering that apparently

only a fraction of Kinesin is blocked, no change in the pause durations and in

the ratio between the numbers of plus- and minus-runs are in accordance with

this model. The fact that pause frequencies are not altered also matches the

regulation model.

The reduction in velocity of runs in both directions, even though more

significant for Kinesin than Dynein, also favors regulation as the Kinesin-

specific antibody does not attach to Dynein. Therefore, the reduced velocity

of the minus-end motor has to be caused indirectly - either by regulation

process trying to adapt Dynein’s velocity to Kinesin’s or by a higher drag

force on the cargo. The latter could be caused by an increased viscosity due

69



to adding the antibody solution, which would result in an increased drag and

a subsequent slowing down of the motors.

Therefore, in order for regulation to be in accordance with my data,

some requirements need to be fulfilled: there needs to be some mechanism

that can explain the increase of the Dynein run length. This could possibly

be a switch whose concentration can change the run characteristics and the

injection alters this concentration. The reduced Dynein velocity might be

caused by regulation, but the decrease in Kinesin velocity and run length

would need either a viscosity increase or possible interference of the antibody.

Moreover, it would be necessary that the regulation mechanism senses if a

motor cannot walk in order to maintain the pause durations, which show no

sign of increase.

5.4.2 Comparison to tug-of-war

Predictions from a tug-of-war model on the other hand match with

an increased run length for minus-end transport as there are less Kinesins

able to attach to the microtubule and fight Dynein. For the decrease in plus-

run length we run into the same problem described in 5.4.1. Just because we

expect less plus-runs does not mean the ones that exist have to be shorter. One

possible explanation would be that the antibody simply decreases the ATPase

activity and does not keep Kinesin from attaching to the microtubule in the

first place. This would explain the lower Kinesin velocity and run length,

but our in vitro experiments indicate that the antibodies prevent microtubule
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attachment, matching with previous publications [42]. However, the way the

antibody works needs to be analyzed in more detail in vitro.

The trend in the pause duration can also be explained with this model:

tug-of-war situations, which make up part of the pauses, are expected to be

resolved faster in favor of Dynein winning, because there are on average less

Kinesins. For cases where Kinesin wins, they will last the same amount of

time as we do not alter the numbers of Dynein motors. Due to the only partial

inhibition of Kinesin, this is likely to be only a minor change. If most plus-

end motors were disabled, a decrease of pause frequencies would have been

expected, caused by longer minus-runs and only a few plus-runs. But as there

is no significant reduction in the number of plus-runs in my experiments, no

real prediction can be made and this neither supports nor contradicts this

model.

However, there are observations which are not easily compatible with

a tug-of-war. If there are on average less Kinesins participating in a tug-of-

war, it would be expected that the relative number of plus-runs compared to

minus-runs decreases because Dynein wins more often. I do not see a change

in this ratio after injection. This might also be explained by only some of the

Kinesin being disabled: In the majority of tug-of-wars, the outcome is the

same as without injections. Only situations, where Dynein’s position against

Kinesins is strongly improved (e.g. in numbers), are resolved very fast. If

these situations only make up a smaller fraction of the pauses it might not

be reflected strongly in the comparison between plus- and minus-run numbers
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and would also be in accordance with the only insignificant decrease of pause

durations. Although this explanation seems to contradict an effect on the

run length, it is still compatible: the increase in minus-end runs is small, but

significant, and is still far away from the in vitro value for multiple Dynein

motors (several µm) [21]. The decrease in the Dynein velocity is incompatible

with this model as there should be no crosstalk between Kinesin and Dynein.

However, proposing a higher drag force due to an increased viscosity resulting

from the injection might resolve this problem.

In order for this model to match my results, the drag force on the

lipid droplets would need to be increased. This would account for the slight

velocity decrease in both directions and thus also could explain the shorter

run length of Kinesin (higher detachment rates). This could be caused by a

higher viscosity due to the antibody injection or by transport of other cargos -

not visible in DIC - towards the minus-end, increasing the density of obstacles

for the droplets.

Summing up, neither a plain regulation nor a tug-of-war model alone

can fully explain all of my observations. However, especially because of the sig-

nificant increase of the minus-end run length and less additional requirements,

my data is favoring a tug-of-war model.
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Chapter 6

Conclusion and future work

6.1 Summary and conclusion

In this thesis I probed the coordination mechanism of the two micro-

tubule based molecular motors. Each of them can only walk towards one

specific end of microtubules (Kinesin moves towards the plus-end, Dynein to-

wards the minus-end). My goal was to test the two models that exist to date

to explain bidirectional intracellular transport. My approach consists of intro-

ducing a concentrated solution of function-blocking antibodies against Kinesin

in living cells and comparing the observed changes in transport characteristics

to the predictions of the two models.

The first model, Regulation, is based on a regulatory complex that

controls the motion, while the tug-of-war model only relies on the molecular

motors and their properties. The main difference between the models is that,

for regulation, the change in direction is controlled, meaning only one motor

type at a time is “on”. In the tug-of-war model the opposite polarity motors

stochastically engage in fights, in which only their properties, like force and

detachment rate - which can differ during development - determine the trans-

port behavior. The most significant difference in predictions of the two models
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for a situation where one motor is diasabled are regarding the run length of the

remaining motor (in my case Dynein) and the duration of pauses. Regulation

does not predict changes in the minus-end run length unlike the tug-of-war

model which expects an increase. For Regulation, pauses are supposed to last

longer while for a tug-of-war scenario no change or maybe shorter pauses are

expected.

In order to test these models, I injected anti-Kinesin antibodies into

Drosophila embryos and recorded videos of motion of lipid droplets transported

bidirectionally by these motors. The videos were analyzed using a tracking

program for the lipid droplets and the obtained tracks were subsequently split

into pauses, runs towards the plus- and the minus-ends of microtubules. From

these runs I could determine characteristic features of the transport and com-

pare them to the transport of droplets in embryos that were not injected.

Analysis of the data revealed that only a fraction of Kinesin was dis-

abled by the antibodies as residual plus-end motion persisted. Nevertheless,

significant changes in the transport characteristics could be detected. The

comparison between my reference data and data obtained after injections

showed the following results: while plus-end transport was strongly reduced,

the minus-end run length was significantly increased. Pause durations showed

an insignificant trend towards shorter pauses. Moreover, the pause frequency

and the ratio between plus- and minus-runs remained the same and velocities

of the motors in both directions were slightly reduced.

In the end, neither the Regulation nor the tug-of-war model alone is
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able to explain all my results. Overall, observed changes match the predictions

of the tug-of-war model better than the ones for regulation. Measurements

incompatible with a tug-of-war can be explained by indirect effects due to the

injection.

6.2 Outlook

While the conclusions of this work tend to favor the tug-of-war model,

a few control experiments are still needed. The actual effect of the antibody

needs to be characterized - even though our in vitro experiments indicated

that it inhibits microtubule-attachment, a different way of interacting with

Kinesin might change the interpretation. In addition, these results should be

compared to the effect of anti-Dynein antibodies on the same system. Further-

more, an important control experiment will be the analysis of transport after

injection of a control antibody at similar concentration that neither targets

Kinesin nor Dynein. Even though this is reported not to alter transport on

the large scale [38], it could support my conclusion by reducing motor veloc-

ities - or contradict it by influencing the run lengths. Moreover, experiments

with higher concentrations of motor-targeting antibodies could also be used to

test if the observed effect can be increased.

In the bigger picture, there are still many open questions for the trans-

port by molecular motors. The interaction between opposite polarity motors

is still not fully understood. Determining their coordination to achieve bidi-

rectional motion is only a first step. It is, for example, still unclear how cells
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manage to achieve different distributions for different cargos in the cytoplasm,

while they are all carried by the same transport system. New mutations con-

tinue to be reported where certain genes have an influence on the transport

characteristics, whether it be directly or indirectly. Thus, more work will be

needed to reveal the intricacies of this amazingly robust yet versatile process

in living cells.
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