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Abstract 

 

The Effect of Nutrient Limitations on the Production of Extracellular 

Polymeric Substances by Drinking-Water Bacteria 

 

Ashley Nichole Evans, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  Mary Jo Kirisits 

 

Biological filtration (biofiltration) of drinking-water is gaining popularity due the 

potential for biodegradation of an array of contaminants not removed by traditional 

drinking-water processes.  However, previous research has suggested that biomass 

growth on biofilter media may lead to increased headloss, and thus, greater energy and 

water requirements for backwashing.  Research has suggested that the main cause of 

headloss might be due to extracellular polymeric substances (EPS) rather than the 

bacterial cells themselves.  As EPS production has been shown to increase under 

nitrogen- and phosphorus-limited or -depleted conditions, the goal of this research was to 

add to the body of knowledge regarding biofiltration by studying the relationship between 

EPS production and nutrient limitations in drinking-water.   

Batch experiments with a synthetic groundwater were run with a mixed 

community of drinking-water bacteria under nutrient-balanced (a molar carbon to 

nitrogen to phosphorus ratio [C:N:P] of 100:10:1), nutrient-limited (e.g., C:N:P of 

100:10:0.1), and nutrient-depleted conditions (C:N:P of 100:0:1 or 100:10:0).  After 5 

days, growth was measured as the optical density at 600 nanometers (OD600), and the 

concentrations of free and bound carbohydrates and proteins, the main components of 

EPS, were measured.  In batch experiments with 2.0 and 0.2 g/L as carbon (mixture of 
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acetic acid, mannitol and sucrose) increases in EPS production per OD600 and decreases 

in growth were noted under nutrient-depleted conditions. When the same experiments 

were conducted with a pure culture of Bacillus cereus, bound polysaccharides normalized 

to OD600 increased under nitrogen- and phosphorus-depleted conditions. 

Since previous research suggested that Bradyrhizobium would be an important 

player in EPS production in drinking-water biofilters, similar batch experiments were 

conducted with Bradyrhizobium.  However, due to experimental challenges with 

Bradyrhizobium japonicum USDA 110, differences in EPS production under nutrient 

limitations could not be reliably assessed.  Additional work is required with 

Bradyrhizobium. 

Recommendations for future work include the replication of these batch 

conditions in steady-state chemostats containing biofilm attachment media and in bench-

scale columns.  Additionally, future work should include experiments at carbon 

concentrations as low as 2 mg/L to match typical carbon concentrations in drinking-water 

biofilters. 



 viii 

Table of Contents 

List of Tables .................................................................................................. xii 

List of Figures ................................................................................................ xiii 

CHAPTER 1: INTRODUCTION ...................................................................................1 

1.1 Background ..................................................................................................1 

1.2 Objectives ....................................................................................................2 

1.3 Thesis Overview ..........................................................................................3 

CHAPTER 2: LITERATURE REVIEW.........................................................................4 

2.1 Biological Drinking-Water Treatment .........................................................4 

2.1.1 Biological Treatment Process Limitations and Optimization .............6 

2.1.2 Nutrients, Extracellular Polymeric Substances (EPS) and Biofilter 

Headloss ..............................................................................................7 

2.2 Biological Nutrient Requirements and EPS Production ..............................9 

2.2.1 An Overview of EPS Production in Planktonic Cells and Biofilms ...9 

2.2.2 The Effect of Nutrient Limitations in Pure Culture Experiments .....10 

2.2.2.1 Nitrogen Limitations and Nitrogen Sources ............................11 

2.2.2.2 Carbon Sources ........................................................................13 

2.2.2.3 Phosphorus Limitations............................................................14 

2.2.3 The Effect of Nutrient Limitations in Drinking-Water .....................14 

2.2.3.1 Carbon as the Limiting Nutrient in Distribution Systems........15 

2.2.3.2 Phosphorus and Nitrogen as the Limiting Nutrients in Distribution 

Systems .......................................................................................15 

2.2.3.3 Nutrient Limitations in Biological Filters ................................16 

2.2.4 The Effect of Nutrient Limitations in Wastewater Treatment ..........17 

2.2.4.1 Phosphorus Limitation .............................................................17 

2.2.4.2 Nitrogen Limitation..................................................................18 



 ix 

2.3 Rhizobia and EPS Production ....................................................................19 

2.3.1 Bacterial Communities Dominating Biofilters .................................19 

2.3.2 Bradyrhizobium as EPS-Producers under Nutrient Limitations .......20 

2.3.3 EPS-Related Gene Expression ..........................................................21 

2.4 Summary ....................................................................................................21 

CHAPTER 3: MATERIALS AND METHODS .............................................................22 

3.1 Chemicals ...................................................................................................22 

3.2 Batch Experiments .....................................................................................22 

3.2.1 Synthetic Groundwater .....................................................................22 

3.2.2 B. japonicum .....................................................................................24 

3.2.2.1 B. japonicum Growth ...............................................................24 

3.2.2.2 B. japonicum Storage ...............................................................25 

3.2.2.3 B. japonicum Enumeration .......................................................25 

3.2.3 B. cereus ............................................................................................26 

3.2.4 Pure Culture Batch Experiment Design ............................................26 

3.2.4.1 B. japonicum Experiments .......................................................26 

3.2.4.3 B. cereus Experiments..............................................................27 

3.2.5 Mixed Community Batch Experiment Design ..................................27 

3.3 EPS Analyses .............................................................................................28 

3.3.1 Phosphate Buffered Saline Solution (PBS) ......................................28 

3.3.2 EPS Extraction ..................................................................................28 

3.3.2.1 EPS Extraction from Planktonic Batch Experiments ...............28 

3.3.2.2 EPS Extraction from Wet BAC ...............................................30 

3.3.3 Carbohydrate Concentration .............................................................31 

3.3.3.1 Anthrone Method .....................................................................31 

3.3.3.2 Phenol-Sulfuric Method ...........................................................32 

3.3.4 Protein Concentration .......................................................................33 

3.3.5 Lipid Concentration ..........................................................................34 

3.3.6 Optical Density .................................................................................35 



 x 

3.4 Water Quality Analyses .............................................................................35 

3.4.1 pH ......................................................................................................36 

3.4.2 Ortho-Phosphate ...............................................................................36 

3.4.3 Ammonia-Nitrogen ...........................................................................37 

3.5 Microscopy ................................................................................................38 

CHAPTER 4: RESULTS AND DISCUSSION ...............................................................39 

4.1 BAC EPS Extraction and Carbohydrate Measurement Methods ..............39 

4.2 Bradyrhizobium japonicum USDA 110 Experiments................................42 

4.2.1 B. japonicum Batch Experiments ......................................................42 

4.2.2 B. japonicum Morphology and Growth Characteristics ...................42 

4.3 Mixed Community Batch Experiments .....................................................46 

4.3.1 Mixed Community Experiments at 2g/L of Carbon .........................46 

4.3.2 Mixed Community Batch Experiments with 200, 20, and 2 mg/L of 

Carbon ...............................................................................................49 

4.3.2 Mixed Community Batch Experiments Comparing Ammonium Chloride 

to Liquid Ammonium Sulfate as the Sole Nitrogen Source. ............51 

4.3.3 Summary ...........................................................................................53 

4.4 B. cereus Batch Experiments .....................................................................54 

CHAPTER 5: CONCLUSIONS ...................................................................................58 

5.1 Summary of Findings .................................................................................58 

5.2 Recommendations for Future Work...........................................................60 

APPENDIX A: PURE CULTURE BATCH EXPERIMENTS ..........................................62 

A.1 Batch Experiments with Groundwater ......................................................62 

A.2 Experiments with Götz Minimal Medium ................................................63 

A.3 Summary ...................................................................................................64 

 



 xi 

APPENDIX B: LAB PROTOCOLS .............................................................................65 

B.1 Polysaccharides/Carbohydrates .................................................................65 

B.2 Protein Microassay ....................................................................................67 

B.3 Lipids .........................................................................................................68 

B.4 Ortho-phosphate ........................................................................................69 

B.5 Synthetic Groundwater ..............................................................................70 

B.6 Ammonia-Nitrogen ...................................................................................72 

B.7 EPS Extraction – Wet BAC ......................................................................73 

B.8 YEM Medium ...........................................................................................74 

APPENDIX C: CHEMICAL LIST ..............................................................................75 

REFERENCES: ........................................................................................................77 



 xii 

List of Tables 

Table 3.1: Synthetic Groundwater Composition. ..................................................23 

Table 4.1: Percent Difference Among Mean Carbohydrate Concentrations Among all 

Three Shakers and the Carbohydrate Concentration Extracted Using 

Each Shaker. .....................................................................................40 



 xiii 

List of Figures 

Figure 3.1: B. japonicum Colonies on YEM Agar Plates. .....................................25 

Figure 3.2:  Processing Steps for Planktonic Cultures Prior to Measurement of EPS 

Fractions ............................................................................................29 

Figure 3.3: Typical Anthrone Method Standard Curve Using a Microplate.  Error bars 

represent standard deviation among triplicate absorbance measurements.

...........................................................................................................32 

Figure 3.4: Typical Phenol-Sulfuric Method Standard Curve.  Error bars represent 

standard deviation among triplicate absorbance measurements. ......33 

Figure 3.5: Typical Protein Standard Curve.  Error bars represent standard deviation 

among triplicate absorbance measurements......................................34 

Figure 3.6: Typical Lipid Standard Curve.  Error bars represent standard deviation 

among triplicate absorbance measurements......................................35 

Figure 3.7: Typical Ortho-Phosphate Standard Curve.  Error bars represent standard 

deviation among triplicate absorbance measurements. .....................37 

Figure 3.8: Typical Ammonia-Nitrogen Standard Curve. .....................................38 

Figure 4.1: Carbohydrate Content per Gram of BAC of Extracted EPS from Pilot-

Scale Filters in Arlington, Texas Using Three Shaker Variations in the 

EPS Extraction Procedure and Two Different Methods of Carbohydrate 

Determination.  Error bars represent standard deviation among triplicate 

absorbance measurements. ................................................................41 

Figure 4.2: Large, Mucoid (LM) Colonies:  Left: LM Cells Under a Microscope 

(600X Total Magnification).  Right: LM Colonies on YEM Agar. ..43 

Figure 4.3: Small, Defined (SD) Colonies.  Left: SD Cells Under a Microscope (600X 

Total Magnification).  Right: SD Colonies on YEM Agar. ..............43 

Figure 4.4: Mucoid Colony Morphology.  Left: Rafts of Mucoid Cells Under a 

Microscope (600X Total Magnification).  Right: Mucoid Colonies on 

YEM Agar. ........................................................................................43 

Figure 4.5: Flocculation of B. japonicum in YEM Medium.  Top: Flocs in 250-mL 

Baffled Flask.  Bottom Left: Centrifuged “Cloud” of Flocculated Cells.  

Bottom Right: Flocculation Viewed Under a Microscope (600X Total 

Magnification)...................................................................................45 

Figure 4.6: Mixed Community Batch Experiment  Optical Density at Day 5. ......47 

Figure 4.7: Mixed Community Batch Experiment Normalized Free and Bound 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent 

standard deviation among triplicate absorbance measurements. ......49 



 xiv 

Figure 4.8: Mixed Community Batch Experiment Optical Density at Day 5.  Error 

bars represent standard deviation among triplicate absorbance 

measurements. ...................................................................................50 

Figure 4.9: Mixed Community Batch Experiment Normalized Free and Bound EPS 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent 

standard deviation among triplicate absorbance measurements. ......51 

Figure 4.10: Mixed Community Batch Experiment Normalized Free and Bound EPS 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent 

standard deviation among triplicate absorbance measurements. ......53 

Figure 4.11:  B. cereus Batch Experiment Optical Density at Day 5. ...................55 

Figure 4.12: B. cereus Batch Experiment Normalized Free and Bound EPS 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent 

standard deviation among triplicate absorbance measurements. ......57 

Figure A.1: B. japonicum Pure Culture Batch Experiment Total Extracellular Protein 

(Top Left), Total Extracellular Carbohydrate (Bottom Left), and CFU 

(Top Right) Measurements over Time.  Error bars represent standard 

deviation among triplicate absorbance measurements.  C:N:P ratios 

shown are target ratios. .....................................................................63 

  



1 

 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Biological drinking water filtration (biofiltration) is gaining popularity in the 

United States (US) due to the potential to economically biodegrade an array of 

contaminants not removed by traditional treatment processes.  However, as very low  

phosphorus concentrations (<0.01 mg/L), an important nutrient required by bacteria, have 

been observed in biofilters due to upstream coagulation and sedimentation, a better 

understanding of how to effectively operate these filters is necessary.   

Published literature on the role of nutrients in drinking-water biofilters is limited; 

however, there is a plethora of research regarding nutrient limitations in drinking-water 

distribution systems and wastewater systems.  Due to concerns regarding regrowth, 

nutrients have been studied in drinking-water distribution systems.  Phosphorus, 

especially, has been noted to be limiting in distribution systems; small increases in 

phosphorus are associated with significant increases in regrowth (Miettinen and 

Vartiainen, 1997; Sathasivan and Ohgaki, 1999; Lehtola et al., 2002; Chu et al., 2005; 

Fang et al., 2009).  Further, research in activated sludge processes has shown that 

nitrogen- and phosphorus-limitations and changes in the carbon source cause increased 

production of extracellular polymeric substances (EPS) and affect the efficacy of the 

activated sludge process (Ericsson and Eriksson, 1988; Lee, 1997; Bura et al., 1998; Liu 

et al., 2006).   

Pure culture experiments, especially with rhizosphere bacteria known for EPS 

production, also show that nutrient limitations cause increased EPS production 

(Skorupska et al., 2006; Nirmala et al., 2011; Staudt et al., 2011).  One such rhizobium, 

Bradyrhizobium, might be of particular interest in drinking-water biofilters.  

Bradyrhizobium are present in drinking-water biofilters (Pang and Liu, 2007; Niemi et 

al., 2009) and were shown to be a large portion (15%) of the biofilter microbial 

community under phosphorus-limited conditions (Lauderdale et al., 2011).  Pure culture 
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experiments with Bradyrhizobium note increased EPS production under C:N molar ratios 

of 100:0.1 and 100:0 (Lopez-Garcia et al., 2001; Quelas et al., 2006).  As phosphorus-

limitations have been shown to affect EPS production in related rhizobia (Skorupska et 

al., 2006), it is possible that phosphorus-limitations in drinking-water biofilters also are 

associated with increased EPS. 

Further, increased headloss in biofilters, as compared to traditional filters that are 

not biologically active, might be attributed to the production of EPS (Mauclaire et al., 

2004; Lauderdale et al., 2011).  In drinking-water pilot biofilters, an increase in EPS and 

a 15% increase in terminal headloss were observed under phosphorus-depleted conditions 

as compared to carbon-limited conditions (Lauderdale et al., 2011).  Additionally, it has 

been suggested that the addition of phosphorus may increase biodegradation in drinking-

water biofilters (Nishijima and Shoto, 1997).   

Thus, nitrogen- and phosphorus-limitation are associated with increased EPS 

production, which has been suggested to cause increased headloss in biofilters.  The 

drinking-water industry is considering a range of biofilter supplementation options, 

including the addition of nitrogen, phosphorus, and carbon sources to target a balanced 

carbon to nitrogen to phosphorus (C:N:P) molar ratio of 100:10:1 (Lauderdale and 

Brown, n.d.; Lauderdale et al., 2011; Evans et al., 2012).  Supplementing drinking-water 

biofilters with nutrients such phosphorus and nitrogen might be a practical method of 

decreasing headloss, allowing for longer run times between backwashing, increasing 

water recovery, and decreasing energy demands.  However, further research on the role 

of nutrients in EPS production by drinking-water microbial communities is necessary. 

1.2 Objectives 

The primary objective of this research is to investigate the relationship between 

nutrient limitations and EPS production by drinking-water bacteria.  The results of this 

research will aid in understanding how to optimize drinking-water biofiltration such that 

headloss and energy demands might be decreased and filter run times and water recovery 

might be increased.  Previous research (Mauclaire et al., 2004; Lauderdale et al., 2011) 
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has suggested that nutrient limitations might cause increased EPS production and 

headloss in drinking-water biofilters; however, this research is the first study to 

investigate the extent of nutrient (mainly phosphorus and nitrogen) limitations required to 

trigger increased EPS synthesis and the impact of nutrient sources on EPS production in 

drinking-water microbial communities. 

Batch experiments were conducted using pure cultures of Bradyrhizobium 

japonicum USDA 110 and Bacillus cereus and a mixed community of drinking-water 

bacteria.  Bradyrhizobium was selected because previous research has shown that this 

genus is present in drinking-water biofilters (Niemi et al., 2009; Lauderdale et al., 2011), 

and  B. japonicum USDA 110 has been used in previous studies of EPS (Becker et al., 

1998; Quelas et al., 2010).  B. cereus is another soil-dwelling bacterium found in 

drinking-water biofilms (Cerrato et al., 2010).  In the current work, various C:N:P molar 

ratios were tested, and EPS (in terms of carbohydrates, proteins, and lipids) and bacteria 

were quantified over time.  These experiments investigated the link between nutrient 

limitations and EPS production in drinking-water bacteria. 

1.3 Thesis Overview 

This thesis focuses on the effect of nutrient limitations on the production of EPS 

by drinking-water microbial communities.  Batch experiments were conducted with pure 

cultures and a mixed community of drinking-water bacteria.  The amount of EPS (as 

carbohydrates, proteins and lipids) produced at various carbon, nitrogen and phosphorus 

concentrations was measured and normalized to bacterial growth.  Chapter 2 reviews 

published literature on the application of biological drinking-water treatment, the 

relationship among nutrient limitations, nutrient sources, and EPS production in pure 

cultures, drinking-water systems, and wastewater systems, and EPS production by 

rhizobia such as Bradyrhizobium.  Chapter 3 outlines the materials and methods, and 

Chapter 4 discusses the results of this study and their implications.  Lastly, Chapter 5 

summarizes this research study and proposes avenues for future work.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter begins by reviewing the application of biological filtration in 

drinking-water treatment.  The chapter follows by summarizing previous research 

relating nutrient limitations, biological growth, and extracellular polymeric substance 

(EPS) production in pure cultures, wastewater systems, and drinking-water systems.  

Finally, Bradyrhizobium, a genus found in drinking-water systems and potentially an 

important EPS-producer, is discussed. 

2.1 Biological Drinking-Water Treatment 

Although biological drinking-water treatment has only recently grown in 

popularity in the United States (US), biological treatment of wastewater has been 

employed for the past century to remove organics, nutrients and other contaminants 

(Brown, 2007).  Furthermore, biological drinking-water treatment is common in Europe 

(Bouwer and Crowe, 1988) and Canada (Emelko et al., 2006).  Many recent 

developments have led to the emergence of biologically active filtration (biofiltration) in 

drinking-water treatment such as new regulations on disinfection by-products (DBPs) and 

biodegradable contaminants (e.g., perchlorate and bromate) (Brown, 2007).  Biofiltration 

also complements new membrane-based systems which are known for bio-fouling and 

require costly and complex residual treatment (Brown, 2007).  Additionally, the desire 

for green treatment technologies that remove, rather than concentrate, contaminants and 

that resolve US water-energy nexus issues has made biofiltration attractive (Brown, 

2007). 

Biological drinking-water treatment uses indigenous bacteria and is followed by 

disinfection, thereby minimizing health risks due to bacteria.  Both fixed-bed and 

fluidized-bed processes are employed (Brown, 2007).  The influent to biological 

treatment is commonly pre-ozonated to increase the removal of taste and odor 

compounds and other organic compounds, thereby reducing distribution regrowth and 

DBP formation (Cipparone et al., 1997; Nerenberg et al., 2000; Brown, 2007).  There are 
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many advantages to the implementation of biofiltration on granular activated carbon 

(GAC), especially coal-based GAC, over sand or anthracite media.  Microorganisms in 

biofilters with GAC have been reported to have higher biomass concentrations 

(LeChevallier et al., 1992; Wang et al., 1995), specific growth rates, and biodegradation 

rates over other non-adsorbing media (Li and Digiano, 1983).  The adsorption ability and 

porous surface area of GAC allow non-biodegradable contaminants to be adsorbed and 

poorly biodegradable organics and substrate to be held in the system for a longer contact-

time (Li and Digiano, 1983; Scholz and Martin, 1997).  GAC provides protection from 

shear during backwashing and the functional groups enhance biofilm attachment (Fox et 

al., 1990; Scholz and Martin, 1997).  Further, GAC has been shown to have longer filter 

runs and higher total organic carbon (TOC) and biodegradable organic matter (BOM) 

removal over anthracite (LeChevallier et al., 1992; Emelko et al., 2006). 

Potential advantages of biological treatment of drinking-water include low 

operating costs, high water-recovery, low sludge production, low or no chemical 

requirements, and robustness to a wide range of water qualities and operating conditions 

(Brown, 2007).  Biological treatment can remove natural organic matter (NOM) thereby 

decreasing distribution regrowth (LeChevallier et al., 1992; Cipparone et al., 1997), DBP 

precursors (Cipparone et al., 1997), membrane foulants (Hu et al., 2005), inorganics such 

as perchlorate (Brown et al., 2002, 2005; De Long et al., 2010), ammonium (Rice et al., 

1982; Yapsakli et al., 2010), nitrate (Herman and Frankenberger, 1999) and bromate 

(Kirisits and Snoeyink, 1999; Kirisits et al., 2001, 2002; Davidson et al., 2011), and 

various heavy metals such as iron, manganese, and copper (Srivastava and Majumder, 

2008; Lauderdale et al., 2011).  Trace organics such as 2-methyl-isoborneol (MIB) and 

geosmin (Nerenberg et al., 2000), algal toxins (Hall et al., 2000), endocrine disruptors 

and pharmaceuticals (Ternes et al., 2002; Snyder et al., 2007), and halogenated organics 

such as perchloroethylene (PCE), trichloroethylene (TCE), dibromochloro-propane 

(DBCP), and chloroform are amenable to biological degradation (LeChevallier et al., 

1992).  Biodegradation also can reduce taste, color and odor (Lundgren et al., 1988), 

residual coagulant requirements (LeChevallier et al., 1992) and disinfection requirements 
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(Cipparone et al., 1997).  Thus, biological treatment may be an effective way of 

simultaneously removing many contaminants. 

2.1.1 BIOLOGICAL TREATMENT PROCESS LIMITATIONS AND OPTIMIZATION 

Although biological drinking-water filtration is used at full-scale, there are still 

concerns and questions regarding biofilter design and performance.  Performance 

variability might be caused by differences in the influent water quality.  Changes in 

dissolved oxygen, the type and concentration of organics, nutrients such as nitrogen and 

phosphorus, pH, temperature and toxic synthetic organic compounds or heavy metals 

have the potential to alter the quantity of biomass, microbial community and microbial 

activity (Bouwer and Crowe, 1988; Scholz and Martin, 1997; Simpson, 2008).  Changes 

in flow could lead to biomass washout or reduction (Gray et al., 1980).  Additionally, 

biological processes generally have a longer startup time than do physical-chemical 

processes (Bouwer and Crowe, 1988). 

There is limited information about byproducts from the growth of microorganisms 

in drinking-water treatment processes.  Further investigation of the health effects of 

endotoxins, soluble microbial products (SMPs), incompletely degraded organic 

compounds and the results of the reaction of these compounds with disinfectants is 

needed (Rice et al., 1982).  Microorganism release due to sloughing of biomass is likely.  

While indigenous bacteria in biological drinking-water treatment processes are thought to 

be non-pathogenic, additional research of microbial communities in drinking-water 

processes and causes of biomass sloughing is suggested (Rice et al., 1982; Bouwer and 

Crowe, 1988).  Further, biofilms, especially attached to filter media such as sand or GAC, 

may be more resistant to disinfection (LeChevallier et al., 1984). 

Without optimization, energy requirements for backwashing a biofilter might 

increase over those for a traditional filter.  Biological drinking-water processes 

commonly involve a fixed biofilm system with a granular support media (Kim and 

Logan, 2000; Brown, 2007).  Over time, biomass builds up on the media, thereby 

restricting flow and increasing headloss.  Thus, systems are periodically taken off line 

and backwashed (Brown et al., 2005; Lauderdale et al., 2011).  It should be noted that 
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there is limited understanding of the effects of backwashing on microbial activity, 

biodegradation potential, and biofilm development (Simpson, 2008).  A study of pilot 

GAC filters concluded that although backwashing detaches biofilms, the biomass is able 

to build up to pre-backwashing concentrations prior to the next backwashing cycle 

(Gibert et al., 2012).  Additionally, there are questions as to whether backwashing should 

be conducted with or without disinfectant; as expected, higher biomass accumulation on 

filter media is achieved when no disinfectant is applied to the filter (LeChevallier et al., 

1992; Wang et al., 1995). 

Process optimization includes bench-scale and pilot-scale reactors in combination 

with mathematical models and microbial analyses.  Microbial analyses allow the 

identification of conditions to achieve the greatest biological activity and growth and the 

identification and tracking of bacterial communities (Brown, 2007).  Online monitoring 

tools are available for measuring temperature, headloss, and concentrations of dissolved 

oxygen, total organic carbon, and pre-oxidants (Evans et al., 2011).  Off-line tools are 

available to measure the concentration of dissolved organic carbon (DOC), assimilable 

organic carbon (AOC), and carboxylic acids (Evans et al., 2011).  Media samples also 

might be analyzed to determine the bacterial populations and the concentration of 

adenosine triphosphate (ATP), which is a measure of biological activity (Evans et al., 

2011). 

Additionally, industry is actively considering supplementation of drinking-water 

biofilters with nutrients (such as nitrogen and phosphorus) and substrate (electron donor) 

as a method of optimizing biofilter operation (Lauderdale and Brown, n.d.; Lauderdale et 

al., 2011; Evans et al., 2012).  Further investigation of the role of nutrient limitations in 

drinking-water biofiltration will be of great value to industry for process optimization. 

2.1.2 NUTRIENTS, EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) AND BIOFILTER 

HEADLOSS 

Research has suggested that nutrient limitations might lead to increased 

production of EPS, a major component of biofilms, and that EPS might be a cause of 

increased headloss in biofilters compared to traditional filters. 
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Biofilms are a collection of microorganisms attached to a solid surface and 

embedded in an EPS matrix.  EPS provides structural integrity and stability to 

microorganisms and promotes adhesion to surfaces.  EPS is composed of primarily 

carbohydrates and proteins, although lipids, humic substances, nucleic acids, uronic 

acids, and inorganic components might also be present.  EPS is both soluble (free) and 

attached to bacterial cells and/or media (bound).  Changes in nutrient conditions, 

hydrodynamics and substrate concentration have been shown to affect biofilm structure 

(Wimpenny and Colasanti, 1997; Stoodley et al., 1999).  Further, the availability of 

carbon sources and nutrients, such as nitrogen and phosphorus, are known to affect EPS 

synthesis in biofilms (Sutherland, 2001). 

Mauclaire et al. (2004) examined the pore spaces in a drinking-water biological 

sand filter.  The authors determined that biomass including bacterial cells, carbohydrates 

and proteins occupied between 6-14% of the top layer pore space and 3-9% of the deep 

layer pore space.  In a highly clogged filter top layer, the study found a maximum ratio of 

100:1 v/v of EPS to bacterial cells.  Here, bacterial cells were found to occupy 0.01% of 

pore space whereas total EPS was found to occupy 10% of pore space (approximately 

4.2% as proteins and 5.8% as polysaccharides).  Considering the top and bottom layers of 

a heavily clogged and less clogged filter, bacterial cells were found to occupy a 

maximum of 0.2% of pore space in a highly clogged top layer, and EPS occupied a 

minimum of 3% of pore space in a less clogged deep layer of the filter.  Considering 

particle deposition, calcite precipitation, and biomass production as possible causes of 

clogging, the authors concluded that EPS contributed largely to the clogging of the 

biofilter (Mauclaire et al., 2004).   

The role of nutrients in EPS production, and ultimately biofilter clogging, was 

further investigated using pilot-scale biofilters in Arlington, Texas.  This study found a 

correlation between increased terminal headloss and increased EPS (mg/L of 

polysaccharides) in the pilot biofilters (Lauderdale et al., 2011).  Thus, EPS could be an 

important parameter to control in biofilters. 
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2.2 Biological Nutrient Requirements and EPS Production 

EPS production has been investigated in lab experiments under environmental 

stress conditions.  The effect of varying nutrient ratios (carbon to nitrogen to phosphorus) 

and nitrogen and phosphorus sources previously has been investigated in certain pure 

cultures and wastewater systems.  In addition, the role of nutrients in drinking-water 

distribution system regrowth and biological filter degradation potential has recently been 

studied.  Researchers commonly cite a carbon:nitrogen:phosphorus (C:N:P) molar ratio 

of 100:10:1 as required for heterotrophic bacteria growth (LeChevallier et al., 1991).   

In addition, the quantity of EPS  produced has been noted to be influenced by 

temperature, pH, and calcium, magnesium, iron, and sodium concentrations (Corpe, 

1964; LeChevallier et al., 1991; Farrés et al., 1997; Staudt et al., 2011).  The presence of 

calcium has been shown to stimulate EPS production while the presence of iron inhibits it 

(Corpe, 1964).  A study of the photosynthetic bacterium Rhodopseudomonas acidophila 

determined sodium to increase EPS production but calcium to not affect EPS production 

(Sheng et al., 2006).  In a laboratory-scale activated sludge system, calcium and 

magnesium were shown to increase bound EPS (measured as protein), and high sodium 

was observed to decrease bound EPS (Higgins et al., 1997).  Thus, studies have reached 

different conclusions about which factors most influence EPS production based on the 

microorganisms and environmental conditions tested. 

2.2.1 AN OVERVIEW OF EPS PRODUCTION IN PLANKTONIC CELLS AND BIOFILMS 

 The composition of EPS varies among microorganisms and environmental 

conditions but can consist of 40-95% w/w polysaccharides, up to 60% w/w proteins, up 

to 10% w/w nucleic acids and up to 40% w/w lipids (Flemming and Wingender, 2001).  

In one study, EPS in activated sludge was composed of 57% w/w proteins, 30% w/w 

humic substances, 11% w/w carbohydrates, and 1% w/w uronic acids (Frølund et al., 

1996).  EPS formed by planktonic cells, a biofilm and colonies grown on agar of 

Comamonas denitrificans strain 110 (a common organism studied in wastewater systems) 

in various nutrient media has been noted to be composed of mainly proteins (3-37% 
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w/w), nucleic acids (9-25% w/w), and carbohydrates (3-21% w/w).  Lipids were noted to 

be less than 2.5% w/w (Andersson et al., 2009).  As a final example, the EPS 

composition of phenol-fed aerobic granules was determined to be 240, 61 and 51 mg/g 

volatile suspended solids (VSS) for proteins, carbohydrates and lipids, respectively, 

which is approximately an EPS protein to carbohydrate ratio of 4 (Adav et al., 2008).    

Andersson et al. (2009) investigated EPS production in planktonic versus biofilm 

cells by C. denitrificans strain 110.  The study found that biofilm EPS had a protein to 

carbohydrate ratio of 5:2 while planktonic EPS had a protein to carbohydrate ratio of 1:2.  

Additionally, planktonic cells of C. denitrificans were noted for free EPS production 

while biofilms were noted for capsular or bound EPS production (Andersson et al., 2009).  

Compositional differences in EPS from planktonic cells and biofilms also have been 

identified (Beech et al., 1999; Kives et al., 2006).  

The correlation between bacterial growth rates and the amount of EPS produced 

also varies between biofilm and planktonic cells (Andersson et al., 2009).  A study of 

Staphylococcus epidermidis in biofilms showed that increased EPS production correlated  

with a decreased growth rate; however, a similar relationship was not found in planktonic 

cells of S. epidermidis (Evans et al., 1994).  In Bradyrhizobium japonicum planktonic 

cells, an accumulation of EPS during the stationary phase of growth (as compared to 

exponential growth) was noted under nitrogen-limitation and a decrease in EPS was 

noted during stationary phase under nitrogen-sufficiency (Lopez-Garcia et al., 2001; 

Quelas et al., 2006).   

2.2.2 THE EFFECT OF NUTRIENT LIMITATIONS IN PURE CULTURE EXPERIMENTS 

Numerous pure culture experiments have been conducted to investigate the effects 

of carbon-, nitrogen- and phosphorus-limitations and carbon and nitrogen sources on EPS 

production.  A summary of the key findings regarding nitrogen limitations and nitrogen 

sources, phosphorus limitations, and carbon limitations and carbon sources follows.  

Most studies did not present EPS concentrations normalized to biomass; however, where 

available, this data is presented. 
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2.2.2.1 Nitrogen Limitations and Nitrogen Sources 

Nitrogen-limitations and various nitrogen sources have been shown to stimulate 

EPS production and affect the growth and aggregation of cells. The results of studies with 

Bradyrhizobium japonicum, Rhizobium tropici and other Rhizobium spp., 

Chromobacterium violaceum, Pseudomonas, Rhodopseudomonas acidophila, and 

Azospirillum are summarized. 

A study of Bradyrhizobium japonicum under nitrogen-limitation revealed 

increased EPS production (mg polysaccharide per mg of cell protein) and decreased 

biomass under nitrogen-limitation or nitrogen-depletion (C:N molar ratios of 100:0.06 

and 100:0, respectively) as compared to a C:N molar ratio of 100:0.6 (Lopez-Garcia et 

al., 2001).  Quelas et al. (2006) compared a C:N molar ratio of 100:0.6 to that of 100:0 

and noted increased EPS production (mg polysaccharides per mg cell proteins) when no 

nitrogen was provided.  Both studies also showed an accumulation of EPS during the 

stationary phase of growth under nitrogen-limitation and a decrease in EPS during the 

stationary phase under nitrogen-sufficiency (comparing young cells at day 5 and old cells 

at day 14 in mannitol-based medium).  Both studies also demonstrated similar 

exponential growth rates under the different nitrogen conditions (Lopez-Garcia et al., 

2001; Quelas et al., 2006).   

A study of Rhizobium tropici with sucrose as the sole carbon source concluded 

that a C:N ratio of 20 produced maximum EPS (g/L of polysaccharides and g/L of total 

ethanol-precipitable material [EPM]) as compared to C:N ratios of 5, 10 and 40 (Staudt et 

al., 2011).  Staudt et al. (2011) determined that the C:N ratio resulting in the greatest 

production of EPS did not correspond with the ratio allowing for maximum growth.   

A study of Chromobacterium violaceum grown in glucose noted approximately 

equal growth and polysaccharide production with ammonia, glutamate, and casamino 

acids as nitrogen sources.  Further considering a variation in ammonium nitrogen 

concentration, 1-2 mg/mL allowed for maximum growth while 0.1 mg/mL allowed for 

maximum EPS production.  Considering glutamate nitrogen, the highest growth and EPS 

production were achieved with 0.1 mg/mL of glutamate nitrogen and 10 mg/mL of 
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glucose.  These concentrations correspond to a carbon to nitrogen molar ratio of 100:2 

(Corpe, 1964).   

The analysis of ten Rhizobium strains showed maximum EPS production (μg/mL 

as glucose) with 2% w/v mannitol and 0.2% w/v potassium nitrate.  Experiments 

comparing 0.1% w/v of various nitrogen sources including potassium nitrate, sodium 

nitrate, ammonium sulfate, glycine, and glutamic acid demonstrated that potassium 

nitrate and sodium nitrate resulted in the greatest EPS production.  Further experiments 

then explored the effect of various concentrations (0.05, 0.10, 0.15 and 0.20%) of 

potassium nitrate when the carbon concentration was held constant.  EPS production and 

growth were greatest at a concentration of 0.2% potassium nitrate (Nirmala et al., 2011).   

Studies of other pure cultures have shown a relationship between increased C:N 

ratio and increased EPS production.  A high C:N molar ratio (as high as 100:0) was 

shown to favor increased EPS production (mg polysaccharides [mg protein]
-1

) in 

Pseudomonas NCIBI 1264.  The lowest C:N molar ratio tested (100:7.5) produced 

approximately 25% less EPS (2 mg [mg protein]
-1

 as compared to 8 mg [mg protein]
-1

) 

than did the case where no nitrogen was added (Williams and Wimpenny, 1977).  A 

study of the photosynthetic bacterium, Rhodopseudomonas acidophila, by Sheng et al. 

(2006) demonstrated that increased EPS production (but low cell growth) occurred at low 

concentrations of both carbon and nitrogen.  Several C:N molar ratios between 100:0.7 

and 100:250 based on carbon concentrations between 0.1 and 1.75 g/L were tested.  

Generally, total EPS (proteins and carbohydrates, mg g/l
-1

 dry cells) increased with lower 

absolute carbon concentration and higher C:N ratio.  The highest total EPS was observed 

at a carbon concentration of 0.1 g/L and C:N ratio of 100:13; note that this was the 

highest C:N ratio tested at this low carbon concentration (Sheng et al., 2006).  Finally, a 

study of rhizobacteria of the genus Azospirillum concluded that a high C:N molar ratio 

(100:1.8) induces aggregation as compared to a low C:N molar ratio (100:8.4) (Burdman 

et al., 2000). 

While the carbon to nitrogen ratio that produced maximum EPS production varied 

among the studies, it is clear that high C:N ratios increase EPS production.  The studies 



13 

 

also show that high C:N ratios result in less biomass growth as compared to lower C:N 

ratios, and the source of nitrogen affects the quantity of EPS produced. 

2.2.2.2 Carbon Sources 

Several studies have shown that the available carbon source and concentration 

greatly affects EPS production.  However, the carbon source resulting in the greatest EPS 

production varies based on the study and microorganism and does not correlate with the 

carbon source allowing for greatest growth.  The study of C. denitrificans strain 110 

showed a decrease in biomass and increase in EPS over time in a minimal acetate 

medium as compared to Nutrient Broth or sterile wastewater (Andersson et al., 2009).  

Staudt et al. (2011) analyzed growth and EPS production of R. tropici on arabinose, 

glucose, sucrose, mannitol, fructose, and glutamate.  Maximum EPS production (g/L 

polysaccharides and total EPM) was determined with glucose and sucrose.  EPS was not 

normalized to biomass in this study.  Slowest growth (Colony Forming Units [CFU] [mL-

h]
-1

) was obtained using glutamate and fastest growth rates were achieved with fructose 

and mannitol (Staudt et al., 2011).  Williams and Wimpenny (1977) studied 

Pseudomonas NCIBI 1264 and concluded that the composition of EPS was unchanged by 

variations in carbon and energy source.  EPS synthesis was noted with multiple mono-, 

di-, and tri-saccharide carbon substrates but was generally higher with hexoses 

(particularly glucose and fructose) than with pentoses (Williams and Wimpenny, 1977).   

Increasing EPS production of the photosynthetic bacterium, R. acidophila, was 

determined in the following order of carbon sources: malonate, succinate, propionate, 

butyrate, acetate, and benzoate (Sheng et al., 2006).  Lastly, a study of ten Rhizobium 

strains indicated highest EPS production (g/mL as glucose; EPS normalized to biomass 

was not presented) with mannitol followed by sucrose, glucose and maltose as compared 

to galactose, fructose, and mannose (Nirmala et al., 2011).  Specific conclusions for why 

certain carbon sources result in greater EPS production were not offered; however, there 

was consensus that the carbon source resulting in maximum EPS production varied by 

species (Nirmala et al., 2011).    
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The concentration of carbon relative to the concentrations of other medium 

components (held at constant concentrations) also appears to be important.  A study of C. 

violaceum with ammonium sulfate held constant at 0.1 mg/mL noted that a concentration 

of 10 mg glucose/mL produced maximum EPS polysaccharides (as compared to a range 

of 0.1-20 mg/mL glucose) and 5-19 mg glucose/mL produced maximum growth (Corpe, 

1964).  In the study of ten Rhizobium strains, the highest EPS production (μg/mL) was 

noted at a mannitol concentration of 2% added to yeast-extract mannitol (YEM) medium 

as compared to mannitol concentrations of 1, 3 and 4% (Nirmala et al., 2011).     

2.2.2.3 Phosphorus Limitations 

While information about the effect of phosphorus-limitations in pure culture 

experiments is limited, a few studies suggest that phosphorus-limitation causes an 

increase in EPS production.  Phosphorus-limitations in rhizobial bacteria have been noted 

to increase EPS production (as reviewed by Skorupska et al., 2006).  In a study of 

Klebsiella I-714, increased phosphate buffer addition corresponded to decreased EPS 

production.  Maximum EPS production was obtained with no phosphate addition and 

controlled pH (Farrés et al., 1997). However, in a study of Pseudomonas NCIBI 1264 no 

relationship was found between EPS production and phosphate-limitation; it was 

hypothesized that a decrease in pH below 5 (due to fermentation at the low buffering 

capacity) suppressed EPS production (Williams and Wimpenny, 1977).  Thus, the effects 

of extreme pH conditions may confound the effects of phosphorus-limitation on EPS 

production.  However, all studies agree that phosphorus-limitation is expected to increase 

EPS production. 

2.2.3 THE EFFECT OF NUTRIENT LIMITATIONS IN DRINKING-WATER  

Although there is limited research regarding the role of nutrient limitations in 

biological drinking-water treatment, there has been substantial research regarding 

nutrients in drinking-water distribution systems.   
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2.2.3.1 Carbon as the Limiting Nutrient in Distribution Systems 

LeChevallier et al. (1991) showed a correlation between coliform growth and 

rainfall, temperature, and nutrients (specifically AOC and TOC).  AOC was shown to 

quickly decrease through the distribution system; however, nitrite-N, ammonia-N, ortho-

phosphate, total P, and TOC were not shown to decrease through the distribution system.  

These data suggested that organic carbon was the limiting nutrient in the effluent of the 

New Jersey American Water Co. – Swimming River Treatment Plant.  The study 

suggested a limit of 50 μg/L of acetate carbon equivalents to prevent regrowth 

(LeChevallier et al., 1991).  The results of the LeChevallier study are close to that of 

previous results recommending a limit of 10 μg/L AOC (Van der Kooij, 1990).  

2.2.3.2 Phosphorus and Nitrogen as the Limiting Nutrients in Distribution Systems 

In a study of six waterworks in Finland from surface and groundwater sources, 

Miettinen and Vartianinen (1997) found phosphorus to be limiting and important to 

microbial regrowth in distribution systems.  Phosphate-phosphorus concentrations were 

below the detection limit of 2 μg/L (suggested to be caused by upstream treatment 

processes).  The addition of 50 μg/L of phosphorus increased microbial growth.  

However, other inorganic nutrients including nitrogen, potassium, magnesium, and 

calcium did not show the same relationship to microbial growth.  The study suggested 

that very minor phosphorus concentration changes have the potential to greatly affect 

microbial regrowth (Miettinen and Vartiainen, 1997).  The sampling of 14 points in the 

Tokyo drinking-water distribution system (Sathasivan and Ohgaki, 1999) and lab-scale 

biofilm experiments using water from a Finland waterworks also identified phosphorus as 

the limiting nutrient (Lehtola et al., 2002). A study in Taiwan found that the addition of 

nitrate, ammonia, and phosphorus stimulated growth in a water treatment plant effluent 

and the addition of nitrate and phosphate stimulated growth in water distributed to an 

urban area.  However, the addition of nitrate, ammonia, or phosphorus did not stimulate 

growth in water distributed to a suburban area; the lack of growth stimulation in the 

suburban area was suggested to indicate that that water already contained sufficient 
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nutrients for growth.  The study also concluded that biofilm formation was greater with 

the addition of phosphorus than with an equivalent addition of nitrogen (Chu et al., 

2005).  Fang et al. (2009) investigated the effect of phosphorus on not only microbial 

growth but also EPS production and biofilm stability.  The addition of 3, 30 and 300 μg/L 

of phosphorus to de-chlorinated tap water both increased microbial growth and decreased 

EPS production by as much as 81%; decreased EPS production and increased biofilm 

structure heterogeneity were hypothesized to indicate reduced tolerance to disinfectants 

(Fang et al., 2009). 

2.2.3.3 Nutrient Limitations in Biological Filters 

Nishijima et al. (1997) studied the effect of the addition of phosphorus to 

biologically active carbon (BAC) on the biodegradation of organic compounds.  Using jar 

tests to coagulate water with various concentrations of polyaluminum chloride (PAC) and 

alum and a continuously stirred reactor with BAC, the study concluded that coagulation 

and sedimentation reduced phosphorus concentrations to between 0.01-0.002 mg/L when 

the influent water contained either 0.213 or 0.063 mg/L phosphorus.  Growth and 

biodegradation was determined to be phosphorus-limited and both were enhanced with 

the adsorption of phosphorus on BAC or the addition of phosphorus to the influent water 

(Nishijima and Shoto, 1997).  A different study of biofilters found that active biomass 

increased with increasing EPS near the inlet of the biofilter (Gao et al., 2008). 

The role of nutrients in EPS production, and ultimately biofilter clogging, was 

investigated using pilot-scale biofilters in Arlington, Texas.  A phosphorus-depleted 

biofilter (C:N:P molar ratio of 100:10:0) compared to a control biofilter (100:7:1) 

produced less free and bound EPS (measured as mg/L carbohydrates).  Additionally, the 

terminal headloss in the control biofilter compared to the phosphorus-depleted biofilter 

was 15 percent less, which allowed for a 15 percent longer run time and was estimated to 

save over $17,000 annually.  Thus, the supplementation of phosphorus was very practical 

(Lauderdale et al., 2011). 
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2.2.4 THE EFFECT OF NUTRIENT LIMITATIONS IN WASTEWATER TREATMENT 

The effects of nutrient limitations have been investigated in wastewater treatment 

processes (Sheng et al., 2010).  As with pure cultures and drinking-water experiments, 

carbon sources have been shown to affect process operations in wastewater treatment.  

For example, comparing activated sludge reactors fed with acetate and glucose, acetate 

achieved overall better treatment flocculation, lower effluent suspended solids, and a 

lower sludge volume index.  Glucose-fed sludge was noted to have the greatest amount of 

EPS (Li and Yang, 2007).  In addition, phosphorus- and nitrogen-limitations greatly 

affect wastewater treatment as described below. 

2.2.4.1 Phosphorus Limitation 

Phosphorus-limitation is an important consideration in wastewater treatment.  

Bura et al. (1998) fed a synthetic wastewater into a sequencing batch reactor at chemical 

oxygen demand to nitrogen to phosphorus (COD:N:P) ratios of 100:5:1 (balanced), 

100:5:0 (phosphorus-depleted), 100:5:0.2 (phosphorus-limited), and 100:1:1 (nitrogen-

limited).  COD:N:P ratios affected the composition and structure of the floc matrix, 

especially at limited or depleted phosphorus conditions.  Total EPS (carbohydrate plus 

protein, mg/g VSS) was higher under phosphorus-limitation than under balanced 

conditions; however, differences between the phosphorus-limited and phosphorus-

depleted conditions were minimal.  Also under both nitrogen- and phosphorus-

limitations, proteins consisted of a greater portion of total EPS as compared to the 

balanced condition.  Authors also noted that differences in EPS composition under 

various nutrient conditions suggest that EPS quality, in addition to quantity, is important 

to floc structure.  The greatest changes in sludge properties (including hydrophobicity, 

surface charge and the bound water content) were observed under phosphorus-limitation 

(Bura et al., 1998).   

The results of Bura et al. (1998) agree with the results of Liu et al. (2006), 

Ericsson and Eriksson (1988), and Lee (1997).  Under phosphorus-limitation (COD:N:P 

of 100:5:0.05 and compared to a COD:N:P of 100:5:1), increased phosphatase activity 
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and increased EPS (total polysaccharides) was observed in sludge.  A change in microbial 

floc structure was also noted (Liu et al., 2006).  Sludge swelling under phosphorus-

limitation was explained by an increase in EPS at an increased biochemical oxygen 

demand to phosphorus (BOD:P) ratio (Ericsson and Eriksson, 1988).  Lab studies in a 

sequencing batch reactor with synthetic feed water found phosphorus-depleted conditions 

(COD:N:P of 100:5:0) to increase carbohydrate, protein and DNA concentrations of EPS, 

and found phosphorus-limited conditions (COD:N:P of 100:5:0.2) to increase 

carbohydrates, uronic acids, DNA and proteins as compared to a nutrient-balanced 

condition (COD:N:P of 100:5:1) (Lee, 1997).  Additionally, the best COD:P ratio, in 

terms of sludge flocculation, dewaterability and settleability, was concluded to be 100:3 

to 100:5 (Hoa et al., 2003).   

2.2.4.2 Nitrogen Limitation 

Nitrogen-limitation is another important consideration in wastewater treatment.  

Hoa et al. (2003) found a relationship among nitrogen-limitation, EPS (polysaccharides 

and proteins) and various sludge properties.  Flocculation, dewaterability, and 

settleability were improved at COD:N<100:2 and COD:N>10 (Hoa et al., 2003).  

However, Durmaz and Sanin (2001) concluded that the mixed liquor suspended solids 

(MLSS) and mixed liquor volatile suspended solids (MLVSS) concentrations increase 

with increased C:N ratios and that higher C:N ratios (up to 40) produced EPS with more 

carbohydrates compared to proteins while a low C:N ratio (down to 5) produced protein-

rich EPS.  Authors noted that at low C:N ratios (under carbon-limitation) carbon is 

utilized solely for synthesis and energy, while at a high C:N ratios (nitrogen-limitation) 

excess carbon is used to produce MLVSS or EPS (Durmaz and Sani, 2001).  Thus, there 

is some disagreement as to the C:N ratio allowing for maximum EPS production. 

However, there is agreement that nitrogen-limitation does affect EPS production.  

Nitrogen-limited and nitrogen-depleted (COD:N:P of 100:1:1 and 100:0:1) experiments 

demonstrated a decrease in proteins and DNA concentrations of EPS (Lee, 1997). 

In addition, bound and free EPS react differently to nitrogen-limitation.  Tightly 

bound EPS was determined to be independent of C:N ratio while loosely bound EPS 
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proteins increased and carbohydrates decreased at low C:N ratios.  Additionally, floc 

sizes were shown to increase at high C:N ratios and decrease at low C:N ratios.  Only 

loosely bound proteins were shown to correlate positively with flocculation, settleability, 

and dewaterability of activated sludge flocs (Ye et al., 2011). 

Thus, there is no consistent nitrogen- or phosphorus-limitation that causes 

maximum EPS production in all wastewater systems; however, it is apparent that both 

nitrogen- and phosphorus-limitation and the nature of the carbon source greatly affect 

wastewater treatment operations. 

2.3 Rhizobia and EPS Production 

As drinking-water biofilter headloss has been linked to EPS production, 

knowledge of the microbial communities in biofilters and how these communities react to 

changes in nutrient conditions is essential to optimizing the operation of biofilters.    

2.3.1 BACTERIAL COMMUNITIES DOMINATING BIOFILTERS 

Prevalent isolates found in drinking-water treatment include Burkholderiales, 

Sphingomonas, and Afipia, Bosea and Bradyrhizobium from the Bradyrhizobiaceae 

family.  Burkholderiales are noted for mineralizing dissolved organic matter (Niemi et 

al., 2009).  Bosea are known for nitrate reduction, and Bradyrhizobium, and other 

Rhizobiales, are associated with the production of EPS and the ability to utilize versatile 

carbon sources.  Rhizobiales are further noted as consistent foulants in wastewater 

treatment membranes (Pang and Liu, 2007).   

A recent Water Research Foundation study of drinking-water pilot-scale BAC 

filters found that Burkholderia were dominant under carbon-limited conditions, and 

Bradyrhizobium were dominant under phosphorus-depleted conditions; increased EPS 

production was noted under the phosphorus-depleted condition.  The Bradyrhizobium 

population increased from 1.5 to 15 percent of the microbial community under 

phosphorus-depleted as compared to carbon-limited conditions (Lauderdale et al., 2011). 
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2.3.2 BRADYRHIZOBIUM AS EPS-PRODUCERS UNDER NUTRIENT LIMITATIONS 

Bradyrhizobium (a rhizobial genus) are well-known EPS producers (Garrity et al., 

2005) that have been noted to be present in drinking-water biofilters (Pang and Liu, 2007; 

Niemi et al., 2009; Lauderdale et al., 2011).  Bradyrhizobium is a genus of gram-

negative, aerobic, bacilli of the Bradyrhizobiaceae family.  Bradyrhizobium are soil- 

dwelling bacteria that nodulate leguminous plants, especially Glycine (soybean), 

initiating a nitrogen-fixing symbiosis (Garrity et al., 2005).  They are particularly known 

for producing EPS composed of glucose, mannose, galacturonic acid, acetate, 4-O-

methyl-galactose, and galactose, particularly when grown on glycerol, gluconate or 

mannitol (Puvanesarajah et al., 1987; Garrity et al., 2005).  However, the composition of 

EPS varies based on the carbon source (Karr et al., 2000). 

Colonies are typically opaque, white, and convex.   Colonies may become tan 

with prolonged incubation on carbohydrate-containing solid medium (Garrity et al., 

2005).  Bradyrhizobium japonicum USDA 110 is noted for forming both small, dry 

(raised to convex) and large, mucoid colonies when grown on yeast-extract-mannitol 

(YEM) agar.  Large colonies exceed 1 mm after 7-10 days at 28°C while small colonies 

are less than or equal to 1 mm in diameter (Fuhrmann, 1990; Basit et al., 1991). 

B. japonicum USDA 110 has been used in several studies of EPS production 

(Puvanesarajah et al., 1987; Karr et al., 2000; Louch and Miller, 2001; Quelas et al., 

2010; Donati et al., 2011), and its genome has been fully sequenced (Kaneko et al., 

2002).  Limiting nitrogen or phosphorus conditions have been shown to cause an increase 

in EPS production and a change in the type of EPS produced via several regulatory genes 

and circuits in related rhizobia (as reviewed by Skorupska et al., 2006).  As outlined 

below, several studies (Parniske et al., 1993; Becker et al., 1998; Quelas et al., 2010) 

have investigated the relationship between EPS production and symbiotic interactions by 

B. japonicum USDA 110.   
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2.3.3 EPS-RELATED GENE EXPRESSION 

Several genes have been identified in Bradyrhizobium and related rhizobia to 

participate in EPS regulation.  The exo/ess and pss gene clusters (e.g., exoB, exoR, exoS, 

mucR, expR, syrM, exoD exoX, exsB and expG genes) are reported as regulating the 

synthesis, polymerization, modification, and export of rhizobial EPS (as reviewed by 

Becker et al., 1998; Skorupska et al., 2006).  Deletion of the exoB gene has been shown 

to cause altered EPS composition affecting symbiotic interactions; and increased 

presence of this gene has been correlated with increased EPS production.  Uridine 

diphosphate (UDP)-galactose is formed from UDP-glucose by UDP-glucose4’-epimerase 

via the exoB gene (Canter Cremers et al., 1990; Buendia et al., 1991; Parniske et al., 

1993; Skorupska et al., 2006; Quelas et al., 2010).  Quelas et al. (2010) further 

determined when the exoB gene was inactivated in B. japonicum the bacterium produced 

17-24% of the EPS produced by the wild-type strain.  In a mutant with the 5’ region of 

exoB and 3’ region of exoP and exoT deleted, EPS production was drastically reduced 

(Quelas et al., 2006). 

2.4 Summary 

Previous research has shown that carbon-, nitrogen-, and phosphorus-limitations 

affect the production of EPS, and might be linked with increased headloss in drinking-

water biofilters.  Bradyrhizobium species might be important to EPS production in 

drinking-water biofilters, especially under nitrogen- and phosphorus-limitations.  Studies 

suggest that nitrogen and phosphorus supplementation may be a practical method to 

optimize biofilter operation, thereby decreasing headloss, increasing run time between 

backwashes, increasing water recovery, and decreasing energy requirements.  However, 

additional investigation of the role of EPS production by drinking-water microbial 

communities under drinking-water conditions is essential. 
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CHAPTER 3: MATERIALS AND METHODS 

This chapter details pure culture batch experiments, including a description of the 

growth and storage conditions of Bradyrhizobium japonicum and Bacillus cereus, and 

mixed community batch experiments.  It explains the methods used for extracellular 

polymeric substance (EPS) quantification and the water quality analyses performed.  

Appendix B contains step-by-step lab protocols for the methods described in this chapter, and 

Appendix C contains a chemical inventory list. 

3.1 Chemicals 

Chemicals used were generally ACS, analytical, or reagent grade, unless 

otherwise noted in Appendix C.  Appendix C provides a detailed list of chemical grades 

and manufacturers.   

3.2 Batch Experiments 

Pure culture (B. japonicum and B. cereus) and mixed community batch 

experiments were conducted with several carbon to nitrogen to phosphorus (C:N:P) 

molar ratios and compared against a nutrient-balanced molar ratio of 100:10:1. 

3.2.1 SYNTHETIC GROUNDWATER 

A synthetic groundwater (based on the composition determined for the 

groundwater in Rialto, CA) used previously in this research group (Li et al., 2010) was 

selected to control the concentration and bioavailability of nutrients.  The original recipe 

was modified to exclude perchlorate, include ammonia-nitrogen in place of sodium 

nitrate, and add a bioavailable organic carbon (acetic acid) and phosphorus source 

(phosphoric acid).  The carbon source and concentration were varied, and the nitrogen 

and phosphorus concentrations were based on the C:N:P target molar ratio for each 

experiment.  Carbon sources used include mannitol as the sole carbon source for B. 

japonicum experiments and a multi-carbon source (for 2 g/L as carbon: 0.6 g/L as carbon 
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of mannitol, 0.7 g/L as carbon of sucrose, and 0.7 g/L as carbon of acetate) for mixed 

community and B. cereus experiments.  In addition, one set of experiments replaced the 

sole nitrogen source (ammonium chloride) with 40% liquid ammonium sulfate (LAS).  

Vitamins (Staley, 1968) and minerals (London et al., 2011) were added based on stock 

solutions used previously in this research group.  In mixed community and B. cereus 

experiments, an organic buffer, MOPS, was added.  Lastly, the pH was adjusted to 7.2-

7.5 with sulfuric acid or sodium hydroxide to encourage the growth of B. japonicum, 

which grows best between pH 6.0-7.0 (Garrity et al., 2005).  Final concentrations of the 

synthetic groundwater components are provided in Table 3.1. 

Table 3.1: Synthetic Groundwater Composition. 

Components 
Concentration 

(mg/L) 
Components 

Concentration 

(mg/L) 

Salts:   Nutrients:   

Na2SO4 17.8 Carbon Source Varied 

K2CO3 6.9 NH4Cl or LAS Varied 

NaHCO3 289.2 H3PO4 Varied 

NaCl 13.7 Trace Metals:   

CaCl2 2.8 CuSO4*5H20 0.0574 

MgCl2 3.9 ZnSO4*7H2O 0.2880 

Vitamins:   NiCl2*6H2O 0.0216 

biotin 0.020 FeCl2*4H2O 0.7016 

folic acid 0.020 AlCl3*6H2O 0.2000 

pyridoxine-HCl 0.100 MnCl2*4H2O 0.2807 

riboflavin 0.050 CoCl2*6H2O 0.0382 

thiamine-HCl 0.050 Na2MoO4*2H2O 0.0254 

nicotinamide 0.050 H3BO3 0.0303 

calcium pantothenate 0.050 Na2SO4 0.1420 

B12 0.001  Buffer:   

p-aminobenzoic acid 0.050  MOPS Varied 
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A 20X stock solution of all components, except for nutrients (carbon, nitrogen 

and phosphorus), vitamins and minerals, and MOPS buffer, was composed, filter- 

sterilized (0.22 m), and stored at room temperature.  Stock solutions of phosphoric acid, 

ammonium chloride, and mannitol were made separately, autoclaved, and stored at room 

temperature.  Stock solutions of liquid ammonium sulfate (LAS) and carbon sources 

including glucose and sucrose were filter-sterilized and stored at 4°C.  Stock solutions of 

vitamins and trace metals were made separately, filter-sterilized (0.22 m), and stored at 

4°C.   

3.2.2 B. JAPONICUM 

B. japonicum USDA 110 (NRRL # B-4361) was obtained from the United States 

Department of Agriculture (USDA) Agricultural Research Service (ARS) Culture 

Collection (Peoria, Illinois).  The culture obtained was contaminated, and thus, B. 

japonicum was isolated from the culture based on morphology. 

The isolate was sequenced to confirm that the purified culture was 

Bradyrhizobium sp.  Universal bacterial primers 8F and 926R were used to amplify 

extracted DNA to target the 16S rRNA genes.  The Qiagen Gel extraction kit was used to 

further purify the specific target bands (1000 base pairs).  The resulting amplified DNA 

was sent to the Institute for Cellular and Molecular Biology (The University of Texas, 

Austin, TX) for sequencing (Applied Biosystems 3730 DNA analyzer, Life Technologies 

Corporation, Grand Island, NY).  The Basic Local Alignment Search Tool (BLAST, 

National Center for Biotechnology Information, Bethesda, MD) was used to compare the 

sequence data and confirm the isolate was Bradyrhizobium sp.   

3.2.2.1 B. japonicum Growth 

B. japonicum was grown in yeast extract mannitol (YEM) medium (modified 

from Danso and Alexander, 1974) containing 5 g/L mannitol, 0.5 g/L yeast extract, 0.2 

g/L MgSO4·7H2O, 0.1 g/L NaCl, 0.33 g/L K2HPO4·3H2O, 5 g/L Na gluconate, and 1 mL 

of 16.6% CaCl2 (sterilized by autoclaving separately and added to cool medium after 
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autoclaving).  Cultures were grown in 250-mL baffled culture flasks in YEM medium at 

30°C and 150 rpm; the medium was inoculated with a single B. japonicum colony grown 

on a YEM agar plate (15 g/L of agar were added to YEM medium) for 2 days.  Cultures 

were grown for two to three days to mid-log phase before washing cells and inoculating 

into experiments.  Figure 3.1 shows a photograph of B. japonicum colonies on YEM agar 

plates.   

 

Figure 3.1: B. japonicum Colonies on YEM Agar Plates. 

Cells were washed by centrifuging cells grown in YEM medium at 10,976 x g for 

20 minutes (min), resuspending in sterile synthetic groundwater (with a C:N:P molar 

ratio matching the current experiment), vortexing, and repeating two more times before 

transferring cells into synthetic groundwater experiments. 

3.2.2.2 B. japonicum Storage 

B. japonicum was stored long-term at either -80°C or in a liquid nitrogen dewar.  

Stocks were created by growing B. japonicum into mid-log phase (approximately 3 days) 

in YEM medium and mixing with an equal volume of 50% (v/v) glycerol solution.  

3.2.2.3 B. japonicum Enumeration 

Colonies were enumerated by spot plating on YEM agar plates (15 g/L of agar 

were added to YEM medium) and incubating at 30°C for two days.  Dilutions (1:10) were 
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performed in the synthetic groundwater used for each experiment, and three dilutions 

were plated in triplicate 10-μL spots. 

3.2.3 B. CEREUS 

B. cereus was obtained from the American Type Culture Collection (ATCC 

13061).  B. cereus is another soil-dwelling bacterium found in drinking-water biofilms 

(Cerrato et al., 2010).  B. cereus was stored in 25% glycerol at -80°C and grown for 24 

hours to an optical density at 600 nm (OD600) of 0.578 in Luria Broth (LB) medium 

before inoculating batch experiments.   

3.2.4 PURE CULTURE BATCH EXPERIMENT DESIGN 

Pure culture batch experiments were conducted using B. japonicum USDA 110 or 

B. cereus ATTC 13061.   

3.2.4.1 B. japonicum Experiments 

Sterile synthetic groundwater (50 mL) with the appropriate C:N:P molar ratio was 

added to a sterile 250-mL baffled culture flask.  Vitamins, minerals and washed bacteria 

were added.  Experiments were incubated for 2 weeks at 150 rpm and 30°C.  The B. 

japonicum population was monitored via triplicate spot plates at 1:10 dilutions in the 

same synthetic groundwater.  Population concentrations were recorded at the start of each 

experiment and for each measurement of EPS.  EPS was measured via the concentrations 

of carbohydrates, proteins and lipids in triplicate.   

Due to the unexpected results of the B. japonicum experiments in synthetic 

groundwater medium (no differences in total extracellular proteins and carbohydrates 

[including medium components] were apparent among balanced-nutrient, nitrogen-

limited or –depleted and phosphorus-limited or –depleted experiments), a set of batch 

experiments was conducted using Götz Minimal Medium to replicate the results of 

previous research (Lopez-Garcia et al., 2001; Quelas et al., 2006) finding that nitrogen-

limitation increased EPS production in B. japonicum.  B. japonicum was grown to mid-

log phase in YEM medium from a single colony grown on YEM agar or directly from 
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frozen stock in YEM medium.  B. japonicum, grown both ways, was then inoculated into 

50 mL of nitrogen-sufficient (1 mM (NH4)2SO4) or nitrogen-depleted (no addition of  

(NH4)2SO4) MOPS-Götz medium consisting of 27 mM mannitol as the sole C-source, 1.0 

mM (NH4)2SO4; 1.0 mM MgSO4; 6.1 mM K2HPO4; 3.9 mM KH2PO4; 0.1 mM CaCl2; 

0.1 mM NaCl; 0.01 mM Na2MoO4; 0.001 mM FeSO4 0.001, the following vitamins at 

0.02 mg l
–1

 each: biotin, thiamine–HCl, riboflavin, p-aminobenzoic acid, pyridoxine, and 

the pH adjusted to 7.0 with 40 mM MOPS buffer (Quelas et al., 2006).  At five days after 

inoculation, the batch experiments were measured for their total extracellular 

carbohydrate and protein content (including medium components) and their free 

carbohydrate and protein concentration. 

3.2.4.3 B. cereus Experiments 

Batch experiments were conducted in test tubes.  Sterile synthetic groundwater 

(10 mL) with the appropriate nutrient concentrations, vitamins, minerals and MOPS 

buffer was added to sterile 17-mm test tubes.  The B. cereus inoculum (0.2 mL) was 

added.  Experiments were incubated for 5 days at 150 rpm and 30°C.  The bacterial 

population was monitored via OD600.  EPS was measured via the concentrations of free 

and bound carbohydrates and proteins in triplicate. 

3.2.5 MIXED COMMUNITY BATCH EXPERIMENT DESIGN 

Mixed community batch experiments were conducted using biologically active 

carbon (BAC) received from the City of Arlington’s full-scale biologically active filter.  

Bacteria were released from the filter media by shaking 15 g BAC in synthetic 

groundwater (50 mL) for one hour.  The supernatant was then used to inoculate batch 

experiments.   

Batch experiments were conducted in test tubes.  Sterile synthetic groundwater 

(10 mL) with the appropriate nutrient concentrations, vitamins, minerals and MOPS 

buffer was added to sterile 17-mm test tubes.  The mixed community inoculum (0.2 mL) 

was then added.  Experiments were incubated for 5 days at 150 rpm and 30°C.  The 

bacterial population was monitored (OD600).  EPS was measured via the concentrations of 
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total extracellular carbohydrates and proteins (including medium components) and free 

and bound carbohydrates and proteins in triplicate. 

3.3 EPS Analyses 

EPS was extracted from planktonic cultures or wet BAC and analyzed for 

carbohydrates, proteins, and lipids.  When using microtiter plates to measure EPS 

components or optical density, a fresh well was used for each sample.   

3.3.1 PHOSPHATE BUFFERED SALINE SOLUTION (PBS) 

A stock of 1M PBS was prepared by dissolving 4 g NaCl, 0.1 g KCl, 0.5755 g 

Na2HPO4·7H2O, and 0.1 g KH2PO4 in deionized, distilled (DDI) water to a final volume 

of 500 mL (Ausubel et al., 2002).  A solution of 0.01M PBS was prepared by diluting 5 

mL of the 1M PBS to 500 mL DDI water.  The pH was adjusted to 7. Each solution was 

autoclaved and stored at room temperature. 

3.3.2 EPS EXTRACTION 

As described below, different EPS extraction protocols were used for planktonic 

cultures versus wet BAC.   

3.3.2.1 EPS Extraction from Planktonic Batch Experiments 

For the batch experiments (containing only planktonic cells), sequential 

processing steps were used to isolate different EPS fractions prior to carbohydrate and 

protein analysis as illustrated in Figure 3.2.  First, cells were separated from the sample 

by centrifugation (Avanti J-E Centrifuge, Beckman Coulter, Brea, CA) for 20 min at 4°C 

and 10,976 x g (Xu and Chellam, 2005), and the supernatant (spent culture media) was 

retained for analysis of total extracellular carbohydrates and proteins (including medium 

components) and further extraction of free EPS.  The cell pellet was retained for bound 

EPS extraction.  Next, free EPS was precipitated from the supernatant with three volumes
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Figure 3.2:  Processing Steps for Planktonic Cultures Prior to Measurement of EPS Fractions

Planktonic Culture 
Centrifuged for 20 min 
at 4°C and 10,976 x g  

Supernatant analyzed 
for Total Extracellular 

Components 

Supernatant added to 3 
volumes of ethanol at 

4°C for 48 hours 

Ethanol solution 
centrifuged at 3400 x g 

for 10 min at room 
temperature 

Supernatant discarded 

Pellet dried at room 
temperature for 2-3 hrs, 

resuspended in DDI 
water and analyzed for 

Free EPS 

Cell Pellet Resuspended 
in a Buffer Treatment 

for 8 hrs 

Buffer solution 
centrifuged for 20 min 
at 4°C and 10,976 x g 

Pellet discarded 

Supernatant analyzed 
for Bound EPS 
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of chilled ethanol and incubated at 4°C for 48 hours.  As ethanol does not precipitate 

mono- and disaccharides, ethanol precipitation would not precipitate carbon sources from 

the media.  After the incubation period, the sample and ethanol solution was centrifuged 

(Centrific™ Centrifuge Model 225, Fisher Scientific, Pittsburgh, PA) at 3400 x g for 10 

min at room temperature.  The supernatant was discarded and the ethanol precipitable 

material was dried at room temperature for 2-3 hrs and resuspended in DDI water for 

analysis (Quelas et al., 2006; Badireddy et al., 2008; Staudt et al., 2011).  Lastly, bound 

EPS was extracted by re-suspending the cell pellet for 8 h at room temperature in a buffer 

(10 mM Tris/HCl, pH 8, 10 mM EDTA, 2.5 percent NaCl).  After the 8-h incubation 

period, the solution was centrifuged (Avanti J-E Centrifuge, Beckman Coulter, Brea, CA)  

for 20 min at 4°C and 10,976 x g to separate the cell pellet from the supernatant 

containing bound EPS .  The cell pellet was discarded and the supernatant was retained 

for analysis (Badireddy et al., 2008; Lauderdale et al., 2011). 

Due to low concentrations of EPS found in drinking-water samples with 

planktonic bacteria, it is suggested that future analyses adjust this method to concentrate 

the samples by resuspending the precipitated free EPS in a smaller volume of DDI water 

and resuspending the cell pellet in a smaller volume of buffer. 

3.3.2.2 EPS Extraction from Wet BAC 

For wet BAC samples, EPS was extracted using an optimized version of the 

formaldehyde + heat method (Fang and Jia, 1996).  Tzu-Hsin Chiao and Ameet Pinto 

(The University of Michigan, personal communication, November 20, 2011) optimized 

EPS extraction for drinking-water BAC following the methods outlined by Fang and Jia 

(1996).  Fang and Jia considered five extraction methods and concluded that the EDTA 

method was best for sludge.  Chiao and Pinto concluded that a formaldehyde + heat 

extraction provided the most consistent carbohydrate (via the anthrone method) and 

protein (via the modified Bradford assay) results while minimizing cell lysis for drinking-

water wet BAC samples.  However, as a 600RPM shaker (used in the Chiao and Pinto 

method) was unavailable in our lab, the method was further modified.  EPS extraction 

was carried out with three shaker options for comparison: (1) a horizontal platform 
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shaker (New Brunswick Scientific Model M1058-0002, Enfield, CT) operated at 

approximately 500 rpm, (2) a 360° rotating Labquake® rotating shaker (Barnstead-

Thermolyne Model 4002110, Thermo Fischer Scientific, Inc., Waltham, MA) operated at 

9 rpm, and (3) an orbital shaker (Model 980001, VWR International, Radnor, PA) 

operated at approximately 400 rpm.  Additionally, measurement of carbohydrates was 

performed with both the phenol-sulfuric (Dubois et al., 1956) and anthrone methods 

(Raunkjaer et al., 1994; Frølund et al., 1996).   

Experiments were carried out using wet BAC from pilot filters at the John Kubala 

Water Treatment Plant in Arlington, Texas.  Water was decanted from wet BAC samples.  

Then, 2 g of wet BAC were transferred into a 15-mL sterile centrifuge tube, and 10 mL 

of 0.01M PBS at pH 7 and 60 μL of 36.5% (v/v) formaldehyde were added.  Samples 

were incubated at 4°C for 1 h on each shaker described previously and then transferred to 

an 80°C water bath for 10 min.  Samples were centrifuged (Centrific™ Centrifuge Model 

225, Fisher Scientific, Pittsburgh, PA) for 10 min at 5000xg and room temperature.  The 

supernatant containing the extracted total (bound and free) EPS was analyzed to 

determine the carbohydrate and protein content.  The remaining BAC was dried at 105°C 

for 1 hour to obtain its dry weight. 

3.3.3 CARBOHYDRATE CONCENTRATION  

Carbohydrates were measured by either a modified version of the anthrone 

method (Raunkjaer et al., 1994; Frølund et al., 1996) or the phenol-sulfuric method 

(Dubois et al., 1956).  The anthrone method has previously been shown to yield similar 

results as the phenol-sulfuric method in an activated sludge sample, and the anthrone 

method has shown a lower coefficient of variation (Frølund et al., 1996). 

3.3.3.1 Anthrone Method 

The anthrone method was used to measure carbohydrates in batch experiments.  

Anthrone reagent was made fresh daily (2 h prior to use) by adding 25 mg of anthrone to 

20 mL concentrated H2SO4.  Glucose standards (1.25 - 100 mg/L) were prepared.  To 

measure carbohydrates, 0.8 mL of sample followed by 1.6 mL of anthrone reagent was 
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added to a 15-mm glass test tube.  The test tubes were placed in a 100°C heat block for 14 

min, allowed to cool for 5 min in a 4°C water bath, and vortexed.  Carbohydrates were 

measured using a standard polystyrene 96-well microplate (Costar EIA/RIA plates) with 

200 μL of sample in triplicate by reading the absorbance at 625 nm in a microtiter plate 

reader (Bio-Tek Synergy HT, BioTek, Winooski, VT).  Absorbances were measured with 

a 1-cm pathlength correction.  The coefficient of determination of standard curves 

measured in a microplate (y=0.0062x+0.0646, R
2
=0.998) either matched or exceeded the 

coefficient of determination measured using a 1-cm quartz cuvette (y=0.0167x+0.1857, 

R
2
=0.979) on an Agilent 8453 UV-Visible Spectrophotometer (Agilent Technologies, 

Santa Clara, CA).  Figure 3.3 displays a typical standard curve using the microplate.  A 

suggestion for improvement on this method would be to acid-wash and bake the glass test 

tubes to remove residual polysaccharides and to use a 5-cm cuvette for low 

concentrations. 

 

Figure 3.3: Typical Anthrone Method Standard Curve Using a Microplate.  Error bars 

represent standard deviation among triplicate absorbance measurements. 

3.3.3.2 Phenol-Sulfuric Method 

The phenol-sulfuric method (Dubois et al., 1956) was used to quantify 

carbohydrates in early experiments aimed at optimizing the extraction of EPS from 
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drinking-water BAC.  Glucose standards were prepared at 5, 7, 11 and 25 mg/L.  To 

measure carbohydrates, 2 mL of sample were added to a 17-mm glass test tube.  Phenol 

(0.05 mL of 80%) was added, and 5 mL of 95% sulfuric acid was added rapidly.  After 

10 min, samples were vortexed and placed in a 27.5°C water bath for 15 min.  

Carbohydrates were measured using a standard polystyrene 96-well plate (Costar 

EIA/RIA plates) with 200 μL of sample in triplicate by reading the absorbance at 490 nm 

on a microtiter plate reader (Bio-Tek Synergy HT, BioTek, Winooski, VT).  Absorbances 

were measured with a 1-cm pathlength correction.   Figure 3.4 displays a typical standard 

curve. 

 

Figure 3.4: Typical Phenol-Sulfuric Method Standard Curve.  Error bars represent 

standard deviation among triplicate absorbance measurements. 

3.3.4 PROTEIN CONCENTRATION 

Proteins were measured using the Bio-Rad Protein Assay Kit (Bio-Rad 

Laboratories, Hercules, CA) based on the Bradford method (Bradford, 1976).  The 

microassay procedure for a linear range of 1.25 to 10.00 μg/mL was used with bovine 

serum albumin (BSA) as the standard.  Proteins were measured using a polystyrene 96-

well plate (Costar EIA/RIA plates) with 200 μL of sample in triplicate by reading the 

absorbance at 595 nm on a microtiter plate reader (Bio-Tek Synergy HT, BioTek, 
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Winooski, VT).  Absorbances were measured with a 1-cm pathlength correction.  Figure 

3.5 displays a typical standard curve.  Using a 5-cm cuvette for low concentrations of 

proteins may increase the accuracy of measurements. 

 

Figure 3.5: Typical Protein Standard Curve.  Error bars represent standard deviation 

among triplicate absorbance measurements. 

3.3.5 LIPID CONCENTRATION 

Lipids were measured using the sulfo-phospho-vanillin method (Frings et al., 

1972).  Olive oil (0.9135 g/mL, Acros Organics) standards were constructed in ethanol 

for final concentrations of 639.45, 767.34, 1023.12, and 1278.9 mg/dL.  Frings et al. 

(1972) demonstrated a linear range of 600-1250 mg/dL.  Vanillin reagent was made by 

adding 1.05 g of vanillin (99%, Acros Organics) to 200 mL DDI and used immediately to 

make phospho-vanillin reagent.  Phospho-vanillin reagent was made by adding 300 mL 

of concentrated (85%) H3PO4 to 200 mL of vanillin reagent and was stored in a brown 

bottle at room temperature for up to 2 months.  

To measure lipids, 20 μL of sample and 0.2 mL of concentrated (95%) H2SO4 

were added to a 15-mm test tube and vortexed.  Samples were heated for 10 min in a 

100°C heat block and cooled in a 4°C water bath for 5 min.  10 mL of phospho-vanillin 

reagent was added to the test tubes, which were then vortexed, incubated for 15 min in a 

37°C water bath, and cooled for 5 min at room temperature. Lipids were measured using 
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a polystyrene 96-well plate (Costar EIA/RIA plates) with 200 μL of sample in triplicate 

by reading the absorbance at 540 nm on a microtiter plate reader (Bio-Tek Synergy HT, 

BioTek, Winooski, VT).  Absorbances were measured with a 1-cm pathlength correction.  

Figure 3.6 displays a typical standard curve. 

 

Figure 3.6: Typical Lipid Standard Curve.  Error bars represent standard deviation among 

triplicate absorbance measurements. 

3.3.6 OPTICAL DENSITY 

Optical density was monitored as a measure of bacterial growth.  The optical 

density of samples was measured using a standard polystyrene 96-well plate (Costar 

EIA/RIA plates) with 200 μL of sample in triplicate by reading the absorbance at 600 nm 

on a microtiter plate reader (Bio-Tek Synergy HT, BioTek, Winooski, VT).  Absorbances 

were measured with a 1-cm pathlength correction.   

3.4 Water Quality Analyses 

pH, dissolved organic carbon (DOC), ortho-phosphate, and ammonia-nitrogen 

were measured in the synthetic groundwater. 
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3.4.1 PH 

pH was measured in triplicate with stirring using a combination electrode and 

meter (Model 720A, Orion Research Inc., Boston, MA). 

3.4.2 ORTHO-PHOSPHATE 

The ascorbic acid method (Standard Method 4500-P E) was followed to measure 

dissolved reactive phosphorus (APHA et al., 2005).  KH2PO4 was dried for 1 h at 105°C, 

and a 1000 mg/L as phosphorus standard stock solution was prepared in DDI.  The stock 

solution was stored in a glass bottle at 4°C.  A 40 mg/L solution of ammonium molybdate 

tetrahydrate and a 3.4285 mg/L solution of antimony potassium tartrate were made in 

DDI water and stored in glass-stoppered bottles.  A 0.1 M ascorbic acid solution was 

made fresh daily by adding 0.1056 g of ascorbic acid to 6 mL of DDI water.  The 

combined reagent (used within 4 hours) was composed of 10 mL 5N H2SO4, 1 mL 

antimony potassium tartrate solution, 3 mL ammonium molybdate solution and 6 mL 0.1 

M ascorbic acid solution. 

To measure ortho-phosphate (dissolved phosphorus), 5 mL of sample or standard 

were added to an acid-washed 17-mm glass test tube.  One drop of phenolphthalein 

indicator was added; sulfuric acid (5N) was added drop wise to dissipate the color, if 

necessary.  After adding 0.8 mL of combined reagent, samples were vortexed and 

incubated at room temperature for 10 min.  Ortho-phosphate was measured using a 

polystyrene 96-well plate (Costar EIA/RIA plates) with 200 μL of sample in triplicate by 

reading the absorbance at 880 nm on a microtiter plate reader (Bio-Tek Synergy HT, 

BioTek, Winooski, VT).  Absorbances were measured with a 1-cm pathlength correction.  

Figure 3.7 displays a typical standard curve. 
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Figure 3.7: Typical Ortho-Phosphate Standard Curve.  Error bars represent standard 

deviation among triplicate absorbance measurements. 

3.4.3 AMMONIA-NITROGEN 

Ammonia-nitrogen was measured with a Model 95-12 Orion® ion-selective 

electrode probe and Model 920A meter (Thermo Fischer Scientific, Inc., Waltham, MA).  

Ionic strength adjuster (“Ammonia Gas-Sensing Electrode Instruction Manual,” n.d.) was 

prepared by adding 100 g NaOH to 250 mL DDI water and stirring until pellets 

dissolved.  Then, 9.3 g of disodium EDTA was added.  The solution was again stirred and 

allowed to cool.  Separately, 15 mg of thymol blue were added to 50 mL methanol and 

dissolved by stirring.  The methanol solution was added to the solution with NaOH and 

EDTA, stirred, raised to a final volume of 500 mL and stirred. 

To create a standard curve, 100 mL of DDI water and 2 mL of ionic strength 

adjuster were added to a 150-mL flask and stirred on a stirplate.  Incremental amounts 

(20 μL, 80 μL, 100 μL, 300 μL and 500 μL) of 500 mg/L ammonia-nitrogen stock 

solution (made with ammonium sulfate) were added to the solution, and the mV were 

measured after each addition.  The mV values were plotted against the log of the 

concentrations (0.1 mg/L, 0.5 mg/L, 1.0 mg/L, 2.5 mg/L, and 5.0 mg/L of NH3-N, 

respectively), and a best fit line was plotted.    

y = 0.3232x + 0.0751 

R² = 0.9938 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6

O
D

8
8

0
 

Ortho-Phosphate-P (mg/L) 



38 

 

To measure the ammonia-nitrogen concentration of a sample, the pH was raised 

by adding 200 μL of ionic strength adjuster to a 10-mL sample in a 20-mL vial with 

continuous stirring.  The mV response was recorded and used to calculate ammonia-

nitrogen from the standard curve.  Note that this method measures total ammonia since 

the ionic strength adjuster converts ammonium to ammonia. A typical ammonia-nitrogen 

standard curve is shown in Figure 3.8.  To prevent loss of ammonia gas, all samples and 

standards were covered during measurements as recommended by the manual (Orion 95-

12 Ammonia Electrode Instruction Manual, n.d.). 

 

Figure 3.8: Typical Ammonia-Nitrogen Standard Curve. 

3.5 Microscopy 

 The Nikon Eclipse 80i microscope (Nikon Instruments, Inc., Melville, NY) was 

used for phase contrast microscopy of bacterial cells at a 60X objective and 10X ocular 

(600X total) magnification.  
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter, the results of the current research are presented.  The first section 

summarizes experiments aimed at optimizing the extracellular polymeric substances 

(EPS) extraction procedure from wet biologically active carbon (BAC).  The second 

section summarizes observations relating to the growth of Bradyrhizobium japonicum 

and batch experiments conducted with B. japonicum.  In the final two sections, 

experiments with a mixed community of drinking-water bacteria and a pure culture of B. 

cereus are described.  Batch experiments were conducted with various carbon sources 

and with varied carbon to nitrogen to phosphorus (C:N:P) molar ratios.  All C:N:P ratios 

noted are the targeted ratios. 

4.1 BAC EPS Extraction and Carbohydrate Measurement Methods 

Experiments were run to select a shaker to use in the EPS extraction protocol for 

wet BAC and to compare the anthrone and phenol-sulfuric methods for carbohydrate 

determination.  Table 4.1 shows the percent difference among the mean carbohydrate 

concentrations calculated among all three shakers and the carbohydrate concentration 

measured using each shaker (|mean-shaker measurement|/mean).  The orbital shaker 

produced the concentration closest to the mean of the three methods using the phenol-

sulfuric acid method, and the horizontal shaker produced the concentration closest to the 

mean of the three methods using the Anthrone method.  However, as the rotating shaker 

was the most convenient to use due to reliability, availability, cost, and ease of moving it 

to and from the 4°C cold room, the 9 rpm shaker was selected.   

Figure 4.1 displays the carbohydrate concentration normalized to the dry weight 

of granular activated carbon (GAC).  The anthrone method provided more consistent 

results across the various shaking options and produced higher EPS concentrations using 

the rotating shaker.  While the standard deviation among absorbance measurements 

appears greater with the anthrone method than with the phenol-sulfuric method for 

carbohydrate determination in this set of experiments, this was later corrected by 
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vortexing each sample immediately before removing triplicate 200-μL aliquots for 

absorbance measurement.   

Table 4.1: Percent Difference Among Mean Carbohydrate Concentrations Among all 

Three Shakers and the Carbohydrate Concentration Extracted Using Each Shaker. 

 
Dubois Method 

  Horizontal Shaker Orbital Shaker Rotating Shaker 

Filter 2, Sampled at Top 13% 45% 32% 

Filter 2, Homogenized 116% 71% 45% 

Filter 16, Sampled at Top 60% 23% 38% 

Filter 16, Homogenized 29% 34% 64% 

Average: 55% 43% 45% 

 
Anthrone Method 

  Horizontal Shaker Orbital Shaker Rotating Shaker 

Filter 2, Sampled at Top 16% 2% 15% 

Filter 2, Homogenized 18% 36% 18% 

Filter 16, Sampled at Top 5% 27% 22% 

Filter 16, Homogenized 44% 91% 47% 

Average: 21% 39% 25% 
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Figure 4.1: Carbohydrate Content per Gram of BAC of Extracted EPS from Pilot-Scale Filters in Arlington, Texas Using Three 

Shaker Variations in the EPS Extraction Procedure and Two Different Methods of Carbohydrate Determination.  Error bars 

represent standard deviation among triplicate absorbance measurements.
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4.2 Bradyrhizobium japonicum USDA 110 Experiments 

4.2.1 B. JAPONICUM BATCH EXPERIMENTS 

The results of batch experiments with B. japonicum are provided in Appendix A.  

Additional work is required to optimize B. japonicum batch experiments. 

4.2.2 B. JAPONICUM MORPHOLOGY AND GROWTH CHARACTERISTICS 

Several important observations and modifications were made in response to 

morphology and growth changes in B. japonicum over time. 

 Three colony morphologies were observed when B. japonicum was grown on 

yeast extract mannitol (YEM) agar plates.  Most commonly, a wild-type (WT) 

morphology was observed as described in literature (Figure 4.2 and 4.3).  The 

single colonies either matched the classification of large, mucoid (LM) colonies 

exceeding 1 mm in diameter after 10 days  or small, defined (SD) colonies not 

exceeding 1 mm in diameter after 10 days (Fuhrmann, 1990).  However, a change 

to an extreme mucoid morphology (Figure 4.4) was observed when cells were 

grown in YEM medium where the calcium had precipitated (due to adding 

calcium stock solution to YEM medium while the medium was still too hot from 

autoclaving).  The extreme mucoid morphology produced a lawn of bacterial cells 

(did not produce single colonies).  When viewed by phase contrast microscopy, 

the LM and mucoid cells clearly looked like rods; however, the SD cell 

morphology looked different (Figures 4.2Figure -4.4).  



43 

 

 

Figure 4.2: Large, Mucoid (LM) Colonies:  Left: LM Cells Under a Microscope (600X 

Total Magnification).  Right: LM Colonies on YEM Agar. 

 
Figure 4.3: Small, Defined (SD) Colonies.  Left: SD Cells Under a Microscope (600X 

Total Magnification).  Right: SD Colonies on YEM Agar. 

 

Figure 4.4: Mucoid Colony Morphology.  Left: Rafts of Mucoid Cells Under a 

Microscope (600X Total Magnification).  Right: Mucoid Colonies on YEM Agar.  
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 A decrease in bacterial density was observed in freezer stocks stored at -80°C 

over a period of about four months.  Liquid nitrogen was selected as a better long-

term storage option for these bacteria (Allievi and Salardi, 1993; Safronova and 

Novikova, 1996).  No decreases in colony counts were observed over time under 

liquid nitrogen storage. 

 During growth of B. japonicum in YEM medium, various degrees of flocculation 

were observed.  Dual experiments conducted with the same medium and colonies 

grown on the same plates resulted in very different amounts of flocculation; thus 

the trigger for flocculation is unclear.  Additionally, due to this flocculation, 

centrifugation of a cell pellet for washing before transferring into synthetic 

groundwater experiments was difficult.  Centrifugation resulted in more of a 

floating cloud of cells than a typical pellet of cells (see Figure 4.5).  The extent of 

this clouding varied among the colonies selected for inoculation; at times, a 

pelleted cloud could be formed but was still much larger and fluffier than a typical 

cell pellet.  To accommodate this flocculation, stir bars were added to flasks to 

break up the flocs and increase homogeneity during shaking. 
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Figure 4.5: Flocculation of B. japonicum in YEM Medium.  Top: Flocs in 250-mL 

Baffled Flask.  Bottom Left: Centrifuged “Cloud” of Flocculated Cells.  Bottom Right: 

Flocculation Viewed Under a Microscope (600X Total Magnification). 

 Traditional dilutions of B. japonicum in 1.5-mL centrifuge tubes followed by spot 

or spread plating were very inconsistent, and cell numbers often did not decrease 

with increasing dilution.  Several methods of spread plating and spot plating using 

various diluents including phosphate buffered saline (PBS), synthetic 

groundwater, and YEM medium and various dilution flasks (e.g., glass test tubes, 

plastic 1.5-mL tubes, and tissue-culture-treated sterile microplates) were tested.  

Sterile tissue-culture-treated microplates were selected.  The treating on these 



46 

 

plates was suspected to minimize cell adhesion to walls, and allowed for the 

shortest amount of time between preparing dilutions and plating.  Spot plating 

was selected as it produced consistent results with the well plates.  Dilutions were 

performed using the type of medium in which the bacteria were grown to 

minimize shock to bacteria due to sudden environmental changes.    

 When grown in YEM medium, B. japonicum flocculated and the growth medium 

became very turbid; centrifugation at 10.976 x g for 20 min produced a fluffy 

cloud.  However, when grown in groundwater medium or Götz Minimal Medium, 

no turbidity was produced; centrifugation at 10.976 x g for 20 min did not 

produce a cell pellet.  Additional investigation is required to determine why cells 

did not grow as expected in synthetic groundwater or Götz Minimal Medium. 

4.3 Mixed Community Batch Experiments 

Batch experiments were run under several C:N:P molar ratios to examine the 

relationship between C:N:P molar ratio and EPS production.  To quantify changes in 

EPS, the concentrations of protein, carbohydrate and lipids were monitored.  However, 

lipid concentrations were immeasurable in all batch experiments. A mixed community of 

drinking-water bacteria extracted from BAC in full-scale biological filters in Arlington, 

Texas was used to inoculate the batch experiments.   

4.3.1 MIXED COMMUNITY EXPERIMENTS AT 2G/L OF CARBON 

Triplicate batch experiments were conducted at a carbon concentration of 2 g/L 

composed of a mixture of mannitol, acetic acid and sucrose.  Nutrient-balanced (C:N:P 

molar ratio of 100:10:1), nitrogen-depleted (C:N:P molar ratio of 100:0:1) and 

phosphorus-depleted (C:N:P molar ratio of 100:10:0) batch experiments with a mixed 

community of drinking-water bacteria were conducted.   

At five days after inoculation, the batch experiments were measured for the 

optical density (OD600) and carbohydrates and proteins, the two main components of this 

EPS.  Figure 4.6 displays the OD600 for each sample at Day 5.  Growth was limited under 
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the nitrogen- and phosphorus-depleted conditions as compared to the nutrient-balanced 

condition.  EPS was analyzed following three different processing methods (described in 

section 3.3.2): (1) cells were removed from the supernatant and then total extracellular 

proteins and carbohydrates were quantified in the supernatant (including medium 

components), (2) cells were removed and ethanol precipitation was performed on the 

supernatant to obtain free EPS, and (3) the removed cells (pelleted) were processed to 

obtain bound EPS.   

 

Figure 4.6: Mixed Community Batch Experiment  

Optical Density at Day 5. 

Total extracellular carbohydrates and proteins (including medium components) 

were monitored at day 5 and compared to carbohydrates and proteins in sterile media.  

All sterile media (100:10:1, 100:0:1, and 100:10:0) contained carbohydrate 

concentrations greater than 100 mg/L (the upper method detection limit).  The spent 

culture medium following the first processing method (analysis of the supernatant after 

centrifugation) under a balanced (100:10:1) nutrient condition contained 21.25 ± 1.84 

mg/L as glucose (mean ± standard deviation of triplicate absorbance measurements).  

Both the nitrogen- and phosphorus-depleted spent culture media, following the first 

processing method, contained carbohydrate concentrations greater than 100 mg/L.  

Comparing the data for total extracellular carbohydrates to the OD600 data for the three 

nutrient conditions, the greatest growth (highest OD600) corresponded to the lowest 
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remaining carbohydrate concentration in the culture (including medium components).  

The decrease in carbohydrate concentration in the spent culture medium as compared to 

sterile medium is likely a reflection of growth as bacteria are consuming carbohydrates to 

produce energy and biomass.  Thus, the decrease in carbohydrates in the nutrient-

balanced culture medium is likely a reflection of cell growth rather than EPS production.  

These data illustrate the importance of extracting EPS from the media.  Total 

extracellular proteins were higher in the spent culture media (approximately 10 mg/L as 

BSA) than in the sterile culture media (below the 1.25 mg/L detection limit) under each 

nutrient condition.  As proteins in sterile media were so low, it is likely these increases in 

protein concentrations demonstrate EPS production. 

 Figure 4.7 displays the carbohydrate and protein concentrations following ethanol 

precipitation to obtain free EPS and processing of the cell pellet to obtain bound EPS.  

The processing of free and bound EPS is a common means of EPS extraction in literature 

(Badireddy et al., 2008; Lauderdale et al., 2011).  Bound polysaccharides were found to 

be the greatest component of EPS measured (by mass).  The concentration of bound 

polysaccharides was higher under nitrogen- and phosphorus-depleted conditions as 

compared to the nutrient-balanced condition.  Free polysaccharides normalized to OD600 

followed the same trend.  However, free and bound proteins normalized to OD600 

appeared similar under the three nutrient conditions.  
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Figure 4.7: Mixed Community Batch Experiment Normalized Free and Bound 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent standard 

deviation among triplicate absorbance measurements. 

4.3.2 MIXED COMMUNITY BATCH EXPERIMENTS WITH 200, 20, AND 2 MG/L OF 

CARBON  

Using the same experimental set-up, batch experiments were run at lower carbon 

concentrations (200, 20 and 2 mg/L).  The results of the experiments at 200 mg/L are 

shown in Figure 4.8 (OD600) and Figure 4.9 (free and bound EPS measurements).  Note 

that a third nutrient limitation was added where some phosphorus (approximately 0.5 

mg/L) was added to reach a C:N:P molar ratio of 100:10:0.1 (phosphorus-limited).  The 

nutrient-balanced condition allowed for greater growth (Figure 4.8) than did the nutrient-

depleted or nutrient-limited conditions.  The overall growth under all nutrient conditions 

was less than that at 2 g/L carbon (Figure 4.6), as expected.  Bound polysaccharides 

normalized to OD600 were again higher under nitrogen- and phosphorus-depleted 

conditions as compared to the nutrient-balanced condition.  Considering the phosphorus-

limited condition (100:10:0.1), Figure 4.9 shows that the addition of only about 0.5 mg/L 
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of phosphorus reduced the overall EPS produced as compared to the phosphorus-depleted 

condition.  However, cell growth was still limited (Figure 4.8) as compared to the 

nutrient-balanced (C:N:P molar ratio of 100:10:1) condition.  

 

 

 
Figure 4.8: Mixed Community Batch Experiment Optical Density at Day 5.  Error bars 

represent standard deviation among triplicate absorbance measurements. 
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Figure 4.9: Mixed Community Batch Experiment Normalized Free and Bound EPS 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent standard 

deviation among triplicate absorbance measurements. 
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pilot-scale biofilters.  When supplementing the pilot-scale biofilter with liquid 

ammonium sulfate (LAS) as a nitrogen source, an increase in headloss was noted as 

compared to a different season where background ammonia concentrations in the influent 

were sufficient to reach the target carbon to nitrogen ratio.  Collaborators on the project 

questioned whether LAS could have triggered increased EPS production resulting in 

greater headloss in the pilot-scale biofilter (Chance Lauderdale, Carollo Engineers, 

personal communication, April 5, 2013).   

Batch experiments with a mixed community were run to determine whether 

ammonium chloride versus LAS as the sole nitrogen source would differentially impact 

EPS production.  At a carbon concentration of 2 g/L composed of a mixture of mannitol, 

acetic acid and sucrose, a nutrient-balanced condition (C:N:P molar ratio of 100:10:1) 

with ammonium chloride as the sole nitrogen source, a nutrient-balanced condition with 

LAS as the sole nitrogen source, and nitrogen-depleted (C:N:P molar ratio of 100:0:1) 

batch experiments were conducted.    

At five days after inoculation, the batch experiments were measured for free and 

bound EPS.  Total free and bound proteins and carbohydrates with ammonium chloride 

as the sole nitrogen source were 32 mg/L and with LAS as the sole nitrogen source were 

46 mg/L.  The EPS concentrations corresponded with OD600 measurements of 

approximately 0.65 (ammonium chloride) and 0.80 (LAS).  Thus, an increase in total 

EPS concentration and cell density was measured when LAS as compared to ammonium 

chloride was dosed in batch experiments as the sole nitrogen source.  Total EPS 

concentrations normalized to OD600 are shown in Figure 4.10.  Slight increases in 

normalized free EPS were observed in the experiment with LAS over that with 

ammonium chloride.  These measurements correspond with greater precipitation of EPS 

observed visually during the ethanol precipitation step.  However, there were not 

apparent differences between total EPS production normalized to OD600 in the batch 

experiments with LAS and ammonium chloride.   

A difference in cell pellet color between the two samples was observed; the LAS 

batch experiment produced a pink cell pellet while the ammonium chloride batch 
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experiment produced a cream colored cell pellet.  As one possible explanation for the cell 

pellet color difference might be a shift in the microbial community or the composition of 

the polysaccharides or proteins, further investigation is required. 

 
Figure 4.10: Mixed Community Batch Experiment Normalized Free and Bound EPS 

Carbohydrate and Protein Measurements at Day 5.  Error bars represent standard 

deviation among triplicate absorbance measurements. 
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various C:N:P molar ratios tested.  Experiments at lower concentrations of carbon should 

be conducted, with concentration of the extracted EPS prior to EPS measurement.  

Additionally, background concentrations of nitrogen and phosphorus in the media should 

be measured so that actual C:N:P molar ratios (as opposed to dosed C:N:P molar ratios) 

can be calculated.  Batch experiments comparing the effect of ammonium chloride versus 

LAS as the sole nitrogen source did not show any apparent differences between total (free 

plus bound normalized to OD600) EPS production by a mixed community of drinking-

water bacteria.   

In addition, these batch experiments allowed for the evaluation of the EPS 

extraction methods that have been used in this research.  Without performing ethanol 

precipitation, the carbohydrate concentrations measured reflect EPS production and 

remaining carbohydrates dosed in the medium.  Thus, increases in EPS production might 

be confounded by decreases in the concentrations of carbohydrates in the medium.  

Further, extracting bound EPS from these experiments made it apparent that the majority 

of EPS in these planktonic cultures was bound to cells.  Overall, these experiments have 

provided a baseline upon which flow-through chemostat with biofilm supports and 

bench-scale column experiments will be run and monitored. 

4.4 B. cereus Batch Experiments 

Batch experiments with B. cereus were conducted at a carbon concentration of 2 

g/L composed of a mixture of mannitol, acetic acid and sucrose.  Nutrient-balanced 

(C:N:P molar ratio of 100:10:1), nitrogen-depleted (C:N:P molar ratio of 100:0:1) and 

phosphorus-depleted (C:N:P molar ratio of 100:10:0) nutrient conditions were tested.  

 At five days after inoculation, the batch experiments were measured for the 

OD600, carbohydrates, and proteins.  Figure 4.11 displays the OD600 for each nutrient 

condition.  Growth was limited under the nitrogen- and phosphorus-depletion as 

compared to the nutrient-balanced condition, as expected.  EPS was analyzed following 

three different processing methods (described in section 3.3.2): (1) cells were removed 

from the supernatant and then total extracellular proteins and carbohydrates were 
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quantified in the supernatant (including medium components), (2) cells were removed 

and ethanol precipitation was performed on the supernatant to obtain free EPS, and (3) 

the removed cells (pelleted) were processed to obtain bound EPS.   

 

 

 
Figure 4.11:  B. cereus Batch Experiment Optical Density at Day 5. 

 Total extracellular carbohydrates and proteins (including medium components) 

were monitored at day 5 and compared to carbohydrates and proteins in sterile media.    

All sterile media (100:10:1, 100:0:1, and 100:10:0) contained carbohydrate 

concentrations greater than 100 mg/L (the upper method detection limit).  The spent 

culture medium following the first processing method (analysis of the supernatant after 

centrifugation) under a nutrient-balanced (100:10:1) condition contained 34.07 ± 0.62 

mg/L as glucose (mean ± standard deviation of triplicate absorbance measurements).  

Note that this carbohydrate concentration in the spent nutrient-balanced medium is the 

only difference from similar batch experiments with a mixed community of drinking-

water bacteria (see section 4.3.1).  Both the nitrogen- and phosphorus-depleted spent 

culture media, following this first processing method, contained carbohydrate 

concentrations greater than 100 mg/L.  Comparing the data for total extracellular 

carbohydrates to the optical density data for the three nutrient conditions, the greatest 

growth (highest optical density) corresponded to the lowest remaining carbohydrate 
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concentration in the culture (including medium components).  The decrease in 

carbohydrates in the spent culture media as compared to sterile medium is likely a 

reflection of growth as bacteria are consuming carbohydrates to produce energy and 

biomass.  Thus, the decrease in carbohydrates in the nutrient-balanced spent culture 

medium is likely a reflection of cell growth rather than EPS production.  These data 

illustrate the importance of extracting EPS from the media.  Total extracellular proteins 

were higher in the spent culture media (approximately 10 mg/L as BSA) than in the 

sterile media (below the 1.25 mg/L detection limit) under each nutrient condition.  As 

proteins in sterile media were so low, it is likely that these increases in protein 

concentrations demonstrate EPS production. 

Figure 4.12 displays the carbohydrate and protein concentrations following 

ethanol precipitation to obtain free EPS and processing of the cell pellet to obtain bound 

EPS.  A similar trend was seen in the B. cereus experiments as in the mixed community 

of drinking-water bacteria in terms of bound carbohydrates normalized to OD600.  Bound 

carbohydrates normalized to OD600 increased under nitrogen- and phosphorus-depleted 

conditions, but free normalized carbohydrates and both free and bound normalized 

proteins decreased under nitrogen- and phosphorus-depleted conditions as compared to a 

nutrient-balanced condition.  Overall free and bound EPS production normalized to 

OD600 and growth was less than that of the mixed community of drinking-water bacteria 

under the same nutrient conditions.  Additionally, these experiments confirmed the 

importance of free and bound EPS extraction protocols to separate carbohydrate and 

protein due to EPS from that in the medium as was also illustrated by the mixed 

community experiments. 
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Figure 4.12: B. cereus Batch Experiment Normalized Free and Bound EPS Carbohydrate 

and Protein Measurements at Day 5.  Error bars represent standard deviation among 

triplicate absorbance measurements.  
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CHAPTER 5: CONCLUSIONS 

 In this chapter, a summary of the conclusions reached through this research is 

presented and recommendations for future work are outlined. 

5.1 Summary of Findings 

This research studied the effect of nitrogen- and phosphorus-limitations on the 

production of extracellular polymeric substances (EPS) in pure cultures of 

Bradyrhizobium japonicum and Bacillus cereus and a mixed community of drinking-

water bacteria obtained from a full-scale biologically active carbon (BAC) filter.  The 

main objective of this project (the first phase of an on-going research project) was to 

investigate and optimize the methods that will be used in future research and obtain a 

baseline to aid in designing flow-through, bench-scale experiments.  Batch experiments 

were conducted at multiple carbon to nitrogen to phosphorus molar ratios (C:N:P ratios 

of 100:10:1, 100:0:1, 100:10:0.1 and 100:10:0) and several carbon concentrations (2 g/L, 

200 mg/L, 20 mg/L and 2 mg/L).  EPS, measured as carbohydrates and proteins, and 

bacterial population density, measured as the optical density at 600 nm (OD600), were 

monitored.  EPS was analyzed following three different processing methods: (1) cells 

were removed from the supernatant and then total extracellular proteins and 

carbohydrates were quantified in the supernatant (including medium components), (2) 

cells were removed and ethanol precipitation was performed on the supernatant to obtain 

free EPS, and (3) the removed cells (pelleted) were processed to obtain bound EPS.  The 

main findings of these experiments are summarized as follows: 

 B. japonicum was identified through a literature review to be an interesting 

organism for studying the role of nutrient limitations on EPS production under 

drinking-water conditions.  However, while B. japonicum grew well in YEM 

medium used prepare the inoculum for subsequent experiments, no visible 

biomass formed in batch experiments with synthetic groundwater or Götz 

Minimal Medium where the impact of nutrient limitations on EPS production 
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was to be tested. Neither could cells be pelleted from the batch experiments 

with groundwater or Götz Minimal Medium.  Additional work is required to 

investigate why B. japonicum did not grow as expected. 

 Batch experiments with a mixed community of drinking-water bacteria 

resulted in increased EPS production under nitrogen- and phosphorus-depleted 

conditions as compared to a nutrient-balanced condition. Under high carbon 

conditions (2.0 or 0.2 g/L carbon concentrations dosed as a mixture of acetic 

acid, mannitol and sucrose), bound polysaccharides were found to increase 

under nitrogen-depleted and phosphorus-depleted conditions as compared to a 

nutrient-balanced condition.  A phosphorus-limited C:N:P ratio of 100:10:0.1 

decreased the normalized EPS concentration to near that of the nutrient-

balanced condition.  Even though compared to the nutrient-balanced condition 

(100:10:1) there was still a phosphorus-limitation, the addition of a small 

amount of phosphorus (0.5 mg/L) reduced the amount of EPS produced.  

Thus, the minimum carbon to phosphorus ratio required to prevent excessive 

headloss in biological filters may be less than 100:1. 

 Similar results, although to a lesser extent, were also obtained with a pure 

culture of B. cereus grown in these same media.  Under nitrogen- and 

phosphorus-depleted conditions as compared to a nutrient-balanced condition, 

batch experiments with B. cereus showed increased bound carbohydrates.   

 In batch experiments with a mixed community of drinking-water bacteria, use 

of ammonium chloride versus liquid ammonium sulfate (LAS) as the sole 

nitrogen source did not result in apparent differences in total EPS production 

normalized to cell growth. 

 The importance of extracting EPS from groundwater medium prior to analysis 

of carbohydrates and proteins was illustrated in both the mixed community 

and B. cereus experiments.  Without EPS extraction, the decrease in 

carbohydrate concentration in the medium due to bacterial consumption could 

confound the increase in polysaccharide concentration due to EPS production.  
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Thus, the application of an extraction procedure to remove EPS from both 

cells and medium is very important. 

These batch experiments have allowed for the investigation of EPS production of 

pure cultures and a mixed community of drinking-water microorganisms under various 

nutrient conditions.  The largest increases in EPS production under nitrogen- and 

phosphorus-depleted conditions were observed in the carbohydrates bound to cells of B. 

cereus and a mixed community of drinking-water microorganisms under carbon 

concentrations of 2.0 and 0.2 g/L (mixture of acetic acid, mannitol and sucrose).  While 

these concentrations might not be relevant to drinking-water biofilters, these experiments 

are a baseline upon which flow-through reactors will be designed.  Flow-through reactors 

including chemostats (with biofilm supports) and bench-scale columns will provide 

biofilms that will be interrogated for changes in EPS concentrations. 

5.2 Recommendations for Future Work 

Future work should include flow-through chemostat (with biofilm supports) and 

bench-scale column experiments, which better replicate conditions in drinking-water 

biofilters.  The use of plastic media to grow biofilms in flow-through chemostats will 

allow biofilm growth without the complications of sampling a BAC filter.  The use of 

BAC columns will allow for confirming that the same factors are still apparent in a 

bench-scale reactor replicating actual drinking-water biofilter conditions; bench-scale 

columns will allow EPS production to be related back to biofilter headloss increases.  

Research objectives for these systems should include: 

 Investigating various carbon concentrations ranging from 2 g/L to 2 mg/L; 

 Determining how stringent a nitrogen- or phosphorus-limitation is 

required to induce the production of excessive EPS; 

 Examining the effect of multiple carbon sources, such as acetic acid, 

mannitol, and sucrose, nitrogen sources, such as ammonium chloride, 

ammonium sulfate and liquid ammonium sulfate, and phosphorus sources, 
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such as phosphoric acid, potassium phosphate and sodium 

hexametaphosphate on EPS production;  

 Rectifying the lack of growth of B. japonicum in synthetic groundwater or 

Götz Minimal Medium, such that nutrient/EPS experiments can be 

conducted with that isolate; 

 Assessing the effects of low concentrations of trace nutrients (e.g., 

calcium, molybdenum, magnesium, iron) on EPS production. 

Future work should include the use of both a pure culture, such as B. japonicum, 

to investigate the effects of increases in EPS production by individual populations and a 

mixed community of drinking-water bacteria to investigate shifts in the microbial 

community caused by changes in nutrient conditions.   
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APPENDIX A: PURE CULTURE BATCH EXPERIMENTS 

As previously discussed, B. japonicum is a well-known EPS-producer found in 

drinking-water filters (e.g., Lauderdale et al., 2011), which has been shown to increase 

EPS production under nitrogen-limitation (Lopez-Garcia et al., 2001; Quelas et al., 2006).  

Thus, to study the effects of nutrient limitations on a pure culture under drinking-water 

conditions, batch experiments were conducted with B. japonicum in a synthetic 

groundwater and Götz Minimal Medium. 

A.1 Batch Experiments with Groundwater 

Triplicate batch experiments were inoculated with B. japonicum grown to mid-log 

phase.  Three groundwater media with varying target C:N:P molar ratios of 100:10:1 

(nutrient-balanced), 100:0:1 (nitrogen-depleted) and 100:10:0 (phosphorus-depleted) 

based on a carbon (as mannitol) concentration of 2 g/L were analyzed.  The carbon 

source and concentration selected were based on that used in previous experiments with 

B. japonicum, which resulted in increased EPS production under nitrogen-limitation 

(Lopez-Garcia et al., 2001; Quelas et al., 2006).  Total extracellular proteins and 

carbohydrates (including media components) and bacterial densities (as colony forming 

units, CFU) were monitored over time and are displayed in Figure A.1.  Note that these 

plots represent the average of three triplicate batch experiments run at each C:N:P molar 

ratio; each replicate showed similar trends (as demonstrated by the low standard 

deviations among measurements).   

No trends among total extracellular proteins and carbohydrates (including media 

components) and nutrient limitations were observed.  Additionally, no trends among 

nutrient limitations and total extracellular proteins and carbohydrates (including media 

components) were observed when proteins and carbohydrates were normalized to the 

bacteria population (mg/CFU, data not shown).  As it appears the bacterial population 

was dying throughout the experiment, it is possible that starting with a lower 

concentration of cells may allow for net cell growth.   
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Figure A.1: B. japonicum Pure Culture Batch Experiment Total Extracellular Protein 

(Top Left), Total Extracellular Carbohydrate (Bottom Left), and CFU (Top Right) 

Measurements over Time.  Error bars represent standard deviation among triplicate 

absorbance measurements.  C:N:P ratios shown are target ratios. 

A.2 Experiments with Götz Minimal Medium 

Due to the unexpected results of the B. japonicum experiments in synthetic 

groundwater medium, a set of batch experiments was conducted using Götz Minimal 

Medium to replicate the results of previous research (Lopez-Garcia et al., 2001; Quelas et 

al., 2006).  B. japonicum was grown to mid-log phase in YEM medium from a single 

colony grown on YEM agar and directly from frozen stock.  B. japonicum, grown both 

ways, was then inoculated into 50 mL of nitrogen-sufficient (1 mM (NH4)2SO4) or 

nitrogen-depleted (no addition of (NH4)2SO4) MOPS-Götz medium. 
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At five days after inoculation, the batch experiments were measured for EPS 

following two different sample processing methods: (1) cells were removed from the 

supernatant (0.2 μm filter) and then total extracellular proteins and carbohydrates were 

quantified in the supernatant (including medium components), and (2) cells were 

removed by 0.2 μm filtration and ethanol precipitation was performed on the supernatant 

to obtain free EPS.  As no cell pellet was formed from the centrifugation of these 

cultures, bound EPS could not be determined.  This was the only set of batch experiments 

with B. japonicum that was subjected to ethanol precipitation before analysis of 

carbohydrates and proteins. 

Total extracellular carbohydrates and proteins (including medium components) 

and ethanol precipitated free carbohydrates and proteins (data not shown) were below the 

carbohydrate and protein method detection limits.  Thus, the results of other research 

studies were not replicated (Lopez-Garcia et al., 2001; Quelas et al., 2006).   

A.3 Summary 

Although B. japonicum appears to be an interesting organism upon which to study 

the effects of nutrient limitations on EPS production under drinking-water conditions 

based on previous research, no relationship among nutrient limitations and increased EPS 

production was demonstrated in these batch experiments.  Additional experimentation is 

required to determine why B. japonicum did not grow in synthetic groundwater and Götz 

Minimal Medium. 
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APPENDIX B: LAB PROTOCOLS 

B.1 Polysaccharides/Carbohydrates 

Method: Anthrone Method Modified from 

Raunkjaer K., Hvitved-Jacobsen T. & Nielsen P. H. (1994).  WATER RES, 28, 251-262. 

Linear Range: ~5-100 mg/L. 

Location: UNDER FUME HOOD!! 

Reagent – anthrone (2 hrs prior to use): Measure 25 mg anthrone and add to 40 mL 

vial.  Measure 20 mL 95% H2SO4 using a 25 mL volumetric flask and add to anthrone.  

Must be remade each day.   

Standards: Store at room temperature in glass. 

Stock solution 1, S1 0.2 g glucose/200mL 

  0.001 g/mL 

      

Stock solution 2, S2 1 mL S1/10mL 

Use a 1 mL pipet 0.0001 g/mL 

 

To make 0.8 mL of standard: 

Volume S2 (mL)  

(use the 200 μL pipet) 
Volume DDI  (mL) 

(use the 1 mL pipet) Final Concentration 

0 0.8 0 ppm or μg/mL or mg/L 

0.04 0.76 5 ppm or μg/mL or mg/L 

0.06 0.74 7.5 ppm or μg/mL or mg/L 

0.09 0.71 11.25 ppm or μg/mL or mg/L 

0.2 0.6 25 ppm or μg/mL or mg/L 

Procedure: 

Turn on the heat block to 6.2 high (100°C). 

1. Add 0.8 mL of sample in 15 mm glass test tube using the 1 mL pipet. 

2. Add 1.6 mL reagent under the fume hood using the 1 mL acid pipet.  Vortex (~2 

seconds). 

3. Place samples in 100 C heat block for 14 min under the fume hood.  Vortex. 

4. Cool at 4 C for 5 min in a water bath. 

5. Vortex.  Transfer into an unsterile microplate in triplicate using the acid pipet.  

Read at 625 nm in triplicate. 
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Method: Dubois Method (Modified from Dubois et al., 1956) 

Linear Range: ~5-100 mg/L. 

Location: UNDER FUME HOOD!! 

Standards: Store at room temperature in glass. 

Stock solution 1, S1 0.2 g glucose/200mL 

  0.001 g/mL 

      

Stock solution 2, S2 5 mL S1/50mL 

  0.0001 g/mL 

 

To make 2 mL of standard: 

Volume 

S2 (mL) 

per 1 mL 

Volume 

(mL) S2 

per 2 

mL 

Volume 

(mL) 

DDI per 

2 mL Final concentration Final Concentration 

0 0 2 0 g/mL 0 ppm or μg/mL or mg/L 

0.05 0.1 1.9 0.000005 g/mL 5 ppm or μg/mL or mg/L 

0.07 0.14 1.86 0.000007 g/mL 7 ppm or μg/mL or mg/L 

0.09 0.18 1.82 0.000009 g/mL 9 ppm or μg/mL or mg/L 

0.11 0.22 1.78 0.000011 g/mL 11 ppm or μg/mL or mg/L 

0.25 0.5 1.5 0.000025 g/mL 25 ppm or μg/mL or mg/L 

0.5 1 1 0.00005 g/mL 50 ppm or μg/mL or mg/L 

0.75 1.5 0.5 0.000075 g/mL 75 ppm or μg/mL or mg/L 

 

Procedure: 

Turn on water bath to 27.5°C 

1. 2 mL sample added to 17 mm glass test tube. 

2. 0.05 mL 80% phenol added. 

3. 5 mL concentrated H2SO4 (95%) added rapidly against liquid. (standards yellow, 

samples pink) 

4. Let stand 10 min. Vortex. 

5. Place in 27.5 C water bath for 15 min.  

6. Vortex.  Read at 490 nm in triplicate. 
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B.2 Protein Microassay 

Method: Bio-Rad Protein Assay Kit I, Bio-Rad Laboratories.  Modified from: 

Bradford, M. (1976). ANAL BIOCHEM, 72, 248-254. 

Linear range:  1.25 µg/ml to 10 µg/ml (edited from manual). 

Dye Reagent:  Filter 2 mL dye (stored in flammable fridge in Kinney Lab) with 8 mL DI 

through at Whatman #1 Filter.  Store at room temperature in a 15 mL tube for up to 2 

weeks. 

Standards: 

Bovine Serum Albumin: Stored in the freezer in the Kirisits Lab – S2 divided into 1 mL 

aliquots. Must be used within 60 days and kept at 4°C or frozen. 

Stock 1, S1: 1.42 mg BSA/mL 

 

    

Stock 2, S2: 

0.352 mL mL S1/10 mL  

(9.648mL DI) 

   0.05 mg/mL 

  50 μg/mL  

    To make 1 mL in 1.5 mL tubes: 

  Volume S2 (μL) 

(use 200 μL pipet) 
Volume DI (mL) 

(use 1 mL pipet) Final concentration 

200 0.8 10.00 μg/mL 

150 0.85 7.50 μg/mL 

100 0.9 5.00 μg/mL 

40 0.96 2.00 μg/mL 

30 0.97 1.50 μg/mL 

Procedure: 

1.    Pipet 160 µl of each solution into separate microtiter plate wells using the 200 μL 

pipet. 

2.    Add 40 µl of dye reagent concentrate to each well using the 200 μL pipet. 

3.    Mix the sample and reagent thoroughly.  Depress the plunger repeatedly to mix the 

sample and reagent in the well. Replace with clean tip and add reagent to the next set of 

wells. 

4.    Incubate at room temperature for 5 min. Absorbance will increase over time; samples 

should incubate at room temperature for no more than 1 hour. 

5.    Measure absorbance at 595 nm.  
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B.3 Lipids 

Method: Sulpho-phospho-vanillin Method.  Modified from:  Frings, C., Fendley, T., 

Dunn, R., & Queen, C. (1972). CLIN CHEM, 18(7), 673-4.  

Linear range:  6-12.5 g/L 

Location: UNDER FUME HOOD!! 

Reagents:   

Vanillin Reagent:   Add 1.05 g of vanillin (stored in Kirisits fridge) to a 200 

mL volumetric flask and dilute to volume with DI. 

Phospho-Vanillin Reagent: 

EXP: 2 months 

Add 200 mL of vanillin reagent to a 500 mL 

Erlenmeyer flask.  Add 300 mL concentrated 

phosphoric acid with constant stirring.  Store in a brown 

bottle at room temperature. 

Standards:  Store pure olive oil at room temperature.  Store standards in Kirisits 4 C 

fridge.    Used anhydrous ethanol solution. 

Pure Olive Oil (S1): 0.9135 g/mL 

   91350 mg/dL 

 

    Stock 2: (use 1 mL pipet) 0.14 mL S1/10 mL 

 EXP. 1 month 1278.9 mg/dL 

 To make 1 mL in 1.5 mL tubes: 

  Volume S2 (mL) 

(use 1 mL pipet) 

Volume Ethanol (mL) 

(use 1 mL pipet) Final concentration 

0.5 0.5 639.45 mg/dL 

0.6 0.4 767.34 mg/dL 

0.8 0.2 1023.12 mg/dL 

S2 

 

1278.9 mg/dL 

Procedure: 

Turn on water bath to 37°C. 

Turn on heat block to 6.2 high. 

1. Add 20 μL of sample to 15 mm glass test tubes using the 20 μL pipet. 

2. Add 0.2 mL of H2SO4 (95%) using the 1 mL acid pipet – yellow/orange. 

3. Vortex (~ 2 seconds). 

4. Place samples in 100 C heat block for 10 min under fume hood. 

5. Cool at 4 C for 5 min in a water bath. 

6. Add 10 mL phospho-vanillin reagent under fume hood using the 25 mL glass 

graduated cylinder – pinkish. 

7. Vortex (~ 2 seconds). 

8. Incubate in 37 C water bath for 15 min. 

9. Allow samples to cool for 5 min. 

10. Vortex.  Transfer into an unsterile microplate in triplicate.  Read at 540 nm in 

triplicate. 
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B.4 Ortho-phosphate 

Method:  Ascorbic Acid Method (modified from APHA et al., 2005) 

Range: 0.15-1.3 mg/L P at 1 cm light path. OR 0.01-0.25 mg/L P at 5 cm light path. 

Reagents: 

0.13% (5 N) Sulfuric Acid:   Add 7 mL 95% (35.6 N) sulfuric acid to 50 mL DI. 

Ammonium molybdate: Dissolve 8 g (NH4)6Mo7O24*4H2O in 200 mL.  Store in 

glass-stoppered bottle. 

Antimony potassium tartrate: Dissolve 0.6857 g K(SbO)C4H4O6*0.5H2O in 200 mL 

DI.  Store in glass-stoppered bottle. 

0.1 M Ascorbic Acid (EXP. 

1 week):  

Dissolve 0.1056 g/6mL ascorbic acid in DDI.  Use most 

accurate scale. 

20 mL Combined Reagent  

(EXP. 4 hrs): 

1. Add 10 mL 5N H2SO4.  Mix 

2. Add 1 mL antimony potassium tartrate. Mix 

3. Add 3 mL ammonium molybdate. Mix 

4. Add 6 mL 0.1 M ascorbic acid. Mix 

Standards: 

To make stock solution:  

1. Dry approximately 1 g of KH2PO4 for 1 hr at 105 C.  Allow to cool in desiccator.   

2. Measure out 0.8789 g dried KH2PO4 and add to 200 mL DI.  Stored at 4 C. 

Stock solution 1, S1 0.2 g of P/200mL 

   1000 mg/L 

 
    Stock solution 2, S2 0.05 mL S1/10mL Stock solution 3, S3 20 μL S1/100mL 

  5 μg/mL or mg/L   0.2 μg/mL or mg/L 

To make 5 mL of standard in 17 mm test tubes: 

Volume of S2 (mL) 

Volume of DDI (mL)  

(use 1 mL pipet) Final concentration 

0.01 (20 μL pipet) 4.99 0.01 mg/L P 

0.05 (200 μL pipet) 4.95 0.05 mg/L P 

0.2 (200 μL pipet) 4.8 0.2 mg/L P 

0.3 (1 mL pipet) 4.7 0.3 mg/L P 

0.4 (1 mL pipet) 4.6 0.4 mg/L P 

0.5 (1 mL pipet) 4.5 0.5 mg/L P 

Procedure: 

1. Add 5 mL sample in acid-washed 17 mm glass test tube. 

2. Add one drop phenolphthalein indicator.  If red color develops add sulfuric acid 

dropwise. 

3. Add 0.8 mL combine reagent.  Vortex (~ 2 seconds). 

4. Let stand 10 min. 

5. Read at 880 nm (no more than 20 min later) in triplicate in unsterile (acid) well 

plate.  Must use 5 cm quartz cuvette for <0.15 mg/L P. 
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B.5 Synthetic Groundwater 

(modified from Li et al., 2010) 

 Composition determined for a real groundwater (Rialto, CA). 

 ClO4
-
 omitted. 

 Sodium Nitrate replaced with Ammonium Chloride. 

 Carbon source modified. 

 

Groundwater Salts Stock Solution 

 

Begin by making a solution of all components (except the C, N and P Sources): 

Total Volume: 0.5 Liters at 20 Times Concentrate 

    

500 mL 

1X: 25 mL of 20X   

            

Component: 

Final 

Concentration 

(mg/L) 

20X Concentrate 

(mg/L) 

Mass to add to 500 mL to make 

a 20X Concentrate (mg) 

Na2SO4 17.75 355.00 177.5 

K2CO3 6.9 138.00 69 

NaHCO3 289.18 5783.60 2891.8 

NaCl 13.68 273.60 136.8 

CaCl2 2.81 56.20 28.1 

MgCl2 3.88 77.60 38.8 

            

Dissolve to volume with DI.       

Dilute to 500 mL of 1X.         

 

To make stock solution with C:N:P ratios: 

Add 25 mL groundwater stock and the following.   

Fill to 500 mL with DDI and autoclave. 

 

Stock solutions for nutrients varied among experiments.  MOPS buffer was added. 
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Add Vitamins and Minerals: 

 

100X Vitamin Stock Solution (10 mL for 1000 mL)  (Staley, 1968) 

DDI Water 1 L 

 biotin 2 mg In desiccator in Kirisits refrigerator 

folic acid 2 mg 

 pyridoxine-HCl 10 mg In desiccator on shelf 

riboflavin 5 mg 

 thiamine-HCl 5 mg In desiccator in Kirisits refrigerator 

nicotinamide 5 mg Nicotinic acid 

calcium pantothenate 5 mg 

 B12 0.1 mg In desiccator in Kirisits refrigerator (cyanocobalamin) 

p-aminobenzoic acid 5 mg 4-aminobenzoic acid 

 

Mineral Stock Solution (1 mL per 1000 mL)  (London et al., 2011) 

DDI Water 1 L 

  
CuSO4*5H20 0.0574 g 5.74177E-05 CuSO4*5H20 

ZnSO4*7H2O 0.2880 g 0.000288 

 
NiCl2*6H2O 0.0216 g 2.15653E-05 NiCl2*6H2O 

FeCl2*4H2O 0.7016 g 0.0007016 

 
AlCl3*6H2O 0.2000 g 0.0002 In Speitel Lab 

MnCl2*4H2O 0.2807 g 0.0002807 In Kirisits Fridge 

CoCl2*6H2O 0.0382 g 0.0000382 

 
Na2MoO4*2H2O 0.0254 g 0.0000254 

 
H3BO3 0.0303 g 3.0348E-05 H3BO3 

Na2SO4 0.1420 g 0.000142 
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B.6 Ammonia-Nitrogen

Method: Ammonia Probe.  This measures total ammonia (including ammonium 

converted to ammonia). 

Location: Speitel Lab pH meter. 

Range:  Accurate to ~.05mg/l. 

Calibrate: 

1. 100ml DDI water + 2ml ammonia adjusting solution in a 150 mL flask with a 

stirbar.  Keep covered with parafilm to keep ammonia gas from escaping. 

2. Add 20μl of 500 mg/l ammonia [made with ammonium sulfate] 

3. Check that it is on ammonia probe; if not, press 2
nd

: channel  (look for pH 2 at the 

bottom left of the window) 

4. Check that it is set to units of MV not pH (press mode to change) 

5. Wait for it to get stable; record 0.1 mg/L and the MV value 

6. Add 80μl ammonia 

7. Wait for it to get stable; record 0.5 mg/L and the MV value 

8. Add 100μl ammonia 

9. Wait for it to get stable; record 1.0 mg/L and the MV value 

10. Add 300μl ammonia 

11. Wait for it to get stable; record 2.5 mg/L and the MV value 

12. Add 500μl ammonia 

13. Wait for it to get stable; record 5 mg/L and the MV value 

Plot MV versus mg/L to get a semi-logarithmic regression equation. 

To Use: 

1. Raise pH of solution by adding 200μl of ammonia adjusting solution per 10ml 

solution into a 20 mL vial and stir.  Keep covered with parafilm to help with 

stability. 

2. Insert detector and read when solution becomes stable. 

If solutions are low, make more. 

Waste can be neutralized by adding acid until the blue color turns clear.   
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B.7 EPS Extraction – Wet BAC 

Method: Modified from:  Fang, H., & Jia, X. S. (1996, November 10). BIOTECHNOL 

TECH, 803-808.  Optimized by: Tzu-Hsin and Ameet Pinto, University of 

Michigan. 

Application: Drinking-Water BAC Samples 

 

Procedure: 

1. From each sample, measure 2g of GAC into 15 ml centrifuge tubes.  Decant water 

from top 2 mL of GAC sample and allow water to settle before sampling. 

2. Add 10 ml of 0.01M PBS buffer (aseptically) at pH=7 into each 15ml centrifuge 

tube.  

3. Add 60μl of 36.5% (v/v) formaldehyde solution (stored below hood) into each sample 

tube.  UNDER FUME HOOD! 

4. Let the sample incubate in the 4C walk-in fridge (Katz Lab) for 1 hour on the 9 rpm 

rotating Labquake shaker. 

5. Turn on the water bath and set to 80°C.  

6. At the end of the 1 hour incubation, transfer the tubes from the fridge into the 80°C 

and incubate for 10 min.  

7. Centrifuge all tubes at 5000xg for 10 min. The extracted EPS components should now 

be in the supernatant.  

8. From each tube, transfer supernatant into 15 mL tube and vortex.   

9. Measure the dry weight of GAC samples by drying at 105°C for 1 hr. 
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B.8 YEM Medium 

Yeast Extract Mannitol (YEM) Medium (modified from Danso and Alexander, 1974) 

Reagent – 16.6% CaCl2:  Add 1.66 g CaCl2 to 10 mL DI.  Autoclave. 

Procedure: 

For Liquid Medium:  Prepare as shown below for 1 L of medium in a glass 1 

L bottle. 

For Plate Agar: Prepare as shown below for 500 mL (1 sleeve of plates) 

or 1 L (2 sleeves of plates) in an Erlenmeyer flask.   

Dissolve completely, then add 15 g Agar (large white 

bucket) per L of medium and mix thoroughly.  Cover 

with foil. 

Allow leftover medium to cool and dump in trash.   

Do not pour agar down the drain! 

 

 
1 liter 500 mL 

Mannitol 5 g 2.5 g 

Yeast extract 0.5 g 0.25 g 

MgSO4 x 7 H20 0.2 g 0.1 g 

NaCl 0.1 g 0.05 g 

K2HPO4 x 3H2O 0.66 g 0.33 g 

Na Gluconate (AKA gluconic acid sodium 

salt) 
5 g 2.5 g 

add DI using a graduated cylinder 1 L 500 mL 

Autoclave in Speitel Lab on cycle 10 (approx. 2.5 hrs to complete) or on “slow” for 15 

min in the small autoclave. 

Add 1 ml of the 16.6% CaCl2 solution to 1 liter YEM medium (1:1000). 

Store at room temperature or 4 °C. 
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APPENDIX C: CHEMICAL LIST 

Polysaccharides: 

 Anthrone, ACS, Acros Organics, AC10496-0250 

 Sulfuric Acid, 95% solution in water, ACS, Acros Organics, AC42452-0025 

 D-Glucose, ACS, Sigma-Aldrich, G5767-500G 

Proteins: 

 Bio-Rad Protein Assay, Kit I, Bio-Rad Laboratories 

Lipids: 

 Vanillin, pure, 99%, Acros Organics, AC14082-1000 

 Phosphoric Acid, 85%, Analytical Reagent, Mallinckrodt, 2796-8 

 Olive Oil, pure, refined, Acros Organics  0.9135g/mL, AC41653-0250 

 Ethanol, anhydrous, Histological Grade, Fisher, M-4702 

 Sulfuric Acid, 95% solution in water, ACS, Acros Organics, AC42452-0025 

Ortho-phosphate: 

 Sulfuric Acid, 95% solution in water, ACS, Acros Organics, AC42452-0025 

 Ammonium Molybdate Tetrahydrate, ACS reagent, Sigma-Aldrich, A7302-

100G 

 Antimony Potassium Tartrate, Certified, Fisher Scientific Company, A-865 

 Ascorbic Acid, Analytical Reagent, Mallinckrodt, 4407 

 Potassium Phosphate Dibasic, ACS, >98%, Sigma-Aldrich, P3786 

Synthetic Ground Water: 

 Sodium Sulfate, 99%, extra pure, anhydrous, Acros Organics, 7757-82-6 

 Potassium Carbonate, ACS, Sigma-Aldrich, 548-08-7 

 Sodium Bicarbonate, GR, powder, EM Science, 144-55-8 

 Sodium Chloride, ACS, Fisher Scientific, 1065 

 Calcium Chloride, Anhydrous, Spectrum Chemical Mfg. Corp., C1075 

 Magnesium Chloride, ACS, Fisher Scientific, M33-500 

 Phosphoric Acid, 85%, Analytical Reagent, Mallinckrodt, 2796-8 

 Acetic Acid, glacial, certified ACS plus, Fisher, UN2789 

 Ammonium Chloride, ACS, Fisher Scientific, A661-500 

 Liquid Ammonium Sulfate, 40%, Martin Resources, Plainview, Texas 

 D-Mannitol, 98+%, Acros Organics, 69-65-8 

 MOPS, ≥99.5%, Certified, Sigma, M3183 

 D-Glucose, ACS, Sigma-Aldrich, G5767-500G 

 Sucrose, ACS, Sigma-Aldrich, S5016 
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Ammonia-Nitrogen: 

 Ammonium Sulfate, ACS, MCB Reagents, AX1385-3 

 NaOH, Certified ACS pellets, Fisher Scientific, L-12647 

 Disodium EDTA Dihydrate, 99+%, for molecular biology, Sigma, E-5734 

 Thymol Blue, powder, ACS,MC/B, TX620, NB172 

 Methanol, optima, Fisher, A454-4 

YEM: 

 D-Mannitol, 98+%, Acros Organics, 69-65-8 

 Gluconic Acid, Sodium Salt, 98%, Acros, 18139-0010 

 Yeast Extract, Fisher Scientific, BP1422-500 

 Sodium Chloride, Certified ACS, Fisher, S271-3 

 Potassium Phosphate Dibasic Trihydrate, min 99%, Sigma, P5504 

 Magnesium Sulfate Heptahydrate, USP/FCC/EP, Fisher, FL-01-0100 

 Agar, granulated molecular genetics, Fisher, BP1423-2 

PBS: 

 Sodium Chloride, Certified ACS, Fisher, S271-3 

 Potassium Chloride, GR crystals, EM Science, PX1405-1 

 Sodium Phosphate Dibasic Heptahydrate, ACS, 98.0-102%, Sigma-Aldrich, 

S9390 

 Potassium Phosphate Monobasic, ACS, ≥99%, Sigma, P0662-500G 

Misc.: 

 Glycerol, biotechnology grade, Amresco, 0854 

 R2A, HIMEDIA, M1687-500G 

 LB, Difco LB Broth, Lennox, 240210 

 Formaldehyde, 37% wt, ACS, Sigma, Aldrich, 252549 

 Tris/HCl, ultra pure grade, Amresco, 0234 

 Phenol, 99.5%, extra pure, loose crystals, Acros Organics, 108-95-2 
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