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Abstract 

Single Particle Electron Microscopy of Native Cell Extracts 

Eric James Verbeke, PhD 

The University of Texas at Austin, 2021 

Supervisors:  David Taylor, Edward Marcotte 

After the linking of genetic information to the biochemical composition of 

proteins in the mid 20th century, the emergent field of structural biology has focused on 

how the three-dimensional arrangement of atoms in a protein defines its cellular function. 

One rapidly evolving method for probing this structure-function relationship, and the 

focus of this work, is single particle transmission electron microscopy. Traditionally, 

single to few proteins of interest are first purified to near homogeneity from a biological 

source before structural characterization. However, a key advantage of electron 

microscopy over other methods is that proteins do not need to be purified, or in the case 

of electron tomography, even removed from the cell. The ability to study protein 

structure in as close to native conditions as possible can inform biology broadly. In this 

dissertation, I will present work towards expanding the use of single particle electron 

microscopy to native cell extracts. First, we explore a pilot analysis characterizing protein 

structures from chromatographically separated cell lysate guided by information from 

mass spectrometry. Extending on our initial studies, we next investigate protein structures 

from individual Caenorhabditis elegans embryos. We then introduce an image 

processing algorithm developed to assist single particle analysis of samples containing 
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multiple distinct protein structures. Finally, we demonstrate an application combining 

methods presented in this dissertation to investigate protein-protein interactions in red 

blood cells and their structural architectures. 
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Chapter 1: Introduction 

 Part of this introduction is adapted from a joint perspective written by Caitlyn 

McCafferty and myself and is published as McCafferty, C.L., Verbeke, E.J., Marcotte, 

E.M., and Taylor, D.W. (2020). Structural Biology in the Multi-Omics Era. J. Chem. Inf. 

Model. 60, 2424–2429. 

 

1.1. STRUCTURAL BIOLOGY IN A MULTI-OMICS ERA 

 With the sequencing of thousands of genomes, large biological data sets (-omics 

data) have become pervasive in most fields of biology, including development (Kumar et 

al., 2017; Wang et al., 2009), the classification of organisms (Joyce and Palsson, 2006; 

Raupach et al., 2016), and disease (Hasin et al., 2017; Karczewski and Snyder, 2018; 

Potter, 2018), among many others. Disciplines embracing -omics strategies reach well 

beyond the central dogma of biology—genomics, transcriptomics, and proteomics—into 

such areas as metabolomics (Riekeberg and Powers, 2017), epigenomics (Jones and 

Baylin, 2007), pharmacogenomics (Daly, 2017), and interactomics (Luck et al., 2017). As 

with these other endeavors, structural biology has also expanded to embrace -omics 

approaches. 

 

 Major historic interactions of structural biology and -omics approaches have 

included, for example, electron tomography (Lučić et al., 2005) to provide cellular 

context and spatial information to complement proteomics and interactomics data (Güell 

et al., 2009; Kühner et al., 2009; Yus et al., 2009), many efforts at proteome-scale 

modeling of three-dimensional (3D) structures and interactions (Aloy, 2004; Baker, 2001; 
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Vakser, 2014), and the entire field of structural genomics (Chandonia and Brenner, 2006; 

Kim, 1998; Skolnick et al., 2000; Stevens, 2001). Structural genomics has employed 

techniques such as X-ray crystallography, NMR spectroscopy, and electron microscopy 

(EM) to solve structures of purified macromolecules in a high-throughput manner, 

targeting new protein folds and entire proteomes, which have been supplemented by 

molecular modeling and structure prediction to extend structural insights to new 

molecules. 

 

 More recently, advances in single particle cryogenic electron microscopy (cryo-

EM) have opened interesting new opportunities to connect -omics approaches and 

structural biology. In particular, cryo-EM boasts several important features: it requires 

only small amounts of sample, there is no requirement for crystal screening and 

optimization, and as a result, it is possible to capture several states of a macromolecular 

machine of interest. Cryo-EM is also capable of imaging a large field of individual 

macromolecular complexes in a single image. With the advent of direct electron 

detectors, ultrastable electron microscopes, automated data collection strategies (Li et al., 

2020), and real-time data processing (Tegunov and Cramer, 2019), the “resolution 

revolution” in cryo-EM provides a definite route forward for increasing the throughput of 

structural biology (Kühlbrandt, 2014). We can anticipate that structures from these 

methods, in combination with electron tomography, will produce information-rich cell 

atlases capturing high-resolution structures of the proteome and its spatial context that 

will synergize with other -omics approaches. Here we focus specifically on efforts to 

increase the applicability of single-particle cryo-EM to increasingly complex and 

heterogeneous samples, approaching cell lysates in complexity (as in shotgun cryo-EM), 

thus furthering the transformation of cryo-EM into a pipeline for structural-omics. 



 3 

 

1.2. INTRODUCTION TO DISSERTATION 

 This dissertation broadly encompasses approaches, challenges and results from 

applying single particle analysis to transmission electron microscopy data of native cell 

extracts. In Chapters 2 and 3, two biological samples are examined with low resolution 

negative stain EM in combination with other systems biology analyses as a justification 

for investigating native cell extracts. In Chapter 4, a model-independent approach is 

introduced for separating particles by structure prior to 3D classification in single particle 

cryo-EM data. Chapter 5 contains early results combining methods from the previous 

chapters using red blood cells as a model system. Finally, in Chapter 6, I summarize the 

arc of this dissertation and provide a brief outlook on single particle cryo-EM for native 

cell extracts. 

 

1.3. PUBLISHED PAPERS 

 The following papers were published during my time at the University of Texas at 

Austin. These publications include many important contributions and collaborations from 

members of the labs of Edward Marcotte, David Taylor, Daniel Dickinson and Keith 

Keitz at the University of Texas at Austin. This dissertation focuses on the publications 

that are marked with an asterisk. 

 

• *	Verbeke,	E.J.,	Mallam,	A.L.,	Drew,	K.,	Marcotte,	E.M.,	and	Taylor,	D.W.	(2018).	

Classification	 of	 Single	 Particles	 from	 Human	 Cell	 Extract	 Reveals	 Distinct	

Structures.	Cell	Reports	24,	259-268.e3.	
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• *	Yi,	X.,	Verbeke,	E.J.,	Chang,	Y.,	Dickinson,	D.J.,	and	Taylor,	D.W.	(2019).	Electron	

microscopy	 snapshots	 of	 single	 particles	 from	 single	 cells.	 J.	 Biol.	 Chem.	 294,	

1602–1608.	

 

• *	Verbeke,	E.J.,	Zhou,	Y.,	Horton,	A.P.,	Mallam,	A.L.,	Taylor,	D.W.,	and	Marcotte,	

E.M.	 (2020).	 Separating	 distinct	 structures	 of	 multiple	 macromolecular	

assemblies	from	cryo-EM	projections.	Journal	of	Structural	Biology	209,	107416.	

 

• *	 McCafferty,	 C.L.,	 Verbeke,	 E.J.,	 Marcotte,	 E.M.,	 and	 Taylor,	 D.W.	 (2020).	

Structural	Biology	in	the	Multi-Omics	Era.	J.	Chem.	Inf.	Model.	60,	2424–2429.	

 

• Lucas,	 M.J.,	 Pan,	 H.S.,	 Verbeke,	 E.J.,	 Webb,	 L.J.,	 Taylor,	 D.W.,	 and	 Keitz,	 B.K.	

(2020).	 Functionalized	 Mesoporous	 Silicas	 Direct	 Structural	 Polymorphism	 of	

Amyloid-β	Fibrils.	Langmuir	36,	7345–7355.	
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Chapter 2: Classification of single particles from human cell extract 

reveals distinct structures 

 As an alternative approach to structural proteomics, we demonstrate that single 

particle electron microscopy is a natural extension of co-fractionation mass spectrometry 

and can be used for direct visualization of molecular machines from native cell extracts. 

The work in this chapter was published as Verbeke, E.J., Mallam, A.L., Drew, K., 

Marcotte, E.M., and Taylor, D.W. (2018). Classification of Single Particles from Human 

Cell Extract Reveals Distinct Structures. Cell Reports 24, 259-268.e3. Anna Mallam was 

the lead on all biochemistry aspects of the paper, and I was the lead on processing and 

interpreting electron microscopy and mass spectrometry data. Kevin Drew assisted with 

bioinformatics analyses. 

 

2.1. ABSTRACT 

 Multi-protein complexes are necessary for nearly all cellular processes, and 

understanding their structure is required for elucidating their function. Current high-

resolution strategies in structural biology are effective but lag behind other fields (e.g., 

genomics and proteomics) due to their reliance on purified samples rather than 

heterogeneous mixtures. Here, we present a method combining single-particle analysis by 

electron microscopy with protein identification by mass spectrometry to structurally 

characterize macromolecular complexes from human cell extract. We identify HSP60 

through two-dimensional classification and obtain three-dimensional structures of native 

proteasomes directly from ab initio classification of a heterogeneous mixture of protein 

complexes. In addition, we reveal an ~1-MDa-size structure of unknown composition and 
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reference our proteomics data to suggest possible identities. Our study shows the power 

of using a shotgun approach to electron microscopy (shotgun EM) when coupled with 

mass spectrometry as a tool to uncover the structures of macromolecular machines. 

 

2.2. INTRODUCTION 

 Protein complexes play an integral role in all cellular processes. Understanding 

the structural architecture of these complexes allows direct investigation of how proteins 

interact within macromolecular machines and perform their function. In an effort to 

understand which proteins assemble into these machines, proteome-wide studies have 

been conducted to determine the composition of protein complexes (Drew et al., 2017a; 

Gavin et al., 2002; Havugimana et al., 2012; Hein et al., 2015; Ho et al., 2002; Huttlin et 

al., 2015, 2017; Kastritis et al., 2017; Kristensen et al., 2012; Krogan et al., 2006; Wan et 

al., 2015). Similar studies have identified direct contacts between protein complex 

subunits computationally (Drew et al., 2017b) or by cross-linking mass spectrometry 

(Leitner et al., 2016; Liu and Heck, 2015; Rappsilber et al., 2000), and although these 

studies provide insightful predictions on protein-protein interactions, they lack directly 

observable structural information that can inform us on function and subunit 

stoichiometry. 

 

 Structural genomics approaches, such as the Protein Structure Initiative, have thus 

far been the most successful way to systematically solve structures for proteins lacking a 

model (Chandonia and Brenner, 2006). These approaches have removed several 

bottleneck steps in traditional structural biology by applying high-throughput technology 

to sample preparation, data collection, and structure determination. Although many high-
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resolution structures have resulted from structural genomics, these approaches typically 

miss large complexes and perform best on single proteins or low-molecular-weight 

complexes that can be purified and crystallized for X-ray crystallography or labeled for 

nuclear magnetic resonance (Montelione, 2012). 

 

 Recent advances in electron microscopy (EM) software and hardware have 

dramatically increased our ability to solve the structures of native protein complexes and 

allow for increased throughput approaches using EM. Automated microscopy software, 

such as Leginon (Suloway et al., 2005), SerialEM (Mastronarde, 2005), and EPU (FEI), 

allow for the collection of large datasets in a high-throughput, semi-supervised manner. 

RELION, a Bayesian algorithm for 3D classification, allows users to sort 

conformationally heterogeneous samples to define structurally homogeneous classes 

(Scheres, 2012). Furthermore, 3D reconstructions can now be done ab initio (without an 

initial model) by a computationally unsupervised approach using cryoSPARC (Punjani et 

al., 2017). These strategies potentially allow for analysis of heterogeneous mixtures, 

although this aspect has not been explored extensively. 

 

 Advances in hardware, such as direct electron detectors and Volta phase plates, 

allow visualization of particles at near atomic resolutions and smaller molecular weights, 

which was previously only possible for larger particles or particles with high symmetry 

(Danev and Baumeister, 2016; Kühlbrandt, 2014). Despite these revolutionary advances, 

single-particle EM is still largely used to study homogeneous samples, where the identity 

of the protein complex is known a priori. 
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 Here, we take a different approach to structure determination by exploiting 

advances in EM software to structurally classify native protein complexes from human 

cell lysate. By using a shotgun approach to EM (shotgun EM), we chromatographically 

separate cell lysate into tractable fractions before identification by mass spectrometry 

(MS) and structural analysis by EM. Using this approach, we characterize 

compositionally and structurally heterogeneous protein complexes from immortalized 

(HEK293T) cells separated by macromolecular size using size-exclusion chromatography 

(SEC). 

 

 For this study, we determined the protein composition of two different high-

molecular-weight samples from SEC by MS experiments. Identified proteins were then 

mapped to previously generated protein interaction networks to reveal candidate protein 

complexes. We then collected negative-stain EM data and performed single-particle 

analysis of heterogeneous particles simultaneously. Using this approach, we identified 

structurally distinctive macromolecular machines after unbiased 3D classification and ab 

initio reconstruction of single particles. 

 

2.3. RESULTS 

2.3.1. Separation and identification of subunits from high-molecular-weight protein 

complexes 

 Native macromolecular assemblies from lysed human cells were first separated by 

macromolecular size using SEC (see Methods). We selected a high-molecular-weight 
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fraction (fraction 4) for MS and EM analysis (Figure 1) with molecular weights in the 

range of 1.5 to 2 MDa based on molecular standards (Figure 2A; see Methods). 

 

 MS analysis of our sample (Figure 2A) identified 1,401 unique proteins. Over 

93% of the identified proteins had a molecular weight under 200 kDa, indicating that the 

proteins are likely multi-subunit complexes in order to elute in the high-molecular-weight 

fraction. We then mapped the proteins identified by MS to a combined set of protein-

protein interaction networks to suggest the identity of complexes in our sample (Figure 

2B). The previously determined protein-protein interaction networks include hu.MAP 

(Drew et al., 2017a) and CORUM (Ruepp et al., 2010), which were chosen to provide a 

list of documented and high-confidence protein complexes. Furthermore, hu.MAP 

incorporates datasets from previous interactome studies (Havugimana et al., 2012; Hein 

et al., 2015; Huttlin et al., 2015; Wan et al., 2015) and includes greater than 4,000 

complexes. In addition, we incorporated interaction networks that exclusively used size-

exclusion chromatography and quantitative proteomics to determine protein-protein 

interactions (Kristensen et al., 2012; Larance et al., 2016). The combined protein 

interaction network included 7,021 protein complexes. We identified specific, well-

annotated protein complexes within our sample, which contains both structurally defined 

complexes (e.g., the proteasome; Lander et al., 2012; Schweitzer et al., 2016) and 

complexes without known structures (e.g., the multi-tRNA synthetase complex; Mirande, 

2017; Figure 2B). 

 

 Complexes with at least 50% of their subunits identified were kept as candidates 

for subsequent analysis. Many of the resulting candidate complexes shared a number of 

individual subunits and are different variants of the same complex. In order to group 
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related complexes, we created a hierarchical network by performing an all-by-all 

comparison of proteins between each complex (Figure S1; see Methods). Our hierarchies 

suggest we have 234 groups of related complexes (i.e., with shared subunits) in addition 

to the remaining 538 unique complexes for a total of 772 complexes in our sample (Table 

S1). 

 

 The abundance of each complex was then calculated using two different label-free 

quantification strategies to rank the predicted complexes that might be visible by EM. 

Both normalized spectral counting (Vaudel et al., 2015) and top 3 extracted ion 

chromatogram areas (Silva et al., 2006; see Methods) produced similar abundance values 

for each protein complex (Figure S1). By combining our hierarchical network with the 

relative abundance for each complex, we identified the specific subunit composition of 

complexes most likely to be present in our sample. As an example, we can examine the 

group of related proteasome complexes (Figure S1), showing many related complexes, 

where the canonical 26S proteasome appears to be the most abundant form. This analysis 

reveals complexes of interest in our sample, which vary in abundance. 

 

2.3.2. EM of single particles from HEK293T cell extract fraction 

 Having identified candidate complexes in our sample by MS, we next use 

negative-stain EM to investigate the structures of the complexes. Negative-stain EM 

samples are easily prepared and are often used to determine the heterogeneity of a sample 

because of the higher signal-to-noise ratio compared to cryo-EM. Raw micrographs of 

our negatively stained sample show monodisperse particles with clear structural features 

(Figure 3A). Intact, structurally heterogeneous complexes can be directly observed. The 
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proteasome can be seen in three different structural states, as a core (20S), as a single-

capped proteasome (20S core with one 19S regulatory particle), and as a double-capped 

proteasome (26S, 20S core with two 19S regulatory particles). In addition, many other 

unidentified particles can be clearly seen, with an average particle diameter of ~200 Å. 

 

 Template picking from 1,250 micrographs of our sample resulted in a final set of 

31,731 particles after filtering out ~67% of particles as “junk” particles (see Methods). 

To assess the quality of automated template picking, we also manually selected 35,381 

particles for alignment and classification. A comparison of the reference-free 2D class 

averages of both manually and template-picked datasets yielded similar results (Figure 

S2), and both datasets were used for independent downstream processing. 2D class 

averages yielded distinct class averages with various morphologies and features. 

Remarkably, many well-defined classes emerged from this heterogeneous mixture of 

complexes (Figure 3B). 

 

 Interestingly, we observed two distinct heptameric rings in our reference-free 2D 

classification (Figures 3C and 3D). One of the rings is wider in diameter with a pinwheel-

like architecture (Figure 3C), and the second is rounder and narrower (Figure 3D). To 

uncover the identity of these rings, we turned to our mass spectrometry data for candidate 

ring-forming complexes. Two of the identified complexes, heat shock protein 60 

(HSP60) and the α and β rings of the proteasome core, are known to form heptameric 

rings. The X-ray crystal structures of both HSP60 and the proteasome core were used to 

compare to our candidate structures. HSP60 is 135 Å in diameter (PDB: 4PJ1; Nisemblat 

et al., 2015), and the ring of the 20S core (PDB: 4R3O; Harshbarger et al., 2015) is 115 Å 

in diameter, which suggested an identity for each of the rings by a comparison of 
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diameters. To test this hypothesis, we reprojected the X-ray crystal structure of both 

protein complexes after low-pass filtering to 30-Å resolution to simulate 2D projections 

and compared them to our class averages. Finally, we compared reference-free class 

averages of purified GroEL (Danziger et al., 2003; a well-studied HSP60 homolog) and 

proteasome core to our fractionation data. All of these comparisons provide strong 

evidence that the pinwheel-like and narrow ring projections correspond to HSP60 and the 

proteasome core, respectively. 

 

 To further validate our identification of HSP60, we performed negative-stain EM 

on a second fraction from our SEC, fraction 8, where HSP60 was also identified by mass 

spectrometry. The approximate molecular weight of native macromolecular assemblies in 

fraction 8 is 500 kDa (Figure 2A). For particle selection of fraction 8 EM data, we used a 

difference-of-Gaussian picker (Voss et al., 2009). This method was chosen as an 

orthogonal, reference-free method to independently confirm whether we could identify 

HSP60. Reference-free 2D class averages obtained using this particle-picking scheme 

revealed a class average with a well-defined pinwheel-like architecture (Figure S2), 

suggesting HSP60 was also identified in fraction 8. 

 

2.3.3. 3D classification of a heterogeneous mixture produces distinct structures 

 Given the success of 2D classification at separating particles into distinct classes, 

we then performed 3D classification on the entire set of particles using RELION 

(Scheres, 2012) to simultaneously generate 30 reconstructions (Figure 4A). Whereas 

RELION was developed to group 2D projections of the same protein or protein complex 

with conformational heterogeneity into distinct classes, we asked whether RELION could 
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also classify projections from many distinct complexes in a heterogeneous mixture into 

internally consistent (low-error) reconstructions. 

 

 To test the internal consistency of the 3D reconstructions, we determined the 

distribution of calculated error within the models and ranked each reconstruction based 

on a rotational-translational error score (see Methods). The error score distribution was 

then compared to the rotational-translational error scores of models built from random 

particles in the dataset to evaluate our ability to classify related particles belonging to a 

particular model and demonstrated our 3D reconstructions have substantially less error 

than random reconstructions (Figure 4B). The 30 3D reconstructions generated all 

contained various degrees of structural details ranging from distinct barrels to more 

globular shapes (Figure 4C), suggesting it is possible to classify particles from a 

heterogeneous mixture into distinct structures. 

 

 We then performed cross-correlations between our top 3 models and several 

complexes with known structure from our MS-determined list of high-abundance 

complexes to determine whether we could link our structural models with complex 

identity (Figure S3; see Methods). The 20S proteasome emerges as a clear match when 

compared to our highest scoring model with a cross-correlation score of 0.87. We were 

also able to distinguish a single-capped proteasome, which matched to our third highest 

scoring model with a cross-correlation score of 0.81. Interestingly, our second highest 

scoring model was not readily recognizable, and none of the known structures emerged as 

a clear match after cross-correlation. Based on the high-abundance 2D class averages and 

large volume of the unknown complex, we filtered our proteomics data to search for 

possible identities. Our search suggests the unknown complex is likely a variant of a 
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mitochondrial ribosome, spliceosome, or DNA-repair complex, but given the current 

resolution, the results are inconclusive. A much larger set of particles or projections and 

deeper classification is likely required for assignment of this structure. However, our 

results suggest it is possible to solve multiple structures from cell lysate in a parallel 

manner, even in the absence of matching starting models. 

 

2.3.4. Quantification and ab initio reconstruction of the proteasome 

 To determine our ability to further characterize complexes identified in a complex 

mixture, we investigated our sample specifically in the context of the proteasome, which 

allowed us to evaluate the success of reconstructions without an initial model. Our goals 

were to (1) investigate whether ab initio reconstructions would reveal clear proteasome 

structures, (2) determine the ratio of the 20S core and single-capped proteasomes using 

our single-particle data, and (3) compare single-particle counting of the proteasome to 

label-free MS quantification. 

 

 Class averages of the 20S core and single-capped proteasomes were clearly 

identified as barrel-shaped particles and barrels with large rectangular caps, respectively 

(Figure 5A). Based on identifying the proteasome with notably distinct 2D class 

averages, as well as RELION-based 3D classification producing two identifiable 

proteasome models, we asked whether ab initio reconstructions were capable of correctly 

recovering proteasome structures. We therefore attempted a completely unsupervised 

approach for 3D classification using cryoSPARC (Punjani et al., 2017). cryoSPARC was 

developed for determining multiple 3D structures of a protein without prior structural 

knowledge or the assumption that the ensemble of conformations resembled each other, 
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but in this context, we evaluated its ability to classify 2D particles of distinct complexes 

in a mixture. Remarkably, a 3D reconstruction of the 20S core was generated using ab 

initio reconstruction in cryoSPARC on the entire dataset of particles with 5, 10, and 15 

classes (Figure S4). 

 

 From the structures generated with 10 classes, a distinct 3D reconstruction of the 

20S core showing a clear barrel with a central channel and some separation of co-axial 

rings was produced (Figure 5B). This 20S core reconstruction contains 3,150 particles 

with an estimated resolution of 20.4 Å using the 0.143 Fourier shell correlation (FSC) 

criterion (Figure S4). Our 3D map is consistent with a recent high-resolution structure of 

the 20S core (EMD-2981; da Fonseca and Morris, 2015) with a cross-correlation score of 

0.94. 

 

 We were unable to distinguish a 3D structure of the single-capped proteasome 

from cryoSPARC. However, going back to our single-capped proteasome from 3D 

classification using RELION, we were able to dock in a high-resolution structure 

determined previously (EMD-4002; Schweitzer et al., 2016; Figure 5B). The high-

resolution structure can be unambiguously docked into our EM density (cross-correlation 

score of 0.76) albeit with less agreement given the low number of particles in the model 

(1,121 particles). Using RELION to refine the structure of our single-capped proteasome, 

we achieved a nominal resolution of 31 Å (Figure S4). 

 

 We then quantified the ratio of 20S core to single-capped proteasome particles by 

directly counting individual particles from our EM data of fractionated cell lysate. 

Revisiting our 2D classification, we compared the number of particles aligned in the side 
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view of the 20S core and single-capped proteasome (Figure 5A). The ratio of 20S core to 

single-capped proteasome particles in our sample was calculated to be 3:2 or 1 bound 19S 

regulatory particles for every 2.5 20S core particles in our sample by EM. This is similar 

to our MS data, which suggest the ratio of 19S regulatory particles to 20S core particles is 

1:1 (Figure S5). Collectively, our study suggests it is not only possible to solve structures 

of protein complexes from cell lysate ab initio but also quantify the stoichiometry of 

biochemical states. 

 

2.4. DISCUSSION 

 One bottleneck of structural biology is the current limitation of studying only a 

single protein or protein complex structure in a single experiment. However, recent 

advances in detectors and software for EM bring about the possibility of high-throughput 

structural determination using EM. To this end, we have demonstrated shotgun EM as a 

potential pipeline for high-throughput identification and structural determination of 

macromolecular machines. By combining MS and EM, we demonstrate it is possible to 

structurally characterize and identify protein complexes from a cellular sample containing 

many native complexes. This pipeline was used to successfully identify the proteasome in 

two biochemical forms and HSP60 from a cellular fraction with minimal user input. 

HSP60 was then independently verified through another SEC fraction identified as 

containing HSP60 by MS. Additionally, we construct a self-consistent structural model of 

an ~1-MDa protein complex of unknown identity. 

 

 A recent study showed that higher order assemblies from a eukaryotic 

thermophile could be separated chromatographically, identified by MS, and visualized 
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through cryo-EM to obtain a high-resolution structure (Kastritis et al., 2017). The authors 

performed cryo-EM on particles from a complex mixture to solve a 4.7-Å-resolution 

structure of fatty acid synthase from cell lysate separated by molecular size after a 50% 

enrichment for fatty acid synthase. In our study using human cells, which have a 

canonical proteome approximately 3 times larger than C. thermophilum, we are able to 

obtain structural information from a complex mixture without enrichment, suggesting 

that sample heterogeneity is a surmountable problem. A combined approach using 

shotgun EM and the cryo-EM protocol presented by Kastritis et al. (2017) provides a 

potential strategy for recovering multiple high-resolution structures from fractionated 

cellular extracts. 

 

 Several key barriers to structurally classifying heterogeneous mixtures remain, 

with the main challenge being to correctly assign different orientations of the same 

complex in large datasets of heterogeneous mixtures. Additionally, assigning the correct 

subunit composition to the unidentified molecular models (UMMs) uncovered using 

shotgun EM, particularly for complexes lacking structural information, will present a 

unique challenge to structural biology. Whereas currently we cannot identify each class 

average or 3D structure obtained in this study, we are able to distinguish different 

structural states of the proteasome using current ab initio methods, suggesting that 

shotgun EM is a promising tool to characterize the heterogeneity of protein complex 

forms. Our top-scoring UMM was not readily recognizable and had no apparent match 

from model fitting. It is possible our model has been structurally annotated previously but 

was not covered in our search. Alternatively, it is possible our model remains 

unidentified because it is structurally novel. In future experiments, a comprehensive list 
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of solved structures coupled with optimal volume alignment and cross-correlation can be 

used to identify likely matches to models generated using shotgun EM. 

 

 One challenge when dealing with protein complexes is defining their precise 

subunits. MS does not indicate which complex a protein belonging to multiple complexes 

was identified from. Many of these related complexes and sub-complexes have yet to be 

structurally or biochemically characterized. Our hierarchical network strategy allows us 

to make an initial estimate on which form of a complex might be in our EM data. Using 

shotgun EM, we aim to validate these uncharacterized and other less-characterized forms 

of complexes that may be more amenable to our separation scheme. 

 

 A key proof of concept in this study was the proteasome, which is a structurally 

distinct complex and serves a crucial role in protein degradation in eukaryotic cells 

(Finley, 2009). The native stoichiometry of the proteasome has been studied in different 

ways by multiple groups (Asano et al., 2015; Havugimana et al., 2012). Our template-

picked counting of single proteasome particles has an advantage over MS approaches by 

identifying which form of a complex an identified protein belongs to. Although our MS 

and EM quantification were similar, showing an approximate ratio of 20S core to 19S 

regulatory particles ranging from 1:1 to 2:1, a separate study using corrected spectral 

counts suggests the ratio is closer to 4:1 (Havugimana et al., 2012). To reconcile these 

two observations, more chromatographic fractions containing the proteasome would need 

to be quantified by EM and MS to see whether there is agreement. As more protein 

complexes become structurally annotated, shotgun EM can be used as an auxiliary 

method for quantifying the abundances of native complexes, as well as their 

stoichiometry. 
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 After ab initio 3D classification, we obtained a reasonable reconstruction of the 

20S core in cryoSPARC from 3,150 particles. Although only half of these particles are 

accounted for from 2D class averaging of all particles, it is likely that the discrepancy 

results from proteasome particles that are misclassified or exist in different, less-

populated orientations in our 2D class averages. Alternatively, because the number of 

models we could reconstruct in 3D was limited by the small populations of each complex 

we had in our micrographs, it is possible that non-proteasome particles were grouped into 

our 3D class of the proteasome. These misclassified particles would have a small 

contribution to the overall likelihood of the 3D map as it is reconstructed (Punjani et al., 

2017). One method to separate misclassified particles would be to do iterative rounds of 

3D classification. 

 

 In this study, we used a 60S ribosome class average as a template for auto-picking 

due to its large molecular weight and round shape. Interestingly, none of the resulting 

averages resembled the 60S, providing evidence that we were not biasing the results from 

template picking and subsequent data analysis. A similar concern for model bias exists 

when using RELION to generate 3D models. Despite this, none of the 3D classes are 

visually identical to the reference 3D model, with most EMD structures selected from our 

MS data outscoring the reference model by cross-correlation score when compared to our 

top 3 RELION models. In future experiments, more sophisticated template matching, 

deep learning algorithms, or ab initio methods can be introduced to improve particle 

identification and model building (Punjani et al., 2017; Rickgauer et al., 2017; Wang et 

al., 2016). 
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 This study represents an advance into structural proteomics using EM, suggesting 

that parallel structural determination of protein complexes shows promise for alleviating 

bottlenecks in structural biology. In the interim before high-resolution data are collected, 

it is possible to search for structurally uncharacterized complexes through the addition of 

protein tags (Flemming et al., 2010) to identify complexes in a heterogeneous mix 

without the need to purify the sample. One could also utilize integrative structural 

biology approaches to have a predicted model with which to search for structures in cell 

extract. We envision using cryo-EM for this pipeline to solve sub-nanometer-resolution 

structures, where homology models and known structures can be more clearly compared. 

Moving this pipeline to cryo-EM will likely aid in our identification of candidate 

complexes; however, several obstacles will need to be overcome, including (1) lower 

signal-to-noise ratio, (2) complex instability (i.e., protein complexes being degraded into 

non-native compositions), and (3) the increased amount of data required for 

reconstructions. Future studies will be required to determine whether we can overcome 

these potential pitfalls when transitioning the pipeline into cryo-EM. 

 

 Shotgun EM will accelerate the pace at which structural information is generated 

and allow us to better understand the structure-function relationship of proteins. 

Optimization of this technique has the potential to address questions about many 

macromolecular machines across different cell types, disease states, and species. We 

propose that investigating the collective protein complexes in a cell, or the 

“complexome,” using shotgun cryo-EM will help inform us broadly on systems biology, 

cell biology, and changes in complexes that contribute to human diseases. 
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2.5. METHODS 

2.5.1. Cell culture and extract preparation 

 HEK293T cells were harvested at 80%–100% confluence without trypsin by 

washing in ice cold phosphate buffered saline (PBS) pH 7.2 (0.75 mL; GIBCO) and 

placed on ice. Cells (approximately 10 mg) were lysed on ice (5 min) by resuspension in 

Pierce IP Lysis Buffer (0.8 mL; 25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 

1% NP-40 and 5% glycerol; Thermo Fisher) containing 1x protease inhibitor cocktail III 

(Calbiochem). The resulting lysate was clarified (17,000 g, 10 min, 4°C) and filtered 

(Ultrafree-MC filter unit (Millipore); 12,000 g, 2 min, 4°C). 

 

2.5.2. Biochemical fractionation using native size-exclusion chromatography 

 Size-exclusion chromatography (SEC) was performed at 4°C on an AKTA FPLC 

(GE Healthcare). Approximately 6 mg of soluble protein was applied to a Superdex 200 

10/300 GL analytical gel filtration column (GE Healthcare) equilibrated in PBS, pH 7.2 

at a flow rate of 0.5 mL min-1. Fractions were collected every 0.5 mL. The elution 

volumes of molecular weight standards (Thyroglobulin, 670,000 Da; γ-globulin, 158,000 

Da; Ovalbumin, 44,000 Da; Myoglobin, 17,000 Da; Vitamin B12, 1,350 Da; Biorad) 

were additionally measured to calibrate the column (Figure 2A). Fraction 4 

(concentration ~1 mg/mL) was deemed most likely to contain a high number of large 

complexes, as determined by A280, and was subjected to further proteomic and structural 

analysis. 
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2.5.3. Mass Spectrometry 

 50 µL of Fraction 4 (Figure 2A) was denatured and reduced in 50% 2,2,2-

trifluoroethanol (TFE) and 5 mM tris(2-carboxyethyl)phosphine (TCEP) at 55°C for 45 

minutes, followed by alkylation in the dark with iodoacetamide (55 mM, 30 min, RT). 

Samples were diluted to 5% TFE in 50 mM Tris-HCl, pH 8.0, 2 mM CaCl2, and digested 

with trypsin (1:50; proteomic grade; 5 hours: 37°C). Digestion was quenched (1% formic 

acid), and the sample volume reduced to ~100 µL by speed vacuum centrifugation. The 

sample was washed on a HyperSep C18 SpinTip (Thermo Fisher), eluted, reduced to near 

dryness by speed vacuum centrifugation, and resuspended in 5% acetonitrile/ 0.1% 

formic acid for analysis by liquid chromatography tandem mass spectrometry (LC-

MS/MS). Peptides were separated on a 75 µM x 25 cm Acclaim PepMap100 C-18 

column (Thermo) using a 3%–45% acetonitrile gradient over 60 min and analyzed on line 

by nanoelectrospray-ionization tandem mass spectrometry on an Orbitrap Fusion 

(Thermo Scientific). Data-dependent acquisition was activated, with parent ion (MS1) 

scans collected at high-resolution (120,000). Ions with charge 1 were selected for 

collision-induced dissociation fragmentation spectrum acquisition (MS2) in the ion trap, 

using a Top Speed acquisition time of 3 s. Dynamic exclusion was activated, with a 60 s 

exclusion time for ions selected more than once. 

 

2.5.4. Proteomic and bioinformatics analyses 

 The mass spectrometry data were processed independently using searchGUI and 

PeptideShaker (Vaudel et al., 2011, 2015) and Proteome Discoverer (ThermoFisher 

Scientific). Data were searched against a target-decoy human database downloaded from 
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Universal Protein Resources Database (UniProtKB/Swiss-Prot comprising human 

proteins supplemented with common contaminants). Fixed modifications of 

carboxyamidomethylated cysteine and variable modifications of oxidized methionine and 

acetylation of protein N terminus were permitted to allow for detection of modified 

peptides. Peptide spectral matches, peptides and proteins were considered positively 

identified if detected within a 1% false discovery rate cut off (based on empirical target-

decoy database search results). Additionally, proteins were only considered for further 

processing if at least one unique peptide was identified. This screening procedure resulted 

in 1,402 distinct human proteins. To facilitate mapping to a protein ID, we used 

UniProtKB accession numbers as a common identifier and the UniProt ID mapping tool 

to interconvert different gene and protein identifiers. 

 

 Relative abundance for each complex was determined using two different 

methods of label-free quantification, one calculated using peptide spectral matches and 

the other calculated using extracted ion chromatogram area (XIC). Protein length was 

used for normalizing the number of peptide spectral matches observed for each protein 

using the Normalized Spectral Abundance Factor (NSAF) as calculated by PeptideShaker 

(Vaudel et al., 2015). Proteins expected to participate in a complex as predicted by our 

combined protein interaction network, which were not identified by MS, were assigned a 

NSAF value of zero. The NSAF values for all proteins in a complex were then averaged 

to estimate the relative abundance of each complex. 

 

 To calculate relative abundance based on XIC, each protein was assigned an 

abundance by taking the average of the top-3 peptide areas identified for that protein 

using Proteome Discoverer (ThermoFisher Scientific). Proteins expected to participate in 
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a complex as predicted by our combined protein interaction network, which were not 

identified by MS, were assigned an abundance of zero. The average area values for all 

proteins in a complex were then averaged to estimate the relative abundance of each 

complex. 

 

 The hierarchical network of protein complexes in Figure S1 was created by 

determining the percent of shared subunits between all complexes. For a predicted 

protein complex A with subunits {𝑎#, 𝑎%, … , 𝑎'} and B with subunits {𝑏#, 𝑏%, … , 𝑏'}, the 

similarity score (S) of A to B was calculated by finding the intersection of A and B 

divided by the size of set A as follows. 

 

𝑆 =
𝐴 ∩ 𝐵
𝐴

 

 

 If the similarity score between complexes was 90% or greater, it was considered a 

related complex. The resulting network shows related groups of complexes where at least 

90% of subunits in higher-order complexes are shared between sub-complexes. 837 of 

the 1375 complexes identified by MS belong to a group of shared complexes. 

Furthermore, the 837 shared complexes in our sample can be organized into 234 distinct 

hierarchies. The network of related complexes was then visualized using Cytoscape with 

edges corresponding to the similarity score (Shannon et al., 2003). 
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2.5.5. Negative stain electron microscopy sample preparation 

 4 µL of fractionated human cell lysate was applied to a glow-discharged 400-

mesh continuous carbon grid. After a 1 min adsorption, the sample was negatively 

stained with five consecutive droplets of 2% (w/v) uranyl acetate solution, blotted to 

remove residual stain, and air-dried in a fume hood. 

 

2.5.6. Electron Microscopy 

 Data was acquired using a JEOL 2010F transmission electron microscope 

operated at 200 keV with a nominal magnification of x60,000 (3.6 Å at the specimen 

level). Each image was acquired using a 1 s exposure time with a total dose of ~30-35 e-

Å-2 and a defocus between –1 and –2 µm. A total of 1,250 micrographs were manually 

recorded on a Gatan OneView. 

 

2.5.7. 3D reconstruction and analysis 

 Two independent particle stacks were generated from the same 1,250 micrographs 

using either template or manual particle picking. The contrast transfer function (CTF) of 

each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015). FindEM 

(Roseman, 2004) was used for template-based particle picking using a reference-free 2D 

class average of our negatively stained 60S Ribosome from Saccharomyces cerevisiae (a 

gift from A. Johnson). We chose this template for particle picking as it picked virtually 

all particles in each micrograph. It would also be easily recognizable in class averages if 

there were a template bias. Importantly, none of the resulting class averages matched this 
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ribosome. ~97,000 and ~37,000 particles were selected by template picking and manually 

selecting particle images, respectively. All image pre-processing was done in Appion 

(Lander et al., 2009). After removing junk particles, 31,731 particles were left from 

template picking and 35,381 particles from manual picking, respectively. The majority of 

junk classes from template picking can be attributed to the picking of particles within 

aggregates and two particles as one. Particle box size was set to 576 Å x 576 Å. For our 

second fraction analyzed by EM (fraction 8), particles were selected in an automated 

manner using a Difference of Gaussian (DoG) particle picker (Voss et al., 2009). ~75,000 

particles were picked from 300 micrographs. Junk particles were filtered from the dataset 

resulting in a final set of 28,553 particles. Particle box size was set to 518.4 Å x 518.4 Å. 

 

 Reference-free 2D class averages were generated with 300 classes for both 

fraction 4 and fraction 8 datasets using RELION (Scheres, 2012). Next, 3D classification 

was performed on fraction 4 data using RELION to create 30 classes of both datasets. 

The structure of DNA-dependent protein kinase catalytic subunit was chosen as an initial 

model using a negative stain structure low-pass filtered to 60 Å as a starting model 

(Sibanda et al., 2017) (Figure S3). Autorefine in RELION was used to refine the putative 

single-capped 26S proteasome structure from the manually-picked dataset using the 

corresponding class reconstruction low-pass filtered to 60 Å as a starting model. The 

manual picked dataset was used for subsequent analysis using cryoSPARC (Punjani et 

al., 2017). cryoSPARC was used to ab initio reconstruct 5, 10 and 15 3D models. The 

class corresponding to the 20S proteasome from the 10-model run, containing 3,150 

particles, was then subjected to homogeneous refinement using cryoSPARC. 
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 Random particle models were generated using RELION with the template picked 

particle dataset. Each model was reconstructed using the mean number of particles from 

the 30 models in Figure 4, ~1000 particles. Particles were sampled without replacement. 

Model error (E) was calculated for each RELION generated model by taking the 

harmonic mean of their respective rotational accuracy (R) and translational accuracy (T) 

as determined using RELION. Model error values were normalized between 1 and 2. 

 

𝐸 =
2

1
𝑅 + 1

𝑇
	 

 

 We then performed a two-sided Kolmogorov-Smirnov test between the 

distribution of model error from our models and the distribution of model error from the 

random particle models. 

 

 Several high-abundance complexes from our MS data with identifiable, 

previously solved structures were used to compare with our top 3 models generated using 

RELION. All models were first low-pass filtered to 30 Å before being aligned using 

Chimera’s Fit in Map function (Pettersen et al., 2004). The cross-correlation score was 

then calculated by using the model with a larger volume as the region of computation, 

essentially sliding the larger complex across the smaller complex. 

 

 Purified proteasomes (a gift from A. Matouschek and C. Davis) were prepared as 

described above. 80 micrographs were manually recorded and processed using reference-

free 2D alignment and classification in RELION. 
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2.5.8. Quantification and statistical analysis 

 The statistical tests and associated p values are reported in the figures and/or 

figure legends for the specific analysis. Distributions of the rotational-translational error 

for the reconstructed 3D models were compared using a two-sided Kolmogorov-Smirnov 

test (Figure 4B). For the comparison of the two label-free quantification strategies, each 

point represents the relative abundance of a given protein complex determined using the 

two methods (Figure S1B). The Pearson correlation coefficient was then calculated for 

the resulting data. 

 

2.5.9. Data and software availability 

 The EM reconstruction for both the 20S and 26S (presented in Figure 5B) were 

deposited in the EM Data Bank (EMDB) under accession codes EMD-7946, EMD-7947, 

respectively. The accession number for the MS data reported in this paper is PRIDE: 

PXD010026. 
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2.6. FIGURES 

 

Figure 2.1. Shotgun EM pipeline used for structural determination of multiple 
macromolecular complexes. 

HEK293T cells are subjected to lysis and separation using SEC. The resulting fractions 
are characterized separately by electron microscopy and mass spectrometry. Proteins 
identified from mass spectrometry are mapped to known and predicted protein complexes 
to identify which complexes are present in a given fraction. Electron microscopy data are 
then used to generate structures of multiple protein complexes. 
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Figure 2.2. Identification of protein complexes in a cellular fraction. 
(A) Elution profile from SEC. Elution profiles of protein standards are overlaid to 
estimate the molecular weight range of protein complexes in fraction 4. Inset: a network 
map displaying a portion of the 1,375 candidate complexes determined by mapping mass 
spectrometry data to combined protein interaction networks is shown. (B) Enlarged view 
of a subset of candidate complexes. A filled node indicates a protein was identified by 
mass spectrometry; a white node indicates the protein was not identified. Color gradation 
of filled nodes indicates the relative abundance (determined by label-free quantification) 
ranging from ±2 SDs. See also Figure S1 and Table S1. 
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Figure 2.3. Structural characterization of protein complexes from cell extract. 
(A) Raw micrograph of negatively stained sample from SEC. Proteasome particles in 
three different biochemical forms, 20S core, single-capped 26S (20S core with one 19S 
regulatory particle), and double-capped 26S (20S core with two 19S regulatory particle), 
are circled in gold, red, and green, respectively. Representative unidentified particles are 
circled in white. Class averages with well-resolved structural features are circled in blue. 
(B) Reference-free 2D class averages of 31,731 template-picked particles generated using 
RELION. The size of each box is 576 × 576 Å. The 2D class averages are sorted in 
decreasing order based on the number of particles belonging to a class, with 110 out of 
300 2D classes shown. (C) Crystal structure of HSP60 (PDB: 4PJ1) identified by MS and 
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its corresponding reprojection after being low-pass filtered to 30 Å. The 2D class average 
from our fractionation (fraction 8) matching both the reprojection and a class average of a 
negatively stained purified homolog (GroEL), adapted from Danziger et al. (2003), 
suggests the identity of our 2D class average as HSP60. Image box sizes are scaled for 
consistency. (D) Crystal structure of the 20S proteasome (PDB: 4R30) and its 
corresponding reprojection after being low-pass filtered to 30 Å. The 2D class average 
from our fractionation (fraction 4) matching both the reprojection and a class average of a 
negatively stained, purified S. cerevisiae proteasome suggests the identity of our 2D class 
average as the 20S proteasome. Image box sizes are scaled for consistency. See also 
Figure S2. 
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Figure 2.4. Classification of distinct protein complex architectures. 

(A) Classification workflow for the simultaneous generation of 30 3D models from the 
complete dataset of particles using RELION. Models were built using DNA-dependent 
protein kinase catalytic subunit low-pass filtered to 60 Å as an arbitrary reference model. 
(B) Top 3 models generated using RELION. Models were scored based on their 
rotational-translational error (a measure of the internal consistency of the model; see 
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Methods). The distribution of model error scores was compared to models generated 
using random particles from our template-picked data. (C) 30 classes generated using 
RELION from the complete template-picked dataset of particles with the reference model 
shown in gray. Models are colored by their rotational-translational error and are unrelated 
to colors in (A) and (B). See also Figure S3. 
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Figure 2.5. Ab initio structures from a cellular fraction unambiguously reveal the 
proteasome. 

(A) Reference-free 2D class averages of the proteasome from Figure 3B. (B) Top: 
structure of single-capped proteasome generated using RELION from manually picked 
particles. Bottom: ab initio structure of the 20S core proteasome generated using 
cryoSPARC is shown. High-resolution structures EMD-4002 (Schweitzer et al., 2016) 
and EMD-2981 (da Fonseca and Morris, 2015) are fit into the structures, respectively. 
See also Figures S4 and S5. 
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Figure 2.S1. Hierarchical network of related protein complexes. Related to Figure 2 and 
Table S1. 
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(A) Subset of the hierarchical network showing related complexes identified by MS in 
our sample. Each node represents a protein complex and is identified by name or by 
cluster number from NSAF quantified data (Table S1). The size of each node depicts the 
molecular weight of the complete complex. Node fill color gradient represents the 
relative abundance of the complex determined by label-free quantification (see Methods). 
Node border color gradient represents the percent of subunits in a complex identified by 
MS. Arrows between nodes indicate at least 90% similarity in subunit composition 
between source and target node. (B) Comparison of protein complex relative abundance 
as calculated using two different label-free quantification strategies. 

  



 39 

 

 

Figure 2.S2. Classification of particles using RELION. Related to Figure 3. 

(A) Reference-free 2D class averages of 31,731 template picked particles generated using 
RELION. The size of each box is 576 Å x 576 Å. The 2D class averages are sorted by the 
number of particles belonging to each class. Highlighted boxes show examples of similar 
2D classes from both particle selection methods of fraction 4 data. (B) Reference-free 2D 
class averages of 35,381 manual picked particles generated using RELION. The size of 
each box is 518.4 Å x 518.4 Å. The 2D class averages are sorted by the number of 
particles belonging to each class. (C) Reference-free 2D class averages of 28,553 
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Difference of Gaussian picked particles generated using RELION. The size of each box is 
518.4 Å x 518.4 Å. (D) Reference-free 2D class averages of HSP60 identified in both 
fraction 4 and fraction 8. Reprojection of the HSP60 X-ray crystal structure (PDB 4PJ1) 
low-pass filtered to 30 Å and a 2D class average of a negatively stained purified protein 
homolog adapted from (Danziger et al., 2003) shown as comparison. Image box sizes are 
scaled for consistency. 
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Figure 2.S3. Cross-correlation comparison of top 3 RELION models to complexes 
identified by MS. Related to Figure 4. 

Normalized pairwise cross-correlation scores for our top 3 RELION reconstructions to 
each of the following previously solved cryo-EM structures: EMD-2876 – mitochondrial 
ribosome, EMD-2981 – 20S proteasome core, EMD-3164 – bovine mitochondrial ATP 
synthase, EMD-3545 – c* spliceosome, EMD-4002 – 26S proteasome, EMD-4040 – 
respiratory complex I, EMD-8345 – 80S ribosome. 
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Figure 2.S4. 3D models using cryoSPARC with k = 5,10,15 and related Fourier shell 
correlations curves. Related to Figure 5. 
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(A) Reconstructed 3D models from 35,381 manually picked particles when sorted into 5, 
10 and 15 ab initio classes by cryoSPARC. The 20S proteasome core is highlighted in 
gold. (B) Comparison of 20S proteasome core models from 5, 10 and 15 classes. (C) FSC 
curves for the single-capped 26S proteasome (red) and 20S core proteasome (gold) 
shown in Figure 5B. Nominal resolutions were estimated to be 31 Å and 20.4 Å using the 
0.143 gold-standard FSC criterion for the single-capped 26S and 20S core proteasome, 
respectively. 
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Figure 2.S5. Comparative quantification of the proteasome by MS and EM. Related to 
Figure 5 and Table S1. 

Quantification of proteasome particles by single particle counting of EM data and 
extracted ion chromatogram areas. 
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Chapter 3: Electron microscopy snapshots of single particles from 

single cells 

 Large biological data sets (-omics data) have become pervasive in most fields of 

biology, even extending to data collected from single cells. In the field of structural 

biology, -omics data from single cells is typically acquired by tomography of whole cells 

or cell sections. While tomographic data uniquely provides spatial context, current 

limitations often restrict data to the largest protein assemblies and ultrastructure of the 

cell. The work presented in this chapter demonstrates how simple microfluidic devices 

can be combined with single particle electron microscopy to investigate protein structures 

from single cells. This chapter is published as Yi, X.*, Verbeke, E.J.*, Chang, Y.*, 

Dickinson, D.J., and Taylor, D.W. (2019). Electron microscopy snapshots of single 

particles from single cells. J. Biol. Chem. 294, 1602–1608. Xiunan Yi and Yiran Chang 

built the microfluidic devices and prepared the C. elegans embryos for electron 

microscopy. I led the bioinformatics and computational analysis with contributions from 

the other two co-first authors. 

 

3.1. ABSTRACT 

 Cryo-electron microscopy (cryo-EM) has become an indispensable tool for 

structural studies of biological macromolecules. Two additional predominant methods are 

available for studying the architectures of multiprotein complexes: 1) single-particle 

analysis of purified samples and 2) tomography of whole cells or cell sections. The 

former can produce high-resolution structures but is limited to highly purified samples, 

whereas the latter can capture proteins in their native state but has a low signal-to-noise 
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ratio and yields lower-resolution structures. Here, we present a simple, adaptable method 

combining microfluidic single-cell extraction with single-particle analysis by EM to 

characterize protein complexes from individual Caenorhabditis elegans embryos. Using 

this approach, we uncover 3D structures of ribosomes directly from single embryo 

extracts. Moreover, we investigated structural dynamics during development by counting 

the number of ribosomes per polysome in early and late embryos. This approach has 

significant potential applications for counting protein complexes and studying protein 

architectures from single cells in developmental, evolutionary, and disease contexts. 

 

3.2. INTRODUCTION 

 Cell behavior is fundamentally dependent on the activities of macromolecular 

machines. These machines, comprised of protein (and sometimes RNA) subunits, are 

responsible for catalytic, structural, and regulatory activities that allow cells to function. 

Structural biology, by revealing the physical architecture of macromolecules and their 

assemblies, plays a critical role in efforts to understand how molecular mechanisms 

contribute to cell behavior in vivo. 

 

 A crucial feature of most living cells is their ability to adjust their behavior in 

response to their environment. In a developmental context, cells respond to chemical and 

mechanical cues from neighboring cells and tissues to coordinate their behavior with their 

neighbors and to assemble functional tissues. A major goal of developmental biology 

studies is to understand the molecular mechanisms of these interactions—that is, how 

dynamic behaviors of macromolecular machines give rise to cell behaviors that support 

proper organismal development. 
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 Recently, single-cell nucleic acid sequencing approaches have revolutionized 

developmental studies by allowing gene expression to be interrogated with unprecedented 

spatiotemporal resolution (Kumar et al., 2017). Such experiments are powerful because 

they reveal which genes are expressed in which cells at a particular point in development 

and can thus provide insights into signaling dynamics, mechanisms of cell state changes 

(e.g. cellular differentiation), and levels of heterogeneity between individual cells. 

However, sequencing approaches do not shed light on the molecular states or interactions 

of cellular proteins. A few studies have begun to extend a single-cell approach to 

biochemical studies of proteins and protein complexes. For example, Huang and Zare 

(Huang et al., 2007) described a sophisticated microfluidic device for counting protein 

molecules in single-cell lysates. Allbritton and co-workers (Dickinson et al., 2013; 

Kovarik and Allbritton, 2011) have developed capillary electrophoreses methods for 

measuring enzyme activities in whole-cell lysates. Most recently, Dickinson et al. 

(Dickinson et al., 2017) used microfluidic lysis followed by single-molecule pulldown 

and TIRF microscopy to measure the abundance of protein complexes in single cells. 

This single-cell, single-molecule pulldown (sc-SiMPull) approach was sufficiently 

sensitive to reveal regulated changes in protein– interactions that occurred over ~5 min 

during development of the Caenorhabditis elegans zygote. Thus, single-cell biochemical 

approaches have the potential to uncover dynamics of macromolecular machines in cell 

or tissue samples obtained directly from developing embryos. 

 

 Although still in their infancy, the initial success of these single-cell biochemical 

methods raises the question of whether a single-cell approach could be extended to 

macromolecular structure determination. Such an approach could overcome a classical 
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limitation of structural biology: its need for highly purified, homogenous proteins (or 

protein complexes) that represent only a single snapshot from the ensemble of structures 

that are likely present in cells. Moreover, the ability to determine structures of proteins 

obtained directly from cells engaged in development would represent a significant step 

toward the goal of linking the structural dynamics of molecular machines to their cellular 

and developmental consequences. 

 

 One approach to single-cell structural studies is electron tomography. This allows 

for the study of cell morphologies (Beck and Baumeister, 2016), and in some cases, can 

be used to reconstruct 3D models directly from native cells (Galaz-Montoya and Ludtke, 

2017). However, because of the sensitivity of biological specimens to electron dose, 

tomographic approaches routinely lead to low- or intermediate-resolution structures of 

complexes in single cells using subtomogram averaging techniques. The advent of phase 

plates for EM has revolutionized the information contact extractable from tomograms, 

but high-resolution structures of less-abundant complexes remain elusive. 

 

 Alternatively, single-particle cryo-electron microscopy (cryo-EM) is now capable 

of routinely achieving high-resolution structures of highly purified samples because of 

advances in hardware (Kühlbrandt, 2014) and software (Punjani et al., 2017; Scheres, 

2012). We and others have recently extended single-particle EM techniques to study 

heterogeneous mixtures from biochemically fractionated cell lysate (Kastritis et al., 2017; 

Verbeke et al., 2018). Although these shotgun-EM approaches are able to sort through the 

heterogeneity of macromolecules, they still rely on a large quantity of cells and mass 

spectrometry (MS) to characterize the contents of the sample. Furthermore, direct 
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investigation of proteins at the single-cell level has remained a challenging problem for 

proteomic studies. This poses a unique challenge to structural studies of single cells. 

 

 Some efforts toward applying single-particle EM methods to single cells have 

been made (Arnold et al., 2017; Kemmerling et al., 2013) that importantly demonstrated 

the feasibility of extracting material from single cells for EM analysis. However, this 

earlier work required a complicated apparatus and has not yet yielded any 3D structures 

of macromolecular complexes. Here, we propose an alternative approach for combining 

single-cell lysis with EM to investigate macromolecular structures. Our method is 

technically simpler than previous approaches but is able to directly visualize the contents 

of a single cell. After computationally classifying the particles from cell lysate, we 

uncover the 3D structures of 40S and 60S ribosomes from disperse particles and the 

structure of an 80S ribosome from polysomes. Because we chose to apply our approach 

to a developmental model system (C. elegans zygotes and embryos), we are able to 

obtain structural information from embryos at specific developmental stages. In one 

application, we find that the number of ribosomes per polysome remains consistent 

between early- and late-stage embryos. These results demonstrate the potential of EM for 

structural characterization of unpurified macromolecular machines obtained from 

samples as small as a single cell. 
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3.3. RESULTS 

3.3.1. Extracting macromolecules from single embryos 

 Our primary goal in this study was to determine whether imaging of single-cell 

lysates with EM could yield sufficient, high-quality particles for 3D structure 

determination. To obtain intact, native particles from single cells, C. elegans zygotes (i.e. 

1-cell embryos) were trapped and lysed using microfluidic chambers (Figure 1; see 

Methods). We then transferred the cell lysates (a volume of ~50 nL) from the 

microfluidic channels to EM grids using a glass needle (Video S1; see Methods). Because 

of the small volume, which was insufficient to coat an entire grid, we used reference 

grids containing alphanumeric markers to locate the placement of our samples under both 

the dissecting scope and the electron microscope. Each reference grid was then 

conventionally stained using 2% (w/v) uranyl acetate. We chose to use negative stain EM 

for its high signal-to-noise ratio to more accurately assess our ability to identify single 

particles from individual cell lysates. Each grid was then examined by transmission EM 

to identify grid squares that contained cellular protein particles embedded in stain. 

 

 To demonstrate our ability to capture small volumes of samples on EM grids, we 

first transferred samples of a purified protein kinase (Zhan et al., 2015) from our 

microfluidic device to an EM grid for visualization, resulting in successful detection of 

the kinase (Figure S1). We then performed our transfer technique on lysates from seven 

independent single embryos sampled at different developmental stages, three from 

zygotes and four from later-stage, multicell embryos. Micrographs of single-cell extract 

across different embryos show a reproducible mixture of heterogeneous particles that 

span an order of magnitude in size (Figure S1). These data allowed us to investigate the 
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dynamics of protein complexes at the single-cell/embryo level between different 

developmental stages of C. elegans zygotes. 

 

3.3.2. EM of extract from a single C. elegans embryo 

 Raw micrographs collected at the locations where embryo lysate had been applied 

to the EM grid showed distinct, monodisperse particles with varying sizes and distinct 

shapes. The results unambiguously show that we were able to retrieve cellular contents 

from our microfluidic lysis chips for subsequent imaging by EM, although we cannot 

exclude the possibility that some particles may fail to adhere to the grid and be lost 

during sample preparation (Figure 2A). We collected ~1,400 micrographs between the 

seven samples. Although small particles were abundant in our micrographs (Figure S1), 

we first chose to analyze large particles (~150–300 Å in diameter), which were easily 

recognizable and appeared relatively homogeneous. After manually selecting ~10,000 

large particles from a subset of micrographs, we generated reference-free 2D class 

averages that were subsequently used as templates for automated picking of particles 

from all micrographs. Using this template picking scheme, ~80,000 large particles were 

selected from ~1,400 micrographs and used for reference-free 2D alignment and 

classification. 2D class averages with distinct structural features were generated from 

~50,000 particles after removing junk particles (e.g. detergent micelles, irregular small 

particles, two nearby particles, or particles in aggregates) from the data (Figure 2B, top 

panel). 

 

 To obtain insight into the possible identities of these particles, we used publicly 

available RNA-seq data from C. elegans 1-cell embryos (Gerstein et al., 2010; Hillier et 
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al., 2009) to inform us about which proteins are likely to be highly expressed. 34 

ribosomal protein transcripts and 4 proteasomal protein transcripts were among the 200 

most abundant transcripts, suggesting these protein complexes were likely to appear in 

our micrographs (Figure S2) (Gerstein et al., 2010; Hillier et al., 2009). None of the other 

200 most highly expressed proteins are known subunits of large (megadalton) 

macromolecular complexes, suggesting that ribosomes and proteasomes should be the 

most abundant large particles in our data set. We therefore performed pairwise cross-

correlations of our 2D class averages with 2D class averages of purified 40S ribosome, 

60S ribosome (Malyutin et al., 2017), and 26S proteasome (Sone et al., 2004) from 

Saccharomyces cerevisiae to look for structural similarities. The alignment revealed 

several classes with similar features between our single-cell lysate and the known, 

purified structures, suggesting the identity of several projections in our sample were in 

fact the 40S ribosome, 60S ribosome, and 26S proteasome (Figure 2B, bottom panel). 

This initial 2D classification proved it is possible to obtain structural information from 

intact protein complexes extracted from lysates of single cells. 

 

3.3.3. Capturing ribosome dynamics in polysomes 

 Intriguingly, our raw micrographs revealed densely packed clusters of ribosome-

like particles (Figure 3A). These ribosome-like particles appeared in organized arrays 

with a similar appearance to polysomes from Escherichia coli (Brandt et al., 2009) and 

wheat germ (Afonina et al., 2013). Polysomes consist of a pool of actively translating 

ribosomes on an mRNA transcript. This suggested that our single-cell EM method is 

capable of capturing protein–mRNA interactions in the cell. 
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 In C. elegans, zygotic transcription begins at the four-cell stage (Edgar et al., 

1994; Seydoux and Fire, 1994); prior to this, development is driven by maternal RNA 

and proteins. We were curious whether polysome architecture would change as a 

consequence of new zygotic transcription. Because we observed polysomes in both early- 

and late-stage embryos (before and after the onset of zygotic transcription), we addressed 

this question by counting the number of ribosomes per polysome in our samples from 

each developmental stage. Each micrograph was manually annotated to determine the 

number of ribosomes per polysome cluster for our early-stage and late-stage embryos, 

respectively. Using this approach, we determined that there are, on average, eight 

ribosomes per polysome for early-stage embryos and seven ribosomes per polysome for 

late-stage embryos (Figure 3B). These numbers are consistent with previous studies in 

which the number of ribosome per mRNA is estimated by isolating polysomes using 

velocity sedimentation in sucrose gradients (Slavov et al., 2015), but our results add an 

additional dimension by observing polysomes at defined developmental stages that either 

have or lack zygotic transcription. Although our data suggested no significant change in 

the number of ribosomes per polysome between early and late stage embryos, this 

analysis provides evidence that single-particle counting from single cells could 

potentially be applied for investigating the dynamics of macromolecules in different cell 

states. 

 

3.3.4. 3D classification of ribosome particles from single embryo data 

 We then performed 3D classification of our large particles to determine whether 

any distinct structures could be obtained from lysates of single cells. Specifically, we 

were looking for structures of ribosomes because they appeared as clear and abundant 2D 
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class averages in our data. We first combined two data sets from early-stage embryo 

samples for 3D classification using RELION (Figure S3) (Scheres, 2012). After removal 

of junk particles, ~14,000 particles were used for classification. Initially, we used an 

unbiased approach for 3D classification by using an initial model of a featureless 3D 

shape with uniform electron density. Using a model reconstructed from this initial 

classification, which resembled a previously determined 60S ribosome structure (Shen et 

al., 2015) (EMDB-2811) as a reference, we then performed another round of 3D 

classification (see Methods). The models from each classification were then compared by 

docking a high-resolution S. cerevisiae 60S ribosome structure (EMDB-2811) into our 

maps to determine which class, if any, was most similar to the known structure. Our top 

scoring 60S ribosome reconstruction, containing ~3,400 particles, displayed striking 

similarity to the S. cerevisiae 60S ribosome (Figure 4, top row) with a cross-correlation 

score of 0.8143 and a nominal resolution of 34 Å calculated using the 0.5 Fourier shell 

correlation criterion (Figure S4; see Methods). 

 

 Performing 3D classification on particles from all data sets combined, a final set 

of ~17,000 particles after stringent removal of junk particles resulted in an additional 

class that resembled the S. cerevisiae 40S ribosome (Figure 4, middle row; see Methods). 

Our 40S ribosome reconstruction, containing ~1,450 particles, had a cross-correlation 

score of 0.8352 with the S. cerevisiae model (Scaiola et al., 2018) (EMDB-4214) and a 

nominal resolution of 48 Å (Figure S4). These results suggest that 3D structures of 

multiple protein complexes can be obtained from lysates of single embryos using single-

particle EM analysis. To explore our ribosome reconstructions, we built a hybrid 80S 

ribosome model by aligning our 40S and 60S ribosome reconstructions to their respective 

domains in the 80S ribosome from a previously determined 80S ribosome structure 
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(Figure 4, bottom row) (Cianfrocco and Leschziner, 2015) (EMDB-2858). As expected, 

this hybrid model is consistent with the high-resolution 80S ribosome structure. Because 

of the limited number of proteasome particles in our sample, we did not attempt to obtain 

a 3D structure of the proteasome. 

 

 With clear structures resembling a 40S and 60S ribosome, we next attempted to 

determine the molecular architecture of the 80S ribosome directly from polysome 

clusters. Our data contained ~9,000 particles within polysomes that were manually 

picked for single-particle analysis. We then performed 2D and 3D classification of the 

selected particles (see Methods). The 2D class averages were ~250 Å in diameter, which 

is consistent with the size of an S. cerevisiae 80S ribosome. Our 3D model, containing 

~2,000 particles, had a cross-correlation score of 0.7572 when compared with an S. 

cerevisiae 80S ribosome (Cianfrocco and Leschziner, 2015) (EMDB-2858) and a 

resolution of 45 Å (Figure S4). Although our 80S ribosome model lacked some areas of 

density present in the high-resolution structure, the overall size could accommodate both 

the 40S and 60S ribosome. Collectively, our data show that we are able to distinguish 

structures of the 40S, 60S, and 80S ribosomes directly from particles isolated from single 

cells. 

 

3.4. DISCUSSION 

 A major goal of basic biological research is to connect structural dynamics of 

macromolecules to their effects on cell behavior. Here, we present an approach for 

structural characterization of protein complexes isolated from single cells engaged in 

development. We demonstrate that a single cell contains a sufficient number of protein 
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particles to enable structural characterization by EM. We think that this approach has 

significant potential to reveal structural changes in protein complexes across 

developmental and disease contexts. Our method is also promising for future single-cell 

cryo-EM, because the lysate transferring procedure can remain the same during cryo-EM 

sample preparation. The increased resolution from cryo-EM will help in the identification 

of other macromolecular complexes from lysate. However, we expect several obstacles 

moving our approach to cryo-EM including freezing small lysate volumes and capturing 

low-concentration proteins on grids. 

 

 Moving forward, a significant challenge will be to extend this approach beyond 

ribosomes and proteasomes to other macromolecular complexes. We focused here on 

ribosomes because they are large, highly abundant, and relatively easy to recognize. For 

complexes that are less abundant and/or less distinctive in shape, we will need to develop 

methods to identify a complex of interest in a heterogeneous mixture. Correlative light 

and EM holds promise in this regard (Schorb and Briggs, 2014). We also plan to explore 

whether particles isolated and characterized via our earlier sc-SiMPull approach 

(Dickinson et al., 2017) can be eluted and transferred to EM grids for structural analysis. 

An added advantage of this strategy would be the ability to use multicolor TIRF to 

characterize the composition of complexes whose structures could then be determined. 

Taken together, we are optimistic that these strategies will allow us to gain structural 

information about protein complexes beyond ribosomes and proteasomes using single-

cell lysates. 

 

 A related question is whether there are enough particles in a single cell to allow 

high-resolution structure determination. This will of course depend on the protein or 
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protein complex being studied; it may be more difficult to determine high-resolution 

structures of low-abundance complexes. However, we note that the time required to 

prepare and collect data from a single-cell sample is short enough that analyzing 10–20 

such samples is realistic. Particles from multiple samples could be pooled to increase 

resolution, without sacrificing information about which cell each particle in the data set 

came from. This might represent an ideal compromise between the need for increased 

numbers of particles for structure determination and the desire for single-cell resolution 

for detailed developmental studies. 

 

3.5. METHODS 

3.5.1. Microfluidic device fabrication 

 Microfluidic devices were fabricated using a standard soft lithography procedure. 

A photomask corresponding to the desired channel shape was designed using CAD 

software and produced by Cad-Art Services (Bandon, OR). An ~30-µm-thick layer of 

SU8–2025 photoresist was deposited on a plasma-treated silicon wafer by spin coating 

for 10 s at 400 rpm followed by 30 s at 2800 rpm and 30 s of deceleration. After soft 

baking at 65 °C for 3 min and 95 °C for 10 min, the films were exposed to 1000 mJ UV 

light through the photomask. Following a post-exposure bake of 5 min each at 95 °C and 

120 °C, the molds were developed in SU8 developer (propylene glycol monomethyl ether 

acetate, PGMEA) and rinsed with isopropanol. The molds were hard baked at 95 °C for 

30 min and then at 120 °C overnight. 
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 PDMS (Sylgard 184 silicone elastomer kit, Dow Corning, Midland, MI) was 

mixed using a 10:1 ratio of base to curing agent and deposited onto the molds by spin 

coating at 400 rpm for 30s. The PDMS was cured for 20 min at 95 °C, then peeled off 

from the molds, and inlet and outlet holes were punched with a 2 mm biopsy punch. Each 

PDMS device contained 8 channels, and each channel was used for one single-embryo 

experiment. 

 

 24 × 60 mm glass coverslips were cleaned with ethanol and dried under nitrogen 

flow. Each cleaned coverslip was bonded to a PDMS device by 2 min of treatment with 

air plasma, then baked at 120 °C for 30 min to form a permanent bond. 

 

 The PDMS device was first activated by flowing 1 m KOH through the channels 

for 20 min, washed three times with water, and then dried. After activation, 2-

[methoxy(polyethylenxy)9–12Propyl]-trimethoxysilane was applied to the channels for 

30 min to prevent nonspecific protein binding. The channels were then washed three 

times with water and dried. The dry devices were cured overnight at room temperature 

and stored with the open holes facing downward, in a closed box, until use. 

 

3.5.2. Sample preparation from staged embryos 

 WT C. elegans embryos (strain N2) were dissected from gravid adults in egg 

buffer (5 mM HEPES, pH 7.4, 118 mM NaCl, 40 mM KCl, 3.4 mM MgCl2, 3.4 mM 

CaCl2). Developmental stage was determined by visual inspection of morphology (cell 

shape and nuclear position) on a dissecting microscope. The embryo with desired stage 

was transferred to a 3-µL drop of lysis buffer (10 mM Tris, pH 8, 50 mM NaCl, 0.1% 
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Triton X-100, 10% glycerol) and placed in the inlet well of a prepared microfluidic 

device using a mouth pipette. A clean 26-gauge needle was used to push the embryo into 

the microfluidic channel. 

 

 Once the embryo was trapped in the center of the chamber, the channel output 

was sealed with crystallography-grade clear tape (Crystal Clear, Hampton Research, 

Aliso Viejo, CA) to stop flow. The device was temporarily fixed under the dissecting 

microscope with the tape. The embryo was then immediately crushed while watching in 

the stereoscope, by pushing down on the surface of the PDMS with the melted tip of a 

glass Pasteur pipette. A clean glass needle connected to a 10-mL syringe through a short 

flexible tubing was used to puncture the top layer of the PDMS channel once the embryo 

lysed. The lysate (an approximate volume of 50 nL) was sucked into the needle and 

transferred onto a marked area of a glow discharged reference grid covered with carbon. 

Two to three different lysates were transferred onto different squares of the same grid, 

with no overlap. After the last embryo lysate was transferred, the grid was immediately 

negatively stained with five consecutive droplets of 2% (w/v) uranyl acetate solution, 

blotted to remove residual stain, and air-dried in a fume hood. Purified JNK2 (a gift from 

K. Dalby and N. Sun) was used in control experiments (Shaw et al., 2008). 

 

3.5.3. EM and data collection 

 Data were acquired using a JEOL 2010F transmission electron microscope 

operated at 200 keV with a nominal magnification of ×60,000 (3.6 Å at the specimen 

level). Each image was acquired using a 1-s exposure time with a total dose of ~30–35 e− 

Å−2 and a defocus between −1 and −2 µm. A total of 1,402 micrographs from seven 
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samples (three early embryos and four late embryos) were manually recorded on a Gatan 

OneView camera. 

 

 Seven independent particle stacks were generated from the micrographs of each 

sample: 341 micrographs of an early-staged embryo sample (E1), 350 micrographs of an 

early-staged embryo sample (E2), 250 micrographs of an early-staged embryo (E3), 100 

micrographs of a late-staged embryo (L1), 111 micrographs of a late-staged embryo (L2), 

147 micrographs of a late-staged embryo (L3), and 103 micrographs of a late-staged 

embryo (L4). FindEM (Roseman, 2004) was used for template-based particle picking 

with a template selected from reference-free 2D class averages generated from ~10,000 

large particles which were manually picked from the E1 data set. In total, ~81,600 

particles were selected from template picking of all data sets. All image pre-processing 

was done in Appion (Lander et al., 2009). After removing junk particles, 17,070 particles 

remained for further processing. Particle box size was set to 576 × 576 Å. Reference-free 

2D class averages were generated with 100 classes using RELION (Scheres, 2012). The 

2D class averages of large particles in the embryo lysate were compared with those of 

purified 40S ribosomes, 60S ribosomes, and 26S proteasomes from S. cerevisiae (a gift 

from A. Johnson, S. Musalgaonkar, A. Matouschek, and C. Davis) using EMAN. The 

micrographs of the yeast ribosomes and proteasomes were taken using the TEM 

procedures above. 

 

 For our 40S ribosome reconstruction, 3D classification was performed using 

RELION to create 10 classes. We used the structure of a purified DNA-dependent protein 

kinase catalytic subunit as an arbitrary initial model after being low-pass filtered to 60 Å. 
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The top scoring model when compared with the S. cerevisiae 40S ribosome structure 

(EMDB 4214) contained 1,466 particles. 

 

 For our 60S ribosome reconstruction, a similar strategy was followed. Two 

independent particle stacks from E1 and E2 were used. The contrast transfer function of 

each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015). 

Approximately 37,200 particles were selected by template picking. After removing junk 

particles, 13,916 particles were left. Particle box size was set to 432 × 432 Å. Reference-

free 2D class averages were generated with 100 classes. 3D classification was performed 

to create eight classes. The structure of a featureless 3D shape with uniform electron 

density was chosen as an initial model after low-pass filtering to 60 Å. A subsequent 

round of 3D classification was performed on the same data using a reconstructed 3D class 

that was most similar to the 60S ribosome as the new initial model. From this 

classification, the best of three classes was determined by comparison to a S. cerevisiae 

60S ribosome structure (EMDB 2811) and contained 3,431 particles. 

 

 For our 80S ribosome reconstruction, an initial stack of ~9,000 particles in 

polysome-like structures were manually selected from all data sets combined. After 

removing junk particles, 5,638 particles remained for subsequent 2D and 3D 

classification. Particle box size was set to 576 × 576 Å. Reference-free 2D class averages 

were generated with 200 classes. 3D classification was performed to create two classes. 

The top scoring model when compared with a S. cerevisiae 80S ribosome structure 

(EMDB 2858) contained 1,971 particles. 
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 We additionally performed an initial characterization of small particles found in 

our micrographs. Using a template-free difference of Gaussian particle picker (Voss et 

al., 2009), ~165,00 particles were selected from data sets E1 and E2. Particle box size 

was set to 216 × 216 Å. After removing junk particles, 126,095 particles were classified 

using reference-free 2D classification to generate 150 classes. 
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3.6. FIGURES 

 

Figure 3.1. Schematic of single-cell structural biology approach.  
Single C. elegans embryos are trapped in a microfluidic device. After the embryo is 
crushed, the lysate is extracted using a fine needle and applied to a specific area of an EM 
grid using a stereoscope. The same area is then visualized using EM, and single-particle 
analysis is applied for structure determination.  



 65 

 

 

Figure 3.2. Single-particle analysis of extracts from single cells.  

(A) Representative raw electron micrograph of negatively stained single-cell lysates. 
Micrographs show monodisperse particles of varying size. Circled particles are 
representative of the larger particles (~150–300 Å in diameter) used for subsequent 2D 
and 3D classification. (B) Top panel, reference-free 2D alignment and classification of a 
subset of the ~50,000 particles picked from single-cell extract. Classes are sorted in order 
of decreasing abundance. Box size is 576 × 576 Å. Bottom panel, alignment of 2D class 
averages from single-cell extract to purified homologs. 
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Figure 3.3. Counting ribosomes in polysomes from early- and late-stage C. elegans 
embryos.  

(A) Representative raw electron micrograph of negatively stained single-cell lysate 
showing several distinct polysome clusters of varying size (yellow circles). (B) 
Distribution of the number of ribosomes in a polysome across three early- and three late-
stage embryos. The average numbers of ribosomes for early- and late-stage embryos are 
eight and seven, respectively. The red cross-hair is the mean value, and the green box is 
the median (n = 81, 513, 319, 31, 71, and 52 for embryos 1–6, respectively). 
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Figure 3.4. 40S and 60S ribosome reconstructions from particles from single cells.  

Top row, 60S ribosome reconstruction. High-resolution structure EMDB-2811 (Shen et 
al., 2015) docked into our 60S map with a cross-correlation score of 0.8142. Middle row, 
40S ribosome reconstruction. High-resolution structure EMDB-4214 (Scaiola et al., 
2018) docked in to our 40S map with a cross-correlation score of 0.8352. Bottom row, 
80S ribosome hybrid model built using our 40S and 60S ribosome aligned to a high-
resolution structure of the 80S ribosome EMDB-2858 (Cianfrocco and Leschziner, 2015). 
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Figure 3.S1. Lysate transfer control experiments and small particle classes. 
(A) Micrograph of 50nL of 400nM JNK2 (a kinase protein with known structure). To 
demonstrate that we can visualize particles using our method, we first flowed 400nM 
JNK2 solution through the PDMS channel and then ~50nL of the solution was transferred 
to the reference grid using a glass needle. Inset, a view of the JNK X-ray crystal structure 
(PDB 3E7O) (Shaw et al., 2008). (B) Micrograph of 50nL of 50nM JNK2. (C) 
Reference-free 2D class averages of small particles picked from two early-staged embryo 
datasets containing ~126,000 particles. Classes show unique structural features such as a 
pentameric ring in the top left corner. (D) Individual raw particles of the 26S proteasome 
show distinct features directly from micrographs. Particles were visualized using the 
‘Display’ and ‘Show particles in selected class’ graphical user interface within RELION. 
Particles have been rotated and translated based on 2D classification in RELION. Box 
size is 576 Å x 576 Å. (E) Representative micrographs from multiple individual single 
cell experiments shows similar dispersion and size range of single particles. 
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Figure 3.S2. RNA-seq data of C. elegans embryos. 
The 200 most abundant genes in C. elegans zygotes (determined by RNAseq (Gerstein et 
al., 2010; Hillier et al., 2009)) sorted in order of decreasing abundance. 
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Figure 3.S3. Classification of ribosomes from single cells. 

Workflow for classification of particles from single cells into 40S, 60S, and 80S 
ribosomes structures. 
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Figure 3.S4. Reconstruction of an 80S ribosome and Fourier shell correlations. 
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(A) Reference-free 2D class average from ribosomes in polysomes aligned to a purified 
homolog from S. cerevisiae. (B) Left: Our 80S ribosome hybrid model. Right: Our 80S 
ribosome model reconstructed from ribosomes in polysomes with high-resolution 60S 
(EMDB-2811) (Shen et al., 2015) and 40S (EMDB-4214) (Scaiola et al., 2018) shown in 
yellow and blue, respectively. (C) Fourier shell correlations of our 40S, 60S and 80S 
ribosome models. Nominal resolution values are reported at a correlation score of 0.5. 
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Chapter 4: Separating distinct structures of multiple macromolecular 

assemblies from single particle cryo-EM projections 

  Classically, the goal of single particle cryo-EM is to solve one or more related 

structures from a highly purified sample. However, a key advantage of single particle 

cryo-EM over other structural methods is that particles do not need to be homogenous. In 

this chapter, I demonstrate an algorithm for sorting particle images from multiple distinct 

structures prior to conventional 3D classification, essentially performing an in silico 

purification.  This work is published as Verbeke, E.J., Zhou, Y., Horton, A.P., Mallam, 

A.L., Taylor, D.W., and Marcotte, E.M. (2020). Separating distinct structures of multiple 

macromolecular assemblies from cryo-EM projections. Journal of Structural Biology 

209, 107416. Anna Mallam helped with protein purification, Yi Zhou prepared samples 

and collected the cryo-EM data, and I developed the computational pipeline, processed 

the cryo-EM data and interpreted results. Andrew Horton provided valuable input on 

early analysis of the pipeline. 

 

4.1. ABSTRACT 

 Single particle analysis for structure determination in cryo-electron microscopy is 

traditionally applied to samples purified to near homogeneity as current reconstruction 

algorithms are not designed to handle heterogeneous mixtures of structures from many 

distinct macromolecular complexes. We extend on long established methods and 

demonstrate that relating two-dimensional projection images by their common lines in a 

graphical framework is sufficient for partitioning distinct protein and multiprotein 

complexes within the same data set. The feasibility of this approach is first demonstrated 
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on a large set of synthetic reprojections from 35 unique macromolecular structures 

spanning a mass range of hundreds to thousands of kilodaltons. We then apply our 

algorithm on cryo-EM data collected from a mixture of five protein complexes and use 

existing methods to solve multiple three-dimensional structures ab initio. Incorporating 

methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will 

alleviate the need for stringent purification and pave the way toward investigation of 

samples containing many unique structures. 

 

4.2. INTRODUCTION 

 Cryo-electron microscopy (cryo-EM) has undergone a revolutionary shift in the 

past few years. Increased signal in electron micrographs, as a result of direct electron 

detectors, has allowed for the near-atomic resolution structure determination of many 

macromolecules of various shapes and sizes (Kühlbrandt, 2014). These new detectors 

combined with automated data collection software and improvements in image 

processing suggest that cryo-EM could be utilized as a high-throughput approach to 

structural biology. One emerging field in single particle cryo-EM that seeks to take 

advantage of these advances is the direct investigation of macromolecules from cellular 

extracts (Doerr, 2018; Kyrilis et al., 2019). Such an approach is motivated by many 

observations that fractions from chromatographically separated cell extracts combined 

with mass spectrometry can be mined for a wealth of information including the 

organization of macromolecules into larger assemblies (Wan et al., 2015). A natural 

complement to this information would be direct structural analysis of the macromolecular 

assemblies from the same fractions of cell extract. Single particle cryo-EM is a promising 

tool for this goal. Although spatial context is lost when compared to tomography, single 
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particle approaches are more successful at producing high-resolution structures. 

However, one major obstacle remains: sorting through the immense heterogeneity that is 

present in a mixture of tens to hundreds of macromolecular assemblies. 

 

 We and others have shown that cellular extracts contain rich structural 

information which can be used for the identification of multiple structures using 

conventional single particle analysis (Kastritis et al., 2017; Verbeke et al., 2018). More 

recently, we extended this approach to reconstruct macromolecular machines from the 

lysate of a single C. elegans embryo (Yi et al., 2019). These studies were limited to the 

identification of only the most abundant and easily identifiable protein and protein–

nucleic acid complexes due to a lack of methods to efficiently categorize which two-

dimensional (2D) projection images derive from which three-dimensional (3D) 

assemblies on the basis of their structural features. While a number of 3D classification 

schemes exist, all failed to produce reliable reconstructions for the majority of particles in 

these complicated mixtures. This obstacle emphasizes the long-standing need to sort 

mixtures of structures in addition to their conformational and compositional 

heterogeneity. 

 

 Several methods have been successfully implemented for sorting heterogeneity in 

cryo-EM data when there are conformational landscapes or variations in the subunit 

stoichiometry. These approaches generally fall into three categories. Currently, the most 

popular approach for sorting heterogeneity in cryo-EM data utilizes a maximum 

likelihood estimation to optimize the correct classification of particles into multiple 

structures (Scheres, 2012; Sigworth, 1998; Sigworth et al., 2010). Another approach is to 

estimate the covariance in cryo-EM data to search for regions of variability between the 
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models and the data (Katsevich et al., 2015; Liao et al., 2015; Penczek et al., 2006). The 

last approach, and most relevant to this paper, involves computing similarities between 

projection images in the data before applying clustering methods to separate the data into 

homogenous subsets (Aizenbud and Shkolnisky, 2019; Herman and Kalinowski, 2008; 

Shatsky et al., 2010). All of these approaches have been demonstrated on samples 

containing a primary structure with multiple conformations or variable subunits. 

However, little work has been done for sorting heterogeneous samples containing 

multiple distinct structures. 

 

 In particular, this work uses the principle of common lines to score the similarity 

between many otherwise disparate 2D projection images. The central section theorem 

states that the Fourier transform of any 2D projection of a 3D object is a 2D section 

through the center of the 3D Fourier transform of the 3D object. Additionally, the 2D 

central section is perpendicular to the direction of the projection. It follows a dimension 

lower that a 1D projection (line projection) of a 2D object is a 1D central section through 

the 2D Fourier transform of the 2D object. Stated in real space: any two 2D projections of 

the same 3D object must share a 1D line projection in common (i.e. common lines) (Van 

Heel, 1987). The central section theorem was initially used for ab initio 3D 

reconstructions but has largely been abandoned in favor of projection matching strategies 

due to a poor sensitivity to noise (Penczek et al., 1994). For our purposes of investigating 

structures from lysates, projection matching is largely ineffective because we do not have 

initial 3D structures or even know how many structures might be present in the data and 

therefore cannot bootstrap from the models. However, common lines still contain 

significant information that can be exploited to discriminate 2D projections from a 

heterogeneous mixture prior to 3D reconstruction by conventional methods. 
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 Here, we develop a pipeline for building 3D reconstructions from rich mixtures of 

distinct particles by first grouping aligned and averaged 2D projections into discrete, 

particle-specific classes using the principles of common lines and a novel graphical 

clustering framework. We demonstrate our method by partitioning reprojections from 35 

previously solved structures into their correct groups. Furthermore, we applied this 

pipeline to an experimental set of cryo-EM micrographs containing a mixture of several 

macromolecular complexes. We were able to reconstruct multiple 3D structures after our 

clustering, improving on 3D classification of all particles simultaneously using current 

3D reconstruction software. This work adds a new layer to the conventional classification 

schemes and is a necessary step for moving cryo-EM towards single particle structural 

biology from samples containing mixtures of many structures. 

 

4.3. RESULTS 

4.3.1. Classifying projection images from multiple structures 

 A major challenge facing “shotgun”-style cryo-EM is to reconstruct models from 

projection images arising from multiple distinct structures present in a mixture. To 

overcome this obstacle, we sought a method to computationally group heterogeneous 

projection images into discrete clusters that each derive from the same structure. In order 

to partition 2D projections into homogenous subsets, we developed an algorithm for 

detecting Shared Lines In Common Electron Maps (SLICEM). Using this algorithm, we 

score the similarity of 1D line projections between sets of aligned, classified and 

averaged 2D projection images (referred to as 2D class averages) without knowledge of 
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the number of underlying 3D objects, or what they look like. Subsequently, these 

similarity scores can be put into a graphical framework and clustering algorithms can be 

applied to group related 2D projection images for subsequent 3D reconstructions (Figure 

1). 

 

4.3.2. Synthetic data 

 To test our approach using SLICEM, we generated synthetic reprojections from 

35 previously solved structures deposited in the PDB (see Methods). The structures 

ranged in molecular weight from ~30 to 3000 kDa (Figure 2A). Each PDB structure was 

low-pass filtered to 9 Å and uniformly reprojected to create 12 2D projection images, 

forming an initial set of 420 reprojections simulating 2D class averages from a mixture of 

structures (Ludtke et al., 1999) (Figure S1). Although these reprojections do not perfectly 

reflect experimentally determined 2D class averages, failure of this test would indicate 

little power for real data. Each 2D projection is in turn projected down to 1D in 5 degree 

increments over 360 degrees. 

 

 The similarity between all 1D line projections from every 2D reprojection was 

then scored using different metrics to evaluate their performance for identifying common 

line projections. The metrics evaluated were Euclidean distance (Eq. (1)), sum of the 

absolute difference (Eq. (2)), cross-correlation (Eq. (3)) and cosine similarity (Eq. (4)) 

(see Methods). We additionally tested the performance of the Euclidean distance and 

cross-correlation after a Z-score normalization of each 1D line projection. Scoring 

common lines depends heavily on the centering of 2D class averages. We address this in 

two ways in our algorithm. As an additional layer of image processing, the particle in 
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each class average is centered by encompassing it in a minimal bounding box. Next, as 

part of the scoring, if there is a difference in length between a given pair of 1D 

projections, the smaller of the two vectors is translated pixel-wise relative to the other 

vector and scored at each position to account for class averages that might be offset 

relative to other similar class averages. The optimum score during translations is then 

used as the similarity between the two 1D line projections. 

 

 The precision and recall of correctly pairing 2D class averages from the same 3D 

structures was then computed in order to determine the performance of each metric, and 

cosine similarity was determined to be the top performing metric (Figure 2B). Euclidean 

distance and normalized Euclidean distance had identical performance and are overlaid 

on the plot. Not surprisingly, cross-correlation was the worst performing metric as the dot 

product between two vectors scales with their magnitude. Thus, 1D projections from 

larger protein assemblies are more likely to score higher even if there is no true similarity 

between the 1D projections. 

 

 In order to identify sets of 2D projection images from the same 3D particles, we 

constructed a network from the comparisons between 2D reprojections, or class averages, 

as follows: Each 2D class average was represented as a node in a directed graph, with 

each node connected by edges to the nodes corresponding to the 5 most closely-related 

2D class averages based on the similarity of their 1D line projections. While the top-

scoring metric in our precision/recall analysis was cosine similarity, the network 

generated from the Euclidean distance similarity most clearly showed communities 

(clusters of 2D class averages) correctly partitioned by 3D structure (Figure S2). This 

result is reflected by the well separated distributions of scores for reprojections belonging 
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to the same structure and scores for reprojections belonging to different structures (Figure 

2C). We additionally applied a traditional hierarchical clustering scheme and show the 

block structure present in the similarity scores between reprojections (Figure S2). These 

results show that partitioning 2D projection images by scoring the similarity of their 1D 

line projections is a powerful, unsupervised approach for sorting cryo-EM data from 

distinct 3D structures within a heterogeneous mixture. 

 

 We additionally tested the following cases that are often present in cryo-EM 

datasets: (1) uneven angular distribution and number of projections (i.e. non-uniform 

sampling of the structure), (2) molecular symmetry in the structure, and (3) 

conformational and subunit heterogeneity. In the first test, performance of the algorithm 

was only slightly diminished over the case of uniform projections (Figure S3). 

Preferential orientation negatively impacts 3D reconstruction, but has significantly less 

effect when simply searching for common lines. Our algorithm was also able to 

effectively distinguish synthetic 2D reprojections for the latter two cases (Figure S4). In 

the competitive graphical framework, similar but lower scoring projections (e.g. due to a 

change in conformation) are outcompeted by higher scoring projections in the same 

conformation. Molecular symmetries may also be beneficial as they increase the chance 

of finding a common line between structures. Thus, scoring by common lines provides a 

powerful approach for ranking the similarity of 2D projections in a mixture. 

 

4.3.3. Cryo-EM on a mixture of protein complexes 

 After validating our SLICEM algorithm on a synthetic dataset, we performed 

cryo-EM on an experimental mixture of structures and tested our approach as a proof-of-
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principle. Our experimental mixture consisted of 40S, 60S and 80S ribosomes at 75 nM, 

150 nM and 50 nM, respectively, and apoferritin and β-galactosidase each at 125 nM. We 

collected ~ 2,400 images and used a template-based particle picking scheme to 

select ~ 523,000 particles from the entire data set (Roseman, 2004). Raw micrographs 

showed a mixture of disperse particles with varying size and shape (Figure S5). We then 

performed 2D classification on the entire set of particles using RELION (Scheres, 2012). 

After 1 round of filtering junk particles, the remaining ~203,000 particles were sorted 

into 100 classes using RELION. The class averages contained many characteristic 

ribosome projections and had distinct structural features (Figure S5). We were unable to 

identify any β-galactosidase particles in our collected images. 

 

 We then applied our SLICEM algorithm to the 100 2D class averages. The 

identity of each 2D class average was manually annotated, where it was easily 

recognizable, to assess whether our algorithm was correctly separating the 2D projection 

images from our heterogeneous mixture (Figure 3). Based on these manual annotations, 

we again tested the 6-different metrics in a precision-recall framework to determine 

which metric performed better on experimental data (Figure S6). The Euclidean distance 

and sum of the absolute difference scoring metrics significantly outperformed the cosine 

similarity. Using the sum of the absolute difference scoring metric, the network naturally 

partitioned into 3 distinct communities, one for each ribosome, prior to employing any 

community detection algorithms (Figure 3). 

 

 As part of our algorithm, we evaluated two community detection methods, edge 

betweenness and walktrap, to determine if the network should be further subdivided 

(Newman and Girvan, 2004; Pons and Latapy, 2005). We chose to use community 
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detection algorithms to prevent biasing the data by choosing a specific number of output 

clusters we expected. Briefly, the algorithms work as follows: For edge betweenness, 

edges with the highest “betweenness” score in a network are iteratively removed and the 

betweenness recalculated. At some iteration, the network is separated into separate 

components (i.e. communities). For walktrap, random walks on a graph tend to stay in the 

same community if they are densely packed. A similarity score between nodes can then 

be calculated and used for partitioning of the graph. Both approaches have advantages 

and disadvantages for our purpose here and the best choice for clustering is largely 

empirical. 

 

 As part of our processing pipeline, we note that the initial choice for the number 

of 2D class averages, computed here using RELION, can have an effect on the 

performance of our algorithm. We tested K = 80, 100, 120 and 200 classes to assess the 

effect on the performance of our algorithm (Figure S7). Despite varying the number of 

classes, the resulting networks still show correct grouping of 2D class averages from the 

same 3D structure. At all K values, performance measured by precision and recall is 

substantially better than random assignment of class averages. However, these results 

also suggest that moving forward, a more quantitative approach should be taken for 

selecting the number of 2D class averages. Using our SLICEM algorithm, we 

demonstrate that it is possible to correctly separate 2D projection images from 3 large, 

asymmetric macromolecular complexes in the same mixture. 
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4.3.4. Summed pixel intensity as an additional filtering step 

 Apart from partitioning 2D projection images into homogenous subsets for 3D 

reconstruction, one additional goal of shotgun-EM is to determine the identity of each 

projection image. In previous studies, we and others have leveraged mass spectrometry 

data to help identify electron microscopy reconstructions from a heterogeneous mixture, 

such as cell lysate, where the architecture of every protein or protein complex is not 

known (Kastritis et al., 2017; Verbeke et al., 2018). However, this combined MS-EM 

approach was only useful for identifying highly abundant and easily recognizable 

structures. 

 

 To provide evidence of macromolecular identity from the electron maps, we 

calculated the sum of pixel intensities for each manually annotated 2D class average as a 

proxy for molecular weight (Figure 4). The summed pixel intensities of each annotated 

2D class average is plotted as a point on the violin plot to show the distribution of 

summed pixel intensities between projections of the same structure and between 

projections of different structures. We found that each of the three ribosomes and 

apoferritin had unique summed pixel intensities that could be used to distinguish their 

class averages. Although these values do not directly correspond to molecular weight, 

and the values will depend on microscope settings or specimen variation, such as ice 

thickness, class averages belonging to the same structure should have similar values that 

can be ranked relative to external data (e.g. mass spectrometry data). A least-squares fit 

to the mean of the summed pixel intensities showed a linear relationship between 

summed pixel intensity and molecular weight. 
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 The summed pixel intensities were therefore used as an additional filtering step by 

removing nodes in communities whose summed pixel intensities were outliers in that 

community. Using this filtering step, the apoferritin class average was removed from the 

community containing predominantly 40S ribosome reprojections. Our data suggest that, 

given an appropriate set of standards, summed pixel intensity can be correlated to 

molecular weight. Thus, summed pixel intensity could be useful in narrowing down the 

possible identities for a set of electron density maps, when combined with sequence 

information from mass spectrometry. 

 

4.3.5. 3D classification of a mixture of protein complexes 

 The ultimate goal of our pipeline is to reconstruct multiple 3D models from our 

output of clustered 2D projection images. We chose to use cryoSPARC for 3D 

reconstructions because it can perform heterogeneous reconstruction without a priori 

information on structure or identity (Punjani et al., 2017). We used the particles from 

each of our 3 distinct communities in addition to the isolated apoferritin node for ab initio 

reconstruction in cryoSPARC (Figure 5). The cluster containing primarily 40S ribosome 

particles was split into two classes to filter the additional junk particles present in the 

community. Comparison of our models reconstructed after clustering to the models 

produced using the entire data set as input for ab initio reconstruction in cryoSPARC 

with 4 classes (one for each protein complex in the mixture) showed our pre-sorting 

procedure improved the resulting structures (Figure 5). In particular, we were able to 

build an apoferritin model that was missed in the 3D classification of all particles from 

cryoSPARC. Our 80S model also shows a more complete density for the small subunit 

than its counterpart in the model created without clustering. We also observe that 
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changing the number of classes using ab initio reconstruction in cryoSPARC had a 

substantial impact on the quality of classification (Figure S8). 

 

 Each model was refined and evaluated using the gold-standard 0.143 Fourier shell 

correlation criterion (Figure S9). We obtained easily identifiable 40S, 60S, and 80S 

ribosome structures at 12, 4, and 5.4 Å resolution, respectively. We were also able to 

reconstruct the smaller, more compact apoferritin at 19 Å resolution. The ratio of particle 

numbers for each model was also compared to the input concentrations and shows a bias 

towards 60S particles (Figure S9). Notably, the 40S and 80S models contain streaks in 

one dimension, indicating that we are missing several orientations of the particles. We 

attribute this to preferential orientation of the particles in ice, rather than an inability of 

our algorithm to properly sort particles into correct communities. Together, these results 

demonstrate a functioning pipeline for sorting 2D projection images from a 

heterogeneous mixture of 3D structures, allowing for single particle EM to be applied to 

samples containing multiple proteins or protein complexes. Importantly, aside from 

choosing the most appropriate similarity measure, our approach is fully unsupervised, 

requiring no user defined estimate of the number of existing 3D classes. 

 

4.4. DISCUSSION 

 As cryo-EM continues to rapidly advance, one potential application would be to 

perform high-throughput single particle structural biology of the cell. In particular, our 

goal is to survey macromolecular structures directly from cell lysates. The ability to 

correctly sort and classify heterogeneous mixtures will become a necessary feature. One 

advantage of this approach would be to study closer-to-native proteins directly from cells 
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without the need to purify or alter the sample. Currently, handling compositional and 

conformational heterogeneity is a major challenge for the EM field, usually requiring 

expert, time-consuming steps. For our purposes of samples containing many structures, 

the more sophisticated projection matching algorithms currently used are not effective by 

themselves as they require an estimate for the number of 3D models expected. 

Additionally, chromatographic separation of cell lysate is often done on the basis of size, 

ruling out using the size of 2D projections as a means for separating them. 

 

 In this study, we present an unsupervised algorithm, SLICEM, which extends on 

previous methods and demonstrates that scoring the similarity between 2D class averages 

based on their 1D line projections contains sufficient information to correctly cluster 2D 

class averages of the same 3D structure from a mixture of protein and protein-nucleic 

acid complexes. Using the principal of common lines in a competitive graphical 

framework provides auxiliary information which can enhance traditional classification. 

Additionally, as we are not using the common lines to define a relative angle about a tilt 

axis between 2D projections, many of the pitfalls previously observed with using 

common lines for 3D reconstruction do not apply. We first demonstrate that the algorithm 

successfully sorts a synthetic dataset of reprojections created from 35 unique 

macromolecular structures. Next, we show the same algorithm can successfully partition 

2D class averages from an experimental data set containing multiple macromolecular 

complexes. Pre-sorting 2D projection images prior to 3D classification can allow for 

current reconstruction algorithms to be employed on datasets containing many unique 

structures. 
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 Although we demonstrated the feasibility of our approach on synthetic and 

experimental data, we acknowledge that there are several limitations. In particular, our 

algorithm relies on the quality of upstream 2D alignment, classification and averaging. 

One possible approach to better quantify the 2D class averages input to our algorithm 

would be to sweep multiple values of 2D classes and compare their Fourier ring 

correlations to see which number of classes has the most similar, high-resolution classes. 

There will likely be a tradeoff between picking enough classes to cover the heterogeneity 

present in the data and still having enough signal for accurate common line detection. 

However, our intent with this algorithm is simply to pre-sort 2D projections belonging to 

the same structure allowing for more robust 3D classification schemes. As we observed 

during 2D classification of our cryo-EM data, all apoferritin particles were grouped into a 

single class average. However, during our network generation step, each class average is 

given multiple edges to the most similar classes, forcing the single apoferritin class 

average to have multiple spurious edges. This error will occur any time the number of 

class averages of a given structure is less than the number of edges used in the graph. 

Future modifications to the algorithm could include searching for symmetric class 

averages, where this error is more likely to occur, and removing them prior to community 

detection. 

 

 As we move cryo-EM towards structural determination from complicated 

mixtures, several other technical challenges will emerge, such as universal freezing 

conditions. In our mixture of 5 macromolecular complexes, we were unable to easily find 

freezing conditions that accommodated all proteins. The result was a mixture missing β-

galactosidase and containing orientation preferences for the 40S and 80S ribosome. 

However, previous work has produced e.g. high-resolution structures of fatty-acid 
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synthase from fractionated cell lysate, suggesting it is possible to find suitable cryo-

conditions for solutions containing many macromolecular species (Kastritis et al., 2017). 

An additional challenge will be developing particle picking algorithms specifically for 

mixtures, where the particle shape may be unknown and, perhaps more importantly, non-

uniform. While in this study we used a template picking scheme, future studies with 

mixtures of unknown composition will require more sophisticated approaches. 

 

 An expert might be able to manually sort the class averages from our cryo-EM 

data set; however, as mixtures grow in complexity, manual sorting will certainly become 

infeasible. Introducing algorithms such as SLICEM will provide an unbiased way to 

group 2D projection images and can be easily implemented in conjunction with a variety 

of image processing and 3D reconstruction packages. One additional utility of this 

algorithm could be to remove junk class averages from data in a semi-supervised manner 

by removal of communities of projection images that do not appear to have structural 

features. Our approach for sorting mixtures of structures combined with previous 

approaches for sorting conformational heterogeneity could be a powerful tool for deep 

classification. Development of methods to sort mixtures of structures in single particle 

cryo-EM will allow us to solve more structures in parallel and alleviate time-consuming 

protein purification and sample preparation. 
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4.5. METHODS 

4.5.1. Synthetic data generation 

 The following list of PDB entries were used to create the dataset of synthetic 

reprojections (1A0I, 1HHO, 1NW9, 1WA5, 3JCK, 5A63, 1A36, 1HNW, 1PJR, 2FFL, 

3JCR, 5GJQ, 1AON, 1I6H, 1RYP, 2MYS, 3VKH, 5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 

4F3T, 6B3R, 1FPY, 1MUH, 1SXJ, 2SRC, 4V6C, 6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 

5A1A). Each PDB entry was low-pass filtered to 9 Å and converted to a 3D EM density 

using ‘pdb2mrc’ in EMAN (Ludtke et al., 1999). These densities were then uniformly 

reprojected using ‘project3d’ in EMAN to create 12 2D reprojections for each structure 

(Ludtke et al., 1999). Reprojections were centered in 350 Å boxes. 

 

4.5.2. Purification of apoferritin and β-galactosidase 

 Size-exclusion chromatography was performed at 4 °C on an AKTA FPLC (GE 

Healthcare). Approximately 10 mg of apoferritin (Sigma A3660-1VL) and 5 mg of β-

galactosidase G5635-5KU were independently applied to a Superdex 200 10/300 GL 

analytical gel filtration column (GE Healthcare) equilibrated in 20 mM HEPES KOH, 

100 mM potassium acetate, 2.5 mM magnesium acetate, pH 7.5 at a flow rate of 

0.5 mL min−1. Fractions were collected every 0.5 mL. 

 

4.5.3. SLICEM algorithm 

 Our algorithm consists of five main steps: (1) Extracting 2D class average signal 

from background, (2) Generating 1D line projections from the extracted 2D projection 
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images, (3) Scoring the similarity of all pairs of 1D line projections, (4) Building a 

nearest-neighbors graph of the 2D class averages and (5) Partitioning communities within 

the graph. 

 

4.5.3.1. Extracting 2D class averages from background 

 The input to our algorithm is a set of centered and normalized 2D class averages. 

The images are normalized according to the RELION conventions of setting particles to a 

mean value of zero and a standard deviation of one for all pixels in the background area. 

We then extract the centered region of positive pixels values from the zero-mean 

normalized images to remove background signal and extra densities that might be present 

in a class average. This step also serves to re-center the class average by surrounding it 

with a minimal bounding box. 

 

4.5.3.2. Generating 1D line projections from extracted 2D projection images 

 Each newly extracted class average is then projected into 1D over 360 degrees in 

5 degree intervals by summing the pixel values along the projection axis. The 1D line 

projections are then ready to be scored or are independently zero-mean normalized if the 

normalized cross-correlation or normalized Euclidean distance scoring metric are 

selected. 
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4.5.3.3. Scoring the similarity of all pairs of 1D line projections 

 To score the similarity of the 1D line projections we consider 6 different scoring 

metrics. The metrics evaluated were Euclidean distance (Eq. (1)), sum of the absolute 

difference (Eq. (2)), cross-correlation (Eq. (3)) and cosine similarity (Eq. (4)). We 

additionally consider Euclidean distance and cross-correlation after a Z-score 

normalization of each 1D line projection. For two 1D line projection vectors p and q, the 

difference d between the vectors can be calculated as follows: 

 

1) 𝑑 𝑝, 𝑞 = 	 𝑝9 − 𝑞9 %'
9;#  
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 The similarity of the 1D line projections is calculated for all pixel-wise 

translations of the smaller 1D projection across the larger 1D projection if there is a 

difference in projection size, analogous to the ‘sliding’ feature of standard cross-

correlations. The optimum score during the translations is kept for each pair of 1D 

projections. After pairwise scoring of all 1D line projections from all 2D class averages, 

the similarity between each pair of 2D class averages is defined by their respective best 

scoring 1D line projections. 
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4.5.3.4. Building a nearest-neighbors graph of the 2D class averages 

 SLICEM then constructs a directed graph using the similarity scores calculated 

for each pair of 2D class averages. Each node (2D class average) is connected to the 5 

most similar (top scoring) 2D class averages. Each edge is assigned a weight computed as 

a Z-score relative to all scores for a given 2D class average. 

 

4.5.3.5. Partitioning communities within the graph 

 The resulting graph is then subdivided using a community detection algorithm. 

Specifically, we evaluated the edge-betweenness and walktrap algorithms to define 

clusters in the graph. The default parameters for each clustering method implemented in 

iGraph were used in our algorithm, however we note that different similarity metrics and 

‘clustering strengths’ can be applied. For edge-betweenness, the dendrogram is cut at the 

level which maximizes the modularity and for walktrap, the length of the random walks 

is set to 4. Then, the median absolute deviation of summed pixel intensities for each node 

is calculated to remove outliers from clusters. Finally, for each community, the individual 

raw 2D particles corresponding to the now-grouped 2D class averages are then used as 

input for 3D reconstruction in cryoSPARC. 

 

4.5.4. Cryo-EM grid preparation and data collection 

 C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-coated with a 

thin layer of freshly prepared carbon film and glow-discharged for 30 s using a Gatan 

Solarus plasma cleaner before addition of sample. 2.5 µL of a mixture of 75 nM 40S 
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ribosome, 150 nM 60S ribosome, 50 nM 80S ribosome, 125 nM apoferritin and 125 nM 

β-galactosidase were placed onto grids, blotted for 3 s with a blotting force of 5 and 

rapidly plunged into liquid ethane using a FEI Vitrobot MarkIV operated at 4 °C and 

100% humidity. Data were acquired using an FEI Titan Krios transmission electron 

microscope (Sauer Structural Biology Laboratory, University of Texas at Austin) 

operating at 300 keV at a nominal magnification of ×22,500 (1.1 Å pixel size) with 

defocus ranging from −2.0 to −3.5 µm. The data were collected using a total exposure of 

6 s fractionated into 20 frames (300 ms per frame) with a dose rate of ~8 electrons per 

pixel per second and a total exposure dose of ~40 e– Å−2. A total of 2423 micrographs 

were automatically recorded on a Gatan K2 Summit direct electron detector operated in 

counting mode using the MSI Template application within the automated 

macromolecular microscopy software LEGINON (Suloway et al., 2005). 

 

4.5.5. Cryo-EM data processing 

 All image pre-processing was performed in Appion (Lander et al., 2009). 

Individual movie frames were aligned and averaged using ‘MotionCor2’ drift-correction 

software (Zheng et al., 2017). These drift-corrected micrographs were binned by 8, and 

bad micrographs and/or regions of micrographs were removed using the ‘manual 

masking’ command within Appion. A total of 522,653 particles were picked with a 

template-based particle picker using a reference-free 2D class average from a small 

subset of manually picked particles as templates. The contrast transfer function (CTF) of 

each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015). Selected 

particles were extracted from micrographs using particle extraction within RELION 

(Scheres, 2012) and the EMAN2 coordinates exported from Appion. Two rounds of 
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reference free 2D classification with 100 classes for each sample were performed in 

RELION to remove junk particles, resulting in a clean stack of 202,611 particle images. 

 

4.6. FIGURES 

 

Figure 4.1. Computational pipeline for SLICEM.  
Individual particle images are averaged after reference-free 2D alignment and 
classification. Using a Radon transform, 1D line projections are created from the 2D class 
averages (also referred to as 2D projections). Each 1D line projection from every 2D 
projection is then scored for similarity. The top scores between 2D projections are then 
used to create edges connecting 2D projections that have a similar 1D line projection, 
forming a graph. 2D projection images are then partitioned into groups belonging to the 
same putative structure using a community detection algorithm. Individual particle 
images belonging to each 2D projection within a community are subjected to ab initio 3D 
reconstruction. 
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Figure 4.2. Separating mixtures of synthetic 2D reprojections.  

Synthetic reprojections were generated from 35 distinct PDB structures low-pass filtered 
to 9 Å from protein and protein assemblies ranging in molecular weight from ~30 to 
3000 kDa, prior to separation using SLICEM. (A) Low-pass filtered models of each PDB 
structure. (B) Precision-recall plot ranking 6 different metrics at scoring the similarity 
between 1D line projections from each 2D reprojection. (C) Distribution of scores 
calculated using Euclidean distance for reprojections belonging to the same structure and 
reprojections belonging to different structures. 
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Figure 4.3. Experimental 2D class averages and resulting network.  

Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid 
complexes. Representative 2D class averages of the 4 complexes identified in the mixture 
are shown on the left. The identity of each class average was manually annotated were it 
could be easily identified. The class average corresponding to apoferritin was further 
subdivided into multiple classes for visualization. Each box corresponds to a width of 
422 Å. The network displayed was generated after using SLICEM on the 100 2D class 
averages scored using the sum of the absolute difference metric. Nodes representing each 
2D class averages are colored by their putative structural identity and are connected to 
their 5 most similar class averages. 



 98 

 

Figure 4.4. Summed pixel intensities of 2D class averages correlate to molecular weight.  
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(A) 2D to 1D projections (projection angle orthogonal to the x-axis) for representative 2D 
class averages of each structure present in the mixture. 1D projection plots show the line 
profile for a single 1D projection of each 2D class average. Pixel heat maps show the 
intensity of the line profile at each pixel. (B) Distribution of the summed pixel intensities 
calculated for each 2D class average. Summed pixel intensities for each manually 
identified 2D class average are plotted against their respective molecular weight. Black 
points are the mean summed pixel intensity for each structure and n indicates the number 
of 2D classes for each structure. 
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Figure 4.5. Ab initio structures from an experimental mixture.  
(Top) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and 
Leschziner, 2015), 60S ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-
4214 (Scaiola et al., 2018) and apoferritin EMD-2788 (Russo and Passmore, 2014). 
(Middle) 3D models of the 80S ribosome, 60S ribosome, 40S ribosome and apoferritin 
generated by sorting particles using SLICEM prior to ab initio 3D reconstruction in 
cryoSPARC. (Bottom) 3D models generated using ab initio reconstruction to generate 4 
classes in cryoSPARC without pre-sorting particles using SLICEM. 
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Figure 4.S1. 2D reprojections from synthetic dataset. 
Subset of 2D reprojections from 12 of the 35 structures in our synthetic dataset. Box size 
corresponds to 300 Å. 
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Figure 4.S2. Synthetic dataset network and clustergram. 
(A) Network displaying communities of 2D reprojection images determined using 
SLICEM. Each node represents a 2D reprojection with 5 connecting edges to the most 
similar reprojections as scored using Euclidean distance. The color of each node matches 
the structure from which it was reprojected (shown as a surface). (B) Clustergram 
showing the block structure of similarity between synthetic 2D reprojections based on the 
scoring of their 1D line projections by Euclidean distance. The distance metric used for 
hierarchical clustering was Euclidean and the linkage method used was “average”. Row 
and column colors correspond to PDB structure identity and individual pixels reflect the 
dissimilarity between them (i.e. the lower the dissimilarity, the better the match between 
1D line projections). 
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Figure 4.S3. Effect of non-uniform projection angles and number of projections. 

The 35 PDB structures from Figure 2A were randomly reprojected between 2-12 times 
and at random Euler angles each between 0 degrees – 360 degrees. These reprojections 
were then subjected to our SLICEM algorithm using Euclidean distance to score 1D line 
projections and walktrap for clustering. The side-by-side networks show the nodes 
labeled after clustering and the nodes labeled by PDB identity. Projections belonging to 
the same PDB structure are well grouped but not always clustered correctly. Precision 
and recall was used to compare the non-uniform dataset to the uniform dataset and shows 
only a slight decrease in performance for the more realistic case of non-uniform 
projections.  



 105 
 



 106 

Figure 4.S4. Mixtures with molecular symmetries or conformational and compositional 
heterogeneity. 

Uniform reprojections of a ribosome, a ribosome with EF-Tu, and a ribosome with EF-G 
(PDB 4V5D, PDB 4V5G, PDB 4V5F) low-pass filtered to 9 Å were created to test the 
effect of conformational and compositional heterogeneity on our algorithm. Similarly, 
uniform reprojections of five C-3 symmetric structures (PDB 3RRR, PDB 5TOJ, PDB 
5I08, PDB 5W9I, PDB 4ZYP) were created to test the effect of molecular symmetry on 
our algorithm. The box size of all reprojections is 350 Å. The similarity of 1D line 
projections between 2D reprojections in each set were calculated using Euclidean 
distance and performance was measured using precision and recall. Here, the high 
scoring precision-recall curves indicate that common line scores from projections of the 
same structure outperform scores to similar, but slightly different structures. 
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Figure 4.S5. 2D classification of particles using RELION. 
(A) Representative raw micrograph of a mixture containing 40S, 60S and 80S ribosomes, 
apoferritin and β-galactosidase. (B) Reference-free 2D class averages generated using 
RELION of ~203,000 template-picked particle images. Box size corresponds to 422 Å. 
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Figure 4.S6. Precision-recall curves for experimental cryo-EM data. 
Precision-recall plot displaying 6 different metrics for scoring the similarity between 1D 
line projections from the entire set of 2D class averages. Euclidean and normalized 
Euclidean metrics scored identically and are overlaid. 
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Figure 4.S7. Effect of varying the number of 2D class averages. 
Using RELION, 2D class averages with K = 80, 100, 120 and 200 were created from the 
final stack of ~203,000 particle images. The 2D class averages were then subjected to our 
SLICEM algorithm using the sum of absolute difference to score 1D line projections and 
edge betweenness for clustering. The side-by-side networks show the nodes labeled by 
manually annotated identity and by cluster. Precision and recall was used to compare the 
performance at various numbers of 2D classes. All precision-recall curves show 
substantial improvement over random assignment. 
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Figure 4.S8. Ab initio reconstructions in cryoSPARC with varying class number. 

3D reconstructions using ab initio reconstruction in cryoSPARC from the entire data set 
with K = 3, 4, 5 and 6 classes, respectively. 
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Figure 4.S9. Fourier shell correlation curves  

(A) FSC curves for our clustered 80S ribosome (blue), 60S ribosome (green), 40S 
ribosome (red) and apoferritin (purple) shown in Figure 5. Nominal resolutions were 
estimated to be 5.4, 4, 12 and 19 Å, respectively, using the 0.143 gold-standard FSC 
criterion. β-galactosidase was not observed in our dataset and therefore no reconstruction 
was calculated. (B) Theoretical ratio of particles from the input concentrations compared 
to observed ratio of particles after clustering of the data. The input concentrations for the 
80S, 60S, 40S, apoferritin and β-galactosidase were 50, 150, 75, 125 and 125 nM and the 
observed particles for each were 38957, 126776, 30353, 6525 and 0, respectively. 
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Chapter 5: Molecular architecture of the red blood cell proteome 

 The initial results shown in this chapter are part of an ongoing effort led by 

Wisath Sae-Lee to characterize the molecular architecture of the red blood cell proteome 

using co-fractionation mass spectrometry. As described below, red blood cells are 

uniquely suited to investigation by co-fractionation mass spectrometry and shotgun cryo-

EM. Wisath Sae-Lee was the lead on all biochemistry aspects of the work with help from 

Ophelia Papoulas. Wisath Sae-Lee also performed the computational analysis and 

interpretation of the mass spectrometry data. I performed the electron microscopy data 

collection, analysis and interpretation. Some of the text in the section describing the 

molecular architecture of the red blood cell proteome was written by Wisath Sae-Lee.  

 

5.1. ABSTRACT 

 Erythrocytes (red blood cells; RBCs) are the simplest primary human cells, 

lacking nuclei and all major organelles. Despite their simplicity, RBCs dynamically 

change cellular morphology and physiology throughout their journey in the body. These 

cellular dynamics are mediated by protein assemblies whose complete picture in RBCs is 

still unknown. While hemoglobin accounts for 98% of expressed RBC proteins, the full 

proteome includes >1,000 distinct proteins in which the roles of many remain elusive. In 

this study, we first identified a comprehensive RBC proteome of 1,202 proteins (1% 

FDR) using machine learning from quantitative mass spectrometry and RNA-seq on 

RBCs and other blood cell types. We then determined the stable protein complexes in 

mature RBCs, based on mass spectrometry of 1,944 native biochemical fractions of 

hemoglobin-depleted hemolysate and detergent solubilized membrane protein complexes, 
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validating large protein assemblies with electron microscopy. Our data reveal an RBC 

interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, 

and carbon-metabolism. As the first near-complete interactome for any primary human 

cell type, this map of RBC protein complexes provides a better understanding of the 

unique constraints of RBC function and serves as a comprehensive resource for future 

research. 

 

5.2. CO-FRACTIONATION MASS SPECTROMETRY OF RED BLOOD CELLS 

 Although powerful techniques such as affinity purification mass spectrometry 

(AP-MS) and proximity labeling are available to study protein-protein interactions (PPIs) 

in other cell types, these techniques are not amenable for RBCs because of the lack of 

nucleus. Therefore, we turned to another powerful technique to study protein complexes, 

co-fractionation mass spectrometry (CF-MS). CF-MS is a high-throughput technique that 

combines the use of biochemical fractionations and bioinformatics to characterize PPIs 

through their co-elution behavior in multiple orthogonal separations. CF-MS does not 

require antibodies nor transgenic epitope tagging of individual proteins, thus uniquely 

appropriate to RBCs. The co-elution (co-fractionation) of proteins in a separation serves 

as evidence for physical association (Wan et al., 2015). The power of this technique 

comes from the integration of the co-elution profiles from multiple orthogonal 

biochemical separations. This makes it possible to distinguish between real PPIs and 

random co-elution. In addition, the quantification of PPIs via machine learning methods 

allows us to have a strong control over false discovery rates of protein interactions. 
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 We generated a large proteomics dataset of fractionated RBC proteins using 

various methods of biochemical fractionation (Figure 1A). Non-denatured protein 

extracts from hemolysate (soluble proteins) and non-ionic detergent dissolved ghosts 

(membrane proteins) were separated by biophysical properties such as size and. Each 

chromatographic fraction was analyzed by high-resolution, high-sensitivity liquid 

chromatography/mass spectrometry (LC/MS). In all, we collected mass spectra from 

1944 individual chromatographic fractions.  

 

 Subunits of many well-known complexes co-elute with distinct patterns in 

different types of biochemical gradient. Although we can distinguish elution patterns 

from different protein complexes easily, a more rigorous computational framework is 

required to map PPIs in the large data set such as this (Figure 1B). We employed a 

supervised machine learning approach based upon observed data for known complexes. 

Protein-protein interactions were derived solely from the separation behavior of proteins 

over multiple, orthogonal biochemical fractionation experiments. 

 

5.3. VALIDATION OF KNOWN COMPLEXES THROUGH ELECTRON MICROSCOPY 

 Alongside the CF-MS pipeline, fractions from HPLC size exclusion of 

hemolysate were analyzed using electron microscopy. First, to survey the size, shape and 

complexity of macromolecules across the fractionation, we used negative stain EM to 

visualize binned fractions (Figure 2A). Using the corresponding mass spectrometry data 

and prior knowledge, we were able to identify four distinct protein complexes (Figure 

2B). Notably, three of the structures identified were homooligomers. TPP2, a serine 

protease, was the largest observed homooligomer and is known to form large 5-6 MDa 
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assemblies (Macpherson et al., 1987; Schönegge et al., 2012). The other homooligomers 

identified were ALAD (Mills-Davies et al., 2017), an ~290 kDa homooctamer with D4 

symmetry and PRDX2 (Schröder et al., 2000), an ~218 kDa homodecamer with D5 

symmetry. 

 

 We then chose the pooled fractions 10-21 for analysis by cryo-EM. The over-

represented 20S proteasome in these fractions provided a built-in control for our ability to 

resolve protein complexes from fractions of hemolysate. We collected ~6,600 

micrographs and used single particle analysis to obtain a reconstruction of the 20S 

proteasome with a nominal resolution of 3.35 Å (Figure 2C). To further investigate the 

proteasome assembly states in red blood cells, we collected a negative stain dataset of 

hemolysate after being passed through a 100 kDa filter, allowing us to see multiple states 

in the same image (Figure 3). We found that ~94% of the proteasomes observed through 

this scheme were 20S and the remaining ~6% were single-capped 26S proteasomes 

(Figure 3). This observation corresponds with our clustering of PPIs which shows 

separate clustering for 20S and 19S proteasomes. 

 

5.4. DISCUSSION 

 Red blood cells are one of the most abundant cell types in humans with a primary 

role of oxygen transport. Despite their importance, a consensus on the complete proteome 

as well as protein complexes underlying phenotypes and cellular functions has not been 

reached. This is in part due to mature erythrocytes lacking a nuclei and major organelles, 

preventing affinity purification mass spectrometry, proximity labeling and other genetic 
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tagging methods. However, RBCs are uniquely suited to investigation by CF-MS and 

shotgun cryo-EM as neither technique require a genetic handle.  

 

 Using a rigorous statistical framework for our mass spectrometry data, we define 

a comprehensive proteome for RBCs and recover high confidence protein-protein 

interactions from known complexes as well as novel complexes. We additionally survey 

the architecture of these complexes using electron microscopy on size separated red 

blood cell lysate and recover several known complexes as validation. An advantage of 

integrating electron microscopy into the CF-MS pipeline is that we are able to quantify 

ratios of biochemical states by direct observation, as demonstrated with the proteasome. 

 

 In future experiments, we plan to incorporate cross-link mass spectrometry data to 

provide additional evidence for previously uncharacterized protein-protein interactions in 

RBCs. Cross-link mass spectrometry will also provide useful data for integrative 

modeling of protein structures produced from shotgun cryo-EM of RBCs. This work 

details an interaction map for the protein assemblies underlying healthy red blood cells 

and provides a basis for molecular mechanisms leading to blood cell disorders. 

 

5.5. METHODS 

5.5.1. Negative stain electron microscopy 

 4 µL of hemolysate was applied to a glow-discharged 400-mesh continuous 

carbon grid. After allowing the sample to adsorb for 1 min, the sample was negatively 

stained with five consecutive droplets of 2% (w/v) uranyl acetate solution, blotted to 
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remove residual stain, and air-dried in a fume hood. Grids were imaged using an FEI 

Talos TEM (Thermo Scientific) equipped with a Ceta 16M detector. Micrographs were 

collected manually using TIA v4.14 software at a nominal magnification of x73,000, 

corresponding to a pixel size of 2.05 Å/pixel. CTF estimation, particle picking and 2D 

class averaging were performed using both RELION v3 (Zivanov et al., 2018) and 

cryoSPARC v2.12.4 (Punjani et al., 2017). Three negative stain datasets were collected. 

The first dataset collected contained ~220 micrographs of pooled HPLC size exclusion 

fractions 1-9. ~2,500 particles were manually picked and processed in cryoSPARC to 

produce the TPP2 structure in Figure 2C. Two datasets were collected of hemolysate after 

being passed through a 100 kDa filter, one as prepared and the other at 1:100 dilution. 

For the diluted sample, ~400 micrographs were collected and ~42,500 particles were 

picked using Topaz (Bepler et al., 2019). The resulting particles were used to generate the 

PRDX2 structure in Figure 2C and the 2D class averages in Figure 3B. For the non-dilute 

sample, ~230 micrographs were collected and ~1,500 proteasome particles were 

manually picked followed by classification in RELION (Figure 3C). 

 

5.5.2. Cryo-EM grid preparation and data collection 

 C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were glow-discharged for 

1 min using a Solarus 950 plasma cleaner (Gatan). 2 µL of 0.2 mg/mL graphene oxide 

(Sigma-Aldrich) was placed onto the grids for 1 min followed by one wash with water. 3 

µL of pooled and concentrated hemolysate from HPLC size exclusion fractions 10-20 

was placed onto the grid, blotted for 3.5 sec with a blotting force of 0, and rapidly 

plunged into liquid ethane using an FEI Vitrobot MarkIV operated at 4 °C and 100% 

humidity. Data was acquired using an FEI Titan Krios TEM (Sauer Structural Biology 
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Laboratory, University of Texas at Austin) operated at 300 keV with a nominal 

magnification of ×22,500 (1.045 Å/pixel) and defocus ranging from –1.09 to -–2.5 µm. 

Dose-fractionated movies were collected using 20 frames (0.15 sec/frame) over a total of 

3 sec with a dose rate of ~2.13 e-/Å2/sec and a total exposure of 42.58 e-/Å2. A total of 

6,606 micrographs were automatically recorded on a K3 detector (Gatan) operated in 

counting mode using Leginon (Suloway et al., 2005).  

 

5.5.3. Cryo-EM data processing 

 Motion correction, CTF-estimation and particle picking were performed in 

Warpv1.0.7 (Tegunov and Cramer, 2019). Extracted particles were imported into 

cryoSPARC v2.12.4 for 2D classification, 3D classification and non-uniform 3D 

refinement. A previously solved structure of the human 20S proteasome, PDB 6RGQ 

(Toste Rêgo and da Fonseca, 2019), was aligned by cross-correlation in UCSF Chimera 

(Pettersen et al., 2004) and docked into the model. 
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5.6. FIGURES 

 

Figure 5.1. Overview of the integrative Co-Fractionation Mass Spectrometry (CF-MS) 
workflow used to determine stable RBC protein complexes. 

(A) Hemolysate and white ghosts are chromatographically separated and the proteins in 
each fraction are identified by mass spectrometry. Elution profiles for each protein are 
represented as ridgelines across multiple separation experiments. Correlations between 
pairs of proteins are used to construct a feature matrix for a machine learning pipeline 
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which outputs a CF-MS score describing how likely an interaction between two proteins 
in RBCs would be. (B) Heat map of the full dataset of abundance measurements for each 
of the 1,202 RBC proteins across all fractionations of hemolysate and white ghosts. (C) 
Enlarged portions of (B) showing examples of strong co-elution observed for subunits of 
six well-known protein complexes in RBCs. Color intensity depicts abundances for each 
protein. 
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Figure 5.2. Validation of the CF-MS workflow using electron microscopy to confirm 
intact multi-protein complexes. 

(A) Hemolysate from size exclusion chromatography was partitioned into five groups and 
visualized with negative stain EM. Elution profiles from corresponding mass 
spectrometry data were used to assist in identifying abundant protein assemblies. (B) 
Reference-free 2D class averages of four protein complexes spanning ~220 – 5000 kDa 
identified from hemolysate. (C) Cryo-EM reconstruction of the 20S proteasome and 
negative stain structures of TPP2 and PRDX2 along with docking of their corresponding 
atomic structures PDB 3LXU (Chuang et al., 2010) and PDB 1QMV (Schröder et al., 
2000), respectively.  



 124 

 

Figure 5.3. Assessment of proteasomes from negative stain electron microscopy of RBC 
hemolysate shows a majority in the 20S form.  

(A) Example micrograph of hemolysate after being passed through a 100 kDa filter. (B) 
Subset of reference-free 2D class averages from filtered hemolysate showing 
macromolecular assemblies of distinct sizes and shapes. Box length is 254 Å. (C) 
Reference-free 2D class averages and aligned raw particles for 20S proteasome (top 
view), 20S proteasome (side view) and 26S proteasome (single-capped) from left to right. 
Box length is 459 Å. (D) Distribution of observed proteasome states from negative stain 
EM of hemolysate. The total number of proteasome particles classified was 1,510. 
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Chapter 6: Conclusions and Outlook 

6.1. ARC OF THIS WORK 

 Following the adage “seeing is believing”, the central theme of this dissertation 

has been to evaluate single particle electron microscopy as a means to visualize structures 

of molecular machines from cell extracts. As part of a larger quest to define the 

organization of the proteome into assemblies, structural studies on cell lysates can 

circumvent the need for purification of single targets and provide direct insight on 

multiple near-native protein complexes in a single experiment (Kyrilis et al., 2019; 

McCafferty et al., 2020). This work is made possible by many recent advances in electron 

microscopy (e.g. increased signal due to direct detector devices and ab initio 3D 

reconstructions), which have opened new frontiers in structural biology. 

 

 In Chapter 2 of this dissertation, we demonstrate that it is indeed possible to 

recover meaningful structural information using electron microscopy on fractions of size 

separated cell lysate containing hundreds of unique proteins. Although the results are at 

limited resolution and highlight only a few large, well-studied protein complexes, this 

proof-of-principle suggests cryo-EM need not be limited to highly purified samples. 

Chapter 3 is a continuation of these efforts and combines simple microfluidics with 

negative stain electron microscopy of single C. elegans embryos at differing 

developmental stages. This framework could provide a tractable way to study dynamics 

of protein structures across development. Motivated by results from the previous 

chapters, we then developed an algorithm designed specifically for handling single 

particle cryo-EM datasets containing multiple distinct structures, described in Chapter 4. 

Currently, the major data processing pipelines are designed for single or few related 



 126 

structures. To leverage these existing software, it was necessary to design a tool for 

separating particles into homogenous subsets before applying conventional processing 

protocols. Finally, in Chapter 5, we present early results combining co-fractionation mass 

spectrometry and cryo-EM using red blood cells as a model system. Taken together, these 

chapters point towards a future of being able to combine mass spectrometry and electron 

microscopy to uncover meaningful and novel structures from cell lysates. 

 

6.2. OUTLOOK FOR SHOTGUN CRYO-EM 

 At the beginning of this thesis work, few studies had been done explicitly using 

cell lysates for structural analysis of protein assemblies by electron microscopy. The first 

major work demonstrating the power of single particle cryo-EM and fractionation mass 

spectrometry was in 2017, where a 4.7 Å structure of fatty acid synthase was solved from 

size separated fractions of Chaetomium thermophilum lysate (Kastritis et al., 2017). 

Shortly after, we published initial progress using low-resolution negative stain EM with a 

focus on recovering multiple structures from cell lysate. Here, our objective was to test if 

cryo-EM could be integrated into the co-fractionation mass spectrometry pipeline as a 

way to validate and characterize known or predicted protein complexes. I anticipate that 

structures from these methods, in combination with electron tomography, will produce 

information-rich cell atlases capturing high-resolution structures of the proteome and its 

spatial context. 

 

 Since these initial studies, there have been a number of works published with 

important contributions for utilizing cryo-EM on cell extracts. One such study introduced 

the software cryoID, which is designed to “sequence by structure” from cryo-EM maps 
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(Ho et al., 2020; Terwilliger et al., 2021). This tool will be a valuable resource as more 

high-resolutions structures are solved from mixtures where subunits or entire assemblies 

could be of unknown identity. Currently, in the more likely event that structures are not 

solved to high-resolution, it will also be important to have methods for modelling and 

docking atomic structures into low- to mid-resolution maps (McCafferty et al., 2020). 

General machine learning approaches applied throughout the cryo-EM data processing 

pipeline will also increase our ability to solve structures from mixtures (Kyrilis et al., 

2021a). 

 

 Samples being investigated now vary a wide range of organisms (Kim et al., 

2020) and also expand beyond soluble fractions of cell lysate. So far, these include 

studies tackling heterogeneous mixtures from membrane fractions (Su et al., 2021), as 

well as nuclear extracts (Arimura et al., 2020). Other exciting avenues include targeting 

specific complexes by inducing cell stress (Kirykowicz and Woodward, 2020), or by 

combining biochemical and functional assays (Kyrilis et al., 2021b). With such rapid 

developments in cryo-EM technology, I am optimistic that single particle cryo-EM on 

native cell extracts will become an important part of uncovering many structure-function 

relationships. 
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