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Increasing global energy demand requires greater efficiency in water electrolyzers 

for low cost hydrogen generation and rechargeable metal-air batteries to enable pragmatic 

development of these key technologies. Given that the efficiencies of these technologies 

are limited primarily by the sluggish kinetics of the oxygen evolution reaction (OER) 

and/or oxygen reduction reaction (ORR), I have made extensive efforts to reduce the 

overpotential for the OER and ORR in alkaline media by designing advanced non-

precious metal electrocatalysts. Alkaline conditions were chosen owing the more facile 

kinetics of the ORR, as compared to acid, and because alkaline electrolytes enable the use 

of catalysts containing non-precious metals. Perovskites, represented by ABO3+δ, in 

which A is a rare-earth or alkaline earth element and B is a transition metal, were selected 

because of their demonstrated ability to promote the OER and the ORR, owing to their 

high ionic and electronic conductivities, good structural stability, and synthetic 

versatility. This made perovskites an ideal crystal structure for the development of 

rational catalyst design criteria. 

To this goal, I designed a series of lanthanum-based perovskite electrocatalysts 

LaBO3, B = Ni, Ni0.75Fe0.25, Co, Mn) that are highly active for both the OER and ORR in 
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an aqueous alkaline electrolyte. LaCoO3 sup7ported on nitrogen-doped carbon is shown 

to be ~3 times more active for the OER than high surface-area IrO2, and was 

demonstrated to be highly bifunctional by having a lower total overpotential between the 

OER and ORR (ΔE = 1.00 V) than Pt (ΔE = 1.16) and Ru (ΔE = 1.01). I discovered a 

new catalyst design principle using a series of Ruddlesden-Popper (RP) La0.5Sr1.5Ni1-

xFexO4+δ oxides that promote Ni-O-Fe charge transfer interactions which significantly 

enhance OER catalysis. Using selective substitution of Sr and Fe to control the extent of 

hybridization between eg(Ni), p(O) and eg(Fe) bands, I have demonstrated exceptional 

OER activity of 10 mA cm
-2

 at a 360 mV overpotential and mass activity of 1930 mA 

mg
-1

ox at 1.63 V, over an order of magnitude more than the leading precious-metal oxide 

electrocatalyst IrO2. In the course of this work, I also helped discover reversible charge 

storage via anion-based intercalation in LaMnO3+δ electrodes, and a new OER 

mechanism whereby redox-active lattice oxygen directly participates in the formation of 

O2. 
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Chapter 1: Introduction 

The generation and reduction of oxygen are crucial chemical reactions in large-

scale hydrogen production via water electrolysis, and are the principal reactions at air 

electrodes in rechargeable metal-air batteries.[1-3] These reactions are known as the 

oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In the 

electrolysis of water, two electrodes are immersed in water and placed in electrical 

contact with a power source and each other. One electrode is driven to a positive potential 

creating an anode that oxidizes water to form oxygen (the OER) while the other electrode 

balances the reaction by being at a reductive potential creating a cathode that reduces 

protons to form hydrogen. To generate hydrogen, a voltage must be applied across the 

electrodes and electric current must flow from anode to cathode. Likewise, aqueous 

metal-air batteries are comprised of an anode and cathode in physical contact with an 

electrolyte, and in electrical contact with a device to be powered. The anode is typically a 

non-precious metal, such as zinc, that when placed in electrical contact with a precious 

metal cathode in the presence of air, establishes a galvanic potential difference. The 

galvanic potential difference between the electrodes drives the oxidation of the anode and 

the reduction of oxygen at the cathode (the ORR). If the anode oxidation product can be 

reduced by reversing the polarity of the metal-air battery injecting current into the anode, 

that system is called a reversible metal-air battery. Bifunctionality, where one electrode is 

capable of catalyzing both the OER as well as the ORR, is also a highly desirable 

property for such a system. Metal-air batteries produce electricity while discharging, and 

consume it while charging. Whether generating electricity or consuming it, both usage 

scenarios rely on the electrochemical evolution and reduction of oxygen, complex four 

electron reactions that are kinetically sluggish. The poor kinetics of the OER and ORR 
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means that hydrogen generation is energy intensive, and metal-air batteries produce less 

energy than they are theoretically capable of. 

 

1.1 MECHANISMS AND KINETICS  OF THE OER AND ORR  

The OER and ORR are multistep four electron reactions that proceed via different 

intermediates and mechanistic routes which are highly dependent on the catalyst and 

electrolyte.[1-4] The ORR in alkaline media proceeds via one of two ways: by a direct 

four-electron reduction, according to Equation 1.1, 

O2 + 2H2O + 4e
-
 → 4OH

-
                                    (1.1) 

or proceeding in a stepwise fashion in a 2-by-2 electron pathway, according to Equations 

1.2 and 1.3, 

O2 + H2O + 2e
-
 →HO2

-
 + OH

-
                  (1.2) 

HO2
-
 + H2O + 2e

-
 → 3OH

-
                (1.3) 

in which the reduction of the hydroperoxide intermediate (Equation 1.3) is often 

identified as a rate determining step in the ORR, although the large chemisorption energy 

required for the initial activation of oxygen on certain electrode materials has also been 

identified as rate determining. [5-7] The OER in alkaline media can be represented by a 

direct four electron reaction, as written in Equation 1.4, 

4OH
-
 → O2

 
+ 2H2O + 4e

-
              (1.4) 

or via a sequential, 2-by-2 electron pathway, according to Equations 1.5 and 1.6, 

H2O + 2OH
- 
→ O

2-
 + 2H2O + 2e

-
       (1.5) 

O
2-

 + H2O + 2OH
- 
→ O2 + 2H2O + 2e

-
          (1.6) 

in which the formation of the hydroperoxide intermediate (HOO
-
) during Equation 1.6 is 

one of the proposed rate determining steps.[8, 9] These rate limiting steps for both the 
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ORR and OER require additional activation energy to overcome, in excess of the 

thermodynamic potentials at which they should theoretically begin, commonly referred to 

as the overpotential. The overpotential required to facilitate the ORR and OER is partly 

responsible for the decreased efficiency of metal-air batteries or the high energy input 

required for water hydrolysis due to the large overpotentials required, shown in Figure 

1.1. 

. 

 

Figure 1.1: Schematic of the overpotentials required for the 

OER and ORR due to the poor kinetics. 

 

1.2 ALKALINE OXYGEN ELECTROCHEMISTRY 

A persistent challenge in the development of active ORR catalysts is the reduction 

in overpotential required to facilitate the full four electron reduction of oxygen and 

oxidation of hydroxide. Equations 1.1 and 1.4 are balanced for an alkaline electrolyte, but 

the ORR and OER can likewise proceed in acid environments, where much research has 

been conducted on precious metal catalysts such as Pt, Pd, and IrO2.[10, 11] The use of 

precious metal electrodes is in part due to their stability in acidic electrolyte (pH ~ 0 to 
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1), and because they were experimentally found to be more active than other less 

precious metals and oxides. The cost of these electrodes materials is a large barrier to the 

commercialization of technologies relying on the OER and ORR, and likewise makes the 

resulting products (i.e.  electrical current, H2) less commercially viable.[12] Conversely, 

in alkaline electrolyte metal and metal oxide catalysts that would otherwise be too 

unstable in acidic media become practical. Several oxides such as Co3O4, MnyOx, 

NiCo2O4, and LaNiO3 have been shown to be nearly as active for the OER or ORR in 

alkaline media as some precious metals in acidic electrolyte.[3, 4, 13-18] In addition to 

enabling the use of highly active metal oxides, alkaline ORR kinetics are also faster in 

part due to the more facile formation and stability of the hydroperoxide intermediate in 

alkaline electrolyte and decreased anion adsorption strength.[19-21] 

1.3 OXYGEN ELECTROCATALYSIS ON PEROVSKITES AND RUDDLESDEN-POPPER 

ELECTRODES 

Recently, ABO3-type oxides known as perovskites, where A is commonly a rare-

earth or alkali element and B is commonly a transition metal, have attracted much 

attention due to their reported high specific catalytic activity (μA/cm
2

ox) towards the OER 

and ORR in alkaline conditions,[18, 22, 23] and their ability to store charge as an 

electrochemical pseudocapacitor by oxygen intercalation.[24] However, perovskites 

typically have low surface areas (< 4 m
2
/g) and/or inactive secondary phases that result in 

low current densities of practical interest (mass activity, mA/mgox). 

 



 5 

 

Figure 1.2: Ideal crystal structure of Perovskite and 

Ruddlesden-Popper oxides 

(a) Ideal cubic perovskite (ABO3) in which a lanthanide, rare or alkali 

earth ion (A, green) is the largest ion, and is coordinated by transition 

metal cations (B, red), that are in octahedral coordination with oxygen 

anions (C, blue). b) The Ruddlesden-Popper (RP) crystal structure which 

wherein n perovskite layers with a thickness of n (BO6) octahedra are 

separated by rocksalt (AO)(OA) double layers.  

The perovskite structure encompasses a wide array of materials with differing 

physical, chemical, optical, and electronic properties. The perovskite crystal structure can 

be either cubic, rhombohedral or orthorhombic depending on the ionic radii and charge of 

the A and B site cations and are only stable at neutral to basic pH. The cubic perovskite 

structure is presented in Figure 1.2a. They are a robust family of materials, exhibiting 

oxygen non-stoichiometry and capable of a wide degree of atomic replacements and 

substitutions, including aliovalent doping. If no more than one substitution is considered 

per A and B site, the formula for a perovskite can be written generally as A1-xA
’
xB1-

yB
’
yO3-δ, such that charge neutrality is maintained (with x and y < 1, and δ + 0.5). 

Regardless of specific crystallographic structure, the B site is coordinated by six oxygen 
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anions, forming a BO6 octahedral unit. Within the octahedral unit, the valence d-band 

orbitals interact with the oxygen 2p orbitals, causing a discretization of d-electron energy 

levels. These discretized energy levels change the strength and nature of chemisorption of 

reactants and intermediates.[25, 26] Furthermore, the endothermic or exothermic nature 

of these interactions are governed by the B site element and oxidation state, which are 

intrinsically tied to the perovskite structure, including the A element and oxidation 

state.[27-29] It is this complex and tunable (via atomic replacements) energetic landscape 

that makes the perovskite family a compelling system to study for catalysis. The 

Ruddlesden-Popper (RP) crystal structure is represented as An+1BnO3n+1 or equivalently 

(AO)(ABO3+δ)n, wherein perovskite layers with a thickness of n (BO6) octahedra are 

separated by rocksalt (AO)(OA) double layers (Figure 1.2b). This RP phase can 

accommodate all the elemental substitutions available to perovskites as well as additional 

compositions that are not stable in the perovskite structure.
20

 While Ruddlesden-Popper 

materials have been explored as solid oxide fuel cell cathodes owing to their chemical 

flexibility and labile lattice oxygen, they have not been fully examined for room 

temperature water oxidation.
21, 22, 23, 24, 25, 26, 27

 

OER and ORR studies with perovskites were first reported during the 1970s, and 

their activity was described in terms of surface and bulk electronic properties. The active 

sites are believed to be the transition metal (B site) atoms, and much attention recently 

has been focused on the eg orbital filling of the transition metal B site as the activity 

descriptor.[4, 18]. Alternatively, it has been suggested that the total number of valence 

electrons is the critical parameter (activity descriptor) for both the OER and ORR. DFT 

calculations suggest that that the adsorption strengths of intermediates monotonically 

increase as the number of outer B site valence electrons increases across row 4 in the 

periodic table (with the exception of Sc).[25] Similar trends were found when 
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dissociation chemisorption and transition state energies were computed by DFT for 

diatomic oxygen on LaBO3 perovskites.[26] While these computational trends assist in 

theoretically understanding why some perovskites are more active than others, none of 

them account for the support interactions that exist between the catalyst and carbon 

support. 

To enable perovskites to achieve current densities of practical interest, they must 

be synthesized such that the formation of catalytically inactive secondary phases is 

minimized and that they possess a moderate to high surface area.[18, 23] A high 

temperature calcination step is required to crystallize perovskites and frequently results in 

significant coalescence and sintering which produces low surface area particles ranging 

from 200 nm to 1 µm or greater.[32-34] Solid state syntheses wherein simple oxides are 

ground together and fired at > 1100° C also result in multi-micron sized particles. A 

common technique to increase perovskite surface area is the ball milling of bulk materials 

to obtain particles >200 nm to several micrometers in diameter.[29, 35] An alternative 

strategy is to synthesize amorphous perovskite nanoparticles with bottom up approaches 

by sol-gel methods,[32, 34, 35] reactions in reverse micelles,[36-38] coprecipitation 

hydrolysis processes,[39-41] and hydrothermal routes followed by calcination at high 

temperature. 

 

1.4 OBJECTIVES 

The principal objectives of this dissertation are to synthesize perovskite and 

Ruddlesden-Popper (RP) electrocatalysts that display high mass and specific activities 

(mA mg
-1

ox and mA cm
-2

ox, respectively) through precise synthetic control of their 

chemical, structural and electronic configurations. Furthermore, insights into the 



 8 

mechanisms governing the OER and ORR on these materials will be gained, and new 

catalyst design criteria will be proposed to aid in the future development of non-precious 

metal OER and ORR electrocatalysts. Initial work will focus on synthesizing a phase-

pure nanostructured LaNiO3 using a reverse-phase coprecipitation method to form 

nanoparticulate precursors having adequate atomic intermixing. Examination of surface 

states and the role of lattice hydroxylation on the OER mechanism will be proposed, and 

LaNiO3 demonstrated to be an efficient bifunctional OER-ORR electrocatalyst. 

The coprecipitation synthesis previously developed for LaNiO3 is then extended 

to other perovskite compositions, and a series of LaMO3 (M = Ni, Co, Mn) perovskites 

were synthesized and the validity of a commonly ascribed OER activity descriptor, eg 

filling is tested. Building upon previous work where we observed that the carbon support 

structure and composition had a significant impact on the perovskite catalytic activity, the 

impact of high surface area graphitic and N-doped carbons on the OER and ORR are 

tested. Previously, N-doped carbons were known to improve the OER due to their ability 

to disproportionate an ORR intermediate, HOO
-
, as seen in equation 1.3. To test this 

theory, chemical peroxide disproportionation functionality was also introduced in the 

LaNiO3 electrochemistry through 25% Fe substitution for Ni. If the N-doped carbon’s 

role in enhancing perovskite ORR activity is indeed peroxide disproportionation, then the 

catalytic activity of LaNi0.75Fe0.25O3 is not expected to be improved as much, or at all, by 

the use of N-doped carbon. 

Finally, the Ruddlesden-Popper crystal is used to achieve electronic 

configurations not realizable in perovskite and other metal oxides by the precise synthesis 

of a series of La0.5Sr1.5Ni1-xFexO4+δ (LSNF, x = 0 to 1) electrocatalysts. The role of Fe 

substitution on the oxidation state distribution, electronic configuration, oxygen content 

and ultimately the catalytic activity of the oxides will be examined. It is expected that the 
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additional Fe 3d orbitals will hybridize with the Ni 3d near the Fermi level which will 

result in increased catalytic activity as seen for other mixed Ni-Fe systems. A modified 

Pechini synthesis is used to synthesize phase-pure LSNF materials, to overcome the 

difficulty in hydrolyzing Sr
2+

. It is expected that a low to moderate amount of Fe 

substitution will increase the catalytic activity as compared to x = 0 based on previous 

studies of LaNi1-xFexO3 OER electrocatalysts and Ni-Fe oxyhydroxides films. 

 

1.5 DISSERTATION OUTLINE 

Chapter 2 focuses on the synthesis and catalytic activity of LaNiO3 in context of 

other leading metal oxide OER catalysts such as IrO2 and RuO2. A general scheme for 

synthesis of phase pure, catalytically active LaNiO3 that displays exceptionally high OER 

mass activities and a strong OER/ORR bifunctional character when supported on 

nitrogen doped carbon (NC) is presented. A key advance was to prepare uniform 25 nm 

nanoparticle dispersions in aqueous solution via rapid simultaneous hydrolysis of both 

La
3+

 and Ni
2+

 nitrates by reverse phase arrested growth precipitation, which when 

calcined, form nearly phase pure LaNiO3 nanocrystalline catalysts. Scanning electron 

microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and X-ray 

photoelectron spectroscopy (XPS) indicated that calcination of 25 nm amorphous mixed 

metal hydroxide particles yielded 20-50 nm phase pure aggregates of relatively distinct 

primary nanoparticles that exhibit significant surface hydroxylation and possess a surface 

area of ~11 m
2
/g. Coalescence was mitigated by the large interparticle spacing in highly 

open, low fractal dimension nanoparticulate powders produced by rapid freeze drying 

enabled by thin film freezing followed by lyophilization. LaNiO3 prepared by this 

method. The high activity of the nanostructured LaNiO3 was rationalized by the 
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participation of lattice oxygen during the OER, and a new OER mechanism was proposed 

which unified the known chemical intermediates of the OER with a chemical wherein the 

HOO
-
 intermediate forms from the reaction between a lattice oxygen and chemisorbed 

intermediate. This work was done in collaboration with Daniel Slanac (co-first author on 

the published paper) who contributed in the design of the synthesis, conducting the 

experiments, interpretation of the data and writing of the manuscript. An earlier draft of 

this manuscript appeared in the PhD dissertation of Slanac. A major advance in the 

version in Chapter 2 that was published in the Journal of Physical Chemistry Letters is 

the proposed OER mechanism utilizing lattice oxygen, and supporting XPS analysis of 

the O 1s region. 

In Chapter 3, the reverse phase hydrolysis synthetic scheme used in Chapter 2 is 

extended to a series of LaMO3 (M = Ni, Co, Mn, Ni0.75Fe0.25) perovskite electrocatalysts 

that are highly active for both the oxygen evolution reaction (OER) and oxygen reduction 

reaction (ORR) in an aqueous alkaline electrolyte. Lanthanum-based perovskites 

containing different transition metal active sites (LaBO3, B = Ni, Ni0.75Fe0.25, Co, Mn) are 

synthesized by a general colloidal method, yielding phase pure catalysts of homogenous 

morphology and surface area (8 - 14 m
2
/g). Each perovskites’ ability to catalyze the OER 

and ORR is examined using thin film rotating disk electrochemistry (RDE). LaCoO3 

supported on nitrogen-doped carbon is shown to be ~3 times more active for the OER 

than high surface-area IrO2. Furthermore, LaCoO3 is demonstrated to be highly 

bifunctional by having a lower total overpotential between the OER and ORR (ΔE = 1.00 

V) than Pt (ΔE = 1.16) and Ru (ΔE = 1.01). The OER and ORR pathways are perturbed 

by the introduction of peroxide disproportionation functionality via support-interactions 

and selective doping of the catalyst. LaNi0.75Fe0.25O3's ability to disproportionate peroxide 

is theorized to be responsible for the ~50% improvement over LaNiO3 in catalytic 
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activity towards the ORR, despite similar electronic structure. These results allow us to 

examine the pathways for OER and ORR in context of support-interactions, transition 

metal redox processes and catalytic bifunctionality. Daniel Slanac and Bijal Patel aided in 

the synthesis of materials, and Tyler Mefford (co-first author in the published 

manuscript) collected some data, contributed intellectually to the analysis and assisted in 

editing the manuscript. 

Chapter 4 utilizes a modified Pechini method which enables our precise synthetic 

approach to explore the influence of Sr and Fe substitution on Ni-based electrocatalysts 

by exploiting the crystalline Ruddlesden-Popper phase to study the influence of atomic 

and electronic configurations that are unrealizable in other electrocatalyst systems. We 

report the discovery of a new catalyst design principle using a series of Ruddlesden-

Popper (RP) La0.5Sr1.5Ni1-xFexO4+δ oxides that promote Ni-O-Fe charge transfer 

interactions which significantly enhance OER catalysis. Using selective substitution of Sr 

and Fe to control the extent of hybridization between eg(Ni), p(O) and eg(Fe) bands, we 

demonstrate exceptional OER activity of 10 mA cm
-2

 at a 360 mV overpotential and mass 

activity of 1930 mA mg
-1

ox at 1.63 V. In particular, we show that Sr substitution promotes 

high catalytic activity by further oxidizing Ni via charge compensation, enhancing Ni-O 

covalency and electronic conductivity. Chemical substitution of Fe for Ni introduces and 

tunes the overlap between the Ni and Fe 3d bands and the O 2p band. Density functional 

theory (DFT) modeling confirms that cross-gap hybridization across Fe-O-Ni bridges 

enhances charge transfer interactions and the bandwidth near the Fermi level available for 

electrode-adsorbate electron transfer. We propose the concept of cross-gap hybridization 

of transition metal 3d states and O2p orbitals as an effective new catalyst design criteria 

for improving OER activity. This precise synthesis of RP compositions enables the 

elucidation of crucial structural-chemical-electronic relationships that have not been 
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possible with Ni-M oxyhydroxides and other reported metal oxide catalysts for OER. Yet 

by analogy, cross gap hybridization of 3d states with O2p possibly explains the reported 

high OER activity for Fe-doped Ni- and Co-based oxide systems. This project was a 

collaboration between UT, MIT, ORNL and Skolkovo Institute of Technology, and my 

collaborator Robin Forslund (listed as co-first author on the published manuscript) helped 

design, perform and analyze experimental data, as well edit the manuscript. MIT 

contributed the DFT modeling and analysis, while Skolkovo provided physical 

characterization, Mӧssbauer spectroscopy, helped plan the experiments and develop the 

intellectual framework for interpretation of the data. 

Chapter 5 revisits the aqueous synthesis of perovskite and RP electrocatalysts by 

using a reverse-phase water-in-oil microemulsion to synthesize a nickel-based perovskite 

La0.4Sr0.6Ni0.8Fe0.2O3+δ (LSNF) and a La-free Ruddlesden-Popper (RP) oxide 

Sr4Ni2.4Fe0.6O10+δ (SNF) electrocatalysts which are compared to LaNiO3 made by similar 

means. The high activities for these two catalysts were discovered at the start of the work 

in Chapter 4, which also examined Ni-Fe based catalysts. Elemental substitution of 60% 

Sr for La in LaNiO3 was performed to increase Ni-O bond covalency in the perovskite 

phase and promote higher catalytic activities by utilizing the more energetically favorable 

lattice oxygen mediated OER mechanism. Efficient atomic intermixing in the precursors 

improved the Sr solubility beyond the ~20% previously demonstrated. Complete Sr 

substitution for La and targeting of the n=3 RP phase was performed to maximize Ni-O 

bond covalency and triple the amount of perovskite units as compared to the n=1 phase. 

Fe was substituted for 20% Ni in LSNF and SNF to introduce triple band overlap of Fe 

and Ni 3d orbitals with O 2p, which was previously demonstrated to significantly 

enhance the OER activity for other RP catalysts. Upon complete substitution of Sr for La, 

the highest mass activity of 1541 mA mg
-1

ox at a 361 mV overpotential, with a low Tafel 
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slope of 55 mV dec
-1

,
 
was approximately an order of magnitude higher compared to 

LaNiO3 and IrO2
 

as seen for other recent RP catalysts with Ni-O-Fe cross-gap 

hybridization. An undergraduate student Hrishikesh Iyer assisted with catalyst synthesis, 

and Karalee Jarvis and Andrei Duncan assisted with electron microscopy. 

Chapter 6. The redox-active lattice oxygen of some perovskites was explored as a 

mechanism to store energy pseudocapacitively in LaMnO3+δ electrodes via OH
-
 anion 

intercalation. Remarkable pseudocapacitance for a nanostructured lanthanum based 

perovskite, LaMnO3, was achieved by varying the ionic composition of the electrolyte 

and we present evidence for a new anion based charge storage mechanism based on 

oxygen intercalation.  The significance of oxygen vacancies as charge storage sites for 

oxygen intercalation in these perovskite type oxides is demonstrated through a low 

temperature topotactic reduction of LaMnO3. The high anion storage through the crystal 

lattice leads to 92% utilization of the electroactive perovskite and a remarkable 

pseudocapacitance up to 611.9 F g
-1

ox. This is the first example of anion-based 

intercalation pseudocapacitance as well as the first time oxygen intercalation has been 

exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable 

battery charge storage studies have focused on cation intercalation, the anion based 

mechanism presented here offers a new field of research in energy storage materials. This 

project was a collaborative effort with Tyler Mefford and Will Hardin (co-first author) 

performing experimental work and data analysis, while Sheng Dai contributed the carbon 

support. Hardin provided the method of LaMnO3 synthesis, performed, analyzed, and 

interpreted the XPS, provided intellectual contribution to the analysis of the data and 

intercalation mechanism, and assisted in editing the manuscript. This chapter also 

appeared in the PhD dissertation of Tyler Mefford. 
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Appendix A was the first study I contributed to in course of obtaining my PhD, 

wherein we demonstrate that simultaneous reduction of Ag and Pd precursors provides 

uniform, Ag-rich AgPd alloy nanoparticles (~5 nm) with high activities for the oxygen 

reduction reaction (ORR) in alkaline media.  The particles are crystalline and uniformly 

alloyed, as shown by X-ray diffraction and probe corrected scanning transmission 

electron microscopy.  The mass activities for the ORR were 3.0 and 3.8 times higher for 

Ag9Pd (333 mA/mgmetal) and Ag4Pd (646 mA/mgmetal), respectively, than expected from a 

linear combination of mass activities of Ag (42 mA/mgAg) and Pd (799 mA/mgPd) 

particles, and up to 5x higher on Pd mass basis, as determined by rotating disk 

voltammetry. Alloy specific activities are up to ~3x beyond a linear combination of 

activities.  For silver-rich alloys (Ag≥4Pd), the particle surface is shown to contain Pd 

primarily dispersed as single atoms surrounded by Ag from cyclic voltammetry and CO 

stripping measurements for Ag9Pd.  This morphology is favorable for the high activity 

through a combination of modified electronic structure, as shown by XPS, and ensemble 

effects, which facilitate the steps of oxygen bond breaking and desorption for the ORR.  

This concept of tuning the hetero-atomic interactions on the surface of small 

nanoparticles with low concentrations of precious metals for high synergy in catalytic 

activity may be expected to be applicable to a wide variety of nanoalloys. Daniel Slanac 

was the lead author of this study, while I contributed to the experimental design, 

collection, analysis and interpretation of all data, and writing of the manuscript. 
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Chapter 2: Highly Active, Non-precious Metal Perovskite 

Electrocatalysts for Bifunctional Metal Air Battery Electrodes1 

2.1 INTRODUCTION 

Rechargeable metal-air batteries that utilize aqueous alkaline electrolytes may be 

designed with non-precious metals to offer high theoretical specific energy densities, for 

example, 1084 Wh/kg for Zn-air. For such systems, including alkaline electrolyzers and 

fuel cells, catalyst bifunctionality is a key requirement for rechargeable and/or reversible 

systems. However, applications have been limited by the sluggish kinetics of the oxygen 

evolution (OER) and oxygen reduction (ORR) reactions.
1-4

 In alkaline conditions, current 

state of the art OER and ORR catalysts utilize expensive precious metals such as IrO2 and 

Pt, respectively.
5,6

 Interestingly, precious metal-free perovskite oxides (ABO3, where A is 

a rare-earth and B a transition metal) display bifunctional activity for both the OER and 

ORR. In each reaction, the activities display a volcano-type relationship with respect to 

the number of electrons in the eg orbital of the B site atom.
7,8

 In particular, LaNiO3 lies 

near the top of both ORR and OER volcano plots, and furthermore, has been shown to 

display metal-like conductivities. Consequently, OER specific activity, up to 370 

µA/cm
2
,
9,10

 of low surface area LaNiO3 approaches the benchmark value for high surface 

area IrO2 of 500 µA/cm
2
.
5,8

 However, recently reported mass activities for LaNiO3 are  

more than 10x lower than those of precious metal oxides, presumably due to the inability 

of current synthetic schemes to achieve both high perovskite phase purity and high 

surface area (<4 m
2
/g for LaNiO3 vs >70 m

2
/g for IrO2).

5,7,8
 

Perovskite catalysts are typically formed by ball milling of bulk materials to 

obtain particles >200 nm to several micrometers in diameter.
11,12

 An alternative strategy 

                                                 
1Large parts of this chapter have been published asHardin WG, Slanac DA, Wang X, Dai S, Johnston KP, 

Stevenson KJ. Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air 

Battery Electrodes. J Phys Chem Lett 2013, 4(8): 1254-1259.  
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is to synthesize amorphous perovskite nanoparticles with bottom up approaches by sol-

gel methods,
12-14

 reactions in reverse micelles,
15-17

 coprecipitation hydrolysis processes,
18-

20
 and hydrothermal routes.

21,22
 Nanoparticles as small as ~10 nm may be synthesized by 

precipitation of metal hydroxides in the presence of capping ligands.
14,20

 However, due to 

disparities in hydrolysis rates for systems with two or more metals
12,22

 and undesired side 

reactions with carbon supports at high temperatures (≥600°C),
13,14,16

 phase impurities 

have been observed and have led to low mass activities. Furthermore, calcination steps 

required to form crystalline perovskites result in significant coalescence and typically 

produce low surface area particles ranging from 200 nm to 1 µm or greater.
13,14,21

 Phase 

purity and high surface area are also important requirements for other applications of 

perovskites such as solid oxide fuel cell electrodes and membranes, chlor-alkali and 

water electrolysis electrodes, capacitors, sensors and nonvolatile memory.
22-24

 Thus key 

challenges remain to synthesize phase pure materials while minimizing agglomeration 

during calcination for the formation of catalysts with high electrocatalytic mass activities. 
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Figure 2.1: Physical Characterization of LaNiO3 

(A) Scanning electron microscopy image of calcined LaNiO3 after freeze 

drying. (B)  De-convoluted  O 1s core level spectrum of freeze dried 

LaNiO3. (C) Dynamic light scattering size distribution curve for as-

synthesized amorphous hydroxide precursor particles, indicating a 

hydrodynamic diameter of 25 + 8 nm. (D) X-ray diffraction spectra of 

(top) oven dried and (bottom) freeze dried LaNiO3. NiO phase 

impurities marked with a star. 

Herein, we present a general scheme for synthesis of phase pure, catalytically 

active LaNiO3 that displays exceptionally high OER mass activities and a strong 

OER/ORR bifunctional character when supported on nitrogen doped carbon (NC). A key 

advance was to prepare uniform 25 nm nanoparticle dispersions in aqueous solution via 

rapid simultaneous hydrolysis of both La
3+

 and Ni
2+

 nitrates by reverse phase arrested 

growth precipitation, which when calcined, form nearly phase pure LaNiO3 

nanocrystalline catalysts. Scanning electron microscopy (SEM), X-ray diffraction (XRD), 



 23 

dynamic light scattering (DLS) and X-ray photoelectron spectroscopy (XPS) indicated 

that calcination of 25 nm amorphous mixed metal hydroxide particles yielded 20-50 nm 

phase pure aggregates of relatively distinct primary nanoparticles that exhibit significant 

surface hydroxylation and possess a surface area of ~11 m
2
/g. Coalescence was mitigated 

by the large interparticle spacing in highly open, low fractal dimension nanoparticulate 

powders produced by rapid freeze drying enabled by thin film freezing followed by 

lyophilization. LaNiO3 prepared by this method, which will be referred to as ‘freeze 

drying’, has been designated as ‘nano-structured’ LaNiO3 (nsLaNiO3) due to the 

morphology observed in Figure 2.1A. 

2.2 RESULTS AND DISCUSSION 

To obtain an aqueous dispersion of amorphous perovskite precursor nanoparticles, 

metal nitrates of La
3+

 and Ni
2+

 were hydrolyzed rapidly in the presence of a capping 

ligand, tetrapropylammonium bromide (TPAB) as described in detail in Appendix B. 

This approach created amorphous particles of La and Ni hydroxides with a hydrodynamic 

diameter of 25 nm (peak width + 8 nm), as shown via DLS in Figure 2.1C. To promote 

complete and rapid hydrolysis of both La and Ni nitrates while maintaining a constant pH 

during the reaction,
18

 an excess volume of pH 14 tetramethylammonium hydroxide 

(TMAOH) was used. The capping ligand TPAB provided colloidal stabilization through a 

combination of electrostatic and steric repulsion.
25

 Without TPAB, the particles 

agglomerated, even after sonication, presumably leading to lower phase purity and lower 

surface areas, as seen previously in a similar synthesis.
21

 Prior to calcination, the 

amorphous particle dispersions was either freeze dried by a combination of thin film 

freezing followed by lyophilization, or dried in an oven at 120°C for ~1 h. In the freeze 

drying process, droplets of the amorphous particle dispersion were spread onto the 
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surface of a rotating metal drum at -78°C and frozen into a thin film (~100 um thick) at 

fast freezing rates (~100 K/s).
26

 The time scale for freezing (order of milliseconds) was 

sufficiently fast to prevent significant growth of the amorphous nanoparticles. After 

lyophilization, a fluffy powder was produced, with open flocs of the nanoparticles with a 

low fractal dimension, consistent with numerous related studies of organic 

substances.
27,28

 In contrast, oven drying of the aqueous dispersion led to gelation 

whereby, the capillary forces produced somewhat more dense aggregates. In essence, the 

frozen freeze dried material may be considered to be closer to the rapid diffusion limited 

aggregation regime, whereas the slowly dried material is closer to the reaction limited 

regime, where particles explore a greater number of configurations to lower the surface 

area, resulting in a larger aggregate density.
29

 

After particles formed via reverse phase precipitation were calcined in air at 

700°C for 4 hours to form crystalline LaNiO3, the morphology of the oven dried 

precursor was aggregates of sintered primary nanoparticles, with modest coalescence and 

particle growth, as shown by the SEM images in Appendix B (B.1C,D). For the freeze 

dried dispersions, the amount of coalescence and growth was less prevalent, resulting in 

aggregates of ~20-50 nm partially coalesced primary nanoparticles, as seen in Figures 

2.1A and B.1A,B. It is possible that the large interparticle spacing in the highly open, low 

fractal dimension aggregates suppressed sintering despite the 700°C calcination 

temperature. Remarkably, the original 25 nm precursor (33 m
2
/g for individual spheres) 

particles grew only modestly during calcination. The nitrogen adsorption (BET) 

measured surface areas of the freeze dried and oven dried samples, after calcination, were 

11 m
2
/g, and 6 m

2
/g, respectively (Figure B.1, Figure B.2). Both catalysts were 

comprised of an essentially phase pure crystalline rhombohedral LaNiO3 phase, as shown 

in the XRD spectra in Figure 2.1D. The slight impure phase identified in both samples 
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was NiO, as the peaks were barely visible at 2θs of 35°, 42.5°, and 62.5°. According to 

Scherrer analysis performed on the most intense reflection due to a single crystalline 

plane, {024} for LaNiO3, similar crystallite sizes of ~15 nm were calculated for the two 

drying approaches. Note that crystallite size is not indicative of particle size, surface area, 

or resulting catalytic activities. 

The phase purity and relatively high surface area after calcination may be 

attributed to rapid and simultaneous reduction of both metal nitrates to form nanoparticle 

precursors leading to an appropriate level of intermixing of the metal hydroxides. 

Instantaneously, upon adding the nitrates into the pH 14 solution in this reverse phase 

precipitation reaction,
18,25

 a light green dispersion was visible. The burst nucleation 

followed by arrested growth led to 25 nm nanoparticles with apparently adequate 

intermixing of both metal hydroxides. Thus, this approach overcomes the dissimilar 

hydrolysis rate constants for La
3+

 and Ni
2+

, which differ by up to almost one order of 

magnitude at a lower pH <~10.
22

 This is in contrast to normal phase coprecipitation, 

whereby the pH immediately decreases upon drop-wise addition of base into a solution of 

dissolved metal salts which could lead to phase impurities, as has been seen previously 

for coprecipitation of other systems.
22,30

 It is likely that hydrolysis of the less reactive 

component lags nucleation and growth of the more reactive one. Thus, the burst 

nucleation and high pH in the reverse phase method enables rapid hydrolysis of both 

metal nitrates to form amorphous composite nanoparticles that upon calcination formed 

phase pure nanocrystal aggregates. 

To probe the physical and chemical properties of the catalyst surface, the O 1s 

core level spectrum of unsupported nsLaNiO3 was collected via high resolution XPS and 

deconvoluted in the same manner as reported by Mickevicius et al.
31

 The spectrum, 

shown in Figure 2.1B, contains four distinct species of oxygen corresponding to lattice 
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oxygen in lanthanum oxide (528.3 eV) and nickel oxide (529.3 eV), lanthanum and 

nickel hydroxides (531.4 eV) and adsorbed water (533.2 eV). Upon deconvolution, it was 

found that the catalyst surface was significantly hydroxylated (~65 rel. at.%). It has been 

previously shown that the least energetically favorable step of the OER is either 

chemisorbed OOH
-
 formation, or oxidation of surface OH

-
.
32-34

 Furthermore, it has been 

proposed that the concentration of lattice hydroxide directly affects the rate at which 

surface peroxide forms during the OER.
35

 Thus, the presence of lattice hydroxide is 

expected to have a positive effect on measured OER activity. 
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Figure 2.2: LaNiO3 OER activity trends.  

OER activity trends in (A,B) Ar saturated 0.1 M KOH at 900 rpm and 50 

mV/s and (C,D) O2 saturated 0.1 M KOH at 1600 rpm and 10 mV/s. (A) 

Linear sweep voltammogram and (B) selected oxide OER mass activities 

calculated at 1.63 V from data in (A). (C) Tafel plot comparing nsLaNiO3 

mass activity in O2 saturated 0.1 M KOH to other leading OER catalysts, 

and (D) oxide (total in case of NC) OER mass activity in O2 saturated 0.1 

M KOH. Note that at potentials >1.53 V, nsLaNiO3/NC has considerably 

higher OER activity than the pure nitrogen doped carbon. 

To determine the effect of perovskite morphology and surface area on OER 

activity, polarization curves were measured in Ar saturated 0.1 M KOH at 900 rpm 
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(Figure 2.2A). At 1.63 V vs the reversible hydrogen electrode (RHE), or a 0.4 V 

overpotential, the total OER mass activity for unsupported nsLaNiO3 was 24 mA/mg, 

nearly two times greater than for the lower surface area oven dried LaNiO3 (13 mA/mg), 

seen in Figures 2.2A,B. For the unsupported perovskites, such low activities are expected 

given their lower conductivities relative to the high surface area (~1080 m
2
/g, Figure 

B.3), conductive nitrogen doped carbon support.
36

 The carbon support provides a 

conductive network by which the catalyst is electrically wired to the electrode, while the 

bare catalyst is only in electrical contact with the electrode by point contacts. For 

nsLaNiO3 supported on nitrogen doped carbon (nsLaNiO3/NC), the mass activity was 

728 mA/mgoxide, again nearly two times higher than the value of 374 mA/mgoxide obtained 

for the lower surface area LaNiO3/NC catalyst. 

In Figure 2.2C,D the OER total mass activities (representative polarization curve 

shown in Figure B.4) for nsLaNiO3/NC are comparable to a leading benchmark catalyst, 

IrO2.
5
 Furthermore, they are well above recently reported values for coprecipitated 

LaNiO3 supported on acetylene black (AB),
8
 and Co3O4 supported on nitrogen doped 

reduced graphene oxide (Co3O4/NGO).
37

 In these comparisons, the electrolyte was 

saturated with oxygen. At a chosen potential of 1.56 V, the nsLaNiO3/NC activity was 

already markedly above that of the NC baseline, as is evident in Figure 2.2C. 

Remarkably, on an oxide mass basis, the activity for nsLaNiO3/NC (89 mA/mgoxide) 

reached 2.5x that of a leading benchmark catalyst, 6 nm IrO2 (36 mA/mgoxide). Since the 

surface area to mass ratio of IrO2 is 71 m
2
/g, compared to 11 m

2
/g for nsLaNiO3/NC, the 

apparent specific activity (based on surface area measurement via BET) was ~450 

µA/cm
2

oxide, compared to ~50 µA/cm
2

oxide for IrO2. The value for the former was 

corrected for the small NC current contribution. Relative to literature values reported for 

LaNiO3 synthesized via normal phase coprecipitation (3.5 m
2
/g) and supported on AB the 
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activity of nsLaNiO3/NC is ~45 times higher at 1.56 V. The oxide mass activity of 

nsLaNiO3/NC is ~3.8 times that of a highly active 6 nm Co3O4 supported on nitrogen 

doped graphene oxide (24 mA/mgoxide). Additionally, the mass activity is ~18 times 

higher than that reported in a recent study of the most OER active perovskite, 

Ba0.5Sr0.5Co0.8Fe0.2O3 (0.2 m
2
/g),

8
 despite its high specific activity of ~2500 µA/cm

2
oxide.

8
 

The high mass activity for nsLaNiO3/NC partially reflects the phase pure high 

surface area crystalline LaNiO3 nanoparticle aggregates, enabled by the precursor 

synthetic approach. The large numbers of facets in the nanoparticle domains and the 

regions between them offers the possibility of more access to most active surfaces, such 

as the {100} planes in LaNiO3.
35

 The morphology of thin layers of nanocrystal 

aggregates on the carbon substrate is also beneficial, for example, as seen for MnOx
38

 and 

highly active oxyhydroxide thin films.
39

 

To further understand the mechanism responsible for the high electrocatalytic 

activity reported herein, it is necessary to reexamine the role of lattice hydroxides in the 

OER. Lattice oxygen in LaNiO3 is weakly bound,
40,41

 and can be considered protonated 

such that it contributes a lattice hydroxide to the formation of OOH
-
 during the 

OER.
31,35,42

 Lattice oxygen directly participating in the OER has been observed for 

similar oxides such as Li-NiO, IrO2 and RuO2.
43-45

 Figure B.6 depicts this OER cycle, 

wherein the formation of OH, O
2-

, and OOH
-
 intermediates are reconciled with the 

utilization of lattice (hydr)oxide in the formation of surface adsorbed hydroperoxide. This 

cycle rationalizes the unusually high OER mass activities observed herein. The rate 

determining step of the OER on LaNiO3 (Figure B.6, step 3) is governed by the 

concentration of lattice (hydr)oxide species that participate in the formation of the O-O 

bond in hydroperoxide, thus the high lattice (hydr)oxide concentration of nsLaNiO3 

increases the rate at which HOO
-
 forms and consequently the rate at which the OER 
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proceeds.
32-35

 Furthermore, as lattice (hydr)oxides are oxidized to form hydroperoxide, a 

positively charged vacancy is left behind. This lattice oxygen vacancy is rapidly 

replenished from the bulk electrolyte (Figure B.6, step L),
42

 resulting in the lack of 

hysteresis observed during OER testing (Figure B.4). 

 

 

Figure 2.3: ORR activity trends in O2 saturated 0.1 M KOH at 1600 RPM. 

(A) Polarization curves for the ORR, including pure NC, and supported / 

unsupported LaNiO3 / nsLaNiO3. (B) Oxide mass activities taken at 0.693 

V, showing high mass activity for the nsLaNiO3/NC catalyst. 

These nanocrystaline perovskites also displayed appreciable activity for the ORR. 

Polarization curves for ORR in oxygen saturated 0.1 M KOH at 1600 rpm and 5 mV/s are 

shown in Figure 2.3A, with activity measurements taken at 0.693 V. Low activities were 

observed for unsupported LaNiO3 and nsLaNiO3, 1 mA/mg and 4 mA/mg, respectively. 

As for the OER, this was likely due to the lower conductivity of the pure oxide. However, 

when LaNiO3 and nsLaNiO3 were supported on nitrogen doped carbon, the half wave 

potential shifted >100 mV positive and resulted in significantly higher activities of 32 

mA/mgtotal and 101 mA/mgtotal, respectively. The activity increased more than an order of 

magnitude for the ORR, as was also seen for the OER. The activity of nsLaNiO3/NC 
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reached 337 mA/mgoxide, ~3 times higher than for the oven dried LaNiO3/NC (Figure 

2.3B) similar to the observed increase in BET surface area as summarized in Figure B.1. 

The nitrogen doped carbon further contributes to the activity, due most likely to the 

presence of pyridinic functional groups in the surface as shown by XPS in Figure B.7.
46,47

 

As a measure of the overall bifunctionality of the catalyst, we determined the 

difference in potential between the ORR at -3 mA/cm
2
 and OER at 10 mA/cm

2
 (ΔE), 

current densities of practical importance for electrochemical and photoelectrochemical 

applications.
38

 ΔE is simply the sum of the overpotentials for the two reactions. Table 2.1 

shows the excellent bifunctional character (ΔV = 1.02 V) of the nsLaNiO3/NC catalyst, 

which is exceeded by 100 mV only for the ORR active precious metal Ir (ΔE = 0.92 V)
38

 

that also forms an OER-active oxide at anodic potentials. 
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Table 2.1: Assessment of catalyst bifunctionality for nsLaNiO3/NC and 

other benchmarks. 

catalyst 

ORR Potential 

(V) vs RHE @ -

3 mA/cm
2 

OER Potential 

(V) vs RHE @ 

10 mA/cm
2
 

ΔE (V) 

nsLaNiO3/NC 0.64 1.66 1.02 

20% Ir/C
38

 0.69 1.61 0.92 

20% Pt/C
38

 0.86 2.02 1.16 

Remarkably, the ΔE of 1.02 for the nsLaNiO3/NC catalyst is significantly better 

than for Pt/C (ΔE = 1.16 V),
38

 a leading ORR catalyst but a poor OER catalyst. While it 

has been demonstrated that phase purity is important for achieving high bifunctional 

character, the specific interactions between the perovskite catalyst and nitrogen doped 

carbon are not well understood. Electronic and ensemble effects, like those recently 

observed for bimetallic and mixed metal-metal oxide catalyst,
48,49

 could be contributing 

to the high activities reported here. Additionally, the specific interactions between the 

perovskite catalyst and nitrogen doped carbon likely play a much smaller secondary role, 

such as H2O2 disproportionation and improved support hydrophilicity. Future work will 

explore the interplay between these various effects. 

2.3 CONCLUSIONS 

In conclusion, LaNiO3 nanocrystalline aggregates on nitrogen doped carbon 

exhibit extremely high activity for the OER and strong OER/ORR bifunctional character, 

as a result of high phase purity, lattice hydroxylation and increased surface area. This 

bifunctional character is crucial to the development of inexpensive aqueous metal-air 

batteries, fuel cells and electrolyzers. This highly active morphology is produced by 

rapid, simultaneous hydrolysis of La
3+

 and Ni
2+

 nitrates during reverse phase arrested 

growth precipitation, followed by rapid drying. This synthetic concept to generate 
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precursors that are calcined to form phase pure nanocrystalline aggregates is general and 

thus a directly applicable route to prepare a wide variety of nonprecious metal, 

nanocrystalline perovskites as highly active catalysts. 

 

2.4 EXPERIMENTAL METHODS 

2.4.1 Chemicals. 

All chemicals were used as received. Anhydrous ethanol and 5 wt % nafion 

solution in lower alcohols were purchased from Sigma-Aldrich. Nickel(II) nitrate 

hexahydrate (99%), lanthanum(III) nitrate hexa-hydrate (99.999%), 

tetrapropylammonium bromide (TPAB, 98%), tetramethylammonium hydroxide 

pentahydrate (TMAOH, 99%), 2-propanol and potassium hydroxide were obtained from 

Fisher Scientific, and ethanol (Absolute 200 proof) from Aaper alcohol.  Millipore high 

purity water (18 MΩ) was used. Oxygen (research grade, 99.999% purity) and argon 

(research grade, 99.999% purity) were obtained from Praxair. Nitrogen doped carbon 

(NC) was prepared as reported elsewhere.
50

 

2.4.2 Synthesis of the nanostructured LaNiO3 catalyst (nsLaNiO3). 

Mixed metal hydroxide particles were prepared by reverse hydrolysis of La and 

Ni nitrates in the presence of an equimolar amount of TPAB dissolved into 1 wt% 

TMAOH. In a typical synthesis, 50 mL of a mixed metal nitrates (~10 mM) solution was 

added drop-wise (~2 mL/min) to 200 mL of vigorously stirring TMAOH. The solution 

was left stirring for 30 min, and the resulting suspension was washed with DI water via 

centrifugation 3 times, followed by probe sonication. The resulting washed particle 

solution was frozen into a thin film and then lyophilized at -10°C and a fixed pressure of 

~50 mTorr for 20 hours. The lyophilized powder was calcined at 700°C for 4 hours under 
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flowing dehumidified air. Following calcination, all particles were washed with EtOH 

and filtered to obtain the final nsLaNiO3 catalyst. Synthesis of LaNiO3 was identical to 

that of nsLaNiO3, except that the washed hydroxide gel was spread over a glass dish and 

dried at 120°C under air for a minimum of 1 hour prior to calcination, rather than thin 

film freezing followed by lyophilization. 

2.4.3 Materials Characterization. 

 The hydrodynamic diameter (DH) of as-synthesized hydrolysis particles was 

measured via dynamic light scattering (DLS, Brookhaven ZetaPALS instrument) and fit 

with the CONTIN routine. Structural information of as-calcined oxides were obtained 

using wide-angle X-ray diffraction (Bruker Nokius AXS D8 Advance) emitting Cu Kα 

radiation (1.54 Å) and the background removed with JADE software (Molecular 

Diffraction Inc.). Surface morphologies of the perovskite catalysts were observed using 

scanning electron microscopy (SEM, Hitachi S-5500), while surface areas were 

quantified using nitrogen sorption (Quantachrome Instruments NOVA 2000) at 77 K. 

Chemical states were probed by X-ray photoelectron spectroscopy (XPS, Kratos AXIS 

Ultra DLD) using a monochromatic Al X-ray source (Al α, 1.4866 keV). 

2.4.4 Electrochemical Characterization. 

Electrochemical testing was performed on either a CH Instruments CHI832a or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high speed rotators 

from Pine Instruments. All testing was done at room temperature in 0.1M KOH 

(measured pH ≈ 12.6), and all data was iR corrected (50 Ω) after testing. Electrolyte 

resistance was found prior to testing by a combination of the current-interrupt and 

positive feedback methods. Each test was performed in a standard 3 electrode cell using a 

Hg/HgO (1M KOH) reference electrode, a Pt wire counter electrode, and a film of 
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catalyst ink on glassy carbon as the working electrode. All potentials are reported versus 

the regular hydrogen electrode (RHE), which were shifted +0.843 V vs. Hg/HgO 

(Hg/HgO (1 M KOH) + 0.1 V = NHE; NHE + 0.059 * pH = RHE). Catalyst inks were 

prepared by addition of 1 mL of NaOH neutralized 0.05 wt% Nafion solution
19

 to 1 mg 

of catalyst powder and bath sonicated for 30 min. 10 μL of ink was placed onto a clean 5 

mm (0.196 cm
2
) glassy carbon electrode and left to dry under a glass jar. The activity of 

the catalyst towards the oxygen reduction reaction was determined by rotating the 

electrode at 1600 rpm in O2 saturated media and performing a linear potential sweep at 5 

mV/s. Kinetic currents were calculated according to the Koutecky-Levich equation from 

the resulting polarization curves. All ORR mass activities reported herein are averages 

from cathodic scans taken of multiple electrodes. Oxygen evolution activities were 

quantified in either O2 saturated or deoxygenated media by performing anodic potential 

sweeps at 10 mV/s and 50 mV/s, respectively. All electrochemical tests were performed 

on freshly prepared electrodes, except for deoxygenated OER tests. These tests were 

conducted on the same electrode following O2 saturated ORR measurements. All OER 

mass activities reported herein are averages from anodic scans taken of multiple 

electrodes. 

2.5 ADDITIONAL INFORMATION 

Detailed experimental methods, electron microscopy images, summary of catalyst 

surface areas, nitrogen adsorption curves, OER polarization curve, and XPS spectra for 

the N 1s core region are provided in Appendix B 
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Chapter 3: Tuning the Electrocatalytic Activity of Perovskites Through 

Active Site Variation and Support Interactions2 

3.1 INTRODUCTION 

The oxidation and reduction of oxygen are crucial chemical reactions in large-

scale hydrogen production via water electrolysis, the generation of chlorine gas in the 

chlor-alkali process, and for bifunctional air electrodes in rechargeable metal-air batteries 

such as Zn-air. The oxygen evolution reaction (OER) and oxygen reduction reaction 

(ORR) are multistep four electron reactions that proceed via different intermediates and 

mechanistic routes which are highly dependent on the catalyst and electrolyte.
1-7

 Alkaline 

electrolytes have received much attention recently due to facile oxygen evolution and 

reduction kinetics with earth abundant nonprecious metal oxide catalysts, as alternatives 

to Pt, IrO2 and RuO2.
7,8

 Bifunctionality, whereby one electrode material is capable of 

catalyzing both the OER as well as the ORR, is also a desirable goal for regenerative or 

rechargeable systems.
8-10

 

Recently, ABO3-type oxides known as perovskites, where A is commonly a rare-

earth or alkali element and B commonly a transition metal, have attracted much attention 

due to their reported high specific catalytic activity (μA/cm
2
) towards the OER and ORR 

in alkaline conditions.
11-13

 However, perovskites typically display low mass activities 

(mA/mg) due to low surface areas (< 4 m
2
/g) and/or uncontrolled phase impurities. In 

contrast, a nanostructured, phase pure LaNiO3 with a moderate surface area of 11 m
2
/g 

and supported on nitrogen doped carbon (NC) was shown be nearly three times as active 

as 6 nm IrO2 towards the OER, despite having nearly 7 times lower surface area.
11

 Thus 

the development of higher surface area, phase pure perovskites displaying high mass 

                                                 
2Large parts of this chapter have been published as Hardin WG, Mefford JT, Slanac DA, Patel BB, Wang 

X, Dai S, et al. Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and 

Support Interactions. Chem Mater 2014, 26(11): 3368-3376. 
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activities is crucial towards identifying replacements for precious metals and their oxides 

as catalysts. 

The perovskite structure encompasses a wide array of materials with differing 

physical, chemical, optical, and electronic properties. In perovskites, the metal (or B-site) 

atom is in octahedral coordination with six oxygen ligands. This splits the degeneracy of 

the valence d-band into sigma bonding and anti-bonding (eg) levels and pi bonding and 

anti-bonding (t2g) levels. When the B-site atom lies on the surface {100} plane, the 

symmetry of the BO6 octahedral unit is broken, and the energy levels are further 

discretized. It is this complex and tunable (via atomic replacements) energetic landscape 

that makes the perovskite family a compelling system to study for catalysis. Indeed, it has 

been observed that for some perovskites their specific activities exceed that of precious 

metals. 

OER and ORR studies with perovskites were first reported during the 1970s, and 

their activity was described in terms of surface and bulk electronic properties. The active 

sites are believed to be the transition metal (B site) atoms, and much attention recently 

has been focused on the eg orbital filling of the transition metal B-site as the activity 

descriptor.
3,13

 For the OER, an ideal of eg just above ~1 has been proposed, as observed 

in materials such as Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF). For the ORR, an ideal eg just below 1 

was proposed, with perovskites such as LaNiO3, LaMnO3 and LaCoO3 identified as the 

most active.
12

 For both reactions, it was hypothesized that too little eg filling promotes 

overly-strong oxygen binding, whereby intermediates do not desorb sufficiently. 

Conversely, too great an eg filling is speculated to inhibit oxygen activation and involve 

weak binding of intermediates. Alternatively, it has been suggested that the total number 

of valence electrons is the critical parameter (activity descriptor) for both the OER and 

ORR. DFT calculations suggest that that the adsorption strength of intermediates 
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monotonically increase as the number of outer B-site valence electrons increases across 

row 4 in the periodic table (with the exception of Sc).
14

 Following Sabatier’s principle, 

the most active catalysts should facilitate the activation of O2 and OH
-
, but it should not 

be so energetically favorable as to effectively passivate the surface. Similar trends were 

found when dissociation chemisorption and transition state energies were computed by 

DFT for diatomic oxygen on LaBO3 perovskites.
15

 For the ORR in solid oxide fuel cells 

(O2(g) + 4e
-
 → 2O

2-
), the oxygen p-band centers were computed for a range of perovskites 

and it was shown to linearly scale with experimentally observed ORR activity.
16

 

Additionally, the oxygen p-band centers for LaBO3 were found to be well correlated to 

the rate of surface oxygen exchange and oxygen vacancy formation, two often neglected 

parameters in the discussion of ambient temperature OER and ORR results on 

perovskites. The identification of a single physicochemical descriptor that captures all 

perovskites’ catalytic affinity towards the OER and ORR is desirable, but clearly 

represents a great challenge due to the varying nature of different perovskite systems. 

To facilitate a better understanding of the OER and ORR mechanisms on a series 

of LaBO3 perovskites, we sought to introduce peroxide disproportionation functionality 

through the use of a nitrogen doped carbon support (or, in the case of LaNiO3, by 

selective doping with Fe). Peroxide disproportionation was chosen because it is a crucial 

chemical intermediate in both the OER and ORR. For instance, ORR in alkaline media 

proceeds via one of two ways: by a direct four-electron reduction: 

O2 + 2H2O + 4e
-
 → 4OH

-
                 (1) 

or proceeding in a stepwise fashion, in a 2-by-2 electron pathway: 

O2 + H2O + 2e
-
 →HO2

-
 + OH

-
     (2) 

HO2
-
 + H2O + 2e

-
 → 3OH

-
     (3) 

file:///R:/Hardin%20perovskite%20full%20CoM%20temp%20041014.docx%23_ENREF_14
file:///R:/Hardin%20perovskite%20full%20CoM%20temp%20041014.docx%23_ENREF_15
file:///R:/Hardin%20perovskite%20full%20CoM%20temp%20041014.docx%23_ENREF_16


 43 

in which the reduction of the hydroperoxide intermediate (Eqn. 3) is often identified as a 

rate limiting step in the ORR.
1,7,17

 Carbons lacking pyridinic nitrogen functionality are 

either limited to the first 2e- reduction of O2 (Eqn. 2) or a two successive two-electron 

processes (Eqns. 2 & 3),
5,18

 while carbons containing pyridinic nitrogen are able to 

chemically disproportionate the HO2
-
 intermediate via: 

2HO2
-
 → 2OH

-
 + O2      (4) 

Catalyst supports, such as nitrogen-doped carbon, can be paired with 

electrocatalysts that are able to catalyze the initial 2e
-
 reduction of O2 (Eqn. 2), but are 

kinetically limited by Eqn. 3. When combined with a support or co-catalyst that 

disproportionates the hydroperoxide intermediate, a pseudo four electron ORR pathway 

is enabled that utilizes four electrons per oxygen molecule, but bypasses the kinetically 

slow rate limiting step, Eqn. 3.
5,18

 In contrast, the role of nitrogen doped carbon in the 

OER is not well understood, despite its frequent use.
11,19

 Support functionality has been 

practically observed to complement perovskite catalysts, as seen recently for the ORR 

and OER.
11,20

 Therefore, to maximize the catalytic ability of perovskite oxides, it is 

necessary to understand which catalysts benefit from the addition of functionality such as 

peroxide disproportionation. 

The identification of rate limiting steps requires an understanding of the catalytic 

pathway through which each perovskite proceeds. While previous studies of perovskite 

electrocatalysts have focused on electronic and chemical descriptors to identify OER and 

ORR activity trends,
3,13

 the role of lattice oxygen and secondary chemical reactions (i.e. 

peroxide disproportionation) in the identification of activity trends for perovskites is 

relatively unexplored. The utilization of oxygen originating in the lattice of metal oxides 

is a common phenomenon in gas phase catalytic reactions.
21

 For the OER, isotope 

labeling studies have shown that anodically generated O2 is partially from lattice oxygen 
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in IrO2, RuO2, and Li-NiO2 and is proposed for LaNiO3.
11,22-26

 Lattice oxygen 

participating in the formation of O2 is not expected for all catalysts, necessitating the 

case-by-case investigation of pathways. This complicates the determination of a single 

guiding parameter for OER catalyst. Furthermore, the role of catalyst support is multi-

faceted. Many perovskites are semiconducting at room temperature, or have metal-like 

conductivity that is still several orders of magnitude lower than metallic conductors such 

as Ag or Cu. To improve the effective conductivity of perovskites, they are often mixed 

with carbons.
11,27-30

 

To aid the investigation of different transition metals in lanthanum-based LaBO3 

perovskite electrocatalysts, we have developed a general synthetic approach to form 

phase pure perovskite materials with comparable surface areas and morphologies. We 

have previously utilized this method to synthesize phase pure LaNiO3 and LaMnO3 with 

similar dimensions and morphology.
11,31

 Importantly, the dissimilar rates of hydrolysis 

are minimized and adequate elemental intermixing is promoted by burst nucleation in a 

high pH environment which is essential for compositional and morphological control. 

This current study is now extended to a series of LaBO3 perovskites (B = Ni, Ni0.75Fe0.25, 

Co, Mn), allowing for the systematic investigation of the OER and ORR through thin 

film rotating disk electrochemistry (RDE) methods. This approach enables the 

electrochemical interrogation of the perovskite catalysts, free from confounding factors 

such as phase impurities or surface morphology, and removes the need for the 

normalization of current with respect to electron microscope estimated surface areas, both 

of which are known sources of error in the measuring and analysis of electrocatalytic 

activity trends.
13,28

 Additionally, having a common baseline of phase purity, surface area 

and morphology allows for the probing of support interactions, including the role of 

functionalized or non-functionalized carbon and their contributions to the ORR or OER. 
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By carefully selecting the functional group, such that it selectively interacts with a 

chemical intermediate in the OER and ORR, it is then possible to see how each LaBO3 

catalyst responds to the perturbation of intermediates via the support functionalization. 

Additionally, new catalytic functionality may be imparted to the LaBO3 electrocatalysts 

by selective doping of the transition metal site, B, such that similar perturbations in the 

OER and ORR occur, as by support functionalization. Such an approach enables an 

investigation of surface-specific mechanisms and rate determining steps. 

Furthermore, we will show that these catalysts possess OER and ORR 

bifunctionality on par or better than precious metals and their oxides such as Pt, Ir, IrO2 

and Ag.  We demonstrate that among a series of perovskite electrocatalysts having the 

same nominal eg filling of ~1, their respective OER and ORR rate determining steps 

differ, strongly suggesting that this is a poor activity descriptor for describing the OER 

and ORR activity of perovskites. Rather, the activity appears to trend with the formation 

and disproportionation of the hydroperoxide intermediate in both OER and ORR. . 

3.2 EXPERIMENTAL 

All chemicals were used as received. Anhydrous ethanol and 5 wt % Nafion 

solution in lower alcohols were purchased from Sigma-Aldrich. Lanthanum(III) nitrate 

hexahydrate (99.999%), nickel(II) nitrate hexahydrate (99%), iron(III) nitrate 

nonahydrate (99.99%), manganese(II) nitrate tetrahydrate (99.999%), cobalt(II) nitrate 

hexahydrate (98+%), strontium(II) nitrate (99+%), barium(II) nitrate (99+%), 

tetrapropylammonium bromide (TPAB, 98%), tetramethylammonium hydroxide 

pentahydrate (TMAH, 99%), 2-propanol and potassium hydroxide were obtained from 

Fisher Scientific, and ethanol (Absolute 200 proof) from Aaper alcohol. Millipore high 

purity water (18 MΩ) was used. Oxygen (research grade, 99.999% purity) and argon 
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(research grade, 99.999% purity) were obtained from Praxair. Mesoporous nitrogen 

doped carbon (NC) and activated microwave exfoliated graphene oxide (G) were 

prepared as reported elsewhere.
32,33

 

3.2.1 Catalyst Synthesis 

Particle Synthesis. Amorphous particles composed of constituent hydroxides 

(La, Ni, Co etc) were prepared by slowly dripping (~2 mL/min) an aqueous metal nitrate 

solution into concentrated base containing dissolved TPAB ( ‘reverse phase’ 

coprecipitation), as reported previously.
11

 Stoichiometrically correct amounts of metal 

and rare earth nitrates were dissolved under stirring in 50 mL of DI water, such that the 

total metal and rare earth concentration was 9.9 mM. Separately, an equimolar amount of 

TPAB relative to nitrates was dissolved into 200 mL of 1 wt% TMAH (pH ~14) under 

vigorous stirring. The nitrate solution was slowly dripped into the stirred base. The 

solution was left to stir until hydrolysis was complete, and was then collected by 

centrifugation and washed with DI water. 

Particle Harvesting and Crystallization. The washed hydroxide gel was 

dispersed in DI water through probe sonication. This solution was then rapidly frozen 

using a thin film freezing (TFF) apparatus, as described elsewhere.
34

 Briefly, the particle 

solution was slowly pipetted (~3 mL/min) onto a rotating drum, whereupon it rapidly 

froze and was scraped by the plate into the dish. Lyophilization was performed at -20°C 

at a fixed pressure of ~50 mTorr for 20 hours to remove all traces of water. All perovskite 

precursor powders were calcined at 700°C for 4 hours under flowing dehumidified. 

Following calcination, all particles were washed with ethanol and filtered to obtain the 

final perovskite catalyst. All catalysts, unless otherwise noted, were loaded to 30 wt% by 
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mass of perovskite on NC or G carbon by mixing with ball milling for 3 minutes using a 

Wig-L-Bug. 

3.2.2 Physical Characterization 

Dynamic light scattering (DLS). The hydrodynamic diameter (DHs) of as-

synthesized hydrolysis particles was measured with a Brookhaven ZetaPALS instrument 

with the ZetaPlus option. Scattered light was collected with a 90° avalanche photodiode 

detector and all data were fit with the CONTIN routine. The diameter of as-synthesized 

metal hydroxide particles were measured at a concentration of ~1 mg/mL in DI water. All 

measurements were made over a period of 3 min and repeated in triplicate. 

X-ray Diffraction (XRD). Catalyst structure was probed by X-ray diffraction 

using a Rigaku R-Axis Spider Diffractometer at 298 K in ambient conditions, utilizing 

Cu Kα radiation (1.54 Å wavelength) operating at 40 kV and 40 mA. For all tests, bare 

perovskite powder was suspended within a 0.5 mm nylon loop rotating at 10° per second 

while the image plate detector was exposed for 10 minutes. Radial scattering data was 

integrated over 20 - 90° 2θ, and analyzed using JADE software (Molecular Diffraction 

Inc.) 

Surface Area Analysis. Nitrogen sorption analysis was performed on a 

Quantachrome Instruments NOVA 2000 high-speed surface area BET analyzer at a 

temperature of 77 K. Prior to measurements, the samples were degassed in vacuum for a 

minimum of 12 hours at room temperature. The specific surface area was calculated using 

the BET method from the nitrogen adsorption data in the relative pressure range (P/P0) of 

0.05 to 0.30 

Electron Microscopy. Scanning (transmission) electron microscopy 

(SEM/STEM) was performed with a Hitachi S-5500 using a 30 kV accelerating voltage 
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and a probe current of 20 µA. The bare perovskite powder was deposited from a dilute 

ethanol suspension onto a 300 mesh copper grid coated with lacey carbon or Formvar 

(Electron Microscopy Sciences). 

3.2.3 Electrochemical Characterization 

Catalyst inks were prepared by adding 1 mL of a NaOH neutralized 0.05 wt% 

Nafion solution
29

 to 1 mg of catalyst powder and bath sonicated for 30 minutes. A 

volume of ink (10 μL) was drop cast onto a clean 5 mm (0.196 cm
2
,Pine Instruments) 

glassy carbon (GC) electrodes and dried at ambient conditions. The  GC electrodes were 

cleaned prior to drop casting by sonication in a 1:1 DI water:ethanol solution. The GC 

electrodes were then polished using 0.05 μm alumina powder, sonicated in a fresh DI 

water:ethanol solution, and dried in ambient air. All electrochemical tests were performed 

on GC electrodes prepared by this method, obtaining a composite catalyst loading of 51 

μg/cm
2
 (15.3 μgperovskite/cm

2
 for carbon supported catalysts). Electrochemical testing was 

performed on either a CH Instruments CHI832a or a Metrohm Autolab PGSTAT302N 

potentiostat, both equipped with high speed rotators from Pine Instruments. All testing 

was done at room temperature in 0.1 M KOH (measured pH ≈ 12.6). The current 

interrupt and positive feedback methods were used to determine electrolyte resistance (50 

Ω) and all data was iR compensated after testing. Each measurement was performed in a 

standard 3 electrode cell using a Hg/HgO (1 M KOH) reference electrode, a Pt wire 

counter electrode, and a film of catalyst ink on GC as the working electrode. All 

potentials are reported versus the regular hydrogen electrode (RHE), which is +0.843 V 

vs. Hg/HgO (Hg/HgO (1 M KOH) + 0.1 V) = NHE; NHE + 0.059 * pH = RHE). 

Quantification of Oxygen Reduction Activities. The electrolyte was saturated with 

oxygen by bubbling for a minimum of 10 minutes. ORR activity measurements were 
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taken by rotating the electrode at 1600 rpm and performing a linear sweep from 1.043 V 

to 0.243 V RHE at 5 mV/s. Kinetic currents were used to evaluate mass activities for the 

ORR and were taken at 0.693 V RHE from the polarization curves. The kinetic ORR 

current was calculated according to the equation: i
-1

 = id
-1

 + ik
-1

. Data reported herein are 

the average mass activity taken from cathodic scans of multiple electrodes. 

Quantification of Oxygen Evolution Activities. All OER testing was performed on 

a new electrode which had not undergone previous testing. It should be noted that kinetic 

OER currents could not be calculated due to the lack of a well-defined diffusion limited 

regime as the result of interference from the oxygen bubbles and the degradation of the 

carbon support at anodic potentials. Cyclic scans were performed from 0.9 V to 1.943 V 

at 10 mV/s with a rotation rate of 1600 rpm in O2 saturated 0.1 M KOH. The current at 

1.56 V was selected from the polarization curves to compare the OER activities to values 

reported in literature. Note that at potentials above 1.6 V in oxygen saturated media, 

visible oxygen bubble formation on the electrode surface likely interfered with the ability 

to accurately measure the activity. Data reported herein is the average mass activity taken 

from anodic scans of multiple electrodes. 

3.3 RESULTS AND DISCUSSION 

LaNiO3, LaNi0.75Fe0.25O3, LaCoO3, and LaMnO3 were synthesized by the 

calcination of amorphous mixed metal hydroxide precursors that had undergone rapid 

freeze drying, as shown in Figure 3.1a-d.
11

 The formation of amorphous nanoparticle 

precursors was enabled by the rapid, simultaneous hydrolysis of metal and rare earth 

nitrates, resulting in a dispersion of amorphous hydroxide nanoparticles. In this reverse 

phase arrested growth coprecipitation scheme, the formation of nanoparticles was 

facilitated by the use of tetrapropylammonium bromide (TPAB), of which the cation 
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provided electrostatic and steric stabilization. In addition to providing colloidal 

stabilization, particle growth was also arrested which  enabled formation of stable 

dispersions of 20 - 30 nm particles, as measured by DLS and summarized in Table C.1 

(Appendix C). The dispersions, when rapidly freeze dried, resulted in a highly open, low 

fractal dimension nanoparticulate powders.
34

 

. 

Figure 3.1: Generalized synthetic route to form phase pure 

nanostructured perovskites 

1a) arrested growth coprecipitation of hydroxide nanoparticles, 1b) thin 

film freezing of metal hydroxides sols, 1c) lyophilization of frozen sol 

powder and 1d) calcination of metal hydroxide powder. 2) X-ray 

diffraction patterns shown phase pure LaNiO3, LaNi0.75Fe0.25O3, LaCoO3 

and LaMnO3. 3A-D: scanning electron micrographs of 3A) LaNiO3, 3B) 

LaNi0.75Fe0.25O3, 3C) LaCoO3 and 3D) LaMnO3. 

Figure 3.1.2 shows the XRD patterns resulting from the calcination of LaNiO3, 

LaNi0.75Fe0.25O3, LaCoO3, and LaMnO3 precursor powders at 700° C. All perovskites 

show similar phase purity, characteristic of the adequate intermixing of elements during 

hydrolysis. LaNiO3 was indexed to the stoichiometric rhombohedral (R-3c) phase, 

LaNi0.75Fe0.25O3 was found to most closely match that of rhombohedral LaNi0.6Fe0.4O3, 

LaCoO3 was assigned to the stoichiometric rhombohedral phase, and LaMnO3 was 
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indexed to the orthorhombic (Pnma) oxygen excess La0.97Mn0.97O3 phase. Complete 

phase assignments, including PDF#, are available in Appendix C. Scherrer analysis was 

also performed on the most intense diffraction peak due to a single crystalline plane, 

{024} for all systems, to determine crystallite sizes. For LaNiO3, LaNi0.75Fe0.25O3, 

LaCoO3, and LaMnO3 crystallite sizes of 12 nm, 14 nm, 20 nm and 15 nm were 

calculated, respectively. Due to all the perovskites being formed by the calcination of 20 

– 30 nm hydroxide precursors, this size range is expected given the colloidal precursor 

sizes. 

As crystallite size is not indicative of particle size or surface area, Brunauer-

Emmett-Teller (BET) theory was used in conjunction with nitrogen sorption experiments 

to determine the surface area of each perovskite catalysts, and it was found that all 

perovskites have similar surface areas of 11 to 14 m
2
/g. Figure 3.1.3A-D shows 

representative SEM images for LaNiO3, LaNi0.75Fe0.25O3, LaCoO3, and LaMnO3, in 

which the nanoparticulate processing history of the catalyst can clearly be seen. The 

calcined perovskites form a network of moderately sintered 20 to 50 nm primary 

particles. Both 2D sheet-like and 3D globular morphologies are observed, with no clear 

morphological distinction between the different perovskite systems. All physical 

characterization (DLS, XRD, BET) results are summarized and provided in Table C.1 

located in Appendix C. The general synthesis produces high phase purity, crystallinity, 

surface areas and morphologies that are essentially invariant among the different 

perovskite catalysts reported herein. This enables the systematic investigation of each 

perovskite as OER and ORR electrocatalysts. To provide enhanced electrical 

conductivity and introduce new chemical functionality, two high surface-area carbon 

supports were chosen to support the perovskites. Activated microwave exfoliated, mildly 

oxidized graphene (G) was selected as the unfunctionalized support
33

 and nitrogen-doped 
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mesoporous carbon (NC) was chosen for the functionalized support, due to the high 

relative proportion of pyridinic nitrogen incorporated into the carbon (XPS spectra of 

both supports available in Appendix C, Figure C.1).
32

 

- 

Figure 3.2: Electrochemical OER testing of 

perovskites 

Tafel plot and B) catalyst mass activities for 

the oxygen evolution reaction. All data were 

taken in O2 saturated 0.1 M KOH at 1600 rpm 

and 10 mV/s. 

To determine the effect of perovskite transition metal species and the impact of a 

nitrogen functionalized carbon support, OER mass activities were quantified for LaNiO3, 
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LaNi0.75Fe0.25O3, LaCoO3, and LaMnO3 by measuring polarization curves in O2 saturated 

0.1 M KOH at 1600 rpm and are presented in Figure 3.2. Each perovskite was physically 

mixed (30 wt% perovskite) with either nitrogen doped carbon (NC, 1080 m
2
/g) or 

activated microwave exfoliated graphene oxide (G, ~2500 m
2
/g). The inclusion of a 

carbon support is necessary due to perovskite conductivity being one or more orders of 

magnitude less than metals, depending on the system. Without the use of carbon (or 

another equally conductive support), electrical contact with the electrode is by way of 

point contacts and little to no catalytic activity is observed.
11,20,27

 Additionally, negligible 

hysteresis is observed for the catalysts,
11

 such that current contributions due to carbon 

oxidation are negligent. The potential of 1.56 V RHE-iR was selected for determination 

of mass activities, which enables comparison with recent studies.
11-13

 As seen in Figure 

3.2B, perovskites supported on nitrogen-doped carbon achieved 3 to 23% greater mass 

activity than those supported on G. Within the set of perovskites supported on NC, 

LaCoO3 displayed the highest mass activity (100 mA/mgoxide), followed by LaMnO3 (92 

mA/mgoxide), LaNiO3 (89 mA/mgoxide) and LaNi0.75Fe0.25O3 (82 mA/mgoxide). A similar 

trend was observed for perovskites supported on G, in which LaCoO3 was the most active 

(97 mA/mgoxide), followed by LaNiO3 (81 mA/mgoxide), LaNi0.75Fe0.25O3 (79 mA/mgoxide) 

and LaMnO3 (75 mA/mgoxide). Remarkably, each perovskite was more active than IrO2 

and RuO2 on a mass basis, regardless of the carbon support, and LaCoO3/NC was 2.8 and 

3.7 times as active as IrO2 and RuO2, respectively.
35

 IrO2 and RuO2 were chosen for 

comparison due to their widespread use, but other, more active catalysts such as 

electrodeposited Co3O4 and iron doped nickel oxyhydroxide thin films have also been 

identified.
36,37

 The Tafel slopes for LaNiO3, LaNi0.75Fe0.25O3, LaCoO3 and LaMnO3 

supported on NC were calculated and found to be 42 mV/dec, 44 mV/dec, 51 mV/dec 

and 145 mV/dec, respectively. Noting that reported tafel slope values for these systems 
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vary widely in the literature, there is general agreement with the values published by 

Bockris and Otagawa.
3
 

Clearly, catalytic activity increases when using a nitrogen-doped carbon support 

with a high proportion of pyridinic functionality, but the mechanism responsible for the 

observed increase has not previously been investigated for the OER. Presumably the 

ability of a support to disproportionate hydroperoxide (HOO
-
), an OER intermediate, can 

influence the activity. 

- 

Figure 3.3: Oxygen evolution cycle utilizing 

lattice oxygen 

Proposed oxygen evolution cycle, wherein 

lattice (hydr)oxide is utilized in the formation 

of the O-O bond in HOO
-
. 

Figure 3.2A shows a Tafel plot containing the total mass activity (mA/mgtotal) of 

each NC supported perovskite to that of highly active 6 nm IrO2. For all perovskites 

studied, with the exception of LaMnO3, there is a sharp change in the slope of data, 

indicating a changing mechanism during water oxidation. LaMnO3 is also the catalyst 

that benefits the most from the NC support, gaining 23% more mass activity. Conversely, 

LaCoO3 benefits the least from the NC support (3%). These disparate differences can be 

understood by considering the role of chemical steps in the OER cycle, particularly each 
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catalyst’s ability to decompose peroxide. Figure 3.3 shows a generalized version of the 

OER cycle,
11

 in which lattice (hydr)oxide can participate in the formation of the O-O 

bond in OOH
-
, commonly identified as the rate determining OER step.

2,4,38,39
 For 

catalysts where Step 4 in Figure 3.3 proceeds sluggishly, chemical disproportionation of 

the HOO
-
 intermediate (Eqn. 4) will still result in the formation of O2, circumventing 

Step 4. This chemical functionality is an intrinsic property of perovskites, and can also be 

imparted through support functionalization, as previously discussed. LaMnO3 is a poor 

peroxide disproportionation catalyst, which is likely the reason for its anomalous Tafel 

slope, and the 23% increase in current observed when it is supported on NC.
40

 This 

hypothesis is further confirmed by the results for LaCoO3 and LaNi0.75Fe0.25O3,
41,42

 for 

which the difference in mass activity between NC and G supports are the lowest, at 3% 

and 4%, respectively. The rate limiting OER step for Co oxides has been identified as 

either Step 1 or Step 3.
2
 Therefore, the addition of peroxide disproportionation 

functionality has negligible effect. LaNi0.75Fe0.25O3 is a highly active peroxide 

disproportionation catalyst, so in an argument similar to that for LaCoO3, the additional 

functionality provided by the NC support has little effect.
42

 The lower absolute mass 

activity of LaNi0.75Fe0.25O3 is rationalized by the lower surface area of the catalyst, and 

the lower amount of valence electrons for Fe
(IV)

 as compared to Ni
(III)

 (4 vs. 7). This is 

crucial for several reasons. As electron density decreases, so too does the adsorption 

energy for all intermediates.
14

 Intermediates that are too weakly bound will diffuse away 

or participate in unwanted side reactions. Fe
(IV)

 also must now be oxidized during the 

OER (Figure 3.3, Step 2), but has a higher energetic barrier to overcome than Ni
(III)

. It 

also should be noted that there is a decrease in electronic conductivity (as compared to 

LaNiO3) resulting from the substitution of Fe for Ni,.
42

 The role of nitrogen-doped carbon 

and peroxide disproportionation will be revisited later in this article, but these results 
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clearly show the importance of understanding material-specific catalytic pathways and 

how addition of chemical functionalities in graphitic carbon can result in significant 

(23%) improvements in catalytic activity. 

 

- 

Figure 3.4: Electrochem ORR characterization 

of perovskites 

A) Tafel plots and B) catalyst mass activities for the oxygen reduction 

reaction. All data was taken in O2 saturated 0.1 M KOH at 1600 rpm and 

5 mV/s. The mass activity of a commercial 20 wt% Pd catalyst supported 

on XC72 Vulcan Carbon (VC) is shown for comparison. 
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The influence of carbon support functionality on LaNiO3, LaNi0.75Fe0.25O3, 

LaCoO3, and LaMnO3 catalysis of the ORR was examined by performing RDE 

experiments in O2 saturated 0.1 M KOH at 1600 rpm and 5 mV/s (polarization curves, 

including those of NC and G, are available in Appendix C). Kinetic currents were 

calculated at 0.693 V, such that all currents were taken below the half-wave potential of 

each polarization curve, with the exception of Pd/VC.
43

 Kinetic currents that have been 

normalized with respect to the perovskite mass loading are presented in Figure 3.4B. Of 

the catalyst supported on nitrogen-doped carbon, LaNi0.75Fe0.25O3/NC is the most active 

of the series (547 mA/mgoxide), followed by LaCoO3/NC (516 mA/mgoxide), LaNiO3/NC 

(337 mA/mgoxide) and LaMnO3/NC (252 mA/mgoxide). Also, it is remarkable to note that 

LaNi0.75Fe0.25O3/NC possesses60% of the mass activity of commercial Pd supported on 

XC72 Vulcan Carbon (Pd/VC), a leading precious metal catalyst. When examining the 

perovskite catalysts supported on G, the activity of each decreased, similar to the results 

for the OER. LaNi0.75Fe0.25O3 remained the most active (483 mA/mgoxide) followed by 

LaNiO3 (251 mA/mgoxide), LaMnO3 (193 mA/mgoxide) and LaCoO3 (121 mA/mgoxide). The 

mass activity of the bare NC and G supports at 0.693 V are 17 and 43 mA/mgtotal, 

respectively. These trends (LaNi0.75Fe0.25O3 will be covered later), devoid of any 

additional support functionality, are the most telling. Using eg filling as a descriptor, one 

would not expect such different results. For the ORR in solid oxide fuel cells, activity has 

been correlated to the oxygen p-band relative to the transition metal, strength of metal-

adsorbate interaction, surface oxygen exchange and the energetic barrier to vacancy 

formation.
14,16,44

 These results, in which Ni > Co ~ Mn, are also the same trend for the 

ease of formation of surface oxygen vacancies.
44

 To better understand why 

LaNi0.75Fe0.25O3 is so active, and hopefully achieve a greater understanding of each 
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catalyst’s response to the peroxide disproportionation functionality, we focused on the 

ORR pathways and the effect of hydroperoxide specifically. 

The use of the NC support has been shown to improve the activity catalysts for 

both the ORR and OER. Furthermore, previous work has shown that the alkaline OER on 

perovskites proceeds via the hydroperoxide intermediate, HOO
-
.
3,13,28

 We hypothesize 

that the intrinsic ability for each perovskite to chemically disproportionate peroxide is a 

key step in understanding the observed activity trends. To probe the ability of each 

catalyst to disproportionate peroxide, argon was vigorous bubbled through 0.1 M KOH 

such that all oxygen was flushed from the system. After removal of oxygen from the 

electrolyte was complete, an argon blanket was placed over top and 5 mM of H2O2 was 

injected. Immediately following injection, cyclic voltammetry (CV) was performed over 

the same potential window as used in the ORR polarization tests. In these anoxic 

conditions, any oxygen reduction wave that arises must be from oxygen that is produced 

through peroxide disproportionation. Figure 3.5 shows the results of these test, in which 

clear oxygen reduction waves can be seen for all catalysts, despite the absence of oxygen 

prior to peroxide injection. The bare NC carbon in Figure 3.5A shows a sharp oxygen 

reduction peak at ~0.7 V, while the graphene oxide (Figure 3.5B) has a much broader 

peak centered at ~0.685 V. Despite the qualitative nature of this analysis, the trends 

shown in Figure 3.5A,B follow the general trend of Figure 3.4B. 
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 - 

Figure 3.5: Oxygen reduction waves observed 

by cyclic voltammetry at 5 mV/s in 

deoxygenated 0.1 M KOH after injection of 5 

mM H2O2. 

A) Bare NC and NC supported perovskite 

catalysts and B) bare G and G supported 

perovskite catalysts. 

For catalysts supported on NC, LaNi0.75Fe0.25O3 is nearly equivalent to LaCoO3, 

followed by LaNiO3 and LaMnO3. For catalysts supported on G, LaNi0.75Fe0.25O3 is 

producing and reducing the most oxygen, followed by LaNiO3, LaCoO3 and LaMnO3. 

Furthermore, the large discrepancy amongst LaCoO3 supported on G and NC in Figure 
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3.4B explained by examining Figure 3.5A,B. LaCoO3/NC has a tall, sharp oxygen 

reduction peak, but when supported on G, the CV response flattens dramatically, 

resulting in the largest negative E1/2 shift (13 mV) exhibited by any of the catalysts. All 

catalysts, regardless of carbon support, disproportionate peroxide. Indeed, the relative 

peak areas due to oxygen reduction qualitatively follow the observed activity trends, 

indicating that this chemical functionality could be crucial to the design of active ORR 

catalysts, as seen in the model LaNi0.75Fe0.25O3 system. 

We have shown that LaNi0.75Fe0.25O3 remains highly active for the ORR on either 

NC or G support, despite reduced conductivity and surface area as compared to LaNiO3, 

due in part to its inherent ability to rapidly disproportionate peroxide.
42

 What then is the 

role of nitrogen doped carbon in the OER? This is a question that demands further study, 

but for nitrogen doped carbon containing a relatively high amount of pyridinic nitrogen 

(~65 rel. at.% as determined by XPS, Figure C.1), we believe that the lone pair of 

electrons on the pyridinic nitrogen functionality are also able to stabilize the perovskite 

catalyst during the OER, and that oxidative stability is partly responsible for the increase 

in activity seen for all catalysts supported on NC. To test the idea that pyridinic nitrogen 

contributes to oxidative stability, preliminary stability testing was done on perovskite-

free NC and G carbon supports, under a constant galvanostatic discharge of 10 A/g. The 

potential was monitored as a function of time and is shown in Figure 6. Testing was 

stopped when the potential required to draw 10 A/g exceeded 1.9 V. While further testing 

is needed, these initial results indicate that the NC support is more stable under oxidizing 

conditions than the G support, having lasted more than twice as long at high current 

density. Other possible interactions between the pyridinic nitrogen centers and perovskite 

catalysts, such as a dual-site mechanism, are discussed Appendix C. 
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.  

- 

Figure 3.6: Stability Comparison with Carbon 

Voltage-time trace showing the stability of the 

NC and G supports, drawing a constant 

current of 10 A/g in O2 saturated 0.1 M KOH 

at 1600 rpm. 

To assess the suitability of the perovskite electrocatalysts as bifunctional metal-air 

battery electrodes, the difference in potential between the ORR at -3 mA/cm
2
 and the 

OER at 10 mA/cm
2
 (ΔE), current densities of practical importance for electrochemical 

and photoelectrochemical applications, are compared below in Table 3.1 in addition to 

several precious metal benchmarks.
45

 ΔE is simply the sum of the overpotentials for the 

two reactions. LaCoO3/NC exhibits the lowest total overpotential (ΔE = 1.00 V), 

followed by LaNi0.75Fe0.25O3 and LaNiO3 which are 10 and 20 mV greater, respectively. 

LaCoO3/NC has a lower total overpotential between reactions than both Pt (ΔE = 1.16 V) 

and Ru (ΔE = 1.01 V), while only 80 mV greater than Ir (ΔE = 0.92 V). Note that this 

comparison is not assuming ideal ORR or OER materials, simply comparing some of the 

most active catalysts. LaMnO3 was omitted from this comparison due to insufficient OER 

current density. It should also be noted that while Pt is a highly active ORR catalyst, it 
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forms an inactive oxide skin at anodic potentials. The low total overpotential between 

both reactions for LaCoO3/NC, LaNi0.75Fe0.25O3/NC and LaNiO3/NC indicates that they 

are suitable for bifunctional air electrodes, but the long-term stability (durability) of each 

catalyst still needs to be investigated. 

 

Table 3.1: Perovskite Catalyst Bifunctionality 

Catalyst ORR Potential 

(V) vs RHE @ -

3 mA/cm
2
 

OER Potential 

(V) vs RHE @ 

10 mA/cm
2
 

ΔE (V) 

LaCoO3/NC 0.64 1.64 1.00 

LaNi0.75Fe0.25O3/NC 0.67 1.68 1.01 

LaNiO3/NC 0.64 1.66 1.02 

20 wt% Ir/C
45

 0.69 1.61 0.92 

20 wt% Ru/C
45

 0.61 1.62 1.01 

20 wt% Pt/C
45

 0.86 2.02 1.16 

Note: OER data for Ir, Pt and Ru were taken at 5 mV/s, whereas all 

perovskite OER data is at 10 mV/s. 

 

3.4 CONCLUSIONS 

In conclusion, a series of phase pure perovskite electrocatalysts having modest 

surface area (~11 m
2
/g) have been synthesized using a robust synthetic process in which 

colloidal mixed metal hydroxides are formed by reverse phase arrested growth 

coprecipitation. Phase purity is enabled by the rapid simultaneous hydrolysis of nitrate 

salts, forming sols of perovskite precursor nanoparticles. When these particles are freeze 

dried and calcined, a series of perovskites having nearly identical morphology and 
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surface area are formed. These perovskite catalysts, when supported on nitrogen doped 

carbon or activated microwave exfoliated graphene oxide displayed high activities for 

both the OER and ORR, with LaCoO3/NC having ~4x the OER mass activity of the 

precious metal oxide benchmark IrO2, and LaNi0.75Fe0.25O3/NC having comparable ORR 

activity as Pd/VC. This demonstrates that the high specific (μA/cm
2

ox) activity of 

perovskites can be translated into highly active and bifunctional oxygen catalysts. 

Through tuning of the carbon support functionalization, rate limiting steps were identified 

and bypassed by successful incorporation of peroxide disproportionation into the catalyst 

itself, which was achieved through selective doping. LaNi0.75Fe0.25O3 exceptional ORR 

activity is in part rationalized by the catalyst’s ability to bypass the traditional rate 

determining ORR step of peroxide reduction by disproportionation of HOO
-
 into O2 and 

OH
-
, enabling a pseudo four electron ORR pathway. This work attempts to look beyond 

the choice of bulk electrical properties or use of single catalytic descriptors such as eg 

filling, while providing a catalyst-specific understanding of the importance of peroxide 

oxidation or reduction on perovskites during the OER and ORR. This mechanistic 

understanding is crucial for enabling the continued improvement of nonprecious metal 

water oxidation and oxygen reduction catalysis. 

3.5 ADDITIONAL INFORMATION 

Material summary table including XRD phase identification, DLS colloid size, 

BET surface area, and crystallite size. XPS of the N 1s core region of the carbon 

supports, and electrochemical polarization curves used to calculate mass activities are 

provided in Appendix C 
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Chapter 4: Exceptional Electrocatalytic Oxygen Evolution Via Tunable 

Charge Transfer Interactions in La0.5Sr1.5Ni1-xFexO4+δ Ruddlesden-

Popper Oxides3 

4.1 INTRODUCTION 

Increasing global energy demand requires greater efficiency in water electrolyzers 

for low cost hydrogen generation and rechargeable metal-air batteries to enable pragmatic 

development of these key technologies. Given that the efficiencies of these technologies 

are limited primarily by the sluggish kinetics of the oxygen evolution reaction (OER, 

4OH
–
 → O2 + 2H2O + 4e

–
), extensive efforts have been made to reduce the overpotential 

for the OER in alkaline media with advanced catalysts.
1
 Whereas precious metals such as 

Ir and Ru are standard OER catalysts in acidic electrolytes, alkaline electrolytes enable 

the use of earth-abundant, non-precious metals. For example, Ni-M oxyhydroxides such 

as Ni1-xFexOOH are known to be very active for the OER; however, lack of long-range 

order and uncontrolled electronic structure stemming from different synthetic methods
2
 

complicates elucidation of the mechanism(s) by which OER activity is improved.
3, 4, 5

 In 

fact, recent reports question whether Fe is part of the catalytic cycle or if Fe promotes 

partial charge transfer between Ni and Fe metal centers.
2, 4, 6

 Only recently has it been 

revealed that as much as 50% of the measured current (catalytic activity) for carbon-

supported Ni-Fe oxyhydroxides is not due to the OER.
7
 Collectively, the large variations 

in electronic configuration and the resulting catalytic activity in these studies complicate 

establishment of precise structure-property correlations for Ni-Fe oxyhydroxides.
2, 5, 8

. 

In contrast, perovskite oxides having the nominal formula ABO3+δ, in which A is 

a rare-earth or alkaline earth element and B is a transition metal, have recently been 

shown to promote OER catalysis through high ionic and electronic conductivities, good 

                                                 
3 Large parts of this chapter have been submitted to Nature Materials on March 31

st
, 2017. 
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structural stability, and synthetic versatility, all of which enable the development of 

rational catalyst design criteria.
9, 10, 11

 Importantly, the ability to substitute elements of 

varying valence, electronegativity, or ionic size into A and B-sites directly influences the 

resultant properties of these catalysts.
1, 12

 Recently, we demonstrated that highly covalent 

Co 3d – O 2p bonding in SrCoO2.7 improved OER activity via a more energetically 

favorable lattice oxygen mediated (LOM) reaction pathway, consistent with prior reports 

and theory.
13, 14, 15

 This LOM mechanism does not require the redox switching of 

transition metal sites, but rather utilizes lattice oxygen in the OER when the Fermi 

level, 𝐸𝐹
0, crosses the transition metal 3d - O 2p hybridized bands. This results in ligand 

holes that activate lattice oxygen which may combine with chemisorbed OH to produce 

O2
-
. In a separate report, SrNiO3 was predicted to be more covalent and thus be more 

catalytically active than SrCoO3.
16

 Unfortunately, this prediction is hard to validate 

experimentally as SrNiO3 adopts a non-perovskite structure based on a hexagonal close 

packing of Sr and O atoms.
17

 In addition, it is known that the substitution of Sr into 

LaNiO3 is limited to ~5-20% after which phase impurities appear, which result in poor 

catalytic activity.
18, 19

 To overcome this limitation, we investigate an alternative crystal 

structure to the perovskite-phase SrNiO3 that promotes high OER activity but does not 

suffer from limited Sr solubility and can stabilize highly oxidized, covalently bound Ni. 

In this report, we utilize a precise synthetic approach to explore the influence of 

Sr and Fe substitution on Ni-based electrocatalysts by exploiting the crystalline 

Ruddlesden-Popper phase to study the influence of atomic and electronic configurations 

that are unrealizable in other electrocatalyst systems. The Ruddlesden-Popper (RP) 

crystal structure is represented as An+1BnO3n+1 or equivalently (AO)(ABO3+δ)n, wherein 

perovskite layers with a thickness of n (BO6) octahedra are separated by rocksalt 

(AO)(OA) double layers. This RP phase can accommodate all the elemental substitutions 
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available to perovskites as well as additional compositions that are not stable in the 

perovskite structure.
20

 While Ruddlesden-Popper materials have been explored as solid 

oxide fuel cell cathodes owing to their chemical flexibility and labile lattice oxygen, they 

have not been fully examined for room temperature water oxidation.
21, 22, 23, 24, 25, 26, 27

 

Herein, we report a series of La0.5Sr1.5Ni1-xFexO4+δ (LSNF, x = 0 to 1) OER 

catalysts that have enabled us to achieve exceptionally high catalytic activities at low 

overpotentials with small OER Tafel slopes. In particular, we show that Sr substitution 

promotes high catalytic activity by further oxidizing Ni via charge compensation, 

enhancing Ni-O covalency and electronic conductivity. Chemical substitution of Fe for 

Ni introduces and tunes the overlap between the Ni and Fe 3d bands and the O 2p band. 

Density functional theory (DFT) modeling confirms that cross-gap hybridization between 

eg(Ni), p(O) and eg(Fe) bands across the Fermi level enhances charge transfer interactions 

across Fe-O-Ni bridges and the bandwidth available for electrode-adsorbate electron 

transfer. We propose the concept of cross-gap hybridization
28

 of transition metal 3d states 

and O2p orbitals as an effective new catalyst design criteria for improving OER activity. 

Furthermore, our work illustrates the remarkable catalytic activity of the RP LSNF series 

that encompasses a range of chemical substitutions and electronic configurations that are 

not fully-realizable in perovskite electrocatalysts or other crystalline metal oxide phases. 

This precise synthesis of RP compositions enables the elucidation of crucial structural-

chemical-electronic relationships that have not been possible with Ni-M oxyhydroxides 

and other reported metal oxide catalysts for OER. Yet by analogy, cross gap 

hybridization of 3d states with O2p possibly explains the reported high OER activity for 

Fe-doped Ni- and Co-based oxide systems. 
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4.2 RESULTS AND DISCUSSION 

4.2.1 Material Characterization 

La0.5Sr1.5Ni1-xFexO4+δ (LSNF, x = 0 to 1) samples were synthesized using a 

modified Pechini method
29

 followed by crystallization and annealing, details of which are 

found in the methods section. Electron diffraction and powder X-ray diffraction (PXRD) 

patterns correspond to a body-centered tetragonal unit cell with the I4/mmm space group, 

characteristic of the n = 1 Ruddlesden-Popper (RP) crystal structure (Figure 4.1a,c and 

Figure D.1). No superlattice reflections were detected that could be attributed to the La/Sr 

or Fe/Ni ordering, ordering of hyperstoichiometric oxygen atoms, or lattice distortions. 

The a and c unit cell parameters (Figure 4.1b) and unit cell volume (Figure D.2) increase 

almost linearly with Fe substitution reflecting that the La0.5Sr1.5Ni1-xFexO4+δ solid solution 

is homogeneous over the entire substitutional range. The I4/mmm structure has been 

confirmed with Rietveld refinement from PXRD data (Table D.1, Figure D.3, D.4). Unit 

cell volume increases with Fe substitution are in agreement with the increasing fraction 

of Fe cations that have larger ionic radii than Ni cations (r(Fe
3+

, HS) = 0.645 Å, r(Fe
4+

, 

HS) = 0.585 Å, r(Ni
3+

, LS) = 0.56 Å, r(Ni
4+

, LS) = 0.48 Å).
30

 The ratio of the apical to 

equatorial Ni/Fe – O distances increases from 1.038 in LSN to 1.073 in LSF, which 

correlates with an increasing fraction of Jahn-Teller Fe
4+

 (HS) cations in the Ni/Fe 

position 2a, promoting the apical elongation of the (Ni/Fe)O6 octahedra. The I4/mmm 

crystal structure is also directly viewed with annular bright field scanning transmission 

electron microscopy (ABF-STEM, Figure 4.1d), which visualizes heavier cations and 

lighter oxygen anions simultaneously. The ABF-STEM image shows perfect stacking of 

the perovskite (BO2) (B = Ni, Fe) layers and the rock salt (AO)(OA) (A = La, Sr) layers 

without stacking faults. The crystal structure propagates to the surface without noticeable 

traces of amorphization. 
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Figure 4.1: Crystallographic characterization of the La0.5Sr1.5Ni1-xFexO4+δ 

series 

a) PXRD patterns of La0.5Sr1.5Ni1-xFexO4+δ demonstrate all compositions 

have the tetragonal n = 1 Ruddlesden-Popper I4/mmm structure. b) 

Compositional dependence of a and c unit cell parameters showing 0  x 

 1 homogeneity range. c) Electron diffraction patterns of LSNF30 

confirm the absence of cation and/or anion ordering. d) [100] ABF-

STEM image of LSNF30 directly visualizes the stacking of the (BO2) 

octahedra (white arrowheads, B = Ni, Fe) and (AO)(OA) layers (black 

arrowheads, A = La, Sr) in the Ruddlesden-Popper structure. The scale 

bar is 2 nm. 

The consistent morphology of catalysts is crucial to the analytical comparison of 

electrochemical OER activity. High-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) and Brunauer-Emmet-Teller (BET) surface area 

analysis were performed on the LSNF series. The results, presented in Figures D.5 and 

D.6, indicate similar morphology across the series regardless of Fe substitution. All 

compositions consist of 50 – 300 nm crystallites loosely sintered into agglomerates that 
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are up to several microns in size. This morphological similarity is reinforced by BET 

surface area results which range from 3.3 to 6.8 m
2
 g

-1 
(Figure D.6). 

4.2.2 Electrochemistry 

The La0.5Sr1.5Ni1-xFexO4+δ (LNSF) series was tested for the OER and the results 

are presented in Figure 4.2. Representative polarization curves for all compositions are 

shown in Figures 4.2a and D.7. For all amounts of Fe substitution, with the exception of 

100% (LSF), the onset potential for the OER decreases and the corresponding catalytic 

activity increases significantly compared to LSN. Merely 15% replacement of Ni with Fe 

increases the specific activity (mA cm
-2

oxide) by over an order of magnitude at 1.63 V vs 

RHE-iR, as seen in Figure 4.2b. Further substitution of Fe for Ni yields a volcano-like 

catalytic trend, with LSNF30 being the most active composition. LSNF30 displays 

exceptionally high catalytic activities of 32.7 mA cm
-2

oxide and 1930 mA mg
-1

oxide at 1.63 

V, over 20 and 40 times higher than the respective values for LSN, and achieves the 

common benchmark of 10 mA cm
-2

geo at only a 360 mV overpotential. The catalytic 

activity of VC is negligible, contributing only 7 mA mg
-1

 (Figures D.7 and D.8a-b) at 

1.63 V. Figures 4.2c-d demonstrate the significantly high mass and specific activity of 

LSNF30 compared to other leading metal oxide OER catalysts. As the figures show, 

LSNF30 is over 5 times more active than the recently reported SrCoO2.7 (1930 vs 332 

mA mg
-1

oxide) and over an order of magnitude more active than IrO2 (173 mA mg
-1

oxide), a 

leading precious-metal oxide benchmark catalyst. LSNF30 generates 3 times as much 

current per surface area as SrCoO2.7 (Figure 4.2d, 32.7 vs 9.2 mA cm
-2

oxide), over an order 

of magnitude more than IrO2 (1.2 mA cm
-2

oxide) at 1.63 V, has a Tafel slope of 44 mV 

dec
-1

, and sustains 10 A g
-1

ox for over 24 hours without failure (Figure D.9). Table D.2 

summarizes the catalytic activities of other promising catalysts to enable comparison with 
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LSNF30 using multiple metrics. Examined in the context of precious- and non-precious 

metal OER catalysts, LSNF30 is one of the most active OER catalysts ever reported to 

our knowledge. 

 

.  

Figure 4.2: Oxygen evolution results and catalytic activities for the LSNF 

series taken in O2 saturated 0.1 M KOH at 10 mV s
-1

 and 1600 rpm 

a) Averaged (anodic and cathodic) OER polarization curves presented in 

geometric current density (5 mm GCE, A = 0.196 cm
2
). b) Tafel plots of 

the specific activity of each LSNF catalyst, c) oxide mass activity of the 

LSNF series at 1.63 V vs RHE-iR compared to leading OER catalysts 

SrCoO2.7, LaNiO3 and IrO2 on XC72 Vulcan Carbon (VC). d) Specific 

activities of leading OER catalysts compared to LSNF30, the most active 

composition of the series. All catalysts are 30 wt% oxide on VC, except 

for IrO2 which is 20 wt% on VC. Electrode loading is fixed at 51 μgtotal 

cm
-2

geo for all tests. 
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The Ni
2+/3+

 redox couple in LSNF is observed to shift to more positive potentials 

with Fe substitution, indicating a direct modulation of Ni’s reactivity with Fe substitution. 

This redox couple exists in the incipient OER region, as indicated in the reversible cyclic 

voltammetry (CV) peaks in Figure 4.3a. The potential range over which the redox peaks 

are observed is consistent with prior studies of Ni-based electrocatalysts
3, 31, 32

 with Fe 

substitution shifting the peak potential (EP) of Ni
2+/3+

 oxidation as documented with Ni-

Fe oxyhydroxides.
3, 4, 31

 The features in Figure 4.3c arise from electroactive Ni, as 

indicated by integration of the oxidation waves (Figures D.10 and D.11) which reveal 

that the specific oxidative charge (µC cm
-2

oxide) transferred during oxidation/intercalation 

is consistently reduced upon increasing Fe substitution with the exception of the initial 

introduction of Fe in LSNF15 (Figures 4.3d). Similar behavior was reported earlier for 

10% Fe substitution into NiOOH hydroxide electrodes
3
 and is speculated to be due to 

increased oxygen and electrolyte diffusivity. Such an interpretation is supported by the 

increased electrochemical oxygen diffusion rate in LSNF15 as compared to LSN (1.04E
-

12
 cm

2
 s

-1
 vs 8.03E

-13
 cm

2
 s

-1
; Figure D.12 and Table D.3). 

Oxygen intercalation concomitant with Ni redox is likely given the labile nature 

of oxygen in La2NiO4+δ. This is further suggested by the observation that the pH 

dependence of the Ni
2+/3+

 oxidation Ep in Figure 4.3b behaves like a Nernstian 

pseudocapacitor using OH
-
 as the intercalating ion.

13, 33, 34, 35
 Beyond apparent oxygen 

intercalation in LSNF30, consistent modulation of Ni’s reactivity is evidenced by the 

anodic shift in Ep with increasing Fe substitution, as seen in Figure 4.3c and summarized 

in Figure D.8c. 
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Figure 4.3: Cyclic voltammetry (CV) of LSNF catalysts in O2 saturated 

0.1 M KOH unless otherwise specified. 

a) CVs in the incipient OER region for LSNF30 demonstrating both 

reversibility and peak potential dependence on scan rate. CVs from 5 to 

100 mV s
-1 

for the entire LSNF series are available in Figure D.9. b) CVs 

of LSNF30 in 0.1 M, 1 M and 5 M KOH demonstrates pH dependence on 

the oxidation wave peak potential (Ep), consistent with OH
-
 intercalation, 

while shifts between the first and second cycle suggest catalyst surface 

restructuring upon initial cycling. c) CVs of LSNF at 100 mV s
-1

 

revealing a systematic anodic shift in Ni
2+/3+

 oxidation/intercalation 

potentials with increasing Fe substitution. CVs at 100 mV s
-1

, taken after 

3 to 4 cycles to ensure peaks occur at a stable position, are depicted to aid 

the reader in distinguishing peak potential shifts and relative areas, but at 

100 mV s
-1

 contributions to EP from capacitance and mass transport 

resistance cannot be ignored. To address this, peak potentials reported in 

Figure D.8c were taken from stable CVs at 10 mV s
-1

. d) Specific 

oxidative charge (µC cm
-2

oxide) resulting from the integration of oxidation 

waves. Integrations were performed using specific current density (µA 

cm
-2

oxide) to normalize differences in catalyst surface area (Figure D.8d). 

The OER baselines for stable CVs at 10 mV s
-1

 were fit and subtracted. 

Figure D.11 contains the CVs used for integration. 
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4.2.3 Chemical States and Electronic Structure 

Remarkable improvement of the catalytic activity of LSN upon Fe substitution for 

Ni may be explained by the impact of the Fe 3d states on the electronic structure of 

LSNF. Figure 4.4 presents a schematic of the expected evolution of the band structure as 

first Sr and then Fe are substituted into the La2NiO4+δ host lattice. It is known that over 

50% Sr substitution for La induces metal-like conductivity
23, 36

 in the charge transfer 

insulator La2NiO4+δ due to hole doping in the O 2p band.
37

 Earlier studies of the 

electronic structure of La1.1Sr0.9Ni0.8Fe0.2O4+δ with resonant photoemission spectroscopy 

suggest that the Fe 3d states make a substantial contribution to the valence band near the 

Fermi level (EF) by strongly hybridizing with the O 2p and Ni 3d states
26

 which 

facilitates cation oxidation and redox processes. The lower electronegativity of Fe 

compared to Ni dictates that the Fe 3d σ* band should be higher in energy than the Ni 3d 

σ* band. The mixed Fe 3d and Ni 3d bands pinned at EF in close proximity to the O 2p 

band should give rise to a mixture of Ni
3+/4+

 and Fe
3+/4+

 where the relative proportion of 

oxidation states changes with the amount of Fe substitution.
25, 27, 38
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Figure 4.4: Schematic evolution of the electronic structure of 

semiconducting La2NiO4+δ as Sr and Fe are substituted into it. The 

substitution of La
3+

 by Sr
2+

 shifts the O 2p band towards the Fermi level 

(EF), giving rise to metal-like conductivity in LSN from hole injection 

into O 2p π* and overlap with Ni 3d σ*. Next, substitution of the less 

electronegative Fe for Ni introduces a Fe 3d σ* band that overlaps with 

Ni 3d σ* while shifting the O 2p π* down relative to LSN. LSNF is 

predicted to exhibit a continuum of Ni/Fe 3d σ* bands that overlap with 

the O 2p above the EF. Complete replacement of Ni with Fe results in 

La0.5Sr1.5FeO4+δ
39

. 

The average Ni and Fe oxidation states were determined by ex-situ room 

temperature Mössbauer spectroscopy (Figure D.13) in conjunction with iodometric 

titrations. Table 4.1 contains the results of this analysis wherein the average oxidation 

state of Ni increases with increasing Fe content from +3.54 to +3.95, as does the oxygen 

hyperstoichiometry (δ) and the average B-site oxidation state. The increase in the 

oxidation state of Ni is supported by the observation that the Ni 3p spectrum, obtained by 

X-ray photoelectron spectroscopy (XPS), shifts to higher binding energies with 

increasing Fe content (Figure D.14) as well as the positive potential shifting of the Ni
2+/3+

 

redox features (Figure 4.3c) 
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Table 4.1: Oxygen hyperstoichiometry (δ) in La0.5Sr1.5Ni1-xFexO4+δ, 

average B-site oxidation states determined by iodometry, the results of 

Mössbauer spectroscopy and the calculated average Ni oxidation state 

Catalyst Fe sub. 
δ, 

hyperst. 

δ st. 

dev 

B
+
 

avg 

B
+
 

st. 

dev 

Fe
4+ 

(Moss.) 

Fe
3+

 

(Moss.) 

Ni
x+

 

avg 

Ni
x+

 

st. 

dev 

LSN 0% 0.018 0.013 3.54 0.03 - - 3.54 0.03 

LSNF15 15% 0.046 0.007 3.59 0.01 73% 27% 3.57 0.02 

LSNF30 30% 0.042 0.010 3.58 0.02 62% 38% 3.57 0.03 

LSNF45 45% 0.065 0.027 3.63 0.05 57% 43% 3.68 0.10 

LSNF55 55% 0.088 0.011 3.68 0.02 58% 42% 3.80 0.05 

LSNF70 70% 0.076 0.022 3.65 0.04 58% 42% 3.82 0.14 

LSNF85 85% 0.081 0.036 3.66 0.07 61% 39% 3.95 0.48 

LSF 100% 0.143 0.037 3.79 0.07 62% 38% - - 

To further understand the electronic structure evolution across the LSNF series 

and its implications for the OER activity, as well as confirm the results of the Mössbauer 

spectroscopy and iodometric titrations, we model the bulk phase of LSNF by density 

functional theory (DFT). A series of LSNF compositions are modeled by 2x2x1 primitive 

unit cells allowing for unit compositions of La0.5Sr1.5NiO4 (LSN), La0.5Sr1.5Ni0.75Fe0.25O4 

(LSNF25), LSNF50, LSNF75 and LSF. Details regarding cell formation and magnetic 

investigation are given in Appendix D. 
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Figure 4.5: Density functional theory modeling of atomic and electronic 

structures of bulk LSNF in ferromagnetic configuration. 

(a) The ground-state 2x2x1 cell of La0.5Sr1.5NiO4, with uniformly 

distributed La in each [001] AO layer. (b) Representations of the two 

B(B’)O2 layers for each ground state La0.5Sr1.5Ni1-xFexO4, with x at 0, 

0.25, 0.5, 0.75 and 1; for each x, the ground state Fe arrangement is 

characterized by equal numbers of Fe in the two B(B’)O2 layers, with the 

Fe in each layer arranged to maximize the number of Fe-O-Ni bridges. 

(c) The corresponding spin polarized PDOS of eg (Ni: grey shaded area, 

and Fe: blue line) and 2p (O: red line) with respect to Fermi level (𝐸𝐹
0) for 

the B-O-B’ bridges; the PDOS are the average of existing B-O-B’ 

bridges; the adapted Fermi level (𝐸𝐹
𝛿) to oxygen hyperstoichiometry is 

estimated via the rigid band model, with 𝐸𝐹
𝛿 = 𝐸𝐹

0 − 2𝑒−δ/DOS(𝐸𝐹
0), 

where DOS(𝐸𝐹
0) is the total density of states at 𝐸𝐹

0 per formula unit of 

LSNF. (d) Top: Computed values of the O-p band center (top panel), 

with La2NiO4 (LN) calculated as reference. Middle: The magnitude of 

band overlap, determined by the integration of maximum PDOS between 

eg(B) and eg(B’) from -2 to 2 eV, normalized to eg(Ni) in LSN. Bottom: 

The corresponding overlap center (centroid) of maximum PDOS between 

eg(B) and eg(B’). 
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Figures 4.5a-b show the (001) atomic layers of the most stable LSNF structures 

based on our screening. For LSN (Figure 4.5a), we find a uniform, proportional 

distribution of La/Sr.
40

 Using this La/Sr distribution, we determine the minimum energy 

Ni/Fe ordering which results in two key features governing the Fe arrangement in LSNF 

(Figure 4.5b). First, each of the two B(B’)O2 layers has an equal number of Fe cations in 

order to prevent an unbalanced charge distribution between them. Second, the Fe cations 

in each B(B’)O2 plane are distributed such that the number of Fe-O-Ni bridges is 

maximized.
2
 This arrangement mitigates the effects of the induced O 2p electron hole at 

Ni-O-Ni bridges due to more effective electron donation by Fe at Fe-O-Ni bridges, which 

increases stability.
16

 Compared with Fe-O-Fe bridges, the Fe-O-Ni bridges induce shorter 

Fe-O bond lengths and thus indicate higher Fe oxidation states. This observation agrees 

with the experimentally observed predominance of Fe
4+

 over Fe
3+

 at low Fe substitution. 

The computed projected density of state (PDOS) of the Fe-O-Ni bridges confirms 

that the Ni cations are in the low-spin state, with fully occupied 𝑡2𝑔
↓  states (Figure D.15d), 

while the Fe cations are in the high-spin state, with mostly unoccupied 𝑡2𝑔
↓  states for all 

LSNF.
41

 These spin states lead to eg bands positioned around the Fermi level, 𝐸𝐹
0, thus 

becoming the most relevant for Fe-O-Ni interactions and the focus of our study. 

Inspection of the Fe-O-Ni bridges reveals significant overlap of O 2p, Ni 𝑒𝑔
↑ and 

Fe 𝑒𝑔
↑ bands for all compositions in the LSNF series (Figure 4.5c) as suggested in Figure 

4.4. This overlap leads to two important observations. First, the unoccupied O 2𝑝↑ states 

indicate oxygen electron holes with finite PDOS across 𝐸𝐹
0, thus bridging charge transfer 

between neighboring cations.
30, 41

 Second, the similar energies of the Ni and Fe 𝑒𝑔
↑ states 

(denoted Band I and Band II in the following) open up the possibility of electron 

exchange through oxygen. These two factors govern the evolution of the PDOS from 

LSN to LSF. On one hand, the substitution of Ni by less electronegative Fe stabilizes O 
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2p electrons and increases the Ni-O distances, shifting the O 2p band center downwards 

relative to EF (Figure 4.5d) and decreasing the bandwidth
41

 which reduces electron holes 

and charge transfer ability.
42

 This condition is consistent with the experimentally 

observed increase in oxygen hyperstoichiometry in going from LSN to LSF. On the other 

hand, the partially filled Band II (Fe) significantly hybridizes with both O 2p and Band I 

(Ni), driving the latter towards 𝐸𝐹
0. Both Bands I and II make significant contributions to 

the occupied (valence) and unoccupied (conduction) states, respectively, and this 

dramatically increases the bandwidth of the triple band overlap,
26

. These observations are 

consistent with Figure 4.4 and previous work demonstrating similar changes to the O 2p 

band center when less electronegative elements are substituted in Sr2-xLaxMO4+δ.
43

. As 

Figure 4.5d shows, from LSN to LSNF50, the magnitude of overlap electron density 

dramatically increases with its center approaching 𝐸𝐹
0, suggesting a significantly lower 

energetic cost to accept/donate electrons. The increased Fe concentration in LSNF75, 

however, drives Band I (Ni) into the similar distribution of Band II (Fe) and reduces the 

overlap magnitude. This suggests that the optimal OER activity will occur for a 

composition between LSNF25 and LSNF50, which is consistent with experimental 

observations. More discussion on band movement due to oxygen hyperstoichiometry can 

found in Appendix D. 

The triple band overlap increases the bandwidth available for charge transfer at 

the adsorbate-catalyst interface, and therefore should increase the rate of reaction 

according the Gerischer-Marcus model of electron transfer.
44

 A larger bandwidth implies 

a higher density of both occupied and unoccupied states around the Fermi level, which 

are able to accommodate surface redox reactions via only a slight Fermi level shift, thus 

requiring less energetic cost. This model is also consistent with the d band theory,
45

 

which suggests the optimal metal catalyst as one with desirable bonding (occupied) and 
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anti-bonding (mostly unoccupied) states, so as to attain an intermediate bond strength at 

the adsorbate-metal interface. 

The effects of band overlap on activity can be further understood with respect to 

the adsorption energy of reaction intermediates and bulk catalyst stability. On one hand, 

comparison between the LSNF activity volcano (Figure 4.2c) and the DFT computed 

volcano described by Man
15

 indicate binding character that is too weak on LSN and too 

strong on LSF. Too high an oxidation state on the B-site cation, as is the case at higher Fe 

contents, favors adsorption of O while too low an oxidation state, present at lower levels 

of Fe substitution, favors adsorption of OH.
13, 15, 16

 We propose that significant mediation 

between the two end-member compounds via electron exchange and hybridization across 

Ni-O-Fe bridges produces an intermediate adsorption strength stemming from these 

exchange interactions that may play a significant role. On the other hand, the catalyst 

stability is reduced from LSF to LSN due to formation of more oxygen electron holes, 

which may favor rapid subtraction and direct participation of surface lattice oxygen into 

the OER via the LOM mechanism.
16

 The observed OER activity for the LSNF RP series 

and its correlation with the electronic structure calculations and oxygen diffusion rates 

suggest that the series follows the LOM pathway as we have previously proposed.
13, 16

 A 

full rationalization supporting this hypothesis is included in Appendix D. 

4.3 CONCLUSIONS 

We have precisely synthesized a series of RP catalysts having highly oxidized and 

covalent Ni 3d - O 2p - Fe 3d bonds that give rise to exceptional OER activity. To 

increase the oxidation state and Ni-O covalency, Sr substitution into LaNiO3 has 

previously been proposed but not fully realized. Inactive secondary phases resulting from 

poor solubility of Sr in the perovskite phase were avoided through utilization of the RP 
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crystal structure. Using La0.5Sr1.5NiO4+δ as the host lattice, we achieved complete 

substitution of Fe for Ni across the entire compositional range, while crystalline 

periodicity of the RP phase enabled precise study of the impact of Fe substitution on the 

chemical and electronic properties of the LSNF series. Iodometric titrations coupled with 

Mössbauer spectroscopy indicate that the average Ni oxidation state in the LSNF series 

increases from +3.46 to +3.95 with increasing Fe substitution while the Ni
2+/3+

 redox 

peaks also shift to more positive potentials, consistent with Ni developing a more 

oxidized character. The influence of Fe substitution extends beyond increasing the 

oxidative strength of Ni, however, as the electrocatalytic activity increases by over an 

order of magnitude from LSN to LSNF30, despite possessing statistically equivalent Ni 

oxidation states. DFT calculations reveal that Fe substitution results in cross-gap 

hybridization where the Fe 3d eg band is hybridized with both the Ni 3d eg and top of the 

O 2p density of states across the Fermi level. The increased covalency of the Ni-O bonds 

as well as facile charge transfer through Fe-O-Ni bridges due to incorporation of Fe 

explains the enhanced catalytic activity going from LSN to LSNF30. This methodology 

to promote cross-gap hybridization via selective substitution of A and B-site elements in 

RP oxides represents a new set of design principles for the optimization of metal oxide 

catalysts and reveals important fundamental aspects related to the their structure and 

electrocatalytic activity.  

4.4 METHODS 

All chemicals were used as received. Lanthanum(III) nitrate hexahydrate 

(99.995%), strontium(II) nitrate hexahydrate (99%), nickel(II) nitrate hexahydrate (99%), 

iron(III) nitrate non-ahydrate (99.99%), tetramethylammonium hydroxide pentahydrate 

(TMAOH, 99%), diethylene glycol (DEG, 99.99%), citric acid monohydrate, 2-propanol, 
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ethylenediaminetetraacetic acid, and potassium hydroxide were obtained from Fisher 

Scientific. Ethanol (Absolute 200 proof) was obtained from Aaper Alcohol. 5 wt % 

Nafion solution in lower alcohols and IrO2 powder were purchased from Sigma-Aldrich. 

Millipore high purity water (DI water, 18 MΩ) was used. Oxygen (research grade, 

99.999% purity) and argon (research grade, 99.999% purity) were obtained from Praxair. 

Vulcan XC72 carbon (VC) was purchased from Cabot Corporation and ball-milled prior 

to use. 

Catalyst Synthesis 

La0.5Sr1.5Ni1-xFexO4+δ (LSNF, x = 0 to 1) samples were synthesized using a 

modified Pechini method
29

 followed by crystallization and annealing. A- and B-site 

nitrate salts, in stoichiometric ratios, were dissolved in water to create a solution with a 

total metal salt concentration of 0.1 M. Citric acid and EDTA were added to the solution 

each at a concentration of 0.1 M as well. TMAOH was added dropwise to the solution 

until the pH had reached 7.5 in order to deprotonate and dissolve the EDTA. DEG was 

then added to the solution at a concentration of 0.067 M and the solution was heated to 

85° C while stirring. The EDTA and citric acid were both added to ensure complete 

chelation of the metal cations, preventing agglomerations or particle formations that may 

lead to catalyst inhomogeneity. DEG and heat were added to the solution to drive a 

dehydration reaction between the polyhydroxyl alcohol and the carboxylic acid groups of 

the chelates to form a polyester gel. Once all of the water had been evaporated the gel 

was combusted on a hot plate at 350° C to form mixed metal oxide precursor particles. 

This step was performed on a hot place and not in a sealed tube furnace to avoid possible 

explosions from rapid evolution of gasses upon combustion. Finally, precursor particles 

were crystallized at 950° C (heated at 20° C min
-1

) for 5 hours, then cooled to 400° C and 

left to anneal for 6 hours in a tube furnace. The entire crystallization and annealing 
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routine was done under pure O2 flowing at 200 mL min
-1

. Catalysts were recovered and 

immediately stored under Ar gas to prevent catalyst surface amorphization. Total catalyst 

yields per synthesis ranged from 500 to 750 mg. More details regarding the synthesis can 

be found in Masato et al.
29

 

SrCoO2.7 and LaNiO3 were synthesized via a coprecipitation method previously 

reported elsewhere
13, 46

 in which A and B-site nitrate salts in a 1:1 ratio were dissolved in 

a 1 wt% solution of TMAOH containing an equimolar amount of TPAB to the total 

moles of metal cations in order to form mixed metal hydroxide precursor particles. These 

solutions were flash-frozen on a rotating metal drum at cryogenic temperatures and 

collected before lyophilization to remove water. The precursor particles were then 

calcined at 700° C (LaNiO3) or 950° C (SrCoO2.7) to form the perovskite phase. 

Electrochemical Characterization 

Catalyst inks were prepared by adding 2 mL of a NaOH neutralized 0.05 wt% 

Nafion solution
47

 to 2 mg of catalyst powder and bath sonicated for at least one hour. A 

volume of ink (10 μL) was drop cast onto a clean 5 mm (0.196 cm
2
, Pine Instruments) 

glassy carbon electrode and dried under ambient conditions overnight. The glassy carbon 

electrodes were cleaned prior to drop casting by sonication in a 1:1 DI water:ethanol 

solution. The electrode was then polished using 0.05 μm alumina powder, sonicated in a 

fresh DI water:ethanol solution, and dried in ambient air. All electrochemical tests were 

performed on electrodes prepared by this method, obtaining a composite catalyst loading 

of 51 μgtotal cm
-2

geo, yielding 15.3 μgoxide cm
-2

geo for catalysis and intercalation tests (30 

wt% on carbon). 

Electrochemical testing was performed on either a CH Instruments CHI832a or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high speed rotators 

from Pine Instruments. All testing was done at room temperature in 0.1 M KOH 
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(measured pH ≈ 12.8). Current interrupt and positive feedback methods were used to 

determine electrolyte resistance (46 Ω) and all data was iR compensated after testing 

unless stated otherwise. Each test was performed in a standard 3 electrode cell using a 

CH Instruments Hg/HgO (1 M KOH) reference electrode, a Pt or Au wire counter 

electrode, and a film of catalyst ink on glassy carbon as the working electrode. All 

potentials are reported versus the regular hydrogen electrode (RHE), which was 

determined experimentally to be +0.8976 V vs. Hg/HgO (1 M KOH). Figure D.16 

contains the RHE calibration data. 

Quantification of Oxygen Evolution Activities. All OER testing was performed on 

newly dropcast electrodes which had not undergone previous testing, drop-cast with 30 

wt% catalyst on VC (15.3 μgoxide cm
-2

geo). Cyclic voltammetry scans were performed 

from 1 to 2 V vs RHE at 10 mV/s with a rotation rate of 1600 rpm in O2-saturated 0.1 M 

KOH. The anodic and cathodic scans were averaged and iR corrected, and the current at 

1.63 V vs RHE-iR was selected from the polarization curves to compare OER activities. 

Scatter in the data at high current densities is due to oxygen bubble formation and 

desorption on the electrode surface. Data reported herein is the average taken from at 

least three tests on fresh electrodes. 

Oxygen Intercalation Cyclic Voltammetry (CV). All CVs were taken on fresh 

electrodes of 30 wt% oxide on VC. All catalysts were first conditioned by performing 20 

cycles from 1.26 to 1.55 V vs RHE at 100 mV s
-1

. Immediately following, 3 cycles at 

100, 50, 25, 10 and 5 mV s
-1

 were collected. Unless otherwise stated, all cycles shown are 

the third cycle at a given scan rate. For samples containing more than 50% Fe 

substitution, it was necessary to perform 4 cycles at each scan rate. Additionally, LSNF85 

had to be cycled to 1.575 V before any oxidative features were observed. 
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For comparison of charge passed for all oxidative waves, the last cycle at 10 mV 

s
-1

 was used to compute specific current density. The baseline of each CV was fit and 

subtracted from the specific current density. The background subtracted CVs (Figure 

D.11) were then integrated to find the total charge transferred. 

Oxygen Diffusion Rate Determination. All oxygen diffusion tests were performed 

in argon-saturated, 1 M KOH on fresh 85 wt% oxide films. Each LSNF composition was 

cycled at 20 mV s
-1

 until the oxidative peak potential did not change upon further cycling. 

Chronoamperometry was then performed at potentials 10 mV more anodic than Ep to 

ensure diffusion-limited intercalation. Linear regression was performed as described 

elsewhere
48, 49

 to determine the diffusion rate. Particle sizes were estimated using the 

surface area calculated from BET measurements and densities determined by Rietveld 

analysis. All values reported are the average of at least three tests. 

Iodometric Titrations 

Iodometric titrations were performed according to the referenced procedure.
13

 3 

mL of deoxygenated 2 M KI solution was added to a flask containing 15 – 20 mg of 

perovskite under an argon atmosphere and allowed to disperse for three minutes. After a 

few minutes 25 ml of 1 M HCl was added and the perovskite was allowed to dissolve. 

This solution was then titrated to a faint golden color with a solution of ~26 mM solution 

of Na2S2O3 that had been pre-standardized with 0.1 N KIO3. Starch indicator was then 

added and the solution was titrated until clear, marking the end point. 

Catalyst Preparation and Support 

Fresh, Ar-sealed catalysts were ball milled for three minutes using a Wig-L-Bug 

spectroscopic grinding mill. To support the catalysts onto Vulcan carbon, the correct 

amounts of pre-ground catalyst and pre-ground VC were measured into the grinding 

mill’s vial and ball milled for three minutes. 
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Powder X-ray Diffraction (PXRD) 

Catalyst structure was probed by X-ray diffraction using a Rigaku MiniFlex600 

Diffractometer at 298 K in ambient conditions, utilizing Cu Kα radiation (1.54 Å 

wavelength) operating at 40 kV and 15 mA. For all tests, argon-sealed catalyst powder 

was exposed to ambient air and scanned over 10 - 100° 2θ in 0.01° increments with a 

dwell time of 0.35 seconds per step. PXRD patterns for the Rietveld refinement were 

taken with a Huber G670 Guinier diffractometer (Cu Kα1 radiation; curved Ge(111) 

monochromator; image plate). The refinement was done with the JANA2006 package.
50

 

As the electron diffraction patterns of all compositions revealed no deviation from the RP 

n = 1 I4/mmm structure, the La2NiO4 structure
51

 was used as a starting model. The La/Sr 

occupancy factors of the A positions were refined; the Fe/Ni occupancy factors for the B 

positions were assigned according to the results of the EDX analysis. The 

crystallographic data, positional and atomic displacement parameters, interatomic 

distances and reliability factors are listed in Table D.1 of Appendix D. 

Surface Area Analysis 

Nitrogen sorption analysis was performed on a Quantachrome Instruments NOVA 

2000 high-speed surface area BET analyzer at a temperature of 77 K. Prior to 

measurements, the samples were ball milled for three minutes followed by degassing in 

vacuum for a minimum of 12 hours at room temperature. The specific surface area was 

calculated using the BET method from the nitrogen adsorption data in the relative 

pressure range (P/P0) of 0.05 to 0.30, with a minimum R
2
 of 0.995 and C value of 20. 

Transmission Electron Microscopy (TEM) 

The TEM samples were prepared by crushing the crystals in a mortar in ethanol 

and depositing drops of suspension onto holey carbon grid. Electron diffraction patterns, 

TEM images, high angle annular dark field scanning TEM (HAADF-STEM) images, 
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annular bright field scanning TEM (ABF-STEM) images and energy dispersive X-ray 

(EDX) spectra were obtained with an aberration-corrected Titan G
3
 electron microscope 

equipped with a Super-X EDX system, operated at 200 kV using a convergence semi-

angle of 21.6 mrad. 

Mössbauer Spectroscopy 

57
Fe Mössbauer spectroscopy was performed in a transmission mode using a 

constant acceleration spectrometer MS1104 (Rostov-na-Donu, RF). A 
57

Co/Rh γ-ray 

source was used for the measurements. The spectrometer was calibrated with standard α-

Fe or sodium nitroprusside absorbers. All isomer shift values (IS) are referred to α-Fe at 

room temperature. The spectra evaluation was carried out using “UnivemMS” (Rostov-

na-Donu, RF) and custom least squares fitting software with Lorentzian- Gaussian line 

shapes. Details regarding the deconvolution of the spectra are found in the text 

accompanying Figure D.12. 

Density Functional Theory (DFT) modeling 

Spin polarized calculations are performed using the Vienna Ab initio Simulation 

Package (VASP),
52

 the PAW pseudopotentials
53

 and the exchange-correlation functional 

of Perdew-Burke-Ernzerhof (PBE),
54

 with the effective Hubbard Ueff of 5.3 (Fe)
55

 and 6.2 

eV (Ni)
56

 respectively. The Ruddlesden-Popper bulk phase is modeled by fully relaxing a 

2x2x1 primitive unit cell, La(Sr)16Ni(Fe)8O32, with a plane wave cutoff energy of 520 eV, 

Monkhorst-Pack k-point of 4x4x2, forces convergence criterion of 10 - 4 eV/Å and 

Gaussian smearing, where the smearing width is 0.1 eV. All models follow ferromagnetic 

ordering, as our calculations indicate its lower energy than those of nonmagnetic and 

antiferromagnetic orderings (A, C and G type). Details regarding the determinations of 

effective Hubbard Ueff, atomic, magnetic and electronic structures, and oxygen hyper-

stoichiometry effects are provided in Appendix D. 
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X-ray Photoelectron Spectroscopy 

Chemical states were characterized by a Kratos AXIS Ultra DLD XPS in 0.1 eV 

steps using a dwell time of 4 s per step and a monochromatic Al X-ray source (Al α, 

1.4866 eV). Charge compensation was used for all samples. Binding energies were for all 

spectra were calibrated against the adventitious carbon peak at 285 eV. CasaXPS was 

used for all data analysis and deconvolution. Details regarding the deconvolution of the 

Ni 3p spectrum are found in the text accompanying Figure D.13. 

Determination of Ni and Fe oxidation states 

Together, the iodometric titrations and the Mössbauer spectroscopy enable the 

calculation of Ni’s average oxidation state and the relative percentage of Fe
3+/4+

. Figure 

D.12 contains the deconvolution method and Mössbauer spectra. 

4.5 ADDITIONAL INFORMATION 

Extensive characterization and notes are in Appendix D 

4.6 REFERENCES 

1. Zhu H, Zhang P, Dai S. Recent Advances of Lanthanum-Based Perovskite Oxides 

for Catalysis. ACS Catal 2015, 5(11): 6370-6385. 

 

2. Conesa JC. Electronic Structure of the (Undoped and Fe-Doped) NiOOH O2 

Evolution Electrocatalyst. J Phys Chem C 2016, 120(34): 18999-19010. 

 

3. Corrigan DA. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities 

in Thin Film Nickel Oxide Electrodes. J Electrochem Soc 1987, 134(2): 377-384. 

 

4. Trotochaud L, Young SL, Ranney JK, Boettcher SW. Nickel–Iron Oxyhydroxide 

Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron 

Incorporation. J Am Chem Soc 2014, 136(18): 6744-6753. 

 



 91 

5. Dionigi F, Strasser P. NiFe-Based (Oxy)hydroxide Catalysts for Oxygen 

Evolution Reaction in Non-Acidic Electrolytes. Advanced Energy Materials 2016, 

6(23): 1600621-n/a. 

 

6. Chen JYC, Dang L, Liang H, Bi W, Gerken JB, Jin S, et al. Operando Analysis of 

NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of 

Fe4+ by Mössbauer Spectroscopy. J Am Chem Soc 2015, 137(48): 15090-15093. 

 

7. Görlin M, Ferreira de Araújo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, et 

al. Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe 

Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst 

Support and Electrolyte pH. J Am Chem Soc 2017, 139(5): 2070-2082. 

 

8. Hunter BM, Gray HB, Müller AM. Earth-Abundant Heterogeneous Water 

Oxidation Catalysts. Chem Rev 2016, 116(22): 14120-14136. 

 

9. Bockris JO, Otagawa T. Mechanism of oxygen evolution on perovskites. J Phys 

Chem 1983, 87(15): 2960-2971. 

 

10. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. A Perovskite 

Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital 

Principles. Science 2011, 334(6061): 1383-1385. 

 

11. Hardin WG, Mefford JT, Slanac DA, Patel BB, Wang X, Dai S, et al. Tuning the 

Electrocatalytic Activity of Perovskites through Active Site Variation and Support 

Interactions. Chem Mater 2014, 26(11): 3368-3376. 

 

12. Galasso FS. Structure, Properties and Preparation of Perovskite-Type 

Compounds, vol. 5. Pergamon Press, 1969. 

 

13. Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S, Kolpak AM, et al. 

Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nature 

Communications 2016, 7: 11053. 

 



 92 

14. Zhou W, Zhao M, Liang F, Smith SC, Zhu Z. High activity and durability of 

novel perovskite electrocatalysts for water oxidation. Mater Horiz 2015, 2(5): 

495-501. 

 

15. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, et al. 

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. 

ChemCatChem 2011, 3(7): 1159-1165. 

 

16. Rong X, Parolin J, Kolpak AM. A Fundamental Relationship between Reaction 

Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution. ACS 

Catal 2016, 6(2): 1153-1158. 

 

17. Takeda Y, Hashino T, Miyamoto H, Kanamaru F, Kume S, Koizumi M. Synthesis 

of SrNiO3 and related compound, Sr2Ni2O5. Journal of Inorganic and Nuclear 

Chemistry 1972, 34(5): 1599-1601. 

 

18. Oliveira FS, Pimentel PM, Oliveira RMPB, Melo DMA, Melo MAF. Effect of 

lanthanum replacement by strontium in lanthanum nickelate crystals synthetized 

using gelatin as organic precursor. Materials Letters 2010, 64(24): 2700-2703. 

 

19. Seki H, Saito T, Shimakawa Y. High Pressure Synthesis of SrFe1−xNixO3. 

Journal of the Japan Society of Powder and Powder Metallurgy 2016, 63(7): 609-

612. 

 

20. Sharma IB, Singh D. Solid state chemistry of Ruddlesden-Popper type complex 

oxides. Bulletin of Materials Science 1998, 21(5): 363-374. 

 

21. Amow G, Davidson IJ, Skinner SJ. A comparative study of the Ruddlesden-

Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode 

applications. Solid State Ionics 2006, 177(13–14): 1205-1210. 

 

22. Zhang Z, Greenblatt M. Synthesis, Structure, and Properties of Ln4Ni3O10-δ (Ln 

= La, Pr, and Nd). Journal of Solid State Chemistry 1995, 117(2): 236-246. 

 



 93 

23. Takeda Y, Kanno R, Sakano M, Yamamoto O, Takano M, Bando Y, et al. Crystal 

chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6). Materials 

Research Bulletin 1990, 25(3): 293-306. 

 

24. Benloucif R, Nguyen N, Greneche JM, Raveau B. La2−2xSr2xNi1−xFexO4−(x2)+δ: 

Magnetic and electron transport properties. Journal of Physics and Chemistry of 

Solids 1989, 50(4): 435-440. 

 

25. Rao CNR, Ganguly P, Singh KK, Ram RAM. A comparative study of the 

magnetic and electrical properties of perovskite oxides and the corresponding 

two-dimensional oxides of K2NiF4 structure. Journal of Solid State Chemistry 

1988, 72(1): 14-23. 

 

26. Howlett JF, Flavell WR, Thomas AG, Hollingworth J, Warren S, Hashim Z, et al. 

Electronic structure, reactivity and solid-state chemistry of La2 -SrNi1 -FeO4 +. 

Faraday Discussions 1996, 105(0): 337-354. 

 

27. Gilev AR, Kiselev EA, Cherepanov VA. Homogeneity range, oxygen 

nonstoichiometry, thermal expansion and transport properties of La2-xSrxNi1-

yFeyO4+[small delta]. RSC Adv 2016, 6(77): 72905-72917. 

 

28. Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature 1992, 

358(6382): 136-138. 

 

29. Masato K, Masahiro Y. Synthesis and Characteristics of Complex 

Multicomponent Oxides Prepared by Polymer Complex Method. Bulletin of the 

Chemical Society of Japan 1999, 72(7): 1427-1443. 

 

30. Erat S, Braun A, Piamonteze C, Liu Z, Ovalle A, Schindler H, et al. Entanglement 

of charge transfer, hole doping, exchange interaction, and octahedron tilting angle 

and their influence on the conductivity of La1−xSrxFe0.75Ni0.25O3−δ: A 

combination of x-ray spectroscopy and diffraction. Journal of Applied Physics 

2010, 108(12): 124906. 

 



 94 

31. Louie MW, Bell AT. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for 

the Electrochemical Evolution of Oxygen. J Am Chem Soc 2013, 135(33): 12329-

12337. 

 

32. Forslund RP, Mefford JT, Hardin WG, Alexander CT, Johnston KP, Stevenson 

KJ. Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea 

Oxidation. ACS Catal 2016, 6(8): 5044-5051. 

 

33. Bhavaraju S, DiCarlo JF, Scarfe DP, Jacobson AJ, Buttrey DJ. Electrochemical 

oxygen intercalation in La2NiO4 + δ crystals. Solid State Ionics 1996, 86: 825-

831. 

 

34. Conway BE. Electrochemical Supercapacitors. Springer US: Boston, MA, 1999. 

 

35. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ. Anion charge 

storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor 

electrodes. Nat Mater 2014, 13(7): 726-732. 

 

36. Sreedhar K, Honig JM. Low-Temperature Electron Transport Properties of La2-

xSrxNiO4 with 0.5 ≤ x ≤ 1.3. Journal of Solid State Chemistry 1994, 111(1): 147-

150. 

 

37. Anisimov VI, Bukhvalov D, Rice TM. Electronic structure of possible nickelate 

analogs to the cuprates. Physical Review B 1999, 59(12): 7901-7906. 

 

38. Falcón H, Carbonio RE, Fierro JLG. Correlation of Oxidation States in 

LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition. 

Journal of Catalysis 2001, 203(2): 264-272. 

 

39. Rozenberg GK, Milner AP, Pasternak MP, Hearne GR, Taylor RD. Experimental 

confirmation of a p−p intraband gap in Sr2FeO4. Physical Review B 1998, 58(16): 

10283-10287. 

 



 95 

40. Ritzmann AM, Muñoz-García AB, Pavone M, Keith JA, Carter EA. Ab Initio 

DFT+U Analysis of Oxygen Vacancy Formation and Migration in La1-xSrxFeO3-δ 

(x = 0, 0.25, 0.50). Chem Mater 2013, 25(15): 3011-3019. 

 

41. Mogni L, Prado F, Ascolani H, Abbate M, Moreno MS, Manthiram A, et al. 

Synthesis, crystal chemistry and physical properties of the Ruddlesden–Popper 

phases Sr3Fe2−xNixO7−δ (0<x<1.0). Journal of Solid State Chemistry 2005, 178(5): 

1559-1568. 

 

42. Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer C. Systematic study 

of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to 

closing of charge-transfer gap. Physical Review B 1992, 45(14): 8209-8212. 

 

43. Lee Y-L, Lee D, Wang XR, Lee HN, Morgan D, Shao-Horn Y. Kinetics of 

Oxygen Surface Exchange on Epitaxial Ruddlesden–Popper Phases and 

Correlations to First-Principles Descriptors. J Phys Chem Lett 2016, 7(2): 244-

249. 

 

44. Bard AJ, Faulkner LR. Kinetics of Electrode Reactions.  Electrochemical 

Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons, Inc.: 

New York, NY, 2001, pp 124-132. 

 

45. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in 

surface chemistry and catalysis. Proceedings of the National Academy of Sciences 

2011, 108(3): 937-943. 

 

46. Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ. Highly 

Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air 

Battery Electrodes. J Phys Chem Lett 2013, 4(8): 1254-1259. 

 

47. Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y. Electrocatalytic 

Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk 

Electrode. J Electrochem Soc 2010, 157(8): B1263-B1268. 

 

48. Kobussen AGC, van Buren FR, Broers GHJ. The influence of the particle size 

distribution on the measurement of oxygen ion diffusion coefficients in 



 96 

La0.50Sr0.50CoO3−y. Journal of Electroanalytical Chemistry and Interfacial 

Electrochemistry 1978, 91(2): 211-217. 

 

49. Van Buren FR, Broers GHJ, Bouman AJ, Boesveld C. An electrochemical 

method for the determination of oxygen ion diffusion coefficients in 

La1−xSrxCoO3−y compounds. Journal of Electroanalytical Chemistry and 

Interfacial Electrochemistry 1978, 87(3): 389-394. 

 

50. Petříček V, Dušek M, Palatinus L. Crystallographic Computing System 

JANA2006: General features.  Zeitschrift für Kristallographie; 2014. p. 345. 

 

51. Goodenough JB, Ramasesha S. Further evidence for the coexistence of localized 

and itinerant 3d electrons in La2NiO4. Materials Research Bulletin 1982, 17(3): 

383-390. 

 

52. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy 

calculations using a plane-wave basis set. Physical Review B 1996, 54(16): 

11169-11186. 

 

53. Blöchl PE. Projector augmented-wave method. Physical Review B 1994, 50(24): 

17953-17979. 

 

54. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made 

Simple. Physical Review Letters 1996, 77(18): 3865-3868. 

 

55. Gou G, Grinberg I, Rappe AM, Rondinelli JM. Lattice normal modes and 

electronic properties of the correlated metal LaNiO3. Physical Review B 2011, 

84(14): 144101. 

 

56. Shein IR, Shein KI, Kozhevnikov VL, Ivanovskii AL. Band structure and the 

magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites. Physics of the 

Solid State 2005, 47(11): 2082-2088. 

 



 97 

Chapter 5: Highly Active Perovskite and Ruddlesden-Popper 

Composite Electrocatalysts for Water Oxidation 

5.1 INTRODUCTION 

For renewable solar and wind energy, strategies are needed to address the 

intermittency of energy generation combined with peak demand schedules. One proposed 

solution to this problem is to store the excess energy in the form of chemical fuels by 

splitting water into H2 and O2. Unfortunately, the efficiency of water splitting remains a 

large technological barrier due to the slow kinetics of the oxygen evolution reaction 

(OER, 4OH
–
 → O2 + 2H2O + 4e

–
). Even with precious-metal oxide catalysts such as IrO2 

and RuO2
2
  a large (> 400 mV) overpotential is required.

3
 Many studies have attempted to 

reduce the overpotential required for the OER not only to promote inexpensive hydrogen 

generation, but to also improve the efficiency of metal-air batteries and regenerative fuel-

cells.
4
 To reduce the cost of electrode materials and improve catalytic efficiencies, non-

precious metal oxides which are stable in alkaline conditions have recently been the focus 

of extensive research.
5
 For the perovskite family of oxides 

3, 6
 very high specific (mA cm

-

2
oxide) and mass (mA mg

-1
oxide) activities have been reported,

7, 8
 with overpotentials below 

400 mV to achieve 10 mA cm
-2

.
1, 8

 

The perovskite crystal structure accommodates a large variety of elements and 

elemental substitutions, which allows for the precise synthetic tuning of the physical, 

chemical and electronic properties
9
 to promote oxygen electrocatalysis.

6, 10, 11
 Perovskites 

have the nominal formula ABO3+δ, where A is typically a rare-earth or alkaline ion, and B 

is a transition metal ion.
6, 10, 11

 The oxygen content (δ) can also be regulated by chemical 

substitution of lower-valence A site ions, such as in La1-xSrxCoO3-δ,
8
 to create oxygen 

vacancies. These vacancies promote a more energetically favorable lattice-oxygen 

mediated (LOM) OER mechanism, relative to the adsorbate evolution mechanism. 
8, 12
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Building upon theoretical
2, 12

 and experimental
8, 13

 work that demonstrated that oxygen 

vacancies and  highly covalent Co 3d - O 2 2p bonding was responsible for the 

exceptional catalytic activity of SrCoO2.7, it was predicted that SrNiO3 would be more 

covalent and thus more catalytically active.
12

 Unfortunately, this material does not form a 

perovskite phase at room temperature,
14

 and Sr solubility in LaNiO3 has been reported to 

be limited to ~20% 
15

 before catalytically inactive secondary phases form.
16

 In contrast, 

the n=1 Ruddlesden-Popper (RP) crystal structure (An+1BO3n+1) was demonstrated to 

accommodate 75% or more Sr substitution
17

 and electronic structures that are not 

realizable in perovskites.
1, 18

 To take advantage of these observations, a series of highly 

active La0.5Sr1.5Ni1-xFexO4+δ electrocatalysts was synthesized by calcination at high 

temperature of a charred polyester gel (polymerizable complex) method for x = 0 to 1. On 

the basis of experimental and DFT calculations, it was observed that cross-gap 

hybridization between Ni and Fe 3d and O 2p orbitals gave rise to exceptional catalytic 

activity at x = 0.3 (1930 mA mg
-1

ox), wherein Ni-O-Fe bridges were maximized.
1
 

The morphology and surface functionality of nanostructured catalysts from sol-

gel synthesis may in principle be quite different than those from solid state synthesis and 

the polymerizable complex method 
1
 described above. Metal and metal-oxide 

nanostructured catalysts have been synthesized in reverse phase water-in-oil 

microemulsions, in which nanometer-sized water droplets are stabilized in an oil phase 

with a surfactant and cosolvent, to tune the surface functionality and catalytic activity.
19, 

20, 21, 22
 Nanoparticle nucleation and growth is spatially confined within a micellar or 

bicontinuous water phase, the shape of which is typically controlled by varying the ratio 

of water-to-surfactant and oil, and the chemical structure of the oil and surfactant.
23, 24, 25

 

Morphological control of metal oxides can promote preferential crystalline facets, such as 

{001}, that increases the active-site density, oxygen diffusion and exchange, and surface 
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moieties that enhance catalysis.
26, 27

 Reverse phase microemulsions were used to 

synthesize La0.5Sr0.5CoO3-δ nanowires which increased the number of catalytically active 

sites, as compared to spheres, and improved their OER activity.
22

 Similarly, the oxygen 

diffusivity and resulting oxygen electrocatalysis rates were increased for La2NiO4+δ 

nanorods synthesized in reverse micelles.
20, 21

 The method used to synthesize complex 

metal oxide catalysts can significantly impact their catalytic activity for a fixed elemental 

precursor stoichiometry.
28

 Therefore, novel synthetic methods would be of interest to 

form highly active perovskite
8
 and RP

1
 electrocatalysts, which used controlled 

precipitation and charring of a polymerized complex, respectively. 

Herein, we introduce new highly active electrocatalysts for the OER, a nickel-

based perovskite La0.4Sr0.6Ni0.8Fe0.2O3+δ (LSNF) and a La-free Ruddlesden-Popper (RP) 

oxide Sr4Ni2.4Fe0.6O10+δ (SNF), both synthesized in reverse microemulsions. Whereas 

modest phase impurities were present, they were significantly less prevalent than for the 

charred polymerized complex method*ref ours and classical*. To promote high catalytic 

activities and utilize the more energetically favorable lattice oxygen mediated OER 

mechanism,
8
 elemental substitution of 60% Sr for La in LaNiO3 was performed to 

increase Ni-O bond covalency
12

 in the perovskite phase. Complete Sr substitution for La 

and targeting of the n=3 RP phase was performed to maximize Ni-O bond covalency in 

the RP phase and triple the amount of perovskite units as compared to the n=1 phase.
29

 Fe 

was substituted for 20% Ni in LSNF and SNF to introduce triple band overlap of Fe and 

Ni 3d orbitals with O 2p, which was previously demonstrated to significantly enhance the 

OER activity for other RP catalysts.
1, 30, 31

 We demonstrate that these elemental 

substitutions result in exceptional catalytic enhancement and small Tafel slopes compared 

to LaNiO3, wherein the mass activity is increased by over 30 fold for SNF (1541 vs 40 

mA mg
-1

ox). 
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All chemicals were used as-received. Isooctane (2,2,4-trimethylpentane, > 99%), 

1-butanol (> 99%), cetrimonium bromide (CTAB, > 99%), and 5 wt% Nafion solution in 

lower alcohols were purchased from Sigma-Aldrich. Lanthanum(III) nitrate hexahydrate 

(99.995%), strontium(II) nitrate hexahydrate (99%), nickel(II) nitrate hexahydrate (99%), 

iron(III) nitrate non-anhydrate (99.99%), cobalt(II) hexahydrate (> 99%), 

tetramethylammonium hydroxide pentahydrate (TMAOH, 99%), and potassium 

hydroxide (> 85%) were obtained from Fisher Scientific. Millipore high purity water (DI 

water, 18 MΩ) was used. Oxygen (research grade, 99.999% purity) and argon (research 

grade, 99.999% purity) were obtained from Praxair. Ethanol (Absolute 200 proof) was 

obtained from Aaper Alcohol. Vulcan XC72 carbon (VC) was purchased from Cabot 

Corporation and ball-milled prior to use. 

 

5.2 RESULTS AND DISCUSSION 

LaNiO3+δ (LNO), La0.4Sr0.6Ni0.6Fe0.4O3+δ (LSNF) and Sr3Ni2.4Fe0.6O10+δ (SNF) 

were synthesized using a modified reverse phase water-in-oil microemulsion
22

 followed 

by crystallization and annealing. These stoichiometries are based on the feed ratio of 

elements into each synthesis. Reverse microemulsions containing the hydrolysis agent 

and required cations were each prepared (solutions abbreviated as HYD and CAT, 

respectively) by adding 3 g of CTAB to a mixture of 15 mL of isooctane and 3 mL of 1-

butanol. The solutions were stirred to break up aggregated CTAB particles such that upon 

addition of water, all CTAB is easily solvated. A turbid, homogenous solution in which 

no bulk particles of CTAB are visible indicated that the CTAB was adequately dispersed. 

4 mL of 1 M KOH (4 mmol) was added to the HYD solution, under stirring, after which 

the solution rapidly became clear which indicated successful formation of the water-in-oil 
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microemulsion. Separately, 4 mL of a variable molarity (0.327 M total for LNO, 0.356 M 

for LSNF and 0.348 M for SNF) alkali and metal nitrate solution is added to the CAT 

solution under stirring, transforming it from turbid to clear almost immediately. The same 

ratio of hydroxide ions in the HYD solution ([OH]), to cations in the CAT solution ([M]) 

as Zhao et al.
22

 used, modified to account for the average oxidation state (z) of cations in 

the nitrate salts, M(NO3)z, such that [OH]: z[M] = 11
9⁄  was maintained. 

The HYD and CAT solutions were left stirring for an hour after becoming 

transparent, to ensure complete formation of the reverse microemulsion phase. After one 

hour, the CAT solution was added drop-wise, over the course of 1 - 2 minutes, to the 

vigorously stirring (~1200 rpm) HYD solution. 10 minutes after the CAT solution was 

completely transferred, the HYD solution stir-rate was reduced to 600 rpm to minimize 

micellar collision and potential nanoparticle aggregation or Ostwald ripening. Shortly 

after addition of the CAT solution, the reverse microemulsion becomes colored and 

turbid, indicating the onset of nanoparticle nucleation via hydrolysis, and likely 

transformation of the spherical water-in-oil micelles to a bicontinuous micellar 

structure.
23, 26

 The reactant solution was left to stir for 6 hours, and then let statically age 

(no stirring) for 18 - 24 hours to decrease hydroxide nanoparticle size and improve phase 

purity.
32

 

After aging, hydroxide precipitate was collected via antisolvent precipitation 

using EtOH and washed via centrifugation as previously reported.
21

 After washing, the 

particles are suspended in DI water, probe sonicated, nebulized into liquid N2 using a 

commercial spray bottle, followed by lyophilization at -10°C and ~50 mTorr to facilitate 

complete sublimation of the ice.
33

 Finally, the dried nanoparticle powder is crystallized in 

a tube furnace under 200 sccm of flowing, dehumidified, O2. LaNiO3 was crystallized at 

650°C under pure O2 with a hold of only 30 minutes, while La0.6Sr0.4Ni0.6Fe0.4O3 was 
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crystallized at 825°C and held there for 5 hours. All catalyst compositions are furnace-

cooled to room temperature under their respective flowing gas. 

 

 

Figure 5.1: X-ray diffraction patterns of SNF, LSNF and LNO 

electrocatalysts 

X-ray diffraction, shown in Figure 5.1a, indicates that LNO is a phase pure, R3̅c 

rhombohedral perovskite with a crystallite size of ~11 nm calculated on the most intense 

reflection arising from a single crystallographic plane, {024}. The XRD pattern for LSNF 

indicates a multi-phase system in which NiO and the perovskite phase are present. The 

XRD pattern for SNF reveals that it crystallized in the n=1 RP phase (Sr2(Ni,Fe)O4+δ) 

occupying the I4/mmm space group,
34

 with ~15 wt% NiO in addition. The NiO spectrum 

is characterized by the intense reflections seen at 35°, 42.5°, and 62.5° in Figure 5.1a, 

The existence of NiO impurities is consistent with the formation of the n=1 RP phase, 

rather than the n=3, as the excess Ni would have precipitated out of the crystal structure 

and oxidized. The crystallite size of each sample was estimated using the Scherrer 

equation to be 11, 12 and 14 nm, for LNO, LSNF and SNF, respectively. These sizes are 

consistent with the increasing crystallization temperatures used for the nickelates (650, 

825 and 950°C), and thus increased sintering. To contrast the capabilities of the reverse-
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phase water-in-oil microemulsion synthesis to successfully incorporate Sr, Ni and Fe into 

the RP crystal structure, LSNF and SNF were also synthesized using a modified Pechini 

method
1
 which does not involve aqueous hydrolysis or the formation of hydroxide 

precursor particles.
35

 The resulting XRD patterns are shown in Appendix E (Figure E.1) 

wherein it is unclear if any perovskite or RP phase formed due the large amount of 

untargeted secondary phases present. Transmission electron microscopy in conjunction 

with EDX was used to examine the atomic-scale crystal structure and elemental 

homogeneity, and is shown in Figure 5.1b,c. 

 

5.3 ELECTROCHEMICAL CHARACTERIZATION AND DISCUSSION 

All electrochemical characterization and preparation of catalyst inks were 

performed as as previously outlined.
1
 Briefly, inks were prepared by adding 2 mL of a 

NaOH neutralized
36

 0.05 wt% Nafion solution to 2 mg of catalyst powder, bath sonicated 

for > 1 hour, and 10 μL was drop cast onto a clean 5 mm (0.196 cm
2
, Pine Instruments) 

glassy carbon electrode (GCE) which was dried overnight. This resulted in a composite 

catalyst loading of 51 μgtotal cm
-2

geo, yielding 15.3 μgoxide cm
-2

geo for catalysis tests (30 

wt% on Vulcan Carbon, VC). All tests were carried out at room temperature in 0.1 M 

KOH (measured pH ≈ 12.8), performed in a standard 3 electrode cell using a CH 

Instruments Hg/HgO (1 M KOH) reference electrode, a Pt or Au wire counter electrode, 

and a film of catalyst ink on glassy carbon as the working electrode. All data were iR 

compensated to account for the electrolyte resistance (46 Ω). Potentials are reported 

versus the regular hydrogen electrode (RHE), determined experimentally to be +0.8976 V 

vs. Hg/HgO (1 M KOH). OER testing was performed on pristine drop-cast electrodes 

using cyclic voltammetry (CV) by applying a potential from 1 to 2 V vs RHE at 10 mV/s 
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with a rotation rate of 1600 rpm in O2-saturated 0.1 M KOH. The anodic and cathodic 

scans were averaged and iR corrected, and all data reported is the average of at least three 

independent tests, and representative polarization curves are shown in Figure E.2 in 

Appendix E. 

 

 

Figure 5.2: Electrochemical characterization of the SNF, LSNF and 

LNO compsites and comparison to recently reported non-precious 

metal oxide catalysts. 

a) Representative OER polarization curves of geometric current 

density (mA cm
-2

geo; AGCE = 0.196 cm
2
) and b) Tafel presentation of 

catalyst mass activity (mA mg
-1

ox) compared to other leading 

oxides.{Hardin, 2017 #167} All tests are performed in O2 saturated 

0.1 M KOH at 10 mV s
-1

 and 1600 rpm. All values shown are the 

results of at least three independent tests, and all catalysts are 30 wt% 

on VC with a total electrode loading of 51 ug cm
-2

geo, yielding 15.3 

ugox cm
-2

geo, with the exception of IrO2 which was tested at 20 wt% 

on VC (10.2 ugox cm
-2

geo). VC is Cabot XC72 Vulcan Carbon. 

Electrocatalysis of the OER is shown for SNF, LSNF and LNO in Figure 5.2. 

Upon 60% Sr substitution for La, and 20% Fe substitution for Ni, the mass activity of 

LSNF increased by approximately an order of magnitude as compared to LNO (Figure 

5.2b). Complete Sr substitution for La in the RP phase SNF catalyst further increased the 

mass activity by ~50% to 1541 mA mg
-1

ox at 1.63 V vs RHE-iR. Catalysis with SNF also 
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exhibits a small Tafel slope of 55 mV dec
-1

 and reaches a benchmark current density of 

10 mA cm
-2

geo at only 361 mV overpotential, compared to 388 and 552 mV for LSNF and 

LNO, respectively. Figure 5.2b clearly illustrates that at all potentials, the nickelate 

activity trend is SNF>LSNF>LNO. The activity mass activity of SNF is superior to that 

of leading OER catalysts, IrO2 and SrCoO2.7. The precious metal oxide IrO2 is widely 

used commercially given its high activity and stability in both acid and alkaline 

environments.despite the high cost..
37

 Furthermore, the perovskite-phase SrCoO2.7 

possess highly covalent Co 3d - O 2p interactions
2
 that promote an energetically 

favorable OER mechanism
12

 wherein lattice oxygen participates
8
 in the formation of O2

-
. 

Figure 5.3 compares the mass activity of the nickelate catalysts to IrO2 and 

SrCoO2.7 at 1.63 V vs RHE-iR. Remarkably, SNF is more than 4 and 8 times as active as 

SrCoO2.7 and IrO2, respectively. In fact, the activity of SNF (1541 mA mg
-1

) approaches 

that of one of the most active known crystalline catalysts, n=1 RP La0.5Sr1.5Ni0.7Fe0.3O4+δ 

(1930 vs 1541 mA mg
-1

ox).
1
 Likewise,  LSNF (991 mA mg

-1
ox) is one of the most active 

perovskites for the OER, by mass, ever reported, with an activity of about half of that of 

the above RP phase 
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Figure 5.3: Selected catalyst mass activities at 1.63 V vs RHE-

iR 

The values for SrCoO2.7 and IrO2 are taken from Hardin et al. 

In our recent work, the high activity of LSNF was explained in terms of cross-gap 

hybridization between Fe and Ni 3d with the O 2p band based on experimental and DFT 

results. Building on this study, an analogous schematic band diagram of the expected 

partial density of states (PDOS) for the LSNF electrocatalyst is presented in Figure 5.4. 

LaNiO3 exists at room temperature in the distorted rhombohedral crystal structure and is 

a metal-like conductor with significantly covalent O 2p - Ni 3d character near the Fermi 

level (EF). 
12, 38, 39

 The absolutely limit of Sr substitution into LaNiO3  before the 

hexagonal phase occurs
14

 is not known, but the band structures of SrNiO3,
40

 La1-

xSrxMnO3,
41, 42

 and La1-xSrxFeO3
41

 provide instructive examples. Complete Sr substitution 

for La results in significant hole doping of the O 2p band, with slight Ni character 

existing around EF, bust mostly above it.
40

 60% Sr substitution for La in La0.4Sr0.6MnO3+δ 

shifts EF down relative to the O 2p, also resulting in hole injection. This is reflected in the 

middle panel of Figure 5.4, where the O 2p level exists across EF, and the Ni 3d σ* level 

has been oxidized. In this case, there is charge compensation in La1-xSrxNiO3+δ by both 
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oxygen vacancy formation, and partial Ni
3+

 oxidation. As Ni in LaNiO3 is in a low-spin 

t2𝑔
6 e𝑔

1  configuration,
43

 partial Ni oxidation will remove electron density from the σ* band. 

As Fe is less electronegative and exists in a high-spin t2𝑔
3 e𝑔

2 configuration,
41

 the greater 

crystal field splitting and lesser electronegativity will create Fe σ* at or above the Ni σ* 

band, while the Fe π* band will exist below nickel’s. This effect of Fe is shown 

schematically in the right-most panel in Figure 5.4. The resulting schematic band 

structure suggested for LSNF is similar to that for highly active Ni-Fe oxyhydroxides,
30

 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),
31

 and La0.5Sr1.5Ni0.7Fe0.3O4+δ.
1
 Thus, we expect that 

cross-gap hybridization across the Ni-Fe-O bridge in the LSNF perovskite creates a large 

amount of bandwidth near EF to easily facilitate redox switching between the catalyst and 

OER intermediates, resulting in an exceptional catalytic activity. 

 

 

Figure 5.1: Schematic of the expected band diagram of 

LaNiO3+δ as first Sr and then Fe are substituted into it 

As Sr
2+

 is substituted for La
3+

, the relative position of the O 2p band and 

the Ni 3d band will rise relative to the fermi level, consistent with Ni 

taking on a more oxidized character through charge compensation. Likely 

hole doping of the O 2p should results in oxygen vacancy formation. The 
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elemental substitution of Fe for Ni will introduce new Fe 3d π* and σ* 

bands, with strong covalent hybridization between eg(Ni), p(O) and eg(Fe) 

bands near the Fermi level. 

The remarkable activities seen for the LSNF perovskite as a consequence of the 

electronic structure of the catalyst also depend upon the effect of the crystal structure and 

surface composition, which are influenced in part by the nucleation and growth in the 

microemulsion prior to calcination. The formation of metal oxide precursor particles by 

aqueous hydrolysis can impart distinct, beneficial surface moieties in the final crystalline 

oxide,
28

 such as hydroxylated lattice oxygen which has been suggested to enhance the 

OER.
33

 Upon addition of the CAT solution to the HYD solution, the aqueous micelles 

containing the precipitation agent (KOH) and cations (La
3+

, Sr
2+

, Ni
2+

, Fe
2+

) begin to 

collide, fuse and exchange their contents before separating.
24

 Upon exchange of micellar 

content, hydrolysis of the cations occurs and hydroxide nanoparticles begin to nucleate 

and grow within the aqueous micelles. The rate of hydrolysis is governed by the Pourbaix 

behavior of the cations for a given local pH and cation concentration within the 

micelles,
44

 so addition of the CAT to the rapidly stirring HYD is required ensure good 

micellar exchange and equilibrium solution conditions for hydrolysis. 

Additionally, the hydroxide nanoparticles that form within the micellar network 

can exhibit preferential shape control directed by the type and concentration of ligands 

that are present within the micelle, such as the CTA
+
 cation which will be 

electrostatically attracted to the anionic hydroxide surfaces. Furthermore, the presence of 

surfactants can also direct the aggregation and assembly nuclei, giving rise to unique 

morphologies such as nanorods
20, 22

 or mesoporous metal oxides.
45

 These morphologies 

often promote specific crystalline facets, such as the {001},
21

 and surface chemistries 

(facile surface oxygen exchange, etc)
19, 20

  which are capable of enhancing catalytic 

processes. While aqueous hydrolysis of cations possessing significantly different 
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hydrolysis rates can cause compositional stratification from the core to the surface of 

hydroxide precursor particles, leading to compositional inhomogeneity in the final 

crystalline phase, the formation of small amounts of secondary phases such as NiO and 

FexOy can actually enhance the OER activity, as seen in raney nickel.
46

 In our case, the 

amounts of the impurity phases were estimated to be 15 wt%. 

 

5.4 CONCLUSIONS 

We have demonstrated that the reverse microemulsion synthetic scheme produces 

highly active OER catalyst phases with smaller amounts of unwanted secondary phases 

than the charred polymerized complex method. Despite the impurity phases, the mass 

activities among the highest reported for any perovskite or RP electrocatalysts. The 

reverse microemulsion method produced precursor particles that crystallized into these 

mixtures containing highly covalent Ni-rich oxides for both SNF and LSNF. The SNF RP 

catalyst is 38 fold more active than LaNiO3 (1541 vs 40 mA mg
-1

ox), and generates over 8 

times more current per mass that IrO2 (174 mA mg
-1

ox) with a low Tafel slope of 55 mV 

dec
-1

. These exceptional catalytic activities are further enabled by chemical substitution 

wherein Sr and Fe are substituted for La and Ni. Sr substitution increases the average 

oxidation state of Ni, while substitution of the less electronegative Fe introduces new Fe 

3d orbitals at or above the Fermi level, to facilitate easy charge transfer between the 

catalyst and adsorbate via cross-gap hybridization. 

5.5 ADDITIONAL INFORMATION 

Additional Information Additional Information Additional Information Additional 

Information Additional Information Additional Information are provided in Appendix m 
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Chapter 6: Anion charge storage through oxygen intercalation in 

LaMnO3 perovskite pseudocapacitor electrodes4 

6.1 INTRODUCTION 

Perovskite oxides have attracted significant attention as energy conversion 

materials for metal-air battery and solid oxide fuel cell electrodes due to their unique 

physical and electronic properties. Amongst these unique properties is the structural 

stability of the cation array in perovskites which can accommodate mobile oxygen ions 

under electrical polarization. However, while oxygen ion mobility and vacancies have 

been shown to play an important role in catalysis, their role in charge storage has yet to 

be explored. Herein we investigate the mechanism of oxygen vacancy mediated redox 

pseudocapacitance for a nanostructured lanthanum based perovskite, LaMnO3. This is the 

first example of anion-based intercalation pseudocapacitance as well as the first time 

oxygen intercalation has been exploited for fast energy storage. Whereas previous 

pseudocapacitor and rechargeable battery charge storage studies have focused on cation 

intercalation, the anion based mechanism presented here offers a new paradigm for 

electrochemical energy storage. 

Carbon electric double-layer supercapacitors and the analogous metal-based 

pseudocapacitors play an intermediate role between traditional electrostatic capacitors 

and batteries in terms of energy density and power density.
1 

As their charge and discharge 

rates are orders of magnitude faster than batteries, there have been considerable efforts to 

increase the energy densities of pseudocapacitor materials.
2
 Metal oxides have gained 

significant interest due to their reversible faradaic surface reactions that allow for up to an 

order of magnitude greater energy storage than carbon based electric double layer 

                                                 
4Large parts of this chapter have been published as Mefford JT, Hardin WG, Dai S, Johnston KP, 

Stevenson KJ. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor 

electrodes. Nat Mater 2014, 13(7): 726-732. 
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capacitors. However, classic pseudocapacitor materials including RuO2, MnO2, and 

Ni(OH)2 are limited by high cost, low capacities, or limited potential windows, 

respectively.
3-5 

 For materials to exhibit high pseudocapacitance, fast, reversible faradaic 

redox reactions must occur at the electrode-electrolyte interface leading to a change in the 

extent of accumulated charge, Q, as a function of the potential, according to equation 

(6.1): 

𝑄 = 𝐶∆𝑉      (6.1) 

where ΔV is the potential change (V) and C is the pseudocapacitance (F).
1
 The specific 

capacitance, Cs (F g
-1

),  of an electrode material can be evaluated using cyclic 

voltammetry (CV) from the area under the current-voltage curve during the cathodic 

sweep using equation (6.2): 

𝐶𝑠 =
1

𝑚𝑣|𝑉𝑐−𝑉𝑎|
∫ 𝑖(𝑉)𝑑𝑉

𝑉𝑐

𝑉𝑎
      (6.2) 

where m is the mass loading of the electroactive material on the electrode (g), v is the 

scan rate for the measurement (V s
-1

), Vc and Va are the cathodic and anodic potentials 

respectively (V), and i(V) is the current response (A) at potential V (V).
1
 

Currently, there are three accepted mechanisms of charge storage for 

pseudocapacitor electrodes.
1
 The first, which is generally accepted to occur for all 

charged metal or metal oxide surfaces, involves the adsorption of ions from the 

electrolyte as a monolayer on the electrode surface. This effect may be manifested 

through the underpotential deposition of cations or through partial charge transfer 

between the metal centers of the electrode and electrolyte anions, the so called 

“electrosorption valency”.
6,7

 The second mechanism of pseudocapacitance involves redox 

reactions at the surface of the electrode such as proton exchange in the amorphous 

surface of RuO2,
3
 and the third relies on the fast reversible intercalation of ions into the 

bulk of the material.
8,9

 While all of these mechanisms can be described as 
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pseudocapacitive due to changes in the oxidation state of the transition metal, only 

electrosorption valency has been demonstrated as an anion effect. A recent paper by 

Hahn et al. explored the role of cation vacancies in MnO2, demonstrating increased 

charge storage at faster rates through cation insertion into Mn vacancies.
10

 The question 

then arises, if materials with inherent cation vacancies can be exploited to increase charge 

storage through electrolyte cations, can materials with anion vacancies also be exploited 

to store charge through electrolyte anions? 

Perovskite-type oxides, with the nominal formula ABO3, where A is a lanthanide 

or alkali earth element and B is a transition metal, have traditionally been studied as 

electrodes and oxide ion conducting electrolytes for solid oxide fuel cells (SOFCs) due to 

their structural stability at high temperatures and inherent nature to contain oxygen 

vacancies.
11

 Further, the ability to aliovalently substitute ions with varying oxidation 

states at both the A and B sites allows a high amount of synthetic control over the 

electronic and physical properties of the material.
11-14

 While these materials have been 

extensively investigated as energy conversion materials, few studies have demonstrated 

charge storage in perovskite structured materials.
9,12-16

 As such, this study aims to 

investigate the role of anion vacancies as charge storage sites for pseudocapacitive 

applications. 

It is known that as the dimensions of metal oxide crystals are reduced, their 

pseudocapacitive responses increase dramatically.
17

 Further, nanoscale materials with 

oxygen vacancies demonstrate greater oxygen diffusion rates due to decreased transport 

lengths and larger potential gradients across the particles.
18

 However, traditional solid-

state methods to synthesize perovskites yield microscale particles, limiting their 

applications to high-temperature SOFCs where conduction and oxygen diffusion rates are 

improved.
11

 Using a colloidal synthetic scheme we have demonstrated the ability to 
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synthesize nanostructured perovskites with increased particle surface area and controlled 

crystallinity.
19 

In this study, we focus on the perovskite LaMnO3+δ as an oxygen 

intercalation compound, because of its nature to accommodate both substoichiometric 

and superstoichiometric oxygen content, i.e. -0.25 ≲ δ ≳ 0.25.
20-22

 The electrochemical 

role of oxygen vacancies in perovskites is investigated and compared between two 

LaMnO3 samples—one containing a deficit of oxygen ions and one with a slight excess. 
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.  

Figure 6.1: Nanocrystal morphology of LaMnO3.09 

(a), Dark-field scanning electron micrograph showing the small ( ∼20–

50 nm) nanocrystals of LaMnO3.09 that sinter into agglomerated particles 

after the calcination step. Scale bar, 500 nm. (b), X-ray diffraction 

spectra of LaMnO3.09 and r-LaMnO2.91 showing the conversion from 

rhombohedral to orthorhombic structure and high phase purities of the 

samples. The impurity peak at ∼ 28
◦
 is a result of carbon products 

produced from the decomposition of the capping ligands from the 

precursor mixed hydroxides. (c), XPS O 1s spectra of LaMnO3.09 and r-

LaMnO2.91 showing high degrees of surface hydroxylation in both 

samples. (d), N2 BET data corresponding to a surface area of 10.6 m
2
 g

-1
. 

(e), Idealized cubic ABO3 perovskite structure 
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6.2 NANOSCALE PEROVSKITES 

To obtain nanostructured particles, LaMnO3 was synthesized using a previously 

developed reverse phase hydrolysis approach.
15

 The morphology of the nanocrystalline 

material can be seen in Figure 6.1a. Initially, dynamic light scattering (DLS) indicates 

small ~25 nm mixed La and Mn hydroxides are formed (Supplementary Figure F.1) 

which, when heated to 700 °C in dry air, sinter to form larger agglomerates of 

nanocrystals with a Brunauer-Emmet-Teller  (BET) surface area of 10.6 m
2
 g

-1
 (Figure 

6.1d). Although the overall particle size is larger than that of other thin film and powder 

pseudocapacitor electrodes, the porosity caused by sintering of the nanoparticle 

precursors in the LaMnO3 powder allows for a high concentration of grain boundaries 

and defect sites which will be shown below to result in high material utilization. 

Iodometric titrations were performed to determine the average oxygen content of the 

LaMnO3+δ, yielding a value of δ = 0.09±0.02.
21

 A reduced sample of r-LaMnO3-δ was 

synthesized by taking the oxygen excess material and exposing it to 7% H2 in Ar gas at 

400 °C. Iodometric titration of the reduced sample showed an oxygen vacancy content of 

δ =-0.09±0.02. X-ray diffraction (XRD) indicated high purity for both samples, with the 

oxygen excess LaMnO3.09 sample (PDF 01-073-8342 ICDD, 2004) converting from a 

rhombohedral to orthorhombic structure upon thermal reduction to r-LaMnO2.91 (PDF 01-

087-2014 ICDD, 1997). Scherrer analysis of the peak at 46.7° determined an average 

crystalline domain of 12 nm for LaMnO3.09 which is similar to the precursor mixed 

hydroxide particle sizes. X-ray photoelectron spectroscopy (XPS) was used to 

characterize the chemical nature of the LaMnO3±δ samples, where the oxygen 1s spectra 

are presented in Figure 6.1c. In both samples there exists a high degree of surface 

hydroxylation due to the Lewis acidity of oxygen vacancy sites as is commonly observed 



 122 

in metal oxides.
23

 However, if one neglects the contribution of adsorbed water on the 

surface of the material, the oxygen content of r-LaMnO3-δ  is ~12% less than LaMnO3+δ.
 

 

.  

Figure 6.2: Electrochemical characterization of LaMnO3±δ 

a, b. Cyclic voltammograms for oxygen excess LaMnO3.09 (a) and 

oxygen deficient r-LaMnO2.91 (b) in Ar saturated 1M KOH at various 

scan rates. The redox peak at ~-0.3V vs Hg/HgO is indicative of the 

intercalation of OH
- 

ions into both samples. c, Specific capacitance 

versus scan rate for the 2 materials. *In all of these figures, the current 

and capacitance contributions of the carbon support have been 

subtracted out to clearly demonstrate the electrochemical characteristics 

of LaMnO3±δ. 

6.3 ELECTROCHEMICAL CHARACTERIZATION 

The pseudocapacitive response of LaMnO3±δ was characterized using cyclic 

voltammetry in 1M KOH. In order to explore the mechanistic aspects of charge storage, 

thin films of 0.051 mgcomposite cm
-2

 with LaMnO3±δ loadings of 30 wt% on mesoporous 

carbon were used. Although low for practical pseudocapacitive applications, thin films 

are ideal for studying the mechanisms of charge storage, where the effects of grain 

boundaries, surface defects, and vacancies can be more clearly investigated.
24-26

 Figure 

6.2a and 6.2b shows nearly rectangular current-voltage curves for LaMnO3.09 and r-

LaMnO2.91 respectively, characteristic of an ideal pseudocapacitive response with redox 

peaks appearing near E1/2 = -0.3 V for both materials. As can be seen from the specific 

capacitance versus scan rate presented in Figure 6.2c, the capacitive envelope of the 
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cyclic voltammograms and the specific capacitance increases with an increase in oxygen 

vacancies in LaMnO3. However, at sufficiently low scan rates, the specific capacitance of 

the two materials approaches each other, with high specific capacitances of 586.7 F g
-1

 

and 609.8 F g
-1

 for the oxygen excess and oxygen deficient samples, respectively. 

Interestingly, the increase in capacitance for the oxygen deficient sample of ~4% is 

similar to the 6% percent difference in oxygen content between the two materials. 

Considering the low surface area of the material, the high specific capacitances and 

remarkable response of the samples to increased oxygen vacancies as charge storage sites 

indicate that pseudocapacitive charge storage in LaMnO3±δ extends into the bulk structure 

through a mechanism of oxygen intercalation as described below. 
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.  

Figure 6.3: Effect of Electrolyte Concentration on Redox 

Reactions LaMnO3±δ 

a, b. Cyclic voltammograms at a scan rate of 40 mV s
-1

 for unsupported 

LaMnO3.09 (a) and r-LaMnO2.91 (b). The charge stored increases and the 

position of the redox peaks shift to more negative potentials with 

increasing pH. Both peaks are therefore related to oxygen intercalation, 

with the peak centered at -0.4V corresponding to Mn
2+

  Mn
3+

 as 

oxygen vacancy sites are filled, and the peak at 0V corresponding to 

Mn
3+

  Mn
4+

 as excess oxygen is intercalated into the structure. 

6.4 OXYGEN INTERCALATION 

The idea of electrochemical oxygen intercalation was developed during the early 

chimie douce movement of the 1990s involving topotactic reactions whereby structural 
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elements are preserved during the reaction despite changes in chemical composition. 

Kudo et al. first demonstrated the reversible electrochemical intercalation of oxygen into 

a perovskite in alkaline conditions with room-temperature diffusion rates of up to 10
-11

 

cm
2
 s

-1
.
27

 Since then, the reversible topotactic intercalation of oxygen has become a well-

established phenomenon for perovskites and perovskite-derived structures.
27-33

 Mahesh et 

al. demonstrated that a high degree of oxygen intercalation can be exhibited even in 

oxygen excess LaMnO3+δ to yield the cubic structure.
32

 However, until now the chimie 

douce oxygen intercalation method has generally been reserved as a synthesis procedure 

for high oxidation state transition metal oxides. Only one report takes advantage of the 

potential dependence of oxygen content in perovskites to make a low voltage rocking 

battery based on the shuttling of oxygen ions between perovskite electrodes.
15

 The results 

presented here for LaMnO3±δ represent the first example of oxygen intercalation in high 

rate energy storage, as well as the first example of anion-based intercalation 

pseudocapacitance. 
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Figure 6.4: Electrolyte Studies of LaMnO3.09 

Specific capacitances for composite electrodes in neutral SO4
2-

 

electrolytes and alkaline electrolytes with varying sizes of cations 

(Electrolyte concentration = 0.1 N based on the anion contribution). The 

bars show the incremental addition of capacitance as the scan rate is 

reduced. LaMnO3+δ exhibits a higher capacitance at all scan rates for 

alkaline electrolytes than for neutral electrolytes regardless of the cation 

size. The current and capacitance contributions of the carbon support 

have been subtracted out to elucidate the dominant charge storage 

species in LaMnO3.09. 

In order to elucidate the redox features of oxygen intercalation in LaMnO3±δ, 

cyclic voltammetry was performed on unsupported samples in potassium based 

electrolytes of varying pH. Figures 6.3a and 6.3b show the electrochemical response of 

LaMnO3.09 and r-LaMnO2.91, respectively, to the increase in concentration of hydroxide 

ions. The CVs of the reduced sample exhibit a separate peak at more negative potentials 

corresponding to oxidation of lower oxidation state Mn
2+

 through oxygen intercalation 

into vacancy sites. Further, the peak’s growth with increasing pH and shift to more 

negative potentials demonstrate the role of OH
-
 concentration on charge storage. As the 

pH increases, the shift in potential results in a greater facility for oxygen intercalation. 

Importantly, at high pH, the two peaks begin to resolve on the anodic scan, indicating that 

even in the oxygen excess LaMnO3.09 sample there exist surface anion vacancies that can 
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participate in charge storage. The second peak is the further oxidation of Mn
3+

 to Mn
4+

 as 

excess oxygen is intercalated into the structure. The intercalation of oxygen ions into 

vacancy sites is accompanied by proton transfer to electrolyte hydroxide ions yielding 

water as a product. 

The nature of the oxygen intercalation species is still a matter of debate, as the 

large size of the O
2-

 ion should meet a substantial resistance to insertion into the densely 

packed perovskite structure at room temperature. It is hypothesized that for oxygen to be 

inserted into oxygen vacancies, the adsorbed hydroxide ion should transfer its proton to a 

neighboring lattice oxide and then may be oxidized into a peroxide type species, O
-
.
28,31

 

However, the extent of the oxidation of the adsorbed oxygen ion is strongly dependent on 

the covalency of the oxygen-transition metal bon in perovskites and the degree of 

hybridization between the transition metal 3d and oxygen 2p band.
13,34

 In general, late 

transition metal perovskites exhibit an increased covalency and more metallic character. 

Because of this, in perovskites such as LaNiO3, if the oxidation of oxide ions to peroxide 

species occurs, a redox event should appear during electrochemical measurements. In a 

series of tests on the perovskite LaNiO3, the presence of a reduction peak for the peroxide 

species was observed at ~E1/2 = -0.6V vs. Hg/HgO (Supplementary Figure F.3). As such, 

it is proposed that the intercalation of oxygen in highly covalent perovskites proceeds 

likely through a peroxide pathway, as has been shown in previous oxygen intercalation 

materials.
27-33

 However, the lack of an observed reduction or oxidation peak for a 

peroxide type species in the cyclic voltammograms of LaMnO3±δ suggest that oxygen 

intercalation in Mn based perovskites does not involve a peroxide type species, and thus 

is direct intercalation of electrolyte oxygen ions mediated through oxidation of the 

manganese centers. This mechanism is described through the following reactions 

(equations (6.3) and (6.4)) and diagrammed in Figure 6.5: 
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La [Mn2δ
2+;Mn(1-2δ)

3+ ] O3-δ+2δOH
-
↔LaMn3+O3+2δe-+δH2O   (6.3) 

LaMn3+O3+2δOH
-
↔La [Mn2δ

4+;Mn(1-2δ)
3+ ] O3+δ+2δe-+δH2O   (6.4) 

To probe the change in oxidation state of manganese as oxygen is intercalated in 

LaMnO3±δ more directly, ex-situ XPS was performed on carbon-free electrodes of 

LaMnO3.09 and r-LaMnO2.91 after 25, 100 and 500 cycles (Supplementary Figure F.4). 

The distribution of manganese oxidation states and surface composition was compared to 

the neat, as-synthesized materials. For LaMnO3.09, the manganese centers were found to 

initially undergo oxidation after 25 cycles, with a decrease of 17 relative atomic percent 

in Mn
3+

 concomitant with a 6 relative atomic percent increase in Mn
4+

 and an 11 relative 

atomic percent increase in satellite peak components. Following this, there was a 6%  

increase in Mn
3+

 from 17% to 23% going from 25 to 500 cycles, and a 3% decrease in 

Mn
4+

 and satellite components. Thus, there was a net Mn
3+

 decrease of 10 atomic percent 

as compared to the uncycled material, and an increase in both Mn
4+

 and satellite peaks. 

Similar trends were observed for r-LaMnO2.91. There was a net oxidation of manganese 

centers over 500 cycles, resulting in a 6 relative atomic percent increase in Mn
4+

 and a 

decrease in both Mn
3+

 and satellite components. After only 25 cycles it was found that 

Mn
3+

 was oxidized such that there was a 6%  increase in Mn
4+

 to 52%, solely at the 

expense of Mn
3+

. As the number of cycles increased from 25 to 500, the proportion of 

Mn
4+

 remained unchanged while a 4% increase in Mn
3+

 from 26% to 30% was observed, 

due to oxidation of lower binding energy species. This trend corresponds to the loss of 

capacitance over cycling as oxygen vacancies become filled and can no longer be 

reversibly extracted. To determine if any lanthanum or manganese surface segregation 

occurred during cycling, the La 4p 3/2 core region was also examined. Unreduced 

LaMnO3.09 was found to undergo a 20% enrichment in surface manganese, from 28 to 
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34% (relative atomic percent to lanthanum) over 500 cycles, while reduced r-LaMnO2.91 

showed a two-fold enrichment in surface manganese, from 27 to 54 at. % over 500 

cycles. This surface enrichment of manganese is expected to be beneficial to the longer-

term pseudocapacitive charge storage capabilities of r-LaMnO2.91, as it results in more 

redox-active metal centers at the electrode-electrolyte interface.
 

 

.  

Figure 6.5: Mechanism of oxygen intercalation into LaMnO3+δ 

Initially oxygen vacancies are filled through intercalation of an 

electrolyte oxygen ion and diffusion of O
2−

 along octahedral edges 

through the crystal concomitant with the oxidation of two Mn
2+

 centres 

to two Mn
3+

. In the next step of the reaction, excess oxygen is 

intercalated at the surface through diffusion of manganese to the surface 

and oxidation of two Mn
3+

 centres to two Mn
4+

. 
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To understand why LaMnO3±δ stores charge capacitively rather than purely 

faradaically, the diffusion rate of oxygen was measured. Nemudry et al. investigated the 

underlying factors that influence the diffusion rate of oxygen through perovskites at low 

temperatures.
33

 They propose that perovskite materials with substantial heterogeneous 

microstructures provide high diffusivity pathways along crystal domain boundaries, 

allowing for diffusion rates of up to 10
-9

 cm
2
 s

-1
 in oxygen intercalation materials. Using 

an approach developed by Hibino et al. the diffusion rate of O
2-

 in LaMnO3.09 was 

approximated as 5.6 x 10
-12

 cm
2
 s

-1
. With the introduction of oxygen vacancies, the 

diffusion rate doubled to 1.2 x 10
-11

 cm
2
 s

-1
 in r-LaMnO2.91 (Figures F.5 and F.6).

16
 This 

diffusion rate is similar to those found in high temperature SOFC applications and for Li
+
 

in common lithium-ion intercalation materials.
35,36

 Thus, the sintering of the initial 

particles into larger structures with 12 nm crystal domains provides for a high density of 

boundaries and therefore pathways for fast diffusion, even at room temperature. Further, 

as the degree of non-stoichiometry is increased, the heterogeneity of the system increases 

as does the diffusion rate leading to an increased utilization of the bulk structure of 

LaMnO3±δ. This result is also supported through XRD after cycling which demonstrated 

the diffusion along oxygen dense planes (Supplementary Figure F.7). 
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Figure 6.6: Symmetric Cell Cyclic Voltammetry of r-

LaMnO2.91 

(a), Cyclic voltammograms at various scan rates for symmetric 2-

electrode cell in Ar saturated 1 M KOH. The current density is scaled by 

the mass loading of r-LaMnO2.91 after the contribution of the carbon, N-

OMC, to the current has been removed. (b), Ragone Plot for the 

symmetric cell. The Ragone Plot represents the performance of the 

composite system and thus is not normalized by the mass loading of r-

LaMnO2.91. 

6.5 PRACTICAL APPLICATIONS OF LAMNO3 PSEUDOCAPACITORS 

In order to test the practicality of LaMnO3 as a pseudocapacitive system, a 

symmetric cell of 30 wt% r-LaMnO2.91 on mesoporous carbon composite at a loading of 1 

mg cm
-2

 on Ni foam was constructed and tested in an Ar saturated 1 M KOH electrolyte. 

This mass loading was chosen after performing a power-law analysis on the capacitive 

current with variable carbon mass loadings (Figures F.8 and F.9). Figure 6.5a shows the 

cyclic voltammogram of the resulting cell across a 2 V window. The rectangular shape of 

the symmetric cell is indicative of ideal capacitive behavior. The energy densities of the 

cell were evaluated using equation (6.5), 

𝑈 =
1

2
𝐶𝑉2      (6.5) 

where U corresponds to the potential energy density (Wh kg
-1

), C is the capacitance of 

the material (F) and V is the potential window of the cell (V).
1
 This data is presented in a 

Ragone plot of the symmetric cell’s performance, Figure 6.5b, which demonstrates the 

promising performance of r-LaMnO2.91 even at practical mass loadings. At a high power 

density of 4214 W kg
-1

 r-LaMnO2.91 exhibits an energy density 23.4 Wh kg
-1

 which 

increases to 61.2 Wh kg
-1

 at a lower power density of 220.4 W kg
-1

. As such, the role of 

oxygen intercalation into anion vacancies in LaMnO3 can be seen as a new paradigm for 

oxygen ion based charge storage that may be exploited for high energy density and power 

density applications. 
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6.6 CONCLUSIONS 

 

As pseudocapacitor and rechargeable battery research has long focused on cation 

intercalation, the anion based charge storage mechanism presented here opens the door to 

a new energy storage concept possessing high specific capacitance and affordability. In 

addition, the oxygen intercalation mechanism appears to be universal with other 

lanthanum based perovskites such as LaNiO3, which exhibits similar charge storage 

behavior. The wide range of possibilities to modify the electronic and physical properties 

of perovskites and perovskite-derived structures will likely lead to materials with high 

energy densities that also utilize anion based mechanisms of energy storage. Further it is 

likely that similar anion based mechanisms may be found to contribute substantial energy 

densities to other systems containing oxygen vacancies. 

6.7 METHODS 

Synthesis of LaMnO3+δ:
15

 Initially mixed metal hydroxides were prepared by 

reverse-phase hydrolysis of La and Mn nitrates in the presence of an equimolar amount of 

tetrapropylammonium bromide dissolved in 1 wt% tetramethylammonium hydroxide 

(TMAOH). An ~10 mM solution of mixed metal nitrates was added dropwise to 200 mL 

of TMAOH. The resulting suspension was collected by centrifugation and washed with 

DI water, followed by re-suspension in DI water through probe sonication. The solution 

was frozen as a thin film on rotating steel drum at cryogenic temperatures, and then 

lyophilized at -10 °C at a fixed pressure of ~50 mTorr for 20h. The lyophilized powder 

was calcined at 700 °C for 4 h under dehumidified air. Following calcination, the 

particles were washed with EtOH and filtered. LaCoO3-δ and LaNiO3-δ were synthesized 

following a similar procedure. 
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Synthesis of LaMnO3-δ: ~100 mg of pre-synthesized LaMnO3+δ was thermally 

reduced topotactically in an environment of 7% H2 in Ar reforming gas at a temperature 

of 400 °C for 1 h and cooled naturally to room temperature. 

3-Electrode Cell Electrode Preparation: All perovskite nanopowders were loaded 

to 30%wt by mass of perovskite on nitrogen doped ordered mesoporous carbon (N-OMC) 

by mixing with ball milling. The perovskite/carbon mixture was dispersed in EtOH 

containing 0.05 wt% Na-substituted Nafion in a ratio of 1 mg mL
-1

 and sonicated for 30 

min. 10 µL of this solution was spuncast at 700 rpm onto a glassy carbon electrode 

(0.196 cm
2
, Pine Instruments) yielding an perovskite loading of 15.3 µg cm

-2
 for N-OMC 

supported LaMnO3 and a total mass loading of 51.0 µg cm
-2

. Spincasting is important to 

get consistent thin films across a series of measurements.
27

 Electrodes of neat N-OMC at 

a mass loading of 35.7 µg cm
-2

 were also made with the same procedure. The current 

contribution from N-OMC was subtracted out of the data to more clearly present the 

electrochemistry of LaMnO3±δ. The synthesis of N-OMC is described elsewhere.
38

 

2-Electrode Cell Electrode Preparation: 30 wt% r-LaMnO2.91 composite 

electrodes of 1 mg cm
-2

 total loading were made by dropcasting the same inks described 

in the 3-electrode cell section onto Ni foam (2 mm thick, 100 ppi, 95% porosity, 

Marketech). The electrodes were then dried at 80 °C for 20 min. and manually pressed to 

a thickness of ~ 0.5 mm. 

Materials Characterization: Structural information about the resulting oxides was 

obtained using wide-angle X-ray diffraction (Rigaku Spider, Cu Kα radiation, λ = 1.5418 

Å) and analyzed with JADE software (Molecular Diffraction Inc.). Scanning 

(transmission) electron microscopy (SEM/STEM) was performed using a Hitachi S-5500 

with a 30 kV accelerating voltage and 20 µA probe current. LaMnO3.09 was deposited 

from a dilute ethanol suspension onto a 200 mesh copper grid coated with lacey carbon. 
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Chemical states were characterized by X-ray photoelectron spectroscopy (XPS, Kratos 

AXIS Ultra DLD) in 0.1 eV steps using a dwell time of 4 seconds per step and a 

monochromatic Al X-ray source (Al α, 1.4866 eV). Brunauer-Emmett-Teller surface area 

measurements were performed through nitrogen sorption on a Quantachrome Instruments 

NOVA 2000 high-speed surface area BET analyzer at a temperature of 77K. The 

hydrodynamic diameter (DH) of as-synthesized hydrolysis particles was measured via 

dynamic light scattering (DLC, Brookhaven ZetaPALS instrument) and fit with the 

CONTIN routine.  Iodometric titrations were performed following the procedure 

developed by Laiho et al.
21

 In a sealed 2-neck round bottom flask under Ar atmosphere, 

~10-15 mg of LaMnO3 was dissolved in 5.5 mL of 4M HCl followed by dilution with 10 

mL of pre-boiled DI water and degassed with Ar for 15 min. Then 7.2mL of a 1M KI 

solution made in pre-boiled DI water was injected into the cell. The solution was 

immediately titrated with a solution of 0.015M Na2S2O3 that had standardized against a 

0.1M KIO3 standard solution. The perovskite solution was titrated to a faint golden color, 

then ~0.5 mL of starch indicator was added. The solution was titrated until the color 

changed from deep purple to clear. 

Electrochemical testing was performed on a CH Instruments CHI832a 

potentiostat. The tests were performed in a standard 3 electrode cell using a Hg/HgO (1M 

KOH) reference electrode, a Pt wire counter electrode, and a film of the pseudocapacitor 

material on glassy carbon as the active electrode. The potential of the reference electrode 

was measured prior to testing against a standardized Hg/HgO (1M KOH) electrode that 

was never used during testing. Electrolyte solutions were degassed with Ar for at least 15 

minutes before testing to ensure that no oxygen reduction current would be observed 

during cyclic voltammetry. Further, the tests were performed under a blanket of Ar. Two 

electrode cell tests were also performed in an Ar saturated 1M KOH electrolyte. In the 2-
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electrode testing, one r-LaMnO2.91/N-OMC composite electrode served as the reference 

and counter electrode and the other served as the working electrode. 

 

6.8 ADDITIONAL INFORMATION 

Appendix F contains details regarding the experimental methods, supporting 

materials characterization, and analysis. 
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Chapter 7: Conclusions 

7.1 CONCLUSIONS 

7.1.1 Highly Active, Non-precious Metal Perovskite Electrocatalysts for Bifunctional 

Metal Air Battery Electrodes 

We demonstrated that LaNiO3 nanocrystalline aggregates on nitrogen doped 

carbon exhibit extremely high activity for the OER (90 mA mg
-1

ox @ 1.56 V vs RHE-iR) 

and strong OER/ORR bifunctional character (1.02 V ΔE between 3 mA cm
-2

 ORR and 10 

mA cm
-2

 OER), as a result of high phase purity, lattice hydroxylation and increased 

surface area (11 m
2
 g

-1
). This bifunctional character is crucial to the development of 

inexpensive aqueous metal-air batteries, fuel cells and electrolyzers. This highly active 

morphology is produced by rapid, simultaneous hydrolysis of La
3+

 and Ni
2+

 nitrates 

during reverse phase arrested growth precipitation, followed by rapid drying. This 

synthetic concept to generate precursors that are calcined to form phase pure 

nanocrystalline aggregates is general and thus a directly applicable route to prepare a 

wide variety of nonprecious metal, nanocrystalline perovskites as highly active catalysts. 

 

7.1.2 Tuning the Electrocatalytic Activity of Perovskites Through Active Site 

Variation and Support Interactions 

We showed how a series of phase pure perovskite electrocatalysts were made 

using a robust synthetic process in which colloidal mixed metal hydroxides are formed by 

reverse phase arrested growth coprecipitation. These perovskite catalysts, when 

supported on nitrogen doped carbon or reduced graphene oxide displayed high activities 

for both the OER and ORR, with LaCoO3/NC having ~4x the OER mass activity (100 

mA mg
-1

ox) of the precious metal oxide benchmark IrO2, and LaNi0.75Fe0.25O3/NC having 

comparable ORR activity (547 mA mg
-1

ox) as Pd/VC. This demonstrates that the high 
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specific (μA/cm
2

ox) activity of perovskites can be translated into highly active and 

bifunctional oxygen catalysts. Through tuning of the carbon support functionalization, 

rate limiting steps were identified and bypassed by successful incorporation of peroxide 

disproportionation into the catalyst itself, which was achieved through selective doping. 

LaNi0.75Fe0.25O3 exceptional ORR activity is in part rationalized by the catalyst’s ability 

to bypass the traditional rate determining ORR step of peroxide reduction by 

disproportionation of HOO
-
 into O2 and OH

-
, enabling a pseudo four electron ORR 

pathway. This work attempts to look beyond the choice of bulk electrical properties or 

use of single catalytic descriptors such as eg filling, while providing a catalyst-specific 

understanding of the importance of peroxide oxidation or reduction on perovskites during 

the OER and ORR. 

 

7.1.3 Exceptional Electrocatalytic Oxygen Evolution Via Tunable Charge Transfer 

Interactions in La0.5Sr1.5Ni1-xFexO4+δ Ruddlesden-Popper Oxides 

We have precisely synthesized a series of RP catalysts having highly oxidized and 

covalent Ni 3d - O 2p - Fe 3d bonds that give rise to exceptional OER activity. To 

increase the oxidation state and Ni-O covalency, Sr substitution into LaNiO3 has 

previously been proposed but not fully realized. Inactive secondary phases resulting from 

poor solubility of Sr in the perovskite phase were avoided through utilization of the RP 

crystal structure. Using La0.5Sr1.5NiO4+δ as the host lattice, we achieved complete 

substitution of Fe for Ni across the entire compositional range, while crystalline 

periodicity of the RP phase enabled precise study of the impact of Fe substitution on the 

chemical and electronic properties of the LSNF series. Iodometric titrations coupled with 

Mössbauer spectroscopy indicate that the average Ni oxidation state in the LSNF series 

increases from +3.46 to +3.95 with increasing Fe substitution while the Ni
2+/3+

 redox 
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peaks also shift to more positive potentials, consistent with Ni developing a more 

oxidized character. The influence of Fe substitution extends beyond increasing the 

oxidative strength of Ni, however, as the electrocatalytic activity increases by over an 

order of magnitude from LSN to LSNF30 (88 vs 1931 mA mg
-1

ox, respectively), despite 

possessing statistically equivalent Ni oxidation states. DFT calculations reveal that Fe 

substitution results in cross-gap hybridization where the Fe 3d eg band is hybridized with 

both the Ni 3d eg and top of the O 2p density of states across the Fermi level. The 

increased covalency of the Ni-O bonds as well as facile charge transfer through Fe-O-Ni 

bridges due to incorporation of Fe explains the enhanced catalytic activity going from 

LSN to LSNF30. This methodology to promote cross-gap hybridization via selective 

substitution of A and B-site elements in RP oxides represents a new set of design 

principles for the optimization of metal oxide catalysts and reveals important 

fundamental aspects related to the their structure and electrocatalytic activity. 

 

7.1.4 Highly Active Perovskite and Ruddlesden-Popper Composite Electrocatalysts 

for Water Oxidation 

We have demonstrated that the reverse microemulsion synthetic scheme produces 

highly active OER catalyst phases with smaller amounts of unwanted secondary phases 

than the charred polymerized complex method. Despite the impurity phases, the mass 

activities among the highest reported for any perovskite or RP electrocatalysts. The 

reverse microemulsion method produced precursor particles that crystallized into these 

mixtures containing highly covalent Ni-rich oxides for both SNF and LSNF. The SNF RP 

catalyst is 38 fold more active than LaNiO3 (1541 vs 40 mA mg
-1

ox), and generates over 8 

times more current per mass that IrO2 (174 mA mg
-1

ox) with a low Tafel slope of 55 mV 

dec
-1

. These exceptional catalytic activities are further enabled by chemical substitution 



 141 

wherein Sr and Fe are substituted for La and Ni. Sr substitution  should increase the 

average oxidation state of Ni, while substitution of the less electronegative Fe introduces 

new Fe 3d orbitals at or above the Fermi level, to facilitate easy charge transfer between 

the catalyst and adsorbate via cross-gap hybridization. 

 

7.1.5 Anion charge storage through oxygen intercalation in LaMnO3 perovskite 

pseudocapacitor electrodes 

Herein we proposed the mechanism of oxygen vacancy mediated redox 

pseudocapacitance for a nanostructured lanthanum based perovskite, LaMnO3+δ. We 

demonstrated that OH
-
 is reversibly intercalated into LaMnO3+δ at room temperature in 

0.1 M KOH, and results in large faradaic pseudocapacitance, up to ~600 F g
-1

 which 

retained ~95% of the capacitance over 500 cycles. By examination of other, bulkier 

anions and a series of common intercalating cations (K
+
, Na

+
), we have demonstrated the 

first example of anion-based intercalation pseudocapacitance as well as the first time 

oxygen intercalation has been exploited for fast energy storage.  This was further 

supported by the introduction of oxygen vacancies through the topotactic reduction of 

LaMnO3.09 to LaMnO2.91, and subsequent increase in charge-storage capacity. Whereas 

previous pseudocapacitor and rechargeable battery charge storage studies have focused 

on cation intercalation, the anion based mechanism presented here offers a new paradigm 

for electrochemical energy storage. 

 

7.2 RECOMMENDATIONS 

The robust phase space that perovskite and Ruddlesden-Popper oxides exist in 

offer many opportunities for tuning their chemical, electronic and structural properties for 
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enhanced ORR and OER, but future work surrounding these oxides must address long-

term stability of the catalyst and support, especially the carbon. The support interactions 

between perovskite and carbons have previously been examined
1
, but it is still unclear the 

mechanism responsible for the synergistic enhancement towards the OER observed for 

perovskites on N-doped carbon. Furthermore, the long term oxidative stability of carbon 

and catalyst must be quantified and measured. Thermodynamically, carbon will oxidize 

at all potentials required for the OER. The kinetics of carbon corrosion must be decreased 

by increasing the oxidation-resistant graphitic character of the carbon,
2
 while maximizing 

beneficial support interactions to lower the total overpotential required for the OER, and 

thus reducing the corrosion potential that carbon experiences. 

To address catalyst stability, the surface Pourbaix behavior of the most promising 

catalysts should be calculated, and stability metrics better defined. We have used a 10 A 

g
-1

ox galvanostatic hold, and comparing the time until failure before reaching unsafe 

potentials, defined as > 2 V vs RHE-iR.
1, 3, 4

 These tests are phenomenological though, 

and true durability testing should also encompass cyclic oscillations of potential between 

operational and open circuit, to better represent all modes of operation. The quantification 

of degradation products in the electrolyte through ICP-OER is needed to corroborate 

theoretical surface Pourbaix behavior, to understand the kinetics of catalyst corrosion. 

The strength of the metal oxide work I have participated in is firmly rooted in the 

work of pioneering solid state chemists and physicists of past decades, such as John B. 

Goodenough. A more thorough reviewing of this literature would surely yield more 

examples of band structures that promote the OER. Elemental substitution into perovskite 

and RP structures has yielded very large catalytic enhancements, and I firmly believe 

through reading of the old literature and insights gained through the current Ni-Fe-M 

oxyhydroxides literature, there is room for further improvement. The exertion of 
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synthetic control over the shape, size, and crystalline facets will undoubtedly improve the 

OER for perovskites and RPs, although the exertion of such control is made more 

difficulty by the high temperatures required for crystallization. 

Octahedral coordination of transition metal ions, combined with a relatively large 

amount of active sites per mass, passable conductivity, and their robust ability to accept 

substituted elements has made perovskites and RPs host oxides for developing new 

design criteria and examining catalytic mechanisms. Yet, there exist many other 

crystalline metal oxide phases with octahedral coordination, such as pyrochlores and 

ilmenites, that have yet to be examined in any serious fashion for the OER.
5, 6
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Appendix A: Atomic Ensemble and Electronic Effects in Ag-Rich AgPd 

Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media5 

A.1 INTRODUCTION 

Bimetallic catalysts have garnered considerable interest since they exhibit 

distinctly different and often superior activity for many chemical transformations 

compared to pure monometallic systems as determined via DFT calculations
1-3

 and 

experimental studies.
4-7

 The enhanced performance of bimetallic catalysts may be 

rationalized by a combination of ligand, geometric and/or ensemble effects.
1,8,9

  Ligand 

effects, namely charge transfer between nearest neighbor atoms, and geometric effects, 

primarily compressive or tensile strain, generally influence the strength of interactions of 

reactants, intermediates and products.  Ensemble effects result when more than one 

reactive site, composed of different metal atoms or clusters of atoms, catalyze distinct 

steps in a reaction mechanism.  Whereas ensemble effects are well known in gas phase 

heterogeneous catalysis,
8-11

 they have received limited attention in electrocatalysis.
12-14

 

To understand how to employ ligand, geometric, and/or ensemble effects to 

achieve high catalyst activity, we have chosen the oxygen reduction reaction (ORR) as a 

model system.   The kinetic limitations in the ORR are a major concern for both metal-air 

batteries and low-temperature fuel cells.
15-21

 In base, the two main pathways for the ORR 

are the direct 4 electron transfer: 

O2 + 2H2O + 4e
-
  4OH

-    
A.1 

and a  2 by 2 electron (stepwise) pathway, 

O2 + H2O + 2e
-
  HO2

-
 + OH

-
    A.2 

HO2
-
 + H2O + 2e

- 
 3OH

-    
A.3 

                                                 
5Large portions of this appendix have been published as Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; 
Stevenson, K. J. Journal of the American Chemical Society 2012, 134, 9812.  
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which goes through a hydroperoxide intermediate (HO2
-
). The combination of reactions 

A.2a and A.2b yield reaction A.1, though the kinetics of reaction A.3.2b can be limiting.  

Furthermore, the HO2
-
 intermediate can undergo disproportionation according to: 

2HO2
-
  2OH

-
 + O2    A.4 

Bimetallic catalysts may be designed to efficiently target this set of reaction 

pathways to achieve high synergy among the various metal atoms. 

For core-shell catalysts, the combination of ligand and geometric effects provides 

exceptionally high ORR activity.
6,22-24

  Here an electronic shift and geometric strain in 

the shell, due to the underlying core, favorably modify the binding energies of reaction 

intermediates, particularly in the direct 4 electron transfer.   For example, a Pt or Pd 

monolayer shell deposited on a transition metal core produced activities per mass of 

noble metal up to 8x times relative to the pure noble metal. 
22,25

  However, when the 

diameter of a core-shell catalyst becomes <5 nm, a monolayer shell would comprise 

greater than >30% of the total atoms in the particle.   In contrast, even lower precious 

metal concentrations are possible for homogenous bimetallic nanoalloys. Furthermore, 

the large number of contacts between dissimilar metals promotes ensemble effects, as 

well as ligand effects.   However, for ORR nanoparticle catalysts, precious noble metal 

contents are typically >50% due to challenges in synthesis.
4,5,7,26

   

To design an active nanoalloy catalyst with a low content of a highly active 

precious noble metal and a second less active metal, it would be desirable to achieve 

strong ligand and ensemble effects.  For the ORR in alkaline media, less-expensive 

precious metals such as Ag exhibit good ORR activity, especially for HO2
-
 

disproportionation
27

, and are more stable 
20,21,28,29

 than in acid, enabling them to be used 

in nanoalloys with Pd
30-34

.  Since the cost ratio of Pd:Ag is ~22:1, it would be 

economically desirable to utilize both metals in a bifunctional manner to raise activity 
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and improve stability.  However, for a case where the Pd level was only 20 mol% 

(Ag4Pd), the activity was not above the level expected from a linear combination of 

activities of the pure components.
30

  To design structure and atomic surface arrangements 

of bimetallic nanoalloys for ligand and ensemble effects, improved synthetic methods are 

needed for controlling composition, morphology and architecture (e.g. random-alloy vs 

core-shell).  Alloy nanoparticles have been pre-synthesized in the presence of stabilizing 

ligands by arrested growth precipitation
13,35-37

 or in microemulsions
38,39

 and then later 

adsorbed onto the catalyst support.  Dendrimer encapsulated nanoparticles have been 

synthesized with controlled alloy formation, for example with Pd compositions just 

below 50 mol% (Pd36 Cu64).
40

   Recently, large 40 nm Au4Pd alloy nanoparticles have 

been shown to exhibit higher activity than their core-shell morphologies, as a result of 

strong ensemble effects.
13

  However, we are not aware of small nanoalloys (<5 nm) with 

low amounts of a precious metal in the surface, where electronic and ensemble effects 

produce high activities. 

Herein, we synthesize uniform bimetallic nanoalloy catalyst (~5nm), with as little 

as ~10 mol% Pd (Ag9Pd), to achieve high activity for the oxygen reduction reaction 

(ORR) in alkaline media.  To control the distribution of the Pd and Ag on the surface, the 

nanoalloys with Ag compositions from ~40% up to ~90% were synthesized by co-

reduction of Ag and Pd carboxylic acid complexes precursors at similar rates
41

 in the 

presence of stabilizing ligands.  The nanoparticles were found to be uniformly alloyed, 

displaying a single alloy composition among the particles, as shown by a combination of 

X-ray diffraction (XRD), cyclic voltammetry (CV) and X-ray photoelectron spectroscopy 

(XPS).  Furthermore detailed probe-corrected scanning transmission electron microscopy 

(pcSTEM) analysis is presented for the Ag9Pd catalyst.  As a consequence of the low 

overall Pd content for Ag≥4Pd and the uniformity of the alloying, the Pd atoms on the 
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surface were surrounded primarily by Ag atoms, as characterized by the surface sensitive 

electrochemical techniques, cyclic voltammetry and CO stripping measurements.  Our 

hypothesis is that nearly all of the contacts of the more active metal Pd will be with Ag 

for Ag≥4Pd, and these unlike interactions will enhance catalyst activity through electronic 

interactions (ligand effect), as was observed by the binding energy shift from XPS, and 

the cooperation of each metal towards various ORR reaction steps (ensemble effect).  We 

found that the activities for Ag9Pd and Ag4Pd were up to 2.7 and 3.2 fold above the value 

expected from the pure metals, a large non-linear enhancement for ORR.   Furthermore, 

the total metal mass activity for the AgPd2 catalyst is 60% higher than for pure Pd, 

suggesting high synergy is also present for alloys with higher Pd loading.  These results 

are compared to those of pure Ag and pure Pd nanoparticles of similar size on carbon.  

Furthermore, it appears that the sintering of pure Ag particles during calcination is 

mitigated by the addition of a small amount (10 mol%) of Pd in the alloy, again 

illustrating cooperative effects for the uniform alloy.  Ultimately, the ability to disperse 

small amounts of a highly active precious metal within a less active metal on a nanoalloy 

surface is a general strategy that may offer significant benefit for scientific and practical 

advancement in catalysis. 

A.2 EXPERIMENTAL 

All chemicals were used as received.  Silver nitrate, palladium acetate, 

tripropylamine, anhydrous ethanol, tetradecanoic acid, and 5 wt % nafion solution in 

lower alcohols were purchased from Sigma-Aldrich.  Hexane (99.9%) and potassium 

hydroxide were obtained from Fisher Scientific, and ethanol (Absolute 200 proof) from 

Aaper alcohol.  Millipore high purity water (18 MΩ) was used.  Vulcan XC72 (VC) 

carbon was obtained from Cabot Corporation.  Oxygen (research grade, 99.999% purity), 
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argon (research grade, 99.999% purity) and CO (99.9%) were obtained from Praxair.  

Commercial 20% Pd/VC was obtained from ETEK. 

A.2.1 Catalyst Synthesis 

A.2.1.1 Particle Synthesis   

Pd-tetradecanoate (Pd-TDOA) and Ag-tetradecanoate (Ag-TDOA) precursor 

powders were synthesized from palladium acetate and silver nitrate salts in organic and 

aqueous ligand substitution reactions, respectively, as reported previously.
41,42

 

The total concentration of metal atoms in syntheses of both alloy and pure 

component nanoparticles was controlled to 0.71 M. The desired molar ratio of Ag-TDOA 

or Pd-TDOA was added to a 10 mL round bottom reaction flask with 1.414 mL of 

tripropylamine.
41

  The solution was slowly heated under argon to 100 °C while 

vigorously stirring. The solution was left at 100°C for 1 hour, and then cooled to room 

temperature. Acetone was then added in excess, and the solution was centrifuged for 5 

minutes 2000 rpm. This washing step was done three times, discarding the supernatant 

and replacing it with fresh acetone after each wash. Finally, the particles were added to 

hexane and centrifuged for 2 minutes at 10,000 rpm to narrow the size distribution. The 

hexane was evaporated and the yield of nanoparticles was quantified.  Finally, the 

particles were suspended in n-hexane to a 10 mg/mL concentration which was black in 

color. 

A.2.1.2 Adsorption of particles onto carbon support.  

Aside from the commercial Pd/VC, all catalyst powders were prepared via 

adsorption of pre-synthesized nanoparticles onto Vulcan carbon.  Vulcan XC72 carbon 

was mixed with an appropriate volume of nanoparticle solution (10mg/mL in hexane) to 

achieve a loading of 20 wt% metal (assuming 100% adsorption of the particles). The 



 150 

carbon and nanoparticle solution was stirred for 1 hour.  The mixture was vacuum 

filtered.  The color of the filtrate came out clear, indicating essentially complete 

adsorption of the particles on the carbon.  The catalyst powder was calcined at 450 °C 

under forming gas, in a quartz tube furnace. The furnace was held at room temperature 

for 30 minutes, ramped to the desired temperature over 2 hours and held at 450 °C for 2 

hours.  However, for the 10nm Ag/VC catalysts, the same calcination procedure was used 

but with a maximum temperature of 210°C.  The calcined catalyst powder was then 

washed with 100 mL of EtOH, dried at 60 °C for 20 minutes, and stored under ambient 

conditions. 

A.2.2 Electron Microscopy 

A.2.2.1 Transmission Electron Microscopy (TEM)  

Low-mag TEM was conducted on an FEI Tecnai 20 BioTwin microscope using 

an 80 kV accelerating voltage. The carbon supported catalysts were deposited from a 

dilute ethanol suspension onto a 200 mesh copper grid coated with lacey carbon (Electron 

Microscopy Sciences). Average particle sizes were calculated from measurements of 

~100 particles using ImageJ. 

A.2.2.2 Scanning Transmission Electron Microscopy (STEM)  

High resolution probe corrected STEM (pcSTEM) imaging was performed on a 

JOEL JEM-ARM200F probe aberration corrected electron microscope, operated at 200 

kV. The probe size used was of 0.08 nm with a current of 24 pA. The spherical aberration 

was reduced with a dodecapole corrector (CEOS). Calibration was done using standard 

Si[110] and Au nanoparticles to align the corrector with CESCOR software. Images were 

recorded in STEM mode by simultaneously collecting bright field and high angle annular 

dark field (HAADF) images from scans of 12 to 16 seconds with a probe size of 0.08Å.  
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To determine the extent of alloying in the Ag9Pd particles, energy dispersive X-ray 

spectroscopic (EDS) line scans were performed on individual particles using a probe size 

of ~1.3Å, a step size of 2Å, and a dwell time of 5 seconds, while correcting for spatial 

drift. 

A.2.3 X-ray Diffraction (XRD)   

Wide-angle X-ray diffraction was performed on a film of carbon supported 

catalyst powders on a quartz slide with a Bruker Nokius instrument using Cu Kα 

radiation (1.54 Å wavelength). Samples were scanned from 10 to 90 degrees in 0.02 

degree increments with a dwell time of 10 seconds. The average nanoparticle size was 

estimated from the Scherrer equation in JADE software (Molecular Diffraction Inc.). 

Background correction, fitting, and deconvolution were done using JADE software.  The 

d-spacing is calculated from dhkl = λ/(2sin), while the lattice parameter is calculated 

according to a = dhkl*√ℎ2 + 𝑘2 + 𝑙2 where h,k, and l are the miller indices for the crystal 

plane, λ is the X-ray wavelength, and  is the angle of the peak for the crystal plane 

reflection. 

A.2.4 X-ray Photoelectron Spectroscopy (XPS)   

XPS was acquired using a Kratos AXIS Ultra DLD spectrometer equipped with a 

monochromatic Al X-ray source (Al α, 1.4866 keV).  High resolution elemental analysis 

was performed on the Pd 3d and Ag 3d regions with a 20eV pass energy, a 0.1 eV step, 

and an 4 s dwell time.  Charge compensation was not used as each sample was 

conductive.  All absolute energies were calibrated relative to gold, silver and graphite.  

The peak positions and areas are calculated using a standard Gaussian + Lorentzian fit 

with a Shirley background correction. 
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A.2.4 Thermogravimetric Analysis (TGA).  

Thermogravimetric analysis was made with a Mettler Toledo TGA/DSC 1 STARe 

system equipped with a gas controller (GC 200) and a recirculating stage cooling bath set 

at 22°C (Julabo). A sample size of >2mg of carbon supported catalysts after calcination 

was used for analysis.  The gas flow rate during the analysis was controlled at 60 

mLair/min.  The catalysts were initially held at 110°C for 10 min to drive off any solvents.  

Next the catalysts were heated to directly to 900 at 20°C/min.  The final mass remaining 

after the analysis was used to calculate the total metal loading (wt%). 

A.2.4 Electrochemical Characterization 

Catalyst inks were prepared by adding 1 mL of a 0.05 wt% Nafion solution to 1 

mg of catalyst powder and sonicated for 30 minutes. 10 μL of ink was drop cast onto a 

clean 5mm (0.196 cm
2
) glassy carbon electrode and left to dry under a glass vial. The 

glassy carbon electrodes were cleaned prior to drop casting by sonication in a 1:1 DI 

water:ethanol solution. The electrode was then polished using 0.05 μm alumina powder, 

sonicated in a fresh DI water:ethanol solution, and dried in ambient air. All 

electrochemical tests were performed on electrodes prepared by this method, such that 

the metal loading for all catalysts was 10 μg/cm
2
. 

Electrochemical testing was performed on either a CH Instruments CHI832a or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high speed rotators 

from Pine Instruments.  Each test was performed in a standard 3 electrode cell, with a 

Hg/HgO (1M KOH) reference electrode, a Pt wire counter electrode, and the catalyst ink 

film on glass carbon as the working electrode.  All testing was done at room temperature 

in 0.1M KOH.  The solution was deaerated by bubbling argon for at least 10 minutes. 

The catalyst was electrochemically cycled from -0.9 to 0.25 V (Hg/HgO) at 20 mV/s for 

10 cycles to clean the surface.  Immediately following the cleaning procedure, an 
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extended cyclic voltammogram (CV) from -0.9 to 0.55 V at 20 mV/S for 2 cycles was 

performed to identify the oxidation/reduction for both Ag and Pd.  The total amount of 

charge to reduce the oxidized metal surface was used to estimate the surface composition 

of the catalyst.  The oxidation of silver involves one electron per silver atom (Ag2O + 

H2O + 2e  2Ag + 2OH
-
 or AgOH + e  Ag + OH

-
)
43

 while the reduction of Pd oxide 

requires two electrons (Pd(OH)2 + 2e  Pd + 2OH
-
).

44
  The electrolyte was then 

saturated with oxygen by bubbling for a minimum of 10 minutes. ORR activity 

measurements were taken by rotating the electrode at 1600 rpm and performing a linear 

sweep from 0.2 to -0.6 V at 5 mV/s.  Kinetic currents were used to evaluate mass 

activities and were taken at -0.05V vs NHE from the polarization curves.  The kinetic 

current was calculated according to the Koutecky-Levich equation:  
1

𝑖
=

1

𝑖𝑑
+

1

𝑖𝑘
.  The 

number of electrons transferred, n, for the ORR was calculated based on the diffusion 

limited current according to the Levich equation: 𝑖𝑑 = 0.620𝑛𝐹𝐴𝐷
2

3𝜔
1

2𝜈
−1

6 𝐶, where F is 

Faraday’s constant (96485 C/mol), A is electrode area (0.196cm
2
), D is diffusion 

coefficient for dissolved oxygen (2x10
-5

 cm
2
/s), ω is scan rate (1600 rpm or 167.7 rad/s), 

ν is kinematic viscosity (0.01 cm
2
/s), and C is the saturated oxygen concentration in 0.1 

M KOH at an oxygen partial pressure of 1 atm (1.2x10
-6

 mol/cm
3
).

21
 

CO stripping was performed to determine the surface composition of the catalyst.  

The solution was saturated with CO by bubbling for 30 min.  The potential of the 

electrode was held at -0.8 V (Hg/HgO) for 15 min.  The solution was then purged with Ar 

while still holding the potential at -0.8 V (Hg/HgO) for 20 min. The potential was then 

cycled 3 times between -0.8V and 0.3 V (Hg/HgO).   
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A.3 RESULTS AND DISCUSSION 

To realize the electronic and ensemble effects, the catalyst composition and 

morphology were controlled via thermolysis of organometallic precursors in the presence 

of capping ligands to arrest particle growth, as demonstrated for other alloy systems.
35-

37,45
  Ag and Pd were separately complexed to tetradecanoic acid, which acted as a 

capping agent to arrest the growth of the particles after reduction by tripropylamine.
41

  

The similar reduction rates of the complexes yielded small (~3-5 nm), relatively 

monodisperse sizes for the AgPd alloys and pure Ag nanoparticles determined via TEM 

and shown by micrographs for Ag9Pd (3.2±0.6nm) and Ag (4.3±0.7nm) in Figures 

A.5A,D and A.6A,D, respectively.  The alloy particles (for Ag9Pd) after adsorption onto 

the carbon support and removal of the ligands at 450°C in nitrogen remain small and 

uniformly dispersed on the carbon (5.3 nm Figures A.1A, A.5B, and A.5E), as is also 

seen for the commercial Pd particles (5.7 nm, Figure A.5C,F).  Similar sizes were 

obtained for the other AgPd alloy ratios in Table A.1.  With only 10 mol% Pd, the 

nanoalloy particles were resistant to sintering at 450°C, whereas the pure Ag particles 

coalesced to 19 nm (Figure A.6C,F).  The Pd acts to effectively lower bulk atomic 

mobility and movement of the particles on the support during calcination, thereby 

strongly anchoring the particles and mitigating thermal sintering.
46

  For a lower 

calcination temperature of 210°C, the degree of sintering for pure Ag is mitigated, 

yielding a final particle size of 10 nm (Figure A.6B).  The alloy particles displayed an 

FCC crystal structure as shown by the characteristic {111}, {200}, (220}, {311}, and 

{222} reflections in their XRD spectrum (Figure A.1B, A.7).  This structure is expected 

as both Pd and Ag are FCC crystalline materials.  Scherrer analysis was performed on the 

{111} reflections to calculate crystallite sizes.  The values span from ~4-8 nm as 

summarized in Table A.1, consistent with the values measured via TEM.  Probe-
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corrected STEM was performed on the Ag9Pd catalyst, clearly showing the crystalline 

nature of the particle (Figure A.1C).  Electron diffraction reveals that the particle surface 

is dominated by {111} planes and contains twinning, common among Ag nanoparticles.
47

 

 

Figure A.1. Ag9Pd nanoparticles supported on 

Vulcan XC72 carbon after calcination at 350°C in 

N2  

as shown by (A) TEM and (B) XRD.  The TEM 

shows that the particles are uniformly distributed 

over VC with an average particle size of 5.3 +/- 1.2 

nm.  The peak for {111} is located between both 

pure Pd and Ag due to the alloying with 10 mol% 

Pd (as confirmed by Vegard’s law).  The lack of 

additional peak shoulders suggests that the 

particles are composed of a single alloy phase, 

Ag9Pd.  The uniform composition is confirmed by 

the STEM EDS line scan (C,D).  Furthermore, the 

particles are shown to be composed primarily of 

{111} facets (C insert), along with twinning for the 

{111}. 

Uniform alloying among the particles was achieved by the simultaneous reduction 

of Ag and Pd at similar rates, as a consequence of the same tetradecanoate complex for 

each metal.
41

  The lack of peak shoulders for the crystalline reflections from XRD 
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suggests a uniform alloy composition among particles (Figure A.1B, A.7).  The alloy 

composition can be estimated according to Vegard’s Law
48,49

 for an unstrained alloy.  

Here, the composition of the alloy follows a simple linear relationship based on the shift 

in lattice constant of the alloy from that of either of the pure components.  The 

compositions correspond closely to the starting precursor ratios as shown in Table A.1.  

For example, the atomic percentages calculated using Vegard’s Law for Ag9Pd and 

Ag4Pd are 90% and 78% Ag, respectively.  The compositions measured by XPS shown in 

Figure A.2, are in agreement with the less quantitative results calculated from Vegard’s 

law.  Furthermore, a probe-corrected STEM-EDS line scan across a single Ag9Pd alloy 

nanocrystal (Figures A.1C,D) directly shows the uniformity of the alloy throughout the 

particle.  Both Ag and Pd have the same signal ratio from the edge to the center of the 

particle, indicating little intraparticle segregation of metals.  It should be noted that due to 

the significant overlap of the Pd and Ag EDS spectra, which makes deconvolution 

impractical, this method cannot be used to determine alloy composition quantitatively. 

Table A.1.  Summary of catalyst loading, morphology 

and composition. 

Catalyst wt% 

loading 

Size 

[nm] 

XRD  

Size 

[nm] 

Vegard's 

Law Ag 

mol% 

XPS Ag 

mol% 

Ag 28 10.1 11.8 100 100 

Ag 28 19.0 -- -- 100 

Ag9Pd 23 5.3 A.0 90 91 

Ag4Pd 23 5.1 4.4 78 83 

Ag2Pd 24 6.8 3.7 55 65 

AgPd2 25 6.6 6.8 36 38 

Pd 19 5.7 7.7 ~0 ~0 
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Figure A.2. XPS spectra for the (A) Pd3d 

and (B) Ag3d regions for all Pd:Ag alloy 

ratios as well as the pure metals.   

The Pd peaks are shifted negatively for all 

alloy ratios, as the Pd atoms always have a 

significant number of Ag atoms with which 

to interact.  However, the Ag peaks only 

show a shift when the alloy ratio is Ag≤4Pd, 

when there are enough Pd atoms in the 

particles to sufficiently disturb the Ag-Ag 

interactions. 

The polarization curves for the most active ORR alloys (Ag9Pd and Ag4Pd alloys) 

are shown along with the pure metal components in Figure A.3A.  Kinetic current 

densities are measured at -0.05 V vs NHE from the linear sweep voltammograms and 
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calculated according to the Koutechy-Levich equation. Catalyst loadings on Vulcan 

XC72 carbon were 22 wt%, 24 wt%,  and 23 wt% for Ag9Pd, Ag4Pd, and Ag, 

respectively, as measured by TGA (Figure A.8), comparable to the 20 wt% commercial 

Pd on Vulcan XC72 for a meaningful comparison of activities.  Additional polarization 

curves and activities are provided in the supplemental section (Figure A.9 and Table 

A.2), indicating a non-linear enhancement, with the largest activity boost occurring for 

Ag9Pd and Ag4Pd.   The synergy in the activity is depicted for all of the catalysts in 

Figure A.3B.  Here, all of the activities lie above the line drawn between the pure 

components. The overall activity of AgPd2 is actually 60% higher than for Pd.  A factor 

of 3.2 above the linear combination in activities was achieved for Ag4Pd, as shown in 

Table A.2, suggesting that the presence of both Ag and Pd provide synergistic 

enhancement.  An activity of ~207 mA/mgAg+Pd would be expected for an alloy with 80 

mol% Ag (~60 mA/mgAg) and 20 mol% Pd (~799 mA/mgPd), assuming a linear 

combination of pure component activities.  However, the measured activity was ~598 

mA/mgAg+Pd for the Ag4Pd catalyst, 3.2x above this prediction. Similar trends are 

observed for other Ag-rich alloys are observed, including a 2.7 fold increase Ag9Pd, 

whereas for alloy ratios of Ag2Pd and AgPd2, the enhancement is slightly lower (ca. 

2.3x).  The Pd based mass activities are summarized in the histograms in Figure A.3C 

and Table A.2.   By mass of Pd, the alloy is up to 4.7x more active than pure Pd, with a 

value of 3778 mA/mgPd for Ag9Pd versus 799 mA/mgPd for pure Pd/VC.  Based on the 

size of the nanoparticles as measured from TEM, an estimated specific activity was 

calculated and summarized in Table A.2, and plotted in Figure A.3D.  The specific 

activity increases monotonically with increasing Pd composition, reaching a maximum of 

2.6x above the expected value for the linear combination of pure metal specific activities.  

Due to the difference in particle size for pure silver (19nm or 10 nm) vs the other 
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catalysts in this study (~5 nm), it may be reasonable to assume that the Ag mass activity 

could increase if it were ~5nm, due to an increased surface to mass ratio.  However, a 

slower rate of 4 electron reduction was observed for 20 nm Ag particles relative to 100 

nm particles, which was attributed to fewer of the more active terrace sites on the smaller 

particles.
20,50

  In our study, we observed specific activities of 106 mA/cm
2
 and 151 

mA/cm
2
 for 10nm and 19nm Ag particles, respectively.  Therefore, it is unclear that 

smaller particles of Ag would demonstrate higher activity, however, 10nm Ag is used for 

comparison in the synergy plots for both mass and specific activity. 
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Figure A.3. Oxygen reduction activity comparison between Ag-rich 

alloys and pure components.   

(A) Linear sweep voltammograms from a rotating disk electrode 

measurement in O2 saturated 0.1 M KOH.  The diffusion limited 

current density for the alloy corresponds to a 4 electron process, 

higher than either pure Ag or Pd (3.4).  (B) Synergy plot of mass 

activity normalized by total metal loading versus Pd composition.  

The solid line indicates the linear combination of activities between 

the pure Ag and Pd components.  All of the activities lie above the 

solid line, indicating a synergy in ORR activities across the 

compositional range.  (C)  Bar plot summarizing the ORR activity per 

Pd loading.  The synergy between the Ag and Pd in the alloy achieves 

a Pd mass normalized activity of 4.7x over the commercial Pd/VC 

and up to 3.2x over the linear combination of mass activities for pure 

Ag and Pd.  (D) Synergy plot of specific activity, where the solid line 

indicates a linear combination of pure component specific activities.  

Currents were normalized by metal particle surface areas based on 

measured TEM diameters.  

  

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0

-1

-2

-3

-4

-5

-6 A

 

 

C
ur

re
nt

 D
en

si
ty

 [m
A

/c
m

2

ge
o
]

Potential vs NHE [V]

 Pd/VC

 Ag
4
Pd

 Ag
9
Pd

 Ag/VC

 VC

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

B

-0.05 V vs NHE

 

 

M
as

s 
A

ct
iv

ity
 [m

A
/m

g
m

et
al

]

Atomic % Pd

Ag 9
Pd

Ag 4
Pd

Ag 2
Pd

AgPd 2 Pd
0

500

1000

1500

2000

2500

3000

3500

4000

C

-0.05 V vs NHE

 

 

M
as

s 
A

ct
iv

ity
 [m

A
/m

g
P

G
M

]

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

D

-0.05 V vs NHE

 

 

S
pe

ci
fic

 A
ct

iv
ity

 [


A
/c

m
2
]

Atomic % Pd



 161 

Table A.2.  Summary of ORR Activity for AgPd alloy compositions and pure component 

benchmarks at -0.05 V vs NHE. 

Catalyst 

Total Mass 

Activity 

[mA/mgtotal metal] 

Synergy 

Factor for 

Total Mass 

Activity 

PGM 

Mass 

Activity 

[mA/mgPd] 

Specific 

Activity 

[µA/cm
2
] 

Synergy 

Factor for 

Specific 

Activity 

# of 

electrons 

Ag (10 nm) 60 1.0 -- 106 1.0 3.4 

Ag9Pd 340 2.7 3778 319 1.8 4 

Ag4Pd 598 3.2 3518 546 2.2 3.7 

Ag2Pd 720 2.3 2057 900 2.3 3.6 

AgPd2 1247 2.4 2011 1570 2.6 3.7 

Pd 799 1.0 799 912 1.0 3.4 

VC 0.50 -- -- -- -- 1.7 

 

The onset potential for the ORR is ~20mV for Ag compared to ~130mV for pure 

Pd (Figure A.3A).  For the Ag9Pd alloy, the onset potential is shifted positively ~100mV, 

despite only 10 mol% Pd incorporated in the Ag.  This shift is significantly greater than 

the potential of 31 mV expected for a linear combination from the pure metals.  For the 

Ag4Pd alloy, the calculated number of electrons transferred for the ORR, from the Levich 

equation, based on the diffusion limited currents was higher than the value of 3.4 

observed for both Ag and Pd (Figure A.3, Table A.2).  At a ratio of Ag9Pd, the electron 

transfer number reached  4, indicating high efficiency for the full reduction of oxygen.
51

  

The synergy from alloy Ag and Pd suggests that ligand and atomic ensemble effects are 

at play, as we elaborate below. 

Cyclic voltammetry (CV) was used to probe the surface composition of the 

nanoalloys (Figures A.4 and A.11).  The CV for pure Pd in Figure A.4 contains the 

expected adsorption and desorption of Hupd from -0.4V to -0.8V, along with the 

characteristic Pd oxide reduction at -0.15V.  In contrast, for the pure Ag catalyst  no 
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features are observed for adsorption and desorption of H
+
 characteristic of pure Ag.

20
  

However, when the Ag catalyst is scanned positive of 0.35V vs NHE, three characteristic 

oxidation peaks develop at 0.37V, 0.45V, and 0.5V, corresponding to Ag2O monolayer 

formation, AgOH bulk, and Ag2O bulk, respectively.
29,43

 The reduction of silver oxide is 

observed to be reversible on the negative scan, at ~0.32V.  The CV of the Ag9Pd alloy 

catalysts shows oxide reduction peaks for both Pd (-0.17V) and Ag (0.25V), indicating 

that both metals are electroactive at the surface.  However, it appears that the location of 

the metals in the surface has a profound effect on reaction characteristics.  At negative 

potentials, associated with hydrogen adsorption/desorption, the alloy displays no peaks, 

similar to the response for a pure Ag surface.  Previous reports on Pd-Au alloys also 

demonstrate this behavior, suggesting that a minimum cluster size of Pd dimers is 

required to show hydrogen adsorption/desorption.  Similarly, our results suggest single 

Pd atoms are dispersed in the Ag rich surface domains.
14
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Figure A.4. Cyclic voltammograms showing the 

characteristic redox peaks for the alloy and pure 

metal catalysts supported on Vulcan XC72 

carbon.   

The presence of both Ag and Pd oxide reduction 

peaks shows that the surface is composed of both 

metals.  However, the lack of Hupd for the alloy 

suggests that the Pd is dispersed primarily as single 

atomic sites. The silver oxidation peaks from 0.3 to 

0.6 V shift slightly positive for the alloy catalyst, 

suggesting some resistance to oxidation due to the 

small amount of Pd.  The large reduction peak of 

silver oxide is shifted negative, suggesting slightly 

more stable oxide formation. 

 

For alloy ratios Ag≤2Pd, the Hupd peaks, characteristic of pure Pd emerge, while 

the ratios of the peak intensities for Pd reduction versus Ag oxidation increase (Figure 

S6).  At these high Pd levels, Pd-Pd contacts in the alloy surface are readily available to 

processes that depend upon contiguous Pd atoms.  CO stripping experiments on the 

Ag9Pd alloy (Figure A.11) support the evidence from CVs; that both Pd and Ag are 

present on the surface and that isolated Pd-Pd domains are negligible.  Ag shows no peak 
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associated with CO oxidation (stripping),
52

 while Pd shows a sharp CO oxidation peak at 

~0.1V.  However, the alloy shows only two diffuse peaks at -0.05V and 0.2V again 

indicating an absence of Pd surface clusters with greater than three atoms.  In summary, 

the absence of specific signatures in the CVs for adsorption of both H
+

 and the Pd or Ag 

oxidation/reduction peaks indicates that the Pd is highly dispersed in the surface of the 

alloy, with minimal binary and higher Pd-Pd domains for Ag≥4Pd.  For all alloy systems, 

both Pd and Ag are well alloyed and available in the surface of the small nanoalloy 

particles for the ORR, which is essential for achieving enhanced catalytic activity from 

ligand and ensemble effects. 

Insight into the ligand effect, where the electronic structure of the metals changes 

due to alloying, can be gleaned from the binding energy shifts in XPS
1,3

 and 

consideration of the reaction steps for the ORR.  The binding energies for both Ag and Pd 

are shifted negatively (Figure A.2 Table A.3), consistent with observations for PdAg 

alloy films.
10

  For Ag9Pd in Figure A.2, the peaks for the Pd 3d doublet are shifted by 

~0.4 eV to lower binding energies, while the Ag is shifted negative by only ~0.1 eV (on 

the order of the instrument resolution).  A smaller binding energy (BE) shift is observed 

for the Ag 3d doublet, as it is in 9 fold excess of the Pd, causing an attenuation of the 

shifted signal as seen for AgPd alloys containing a dilute amount of Pd.
10

  It has been 

reported that the BE shifts are due to a gain of charge density in the d-band, concomitant 

with a loss in the sp-band.  According to DFT calculations, an up-shift in the d-band 

center can create a stronger bonding with the oxygen, thereby creating more favorable BE 

for the ORR intermediates to enhance activity.
23,53,54

  It has been well established that the 

2x2 pathway which becomes available in basic media (Eq. A.2a) proceeds via a three-

step surface mediated mechanism:
55
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By increasing the d-band charge density, this may facilitate the initial electron 

transfer step (Eq. A.4a).  As Ag has a significantly weaker oxygen binding that Pd
53

, an 

up-shift in d-band is especially important for the Ag≥4Pd catalysts to increase the oxygen 

binding affinity of the catalysts for facilitating the first electron transfer step.   The 

uniform alloying among particles ensures that the entire catalyst experiences the d-band 

shift to achieve higher activities.  Furthermore, low interaction energy between oxygen 

and Au has been shown to result from fully filled bonding and anti-bonding states.
56

  As 

Ag and Au have similar electronic structures (with the addition of a filled f shell for Au), 

this may explain why Ag lies on the weak binding side of the volcano plot.  However, 

when Pd was added to the Au, unoccupied oxygen-metal bonding states appear and 

contribute to strong oxygen binding, similar to the Pd in the Ag surface for the alloys in 

this study.  However, this electronic ligand effect was shown to play a minor role next to 

the ensemble effects in PdAg films toward CO adsorption and oxidation.
10,11

  Thus, 

ligand effects alone are not responsible for the observed activity synergy for the AgPd 

alloys. 

The data strongly support the existence of an ensemble effect, whereby a suitable 

geometric arrangement of Ag next to Pd surface atoms catalyzes ORR.  Previous DFT 

calculations support this idea, as Ag has weak binding and Pd strong binding on a 

volcano of activity versus binding
53

, suggesting a combination of the metals may result in 

higher activities.
54,57

  The stronger binding of hydroxyl species on Pd versus Ag has been 

shown to be the cause of hysteresis in polarization curves
20

, and is evidenced in our 
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studies by the much larger double layer capacitance for pure Pd relative to Ag (Figure 

A.10).  By creating an alloy surface, the Pd atoms may facilitate the initial oxygen 

binding (e.g. Eq. A.4), whereas the Ag may help to desorb the reaction products such as 

OH
-
, evidenced by the smaller double layer capacitances for the alloys versus Pd/VC.  

For Pd in an Au surface, DFT calculations suggest the most likely spot for oxygen 

adsorption to occur at the Pd sites, where one O atom binds atop and the other is 

coordinated in a hollow site.
56

  Similarly, the oxygen may bind at the Pd sites, with one O 

atom “spilling over” onto the Ag site.  When a reaction such as Eq. A.6 occurs, the 

hydroxyl species could easily leave the surface.  This could then allow for the final 

electron transfer on the Pd site back to form the hydroperoxyl anion, followed by 

chemical disproportionation on the empty adjacent Ag site.  In this way, the full 4 

electron process can be achieved by combining the fast kinetics of Pd for the first 2 

electron reduction (Eq. A.2a) with the rapid disproportionation on Ag (Eq. A.3).  

Recently, high ORR activity for a Pd-rich alloy film of Pd3Fe
26

 was attributed to the 

presence of a less active metal, Fe, in the surface to act as a binding center for ORR 

intermediates, highlighting the importance of ensemble effects.  In contrast, in the current 

work the AgPd alloy is shown to exhibit a high level of synergy with a dilute amount of 

the more active metal, Pd, as well as for higher Pd contents.  The high fraction of Pd-Ag 

versus Pd-Pd contacts for the low content Pd alloys would be expected to be highly 

beneficial for creating strong ligand and ensemble effects.  Given the much higher cost 

and activity of Pd relative to Ag, this strategy has the potential to be of great practical 

benefit. 

As far as the authors are aware, high catalytic activity and stability for oxygen 

reduction through ensemble effects with uniform nanoalloys containing extremely low 

concentrations of a highly active, precious metal has not been reported previously.  The 
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high synergy achieved for the pre-synthesized Ag≥4Pd uniform alloy morphology is in 

contrast to previous reports for Ag catalysts alloyed with a small amount of Pd or Pt, 

which have shown little to negative synergy in ORR activities.  
30,31,33,34

  These  AgPd 

nanoparticle alloys were synthesized by the typical approach of adsorption and reduction 

of metals salts in the presence of the support, 
30,31

 which may lead to non-uniform 

compositions among particles as a result of the different nucleation and growth rates 

upon reduction of metal ions, as well as the diffusion and adsorption rates of the growing 

metal particles on the support.
58

 The lack of intimate mixing between Ag and Pd may 

lead to decreased electronic and ensemble effects.  Thus, it is essential to synthesize 

uniform nanoalloys to take advantage of low precious metal content by dispersing in 

throughout the surface of the particles to achieve strong ligand and ensemble effects, in 

our case producing a mass activity synergy factor up to 3.2 beyond the linear 

combination of Ag and Pd. 

This strategy of enhancing catalyst activity by employing ensemble and ligand 

effects for a precious metal surrounded primarily by a large number of second metal 

atoms is a fundamentally different approach than in the case of core-shell 

nanoparticles.
5,6,22,24,59,60

  For the core-shell morphology, the more active metal is nearly 

all in the monolayer shell and available for surface reactions.  However, the number of 

unlike metal contacts at the inside of the shell is lower than in the case of a uniform alloy 

with both metals at the surface.  Both core-shell and alloy morphologies have been 

contrasted for ~40 nm PdAu catalyst for formic acid oxidation.
13

  Due to the presence of 

both metals in the surface for ensemble effects, the activity for formic acid oxidation was 

higher on the alloy surface than for the core shell particles, where unlike metal contacts 

and thus ensemble effects are weaker.  Furthermore, for the smaller 5 nm nanocrystals in 

the current study, it would not be possible to achieve a low Pd content with a Pd 
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monolayer as in the case of the Ag9Pd alloy.  Thus, the nanoalloy approach is a highly 

complementary alternative to core-shell catalysts to achieve synergistic effects in 

catalysis. 

A.4 CONCLUSIONS 

A synthetic strategy has been demonstrated to produce uniform ~5 nm AgPd alloy 

nanoparticles across a wide compositional range via arrested growth during the 

simultaneous thermolysis of metal precursors to gain fundamental insight into catalytic 

mechanisms.  The compositions of the particles were tuned to control the fraction of the 

Pd-Pd versus Ag-Pd contacts on the surface.  For alloys of Ag≥4Pd, the surface contained 

single Pd atoms surrounded by Ag atoms, which maximized the ability of a hetero-atomic 

site to amplify the activity of each Pd atom.  Determination of atomic ensembles in the 

surface was accomplished with cyclic voltammetry and CO stripping, electrochemical 

techniques sensitive to the local environment of atoms in the surface.  This level of 

atomic information is typically not available for the dominant nanoscale characterization 

techniques (TEM or STEM).  In addition to the geometric structure of the surface, the 

electronic structure of the alloy was shown to shift according to XPS, contributing to 

enhance ORR activities.  While synergy in activity was present for all alloy ratios, it 

reached as much as 3.2 for Ag4Pd relative to the linear combination of the pure 

components, and the Pd normalized mass activity was as much as 4.7 times that of pure 

Pd. Furthermore, the overall mass activity per total metal was 60% higher for AgPd2, 

which equates to a reduction in cost ($/A) by a factor of 2.3. For low Pd content alloys, 

the synergy in activity was favored by the high degree Pd-Ag versus Pd-Pd contacts, 

which modified the Pd electronic structure, and by ensemble effects, evidenced by CV 

and CO stripping measurements which show the involvement of distinct mechanistic 



 169 

steps the Ag and Pd domains in the alloys.  The synergy factor for Ag≤2Pd may result 

from ensemble effects from larger domains of Pd surrounded by Ag.  These studies 

provide a general approach for understanding and achieving high synergy in catalyst 

activity via electronic and ensemble effects. 

A.5 ADDITIONAL INFORMATION 

TEM, cyclic voltammograms, linear sweep voltammograms, XRD, and XPS of 

other alloy ratios and pure metal standards, as well as CO stripping for Pd, Ag, and 

Ag9Pd are available in Appendix A.7. 
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A.7 SUPPORTING INFORMATION 

 

 

Figure A.5: Low mag TEM micrographs  

of (A) as-synthesized Ag9Pd nanoparticles, (B) Vulcan XC72 carbon supported Ag9Pd particles 

after calcination at 450°C in N2, and (C) commercial Pd/VC calcined at 450°C N2.  The alloy 

particles undergo slight sintering from 3.2 to 5.3 nm. The similar size of the alloy and the 

commercial catalyst after calcination allows for meaningful comparison of activities based on 

their similar surface/volume ratio.    
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Figure A.6:  TEM for pure Ag nanoparticles  

(A) as-synthesized and after adsorption on Vulcan XC72 carbon and calcination at (B) 

210°C in H2/N2 and (C) 450°C in N2.  The particles sinter significantly for calcination 

at 450°C as it is above the Tamman temperature for ~5nm Ag nanoparticles 

(220°C),{Luo, 2008 #70} where bulk diffusion becomes rapid. 
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Figure A.7:  X-ray diffraction for all Pd:Ag ratios.   

The diffraction peaks shift linearly to higher two thetas as 

the amount of Pd increases in the alloy.  The broad peaks 

from 20° to 30° correspond to the Vulcan XC72 carbon 

support.  The particle sizes calculated from the (111) 

reflection with the Scherrer equation are summarized in 

Table 6.1. 
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Figure A.9:  Polarization curves for all alloy ratios 

studied as well as pure Ag and commercial Pd. 
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Figure A.10: Cyclic voltammograms for all Ag:Pd 

ratios in Ar purged 0.1 KOH.   

The surface characteristics change as the more Pd is 

added to the alloy.  For dilute Ag≥4Pd, the CVs 

resemble that of pure Ag, with the addition of a small 

Pd oxide reduction peak at ~-0.2V.  For ratios of 

Ag≤2Pd, the Ag oxidation peaks are diminished while 

the characteristic Hupd peaks (~-0.6V to -0.8V) for pure 

Pd emerge.  As a minimum of Pd dimers in the surface 

is required for this Hupd, the alloy surface can be 

characterized Pd monomers dispersed in Ag for Ag≥4Pd, 

whereas Pd clusters in Ag are present for Ag≤2Pd. 
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Figure A.11:  CO stripping 

voltammograms of Vulcan XC72 carbon 

supported (A) Pd, (B) Ag9Pd, and (C) Ag.  

The stripping peak at ~0.12 V for pure Pd is not 

present for the pure Ag catalyst.  The alloy 

catalyst displays a broad CO stripping curve 

from ~-0.1 V to 0.3V, indicating that the signal 

is not a combination of the pure components, but 

modified to a unique signature for the dilute Pd 

in Ag alloy surface. 
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Table A.3.1.  XPS shifts for the various alloy ratios. 

Catalyst  
Pd 3d5/2 

Peak [eV] 
ΔPd5/2 
[eV] 

Ag 3d5/2 
Peak [eV] 

ΔAg5/2 
[eV] 

Ag -- -- 368.25 0 

Pd 335.55 0 -- -- 

Ag9Pd 335.2 0.35 368.15 0.1 

Ag4Pd 335.16 0.39 368.01 0.24 

Ag2Pd 334.86 0.69 367.76 0.49 

AgPd2 335.46 0.09 367.61 0.64 
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Appendix B: Highly Active, Non-precious Metal Perovskite 

Electrocatalysts for Bifunctional Metal Air Battery Electrodes6 

B.1 EXPERIMENTAL 

All chemicals were used as received. Anhydrous ethanol and 5 wt % nafion 

solution in lower alcohols were purchased from Sigma-Aldrich. Nickel(II) nitrate 

hexahydrate (99%), lanthanum(III) nitrate hexahydrate (99.999%), tetrapropylammonium 

bromide (TPAB, 98%), tetramethylammonium hydroxide pentahydrate (TMAOH, 99%), 

2-propanol and potassium hydroxide were obtained from Fisher Scientific, and ethanol 

(Absolute 200 proof) from Aaper alcohol.  Millipore high purity water (18 MΩ) was 

used. Oxygen (research grade, 99.999% purity) and argon (research grade, 99.999% 

purity) were obtained from Praxair. Nitrogen doped carbon (NC) was prepared as 

reported elsewhere.
1
 

B.2 CATALYST SYNTHESIS 

B.2.1 Particle Synthesis 

Amorphous particles composed of nickel and lanthanum hydroxides were 

prepared by slowly dripping (~2 mL/min) an aqueous metal nitrate solution into 

concentrated base containing dissolved TPAB, as reported previously.
2-5

 Briefly, 

equimolar amounts of La(NO3)3 and Ni(NO3)2 were dissolved under stirring in 50 mL of 

DI water, such that the total metal concentration was 9.9 mM. Separately, an equimolar 

amount of TPAB relative to metal nitrates was dissolved into 200 mL of 1 wt% TMAOH 

(pH 14) under vigorous stirring. The metal nitrate solution was slowly dripped (~2 

mL/min) into the stirred base. The solution was left stirring for ~1 hour, collected and 

                                                 
6Large parts of this chapter have been published asHardin WG, Slanac DA, Wang X, Dai S, Johnston KP, 

Stevenson KJ. Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air 

Battery Electrodes. J Phys Chem Lett 2013, 4(8): 1254-1259.  

file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_1
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centrifuged at 8000 RPM for 4 min which resulted in a gelatinous green pellet. The gel 

was washed with DI water and centrifuged to obtain the final gel of amorphous particles. 

B.2.2 Particle Harvesting and Crystallization 

For oven dried samples, the washed hydroxide gel was spread over a glass dish 

and dried at 120°C under air for a minimum of 1 hour. The dried powder was collected 

and calcined at 700°C for 4 hours under flowing air (~120 mL/min). For samples 

harvested by thin film freezing (TFF), the washed hydroxide gel was dispersed in 100 mL 

of DI water and probe sonicated. The experimental apparatus for TFF has been described 

elsewhere.
6
 Briefly, a hollow metal drum was filled with dry ice and 2-propanol (~2:1 

v/v) and rotated at 5 RPM. A metal plate with a tapered edge was fastened so that the 

plate edge grazed the drum surface. A recrystallization dish was placed directly under the 

plate and filled with liquid N2. The particle solution was slowly pipetted (3 mL/min) onto 

the rotating drum, whereupon it froze and was subsequently scraped by the plate into the 

dish. Lyophilization was performed at -10°C and a fixed pressure of ~50 mTorr for 20 

hours to remove all traces of water. The lyophilized powder was calcined at 700°C for 4 

hours under flowing dehumidified air. Following calcination, all particles were washed 

with EtOH and filtered to obtain the final LaNiO3 catalyst. All catalysts, except for those 

explicitly noted as unsupported, where loaded to 30wt% by mass of perovskite on 

nitrogen doped carbon (NC) by mixing with ball milling for 3 minutes using a Wig-L-

Bug. The synthesis of the carbon composite is described elsewhere.
1
 

B.3 DYNAMIC LIGHT SCATTERING (DLS). 

The hydrodynamic diameter (DHs) of as-synthesized hydrolysis particles was 

measured with a Brookhaven ZetaPALS instrument with the ZetaPlus option. Scattered 

light was collected with a 90° avalanche photodiode detector and all data were fit with 

file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_6
file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_1
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the CONTIN routine. The diameter of as-synthesized metal hydroxide particles were 

measured at a concentration of ~1 mg/mL in DI water. All measurements were made over 

a period of 3 min and repeated in triplicate. 

B.4 X-RAY DIFFRACTION (XRD) 

Wide-angle X-ray diffraction was performed on a compact powder of carbon 

supported catalyst on a quartz slide with a Bruker Nokius AXS D8 Advance instrument 

using Cu Kα radiation (1.54 Å wavelength). Samples were scanned from 20 to 90 degrees 

in 0.02 degree increments with a dwell time of 4 seconds. The average crystallite size was 

estimated from the Scherrer equation. Background correction, fitting, and deconvolution 

were done using JADE software (Molecular Diffraction Inc.). 

B.5 ELECTRON MICROSCOPY 

Scanning (transmission) electron microscopy (SEM/STEM) was performed with a 

Hitachi S-5500 using a 30 kV accelerating voltage and a probe current of 20 µA. The 

carbon supported catalysts were deposited from a dilute ethanol suspension onto a 200 

mesh copper grid coated with lacey carbon or Formvar (Electron Microscopy Sciences).  

B.6 SURFACE AREA ANALYSIS 

Nitrogen sorption analysis was performed on a Quantachrome Instruments NOVA 

2000 high-speed surface area BET analyzer at a temperature of 77 K. Prior to 

measurements, the samples were degassed in vacuum for a minimum of 12 hours at room 

temperature. The specific surface area was calculated using the BET method from the 

nitrogen adsorption data in the relative pressure range (P/P0) of 0.05 to 0.30. 
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B.7 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

XPS data was acquired using a Kratos AXIS Ultra DLD spectrometer equipped 

with a monochromatic Al X-ray source (Al α, 1.4866 keV).  High resolution elemental 

analysis was performed on the N 1s, O 1s and La/Ni 3d core regions with a 20 eV pass 

energy, 0.1 eV steps, and a 4 second dwell time. Charge compensation was not used as 

each sample was conductive. All absolute energies were calibrated relative to gold, silver 

and graphite. The peak positions and areas are calculated using a standard sum Gaussian-

Lorentzian fit with a linear (N, O) or Shirley (La/Ni) background correction. 

B.8 ELECTROCHEMICAL CHARACTERIZATION 

Catalyst inks were prepared by adding 1 mL of a NaOH neutralized 0.05 wt% 

Nafion solution
7
 to 1 mg of catalyst powder and bath sonicated for 30 minutes. A volume 

of ink (10 μL) was drop cast onto a clean 5mm (0.196 cm
2
, Pine Instruments) glassy 

carbon electrode and dried under a glass jar at ambient conditions. The glassy carbon 

electrodes were cleaned prior to drop casting by sonication in a 1:1 DI water:ethanol 

solution. The electrode was then polished using 0.05 μm alumina powder, sonicated in a 

fresh DI water:ethanol solution, and dried in ambient air. All electrochemical tests were 

performed on electrodes prepared by this method, yielding a catalyst loading of 51 

μg/cm
2
 (15.3 μgoxide/cm

2
 for carbon supported LaNiO3). 

Electrochemical testing was performed on either a CH Instruments CHI832a or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high speed rotators 

from Pine Instruments. All testing was done at room temperature in 0.1 M KOH 

(measured pH ≈ 12.6). The current interrupt and positive feedback methods were used to 

determine electrolyte resistance (50 Ω) and all data was iR compensated after testing. 

Each test was performed in a standard 3 electrode cell using a Hg/HgO (1 M KOH) 

reference electrode, a Pt wire counter electrode, and a film of catalyst ink on glassy 

file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_7


 183 

carbon as the working electrode. All potentials are reported versus the regular hydrogen 

electrode (RHE), which was shifted +0.843 V vs. Hg/HgO (Hg/HgO (1 M KOH) + 0.1 V 

= NHE; NHE + 0.059 * pH = RHE). 

B.8.1 Quantification of Oxygen Reduction Activities 

The electrolyte was saturated with oxygen by bubbling for a minimum of 10 

minutes. ORR activity measurements were taken by rotating the electrode at 1600 rpm 

and performing a linear sweep from 1.043 V to 0.243 V RHE at 5 mV/s. Kinetic currents 

were used to evaluate mass activities for the ORR and were taken at 0.693 V RHE from 

the polarization curves. The kinetic ORR current was calculated according to the 

Koutecky-Levich equation: 
1

𝑖
=

1

𝑖𝑑
+

1

𝑖𝑘
. Data reported herein is the average mass activity 

taken from cathodic scans of multiple electrodes. 

B.8.2 Quantification of Oxygen Evolution Activities 

Immediately following ORR measurements, the electrolyte was saturated with 

argon by bubbling for a minimum of 10 minutes. OER activity measurements were taken 

upon rotating the electrode at 900 rpm and performing a linear sweep from -0.057 to 

1.943 V at 50 mV/s.
8
 Kinetic OER currents could not be calculated due to the lack of a 

well-defined diffusion limited regime, as the result of interference from the oxygen 

bubbles. The current at 1.63 V (representing a 400 mV overpotential) was determined 

from the polarization curves and used to characterize the OER mass activity. To enable 

comparison with OER data in the literature, scans were also performed from 0.9 V to 

1.943 V at 10 mV/s with a rotation rate of 1600 rpm in O2 saturated 0.1 M KOH. O2 

saturated OER testing was performed on a new electrode which had not undergone any 

previous testing. The current at 1.56 V was taken from the polarization curves to compare 

the OER activities to values reported in literature. Note that at potentials above 1.6 V in 

file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_8
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oxygen saturated media, visible oxygen bubble formation on the electrode surface 

interfered with the ability to accurately measure the activity. Data reported herein is the 

average mass activity taken from anodic scans of multiple electrodes. 

B.9 BIFUNCTIONALITY COMPARISON 

It should be noted that the OER data reported by Gorlin, et. al.
9
 for Ir/C and Pt/C 

was collected at 5 mV/s, whereas the OER data reported herein was taken at 10 mV/s. 

Capacitive current contributions in the LaNiO3/NC system were found to be negligible, 

which enables a fair comparison. Figure A.4 shows the capacity corrected OER 

polarization curve, in which j = 10 mA/cm
2
 occurs at 1.660 V RHE. 

 

 

Figure B.1: SEM micrographs of particles calcined at 700°C in air. 

These particles were crystallized from A/B) amorphous particles 

processed with thin film freezing followed by lyophilization (‘freeze 

drying’), producing a thin film of sintered particles and C/D) amorphous 

particles dried in an oven at 120°C, resulting in larger particles with 

lower surface area. 

file:///R:/Slanac-Hardin%20perov%20supplemental%20JPCL-resubmission%20galley%20edits%20032913.docx%23_ENREF_9
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Table B.1: Summary of particle size, size, crystallite size and BET measured surface 

area. 

catalyst DLS size 

[nm]* 

SEM 

[nm]** 

XRD 

[nm]*** 

BET 

[m
2
/g] 

LaNiO3 25 + 5 20-400 15 6 

nsLaNiO3 25 + 5 ~50 14 11 

* As-synthesized amorphous precursor particle sizes 

** After calcination, size of crystallites 

*** Crystallite size after calcination, Scherrer analysis on {024} reflection 
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Figure B.2: BET adsorption curves for 

unsupported nsLaNiO3 and LaNiO3, used to 

calculate respective surface areas of 11 m
2
/g 

and 6 m
2
/g. 
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Figure B.3: BET adsorption curve and pore size distribution (PSD) for 

NC 

Indicates a surface area of 1080 m
2
/g and pore volume 1.07 cm

3
/g. The 

PSD shows the carbon is primarily composed of mesopores in the range 

of ~10 nm. 
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Figure B.4: OER polarization curves for both iR corrected and 

uncorrected nsLaNiO3/NC in O2 saturated 0.1 M KOH at 1600 rpm and 

10 mV/s. 

The anodic and cathodic scans (same electrode) are shown prior to iR 

correction, and the average of both scans has been taken and iR 

corrected to illustrate the lack of capacitive current contributions to the 

total observed current. The iR corrected average scan has an OER mass 

activity of 89 mA/mgoxide at 1.56 V RHE, identical to corrected anodic 

and cathodic scans. Additionally, the potential at which J = 10 mA/cm
2
 

is shifted by less than 0.5 mV when the iR corrected average scan is 

compared to either anodic or cathodic. Additionally, the lack of 

hysteresis indicates that the catalyst doesn’t undergo any irreversible 

(electro)chemical changes during anodic cycling. 

 

  



 189 

 

Figure B.5: Tafel plot of the iR corrected average 

OER polarization curve 

From (Figure B.4) for nsLaNiO3/NC in O2 

saturated 0.1 M KOH at 1600 rpm and 10 mV/s. 

Note that the linear fit was performed over the 

potential region of ~1.525 to 1.625 V, yielding a 

slope of 42 mV dec
-1

 with a R
2
 of 0.9994. 
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Figure B.6: The proposed alkaline oxygen 

evolution cycle on LaNiO3 

Includes the direct participation of lattice 

(hydr)oxide ions in the formation of surface 

hydroperoxide (step 3), resulting in a lattice 

vacancy that is subsequently replenished 

from the bulk electrolyte (step L). Surface 

lattice (hydr)oxides are distinguished from 

solution hydroxide ions by (H)O
-
, signifying 

their possible protonated state. 
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Figure B.7: High resolution XPS spectra of the 

N 1s core region 

For neat nsLaNiO3, nsLaNiO3/NC and pure 

NC, which includes proposed peak 

deconvolution for pure NC and 

nsLaNiO3/NC. Note the high percentage of 

pyridinic functionality in both spectra. 

 

 

  



 192 

B.10 REFERENCES 

(1) Wang, X. Q.; Lee, J. S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Ammonia-Treated 

Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction 

Reaction. Chem. Mater. 2010, 22, 2178-2180. 

(2) Imaizumi, S.; Shimanoe, K.; Teraoka, Y.; Miura, N.; Yamazoe, N. Preparation of 

Carbon-Supported Perovskite-Type Oxides LaMn1-yFeyO3+Delta Based on Reverse 

Homogeneous Precipitation Method. J. Electrochem. Soc. 2004, 151, A1559-

A1564. 

(3) Imaizumi, S.; Shimanoe, K.; Teraoka, Y.; Yamazoe, N. Oxygen Reduction Property 

of Ultrafine LaMnO3 Dispersed on Carbon Support. Electrochem. Solid St. 2005, 

8, A270-A272. 

(4) Teraoka, Y.; Nanri, S.; Moriguchi, I.; Kagawa, S.; Shimanoe, K.; Yamazoe, N. 

Synthesis of Manganite Perovskites by Reverse Homogeneous Precipitation 

Method in the Presence of Alkylammonium Cations. Chem. Lett. 2000, 1202-

1203. 

(5) Yuasa, M.; Nishida, M.; Kida, T.; Yamazoe, N.; Shimanoe, K. Bi-Functional Oxygen 

Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries. J. 

Electrochem. Soc. 2011, 158, A605-A610. 

(6) Engstrom, J. D.; Lai, E. S.; Ludher, B. S.; Chen, B.; Milner, T. E.; Williams, R. O.; 

Kitto, G. B.; Johnston, K. P. Formation of Stable Submicron Protein Particles by 

Thin Film Freezing. Pharm. Res. 2008, 25, 1334-1346. 

(7) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Shao-Horn, Y. Electrocatalytic 

Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk 

Electrode. J. Electrochem. Soc. 2010, 157, B1263-B1268. 

(8) Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly Active and 

Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-

Air Battery Application. Nano Lett. 2012, 12, 1946-1952. 

(9) Gorlin, Y.; Jaramillo, T. F. A Bifunctional Nonprecious Metal Catalyst for Oxygen 

Reduction and Water Oxidation. J. Am. Chem. Soc. 2010, 132, 13612-13614. 

 

  



 193 

Appendix C: Tuning the Electrocatalytic Activity of Perovskites 

Through Active Site Variation and Support Interactions7 

C.1 NOTES ON LANI0.75FE0.25O3 AND THE DUAL-SITE MECHANISM 

LaNi0.75Fe0.25O3 remains highly active for the ORR on either NC or G support due 

to its ability to disproportionate peroxide, making the additional functionality of NC 

redundant.
1
 Two principal mechanisms for peroxide disproportionation have been 

proposed on perovskites: a surface transition metal mediated route in which HO
•
 radicals 

scavenge oxygen from H2O2 (HOO
-
), and a vacancy mediated route.

2
 The transition metal 

mediated route is as follows: 

M
+z

 + H2O2 → M+z+1 + OH
-
 + HO

•
                   (1) 

HO• + H2O2 → HO2
•
 + H2O                       (2) 

HO2
•
 + M

+z+1
 → M

+z
 + H

+
 + O2                                           (3) 

and the suprafacial vacancy mediated route: 

VO
++

 + HOO
-
 → Oads + OH

-
, 2Oads → O2            (4) 

Previous work by Stevenson et al. has shown that peroxide disproportionation on 

nitrogen doped carbon occurs via a surface-mediated mechanism, resulting in a pseudo 

four electron ORR, in which the first two electrons are a result of the initial two electron 

reduction of O2: 

O2 + H2O + 2e
-
 →HO2- + OH

-
               (5) 

while the second pair of electrons result from the hydroperoxide intermediate 

interacting with surface-bound Fe (oxy)hydroxide.3,4 Key to the dual site mechanism is 

the electron transfer involving surface mediated adsorption of HO2- onto hydroxylated 

Fe(III), forming Fe(II) and O2•- (site one), followed by the combination of O2•- with 

                                                 
7Large parts of this chapter have been published as Hardin WG, Mefford JT, Slanac DA, Patel BB, Wang 

X, Dai S, et al. Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and 

Support Interactions. Chem Mater 2014, 26(11): 3368-3376. 
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HO2• at Fe(III)-OH (site two). Presumably the stability imparted by the pyridinic 

nitrogen group in close proximity to the Fe (oxy)hydroxide that facilitates the dual site 

mechanism for the ORR. Of the LaNi1-xFexO3 series, LaNi0.75Fe0.25O3 is both the 

most active peroxide disproportionation catalyst and has the highest proportion of 

Ni(III)/Fe(IV).1 To charge compensate for these high oxidation state species, Ni(II) and 

Fe(III) are then also generated in the same abundance and proportion. These species form 

a redox couple in which is thermodynamically capable of catalyzing peroxide 

disproportionation. Since transition metal oxide surfaces are well known to become 

hydroxylated when placed in aqueous alkaline solutions (i.e. forming Fe 

(oxy)hydroxide),1,5,6 an explanation of why LaNi0.75Fe0.25O3 is so ORR active on 

both NC and G supports emerges. When LaNi0.75Fe0.25O3 is supported on NC, the 

pyridinic nitrogen groups in the carbon interact with the perovskite such that HO2- is 

disproportionated into OH- and O2, following the dual site mechanism. When NC is 

replaced by G, pyridinic nitrogen is removed and the dual site mechanism becomes 

deactivated, or at least diminished, and an alternate disproportionation mechanism such 

as Eqn. 4 sustains the pseudo four electron ORR pathway. 

Stability Testing 

The stability of NC and G carbon supports was tested by preparing fresh 

electrodes as detailed in the experimental section, such that a total of 10 μg of carbon was 

deposited (51 μg/cm
2
). The electrode was rotated at 1600 rpm in O2 saturated 0.1 M KOH 

and galvanostatically discharged at 10 A/g while the potential was continuously 

monitored. Testing was halted when the potential required to maintain the current 

exceeded 1.9 V 

Bifunctionality Comparison 
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The data reported by Gorlin et. al.7 and used for comparison in Table 3.1 was 

taken at 5 mV/s, whereas the OER polarization curves taken here were at 10 mV/s. 

Capacitive current contributions from this increase in scan rate were found to be 

negligible,8 thus enabling a fair comparison.  

Dissolved Oxygen Tests 

To confirm the electrochemical generation of O2, a fresh electrode of 

LaCoO3/NC was prepared as detailed in the experimental section. To facilitate the 

detection of electrochemically produced oxygen, the 0.1 M KOH electrolyte was 

deoxygenated by bubbling of argon, after which an argon blanket was placed over the 

electrolyte and all openings were sealed. The electrode was held at open circuit for 15 

minutes followed by a 5 minute pulse to 0.75 V (Hg/HgO in 1 M KOH). The 

concentration of dissolved oxygen was monitored in-situ using an Ocean Optics FOXY 

oxygen sensing system. To ensure that any detected oxygen was generated 

electrochemically, a control experiment was also performed. Deoxygenated 0.1 M KOH 

was prepared in an identical manner, and a flowing argon blanket was placed over the 

electrolyte while the dissolved oxygen levels were recorded. 
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Figure C.1: High resolution XPS spectra 

Of the N 1s core region for bare NC (top) and G (bottom) 

carbon supports. N content for G support is below 

detectable limits, while the NC support has contains ~ 1 at. 

% nitrogen, of which ~65% is pyridinic. 
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Figure C.2: Representative oxygen evolution rotating disk 

electrode polarization curves 

A) LaNiO3, B) LaNi0.75Fe0.25O3, C) LaCoO3 and D) 

LaMnO3. All data were taken in O2 saturated 0.1 M KOH 

at 1600 rpm and 10 mV/s, scanning anodically. The 

potential of 1.56 V was selected for the reporting of mass 

activities, and is represented in the above by a dashed gray 

line. 
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Figure C.3: Representative oxygen reduction rotating disk electrode 

polarization curves 

A) LaNiO3, B) LaNi0.75Fe0.25O3, C) LaCoO3 and D) LaMnO3. All data 

were taken in O2 saturated 0.1 M KOH at 1600 rpm and 5 mV/s, scanning 

cathodically. The potential of 0.693 V was selected for the reporting of 

mass activities, and is represented in the above by a dashed gray line. 
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Figure C.4: Polarization curves taken in O2 saturated 0.1 M 

KOH. 

A) OER data for neat NC and G supports, taken at 10 mV/s 

(scanning anodically) and 1600 rpm. B) ORR data for NC 

and G supports, and 20 wt% Pd on XC 72 Vulcan Carbon 

(VC), taken at 5 mV/s and 1600 rpm (scanning 

cathodically). Experimental conditions for both A and B 

were identical to that of figures D.2 and D.3, including a 

carbon loading of 51 μg/cm2 (10.2 μgPd/cm2 for 20 wt% 

Pd/VC). The inset in A) highlights the current at 1.56 V. 
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Figure C.5: Oxygen Probe Results 

A) Dissolved oxygen concentrations measured prior to and 

during pulsed potentiostatic oxygen generation. B) 

Potential trace of LaCoO3/NC, wherein the electrode is 

pulsed between the open circuit potential (0.065 V) and 

0.750 V. The oxygen content is observed to increase when 

the potential is pulsed at 900 and 2100 s, while remaining 

relatively constant at open circuit. The initial rise from 0 to 

900 s is attributed to a slow leak or incomplete purging of 

residual oxygen in the headspace of the cell, as is 

commonly observed for such tests. 9 
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Table C.1: DLS size, Crystallite size, BET surface area, XRD phase 

identification. 

Material 
hydrodynamic 

diameter [nm] 

crystallite 

size [nm] 

surface 

area 

[m2/g] 

XRD Phase Identification 

LaNiO3 25 + 8 12  11 LaNiO3, PDF# 01-088-0633 

LaNi0.75Fe0.25O3 27 + 9 14 8 LaNi0.6Fe0.4O3, PDF# 01-088-

0637 

LaCoO3 30 + 8 20 14 LaCoO3, PDF# 01-084-0848 

LaMnO3 27 + 7 15 11 La0.97Mn0.97O3, PDF# 01-087-

2015 

NC N/A N/A 1080  

G N/A N/A ~2500  
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Appendix D: Exceptional Electrocatalytic Oxygen Evolution Via 

Tunable Charge Transfer Interactions in La0.5Sr1.5Ni1-xFexO4+δ 

Ruddlesden-Popper Oxides8 

D.1 NOTE ON OXYGEN HYPERSTOICHIOMETRY AND OXIDATION STATES 

There are conflicting reports in the literature surrounding the average Ni oxidation 

state and oxygen hyperstoichiometry of La2-xSrxNiO4+δ and until the current study data 

were not available for La0.5Sr1.5Ni1-xFexO4+δ. The results in Table 4.1 indicate that Ni and 

Fe in Sr-nickelate are highly oxidized and the oxygen hyperstoichiometry increases as 

more Fe is substituted for Ni. However, others have observed increasing oxygen 

hyperstoichiometry at room temperature with increasing Fe content in La-rich 

(La,Sr)2NixFe1-xO4+δ.
1, 2

 Medarde and Rodriguez-Carvajal found that ordered oxygen 

vacancies formed in La2-xSrxNiO4-δ when x > 0.13, while Aguadera and coworkers 

observed initial oxygen hyperstoichiometry when x = 0.25 in La2-xSrxNiO4+δ, but find all 

samples to be oxygen deficient at x > 0.5, in contrast with our results.
3, 4, 5

 Other reports 

of La2-xSrxNiO4+δ demonstrate that Sr substitution increases the average oxidation state of 

Ni due to charge compensation, up to and including La0.5Sr1.5NiO3.98 in which Ni has an 

average oxidation state of +3.46.
6, 7, 8

 Synthetic methodology and calcination temperature 

were both demonstrated to significantly affect the oxygen stoichiometry and crystal 

structure of La2NiO4+δ,
9
 and a similar conclusion was reached by Inprasit in rationalizing 

their oxygen hyperstoichiometry in La1.2Sr0.8NiO4.2.
7
 For La2-xSrxNiO4+δ synthesized 

using solid-state methods and crystallized at higher temperatures,  lower Ni oxidation 

states and oxygen substoichiometry were observed.
10

  Thus, we rationalize that the good 

molecular intermixing promoted by the polymerizable complex synthesis, the pure 

oxygen calcination environment, and our relatively low crystallization temperature of 

                                                 
8Large parts of this chapter have been submitted to Nature Materials on March 31

st
, 2017. 
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950°C and subsequent 6 hour oxygen anneal at 400°C contribute to the high oxygen 

content and higher oxidation states in Figure 4.1, as has been seen for related materials 

elsewhere.
10, 11

 Finally, there is precedence for Fe substitution increasing the average 

oxidation state of a more electronegative B-site in a related n=1 RP system, NdSrCo1-

xFexO4+δ.
12

 Song et al found that increasing Fe substitution led to an increase in oxygen 

content and B-site oxidation state (measured by iodometry), which is logically consistent 

with our results as the band evolution upon Fe substitution may be expected to be similar 

to that of LSNF, shown in Figure 4.4. 

D.2 NOTE ON BAND STRUCTURE AND CROSS-GAP HYBRIDIZATION 

The computed band structure of LSNF is similar to that reported for other highly 

active OER catalysts such as Ba0.5Sr0.5Co0.75Fe0.25O3+δ (BSCF).
13

 Merkle calculated the 

band diagram for BSCF and found a similar electronic configuration as in LSNF (Figure 

4.4). Thus, it is possible that the high activity of BSCF may be rationalized not just by the 

covalent Co-O bonding, but also by the triply-overlapping Co and Fe 3d states with O 2p 

near EF. We note that LSNF’s band structure is also similar to that of highly active Ni-Fe 

layered double hydroxide (LDH) catalysts.
14

 Conesa calculated the DOS of one such 

polymorph, FeNi7O8(OH)8 in the 2HC structure with Fe in O4(OH)2 coordination and 

their result is strikingly similar to that of LSNF in that Ni and Fe 3d bands are strongly 

hybridized just above EF. They concluded that Fe
4+

 is stabilized by induced charge 

transfer between Ni sites, and this explanation agrees with our observation of Fe in the 4+ 

oxidation state in LSNF (Figure 4.1) which is also seen in Ni-Fe oxyhydroxides.
15

 The 

previously reported shifting of the Ni
2+/3+

 redox couple in NiOOH upon incorporation of 

Fe that was concluded to result from partial charge transfer between Fe and/or Ni
16, 17, 18

 

also occurs in our own work. A change in covalency by the introduction of FeO6 units 
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into LSN must have an inductive effect on Ni through next nearest neighbor interactions 

via Fe-O-Ni bridges,
19

 which is consistent with the observation that our activity is 

maximized for the composition having the highest probability of Fe-O-Ni bridging 

interactions, LSNF30. Figure 4.2 clearly demonstrates that at greater than 30% Fe 

substitution the catalytic activity is reduced, concomitant with the increased probability 

of Fe-O-Fe bridges and decreased Ni site density. 

D.3 NOTE ON BAND STRUCTURE AND OER MECHANISM(S) 

Electron transfer between the transition metal sites of the catalysts and 

chemisorbed OER intermediates at the catalyst-adsorbate interface are driven by changes 

in the catalyst Fermi level due to applied potential or chemical steps between oxygen 

vacancies and solution hydroxides. The rate determining step(s) of the OER, regardless of 

mechanism, are usually associated with the highest free energy barrier to transformation 

of one intermediate to the next.
20, 21

 The band structure of LSNF accommodates surface 

redox reactions by easily shifting the Fermi level of the catalysts within the bandwidth 

immediately surrounding EF in LSNF. Iodometric titration data coupled with Mössbauer 

spectroscopy indicate that the average oxidation state of Ni ranges from 3.46 to 3.95 with 

increasing Fe substitution, while the Ni
2+/3+

 oxidation wave also shifts to more positive 

potentials, consistent with Ni developing a more oxidized character upon Fe substitution. 

However, as stated in the main text, the activity increases markedly from LSN to LSN30 

despite having the same average oxidation state, thus Fe substitution must play a larger 

role than just increasing the average oxidation state of Ni. 

As we have discussed in previous work, the OER can proceed by the adsorbate 

exchange mechanism (AEM) or the lattice oxygen mediated (LOM) mechanism.
22, 23

 In 

the AEM, chemisorbed intermediates undergo a series of electrochemical oxidations as 
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the transition metal active site undergoes oxidation and reduction. The demonstrated 

ability to tune the reactivity of the Ni and the increased bandwidth created around the 

Fermi level by substitution with Fe supports facile charge transfer at the adsorbate-

catalyst interface and possibly the oxidation and reduction of transition metal active sites 

that occurs in the AEM. The lattice oxygen mediated (LOM) OER mechanism, on the 

other hand, does not require the redox switching of transition metal sites but instead 

requires the participation of lattice oxygen in the OER. Transition metal 3d bands that are 

highly covalent with O 2p bands and exist around 𝐸𝐹
0 support the LOM mechanism 

(Figure 4.5c) in which ligand holes activate lattice oxygen that combines with 

chemisorbed OH to produce O2
-
. Triple overlap of eg(Ni), p(O) and eg(Fe) bands across 

𝐸𝐹
0 that results in covalent hybridization of these bands is a requirement of this 

mechanism, which has been experimentally demonstrated elsewhere by the high diffusion 

rates of lattice oxygen.
22

 Indeed, electrochemical measurements indicate the highest 

oxygen diffusion rates for LSNF30 and LSNF45, the two most electrocatalytically active 

compositions (Figures D.12 and Table D.3). Thus the LOM mechanistic interpretation of 

the results is supported by both our electrochemical oxygen intercalation and diffusion 

measurements, our DFT modeling of the band structure of LSNF, and also the well-

known surface oxygen exchange kinetics of the n=1 Sr-nickelate RP phase.
24, 25

 

D.4 NOTE ON DFT METHODS, MAGNETIC ORDERING AND OXYGEN CONTENT 

Due to DFT self-interaction errors for strongly correlated materials,
26

 the DFT+U 

method is employed to understand the electronic structures of LSNF. The values of Ueff 

of ~6.0eV (Ni) and ~5.0 eV (Fe) are chosen based on previous work: In the case of Ni-

containing perovskites, Gou et al. found that using Ueff (Ni) of ~6.0 eV gives a LaNiO3 

electronic structure closest to that obtained from hybrid functional methods and 
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experimental spectroscopic data.
27

 Lee et al. showed that this choice of Ueff also gives the 

correct LaNiO3 formation enthalpy.
28

 For Fe-contained perovskites, Shein et al. used a 

Ueff (Fe) of ~5.0 eV to reproduce the experimental band gap for LaFeO3, as well as the 

experimental magnetic structures and moments for both LaFeO3 and SrFeO3.
29

 This 

choice of Ueff is also suggested by Ritzmann et al, particularly for those perovskites that 

exhibit some Fe(IV) character.
30, 31

 It is noteworthy that moderate adjustment of Ueff in a 

typical reported range may not significantly alter the density of states around Fermi level, 

as compared between several studies using Ueff (Ni) from 5.7 to 6.4 eV
27, 28

 and Ueff (Fe) 

from 4.3 to 5.4 eV
28, 29, 30

. 

We model the LSNF compounds using 2x2x1 primitive unit cells, which enables 

the unit composition La0.5Sr1.5NiO4+δ (LSN), La0.5Sr1.5Ni0.75Fe0.25O4+δ (LSNF25), 

La0.5Sr1.5Ni0.50Fe0.50O4+δ (LSNF50), La0.5Sr1.5Ni0.25Fe0.75O4+δ (LSNF75), and 

La0.5Sr1.5FeO4+δ (LSF). Starting from a 2x2x1 cell of I4/mmm La2NiO4 (LN, Figure 

D.15a), we first search for the ground state ordering of Sr substitutions for stoichiometric 

LSN through structural screening and relaxations. For the LSN, we find that La/Sr prefers 

a uniform (random) distribution with one La in each of the 4 AO layers, due to the ionic 

nature of La/Sr anions. We then perform a second round of screening to determine the 

minimum energy distributions of Fe substitutions for each stoichiometric LSNF 

composition. 

Magnetic orderings, including ferromagnetic (FM), antiferromagnetic (AFM, A, 

C and G types) and non-magnetic structures are all investigated across the whole LSNF 

series to ensure that the magnetic ordering that gives rise to the lowest free energy 

structure is used in the calculation of PDOS diagrams. In the FM state, the overall spin 

directions of each individual B cation are aligned with each other. In the A-type AFM 

structure, the spins are parallel within each BO2 layer, but antiparallel between 
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neighboring BO2 layers, as illustrated in Figure D.17a. In the G-type AFM state, the spins 

of neighboring B atoms are aligned antiparallel both in the plane of each BO2 layer and 

between the BO2 planes, forming a checkerboard pattern. In this crystal structure, C-type 

and G-type AFM are identical. Figure D.17b shows the computed energies of the 

optimized LSNF cells with different magnetic states. As the figure shows, the FM and A-

type AFM structures are very close in energy, while the G-type AFM and non-magnetic 

orderings are less stable across the whole LSNF series. This condition suggests that the 

large spatial separation leads to negligible dipole interactions between neighboring BO2 

layers. Thus, the in-plane charge density distribution is similar for the A-type AFM and 

FM cases, as shown by comparing the PDOS in Figure D.17c to that in Figure 4.5. 

Further investigation of the non-magnetic structure also reveals a similar trend in the 

d(B)-to-p(O) covalency from LSN to LSF, suggesting that characteristics of the PDOS 

for the FM state (shown in Figure 4.5 in the main text), are representative even above the 

Neel temperature. 

We note that oxygen hyperstoichiometry effects either give rise to the emergence 

of bound states in conduction bands, a Fermi level shift, or a combination of the two.
32

 In 

the former case, the overall electronic structure is subject to negligible change due to the 

dilute and localized nature of interstitial oxygen and bound states. In the latter case, the 

magnitude of the Fermi level shift can be roughly estimated via the rigid band model to 

accommodate unoccupied band formation, which can be determined by 𝐸𝐹
𝛿 = 𝐸𝐹

0 −

2𝑒−δ/DOS(𝐸𝐹
0), where DOS(𝐸𝐹

0) is the total density of states at 𝐸𝐹
0 per formula unit of 

LSNF. As Figure 4.5c shows, the slightly adapted Fermi level, 𝐸𝐹
𝛿 , does not qualitatively 

alter our discussions and conclusions. This situation is due to the rich band distribution of 

O-p holes and B-d states around the Fermi level. 

  

file:///R:/Hardin%20Sr-nickelate%20supplemental%20updated%20post-submission%20040517.docx%23_ENREF_32


 209 

 

 

 

 

Figure D.1: Electron diffraction (ED) patterns 

Of LSN (first row), LSNF45 (second row) and LSF (third row) (the ED 

patterns for LSNF30 are given in Figure 4.1 of the manuscript). The ED 

patterns are indexed in a body-centered tetragonal unit cell with the unit 

cell parameters listed in Table D.1. 
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Figure D.2: Unit cell volume as a function of x in the La0.5Sr1.5Ni1-

xFexO4+δ solid solutions 
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Figure D.3: Typical experimental, calculated and difference curves after 

the Rietveld refinement 

Rietveld refinement of the La0.5Sr1.5Ni1-xFexO4+δ structures (exemplified 

for LSNF30). The bars mark the reflection positions of the I4/mmm 

structure. 
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Figure D.4: The crystal structure of the n=1 Ruddlesden-Popper 

La0.5Sr1.5Ni1-xFexO4+δ series. 
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Figure D.5: HAADF-STEM images of La0.5Sr1.5Ni1-xFexO4+δ 

Images demonstrate that the catalysts are comprised of similarly sized 

primary particles that form loosely sintered aggregates with well-

developed porosity. 
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Figure D.6: Nitrogen sorption isotherms for BET surface area analysis of 

the La0.5Sr1.5Ni1-xFexO4+δ series 

Samples range in surface area from 3.3 to 8 m
2
 g

-1
. All samples 

underwent the same thermal treatments for mixed metal oxide precursor 

particle synthesis as well as crystallization and annealing. 
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Figure D.7: Representative OER polarization curves 

Taken in O2 saturated 0.1 M KOH at 1600 rpm and 10 mV s
-1

. Catalysts 

were first swept positive (anodic), then negative (cathodic), and the 

curves averaged before iR correction. Electrolyte resistance was 

measured to be 46 Ω. Total electrode loading is 51 μgtotal cm
-2

geo with 30 

wt% LSNF, SrCoO2.7 or LaNiO3 on XC72 Vulcan Carbon (VC), 

yielding 15.3 μgoxide cm
-2

geo. IrO2 was tested at 20 wt% on VC (10.2 

μgoxide cm
-2

geo) and neat VC was tested at 35.7 μgcarbon cm
-2

geo (7 μg 

carbon, corresponding to the contribution to measured OER current for 

30 wt% LSNF on VC). LaNiO3 and SrCoO2.7 are the same materials as 

previously reported,
22, 33

 except supported on VC to only probe the 

effects of catalyst composition 
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Figure D.8: OER tafel plots of LSNF30 and other leading metal oxide 

catalysts 

a) total mass and b) catalyst mass basis. All data in a-b taken in oxygen 

saturated 0.1 M KOH at 10 mV/s and 1600 rpm. LSNF30, SCO and 

LaNiO3 are 30 wt% on VC, IrO2 is 20 wt%, all corresponding to 51 

μgtotal/cm
2

geo. VC is XC72 Vulcan Carbon. Pure VC is tested at 35.7 μg 

cm
-2

, corresponding to the 70 wt% carbon used to support LSNF30, 

SCO and LaNiO3. c) Shifting of the Ni
2+/3+

 oxidation peak potential as a 

function of Fe substitution. All peak potentials were taken from stable 

CVs at 10 mV/s in oxygen saturated 0.1 M KOH. For LSNF55 and 

LSNF85, there was no local maximum at 10 mV/s and the peak potential 

was selected after the OER background was subtracted out, shown in 

Figure D.11. d) Stable intercalation CVs plotted in specific current 

density. All CVs are at 10 mV/s in O2 saturated 0.1 M KOH. 
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Figure D.9: Galvanostatic stability test of LSNF30 

Galvanostatic stability test of LSNF30 at 10 A/goxide in O2 saturated 0.1 

M KOH at 1600 rpm. LSNF30 was supported at 30 wt% on XC72 VC 

and dropcast onto a 5 mm GCE for a total mass loading of 51 μg cm
-2

geo. 

η is calculated from the measured potential (RHE-iR) minus 1.229 V. 
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Figure D.10: Intercalation CVs 

Taken in O2 saturated 0.1 M KOH after 3 - 4 cycles so that oxidation 

peak potentials do not change upon subsequent cycling. CVs were taken 

on pristine electrodes that had been electrochemically preconditioned 

(see Methods for more information). Immediately following 

preconditioning, CVs were recorded for varying scan rates, descending 

from 100 mV s
-1

 to 5 mV s
-1

, one electrode per material. All catalysts are 

30 wt% oxide on VC. The bottom right-most panel is identical to that 

shown in Figure 4.3c in the main text, and is the overlay of the 100 mV 

s
-1

 scans for all catalysts. 
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Figure D.11: Fitted intercalation CVs for La0.5Sr1.5Ni1-xFexO4 

The fitted baseline was subtracted prior to integration of peak areas. 

Currents were converted into specific current density (μA cm
-2

ox) 

activity to account for surface area differences between samples with 

varying Fe contents. All CVs are in O2 saturated 0.1 M KOH and were 

taken at 10 mV s
-1

. These are the same CVs from Figure D.10, meaning 

they were collected from a pristine electrode that was conditioned and 

cycled at 100, 50, and 25 mV s
-1

. Consult the methods section for more 

information. Numbers are the computed peak maxima after baseline 

OER subtraction, used for determination of EP in Figure D.8c for 

LSNF55 and LSNF85, in which no local maxima is observed prior to 

baseline subtraction. 
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Figure D.12: Electrochemical diffusion rate data for the Sr-nickelate 

system 

Taken in O2 saturated 0.1 M KOH. a) Calculated oxygen diffusion rates 

for LSNF catalysts. b) Chronoamperometry data used for the calculation 

of diffusion rates in a). A linear regression was used on the linear, fast 

timescale portion of the current decay, and using the mathematical 

model referenced in the Methods section of the main text the diffusion 

rates were determined. Particle size was estimated from BET data and 

confirmed by the STEM images in Figure D.5. The shape factor (λ) was 

assumed to be 2 for all calculations. All materials are 85 wt% oxide on 

VC which were dropcast onto 5 mm glassy carbon electrodes (GCE) for 

a total loading of 51 μg cm
-2

geo. 
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Figure D.13: Room temperature Mössbauer spectroscopy 

Room temperature Mössbauer spectroscopy for the Sr-nickelate system. 

Fitted curves for Fe
4+

 depicted in red while fitted curves for Fe
3+

 are 

shown in blue. The spectra, measured at room temperature, were 

deconvoluted into two slightly overlapped paramagnetic doublets. 

According to their chemical isomer shifts (ISs), the doublets with 

smaller ISs of ~0.32 - 0.4 mm/s correspond to Fe
4+

 cations, while ones 

with larger ISs of ~0.32 - 0.45 mm/s correspond to Fe
3+

 cations. 
34

 It was 

previously shown that values of quadrupole splitting (QSs) in the Sr2-

xLaxFeO4±δ based solid solutions are highly dependent on La and O 

contents. 
35

 The observed values of hyperfine parameters, viz. ISs and 

QSs, for the Sr- nickelate system investigated are consistent with the 

parameters reported for the related Sr2-xLaxFeO4±δ compounds with high 

oxygen content. 
35, 36
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Figure D.14: XPS deconvolution of the Ni 3p spectra for La0.5Sr1.5Ni1-

xFexO4+δ 

Deconvolution performed by adaptation of the methods developed by 

Burriel et. al for La2-xSrxNiO4.
37

 The Ni 3p spectrum was decomposed 

into 4 distinct components; Ni
2+

 and Ni
3+/4+

 in both the 3p3/2 and 3p1/2 

portions of the Ni doublet. Deconvolution was achieved by fitting error 

minimization on the 30% Gaussian/Lorentzian components using the 

Marquardt and Simplex methods within CasaXPS. To ensure self-

consistency all components used the same FWHM and components 

assigned to Ni 3p1/2 were constricted to have exactly half the area of 

their counterparts in the Ni 3p3/2. Binding energy constraints were the 

same used by Burriel et. al, and the maximum allowed FWHM was 

increased to account for the multiple chemical states encompassed by 

the Ni
3+/4+

 components. 
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Figure D.15: DFT modeling of atomic and electronic structures of bulk 

LSNF 

(a) The optimized atomic structure of 2x2x1 La2NiO4, as the initial 

structure for Sr substitution and relaxation. (b) and (c) follow the same 

as those in Figure 4.5. (d) The projected density of states (PDOS) of t2g 

(Ni and Fe) and 2p (O) with respect to Fermi level for the B-O-B’ 

bridges; t2g is shown not to come across Fermi level. 
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Figure D.16: Reversible hydrogen electrode (RHE) calibration 

A Pt working electrode was cycled at 1 mV s
-1

 in H2 saturated 0.1 M 

KOH using a Pt or Au counter electrode to standardize the Hg/HgO (1 

M KOH) reference electrode against thermodynamic H2 evolution and 

oxidation. The Hg/HgO conversion to RHE was determined by the 

average potential at which 0 current was measured, -0.8976 V vs 

Hg/HgO. 
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Figure D.17: Comparison of ferromagnetic, anti-ferromagnetic and non-magnetic 

structures from DFT modeling 
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(a) The structures of A-type antiferromagnetic (AFM-A) and G-type antiferromagnetic 

(AFM-G) orderings. In AFM-A, spin directions only differ between neighborhood BO2 

layers, while in AFM-G, spin directions differ between neighborhood B atoms; AFM-C is 

identical to AFM-G in this atomic structure. (b) Comparison of energetics per unit 

La0.5Sr1.5Ni1-xFexO4, relative to the corresponding non-magnetic energy in each 

composition. The energetic comparison clearly indicates FM and AFM-A as more stable 

configurations. (c) The projected density of states (PDOS) of the B-O-B’ bridges for both 

AFM-A and non-magnetic structures. PDOS of AFM-A is shown to be similar to that of 

FM in Figure 4.5, while that of non-magnetic structure gives consistent trend of bands 

movement as described for Figure 4.5. 
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Table D.1: The results of Rietveld refinement for La0.5Sr1.5Ni1-xFexO4+δ. 

 

 

The refinement was performed in the I4/mmm space group with the atomic 

positions La,Sr 4e (0, 0, z), Ni,Fe 2a (0,0,0), O1 4c (0, ½, 0) and O2 4e (0, 0, z). 
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Table D.2: Comparison of LSNF30 with other promising OER catalysts 

and accompanying notes 

 

 
A
 Supports: VC - Cabot XC-72 Vulcan Carbon; C65 - TIMCAL Super C65; AB - 

Acetylene Black; KB - Ketjenblack EC-600JD  
B
 Results in ( ) are after cycling 

C
 Current density did not reach 10 mA/cm

2
geo, overpotential listed is maximum tested  

D
 Potential only reported to 1.61 V, LSNF30’s corresponding value is 19 mA/cm

2
ox 

E
 Potential only reported to 1.61 V, LSNF30’s corresponding value is 1100 mA/mgox 

F
 Electrodes rotation rate not reported 

G
 Mass was determined only by metal weight, neglecting O(H) contributions. Calculated 

mass and specific activities will be larger than truly measured.
 

H
 Current density only reported to ~1.55 V, LSNF30’s corresponding value is 2.0 

mA/cm
2

ox 
I
 Current density only reported to ~1.55 V, LSNF30’s corresponding value is 115 

mA/mgox 

 

  



 229 

 

Table D.3: Summary of the physical, chemical and electrochemical 

properties of the LSNF series 

 

 

Surface area determined by multipoint BET measurements. 

Average Ni oxidation state determined by a combination of iodometric titrations and 

deconvolution of room temperature Mössbauer spectroscopy. 

Oxygen excess determined by iodometric titrations. 

Peak potential for Ni
2+/3+

 oxidation determined from CVs taken at 10 mV/s and after iR 

correction applied. 

Oxygen diffusion rates determined electrochemically as outlined in the Methods section 

of Chapter 4 and Appendix D. 
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Appendix E: Highly Active Perovskite and Ruddlesden-Popper 

Composite Electrocatalysts for Water Oxidation 

E.1 EXTENDED EXPERIMENTAL INFORMATION 

All chemical were used as-received. Isooctane (2,2,4-trimethylpentane, > 99%), 

1-butanol (> 99%), cetrimonium bromide (CTAB, > 99%), and 5 wt% Nafion solution in 

lower alcohols were purchased from Sigma-Aldrich. Lanthanum(III) nitrate hexahydrate 

(99.995%), strontium(II) nitrate hexahydrate (99%), nickel(II) nitrate hexahydrate (99%), 

iron(III) nitrate non-anhydrate (99.99%), cobalt(II) hexahydrate (> 99%), 

tetramethylammonium hydroxide pentahydrate (TMAOH, 99%), and potassium 

hydroxide (> 85%) were obtained from Fisher Scientific. Millipore high purity water (DI 

water, 18 MΩ) was used. Oxygen (research grade, 99.999% purity) and argon (research 

grade, 99.999% purity) were obtained from Praxair. Ethanol (Absolute 200 proof) was 

obtained from Aaper Alcohol. Vulcan XC72 carbon (VC) was purchased from Cabot 

Corporation and ball-milled prior to use. 

 

E.1.1 Catalyst Synthesis 

All samples were synthesized using reverse water-in-oil microemulsion methods 

adopted from Zhao et al. 
24

 Reverse microemulsions containing the hydrolysis agent and 

required cations were prepared (abbreviated HYD and CAT, respectively) in parallel, 

after which they were combined, the mixed-metal hydroxide particles collected and 

washed by centrifugation, nebulized into liquid N2, followed by lyophilization and 

crystallization at elevated temperatures to form the desired phase. The HYD and CAT 

reverse microemulsions were each formed by adding 3 g of CTAB to a mixture of 15 mL 

of isooctane and 3 mL of 1-butanol. The solutions were stirred to break up aggregated 
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CTAB particles such that upon addition of water, all CTAB is easily solvated. A turbid, 

homogenous solution in which no bulk particles of CTAB are visible indicated that the 

CTAB was adequately dispersed. Bath sonication was used to accelerate this process. 4 

mL of 1 M KOH (4 mmol) was added to the HYD solution, under stirring, after which 

the solution rapidly became clear which indicated successful formation of the water-in-oil 

microemulsion. It is important to be precise with the addition of the KOH, as little as ~50 

μL excess will not form a microemulsion. Separately, 4 mL of a variable molarity 

(typical 0.327 M) alkali and metal nitrate solution is added to the CAT solution under 

stirring, transforming it from turbid to clear almost immediately. 

The precise determination of the nitrate solution molarity requires consideration 

of the oxidation states of the alkali earth or transition metal nitrate salts. As Zhao et al.
24

 

served as the foundation for the modification of this synthesis, we decided to maintain the 

same ratio of hydroxide ions in the HYD solution ([OH]), to cations in the CAT solution 

([M]), modified to account for the average oxidation state (z) of cations in the nitrate 

salts, M(NO3)z, such that [OH]: z[M] = 11
9⁄ . The synthesis of LaNiO3 used 4 mL of 

0.327 M nitrate salts, 0.356 M for LSNF and 0.348 M for SNF. 

The HYD and CAT solutions were left stirring for an hour after becoming 

transparent, to ensure complete formation of the reverse microemulsion phase. After one 

hour, the CAT solution was added drop-wise, over the course of 1 - 2 minutes, to the 

vigorously stirring (~1200 rpm) HYD solution. 10 minutes after the CAT solution was 

completely transferred, the HYD solution stir-rate was reduced to 600 rpm to minimize 

micellar collision and potential nanoparticle aggregation or Ostwald ripening. Shortly 

after addition of the CAT solution, the reverse microemulsion becomes colored and 

turbid, indicating the onset of nanoparticle nucleation via hydrolysis, and likely 

transformation of the spherical water-in-oil micelles to a bicontinuous micellar 
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structure.
19, 22

 The reactant solution was left to stir for 6 hours, and then let statically age 

(no stirring) for 18 - 24 hours. Static ageing has been reported
30

 to decrease hydroxide 

nanoparticle size and improve phase purity. 

After aging, the reactant solution (~50 mL) is split between 3 centrifuge tubes and 

the resultant hydroxide particles are precipitated out by addition of excess EtOH and 

collected via centrifugation at 6000 rpm for 3 min. Following collection and using the 

same number of centrifugation tubes, the hydroxide particles are washed by 

centrifugation in the presence of EtOH 3x at 6000 rpm and 3 min each, with the 

supernatant discarded after every wash. After washing, the particles are suspended in DI 

water across 3 centrifuge tubes and probe sonicated (20 - 30% power, 0.3 s duty cycle) 

for 5 min per tube. The particles are then combined into a single centrifuge tube, and 

nebulized into a liquid N2 in a crystallization dish. Nebulization was achieved using a 

PET spray bottle purchased from Fischer Scientific, with a variable spray-head. The 

degree of misting was tuned running pure DI water through it, and selecting the spray 

setting that produced the finest mist while remaining confined to the volume of the 

recrystallization dish. 

The frozen nanoparticles were placed in a freezer at -20°C and the residual liquid 

N2 was left to evaporate. Separately, a lyophilizer was chilled to -40°C. Once all residual 

liquid N2 had evaporated and the lyophilizer reached -40°C, the sample was freeze dried 

at -10°C and ~50 mTorr for 24+ hours, followed by an 8 hour ramp to 20°C and a 12 

hour hold to ensure complete drying. The lyophilization times are dependent on the 

volume of frozen water that needs to be removed, and the times listed above are for a 

single sample, corresponding to ~60 mL of ice. 

Finally, the dried nanoparticle powder is placed in a sealed tube furnace, 

whereupon it is heated at a rate of 1°C until the desired crystallization temperature, and 
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held for a time. This entire process is under 200 mL of flowing dehumidified air or pure 

O2, depending on the catalyst composition. For example, LaNiO3 was crystallized at 

650°C under pure O2 with a hold of only 30 minutes, while La0.6Sr0.4Ni0.6Fe0.4O3 was 

crystallized at 825°C and held there for 5 hours. All catalyst compositions are furnace-

cooled to room temperature under their respective flowing gas. 

 

E.1.2 Electrochemical Characterization 

Catalyst inks were prepared by adding 2 mL of a NaOH neutralized 0.05 wt% 

Nafion solution to 2 mg of catalyst powder and bath sonicated for at least one hour. A 

volume of ink (10 μL) was drop cast onto a clean 5 mm (0.196 cm
2
, Pine Instruments) 

glassy carbon electrode and dried under ambient conditions overnight. The glassy carbon 

electrodes were cleaned prior to drop casting by sonication in a 1:1 DI water:ethanol 

solution. The electrode was then polished using 50 nm alumina powder, sonicated in a 

fresh DI water:ethanol solution, and dried in ambient air. All electrochemical tests were 

performed on electrodes prepared by this method, obtaining a composite catalyst loading 

of 51 μgtotal cm
-2

geo, yielding 15.3 μgoxide cm
-2

geo for catalysis tests (30 wt% on carbon). 

Electrochemical testing was performed on either a CH Instruments CHI832a or a 

Metrohm Autolab PGSTAT302N potentiostat, both equipped with high speed rotators 

from Pine Instruments. All testing was done at room temperature in 0.1 M KOH 

(measured pH ≈ 12.8). Current interrupt and positive feedback methods were used to 

determine electrolyte resistance (46 Ω) and all data was iR compensated after testing 

unless stated otherwise. Each test was performed in a standard 3 electrode cell using a 

CH Instruments Hg/HgO (1 M KOH) reference electrode, a Pt or Au wire counter 

electrode, and a film of catalyst ink on glassy carbon as the working electrode. All 
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potentials are reported versus the regular hydrogen electrode (RHE), which was 

determined experimentally to be +0.8976 V vs. Hg/HgO (1 M KOH). 

Quantification of Oxygen Evolution Activities. All OER testing was performed on 

newly dropcast electrodes which had not undergone previous testing, drop-cast with 30 

wt% catalyst on VC (15.3 μgoxide cm
-2

geo). Cyclic voltammetry scans were performed 

from 1 to 2 V vs RHE at 10 mV/s with a rotation rate of 1600 rpm in O2-saturated 0.1 M 

KOH. The anodic and cathodic scans were averaged and iR corrected, and the current at 

1.63 V vs RHE-iR was selected from the polarization curves to compare OER activities. 

Scatter in the data at high current densities is due to oxygen bubble formation and 

desorption on the electrode surface. Data reported herein is the average taken from at 

least three tests on fresh electrodes. 
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Figure E.1: X-ray diffraction pattern of SNF made by the polymerizable 

complex synthetic method 
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Figure E.2: Representative polarization curves for LNO, LSNF and SNF 

Taken in O2 saturated 0.1 M KOH at 1600 rpm and 10 mV s
-1

. Catalysts 

were first swept positive (anodic), then negative (cathodic), and the 

curves averaged before iR correction. Electrolyte resistance was 

measured to be 46 Ω. Total electrode loading is 51 μgtotal cm
-2

geo  with 30 

wt% catalyst on XC72 Vulcan Carbon (VC), yielding 15.3 μgox cm
-2

geo. 
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E.2 ALTERNATIVE OIL PHASE TESTS 

 

Table E.1: Results of decane oil phase tests 

 Hydrolysis Solutions 

Composition 7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 1 M KOH 

7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.3M NH4 

oxalate 

7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 1 M 

TMAOH 

Mixing Behavior CTAB took a long time 

to dissolve. It was not 

fully dissolved after 

stirring, and the 

mixture was cloudy 

Cloudy Completely Clear 

 Cationic Solutions 

Composition 7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175 M NaCl 

7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175M 

NaCl 

7.5 mL decane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175M 

NaCl 

Mixing Behavior Clear Clear Clear 

 Mixing Behavior After Solutions Combined 

 The mixture became 

clear. The undissolved 

CTAB dissolved after a 

few minutes 

Clear. There was a 

very small amount 

of CTAB seen, but 

it dissolved very 

quickly when 

mixed 

Clear 
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All with W0 = 0.75. The ‘soft’ base TMAOH forms stable microemulsions, while 

KOH does not. Oxalate also forms a microemulsion after mixing. 
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Table E.2: Results of cyclohexane oil phase tests 

 Hydrolysis Solutions 

Composition 7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 1 M KOH 

7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.3M NH4 

oxalate 

7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 1 M 

TMAOH 

Mixing Behavior Cloudy- CTAB 

amount? 

Cloudy- CTAB 

amount? 

Completely Clear 

 Cationic Solutions 

Composition 7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175 M 

NaCl 

7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175M 

NaCl 

7.5 mL cyclohexane 

1.5 g CTAB 

1.5 mL 1-butanol 

1.5 mL 0.8175M 

NaCl 

Mixing Behavior Clear Clear Clear 

 Mixing Behavior After Solutions Combined 

 The mixture stayed 

cloudy. No 

undissolved CTAB 

notice 

Clear.  Clear 

All with W0 = 0.75. The ‘soft’ base TMAOH forms stable microemulsions, while 

KOH does not. Oxalate also forms a microemulsion after mixing. 
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Appendix F: Anion charge storage through oxygen intercalation in 

LaMnO3 perovskite pseudocapacitor electrodes9 

F.1 EXPERIMENTAL 

Peroxide studies of LaNiO3: Electrodes were tested in a 0.1M KOH electrolyte 

that had been degassed with Ar for 15 min to purge the cell of oxygen. Then 150 µL of 

10wt% H2O2 was added and immediately cyclic voltammetry was performed at a scan 

rate of 5 mV/s between the potentials 0.2 to -0.6V vs. Hg/HgO.  

Oxygen reduction studies of LaNiO3: Oxygen reduction activity of the electrodes 

was performed using rotating disk cyclic voltammetry in 150 mL of 0.1M KOH saturated 

with O2 at a scan rate of 5 mV/s and a rotation rate of 1600 rpm. 

Electrochemical Cycling of Carbon-Free LaMnO3±δ Electrodes: In order to 

ensure sufficient sample sizes for XPS and XRD analysis, films of 1 mg/cm
2
 were 

prepared by dispersing either LaMnO3.09 or r-LaMnO2.91 without any carbon additive in 

EtOH containing 0.05 wt% Na-substituted Nafion in a ratio of 2.5 mg mL
-1

 and sonicated 

for 30 min.  78.4 µL of this solution was spuncast at 700 rpm onto a glassy carbon 

electrode (0.196 cm
2
, Pine Instruments). These electrodes were cycled in Ar saturated 1M 

KOH for 1, 25, 100, 250, and 500 cycles. After cycling, the electrodes were removed 

from the electrolyte and gently washed with DI water followed by drying under vacuum. 

Surface Analysis of LaMnO3+δ: Due the semiconducting properties of LaMnO3±δ, 

charge neutralization must be employed during the collection of high resolution data. 

This minimizes, but does not eliminate, a global shift in the binding energies (BEs) for 

neat LaMnO3+δ samples. To correct for these shifts, the Kratos AXIS Ultra DLD was first 

calibrated against the Ag 3d spectrum of freshly sputtered 99.99% pure Ag. Following 

                                                 
9Large parts of this chapter have been published as Mefford JT, Hardin WG, Dai S, Johnston KP, 

Stevenson KJ. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor 

electrodes. Nat Mater 2014, 13(7): 726-732. 
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spectrum calibration to Ag, the BE shifts due to LaMnO3+δ charging were compensated 

by reconstruction of the La 3d 5/2 spectra, as outlined by Mickevicius et al.
1
 This 

reconstruction procedure enabled us to shift the BE of the LaMnO3+δ spectra relative to 

the deconvoluted La
3+

 3d 5/2 peak with confidence, due to the electronic configuration of 

La
3+

 being that of xenon. Following these corrections, the O 1s spectra of both samples 

were deconvoluted utilizing Mickevicius et al. for H2O and La-O peak assignments, De 

Asha et al. for La-OH assignment and Djurfors et al. for Mn-O and Mn-OH 

assignments.
1-4

 

XRD of Electrochemically Cycled LaMnO3.09 and r-LaMnO2.91 Electrodes: 

Structural information about cycled LaMnO3±δ electrodes was obtained using wide-angle 

X-ray diffraction (Rigaku Spider, Cu Kα radiation, λ = 1.5418 Å) and analyzed with 

JADE software (Molecular Diffraction Inc.). Carbon-free electrodes were 

electrochemically cycled at 20 mV/s as described above for 1, 25, 100, 250, and 500 

cycles. The active material on the electrode was gently rinsed free of residual electrolyte 

with DI water and dried under vacuum. The active material was then removed for XRD 

analysis. 

F.1.1 XPS of Electrochemically Cycled LaMnO3.09 and r-LaMnO2.91 Electrodes 

XPS of Electrochemically Cycled LaMnO3.09 and r-LaMnO2.91 Electrodes. XPS 

data was acquired using a Kratos AXIS Ultra DLD spectrometer equipped with a 

monochromatic Al X-ray source (Al α, 1.4866 keV). Carbon-free electrodes of 

LaMnO3.09and LaMnO2.91 were electrochemically cycled, as previously described, for 25, 

100 and 500 cycles. The active material on the electrode was removed, washed with DI 

water and dried in a vacuum. To avoid signal convolution with the Nafion binder and 

provide a reference peak with which to calibrate the spectra, the Mn 2p 1/2 and La 4p 3/2 
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core regions where selected for analysis. The Mn 2p 1/2 region was used to avoid 

convolution with a copper LMM auger peak resulting from the copper tape on which 

each sample was mounted.
5
  Where convolution did occur, the auger was fitted and 

removed prior to analysis. High resolution elemental analysis was performed on each 

sample, using a 20 eV pass energy, 0.1 eV step size and a 4 second dwell time. All spectra 

are the average of four collections. Charge compensation was used for the collection of 

all data, due to the lack of conductive carbon. To correct for shifts in binding energy due 

to charge compensation, peak reconstruction of the La 4p 3/2 region was performed as 

previously reported and the Mn 2p 1/2 region was shifted relative to the La 4p 3/2 c4f
0
 

component. 
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Figure F.1: Dynamic light scattering measurements of initial mixed 

metal hydroxides 

During the reverse phase hydrolysis step of the synthesis, mixed metal 

hydroxides of La and Mn are formed. These mixed metal hydroxides 

may be individual particles or agglomerations with a hydrodynamic 

radius centered at 25 nm and a peak width of ± 7 nm. A small volume 

fraction of larger agglomerates is present as well with diameters between 

75-100 nm. 
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Figure F.2: Electrolyte studies of LaMnO3+δ 
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Cyclic voltammograms of LaMnO3+δ in 0.1M sulfate based electrolytes in order of 

cationic radius Li
+
 (a), Na

+
 (c), K

+
 (e), TMA

+
 (g) compared to cyclic voltammograms of 

LaMnO3+δ in 0.1M basic electrolytes in order of cationic radius Li
+
 (b), Na

+
 (d), K

+
 (f), 

TMA
+
 (h). In all of these CV’s, the current contribution from the N-OMC carbon support 

has been subtracted. The presence of both oxidation and reduction peaks in the 0.1M 

basic electrolytes is demonstrative of the role of OH
-
 ions as intercalating species in 

LaMnO3.09. 
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Figure F.3: Capacitive responses of LaNiO3 and peroxide CV 

(a) Cyclic voltammogram and (b) specific capacitance versus scan rate 

for LaNiO3-δ. c, Overlay of hydrogen peroxide voltammogram at 5 

mV/s, oxygen reduction at 5 mV/s and a rotation rate of 1600 rpm, and 

the pseudocapacitive CV curves at 100 mV/s for LaNiO3 The large peak 

in the peroxide curve corresponds to reduction of O2 from the chemical 

disproportionation of H2O2. The upturn at ~-0.6V corresponds to the 

reduction of the peroxide species (also indicated by the dashed line). 
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Figure F.4: Cycling ex-situ Mn 2p½ XPS Studies of LaMnO3±δ 

Carbon-free electrodes of r-LaMnO2.91 (a) and LaMnO3.09 (b) were 

cycled between 25-500 times and then characterized using XPS. c, Both 

electrodes were found to have an initial increase of surface manganese 

(compared to the relative atomic percent of lanthanum based on the La 

4p 3/2 contribution) concomitant with an increase in the oxidation state 

to Mn
4+

 due to the addition of electrolyte oxygen ions. Because of this, it 

is likely that oxygen diffusion rates are greatly enhanced at the surface 

along grain boundaries leading to regions where oxygen intercalation is 

rapid and pseudocapacitive rather than purely faradaic. 
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Figure F.5: | Particle thickness analysis for diffusion rate calculation 

The thickness of the particles was approximated by taking the average of 

lateral dimension measurements of LaMnO3.09 from SEM images. The 

average thickness corresponded to 380±90 nm with an N value of 26. 

  



 258 

 

Figure F.6: Diffusion rate calculations on unsupported LaMnO3±δ 

Calculation of the diffusion rates for a,c. LaMnO3.09 and b,d. r-

LaMnO2.91. The potential versus capacity plots presented in a,b are 

calculated from integration of the oxidation current from the CV’s 

presented in S4a and S4b. The sharp drop in potential at low capacity 

changes is indicative of the ohmic drop in both samples because carbon 

was not included as a conductive support in these samples. The 

thickness, L, was approximated from Figure F.5. 
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Figure F.7: Cycling ex-situ XRD Studies of LaMnO3±δ 
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The degree to which oxygen intercalation extended into the bulk was 

investigated through XRD on cycled electrode materials. However, over 

the course of cycling it was found that there were minimal changes in 

the bulk structure. The diffraction peaks that underwent the most drastic 

changes have been labeled in the figure and interestingly correspond to 

lattice planes that contain either only oxygen atoms, or direct pathways 

for oxygen diffusion.
6-11

 In addition, a peak at 38° corresponding to 

Mn3O4 grew in over cycling in both samples, which is likely formed 

during the removal of surface oxygen which results in Mn
2+

 necessary to 

form the spinel phase. The lack of significant changes in the XRD 

spectrum is expected from previous work on LaMnO3±δ materials, where 

vacancies are randomly distributed throughout the crystal structure but 

do not lead to significant distortions in atomic arrangements and lattice 

spacings.
6-10

 In combination with the XPS results, it is concluded that 

oxygen intercalation is dominated by the surface of the electrodes, but 

due to the high oxygen diffusion rates and high specific capacities found 

in this work, that the oxygen intercalation extends more deeply into the 

crystal than just the pure surface. 
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Figure F.8: Effect of weight loading on the capacitive contributions of 

LaMnO3.09 

a, Cyclic voltammograms at 100 mV s
-1

 for various weight loadings of 

LaMnO3.09 on N-OMC. The contribution of the carbon support to the 

current and the capacitance have been subtracted. The sharp increase in 

current at ~0.2V vs. Hg/HgO corresponds to the oxygen evolution 

reaction on LaMnO3.09 in alkaline electrolytes. b, Specific capacitance 

versus scan rate for LaMnO3.09 at various weight loadings. c, b-value 

analysis of LaMnO3.09 at different mass loadings. The b-value peaks at 

approximately E = -0.3 V vs. Hg/HgO for all mass loadings which 

corresponds to the position of the redox peaks in the cyclic 

voltammograms. *In all of these figures, the current and capacitance 

contributions of the carbon support have been subtracted out to clearly 

demonstrate the electrochemical characteristics of LaMnO3.09. 

 

 

The effect of weight loading on carbon and the capacitive contribution to the 

current was investigated using a power-law dependence or b-value analysis method 

according to equation (F.1):
12

 

i = aν
b       

(F.1) 

where i (A) is the current produced by LaMnO3.09, a is a constant, ν is the scan rate (V s
-

1
), and b is indicative of the capacitive contribution to the current obtained from a power 

fit of the current versus scan rate. Pure diffusion controlled reactions correspond to a b-

value of 0.5 while a b-value of 1 is indicative of a purely capacitive current, including 

intercalation based pseudocapacitance. An extended potential window of -1.2 to 0.6 V vs. 
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Hg/HgO was used in order to encompass the redox peaks at all mass loadings, where 

resistive effects result in a substantial increase in the overpotential for oxygen 

intercalation in high weight loadings of LaMnO3±δ. As seen in Figure 6.4, the low 

electronic conductivity of LaMnO3 requires the use of a substantial amount of carbon, 

~70%, to achieve significant pseudocapacitive behavior. However, the b-value analysis 

peaks at the approximate potential of -0.3V vs. Hg/HgO for all samples, corresponding to 

the E1/2 of the redox peaks present in the 30 wt% loading samples. 
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Figure F.9: b-value analysis of LaMnO3±δ 

a,b. b-values for r-LaMnO2.91 (a) and LaMnO3.09 (b). c,d. CV’s of  r-

LaMnO2.91 (c) and LaMnO3.09 (d). The shaded grey areas show the 

capacitive current envelope. The presence of a peak in the capacitance 

values at E ~ -0.3V vs. Hg/HgO corresponds well with the E1/2 of the 

reaction for oxygen intercalation. 
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Figure F.10: Capacitive contributions of N-OMC Support 

a, Cyclic voltammogram of nitrogen-doped ordered mesoporous carbon 

support (N-OMC) at various scan rates. b, Specific capacitance versus 

scan rate for N-OMC. Importantly there is an absence of redox peaks at 

E1/2 ~ -0.3V vs. Hg/HgO which are present in the LaMnO3±δ samples. 
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