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The purpose of this dissertation is to develop numerical methods for

fluid–structure interaction (FSI) analysis that are suitable for modeling and

simulating bioprosthetic heart valves (BHVs). BHVs are prosthetic replace-

ments for the valves that regulate blood flow through the heart. BHVs repro-

duce natural hemodynamic conditions by mimicking the structure of native

heart valves: they consist of thin flexible leaflets, passively driven by interac-

tion with surrounding fluid. Current designs frequently require replacement

10–15 years after implantation. Computer simulation may help identify causes

of and solutions to durability issues. Despite much previous research into com-

puter simulation of heart valve FSI, inconvenience or inaccuracy of readily

available numerical methods have prevented widespread incorporation of FSI

into models of heart valve mechanics.

Challenges associated with heart valve FSI simulation include large de-

formations of the region occupied by fluid, with changes of topology as the

v



valve opens and closes, and low mass of the structure relative to the fluid,

which necessitates careful treatment of fluid–structure coupling. The presence

of large pressure gradients also requires special attention to the treatment

of fluid mass conservation. Further, a useful numerical method for study-

ing and improving designs of BHVs should be able to capture variations of

valve geometry without requiring major effort to construct geometry-specific

discretizations.

To meet these challenges, I develop a new numerical approach, com-

bining the immersed boundary concept of capturing fluid–structure interfaces

on unfitted discretizations with recent developments in isogeometric analy-

sis (IGA), which directly uses geometrical designs of engineered systems as

discrete analysis meshes. In this work, I immerse an isogeometric structure

discretization into an unfitted analysis mesh of the fluid subproblem. I refer

to the immersion of design geometries into unfitted analysis meshes as immer-

sogeometric analysis. To reliably couple unfitted discretizations of the fluid

and structure subproblems, I introduce a new semi-implicit time integration

procedure and analyze its stability and convergence in the context of linear

model problems. I verify that this analysis extrapolates to the nonlinear set-

ting through numerical experiments and explore the validity of my modeling

assumptions by comparing computer simulations with observations from an in

vitro experiment.

vi



Table of Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

1.1 Bioprosthetic heart valves . . . . . . . . . . . . . . . . . . . . 1

1.2 Computational FSI analysis of BHVs . . . . . . . . . . . . . . 3

1.3 Immersogeometric analysis . . . . . . . . . . . . . . . . . . . . 7

1.4 Verification and validation . . . . . . . . . . . . . . . . . . . . 10

1.5 Structure and content of the dissertation . . . . . . . . . . . . 11

Chapter 2. Mathematical model of FSI 15

2.1 Augmented Lagrangian formulation of FSI . . . . . . . . . . . 16

2.2 Fluid subproblem . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Thin structure subproblem . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Definition of E in terms of y . . . . . . . . . . . . . . . 20

2.3.2 Constitutive modeling . . . . . . . . . . . . . . . . . . . 24

2.3.2.1 St. Venant–Kirchhoff model . . . . . . . . . . . 24

2.3.2.2 Incompressible neo-Hookean model . . . . . . . 25

Chapter 3. Discretization of subproblems 26

3.1 Fluid subproblem . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Variational multiscale formulation . . . . . . . . . . . . 27

3.1.2 Divergence conforming B-splines . . . . . . . . . . . . . 31

3.1.2.1 Construction for rectangular domains . . . . . . 34

vii



3.1.2.2 Generalization to non-rectangular domains . . . 36

3.1.2.3 Stabilization of advection . . . . . . . . . . . . 38

3.1.3 Comparison of VMS and div-conforming B-splines . . . 40

3.2 Structure subproblem . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Isogeometric spline discretization . . . . . . . . . . . . . 43

3.2.2 Linearization by automatic differentiation . . . . . . . . 43

3.2.2.1 The concept of automatic differentiation . . . . 44

3.2.2.2 Application to computing residual Jacobians . . 47

3.2.3 Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3.1 Formulation of contact penalization . . . . . . . 49

3.2.3.2 Approximate linearization . . . . . . . . . . . . 54

3.2.3.3 Searching for contacting points . . . . . . . . . 54

3.3 Discretization of surface integrals . . . . . . . . . . . . . . . . 59

3.3.1 Definition of surface quadrature rule . . . . . . . . . . . 59

3.3.2 Locating quadrature points in the parameterization of the
fluid domain . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2.1 Locating quadrature points in elements . . . . . 60

3.3.2.2 Locating quadrature points in smoothly-
deformed domains . . . . . . . . . . . . . . . . 62

Chapter 4. Discretization of fluid–structure coupling 65

4.1 Separation of normal and tangential fluid–structure coupling . 66

4.2 Time integration algorithm . . . . . . . . . . . . . . . . . . . . 69

4.3 Block iterative solution of the implicit problem . . . . . . . . . 74

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Modified equation interpretation of semi-implicit integra-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Analogy to artificial compressibility . . . . . . . . . . . 79

4.4.3 Relation to feedback boundary conditions . . . . . . . . 80

4.4.4 Qualitative effects of multiplier stabilization . . . . . . . 83

4.4.4.1 Leakage . . . . . . . . . . . . . . . . . . . . . . 83

4.4.4.2 Spurious modes of λ . . . . . . . . . . . . . . . 85

4.4.4.3 Conflicting boundary conditions . . . . . . . . . 85

viii



Chapter 5. Analysis of linear model problems 87

5.1 Convergence of the semi-implicit time integration . . . . . . . 87

5.1.1 Scalar parabolic model problem . . . . . . . . . . . . . . 88

5.1.1.1 Scalar parabolic problem statement . . . . . . . 89

5.1.1.2 Semi-implicit time integration . . . . . . . . . . 91

5.1.1.3 Convergence of the regularized problem . . . . . 92

5.1.1.4 Uniform bound in H3/2−ε(Ω) . . . . . . . . . . . 96

5.1.1.5 Spatial discretization of the modified equation . 99

5.1.1.6 Semi-discrete convergence for r = 0 . . . . . . . 102

5.1.1.7 Discretization in time . . . . . . . . . . . . . . . 108

5.1.1.8 Numerical experiment: scalar parabolic problem 111

5.1.2 Extension to related linear problems . . . . . . . . . . . 115

5.1.2.1 Unsteady Stokes flow . . . . . . . . . . . . . . . 115

5.1.2.2 Numerical experiment: linearized Taylor–Green
vortex . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.2.3 Coupled second-order problems . . . . . . . . . 120

5.2 Localization of error . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Block iterative convergence . . . . . . . . . . . . . . . . . . . . 127

5.3.1 A generic model problem . . . . . . . . . . . . . . . . . 128

5.3.2 Application to FSI . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Relation to Newton iteration . . . . . . . . . . . . . . . 134

5.3.4 Numerical test . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Improving mass conservation in PSPG . . . . . . . . . . . . . 138

Chapter 6. Nonlinear numerical experiments 145

6.1 Extrapolation to Navier–Stokes flow . . . . . . . . . . . . . . . 146

6.1.1 Taylor–Green vortex . . . . . . . . . . . . . . . . . . . . 146

6.1.2 Translating Taylor–Green vortex . . . . . . . . . . . . . 148

6.1.3 Infinite Reynolds number . . . . . . . . . . . . . . . . . 150

6.2 2D non-coapting valve . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Description of the problem . . . . . . . . . . . . . . . . 153

6.2.2 Body-fitted reference computation . . . . . . . . . . . . 153

6.2.3 Immersogeometric computations . . . . . . . . . . . . . 156

ix



6.2.4 Comparison of results . . . . . . . . . . . . . . . . . . . 157

6.3 2D coapting valve . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Problem description . . . . . . . . . . . . . . . . . . . . 162

6.3.2 Steady flow . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3.3 Convergence to a hydrostatic solution during closure . . 170

6.4 Blocked tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.1 A demonstration of the effect of pressure approximation
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.2 Effect of sshell . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Benchmark testing with div-conforming B-splines . . . . . . . 179

6.5.1 Div-conforming immersogeometric discretizations . . . . 180

6.5.2 Comparison of results . . . . . . . . . . . . . . . . . . . 182

6.5.3 Block iterative convergence . . . . . . . . . . . . . . . . 184

Chapter 7. Application to BHV FSI analysis 186

7.1 Overview of BHV simulations . . . . . . . . . . . . . . . . . . 187

7.2 Div-conforming BHV simulation . . . . . . . . . . . . . . . . . 189

7.2.1 Test problem definition . . . . . . . . . . . . . . . . . . 191

7.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 Simulating an in vitro experiment . . . . . . . . . . . . . . . . 196

7.3.1 Description of the experiment . . . . . . . . . . . . . . . 198

7.3.1.1 The acrylic tube . . . . . . . . . . . . . . . . . 201

7.3.1.2 The valve . . . . . . . . . . . . . . . . . . . . . 201

7.3.2 Mathematical model of the experiment . . . . . . . . . . 203

7.3.2.1 Fluid subproblem . . . . . . . . . . . . . . . . . 203

7.3.2.2 Structure subproblem . . . . . . . . . . . . . . . 205

7.3.3 Discretization of the mathematical model . . . . . . . . 209

7.3.4 Comparison of results . . . . . . . . . . . . . . . . . . . 210

Chapter 8. Conclusions and further work 214

Bibliography 217

x



List of Tables

6.1 Steady volumetric flux (assuming 1 cm depth) through the
closed 2D valve for different values of r, alongside the values
estimated from the plug flow model of Section 4.4.4, which ne-
glects leakage due to spurious volume loss. . . . . . . . . . . . 174

6.2 The effect of sshell on apparent leakage due to volume loss. . . 178

7.1 The effect of relative tolerance in the approximate inversion of
Af (Section 4.3) on mass conservation. . . . . . . . . . . . . . 196

xi



List of Figures

3.1 Illustration of contact notation. . . . . . . . . . . . . . . . . . 50

3.2 Illustration of the function Pk(d) for k = 2 and hc = 1. . . . . 53

3.3 Symmetrical geometry results in asymmetrical contact forces. . 53

4.1 Plug flow through a tube, blocked by a barrier. In the exact
solution, u must be zero, but weak enforcement techniques can
allow leakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 The domain Ω and the immersed boundary Γ. . . . . . . . . . 90

5.2 Annotated snapshot of a solution to the scalar parbolic test
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Convergence of L2 and H1 errors for different values of r. . . . 113

5.4 The value of λh as a function of the angle around Γ. (Linear
interpolation is used between surface quadrature point samples
of λh.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Simultaneous velocity magnitude (left) and pressure (right)
snapshots of the Stokes Taylor–Green problem, with annota-
tions describing the problem setup. . . . . . . . . . . . . . . . 121

5.6 Convergence of L2(Ωerr) and H1(Ωerr) errors at time T for dif-
ferent values of r. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Annotated snapshot of a solution to the coupled model problem.
The solution to the Γ subproblem, yh, is plotted below Ω and
the colors on Γ cutting through Ω represent point values of λh. 137

5.8 The norm of the discrete residual for the Γ subproblem con-
verges linearly with a rate that improves as the time step
∆t = T/N decreases. . . . . . . . . . . . . . . . . . . . . . . . 137

5.9 The norm of the discrete residual for the Γ subproblem con-
verges linearly with a rate that slows down as the penalty C/h
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 The non-rectilinear mesh of Ω avoids grid alignment with Γ. . 147

xii



6.2 Simultaneous velocity magnitude (left) and pressure (right)
snapshots of the Navier–Stokes Taylor–Green problem, with an-
notations describing the problem setup. . . . . . . . . . . . . 149

6.3 Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and
r = 0.1 for Navier–Stokes flow with a stationary boundary and
positive viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Annotated snapshot of velocity magnitude at time T for Navier–
Stokes flow with moving boundaries and positive viscosity.
(Note the translation of Γ relative to its initial position, shown
in Figure 6.2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and
r = 0.1 for Navier–Stokes flow with moving boundaries and
positive viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Annotated snapshot of velocity magnitude at time T for Navier–
Stokes flow with moving boundaries and zero viscosity. . . . . 152

6.7 Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 for
Navier–Stokes flow with moving boundaries and zero viscosity. 152

6.8 Geometry and boundary conditions of the 2D heart valve bench-
mark. Not to scale. The inflow profile is given by (6.2). . . . 154

6.9 The reference configuration of the body-fitted mesh for the 2D
valve problem, with leaflets highlighted in magenta and areas
of softened mesh highlighted in green. . . . . . . . . . . . . . 154

6.10 The deformation of the body-fitted fluid mesh at t = 0.5. . . 156

6.11 The x- and y-displacements of the upper leaflet tip, computed
on the immersed and body-fitted meshes. . . . . . . . . . . . 158

6.12 Pressure contours at t = 0.5, from immersed boundary compu-
tations on M1, M2, and M3, along with the body-fitted refer-
ence. Large pointwise pressure errors are confined to an O(h)
neighborhood of the immersed structure, becoming increasingly
localized with spatial refinement. . . . . . . . . . . . . . . . . 159

6.13 Velocity streamlines superimposed on a velocity magnitude con-
tour plot, at t = 0.5, from immersogeometric computations on
M1, M2, and M3, and the body-fitted reference. . . . . . . . . 160

6.14 The geometry of the 2D valve problem. (Not to scale.) . . . . 162

6.15 The L2 norms of the Lagrange multiplier field as functions of
time for steady flow through the 2D valve, with r = 1. . . . . 166

6.16 The L2 norms of the Lagrange multiplier field as functions of
time for steady flow through the 2D valve, with r = 0.1. Note
the difference in scale from Figure 6.15. . . . . . . . . . . . . . 167

xiii



6.17 The L2 norms of the Lagrange multiplier field as functions of
time for steady flow through the 2D valve, with r = 0, i.e. no
stabilization. Note that they do not reach steady values in this
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.18 Comparisons of structure deformation and fluid velocity mag-
nitude fields at time t = 10 s, computed on M3, with different
stabilization parameters. Color scale: 0 (blue) to 3.4 cm/s (red). 168

6.19 The forces on the structure due to the Lagrange multiplier field
in the solutions from Figure 6.18. . . . . . . . . . . . . . . . . 169

6.20 Volumetric flow rate through the closing valve as a function of
time, for different values of r. . . . . . . . . . . . . . . . . . . 173

6.21 L2(Γt) norm of λ on closing valve as a function of time, for finite
values of r. (For r =∞, it will be zero for all t. ) . . . . . . . 173

6.22 Velocity, pressure, and multiplier solutions at t = 0.35 s for
the closed valve with r = 1 and r = 0. See Remark 6.3 for
discussion on the velocity fields. Velocity color scale: 0 (blue)
to 24 cm/s (red). Pressure color scale: -20000 dyn/cm2 (blue)
to 150000 dyn/cm2 (red). . . . . . . . . . . . . . . . . . . . . . 174

6.23 The computational mesh used for the closed-valve model problem.176

6.24 The z-component of velocity, in cm/s, for a highly unphysical
steady-state flow solution through a blocked channel, as com-
puted with ∆t = 10−4 s and no modifications to fluid stabi-
lization terms. The fluid spuriously compresses to meet the
velocity constraint imposed by the barrier while maintaining a
large downward flow through the channel. . . . . . . . . . . . 177

6.25 The physical image of the B-spline parameter space, showing
the mesh of unique knots (thin lines) for M1 in relation to the
beams (thick lines). . . . . . . . . . . . . . . . . . . . . . . . . 181

6.26 The x-direction displacement of the tip of the upper beam. . . 183

6.27 The y-direction displacement of the tip of the upper beam. . . 183

6.28 The pressure field (left) and the the velocity magnitude (right)
at time t = 0.5 on M2. . . . . . . . . . . . . . . . . . . . . . . 184

6.29 Convergence of block iteration in the 51st time step, subject to
different perturbations of the parameters used in the computa-
tion on M1 (the “control” case). . . . . . . . . . . . . . . . . . 185

7.1 Snapshots of the valve FSI computation from [105], showing
valve deformations and volume renderings of fluid velocity mag-
nitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xiv



7.2 Snapshot of the valve FSI computation from [85], showing valve
deformation and volume rendering of fluid velocity magnitude.
Clamped leaflet boundary conditions, an elastic artery, and un-
structured T-spline geometry modeling of the valve enhance re-
alism relative to results from [105], shown in Figure 7.1. . . . . 190

7.3 The physical image of the B-spline parameter space, showing
the mesh of unique knots (black lines). . . . . . . . . . . . . . 193

7.4 Snapshots of the opening process. Velocity magnitude is plotted
on a slice, using a color scale ranging from 0 (blue) to ≥ 200
cm/s (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.5 The closed valve at time t = 0.16 s. Pressure is plotted on a
slice, using a color scale ranging from ≤ −1.1 × 105 dyn/cm2

(blue) to ≥ 104 dyn/cm2 (red). Some over- and under-shoot is
evident near the immersed structure. . . . . . . . . . . . . . . 195

7.6 The volumetric flow rate through the cylinder. . . . . . . . . . 195

7.7 An annotated photograph of the flow loop. The blue arrows
indicate the direction of flow permitted by the valves. . . . . . 199

7.8 A 3D rendering of a CAD model of the acrylic tube. . . . . . . 201

7.9 A 2D to-scale view of the tube, showing its relation to the valve
and stent. The inflow and outflow have inner diameters of 2 cm. 202

7.10 A schematic illustration of how images of the valve are captured.202

7.11 The physical valve used in the validation experiment. . . . . . 203

7.12 The measured volumetric flow rate used to set a Dirichlet
boundary condition in the mathematical model. . . . . . . . . 204

7.13 The shape of the fluid subproblem domain, Ω1, defined by ap-
plying the transformation (7.5)–(7.7) to a trivariate B-spline
parameter space. . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.14 The reference (Γ0) and initial (Γ′0) configurations of the valve
model, shown in relation to a CAD model of the aluminum stent.207

7.15 A visual comparison of the physical valve and its model, in the
configuration Γ′0. . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.16 The rigid extensions closing the gap between the attached edges
of the leaflets and the boundary of Ω1. . . . . . . . . . . . . . 208

7.17 Several snapshots of the computed solution, compared with ex-
perimental images. At each time instant, the computed solution
is shown in the left-hand frame and at the bottom of the right-
hand frame. The experimental results are shown in the top of
the right-hand frame. Colors indicate fluid velocity magnitude
on a slice. Color scale: 0 (blue) to ≥200 cm/s (red). . . . . . . 212

xv



8.1 Example of an FSI solution with interface Lagrange multiplier
stabilization applied only to fine scales. Left: velocity magni-
tude. Right: Lagrange multiplier field (visualized as in Section
6.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

xvi



Chapter 1

Introduction

This dissertation develops a methodology for computational fluid–

structure interaction (FSI) analysis that is suitable for modeling and simulat-

ing heart valves. Despite many years of research into computational analysis

of heart valve FSI and much interest from the biomedical engineering commu-

nity, the inconvenience or inaccuracy of readily available numerical methods

have so far prevented widespread incorporation of FSI into models of heart

valve mechanics.

1.1 Bioprosthetic heart valves

Heart valves are passive structures that open and close in response to

hemodynamic forces, ensuring proper unidirectional blood flow through the

heart. At least 280,000 diseased heart valves are surgically replaced annu-

ally [133, 152]. The most popular replacements are bioprosthetic heart valves

I originally prepared Section 1.2 of this chapter for the following paper:
J. S. Soares, K. R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, M. S. Sacks. Biome-

chanical behavior of bioprosthetic heart valve heterograft tissues: Characterization, simu-
lation, and performance. Cardiovascular Engineering and Technology, Accepted. D. Ka-
mensky prepared the literature review on computational FSI. Other authors prepared the
remainder of the document.
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(BHVs), which are fabricated from biologically-derived materials. Like native

valves, BHVs consist of thin flexible leaflets that are pushed open by blood

flow in one direction and closed by flow in the other direction. BHVs have

more natural hemodynamics than the older “mechanical” prostheses designs,

which consist of rigid moving parts and require life-long anticoagulation ther-

apy [133]. However, the durability of a typical BHV remains limited to about

10–15 years, with failure resulting from structural deterioration, mediated by

fatigue and tissue mineralization [133, 152, 158, 182]. While much research has

sought to prevent mineralization, methods to extend durability remain largely

unexplored. A critical part of such efforts to improve the design of BHVs is

understanding the stresses within leaflets over the complete cardiac cycle.

Techniques from computational engineering may be used for stress anal-

ysis of heart valves. Some previous computational studies on heart valve me-

chanics have used (quasi-)static [7, 170] and dynamic [112] structural analysis,

with assumed pressure loads on the leaflets. This produces deformation and

stress distributions that can be used to understand the mechanical behavior of

BHVs. However, the assumed pressure load only crudely approximates the in-

teraction between blood and valvular structures. A purely structural analysis

is only applicable to static pressurization of a closed valve, which represents

only a portion of the full cardiac cycle. It is therefore important to simulate

the dynamics of heart valves interacting with hemodynamics using methods

for computational FSI.
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1.2 Computational FSI analysis of BHVs

Native and prosthetic valves present a number of unique challenges for

FSI analysis. Foremost among these is the fact that the heart valve leaflets con-

tact one another, changing the topology of the fluid subdomain. This means

that standard arbitrary Lagrangian–Eulerian (ALE) [46, 47, 93] or deforming-

spatial-domain/space–time (DSD/ST) [179, 180] formulations, which continu-

ously deform the fluid subproblem domain from some reference configuration,

are no longer directly applicable. To salvage such methods, one must augment

them with special techniques to handle extreme deformations like topology

changes. One solution is remeshing, i.e. generating a new mesh of finite

elements or finite volumes for the fluid subproblem domain whenever its de-

formation becomes too extreme [99–101, 177]. This allows computations to

proceed, but introduces additional computational cost and numerical errors

associated with the projection of fluid solutions from old to new meshes. Re-

cent work by Takizawa et al. [172] introduced the space–time with topology

change (ST-TC) method, which extended the DSD/ST framework to allow

topology changes without remeshing. Reference [173] applied ST-TC to CFD

of a heart valve with prescribed leaflet motion, but the application of ST-TC

to complex FSI with sliding and/or unpredictable structural self contact re-

mains an open problem. Makhijani et al. [124] reported a boundary-fitted

BHV FSI simulation in 1997, but replaced true contact with inverse-square-

law repulsive forces between leaflets and a symmetry plane. While the results

in [124] appear promising, few methodological details were provided and no
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further work on BHV FSI analysis using this method has been reported.

In light of the difficulties encountered in boundary-fitted FSI analysis of

heart valves, the overwhelming majority of work to-date on native and biopros-

thetic heart valve FSI analysis has followed in the tradition of Peskin’s famous

immersed boundary method [131].1 While it is not a universal convention, I

follow [126, 148, 160] in applying the term “immersed boundary method” quite

broadly, using it to describe any numerical method for approximately solving

partial differential equations (PDEs) that allows boundaries of the PDE do-

main to cut arbitrarily through the computational mesh defining the discrete

solution space. In my experience, researchers have highly variable interpreta-

tions of the term “immersed boundary method”, and I would recommend that

writers explicitly clarify its meaning within a particular document.

Immersed boundary methods for FSI can greatly simplify the treat-

ment of large structural deformations and structural self-contact, but engen-

der a number of disadvantages relative to ALE and DSD/ST techniques, as re-

viewed by Tezduyar [178]. In particular, immersed boundary methods struggle

to efficiently capture boundary layer solutions near the fluid–structure inter-

face. Takizawa et al. [171] found that the resolution of such layers is essential

to obtaining accurate fluid–structure shear stresses in hemodynamic analyses.

A comprehensive overview of various immersed boundary methods and their

1An even more radical departure from boundary-fitted FSI is to discretize the fluid using
a mesh-free approach, such as smoothed-particle hydrodynamics (SPH) [65]. SPH is not
widely used in the engineering CFD or FSI communities, but has occasionally been applied
to heart valve simulation [183].
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properties is beyond the scope of this literature review, and we refer the inter-

ested reader to the review articles [126, 160]. The present review of immersed

boundary methods is limited to their history of application to heart valve FSI

analysis.

Peskin introduced the immersed boundary concept in 1972, specifically

to meet the demands of heart valve FSI analysis [131]. The numerical method

proposed by Peskin has found little if any direct application by bioengineers,

though, due to its crude representation of the heart valve as a collection of

markers connected by elastic fibers. However, deficient modeling of the struc-

ture subproblem is not an inherent feature of immersed boundary methods. In

the early 2000s, de Hart et al. [42–44] and van Loon et al. [189–191] used an

immersed boundary method introduced by Baaijens [8] to couple finite element

discretizations of heart valves and blood flow. This allowed for investigation of

various constitutive models, but numerical instabilities prevented analysis at

realistic Reynolds numbers and transvalvular pressure levels. Increasing avail-

ability of parallel computing resources in the 2010s has led to higher resolution

simulations of heart valves in recent years. Griffith [70] adapted Peskin’s orig-

inal immersed boundary approach to modern distributed-memory computer

architectures and included adaptive mesh refinement for the fluid subproblem,

to compute FSI of a native aortic valve throughout a full cardiac cycle, with

physiological flow velocities and pressure differences. Borazjani [29] applied

the curvilinear immersed boundary (CURVIB) method [30, 60] to simulate

systolic ejection through a bioprosthetic aortic valve, using nearly 10 million
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grid points in the fluid domain. The valve leaflet models in the studies by

Griffith and Borazjani suffered from deficiencies, though, with [70] modeling

the leaflets in the style of Peskin, as markers connected by elastic fibers, and

[29] omitting bending stiffness. The CURVIB method was extended to include

fluid–shell structure interaction in [62, 64], but the efficacy of the approach has

not yet been demonstrated for the portion of the cardiac cycle in which the

valves are closed and must support a large pressure differential.

The immersed boundary analyses cited above have relied on academic

research codes. As early as the late 1990s, immersed-boundary fluid–structure

coupling methods in the commercial software LS-DYNA [39] have been used

for FSI simulations of bioprosthetic and native aortic valves [35, 36, 169, 199].

Terminology in [35, 36] may lead to some confusion, since the computational

method is described as ALE, while the figures clearly show non-matching fluid

and structure interfaces. Sturla et al. clarify this point in Appendix B of

[169], describing the adopted algorithms in greater detail, confirming that the

numerical method is what I would classify as an immersed boundary approach,

based on the definition given above. The time-explicit procedures used by LS-

DYNA result in severe Courant–Friedrichs–Lewy conditions [40, 41] that limit

the maximum stable time step size in hemodynamic computations, because

blood is nearly incompressible, rendering the problem effectively parabolic.

Complete fluid incompressibility can even render explicit fluid–structure cou-

pling unconditionally unstable when the fluid and structure have similar den-

sities [188]. References [169, 199] circumvented this difficulty by artificially
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reducing the speed of sound in blood by a significant factor, reporting that

the fluid density variations introduced by this deliberate modeling error were

negligible. The use of other commercial off-the-shelf analysis software for heart

valve FSI analysis may be possible using so-called “black box” coupling algo-

rithms [28] to connect independent finite element analysis and CFD programs

without access to their internal details. Specialized methods are required for

stable and efficient black box coupling of fluids to thin, light structures such

as heart valve leaflets [125, 188]. Astorino et al. [6] applied a novel black box

coupling algorithm to FSI analysis of an idealized aortic valve.

1.3 Immersogeometric analysis

Following the majority of the studies cited in Section 1.2, this disser-

tation pursues an immersed boundary approach to heart valve FSI analysis.

The goal of immersed boundary methods has always been to simplify the con-

struction of analysis-suitable computational models from available geometric

data (such as design drawings, anatomic models, or medical images) specify-

ing the domain of a PDE system. Traditional immersed boundary analysis

eases this process by allowing subproblems to be discretized separately, then

coupled through a numerical method.

Another technology for simplifying computational model generation is

isogeometric analysis (IGA), introduced by Hughes et al. [90] in 2005. IGA

is based on the insight that many geometries in engineering design are spec-

ified in spline spaces that can be systematically enriched, then used to ap-
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proximate solutions of PDEs. As it turns out, these spline spaces also have

many desirable mathematical properties that can improve the quality of ap-

proximate PDE solutions. These properties include control over smoothness,

improved approximation power relative to classical finite element spaces [52],

and straightforward constructions of discrete de Rham complexes [33, 34]. The

benefits of these properties are evident in both fluid and structural analysis

efforts, including studies of incompressible flow [3, 16, 51, 54], thin shells [109–

111, 128], extreme mesh distortion [123], and contact problems [45, 127]. All

of these topics are relevant to heart valve FSI analysis. IGA encounters sev-

eral major difficulties, though, when faced with realistic engineering designs.

Foremost among these are:

1. Many designs of volumes are specified in terms of bounding spline sur-

faces. If an analyst wishes to solve a PDE in such a volume, then IGA,

as originally conceived, is inapplicable, since the spline space used for

the design can only represent functions on the boundary of the PDE

domain.

2. Spline surfaces in designs are frequently trimmed along curves that do

not conform to the parametric supports of the spline space’s basis func-

tions. The analysis space suggested by standard IGA is therefore not

fitted to the actual boundaries of the problem domain.

These challenges could be addressed by changing the way in which engineering

products are designed: designers could transition to using geometry represen-
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tations that are analysis-suitable. Changing the habits of designers throughout

industry, however, would require an incredible feat of mass persuasion. Unde-

terred by this challenge, the creators of analysis-suitable design technologies

(e.g. T-splines [153–155]) have succeeded at incorporating their work into sev-

eral major commercial design platforms. It remains, in my opinion, doubtful,

though, that analysis-suitable design will become a standard practice in in-

dustry any time soon. Further, many engineering designs specified in past or

current formats will remain relevant for decades into the future.

One way to make IGA practical without changing the design process

is to incorporate numerical methods from immersed boundary analysis. Dif-

ficulty 1 can be alleviated by creating a convenient unfitted analysis space

covering the volume of interest, then using an immersed boundary method to

enforce the desired conditions on the spline surfaces enclosing the PDE do-

main. Difficulty 2 can be addressed by using the natural isogeometric solution

space while treating the trim curves as immersed boundaries. Promising work

in both of these directions has already been carried out using an immersed

boundary approach known as the finite cell method [137, 140, 141, 150, 151].

In addition to patching weaknesses of first-generation IGA, the direct appli-

cation of immersed boundary techniques to design geometries can eliminate

the meshing and consequent geometrical approximation2 of subproblems from

2In practice, immersogeometric methods must frequently approximate integrals over the
domain geometry, which may be considered a type of geometrical approximation [168, Sec-
tions 4.3 and 4.4], but I would argue that this is conceptually distinct from the direct
alteration of domain geometry that occurs in traditional mesh generation.
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traditional immersed boundary analysis. In [105], my collaborators and I in-

troduced the term immersogeometric analysis to describe this symbiotic union

of immersed boundary and isogeometric technologies.3

1.4 Verification and validation

Throughout the heart valve FSI analysis literature reviewed in Section

1.2, very little emphasis is placed on ensuring that computations accurately

approximate solutions of the desired mathematical models or that these models

are accurate representations of physical valves. The remainder of this disserta-

tion shall refer to these two problems as “verification” and “validation”. This

follows the terminological conventions defined in [9]. Specifically, I draw the

reader’s attention to two key definitions:

• Verification: The process of determining whether the output of a com-

puter simulation accurately approximates solutions to the mathematical

problem that is said to model a physical event. This might include

– A priori error analysis of a discretization scheme.

– Testing convergence of simulation outputs to analytical solutions of

the mathematical model.

– Comparison of numerical solutions to benchmark problems with the

results of thoroughly verified codes.

3The word “immersogeometric” was originally coined in 2014 by T.J.R. Hughes, while
traveling in Italy; it is derived from the Italian word immerso, meaning “immersed”.
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• Validation: The process of determining whether a mathematical model

accurately represents a physical event. This might include

– Comparison of experimental results with analytical solutions of the

mathematical model.

– Comparison of experimental results with outputs of thoroughly ver-

ified computations.

Aphoristically, verification is concerned with solving the equations right while

validation is concerned with solving the right equations. Conflation of verifica-

tion and validation is a surprisingly common conceptual error in computational

science and engineering. For instance, the reader can likely think of published

works that compare unverified computations with experimental results, then

speciously conclude that the numerical method is correctly approximating the

solution to a PDE. The bulk of this dissertation is devoted to the development

and verification of numerical methods. However, I have included some lim-

ited experimental validation, in the form of qualitative comparisons between

computational results and in vitro experiments.

1.5 Structure and content of the dissertation

This section summarizes the remainder of the dissertation. Chapter

2 states the coupled PDEs that I use to model the fluid–structure system.

Chapter 3 describes spatial discretizations for the subproblems corresponding

to the fluid and structure. Chapter 4 completes the discretization with a novel
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semi-implicit time integration scheme to couple the fluid and structure sub-

problems. In Chapter 4, this time integrator is presented alongside intuitive

reasoning. Chapter 5 proves its convergence for a linear parabolic model prob-

lem. This analysis provides guidelines for selecting appropriate values of the

free parameters of the scheme. The theoretical results are supported by numer-

ical experiments. Chapter 6 finds that the conclusions of this analysis can be

extrapolated to the setting of nonlinear Navier–Stokes and large-displacement

FSI. I look at both norm convergence and quantities of interest in nonlinear

benchmark problems. After verifying that the numerical methods described

in Chapters 3 and 4 accurately approximate the mathematical problem put

forward in Chapter 2, Chapter 7 applies the new technology to BHV FSI

simulation and compares the results to in vitro experimental work. Finally,

Chapter 8 sketches some future developments that may improve on the tech-

nology of this dissertation, connect it to clinical practice, and apply it to other

FSI problems.

The contributions summarized above can be grouped into the three con-

centration areas of the Computational Science, Engineering, and Mathematics

(CSEM) graduate program as follows:

• Area A: Applicable Mathematics

– Formulation and a priori analysis of linear model problems that are

rich enough to provide insight into the stability and accuracy of FSI

discretizations, but simple enough to remain analytically-tractable.
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– Interpretation of this analysis, to obtain succinct guidelines for se-

lecting free parameters of numerical methods.

• Area B: Numerical analysis and scientific computation

– Formulation and implementation of an algorithm for fluid–thin

structure coupling that permits stable simulations of large-

displacement FSI problems using independent fluid and structure

discretizations.

– Application of this algorithm to isogeometric discretizations of fluid

and structure subproblems, allowing spline-based structure geome-

tries to be directly analyzed.

– Numerical experiments to support the Area A contributions.

– Numerical experiments to support extrapolation of conclusions from

the Area A contributions to the context of nonlinear FSI.

– Enhancements to previous technologies for discretizing fluid and

structure subproblems, including

∗ penalty-based contact for isogeometric discretizations of shell

structures,

∗ modifications to stabilized methods for incompressible flow that

improve mass conservation near immersed boundaries,

∗ and a distributed-memory implementation of divergence-

conforming B-spline discretizations of incompressible flow [51]

with immersed boundaries.
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• Area C: Mathematical modeling and applications

– Formulation of a mathematical model for a BHV interacting with

surrounding fluid.

– Application of the developed fluid–thin structure interaction frame-

work to BHV FSI simulations.

– Preliminary validation of the mathematical model for BHV FSI,

in the form of qualitative comparisons between simulation outputs

and results of an original in vitro experiment.
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Chapter 2

Mathematical model of FSI

To construct a verifiable computer simulation of BHV FSI, one must

first assume a correspondence between the physical phenomenon and a math-

ematical problem that is said to model it. In this dissertation, I follow the

thoroughly-validated paradigm of modeling macroscopic fluid and structural

dynamics within the framework of continuum mechanics, where the defor-

mations of bulk materials are represented by solutions to partial differential

equations. In particular, I model BHV leaflets as thin shells structures, using

the Kirchhoff–Love theory, and I model the surrounding fluid, be it human

blood or the working fluid of an in vitro experiment, as an incompressible

Newtonian fluid. These two subproblems are coupled through kinematic and

dynamic compatibility conditions along the fluid–solid interface. Due to its

thinness, the structure is modeled geometrically as a 2D surface embedded in

Some of this chapter’s content is derived from the following paper:
D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-

sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
supervision and edited the manuscript extensively. Y. Yu, J. A. Evans, and T. J. R. Hughes
supervised the mathematical analysis. M. S. Sacks helped plan and supervise the laboratory
experiments.
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the 3D fluid domain. A discussion of the validity of these modeling assump-

tions is deferred to Chapter 7. The present chapter is concerned only with

stating the mathematical problem. I state the model in a weak form, which is

both more suggestive of finite-dimensional approximations and more conducive

to the inclusion of distributional forces associated with immersed boundaries.

I am deliberately vague in the statement of the problem; a detailed mathe-

matical study of the necessary and/or sufficient conditions on the regularity

of domain geometries, problem data, and function spaces for this nonlinear

problem to be well posed is beyond the scope of this dissertation. Some linear

model problems are stated and analyzed more rigorously in Chapter 5.

Remark 2.1. The reader may expect the structure subproblem to include

some stipulation that the structure cannot deform to intersect itself. Explicit

inclusion of such an inequality constraint would, however, be redundant in light

of the fluid–structure kinematics, since a single-valued, continuous velocity

field is defined throughout the fluid–structure continuum. While it is, in prac-

tice, critical to include some specialized treatment of structure-on-structure

contact in a numerical method, because the lubrication limit is essentially im-

possible to fully resolve, I consider the treatment of contact to be a feature of

the discretization and not a part of the mathematical model.

2.1 Augmented Lagrangian formulation of FSI

My starting point is the augmented Lagrangian framework for FSI in-

troduced by Bazilevs et al. [19], which I specialize to the case of thin structures
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as follows. Denote the region occupied by incompressible Newtonian fluid at

time t by (Ω1)t ⊂ Rd, where d is the number of space dimensions. The struc-

ture geometry at time t is modeled by the surface Γt ⊂ (Ω1)t, with dimension

d− 1. Let u1 denote the fluid’s velocity and p denote its pressure. Let y de-

note the structure’s displacement from some reference configuration, Γ0, and

u2 ≡ ẏ denote the velocity of the structure. The fluid–structure kinematic

constraint that u1 = u2 on Γt is enforced using the augmented Lagrangian∫
Γt

λλλ · (u1 − u2) dΓ +
1

2

∫
Γt

β|u1 − u2|2 dΓ , (2.1)

where λλλ is a Lagrange multiplier and β ≥ 0 is a penalty parameter. The

resulting variational problem is: Find u1 ∈ Su, p ∈ Sp, y ∈ Sd, and λλλ ∈ S`

such that, for all test functions w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλλλ ∈ V`

B1({u1, p}, {w1, q}; û)− F1({w1, q})

+

∫
Γt

w1 · λλλ dΓ +

∫
Γt

w1 · β(u1 − u2) dΓ = 0 , (2.2)

B2(y,w2)− F2(w2)

−
∫

Γt

w2 · λλλ dΓ−
∫

Γt

w2 · β(u1 − u2) dΓ = 0 , (2.3)∫
Γt

δλλλ · (u1 − u2) dΓ = 0 , (2.4)

where Su, Sp, Sd, and S` are the trial solution spaces for the fluid velocity,

fluid pressure, structural displacement, and fluid–structure interface Lagrange

multiplier solutions, respectively, and Vu, Vp, Vd, and V` are the correspond-

ing test function spaces. B1, B2, F1, and F2 are the semi-linear forms and

linear functionals corresponding to the (weak) fluid and structural dynamics

subproblems.
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2.2 Fluid subproblem

As mentioned above, the weak fluid subproblem is defined to be incom-

pressible and Newtonian:

B1({u, p}, {w, q}; û) =

∫
(Ω1)t

w · ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇∇∇u

)
dΩ

+

∫
(Ω1)t

εεε(w) : σσσ1(u, p) dΩ +

∫
(Ω1)t

q∇∇∇ · u dΩ

− γ
∫

(Γ1h)t

w · ρ1 {(u− û) · n1}− u dΓ , (2.5)

F1({w, q}) =

∫
(Ω1)t

w · ρ1f1 dΩ +

∫
(Γ1h)t

w · h1 dΓ , (2.6)

where ρ1 is the fluid mass density, εεε is the symmetric gradient operator,

σσσ1(u, p) = −pI + 2µεεε(u), where µ is the dynamic viscosity, f1 is a prescribed

body force, and h1 is a prescribed traction on Γ1h ⊂ ∂Ω1. I assume that (Ω1)t

deforms from some reference configuration, (Ω1)0, according to the velocity

field û, which need not equal u1. ∂(·)/∂t|x̂ indicates time differentiation with

respect to a fixed point x̂ from (Ω1)0. The last term of (2.5) is not usually

considered to be part of the weak Navier–Stokes problem, but it enhances

the stability of the problem in cases where flow enters through the Neumann

boundary Γ1h [50]. The function {·}− isolates the negative part of its argu-

ment, i.e.

{x}− =

{
0 x > 0
x otherwise

. (2.7)

The coefficient γ controls the strength of this stabilizing term and n1 is the

outward-facing normal to Ω1. The stabilizing influence of this term can be

understood by testing the coercivity of B1 in the case of γ ≥ 1. This term
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is often viewed as a detail of the discretization, but γ is typically O(1), in

which case the perturbation introduced by this stabilization is a modification

of the mathematical model; it will not converge to zero with refinement of the

discretization.

2.3 Thin structure subproblem

Following the Kirchhoff–Love thin shell kinematic hypotheses (see, e.g.

[109–111]), B2 and F2 from the structure subproblem are defined

B2(y,w) =

∫
Γt

w · ρ2hth
∂2y

∂t2

∣∣∣∣
X

dΓ +

∫
Γ0

∫ hth/2

−hth/2

DwE : S dξ3dΓ (2.8)

and

F2(w) =

∫
Γt

w · ρ2hthf2 dΓ +

∫
Γt

w · hnet dΓ , (2.9)

where ρ2 is the structure mass density, f2 is a prescribed body force, hth is

the thickness of the shell, ξ3 is a through-thickness coordinate, and I have

referred the elasticity term to the reference configuration (cf. [81, (8.60)] or

[23, (1.80)]). E is the Green–Lagrange strain tensor [81, (2.67)] corresponding

to the displacement y, DwE is its functional derivative in the direction of w,

viz.

DwE(y) =
d

dε
E(y + εw)

∣∣∣∣
ε=0

, (2.10)

and S is the second Piola–Kirchhoff stress tensor [81, (3.63)], depending on E.

The last term of F2 sums the prescribed tractions on the two sides of Γt: hnet =

h(ξ3 = −hth/2)+h(ξ3 = +hth/2). ∂(·)/∂t|X indicates time differentiation with

respect to a fixed material point, X ∈ Γ0.
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2.3.1 Definition of E in terms of y

The Green–Lagrange strain E is simplified to depend entirely on the

shell structure’s midsurface displacement, y : Γ0 → Rd, so as to reduce the

dimension of the solid mechanics problem. Stating the precise dependence of

E on y requires some notation. I shall assume, for now, that d = 3 (so that

Γt is a 2D surface), as this is the highest space dimension in which BHVs are

designed to function, and the specialization to d = 2 (i.e. a 2D beam theory

in which Γt is a 1D curve) is straightforward. First, consider a coordinate

chart on Γ0, mapping points X of the midsurface to coordinate pairs (ξ1, ξ2).

Then allow a third coordinate ξ3 to parameterize material points extruded in

the normal direction to Γ0. Letting Greek letter indices have the range {1, 2},

define covariant basis vectors

Aα =
∂X

∂ξα
, (2.11)

A3 =
A1 ×A2

|A1 ×A2|
(2.12)

and

aα =
∂x

∂ξα
, (2.13)

a3 =
a1 × a2

|a1 × a2|
(2.14)

on the reference and deformed configurations, where x(X(ξ1, ξ2)) =

y(X(ξ1, ξ2)) + X(ξ1, ξ2) is the deformed position of the midsurface material

point X that is mapped to coordinates (ξ1, ξ2). The corresponding contravari-
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ant basis vectors Ai and ai are such that

Ai ·Aj = ai · aj = δij . (2.15)

These basis vectors can be used to provide formulas for the midsurface metric

tensor

gαβ = aα · aβ , (2.16)

Gαβ = Aα ·Aβ (2.17)

and curvature coefficients

bαβ = −aα ·
∂a3

∂ξβ
=
∂aα
∂ξβ
· a3 , (2.18)

Bαβ = −Aα ·
∂A3

∂ξβ
=
∂Aα

∂ξβ
·A3 . (2.19)

Gαβ, gαβ, Bαβ, and bαβ are then used to define the in-plane components of the

simplified Green–Lagrange strain at a point (X, ξ3) in Γ0 × (−hth/2, hth/2):

Eαβ = εαβ + ξ3καβ , (2.20)

where

εαβ =
1

2
(gαβ −Gαβ) , (2.21)

καβ = Bαβ − bαβ , (2.22)

with respect to the basis Aα⊗Aβ. While not strictly necessary, I find it most

convenient to transform these components into a local Cartesian coordinate

system. This ensures compatibility with tensor component formulas found in
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references assuming Cartesian coordinate systems, thereby expediting the im-

plementation of constitutive relations found in the engineering literature. The

local Cartesian basis vectors {Îj}3
j=1 and {̂ij}3

j=1 are obtained by performing

Gram–Schmidt orthonormalization of the covariant basis vectors {Aj}3
j=1 and

{aj}3
j=1, as in [109, (2.43)–(2.45)]. This ensures that the third coordinate re-

mains out-of-plane, i.e. Î3 = A3 and î3 = a3. For the components of the

Green–Lagrange strain, this transformation is computed by (cf. [109, (3.41)])

Eαβ ← Eγδ

(
Îγ ·Aα

)(
Îδ ·Aβ

)
. (2.23)

For the remainder of the discussion on the structure subproblem I will, unless

stated otherwise, assume that tensor components are given in such a local

Cartesian basis. This effectively hides the distinction between covariant and

contravariant objects, so that all indexes can be given as subscripts without

ambiguity.

Remark 2.2. The formula (2.23) differs from [109, (3.41)]. The cited formula

[109, (3.41)] is stated in terms of contravariant basis vectors that vary through

the thickness of the structure. However, [109] tacitly assumes (2.23) in the

analytical integration of bending moments through the thickness [109, (3.38)

and (3.39)]. Assuming (2.23) can be construed as a thin-shell approximation

of the “shifter tensor” defined by [26, (63)]. Alternatively, [111] and [175]

formulate Kirchhoff–Love thin shell mechanics without making this assump-

tion. The FSI techniques proposed in this dissertation are independent of how

exactly the shell subproblem is formulated; reference [85] uses them with the

shell formulation of [111].
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The components Eα3 and E3α are assumed to be zero as part of the

Kirchhoff–Love model. The component E33 must remain nonzero to obtain

reasonable agreement with standard elasticity for plane stress problems. E33

is made unique by introducing the assumption that S33 = 0. Given y (and

thus all components of E aside form E33) the scalar equation S33(E) = 0 can

be solved for the unknown E33. The exact expression for E33 in terms of y

will therefore depend on the constitutive model expressing S as a function of

E.

Due to the assumptions that Eα3 = E3α = 0 and S33 = 0 for any

displacement y, the product DwE : S involves only indexes ranging over {1, 2}:

DwE : S = DwEαβSαβ +DwEα3Sα3 +DwE3βS3β +DwE33S33 (2.24)

= DwEαβSαβ . (2.25)

In particular, this conveniently censors DwE33, which would introduce a de-

pendence of the strain variation on the material, due to the fact that the

functional form of E33(y) depends on the constitutive model.

For problems in which d = 2, the relevant restriction of this shell theory

can be obtained by simply extruding the curve Γ0 out of the plane to form a

2D shell, but constraining all displacments in the out-of-plane direction. This

is the model that I use for all 2D fluid–thin structure interaction problems in

this dissertation. The resulting “beam” theory for the d = 2 case is not Euler–

Bernoulli theory. For a shell composed of an isotropic material with Young’s

modulus E and Poisson ratio ν, the effective beam stiffness of the constrained
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shell formulation is E/(1− ν2) rather than E.

2.3.2 Constitutive modeling

Any material model that accepts as input a Green–Lagrange strain E

and returns as output a 2nd Piola–Kirchhoff stress S can be used directly in

the structure subproblem defined above. No special limitations on constitutive

modeling are introduced by the use of Kirchhoff–Love shell theory. Throughout

this dissertation, I model structures as hyperelastic, meaning that

S =
∂Ψ

∂E
, (2.26)

where Ψ is some functional mapping strains to scalar energy densities [81,

Chapter 6]. I use two particular models in this dissertation.

2.3.2.1 St. Venant–Kirchhoff model

The simplest example of a strain energy functional is motivated by a

formal extension of linearized elasticity:

Ψ =
1

2
E : C : E ⇒ S = C : E , (2.27)

where C is a rank-four elasticity tensor. In the case where C corresponds to

an isotropic material and can be derived from a Young’s modulus E and Pois-

son ratio ν, this model is refered to as a St. Venant–Kirchhoff material. The

St. Venant–Kirchhoff model is popular for its simplicity, but suffers from insta-

bilities in compression [81, Section 6.5, Exercise 4]. The St. Venant–Kirchhoff
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model also allows for the ξ3 integral in B2 to be computed analytically [109,

(3.38) and (3.39)] to arrive at a simplified formulation [109, (3.47)].

2.3.2.2 Incompressible neo-Hookean model

A model that is more physically accurate at large strains is the incom-

pressible neo-Hookean model:

Ψ =
µs
2

(trC− 3) + p
(

(detC)1/2 − 1
)

, (2.28)

where µs > 0 is the single material parameter, known as the shear modulus,

C = 2E + I is the right Cauchy–Green deformation tensor [81, (2.63)], and

p is a Lagrange multiplier to enforce the constraint of incompressibility. The

incompressible neo-Hookean model is a special case of the structural constitu-

tive model for soft tissues introduced by Fan and Sacks [57]. Fan and Sacks

use an incompressible neo-Hookean term in their strain energy functional to

model the effects of extra-cellular matrix, alongside other terms to model the

effects of collagen fibers. They show that, for realistic (experimentally cali-

brated) choices of parameters, the neo-Hookean matrix term dominantes the

bending behavior of thin sheets of tissue [57, Figure 4a]. The opening and

closing kinematics of BHV leaflets are largely dominated by bending. I have,

accordingly, found little sensitivity of leaflet kinematics to additional terms in

Ψ modeling collagen fiber behavior at large tensile strains. For simplicity of

presentation, I have therefore omitted these additional terms.
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Chapter 3

Discretization of subproblems

Distinct fluid and structure subproblems may be isolated from the cou-

pled problem stated in Chapter 2 by setting the test function corresponding

to the other subproblem and the test function corresponding to the kinematic

constraint to zero. Each of these subproblems may be discretized by adapt-

ing existing techniques for computational fluid and structural dynamics. This

chapter focuses on semi-discretizations in space. The treatment of time dis-

cretization will be tied to the coupling of the two subproblems, which is the

Some of this chapter’s content is derived from the following publications:
D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.

Sacks, T. J. R. Hughes. An immersogeometric variational framework for fluid–structure
interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Me-
chanics and Engineering, 284:1005–1053, 2015. D. Kamensky developed the techniques
used for fluid–thin structure interaction and structure-on-structure contact. M.-C. Hsu pro-
vided supervision and implemented the finite cell method for flow around bulky objects. D.
Schillinger helped formulate the finite cell approach used. J. A. Evans provided mathemat-
ical advice. A. Aggarwal developed the geometrical model of the valve. Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes supervised the work.

D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-
sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
supervision and edited the manuscript extensively. Y. Yu, J. A. Evans, and T. J. R. Hughes
supervised the mathematical analysis. M. S. Sacks helped plan and supervise the laboratory
experiments.
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subject of Chapter 4.

3.1 Fluid subproblem

The fluid subproblem may be isolated by setting w2 = δλλλ = 0, which

yields (2.2), in which the structure velocity u2 and the Lagrange multiplier λλλ

should be viewed as prescribed data. I describe two ways of discretizing this

subproblem: the variational multiscale (VMS) approach1 (Section 3.1.1) and

the divergence-conforming B-spline approach (Section 3.1.2). Section 3.1.3

compares the advantages and disadvantages of these two approaches.

3.1.1 Variational multiscale formulation

Galerkin’s method is unstable when applied directly to the fluid sub-

problem (2.2). The usable combinations of discrete velocity and pressure

approximation spaces are restricted by inf-sup stability considerations [74]

and it is well known that, when advective phenomena dominate diffusion,

the Galerkin discrete solution can become highly oscillatory [32, 58]. Further,

there would be no turbulence model, and high Reynolds number flows would

need to be resolved at viscous length scales. The issues of stability and tur-

bulence modeling are simultaneously addressed by the variational multiscale

(VMS) method [91] of Bazilevs et al. [16]. In short, it substitutes an ansatz for

1My use of the term “VMS” in this dissertation refers to the specific VMS formulation
explained in Section 3.1.1, applied to equal-order pressure–velocity discretizations. My
choice of terminology should not be taken to mean that the concept of VMS analysis is
incompatible with div-conforming B-splines, which is demonstrably [193] not true.
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subgrid velocities and pressures into the weak fluid subproblem. This ansatz

is consistent with the strong form of the Navier–Stokes equations, so that

the resulting formulation smoothly transitions to a high-order-accurate direct

numerical simulation as the approximation spaces are refined.

The mesh-dependent VMS formulation is posed on a collection of dis-

joint fluid elements {Ωe} such that Ω1 = ∪eΩe. {Ωe}, Ω1, and Γ remain

time-dependent, but, when there is no risk of confusion, I drop the subscript t

to simplify notation. I introduce a superscript h to indicate association with

discrete spaces defined over these elements. The mesh {Ωe} deforms with ve-

locity ûh. Let Vhu and Vhp be discrete velocity and pressure spaces defined over

{Ωe}. The semi-discrete VMS fluid subproblem is: Find uh1 ∈ Vhu and ph ∈ Vhp

such that, for all wh
1 ∈ Vhu and qh ∈ Vhp ,

BVMS
1 ({uh1 , ph}, {wh

1 , q
h}; ûh)− FVMS

1 ({wh
1 , q

h})

+

∫
Γ

wh
1 · (λn2) dΓ +

∫
Γ

wh
1 · β(uh1 − u2) dΓ = 0 , (3.1)
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where

BVMS
1 ({u, p}, {w, q}; û) =

∫
Ω1

w · ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇u

)
dΩ

+

∫
Ω1

εεε(w) : σσσ1 dΩ +

∫
Ω1

q∇ · u dΩ

− γ
∫

Γ1h

w · ρ1 {(u− û) · n1}− u dΓ

−
∑
e

∫
Ωe

(
(u− û) · ∇w +

1

ρ1

∇q
)
· u′ dΩ

−
∑
e

∫
Ωe
p′∇ ·w dΩ

+
∑
e

∫
Ωe

w · (u′ · ∇u) dΩ

−
∑
e

∫
Ωe

1

ρ1

∇w : (u′ ⊗ u′) dΩ

+
∑
e

∫
Ωe

(u′ · ∇w) τ · (u′ · ∇u) dΩ , (3.2)

and

FVMS
1 ({w, q}) = F1({w, q}) . (3.3)

The forms BVMS
1 and FVMS

1 are the VMS semi-discrete counterparts of B1 and

F1. u′ is the fine scale velocity ansatz,

u′ = −τM

(
ρ1

(
∂u

∂t

∣∣∣∣
x̂

+ (u− û) · ∇u− f

)
−∇ · σσσ1

)
, (3.4)

and p′ is the fine scale pressure,

p′ = −ρ1τC∇ · u . (3.5)
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These clearly correspond to residuals of the strong momentum and continuity

equations forming the incompressible Navier–Stokes system. The stabilization

parameters τM, τC, and τ are defined as

τM =

(
s

(
4

∆t2
+ (u− û) ·G(u− û) + CI

(
µ

ρ1

)2

G : G

))−1/2

, (3.6)

τC = (τMtrG)−1 , (3.7)

τ = (u′ ·Gu′)
−1/2

, (3.8)

where ∆t is a timescale associated with the as-yet-unspecified temporal dis-

cretization, CI is a dimensionless positive constant derived from element-wise

inverse estimates [31, 53], and G generalizes the element diameter “h” to phys-

ical elements mapped through x(ξξξ) from a parametric parent element:

Gij =
d∑

k=1

∂ξk
∂xi

∂ξk
∂xj

. (3.9)

For a quasi-uniform shape-regular mesh with diam Ωe asymptotically bounded

above and below by h, we have n · Gn ∼ h−2 for a unit vector n. The

factor s in the definition of τM is a dimensionless quantity that is allowed to

vary in space. In most of Ω1, s = 1, but, in an O(h) neighborhood of Γ,

s = sshell ≥ 1. I introduced this factor in [105] to improve mass conservation

near immersed boundaries. A theoretical motivation for this scaling is given in

Section 5.4, and a numerical investigation of its effect is given in Section 6.4.

In all computations presented in this dissertation, s(x) is constructed to be in

the pressure discrete space. Suppose this space is spanned by n basis functions
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{Ni(x)}ni=1, forming a partition of unity for every x ∈ Ω1 and having O(h)-

diameter supports. (This property is satisfied by, e.g., the standard B-spline

or NURBS basis functions.) s(x) is expressed as

s(x) =
n∑
i=1

siNi(x) . (3.10)

For i ∈ {1, . . . , n}, si = sshell if the support of Ni intersects Γ and si = 1

otherwise. This construction implies that s(x) = sshell over the entirety of

each fluid element intersecting Γ and s(x) = 1 everywhere outside of an O(h)

region containing Γ.

Remark 3.1. The τ term of BVMS
1 is not derived from VMS analysis; it is an

extra term, introduced by Taylor et al. [174], to provide stabilizing dissipation

near steep solution gradients.

3.1.2 Divergence conforming B-splines

As mentioned in the previous section, I found it necessary to scale the

stabilization parameters of the VMS formulation in an unusual way to ensure

mass conservation in immersed boundary computations. A way to totally

eliminate mass loss and obtain pointwise divergence-free velocity solutions

is to discretize the fluid in a so-called “structure-preserving”, “divergence-

conforming”, or “div-conforming” manner, such that the divergence of every

vector-valued function in the discrete velocity space is a member of the scalar-

valued discrete pressure space. If this property is satisfied, then, assuming

the Galerkin discrete problem is well-posed and a discrete velocity solution uh1
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exists, the weak continuity equation must be satisfied for qh = ∇ · uh1 :

∀qh ∈ Vhp
(
(qh,∇ · uh1)L2(Ω1) = 0

)
and ∇ · uh1 ∈ Vhp (3.11)

⇒ (∇ · uh1 ,∇ · uh1)L2(Ω1) = 0 (3.12)

⇒ ‖∇ · uh1‖2
L2(Ω1) = 0 (3.13)

⇒ ∇ · uh1(x) = 0 for a.e. x ∈ Ω1 . (3.14)

A discretization of this type was developed for Stokes and Navier–Stokes flows

by Evans and Hughes [51, 54, 55]. Evans and Hughes used B-splines to con-

struct velocity and pressure spaces satisfying the necessary properties, then

directly posed the weak problem B1({uh1 , ph}, {wh
1 , q

h}; 0) = F1({wh
1 , q

h})2

over these discrete spaces (augmenting it with Nitsche’s method to enforce no-

slip boundary conditions).3 A caveat to the above reasoning is that, to truly

obtain velocities that conform to the incompressibility constraint, one would

need to solve the discrete algebraic problem exactly, which is almost always

impractical for real problems. I demonstrate in the 3D numerical examples

of Sections 7.2 and 7.3, however, that the benefits of divergence-conforming

discretizations are robust enough to persist through commonly-used approxi-

mations in the assembly and solution of the discrete problem.

As mentioned above, Evans and Hughes used Nitsche’s method to en-

2In the discussion of div-conforming discretizations, I assume that Ω1 is static, i.e. û = 0.
There is probably no serious practical issue with inserting some reasonable mesh velocity,
as it does not enter into the continuity equation, but I have not explored this possibility
and some nice theoretical properties depend on having a solenoidal advection velocity.

3The presentation of Evans and Hughes formulates the advection term of B1 differently,
but this is easily shown to be equivalent to the present formulation, because ∇ · uh1 ≡ 0.
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force no-slip boundary conditions in a strongly consistent manner that allows

for optimal convergence to sufficiently-regular solutions. For the immersogeo-

metric computations of this paper, the regularity of the fluid velocity solution

is always low (at most H3/2−ε(Ω1)) and I use, for simplicity,4 a “naive” velocity

penalization, i.e. I alter the problem to be

B1({u1, p}, {w1, q}; 0) + Cpen

∫
Γpen

(u1 − g) ·w1 dΓ = F1 ({w1, q}) , (3.15)

where Cpen > 0 is a penalty parameter and g is the desired velocity on Γpen ⊂

∂Ω1. If the normal component of the Dirichlet boundary condition is strongly

enforced (i.e. built directly into the spaces in which u1 and w1 live), the

formulation (3.15) can be used unaltered to penalize just the tangential portion

of the boundary condition. If the penalty constant Cpen scales like µ/h, then

this remains weakly consistent with the Navier–Stokes problem.

Div-conforming B-splines for incompressible flow are a specific applica-

tion of a narrow subset of discrete de Rahm complexes. This is an important

topic not only for approximation of incompressible flows but for computational

electromagnetics and magnetohydrodynamics as well. In this dissertation, I

will focus exclusively on the application to incompressible flow, with an eye

toward implementation. Readers interested in generalizations and theoretical

aspects should refer to [4] for a discussion of discrete exterior calculus and

[33, 34] for its development within IGA.

4Actually, the consistency of Nitsche’s method relies on having an exact velocity solution
in H3/2+ε(Ω1) (cf. [51, Section 7.2]), which is marginally more regular than we would expect
from an immersed boundary approach.
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3.1.2.1 Construction for rectangular domains

Suppose, for now, that Ω1 is an axis-aligned d-dimensional rectangle.

Then physical space can serve directly as a d-variate B-spline parameter space.5

Define a d-variate scalar B-spline space for the pressure on Ω1. Then, for

1 ≤ i ≤ d, we can k-refine the pressure space once in the ith parametric

direction to obtain a scalar space for the ith Cartesian velocity component.

Due to well-known properties of B-splines under differentiation [134], the ith

partial derivative of the ith velocity component will then be in the pressure

space. The scalar basis functions of the d velocity component spaces can be

multiplied by their respective unit vectors to obtain a vector-valued basis for

the discrete velocity space. The divergence of a vector-valued velocity function

will therefore be a sum of d scalar functions in the pressure space.

A statement of all possible structure-preserving B-spline spaces can

(after defining the appropriate notation) be written in a compact formula, as

in [51, Section 5.2]. In the notation of the cited reference, the velocity space

is R̂Th and the pressure space is Ŵh. Following the terminology of [51], if the

pressure space has polynomial degree k′ in all directions, the entire pressure

and velocity discretization is said to be of degree k′, despite the presence of

(k′ + 1)-degree splines in the velocity component spaces.

To clarify the construction, I spell out an example of degree k′ = 1.

5For readers unfamiliar with the construction and basic properties of B-splines, a com-
prehensive explanation can be found in [134]. The aspects essential to understanding IGA
are reviewed concisely in [90].
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Suppose d = 2 and the pressure space has degree one (= k′) in both the x1

and x2 directions. Its (open) knot vectors in the x1 and x2 directions are both

(1, 1, 2, 3, 4, 5, 6, 7, 7) . (3.16)

Then the scalar B-spline space Su1 for the x1 component of u1 would have

knot vector

(1, 1, 1, 2, 3, 4, 5, 6, 7, 7, 7) (3.17)

and degree two (= k′ + 1) in the x1 direction and knot vector

(1, 1, 2, 3, 4, 5, 6, 7, 7) (3.18)

and degree one (= k′) in the x2 direction. The partial derivative ∂
∂x1

maps

functions from this space to the pressure space. Vector-valued basis functions

for the velocity are obtained by multiplying the scalar basis functions of Su1 by

the unit vector e1. Similarly, the space Su2 for the x2 component of u1 would

have knot vector

(1, 1, 2, 3, 4, 5, 6, 7, 7) (3.19)

and degree one in the x1 direction and knot vector

(1, 1, 1, 2, 3, 4, 5, 6, 7, 7, 7) (3.20)

and degree two in the x2 direction. The corresponding vector-valued velocity

basis functions are obtained by multiplying scalar basis functions of Su2 by e2.

The extensions to higher polynomial orders, more space dimensions, different

knot multiplicities, periodic domains, and so on should be straightforward.
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3.1.2.2 Generalization to non-rectangular domains

Div-conforming B-splines are not limited to rectangular domains. A

point X in a rectangular parametric domain Ω̂ may be mapped to a point

x in a non-rectangular physical domain Ω, using a motion x = φφφ(X). (The

regularity requirements of this mapping are given in [51, Section 4.3], with

some differences in notation.) To obtain divergence-conforming velocity and

pressure spaces on the physical domain Ω, vector-valued velocity basis func-

tions defined on Ω̂ can be pushed forward using the Piola transform. For an

arbitrary parametric-space velocity function û, its physical-space counterpart

u is

u(x) =
1

J(X)
F(X)û(X) , (3.21)

where, using Cartesian index notation [81, Section 1.1] and symbols analogous

to those frequently seen in nonlinear elasticity, F is the deformation gradient

of φφφ, viz.

F =
∂φφφ

∂X
⇐⇒ FiJ =

∂φi
∂XJ

= φi,J , (3.22)

and J is the determinant of F. Using Nanson’s formula [81, (2.54)] and inte-

gration by parts, this implies the well-known Piola identity

div u =
1

J
DIV û , (3.23)

where

div u =
∂uj
∂xj

= uj,j and DIV û =
∂ûB
∂XB

= ûB,B . (3.24)

(For readers unfamiliar with this identity, it also follows easily from (3.27),

derived below.) To ensure pointwise divergence-free velocity solutions, we
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would like the divergence of every pushed-forward velocity function to exist in

the pushed-forward pressure space. Recall that, for every û in the parametric

velocity space, there exists q̂ in the parametric pressure space such that q̂ =

DIV û. Then, in view of (3.23), the parametric pressure space function should

be pushed forward by

q(x) =
1

J(X)
q̂(X) , (3.25)

so that q = div u and the argument (3.11)–(3.14) remains valid.

The weak Navier–Stokes equations involve the spatial gradient of the

pushed-forward velocity u, viz. ui,j. Given the B-spline control point values

for components of û, it is only immediately straightforward to evaluate ûA,B.

I derive here a formula for the physical velocity gradient in terms of the X-

derivatives of û(X) and φφφ(X). I use the identity

∂J

∂FiA
= JF−1

Ai , (3.26)

which is equivalent to [81, (1.241)]. Underlines and colors are purely for visual
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clarity.

ui,j =

(
1

J
FiAûA

)
,j

=

{(
1

J

)
,j

FiA +
1

J
FiA,j

}
ûA +

1

J
FiAûA,j

=

{(
−1

J2

∂J

∂F`B

∂F`B
∂XC

∂XC

∂xj

)
FiA +

1

J

∂FiA
∂XC

∂XC

xj

}
ûA +

1

J
FiA

∂ûA
∂XC

∂XC

∂xj

=

{
−1

J2

∂J

∂F`B
F`B,CF

−1
Cj FiA +

1

J
FiA,CF

−1
Cj

}
ûA +

1

J
FiAûA,CF

−1
Cj

=

{
−1

J
F−1
B` F`B,CF

−1
Cj FiA +

1

J
FiA,CF

−1
Cj

}
ûA +

1

J
FiAûA,CF

−1
Cj

=
1

J

({
−F−1

B` F`B,CFiA + FiA,C
}
ûA + FiAûA,C

)
F−1
Cj . (3.27)

By substituting j for i and invoking the symmetry of φφφ’s Hessian, one may

easily derive (3.23) from the last line of (3.27).

Div-confomring B-splines may be used on wider classes of geometries by

joining deformed rectangular meshes together with a discontinuous Galerkin

approach, as described in [51, Section 6.5], but this possibility is not exploited

in the present work.

3.1.2.3 Stabilization of advection

As discussed while introducing the VMS discretization in Section 3.1.1,

Galerkin’s method is not necessarily stable for practically-coarse discretiza-

tions of high-Reynolds-number flows. The Galerkin discretization used by

Evans and Hughes can be straightforwardly augmented to include SUPG sta-

bilization [32] (but without its frequent accomplice pressure stabilizing Petrov–
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Galerkin (PSPG) [92], which would clearly disrupt the pointwise mass conser-

vation). However, the appearance of the pressure gradient in the momentum

equation residual removes the property of the Galerkin approximation that the

error in the velocity solution is independent of pressure interpolation error [54,

(6.32)]. This property is valuable in the presence of immersed boundaries that

induce large discontinuities in the exact pressure solution. In the computa-

tions of this dissertation, I stabilize div-conforming discretizations in a weakly-

consistent manner, by introducing an O(h) streamline diffusion. Specifically,

I add6

+
∑
e

(τρ1u
h
1 · ∇uh1 ,u

h
1 · ∇wh

1)L2(Ωe) (3.28)

to B1({wh
1 , q

h}, {uh1 , ph}), where {Ωe}Nel
e=1 are the Nel Bézier elements of the

B-spline mesh and

τ =

{ (
uh1 ·Guh1

)−1/2
uh1 ·Guh1 > 0

0 otherwise
. (3.29)

The components of G are again defined by (3.9), with ξξξ ∈ (−1, 1)d a nor-

malized parametric coordinate in Ωe. While this form of stabilization is only

weakly consistent, we do not expect high order convergence rates from im-

mersed boundary discretizations (of the type developed in this dissertation),

due to low-order interpolation errors. The stabilization term (3.28) should

therefore not harm asymptotic convergence rates. Further, the artificial dif-

fusion acts only in the flow direction, and is minimally disruptive to laminar

solutions.

6I assume here that û = 0, as in my statement of the problem to be solved using div-
conforming B-splines.
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3.1.3 Comparison of VMS and div-conforming B-splines

In this section, I list the advantages and disadvantages of the VMS and

div-conforming approaches. The advantages of VMS are as follows:

• The discrete formulation is stable for arbitrary combinations of pressure

and velocity spaces. This includes the “equal-order” discretization fam-

ily, in which the pressure and each Cartesian component of the velocity

are in the same scalar discrete space. This choice allows for greater

optimization of CFD codes than would be possible for inf-sup-stable

pressure–velocity pairs. In principle, one could stably apply VMS to

the div-conforming B-spline spaces, although the ∇qh–∇ph interaction

would spoil the mass conservation.

• The formulation has been demonstrated to be an effective turbulence

model over a wide range of Reynolds numbers, while retaining high-order

accuracy in the limit of direct numerical simulation.

• The effective application of this formulation to a wide variety of chal-

lenging FSI problems is thoroughly documented in the computational

mechanics literature.

The disadvantages are:

• The absence of strong mass conservation leads to severe mass loss near

immersed boundaries, unless the stabilization constants are scaled by an
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ad hoc factor. Improving the mass conservation in this way requires some

degree of empirical tuning and harms the conditioning of the discrete

problem. Further, it may reduce accuracy in some situations. It should

be noted that this is not a unique disadvantage of the VMS formulation,

as other non-div-conforming discretizations suffer in the presence of large

pressure gradients. See, e.g., [59], in which the authors resorted to drastic

scaling of grad-div stabilization to prevent catastrophic mass loss.

The advantages of the div-confomring B-spline approach are:

• No special tuning is required to obtain satisfactory mass conservation.

• Errors in laminar solutions are independent of Reynolds number [51,

Section 7.6.2].

• The error in the velocity field is independent of the pressure interpola-

tion error [54, (6.32)]. In particular, when the exact pressure solution

contains a large discontinuity cutting through element interiors, such as

the pressure jump across a thin immersed structure, this does not affect

the accuracy of the velocity solution.

The disadvantages are:

• The best way to stabilize advection is not currently clear; the naive use

of SUPG will not interfere with the pointwise mass conservation, but

it eliminates the advantage of having velocity error estimates that are

41



independent of pressure interpolation. The stabilization (3.28) that I

have used in this dissertation is practically effective, but only weakly

consistent and cannot achieve high-order accuracy.

• The technology is relatively new, so there is very little documented ex-

perience applying it to challenging problems such turbulent flow and

FSI.

• The saddle-point structure of the discrete problem following from im-

plicit time discretization makes it more difficult to solve than the discrete

problem emanating from VMS.

• The requisite tensor product structure of the B-spline mesh places a

major constraint on mesh generation.

In light of the above, neither discretization of the fluid subproblem stands out

as clearly superior and I feel that the best approach is to study both. At the

time of writing, I find my implementation using VMS to be a more practical

solution, but most of the difficulties with div-conforming B-splines are tied to

their novelty, which, by definition, will wear off over time.

3.2 Structure subproblem

Setting w1 = δλλλ = 0 isolates the structure subproblem (2.3), in which

u2 and λλλ are considered prescribed data.
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3.2.1 Isogeometric spline discretization

This subproblem can be stably discretized using a straightforward con-

forming Galerkin method. However, this has rarely been done prior to the

introduction of IGA, because, for B2(y,w) to remain bounded, y and w need

to be in H2(Γ); the formulation involves L2(Γ) inner products of second deriva-

tives of test and trial functions. This essentially corresponds to the constraint

that discrete spaces be subsets of C1(Γ).7 Traditional finite element spaces

do not satisfy this constraint. However, the spline spaces used in IGA can be

made as smooth as the geometry allows. The geometry of typical BHV leaflets

can be faithfully modeled by smooth, single-patch B-spline surfaces, so, for the

purposes of this dissertation, the semidiscrete structure subproblem amounts

to choosing Vhy to be a smooth B-spline space and adding superscript hs to

the test and trial functions of (2.3). The implementation of such discretiza-

tions for arbitrary hyperelastic constitutive laws is documented exhaustively

by Kiendl et al. [111].

3.2.2 Linearization by automatic differentiation

To apply a Newton (or Newton-based) iteration to the system of nonlin-

ear algebraic equations emanating from the discretized structure subproblem,

one must compute partial derivatives of the discrete structure subproblem

residual with respect to the coefficient of each basis function of the discrete

7This is not strictly mandated by the Sobolev embedding theorem unless the dimension
of Γ is one (cf. [2, Theorem 5.4, Case C], with j = 1, p = 2, and m = 1), but any practical
discrete subspace of H2(Γ) composed of piecewise polynomial functions will be smooth.
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trial solution space. These derivatives will depend on the material model

used, i.e. the functional dependence of S on E in the variational forms given

in Section 2.3. Complex material models may, in general, have complicated

algorithms (with conditionals, loops, and so on) relating S to E, rather than

simple formulas. Computing the necessary derivatives of such models for all

possible cases may involve significant labor, slowing down the pace of develop-

ment and introducing possibilities for programming errors. Fortunately, how-

ever, the computation of derivatives can be automated. For materials other

than the St. Venant–Kirchhoff material (for which a verified implementation

was already available to me), I employ automatic differentiation to compute

material stiffness contributions to the structure subproblem residual Jacobian

matrix. Automatic differentiation is not a novel concept, and has previously

been applied in the context of computational mechanics [115, 116]. However,

the technology is not widely understood, so I provide an overview here.

3.2.2.1 The concept of automatic differentiation

Automatic differentiation is most easily understood through examples.

I will therefore walk through a minimal Fortran implementation, in lieu of

stating a formal definition. (More comprehensive explanations can be found

in [115, 116].) Consider the following code snippets to be part of a Fortan

module called autodiff. First, within the module autodiff, define a derived

type, the “augmented real number”, abbreviated “areal”:

type a r e a l
real (8 ) : : x
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real (8 ) : : xprime
end type a r e a l

The goal is to render this type interchangeable with the standard double-

precision floating point type real(8), by overloading all of the relevant op-

erations. The attribute x is the value of the augmented real number. The

additional attribute xprime stores a partial derivative with respect to some

other augmented real number (evaluated at a particular point). To clarify

what I mean by this, I will demonstrate how to overload the addition oper-

ator, +. The + operator can tied to a procedure arplus adding augmented

reals

interface operator (+)
module procedure a rp lu s

end interface

which is implemented

elemental function arp lu s ( a , b ) result ( c )
implicit none
type ( a r e a l ) , intent ( in ) : : a , b
type ( a r e a l ) : : c
c%x = a%x + b%x
c%xprime = a%xprime + b%xprime

end function arp lu s

Suppose, then, that x, y, and z are areals corresponding to real-valued

variables x, y, and z. Suppose that, intially, x%xprime=1.0d0 and

y%xprime=0.0d0. Then, if we assign z = x + y, z%x will store the sum

of x and y, while z%xprime will be equal to ∂z/∂x, evaluated at the point

(x =x%x, y =y%x). To obtain ∂z/∂y, one would instead initialize the xprime
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attributes of x and y like x%xprime=0.0d0 and y%xprime=1.0d0 before execut-

ing z = x + y. It is straightforward to see, then, how this concept could be ex-

tended to subtraction, multiplication, negation, transcendental functions, vec-

torized operations, matrix intrinsics, operations with mixed arguement types

(e.g. integers added to areals, real(8)s multiplied by areals, etc.), assign-

ment to and from other numeric types, and so on. As a reinforcing example,

consider the interface for overloading exp,

interface exp
module procedure arexp

end interface

and its corresponding implementation

elemental function arexp ( a ) result (b)
type ( a r e a l ) , intent ( in ) : : a
type ( a r e a l ) : : b
b%x = exp( a%x )
b%xprime = a%xprime ∗ exp( a%x )

end function arexp

Thus, for any routine with numerical input and output parameters of type

areal, the partial derivatives of the ouptut variables with respect to input

variable x can be readily obtained by setting x%xprime=1.0d0, setting all of

the other input variables’ xprime members to zero, running the algorithm,

and querying the xprime attributes of the output variables. If a sufficiently

exhaustive autodiff module is implemented, code from subroutines written

around real(8)s can be re-used verbatim. The operations contributing the

the output can be in loops, conditionals, etc. Implementation would be similar

in any language which allows operator overloading, such as C++ or Python.
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3.2.2.2 Application to computing residual Jacobians

From the above, it is clear that using automatic differentiation to com-

pute all entries of a dense Jacobian of an N -dimensional N -variate function

would cost N function evaluations. Assembling all N entries of a finite element

residual once for each of N degrees of freedom would be intractable. However,

the sparse structure of the problem can be exploited to make automatic dif-

ferentiation a practical technology for computing tangent matrices.

A finite element residual is a sum of contributions from elements. Each

such element contains only m � N nonzero entries that depend on m in-

put variables. These contributions can be viewed as m-dimensional m-variate

functions (or “element right-hand side vectors”, in common parlance). For

a given element type, the number of degrees of freedom per element, m, is

independent of the residual dimension, N . Thus the cost of assembling the

m-dimensional residual m times to automatically compute the corresponding

nonzero Jacobian contributions (or the “element left-hand side matrix”) is

independent of the problem size.

This method of computing the residual Jacobian is less efficient than

hard-coding judicious approximations of element Jacobians. In my experience,

the use of automatic differentiation increases the cost of assembly by a factor

of about 5 to 10 in typical situations.8 In the context of immersed fluid–thin

8This is based on an operator-overloading implementation, as suggested by the explana-
tion in Section 3.2.2.1. Automatic differentiation can also be implemented as a source code
transformation, which usually yields improved performance [115, 116].
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structure interaction, though, the additional cost of using this method in the

structure subproblem is barely noticeable, since the lower-dimensional struc-

ture subproblem demands only a small fraction of the total computation and

the straightforward parallelization of element-by-element assembly procedures

allows this cost to be easily spread over the (typically many) processors used

for the fluid subproblem. I therefore prefer automatic differentiation in this

context, due to its versatility. While I employ only relatively simple consti-

tutive models for BHV leaflets in this dissertation, a variety of more baroque

models can be found in the biomedical literature and a practical framework

for BHV FSI analysis should anticipate their use.

3.2.3 Contact

As mentioned in Chapter 2, fluid–structure kinematics prevent struc-

tural self-intersection in the exact solution to the mathematical model of FSI.

As two disjoint portions of the fluid–structure interface approach one another,

the incompressible fluid in between will provide a lubrication effect and prevent

complete contact. This phenomenon has been exploited in boundary-element

discretizations of inflatable shell structures interacting with Stokes flow [192].

The asymptotic behavior of squeeze flow between smooth surfaces can be esti-

mated from the analytical results of Rukmani and Usha [142]. However, sim-

ulations performed at finite resolution with weakly-enforced fluid–structure

kinematic conditions may permit structural self-intersection in the approxi-

mate solution. I therefore incorporate a penalty-based contact method into the
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semi-discrete structure subproblem to prevent pre-asymptotic self-intersections

from becoming excessive.

3.2.3.1 Formulation of contact penalization

The leaflets are modeled geometrically as surfaces of co-dimension one

to Rd, so I must first clarify what is meant by penetration. A lower-dimensional

surface has no interior in which to detect penetrating geometry. However, a

BHV leaflet, operating under normal conditions, will contact other leaflets on

only one side, motivating the following definition of penetration.

Consider leaflets S1 and S2 to be smooth parametric surfaces in R3.

For x1 ∈ S1, with surface normal n1 determining the side on which contact

will occur, x1 is said to contact leaflet S2 if the following conditions are met:

1. There exists a point x2 ∈ S2 with normal n2 such that (x1 − x2) is

perpendicular to S2. I refer to x2 as the closest point on S2 to x1, but,

without additional assumptions on S2, the defining conditions guarantee

neither that x2 is unique nor that it minimizes the Euclidean distance

‖x1 − x2‖`2 . In practice, x2 is determined by iteratively solving the

nonlinear problem of finding ξξξ = (ξ1, ξ2) in the parameter space for S2

such that 
(x1 − x2(ξξξ)) · ∂x2(ξξξ)

∂ξ1

= 0

(x1 − x2(ξξξ)) · ∂x2(ξξξ)

∂ξ2

= 0

. (3.30)
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2. ‖x1 − x2‖`2 < c, where c > 0 is a parameter chosen to avoid false

positive contact of distant geometry. I assume that penalties will be

strong enough to prevent penetrations larger than c.

For a contacting point x1, its signed penetration is defined as d = (x2−x1)·n2.

x1 is said to penetrate S2 if d > −hc, where c > hc ≥ 0 indicates a minimum

desired distance between the contacting sides of S1 and S2. When d > 0, I add

the condition that |n1 · n2| > α, for some 0 ≤ α < 1. Choosing α > 0 allows

a hinge-like boundary between S1 and S2 that can open through angles larger

than 270◦ without immediately incurring a contact penalty. This notation is

illustrated for a pair of contacting points in Figure 3.1.

n1

x1

x2

d

S1

S2

n2

Figure 3.1: Illustration of contact notation.

Non-penetration is enforced weakly, by penalizing d > −hc. To mo-

tivate the spatially-discrete contact algorithm, consider adding the following

term

+

∫
S1

((
(w2)2 − (w2)1

)
· n2

) (
kd+

)
dΓ (3.31)
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to the left-hand side of (2.3). This term tests a penetration residual against a

difference of weighting functions, (w2)1 and (w2)2, where (w2)i is the structure

weighting function restricted to surface Si. The addition of the term (3.31) is

not a rigorous formulation because the change-of-variables to integrate (w2)2

over S1 is not precisely defined and the definition of d is ambiguous. With some

regularity assumptions on S1 and S2, and c sufficiently small, we could treat

the leaflets as smooth manifolds and use the tubular neighborhood theorem of

differential geometry to assert the existence of a well-behaved mapping between

contacting regions, but I do not have a constructive estimate for the bound

on c, and will instead disambiguate the formulation in an ad hoc manner, by

simply detailing my discrete implementation below.

To assemble the contact algorithm’s contribution to the structure sub-

problem’s nonlinear residual, test for penetration and apply penalty forces at a

discrete set of contact points, {x1
1, . . . ,x

n
1} ⊂ S1, in accordance with the defini-

tions given above. For the subset {xjk1 } of these points contacting {xjk2 } ⊂ S2,

opposing forces on S2 must be added to conserve linear momentum. To con-

serve angular momentum, the contact forces between x1 and x2 are along their

separation x1 − x2, which is, by construction, parallel to n2. The force on x1

is f1 = −w(Pk(d))n2 and the force on x2 is f2 = −f1, where w is a weight as-

sociated to x1 and Pk(d) penalizes penetration. I define the penalty function

as follows:

Pk(d) =


k

2hc
(d+ hc)

2 , d ∈ (−hc, 0)

khc/2 + kd , d ≥ 0
0 , otherwise

, (3.32)
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where k decides the strength of the position penalty. The behavior of Pk on

the interval −hc < d < 0, illustrated in Figure 3.2, ensures that the penalty

activates smoothly as contact begins. This smoothing greatly improves the

nonlinear convergence of the structure subproblem residual. Motivated by

(3.31), I choose {xj1} to be Gaussian integration points on elements of S1 and

weight forces using the corresponding integration rule. Based on dimensional

analysis and asymptotic considerations, one can estimate reasonable contact

parameters

k = c1E/h (3.33)

hc = c2h (3.34)

where h is a measure of the structural element size, E is an estimate of the ma-

terial stiffness, and c1 and c2 are modest dimensionless constants. Throughout

this work, however, I simply use uniform values of k and hc that I determined

to be effective through numerical experiments.

The above method does not preserve geometrical symmetries. To see

this, consider contacting planes at an angle; the directions of contact forces

depend on the choice of S1 and S2, as shown in Figure 3.3. To ensure that

results are independent of this arbitrary distinction, one must compute forces

with both choices and sum the results.

Remark 3.2. In the terminology of Sauer and De Lorenzis [147], this method

of symmetrizing the contact forces is a classical two-pass contact algorithm.

One could alternatively consider omitting the forces on {xjk2 } during each
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Figure 3.2: Illustration of the function Pk(d) for k = 2 and hc = 1.

application of the contact algorithm, which would correspond to the double

half-pass technique proposed by Sauer and De Lorenzis. This does not, in

general, enforce momentum balance, but Sauer and De Lorenzis found the

double half-pass algorithm to be more stable and computationally efficient,

while recovering momentum balance to high accuracy at reasonable levels of

refinement.

S1

S2

Figure 3.3: Symmetrical geometry results in asymmetrical contact forces.
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3.2.3.2 Approximate linearization

The nonlinear residual assembled by the above procedure is not gen-

erally differentiable with respect to the structure’s displacement field, so the

applicability of typical Newton or quasi-Newton iteration to (or even well-

posedness of) the nonlinear algebraic problems arising from implicit time dis-

cretization of the resulting semi-discrete structure subproblem is question-

able. However, for sufficiently- (and in the context of BHV dynamics, not

excessively-) small time steps, an approximate linearization of the contact

forces is sufficient to stably execute predictor–multi-corrector methods based

on Newton iteration. In particular, when approximating the linearizations of

contact forces of the form

f1 = −f2 = −wPk((x2(ξξξ)− x1) · n2)n2 , (3.35)

I ignore the dependencies of w, ξξξ, and n2 on the shell structure midsurface

displacement. This results in symmetric contributions to the approximate

Jacobian of the structure subproblem residual, which allows for the use of

optimized iterative linear solvers for the tangent system of the structure sub-

problem.

3.2.3.3 Searching for contacting points

The application of Newton iteration to solve problem (3.30) can run

into a number of difficulties:

• Depending on the starting point, the iteration could converge to a so-
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lution with ‖x1 − x2‖`2 ≥ c, despite the existence of a solution with

‖x1 − x2‖`2 < c. This would cause a contacting point to be spuriously

ignored.

• S2 may not be mapped to its parameter space by a single smooth coor-

dinate chart as in the simple case of a B-spline or NURBS patch. For

instance, S2 might be given as a collection of many Bézier elements, as

would be the typical representation of a more complicated spline struc-

ture, such as a T-spline, in an analysis code. Attempting to solve (3.30)

on each element would be prohibitively expensive.

• Even if S2 has a single coordinate chart and a unique closest point to

x1, the iterative solution of (3.30) would benefit from an informed initial

guess.

It is therefore desirable to be able to rapidly obtain an accurate initial guess

of ξξξ, to expedite the process of solving (3.30). I developed a method to do this

based on spatial hashing (also sometimes referred to as bucket sorting in the

computational mechanics literature).

The problem of finding a starting iterate on S2 can be given abstractly

as follows: Given x1 ∈ S1 and {xi2}
Np
i=1 ⊂ S2 with known parametric coordi-

nates, distributed roughly evenly over S2, find the closest xi2 to x1 such that

‖x1 − xi2‖`2 < C, for some distance C ≥ c, if such a point exists. A natural

choice of {xi2} is the set of quadrature points used to integrate the structure

subproblem over S2. Setting C = c (i.e. the cutoff used in the definition of
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contact) can potentially fail to find a starting iterate even though x1 is in

contact with S2 (in the sense defined above). The absence of any point from

the finite set {xi2} ⊂ S2 that is closer than c to x1 does not imply that there

does not exist x2 ∈ S2 such that x1 is in contact with x2. In practice, C

should therefore be somewhat larger than c. I have not endeavored to derive

precise sufficient conditions for guaranteeing that the solution of this problem

will identify a starting iterate whenever x1 is in contact with S2, but assessing

x1’s potential for contacting S2 based on its proximity to elements of {xi2}

seems to be practically effective whenever C ≥ c.

To solve the problem stated in the previous paragraph, it is clearly un-

necessary to compare any points that are further apart from one another than

C. I therefore sort the elements of {xi2} into cells of a uniform d-dimensional

grid of Nc cells {ωi}Nci=1 covering S2, then compare only the xi2s in the same

cell as x1, or adjacent cells. If the cells of the grid have edge lengths greater

than C, this procedure will make all of the necessary comparisons. While con-

ceptually simple, this engenders an implementational challenge: the fact that

S2 is of a lower dimension than the grid covering it means that the vast ma-

jority of the Nc grid cells are unoccupied. Nc will typically be quite large, so

operations of cost Θ(Nc) should be avoided. It is therefore grossly inefficient

to iterate over all elements of {ωi}. Aside from allocating memory for the

grid cells while initializing the data structure, operations to re-sort the points

{xi2} into new cells as S2 deforms should only iterate over occupied cells, of

which there can be at most Np. If quadrature points are used for {xi2}, then
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operations of cost Θ(Np) are necessarily acceptable. (Otherwise, integrating

the shell structure subproblem would be considered unacceptably costly, even

without any contact.)

To describe the algorithm that I used to accomplish this task, I must

first introduce the necessary data structures:

• L is an array of Np integers. This will be used to store linked lists of

indexes of points on S2. Because points fall within unique grid cells,

these lists can all fit within a single array of size Np. The storage and

traversal of these lists will be clarified below.

• S is a stack of integers. This will be used to keep track of the indexes of

occupied grid cells. S is initialized to be empty.

• O is an array of Nc boolean variables. O(i)9 indicates whether or not grid

cell i is occupied. O is initialized to false once, when it is first allocated,

costing Θ(Nc) operations.

• H is an array of Nc integers. If O(i) is true, then H(i) indicates the head

of a linked list of indexes of points from the set {xj2} contained in grid

cell ωi. The array H is initialized to zero once, when it is first allocated,

costing Θ(Nc) operations.

The procedure for sorting elements of {xi2} into grid cells {ωi} after S2 changes

its configuration can be divided into two phases: purge the data structures of

9N.b. that this is distinguished from “big O” asymptotic notation by font.
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information about the previous configuration, then populate the data struc-

tures with information about the new configuration. The first phase, purging,

is accomplished through the following steps:

1. Set the list L to zero. (Cost: Θ(Np), because L is of size Np.)

2. While S is not empty, pop index i from S, then set O(i) to false and

H(i) to zero. (Cost: O(Np), because at most Np cells can be occupied

by Np points, assuming each is in a unique cell.)

The second phase is accomplished by doing the following for each element xk2

of the set {xi2}:

1. Identify the index i such that xk2 ∈ ωi. This can be accomplished in O(1)

time, because the {ωj} are elements of a uniform grid.

2. If O(i) is false, set it to true and push i onto the stack S. (If O(i) is

already true, do not redundantly push i.) This step also has cost O(1).

3. Update the linked list of points within this cell:

(a) Store the old head of the linked list: h0 ← H(i).

(b) Set xk2’s index as the new head: H(i)← k.

(c) Connect the new head to the linked list: L(k)← h0.

These steps cost O(1) time.
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The cost of updating the data structures to reflect a change in the configuration

of S2 is therefore Θ(Np), which is asymptotically equivalent to the cost of

integrating the structure formulation. Once the data structures have been

populated by the above algorithm, the list of points from {xj2} contained in an

occupied cell ωi can be traversed by looking at the point xi12 , where i1 = H(i),

then looking at xi22 , where i2 = L(i1), and so on, until L(in) = 0, indicating

the end of the list.10 If we assume that the points {xi2} are distributed such

that the number falling within a single cell is O(1), then the cost of finding

the closest point of distance at most C to x1 is O(1).

3.3 Discretization of surface integrals

The evaluation of integrals over Γt deserves some remark, since Γt does

not conform to boundaries of the fluid elements {Ωe}.

3.3.1 Definition of surface quadrature rule

I employ a variant of the approach used by Düster et al. [49] to in-

tegrate immersed boundary traction in finite cell solutions of solid mechanics

problems. I define a Gaussian quadrature rule with respect to a parameteri-

zation of the reference configuration Γ0 of the immersed boundary and weight

it by the Jacobian determinant of the mapping from Γ0 to Γt. For a quasi-

uniform fluid mesh with elements of diameter Θ(h), this practice suggests that

surface quadrature elements should be of diameter O(h), but I do not enforce

10This structure is inspired by the cluster maps used in FAT file systems.

59



this condition strictly in computations. The fact that the surface quadrature

elements are not aligned with the mesh cells is certainly a “variational crime”,

although studies from the finite cell literature (e.g. [87, 149, 164]) suggest that

the influence of quadrature errors on co-dimension-one boundaries is small

relative to the effects of errors in volume quadrature.

3.3.2 Locating quadrature points in the parameterization of the
fluid domain

The relevant integrals involve traces of functions defined on the fluid do-

main. To evaluate these traces, I must be able to locate the quadrature points

of the surface in the parameter space of the background mesh. The physical

location, xg ∈ Rd, of an integration point can be obtained straightforwardly by

evaluating the surface parameterization. Finding the corresponding element

index e and parametric point ξξξ in the parameter space of Ωe, given a physical

point xg, is typically a more difficult problem. If the fluid is represented on a

rectangular grid, the solution is trivial. For more general fluid discretizations,

I have explored a number of different approaches.

3.3.2.1 Locating quadrature points in elements

Due to the flexibility of the VMS formulation described in Section 3.1.1,

it can be used with a wide variety of unstructured meshes of finite elements

{Ωe}, each of which is mapped to physical space from a parametric parent

element Ξe by xe : Ξe → Ωe. The problem is then to find an element index e

such that there exists ξξξ ∈ Ξe with xe(ξξξ) = xg. The brute force approach to
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solving this problem is to iterate over all element indexes, executing a Newton

iteration to find ξξξ in each element, with an appropriate divergence criterion

to handle the vast majority of elements for which there is no solution. The

number of Newton iterations that need to be attempted can be greatly reduced,

though, by using some simple techniques:

• Bounding boxes: If an axis aligned bounding box is computed for

fluid element Ωe, this provides a much cheaper test than divergent New-

ton iteration to conclusively determine that xg is not in Ωe. For some

types of elements, e.g. linear tetrahedra, the computation of bounding

boxes is obvious. For higher-order elements, it may not be. For the

computations in this dissertation, I compute bounding boxes for curved

elements, such as Bézier elements of spline discretizations, by simply

evaluating the physical locations of the parametric corners, then inflat-

ing the bounding box of this discrete point set by a factor of two. Such

a procedure is not guaranteed to be correct for extremely distorted ele-

ments, and it thus introduces an implicit shape regularity restriction on

the fluid elements. A more general approach to computing tight bound-

ing boxes for isogeometric elements is given in [117, Section 4], but I

have not explored applying it.

• Continuous motion: The surface quadrature points are transported

with the deforming Γt in a Lagrangian fashion. Given an appropriate

choice of time step, it is reasonable to expect that a quadrature point

61



will remain in the same Eulerian (or ALE) fluid element, or move to

a neighboring element from one time step to the next. These elements

should be tested first before resorting to more general search methods.

In my computations, I split up the fluid subproblem into subdomains of

contiguous elements, to be processed in parallel, building on the tech-

nology described in [82]. After applying the cheap continuous motion

heuristic in parallel on all subdomains, a collective communication can

synchronize the parallel tasks’ knowledge of which (small minority of)

quadrature points still need to be located by less efficient means.

• Octree space partitioning: The indexes of elements whose bounding

boxes intersect the leaves of a spatial octree covering Ω1 can be stored in

dynamically-growing lists of integers associated with the leaves of the oc-

tree, as detailed in [200, Section 3.3]. This avoids testing for intersection

of xg with the overwhelming majority of fluid elements. My collabo-

rators and I have, so far, only applied this technique with tetrahedral

fluid meshes [87, 200], but it is not fundamentally limited to tetrahedral

elements.

3.3.2.2 Locating quadrature points in smoothly-deformed domains

The deformation φφφ (in the notation of Section 3.1.2.2) mapping the

parametric domain of a div-conforming B-spline discretization into physical

space does not need to be related at all to the B-spline spaces used to define

the solution variables. In the div-conforming B-spline computations of this
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dissertation, I employ analytical mappings.

I implement these in an object-oriented fashion, as subclasses imple-

menting the virtual methods of a general geometrical mapping interface, which

is most succinctly described by its own C++ source code:

class GeometricalMapping{
public :

virtual ˜GeometricalMapping (){}
virtual void phi (double (∗ x i ) [ 3 ] ,

double (∗x ) [ 3 ] ) { }
virtual void f i r s t D e r i v s (double (∗ x i ) [ 3 ] ,

double (∗F ) [ 3 ] [ 3 ] ,
double (∗Finv ) [ 3 ] [ 3 ] ,
double ∗J ){}

virtual void he s s i an (double (∗ x i ) [ 3 ] ,
double (∗ he s s i an ) [ 3 ] [ 3 ] [ 3 ] ) { }

virtual void p h i i n v e r s e (double (∗x ) [ 3 ] ,
double (∗ x i ) [ 3 ] ) { }

} ;

The methods phi, firstDerivs, and hessian implement the mapping and

derivatives needed to evaluate pushed-forward velocities and pressures and

the necessary spatial gradients. The meanings of the argument names should

be obvious upon review of the notation from Section 3.1.2.2. The method

phi inverse is the first non-trivial step needed to evaluate traces of fluid

solution variables at quadrature points on the immersed boundary Γ. For

some mappings, an analytical form of φφφ−1 is available, but, more typically, I

use firstDerivs to implement a Newton iteration on the entire parametric

space. Given an implementation of phi inverse, however, one still cannot

(efficiently) evaluate the fluid solution fields at Xg = φφφ−1(xg). Efficient evalu-
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ation of spline functions requires knowledge of which basis functions have the

parametric point Xg in their supports. This reduces to the problem of deter-

mining which Bézier element Xg lies in. The tensor product structure of the

B-spline space allows for an efficient solution of this problem by performing a

binary search in each parametric direction.
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Chapter 4

Discretization of fluid–structure coupling

The augmented Lagrangian coupling the fluid and structure subprob-

lems is discretized using a semi-implicit time integration scheme, in which

the penalty term is treated implicitly and the Lagrange multiplier is updated

explicitly. This circumvents difficulties encountered in fully-implicit coupling,

while forbidding leakage of fluid through the structure in steady-state solutions

Some of this chapter’s content is derived from the following papers:
D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.

Sacks, T. J. R. Hughes. An immersogeometric variational framework for fluid–structure
interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Me-
chanics and Engineering, 284:1005–1053, 2015. D. Kamensky developed the techniques
used for fluid–thin structure interaction and structure-on-structure contact. M.-C. Hsu pro-
vided supervision and implemented the finite cell method for flow around bulky objects. D.
Schillinger helped formulate the finite cell approach used. J. A. Evans provided mathemat-
ical advice. A. Aggarwal developed the geometrical model of the valve. Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes supervised the work.

D. Kamensky, J. A. Evans, M.-C. Hsu. Stability and conservation properties of collocated
constraints in immersogeometric fluid-thin structure interaction analysis. Communications
in Computational Physics. 18(4):1147–1180, 2015. D. Kamensky formulated and analyzed
the improvements to the semi-implicit time integration and performed the numerical exper-
iments. J. A. Evans and M.-C. Hsu supervised the work.

D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-
sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
supervision and edited the manuscript extensively. Y. Yu, J. A. Evans, and T. J. R. Hughes
supervised the mathematical analysis. M. S. Sacks helped plan and supervise the laboratory
experiments.
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and retaining the stability that eludes fully-explicit approaches. This chap-

ter is mainly concerned with clearly describing the solution algorithm applied

to the nonlinear FSI problem stated in Chapter 2 and discussing its qualita-

tive properties. A more precise analysis of the algorithm is carried out in the

context of a linearized model problem in Chapter 5.

4.1 Separation of normal and tangential fluid–structure
coupling

The constraint that u1 = u2 on Γ can be formally separated into two

constraints: the no-penetration constraint on the normal velocities

u1 · n2 = u2 · n2 (4.1)

and the no-slip constraint on the tangential velocities

u1 − (u1 · n2) n2 = u2 − (u2 · n2) n2 , (4.2)

where n2 is the normal vector to Γ (i.e. a3 defined in (2.14)). These constraints

are enforced by the normal and tangential components of the multiplier field

λλλ and the penalty force β (u1 − u2).

The no-penetration constraint is critical to the qualitative structure of

solutions. In the application to BHV analysis, for instance, the valve leaflets

must be able to stop flow when the valve is closed. The no-slip constraint

is less essential and its strong enforcement may even be detrimental to the

qualitative character of discrete solutions on coarse meshes [15, 20–22, 83].1 I

1The cited works attribute improved solution quality to the tangential slippage allowed
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therefore discretize these two constraints differently. For the no-penetration

constraint, I discretize a scalar Lagrange multiplier field on Γ, which I denote

λ = λλλ · n2. For the no-slip constraint, I approximate the tangential compo-

nent of λλλ by a weakly-consistent penalty force. The weakly-consistent penalty

approximation of the tangential constraint may be seen as a degenerate case

of Nitsche’s famous strongly-consistent penalty method [129], as I explained

in [105, Section 4.1]. Because the structure midsurface Γt can cut through

the fluid domain in arbitrary ways, I do not attempt to construct inf-sup sta-

ble combinations of velocity and multiplier spaces. Instead, I circumvent the

inf-sup condition by regularizing the no-penetration constraint residual in the

following way:

(u1 − u2) · n2 → (u1 − u2) · n2 −
r

β
λ , (4.3)

where r ≥ 0 is a dimensionless constant. This is essentially the perturbed

Lagrangian approach that has previously been used to stabilize contact prob-

lems [159]. Much as the slip penalization can be derived as a degernate case of

Nitsche’s method [105, Section 4.1], the regularization of the no-penetration

constraint can be viewed as a degenerate case of strongly-consistent Barbosa–

Hughes stabilization [14].

Thus the problem that I proceed to discretize in time may be written:

by weak boundary conditions on coarse meshes. Obviously it is impossible for flow fields
on either side of an immersed boundary to both slip in independent directions if they are
represented on a single mesh, but I have observed that excessive enforcement of tangential
boundary conditions leads to Gibbs-like phenomena in the tangential velocity profile, which
can generate spurious eddies.
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Find u1 ∈ Su, p ∈ Sp, y ∈ Sd, and λ ∈ S` such that, for all test functions

w1 ∈ Vu, q ∈ Vp, w2 ∈ Vd, and δλ ∈ V`

B1({w1, q}, {u1, p}; û)− F1({w1, q})

+B2(w2,y)− F2(w2)

+

∫
Γt

(w1 −w2) · λn2 dΓ (4.4)

+

∫
Γt

(w1 −w2) · τBNOR ((u1 − u2) · n2) n2 dΓ (4.5)

+

∫
Γt

(w1 −w2) · τBTAN ((u1 − u2)− ((u1 − u2) · n2) n2) dΓ (4.6)

+

∫
Γt

δλ ·
(

(u1 − u2) · n2 −
rλ

τBNOR

)
dΓ = 0 , (4.7)

where I have split the penalty term from the original variational problem

into normal and tangential components. Inspired by applications of Nitsche’s

method to viscous incompressible flows, I propose to scale the tangential

penalty like

τBTAN = CTAN
µ

h
, (4.8)

where CTAN is a dimensionless O(1) constant and h is a measure of the fluid

element diameter, with units of length. This causes the no-slip portion of the

boundary condition on Γ to disappear in the inviscid limit of µ→ 0. To ensure

that the normal penalty does not suffer the same fate in this limit, I propose

that it scale like

τBNOR = max

{
C inert

NOR

ρ1h

∆t
, Cvisc

NOR

µ

h

}
, (4.9)

where C inert
NOR and Cvisc

NOR are dimensionless constants and ∆t is a time scale
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associated with the temporal discretization.2

4.2 Time integration algorithm

This section states the time-marching procedure for the fluid–structure

system. The algorithm computes approximate solutions at a set of time levels,

indexed by n and separated by steps of size ∆t. Suppose that, at time level

n, the discrete fluid velocity is defined by a vector of coefficients Un, the fluid

acceleration by U̇n, the fluid pressure by Pn, and the structure displacement,

velocity, and acceleration by Yn, Ẏn, and Ÿn, respectively. I refer to the

multiplier at time level n as λn, considering it a function defined over Γt,

with the understanding that it is represented discretely as a set of samples at

quadrature points of the (Lagrangian) integration rule on Γt. (Recall Section

3.3.) Considering the solution variables at time level n known, the first step

of the algorithm is to construct a system of equations for all (n + 1)-level

2An alternative formula for τBNOR might be Cρ1h/τM, where the time scale τM is a typical
SUPG stabilization constant. Standard definitions of τM would capture both branches of
(4.9).
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unknowns, excluding λn+1, which is initially set equal to λn:

Res
(
Un+αf , U̇n+αm ,Yn+αf , Ẏn+αf , Ÿn+αm ,Pn+1, λn+1(= λn)

)
= 0 , (4.10)

Un+1 = Un + ∆t
(

(1− γ)U̇n + γU̇n+1
)

, (4.11)

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
, (4.12)

Un+αf = Un + αf
(
Un+1 −Un

)
, (4.13)

Yn+1 = Yn + ∆tẎn +
∆t2

2

(
(1− 2β)Ÿn + 2βŸn+1

)
, (4.14)

Ẏn+1 = Ẏn + ∆t
(

(1− γ)Ÿn + γŸn+1
)

, (4.15)

Ÿn+αm = Ÿn + αm

(
Ÿn+1 − Ÿn

)
, (4.16)

Ẏn+αf = Ẏn + αf

(
Ẏn+1 − Ẏn

)
, (4.17)

Yn+αf = Yn + αf
(
Yn+1 −Yn

)
, (4.18)

where αm, αf , β, and γ are parameters of the time integration scheme. The

function Res(. . .) is the nonlinear residual corresponding to the discretization

of (4.7) with δλ = 0. The multiplier test function is set to zero to exclude the

FSI kinematic constraint equation, which, because λn+1 is held fixed, would

lead to an ill-posed system with more equations than unknowns. While the

multiplier is considered fixed in this problem, the penalty terms are still treated

implicitly. This penalty-coupled problem is resolved by a block iterative pro-

cedure, which alternates between solving for fluid and structure increments.

Block iteration is described further in Section 4.3. The formulas (4.10)–(4.18)

are based on the generalized-α method of time integration [38]. Following

Bazilevs et al. [18, Section 4.4], I work within a subset of generalized-α meth-

ods, parameterized by as single scalar, ρ∞ ∈ [0, 1], which controls numerical
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damping and defines the four free parameters as

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
, (4.19)

αf =
1

1 + ρ∞
, (4.20)

γ =
1

2
+ αm − αf , (4.21)

β =
1

4
(1 + αm + αf )

2 . (4.22)

For a discussion of the effects of this parameter on stabilized finite element

computations of unsteady Navier–Stokes, see [97]. Alternatively, one may

select the generalized-α parameters as follows to produce the backward Euler

method:

αm = αf = γ = β = 1 . (4.23)

Remark 4.1. A more canonical implementation of the generalized-α scheme

might introduce

λn+αf = λn + αf
(
λn+1 − λn

)
(4.24)

and

Pn+αf = Pn + αf
(
P n+1 − P n

)
(4.25)

for use in Eq. (4.10), but the formulation has no time derivatives of the corre-

sponding fields and their α-level coefficients would be uniquely determined by

the fully-discrete formulation, leaving Eqs. (4.24) and (4.25) as post-processing

steps for the (n + 1)-level unknowns. I follow [16] in simply renaming these
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α-level unknowns to (n + 1)-level unknowns. This has no effect on the val-

ues of the fluid velocity and structure displacement coefficients and essentially

translates the pressure and multiplier solutions by a fraction of ∆t in time.

Because (4.10)–(4.18) do not include the fluid–structure interface kine-

matic constraint, the (regularized) α-level constraint residual

Rn+α =
((

uh1
)n+αf −

(
uh2
)n+αf

)
· nn+αf

2 − rλn+1

τBNOR

(4.26)

is not necessarily zero on Γt+αf . In (4.26),
(
uh1
)n+αf is the fluid velocity defined

by coefficients Un+αf ,
(
uh2
)n+αf is the structure velocity defined by coefficients

Ẏn+αf , and n
n+αf
2 is the normal to Γt+αf , as determined by the displacement

coefficients Yn+αf .

To motivate the development of the multiplier update step, consider

the case of r = 0. If Rn+α = 0 and r = 0, then the normal component

of the α-level penalty force, τBNORR
n+α, will be zero and the normal α-level

fluid–structure force will be due only to the Lagrange multiplier, λn+1. This

suggests the explicit update

λn+1 ← λn+1 + τBNORR
n+α , (4.27)

in which λn+1 is set equal to the α-level fluid–structure forcing. (4.10)–(4.18)

are of course no longer satisfied with the updated λn+1, but one may attempt

to iterate the steps

1. Solve (4.10)–(4.18) with λn+1 fixed.
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2. Upate λn+1 by (4.27):

λn+1 = λn + τBNORR
n+α . (4.28)

until ‖Rn+α‖L2(Γt) is converged to some tolerance. Note that, in the case of

r > 0, (4.28) is an implicit formula, because Rn+α depends on λn+1. It can be

trivially recast in explicit form, though:

λn+1 =
λn + τBNOR

((
uh1
)n+αf −

(
uh2
)n+αf

)
· nn+αf

2

1 + r
. (4.29)

As explained in [105, Section 4.2.1], the r = 0 case of this iteration corresponds

to the classic augmented Lagrangian algorithm of Hestenes [78] and Powell

[135], which is an implicit variant of the well-known Uzawa iteration [10, 187]

for solving saddle point problems. For r = 0, though, the convergence criterion

of ‖Rn+α‖L2(Γt) < ε is too strict to arrive at a non-locking solution; it effectively

demands pointwise constraint satisfaction between the non-matching discrete

velocity spaces of the fluid and structure. I found, accordingly, in [105], that

the iteration does not typically converge, but I circumvented this difficulty by

truncating to a single pass, leading to the semi-implicit time marching scheme

of first solving (4.10)–(4.18) with λn+1 = λn, then updating λn+1 by (4.28) and

continuing directly to the next time step. This time splitting approach proved

effective for transient problems, but may be expected to run into difficulties

in problems that approach steady solutions. Choosing r > 0 can improve

robustness.

Although the stabilization provided by choosing r > 0 affords the pos-

sibility of fully-implicit time integration, which is typically recommended for

73



complex FSI problems [23], semi-implicit integration procedures can greatly

reduce computational cost. The present semi-implicit algorithm is in fact sta-

ble, in an energetic sense, even when r = 0. This is discussed physically in

[104, Section 3.2] and analyzed mathematically in the context of linear model

problems in Chapter 5. This stability is in contrast to “staggered” or “loosely

coupled” FSI methods which are notoriously unstable, especially when the fluid

is incompressible [188], prompting widespread preference for implicit methods.

The use of r > 0 allows for robustness even when energy is continuously added

to the system, as through an inhomogeneous boundary condition. Some cau-

tion is warranted, however, in perturbing the kinematic constraint. Section

4.4.4 provides an illustrative example of the effects of this consistency error.

4.3 Block iterative solution of the implicit problem

The implicit step of the semi-implicit time integration algorithm of Sec-

tion 4.2 amounts to a penalty regularization of fluid–structure coupling, with

a prescribed loading λnnn+αf along Γn+αf . Because the penalty is not solely

responsible for fluid–structure coupling, its value can be moderate, rendering

the regularized problem much easier to solve than fully-implicit fluid–structure

coupling. A simple block-iterative procedure that alternates between fluid and

structure solutions turns out to be practical, even for “difficult” applications,

such as BHV simulation, in which a light structure interacts with a heavy,

incompressible fluid.

Schematically, consider Rf(uf, us) to be the nonlinear residual for the
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fully-discrete fluid subproblem at a particular time step, which depends on

the discrete fluid and structure solutions, uf and us. Likewise, Rs(uf, us) is

the residual for the discrete structure subproblem. Then the block-iterative

procedure to find a root of (Rf, Rs) is to start with guesses for uf and us, then

repeat the steps

1. Assemble Rf(uf, us) and a (typically approximate) tangent matrix, Af ≈

∂Rf/∂uf.

2. Solve the linear system Af∆uf = −Rf for the fluid solution increment.

3. Update the fluid solution: uf ← uf + ∆uf.

4. Assemble Rs(uf, us) and As ≈ ∂Rs/∂us.

5. Solve As∆us = −Rs for the structure solution increment.

6. Update the structure solution: us ← us + ∆us.

until Rf and Rs are sufficiently converged. Note that this resembles Newton

iteration with an inexact tangent, wherein off-diagonal blocks of the tangent

matrix for the combined system,(
Af (∂Rf/∂us)

(∂Rs/∂uf) As

)(
∆uf

∆us

)
= −

(
Rf

Rs

)
, (4.30)

are neglected. However, the update of the fluid solution in step 3 distinguishes

block iteration from an inexact tangent method. To ensure predictable running

times and avoid stagnation in pathological configurations, I typically select the

75



resolution of the nonlinear algebraic solution by choosing a fixed number of

iterations rather than a percentage by which the residual must be reduced.

This may be interpreted as a predictor–multi-corrector scheme based on New-

ton’s method [18]. While it is possible that error from isolated, poorly-solved

time steps can pollute the future of an unsteady solution, I find that, within

reasonable limits, quantities of engineering interest are typically more sensitive

to spatial and temporal discretizations than nonlinear solution tolerance.

The fact that this procedure is stable when applied to the problem

of BHV FSI, in which the fluid is much more massive than the structure,

is perhaps surprising to researchers familiar with Dirichlet-to-Neumann fluid–

structure coupling, where the structure velocity is applied as a Dirichlet bound-

ary condition on the fluid and the fluid traction is applied as a Neumann

boundary condition on the structure. With that style of coupling, block itera-

tion may be unstable for any time step size, no matter how small, if the fluid is

incompressible and heavy (relative to the structure) [188]. Section 5.3 analyzes

the stability and convergence of the block iteration algorithm in the context

of penalty coupling between two linear elliptic problems, confirming that it

is unconditionally stable, but perhaps slow to converge for excessively-large

penalty parameters.

In all computations shown in this dissertation, the structure tangent

matrix As is approximated to be symmetric and solved iteratively using a se-

rial implementation of the conjugate gradient method [79]. For computations

using the VMS formulation for the fluid subproblem, the matrix Af is inverted
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approximately using a parallel implementation (by Y. Bazilevs and collab-

orators) of the generalized minimum residual (GMRES) method [144]. For

computations using div-conforming B-spline discretizations of the fluid sub-

problem, Af is inverted approximately or directly using linear algebra routines

from the Portable Extensible Toolkit for Scientific Computation (PETSc) [11–

13]. In some computations, Af is assembled only on the first block iteration

of each time step, then reused in subsequent iterations. Some of the numer-

ical examples reverse the order of the fluid and structure solutions, but, in

agreement with the analysis of Section 5.3, this does not appear to confer and

advantage (or disadvantage) relative to the algorithm stated above. Details

of the solution procedures for specific numerical examples are provided when

relevant in the sequel.

4.4 Discussion

Some alternate interpretations and qualitative analysis of the algorithm

stated in Section 4.2 help to build intuitive understanding and lay the ground-

work for the more precise analysis given in Chapter 5.

4.4.1 Modified equation interpretation of semi-implicit integration

When r = 0, the multiplier becomes an accumulation of penalty trac-

tions from previous time steps. This is equivalent to replacing the multiplier
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and normal penalty terms∫
Γt

(w1 −w2) · (λn2) dΓ

+

∫
Γt

((w1 −w2) · n2) τBNOR ((u1 − u2) · n2) dΓ (4.31)

by a penalization of (a backward Euler evaluation of) the time integral of

pointwise normal velocity differences on the immersed surface Γt∫
Γt

{
τBNOR

∆t
(w1(x, t)−w2(x, t)) · n2(x, t)∫ t

0

(
u1(ϕϕϕτ (ϕϕϕ

−1
t (x)), τ)− u2(ϕϕϕτ (ϕϕϕ

−1
t (x)), τ)

)
·n2(ϕϕϕτ (ϕϕϕ

−1
t (x)), τ) dτ

}
dΓ , (4.32)

where ϕϕϕτ (X) gives the spatial position at time τ of material point X ∈ Γ0

and the measure dΓ corresponds to the integration variable x ∈ Γt. That

the time integral in (4.32) is evaluated using the backward Euler method is

demonstrated in the following exposition. First define (at fixed X)

λreg(t) =
τBNOR

∆t

∫ t

0

(u1(τ)− u2(τ)) · n2(τ) dτ . (4.33)

The time rate-of-change of the integral λreg will be its integrand

˙(λreg) =
∂λreg

∂t

∣∣∣∣
X

=
τBNOR

∆t
(u1 − u2) · n2 . (4.34)

The normal forcing on Γ in the implicit step of the semi-implicit time integrator

is designated

(λreg)n+1 = (λreg)n + ∆t ˙(λreg)
n+1

(4.35)
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where (λreg)n is a sum of all previous approximations of λ and ∆t ˙(λreg)
n+1

is

the current time step’s penalty forcing, i.e. τBNOR

(
u
n+αf
1 − u

n+αf
1

)
·nn+αf

2 . For

the time step indexing of λreg, I have followed the same convention employed

for λ; see Remark 4.1 in Section 4.2 if clarification is needed. (4.35) is precisely

the backward Euler algorithm for computing λreg. Thus the forcing (4.32) is

accounted for in a fully implicit manner within the discrete solution process,

using a manifestly stable time integrator. This is only first-order accurate in

time, but, in the application to BHVs, other considerations have driven the

time step down to small enough values that time integration is not a dominant

source of discretization error.

In the case of r > 0, we can draw a similar analogy. If the α-level normal

penalty force and λn+1 are again lumped together and denoted (λreg)n+1, it

is straightforward to see that λreg advances through time by backward Euler

evaluation of the differential equation

1

(1 + r)

∂λreg

∂t

∣∣∣∣
X

=
τBNOR

∆t
(u1 − u2) · n2 −

r

∆t(1 + r)
λreg . (4.36)

Intuitively, it is clear that the additional term causes an exponential decay

of λreg in the absence of constraint violation, which highlights its stabilizing

effect on the multiplier field. One can quickly check that this reduces to (4.34)

in the case of r = 0.

4.4.2 Analogy to artificial compressibility

Integrating a constraint residual in time is not a new concept for

approximation of a Lagrange multiplier. The differential equation given in
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(4.34) resembles the method of artificial compressibility, devised by Chorin

[37] in 1967 and widely used since to simulate incompressible flows (see, e.g.,

[32, 63, 118, 138]). In the artificial compressibility scheme, the approximated

Lagrange multiplier p representing the pressure evolves through time in an

analogous way to λreg (in the case r = 0):

∂tp = −1

δ
∇ · u1 , (4.37)

where the constraint is ∇ · u1 = 0 (instead of (u1 − u2) · n2 = 0), 1/δ is the

penalty parameter, and the difference in sign is due to the arbitrary choice

of sign with which λλλ enters the augmented Lagrangian formulation (2.1). A

physical interpretation of this, similar to Chorin’s original formulation of (4.37)

in terms of a fictitious density variable, is that the r = 0 case of the algorithm

penalizes a displacement penetration of the fluid through the structure, using

the penalty τBNOR/∆t. This interpretation makes clear how penalizing the time

integral of velocity prevents the steady creep of flow through a barrier. The

displacement penalty interpretation becomes less clear in the case of r > 0,

though.

4.4.3 Relation to feedback boundary conditions

The degeneration of Nitsche’s method to a velocity penalty and the

time-continuous interpretation of the semi-implicit algorithm with r = 0 may

both be interpreted as special cases of an existing framework for enforcing

Dirichlet boundary conditions on the unsteady Navier–Stokes equation. Gold-

stein et al. [66] proposed to apply concentrated surface forcing of the form
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[66, (3)]

f(xs, t) = α

∫ t

0

u1(xs, τ) dτ + βu1(xs, t) , (4.38)

for all xs on a stationary solid boundary (i.e. u2 = 0) with (dimensional)

parameters α ≤ 0 and β ≤ 0. Goldstein et al. interpreted this method,

which I refer to here as the feedback method, in the context of control theory,

arguing heuristically that it provides negative feedback in the case of constraint

violation. This method is frequently passed over as a historical curiosity in

literature reviews of immersed boundary CFD and FSI, and dismissed with

criticisms of its arbitrary penalty parameters and numerical stiffness, but the

feedback boundary condition and related methods remain in use today by

numerous research groups, for both direct numerical simulation (DNS) of flow

physics phenomena and engineering analysis of difficult FSI problems.

The initial implementation of [66] used a spectral discretization of the

fluid (based on the DNS method famously applied in [113]) and applied O(h)

smoothing to filter the concentrated forces, so as to reduce pollution effects due

to the global nature of the spectral basis functions (cf. [194, Chapter I, Section

2]). Goldstein and collaborators continue to use this methodology for DNS

of turbulent flows with nontrivial boundary geometries [48, 67–69, 167, 184].

Saiki and Biringen [145, 146] extended the concept of feedback forcing to finite

difference fluid discretizations, using bilinear interpolation within grid cells

to evaluate velocity at quadrature points of the immersed boundary and also

to distribute concentrated feedback forces to grid points. [145] was the first

application of the approach to moving boundaries, in which (4.38) becomes
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(cf. [145, (1)] and (4.32))

f(ϕϕϕt(Xs), t) =α

∫ t

0

(u1(ϕϕϕτ (Xs), τ)−U2(Xs, τ)) dτ

+ β (u1(ϕϕϕτ (Xs), τ)−U2(Xs, τ)) , (4.39)

where ϕϕϕt(Xs) represents the position at time t of a material point Xs on the

moving boundary, which moves with velocity U2(Xs, t). This extension natu-

rally suggests application to FSI, and a recent series of papers by Huang, Sung,

and collaborators has demonstrated that feedback forcing is a robust and accu-

rate approach for the simulation of light flexible structures immersed in incom-

pressible flows [88, 89, 143, 157, 185]. A similar immersed boundary approach

has been used in the commercial code LS-DYNA [39] for decades, to study

automobile airbag inflation and other challenging FSI problems [76, 161–163],

including heart valve simulation [35, 36, 169, 199]. LS-DYNA documentation

refers to this capability as the “constrained Lagrange in solid” formulation. I

have seen no document explicitly relating this to Goldstein et al.’s feedback

approach, and assume that it was arrived at independently. The repeated

rediscovery of this formulation by engineers studying difficult CFD and FSI

problems suggests an inherent robustness to the approach.

The above studies all relied on explicit or semi-implicit time integra-

tion schemes, which placed stability restrictions on α and β relative to ∆t.

Much attention has therefore been paid to the temporal stability of explicitly-

integrated feedback forces. The most comprehensive study of the temporal

stability of feedback forcing is due to Lee [121]. To my knowledge, though,
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no previous attempt has been made by numerical analysts to prove the con-

vergence of the feedback boundary condition method. In Chapter 5, I study

the convergence of feedback boundary conditions in the context of a linear

parabolic model problem, as a stepping-stone to the analysis of my semi-

implicit time integrator for the augmented Lagrangian system.

4.4.4 Qualitative effects of multiplier stabilization

The case of r > 0 is perhaps less physically intuitive than the r = 0 case,

which admits direct analogies to artificial compressibility (Section 4.4.2) and

negative feedback (Section 4.4.3). To provide some intuition for the influence

of r, I look, in detail, at the simple model of plug flow through a blocked tube:

a rigid barrier cuts across a channel filled with a fluid that I assume, a priori,

to have a single velocity, ue1, that is constant across space, but may vary with

time. To allow nonzero velocity solutions with this kinematic assumption, I

apply slip boundary conditions on the channel walls. This is illustrated in

Figure 4.1.

4.4.4.1 Leakage

Suppose that the ends of the channel are subject to pressures P1 and

P2, which define the pressure drop, ∆P = P1 − P2. Suppose also, for now,

that the Lagrange multiplier field takes on a single constant value across the

barrier. Then the steady state solution of the semi-implicit time integration

procedure described in Section 4.2 will reduce to the conditions
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Figure 4.1: Plug flow through a tube, blocked by a barrier. In the exact
solution, u must be zero, but weak enforcement techniques can allow leakage.

1. Steadiness: λn+1 = λn. Define this constant value to be λ∞. It must

satisfy λ∞ =
(
λ∞ + τBNORu

)
/(1 + r).

2. Equilibrium: λ∞+τBNORu = ∆P ; the multiplier and penalty must balance

the pressure drop to preclude acceleration of the fluid plug.

It follows that the leakage, u, is given by

u =
r∆P

τBNOR(1 + r)
, (4.40)

which asymptotes to inverse scaling with the penalty parameter as r →∞ and

to zero as r → 0. For a fixed nonzero value of r, steady leakage converges to

zero with refinement at the same rate as it would for a pure penalty method,

but, if r is an adjustable parameter, one may scale the leakage down to arbi-

trarily small levels without impacting the solvability of the discrete problem

at each time step (because r appears only in the explicit multiplier update).
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4.4.4.2 Spurious modes of λ

If λ is permitted to vary across the cross-section of the pipe, there

are many choices which could satisfy the equilibrium condition. Any λ with∫
Γ
λ dΓ = 0 could be added to an existing solution and corresponds to a “spu-

rious mode” of the Lagrange multiplier field. Such modes will exist for richer

fluid approximation spaces as well. Any λ that is L2(Γ)-orthogonal to the dis-

crete space of fluid–structure velocity differences will constitute such a spurious

mode. The solution algorithm of Section 4.2 explicitly constructs the multi-

plier approximation as a linear combination of discrete fluid–structure velocity

differences, and is therefore, in principle, immune to such spurious modes. In

practice, though, the multiplier field can develop oscillations that are nearly

orthogonal to the space of velocity differences. Without stabilization, they

may become quite large, as demonstrated by the numerical experiments of

Section 6.3. The analysis of Chapter 5 indicates that these oscillations may

be viewed as storing energy, which can later be unleashed into the fluid and

structure sub-problems. In principle, if oscillations in λ grow to extreme mag-

nitudes, the subsequent release of energy could be catastrophic for the fluid

velocity and structure displacement, but I have not been able to elicit such

behavior, even with deliberate effort.

4.4.4.3 Conflicting boundary conditions

If a Dirichlet condition is applied to the plug flow, constraining u to have

some nonzero value, then, when r = 0, λ will clearly diverge as t → ∞. This
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corresponds, of course, to an ill-posed problem with contradictory boundary

conditions, but such situations may be approached in practice, if, for instance,

the immersed structure is forced into a fluid element whose nodes are subject

to strongly-enforced Dirichlet boundary conditions. When r > 0, the semi-

implicit time integration remains robust in this extreme limit: assuming again

that λ takes on a single value across the barrier, the steadiness condition,

λ∞ =
(
λ∞ + τBNORu

)
/(1 + r) implies that λ stabilizes at a value of τBNORu/r as

t→∞.
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Chapter 5

Analysis of linear model problems

An a priori convergence analysis of my discretization of the nonlinear

problem stated in Chapter 2 is beyond the scope of this dissertation. Analysis

of several simpler problems, however, can provide valuable insights into the

behavior of the numerical method.

5.1 Convergence of the semi-implicit time integration

A critical question to address is whether the proposed semi-implicit

time integration of the augmented Lagrangian is a fundamentally sound ap-

proach for enforcing Dirichlet boundary conditions in parabolic problems. De-

spite the closely-related feedback boundary condition’s decades-long history of

successful application to CFD and FSI (as reviewed in Section 4.4.3), I could

not find any a priori analysis of its convergence. To investigate the conver-

Some of this chapter’s content is derived from the following paper:
D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-

sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
supervision and edited the manuscript extensively. Y. Yu, J. A. Evans, and T. J. R. Hughes
supervised the mathematical analysis. M. S. Sacks helped plan and supervise the laboratory
experiments.
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gence of the approach, I first introduce a linear, scalar model problem and

prove convergence in that setting. I then discuss some simple extensions to

problems that are more representative of FSI. I include numerical experiments

indicating that the a priori analysis is not sharp; convergence is, in practice,

faster than predicted. Throughout this chapter, I follow the common practice

of considering the symbol “C” to stand for a generic constant that is indepen-

dent of refinement parameters, but may represent different numerical values

in different places.

5.1.1 Scalar parabolic model problem

I first analyze the behavior of the semi-implicit time integrator applied

to a scalar parabolic problem with immersed boundaries. To summarize, the

main steps of the analysis are:

• Relate the semi-implicit time-integration of the scalar parabolic problem

to implicit time integration of a regularized feedback boundary condition

problem with h- and ∆t-dependent coefficients (Section 5.1.1.2).

• Show that solutions of the regularized problem converge to solutions of

the original parabolic problem (Section 5.1.1.3).

• Analyze the spatial discretization error of the semi-discrete regularized

problem (Section 5.1.1.5).

• Quantify the truncation error in time of implicit time integration of the

semi-discrete regularized problem (Section 5.1.1.7).
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5.1.1.1 Scalar parabolic problem statement

As in Chapter 2, I begin from a problem stated in weak form to more

naturally accommodate the singular distributional forcing associated with im-

mersed boundaries. A scalar field u, which I refer to as temperature, evolves

through time according to a second-order parabolic PDE resembling the heat

equation on a domain Ω ⊂ Rd, while satisfying homogeneous Dirichlet bound-

ary conditions on ∂Ω and being constrained to have its trace on the immersed

surface Γ equal to the function g, defined on Γ. An example of such a con-

figuration is shown in Figure 5.1. In weak form, using a Lagrange multiplier

to enforce the constraint on Γ, the problem is: Find u ∈ L2(0, T ;H1
0 (Ω))

with ∂tu ∈ L2(0, T ;H−1(Ω)) and λ ∈ L2(0, T ;H−1/2(Γ)) such that for every

v ∈ H1
0 (Ω) and δλ ∈ H−1/2(Γ) at a.e. t ∈ [0, T ],

ρH−1(Ω)〈∂tu(t), v〉H1(Ω) + a(u(t), v)

+ H−1/2(Γ)〈λ(t), γv〉H1/2(Γ) − H−1/2(Γ)〈δλ, γu(t)〉H1/2(Γ)

= H−1/2(Γ)〈δλ,−g(t)〉H1/2(Γ) + (f(t), v)L2(Ω) (5.1)

and

u(0) = u0 ∈ L2(Ω) , (5.2)

where ρ > 0 is a scalar coefficient, γ is the trace operator mapping from

H1(Ω) to H1/2(Γ), A∗〈·, ·〉A is a duality pairing between a space A and its

dual, a is a bilinear form that is coercive and bounded over H1
0 (Ω), u0 is an

initial condition for u at time t = 0, g(t) is the Dirichlet boundary data on Γ at

time t, and f(t) is a prescribed source term driving the temperature. The trace
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operator may be omitted in the sequel, when there is no risk of confusion. or

background on the time-dependent spaces used in defining this problem, and

an appropriate weak definition of the time derivative ∂t, see [56, Section 5.9.2].

In particular, the meaningfulness of assigning an L2(Ω) initial condition to u

at time t = 0 (despite satisfying the equation at only a.e. time) is assured

by [56, Section 5.9.2, Theorem 3(i)]. If Γ divides Ω into two subdomains, as in

Γ

Ω

u = 0

u = g

Figure 5.1: The domain Ω and the immersed boundary Γ.

Figure 5.1, the existence, uniqueness, and regularity theory for second-order

parabolic problems with Dirichlet boundary conditions can be applied in each

subdomain. I make the important assumption that the Lagrange multiplier

λ is in L2(Γ) ⊂ H−1/2(Γ). This greatly simplifies comparisons between (5.1)

and the regularized problem (5.6) introduced below, in which the surface force

field corresponding to a regularized multiplier is in L2(Γ). I introduce further

regularity assumptions on u and λ, as needed to complete the arguments below.

Implicit in these assumptions are regularity constraints on Ω, Γ, f , and g, but,

for brevity, I simply state their effects directly. A discussion of the effects of

problem data on regularity of solutions to second-order parabolic problems
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may be found in [56, Section 7.1.3].

5.1.1.2 Semi-implicit time integration

I now define a semi-implicit algorithm for this scalar model problem

that is analogous to the scheme proposed for nonlinear FSI in Chapter 4. At

each time step,

1. Given un and λn, find un+1 such that for all v ∈ H1
0 (Ω),

ρ(un+1
t , v)L2(Ω) + a(un+1, v) + (λn, γv)L2(Γ) + β(γun+1 − g(tn+1), γv)L2(Γ)

= (f(tn+1), v)L2(Ω) , (5.3)

where

un+1
t =

un+1 − un

∆t
. (5.4)

2. Update the multiplier such that, for all δλ ∈ L2(Γ),

(λn+1, δλ)L2(Γ) =
1

1 + r

(
λn + β(γun+1 − g(tn+1)), δλ

)
L2(Γ)

. (5.5)

As explained in Section 4.4.1, in the context of FSI, this is a backward Eu-

ler time integration of a regularized problem: Find ureg ∈ L2(0, T ;H1
0 (Ω))

with ∂tu
reg ∈ L2(0, T ;H−1(Ω)) and λreg ∈ L2(0, T ;L2(Γ)) with ∂tλ

reg ∈

L2(0, T ;L2(Γ)) such that for all v ∈ H1
0 (Ω) and δλ ∈ L2(Γ) at a.e. t ∈ [0, T ],

ρH−1(Ω)〈∂tureg, v〉H1(Ω) + a(ureg, v) + (λreg, γv)L2(Γ)

+

(
∆t

(1 + r)β
∂tλ

reg − (γureg − g) +
r

(1 + r)β
λreg, δλ

)
L2(Γ)

= (f, v)L2(Ω) , (5.6)
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ureg(0) = u0 ∈ L2(Ω) , (5.7)

and

λreg(0) = λ0 ∈ L2(Γ) . (5.8)

The meaningfulness of assigning an L2(Γ) initial condition to λreg at the point

t = 0 is assured by [56, Section 5.9.2, Theorem 2(i)], with X = L2(Γ).

The existence and uniqueness of solutions to the problem (5.6) for con-

stant values of β and ∆t follows from the usual Faedo–Galerkin argument for

parabolic problems, which is executed in detail for the heat equation in [56,

Section 7.1.2]. Briefly, existence theory for ordinary differential equations is

applied to a sequence of Galerkin approximations and uniform energy bounds

on the sequence of solutions are used to obtain a unique weak limit satisfying

the weak PDE. In adapting the proof from [56, Section 7.1.2], a suitable basis

for approximating λreg would be the eigenfunctions of the Laplace–Beltrami

operator on Γ. This does not imply any sort of uniformity of energy estimates

with respect to the limits β →∞ and/or ∆t→ 0. Robustness in those limits

is derived separately in the sequel.

5.1.1.3 Convergence of the regularized problem

My first step toward showing that the output of the semi-implicit al-

gorithm converges to a solution of the parabolic problem (5.1) is to show that

the solution of the regularized problem (5.6) converges to the solution of (5.1).

This portion of the analysis may be of interest beyond the narrow context of
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studying the semi-implicit algorithm proposed in this dissertation, as the con-

vergence of (5.6) to (5.1) is applicable to other discretizations of feedback

boundary conditions. (Nearly all of the examples cited in Section 4.4.3 used

explicit time integration.) Denote the error between the solutions to (5.1)

and (5.6) by

(eu, eλ) = (ureg − u, λreg − λ) . (5.9)

One can derive a bound on the L2(Ω) error in temperature at time T by

bounding the energy norm

|||eu(T ), eλ(T )|||2 =
1

2
ρ ‖eu(T )‖2

L2(Ω) +
∆t

2(1 + r)β
‖eλ(T )‖2

L2(Γ) . (5.10)

Taking the difference between (5.6) and (5.1) (restricting δλ in (5.1) to L2(Γ) ⊂

H−1/2(Γ) and assuming that λ(t) and ∂tλ(t) are in L2(Γ) for a.e. t ∈ [0, T ]),

ρH−1(Ω) 〈∂teu, v〉H1(Ω) + a(eu, v) + (eλ, γv)L2(Γ)

+

(
∆t

(1 + r)β
∂tλ

reg − γeu +
r

(1 + r)β
λreg, δλ

)
L2(Γ)

= 0 . (5.11)

Add and subtract (
∆t

(1 + r)β
∂tλ+

r

(1 + r)β
λ, δλ

)
L2(Γ)

(5.12)

from the left-hand side of (5.11) to obtain

ρH−1(Ω) 〈∂teu, v〉H1(Ω) + a(eu, v) + (eλ, v)L2(Γ)

+

(
∆t

(1 + r)β
∂teλ − eu +

r

(1 + r)β
eλ, δλ

)
L2(Γ)

+

(
∆t

(1 + r)β
∂tλ+

r

(1 + r)β
λ, δλ

)
L2(Γ)

= 0 . (5.13)
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Setting v = eu and δλ = eλ, then applying [56, Section 5.9.2, Theorem 3(ii)]

to simplify the H1(Ω) duality pairing,

∂t|||eu, eλ|||2 = −a(eu, eu)−
r

(1 + r)β
‖eλ‖2

L2(Γ)

− ∆t

(1 + r)β
(∂tλ, eλ)L2(Γ) −

r

(1 + r)β
(λ, eλ)L2(Γ) . (5.14)

Applying Young’s inequality to the last two terms above,

∂t|||eu, eλ|||2 ≤− a(eu, eu)−
r

2(1 + r)β
‖eλ‖2

L2(Γ)

+
∆t

2(1 + r)β

(
T‖∂tλ‖2

L2(Γ) +
1

T
‖eλ‖2

L2(Γ)

)
+

r

2(1 + r)β
‖λ‖2

L2(Γ) . (5.15)

Adding the non-negative term

+
ρ

2
‖eu‖2

L2(Ω) + a(eu, eu) +
r

2(1 + r)β
‖eλ‖2

L2(Γ) (5.16)

to the right-hand side,

∂t|||eu, eλ|||2 ≤
1

T
|||eu, eλ|||2 +

T∆t

2(1 + r)β
‖∂tλ‖2

L2(Γ)

+
r

2(1 + r)β
‖λ‖2

L2(Γ) . (5.17)

Then, assuming eu(0) = 0 and eλ(0) = 0, Grönwall’s lemma bounds the error

at time T :

|||eu(T ), eλ(T )|||2 ≤C
∫ T

0

(
T∆t

2(1 + r)β
‖∂tλ‖2

L2(Γ)

+
r

2(1 + r)β
‖λ‖2

L2(Γ)

)
dt . (5.18)
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Thus

ρ

2
‖eu‖2

L2(Ω) ≤ |||eu, eλ|||
2 → 0 (5.19)

as β → ∞. In the case of r = 0, we have this convergence when ∆t → 0

at fixed β. A formally similar argument produces an analogous estimate for

(ρ/2)‖∂Nt eu‖2
L2(Ω) with N ≥ 1, so long as the solution to (5.1) is sufficiently

regular:

∣∣∣∣∣∣∂Nt eu(T ), ∂Nt eλ(T )
∣∣∣∣∣∣2 ≤C ∫ T

0

(
T∆t

2(1 + r)β
‖∂N+1

t λ‖2
L2(Γ)

+
r

2(1 + r)β
‖∂Nt λ‖2

L2(Γ)

)
dt . (5.20)

Ensuring that ∂Nt eu(0) = ∂Nt eλ(0) = 0 (as assumed for the N = 0 case above,

to arrive at (5.18)) requires the assumption that the multiplier solution λ(t)

of (5.1) evolves sufficiently smoothly from an initial value of zero. This is a

somewhat restrictive assumption, but still admits many nontrivial solutions.

For example, it can easily be satisfied by starting up the forcing functions f(t)

and g(t) smoothly, to disturb a homogeneous initial temperature field. I ignore

this condition altogether in numerical experiments, with no apparent effect on

the convergence of the method.

Remark 5.1. Similar assumptions on problem data derivatives at t = 0 are

made in [71, Section 4.3], while analyzing the convergence of an artificial com-

pressibility scheme. (Recall the analogy of Section 4.4.2.) The cited work

acknowledges that these restrictions are not especially realistic and [71, Re-

mark 4.2] suggests that they might be weakened by using time-weighted norms,
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referring to [156, Lemma 3.2] as an example. The numerical examples of [71,

Section 6] ignore the assumptions about data at t = 0 while still exhibiting

the desired convergence rates.

Remark 5.2. It is clear from the numerical experiments in the sequel that

the rates of convergence with respect to β and ∆t are not sharp. Y. Yu has

sketched proofs of some sharper estimates of the error between solutions to

(5.1) and (5.6), based on adapting the duality arguments in [72, Section 2.3].

Remark 5.3. One might also try to optimize the choices of r and β, to

minimize eu and eλ, but such optimizations can come into conflict with com-

peting demands on these parameters, from the spatial discretization. For

instance, faster convergence of eu with respect to ∆t can be obtained by se-

lecting r = C∆t/T above, but this hurts convergence of the bound (5.46) on

spatial discretization error below.

5.1.1.4 Uniform bound in H3/2−ε(Ω)

Useful interpolation error bounds in finite element spaces require a

bound on ureg(T ) in a norm stronger than ‖ · ‖H1(Ω). Such bounds need to be

uniform in the refinement limits of β → ∞ and ∆t → 0. A uniform bound

on ureg in the H3/2−ε(Ω) norm may be found using elliptic regularity given a

uniform L2(Γ) bound on λreg. In the case of r = O(∆t), such a uniform bound

follows immediately from (5.18). If r goes to zero more slowly than C∆t, the

uniform bound on ‖λreg‖L2(Γ) must be derived separately. This is the case of

interest, since the suggested scaling of r from Section 4.1 is r = C.
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Assume that β > 0, ∆t = C/β, and r = C, and consider norms of

(time derivatives of) the solution to the original problem (5.1) to be constant

(since this solution is independent of β and ∆t). Then, for β sufficiently large,

(5.20) can be re-written as

|||∂teu(T ), ∂teλ(T )|||2 ≤ C

β
. (5.21)

This implies

ρ

2
‖∂teu(T )‖2

L2(Ω) ≤
C

β
(5.22)

⇒ ‖∂teu(T )‖L2(Ω) ≤
C√
β

(5.23)

and

∆t

2(1 + r)β
‖∂teλ(T )‖2

L2(Γ) ≤
C

β
(5.24)

⇒ ‖∂teλ(T )‖2
L2(Γ) ≤ Cβ (5.25)

⇒
∥∥∥∥ ∆t

(1 + r)β
∂teλ(T )

∥∥∥∥
L2(Γ)

≤ C

β3/2
. (5.26)

The above-bounded terms may be cast as part of the prescribed forcing in an

elliptic problem for the error at time T . Consider re-arranging (5.13) at time

T into the problem: Find eu(T ) and eλ(T ) such that for all v and δλ

a(eu(T ), v) + (eλ(T ), v)L2(Γ) − (eu(T ), δλ)L2(Γ)

+
r

(1 + r)β
(eλ(T ), δλ)L2(Γ)

= −ρ(∂teu(T ), v)L2(Ω) −
(

∆t

(1 + r)β
∂teλ(T ), δλ

)
L2(Γ)

−
(

∆t

(1 + r)β
∂tλ(T ) +

r

(1 + r)β
λ(T ), δλ

)
L2(Γ)

, (5.27)
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where ∂teu(T ) and ∂teλ(T ) on the right-hand side of the equation are not

considered to be unknown. In (5.27), these functions are fixed data, subject

to the bounds (5.23) and (5.26). The left-hand side bilinear form of (5.27),

Bsteady((u, λ), (v, δλ)) =a(u, v) + (λ, v)L2(Γ) − (u, δλ)L2(Γ)

+
r

(1 + r)β
(λ, δλ)L2(Γ) , (5.28)

is coercive and bounded in the norm

‖u, λ‖2
steady = β‖u‖2

H1(Ω) + ‖λ‖2
L2(Γ) . (5.29)

The coercivity constant is clearly seen to be C/β:

Bsteady((u, λ), (u, λ)) = a(u, u) + (λ, v)L2(Γ) − (λ, v)L2(Γ)

+
r

(1 + r)β
‖λ‖2

L2(Γ) (5.30)

≥ C

(
‖u‖2

H1(Ω) +
1

β
‖λ‖2

L2(Γ)

)
(5.31)

≥ C

β
‖u, λ‖2

steady . (5.32)

The dual norm (induced by (5.29)) of the right-hand side functional,

Fsteady((v, δλ)) =− ρ(∂teu(T ), v)L2(Ω) −
(

∆t

(1 + r)β
∂teλ(T ), δλ

)
L2(Γ)

−
(

∆t

(1 + r)β
∂tλ(T ) +

r

(1 + r)β
λ(T ), δλ

)
L2(Γ)

, (5.33)

is also C/β, for β sufficiently large. Using the Lax–Milgram theorem to bound

the solution of (5.27) in terms of the coercivity constant and the right-hand

side functional norm,

‖eu(T ), eλ(T )‖steady ≤
1

C/β
‖Fsteady(·)‖steady ≤ C . (5.34)
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Based on the definition of ‖·‖steady, (5.34) provides a β-independent bound

on ‖eλ(T )‖L2(Γ). Using the uniform bound on ‖λreg‖L2(Γ) which immediately

follows,

(λreg, γ(·))L2(Γ) (5.35)

is bounded independently of β over the set of functions on Ω with traces in

L2(Γ). This set of functions is H1/2+ε(Ω). Thus the functional (5.35) is in

the dual space H−(1/2+ε)(Ω), and its induced norm is bounded uniformly with

respect to β. Using elliptic regularity theory and the uniform bound on the

L2(Ω) norm of ∂teu(T ), ureg(T ) is bounded in H3/2−ε(Ω), independently of β.

5.1.1.5 Spatial discretization of the modified equation

Consider, now, a semi-discrete counterpart of problem (5.6), posed over

finite element spaces for ureg(t). I formally consider λreg(t) and δλ to be in

the infinite-dimensional space L2(Γ), yet, due to the structure of the problem,

λreg will clearly stay within the finite-dimensional trace space of the discrete

temperature so long as its initial condition and the data g are also in this

space. This can be verified in the semi-discrete setting by deriving a solution

of λreg(t) in terms of ureg(t) at a fixed point on Γ (cf. [104, (3.35)–(3.38)]).

In the fully-discrete setting, the finite dimensionality of λn is clear from its

explicit update formula and the closure of the discrete trace space under linear

combination. The semi-discrete numerical method is to find uh ∈ V h
u ⊂ H1

0 (Ω)
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and λh ∈ L2(Γ) such that, for every vh ∈ V h
u and δλ ∈ L2(Γ),

ρ(∂tu
h, vh)L2(Ω) + a(uh, vh) + (λh, vh)L2(Γ)

+

(
∆t

(1 + r)β
∂tλ

h −
(
uh − g

)
+

r

(1 + r)β
λh, δλ

)
L2(Γ)

=
(
f, vh

)
L2(Ω)

.

(5.36)

The L2(Ω) inner product used above to represent ∂tu
h ∈ H−1(Ω) is appropriate

in the finite dimensional setting. The semi-discrete errors in the velocity and

multiplier fields are

ereg
u = uh − ureg = (uh − ūh) + (ūh − ureg) = ξhu + ηu (5.37)

and

ereg
λ = λh − λreg , (5.38)

The function ūh ∈ V h
u is an arbitrary interpolant, used to split the velocity

error into discrete and interpolation components. Because, as discussed above,

the multiplier test space is considered to be all of L2(Γ), there is no reason to

perform a splitting of the multiplier error, since the “interpolation” component

will be zero. The velocity interpolation error is defined as an elliptic projection

of ureg into the discrete space V h
u . Specifically,

a(ūh, vh) = a(ureg, vh) ∀vh ∈ V h
u . (5.39)

As argued earlier, ureg is uniformly bounded in H3/2−ε(Ω), so it is reasonable

to assume

‖ηu‖2
H1(Ω) ≤ Ch1−2ε . (5.40)
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An Aubin–Nitsche-type duality argument produces

‖ηu‖2
L2(Ω) ≤ Ch3−2ε , (5.41)

from which one can obtain

‖ηu‖2
L2(Γ) ≤ Ch2−2ε (5.42)

by assuming a trace estimate on Γ. Using Galerkin orthogonality (i.e. consis-

tency of (5.36) with (5.6)) and setting vh = ξhu and δλ = ereg
λ ,

ρ(∂te
reg
u , ξhu)L2(Ω) + a(ereg

u , ξhu) + (ereg
λ , ξhu)L2(Γ)

+

(
∆t

(1 + r)β
∂te

reg
λ − e

reg
u +

r

(1 + r)β
ereg
λ , ereg

λ

)
L2(Γ)

= 0 . (5.43)

Invoking the velocity error splitting (5.37), this becomes

ρ(∂tηu, ξ
h
u)L2(Ω) + ρ(∂tξ

h
u , ξ

h
u)L2(Ω) + a(ξhu , ξ

h
u)

+

(
∆t

(1 + r)β
∂te

reg
λ − ηu +

r

(1 + r)β
ereg
λ , ereg

λ

)
L2(Γ)

= 0 . (5.44)

Re-arranging terms,

∂t

(
ρ

2
‖ξhu‖2

L2(Ω) +
∆t

2(1 + r)β
‖ereg

λ ‖
2
L2(Γ)

)
= −ρ(∂tηu, ξ

h
u)L2(Ω) − a(ξhu , ξ

h
u) + (ηu, e

reg
λ )L2(Γ)

− r

(1 + r)β
‖ereg

λ ‖
2
L2(Γ) . (5.45)

Applying Young’s inequality on the right and adding strictly positive terms to

the upper bound,

∂t
∣∣∣∣∣∣ξhu , ereg

λ

∣∣∣∣∣∣2 ≤ 1

T

∣∣∣∣∣∣ξhu , ereg
λ

∣∣∣∣∣∣2 +
Tρ

2
‖∂tηu‖2

L2(Ω) +
2(1 + r)β

r
‖ηu‖2

L2(Γ) .

(5.46)
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Grönwall’s lemma then gives a bound on
∣∣∣∣∣∣ξhu(T ), ereg

λ (T )
∣∣∣∣∣∣ (and, by triangu-

lation, |||ereg
u (T ), ereg

λ (T )|||) in terms of the interpolation error ηu. The only

hazard is that ‖ηu‖2
L2(Γ) must converge faster than β/r diverges. If β = C/h,

r = C, and the interpolation error is bounded like (5.42), the temperature

should converge at a rate ≥ 1/2 in L2(Ω). A similar argument can bound time

derivatives of the semi-discrete error, if the problem data is sufficiently nice at

t = 0 to ensure that ∂Nt e
reg
u (0) = ∂Nt e

reg
λ (0) = 0.

5.1.1.6 Semi-discrete convergence for r = 0

The error bound that follows from (5.46) clearly fails in the limit of

r → 0. Computations with r = 0, on the other hand, seem to proceed without

major issues and enjoy better conservation properties in the steady limit. Let

us first attempt to backtrack in the argument of the previous section. Let us

try an alternate approach, starting over from (5.45). In the case of r = 0,

(5.45) becomes

∂t

(
ρ

2
‖ξhu‖2

L2(Ω) +
1

2k
‖ereg

λ ‖
2
L2(Γ)

)
= −ρ(∂tηu, ξ

h
u)L2(Ω) − a(ξhu , ξ

h
u) + (ηu, e

reg
λ )L2(Γ) , (5.47)

where I have defined k = β/∆t, to simplify notation. Applying Young’s in-

equality to terms in the right-hand side of (5.47) and adding strictly non-

negative terms to the upper bound,

∂t
∣∣∣∣∣∣ξhu , ereg

λ

∣∣∣∣∣∣2 ≤ 1

T

∣∣∣∣∣∣ξhu , ereg
λ

∣∣∣∣∣∣2 +
Tρ

2
‖∂tηu‖2

L2(Ω) +
Tk

2
‖ηu‖2

L2(Γ) . (5.48)
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Using the interpolation estimate (5.42) and Grönwall’s lemma,

∣∣∣∣∣∣ξhu(T ), ereg
λ (T )

∣∣∣∣∣∣2 ≤ Ckh2−ε (5.49)

(for k sufficiently large). Applying ∂Nt (·) to the trial functions and forcing

throughout the entire semi-discrete problem and carrying out a similar analy-

sis, ∣∣∣∣∣∣∂Nt ξhu(T ), ∂Nt e
reg
λ (T )

∣∣∣∣∣∣2 ≤ Ckh2−ε , (5.50)

given sufficient time-regularity of the original problem (5.1). As with (5.20),

the use of Grönwall’s lemma with zero initial time derivatives of the error

relies on the assumption that source terms in (5.1) evolve smoothly from zero,

although, as evidenced by the numerical examples, this assumption is likely

not strictly necessary for convergence of the numerical method. Based on the

scalings β ∼ 1/h and ∆t ∼ h assumed above (⇒ k ∼ 1/h2), these error

estimates are not very appealing. The semi-discrete solution is essentially

bounded, but not convergent. One can try to improve on this situation using

a duality argument.

To execute the duality argument, I first need to establish H1(Ω) stabil-

ity of the semi-discrete solution ereg
u , i.e. ‖ereg

u (s)‖H1(Ω) ≤ C for all s ∈ (0, T ).

In keeping with the goals of the present section, consider only the case r = 0.

Recalling the error splitting (5.37) and the definition of the interpolant uh, it
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is clear that the semi-discrete error satisfies

ρ
(
∂te

reg
u , vh

)
L2(Ω)

+ a
(
ξhu , v

h
)

+
(
ereg
λ , vh

)
L2(Γ)

+

(
1

k
∂te

reg
λ − e

reg
u , δλ

)
L2(Γ)

= 0 ∀
(
vh, δλ

)
. (5.51)

Setting
{
vh, δλ

}
=
{
∂tξ

h
u , 0
}

and using the symmetry of a,

ρ
(
∂te

reg
u , ∂tξ

h
u

)
L2(Ω)

+
1

2
∂ta
(
ξhu , ξ

h
u

)
+
(
ereg
λ , ∂tξ

h
u

)
L2(Γ)

= 0 . (5.52)

For all δλ ∈ L2(Γ),
(
ξhu + ηu, δλ

)
L2(Γ)

=
(

1
k
∂te

reg
λ , δλ

)
L2(Γ)

, so (5.52) implies

that

ρ
(
∂te

reg
u , ∂tξ

h
u

)
L2(Ω)

+
1

2
∂ta
(
ξhu , ξ

h
u

)
+

(
ereg
λ ,

1

k
∂2
t e

reg
λ − ∂tηu

)
L2(Γ)

= 0 . (5.53)

Integrating (5.53) in time and applying the Cauchy–Schwarz and Young in-

equalities,

a
(
ξhu(s), ξhu(s)

)
≤ 2

∫ s

0

(
ρ ‖∂tereg

u (t)‖L2(Ω)

∥∥∂tξhu(t)
∥∥
L2(Ω)

+
1

2k

((
1

T 2
+

1

T

)
‖ereg

λ (t)‖2
L2(Γ)

+T 2
∥∥∂2

t e
reg
λ (t)

∥∥2

L2(Γ)
+ Tk2 ‖∂tηu‖2

L2(Γ)

))
dt

+ a
(
ξhu(0), ξhu(0)

)
(5.54)

≤ 2

∫ T

0

(
ρ ‖∂tereg

u (t)‖L2(Ω)

∥∥∂tξhu(t)
∥∥
L2(Ω)

+
1

2k

((
1

T 2
+

1

T

)
‖ereg

λ (t)‖2
L2(Γ)

+T 2
∥∥∂2

t e
reg
λ (t)

∥∥2

L2(Γ)
+ Tk2 ‖∂tηu‖2

L2(Γ)

))
dt

+ a
(
ξhu(0), ξhu(0)

)
. (5.55)

Recalling (5.50) and interpolation estimates bounding ηu, then using the

H1(Ω) coercivity of a, we have (to within a factor of h−ε) the desired H1(Ω)
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stability of ereg
u :

‖ereg
u (s)‖H1(Ω) ≤ Ch−ε . (5.56)

I now proceed with the duality argument, to sharpen (5.49) into a convergent

error estimate. Consider the dual problem: Find w ∈ L2(0, T ;H1
0 (Ω)) and

ω ∈ L2(0, T ;H−1/2(Γ)) such that for all δw ∈ H1
0 (Ω) and δω ∈ H−1/2(Γ)

ρH−1(Ω) 〈∂tw(t), δw〉H1(Ω) − a (w(t), δw) +H−1/2(Γ) 〈ω(t), γδw〉H1/2(Γ)

−H−1/2(Γ) 〈δω, γw(t)〉H1/2(Γ) = (ereg
u (t), δw)L2(Ω) , (5.57)

subject to the final condition that w(T ) = 0. This problem should be viewed

as evolving backwards through time; by examining the signs of the first two

terms, it is clear that (5.57) is unstable in the forward time direction. Note

that the trace of w is constrained to be zero on Γ, by the Lagrange multiplier

ω. In view of the regularity of the source term, consider ∂tw(t) ∈ L2(Ω), so

that the duality pairing can be re-written as an L2(Ω) inner product. Inserting

the test functions δw = ereg
u (t) and δω = ereg

λ (t),

‖ereg
u ‖2

L2(Ω) = ρ (∂tw, e
reg
u )L2(Ω) − a (w, ereg

u ) +H−1/2(Γ) 〈ω, γereg
u 〉H1/2(Γ)

−H−1/2(Γ) 〈e
reg
λ , γw〉H1/2(Γ) . (5.58)

Adding and subtracting ρ (w, ∂te
reg
u )L2(Ω) on the right and using the symmetry

of a and the fact that γw = 0 (in an appropriate weak sense),

‖ereg
u ‖2

L2(Ω) = ρ∂t (w, ereg
u )L2(Ω) −

(
ρ (∂te

reg
u , w)L2(Ω) + a (ereg

u , w)
)

+H−1/2(Γ) 〈ω, γereg
u 〉H1/2(Γ) . (5.59)
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Let wh be a function in the discrete temperature space that satisfies the con-

dition γwh = 0. A non-trivial finite element function in the discrete space

satisfying this condition could be constructed, for instance, by assigning all

nodes of elements intersecting Γ to zero, while allowing effective interpolation

away from Γ. Due to the consistency of the semi-discrete problem with the

regularized problem (5.6),

‖ereg
u ‖2

L2(Ω) = ρ∂t (w, ereg
u )L2(Ω) −

(
ρ
(
∂te

reg
u , w − wh

)
L2(Ω)

+ a
(
ereg
u , w − wh

))
+H−1/2(Γ) 〈ω, γereg

u 〉H1/2(Γ) . (5.60)

Suppose that Γ divides Ω into two portions, Ω1 and Ω2, and is sufficiently

smooth that w|Ωi ∈ H2(Ωi), i = 1, 2. Then

‖w|Ωi‖L2(0,T ;H2(Ωi))
≤ C‖ereg

u ‖L2(0,T ;L2(Ω)) (5.61)

and

‖ω‖L2(0,T ;L2(Γ)) ≤ C‖ereg
u ‖L2(0,T ;L2(Ω)) , (5.62)

where I have abused notation slightly, in using the same symbol “ω” to denote

both ω ∈ H−1/2(Γ) and ω ∈ L2(Γ) such that (ω, v)L2(Γ) =H−1/2(Γ) 〈ω, v〉H1/2(Γ)

for all v ∈ H1/2(Γ). The bounds (5.61) and (5.62) follow from regularity the-

ory for the equivalent parabolic Dirichlet boundary value problem [56, Section

7.1.3, Theorem 5] and boundedness of the normal derivative of w|Ωi [2, Theo-

rem 7.53] (where the multiplier ω is the jump in normal derivative of w across

Γ). Now assume that there exists an interpolant wh of w, with γwh = 0, such

that

‖w − wh‖L2(Ωi) ≤ Ch‖w‖H2(Ωi) (5.63)
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and

‖w − wh‖H1(Ωi) ≤ Ch1/2‖w‖H2(Ωi) . (5.64)

This can be shown for Q1 finite elements by applying the results of [136] on

either side of Γ. It basically forces wh to be zero on the O(h)-thickness band of

elements containing Γ, which introduces a first-order stair-step approximation

of the boundary to each of Ω1 and Ω2. I speculate that the interpolation

estimates (5.63) and (5.64) hold for many other finite element spaces as well.

Because δλ is quantified over all of L2(Γ),

H−1/2(Γ) 〈ω, γereg
u 〉H1/2(Γ) = (ω, γereg

u )L2(Γ) =

(
ω,

1

k
∂te

reg
λ

)
L2(Γ)

. (5.65)

Applying Cauchy–Schwarz to (5.65),∣∣∣(ω, γereg
u )L2(Γ)

∣∣∣ ≤ ‖ω‖L2(Γ)√
k

√
1

k
‖∂tereg

λ ‖
2
L2(Γ) ≤

C
√
kh2−ε
√
k
‖ω‖L2(Γ)

≤ Ch1−ε‖ω‖L2(Γ) , (5.66)

where the value of ε has been allowed to absorb a positive constant. Cauchy–

Schwarz, (5.50), and (5.63) give us

ρ
∣∣∣(∂tereg

u , w − wh
)
L2(Ω)

∣∣∣ ≤ Ch
√
kh2−ε‖w‖H2(Ω\Γ) ≤ Ch1−ε‖w‖H2(Ω\Γ) , (5.67)

where the value of ε has again been allowed to shift by a constant factor and

H2(Ω \ Γ) indicates that the space is broken across Γ. H1(Ω) boundedness of

a, H1(Ω) stability (5.56) of ereg
u , and the interpolation estimate (5.64) provide

∣∣a (ereg
u , w − wh

)∣∣ ≤ Ch1/2−ε‖w‖H2(Ω\Γ) . (5.68)
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Thus, using the preceding bounds in (5.60),

‖ereg
u ‖2

L2(Ω) ≤ρ∂t (w, ereg
u )L2(Ω) +

(
C1h

1−ε + C2h
1/2−ε) ‖w‖H2(Ω\Γ)

+ C3h
1−ε‖ω‖L2(Γ) , (5.69)

where C1, C2, and C3 are independent of h and k, but may carry different units

in a physical problem. The preasymptotic convergence regimes associated

with these constants are therefore connected to the physics of the system

being modeled. The practical implications of these preasymptotic regimes for

specific problem classes are, however, beyond the scope of the present analysis.

Integrating in time, assuming ereg
u (0) = 0, using the final condition on w(T ),

and recalling the bounds on the solution to the dual problem,

‖ereg
u ‖2

L2(0,T ;L2(Ω)) ≤ C
(
C1h

1−ε + C2h
1/2−ε + C3h

1−ε) ‖ereg
u ‖L2(0,T ;L2(Ω)) .

(5.70)

The bound (5.70) implies, for h sufficiently small, that

‖ereg
u ‖L2(0,T ;L2(Ω)) ≤ Ch1/2−ε . (5.71)

5.1.1.7 Discretization in time

Consider the following problem template: Find x such that, for all y in

an appropriate test space,

(ẋ(t), y) = −B(x(t), y) + F (y) , (5.72)

where (·, ·) is an inner product, B is a bilinear form and F is a bounded linear

functional. In the case of the semi-discrete regularized problem (5.36), x(t)
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and y are in the Cartesian product space of temperatures and multipliers:

x =
{
uh, λh

}
(5.73)

and

y =
{
vh, δλ

}
, (5.74)

and the inner product, bilinear, and linear forms are defined by

(ẋ, y) =
ρ

2

(
∂tu

h, vh
)
L2(Ω)

+
∆t

2(1 + r)β

(
∂tλ

h, δλ
)
L2(Γ)

, (5.75)

2B(x, y) =a
(
uh, vh

)
+
(
λh, vh

)
L2(Γ)

−
(
δλ, uh

)
L2(Γ)

+
r

(1 + r)β

(
λh, δλ

)
L2(Γ)

, (5.76)

and

2F (y) = (f(t), vh)L2(Ω) − (g(t), δλ)L2(Γ) . (5.77)

Note that B(y, y) ≥ 0 for all y in the test/trial space. Note also that the norm

induced by the inner product (·, ·) is exactly |||·||| (defined earlier by (5.10)).

Test the local truncation error (LTE) that results from inserting the semi-

discrete solution into the backward Euler time discretization:

((LTE)n+1, y) =

(
x(tn+1)− x(tn)

∆t
, y

)
+B(x(tn+1), y)− F (y) (5.78)

=

(
x(tn+1)− (x(tn+1)−∆tẋ(tn+1)−R1(tn))

∆t
, y

)
+B(x(tn+1), y)− F (y) (5.79)

=

(
R1(tn)

∆t
, y

)
, (5.80)
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where R1(tn) in the above is the remainder of a Taylor series expansion of x

about tn+1, evaluated at tn. Thus the LTE is bounded like

|||(LTE)n+1||| =
|||R1(tn)|||

∆t
(5.81)

≤ sup
ξ∈(tn,tn+1)

1
2
|||ẍ(ξ)|||∆t2

∆t
(5.82)

≤ sup
ξ∈(0,T )

1
2
|||ẍ(ξ)|||∆t2

∆t
(5.83)

≤ C∆t , (5.84)

where C is independent of n, ∆t and β. The last inequality follows from the

uniform stability of (time derivatives of) the regularized problem in the |||·|||

norm. Testing the error en+1 between the backward Euler solution xn+1 and

the semi-discrete solution x(tn+1),

(
en+1, y

)
=
(
xn+1 − x(tn+1), y

)
(5.85)

= (en, y)−∆t
(
B(en+1, y) + ((LTE)n+1, y)

)
. (5.86)

Inserting test function y = en+1, using the Cauchy–Schwarz inequality (with

the norm induced by the inner product (·, ·)), and using the coercivity of B,

∣∣∣∣∣∣en+1
∣∣∣∣∣∣2 =

(
en, en+1

)
−∆t

(
B(en+1, en+1) +

(
(LTE)n+1, e

n+1
))

(5.87)

≤
∣∣∣∣∣∣en+1

∣∣∣∣∣∣ · |||en|||+ ∆t|||(LTE)n+1||| ·
∣∣∣∣∣∣en+1

∣∣∣∣∣∣ (5.88)

⇒
∣∣∣∣∣∣en+1

∣∣∣∣∣∣ ≤ |||en|||+ ∆t|||(LTE)n+1||| . (5.89)

Using the bound (5.84) on LTE, (5.89) becomes

∣∣∣∣∣∣en+1
∣∣∣∣∣∣ ≤ |||en|||+ C∆t2 , (5.90)
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where C is independent of ∆t and β. Assuming for simplicity that e0 = 0,

∣∣∣∣∣∣e1
∣∣∣∣∣∣ ≤ C ′∆t2 (5.91)∣∣∣∣∣∣e2
∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣e1

∣∣∣∣∣∣+ C ′∆t2
)
≤ 2C ′∆t2 (5.92)∣∣∣∣∣∣e3

∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣e2
∣∣∣∣∣∣+ C ′∆t2

)
≤ 3C ′∆t2 (5.93)

. . .∣∣∣∣∣∣eN ∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣eN−1
∣∣∣∣∣∣+ C ′∆t2

)
≤ NC ′∆t2 , (5.94)

where N = T/∆t and the prime on C ′ is merely to prevent it from absorbing

numerical constants as is typically allowed with the symbol “C”. Taking T to

be constant, then ∣∣∣∣∣∣eN ∣∣∣∣∣∣ ≤ T

∆t
C ′∆t2 ≤ C∆t , (5.95)

where C does not depend on ∆t or β. This implies first-order temporal con-

vergence in the norm |||·|||, which controls the temperature in L2(Ω).

5.1.1.8 Numerical experiment: scalar parabolic problem

In this section, I construct an instance of the parabolic model problem

and test the convergence of the discretization. In this problem instance, the

space dimension, d, is two, a(u, v) = (∇u,∇v)L2(Ω), and ρ = 1. The prescribed

functions f and g are zero. Ω is the square (−W/2,W/2)2 ⊂ R2, with W = 2.5

and Γ is the unit circle {x ∈ R2 : ‖x‖`2 = 1}. The time interval terminates

at time t = T = 0.1 and the initial temperature at t = 0 is

u0(r, θ) =

{
J0(Rr) r < 1
0 otherwise

, (5.96)
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where r and θ are standard 2D polar coordinates and R is the first root of the

Bessel function J0. This implies that the exact solution is

u(r, θ, t) = J0(Rr)e−R
2t . (5.97)

For discretization, I use a linear uniform B-spline space with 2N×2N elements,

for N ∈ {3, . . . , 10}, to represent trial and test functions. I define the penalty

by β = Cpen/h, where h = W/2N is element width of the uniform B-spline

space and Cpen = 1. The discrete initial condition is set by nodal interpolaton

of u0. The time step is proportional to h, viz. ∆t = T/2N . An illustrative

snapshot of a numerical solution is shown in Figure 5.2.

Figure 5.2: Annotated snapshot of a solution to the scalar parbolic test prob-
lem.

To test the robustness of the formulation for small perturbation param-

eters r � 1, I first compute with r = 0.1 and then compare with results for

r = 0. Figure 5.3 shows the convergence of L2(Ω) and H1(Ω) norms of the
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error u− uh at time T for r = 0.1 and r = 0, suggesting convergence rates of

1/2 in H1(Ω) and 1 in L2(Ω) for both cases.
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Figure 5.3: Convergence of L2 and H1 errors for different values of r.

Integrals over Γ are evaluated using 32× 2N quadrature points, spaced

evenly along the arc length of Γ, where 2N is the number of elements across

the width of the domain. A scalar sample of λ is stored and updated at each of

these points. This high density of points rules out the possibility of accidental

inf-sup stability following from reduced quadrature of the boundary constraint.

Consistent with the absence of any proven convergence for λh, the computed

multiplier field is highly oscillatory and bears no resemblance whatsoever to

the spatially-uniform exact solution. Figure 5.4 shows a representative plot of

the multiplier as a function of polar angle around Γ. In light of such inaccurate

results for the multiplier field, I would recommend to consider the Lagrange
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multiplier a by-product of constraint enforcement rather than a meaningful

component of the solution. This is consistent with the results obtained by

Kallemov et al. [103, Figure 8] who solved implicitly for Lagrange multipliers

at boundary points immersed in Stokes flow. The cited study found that, for

high spatial densities of markers, the multiplier “traction” is highly oscillatory.

(While rarely reported or visualized, such boundary force oscillations are pre-

sumably present in many immersed boundary computations, since, as pointed

out by [103], high densities of markers are frequently recommended to prevent

leakage.) Also in agreement with [103], I observe that low-order moments of

the Lagrange multiplier field (e.g. net drag or torque on immersed objects)

remain accurate in spite of egregious spatial oscillations.
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Figure 5.4: The value of λh as a function of the angle around Γ. (Linear
interpolation is used between surface quadrature point samples of λh.)
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Remark 5.4. The error norms used to assess convergence are integrated over

Ω with the same 2× 2 quadrature rule used to assemble the equation systems

in the analysis. Due to the low regularity of the exact solution, this incurs a

significant integration error, but this extra error is not asymptotically worse

than what one would expect from approximation and temporal truncation

considerations.

5.1.2 Extension to related linear problems

The analysis of the scalar second-order parabolic equation suggests

some extensions to other linear model problems that more closely resemble

FSI. This section will address some of those extensions, albeit with a lesser

degree of rigor and completeness than the analysis of the scalar parabolic

problem.

5.1.2.1 Unsteady Stokes flow

The analysis of the heat equation can be formally extrapolated to

divergence-conforming discretizations of unsteady Stokes flow, by posing the

problem over the solenoidal subspace of V0(Ω) ⊂ (H1(Ω))
d

and seeking dis-

crete solutions in a finite dimensional subspace (cf. [27, Section 10]). This

is in contrast to non-div-conforming discretizations, in which the subspace of

discrete velocities that weakly satisfy incompressibility with respect to a finite

dimensional pressure test space are not pointwise divergence-free and do not

form a proper subset of solenoidal H1 functions. To simplify discussion, I
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eliminate the tangential portion of the multiplier on Γ from the outset, with

the understanding that this approaches consistentcy with the true no-slip-on-Γ

Stokes problem as the penalty coefficient τTAN →∞.

More precisely, consider the problem: Find velocity u ∈ L2(0, T ;V0(Ω))

with ∂tu ∈ L2(0, T ;V ∗0 (Ω)) and normal traction jump λ ∈ L2(0, T ;H−1/2(Γ))

such that for every v ∈ V0(Ω) and δλ ∈ H−1/2(Γ) at a.e. t ∈ [0, T ],

ρV ∗
0 (Ω)〈∂tu(t),v〉V0(Ω) + a(u(t),v)

+ H−1/2(Γ)〈λ(t),v · n〉H1/2(Γ) − H−1/2(Γ)〈δλ,u(t) · n〉H1/2(Γ)

+ τTAN (u(t)− (u(t) · n)n,v)L2(Γ)

= H−1/2(Γ)〈δλ,g(t) · n〉H1/2(Γ) + τTAN (g(t)− (g(t) · n)n,v)L2(Γ)

+ V ∗
0 (Ω)〈f(t),v〉V0(Ω) (5.98)

and

u(0) = u0 ∈ L2(Ω) , (5.99)

where n is a normal vector to the surface Γ, g(t) is the prescribed velocity

on Γ at time t, f(t) is some functional in the dual of V0(Ω), ρ takes on the

physical interpretation of mass density, and the bilinear form a is now defined

a(u,v) = 2µ (εεε(u), εεε(v))L2(Ω) , (5.100)

where µ is the dynamic viscosity and εεε is the symmetric gradient operator.

This problem statement is subtly incomplete in that, depending on the geom-

etry of Γ, there may be some compatibility condition on the data g to ensure
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consistency with mass conservation (e.g., if Γ encloses a region of Ω, the inte-

gral of the normal component of g must be zero to have a solenoidal u ∈ V0

satisfying the immersed boundary condition). The steps of the semi-implicit

time integration scheme become

1. Given un and λn, find un+1 such that for all v,

ρ
(
un+1
t ,v

)
L2(Ω)

+ a(un+1,v) + (λn,v · n)L2(Γ)

+ τNOR

(
un+1 · n,v · n

)
L2(Γ)

+ τTAN

(
un+1 − (un+1 · n)n,v

)
L2(Γ)

= τNOR

(
g(tn+1) · n,v · n

)
L2(Γ)

+ τTAN

(
g(tn+1)− (g(tn+1) · n)n,v

)
L2(Γ)

+ V ∗
0 (Ω)〈f(tn+1),v〉V0(Ω) , (5.101)

where

un+1
t =

un+1 − un

∆t
. (5.102)

2. Update the multiplier such that, for all δλ ∈ L2(Γ),

(λn+1, δλ)L2(Γ) =
1

1 + r

(
λn + τNOR(un+1 − g(tn+1)) · n, δλ

)
L2(Γ)

.

(5.103)

The corresponding implicitly-integrated regularized problem is: Find the reg-

ularized velocity ureg ∈ L2(0, T ;V0(Ω)) with ∂tu
reg ∈ L2(0, T ;V ∗0 (Ω)) and nor-

mal traction jump λreg ∈ L2(0, T ;L2(Γ)) with ∂tλ
reg ∈ L2(0, T ;L2(Γ)) such
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that for every v ∈ V0(Ω) and δλ ∈ L2(Γ) at a.e. t ∈ [0, T ],

ρV ∗
0 (Ω)〈∂tureg(t),v〉V0(Ω) + a(ureg(t),v) + (λreg(t),v · n)L2(Γ)

+

(
∆t

(1 + r)τNOR

∂tλ
reg(t)− ureg(t) · n +

r

(1 + r)τNOR

λreg(t), δλ

)
L2(Γ)

+ τTAN (ureg(t)− (ureg(t) · n)n,v)L2(Γ)

= (g(t) · n, δλ)L2(Γ) + τTAN (g(t)− (g(t) · n)n,v)L2(Γ)

+ V ∗
0 (Ω)〈f(t),v〉V0(Ω) (5.104)

and

ureg(0) = u0 ∈ L2(Ω) , λreg(0) = λ0 ∈ L2(Γ) . (5.105)

Notice that the compatibility condition on g is no longer strictly required in

the regularized problem, although I would anticipate bad results if it is vio-

lated. Recognizing the coercivity of the tangential penalty term and the formal

similarity of this problem to the scalar parabolic problem of Section 5.1.1, I

would not expect to encounter major difficulties adapting the program of Sec-

tion 5.1.1 to this setting, to bound errors at time T in the norm

|||u, λ|||2 =
1

2
ρ ‖u‖2

L2(Ω) +
∆t

2(1 + r)τNOR

‖λ‖2
L2(Γ) . (5.106)

The first term now carries the physical interpretation of the kinetic energy of

the fluid. In the case of r = 0, the multiplier represents a normal displacement

of fluid through Γ, and the second term of the energy norm becomes a spring-

like potential energy (foreshadowing the inclusion of a structural potential

energy in linearized FSI problems).
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5.1.2.2 Numerical experiment: linearized Taylor–Green vortex

The following velocity field is a solution to the 2D Navier–Stokes equa-

tions posed on the domain Ω = [−π, π]2 with periodic boundary conditions

and no external forcing:

uTG(x, t) = (sin(x1)cos(x2)e1 − cos(x1)sin(x2)e2) e−2µt/ρ . (5.107)

This is known as the Taylor–Green vortex. The velocity field is also an exact

solution to the Stokes equations, with the body force field fTG = −ρuTG·∇uTG.

One may construct an interesting test problem by prescribing u = uTG as an

initial condition at t = 0 and also as a time-dependent Dirichlet boundary

condition on a closed immersed boundary Γ, then adding a spatially-uniform

body force fx = e1 in the x1-direction, so that the total body force is f =

fTG + fx. This body force induces a pressure gradient in the region enclosed by

Γ without perturbing the velocity solution in that region. The velocity outside

of the region enclosed by Γ is no longer equal to uTG for t > 0. There are

jumps in the pressure and velocity derivatives along Γ. The regularity of the

velocity solution is therefore representative of typical usage of an immersed

boundary method.

I have not attempted to derive an exact solution on the entire domain,

but one can easily measure the error in the subset Ωerr, enclosed by Γ. Let

Γ be a circle centered at (x, y) = (0, 0), with radius 2 and let Ωerr = {x ∈

R2 | |x|`2 < 2}. I integrate errors on Ωerr approximately, using points from

a 3 × 3 Gaussian quadrature rule on each element that fall inside of Ωerr.
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This is only a first order approximation, but I do not expect higher than first

order convergence of errors in any norm. The setup is illustrated, along with

a representative numerical solution, in Figure 5.5.

I discretize this problem using 2N×2N div-conforming B-spline elements

of degree k′ = 1, for N ∈ {4, . . . , 9}. Due to the low regularity of the exact

solution, I would not expect to obtain improved convergence rates with higher

k′. The problem is posed over the interval (0, T ) with T = 0.2, using time

steps of size ∆t = T/(2N−2). The initial condition is set using H1 projection.

Penalty values are τNOR = τTAN = 100µ/h, where h = 2π/(2N) is the mesh

element size. The convergence of L2(Ωerr) and H1(Ωerr) errors at time T is

shown in Figure 5.6. As with the heat equation, the convergence for r > 0 is

first order in L2(Ωerr) and one-half order in H1(Ωerr), with robustness in the

limit of r → 0.

5.1.2.3 Coupled second-order problems

To look at coupling between d-dimensional and (d − 1)-dimensional

subproblems without immediately facing the complexities of fluid–structure

interaction, I outline a model problem in which two second-order parabolic sub-

problems are coupled: Find u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;H−1(Ω)),

y ∈ L2(0, T ;H1
0 (Γ)) with ∂ty ∈ L2(0, T ;H−1(Γ)) and λ ∈ L2(0, T ;H−1/2(Γ))
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Figure 5.5: Simultaneous velocity magnitude (left) and pressure (right) snap-
shots of the Stokes Taylor–Green problem, with annotations describing the
problem setup.
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Figure 5.6: Convergence of L2(Ωerr) and H1(Ωerr) errors at time T for different
values of r.

such that for every v ∈ H1
0 (Ω), z ∈ H1

0 (Γ) and δλ ∈ H−1/2(Γ) at a.e. t ∈ [0, T ],

ρ1 H−1(Ω) 〈∂tu(t), v〉H1(Ω) + a1(u(t), v)

+ ρ2 H−1(Γ) 〈∂ty(t), z〉H1(Γ) + a2(y(t), z)

+ H−1/2(Γ)〈λ(t), γw − z〉H1/2(Γ)

− H−1/2(Γ)〈δλ, γu(t)− y(t)〉H1/2(Γ) = F (v, z) (5.108)
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and

u(0) = u0 ∈ L2(Ω) , y(0) = y0 ∈ L2(Γ) . (5.109)

a1 is coercive over H1
0 (Ω) and a2 is coercive over H1

0 (Γ). Following the pat-

tern set by the scalar parabolic problem of Section 5.1.1 and the unsteady

Stokes problem of Section 5.1.2.1, it should be clear what the semi-implicit

algorithm and equivalent implicitly-integrated problem are for the coupled

problem. Much of the program of Section 5.1.1 can then be repeated nearly

unchanged to obtain analogous error estimates in the norm

|||u, y, λ|||2 =
1

2
ρ1 ‖u‖2

L2(Ω) +
1

2
ρ2‖y‖2

L2(Γ) +
∆t

2(1 + r)β
‖λ‖2

L2(Γ) . (5.110)

I use this model coupled problem to demonstrate the efficacy of block iteration

in Section 5.3.

5.2 Localization of error

Numerical experiments indicate that the rate of convergence of H1 error

with h is one in subdomains Ωerr with O(1) separation from Γ. This is higher

than would be possible on all of Ω, based on the regularity of the exact solution

and approximation considerations. For peicewise polynomial spaces of degree

one, this is optimal convergence in H1(Ωerr), although the L2(Ωerr) convergence

remains first-order after restricting to Ωerr and higher-degree spaces do not

yeild higher rates of convergence on Ωerr. (The details of these numerical

experiments have been omitted for brevity.) This may, at first, seem puzzling,

in light of the well-developed field of local error analysis. In the current section,
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I will dispel this conundrum, by clarifying the distinction between applying

a given concentrated source term to a system and using a concetrated source

term to enforce a constraint.

In the immersed boundary method developed in this dissertation, the

influence of the boundary on the fluid subproblem is felt through a concen-

trated surface force in H−1(Ω). For an elliptic problem subject to such a

forcing, one can quite easily derive optimal local error estimates in H1(Ωerr),

using the theory developed in [130]. This theory was extended to Stokes flow

in [5]. The results are sufficiently robust that they extend almost entirely to

forces less regular than H−1(Ω), including point forces, as shown by [24, 114]

for the Poisson problem and by [119] for Stokes flow.

As a model problem to illustrate the pollution effects of jumps in deriva-

tives due to the bilinear form of a weak elliptic problem rather than the linear

functional driving it, consider the following modified Poisson problem: Find

u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω),

B(u, v) = F (v) , (5.111)

where

B(u, v) =

∫
Ω

∇u · ∇v dΩ +

∫
Γ

βuv dΓ (5.112)

and F is some bounded linear functional defined on H1
0 (Ω). Γ is some interface

of co-dimension one to Ω. β is a positive penalty coefficient. Assuming a

reasonable trace inequality, the modified B is still bounded and coercive on

H1
0 (Ω). The penalty force can be construed as a concentrated source −βu on
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the immersed boundary Γ in an ordinary Poisson problem, but this analogy is

strained by the presence of u in the “source” term, and I demonstrate below

that the local error analysis for concentrated sources in the Poisson equation

does not extend to the problem (5.111).

In what follows, assume that Ω1 ⊂⊂ Ω has some constant separation

from the surface Γ along which the exact solution u is non-smooth. The

integral over Γ in B does not affect the interior equations satisfied by the

exact and discrete solutions corresponding to discrete test functions whose

supports are fully contained in Ω1. The interior duality and error estimates

due to Nitsche and Schatz [130, Sections 4 and 5] are therefore unchanged.

In particular, the result [130, Theorem 5.1(i)] still holds: Let Ω0 ⊂⊂ Ω1 ⊂⊂

Rd, u ∈ H`(Ω1), uh ∈ Shk,r(Ω1), where 1 ≤ k < r and p is a non-negative

integer, arbitrary but fixed. (Following the notation defined in [130, Section 2],

Shk,r(A) is a finite element subspace of Hk(A) (for some domain A ⊂ Rd) with

shape functions of polynomial order r − 1. S̊hk,r(A) is the subspace spanned

by basis functions with supports contained in A.) Suppose that standard

approximation, stability, and superapproximation1 assumptions hold for the

discrete space Shk,r. (Refer to [130, Section 2] for the precise conditions.) Then

there exists a 0 < h1 ≤ 1 such that, if e = u− uh satisfies

B(e, φh) = 0 ∀φh ∈ S̊hk,r(Ω1) , (5.113)

1This term does not appear in [130]. It shows up frequently in later discussions of local
error estimates, though, and refers to [130, Assumption A.2] and/or other related conditions.
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then, for all h ∈ (0, h1] and 1 ≤ ` ≤ r,

‖e‖H1(Ω0) ≤ C
(
h`−1‖u‖H`(Ω1) + ‖e‖H−p(Ω1)

)
, (5.114)

where C = C(p,Ω0,Ω1).

The difference between the modified and ordinary Poisson problems

becomes apparent, though, when attempting to estimate ‖e‖H−p(Ω1). The usual

duality argument no longer delivers optimal local convergence rates for the

problem (5.111). The reason for this is that the lack of regularity originates

in the bilinear form, and is therefore present as well in the dual problem. To

clarify what I mean by this, I retrace the steps of the duality argument.

Consider uh computed by applying Galerkin’s method to (5.111). The

error e = u− uh will clearly satisfy the interior equation (5.113). Now look at

the convergence of the term ‖e‖H−p(Ω1) ≤ ‖e‖H−p(Ω) from the error estimate

(5.114). First consider the definition of the negative norm:

‖e‖H−p(Ω) = sup
‖φ‖Hp(Ω)=1

(e, φ) . (5.115)

For fixed φ ∈ Hp(Ω) with ‖φ‖Hp(Ω) = 1, there exists a unique vφ ∈ H1
0 (Ω) such

that (η, φ) = B(η, vφ) for all η ∈ H1
0 (Ω). Then

(e, φ) = B(e, vφ) . (5.116)

From Galerkin orthogonality, the error e satisfies the equation

B(e, wh) = 0 ∀wh ∈ S̊hk,r(Ω) . (5.117)
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One can therefore subtract an arbitrary wh from the test function vφ in (5.116):

(e, φ) = B(e, vφ − wh) . (5.118)

Setting wh equal to the adjoint elliptic projection P ∗vφ of vφ into S̊hk,r(Ω),

(e, φ) = B(e, vφ − P ∗vφ) . (5.119)

Since, by definition, vφ − P ∗vφ satisfies

B(φh, vφ − P ∗vφ) = 0 ∀φh ∈ S̊hk,r(Ω) , (5.120)

one can add an arbitrary member of S̊hk,r(Ω) to e on the right side of (5.119):

(e, φ) = B(u− χh, vφ − P ∗vφ) , (5.121)

where χh ∈ S̊hk,r(Ω) has absorbed the Galerkin discrete solution uh ∈ S̊hk,r(Ω)

from the error e = u− uh. Due to H1 boundedness of B,

|(e, φ)| = |B(u− χh, vφ − P ∗vφ)| (5.122)

≤ C‖u− χh‖H1(Ω)‖vφ − P ∗vφ‖H1(Ω) . (5.123)

Taking the supremum over eligible φs and recalling the definition of theH−p(Ω)

norm,

‖e‖H−p(Ω) ≤ C‖u− χh‖H1(Ω) sup
φ

(
‖vφ − P ∗vφ‖H1(Ω)

)
. (5.124)

Despite the arbitrarily-smooth forcing φ ∈ Hp(Ω) in the dual problem, vφ is not

necessarily any more regular than H3/2(Ω), because of the singular coefficients
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in B. Let us assume that vφ ∈ H3/2−ε(Ω) with ‖vφ‖H3/2−ε(Ω) ≤ C, for ε

arbitrarily small. Then ‖vφ − P ∗vφ‖H1(Ω) ≤ Ch1/2−ε, where C is independent

of φ, since ‖φ‖Hp(Ω) = 1 ∀φ. If we further assume that u ∈ H3/2−ε(Ω), then,

by appropriate selection of an interpolant χh, ‖u− χh‖H1(Ω) ≤ Ch1/2−ε. This

provides the following estimate of pollution effects:

‖e‖H−p(Ω1) ≤ Ch1−2ε . (5.125)

Wahlbin’s analysis of a similar problem [194, Chapter III, Section 17] suggests

that this estimate is sharp. One cannot do any better if the source of local non-

smoothness is a singular coefficient instead of a singular source term. Further,

Wahlbin’s analysis suggests that one will not get a higher rate in the local

L2 norm, since the sharpness of this result will hold for any norm of the local

error. On a brighter note, though, this analysis doubles the rate of convergence

that would have been obtained by a global analysis in the energy norm and

therefore provides some improvement over naive estimates.

Remark 5.5. A clever way to circumvent this limitation for elliptic problems

is the so-called “fat boundary method” [25], but I have not yet attempted to

generalize this to the case of unsteady Navier–Stokes flow.

5.3 Block iterative convergence

This section uses a linearized model problem to study the convergence

of the block iterative procedure introduced in Section 4.3 to resolve a penalty-

coupled FSI system.
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5.3.1 A generic model problem

The Lagrange multipliers are held fixed in the block iteration, so only

the penalty coupling is of concern when investigating the stability of block

iteration. I therefore introduce the following linear model problem, in which

two linear elliptic subproblems, indexed 1 and 2, are coupled along an interface

by penalty forces: Find u1 ∈ V1 and u2 ∈ V2 such that, for all test functions

w1 ∈ V1 and w2 ∈ V2,

B1(u1, w1) + k(u1 − u2, w1)Γ = F1(w1) (5.126)

B2(u2, w2) + k(u2 − u1, w2)Γ = F2(w2) . (5.127)

In this problem, B1 and B2 are coercive and bounded bilinear forms, F1 and

F2 are bounded linear functionals, k > 0 is the penalty constant coupling the

two subproblems, and (·, ·)Γ is an inner product of bounded traces of functions

from V1 and V2. The block iterative algorithm for this problem is to start with

i = 0 and an initial guess for u0
2, then repeat

1. Holding ui2 constant, find ui+1
1 ∈ V1 such that, for all w1 ∈ V1,

B1(ui+1
1 , w1) + k(ui+1

1 , w1)Γ = k(ui2, w1)Γ + F1(w1) . (5.128)

2. Holding ui+1
1 constant (at the value computed in the previous step) find

ui+1
2 ∈ V2 such that, for all w2 ∈ V2,

B2(ui+1
2 , w2) + k(ui+1

2 , w2)Γ = k(ui+1
1 , w2) + F2(w2) . (5.129)

3. i← i+ 1 .
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Remark 5.6. Note that, when the subproblems are linear, no initial guess is

required for u0
1. u1

1 is completely determined by u0
2.

The goal of this analysis is to determine whether this procedure will converge

to a fixed point. Define the norms

|||u|||2i = ‖u‖2
i + k‖u‖2

Γ , (5.130)

for i ∈ {1, 2}, where ‖ · ‖i is some norm in which Bi is coercive with unit

constant (such as energy for Bi symmetric) and ‖ · ‖Γ is the norm induced by

(·, ·)Γ. Then the bilinear form

Bi(u, v) = Bi(u, v) + k(u, v)Γ (5.131)

will be coercive in the norm |||·|||i with unit constant. We have Green’s opera-

tors {Gi}2
i=1 such that if ui satisfies

B(ui, wi) = F (wi) ∀wi ∈ Vi , (5.132)

then

ui = Gi(F ) , (5.133)

i.e., Gi is a map from right-hand-side functionals to solutions, for subproblem

i. Because the subproblems are linear, so are their solution operators. Using

the Lax–Milgram theorem, with unit coercivity constant,

|||Gi(F )|||i ≤ |||F |||i , (5.134)
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where the norm on the right-hand side is understood as the induced norm on

the dual space V∗i . Expressing the solution ui+1
1 of Step 1 of the block iteration

algorithm in terms of G1, re-write Step 2 as

B2(ui+1
2 , w2) = k

(
G1

(
k(ui2, ·)Γ + F1

)
, w2

)
Γ

+ F2(w2) . (5.135)

Expressing the solution of Step 2 in terms of its Green’s operator, there is then

a mapping from ui2 to ui+1
2 :

ui+1
2 = G2

(
k
(
G1

(
k(ui2, ·)Γ + F1

)
, ·
)

Γ
+ F2

)
= H(ui2) . (5.136)

For the block iteration to be stable, it is sufficient that H be a contraction

mapping. Continuity of (·, w1)Γ and coercivity of B1 are sufficient to show

that the convergence of subproblem 2 implies the convergence of subproblem

1. Using the linearity of G1 and G2 and bilinearity of the inner product (·, ·)Γ,

it is easy to see that

H(u)−H(v) = G2 (k (G1 (k(u− v, ·)Γ) , ·)Γ) . (5.137)

Recalling (5.134),

|||H(u)−H(v)|||2 ≤ C1C2|||u− v|||2 , (5.138)

where C1 and C2 are defined such that

|||k(u, ·)Γ|||2 ≤ C1|||u|||1 ∀u ∈ V1 (5.139)

and

|||k(u, ·)Γ|||1 ≤ C2|||u|||2 ∀u ∈ V2 . (5.140)
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To show stability of block iteration, it is therefore sufficient to show that C1 ≤ 1

and C2 ≤ 1. Let us first proceed in a general way. For (i, j) ∈ {(1, 2), (2, 1)},

|||k(u, ·)Γ|||i = sup
v 6=0

k(u, v)Γ√
‖v‖2

i + k‖v‖2
Γ

(5.141)

≤ sup
v 6=0

√
k(u, v)Γ

‖v‖Γ

(5.142)

≤
√
k‖u‖Γ (5.143)

≤ |||u|||j . (5.144)

This demonstrates that C1 ≤ 1 and C2 ≤ 1, and therefore that block iteration

is at worst non-divergent.

5.3.2 Application to FSI

To gain greater insight into the rate of convergence of the iteration, and

its dependence on the nature of the subproblems and the penalty parameter

k, I now use further assumptions on the structures of B1 and B2 and trace

and trace-inverse inequalities to sharpen the estimate in the step from (5.143)

to (5.144). Consider the problem of dynamic linearized FSI, with subprob-

lem 1 an incompressible Stokesian fluid occupying Ω1 ⊂ R3 and subproblem

2 a thin immersed structure modeled geometrically as the surface Γ, of co-

dimension one to Ω1. The inner product (·, ·)Γ is the L2(Γ) inner product,

with appropriate traces taken of its arguments when necessary. Discretize the

problem implicitly in time, with the backward Euler method, using time step

∆t. The time-discrete fluid physics are then given by

B1(u, v) =
ρ1

∆t
(u, v)L2(Ω1) + a1(u, v) , (5.145)
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where ρ1 is the fluid mass density and a1 is an H1(Ω1)-coercive bilinear form.

Rather than introducing a pressure to enforce incompressibility, simply con-

sider V1 to be the space of discretely divergence-free velocities, to remain in the

simpler setting of coercive problems. (Alternatively, in the case of pressure-

stabilizing methods, the method is coercive over the whole pressure–velocity

product space.) The structure physics are given by

B2(u, v) =
ρ2`th

∆t
(u, v)Γ + ∆ta2(u, v) , (5.146)

where ρ2 is the structural mass density, `th is the structure’s thickness, and

a2 is an H2(Γ)-coercive bilinear form. For Stokes flow, a1 is symmetric, so we

can define the norms {‖ · ‖i}2
i=1 by

‖u‖2
i = Bi(u, u) . (5.147)

Suppose the coercivity constants for a1 and a2 are given by

|a1(u, u)| ≥ A1‖u‖2
H1(Ω1) (5.148)

and

|a2(u, u)| ≥ A2‖u‖2
H2(Γ) . (5.149)

Suppose further that the trace inequality

‖u‖2
H1(Ω1) ≥ T‖u‖2

Γ (5.150)

and the trace-inverse inequality

‖u‖2
L2(Ω1) ≥ Ih‖u‖2

Γ (5.151)
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hold, where h is a mesh parameter. Then it is clear that(
ρ1Ih

∆t
+ A1T + k

)
‖u‖2

Γ ≤ |||u|||
2
1 (5.152)

and (
ρ2`th

∆t
+ ∆tA2 + k

)
‖u‖2

Γ ≤ |||u|||
2
2 . (5.153)

Using these estimates in lieu of the duller bound (5.143)–(5.144),

C2
1 =

k
ρ1Ih
∆t

+ A1T + k
(5.154)

and

C2
2 =

k
ρ2`th
∆t

+ ∆tA2 + k
. (5.155)

Obviously Ci < 1, but if |C1C2 − 1| � 1, then convergence of block iteration

will be quite slow. Suppose the penalty parameter is given by

k = K/h (5.156)

and the time step is given by

∆t = τh , (5.157)

where K and τ are independent of the mesh parameter h. Then

C2
1 → 1 as h→ 0 (5.158)

and

C2
2 →

K
ρ2`th
τ

+K
as h→ 0 . (5.159)

The convergence therefore approaches a fixed rate under refinement. That

rate can be improved by shrinking the time step–mesh size proportionality
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constant τ and/or decreasing the mesh-independent penalty parameter K.

This is consistent with the trends noted in [105, Remark 14] and demonstrated

in numerical examples of the sequel.

5.3.3 Relation to Newton iteration

In [105, Section 4.6] and Section 4.3, I introduced block iteration as a

modification of Newton iteration with an approximate tangent. This section

examines precisely how block iteration and inexact Newton iteration are re-

lated and indicates why block iteration is preferable. In the abstract model

problem of Section 5.3.1, Newton iteration would have the tangent system(
B1(·, w1) + k(·, w1)Γ −k(·, w1)Γ

−k(·, w2)Γ B2(·, w2) + k(·, w2)Γ

)(
∆u1

∆u2

)
= −

(
B1(ui1, w1) + k(ui1 − ui2, w1)Γ − F1(w1)
B2(ui2, w2) + k(ui1 − ui2, w2)Γ − F2(w2)

)
, (5.160)

which would, for a linear problem, arrive at the exact solution in a single

iteration, from any initial guess. Eliminating off-diagonal blocks produces two

independent equations to update u1 and u2:

B1(∆u1, w1) +k(∆u1, w1)Γ = −B1(ui1, w1)−k(ui1−ui2, w1)Γ +F1(w1) (5.161)

and

B2(∆u2, w2)+k(∆u2, w2)Γ = −B2(ui2, w2)−k(ui2−ui1, w2)Γ+F2(w2) . (5.162)

Using ui+1
j = uij+∆uj for j ∈ {1, 2}, and the linearity of Bj(·, wj) and (·, wj)Γ,

these two update equations are clearly equivalent to

B1(ui+1
1 , w1) + k(ui+1

1 , w1) = k(ui2, w1)Γ + F1(w1) (5.163)
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and

B2(ui+1
2 , w2) + k(ui+1

2 , w2)Γ = k(ui1, w2) + F2(w2) . (5.164)

Unlike the problem of Section 5.3.1, inexact Newton iteration will require an

initial guess for u0
1, to compute u1

2. For ui2, i > 1, one can follow analogous

steps to those spelled out in Section 5.3.1 to derive a counterpart to (5.136):

ui+1
2 = H(ui−1

2 ) , (5.165)

where H is the same as that defined in (5.136). Block iteration is therefore an

acceleration of the inexact Newton approach that converges twice as quickly

when the subproblems are linear.

Remark 5.7. Notice that the inexact Newton iteration, when applied to

the problem of Section 5.3.2, would be equivalent to the following: putting

the coupling force in explicitly and adding extra mass along the interface Γ

in the tangent matrix for each subproblem. This is suggested heuristically

in [181, Section 5.1], as a way to improve the robustness of classical Dirichlet-

to-Neumann block iteration. In block iteration for penalty-coupled problems,

there is a precise way to determine the amount of extra mass needed to guar-

antee stability. This interpretation suggests, however, that under-converging

the block iteration may cause the structure to behave as if it has extra mass.

5.3.4 Numerical test

I now test the convergence of block iteration for the model coupled prob-

lem suggested in Section 5.1.2.3. In particular, I choose Ω = (−W/2,W/2)2 ⊂
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R2 with W = 2.5 and select Γ to be the intersection of the line x2 = 3x1 +W/4

with Ω. I set

a1(u, v) = (∇u,∇v)L2(Ω) , (5.166)

a2(y, z) = (∇y,∇z)L2(Γ) , (5.167)

ρ1 = ρ2 = 1, and select the functional F so as to strongly enforce u = 1 on the

left edge of the domain. (I have both abused notation and stretched the prob-

lem definition in this example, by first conflating u ∈ H1
0 (Ω) with u+g, where

g satisfies the inhomogeneous boundary condition, then selecting g /∈ H1(Ω).

In computations, the discontinuous boundary data is implemented analogously

to the “leaky lid” discretization of the lid-driven cavity benchmark, as depicted

in [92, Figure 1].) A representative solution snapshot is shown in Figure 5.7.

Notice that the Lagrange multiplier values, plotted as coloration along the

physical image of Γ, are highly oscillatory, while the temperatures u and y

remain qualitatively smooth.

To investigate the effect of time step on block iterative convergence, I

set T = 10 and take ∆t = T/N for N ∈ {1, 10, 100}, holding β > 0 fixed and

r = 0. The (log of the) `2 norm of the discrete residual for the Γ subprob-

lem during the first time step is shown as a function of the number of block

iterations in Figure 5.8. This differs from the choice of norm used in the con-

vergence analysis, but, for a fixed number of degrees of freedom in the spatial

discretization, all norms of the finite-dimensional solution space are equiva-

lent. The linear convergence rate and improvement with temporal refinement
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Figure 5.7: Annotated snapshot of a solution to the coupled model problem.
The solution to the Γ subproblem, yh, is plotted below Ω and the colors on Γ
cutting through Ω represent point values of λh.

predicted in the preceding analysis are confirmed.

-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2

 0  1  2  3  4  5  6  7  8  9

lo
g(

 R
es

id
ua

l n
or

m
 )

Number of block iterations

N=1
N=10

N=100

Figure 5.8: The norm of the discrete residual for the Γ subproblem converges
linearly with a rate that improves as the time step ∆t = T/N decreases.

To investigate the effect of penalty parameter, I use ∆t = T/100 and
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choose β = C/h, for C ∈ {1, 10, 100} and h the mesh element size shown

in Figure 5.7. The block iterative convergence is shown in Figure 5.9. This

illustrates that block iterative convergence slows down with increasing penalty

value. This highlights the value of including a semi-implicitly-integrated La-

grange multiplier rather than simply using a naive penalty method, in spite of

these approaches having the same asymptotic convergence rates. The inclu-

sion of the Lagrange multiplier allows for satisfactory constraint enforcement

with lower (and therefore more computationally tractable) penalty values.
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Figure 5.9: The norm of the discrete residual for the Γ subproblem converges
linearly with a rate that slows down as the penalty C/h increases.

5.4 Improving mass conservation in PSPG

If an immersed boundary induces a large pressure jump in the fluid, it is

acting as a concentrated irrotational force. I isolate the effects of such a force

by looking at a linear model problem: the Stokes “no-flow” problem. This

problem is introduced precisely by Galvin et al. [59]. Breifly, it is a Stokes
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flow with homogeneous Dirichlet boundary conditions and an irrotational body

force. The exact solution is that the pressure is equal to the potential gener-

ating this irrotational vector field and the fluid velocity is zero. (This is also

an exact solution to the nonlinear Navier–Stokes equation.) In a numerical

method, if the pressure interpolation error enters the bound on the velocity

error, then the discrete velocity may be nonzero. If the pressure gradient in

the exact solution is very large relative to other data in the problem, then

the discrete solution can be very far from hydrostatic. This problem occurs

quite dramatically in BHV FSI analysis with VMS discretizations of the fluid

subproblem. The effect of the pressure interpolation error on velocity mani-

fests, in the valve problem, as poor mass conservation near the valve, which

leads to a de facto leakage through it, even when the kinematic constraints

are well-enforced. This effect is what motivates the introduction of the scaling

factor s(x) in the VMS stabilization parameters.

Galvin et al. [59] investigated the phenomenon of poor mass conser-

vation in incompressible flows with irrotational forcing using inf-sup stable

velocity/pressure pairs, and found that, in the presence of large irrotational

forces, it was beneficial to use unusually-high grad-div stabilization constants.

(Recall that grad-div stabilization is exactly the same thing as the τC term of

the VMS formulation stated in Section 3.1.1.) Galvin et al. scaled τC glob-

ally by factors of up to 104, but found that excessive scaling could lead to

bad results. When doing immersed boundary analysis with the VMS fluid

formulation, there are two key departures from the program of Galvin et al.:

139



1. We know a priori where the large irrotational forces (and thus large

pressure interpolation errors) will be located. Specifically, we know that

the forces will be in elements containing the immersed structure.

2. The pressure interpolation error contributes to the velocity error not

only through the Galerkin term of the weak continuity equation, but

also through the appearance of the pressure gradient in the momentum

residual rM, in the stabilization terms. These contributions to the ve-

locity error are controlled by τM. We might therefore expect to benefit

from modifying τM in addition to τC.

Interestingly, the issue of poor mass conservation in immersed boundary com-

putations goes all the way back to Peskin’s work, as discussed in [132], but

Peskin and Printz were not working in a variational framework and therefore

did not have available the machinery of functional analysis to clearly explain

the problem.

Let us now do some simple error analysis of the VMS formulation for the

generic no-flow problem. The VMS analysis used to obtain BVMS
1 for unsteady

Navier–Stokes reduces, in the case of steady Stokes flow, to the pressure-

stabilizing/Petrov–Galerkin (PSPG) formulation [92] augmented with least-

squares stabilization of the incompressibility constraint (LSIC, also known as

grad-div) [73]. The PSPG/LSIC discrete problem is: Find (uh, ph) ∈ Shu × Shp

such that ∀(wh, qh) ∈ Vhu × Vhp ,

BPSPG({uh, ph}, {wh, qh}) = FPSPG({wh, qh}) , (5.168)
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with

BPSPG({uh, ph}, {wh, qh}) = µ

∫
Ω

∇uh : ∇wh dΩ

+

∫
Ω

qh∇ · uh dΩ−
∫

Ω

ph∇ ·wh dΩ

+
∑
e

∫
Ωe
τ eM∇qh · (−µ∆uh +∇ph) dΩ

+
∑
e

∫
Ωe
τ eC∇ · uh∇ ·wh dΩ , (5.169)

where the PSPG stabilization constant τ eM = O(h2/µ) and the LSIC stabi-

lization constant τ eC = O(h2/τ eM) are steady Stokes flow counterparts to the

synonymous stabilization constants that appear in the unsteady Navier–Stokes

VMS formulation. τ eM must obey an upper bound (derived from inverse esti-

mates that bound higher derivatives of discrete polynomial test and trial func-

tions in terms of lower derivatives) for BPSPG to be coercive in the so-called

“stability norm”,

|||{u, p}|||2 =
1

2
µ‖∇u‖2

L2(Ω) +
1

2

∑
e

τ eM‖∇p‖2
L2(Ωe) +

1

2

∑
e

τ eC‖∇ · u‖2
L2(Ωe) ,

(5.170)

introduced by Hughes et al. [92] and extended here to include an LSIC contri-

bution. Following the analysis of [92], I begin by decomposing the error into

discrete and interpolation errors. Let the exact solution be {u, p}. The error

is then defined to be

{eu, ep} = {uh − u, ph − p} . (5.171)
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Adding and subtracting arbitrary discrete functions ūh ∈ Vhu and p̄h ∈ Vhp ,

eu =
(
uh − ūh

)
+
(
ūh − u

)
= ehu + ηηηu , (5.172)

ep =
(
ph − p̄h

)
+
(
p̄h − p

)
= ehp + ηp , (5.173)

where ηηηu = ūh − u is the velocity interpolation error and ηp = p̄h − p is

the pressure interpolation error. These interpolation errors are unrelated to

the numerical method, and depend only on the exact solution and choice of

discrete spaces.

In the particular case of the no-flow problem, one can exactly interpo-

late the velocity u = 0 by choosing ūh = 0, so ηηηu = 0. Thus eu = ehu = uh.

We can therefore bound the H1 seminorm of the spurious flow in the discrete

solution in terms of the stability norm of the discrete error:

1

2
µ|uh|2H1(Ω) ≤

∣∣∣∣∣∣{ehu, ehp}∣∣∣∣∣∣2 . (5.174)

Because the PSPG/LSIC bilinear form is, by design, coercive with unit con-

stant in the stability norm,

∣∣∣∣∣∣{ehu, ehp}∣∣∣∣∣∣2 ≤ ∣∣BPSPG
(
{ehu, ehp}, {ehu, ehp}

)∣∣ . (5.175)

PSPG/LSIC is in residual form and therefore consistent with the exact solu-

tion, so

BPSPG
(
{eu, ep}, {wh, qh}

)
= 0 (5.176)

for all discrete test functions {wh, qh}. Thus

∣∣∣∣∣∣{ehu, ehp}∣∣∣∣∣∣2 ≤ ∣∣BPSPG
(
{ηηηu, ηp}, {ehu, ehp}

)∣∣ . (5.177)
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Recalling that ηηηu = 0 for the no-flow problem and using the definition of

BPSPG,

BPSPG
(
{ηηηu, ηp}, {ehu, ehp}

)
= −

∫
Ω

ηp∇ · ehu dΩ +
∑
e

∫
Ωe
τM∇ehp · ∇ηp dΩ .

(5.178)

Splitting the first integral into a sum over elements and using Young’s inequal-

ity in each term,

∣∣BPSPG
(
{ηηηu, ηp}, {ehu, ehp}

)∣∣ ≤∑
e

(
‖ηp‖2

L2(Ωe)

2εe1
+
εe1‖∇ · ehu‖2

L2(Ωe)

2

)

+
∑
e

τ eM

(
‖∇ehp‖2

L2(Ωe)

2ε2
+
ε2‖∇ηp‖2

L2(Ωe)

2

)
,

(5.179)

for arbitrary εe1 > 0 and ε2 > 0. Choose εe1 = τ eC/2 and ε2 = 2. Then terms

involving the discrete errors ehu and ehp may be hidden behind the corresponding

terms in the stability norm, so it follows that

1

2

∣∣∣∣∣∣{ehu, ehp}∣∣∣∣∣∣2 ≤∑
e

(
‖ηp‖2

L2(Ωe)

τ eC
+ τ eM‖∇ηp‖2

L2(Ωe)

)
. (5.180)

Recalling the asymptotics of the stabilization constants, let

τ eM ∼αe
h2

µ
, (5.181)

τ eC ∼
h2

τ eM
∼ µ

αe
, (5.182)

where αe > 0 is a dimensionless scalar on each element. Recalling that the

stability norm bounds H1 velocity error,

|uh|2H1(Ω) ≤
∑
e

Cαe

µ2

(
‖ηp‖2

L2(Ωe) + h2‖∇ηp‖2
L2(Ωe)

)
, (5.183)
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where C is independent of αe and h. Thus, the spurious leakage in the discrete

solution can be scaled down to arbitrarily small levels by reducing αe in ele-

ments with pressure interpolation errors. This has the obvious consequence,

however, of destabilizing the pressure field, and, in problems with nonzero u,

this could, based on standard PSPG error analysis [92], magnify the effects of

velocity interpolation errors. It is straightforward to see that shrinking αe in

elements with pressure interpolation errors is akin to increasing the value of

sshell in the modified VMS formulation of Section 3.1.1.
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Chapter 6

Nonlinear numerical experiments

This chapter tests, through numerical experiments, how well the con-

vergence results derived within the linearized theory of Chapter 5 extrapolate

to the discretization described in Chapters 3 and 4 of the nonlinear mathe-

matical model specified in Chapter 2.

Some of the chapter’s content is derived from the following publications:
D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.

Sacks, T. J. R. Hughes. An immersogeometric variational framework for fluid–structure
interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Me-
chanics and Engineering, 284:1005–1053, 2015. D. Kamensky developed the techniques
used for fluid–thin structure interaction and structure-on-structure contact. M.-C. Hsu pro-
vided supervision and implemented the finite cell method for flow around bulky objects. D.
Schillinger helped formulate the finite cell approach used. J. A. Evans provided mathemat-
ical advice. A. Aggarwal developed the geometrical model of the valve. Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes supervised the work.

D. Kamensky, J. A. Evans, M.-C. Hsu. Stability and conservation properties of collocated
constraints in immersogeometric fluid-thin structure interaction analysis. Communications
in Computational Physics. 18(4):1147–1180, 2015. D. Kamensky formulated and analyzed
the improvements to the semi-implicit time integration and performed the numerical exper-
iments. J. A. Evans and M.-C. Hsu supervised the work.

D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-
sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
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6.1 Extrapolation to Navier–Stokes flow

Before looking at the full FSI problem, consider the rigid-structure limit

of Navier–Stokes flow with Dirichlet conditions enforced on immersed bound-

aries. While this seems like a simpler problem, it is, in fact, especially challeng-

ing for a wide class of immersed boundary methods that rely on the structure’s

constitutive model to compute forces on the fluid. The rigid-structure limit is

important in the application of BHV simulation, as many BHV designs include

effectively rigid stents.

6.1.1 Taylor–Green vortex

This section considers a variant of the numerical experiment from Sec-

tion 5.1.2.2, but with the full Navier–Stokes equations. Recall that Sec-

tion 5.1.2.2 solved the Stokes equations, with the advection term of the Taylor–

Green vortex solution (5.107) prescribed as a body force. I now treat the ad-

vection term nonlinearly. As in Section 5.1.2.2, div-conforming B-splines of

degree k′ = 1 are used to discretize the velocity and pressure spaces and back-

ward Euler integration is applied in time. In this section, I consider the case

of low Reynolds number flow, and choose µ = 0.01. (A high Reynolds-number

stress test is carried out in Section 6.1.3.)

An interesting phenomenon that I have noticed in nonlinear compu-

tations is that prescribing an immersed boundary velocity that differs from

the actual movement of Γt leads to severely degraded performance and, at

high Reynolds numbers and/or over long time intervals, an apparent lack of
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convergence. For this reason, I use the boundary of the square [−π, π] for Γt.

No fluid flows across this boundary in (5.107). To avoid any special behavior

associated mesh-aligned immersed boundaries, I distort the background mesh

in a periodic manner, shown in Figure 6.1. In the notation of Section 3.1.2.2,

Figure 6.1: The non-rectilinear mesh of Ω avoids grid alignment with Γ.

this corresponds to a deformation of

φφφ(X) =

(
X1 + A sin

(
πX1

W/2

)
sin

(
πX2

W/2

)
, X2 + A sin

(
πX1

W/2

)
sin

(
πX2

W/2

))
(6.1)

applied to the parametric domain Ω̂ = (−W/2,W/2)2 ⊂ R2, with A = 1

and W = 4π. To test convergence, I divide the parametric domain Ω̂ evenly

into 2N × 2N elements, for N ∈ {4, 5, 6, 7, 8}. The time interval (0, T = 0.7)

is divided into steps of size ∆t = T/2N−3. Penalty parameters are defined

by (4.8) and (4.9), with h defined to be W/2N (regardless of mesh distortion),

C inert
NOR = C inert

NOR = 1000, and CTAN = 100. The initial condition is set by H1(Ω)

147



projection onto the divergence-free discrete subspace. As in Section 5.1.2.2, I

measure error on a subset Ωerr of the domain. For Navier–Stokes flow, it is

important to consider the advection-dominated limit, in which the H1 norm of

the exact velocity solution diverges near the boundary (due to a discontinuous

velocity field, which is 6∈ H1(Ω)), so I define the error domain to have an O(1)

separation from Γt, as shown in Figure 6.1. I choose Ωerr = [−W/8,W/8].

Due to the mesh distortion, Ωerr is not a union of elements. I integrate errors

on Ωerr inexactly, by using whatever analysis quadrature points happen to

fall in Ωerr. While this is a crude, first-order quadrature scheme, it shouldn’t

influence asymptotic convergence rates, based on the a priori analysis of and

numerical experience with the simpler linear problems, for which at most first-

order convergence is found, regardless of norm.

An annotated snapshot of a solution illustrates the problem setup in

Figure 6.2. The convergence of errors on Ωerr is shown in Figure 6.3. The

nearly first-order convergence rates obtained suggest that the analysis of linear

parabolic problems extrapolates reasonably well to Navier–Stokes flow.

6.1.2 Translating Taylor–Green vortex

The addition of a uniform velocity to an initial condition in a periodic

domain yields a Galilean transformation of the original solution. In this sec-

tion, I superpose velocity v = −0.87e1 − 0.5e2 on top of the initial condition

of the problem from Section 6.1.1 and translate the boundary Γt at the same

velocity. A snapshot of the solution at time T is shown in Figure 6.4. Fig-
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Figure 6.2: Simultaneous velocity magnitude (left) and pressure (right) snap-
shots of the Navier–Stokes Taylor–Green problem, with annotations describing
the problem setup.
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Figure 6.3: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and r =
0.1 for Navier–Stokes flow with a stationary boundary and positive viscosity.

ure 6.5 illustrates how the near-first-order convergence on Ωerr remains intact.
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Figure 6.4: Annotated snapshot of velocity magnitude at time T for Navier–
Stokes flow with moving boundaries and positive viscosity. (Note the transla-
tion of Γ relative to its initial position, shown in Figure 6.2.)
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Figure 6.5: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 and
r = 0.1 for Navier–Stokes flow with moving boundaries and positive viscosity.

6.1.3 Infinite Reynolds number

To demonstrate the robustness of the proposed methodology at realistic

Reynolds numbers, I repeat the test of Section 6.1.2 with µ = 0. The exact
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solution becomes tangentially discontinuous at Γt. This behavior is captured

reasonably well, as shown in Figure 6.6, in spite of the application of (4.8)

and (4.9), which provides no enforcement of tangential boundary conditions

when µ = 0. The nearly-linear convergence rates in local L2(Ωerr) and H1(Ωerr)

seminorms are maintained as well, as shown in Figure 6.7, despite the fact that

the global H1(Ω) norm of the discontinuous exact solution is not well-defined.

For µ = 0 and the ∆t–h relationship used here, the normal penalty (4.9)

is O(1) as h → 0. Using r > 0 therefore introduces an O(1) perturbation

into the no-penetration constraint on Γt, so I would not expect asymptotic

convergence. In this example, I therefore use r = 0. (Even for significant

values of r > 0, though, I cannot practically refine the mesh enough for the

resulting perturbation to dominate errors in this problem.)

Remark 6.1. Recall that the discrete formulation includes h-dependent ar-

tificial streamline diffusion (of the form (3.28)) to stabilize advection. In the

absence of this diffusion, the solution becomes highly oscillatory.

6.2 2D non-coapting valve

This section looks at a 2D valve-inspired benchmark problem investi-

gated previously by [61, 77, 102, 197]. Because the structure does not contact

itself and the low-Reynolds number fluid dynamics are stable, it is straight-

forward to compute converged solutions using thoroughly verified body-fitted

methods. This problem is therefore a valuable verification test for new im-

mersed approaches. I originally performed the body-fitted reference and im-
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Figure 6.6: Annotated snapshot of velocity magnitude at time T for Navier–
Stokes flow with moving boundaries and zero viscosity.
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Figure 6.7: Convergence of the L2(Ωerr) and H1(Ωerr) errors for r = 0 for
Navier–Stokes flow with moving boundaries and zero viscosity.

mersogeometric VMS computations for [105, Section 4.7], and have adapted

text from that paper in this section.
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6.2.1 Description of the problem

The problem consists of two cantilevered elastic beams immersed in a

2D channel filled with incompressible Newtonian fluid, as shown in Figure 6.14.

The fluid and structure have equal densities of ρ1 = ρ2 = 100. The viscosity

of the fluid is µ = 10. Gil et al. studied a variety of material models for the

beams while Hesch et al. used a nearly incompressible neo-Hookean material,

with Young’s modulus E = 5.6 × 107 and Poisson ratio ν = 0.4. I use the

St. Venant–Kirchhoff model described in Section 2.3.2.1 with E = 5.6×107 and

Poisson ratio ν = 0.4. The top and bottom sides of the channel have no-slip

boundary conditions, the left end has a prescribed, time-dependent velocity

profile, and the right end is a traction-free outflow. The velocity Dirichlet

condition on the left end of the channel is given by the formula

u1 (ye2, t) =

{
5(sin(2πt) + 1.1)y(1.61− y)e1 , t > 0
0 , otherwise

, (6.2)

where the origin of the spatial coordinate system is at the bottom left corner

of the domain. At times t < 0, the fluid and structure are at rest. Taking the

channel width of 1.61 as a characteristic length scale and the peak inflow speed

of 6.8 as a characteristic flow speed, the Reynolds number is approximately

110. At such low Reynolds numbers, there is little risk of backflow divergence,

so the parameter γ in (2.5) is set to zero.

6.2.2 Body-fitted reference computation

The mesh for the body-fitted reference computation is shown in Figure

6.9. The fluid domain consists of 7626 quadratic B-spline elements. Each
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Figure 6.8: Geometry and boundary conditions of the 2D heart valve bench-
mark. Not to scale. The inflow profile is given by (6.2).

beam consists of 31 quadratic B-spline elements and is coincident with a line

of C0 continuity in the fluid B-spline space, permitting strong enforcement

of fluid–structure kinematic constraints. I use generalized-α time integration

with ρ∞ = 0.5 and a time step of ∆t = 0.005 for the body-fitted computation.

The selected spatial and temporal resolutions ensure that the displacement

history of the upper beam tip changes negligibly (∼ 0.001 length units) with

further refinement in both space and time.

Figure 6.9: The reference configuration of the body-fitted mesh for the 2D
valve problem, with leaflets highlighted in magenta and areas of softened mesh
highlighted in green.

The fluid mesh deforms from one time step to the next according to the
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solution of a fictitious isotropic linear elastic problem that takes the location

of the beam as a displacement boundary condition. The velocity of this defor-

mation enters into the fluid formulation (3.2) as ûh. This velocity is derived

from displacements of the mesh in consecutive time steps. Mesh quality is

preserved throughout this deformation by stiffening the fictitious material in

response to compression: the material tensor is modified such that the mesh

Young’s modulus, Emesh, scales inversely with the square of the Jacobian de-

terminant, Jξ, of the mesh’s parametric mapping in the previous time step.

More detailed discussions of Jacobian-based mesh stiffening can be found in

[18, 23, 98, 165, 166, 176]. In the present problem, I also find it necessary to

soften the fictitious material governing the deformation of elements between

the leaflets. This is accomplished by making its Young’s modulus (prior to

Jacobian-based stiffening) 1000 times smaller than that of the material adja-

cent to the leaflets. The regions of softened mesh are highlighted in green in

Figure 6.9. A snapshot of the resulting deformed mesh at time t = 0.5 is in

Figure 6.10. The non-smooth deformation visibly demonstrates the effect of

the jump in fictitious material parameter.

The parabolic inflow profile given by (6.2) is represented exactly, using

the trace space of the B-spline basis functions. Under the assumption that

the geometrical mapping from the B-spline parameter ξ2 to the physical y-

coordinate is time-independent, linear, and invertible at the inflow face of

the domain, the velocity profile may be applied by first pre-computing x-

direction velocity coefficients for the left-most row of control points such that
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Figure 6.10: The deformation of the body-fitted fluid mesh at t = 0.5.

the resulting B-spline curve interpolates the function y(1.61−y) at its Greville

abscissae. These coefficients may be scaled by 5(sin(2πt) + 1.1) during the

computation, to obtain the desired velocity profile at time t.

6.2.3 Immersogeometric computations

I test three immersogeometric discretizations of the problem. The first,

which I refer to here as M1, evenly divides the fluid domain into 128 × 32

quadratic B-spline elements and each beam into 64 quadratic B-spline ele-

ments. The other two discretizations are uniform refinements of M1: M2

contains 256 × 64 fluid elements and 128 shell elements in each beam, while

M3 contains 512×128 fluid elements and 256 shell elements in each beam. As
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in the reference computation, the inflow velocity profile is captured exactly on

these meshes. I refine in time alongside spatial refinement, using ∆t = 0.01

with M1, ∆t = 0.005 with M2, and ∆t = 0.0025 with M3.

The time integration of the fluid–structure coupling is done using un-

stabilized semi-implicit algorithm (i.e. r = 0, in the notation of Chapter 4)

with the generalized-α parameters determined by ρ∞ = 0.5. Following (4.8)

and the low-Reynolds number branch of (4.9), I scale the penalty parameters

τB(·) inversely with mesh size, choosing τB(·) = 104 on M1, τB(·) = 2× 104 on M2,

and τB(·) = 4 × 104 on M3. The VMS stabilization parameters are scaled near

the structure using sshell = 106.

6.2.4 Comparison of results

Figure 6.11 shows the x- and y-direction displacements of the upper

beam tip for the body-fitted and immersed computations. The displacement

histories extracted from immersogeometric discretizations M1, M2, and M3

converge toward the body-fitted result. Comparisons of the pressure contours

at time t = 0.5 are given in Figure 6.12, showing agreement between the

immersogeometric and body-fitted flow fields in regions outside of an O(h)

neighborhood of the immersed beams. Velocity streamlines at t = 0.5 for the

background mesh M1 are shown in Figure 6.13, demonstrating that the ve-

locity field remains smooth on this coarse mesh, in spite of the pressure error

evident from Figure 6.12. This is in contrast to the findings of Baaijens [8],

who observed excessive pollution effects in the velocity field when discretiz-
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ing the pressure about an immersed beam with a continuous approximation

space. Compare the velocity streamlines of Figure 6.13 with [8, Figure 2].

Baaijens concluded that the use of a discontinuous pressure space “appears

to be mandatory” [8, p. 749], but, in the present computations, the use of

sshell > 1 diminishes the pollution effects of the localized pressure interpola-

tion error, as demonstrated also in Section 6.4.2, allowing acceptable results

with continuous and equal-order pressure/velocity pairs.

Figure 6.11: The x- and y-displacements of the upper leaflet tip, computed on
the immersed and body-fitted meshes.

In regions where the beams are skew to the grid of knot lines in the B-

spline background mesh, the pressure contours of Figure 6.12 reveal oscillations

at a spatial frequency corresponding to the spacing of knots (i.e. the grid size,

h). This is due to the fact that the modified VMS stabilization scaling factor

s defined by (3.10) takes on the constant value of sshell on entire elements.

The transition from s = 1 to s = sshell therefore occurs over a staircase-shaped
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Body-fitted reference

Figure 6.12: Pressure contours at t = 0.5, from immersed boundary computa-
tions on M1, M2, and M3, along with the body-fitted reference. Large point-
wise pressure errors are confined to an O(h) neighborhood of the immersed
structure, becoming increasingly localized with spatial refinement.
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(a) Immersed M1 (b) Immersed M2

(c) Immersed M3 (d) Body-fitted reference

Figure 6.13: Velocity streamlines superimposed on a velocity magnitude con-
tour plot, at t = 0.5, from immersogeometric computations on M1, M2, and
M3, and the body-fitted reference.
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region when the immersed surface is skew to the mesh lines. An alternative

definition of s based on distance from the shell structure (but also accounting

somehow for background mesh size) might lead to a more aesthetically-pleasing

pressure field in such cases, but I have no reason to believe that this would make

the solution more accurate. It is important to remember that the “pressure”

plotted in Figure 6.12 corresponds to the coarse scale solution variable ph

in the semidiscrete VMS formulation. It omits the fine scale contribution

p′ = τC∇·u1, which dominates near the beams for sshell = 106. The coarse scale

pressure solution ph cannot be interpreted physically as mechanical pressure

(i.e. −1
3
tr σσσ1) in the band of elements immediately adjacent to the immersed

shell structure.

6.3 2D coapting valve

This section examines an extension of the problem studied in the previ-

ous section, wherein the valve leaflets are long enough to contact one another. I

introduced this problem in [104] to empirically study the consistency–stability

trade-off associated with the multiplier stabilization factor r, in a setting that

is representative of practical usage. The remainder of this section is adapted

from [104]. Throughout this section, the fluid subproblems are discretized

using the VMS formulation of Section 3.1.1.
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Figure 6.14: The geometry of the 2D valve problem. (Not to scale.)

6.3.1 Problem description

The 2D valve model that I study consists of two cantilevered quarter-

circular beams attached to the walls of a 2 cm wide and 8 cm long channel

filled with incompressible fluid. Figure 6.14 provides the complete geometry

of the problem. The beams are governed by the Kirchhoff–Love shell theory

for isotropic St. Venant–Kirchhoff materials described in Section 2.3, which

reduces to a beam theory when deformations are constrained to two space

dimensions. The fluid has density ρ1 = 1 g/mL and viscosity µ =3 cP. These

properties mimic those of human blood [107, 139]. I choose the thickness of

the beams to be similar to that of an aortic valve leaflet, hth = 0.04 cm

[122], and use a Poisson ratio of ν = 0.4 to approximate incompressibility.

Values of the Young’s modulus vary between computations and are specified

in later sections. The top and bottom of the fluid domain have no-slip and no-

penetration boundary conditions. The left side of the fluid domain is nominally

the inflow and the right side is nominally the outflow. These distinctions are
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based on the flow direction in which the valve is biased, but, when the nominal

inflow and outflow faces are subjected to Neumann boundary conditions, it

is possible that fluid may flow into or out of either of these sections of the

boundary. There is little risk of backflow divergence at the low flow speeds

considered, though, and the traction boundary stabilization factor γ is set to

zero.

6.3.2 Steady flow

I first consider the case of a prescribed parabolic flow profile at the

inflow boundary. This profile is given by

u1|inflow =
(

15 ramp(t)
( y

1 cm

)(
2−

( y

1 cm

))
cm/s

)
e1 , (6.3)

where

ramp(t) =


0 t < 0
t/(1 s) , 0 ≤ t < 0.1 s
0.1 , otherwise

. (6.4)

This profile is represented exactly using the quadratic B-spline shape functions

using the procedure outline in Section 6.2.2. Taking the characteristic length

scale to be the width of the channel and the characteristic velocity to be the

peak of the inflow profile at y = 1 cm and t > 0.1 s, the Reynolds number

for this flow is 100. I deliberately select it to be much slower than ejection

through a heart valve, to ensure that the fluid–structure system approaches a

steady solution as t→∞, rather than developing a time-periodic or turbulent

solution. I assign the beams composing the valve a Young’s modulus of E =

105 dyn/cm2. This value is selected to ensure significant structural deformation
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in this flow regime.

To study the effect of the stabilization parameter, r, and the mesh size,

h, on this problem, I introduce a hierarchy of three fluid meshes, M1, M2,

and M3, consisting of 32×128 (h = 0.0625 cm), 64×256 (h = 0.03125 cm),

and 128×512 (h = 0.015625 cm) quadratic B-spline elements, respectively. I

employ a single discretization of the beams, which divides each of the quarter-

circular arcs into 64 quadratic NURBS elements. The NURBS elements are

capable of exactly representing the circular geometry at any resolution [134].

As suggested by (4.8) and the low-Reynolds-number branch of (4.9), I assign

the penalties τBNOR and τBTAN according to the formula

τBNOR = τBTAN = Cµ/h , (6.5)

with C = 102. To ensure that the time step has a fixed, moderate propor-

tionality to the element advective time scale (see [16, page 181]), I assign time

step sizes using the formula

∆t =
h

6.25 cm/s
. (6.6)

I compute solutions for M1–M3 using the semi-implicit time integration scheme

described in Section 4.2, with r = 1, r = 0.1, and r = 0. The generalized-α

parameters in the time integration algorithm are determined by ρ∞ = 0.5.

The L2(Γt)-norm of λ is shown as a function of time for each case in

Figures 6.15–6.17. One can see that both refinement and increased r reduce the

norm at which λ reaches a steady value. While it might seem that multiplier
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fields differing greatly in L2 norm would produce wildly different fluid velocity

fields and/or structure deformation solutions, this is not the case. Figure 6.18

compares the structure deformation and velocity fields for r = 1, r = 0.1, and

r = 0 at time t = 10 s on M1–M3. The corresponding Lagrange multiplier

force fields on the structure are plotted in Figure 6.19. The difference in L2

norm between the multiplier fields is mainly due to oscillatory modes that

have very little influence on the steady-state fluid and structure solutions.

As indicated by the analysis of model problems in Chapter 5, though, these

modes carry potential energy, and should not be allowed to grow ad infinitum,

as they appear to in the case of r = 0. While the accumulation of excess

stored energy in the multiplier field has clear disadvantages, selecting r large

enough to completely eliminate oscillations may result in unacceptable leakage

through structures, as demonstrated in the following section. For a fixed value

of r, both leakage and oscillation may be reduced through refinement, but, in

practice, I recommend tuning r to obtain the best quality solution within the

constraints of available time and computational resources.

The fact that ‖λ‖L2 during the transient stage of the computations

with r = 0 increases with refinement does not indicate that refinement harms

the stability of the semi-implicit scheme. In fact, as approximations converge

toward the exact solution, one cannot expect the L2(Γt) norm of the pres-

sure jump to converge; for viscous incompressible flow around the edge of a

thin plate, the pressure distribution on the plate is not necessarily square-

integrable; we expect it, in general, to be in H−1/2(Γt), which is larger than
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L2(Γt). A famous example of a thin plate pressure distribution less regular

than L2 is Hasimoto’s solution of Stokes flow through an aperture [75, (4.8)].

The energy analysis of the regularized problems in Chapter 5 suggests that the

L2 norm of λ is a natural choice for investigating semi-discrete stability, but it

should not be used in assessing convergence with spatial refinement, since the

relevant energy norm (5.10) does not control λ uniformly under refinement.

One can see from Figure 6.17 the rate of growth of oscillations in the steady

state decreases with refinement, indicating greater stability on finer meshes.
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Figure 6.15: The L2 norms of the Lagrange multiplier field as functions of time
for steady flow through the 2D valve, with r = 1.
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Figure 6.16: The L2 norms of the Lagrange multiplier field as functions of
time for steady flow through the 2D valve, with r = 0.1. Note the difference
in scale from Figure 6.15.
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Figure 6.17: The L2 norms of the Lagrange multiplier field as functions of time
for steady flow through the 2D valve, with r = 0, i.e. no stabilization. Note
that they do not reach steady values in this case.
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r = 1 r = 0.1 r = 0

M1

M2

M3

Figure 6.18: Comparisons of structure deformation and fluid velocity mag-
nitude fields at time t = 10 s, computed on M3, with different stabilization
parameters. Color scale: 0 (blue) to 3.4 cm/s (red).
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Figure 6.19: The forces on the structure due to the Lagrange multiplier field
in the solutions from Figure 6.18.
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6.3.3 Convergence to a hydrostatic solution during closure

I now consider the case of the 2D valve’s closure when subjected to

Neumann boundary conditions. Because a 2D model cannot accurately repre-

sent the mechanics of a 3D shell structure, I must make the beams significantly

stiffer than the soft tissues appearing in native or bioprosthetic heart valves,

to prevent the 2D valve from prolapsing when subjected to realistic pressure

differences. I therefore use a Young’s modulus of E = 7 × 109 dyn/cm2 in

this example. Contact between the leaflets is an essential aspect of valve clo-

sure. For the computations in this section, I use parameters k = 108 dyn/cm3,

c = 0.1 cm, and hc = 0.01 cm in the penalty method described in Section

3.2.3. At the inflow, I apply a zero-traction boundary condition and, at the

outflow, I apply the time-dependent traction −Pout(t)e1, with

Pout(t) =


0 , t ≤ 0
1000

(
t

1 s

)
, 0 < t < 0.1 s

100 , otherwise

 mmHg. (6.7)

This approximates the pressure difference across a closed heart valve in the

physiological setting [201]. Recall from the blocked plug flow model of Section

4.4.4 that, as the system approaches a steady solution, some leakage is expected

for r > 0 that, as r → 0, will be proportional to r and inversely proportional

to τBNOR. This is complicated somewhat in practice when using an equal-order

VMS discretization of the fluid subproblem, because constraint violation is

not the only source of apparent leakage in non-div-conforming discretizations:

as I demonstrate in Section 6.4, approximation error in the pressure can lead

to violation of the continuity equation, which leads, in turn, to “leakage”
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through the valve, even when the fluid and structure velocities match. For

the computations in this section, I set sshell = 108 to diminish this source of

leakage such that it is small enough to clearly distinguish the effect of r.

I employ the fluid mesh M1 and structure meshes defined in the pre-

vious section. I reduce the time step by a factor of 10 to improve nonlinear

convergence and increase penalties by a factor of 1000 to more strongly enforce

the no-penetration condition. For the computations of this section,

∆t =
h

62.5 cm/s
and τBNOR = τBTAN = Cµ/h , (6.8)

with C = 105. I compute solutions with r =∞ (velocity penalization), r = 1,

r = 0.1, and r = 0. Figure 6.20 shows the volumetric flow through the outflow

face as a function of time for each value of r. Approximate asymptotic values of

the steady-state flow rate are given in Table 6.1, along with the crude estimates

based on Eq. (4.40) from the plug flow model of Section 4.4.4. The plug flow

model consistently underestimates leakage, due to the imperfect local mass

conservation mentioned above. The L2 norms of λ for each finite value of r

are given as functions of time in Figure 6.21. For r = 0, the asymptotic value1

of ‖λ‖L2 approximately matches the rough estimate of
√
A(∆P )2 for A equal

to the surface area of the beams (with unit depth) and ∆P = 100 mmHg.

Figure 6.22 compares the solutions at time t = 0.35 s for r = 1 and r = 0. The

structure deformations and fluid pressure fields are nearly indistinguishable,

1If the simulation is continued for a much longer period, it becomes clear that ‖λ‖2L2

grows, but at a much slower rate (relative to |λ|) than in the case of the open valve; on the
time scale of ∼ 0.5 s, it effectively flatlines.
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but the solution with r = 1 has a more stable multiplier field at the expense

of spurious flow in what should be a hydrostatic solution.

Remark 6.2. The skeptical reader may suspect that the oscillation in volu-

metric flow rate is a spurious phenomenon, due to the damped spring inter-

pretation of the multiplier forcing. Such issues are dwelt on at length in the

existing literature on feedback force boundary conditions (as reviewed in Sec-

tion 4.4.3). However, the characteristic frequency of the fluid mass attached

to the multiplier “spring” is much higher and the oscillation’s presence in the

penalty solution with r = ∞ rules out this hypothesis altogether. The oscil-

lation is the reverberation of the water hammer on the closed elastic valve.

I observed a similar effect in our simulations of a 3D valve and provided an

electronic–hydraulic analogy [196] to the familiar transient response of a series

RLC circuit [105, Figure 29].

Remark 6.3. Notice in Figure 6.22 that, for r = 1, large vortices form on

the concave sides of the leaflets. These are features of the steady solution

(which should be hydrostatic). A closer examination of the flow field shows

that the upper vortex is counterclockwise and the lower is clockwise. These

vortices are fed by flow between themselves and the walls, which is permitted

by leakage through the portions of the leaflets closer to the walls. The velocity

magnitude in the vortices is significantly larger than that of the flow through

the leaflets, which underscores the importance of preventing unphysical leakage

to obtaining reasonable solutions.
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r computed leakage (mL/s) plug flow estimate (mL/s)
∞ -7.1 -5.6
1 -3.7 -2.8

0.1 -0.9 -0.5
0 -0.3 0

Table 6.1: Steady volumetric flux (assuming 1 cm depth) through the closed
2D valve for different values of r, alongside the values estimated from the plug
flow model of Section 4.4.4, which neglects leakage due to spurious volume
loss.

Velocity magnitude Pressure Multiplier

r = 1

r = 0

Figure 6.22: Velocity, pressure, and multiplier solutions at t = 0.35 s for the
closed valve with r = 1 and r = 0. See Remark 6.3 for discussion on the
velocity fields. Velocity color scale: 0 (blue) to 24 cm/s (red). Pressure color
scale: -20000 dyn/cm2 (blue) to 150000 dyn/cm2 (red).
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6.4 Blocked tube

This section tests the extrapolation of the analysis of Section 5.4 to the

nonlinear VMS formulation of unsteady Navier–Stokes. I originally ran this

experiment for [105], and have adapted [105, Section 4.4] in what follows.

6.4.1 A demonstration of the effect of pressure approximation error

Consider a simplified model of a closed valve, with fluid properties and

boundary conditions similar to those found in cardiovascular applications. The

fluid domain Ω1 is an axis-aligned 2 cm × 2 cm × 2 cm cube, filled with

an incompressible Newtonian fluid of density ρ1 = 1.0 g/cm3 and viscosity

µ = 3.0 × 10−2 g/(cm s). The vertical faces have a no-slip boundary con-

dition, the bottom has a zero-traction outflow boundary condition, and the

top has a pressure traction of 120 mmHg. The length scale, fluid properties,

and pressure difference produce conditions comparable to those surrounding a

closed aortic valve in diastole. The traction boundary stabilization constant

is γ = 0.5. Now consider immersing a rigid, impermeable horizontal plate

into this cube, blocking its entire cross section at a distance of 1.1 cm from

the bottom. The exact solution for this problem should be hydrostatic, with a

discontinuous pressure at the location of the plate. However, in an immersoge-

ometric discretization, the continuity of the pressure approximation functions

through the plate means that the discontinuity of the exact solution cannot

be reproduced in a computation.

Remark 6.4. The plate’s height of 1.1 cm is deliberately selected so that the
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plate will never coincide with an element boundary for any uniform division of

the cube into 2n elements in the z-direction. This may be seen by considering

the fact that 0.110 is a repeating fraction in binary. Even if a discontinuous

pressure basis is used, the discontinuities will not be located on the structure.

Figure 6.23: The computational mesh used for the closed-valve model problem.

I now compute a solution to this problem, starting from homogeneous

initial conditions for the velocity and using Lagrange multipliers to enforce the

no-penetration condition on the shell. The mesh is a trivariate C1-continuous

quadratic B-spline patch, uniformly refined into 8 × 8 × 32 elements. The

quadrature rule for surface integrals over the immersed plate is a sum of Gaus-

sian quadrature rules on 40×40 quadrilaterals, evenly dividing a 3 cm × 3 cm

square surface, cutting through the channel as shown in Figure 6.23. Surface

quadrature points falling outside of the channel do not contribute to integrals.
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Figure 6.24: The z-component of velocity, in cm/s, for a highly unphysi-
cal steady-state flow solution through a blocked channel, as computed with
∆t = 10−4 s and no modifications to fluid stabilization terms. The fluid spuri-
ously compresses to meet the velocity constraint imposed by the barrier while
maintaining a large downward flow through the channel.

Computing with the time step ∆t = 10−4 s and converging the fluid–

structure kinematic constraint implicitly using the augmented Lagrangian

predictor–multi-corrector iteration suggested in Section 4.2 (which converges

for r = 0 in this example), I obtain a highly unphysical behavior. Figure 6.24

shows the vertical velocity component on a slice of the resulting solution, after

the volumetric flow rate through the top of the cube reached a steady value

(t > 0.01 s). While the Lagrange multipliers enforce the constraint very effec-

tively, there is still a significant flow through the top face of the cube. The

steady-state volumetric flow rate is 355.2 mL/s, which is unacceptable for sim-

ulation of a valve structure that exists primarily to block flow. This would

be a typical flow rate through an open aortic valve, during systole [186]. The
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flow rate varies between cross-sections of the channel, which obviously violates

the incompressibility condition. The compression caused by local pressure

approximation error pollutes the entire velocity solution.

6.4.2 Effect of sshell

The pressure gradient is approximated especially poorly in a neighbor-

hood of the immersed surface. It appears in the fine scale velocity of the VMS

formulation, where it is scaled by τM. Locally reducing the value of τM dimin-

ishes the influence of this poorly-approximated quantity. Due to the inverse

relationship between τM and τC, this will also increase the penalization of vol-

ume loss in a neighborhood of the immersed surface. Recalling the definition

of the field s(x) in Section 3.1.1, it is clear that choosing sshell > 1 will have

the desired effect of locally reducing τM. The effect of such a local scaling of

stabilization parameters on an analogous linear model problem is analyzed in

Section 5.4.

I now investigate the effect of sshell empirically. Table 6.2 compares

sshell = 1, sshell = 104, and sshell = 108, showing that volumetric flow scales

roughly like
(
sshell

)−1/2
, tending to zero as sshell increases. An undesirable

sshell Volumetric flow rate
1 355.2 mL/s

104 4.037 mL/s
108 4.048×10−2 mL/s

Table 6.2: The effect of sshell on apparent leakage due to volume loss.

consequence of increasing sshell is that the weakened stabilization near the im-
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mersed surface harms the conditioning of the discrete problem. Due to the

simplistic nature of the blocked tube model problem, conditioning is not a sig-

nificant issue, but applying the modified stabilization terms to more complex

calculations, such as BHV simulations, increases the cost of sufficient itera-

tive solution of the linear problems to be solved in the nonlinear iteration of

each time step. The development of a suitable preconditioner may avert this

difficultly, but is beyond the scope of the current dissertation.

Remark 6.5. The observed scaling of leakage with respect to sshell differs

from the rough estimate one would get from the analysis of Section 5.4 (by

assuming velocity is constant over cross-sections and applying a trace inequal-

ity). It appears, from the numerical experiment of the present section, that

sshell reduces leakage more quickly than anticipated. However, the empirically-

observed scaling can be derived analytically in a simpler 1D model problem.

The 1D analysis relies on bounding the velocity’s gradient in terms of its

divergence, though, which does not generalize to multiple space dimensions.

However, it seems that when most of the pressure variation occurs along one

space dimension, the 1D model problem provides a reasonable estimate.

6.5 Benchmark testing with div-conforming B-splines

To verify that the nonlinear fluid–thin structure interaction methodol-

ogy proposed in this dissertation can practically compute accurate solutions

with div-conforming B-spline discretizations of the fluid subproblem, I again

use the 2D benchmark problem defined and studied using equal-order VMS

179



discretizations of the fluid in Section 6.2. As in Section 6.2, I look at the

displacement history of a material point on the structure and compare im-

mersogeometric and boundary-fitted results. The boundary fitted reference

computation is the same one described in Section 6.2.2. The content of this

section is adapted from [106].

6.5.1 Div-conforming immersogeometric discretizations

To demonstrate the convergence of div-conforming immersogeometric

discretizations toward the boundary-fitted reference solution, I present results

from a sequence of three immersogeometric discretizations. Although the prob-

lem domain is rectangular and I could simply employ the B-spline parameter

space as physical space, I demonstrate convergence with distorted fluid meshes

by deforming the interior of the parametric domain while mapping it to the

physical domain. For all of the div-conforming immersogeometric discretiza-

tions, the fluid domain is discretized using a B-spline patch with the knot

space Ω̂1 = [0, 1] × [0, 1]. A point X in this knot space is (in the notation of

Section 3.1.2.2) mapped to the physical domain Ω1 with the mapping

φ1 = LX1 , (6.9)

φ2 = W
(
X2 +

s

4
(1− cos (2πNX1))

(
X2

2 −X2

))
, (6.10)

where L = 8, W = 1.61, N = 5, and s = 1.5. For the coarsest mesh,

M1, the B-spline knot space is subdivided into 32 × 128 Bézier elements and

div-conforming B-spline velocity and pressure spaces of degree k′ = 1 are

defined on this mesh. The meshes, M2 and M3, use 64 × 256 and 128 × 512
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elements respectively. The knot lines for M1 are drawn on the depiction of

Ω1 in Figure 6.25 to indicate the mesh distortion. Because resolution in the

structure problem is far from being a limiting factor in accuracy, I use the

same structure mesh in both problems, dividing each beam into 128 quadratic

B-spline elements.

Figure 6.25: The physical image of the B-spline parameter space, showing the
mesh of unique knots (thin lines) for M1 in relation to the beams (thick lines).

Normal-direction Dirichlet boundary conditions are enforced strongly,

while tangential boundary conditions are enforced using the penalty method.

The x2 component of velocity at the inflow can easily be set to a nodal in-

terpolant of the x2 component of (6.2) when k′ = 1, because the mapping φφφ

and the corresponding velocity push-forward involve only scaling by a constant

factor at the inflow face of the domain. For computations on mesh M(N + 1),

the penalty parameters are τBNOR = τBTAN = Cno slip = 1000×2N . The temporal

discretization uses the backward Euler method with ∆t = 1.0×10−2×2−N . Six

block iterations are used to couple the fluid and structure implicitly, reusing

the fluid tangent from the first iteration. For this simple 2D problem, I solve

for fluid increments in the block iteration using a direct solver, namely the

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [1], accessed
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via PETSc.

6.5.2 Comparison of results

Figures 6.26 and 6.27 compare the x- and y-direction displacement

histories of the tip of the upper beam in the three immersogeometric compu-

tations and the body-fitted reference described in Section 6.2.2. Refinement

of the immersogeometric discretizations clearly brings this quantity of interest

closer to the boundary-fitted reference curve. As in Section 6.2.4, the pressure

space still struggles to approximate the discontinuous exact solution, with the

discrete solution exhibiting over- and under-shoot phenomena to either side

of the immersed structure, as shown on M2 in Figure 6.28. However, in the

context of immersed fluid–thin structure interaction, using div-conforming B-

splines and the fluid–structure coupling method described above, the quality

of the pressure solution is not especially important. The pressure is not in-

volved in the computation of fluid–structure coupling forces and discrete fluid

velocities computed using div-conforming methods are immune to pressure in-

terpolation errors [54, (6.32)]. This is perhaps a counter-intuitive statement,

because it stands in stark contrast to experience with most other numerical

methods for incompressible flow, in which pressure interpolation error enters

into a priori bounds on the velocity error. (Recall Section 5.4, in which I

go into more detail on exactly how this effect emerges in the stabilized finite

element methods.) The robustness of div-conforming B-spline discretizations

to pressure jumps is illustrated in practical setting in Section 7.2. As expected
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Figure 6.26: The x-direction displacement of the tip of the upper beam.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.5  1  1.5  2  2.5  3

y-
di
sp
la
ce
m
en
t

Time

Reference
M1
M2
M3

Figure 6.27: The y-direction displacement of the tip of the upper beam.

from the theory, poor pressure approximation does not appear to have any ill

effect on the velocity field, which remains smooth in Figure 6.28. It is also
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noteworthy that there is no visible asymmetry induced in the velocity solution

by the asymmetric mesh distortion. One might expect “problems” on account

of the lack of momentum conservation of the div-conforming discretization

on mapped domains. This can be seen easily by observing that w1 ≡ ei is

not in the pushed-forward velocity test space. (Recall that the push-forward

applied to velocity test and trial space basis functions rotates them, so they

point along the mesh lines rather than the x1 and x2 axes.) However, I have

not noticed any artifacts attributable to spurious momentum generation on

deformed meshes.

Velocity 
magnitudePressure

Figure 6.28: The pressure field (left) and the the velocity magnitude (right)
at time t = 0.5 on M2.

6.5.3 Block iterative convergence

I also use this problem to observe the behavior of block iteration “in

the wild”, on a nonlinear FSI problem. I restart the computation on M1 from

the 50th time step and look at the `2 norm of the fluid subproblem residual
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vector (Rf, in the notation of Section 4.3) as a function of the number of block

iterations. To illustrate the effects of the fluid–structure coupling penalties

τBNOR and τBTAN and the time step, I restart with smaller and larger values

of these parameters. The results are shown in Figure 6.29. The case with

10× larger time step requires the tangent matrix Af to be recomputed every

iteration. For the other cases, Af is assembled on the first iteration only, then

reused in subsequent iterations. Comparing Figure 6.29 with the analysis of

Section 5.3 and Figures 5.8 and 5.9, it is clear that the overall conclusions from

the linear model for block iteration carry over to the nonlinear case: increasing

the penalty parameters and/or time step causes convergence to slow down

while decreasing the penalty parameters and/or time step causes convergence

to speed up.
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Figure 6.29: Convergence of block iteration in the 51st time step, subject to
different perturbations of the parameters used in the computation on M1 (the
“control” case).
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Chapter 7

Application to BHV FSI analysis

A combination of the technologies described in the previous chap-

ters can produce qualitatively-reasonable simulations of BHV FSI, without

any of the usual modifications of the problem statement to make it more

tractable, such as rendering the fluid compressible [35, 36, 169, 199], reducing

the Reynolds number [42–44, 131, 189–191], introducing inaccurate symmetry

assumptions [42–44, 189–191], prescribing the leaflet motion [173], not model-

ing the structure as a continuum [29, 70], or not applying physiological pressure

levels to the closed valve [29, 62, 64]. I discuss some valve simulations using

the analysis methods from this dissertation in Sections 7.1 and 7.2. Section

7.3 then describes an initial effort toward validating the mathematical model

for BHV FSI put forward in Chapter 2.

Some of this chapter’s content is derived from the following paper:
D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes. Immer-

sogeometric cardiovascular fluid–structure interaction analysis using divergence-conforming
B-splines. Computer Methods in Applied Mechanics and Engineering, In review (preprint:
ICES Report 16-14). D. Kamensky implemented the numerical methods, formulated and
analyzed model problems, and participated in the experimental work. M.-C. Hsu provided
supervision and edited the manuscript extensively. Y. Yu, J. A. Evans, and T. J. R. Hughes
supervised the mathematical analysis. M. S. Sacks helped plan and supervise the laboratory
experiments.

The experiment described in Section 7.3.1 of this chapter was conducted with the as-
sistance of current and former lab members John G. Lesicko, Jordan L. Graves, Hugo
Landaverde, Javier Solis, Mitchell A. Katona, Samuel Petter, and Bruno Rego.
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7.1 Overview of BHV simulations

I will first review several published valve simulations that use the semi-

implicit augmented Lagrangian technique developed in this dissertation. All of

the computations reviewed in this section use the modified VMS discretization

of the fluid subproblem described in Section 3.1.1. Some of them incorporate

phenomena that are beyond the scope of the mathematical problem stated

in Chapter 2, such as deforming arteries modeled by elastic solids, alterna-

tive shell structure formulations, and constitutive models not covered in this

dissertation. Further, these simulations include contributions from many col-

laborators, as reflected by the author lists of the corresponding publications.

However, these BHV simulations illustrate the versatility and practical effec-

tiveness of the numerical techniques developed in this dissertation, so I will

summarize the results while providing citations to relevant references for ad-

ditional information.

I introduced the initial variant of the semi-implicit augmented La-

grangian technique (in which the stabilization parameter r is zero; cf. Section

4.1) in [105], along with the adjustments to the VMS formulation and the con-

tact penalty needed to effectively simulate a BHV. A rather crude model of a

BHV immersed in a rigid artery was used to illustrate the effectiveness of the

technique, although the application of an unrealistic pinned boundary condi-

tion on the attached edges of the valve leaflets led to qualitatively incorrect

deformations of the leaflets. Further, the rigid artery and resistance outflow

boundary condition provided no hydraulic compliance, causing the abnormal
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flow rate history shown in [105, Figure 28] to emerge in response to a cyclic

ventricular pumping pressure. Some snapshots of the valve deformations and

velocity magnitude fields from this computation are rendered in Figure 7.1.

Figure 7.1: Snapshots of the valve FSI computation from [105], showing valve
deformations and volume renderings of fluid velocity magnitude.

The BHV model of [105] was augmented with some hydraulic compli-

ance in a follow-up publication [84], by modeling the artery wall as an elastic

solid. Unlike the immersed valve leaflets, the fluid–artery interface was dis-

cretized in a boundary-fitted manner, and the mesh of the arterial lumen was

allowed to deform. This deformation of the fluid mesh enters into the fluid

subproblem of Chapter 2 as û 6= 0. (The solid elastic artery is outside the

scope of the problem stated in Chapter 2.) The model with an elastic artery

led to more realistic flow rates than the model with a rigid artery. The results

of [84] highlight the fact that the discrete formulation detailed in Chapters

3 and 4 does not rely on a Cartesian, structured, or even stationary grid

covering the fluid domain, in contrast to many immersed boundary methods
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in the literature. Reference [84] also illustrates how immersed-boundary and

boundary-fitted approaches can be combined, to take advantage of the effi-

ciency of fitted discretizations for boundaries that deform only mildly.

Reference [85] realized the potential of immersogeometric FSI analy-

sis to streamline the design-through-analysis process for biomedical FSI sys-

tems. The parametric design-through-analysis framework [86] developed by

the group of M.-C. Hsu at Iowa State University was used to generate an

analysis-suitable T-spline [17] model of a BHV. The techniques developed in

this dissertation then allowed for the BHV design geometry to be directly

immersed into an unfitted discretization of an artery and lumen. The BHV

model incorporated a realistic stent geometry, clamped boundary conditions

representative of typical industrial BHVs (cf. patent illustrations in [95]),

and a soft tissue constitutive model, which enhanced realism relative to the

models of [105] and [84]. A snapshot of the resulting BHV FSI simulation is

shown in Figure 7.2. The results of [85] emphasize how the computational

FSI techniques that I have developed in this dissertation facilitate straight-

forward connection of design and analysis without tedious and labor-intensive

conversion of design geometries into computational models.

7.2 Div-conforming BHV simulation

The remainder of this chapter focuses on BHV simulations using div-

conforming B-splines to discretize the fluid subproblem. This technology has,

so far, been less thoroughly studied and documented by my collaborators and I.
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Figure 7.2: Snapshot of the valve FSI computation from [85], showing valve
deformation and volume rendering of fluid velocity magnitude. Clamped leaflet
boundary conditions, an elastic artery, and unstructured T-spline geometry
modeling of the valve enhance realism relative to results from [105], shown in
Figure 7.1.

A capability that is not verified by the div-conforming FSI benchmark testing

in Section 6.5 is the effective simulation of closing heart valves. Recall that my

motivation for using div-conforming B-splines for the fluid discretization is to

avoid the ad hoc scaling of stabilization parameters that is needed to improve

mass conservation in VMS discretizations. In principle, div-conforming B-

splines should prevent mass loss altogether, but, in practice, for 3D problems,

one generally does not solve the discrete algebraic problem exactly, as would

be required for (3.11)–(3.14) to remain valid. This section demonstrates the

feasibility of using div-conforming B-splines as a fluid discretization for BHV

FSI with inexact iterative solution of the discrete problem. The content of

this section is adapted from [106].
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7.2.1 Test problem definition

The test problem that I use to illustrate the div-conforming discretiza-

tion’s potential for practical valve simulation is as follows. A variant of the

BHV geometry constructed in [105, Section 5.1] is immersed in a cylindrical

fluid domain of radius 1.25 cm and height 3 cm. Rigid extensions are added

to the leaflets, as in [105], to block flow passing around the attached bound-

aries of the leaflets. The fluid subproblem posed on the cylindrical domain

has traction boundary conditions on the ends and no-slip and no-penetration

boundary conditions on the sides. The bottom face of the cylinder is subject

to a time-dependent traction h1 = P (t)e3, where P (t) is given by

P (t) =


P1 t < T1

at+ b T1 ≤ t ≤ T2

P2 t > T2

. (7.1)

P1 = 2 × 104 dyn/cm2 is the opening pressure applied before T1 = 0.05 s,

P2 = −105 dyn/cm2 is the closing pressure applied after T2 = 0.1 s, and

a = (P2−P1)/(T2−T1) and b = P1−aT1 are selected to continuously interpolate

between the two states. The top face is subject to the traction boundary

condition h1 = 0. The traction boundary stabilization scaling factor is set to

γ = 1 on both sides. The properties of the fluid are ρ1 = 1 g/cm3 and µ = 4

cP. The valve is modeled as an incompressible neo-Hookean material with

shear modulus µs = 600 kPa and density ρ2 = 1 g/cm3. The shell thickness is

hth = 0.04 cm. The attached edges of the valve leaflets are subject to a clamped

boundary condition. The fluid and structure are initially at rest at time t = 0.

This problem is not intended to be a physiologically realistic FSI model of
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a BHV in an artery. It is constructed to exhibit the same challenging flow

conditions, for the purpose of demonstrating that div-conforming B-splines

can easily circumvent difficulties encountered by methods that produce only

weakly divergence-free velocity solutions.

7.2.2 Discretization

The cylindrical fluid domain is discretized using a B-spline knot space

Ω̂1 = [−1, 1]× [−1, 1]× [−1, 2]. A point X in this knot space is (in the notation

of Section 3.1.2.2) mapped to the physical domain Ω1 with the mapping

φ1 = RX1

√
1− 1

2
X2

2 (7.2)

φ2 = RX2

√
1− 1

2
X2

1 (7.3)

φ3 = LX3 (7.4)

with R = 1.25 cm and L = 1 cm. This mapping, illustrated in Figure 7.3,

becomes singular at the corners of the parametric domain. A robust inverse

of φφφ(X) (as required for the immersed surface integration described in Sec-

tion 3.3) is implemented by using Newton iteration with an exception to short-

circuit the iteration and map φφφ−1(x) to a sentinel value outside of the knot

space if x falls outside of the physical cylinder of radius R. (Otherwise, the

singular nature of the mapping can prevent convergence.) The knot space is

evenly subdivided into 40 × 40 × 40 knot spans and div-conforming B-spline

velocity and pressure spaces of degree k′ = 1 are defined on this mesh. The

no-penetration constraint on the sides of the cylinder is enforced strongly and
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Figure 7.3: The physical image of the B-spline parameter space, showing the
mesh of unique knots (black lines).

the no-slip condition is enforced weakly by velocity penalization with penalty

parameter Cno slip = 10 dyn/cm2/(cm/s). The FSI coupling parameters are

τBNOR = 1000 dyn/cm2/(cm/s), τBTAN = 10 dyn/cm2/(cm/s), and r = 0.

The contact parameters in the discrete structure subproblem are k = 107

dyn/cm2/cm, hc = 0.005 cm, and c = 0.1 cm. The temporal discretization

uses the backward Euler method with ∆t = 5.0 × 10−4 s. Six block itera-

tions are used in each time step. The formulation is under-integrated, using

a reduced quadrature rule with (k′ + 1)d points in each Bézier element. Typ-

ically (k′ + 2)d points per element are needed to obtain optimal convergence

rates with smooth solutions,1 but, in the presence of immersed boundaries,

1That is, if one ignores the possibility of more efficient quadrature rules for IGA spline
spaces, e.g. [94].
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convergence rates are limited by regularity of the exact solution.

7.2.3 Results

The opening of the valve is illustrated by several snapshots in Fig-

ure 7.4. The closed state at time t = 0.197 s is shown in Figure 7.5. The

t = 0.01 s t = 0.02 s t = 0.04 s

Figure 7.4: Snapshots of the opening process. Velocity magnitude is plotted
on a slice, using a color scale ranging from 0 (blue) to ≥ 200 cm/s (red).

history of volumetric flow rate through the bottom of the cylinder is given

in Figure 7.6, which indicates that the valve is able to block flow without

the spurious apparent leakage that spoils solutions computed with unmodified

stabilized formulations (cf. Section 6.4). These results illustrate the basic

soundness of using div-conforming B-splines as a fluid discretization for BHV

FSI simulations. I now take a closer look at the mass conservation in the

computed solutions. Because I use an iterative solver to approximate the fluid

increments in the block iteration (Section 4.3), ∇ · uh1 is not exactly zero.

For the results presented above, I solve for fluid increments with the default
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Figure 7.5: The closed valve at time t = 0.16 s. Pressure is plotted on a
slice, using a color scale ranging from ≤ −1.1× 105 dyn/cm2 (blue) to ≥ 104

dyn/cm2 (red). Some over- and under-shoot is evident near the immersed
structure.
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Figure 7.6: The volumetric flow rate through the cylinder.

Krylov method of PETSc (namely, GMRES(30) with a simple preconditioner)2

to a relative tolerance of 10−2 for convergence of the preconditioned residual.

2This naive solver does not scale well with spatial refinement, which is entirely expected
when solving saddle point problems, but the development of optimal linear solution strate-
gies is beyond the scope of the present dissertation.

195



Even with this loose tolerance, there is no disastrous mass loss. I now re-

compute step 391 (at time t = 0.1955 s, when the valve is closed, under a

large pressure jump) with a range of relative tolerances. For this experiment,

I use the unpreconditioned residual to measure convergence, so that results

generalize more readily to other iterative solvers. The residual is assembled

in centimeter–gram–second (CGS) units, without any scaling to compensate

for the difference in units between entries of the momentum and continuity

equation residuals. The velocity divergence L2 norms of the solutions to this

time step are collected in Table 7.1. As expected, the velocity divergence

approaches zero as the algebraic solution accuracy improves.

Table 7.1: The effect of relative tolerance in the approximate inversion of Af

(Section 4.3) on mass conservation.

Solver tolerance ‖∇ · u1‖L2(Ω1) (CGS units)
10−1 3.9× 10−5

10−2 1.2× 10−5

10−3 3.0× 10−7

10−4 2.0× 10−8

10−5 1.2× 10−9

10−6 2.4× 10−10

10−7 4.3× 10−11

7.3 Simulating an in vitro experiment

The content of this dissertation so far has focused on verifying that the

FSI analysis techniques described in Chapters 3 and 4 can accurately approxi-

mate solutions to the mathematical model stated in Chapter 2. However, this
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model is not guaranteed a priori to describe the dynamics of a heart valve

immersed in fluid. The present section serves both to further illustrate the ap-

plication of div-conforming B-splines to realistic problems and to argue that

the modeling assumptions from Chapter 2 can represent the dynamics of an

artificial heart valve immersed in fluid. The content of this section is adapted

from [106].

This section provides preliminary experimental validation of the model

from Chapter 2 by qualitatively comparing FSI simulation outputs with the

results of in vitro experiments using a latex valve in a device called a flow loop.

A flow loop is an artificial hydraulic system comprising a series of fluid-carrying

tubes connecting several components in a closed loop. Typically one compo-

nent, the pump, drives fluid through the loop. This might be accomplished in

a continuous manner by, e.g., a centrifugal pump, but, to construct in vitro

models of cardiovascular systems, the pump is usually fashioned to mimic the

action of a cardiac ventricle: a time-varying pressure is applied to a fluid-filled

chamber, with valves upstream and downstream to ensure that this pressure

induces a unidirectional flow through the loop. Additional components in the

loop can tune the response of the flow to this pumping action by providing

viscous drag, hydrostatic pressure differences (from changes in elevation), or

pressure in proportion to stored fluid, known as hydraulic compliance. In the

experiment described in this section, the measurements that are collected from

the flow loop experiment are photographic images of the deforming valve and

volumetric flow rate through it. The flow rate is used as data for the model we
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construct, while valve deformation is the feature of the physical system that

the model is used to predict. I assess the validity of the model in the context

of predicting valve deformation by qualitatively comparing the computed and

photographed deformations.

Remark 7.1. The purpose of this section is emphatically not to experimen-

tally validate the numerical methods described in this Chapters 3 and 4. Re-

call the terminological conventions that I commit to in Section 1.4. Numerical

methods approximate mathematical problems. The verification of numerical

methods and their implementations (i.e. “solving the equations right”) is a

separate concern from validation of mathematical models (i.e. “solving the

right equations”) [9, Section 4, Rule 5]. Attempts to experimentally validate

numerical methods or computer programs (rather than mathematical models)

reflect confusion over the distinction between verification and validation.

7.3.1 Description of the experiment

The preliminary validation experiment consists of a latex valve in an

acrylic tube. Volumetric flow rate through the tube is measured using an ul-

trasonic flow meter and images of the valve are collected using a borescope.

Water is pumped through the tube using a flow loop system similar to the

bioreactor detailed in [80]. The flow loop is shown in Figure 7.7, with annota-

tions indicating the locations of different components and the prevailing flow

direction permitted by the valves. I use the FSI analysis techniques devel-

oped in this dissertation to simulate only the segment of tubing between the
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pump and the flow meter, containing the artificial aortic valve. The cyclical

Figure 7.7: An annotated photograph of the flow loop. The blue arrows indi-
cate the direction of flow permitted by the valves.

response of flow rate to pressure produced in the pump is highly sensitive to

the precise configuration of the compliance chamber and resistor, along with

the inertia of fluid in the loop, and additional resistance and compliance as-

sociated with other components outside of the simulated domain. To avoid

complications associated with experimentally controlling and mathematically

modeling the interaction of the valve and adjacent fluid with the hydraulic

components upstream and downstream of the valve location, I focus on the

phase of the flow cycle during which the valve opens. In this limited con-

text, the net effect of the components upstream and downstream of the valve
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can be seen as a black box determining the volumetric flow rate through the

valve. Any configuration leading to the same flow rate would lead to essen-

tially equivalent deformations of the valve. This is clearly not a reasonable

assumption when studying valve closure, where the deformation of the valve

is largely determined by the pressure difference across it, which can be altered

without changing the (lack of) flow through the valve. In the case of a closing

valve, the dynamics of the valve and adjacent fluid are inseparably coupled

to the compliance, resistance, and fluid inertia upstream and downstream of

the valve. Experimental reproducibility—which is an essential prerequisite to

representing an experiment with a mathematical model [9, Section 4, Rule

8]—would depend on meticulous control over and documentation of the entire

system, which is beyond the scope of the present validation effort.

Remark 7.2. The ability to accommodate valve closure under physiological

pressure levels is one of the numerical method’s distinguishing successes. How-

ever, the formulation of realistic boundary conditions to model specific animal

circulatory systems or artificial fluidic devices (rather than merely obtaining

Reynolds numbers and pressure differences of the right general magnitude) re-

mains an open problem. The details of modeling a specific in vitro experiment

will not likely carry over directly to the in vivo setting or even to other in

vitro experiments. The scientific value of formulating, calibrating, and vali-

dating a sophisticated boundary condition to model the specific experiment

described here is therefore questionable, as it would not clearly inform any

future applications.
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7.3.1.1 The acrylic tube

In this experiment, the valve is placed in a straight tube, illustrated in

Figures 7.8 and 7.9. The inner diameter varies between 2 and 3 cm along the

length of the tube, as shown in Figure 7.9, and is roughly the size of a typical

human ascending aorta. To capture images of the valve, a hole is included

Figure 7.8: A 3D rendering of a CAD model of the acrylic tube.

in the side of the tube, to permit insertion of a borescope. Using a mirror

attachment to the end of the borescope’s optical relay, this allows for a view

of the valve from the aortic side as illustrated schematically in Figure 7.10.

7.3.1.2 The valve

I constructed the valve by attaching latex leaflets to an aluminum stent

with superglue. The valve is shown in Figure 7.11. I cut each leaflet from a

flat sheet of latex with thickness 0.054 cm in such a way that the free edge

is straight in the flattened configuration and the attached edge matches the

geometry of the stent if the latex sheet is deformed into a cylinder without
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Figure 7.9: A 2D to-scale view of the tube, showing its relation to the valve
and stent. The inflow and outflow have inner diameters of 2 cm.

Figure 7.10: A schematic illustration of how images of the valve are captured.

stretching. Cutting leaflets out from the latex sheet can be done to a high

degree of precision (∼ 0.05 cm), but the difficulty of manually gluing leaflets

onto the stent in a consistent manner is a major source of uncertainty in
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the experiment. In my estimation, this is the largest source of uncertainty

affecting leaflet displacements during the opening phase of the flow cycle. The

level of uncertainty in leaflet displacement introduced by inconsistencies in

leaflet attachment can be roughly estimated by looking at the deviations from

trefoil symmetry of the leaflets in their static equilibrium configuration shown

in Figure 7.11.

Figure 7.11: The physical valve used in the validation experiment.

7.3.2 Mathematical model of the experiment

This section specifies an instance of the mathematical problem stated

in Chapger 2 that is designed to resemble the experiment described in Sec-

tion 7.3.1.

7.3.2.1 Fluid subproblem

The mathematical model includes some deliberate simplifications of

the geometry of the region occupied by fluid. Ω1 consists of the image of a

parametric space Ω̂1 = (−1, 1)× (−1, 1)× (−1, 4.5) ⊂ R3 under the mapping
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Figure 7.12: The measured volumetric flow rate used to set a Dirichlet bound-
ary condition in the mathematical model.

φφφ(X), which is defined by

φ1 = R(X3)X1

√
1− 1

2
X2

2 , (7.5)

φ2 = R(X3)X2

√
1− 1

2
X2

1 , (7.6)

φ3 = LX3 , (7.7)

where L = 1 cm and R(X3) is defined by

R(X3) =


Rin X3 < z1

Rout X3 > z2

(Rout −Rin)sin2
(
π(X3−z1)
2(z2−z1)

)
+Rin otherwise

, (7.8)

with z1 = −0.45 cm, z2 = 0, Rin = 1 cm, and Rout = 1.4025 cm. The shape of

Ω1 is shown in Figure 7.13. This is an admittedly crude approximation of the

connection between the two tubes, but it is convenient from the standpoint of

computing with a div-conforming B-spline space defined on a single patch.
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Figure 7.13: The shape of the fluid subproblem domain, Ω1, defined by apply-
ing the transformation (7.5)–(7.7) to a trivariate B-spline parameter space.

The lateral sides of Ω1 are subject to a no-slip and no-penetration con-

dition. The inflow face of the domain is subject to a time-dependent plug flow

boundary condition with the volumetric flow rate history shown in Figure 7.12.

This flow rate was directly measured from the flow loop. The outflow face of

the domain is subject to a traction-free boundary condition, including back-

flow stabilization with γ = 1. The fluid velocity initial condition is u0
1 ≡ 0.

To model water, the viscosity of the fluid is set to µ = 1 cP and the density is

set to ρ1 = 1.0 g/cm3.

7.3.2.2 Structure subproblem

The latex is modeled as an incompressible neo-Hookean material with

shear modulus µs = 8.7 × 106 dyn/cm2 (based on uniaxial stretching exper-

iments). Numerical experiments indicate that the leaflet opening kinematics

are insensitive to this number, so long as it is the right order of magnitude,
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but the details of these numerical experiments have been omitted for brevity.

I remark, however, that the strain distribution in closed leaflets (cf. [85, Figure

5]) or the opening kinematics in a pressure-driven flow would be more sensitive

to leaflet material properties.

The geometry of the stress-free reference configuration Γ0 is specified

by manually selecting B-spline control points to generate the configuration

shown in Figure 7.14. The leaflets are flat in Γ0, based on the fact that the

physical leaflets are cut out of a flat latex sheet. These leaflets are deformed

into a static equilibrium configuration Γ′0, (a discrete approximation of) which

is also shown in Figure 7.14. The boundary corresponding to the attached

edge is subject to a strongly-enforced clamped boundary condition, in which

displacement and derivatives of displacement are fixed to equal their values

in Γ′0. The stent is assumed to be rigid and its principle effect on the fluid is

presumed to be merely preventing flow from passing between the wall of the

tube and the attached leaflet edges. The stent is therefore modeled crudely in

the FSI problem, as a rigid extension of the leaflets, closing the gap between

the attached edge and the boundary of Ω1. This extension is shown in relation

to the leaflets in Figure 7.16. In a slight abuse of the notation introduced in

Chapter 2, the leaflets are considered to be initially at rest in the deformed

configuration Γ′0 (rather than the stress-free configuration Γ0 which is used

as a reference configuration in (2.8)). Figure 7.15 compares the model to the

physical valve.

The partially-closed equilibrium configuration shown in Figure 7.15 is
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Figure 7.14: The reference (Γ0) and initial (Γ′0) configurations of the valve
model, shown in relation to a CAD model of the aluminum stent.

Figure 7.15: A visual comparison of the physical valve and its model, in the
configuration Γ′0.

not the unique static equilibrium configuration of the valve. Each leaflet can

be snapped through to a stable open configuration. I found this necessary

to ensure reproducible behavior in the experiment. (Otherwise, subtle, un-

controlled variations in the closed leaflet geometry lead to large differences

in behavior between leaflets.) This also provides a simple analytical explana-
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Figure 7.16: The rigid extensions closing the gap between the attached edges
of the leaflets and the boundary of Ω1.

tion for the insensitivity of opening kinematics to shear modulus. Analytical

elimination of the pressure Lagrange multiplier from the 2nd Piola–Kirchhoff

stress shows that the entire internal work term of (2.8) is proportional to µs,

which means that a static equilibrium configuration with strongly enforced

kinematic boundary conditions and no external loading is independent of µs.

The (unloaded) closed and open configurations of the thin shell are therefore

dictated by geometry, which perhaps partly explains the extreme improve-

ments in performance that can be obtained from isogeometric discretizations

of shell structures; see the comparison in [127] for a practical example in the

context of heart valve structural analysis. Loosely speaking, fluid flow drives

the opening valve over a material-dependent energy barrier separating these

two material-independent equilibrium configurations. The prescription of a

Dirichlet boundary condition at the inflow causes the force driving the fluid to

adjust to the height of this energy barrier, lessening the apparent dependence

of the system’s dynamics on µs (relative to pressure-driven flow).
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7.3.3 Discretization of the mathematical model

The fluid subproblem parametric domain Ω̂1 is split evenly into 64 ×

64×99 Bézier elements, used to define div-conforming B-spline spaces of degree

k′ = 1. The no-slip and inflow Dirichlet boundary conditions are enforced by

velocity penalization, with penalty-constants of Cno slip = 10 dyn/cm2/(cm/s)

and Cinflow = 1000 dyn/cm2/(cm/s) respectively, while the no-penetration

condition on the lateral sides of the flow domain is enforced strongly. The

renderings of the structure subproblem model in Figures 7.14 and 7.15 show

the isogeometric discrete model, which consists of a 936-element quadratic

B-spline mesh (with the element count excluding the rigid extensions shown

in Figure 7.16). The equilibrium configuration Γ′0 is approximated in the

computational model by driving a structural dynamics simulation with mass

damping from Γ0 to a steady solution with the attached edges of the leaflets

clamped into the configuration shown in Figure 7.14. The values of the contact

penalty parameters are k = 108 (dyn/cm2)/cm, hc = 0.04 cm, and c = 0.1 cm.

The FSI penalty parameters are τBNOR = 1000 dyn/cm2/(cm/s) and τBTAN = 10

dyn/cm2/(cm/s). The multiplier stabilization parameter r is set to zero. The

backward Euler time integration method is used with ∆t = 2.5×10−4 s. Seven

block iterations, reusing Af from the first, are used to converge the implicit

phase of each time step. Af is inverted approximately, using GMRES(300) (via

PETSc, with the default preconditioning options) and a relative tolerance of

10−3 for the unpreconditioned residual.
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7.3.4 Comparison of results

This section qualitatively compares the computational and experimen-

tal results. The experimental results consist of a flow rate history and a se-

quence of images taken through the borescope, as illustrated in Figure 7.10.

The flow rate history is used as an input to the mathematical model, so it

is vacuous to compare the flow rate measurements with the flow rates in the

model. The measurements that remain for comparison are the sequence of

images of the valve. Due to limitations of measurement equipment, I do not

have information on when images were recorded in relation to the time axis of

Figure 7.12. (The images and flow rate history are most likely from different

cycles altogether, but the flow rate was very nearly periodic, with cycle-to-

cycle differences too small to affect the conclusions drawn from this work.)

To associate images with values on the time axis of the flow rate plot in Fig-

ure 7.12, I first select an image of the valve in which it appears, subjectively, to

be starting to open. Next, I assume that this corresponds to the time value at

which the flow rate first becomes positive. Then I assign time values to subse-

quent images by assuming that they are captured at a constant frame rate. By

counting the total number of frames and comparing with the number of times

the valve opens, I estimate the frame rate to be 220 frames per second. I use

this estimated rate, along with the subjectively-identified frame corresponding

to t = 0, to assign time values to the experimental images. I estimate that this

introduces several milliseconds of uncertainty into the temporal alignment of

the images with the flow rate.
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Figure 7.17 compares the computed valve deformations at several time

points with images collected in the experiment. The time values given in this

figure are synchronized with the time axis of the flow rate plot in Figure 7.12.

The relative alignment in time of the photographic images is only accurate

to within several milliseconds. For direct comparison with experimental im-

ages, the computed leaflet deformations are rendered using perspective (i.e.

a pinhole camera model) from a vantage point that is positioned relative to

the valve and stent in a way that corresponds to the location of the tip of the

borescope the experiment.

Remark 7.3. The use of perspective and appropriate viewer position are

critical to obtaining a qualitative correspondence in the results. When the

leaflets are rendered using isometric perspective (i.e. the assumption that the

scene is viewed from an infinite distance, which is applied by default in many

visualization programs), the ventricular sides of the leaflets are not visible

when the valve is fully open.

The main qualitative difference between these sets of images is in the

degree of symmetry of the leaflet deformations during the transition to the

fully open state. This difference is not unexpected given that the initial con-

dition to the computer simulation is symmetrical while the physical valve is

not. The degree of asymmetry in the valve is evident from the photographs

in Figure 7.11. As explained in Section 7.3.1.2, this asymmetry is mainly due

to differences in the stresses introduced by manually gluing each initially-flat
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t = 0.11 s t = 0.029 s

t = 0.039 s t = 0.084 s

Figure 7.17: Several snapshots of the computed solution, compared with ex-
perimental images. At each time instant, the computed solution is shown in
the left-hand frame and at the bottom of the right-hand frame. The experi-
mental results are shown in the top of the right-hand frame. Colors indicate
fluid velocity magnitude on a slice. Color scale: 0 (blue) to ≥200 cm/s (red).

leaflet into the stent. The physical valve assembled for this experiment is nom-

inally symmetric (as per the stated experimental procedure), so the difference

in behavior between leaflets is indicative of the degree of experimental repro-

ducibility. Differences between the deformations of the three physical leaflets
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therefore put a lower bound on meaningful differences between computational

and experimental results. Figure 7.17 also shows the computational results

from a different view, with contour plots of fluid velocity magnitude on slices

cutting through Ω1. This illustrates the ability of computer simulations to pro-

vide additional information about the flow field and the full 3D deformation

of the leaflets that would be difficult to measure experimentally.

The qualitative resemblance of computed leaflet deformations to the ob-

served deformations indicates that the modeling assumptions of Chapter 2 are

not wildly inappropriate for predicting the deformations of heart valve leaflets

immersed in physiological flow fields and may be able to predict quantities of

interest related to deformation (such as strain) with practically-useful accu-

racy. The computed results demonstrate agreement with qualitative features

of artificial valve leaflet deformations observed in other in vitro experiments

as well. The computed solution at time t = 0.029 s shows the opening process,

as characterized by reversal of leaflet curvature, beginning primarily near the

attached edge, in the so-called belly region of the leaflet. This is in agreement

with the observations of Iyengar et al. [96] who used images captured from mul-

tiple vantage points to reconstruct 3D deformations of valve leaflets in vitro.

As demonstrated in [85], this behavior is not captured by simulations using

structural dynamics alone, which underscores the importance of accounting for

FSI in heart valve modeling. These preliminary results are therefore sufficient

to justify the nontrivial expenses associated with more rigorous experimental

validation in the future.
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Chapter 8

Conclusions and further work

In this dissertation, I develop, analyze, and test a novel numerical

method for computational analysis of thin structures with spline-based ge-

ometries immersed in viscous incompressible fluids. I find that this method is

sufficiently robust to survive application to FSI analysis of BHVs functioning

under physiological conditions and that it can be shown a priori to converge

when applied to simplified linear model problems. I then use this numerical

method to demonstrate that the underlying mathematical model of FSI that it

approximates is sufficient to reproduce qualitative behaviors of artificial valves

from in vitro experiments.

An uncommon feature of the technique I have developed is that it is im-

mediately compatible with stabilized finite element discretizations of the fluid

subproblem. Such discretizations form the backbone of the well-developed

open source vascular FSI platforms SimVascular [120] and CRIMSON [108].

Related numerical methods also underpin recent pioneering efforts by Heart-

Flow Inc. [202] to commercialize vascular CFD. This suggests a practical

path toward connecting the BHV FSI technology developed in this disserta-

tion to rich platforms for segmenting and meshing patient-specific geometries
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and applying sophisticated physiological boundary conditions to the fluid sub-

problem.

The computational FSI method developed in this dissertation is not

limited to BHV simulation. I am currently collaborating with the research

group of M.-C. Hsu to apply immersogeometric fluid–thin structure interac-

tion analysis to simulation of hydraulic arresting gears that help dissipate the

kinetic energy of fixed-wing aircraft landing on short runways. Initial results,

published in [198], compare favorably with earlier body-fitted simulations of

such devices [195]. The flexibility provided by immersogeometric FSI analysis

allowed for automated optimization of the device geometry.

Despite its successful application to BHV FSI and other problems, the

numerical method developed in this dissertation can be improved. In its cur-

rent form, there are a number of free parameters. The present guidelines for

selecting these are based on imprecise dimensional analysis. More precise and

rational selection of parameters will likely stem from further numerical analysis

of linear model problems, building on the initial work presented in Chapter 5.

As mentioned in Remark 5.2, Y. Yu has already derived several improvements

to the analysis of Chapter 5. Another undesirable aspect of the method pre-

sented in this dissertation is the trade-off between conservation and stability

parameterized by the stabilization coefficient r (introduced in Section 4.1). A

possible improvement that I am currently investigating with J. A. Evans is to

apply the inconsistent stabilization following from r > 0 only to fine scales of

the fluid–structure interface Lagrange multiplier while retaining strong con-
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sistency on coarse scales. This may result in a method that is both stable

and conservative. Visualizations from a preliminary implementation of this

approach applied to the problem of Section 6.3 are shown in Figure 8.1; both

the flow field and interface Lagrange multiplier are qualitatively-reasonable.

Figure 8.1: Example of an FSI solution with interface Lagrange multiplier
stabilization applied only to fine scales. Left: velocity magnitude. Right:
Lagrange multiplier field (visualized as in Section 6.3).

Lastly, the promising initial results of immersogeometric FSI analysis

using div-conforming B-spline discretizations of the fluid subproblem indicate

that div-conforming B-splines merit further investigation. The ideas of im-

mersogeometric FSI analysis and div-conforming B-spline flow discretizations

appear to enjoy a symbiotic connection, in that the strong mass conservation

of structure preserving flow discretizations improves the quality of immerso-

geometric FSI solutions, while the application of div-conforming B-splines to

increasingly complicated and realistic problems motivates the development of

more powerful implementations.
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Archiv, 56(3):221–228, 1986.

[75] H. Hasimoto. On the flow of a viscous fluid past a thin screen at small

Reynolds numbers. Journal of the Physical Society of Japan, 13(6):633–

639, 1958.
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