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In nanoscale magnetic metals, transport properties like the conductance de-

pend on the magnetic configuration of the structure, an effect known as giant mag-

netoresistance. Conversely, electron transport can induce changes in the magnetic

configuration through an effect known as spin transfer. These two effects underlie

the field of magnetic metal spintronics. In this thesis, these effects are studied from

an ab-initio perspective.

A general microscopic theory of spin transfer is implemented in an ab-initio

formalism. The view of this phenomena developed and exploited in this thesis is

one in which transport quasiparticles near the Fermi energy influence the collective

vii



behavior of states far from the Fermi energy, and in particular their total spin

magnetization.

The microscopic picture of the influence of transport currents on magnetic

configurations, in which they lead to effective torques which act on each orbital

of each atom, is the principle original contribution of the research reported on in

this thesis. The technical nonequilibrium Green’s function + density functional

theory implementation necessary to apply this idea to real materials is a second

important achievement. The idea that giant magnetoresistance and current-induced

spin-torques occur in antiferromagnetic metals, and the exploration of some of the

consequences of this idea is the most important result which has so far emerged

from this research effort.

As far as the specific systems considered in this work, we first study a fer-

romagnetic spin valve structure composed of Co magnetic layers separated by Cu

spacers. The spin torque per current is found in the ballistic and diffusive regimes

and compared to experimental values. We next consider an antiferromagnetic spin

valve, with antiferromagnetic Cr layers separated by a Au spacer, and find nonzero

magnetoresistance and spin transfer torques. Finally we consider a system with

ferromagnetic Co adjacent to antiferromagnetic NiMn. We find a qualitatively new

form of spin transfer for this system, and predict that unusual magnetic configura-

tions will occur under the action of this novel form of spin transfer torque.
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Chapter 1

Introduction

The discovery of quantum mechanics in the early twentieth century revolutionized

the way we think about matter at atomic length scales. Although motivated pri-

marily by experiments in atomic physics, the quantum theory was soon applied to

assemblies of many atoms in molecules and in crystals. The description of matter

in the solid state follows in principle directly from the many-particle Schrödinger

equation. When written down in the 1920’s, the Schrödinger equation provided a

theory of everything for condensed matter physics. From a strict reductionist point

of view, the description of condensed matter physics is thus complete. This point

of view is exemplified by Carl Anderson, who declared after the discovery of the

positron that “ the rest is chemistry!” Of course such characterizations are hardly

serious, and the unreduced problem as it stands is so utterly intractable that, in the

words of Walter Kohn, “its solution is not a legitimate scientific concept” 1. Dirac

made the point with characteristic understatement: “the underlying physical laws

for the mathematical theory of a large part of physics and the whole of chemistry

are thus completely known, and the difficulty is only that the exact application of

these laws leads to equations much too complicated to be soluble.”

1Kohn characterizes a solution Ψ to be “legitimate” if it can be both calculated and recorded
with sufficient accuracy - a criterion a many-body wave function for N > 103 does not meet.
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Despite this difficulty, condensed matter theory has enjoyed much success

in describing the properties of bulk materials, in both their mundane and exotic

forms. The underlying reasons for its success despite the apparent complexity of

the problem are explained in part from the concept of the quasiparticle and of the

collective coordinate, described below.

The source of difficulty associated with the many-body Schrödinger equation

is the electron-electron interaction. The easiest way to deal with this difficulty is

to simply ignore it. True to their pragmatic spirit, this approach was adopted by

physicists from the beginning for its simplicity and its apparent ability to provide

a reasonable description of experimental properties. It was put on more solid theo-

retical ground with the formulation of by Landau’s formulation of the Fermi liquid

theory which bears his name. Although electron-electron interactions can be large

in strength, they have little effect on excitations from the ground state for most sys-

tems due to phase space considerations [3]. They do however lead to a modification

of the pure single-particle picture, which is manifested in a renormalized electron

mass and finite lifetime. This modified state is referred to as a quasi-particle, which

although strictly speaking is a many-body state, can be handled with the ease of a

single particle state.

The other central concept used in descriptions of condensed matter systems

is that of a collective coordinate, often called an order parameter. In this case a

macroscopic number of constituent particles condense into some symmetry-broken

collective state, which can be described by a collective variable referred to as an order

parameter. Common examples include superconductivity and ferromagnetism. The

behavior of the ordered state is not described by the microscopic interactions which

govern the behavior of the constituent particles. This ordered state is therefore

emblematic of the notion of emergence, an idea described in the classic paper of

Phil Anderson appropriately entitled “More is Different” [4].
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1.1 Spintronics

The main topic of this thesis is magnetic metal spintronics, which in an elemental

sense can be considered the study of the interaction between nonequilibrium quasi-

particles and the collective order parameter of a magnetic broken-symmetry states.

There are several recent examples of phenomena related to quasiparticle-order pa-

rameter interactions. For example, quantum Hall bilayers which develop excitonic

condensates [5] under certain conditions and exhibit anomalies related [6] to the in-

fluence of transport currents on interlayer phase coherence. The interplay between

charge density waves and transport currents has also been shown to affect both the

current-voltage characteristics and the properties of the charge density wave order

[7].

The most-studied example is the interaction between nonequilibrium quasi-

particles and the magnetization of a ferromagnet. For ferromagnets, this interaction

leads to two well-known effects: giant magnetoresistance and spin transfer. Both

effects occur in circuits which contain ferromagnetic elements (typically multilay-

ers of nanoscale dimension containing ferromagnet layers separated by nonmagnetic

layers). In giant magnetoresistance there is a change in the resistance when the mag-

netic configuration of the ferromagnet changes. In general the resistance is smaller

when the magnetic orientation is uniform than when the magnetic orientation is

spatially varying. As we will discuss further later, this effect provides the basis for

reading magnetically stored information. Spin transfer may be understood as the

converse effect to GMR. In this case, the presence of a sufficiently large current can

change the magnetic configuration of a ferromagnet. There is hope that this effect

can be used to create nonvolatile magnetic random access memory (MRAM) [8].

In this thesis, we study these effects from a more general point of view, and

consider their manifestation in novel magnetic systems such as antiferromagnets.

Our picture of spin transfer is described in Ref. [9], and is advantageous in that it

3



does not rely on conservation of spin angular momentum, and can be implemented

within density functional theory, discussed in Ch. (5). In this way, our calculations

include all of the electronic structure details of the materials involved. These realistic

calculations are valuable in that they indicate of the strength of these effects in

unexplored materials, providing some measure of experimental guidance.

1.2 Outline of thesis

Here we give a preview of the material contained in this work and its organization:

Ch. (2) describes the basic physics of spintronics in ferromagnets. This gives

context to our results on ferromagnetic systems, and provides a backdrop against

which to contrast the novel features of spintronics in antiferromagnets.

Next we describe the machinery needed to consider spintronics in systems in

a realistic way. It turns out we need a lot of machinery, and it is described in Ch.

3-6. The breakdown is as follows:

Ch. (3) describes our implementation of density functional theory. It is a

standard implementation, and follows in the spirit of Ref. [10], but we include some

of the details here in the hopes that this document will be useful as a background

reference for future researchers.

Ch. (4) describes the physical picture of transport in mesoscopic systems

in the ballistic regime, which is furnished by the Landauer-Buttiker theory of trans-

port. We also briefly review a formalism known as “spin circuit theory” for treating

transport in noncollinear magnetic systems in the diffusive regime. The spin-circuit

theory is not fully microscopic and is complementary to the approach used in this

thesis research.

Ch. (5) reviews the technical formalism employed to calculate ballistic

transport, known as nonequilibrium Green’s functions.

Ch. (6) describes the formal details of our calculation of spin dynamics, in-
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cluding equilibrium exchange interactions and nonequilibrium spin transfer torques.

We include the calculation of exchange interactions in equilibrium despite the fact

that they play no further role in remaining work, only to highlight the relationship

between their calculation and that of spin transfer torques.

With that we have in place the machinery necessary to calculate magnetore-

sistance and spin transfer torques for realistic systems. We consider three types of

systems: purely ferromagnetic (FM), purely antiferromagnetic (AFM), and hybrid

AFM-FM over the next three chapters. Specifically:

Ch. (7) covers the calculation of spin transfer torques in a typical FM spin

valve, consisting of Co FM layers separated by Cu spacers. This calculation serves as

a benchmark which allows us to examine in some detail properties of the calculation

method itself. We also contrast our results for the ballistic case with those obtained

in the diffusive limit with spin circuit theory.

Ch. (8) considers the spintronic effects present in antiferromagnetic systems.

At first we discuss an AFM spin valve. We’ll first speak generally of the unique

features of spin torques in AFMs, how they are distinct from those in FM. Then we

perform a realistic, first principles calculation using antiferromagnetic Cr and Au

spacer.

Ch. (9) considers a system containing both FM and AFM elements. We

again find features of spin transfer that are qualitatively different from those in

conventional FM. This new form of spin torques leads to unusual magnetic config-

urations, which we predict should be observable experimentally.
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Chapter 2

Spintronics

2.1 Introduction

Spintronics is a multi-disciplinary field that seeks to identify phenomena in which

the spin degree of freedom plays a critical role, and to exploit spin-dependent effects

for useful applications. It has drawn the interest of scientists who are interested

in magnetism and related ordering phenomena from a fundamental science point of

view, as well as the interest of scientists who are interested mainly in applications to

information technology. The discovery of giant magnetoresistance effect by Albert

Fert in 1988 is considered to be the birth of the field. Spintronics has already

revolutionized hard-disk technology and there is hope that spintronic effects will

continue to play a central role in the development of new information technology.

Information processing technology has been dominated by semiconductors

for the past 50 years. The ability to fabricate semiconductors in a controlled fashion

helped usher in the technology based society we live in today. Along the way, the

importance and relevance of semiconductors spurred on new research, and helped

the field of condensed matter physics grow enormously. In conventional electronics,

control of circuit behavior is achieved by coupling to the charge of the electron, with
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the application of bias potentials to circuits of ever increasing complexity. In this

case, the spin of the electron is basically irrelevant, and is simply along for the ride.

An essential motivation of spintronics is to find and/or design systems where the

spin plays an active role in circuit behavior and design. This extra degree of freedom

would presumably afford greater flexibility and capability to current technologies.

There is, among optimists, the hope that spintronics can follow in the footsteps of

semi-conductors in its scope, relevance, and scientific value [11].

One long-recognized phenomena that can be considered to be part of spin-

tronics is anisotropic magnetoresistance; here the resistance of a ferromagnet is de-

pendent on the relative orientation of the direction of current flow and magnetization

[12]. Another active area is dilute magnetic semiconductors. The key challenge in

this field is identifying the microscopic source of ferromagnetism in semiconductors

doped with magnetic ions, and leveraging this understanding to design materials

with transition temperatures sufficiently high for applications [13]. Other spintronic

effects include the anomalous Hall effect, an effect whereby a ferromagnet develops

an extra contribution to the Hall resistivity, due to spin-orbit coupling [14]. In this

thesis, we focus on what are perhaps the largest subfields of spintronics: giant mag-

netoresistance (GMR) and spin transfer torques (STT). Both effects are observed in

nanoscale systems, usually multilayers consisting of ferromagnetic and paramagnetic

layers. The details of these two effects are described in the following sections.

A theme which runs through all of spintronics is the interplay between the

magnetization and the nonequilibrium, current carrying quasiparticles. This may

be considered a specific instance of the more general situation in which there is

interaction between an order parameter and nonequilibrium quasiparticles. A fa-

miliar and simple example of this type of phenomena is a circuit in which current

flows between normal (N) metal elements though a superconductor (S). Because of

Andreev reflection of the quasiparticle current at the N/S boundary, the Cooper
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pair amplitude in the superconductor is altered. In the presence of a normal metal

transport current, the superconducting order parameter develops a spatial gradient

in the steady state which allows the condensate to carry current through the super-

conducting element. A more recent example occurs in quantum Hall bilayers which

develop excitonic condensates [5] under certain conditions and exhibit anomalies

related [6] to the influence of transport currents on interlayer phase coherence.

The scientific approach to spintronics is emblematic of condensed matter

physics as a whole: it employs a broad range of approaches from the abstract treat-

ment of underlying principles using sophisticated theoretical techniques, to the very

practical implementation of these effects in efforts more akin to device engineering.

In this work, the approach we adopt may in some sense help to bridge the divide

between these two distinct approaches. We seek to identify and generalize theoreti-

cally the phenomena associated with GMR and STT, and determine the extent to

which such generalizations would be manifest in real materials.

In this chapter we review some of the basic properties of spintronics. In

Sec. (2.2), we review the basic properties of ferromagnets relevant to spintronics

effects. In Sec. (2.3), we discuss magnetoresistance, while in Sec. (2.4), we discuss

spin transfer torques. In Sec. (2.5), we briefly review exchange bias, an effect we

consider in more detail in Ch. (9).

2.2 Metallic magnetism

The first recorded observation of ferromagnetism comes from Greece in the 6th

century BC [15]. Despite its long history, the physical origin of ferromagnetism was

only understood in the past century, and the fundamental properties of ferromagnets

remain a subject of theoretical and experimental research. Here we describe the

basic properties of ferromagnets that will be important in describing spintronic

phenomena.
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In a ferromagnet, a macroscopic number of spins align and point in some

preferred direction, forming a state with spontaneously broken symmetry. The

existence of ferromagnetism in metals is the result of a subtle balance between

quantum mechanical exchange energy and kinetic band energy. The exchange energy

is a manifestation of Fermi statistics, which states that the total wave function must

be anti-symmetric under interchange of particles. The physics behind the kinetic and

exchange energy competition is most easily captured in a two-particle wave function.

Due to the anti-symmetry requirement of the total wave function, a wave function

with symmetric spin part (or spin-polarized state) must have an anti-symmetric real

space part; since an anti-symmetric real space wave function reduces the Coulomb

energy, this spin-polarized state is preferred. On the other hand, a symmetric real

space wave function has a smaller kinetic energy than an anti-symmetric one, thereby

favoring a spin-unpolarized state. Thus the spin polarization of the ground state

depends on the balance between these two energies.

Nonclassical contributions to electron-electron interactions produce other

contributions beyond exchange, referred to as the correlation energy. For spin po-

larized states, the exchange-correlation energy is spin-dependent, and acts as an

effective magnetic field. The magnitude of the spin-dependent exchange-correlation

energy in solids is described well by ab initio LSDA calculations, and for transition

metals, can be characterized by an average value in the range of 0.7 − 1.0 eV .

The competition between exchange/correlation and kinetic energies in solids

is captured qualitatively by the Stoner model [16]. If the exchange/correlation

energy is denoted by I, then ferromagnetism is stabilized for

D(Ef )I < 1 , (2.1)

where D(Ef ) is the paramagnetic density of states at the Fermi energy. Eq. (2.1)

is known as the Stoner criterion for ferromagnetism. Here a large density of states
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at the Fermi level indicates that the kinetic band energy cost for forming a spin-

polarized state is small, so that a spin-polarized state is energetically preferable.

The materials which satisfy the Stoner criterion are Fe, Co, and Ni [16].

The exchange/correlation energy responsible for the ferromagnetic state (and

correspondingly the magnitude of the magnetization) is large, and leads to magnetic

transition temperatures of several hundred Kelvin. However, the dependence of en-

ergy on magnetization direction is determined from very small relativistic corrections

to the energy. These include long range dipole-dipole interactions, and spin-orbit

interactions which lead to magneto-crystalline anisotropy. Because of the relative

smallness of these terms, the direction of the magnetization can be easily manipu-

lated by external fields and currents. It is for this reason that magnetic materials

are so amenable to applications.

As a matter of terminology, electrons whose spins belong to the larger spin

population are referred to as “majority” electrons, while those with spin in the

smaller spin population are “minority”. If we choose the axis of spin quantization

such that the magnetization points in the +z direction, then majority spins are

labelled “up”, minority spins “down”. (Conversely, if the quantization axis chosen

such that +z points opposite to the magnetization, then majority are “down” and

minority are “up”.)

2.3 Magnetoresistance

2.3.1 Giant magnetoresistance

In giant magnetoresistance (GMR), there is a (giant) change of resistance of the

multilayer if the relative orientations of the magnetic layers changes. GMR is most

easily understood in the configuration shown in Fig. (2.1) - here current flows
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Figure 2.1: Schematic of a spin valve. The AFM layer pins the fixed layer’s orien-
tation with the exchange bias effect.

perpendicular to the interface between layers 1. In most experimental and applied

systems, one of the layer’s magnetic orientation is fixed, while the other is free to

rotate. (The fixed layer is pinned by an adjacent antiferromagnet through an effect

known as exchange bias, or by having a different anisotropy.) Typically the free

layer is bistable, and can point either parallel or anti-parallel to the fixed layer.

If the electron current enters from the left, then the fixed layer polarizes the

current in the direction of its magnetization. Electrons with this polarity pass more

easily through the free layer if its magnetization points in this same direction, so

that a configuration with parallel fixed and free layers has a lower resistance than

that with an anti-parallel configuration. The definition of magnetoresistance is:

GMR =
GP − GAP

GAP
. (2.2)

where GP/AP is the total conductance of the device in the parallel/anti-parallel

configuration. (In the literature, GMR is sometimes defined as (GP − GAP)/GP.

The difference between definitions is normally not significant.)

The promise of spintronics has already been fulfilled by GMR, since the

effect forms the basis for current hard disc drive read-head technology. Because

the magnetic layers are of nanoscale dimension, the orientation of the free layer,

1There is a similar effect when current flows parallel to the layer interfaces (known as CIP GMR),
but it is not as relevant in current research.
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and therefore the resistance of the multilayer, is very sensitive to external fields.

These multilayers may then be used as tiny magnetic field sensors, and in this role

they have revolutionized the hard disk drive industry as the newest generation of

read heads. Fig. (2.2) shows the explosion of the areal density of data storage that

resulted from using magnetoresistance-based read heads.

Their effectiveness as sensors can be traced back to the separation of energy

scales between the large spin-dependent exchange-correlation field, and the small

anisotropy terms. A generic property of a “good” sensor is: small input → large

output. In this case, due to small anisotropy energy, a small magnetic field is

sufficient to orient the magnetization, and because of the large exchange-correlation

fields, this yields a large change in the transport conductance.

A simple quantitative account of GMR is provided by Valet-Fert theory [17].

In this model, the up and down spin channels carry current independently. The

conductance G in a ferromagnet is different for majority and minority channel:

G↑ 6= G↓ (In spin valves, the resistance is often dominated by scattering at interfaces

between materials. The conductance we consider here is therefore not the bulk

material conductance, but the conductance associated with the interface.) The

parallel and anti-parallel configurations of a spin valve are represented in Fig. (2.3).

Applying Kirchoff’s laws for the current to the two different alignments immediately

yields an expression for GMR in terms of the total conductance G = G↑ + G↓ and

the polarization P = (G↑ − G↓)/G:

GP =
G

2
(2.3)

GAP =
G(1 − P 2)

2
(2.4)

GMR =
P 2

1 − P 2
(2.5)

It is clear from Eq. (2.5) that the GMR is maximized by maximizing P .
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Figure 2.2: History of magnetic storage density with key innovations labelled. Inset
shows total capacity of hard drives shipped per year. Fig. taken from Ref. [1],
CGR stands for “compound growth rate”, AFC is “antiferromagnetically coupled
media”, which represents an improvement in recording media design not of interest
to us here.

In many systems, the difference between G↑ and G↓ can be understood in terms

of electronic structure. As an example, we consider the materials of the classic

experimental spin valve: Co magnetic layers separated by a Cu spacer (this setup is

considered in detail in Ch. (7)). Fig. (2.4) shows the Fermi surface of these materials

in the parallel and anti-parallel configurations. It is clear that the majority channel

of Co has a Fermi surface that matches quite well with that of Cu, while the minority

channel Co Fermi surface does not. Electrons undergo less momentum scattering

when they make a transition between a bulk-like Co state to a bulk-like Cu state.

Therefore, in the parallel alignment the conductance in the majority channel is much

higher than that in the minority channel, so that G↑ > G↓.
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Figure 2.3: Schematic of the two channel model of GMR. The boxes labelling R↑/↓
represent the spin-dependent resistance of a ferromagnet-normal metal interface.

2.3.2 Tunnelling magnetoresistance

Tunnelling Magnetoresistance (TMR) is distinguished from GMR by the presence of

an insulating (rather than metallic) spacer layer. This changes the physical picture

of the scattering. The Julliere model provides the simplest framework to understand

this system. In this case the conductance is found from the Fermi Golden rule, and

is proportional to the density of states at the Fermi energy of both magnetic layers:

G = 4πe2DL(Ef )DR(Ef )|T |2. An independent two-channel model for majority and

minority spin is assumed, and the current in parallel and anti-parallel alignment is

then given by:

IP ∼ D↑
L(Ef )D↑

R(Ef ) + D↓
L(Ef )D↓

R(Ef )

IAP ∼ D↑
L(Ef )D↓

R(Ef ) + D↓
L(Ef )D↑

R(Ef ) (2.6)
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Figure 2.4: A schematic for the electronic structure of a Co-Cu spin valve .

These expressions lead to a magnetoresistance which is similar to the GMR expres-

sion, except with a different polarization factor P̄ = (D↑(Ef )−D↓(Ef ))/(D↑(Ef )+

D↓(Ef )).

TMR =
P̄LP̄R

1 − P̄LP̄R
(2.7)

Here the polarization factor is simply a bulk property of the material, and represents

the fraction of spin-polarized electrons at the Fermi level. The TMR is maximized by

maximizing P̄ , and the search for half-metals, or materials with P̄ = 1, is therefore

a very active field in academia and industry.

In the Julliere model, the details of the tunnelling process are completely

ignored (corresponding to neglecting the matrix elements |T |2 in Fermi’s golden

rule). It was thought for a long time that these details are unimportant. However,
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in a stunningly successful example of theoretical/computational materials design,

Butler et al. [18] showed that the electronic structure of the ferromagnet-insulator

combination can play a crucial role in maximizing TMR. They predicted that the

combination of Fe and MgO would exhibit extremely large TMR ratios, which was

subsequently verified experimentally. This tunnelling magnetoresistance (TMR)

design is likely to be implemented in the next generation of read heads.

Figure 2.5: Julliere’s model of TMR. In this model TMR is due to spin-dependent
density of states the the Fermi level.

2.3.3 Molecular GMR

Recent efforts have shown that the spacer layer of a spin valve can consist only of a

molecule, molecular monolayer, or carbon nanotube [19]. In one set of experiments,

magnetoresistive effects were found in systems formed by sandwiching monolayer of

octanethiole between Ni leads [20]. The finding is that the molecule is able to act as

an effective spacer in a spin valve type structure, with GMR ratios on the order of
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10%. With the machinery developed in this thesis, we have performed the first fully

realistic calculation of GMR for a molecular system - a benzene di-thiol molecule

sandwiched between Ni leads - and have found results consistent with experimental

data [21]. (This work lies outside the main theme of this thesis and is therefore not

addressed further.)

Other experiments examine magnetoresistance properties when the spacer

consists of an organic semiconductor made from π-conjugated molecules [22, 23].

In this case, the transport behavior is non-Ohmic, and the conventional picture of

GMR as described earlier must be modified. The machinery developed in this thesis

is particularly well-suited for studying GMR in these novel systems.

2.4 Spin transfer

Spin transfer may be understood as the converse effect of GMR. In this case, the

presence of a sufficiently large current density may change the relative orientation

of the magnetic layers in a multilayer. This phenomenon is usually understood as a

consequence of angular momentum conservation; if the electron current is incoming

from the left, then it is initially polarized parallel to the fixed layer. In traversing

the free layer, the current is then polarized in the direction of the free layer. The

direction of the current polarization is therefore changed, or rotated, by the free

layer - the free layer magnetization exerts a torque on the spin of the current. By

conservation of angular momentum, the spin current must exert an equal and oppo-

site torque on the free layer magnetization. This is indicated schematically in Fig.

(2.6). In this way, spin angular momentum is transferred from one subsystem - the

current carrying electrons - into another subsystem - the magnetization. For this

reason the effect is known as spin transfer. If the torque exerted on the magneti-

zation by the current is sufficiently large, the magnetization can undergo complete

reversal and can be switched from parallel to anti-parallel (or the reverse). In addi-
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tion, dynamical modes in which the free layer magnetization undergoes microwave

precession can occur. This effect was predicted theoretically in 1996 by Slonczewski

[24] and Berger [25], and subsequently observed experimentally [26, 27, 28, 29, 30],

and is now the subject of extensive research.

One potential application of spin transfer is magnetic random access memory,

or MRAM. In MRAM, the orientation of the free layer (parallel or anti-parallel to

fixed layer) encodes binary data (“0” or “1”). A large current could change the

orientation with spin transfer torque, or perform a write operation, while a lower

current could sense the orientation via the GMR effect, or read the data. This

method of data storage holds distinct advantages over conventional RAM - most

notably it is non-volatile, so that information is retained even after power loss.

Current MRAM technologies use current-induced magnetic fields for writing data,

but such a mechanism poses problems for power consumption and scaling. These

problems are resolved with the use of spin transfer as a writing mechanism [8].

Efforts to this end are currently underway in academic and industrial research.

2.5 Exchange bias

We mention here some details of a phenomena known as exchange bias. Exchange

bias refers to the effect in which an anti-ferromagnet adjacent to a ferromagnet

effectively pins the ferromagnet, so that the switching field of the ferromagnet is

greatly increased. This is typically used in spin valves to ensure that the fixed layer

remains fixed.

Exchange bias is an effect which currently probably resides in the category

of magnetics proper, as opposed to spintronics (the distinction arising because spin-

tronics involves nonequilibrium quasi-particles, a notion that is independent of the

current understanding of exchange bias). We nevertheless mention some background

of exchange bias here, as in a later chapter we consider the effect of spin transfer
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Figure 2.6: Cartoon showing spin transfer torque. The electron spin enters the free
ferromagnet point up, and is rotated by the magnetization so that it leaves in a
different direction. Spin transfer is the back-action torque on the magnetization by
the electron spin.

torques on exchange bias.

2.5.1 Meiklejohn and Bean - direct exchange

Figure 2.7: Geometry in direct exchange model: (a) is a low energy configuration,
while (b) is a high energy configuration. The difference in energy leads to unidirec-
tional anisotropy for the FM, or exchange bias.

This is the first and simplest model of exchange bias [31]. The antiferro-

magnet interface is uncompensated, with a net spin/area MAFM , and a Heisenberg
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coupling J1 to the ferromagnetic spin MF is assumed:

Edirect = J1( ~MAFM · ~MF ) (2.8)

If one assumes that the antiferromagnet does not undergo reversal with the ferro-

magnet, then there will be a unidirectional anisotropy and the shift in the hysteresis

curve (or the bias field) is immediately seen to be :

HE =
∆E

2MF tF
= J1

1

MF tF
(2.9)

However this formula leads to bias fields that are orders of magnitude too large,

motivating refinements of this simple picture.

An important recent experimental realization of Stohr et al. [32] makes this

simple model more relevant than previously thought. It was found that there are in

fact only a very small percentage (4%) of moments at the AFM interface which are

pinned. The rest of the moments rotate rigidly with the ferromagnet. Only these

pinned moments contribute to the expression above, so that the predicted bias fields

are reduced by a factor of .04, which leads to realistic values for the exchange bias.

However, the nature of the pinning (its origin and magnitude) is not known. We

consider open questions relating spin transfer torques to exchange bias in the last

chapter.
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Chapter 3

Transport in Mesoscopic

Systems

3.1 Introduction

In this chapter we review the physical picture of electron transport relevant to

systems in the mesoscopic regime. In so doing, we hope to shed light on what is

precisely meant by the term “mesoscopic”. This picture is provided by the Landauer

theory of transport, which we use extensively throughout the thesis, and describe

is Sec (3.2). We also review other formalisms used in this work to study transport,

including scattering matrices in Sec. (3.4), and spin circuit theory, described in Sec.

(3.5). First we review important length scales for the systems we have in mind:

1. Screening Length Ls: The screening length indicates the length scale over

which a perturbation in the electronic charge density is screened by free charges.

Within Thomas-Fermi theory of a free electron gas, Ls =
[

e2D(Ef )
ǫ0

]−1/2
, where

D(Ef ) is the density of states at the Fermi level. For metals, D(Ef ) is large and

this length is of the order of 1 − 10Å.

2. Mean Free Path Lm: The mean free path is the distance an electron
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Figure 3.1: Length scales relevant for mesoscopic systems. Figure adapted from Ref.
[2].

travels before undergoing momentum scattering. The change in momentum is due

to scattering from impurities in the lattice, interfaces, or any other defect that does

not exchange energy with the electron (static impurities). It is the basically the

length scale on which an electron notices that it is not in a perfect crystal, which

has rather special properties because of Bloch’s theorem [3]. The mean free path

is related to the momentum relaxation time τm by Lm = vF τm. τm is often much

longer than collision time τc, because most collisions are often ineffective at changing

the momentum of the electron. This is usually parameterized by α 1
τm

= 1
τc

, where

α is between 0 and 1. Values of mean free paths depend of extrinsic factors such

as sample purity and temperature, but a typical value for transition metals under

experimental conditions is 10 ∼ 20 Å.

3. Phase coherence length Lφ: The phase coherence length is the distance an

electron travels before it experiences an energy-changing scattering event (inelastic

scattering). Equivalently, it is the distance travelled before quantum phase infor-

mation of its state is lost. The entity from which the electron scatters must have an

internal degree of freedom to exchange energy with the electron, and common ex-
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amples are phonons, other electrons, and spin waves. As before, the rate of inelastic

scattering is in general smaller than the rate of overall collisions, and we parame-

terize the relation as: 1
τφ

= αφ
1
τc

, with αφ again between 0 and 1. Lφ is related

to temperature (primarily via phonons) roughly as ÃLφ ∼ T−p, where p ∼ 1 − 2.

Typical values for experimental system are ÃLφ ∼ 100 − 200Å. In pure metals at

room temperature and above, the situation in which most scattering is inelastic is

common. In this case Lφ = Lm.

3.2 Landauer

When electron transport takes place through a system with dimensions on the or-

der of a mean free path, quantum mechanical effects become important, and the

assumptions of semi-classical transport break down. (Semiclassical transport ideas

can fail at low temperature when Lφ is very long because of localization physics.)

This physics in this regime was initially studied by R. Landauer in the 1950’s [33, 34],

and extended M. Buttiker and others in the 1980’s [35, 36]. In the experimental

situation of interest, a scattering region is connected to two much larger particle

reservoirs. When an external bias is applied, i.e. when the chemical potentials of

the reservoirs are different, a steady state nonequilibrium current flows through the

scattering region. If the chemical potential of the left reservoir is greater than that

of the right, then the current is carried by an imbalance of right-goers emanating

from the left reservoir into the unfilled states of the right reservoir. The schematic

for the experimental setup is given in Fig. (3.2). A key assumption underlying

the Landauer picture is that the contacts between the wire and the reservoirs are

reflectionless: that is, that electrons are not reflected back into the wire as they

leave it and enter the reservoirs. When the reservoirs are much wider than the wire

(have many more transverse modes), it has been verified that this assumption is

usually valid [37]. We can then be assured that rightmoving electrons to the left
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Figure 3.2: 2-probe geometry. Here µL > µR, and the circle in the conducting wire
represents some static scatterer.

of the scatterer emanated from the left contact, and are in equilibrium with the

left contact, with chemical potential µL. We emphasize that this formulation of

transport assumes that Lφ is larger than the system size.

A key observation in the Landauer picture of transport is the simple relation

between the current carried by states with energy E and their occupation number

f(E). To demonstrate this relation consider the current carried by states with

momentum between k and d + dk:

I =
e

2π
vkf(Ek)dk (3.1)

I =
e

2π~

∂E

∂k
f(Ek)dk (3.2)

I =
e

2π~

∂k

∂E

∂E

∂k
f(E)dE (3.3)

I =
e

h
f(E)dE (3.4)

The current is simply proportional to the occupation f(E). It may seem surprising

that the factor of velocity drops out, but it is simply compensated by a factor of

density of states: states with a smaller velocity have a larger density of states and

vice versa.

We can then find the current for the 2-probe geometry of Fig. 3.2. We

consider just a single channel wire, and take the probability of electron transmission
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through the scatterer to be T (so that the probability of reflection is 1−T ). Consider

the location z = zL along the wire. Using the assumption of reflectionless contacts,

we know right-moving electrons emanated from the left reservoir, and are therefore

described by an occupation fL(E):

IRight
z=zL

(E) =
e

h
fL(E)dE (3.5)

Left-moving electrons at this point consist of states that emanate from the right

reservoir and are transmitted through the scatterer, and states emanating from the

left reservoir that are reflected from the scatterer:

ILeft
z=zL

(E) =
e

h
(fL(E)(1 − T ) + fR(E)T )dE (3.6)

The net current is then:

Itot =
e

h
T (fL(E) − fR(E))dE (3.7)

Integrating over all energies, we obtain the Landauer formula for the conductance

G of a 1-dimensional system:

I =
e

h
T [µL − µR] (3.8)

⇒ G =
e2

h
T (3.9)

The constant e2/h is known as the quantum unit of conductance, and its value is

3.87 × 10−5 Ω−1. The formula can be generalized to a system with N transverse

channels:

G =
e2

h

N
∑

i=1

Ti (3.10)
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The result is intuitively appealing: the conductance of a sample is very simply

related to the probability that electrons can transmit through it.

Historically, Eq. (3.10) was a source of controversy, as many of the investi-

gators at the time viewed the finite (rather than infinite) conductance of a perfect

sample as an fatal flaw in the theory [38]. An alternative formula which did not

“suffer” from this feature was

G =
e2

h

N
∑

i=1

Ti

1 − Ti
. (3.11)

Nevertheless experiments confirmed the validity of Landauers formula in 1988 [39].

The apparent discrepency between Eq. (3.10) and Eq. (3.11) may be rec-

onciled by distinguishing between the scattering and contact contributions to the

resistance [40]. Landauer’s formula can be re-written to clarify this distinction:

G−1
tot =

h

e2

1

N

[

1 − T̄

T̄
+ 1

]

(3.12)

where T̄ is the average conductance:

T̄ =
1

N

N
∑

i=1

Ti (3.13)

The scattering resistance G−1
S and contact resistance G−1

C .are identified as:

G−1
S =

h

e2

1

N

(

1 − T̄

T̄

)

(3.14)

G−1
C =

h

e2

1

N
(3.15)

The origin of contact resistance is the redistribution of the current from

the many transverse channels of the reservoir into the relatively smaller number of

channels for a thin wire. Indeed, for the case where the conductor acquires many
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transverse channels (or has a large cross sectional area), the contact resistance goes

to 0. In the context of 3-dimensional multilayer geometries, the contact resistance is

also known as the Sharvin resistance. The distinction between contact and scattering

resistance is discussed further in Sec. (3.4.1).

3.3 From Landauer to Boltzmann.

To put the Landauer approach in context, we consider here the relation between the

conductivity obtained with a Landauer approach and that obtained with a semi-

classical approach. The conductivity of the Drude model (a fully classical model) is

given by σ = ne2τ/m. In a semi-classical Boltzmann approach, the conductivity of

a uniform bulk material within the relaxation time approximation is

σαβ = τ
e2

4π3

∫

dkfkvαvβ
∂f

∂µ
= ne2τM−1

α,β (3.16)

M−1
α,β =

1

~2

∂2Ek

∂kα∂kβ
(3.17)

This is identical to the Drude result with band structure effects included in the

effective mass tensor. For metals, ∂f
∂µ ≈ δ(ǫ − ǫF ), and σ can be rewritten as an

integral over the Fermi surface AFS :

σαβ =
e2τ

4π3~

∫

dAFS

(vαvβ

v

)

(3.18)

⇒ σzz =
e2τ

4π3~

∫

dAFS (vz) (3.19)

A similar result can be obtained in a Landauer approach under the following

conditions: if λ is the mean free path, we assume the system length L ≫ λ. We then

coarse grain the system into M cells each of length l, where l < λ; in each cell we can

apply the ballistic Landauer formalism. We suppose some transmission probability

T through each cell, so that each cell has an associated scattering resistance of
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G−1 ∼ (1 − T )/T (see Eq. (3.14)). The total resistance is then given by the series

resistance:

G−1
tot =

M
∑

i=1

G−1
i = M

h

e2

(

1 − T

T

)

=
L

λ

h

e2

(

1 − T

T

)

(3.20)

The mean free path λ can be traded for a relaxation time τ via the relation l = vfτ .

Then

G−1
tot

L
=

1

vF τ

h

e2

(

1 − T

T

)

(3.21)

By summing over transverse channels (or integrating over the Fermi surface) , we

find

GtotL

A
≡ σ =

e2τ

2π2h

∫

dAFS vz

(

T

1 − T

)

(3.22)

Comparing to Eq. (3.19), the result reproduces the Boltzmann approach result

(with extra factors of T ). The exact values of T would depend on the choice of l

(and τ). The key point in this development is that the sample must be sufficiently

large so that a choice of l is possible such that the transmission T any portion

of the sample with this length is essentially uniform. In this sense, the scattering

throughout the sample is self-averaging: the details of particular scattering events

are washed out. To the extent that a sample is mesoscopic, such a choice of l is

not possible, and the specific details of the scattering throughout each section of the

sample are experimentally relevant.

3.4 The scattering matrix

So far we have considered Landauer’s formula, which relates the conductance of a

system connected to two reservoirs to the scattering state transmission probability.
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In this work we are also interested in multilayer systems, in which there are several

interfaces between different materials, each of which acts as a scattering potential.

A scattering matrix formalism is useful for studying such systems.

The scattering matrix expresses the out-going amplitudes in terms of in-

coming amplitudes:

|φout〉 = S |φin〉 (3.23)

In the geometries considered here, the asymptotic wave functions are Bloch states.

As a matter of notation, we write φL/R(+∞) for left/right moving states at z =

+∞, and φL/R(−∞) for left/right moving states at z = −∞. This is represented

schematically below:

Figure 3.3: Incoming and outgoing states scattering off a generic potential.

With this notation, Eq. (3.23) becomes:





φL(−∞)

φR(∞)



 = S





φR(−∞)

φL(∞)



 (3.24)

Where the scattering matrix has the form:

S =





r t′

t r′



 (3.25)

The utility of the scattering matrix approach is that the effect of multiple scattering

potentials can be found simply by composing the individual scattering matrices for
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each potential. For example, given two scattering matrices S1,S2, and supposing

that scatterer 1 is to the left of scatterer 2, we can compose them to find their

combined effect:

S12 =





r1 + t′1r2(1 − r′1r2)
−1t1 t′1(1 − r2r

′
1)

−1t′2

t2(1 − r′1r2)
−1t1 r′2 + t2(1 − r2r

′
1)

−1r′1t
′
2



 (3.26)

The total transmission amplitude through the two scatterers is therefore t12 =

t1(1 − r1r2)
−1t2. We can include phase coherent effects by including the phase

shifts associated with t1,2

T coherent
12 =

T1T2

1 + R1R2 − 2
√

R1R2 cos(θ)
(3.27)

where θ is the phase shift acquired by the state in one round-trip between the scatter-

ers. We can also remove phase coherent effects by composing transmission/reflection

probabilities instead of amplitudes. In this case the total transmission is:

T incoherent
12 =

T1T2

1 − R1R2
(3.28)

In later chapters we utilize both equations to highlight the differences between treat-

ing the transport between successive interfaces coherently and incoherently.

3.4.1 Scattering matrices and interface resistance

When concatenating scattering matrices or transmission amplitudes obtained from

the Landauer formula, it is important to include only the scattering contribution

to the resistance (and to discard the contact or Sharvin resistance); the distinction

between these contributions is described in Sec. (3.2). In Ref. [41], Schep et al.
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derive the proper interface resistance between two materials A and B.

RAB =
h

e2

(

1
∑

m |Tm|2 − 1

2

(

1

NA
+

1

NB

))

(3.29)

Where NA/B is the number of states at the Fermi level of material A, B. This

expression is a generalization of the scattering resistance given by Eq. (3.14). When

this formula is used, first principles calculations for interface resistance agree with

experimental results [42].

The contributions to experimentally observed resistance depend on the ex-

perimental geometry. For a 2-probe experiment, in which the same leads through

which current flows also detect the potential difference, the contact resistance is

measured along with the scattering resistance. If a 4-probe measurement is per-

formed, then the voltage probe no longer detects the contact resistance contribution

to the overall resistivity.

3.5 Conductance of materials in the diffusive regime

In this section we describe the formalism recently developed to calculate transport

properties of noncollinear magnetic systems within the diffusive regime [43, 42]. This

topic is somewhat ancillary to the main thrust of this thesis. We include the details

of this formulation however because in Sec (7.4), we will contrast the transport

properties obtained from a Landauer approach with the properties obtained from

this approach. The aim of that exercise is to highlight the role of the ballistic

assumption of our calculation.

As discussed in Sec. (3.1), the size of nanoscale or mesoscopic systems is

usually on the order of the mean free path or phase coherence length. In ballistic

theories of transport, such as the Landauer approach, phase coherent quantum in-

terference effects are fully included. In our calculation (and most others to date as
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well), interface scattering is taken to be specular, so that k‖ is conserved. In the

diffusive limit, both phase coherent and specular scattering effects are completely

removed. It is useful to study both regimes because real systems are probably not

entirely ballistic or diffusive, but possess properties of both.

The theory for spin-dependent diffusive transport in multilayer geometries

that we consider in this work is known as “spin-circuit theory” (SCT), or magneto-

electronics. It was introduced by A. Brataas, G. Bauer, and Y. Nazarov in 2000 [43].

Here we give an indication of the physics that is involved in its formulation. SCT can

be thought of essentially as Ohm’s and Kirchoff’s Laws generalized to noncollinear

spin space. Because of the vector nature of spin, all quantities which are scalers

(co) in conventional circuit theory become 4-vectors (co, cx, cy, cz) in SCT . As in

conventional circuit theory, the input parameters include the resistors (their topol-

ogy and values) and the applied voltages, while the outputs are the spin-dependent

current and voltages throughout the system. The first step in applying the theory

is to map a multilayer geometry into an equivalent configuration of resistors. The

orientations of the magnetic layers are the final input parameters for a calculation.

The resistivity of a multilayer has contributions from the bulk resistivity of the

materials involved, and also the resistivity from the sharp interface between two

different materials. In this work we will only consider the resistance contribution

from the interfaces, which should be larger for system with thin layers.

A trilayer spin-valve type structure can be mapped into a simple Kirchoff-

like circuit shown in Fig. (3.4). The interface resistance can be obtained from first

principles methods, and is characterized by 4 numbers: G↑, G↓, and G↑↓. Gσ is

the standard spin-dependent conductances found with Landauer’s formula. G↑↓ is a

complex number related to the noncollinear nature of the conductance, and is given
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Figure 3.4: Equivalent circuit model for trilayer calculation. The “resistors” repre-
sent the interfaces.

by:

G↑↓ =
∑

mn

(T ↑
mn)∗T ↓

mn (3.30)

The currents and potentials are defined in noncollinear spin space:

I =





I↑↑ I↑↓

I↓↑ I↓↓



 =
1

2
(Ic + Is · σ) (3.31)

f =





f↑↑ f↑↓

f↓↑ f↓↓



 = fN + s · σ (3.32)

The spin-dependent potential on a normal metal node (denoted by a super-

script N) can point in any direction, but the potential on a ferromagnetic node

(superscript F ) is assumed to point in the direction of the magnetization m:

fN = fN
c + fN

s s · σ (3.33)

fF = fF
c + fF

s m · σ (3.34)

The fact that the spin-dependent potential is aligned with the magnetization as-

sumes that the spin current flux transverse to the magnetization is absorbed by the
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magnetization. This is satisfied for layers thicker than about 3 nm [44] (see Sec.

(6.3)) .

It is convenient to rewrite the conductance parameters as G = G↑ + G↓,

p = (G↑−G↓)/G, ηR = 2Re G↑↓/G, ηI = 2Im G↑↓/G. The extension of Ohm’s Law

(I = GV ) for charge and spin current flowing between a F |N interface is then:

Ic = G
(

fF
c − fN

c

)

− p G
(

fN
s m · s − fF

s

)

(3.35)

Is = G
[(

p (fF
c − fN

c ) − fF
s + (1 − ηR)s · m

)

m

+ηRs + ηI (s × m)] (3.36)

Kirchoff’s Laws extended to noncollinear spin space take the form:

∑

α

Iα = 0 (for N and F nodes) (3.37)

∑

α

Isα = 0 (for N nodes) (3.38)

∑

α

Isα · m = 0 (for F nodes) (3.39)

Eqs. (3.37) and (3.38) state that the net charge and spin current flux into a normal

metal is 0. This represents conservation of charge and spin. Eq. (3.39) states that

the net flux of the spin current parallel to the magnetization is 0.

To give a feel for of a calculation based on these equations, we consider a

simple example to illustrate how the above may be applied in the most simple-

minded way. For the trilayer system represented in Fig. (7.8), the “input” variables

are applied voltage V1,V3, (the orientations of the two ferromagnets are also inputs,

and are implicit in V1,V3) and the resistors values G1, G2, while the “unknown”

variables are I1, I2,V2 (12 unknowns). Eqs. (3.35) and (3.36) for I1 and I2 give

8 equations, while Eqs. (3.37-3.38) give 4 more equations (note Eq. (3.39) is not

needed since the only unknowns are in a normal metal node) . Thus we have 12
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unknowns, and 12 linear equations, which can be easily solved (on a computer).

(This particular calculation can be simplified much more, but that need not concern

us here.)
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Chapter 4

Keldysh

In this chapter we consider a convenient formalism to apply the Landauer transport

picture. In Sec. (4.1) and (4.2), we give an account of equilibrium and nonequi-

librium Green’s functions, with the aim of elucidating the key differences between

between the two. In Sec. (4.3), we apply the nonequilibrium Green’s function for-

malism to the two-probe transport measurement geometry to derive expressions for

the density matrix. Finally, in Sec. (4.4), we explain the technical details of im-

plementing this formalism within DFT. The approach adopted here is somewhat

pedagogical, and there are many more heuristic or intuitive explanations of this for-

malism in the literature [40]. We do not go into great detail as to the nuts and bolts

implementation of this formalism, as the main thrust of the thesis is to build upon

this formalism in calculating spin transfer torques. With these caveats, we proceed.

4.1 Green’s functions in equilibrium systems

To describe an interaction or perturbation, we break up the Hamiltonian as follows:

H = H0 + H1 , (4.1)
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where H1 is the perturbing term. A standard method of handling the perturbation

term is with a Green’s function method. We are interested in situations in which the

perturbation introduces irreversible processes. In this case, the traditional Green’s

function method is modified, leading to the so-called nonequilibrium Green’s func-

tion formalism. This was initially developed by Schwinger [45], Keldysh [46], and

Kadanoff and Baym [47]. The approach described here is that of Keldysh. To il-

lustrate the key ingredients of this formulation, we briefly review the formulation

of the traditional Green’s function expansions, and then specify how this expansion

changes in the presence of irreversible transitions.

The derivation of the expression of the Green’s function expansion is formal,

so it is useful for orientation to sketch a preview of the steps involved: first we define

an operator S which propagates states ψ according to H1. S is then written as a

power series expansion in H1. With this approximate expression for S, we can de-

termine the expectation value of any operator Ô (in particular the Green’s function

operator Ĝ) for the system described by the full Hamiltonian.

Interaction picture

In order to formulate a perturbation expansion for S in powers of H1, it is

necessary to use the interaction picture for time evolution. Time evolution is often

described by the Schrödinger or Heisenberg picture: In the Schrödinger picture, the

dynamics is ascribed to the wave function ψ(t), while in the Heisenberg picture

the dynamics is ascribed to operators Ô(t). In the case where the Hamiltonian is

time-independent, these two pictures’ time dependence can be written as:

ψS(t) = ei~HtψS(0) Schrödinger (4.2)

ÔH(t) = e−i~HtÔH(0)ei~Ht Heisenberg . (4.3)
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(The subscripts S and H indicate Schrödinger and Heisenberg, respectively). In the

interaction picture, the states ψ evolve in time according to H1, while the operators

evolve according to H0. This is accomplished by defining ψI(t) = eiH0tψS(t) (sub-

script I is for interaction picture). This definition can be understood intuitively:

ψS(t) evolves with the full Hamiltonian, while eiH0t undoes the contribution of H0,

leaving the contribution of H1. The equations of motion for a state and an operator

are in the interaction picture are then:

i~
∂ψI

∂t
= ĤIψI (4.4)

∂ÔI

∂t
= i~[ÔI , Ĥ0] . (4.5)

Time evolution operator S

Now we define the propagator S(t, t′) as:

ψI(t) = Ŝ(t, t′)ψI(t
′) . (4.6)

S propagates a state forward in time under the action of the perturbing Hamiltonian

H1. The formal expression for S is given as:

S(t, t′) =
∞

∑

n=0

1

n!

∫ t′

t
dt1 · · ·

∫ t′

t
dtnT [Ĥ1(t1) · · · Ĥ1(tn)] . (4.7)

The symbol T orders the operators so that the operators at earlier times are to the

right of operators at later times. If ψ0 is the ground state wave function of H0, then

S has the following important property:

ψI(t) = S(t,−∞)ψ0. (4.8)
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In Eq. (4.8), it is assumed that the perturbation is adiabatically turned on, starting

from a system with no perturbation present at t = −∞ (the adiabatic assumption

ensures that the system remains in its ground state as the perturbation is turned

on).

The expectation value of an operator in the Heisenberg picture is related to

the expectation value in the interaction picture as follows:

〈ÔH(t)〉 =
〈ψ0|ÔH(t)|ψ0〉

〈ψ0|ψ0〉
=

〈ψI(t)|ÔI(t)|ψI(t)〉
〈ψ0|ψ0〉

=
〈ψ0|S(+∞, t)ÔI(t)S(t,−∞)|ψ0〉

〈ψ0|S(+∞, t)S(t,−∞)|ψ0〉
. (4.9)

Eq. (4.9) can be understood intuitively: the operator OI contains the contribution

to the time evolution from H0, while S contains the contribution from H1; their

combination given in Eq. (4.9) gives the combined effect for the total evolution,

allowing for the evaluation of ÔH .

The adiabatic assumption is made in Eq. (4.9) when we write 〈ψI(t)| =

〈ψ0|S(∞, t). Here we assume that the perturbation is turned off at t = ∞, and

that upon turning off the perturbation, the state returns to its known ground state.

That is, we assume reversibility. This is the key assumption that is lifted in the

nonequilibrium Green’s function formalism.

Plugging the formal expression for S into Eq. (4.9) leads to the result:

〈ÔH(t)〉 =
1

〈ψ0|S|ψ0〉
〈ψ0|

∞
∑

j=0

(−i

~

)j 1

j!

∫ ∞

−∞
dt1 · · ·

· · ·
∫ ∞

−∞
dtjT [Ĥ1(t1) · · · Ĥ1(tj)ÔI(t)]|ψ0〉 . (4.10)

The right hand side of Eq. (4.10) is expressed as a perturbation series in H1, which

can be truncated to determine the expectation value approximately. Wick’s theo-

rem describes the way in which re-ordering the time ordered operators into normal
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ordered operators (which vanish) generates residual contraction terms (due to the

non-commutativity of fermionic operators). The expansion is then entirely com-

posed of these contracted terms [48, 49, 50].

The Green’s Function

So far, the operator Ô has been unspecified. We know introduce the Green’s

function G. G is an important operator because other observables can be obtained

from it. The Green’s function is defined as:

Gi,j(t, t
′) =

−i〈ψ0|T [ĉi(t)ĉ
†
j(t

′)]|ψ0〉
〈ψ0|ψ0〉

, (4.11)

where ĉi, ĉ
†
i are the annihilation and creation operators for an electron in state i.

ĉi(t) is defined in the Heisenberg picture:

ĉi(t) = eiHtĉie
−iHt . (4.12)

The expectation of an operator Ô can be found with the knowledge of G:

〈Ô〉 = i limt′→tTr[ÔĜ(t, t′)] . (4.13)

When the Green’s function is inserted into the expansion of Eq. (4.10), it

is possible to associate each one of the contracted terms with a Feynman diagram.

These diagrams can be constructed on physical grounds, and so in principle one can

carry out the series expansion by writing down all of the appropriate diagrams.

The j = 0 term in the expansion 4.10 corresponds to the unperturbed Green’s

function G0, which is known. Each subsequent term in the expansion corresponds

to a particular physical process involving the perturbation H1. A single instance of
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this physical process can be denoted by Σ (an example of such a process could be

scattering off a impurity). The Green’s function obtained from including a single

such process is:

G = G0 + G0ΣG0 . (4.14)

The effect of iterating this process over and over is captured by the Dyson equation:

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + ... = G0 + G0ΣG (4.15)

⇒ G =
G0

1 − Σ
=

1

E − H0 − Σ
. (4.16)

In general to describe a perturbation H1, it is necessary to calculate Σ in some

approximation, and apply the Dyson equation. More details and examples of the

application of this formalism can be found in standard textbooks [48, 49, 50].

4.2 Nonequilibrium Green’s function

Formally, Eq. (4.10) describes a situation in which the perturbation is turned off

at t = −∞ and the ground state is |ψ0〉; the perturbation is adiabatically turned

on, and the operator expectation value is evaluated at some finite time, and then

the perturbation is adiabatically turned off. The time contour of the propagator is

simply begins at t = −∞ and ends at t = ∞. Properties are calculated at interme-

diate times for which interactions play a role. As mentioned previously, implicit in

this formalism is the assumption that when the perturbation is turned off, the state

returns to its original ground state (within a phase factor). However, for certain

types of perturbations, this assumption may not be satisfied, and it is necessary to

reformulate the perturbation scheme. The essential idea is to adiabatically turn on

the perturbation, evaluate quantities of interest, and then reverse the time contour
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back to t = −∞. By doing this we are assured that the system returns to its ground

state at the end of the propagator’s time contour. The contour of the propagator S

then has the following form shown in Fig. (4.1), and is referred to as the Keldysh

contour.

Figure 4.1: The Keldysh contour.

The development of the theory of nonequilibrium Green’s functions is for-

mally identical with the equilibrium case, with the exception that the time contour

is now along the Keldysh contour. In particular, the propagator S is defined as

before, but now on the Keldysh contour:

S(τ, τ ′) =
∞

∑

n=0

1

n!

∫ τ ′

τ
dτ1 · · ·

∫ τ ′

τ
dtnTC [Ĥ1(τ1) · · · Ĥ1(τn)] . (4.17)

The time label τ is reserved for points along the contour. The time ordering operator

TC orders operators such that operators further along the contour are to the left of

those earlier along the contour. The relation between Heisenberg and interaction

picture operators is identical to the earlier version, now evaluated on the contour

(compare Eq. (4.9)):

〈ÔH(τ)〉 =
1

〈ψ0|S|ψ0〉
〈ψ0|

∞
∑

j=0

(−i

~

)j 1

j!

∫

C
dτ1 · · ·

· · ·
∫

C
dτjTC [Ĥ1(τ1) · · · Ĥ1(τj)ÔI(τ)]|ψ0〉 . (4.18)
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As before, we are interested in the Green’s function, now with time arguments

defined on the contour:

Gi,j(τ, τ
′) =

−i〈ψ0|TC [ĉi(τ), ĉ†j(τ
′)]|ψ0〉

〈ψ0|ψ0〉
. (4.19)

The Green’s function possesses a perturbation expansion based on a Wicks theorem,

as in the equilibrium case. Since the contour consists of a forward and a backward

branch, it is necessary to introduce different Green’s functions to distinguish between

the possible cases of the 2 time arguments (this is the major source of complication

for the nonequilibrium case):

G(τ, τ ′) =































G<(τ, τ ′) if τ on upper contour, τ ′ on lower ;

G>(τ, τ ′) if τ on lower contour, τ ′ on upper ;

GT (τ, τ ′) if τ, τ ′ both on upper contour ;

GT̄ (τ, τ ′) if τ, τ ′ both on lower contour .

(4.20)

Where we have introduced the lesser Green’s function:

G<(t, t′) = i〈ĉ†(t′)ĉ(t)〉 , (4.21)

the greater Green’s function:

G>(t, t′) = −i〈ĉ(t)ĉ†(t′)〉 , (4.22)

the time ordered Green’s function:

GT (t, t′) = −i〈T [ĉ(t)ĉ†(t′)]〉 , (4.23)
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and the anti-time ordered Green’s function:

GT (t, t′) = −i〈T [ĉ(t)ĉ†(t′)]〉 . (4.24)

This overall Green’s function, with its 4 components, is referred to as the Keldysh

Green’s function. It is also convenient to define the advanced and retarded Green’s

functions

Ga(t, t′) = −iθ(t − t′)〈{ĉ(t), ĉ†(t′)}〉 = θ(t′ − t)[G<(t, t′) − G>(t, t′)] ; (4.25)

Gr(t, t′) = iθ(−t + t′)〈{ĉ(t), ĉ†(t′)}〉 = θ(t − t′)
[

G>(t, t′) − G<(t, t′)
]

. (4.26)

Of particular importance is G<. This component of the Keldysh Green’s

function yields information about observables:

〈Ô〉 = −i limt→t′Tr[G<(t, t′)Ô] . (4.27)

The machinery described in this thesis essentially describes the calculation of G<

for various systems under equilibrium and nonequilibrium situations.

Matrix multiplication on the Keldysh contour can be broken up into its

analytic pieces, according to Langreth’s rules [51]. For example, the matrix multi-

plication on the contour given by:

A(τ, τ ′) =

∫

C
dτ ′′B(τ, τ ′′)C(τ ′′, τ ′) (4.28)

Can be can be expressed in terms of Keldysh components as:

A≷(t, t′) =

∫ ∞

−∞
dt′′Br(t, t′′)C≶(t′′, t′) +

∫ ∞

−∞
dt′′B≷(t, t′′)Ca(t′′, t′) (4.29)

AR/A(t, t′) =

∫ ∞

−∞
dt′′BR/A(t, t′′)CR/A(t′′, t′). (4.30)
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Omitting the integration signs, the above may be written more succinctly as A≷ =

BrC≶+B≷Ca. For a triple product of the form D = ABC on the contour, iterating

Langreth’s rules leads to the useful result:

D< = ArBrC< + ArB<Ca + A<BaCa . (4.31)

As before, the Green’s function satisfies a Dyson equation on the contour :

G = G0 + G0ΣG . (4.32)

Using Eq. (4.31), the lesser component is given by:

G< = Gr
0Σ

rG< + Ga
0Σ

<Gr + G<
0 ΣaGa . (4.33)

Iterating this equation for G< once yields:

G< = (1 + Gr
0Σ

r)G<
0 (1 + ΣaGa) + (Gr

0 + Gr
0Σ

rGr
0)Σ

<Ga+ (4.34)

Gr
0Σ

rGr
0Σ

rG<.

The above can be iterated infinitely and written in closed form:

G< = (1 + GrΣr)G<
0 (1 + GaΣa) + GrΣ<Ga . (4.35)

The first term of Eq. (4.35) is a boundary condition term and is not relevant for

the steady state solution [51, 52]. Omitting it leads to the final result:

G< = GrΣ<Ga . (4.36)

This is known as the Keldysh equation, and is the central result of this formal

development.
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4.3 Application to the 2-probe geometry

To give an example of this formalism which is especially useful to the main body of

the thesis, we consider a finite system which is connected to two semi-infinite leads.

This calculation was done initially by C. Caroli et al. in Ref. [53]. The Hamiltonian

describing this system is taken to be a simple single particle 1-d tight binding model

for simplicity. Generalizations to multi-band and/or multidimensional systems are,

in principle, straightforward.

HC =
∑

〈i,j〉
t(i,j)c

†
icj ; (4.37)

HL =
∑

〈α,β〉∈L

t(α,β)d
†
αdβ +

∑

〈α,β〉∈R

t(α,β)d
†
αdβ ; (4.38)

HI =
∑

〈i,α∈L〉
t(i,α)c

†
idα +

∑

〈i,α∈R〉
t(i,α)c

†
idα . (4.39)

Here the c operators are defined for center region, and the d operators for the

leads. i, j, α, β are arbitrary labels, but we eventually take them to be site labels.

HC is the Hamiltonian for the central region or system (which is finite), HL is the

Hamiltonian for the left and right leads, and HI describes the coupling between

system and leads. The total Hamiltonian is H = HC + HL + HI .

The task is to calculate the Green’s functions G< and Gr of the center region

This can be accomplished by the equation of motion method. It is useful to first

record a number of commutators that will be used in the derivation (For simplicity

we only consider coupling to the R lead.):

[cn, H] =
∑

j

cn(tj,n + tn,j) +
∑

α

dαtn,α ; (4.40)

[dγ , H] =
∑

α

dγ(tα,γ + tγ,α) +
∑

i

tγ,ici . (4.41)

46



In the equation of motion method, expressions for Gr and G< are found from eval-

uating the time derivative of Gr:

Gr
n,m(t, t′) = −iθ(t − t′)〈{cn(t), c†m(t′)}〉 (4.42)

⇒ i
∂Gr

n,m(t, 0)

∂t
= δ(t)〈{cn(t), c†m(t′)}〉 + θ(t − t′)〈{[cn(t), H], c†m(0)}〉 .(4.43)

Using the commutators of Eq. (4.40), the 2nd term of Eq. (4.43) becomes:

θ(t)〈{[cn(t), H] , c†m(0)}〉 = θ(t)
∑

j

(tn,j + tj,n) 〈{cj , c
†
m}〉 + θ(t)

∑

α

tn,α〈{dα, c†m}〉

= (HCGr)n,m + (HIΓ)n,m . (4.44)

Where we have defined

Γγ,m(t, t′) = −iθ(t − t′)〈{dγ(t), c†m(t′)}〉 . (4.45)

Combining Eq. (4.43-4.45) leads to an expression for ∂tG
r:

[(i∂t − HC)Gr(t)]n,m = δ(t)δn,m + (HIΓ(t))n,m . (4.46)

We now proceed to differentiate Γ with respect to time:

∂Γ

∂t
= δ(t)〈{dγ(t), c†m(t′)}〉 + θ(t)〈{[dγ(t), H], c†m(0)}〉 . (4.47)

Using Eq. (4.41), the 2nd term of Eq. (4.47) is written

〈{[dγ(t), H], c†m(0)}〉 =
∑

α

(tα,γ + tγ,α) 〈{dγ , c†m}〉 +
∑

i

tα,i〈{ci, c
†
m}〉 . (4.48)
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Plugging this into Eq. (4.47), we obtain an expression for ∂tΓ:

∂Γγ,m

∂t
= δ(t)〈{dγ , c†m}〉 + θ(t)

∑

α

(tα,γ + tγ,α) 〈{dγ , c†m}〉

+ θ(t)
∑

i

tα,i〈{ci, c
†
m}〉 (4.49)

= (HRΓ)γ,m + (H†
IG

r)γ,m . (4.50)

Collecting terms, we obtain:

[(i∂t − HR)Γ]γ,m = (H†
IG

r)n,m . (4.51)

This inhomogeneous partial differential equation for Γ can be solved with the aid of

the Green’s function for the differential operator (i∂t − HR), denoted by Gr
R:

[(i∂t − HR)Gr
R(t)]nm = δ(t)δn,m . (4.52)

Notice the Gr
R is nothing but the retarded Green’s function for the isolated right

lead. Γ is then given by:

Γ =

∫

dt1G
r
R(t − t1)H

†
IG

r(t1) . (4.53)

Recognizing this as a convolution, we can write Γ in the energy domain as

Γ(E) = Gr
R(E)H†

IG
r(E) . (4.54)

The previous expression for Gr (Eq. (4.46)) may also be written in energy space as:

[(E − HC)Gr(E)]n,m = δn,m + (HIΓ(E))n,m . (4.55)
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Combining this with the previous expression for Gr, we obtain:

[(E − HC)Gr(E)]n,m = δn,m + HIG
r(E)H†

IG
r(E) . (4.56)

This can be identified with the equation

Gr = Gr
0 + Gr

0Σ
rGr , (4.57)

with the identification

Σr = HIG
r
R(E)H†

I . (4.58)

At this point we specify the nature of the HI central system-lead coupling. We

assume that only the edge of system couples to the edge of the lead. If we take

HI (0,1) = T , then the self energy can be written:

Σr
11 = TGr

R(E)(0,0)T
† . (4.59)

This key simplification is made possible by using a real space basis.

Using this form for the self-energy, the total Green’s function is then given

by:

Gr(E) = Gr
0(E) + Gr

0(E)ΣrGr(E) (4.60)

⇒ Gr(E) = Gr
0(E) + Gr

0(E)
(

TGr
R(E)T † + T ′Gr

L(E)T ′†) Gr(E) . (4.61)

Fig. (4.2) indicates how this equation may be understood intuitively. Recall

that the retarded Green’s function Gij may be interpreted as the amplitude for

hopping to site j starting from site i. Again the geometry of the overall system

is that of a finite central region connected to two semi-infinite leads. The total
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Figure 4.2: Physical interpretation of the retarded Green’s function with the leads
represented by self energies. The factors of the second term correspond to hopping
from i to j while making excursions into the left lead, shown by the arrows in the
picture.

amplitude to hop from site i to site j in the central region includes the amplitude

to make that transition by hopping merely within the central region - given by G0

- plus the amplitude for i to j transitions that are interrupted by excursions to the

leads. This is represented by the 2nd term shown in Fig. (4.2). The factors in this

term represent physically hopping to the edge of the central region (Gr
0(i,a)), hopping

into the edge of the lead (T ), hopping about the lead and back to the edge of the

lead (Gr
R(α,α)), hopping back into the edge of the system (T †), and finally hopping

to site j of the system (Gr
0(a,j)). Notice that the last Green’s function is the total

Green’s function, so that the equation is written in Dyson-esque form.

Once Σr is known, we find Σ<(E) from the relation [40]:

Σ<(E) = −i(Σr − Σa)f(E) ≡ Γ(E)f(E) . (4.62)

Where f is again the fermi distribution function, and we have defined Γ ≡ −i(Σr −
Σa). As described earlier (see Eq. (4.27)), the density matrix is determined from
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G<:

ρ =
1

π

∫

G<(E)dE =
1

π

∫

Gr(E) [ΓL(E)fL(E) + ΓR(E)fR(E)] Ga(E)dE . (4.63)

From the above, the bias across the junction enters the formalism in the different

occupation functions of the left and right leads. For energies where fL(E) = fR(E)

(both leads are occupied), the following relation holds:

Gr(E) [ΓL(E)fL(E) + ΓR(E)fR(E)] Ga(E) = 2Im [Gr(E)] . (4.64)

Using this relation, we rewrite the integral of Eq. (4.63) into two parts:

ρ =
2

π

∫ Ef

−∞
Im[Gr(E)]dE +

1

π

∫ Ef+eV

Ef

Gr(E)Σ<(E)Ga(E)dE . (4.65)

The equilibrium contribution to the density matrix ρ comes from the first term,

while the nonequilibrium, or current-carrying portion comes from the 2nd term.

The integral over energy is vastly simplified by exploiting the analytic prop-

erties of Gr(E). Since the poles of this function are in the lower half of the complex

plane, the integral can be performed over a semi-circle in the upper half complex

plane. The integrand is a smooth function in this energy region [54], so that it can

be evaluated accurately with less samping than would be required to do the integral

along the real axis. The nonequilibrium portion of the integral for ρ is not analytic,

and so must be performed directly along the real axis.

Once ρ is determined, all other observables Ô can be found, as explained in

Sec. (4.2).
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Figure 4.3: Contour integration for the Green’s function. In the complex plane,
the integral is evaluated using Gaussian quadrature with 20-40 points, while the
nonequilibrium portion is evaluated along the real axis.

4.4 Implementation

The description of the calculation of the density matrix in nonequilibrium systems

has so far been fairly general. We now specify is application for a mean-field, self-

consistent Hamiltonian described within an LCAO basis. All of the expressions in

the previous section are applicable for a multi-orbital basis set. The aspects of the

calculation that require further examination are the boundary conditions of the self-

consistent potential, and the calculation of self-energies. These details are explained

in the following sections.

4.4.1 Boundary conditions

A key ingredient in our calculation is the treatment of boundary conditions at the

system-lead interface. We make the ansatz that the charge density at the edge of

the system has relaxed to its bulk value. (We refer to this ansatz as the “bulk-

relaxation approximation”). The screening length of metals is on the order of 0.1−
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1.0 nm (see Table (3.1)), so this approximation is well-founded in metals. To impose

this condition, we solve the Hartree equation for the center region with boundary

conditions:

V system
H |z=0 = V Left bulk

H (4.66)

V system
H |z=L = V Right bulk

H . (4.67)

We have found that imposing this condition on the Hartree potential ensures that

the charge densities, and therefore the total effective potential, matches smoothly

across the boundary [54]. It is necessary to include several buffer layers of the

lead material in the center region in order to guarantee the validity of the bulk-

relaxation approximation. Convergence with respect to the number of buffer layers

can be tested by increasing the number of buffer layers and making sure that the

results do not change.

In equilibrium, the self-consistent potential ensures that there is a common

Fermi level throughout the system. In our equilibrium calculations, we shift the

energies of the 2 leads to a common Fermi energy, and let the charge in the system

relax to self-consistency.

Figure 4.4: Atomic positions at a Cr-Au interface. The grey and black circles
represent Au and Cr atoms, respectively. The interface is assumed to be flat, and
transverse periodic boundary conditions are used.

Here we consider a single bulk Chromium - bulk Gold interface as an exam-
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ple which demonstrates the validity of the bulk relaxation approximation, and the

physics of the self-consistent potential. Fig. (4.4) shows the atomic coordinates at

the interface. Here we consider a perfectly flat interface along the [001] crystal direc-

tion. Fig. (4.5) shows the density of states of the Cr and Au bulk leads. Here both

Fermi level of both materials is set to 0. The density of charge in Au is larger than

that of Cr, which is manifested by a larger total number of states below the Fermi

level for Au. This mismatch in density causes a re-arrangement in the electronic

distribution at the interface. This is shown in Fig. (4.5) - here charge accumulates

on the first Cr layer, and is depleted from the first Au layer. The net potential drop

across the interface can be estimated from the charge transfer:

eV = ρd =

(

0.3C

A

)

3.29 a.u. = .902 eV (4.68)

This can be compared to the difference in work functions between the two materials:

φCr − φAu = 5.28 − 4.44 = .84 eV .

Fig. (4.6) illustrates the matching of the charge density at the edge of the

sample and the bulk lead for the same calculation. It is clear that the bulk-relaxation

approximation holds very well for this system.

4.4.2 Self-energy calculation

Another component of our method involves the calculation of self-energy terms,

which represent the coupling of the central system to the leads. This self-energy is

given by the expression

Σr
nm(E) = HI (n,γ)G

r
R(E)(γ,β)HI (β,m) . (4.69)
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Figure 4.5: Energy shifts of bulk leads and the ensuing charge transfer in 2-probe
geometry, for a system of semi-infinite Cr adjacent to semi-infinite Au.

Here Greek indices γ, β refer to sites in the lead, while indices n, m refer to sites in

the central system. Gr
R(E) is the Green’s function of the semi-infinite lead:

(E − HR)Gr
R(E) = 1 . (4.70)

The lead-system coupling HI connects only sites at the edge of the system and at

the edge of the lead. For this reason, it is necessary only to calculate the components

of Gr
R at the edge. To determine these edge components (or the “surface” Green’s

function), we first write the periodic Hamiltonian for the semi-infinite left lead in
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Figure 4.6: Charge density through a slice of real space for Cr-Au system. The
black dotted lines indicate the system-lead boundaries, and indicate that the charge
density is continuous at the boundary.

the form:

HL =











. . .
. . .

. . . 0

Hl+1,l Hl,l Hl,l+1

0 Hl,l−1 Hl,l











. (4.71)

The size of the periodic Hl,l block is taken to be large enough so that blocks only

interact with nearest neighbors. (So that Hl,l+2 = 0, for example).

The total equation for the lead Green’s function is given as:











. . .
. . . 0

Hl+1,l E − Hl,l Hl,l+1

0 Hl,l−1 E − Hl,l





















. . .
. . . G−2,0

G−1,−2 G−1,−1 G−1,0

G0,−2 G0,−1 G0,0











= I . (4.72)

Because we have taken Hl,l to be large enough, we only need to find the G0,0

element of G. To do so, we use the method described in Ref. [55]. The basic idea

is to multiply the two matrices in Eq. (4.72) together and determine a recurrence

relation for G0,0. This recurrence is infinite, but can be truncated at some level to
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obtain an arbitrarily accurate value of G0,0.

Once ΣL/R is determined for the left/right leads, the Green’s function is

obtained by direct matrix inversion:

GR(E) = (E + iη − HC − ΣL − ΣR)−1 . (4.73)

4.4.3 Calculating the transmission

Once G is determined, the transmission probability T is found from the Fisher-Lee

relation. Here we quote the result, from Ref. [56]:

T = Tr
[

ΓLGRΓRGA
]

, (4.74)

where ΓL/R = i(ΣR −ΣA)L/R. In systems with transverse periodicity in the x, y di-

rections, all of the quantities above have a kx, ky dependence, and all quantities must

be integrated over kx and ky. (Typically this requires a very fine integration mesh,

with at least NkxNky > 104 for transverse Brouillon zone areas of (π/3Å)2.) The

main computational bottleneck is evaluating Eqs. (4.73) and (4.74) for a sufficient

number of energies and k‖.
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Chapter 5

Density Functional Theory

5.1 Introduction

Electronic degrees of freedom in a solid are described by the many body non-

relativistic Schröedinger equation HΨ = i∂tΨ with the Hamiltonian:

H = − ~
2

2m
∇2 −

∑

i,K

ZKe2

|ri − RK| +
1

2

∑

i6=j

e2

|ri − rj|
(5.1)

The Hamiltonian 5.1 contains terms describing the kinetic energy, the potential

of the lattice, and the electron-electron interaction energy, which we denote by

T̂ , V̂ , and Û , respectively. The wave function Ψ(r1, ..., rN ) must be anti-symmetric

according to Fermi statistics:

P̂ [Ψ (r1, ..., rN )] = (−1)R Ψ (r1, ..., rN ) (5.2)

Where P̂ is a permutation operator of rank R. Eq. (5.1) represents the “theory of

everything” for electrons in molecular and solid-state systems. However the many-

body nature of the system generally makes the exact problem intractable. In his

Nobel prize speech, Walter Kohn speaks of the “exponential wall” that is encoun-
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tered in approaching the problem directly: if the number of electrons is N , and each

electron is described by M parameters (for example M = 2 for spin) the Hilbert

space of the fully interacting system is MN . Today’s most powerful computers can

handle up to N = 10 (for M = 3) , and so for solid state systems a direct approach

is obviously not feasible. The source of the difficulty is the many-body nature

of the system, or the electron-electron interaction. Approximations usually treat

the interaction term in a mean-field fashion, such as in Hartree-Fock theory. This

chapter describes an approach known as density functional theory (DFT). While

implementations of DFT often have the structure of a mean field theory, its formal

justification is different.

This chapter is organized as follows: In Sec. (5.2) we state and prove the

Hohenberg-Kohn theorem, which is central to DFT. We then describe the Kohn-

Sham scheme and local density approximation. In Sec. (5.3), we desribe the pseu-

dopotential approximation employed in this work, while in Sec. (5.4), we describe

the atomic orbital basis set used. In Sec. (5.5), we describe the solution procedure

for finding self-consistent ground states of the Kohn-Sham equations. Finally, in Sec.

(5.6), we describe the exchange-correlation functionals used in this work, which in-

clude noncollinear spin dependence. We omit details regarding the evaluation of

matrix elements with our basis set. We employ the same methods as described in

detail in Ref. [10].

5.2 General formulation - Hohenberg Kohn theorem

The Hohenberg-Kohn (H-K) theorem [57] is the central theoretical underpinning for

density functional theory. The theorem states that the electronic charge density of a

systems’s ground state ρ(r) uniquely determines the external potential and electron

number - implicitly determining all observable properties of the system. Clearly the

external potential and electron number determine the ground state density from Eq.
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(5.1), but the HK theorem states that this mapping is one-to-one and invertible:

{Vext(r), N} ↔ ρ(r) . (5.3)

The proof is simple (we will consider a nondegenerate ground state here, although

the theorem holds for degenerate ground states as well [58]): suppose a system of N

electrons with potential V1(r) and Hamiltonian Ĥ1 has a ground state wave function

Ψ1 with energy E1 and density ρ(r). Then E1 is given by:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 = 〈Ψ1|T̂ + Û |Ψ1〉 +

∫

drV1(r)ρ(r) . (5.4)

Now suppose there is a second potential V2(r) which differs from V1 by more

than an additive constant, with a ground state wave function Ψ2, energy E2, and

the same density ρ(r). Again we have:

E2 = 〈Ψ2|T̂ + Û |Ψ2〉 +

∫

drV2(r)ρ(r) . (5.5)

Since Ψ1 is the ground state for H1, we have the inequality

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|T̂ + Û |Ψ2〉 +

∫

drV1(r)ρ(r) (5.6)

= E2 +

∫

dr(V1(r) − V2(r))ρ(r) .

By the same token:

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|T̂ + Û |Ψ1〉 +

∫

drV2(r)ρ(r) (5.7)

= E1 +

∫

dr(V2(r) − V1(r))ρ(r) .
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Adding Eq. (6.1) and (5.8) results in a contradiction:

E1 + E2 < E1 + E2 . (5.8)

Therefore the assumption that two different external potentials V1 and V2 can yield

the same ground state density ρ(r) is false. ρ(r) therefore uniquely determines the

potential V - or the potential is unique functional of the ground state density. This

proves that the potential and particle number are a one-to-one, invertible function

of the ground state density, proving the theorem. (Again this proof is valid provided

that the ground state of the system in question is not degenerate.)

Since the ground state energy is a functional of the density (denoted by

E[ρ(r)]), both ρ and E can be determined with a variational approach.

E = minρ(r)E[ρ(r)] , (5.9)

where

E[ρ(r)] =

∫

drV (r)ρ(r) + F [ρ(r)] , (5.10)

and F [ρ] is given by

F [ρ] = minα[〈(Ψα
ρ |T̂ + Û |Ψα

ρ 〉] . (5.11)

The minimization in Eq. (5.11) is over all many-body wave functions Ψα
ρ which

yield the ground state density ρ. F is a universal function of ρ which is indepen-

dent of the particular potential V of the system. The exact determination of F is

equally intractable as the diagonalization of the original many-body Hamiltonian.

However, approximations are more easily accessible since it is a functional of only a

3-dimensional real function.
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The simplest functional for F is provided by Thomas-Fermi theory [58]

(which was developed before the H-K theorem). In this case, the kinetic and elec-

trostatic energies are derived from a free electron gas, with the result

ETF [ρ] =
3(3π2)2/3

10

∫

drρ5/3(r) +
1

2

∫

drdr′
ρ(r)ρ(r′)
|r − r′| . (5.12)

Thomas-Fermi theory provides an illustrative example of potential difficulties

in formulating an accurate density functional theory. It is well known that Thomas-

Fermi theory suffers from serious deficiencies, in particular it predicts that atoms

never bond into molecules [58]. The central defect is the treatment of the kinetic

energy. Recent work has gone into finding more accurate forms for the kinetic energy

functional, but usually the problem is circumvented by using Kohn-Sham equations.

5.2.1 Kohn-Sham equations

In the Kohn-Sham formulation of density functional theory [59], the functional F is

given as:

F [ρ(r)] ≡ Ts[ρ(r)] +
1

2

∫

ρ(r)ρ(r′)
|r − r′| drdr′ + Exc[ρ(r)] , (5.13)

where Ts[ρ(r)] is the kinetic energy of non-interacting electrons with a total density

ρ. The motivation for this definition is that it gives a much better approximation

to the kinetic energy, which typically comprises a large part of the total energy

[60]. The above form of F serves as a definition of Exc. Exc contains all of the

non-classical contributions to the energy. The total energy is then given by:

E =

∫

drV (r)ρ(r) + Ts[ρ(r)] +
1

2

∫

ρ(r)ρ(r′)
|r − r′| drdr′ + Exc[ρ(r)] . (5.14)
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In the Kohn-Sham scheme, ρ(r) is represented with basis functions {φi(r)}, which

are usually taken to be orthogonal:

ρ(r) =
N

∑

i=1

|φi(r)|2 (5.15)

〈φ∗
i (r)|φj(r)〉 = δij . (5.16)

The total energy 5.14 is minimized by the ground state. In terms of {φi},
this minimization condition is

δE[ρ]

δφi(r)
= 0 . (5.17)

The orthogonality condition is imposed by introducing Lagrange multipliers Ei:

δE[ρ]

δφi(r)
− Eiφi(r) = 0 . (5.18)

The functional 5.14 is then extremized with respect to φi(r), δE/δφi(r), yielding

the Kohn-Sham equations:

(

−1

2
∇2 + veff(r) − ǫi

)

φi(r) = 0 ; (5.19)

veff(r) = V (r) +

∫

ρ(r′)
|r − r′|dr

′ + vxc(r) . (5.20)

Where the exchange correlation energy is given by

vxc(r) =
δ

δρ(r)
Exc[ρ(r)] . (5.21)

The interacting problem is now simplified into a set of non-interacting Schrödinger

equations with an effective potential which has to be determined self-consistently.

These equations have much the same structure as the Hartree-Fock equations, except
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that the Hartree-Fock exchange potential is non-local in space. The formulation for

the ground state is still in principle exact. As discussed in the next section, approx-

imations of Exc are needed for practical implementation of the K-S equations. The

effective Hamiltonian depends on the solutions {φi} through ρ(r), so the structure

of these equations is that of a self-consistent mean field theory. The solution of these

equations is a difficult task, and we discuss their solution in the remainder of this

chapter.

5.2.2 Total energy

The expression Eq. (5.14) for the total energy can be re-written as

Etot = EBS + δEH + δExc + Eion−ion . (5.22)

Where EBS represents the single particle contribution to the energy:

EBS =
N

∑

i

Ei , (5.23)

and the Kohn-Sham eigenvalues Ei are:

Ei =

∫

dr (φi(r))
∗
{−∇2

2
+

∫

dr′
ρ(r′)
|r − r′| + Vxc(ρ(r)) + Vion−el

}

φi(r) . (5.24)

The remaining terms represent double counting corrections to the single particle

energy (δEH) and the exchange correlation energy (δExc)

δEH = −1

2

∫

dr
ρ(r)ρ(r′)
|r − r′| , (5.25)

δExc =

∫

dr

(

Exc(r)

ρ(r)
− Vxc(r)

)

, (5.26)
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and the last term Eion−ion is the electrostatic energy of the ions:

Eion−ion =
∑

I 6=J

ZIZJ

|RI − RJ|
. (5.27)

In this work we adopt the Born-Oppenheimer approximation and assume that the

ionic positions are frozen. The validity of this approximation follows from the fact

that mion ≫ melectron. The proper ionic positions are obtained by minimizing the

total energy. In this work we have simply taken experimental values for lattice

constants and not performed this minimization (or ionic relaxation) explicitly.

5.2.3 Local density approximation

The Kohn-Sham formulation of density functional theory is, to this point, still exact.

All of the complications arising from the many-body nature of the problem are

contained in Exc[ρ(r)]. The power of density functional theory is that approximate

forms for Exc are possible to construct which lead to an accurate description of

real systems. The most common approximation is the local density approximation

(LDA). In this approach, Exc is evaluated for an electron gas with uniform density ρ,

denoted by E0
xc[ρ]. The exchange-correlation energy at each point in the real system

is then taken to be E0
xc[ρ(r)]. The exchange-correlation potential is then local in the

sense that it depends only on the local charge density. The quality of a particular

parameterization of E0
xc is determined from a practical perspective - if it leads to

density functional calculations that describe a variety of experimental observations

well, it is considered a good approximation. Approximation methods are also aided

by certain constraints, or sum rules, that the exchange-correlation energy functional

should satisfy.

There are other, more sophisticated approximations beyond LDA. By includ-

ing the spin degree of freedom, a spin-dependent exchange-correlation functional is

obtained - known as the local spin density approximation (LSDA). In addition, non-
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local effects may be included by considering functionals that depend on the local

gradient of the density in the exchange-correlation energy. This leads to a class of

functionals known as “generalized gradient approximations” (GGA). The specific

parameterizations of functionals are used in this work are given in Sec. (5.6) and

Appendix A.

5.3 Pseudopotential approximation

As discussed in Sec. 5.2.1 The Kohn-Sham Hamiltonian is composed of the terms:

ĤKS = T̂ + V̂ ion + V̂ H + V̂ xc , (5.28)

where T̂ represents the single-particle kinetic energy, V̂ ion the electrostatic interac-

tion with the ionic lattice of the crystal. V̂ H describes the electrostatic electron-

electron interaction, while V̂ xc includes the non-classical many body effects of electron-

electron interactions, which as described in Sec. 5.2.3 are treated in some approxi-

mate fashion.

The pseudopotential approximation represents a significant simplification of

the problem. The physical motivation for it is that the core electrons are largely

inert: they do not participate in bonding and essentially only serve to screen the

potential of the bare nucleus seen by the valence electrons. In the pseudopotential

approximation we replace of the bare nuclear potential with a core-electron screened

potential, and the remove the core electron degrees of freedom from the problem

[61].

Here we describe in detail the process of constructing the pseudopotential.

The pseudopotential of an atom is not unique - indeed some are better than oth-

ers. The quality of a pseudopotential is determined by its transferability - that is,

its ability to recreate all electron properties in a variety of chemical environments.
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There are several recipes for constructing the pseudopotential; the one used in this

work is that of Trouiller and Martin [62]. The procedure can be broken into 4 steps.

Fig. (5.1) shows a schematic of the procedure, and each step is described below:
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Figure 5.1: Steps in construction of the pseudopotential (shown for the l = 0 channel
only). (1.) Find the l = 0 all electron (AE) orbital. (2.) Construct the pseudo-
orbital according to procedure outlined in text. (3.) Find the resulting potential.
(4.) Remove valence (and core) electron contributions from potential.

Step 1: We begin with the Kohn-Sham equations for a single atom, (within

LDA), and consider the wave function Ψ of the form ψl(r)Y
m
l (θ, φ) (the wave func-

tion has the additional constraint that it must produce a spherically symmetric
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ρ(r)):

Hatom
l ψl = Elψl ; (5.29)

Hatom
l = T̂l + V ion

bare(r) + VH [ρ(r)] + Vxc[ρ(r)] ; (5.30)

T̂l = −
(

1

r

∂2

∂2
r

− l(l + 1)

r2

)

. (5.31)

The potential energy terms can be combined into a single term, denoted by

V scr (or V ’screened’):

V scr
AE(r) = V ion

bare(r) + VH [ρ(r)] + Vxc[ρ(r)] ; (5.32)

⇒ Hatom = T̂l + V scr
AE(r) ; (5.33)

the subscript ’AE’ (’all-electron’) refers to quantities calculated from the full solution

of the above atomic Kohn-Sham equations.

Step 2: Next the pseudo valence orbitals are constructed from the all-

electron valence orbitals. The pseudo orbitals are constructed to have the following

properties:

1. The pseudo orbital radial function contains no nodes. This is desirable

because we would like to have smooth, easily representable wave functions.

2. The pseudo orbital radial wave function should match the all-electron

wave function beyond a certain cutoff radius rc.

3. The charge enclosed within the cutoff radius rc should be the same for

pseudo and all-electron wave function.

4. The valence all-electron and pseudopotential eigenvalues should be equal.

Constraints 3 and 4 ensure that the logarithmic derivative derivative of the

all-electron and pseudo wave function agree for r > rc [61]. The logarithmic deriva-
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tive is related to the phase shift associated with scattering off of a radial potential.

Having the same logarithmic derivative then ensures that the scattering properties

of the pseudo and all electron wave functions will be similar. In general, reducing

the value of rc will make a pseudopotential more transferable (better), at the cost

of making the potential “harder”, or more difficult to represent accurately on a real

space grid. Pseudopotentials that satisfy the above 4 conditions are referred to as

“norm-conserving” pseudopotentials [61].

These conditions specify the generic procedure:

{ψl}val
AE → {ψl}val

PS . (5.34)

Here the subscript ’PS’ signifies “pseudopotential”, the superscript “val” specifies

valence orbital.

Step 3: Given {ψl}val
PS, the set of new potentials V scr

l,PS is found:

(T̂l + V PS,scr
l )ψPS

l = Elψ
PS
l ; (5.35)

⇒ V PS,scr
l = El − T̂lψ

PS

l

ψPS

l

. (5.36)

Step 4: The final pseudopotential is obtained by subtracting off the contri-

bution from the hartree and exchange terms from the pseudo orbital valence charge:

V PS
l = V PS,scr

l − VH [ρv
PS] − Vxc[ρ

v
PS] . (5.37)

In the case of transition metals, the valence d-electrons are localized near

the atomic nucleus, so that there is significant overlap between the valence and

core electron charge density. Due to the nonlinearity of the exchange/correlation

potential, it is necessary to evaluate the potential using the total charge density

ρval + ρcore. In this case the the contribution to the exchange-correlation potential
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from the core density is also subtracted from the screened pseudopotential (compare

Eq. (5.37):

V PS
l = V PS,scr

l − VH [ρv
PS] − Vxc[ρ

c
0 + ρv

PS] . (5.38)

The core density may oscillate rapidly near the atomic nucleus, making it difficult

to represent on a real space grid. However, since the only relevant portion of the

core charge is that which overlaps with the valence charge, the inner core electron

density is replaced by a smooth function:

ρc(r) =







Arle−αr if r < rc

ρcore(r) if r > rc .
(5.39)

Values of rc are between .7 and .9 a.u.

The pseudopotentials are now determined. As constructed, they are however

long-range: for r > rc, the psuedopotential behaves as Zeff/r. To remove this long-

range form the pseudopotential, a new potential VL is added and subtracted for each

angular momentum channel l:

V PS = VL +

lmax
∑

l=1

m=l
∑

m=−l

|Yl,m〉δV PS
l 〈Yl,m| , (5.40)

where

δV PS
l = V PS

l − VL . (5.41)

The exact form of VL is in principle arbitrary. Following Ref. [10], the form we use

for VL is given by the potential generated by a positive charge distribution of the
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form:

ρlocal(r) ∝ exp[−(sinh(abr)/sinh(b))2] , (5.42)

where the total charge of ρlocal is equal to the valence of the atom. The procedure

outlined above is performed with a software package “ATOM” [63].

5.3.1 Seperable pseudopotentials

In the context of plane wave calculations, the semi-local form of the pseudopoten-

tial (nonlocal in angular momentum, local in space) is problematic. If there are

m k-points and n basis functions, evaluation of the psuedopotential requires mn2

integrals. Kleinman and Bylander bypassed this difficulty by constructing a pseu-

dopotential that is fully nonlocal [64].

V̂ KB = V̂L +
∑

lm

|δV PS
l φlm〉〈δV PS

l φlm|
〈φlm|δV PS

l |φlm〉 (5.43)

The resulting evaluation requires only mn integrals. We use this fully nonlocal

form of the pseudopotential in this work primarily as a matter of convention, as

the computational savings of this fully nonlocal form are not relevant for DFT with

a LCAO basis. The Kleinman-Bylander construction can lead to unphysical ghost

states in which the lowest p state is lower than the lowest s state [65].

5.3.2 Addition of screening potentials

In the previous section, we described the construction of pseudopotentials, which

drastically reduce the dimensionality of the Hilbert space by sweeping the largely in-

ert core electrons under the rug. After the use of pseudopotentials, the Hamiltonian
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takes the form:

Ĥ = T̂ +
∑

I

VL(r − RI) +
∑

I,l

V KB
l (r − RI) + V̂H + V̂xc . (5.44)

The long range nature of VL may be eliminated by adding and subtracting the

potential Vatom due to the charge constructed by populating the atoms with their

reference charge configuration ρatom. The resulting screened neutral atom potential

VNA ≡ VL + Vatom is short ranged (vanishes beyond the maximum orbital cutoff

radius). The addition of this screening charge density ρatom modifies VH : the net

source charge is now ρ(r) − ρatom(r). The potential produced by this charge is

denoted by δVH . The final Hamiltonian then takes the form:

H = T̂ +
∑

I VNA(r − RI) +
∑

I,l V
KB
I,l (r − RI)

+δVH(r) + V̂xc(r) , (5.45)

where

δVH(r) =
∫

dr′ ρ(r′)−ρatom(r′)
|r−r′| , (5.46)

VNA = VL + Vatom . (5.47)

5.4 Basis set: Linear Combination of Atomic Orbitals

With the Kohn-Sham Hamiltonian defined, we must now specify a basis set. The ba-

sis set used in this work consists of a linear combination of atomic orbitals (LCAO).

The atomic orbitals are precisely those that are constructed in forming the pseu-

dopotential (see Eq. (5.34). The minimal basis set for each atom in the system is
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then:

φi,l,M (r) = Rl(|r − Ri|)Y l
M (θ, φ) , (5.48)

here i is the label for atom, and l is the angular momentum label (l = 0, 1, 2, ...

or l = s, p, d, ...). We use real spherical harmonics |L, M〉, which are related to the

conventional harmonics Y l
m ≡ |l, m〉 by

|l, M〉 = 1√
2
(|l, m〉 + (−1)M |l,−m〉) ; (5.49)

|l, M̄〉 = 1√
2i

(|l, m〉 − (−1)M |l,−m〉) , (5.50)

where M = |m|. The basis orbitals are purely real in this representation.

To ensure the sparseness of the Hamiltonian, the orbital’s radial function is

taken to have a finite cutoff. There are several techniques for cutting off pseudo-

orbital radial functions. The methods we use are those found in the software package

Siesta [10]. In one case, a confining potential is added to the atomic Hamiltonian

which is used to generate the basis orbitals. It is parameterized in the form:

V (r) = Vo
e
−

(

rc−ri
r−ri

)

rc − r
(5.51)

Where ri and Vo are free parameters (strictly speaking defined variationally). Here

rc specifies the cutoff, ri determines the onset of the confining potential, and V0 its

strength. The above potential diverges at r = rc, ensuring the orbital is confined

with rc.

In some of the studies, we have found that the choice of basis set orbital

parameters is very important. For such systems, we use a downhill simplex opti-

mization routine to minimize the enthalpy (E + PV ) of the system with respect to

the basis set parameters described above [66].
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So far we have constructed a single radial pseudo orbital for each angular

momentum channel. The resulting basis set is referred to as a single-ζ basis set.

The addition of more orbital basis functions generally results in more accurate calcu-

lations. One way to do this is to use more than one radial function for each angular

momentum. The procedure for generating multiple-ζ basis sets is described in Ref.

[67], and consists of the following steps:

1. Given an orbital wave function φ0, construct a new wave function φ1,

which is identical to φ0 outside some radius RDZ .

2. The wave function φ1 is taken to be of the form rl(a − br2) inside RDZ ,

with a and b ensuring continuity and differentiability at r = RDZ . The difference

between the original wave function φ0 and φ1 is the new atomic orbital basis func-

tion. This wave function is localized with RDZ . The value of RDZ is typically chosen

so that a certain fraction of the charge is contained outside of RDZ , typically 15%.

Usually polarization orbitals are included as well in order to increase the

flexibility of the basis set. This is often taken from an angular momentum channel

lmax + 1, where lmax is the maximum angular momentum occupied by the atomic

configuration. Other examples of polarization orbitals include the atomically unoc-

cupied 3p orbital of transition metal elements.

An important aspect of the basis set used here is that it is non-orthogonal:

Sij =

∫

drφi(|r − RI|)φj(|r − RJ|) 6= δij . (5.52)

S is referred to as the overlap matrix. The non-orthogonality is generally accounted

for with the replacement E → ES. For example, the Schrödinger equation becomes:

Hψ = ESψ, the Green’s function becomes: G = (ES − H)−1, and so on.
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5.5 Solution of Kohn-Sham Equations

5.5.1 The density matrix

The Kohn-Sham Hamiltonian depends on its solutions {φi(r)} through ρ(r). For

a system with N electrons, the charge density is obtained by filling up the lowest

eigenstates of the self-consistent K-S Hamiltonian. The expecation of an operator

O is then given as

〈O〉 =

N
∑

i=1

〈φi|Ô|φi〉 . (5.53)

An alternative description of the ground state occupation of orbitals is given by the

density matrix. This is defined as:

ρ̂ =
∑

i

|φi〉f (β(Ei − µ)) 〈φi| , (5.54)

where µ is the chemical potential, β is inverse temperature, and f(x) is the Fermi

distribution function: f(x) = (1 + e−x)−1. Physical observables are now obtained

by tracing over the density matrix:

〈O〉 = Tr
[

ρ̂Ô
]

. (5.55)

In particular, once the density matrix is calculated, the real space charge density is

then given by ρ(r) =
∑

ij ρ̂(ij)φ
∗
i (r)φj(r).

Given the charge density, the Hartree potential is calculated by:

∇2
H(r) = ρ(r) (5.56)

⇒ VH(k) = ρ(k)/k2 . (5.57)
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The contribution to the exchange-correlation potential is found by evaluated

vxc[ρ(r)] for the local density. The specific form of vxc we use is described in Sec.

(5.6). These density-dependent potentials create a new Hamiltonian, which must

again be diagonalized to find a new charge density. The process is iterated until the

input and output density matrix are equal within some specified tolerance.

5.5.2 Periodic systems

In this section we discuss the treatment of infinite, periodic systems. In such a

system a basic unit cell is repeated infinitely in 1 or more dimensions, so that the

potential, charge density, and other physical properties are also simply repeated

infinitely.

For m orbitals in the unit cell, the Hamiltonian describing the matrix ele-

ments between pairs of orbitals in the unit cell is of dimension m × m - we denote

it by H(0,0). Orbitals in the unit cell also interact with those from neighboring cells.

We denote the Hamiltonian describing the unit cell’s interactions with its +z neigh-

bor is H(0,1); in general H(0,δ) describes the interaction of the unit cell atoms with

those of a neighboring cell with displacement δ.

Bloch’s theorem allows for the transformation of the original infinite, periodic

system into a finite one with the addition of the crystal momentum label k. To de-

scribe the entire system, a sufficiently large sampling of k-vectors from the Brouillon

zone is required. For a given k, we construct the k-dependent Hamiltonian as:

Hk =
∑

δ

H(0,δ)e
ik·δ . (5.58)

For each k, Hk is diagonalized and the eigenvalues ǫk and eigenvectors |ψk〉 are

found and stored. The Fermi level ǫF is determined by the charge density of the
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system:

N =
V

(2π)3

∫

dkf(β(ǫk − ǫF )) , (5.59)

where f(x) is the fermi-dirac distribution function (ex + 1)−1. For each k, the

eigenvectors form an complete basis, and in this basis the density matrix operator

ρ̂ is diagonal. It is given by:

ρ̂diag
k =

∑

i

|ψk,i〉f(ǫk,i − ǫF )〈ψk,i| . (5.60)

The sum i is over eigenvectors of Hk. This density matrix is transformed into the

LCAO basis by a the transformation:

ρ̂k = Vk ρ̂diag
k (SkVk)−1 , (5.61)

where Vk is a matrix of the eigenvectors of Hk, and Sk is the k-dependent overlap

matrix. The total density matrix is given by:

ρ̂tot =
1

(2π)3

∫

dkρ̂k . (5.62)

The density matrix includes contributions from pairs of orbitals in different unit

cells:

ρ̂0,δ =
1

(2π)3

∫

dk ρ̂keik·δ , (5.63)

where the factor of eik·δ comes from the Bloch factor of the wave function in the

neighboring unit cell.
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5.5.3 Self-consistent procedure

Finding the self-consistent solution to the Kohn-Sham equation is a challenging

numerical task. The Hamiltonian is a highly nonlinear function of ρ: H = A[ρ],

while the density matrix is a function of H: ρ = B[H]. A self consistent [H, ρ] pair

satisfies:

ρ∗ = B [A [ρ∗]]

H∗ = A [B [H∗]] (5.64)

The outline of the procedure is shown in Fig. (5.2). The procedure consists

first of an initial guess at the density matrix ρ0. This determines the initial charge

density ρ(r) and Hamiltonian. This Hamiltonian yields a new density matrix ρ1.

Generally ρ0 6= ρ1, and so a new trial density matrix is constructed, which is gener-

ally some combination of input and output density matrices. The simplest example

is linear mixing:

ρnew = αρ0 + (1 − α)ρ1 (5.65)

For the systems considered in this work, simple linear mixing is usually not sufficient

to obtain the self-consistent solution. We use a combination of Broyden’s [68] and

Pulay’s [69] methods to solve Eq. (5.64).

5.6 Exchange-correlation functionals

5.6.1 LSDA

For the spin-dependent exchange-correlation functional, we use the local spin density

approximation as parameterized by Perdew and Zunger in Ref. [70]. The particulars

of this parameterization are given in Appendix A. The aspect of the exchange-
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Figure 5.2: Schematic of the self-consistent cycle.

correlation potential for spin-dependent systems that we emphasize here is that the

potential is also spin-dependent. In this sense it acts as an effective magnetic field.

5.6.2 Non-collinear spin

Here we consider the extension of the collinear spin-dependent exchange-correlation

potential to noncollinear cases. In the most general case, a spin-dependent Hamil-

tonian is written as:

HΨ =





H↑↑ H↑↓

H↓↑ H↓↓



Ψ = EΨ (5.66)

Once the above is solved for the eigenfunctions, the spin dependent density matrix

is determined as described earlier:

ρ =





ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓



 (5.67)
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From this the charge and spin density is determined, with the result:

ntot(r) = Tr[Sρ] (5.68)

nz(r) = Tr[S(ρ↑↑ − ρ↓↓)] (5.69)

nx(r) = 2Re{Tr[Sρ↑↓]} (5.70)

ny(r) = −2Im{Tr[Sρ↑↓]} (5.71)

The orientation of the spin is determined by n = (nxx̂+nyŷ+nz ẑ)/(n2
x+n2

y+n2
z)

1/2.

n(r) determines θ(r), φ(r), which is the direction of the quantization axis for the

local spin density. The magnitude of the polarization (or of the “up” component in

the locally diagonal frame) is (n2
x + n2

y + n2
z)

1/2 ≡ n↑
local, while n↓

local = ntot − n↑
local.

The exchange-correlation potential is evaluated in the locally diagonal frame with

(n↑
local, n

↓
local), determining (V local

xc↑ , V local
xc↓ ). A rotation operator is applied to express

this spin dependent potential in the global frame:

V global
xc = U †V local

xc U (5.72)

where

U =





cos(θ/2)eiφ/2 sin(θ/2)e−iφ/2

− sin(θ/2)eiφ/2 cos(θ/2)e−iφ/2



 (5.73)

The operator U rotates a spinor pointing in the (θ, φ) direction into the z direction.

All angles are r dependent. Eq. (5.72) can be written as

V global
xc =

1

2
(V ↑

xc + V ↓
xc)1 +

1

2
(V ↑

xc − V ↓
xc)





cos(θ) sin(θ)e−iφ

sin(θ)eiφ − cos(θ)



 (5.74)
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In the above expression all of the Vxc are the values of Vxc in the locally diagonal

frame. The above expression for V global
xc makes the Hamiltonian dependent on all

spin indices (↑, ↑), (↑, ↓), (↓, ↑), (↓, ↓). Thus Eq. (5.74) defines a new Eq. (5.66), and

the self-consistent cycle proceeds. The operations of finding the values of V local
xc and

rotating this to the global frame are performed at each point in real space.
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Chapter 6

Spin Transfer

6.1 Introduction

In this chapter, we consider the dynamics of the magnetization of materials. We are

ultimately interested in finding the instantaneous torques that are responsible for

changing the magnetization configuration. These torques arise from many sources,

and we shall consider how they can be calculated for realistic systems. We present

a general approach which is valid for systems in equilibrium and for systems with

an external applied voltage. Our approach utilizes NEGF+DFT, so that it captures

the full electronic structure details of the materials involved.

In Sec. (6.2), we review the phenomenological description of magnetization

dynamics for equilibrium systems (the Landau-Lifshitz equations). This serves as a

general background and context for more in-depth considerations of the how magne-

tization dynamics are determined. In Sec. (6.3), we discuss the conventional picture

of spin transfer. This is done with the idea of highlighting distinctions between this

view and our own.

In Sec. (6.4), we discuss the derivation of magnetization dynamics from mi-

croscopics. From this well known procedure, we describe in Sec. (6.5) how parame-
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ters of a dynamical theory such as magnetic stiffness are usually calculated. Here we

present our own general method for finding the magnetic stiffness parameters, which

involves calculating the instantaneous torques present on the magnetization. The

key feature of this method is that it may be applied to systems out of equilibrium.

In Sec. (6.6), we discuss how the torques calculated for systems out of equilibrium

(i.e spin transfer torques) relate to the conventional picture of spin transfer torques.

Finally, we discuss in Sec. (6.7) the implementation of the calculation within our

NEGF framework.

6.2 Spin dynamics: The Landau-Lifshitz equation.

The dynamics of magnetization are usually described in a phenomenological way

with the Landau-Lifshitz equations. These describe the low-energy, long wavelength

excitations of a ferromagnet from its ground state. The dynamics depend on the

energy of a magnetic configuration M(r) is, which is often well described by:

E = Eexchange + Eanisotropy + Edemag + EZeeman ; (6.1)

Eexchange = =
A

M2
s

∫

dr|∇M|2 ; (6.2)

Eanisotropy =
K

M2
s

∫

dr (M · c)2 ; (6.3)

Edemag = −1

2

∫

M · H ; (6.4)

EZeeman = −M · Bapp . (6.5)

Eexchange is the energy cost associated with nonuniform magnetization con-

figurations. It arises from interatomic exchange interactions, and is considered more

fully later in this chapter. Eanisotropy describes the energy associated with pointing

in a certain direction in space. It comes fundamentally from spin-orbit interactions,
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and is therefore much smaller than exchange energies in transition metals. Edemag

is the magnetic dipole-dipole interaction energy, where H is determined from the

Maxwell’s equation ∇× H = 0. It is long range, and favors non-uniform magnetic

configurations (it is the source of domain wall formation). Finally EZeeman is the

Zeeman energy from an applied magnetic field. As a convention, M is the magneti-

zation per volume, so Eq. (6.1) represents an energy density, and M = MsΩ, where

Ω is the orientation of the magnetization.

If we define an effective field Beff = −δE/δM, then the energy functional

can be re-written

E = −M · Beff [M] . (6.6)

The magnetization M is related to the angular momentum L via the gyromagnetic

ratio: M = γL, The classical dynamics for M (or L) given an energy of the form

Eq. (6.6) are [71]:

dM

dt
= γM × Beff = Γ , (6.7)

where we denote the torque by Γ.

In real systems, the magnetization is coupled to environmental degrees of

freedom such as particle-hole excitations of the Fermi sea, phonons and nuclear

spins (through spin-orbit and other interactions). Energy is dissipated from the

magnetic system through these channels, and this is captured phenomenologically

by the addition of a damping parameter α. The form of the damping often used is
(

αΩ × Ṁ
)

, which ensures that dE/dt ≤ 0. Inserting this by hand into the equation

of motion yields the Landau-Lifshitz equations:

dM

dt
= γM × Beff + αΩ × dM

dt
. (6.8)
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Fig. (6.1) indicates the trajectory for a uniform magnetization Ω(t). (The

case of spatially uniform magnetization is referred to in the magnetism literature as

the “monodomain” case.) In this case, the applied field is in the −z direction, and

the magnetization precesses around the applied field and eventually aligns with the

applied field.

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

Trajectory of magnetization

Figure 6.1: A typical trajectory of a monodomain switching event.

An important example of a metastable non-uniform magnetization config-

uration is a domain wall (DW). The magnetization profile of a particular simple

model domain wall (a “Néel wall”) is described by the position-dependent orienta-

tion (θ(z), φ(z)):

θ(z) = ± cos−1

(

tanh

(

z − z0

λ

))

; (6.9)

φ(z) = 0 . (6.10)
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where the length scale is given by λ =
√

A
K , and the DW has an energy

√
4AK.

Fig. (6.2) shows a schematic for a domain wall. We shall not discuss domain walls

further in this work, but note here that the effect of spin transfer on domain wall

dynamics is an important area of current research [72, 73, 74].

Figure 6.2: Cartoon of Néel Domain Wall.

6.3 Phenomenology of spin dynamics in the presence of

current

We now consider the effect of spin currents on magnetization dynamics. In sys-

tems with noncollinear magnetic configurations, charge currents induce spin cur-

rents which exert a torque on the magnetization, referred to as the spin transfer

torque (STT). These torques have been the subject of extensive theoretical work

[24, 25, 75, 76, 9]. In this section we describe the physical picture and essential

properties of the conventional picture of STT. Our purpose in describing the con-

ventional picture of STT is that we want to ultimately highlight the differences

between it and our picture of STT, and to show how the basic properties of STT

change in antiferromagnetic (AFM) systems.
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We disregard for the moment anisotropy and damping, and assume no ex-

ternal fields. The system is then rotationally invariant, and each component of the

total spin angular momentum is conserved (dMtot/dt = 0). We then define a spin

current Q as the tensor product of Fermi sea drift velocity and spin: Q = v ⊗ M.

The 2 indices (i, j) of Qij specify the direction of the current in real space and the

direction of its spin polarization in spin space, respectively. Because spin angular

momentum is conserved, we can write down an equation of continuity for M:

∫

dV

[

∂M

∂t
+ ∇ · Q

]

= 0 . (6.11)

If we denote MV as the magnetization inside a volume dV , the divergence theorem

yields:

∂MV

∂t
= −

∫

Q · dA . (6.12)

Physically, this represents conservation of M: the magnetization can change only if

magnetization leaves or enters the volume - it can not just appear or disappear out

of nowhere.

This physics is completely analogous to the more familiar particle continuity

equation. In terms of particle number n, and particle current j = vn:

∂ρ

∂t
+ ∇ · j = 0 . (6.13)

This is also a reflection of a conservation law (conservation of particle number) which

is derived from U(1) symmetry.

When there is anisotropy or an applied field, rotational symmetry is broken

resulting in non-conservation of Mtot. In this case M changes in time according to

the Landau Lifshitz equation (Eq. (6.7)). However we still retain the contribution
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to dMV /dt from the divergence of the spin current:

∂MV

∂t
= Γ −

∫

Q · dA (6.14)

⇒ ∂MV

∂t
= −γMV × ∂E

∂M
+ αΩ × ∂MV

∂t
+ (Qin − Qout) . (6.15)

The evaluation of the spin transfer torque (the last term of Eq. (6.15))

therefore boils down to evaluating spin current fluxes. If we write the spin current

density as pJ , where J is the charge current density, and p is the polarization, and

divide both sides of Eq. (6.15) by MV = Ms dV , we obtain:

⇒ ∂Ω

∂t
= −γΩ × ∂E

∂M
+ αΩ × ∂Ω

∂t
+

pJ

Msℓ

(

Q̂in − Q̂out

)

. (6.16)

This form of the equation for dΩ/dt demonstrates a number of important general

properties about the STT term applied to a ferromagnetic nanoparticle : its magni-

tude is proportional to the current density, and inversely proportional to the length

(along the charge current direction). Hence the is maximized for thin FM layers.

6.3.1 Spin torques and spin fluxes in FM

To get an idea for the basic properties of STT in FM, it suffices to consider a toy

model of spin-dependent transport. We suppose an electron with spin in the x̂

direction is incident upon a ferromagnet with magnetization in the ẑ direction (see

Fig. (6.3)).

The incoming spinor |x̂〉 can be written (| ↑〉 + | ↓〉) /
√

2. As discussed in

Sec. (5.6), the exchange-correlation potential differs for up and down spins in a

ferromagnet. The wave function therefore has the following form:
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Figure 6.3: Schematic for scattering problem of x̂ spinor incident on a ferromagnet
with orientation in ẑ-direction.

ψ(z) =







T↑eik↑z| ↑〉 + T↓eik↓z| ↓〉 for z > 0
(

eikz + R↑e−ikz
)

| ↑〉 +
(

eikz + R↓e−ikz
)

| ↓〉 for z < 0
(6.17)

Where E = k2
↑,↓ ± ∆/2 = k2. To find the STT, we evaluate the spin current fluxes

of this scattering state into and out of the FM. Fig. (6.4) shows the spin density

of a single scattering state: the spin transverse to ẑ simply precesses around the

magnetization, (with precession period = (k↑ − k↓)−1). The precession period will

vary for different scattering states at the Fermi energy (because different states will

have different values of (kF↑ − kF↓)−1). When the spin is averaged over all states

at the Fermi energy, these oscillating spin densities destructively interfere, and the

component of the spin perpendicular to the magnetization decays, as shown in Fig.

(6.4). More explicitly, if the angle between incoming spin current and magnetization
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is θ, the fluxes are:

Qin = gI (sin(θ)x̂ + cos(θ)ẑ) (6.18)

Qout = gI cos(θ)ẑ (6.19)

⇒ Qout − Qin = gI sin(θ)x̂ (6.20)

The net spin current flux (or STT) is then given by the component of the incoming

spin current that is perpendicular to the magnetization. This brief analysis we have

summarized neglects some details such as the spin direction of the reflected part

of the wave function. It does however provide a qualitatively correct view of the

conventional picture of STT.

00

Precession of single
scattering state electron
spin incident upon a
spin−dependent potential

Damped precession of
the spin averaged over
all scattering states.

Figure 6.4: Current carrying electron spin. On the left it precesses around the
magnetization. The right figure shows the total spin after averaging over all current
carrying states. In this case the transverse component decays to 0.

Given this outline of the physics behind the STT, we copy the cartoon of

STT given in Ch. 1 to consider once again:

The preceding analysis explains how the interference over transverse chan-
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Figure 6.5: Cartoon showing spin transfer torque. The electron spin enters the free
ferromagnet point up, and is rotated by the magnetization so that it leaves in a
different direction. Spin transfer is the back-action torque on the magnetization by
the electron spin.

nels’ spin densities results in a spin current that is always aligned with local mag-

netization. By virtue of conservation of spin angular momentum, the resulting net

spin current flux necessarily causes the magnetization to change in time. These

general arguments lead to a spin transfer torque of the form:

ΓSTT =
g(θ)

Msℓ
J sin(θ) . (6.21)

where the factor of sin(θ) picks out the transverse portion of the incoming spin

density, g represents the amount of spin torque delivered per transmitted electron,

and ℓ is the length of the ferromagnet along the current direction.

The efficiency g is a very important parameter for potential applications

of STT (as described in Sec. (7.3)). For MRAM applications, one would like to

maximize g in order to flip the magnetization (or perform a write operation) with

a small applied current, while for CPP read heads, it is desirable to minimize g so
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that the magnetic orientation is a sensor of magnetic bits only, and not subject to

noise from STT.

We highlight these well known features of spin transfer physics because they

are qualitatively different in the context of anti-ferromagnets, as we shall see in later

chapters. We also note that the analysis given here does not identify the microscopic

interaction that is responsible spin transfer torque - it merely infers its existence by

invoking a conservation law.

6.3.2 Current induced magnetization switching

A major experimental implication for spin transfer torque is current induced magne-

tization switching (CIMS). The standard spin valve experimental geometry is shown

in Fig. (6.6). Normally a sufficiently large magnetic field ensure that both free and

fixed magnetic layers are aligned with it. Any deviation from alignment, from ther-

mal fluctuations for example, is quickly extinguished because of the damping, as

described in Sec. (6.2). However in the system shown below, the spin transfer

torque ΓSTT opposes the damping. If the current density is sufficiently large, the

magnetization of the free layer switches to be anti-aligned with the field. The crite-

rion for the switching in this simple case is:

ΓSTT > αBapp . (6.22)

The properties of spin transfer torques are generally studied by measuring switching

current versus applied field.

6.4 Microscopic theory of spin dynamics

In the previous section, the dynamics of magnetization was derived in a phenomeno-

logical fashion, using a Landau energy functional and classical equations of motion.
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Figure 6.6: Illustration of current induced magnetization switching. The orientation
of the free (thinner) FM layer is opposed to the applied field because of spin transfer
torque.

We now consider how the magnetization dynamics can be described starting from

a microscopic Hamiltonian. We are especially interested in the magnetization dy-

namics when there is a current in the system. As a matter of terminology, we refer

to a system under a finite external bias as “nonequilibrium”. We consider also the

dynamics of systems with no external bias - these systems will be referred to as

“equilibrium”. Both “equilibrium” and “nonequilibrium” systems we consider are

“non-stationary” - that is, they are time-dependent. We will not explicitly integrate

the dynamics in time, instead we will be content with finding the instantaneous

value of dm(t)/dt, from which the dynamics can be easily obtained. As a mat-

ter of language, the phrase “determining dynamics” is used interchangeably with

“determining dm(t)/dt”.

In this section, we first give an indication of how a Landau-Lifshitz type

equation can be obtained microscopically. We use the resulting expressions to find

equilibrium dynamics - specifically the magnetic stiffness parameters of ferromag-

netic materials (the parameter A of Eq. (6.2)). We cover these topics briefly, as they

have been studied in detail previously. We then show how dynamics can also be

obtained from the instantaneous torques present in non self-consistent systems. We

calculate these torques to again find stiffness parameters for equilibrium systems,
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verifying the consistency between the two approaches. We also calculate the torques

in nonequilibrium systems (the spin transfer torques), and indicate the relation of

this method to the standard picture of spin torques described in Sec. (6.3).

6.4.1 Adiabatic approximation

The starting point for all treatments of spin dynamics in solids is the separation of

time scales for (fast) scalar electron fields and (slow) collective magnetic excitations.

This separation of time scales follows from the separation of energy between the

interatomic exchange energy (< 100 meV), which determines spin wave dispersions,

and characteristic electronic energies such as bandwidth and intraatomic exchange

[77], which are typically much larger.

Because of relatively slow magnetic dynamics, the electrons respond “in-

stantly” to the instantaneous magnetic configuration - from the electrons’ perspec-

tive, the spin configuration is essentially static (note it is the direction which changes

slowly, the magnitude of the magnetization changes on electronic time scales). The

situation is analogous to the separation of time scales between the motion of ions

in the lattice and the electronic degrees of freedom. (In this case, the adiabatic

approximation is referred to as the Born-Oppenheimer (B-O) approximation.) The

B-O approximation results in an equation of motion (EOM) for the ions. Our in-

terest is in how the adiabatic approximation leads to an equation of motion for the

magnetization.

There are a number of routes to deriving spin dynamics from an adiabatic

approximation [78, 79, 77]. Here we briefly describe the general course taken by Niu

and Kleinman [80, 81]. In their treatment, space is partitioned into cells of volume

Vi, and mi is the spin inside the ith volume. The key point in their derivation is

the fact that the electronic wave function remains in the instantaneous ground state

as the spin configuration evolves. (This fact is simply a statement of the adiabatic
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theorem.) This constraint leads to the equation of motion for the spin variable mi:

−
∑

j,β

Ωαβ
ij ṁβ

j +
∂E

∂mα
i

= 0 , (6.23)

where E = 〈ψ|H|ψ〉, and Ω is the Berry curvature, given as:

Ωαβ
ij =

∂

∂mα
i

〈ψ| i∂

∂mβ
j

|ψ〉 − ∂

∂mβ
j

〈ψ| i∂

∂mα
i

|ψ〉 . (6.24)

In this work we make the simplifying assumption that the spin on a given atomic

site is uniform in direction, or rigid (referred to in other work as the “rigid spin

approximation” or RSA [77]). This approximation is valid under the condition that

it is possible to identify well-defined regions of space in which the spin density is

approximately constant. This condition is satisfied for strong ferromagnets such as

Fe, however is not as well satisfied for weaker itinerant ferromagnets. Within this

approximation, the Berry curvature is simply given as

Ωαβ
ij = δijǫ

αβγmγ
i /(mi)

2 . (6.25)

This expression for the Berry curvature leads to a Landau-Lifshitz type equation for

the spin mi:

ṁi = −mi ×
∂E

∂mi
. (6.26)

Thus reproducing Eq. (6.7). Eq. (6.26) describes only the dynamics of the direction

of the magnetization - as described earlier, the magnitude of the magnetization is

not an adiabatic variable. This EOM for spin is similar in format to the Born-

Oppenheimer approximation for ionic dynamics: the spin dynamics depend on the

variation of electronic energy with spin variable (whereas in the Born-Oppenheimer

approximation, the ionic motion Ṙ depends on E[R]). Therefore the task for cal-
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culating spin dynamics simply boils down to computing E[m]. In the next section

we describe how this is accomplished.

6.5 Equilibrium dynamics - stiffness calculation

We first consider an equilibrium, non-stationary magnetic system. The calculation of

how the energy depends on m is simplified by the magnetic force theorem. Normally

in DFT, the energy is given by Eq (5.22), which includes both self-consistent single

particle energies and double counting corrections terms. The magnetic force theorem

says that to find the energy difference between the ground state and a slightly

perturbed state, we only need to find the non-self-consistent change in single particle

energies. (The proof can be found in Ref. [82]; the idea is that induced changes in

the self-consistent part of the potential are approximately cancelled by changes in

the double counting energy terms.)

As an example, we consider a uniform bulk magnetization. We would like to

find the energy cost associated with rotating a single layer’s orientation Ω0 by an

angle θ; that is, we would to calculate E[θ].

Figure 6.7: Tilting one atomic plane by θ of a uniform, infinite, bulk system.

Since the uniform magnetic state represents an energy extremum, we can

parameterize the energy of small rotations away from the collinear ground state
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generally as:

E[Ω0] = JΩ0 · z = J cos θ (6.27)

In writing the energy in this fashion, we describe an itinerant magnetic system in

a Heisenberg form. We can extract an effect Heisenberg coupling constant between

the rotated plane and the rest of the system by finding:

J =
Esp[θ1] − Esp[0]

cos(θ1) − 1
(6.28)

Here Esp refers to the non self-consistent single particle energy, which is all that we

need to consider by virtue of the magnetic force theorem.

Liechtenstein et al. [83] derive an expression for J by expanding Esp[θ] to

second order in θ. (They consider the coupling between a single atom (labelled “0”)

and the rest of the lattice, as opposed to a plane and the rest of the lattice.) The

result is:

J = − 1

4π

∫ Ef

ImTr
[

∆0

(

G00
↓ − G00

↑
)

+ ∆0G
00
↑ ∆0G

00
↓

]

dE (6.29)

The trace in the above is over orbitals of the atom, G00
σ is the Green’s function of

atom 0 for the original collinear ground state, and ∆0 is the spin splitting Hamilto-

nian on atom 0. Similarly, the pairwise interaction between atoms i and j is given

as

Jij = − 1

4π

∫ Ef

ImTr
[

∆iG
ij
↑ ∆jG

ji
↓

]

dE (6.30)

Here Gij
σ is the Green’s function coupling atom i to j (off-diagonal in atom index)

for the original collinear ground state. Pajda et. al [84] determined the pairwise

Heisenberg paramters for bulk Fe, Co, and Ni out to the 10th nearest neighbor.
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From their data we are able to determine the Heisenberg coupling between a single

atomic plane and the rest of the lattice. We use Eq. (6.29) to calculate the stiffness

parameters, and our results are shown in comparison to Pajda et. al in the table

6.5.1.

6.5.1 Torque method for stiffness

We next consider an alternative expression for the stiffness. Our interest is to find

an expression which does not rely on E[m], a quantity which may not yield torques

in nonequilibrium systems (this point is discussed more below).

To derive expressions for magnetization dymamics, we separate both the

single-particle Hamiltonian and the density matrix into spin-dependent and spin-

independent contributions:

Hij = H0
ij −

1

2
∆ij · τ . (6.31)

ρij =
1

2

[

ρ0
ij + mij · τ

]

. (6.32)

where τ is the vector of Pauli spin matrices and i, j are orbital indices. The notation

for the spin-dependent part of the Hamiltonian is chosen to emphasize that it pro-

duces a spin-splitting ∆ when it is orbital independent, as often assumed in simple

toy models of a ferromagnetic metal (note that m and ∆ are in general complex for

orbital off-diagonal elements i 6= j). In mean field approximations, the interaction

contribution to ∆ and m are related locally in real space according to

∆(r) = ∆0(n(r), m(r))m̂(r) . (6.33)

where n and m are the local charge and spin densities, respectively, m̂ = m/m is the

space-dependent orientation of the magnetization, and ∆0 is some paramerization

of the exchange-correlation potential (given in detail in Appendix A). (Note in
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Eq. (6.33), ∆(r) and m(r) are functions in real space, while in Eq. (B.12), ∆i,i′

represents the i, i′ matrix element of the realspace potential ∆(r̃), and mi,i′ the

density matrix in orbital space).

To consider non-stationary states, we explicitly decouple the mean-field spin-

dependent potential from the spin-dependent density matrix. That is, we allow

for non-self-consistent [H, ρ] pairs. In this case, we let ∆ = ∆0(n, m)m̂, and

ρ = 1
2

[

ρ0 + s · τ
]

, where ŝ is no longer in general parallel to m̂. A non-self-

consistent [H, ρ] pair attains its meaning via the magnetic force theorem (where

non-self-consistent single particle energies are approximately equal to self-consistent

total energies under small perturbations). The single particle energy of such a pair

is then:

Esp =
1

2
Tr

[

H0ρ0 −
1

2
∆0m̂ · ŝ

]

. (6.34)

The dynamics associated with this [H, ρ] pair is given generally by Eq. (6.26)

(= m × ∂E/∂m). With the explicit form of the energy given here, we find that

dm/dt is given by ∆0 (m̂ × ŝ). Physically, this quantity represents the torque on

m by the instantaneous spin density s. The preceding analysis is not rigorous, but

merely shown for the purposes of demonstrating the general relationship between

changes in energy and (m × s) - what we call “instantaneous torques”. A rigorous

demonstration of the equivalence of the two approaches is given in Appendix B.

The scheme to calculate stiffness parameters from torques is therefore as

follows: we take a self-consistent, collinear magnetic configuration and distort it in

some way - as before we rotate the spin orientation of 1 atomic layer. This results in

a new Hamiltonian with a modified spin dependent ∆′. We solve for the resulting

non self-consistent spin density s. The torque is given by (including the k index
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from transverse periodicity):

Γ =
1

2

∫

dk Tr[∆′
k × sk] . (6.35)

If we assume the energy is of simple Heisenberg form (Eq. (6.27)), then the torque

is related to the magnetic stiffness via

Γ = J sin(θ) . (6.36)

For equilibrium systems, the torque is purely out of plane (ŷ-direction), so we can

extract the stiffness:

J =
Γy(θ)

sin(θ)
. (6.37)

Table (6.5.1) shows the results from our calculation compared to previously

published results. The agreement is good, with the exception that our result for Ni

is too high. These stiffness parameters relate to measurable quantities, namely the

spin wave dispersion for long wavelength spin waves, and the critical temperature.

Table (6.5.1) gives the relation between previously published works and these pa-

rameters. Again the agreement is fairly good, with the exception of Ni. Ni may be

less accurately calculated because it is a weak ferromagnet, and the conditions of

RSA may be less well satisfied. It should be noted that calculated stiffness param-

eters are heavily dependent on basis set properties. Here we use a double-ζ with

polarization basis set, and have optimized the basis set parameters with respect to

ground state energy using a simplex minimization routine [66] (see Sec. (5.4) for a

description basis orbital parameters).
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Metal J from Pajda [84] our calculated Tc (Pajda) Tc (expt)
(mRyd) ∂E/∂Ω (m × s)

Co 10.948 11.822 (11.753) 1645 1388-1398

Fe 9.882 9.562 (9.362) 1414 1044-1045

Ni 2.530 3.954 (4.041) 397 624-631

Table 6.1: Stiffness parameters for Co, Fe, and Ni - as calculated by Pajda et al.
[84], and our calculations using their method, and the torque method. Also shown
is the calculated and experimental Tc from the data of Pajda et al.

6.6 Nonequilibrium dynamics - STT calculation

From an operational point of view, the distinction between torque and energy meth-

ods for calculating equilibrium stiffness parameters is not significant. However the

notion of torques arising from instantaneous spin densities has definite physical sig-

nificance, and is central to finding the torques that exist in systems under bias. We

discuss this important point more below.

The torque method of calculating stiffness offers insight into the physical

mechanism that drives magnetization dynamics. Specifically, in a non-stationary

state, there is a mis-alignment between the (slow) magnetization and the (fast)

electron spins. The electron spins therefore make a contribution to the exchange-

correlation effective magnetic field that is misaligned with the magnetization. The

magnetization dynamics is then due to the precession of the magnetization around

this misaligned exchange field. This mechanism behind magnetization dynamics is

general, and we posit that it holds in nonequilibrium situations as well. We do not

have a rigorous proof of this claim, however in the next section it is placed on firm

ground for ferromagnets, or in general for any system in which spin conserved. In

systems with strong spin-orbit coupling, the validity of this picture is not as clear,
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although it has been employed by several researchers [85] in the context of spin

torques in magnetic semiconductors. We return to this point in the last chapter.

An additional, and perhaps more practical motivation for describing dynam-

ics in terms of torques rather than energies is that in nonequilibrium systems, energy

may no longer determine system dynamics. To rephrase the point, it is not clear

whether or not current induced torques (or forces) are conservative - that is, whether

these torques (forces) can be written as the variation of an energy functional [86, 87].

This is a controversial issue, and as yet unresolved. So far most work has addressed

forces on ionic degrees of freedom in nonequilibrium systems. Even in these sys-

tems the question is still open. For magnetic systems, energy functionals that yield

the proper torques for nonequilibrium states involve vector potentials of magnetic

monopoles [75], so it seems unlikely that the simple K − S band energy is able to

yield a nonequilibrium torque. We will defer further discussion of this important

point to the last chapter.

6.6.1 Nonequilibrium torques and spin current fluxes

The picture of spin transfer torques as arising from the interaction between the

magnetization and the misaligned exchange field of the quasiparticles is consistent

with the conventional view of spin transfer as described in Sec. (6.3). Recall that

in the conventional picture, spin torques are a necessity for satisfying conservation

of total spin angular momentum. The spin transfer torques are then expressed in

terms of the net spin current flux into/out of a volume.

The relation between spin flux and local torques can be found by considering

the time-dependence of the the α-th component of the spin-density S of a chosen
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subsystem (SS) (see Appendix B for a derivation):

Ṡα =
∑

i∈SS

σα
i (∂tρ) =

∑

i∈SS
j /∈SS

[ i

2i~

[

H
(0)
ij sα

ji − sα
ijH

(0)
ji + ∆α

ijρ
(0)
ji − ρ

(0)
ij ∆α

ji

]

+
∑

i,j∈SS

1

4
ǫα,β,γ

[

∆β
ijs

γ
ji + sγ

ij∆
β
ji

]

]

. (6.38)

The first four terms on the right hand side of Eq. (6.38) represent the net spin-

current into the subsystem which has contributions from both the spin-polarization

of inter-orbital coherence m and from the spin-dependence of the inter-orbital matrix

elements ∆ in the Hamiltonian. The final term describes the precessional time-

evolution of spins in the subsystem under the influence of effective magnetic fields

implied by the spin-dependent terms in the Hamiltonian. Eq. (6.38) can be written

in a more suggestive form which is relevant for the multilayer geometries considered

in this work.

Ṁ =
(

Q(iL−1,iL) − Q(iR,iR+1)

)

+ TrSS [s × ∆] (6.39)

Where the trace in the second term is over orbitals in the subsystem. The spin-

current operator Qi,i+1 is defined as the spin current that flows between sites i and

i + 1. It is given by

Qi,i+1 = σ
∑

k≤i
j>i

Im[Hkjρjk] ≈
1

2

∑

k≤i
j>i

Im[H
(0)
kj sjk] (6.40)

In the second part of Eq. (6.40), we make the simplifying assumption that the

“hopping” is spin-independent, which is very nearly true in the systems we have

considered. (The presence of spin-dependent hopping presents slight complications

that are explained more fully in Appendix (B)). Fig. (6.8) illustrates Eq. (6.39) -
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the indices iL and iR represent the atomic planes at the edge of the subsystem, so

that Q(iL−1,iL) is the spin flux entering the subsystem from the left, and Q(iR,iR+1)

the spin current leaving throught the right:

Figure 6.8: Illustration of Eq. (6.39), relating spin current fluxes to local spin
precession.

We can now easily make the connection between local torques and spin cur-

rents. With the adiabatic approximation, the transport electrons satisfy a time-

independent Schrödinger equation for the given magnetization configuration. In

this case, Ṡ = 0, so that, according to Eq. (6.39):

(

Q(iL−1,iL) − Q(iR,iR+1)

)

= −TrSS [s × ∆] (6.41)

The meaning of Eq. (6.41) is that the net spin current flux into/out of the subsystem

is equal to the local precession of the spin around the exchange field in the subsystem.

In Eq. (6.41), the l.h.s is the quantity conventionally associated with spin transfer

torque, while the r.h.s. is the local torque - the same quantity related to magnetic

stiffness for equilibrium systems. Therefore the local torque present in a non-self-

consistent [H, ρ] pair under bias is precisely the spin transfer torque found from

evaluating spin current fluxes.
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The matrix product m×∆ can be decomposed on an orbital by orbital basis

to reveal which orbital pairs contribute most to the torque. For example, the torque

exerted by transport s electrons on the d electrons contribution to ∆ is

Γsd = ss × ∆d (6.42)

This is useful for seeing how well common toy models of spin transport (for example

the s − d model) represent more realistic calculations.

Finally, in the case where spin is not conserved (for example, for systems with

strong spin-orbit coupling), the conservation argument that implies the torques are

equal to net spin flux no longer apply. We can nevertheless evaluate spin transfer

torques from the microscopic local torques. (It should be noted that stiffness pa-

rameters for equilibrium systems with strong spin orbit coupling can be calculated

accurately with the energy or torque method [88].)

6.7 Implementation

It is straightforward to implement the calculations of spin transfer torque. To verify

the consistency of our approach, we have evaluated the spin current operator (given

by Eq. (6.40)) and the local torques in order to check that Eq. (6.41) is satisfied.

As an illustration, Fig. (6.9) shows the spin current and local spin torque for a

Co-Cu-Co trilayer spin valve structure. (This system is considered in detail in Ch.

(7). The following data satisfy Eq. (6.41). The decay of spin transfer torques away

from the Co-Cu interface as described in Sec. (6.3) is evident.
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Figure 6.9: Spin current and spin fluxes in Co-Cu-Co-Cu system, with θ = 90◦.
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Chapter 7

Spin Torques in Ferromagnetic

Metal structures

The contents of this chapter are partially based on the article:

P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo, and A. H. Mac-

Donald, Current-induced order parameter dynamics: Microscopic theory applied to

Co/Cu/Co spin valves, Phys. Rev. B, 76, 024404 (2007).

7.1 Introduction

The spin valve structure composed of Co ferromagnetic layers and Cu nonmagnetic

layers is a classic system for studying magnetoresistance and spin transfer effects

experimentally [28, 29]. There are many theoretical treatments of this system as

well [42, 89, 44], and we consider it in some detail here as a benchmark case. The

two fundamental spintronic quantities a transport theory predicts are the magne-

toresistance and the spin torque efficiency factor g. We calculate these quantities for

a number of Co-Cu stack configurations. We also make a comparison to the results

of a diffusive calculation for the same system. The aim of this chapter is both to
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study properties of Co-Cu systems and, since these systems are well understood, to

also understand properties of the calculations method itself.

This chapter is organized as follows: We describe technical details of our

calculation and properties of bulk Co and Cu in Sec. (7.2). In Sec. (7.3), we consider

how the electronic structure influences transport and STT in a [Co lead - Cu - Co

lead] spin valve. In Sec. (7.4), we highlight important features of our calculation

method by contrasting our results in the ballistic regime with the corresponding

diffusive limit of the same system. Next we consider how calculated quantities

change with the number of interfaces included; specifically, in Sec. (7.5) we compare

the MR and spin transfer for a [Co lead - Cu - Co lead] trilayer (2-interface) and

for a [Co lead - Cu - Co - Cu lead] (3-interface) system. Finally, in Sec. (7.6) we

consider the so-called Dual Spin Filter design of [Co lead - Cu - Co - Cu - Co lead],

to study a possible scheme for increasing the spin transfer efficiency.

7.2 Calculation details

In all of the various calculations of Co-Cu structures described below, we take Co

and Cu to have fcc crystal structure, with lattice constant a = 3.54 Å The fcc phase

of Co is stabilized by stacking on the (001) substrate of Cu [90, 91]. The interface

between materials is taken to be perpendicular to the [100] direction. We use norm-

conserving pseudopotentials and an s, p, d single-zeta basis set, as described in Ch.

(5). We have found excellent agreement with established band structure, density

of states, and bulk conductance for Co and Cu with this basis set (see Fig. (7.1)

for density of states data). For calculations on of Co-Cu layered structures, we

have found that 800 k-points within the Brillouin zone is sufficient for convergence

of the self-consistent density matrix. To calculate transmission coefficients and

nonequilibrium spin densities, we have used 25,600 k-points. We have found that

there is less than a 1 % difference in these quantities when using up to 32,400
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k-points.

To get an idea of the role that electronic structure plays in the transport,

we first consider the electronic properties of bulk Co and Cu separately. The Fermi

surface of majority channel Co and Cu are both nearly spherical (see Fig. (2.4)). The

similarity can be traced back to the fact that both materials have approximately 5.5

electrons in the majority valence shell, and in this case identical lattice structures.

The Co minority channel Fermi surface is quite complex, possessing multiple sheets

of complicated shape. The bulk conductance shown in Table (7.1) indicates that

the minority channel has more than twice as many states at the Fermi energy. This

large density of states at the Fermi level of the minority channel is the underlying

reason for the ferromagnetic state of Co in the first place.

−10 −5 0
0

0.5

1

1.5

2

2.5

Energy (eV)

D
O

S
 (

ar
b 

un
its

)

Density of states for bulk Co

−10 −5 0
0

0.5

1

1.5

2

2.5

3

Energy (eV)

D
O

S
 (

ar
b 

un
its

)

Density of states for bulk Cu

CuCo minority
Co majority

Figure 7.1: Density of states for Co and Cu.

Table (7.1) shows the spin resolved conductance and polarization for bulk

Co and Cu, and a single Co-Cu interface. Previously published results are shown

in parentheses. As discussed in Sec. (2.3), the spin dependent conductance (or

polarization) of a single Co-Cu interface is sufficient to explain the GMR seen in
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System Gbare
maj Gbare

min P GSchep
maj GSchep

min G↑↓

Co .47 (.46) 1.19 (1.08) -.43 (-.40) - - -

Cu .56 (.58) .56 (.58) 0 - - -

Co/Cu .43 (.44) .33 (.32) .13 (.16) 2.53 (3.03) 0.59 (0.56) .43

Table 7.1: Sharvin conductance per area for bulk Co and Cu, and interface conduc-
tance per area for single Co-Cu interface, shown in units of 1015 Ω−1 ·m−2. Values in
parentheses are taken from Ref. [42] (the lattice constant of Ref. [42] is taken to be
a = 3.61Å). The polarization in the table is taken from the bare conductance. The
Schep conductance GSchep and mixing conductance G↑↓ are defined in Sec. (3.4.1)
and (3.5). The Schep polarization has a value of 0.62.

these systems.

Figure 7.2: Transmission as a function of transverse wave vector. The majority
channel shows almost uniform transmission, while the minority channel shows a
complicated structure.

Fig. (7.2) shows the spin dependent transmission as a function of wavevector

perpendicular to the current direction 1 for a single Co-Cu interface. As expected

from Fermi surface considerations, the transmission is nearly uniformly unity for

the majority channel, while for the minority channel shows a rich, complicated

structure. (The transmission probability is obtained by summing over bands: Tk =

1All of these systems have 2-d periodicity transverse to the current direction, and therefore a
2-d Brouillon zone.
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∑

mn |Tmn|2, where Tmn is the transmission amplitude from state (band) n to state

(band) m.) The property that Tmaj
k‖

≈ 1 for most k‖ has important consequences for

calculations which assume specular scattering, as will be discussed in later sections.

7.3 Co-Cu-Co trilayer

To find the magnetoresistance and spin transfer torques present in a typical exper-

imental geometry, we first consider the system of left Co lead, Cu spacer (6 ML),

and right Co lead. We include 13 buffer Co layers of the lead in the system. Fig.

(7.3) shows the geometry of the system. We are interested in the transport proper-

ties and spin torques as we vary the relative angle of magnetization between the 2

Co leads. We first perform a self-consistent calculation for the collinear Co-Cu-Co

system. We then coherently rotate one of the Co leads, and find the resulting (non-

self-consistent) transmission and torques (as described in sec (6.6))2. In the first set

of figures, we also include data points obtained by starting from the anti-parallel

self-consistent collinear solution and rotating to the desired orientation. At nearly

anti-parallel configurations, the differences between rotating from an initially paral-

lel and anti-parallel state are small, and disappear rapidly as the angle is decreased

away from 180◦.

Figure 7.3: Coordinates used in trilayer (2-interface) calculation.

In Fig. (7.4), we show the conductance vs. angle. This data yields a

2We have found self-consistent rotated configurations can be obtained, but the results for trans-
mission and torques are unchanged. This is because the interlayer exchange are very weak.
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magnetoresistance of 30%. A more experimentally relevant quantity is ∆RA =

(RP − RAP )A = 0.61 · 10−15 Ω · m2. This is somewhat higher than the experi-

mental values of ∆RA = (0.48 ± .02) · 10−15 Ω · m2 [29]. The overall RA value

for our calculation is about 1.7 · 10−15 Ω · m2, compared to experimental values of

2.1 ·10−14 Ω ·m2 - we do not expect agreement here even in the ballistic regime since

experimental stacks include several more layers than our calculation. As expected,

the experimental resistance is therefore larger than the calculated resistance.
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Figure 7.4: Conductance per area vs. relative layer orientation for the Co-Cu-Co
trilayer. A magnetoresistance of 30% is obtained. The data labelled “from AP”
represent configurations obtained by rotating away from the collinear anti-parallel
ground state.

Fig. (7.5) shows the spin current polarization as a function of the Co lay-

ers’ orientation. P = .18 for the parallel configuration, and eventually decays to

0 at anti-parallel configuration (symmetry requires Tmaj = Tmin in the AP config-

uration). The polarization is nearly constant for θ = 0 to 90◦. The polarization

for parallel alignment (P = .18) is greater than the single interface polarization

(P = .12). This is due to phase coherent effects, as described in detail in the Sec.
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(7.5).

When the layers are non-collinear, the spin current in the system is no longer

described by a two-channel model of independent spin-up and spin-down current.

Fig. (7.5) shows the direction of the spin current in the spacer as a function of

the relative orientation of the layers. The direction of the spin currents is exactly

halfway in between the direction of the two Co layers. From this observation we

can simply understand several aspects of the spin torques present in the system (see

next section). Fig. (7.6) is a cartoon showing the spin current direction for a given

magnetic configuration.
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Figure 7.5: Polarization and direction of spin current versus relative layer orienta-
tion. The angle of the spin current in the spacer is θ/2. p(π) = 0 as required by
symmetry.

7.3.1 STT in Co-Cu-Co trilayers

We next consider the STT for the trilayer calculation. We are most interested in

finding g(θ) - the angle-dependent STT efficiency. (Recall the expression for the

efficiency is given by g(θ) = STT/I sin(θ).) In all the data presented, g has units
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of µB/e = 5.78 · 10−5 (J/T · C). In these units, the inequality 0 ≤ p ≤ 1 implies

0 ≤ g ≤ 2. Physically, this means a single electron has only a certain amount spin

angular momentum it can donate to the magnetization.

Before we go on to present the calculated spin transfer torques, we can antici-

pate their form from the data shown so far. The torque is given by the component of

the spin current flux that is perpendicular to the magnetization. Since the direction

of the spin current deep inside the FM is parallel with the magnetization, the spin

current in the spacer determines the spin torques on the two Co layers.

Figure 7.6: Geometric illustration of the spin current orientation in the spacer and
relative layer orientation. If the polarization is assumed to be independent of θ, the
increase of efficiency with θ follows simply from this geometrical consideration.

If the magnitude of the spin current is denoted by IP (θ), then its components

are given as:

Iz =

(

1 + cos(θ)

A(θ)

)

IP (θ) (7.1)

Ix =

(

sin(θ)

A(θ)

)

IP (θ) (7.2)

A(θ) =
√

2(1 + cos(θ)) (7.3)

As written above, the factor A(θ) ensures that the first factors in the parentheses

are normalized and represent only the direction of the spin current. The efficiency
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factor for the torques on both FM layers is found as:

gestimate(θ) =
STT

I sin(θ)
=

P (θ)

A(θ)
=

P (θ)

2
sec(θ/2) (7.4)

In his original paper on spin torques, Slonczewski derived the following explicit

expression for g for a simplified model calculation [24]:

gSlonc(θ) = 2
[

−4 + (1 + P )3(3 + cos(θ))/4P 3/2
]−1

(7.5)

Fig. (7.7) shows the results for g from our full NEGF calculation. Shown for com-

parison is the efficiency gestimate (Eq. (7.4)) of our simple estimation assuming a

constant P (θ), and that of Sloczewksi. Both gestimate and gSlonc increase monotoni-

cally with angle - this is due to the fact that in both cases, the angular dependence of

P is ignored. The efficiency of gestimate (Eq. (7.4)) matches well with the calculated

results for θ < 90◦, demonstrating the simple geometric analysis of the spin currents

works well for angles where the polarization is constant. However, at larger angle,

the polarization decreases more rapidly than the angular factor sec(θ/2) increases,

leading to a net decrease in g. So far, there is no experimental evidence for a strong

angular dependence of g [92].

One can make further comparison to experiment by finding the amount of

torque delivered per current. This quantity can be extracted from experimental

data by finding the slope of the linear relation between critical current and applied

field (see Sec. (6.3.2)). The experiment in Ref. [28] gives a slope of 2.9 mA/1 T.

The resulting spin torque per current (or spin torque efficiency g(θ) at θ = 0) is

given by

αγ(1.0 T )MsV

2.9 mA
= .35 µB/e. (7.6)

Here α is the bulk magnetic damping of Co, assumed to be .007, Ms is the bulk
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magnetization of Co, and V is the volume of the free layer.

This small cone angle efficiency (g(θ = 0)) is nearly identical to the effective

efficiency determined from point-contact reversal experiments [93]. Our theoreti-

cal value, g(θ = 0) = 0.09, is therefore smaller than the experimental value for

Co/Cu/Co pillars by approximately a factor of 4. We make further comparisons to

this efficiency for diffusive models in the next section.
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Figure 7.7: Spin transfer efficiency g for NEGF calculation, and Slonczewksi and
simple estimate formulas.

7.4 Ballistic vs Diffusive calculations

The calculations performed within the NEGF framework represent a purely ballistic

system: phase coherent effects are fully included and the interface scattering is

specular. To highlight the role of these effects, we first consider the differences

between the ballistic results and the results obtained for the same system treated

in the diffusive limit. As discussed in Sec. (3.5), the diffusive limit differs from the

116



ballistic in two important respects: there is no phase coherence, and the interface

scattering is diffusive (purely non-specular). The treatment of the diffusive case is

done here with the machinery of magnetoelectronics, or spin-circuit theory (SCT)

[42].

SCT was described in Sec. (3.5). We briefly re-iterate here that it can be

thought of essentially as Ohm’s and Kirchoff’s Laws generalized to noncollinear

spin space. We consider only interface resistance, so that a trilayer spin-valve type

structure can be mapped into a simple Kirchoff-like circuit:

Figure 7.8: Equivalent circuit model for trilayer calculation. The “resistors” repre-
sent the interfaces.

The input parameters of the theory describing a system are simply the values

of the resistivities (or of conductivities), which we have already calculated in Sec.

(7.2), and the applied bias potential. The so-called “spin-mixing” conductance

parameter G↑↓ =
∑

mn(T ↑
mn)∗T ↓

mn emerges from the noncollinear treatment of the

system, and is related to the spin transfer efficiency. For the simple symmetric

trilayer, we can give an explicit expression for the charge current and spin torque

efficiency gdiff in the system as a function of θ. In terms of the parameters G =
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G↑ + G↓, P = (G↑ − G↓)/G, ηR = Re[G↑↓], they are:

I =
G

2

[

1 − P 2 tan2(θ/2)

ηR + tan2(θ/2)

]

V (7.7)

gdiff(θ) =
tan(θ/2)

(1 − P 2) tan2(θ/2) + ηR
ηRP (7.8)

Plugging in calculated values of these parameters from Table (7.1), we can

determine the transport properties in the diffusive limit of our system. Fig. (7.9)

and (7.10) contrast the conductance and spin transfer efficiency for the ballistic

(NEGF) and diffusive (SCT) regimes.
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Figure 7.9: Angular magnetoresistance for two models: NEGF (ballistic) and spin
circuit theory (diffusive). The Schep magnetoresistance is larger due to its omission
of contact resistance.

The results are strongly dependent on which conductance parameters are

chosen - the bare conductivities or the Schep interface conductivities. We include

both sets of data to illustrate the large difference between the choice. As discussed

in Sec. (3.4.1), the Schep conductivities are more appropriate to use for metallic
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interfaces. We will comment on the differences between the NEGF ballistic result

and both sets of diffusive results below.

We consider first the results obtained with Gbare. Here the polarization,

GMR, and spin transfer efficiency are all substantially reduced. These reductions

are due mostly to the loss of specular scattering (as opposed to the loss of phase

coherence). If we use Eq. (3.28) to compose the single interface transmission prob-

abilities for each k‖ channel separately (which amounts to losing phase coherence

but retaining specular scattering) , we obtain results similar to the NEGF ballistic

calculation. The reductions in polarization and GMR occur when we compose the

k‖-averaged transmission probabilities of Table (7.1) (which constitutes fully non-

specular scattering). The appropriate choice for composition method depends on

the degree of specular/diffuse scattering at the interface (which in turn depends on

the roughness of the interface among other things), and on the ratio of spacer thick-

ness to mean free path. For flat interfaces and thin spacers, k‖-resolved composition

of transmission probabilities is appropriate, while for rough interfaces and/or thick

spacers, k‖-averaged composition of transmission probabilities is appropriate.

When we use GSh for the diffusive conductivities, the polarization, GMR,

and spin transfer efficiency are now all substantially increased relative to the NEGF

calculation. This enhancement is because the NEGF calculation includes the contact

(Sharvin) resistance of the Co lead: since the Sharvin resistance is greater in the

Co majority channel than minority channel, its inclusion reduces the polarization.

In the diffusive calculation with Gsh, this Sharvin resistance is removed, and the

polarization is therefore increased to a value of p = .62 for the parallel configuration.

As discussed in Sec. (7.3.1), the experimental efficiency is approximately g(0) = .35.

It is seen that the diffusive calculation agrees well with this result.

To make a proper comparison with NEGF, we should subtract off the Sharvin

resistance from the NEGF result. When we do so, we obtain a GMR of nearly 100%,
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Figure 7.10: Polarization P and spin transfer g vs θ for diffusive and ballistic regimes.
The initial decrease of pdiff causes gdiff to decrease monotonically.

and a polarization of nearly 1. This is due to the fact that the majority channel

resistance (in the parallel alignment) is 3 orders of magnitude smaller than the mi-

nority channel, which is due to the fact that Tmaj
k‖

≈ 1 in the parallel configuration.

As discussed in Sec. (3.4.1), the experimental method (2-probe vs 4-probe) deter-

mines the appropriate choice for including or not the contact resistance. Common

experimental systems for spin valves are of a 2-probe form, so that contact resis-

tance should ultimately be included. Nonetheless it would be preferable to perform

an NEGF calculation with spin-independent contact resistance, by using Cu leads,

for example. In this case the contact resistance would not affect the polarization.

It is however difficult computationally however to include isolated FM layers in the

calculation, as they must be thicker than the spin transfer decay length (which is

about 3 nm [44], see Fig. (6.4) of Sec. (6.7)).

An example of a calculation with Cu leads is found in Ref. [94]. The system

is [Cu lead - Co - Cu - Co - Cu lead] and shows a parallel alignment polarization

of 36%, which would yield a g(0) = 18% - approximately twice the g(0) calculated
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here. This demonstrates that in future studies it may important to use nonmagnetic

leads in calculating spin transfer efficiencies for FM materials.

7.5 Ballistic calculation - 2 vs 3 interface results

To elucidate the role of phase-coherent scattering in ballistic calulations, we next

consider a system with an added interface. The geometry is: [Co lead - (9ML)

Cu - (15ML) Co - Cu lead]. Fig. (7.11) shows the atomic configuration. In Fig.

(7.12), the transmission for 2 vs 3 interface system is shown. As expected, the

addition of another scattering interface reduces the conductance. The value for

∆RA for 3-interface is .74 · 10−15 Ω · m2, larger than the 2-interface value (which

was 0.61 · 10−15 Ω · m2).

Figure 7.11: Coordinates used in 3 interface calculation.

Fig. (7.12b) shows the polarization of the 2 and 3-interface systems. In

this case, the polarization is increased for 3-interfaces, and does not fall to 0 as

the orientation of the layers approaches 180◦. The increase in polarization can be

understood from Fig. (7.13). This shows the k-resolved transmission for the parallel

configuration. Because of the matching Fermi surface, the majority channel is nearly

unaffected by the addition of another interface. The minority channel transmission

is further complicated by another interface, and reduced overall. The additional

structure of the transmission function is a result of resonant reflection, which is

shown in Fig. (7.14). The original transmission is modulated by phase coherent

effects, which reduce the transmission probability at certain values of k.
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Figure 7.12: Conductance per area and polarization for 2-interface (trilayer) and
3-interface systems. As expected, the conductance is reduced and polarization in-
creased for the 3-interface system. Also, the polarization does not decay to 0 for
3-interface AP configuration.

Fig. (7.15) next shows the spin transfer and spin transfer efficiency for the 2

and 3-interface systems. As anticipated, the larger polarization causes a generally

larger spin transfer torque for the 3 interface system. However at small angle, the

2-interface system has a larger efficiency. This can be explained by the direction of

the spin current. Fig. (7.17) shows the angle of spin current in the spacer layer for

both systems. In the 2-interface system, the spin current angle is almost exactly

θ/2. In the 3-interface case, the angle grows much more rapidly, and eventually

reaches 180◦. This means that at AP alignment, the spin down electrons have a

higher transmission. This can be traced back to phase coherent effects - as shown

in Fig. (7.16), up spins undergo resonant reflection in the AP alignment, reducing

their transmission with respect to down spins. This effect is manifest at smaller

free layer angles as well, and is responsible for the larger angle of spin current in

the 3-interface case. At small free layer angle, this results in a smaller transverse
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Figure 7.13: Transmission function for single interface vs. 2 interfaces. The 2
interface case is for parallel Co alignment.

component of the incoming spin current, causing a reduced efficiency with respect

to the 2-interface case. At larger free layer angle, the larger polarization more than

compensates for this, making the spin transfer efficiency larger for the 3-interface

system.
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Figure 7.14: 2 vs 3 interface transmission along the k-space line ky = 0, kx ∈ [0, π].
The 3 interface case shows a structure related to resonant reflection.

7.6 Dual Spin Filter

Finally we consider adding yet one more interface. This time, the idea is to test

a proposed configuration that is designed to increase spin transfer efficiency [95].

The system consists of [Co lead - Cu(6 ML) - Co( ML) - Cu( ML) - Co lead] (the

coordinates are shown in Fig. (7.18)). The orientation of the two Co leads are taken

to be anti-parallel. The idea behind the design is that the central Co layer (the free

layer) is to experience a spin transfer torque from the upstream FM tending to

align it, and a torque from the downstream FM tending to anti-align it. Since the

upstream and downstream FM are anti-parallel, these torques act cooperatively in

the same direction, thereby increasing the total torque. (A similar configuration in

which Co leads are parallel is proposed to reduce the spin transfer torque).

We perform the calculation as before, and Fig (7.19) shows the spin transfer

torques for the 2 and 3 interface systems, along with the DSF system. There is

considerable enhancement of the efficiency, by about a factor of 3. If one considers
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Figure 7.15: Spin transfer per current versus angle, and spin transfer efficiency vs.
angle for 2-3 interface systems. The spin torque is generally larger for the 3 interface
case, because of the larger polarization.

Figure 7.16: Schematic showing the resonant behavior present in the majority chan-
nel in the AP configuration. This leads to a T↓ > T↑ in the AP configuation.

the spin torque delivered per bias voltage, the DSF system shows an enhancement

of a factor of 2, which might be a naive guess of the enhancement factor. The

additional interface reduces the transmission by about a factor of 1/2, so that the

torque per current is then increased by a factor of 3.

Fig. (7.19) shows the layer resolved torques for the DSF system. As expected,

the torques act on both interfaces of the free layer.
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interfaces. The larger angle of the 3-interface system is a consequence of resonant
reflection in the majority channel.

Figure 7.18: Coordinates of the DSF stack configuration.
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Figure 7.19: Spin transfer torque and efficiency for 2,3 interface systems and DSF
system. As expected, the DSF system shows considerable enhancement of STT
efficiency.
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Figure 7.20: Layer resolved spin torques for DSF stack. The spin torques are local-
ized at both interfaces of the free layer, and act cooperatively to increase the spin
transfer efficiency.
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Chapter 8

Spintronics in Antiferromagnets

The contents of this chapter are partially based on the articles:

Alvaro Núñez, Rembert Duine, Paul Haney, and Allan MacDonald, Theory of spin

torques and giant magnetoresistance in antiferromagnetic metals, Phys. Rev. B,

73, 214426 (2006).

Paul Haney, Derek Waldron, Rembert Duine, Alvaro Núñez, Hong Guo, and Al-

lan MacDonald, Ab initio giant magnetoresistance and current-induced torques in

Cr/Au/Cr multilayers, Phys. Rev. B, 75, 174428 (2007).

8.1 Introduction

In this chapter we consider spintronic effects (GMR and STT) in anti-ferromagnetic

systems. Some of the fundamental characteristics of these effects in anti-ferromagnets

are qualitatively different than in ferromagnets. Our conception of STT as the re-

sult of local torques between nonequilibrium quasiparticles and an order parameter

is especially useful in the context of anti-ferromagnets. Since the total spin of an

anti-ferromagnet is 0, conservation of spin angular momentum does not uniquely

128



determine order parameter dynamics in the presence of a current.

To date, the role of antiferromagnets in spintronic applications has been

limited to pinning a ferromagnetic layer’s orientation via the exchange bias effect.

(Exchange bias refers to the unidirectional anisotropy acquired by a magnetic layer

when it is adjacent to an antiferromagnetic layer, and was first observed in 1956.)

We indeed propose that the application of current can affect exchange bias. How-

ever we additionally propose that antiferromagnet materials alone can function as

the basic building blocks of circuits that exhibit effects like GMR and CIMS. These

effects in antiferromagnets are somewhat analogous to those in ferromagnets, with

the staggered order parameter of the antiferromagnet playing the role of the magne-

tization of a ferromagnet. There are, however, a number of qualitative differences.

The organization of this chapter is as follows: in Sec. (8.2), we review

some general properties of metallic antiferromagnets. In Sec. (8.3), we discuss the

properties of GMR and STT present in toy models of antiferromagnets. In Sec. (8.4),

we describe the results of a NEGF+DFT calculation for a realistic antiferromagnetic

system.

8.2 Antiferromagnets - general properties

Antiferromagnetic materials exhibit a periodic spin density - referred to as a spin

density wave (SDW) - below a critical temperature TN (the Néel temperature).

This periodicity is described by a wave vector Q, which may be commensurate or

incommensurate with the underlying lattice. From a microscopic point of view,

antiferromagnetism in metals is usually due to approximate nesting of the Fermi

surface, and the spin wave vector Q is precisely the nesting vector. Examples of

metallic antiferromagnets include elemental Cr [96] and the alloys NiMn [97] and

IrMn [98], among others. The vanishing net magnetic moment and microscopic spin

periodicity makes antiferromagnets considerably more difficult to study experimen-
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tally than ferromagnets, and their existence was first directly demonstrated only in

1953 by Shull and Wilkonsin using neutron scattering [99]. At temperatures below

the spin-flop transision temperature Tsf , the direction of the spin S is transverse to

Q (S · Q = 0), while for temperatures Tsf < T < TN , the spin is longtitudinal

with respect to Q (S×Q = 0). The energy bands of antiferromagnets are not spin-

split, and indeed the only qualitative imprint of the ordered state on the electronic

structure is the formation of a gap at the SDW vector.

Antiferromagnets have been the subject of intense study for decades [100].

Recent work includes experimental study of the time evolution of the Q-domain

structures in Cr [101, 102]. It is found that the domain wall structure changes

due to thermal fluctuations and quantum tunnelling effects. Other research has

considered SDW properties in thin films and multilayer structures. It is found that

Cr can exhibit paramagnetism as well as commensurate and incommensurate SDW

states, depending on the film thickness and on the adjacent materials [103, 104,

105, 106, 107]. The spintronic effects in AFM examined in this chapter may have

implications for some of these recent studies.

8.3 GMR and CIT in an AFM - toy model approach

8.3.1 General properties

As discussed in Ch. 2, MR and STT effects in ferromagnets rely on the interplay

between electron transport and magnetic order. The source of this interplay is

the strong spin-dependent exchange-correlation potentials seen by current-carrying

electrons, which leads to a spin-dependent Fermi surface. Antiferromagnets do not

posses a spin dependent Fermi surface, the characteristic that is so essential to

conventional spintronics, so it is clear that any MR and STT effects in AFM circuits

must have a fundamentally different origin. As an initial attempt to understand
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spintronic effects in an AFM, we consider a single-band tight-binding model of an

AFM. The AFM order is modelled by introducing a spin-dependent exchange field

that alternates in sign on every other lattice site, and points in direction ±n (the full

Hamiltonian is given explicitly in Eq. (8.4). In this model, the essential properties

of spintronic effects can be understood from the scattering matrix of a single AFM

unit cell, as we describe below.

Invariance under simultaneous rotation of n and quasiparticle spins allows us

to write each transmission and reflection matrix in the scattering matrix as a sum

of a triplet and a singlet parts

S = Ss + St n · τ . (8.1)

Because the system is invariant under simultaneous space and time inversion,

the scattering matrix must be invariant under this operation. The most general form

of S allowed by this symmetry operation is [108]:

S =





rs + rt n · τ t
′
s

ts rs − rt n · τ



 . (8.2)

The transmission amplitudes from left and right are spin-independent and the re-

flection amplitudes from left and right differ only by spin-reversal. The parameter

space is further constrained by unitarity. This allows us to write

rs = ieiν sin Θ cosΦ ;

rt = eiν sinΘ sinΦ ;

t
′
s

= ei(ν−ξ) cos Θ ;

ts = ei(ν+ξ) cos Θ , (8.3)

where ξ and ν are phases that so far are independent parameters, and Θ and Φ
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are the polar coordinates of a sphere of radius unity. This is the most general form

for spin-dependent scattering by a integer number of periods of a one-dimensional

spin-density-wave [108].

This form of the scattering matrix reveals several key properties of scatter-

ing from a single antiferromagnetic layer. First, the reflection amplitudes are spin-

dependent, while the reflection and transmission probabilities are spin-independent.

This indicates that a single AFM layer does not act as a spin filter, or does not

induce a spin-polarized current. From the discussion of simple models of magne-

toresistance in Sec. (2.3), this would suggest that there are no magnetoresistance

effects. However this turns out not to be the case, as we describe in the next section.

8.3.2 AGMR in toy model

Despite the fact that a single AFM does not induce a spin-polarized current, the

scattering matrix implies a nonzero MR. For a system with two antiferromagnets

with respective staggered moment orientations n1 and n2 separated by an arbitrary

paramagnetic spacer, the composed transmission depends on the relative orientation

of n1 and n2. This can be shown, for example, by explicitly composing two AFM

scattering matrices [108].

We adopt a less general approach here and calculate antiferromagnetic giant

magnetoresistance (AGMR) for a simple model of an anti-ferromagnet. We describe

the system with a single-band tight-binding model:

Hk = −t
∑

〈i,j〉,σ
c†k,i,σ ck,j,σ + h.c.

+
∑

i,σ,σ′

[

(ǫi + ǫk)δσ,σ′ − ∆iΩ̂i · ~τσ,σ′

]

c†k,i,σ ck,i,σ′ . (8.4)

Here, k denotes the transverse wave number, t the hopping amplitude and ǫk the

transverse kinetic energy. The second term in Eq. (8.4) describes the exchange
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coupling ∆i of electrons to antiferromagnetically ordered local moments Ω̂i = (−)i
n

that alternate in orientation within each unit cell. In the paramagnetic regions of

the model system ∆i = 0. The on-site energies ǫi are allowed to change across a

heterojunction to represent band-offset effects.

A system to investigate MR in AFM consists of a [AFM - N spacer - AFM]

trilayer. We take the SDW vector Q of the AFM to be parallel to the transport

direction. We label the magnetic configurations as parallel (P) or anti-parallel (AP)

according to the orientation of the layers adjacent to the spacer (see Fig(8.1)).

Figure 8.1: Cartoon of N-AFM-N-AFM-N antiferromagnetic spin valve. This con-
figuration would be labelled “Parallel”, as described in the text.

Given the above Hamiltonian, we solve the Schrödinger equation with scat-

tering boundary conditions according to the procedure outlined in Appendix C.

From the scattering state wave functions, the transmission and spin-density of the

scattering state is determined. Fig. (8.2) shows the AGMR as a function of the

number of spacer sites. The AGMR is oscillatory in the number of spacer sites, as

in the conventional GMR case [109, 94]. In this case, the value of AGMR oscillates

around 0 (in the FM case, the GMR oscillates around a nonzero value). The AGMR

of a single channel k oscillates with period kL, where L is the spacer length. This

is indicative of the fact that the AGMR in this model is a phase-coherent effect.

8.3.3 CIT in AFM toy model

We now consider the current induced torques present in a circuit with non-collinear

antiferromagnetic elements. Again we consider a circuit with two antiferromagnets
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Figure 8.2: AGMR vs. spacer length for a single band 2-d toy model.

with respective staggered moment orientations n1 and n2 separated by an arbitrary

paramagnetic spacer. From the form of the scattering matrix Eq. (8.3), it can be

shown that the out-of-plane nonequilibrium spin density in the n⊥ ≡ n1×n2/|n1×
n2| direction is periodic with the lattice in the paramagnetic part of the system,

and periodic with the same period as the spin density wave in the antiferromagnets

[108].

As discussed in Sec. (6.6), the nonequilibrium spin density is responsible

for the spin transfer torque. Therefore the spin transfer torque is periodic in the

antiferromagnet. This is in stark contrast to the ferromagnetic case, in which the

spin torques decay at the interface over a length scale on the order of (k↑ − k↓)
−1

(corresponding to a value of 3 nm for Co). As we discuss later, this surprising

property could potentially lead to low critical currents for induced order-parameter

dynamics.

The proof of the periodicity of the out-of-plane spin density for this model is

technical and unenlightening [108]. It is related to the fact that the energy bands of
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an AFM are not spin-split. In Sec. (6.3) the conventional picture of spin transfer in

FM is that the spin-split Fermi surface results in precessional nonequilibrium spin

densities, which destructively interfere and cause the spin torques to decay rapidly

away from the interface. In AFM, the nonequilibrium spin density undergoes no

such precession, and the result is a non-decaying nonequilibrium spin density.

We have calculated the spin densities for the Hamiltonian of Eq. (8.4). Fig.

(8.3(a)) shows the spin density for a [N-AFM-N-AFM-N]structure. In this case

the AFM layers are oriented in the x̂ and ẑ directions. As expected, the out-of-

plane spin density (ŷ component) is constant throughout the entire structure. (This

calculation is for a single transverse channel). The out-of-plane spin density for a

single channel is periodic in spacer length L, with period kL, indicating that it is

fundamentally a phase-coherent effect, as was AGMR.

Fig. (8.3(b)) shows the spin density for a similar toy model [AFM-FM-N-

FM] structure. This stack configuration is similar to that of an exchange biased

spin valve. As expected, the spin transfer is localized at FM interfaces, and is con-

stant throughout the entire AFM volume (in this calculation, we include transverse

periodicity and sum over transverse channels).

Both the GMR and CITs present in toy models of this type containing AFM

components rely on phase coherence. From an experimental point of view, this

feature of the theory is perhaps discouraging: most experimental studies show a non-

oscillatory dependence of GMR on spacer length for spin valve structures, indicating

that transport properties do not robustly exhibit phase coherent effects [110]. 1 We

have modelled the effects of inelastic scattering on AFM spintronics with a spin-

dependent floating probe approach similar to that of Buttiker [36], and have found

that the effects do survive a moderate amount of inelastic scattering [112]. We do

not go into further details on this point, however, because in the next section we will

1In contrast, the equilibrium property of interlayer RKKY coupling is indeed oscillatory [111].
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Figure 8.3: For (a): spin densities for N-AFM-N-AFM-N structure. Here Ef =
2 cos(.1), U/t = .1, and only single-channel is calculated. For (b):Out-of-plane spin
densities (spin transfer torques) present in a AFM-FM-N-FM structure, similar to
that used for exchange bias. For the data shown Ef = 2 cos(.5), U/t = .01, and
transverse channels included.

see that in more realistic models, the role of phase coherence is not always central

to spintronic effects in AFM materials.

8.4 GMR and CITs in Cr-Au-Cr

8.4.1 System details

The specific calculations we report on in this section were performed on a system

with antiferromagnetic (100) growth direction bcc chromium (Cr) leads separated

by a fcc gold (Au) spacer. The Cr(100)/Au(100)/Cr(100) trilayer system we con-

sider here appears to be attractive as a model system for antiferromagnetic metal

spintronics. Au/Cr multilayers and (100) growth direction epitaxy were studied

some time ago both experimentally [113] and theoretically [114, 115], motivated in

part by superconductivity that can occur in disordered Au/Cr films. We find that

both GMR and CITs do occur in this ferromagnet-free magnetoelectronic circuit.

This calculation also identifies new physics not anticipated in the toy-model stud-
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ied in the previous section. The new features are associated with spin-polarized

interface resonance at the Au/Cr interface and with the presence of more than one

propagating Cr channel at the Fermi energy for some transverse wavevectors.

We study a circuit with semi-infinite antiferromagnetic Cr leads and a Au

spacer. Cr has a bcc lattice structure with lattice constant 2.88 Å, while Au is

fcc with lattice constant of 4.08 Å. The interface between these materials has a

fortuitous lattice matching of two-dimensional square nets when they are grown

epitaxially along the (100) direction and the Au lattice is rotated by 45◦ around the

growth direction. In this configuration the bulk square net lattice constants differ

by less than .2%. The lattice matching strains for Au on a (100) Cr substrate are

therefore quite small.

The origin of antiferromagnetism in Cr is nesting between electron jack and

hole neck pieces of the paramagnetic Fermi surface [96, 116]. The nesting vector

Q defines the spin density wave (SDW) period which is nearly commensurate with

the lattice with Qa/2π = .95, where a is the lattice constant. There is evidence of

antiferromagnetism in Cr thin films grown on Au substrates for coverages greater

than 12 ML [117]. Density functional theory, within LSDA, has been previously

used to study bulk Cr in a commensurate SDW state [118], and can predict the

magnitude of the exchange splitting, the magnetic moment, and the lattice constant.

For this study, we restrict our attention to Cr with a commensurate spin density

wave structure in which the body center spins and cube corner spins have opposite

orientations. This magnetic structure is metastable in the absence of a bias voltage

for our thin film structures in the local spin-density approximation. All interfaces

are perpendicular to the (100) direction.

For the GMR calculations discussed below we have used a double-zeta with

polarization basis set for both Cr and Au, and have found excellent agreement

with bulk band structures and density of states calculations. For the calculation of
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Figure 8.4: GMR as a function of spacer thickness. There is a sizable GMR for all
spacer thicknesses. The inset shows the geometry for the four layer spacer configu-
ration - up and down spins are colored red and blue (light and dark), respectively.
The configuration above illustrates an anti-parallel configuration.

current induced torques, we have used a single-zeta with polarization basis set, which

still retains good accuracy for bulk properties. (The reduction in basis size for the

non-collinear calculation is due to memory constraints.) For the calculation of the

self-consistent equilibrium density matrix, contributions from 900 k-points within

the 2-d Brillouin zone have been summed. For the calculation of the conductance

and current induced torques, 25600 k-points have been summed.

As before, we define parallel (P) and anti-parallel (AP) alignment below in

terms of the alignment of the Cr spins in the two layers on opposite sides of the Au

spacer. The inset of Fig. 1 shows the geometry and spin structure of the systems

considered.
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8.4.2 AGMR in Cr-Au

Fig 1. illustrates the dependence of the GMR ratio on spacer thickness. In the

limit of no spacer, the GMR ratio is negative, implying larger conductances for an

antiparallel configuration. This property is anticipated since the AP case at zero

spacer thickness corresponds simply to ballistic conduction through bulk antiferro-

magnetic Cr with unit transmission coefficient for all channels, whereas the parallel

configuration implies a kink in the Cr antiferromagnetic order parameter configu-

ration which reduces the transmission. For all nonzero spacers we have studied,

we find that the GMR ratio is positive. The nonzero GMR for antiferromagnetic

systems is perhaps surprising at first sight; for example a simple Julliere type two-

channel conductor model, in which MR is due to spin-dependent conductance in the

bulk, would predict that the GMR ratio is zero for antiferromagnetic systems. For

antiferromagnets GMR is, in this sense, purely an interface effect; for ferromagnets

GMR is only partly (but often mainly) an interface effect.

In the case of the previous toy model antiferromagnetic calculations, GMR

was due to phase coherent multiple scattering between two antiferromagnets. These

effects are partially mitigated [112] at elevated temperatures by inelastic scattering

which breaks phase coherence. The present ab-initio calculations reveal a new con-

tribution to antiferromagnetic GMR, explained below, which does not rely on phase

coherence. The property that realistic antiferromagnets have GMR effects that are

not dependent on phase coherence is encouraging from the point of view of potential

applications, since it suggests larger robustness at elevated temperatures.

In order to identify the dominant GMR mechanism of Cr/Au/Cr trilayer sys-

tems, we have performed a separate NEGF calculation for a single interface between

semi-infinite bulk Cr, and semi-infinite bulk Au. The result is that there is a spin

dependent conductance with magnitude (I↑ − I↓)/(I↑ + I↓) = −2.10%. The current

is spin-polarized in the direction opposite to the top layer of the antiferromagnet.
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For Cr/Au/Cr trilayers, this spin-filtering implies that the conductance is maximum

when the facing layers of the antiferromagnet have the same spin-orientation, i.e.

the P configuration has a higher conductance, even without any non-local coherence

effects. This effect is absent in the single-band models that we studied earlier.

Figure 8.6: Number of propagating states in the [001] direction at the Fermi energy
for bulk antiferromagnetic Cr.

To explore the origin of the spin-dependent interface resistance in greater

detail, we have examined the layer and k‖ resolved local density of states of the

single-interface calculation (here k‖ refers to the transverse momentum label). Fig.

(8.5) shows the layer-resolved results. (In the calculation, the first 12 layers on each

side of the interface are allowed to differ from the bulk. In Fig. (8.5) layers 1-12

are the Cr layers in the scattering region near the interface while layers 13-24 are

the Au layers in the scattering region.) We see that there is a pronounced interface

resonance on the last Cr layer; this is a consequence of the difference between the

Fermi surface topologies of Cr and Au. Moreover, this state is spin polarized, with

direction opposite to that of the bulk local moment. Fig. (8.6) shows the number
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of propagating channels in the Brillouin zone for Cr, which demonstrates that the

Fermi surface of Cr differs strongly from the nearly spherical Fermi surface of Au.

In particular, there are large regions in the Brillouin zone of Cr in which there is

no propagating state, whereas Au has propagating states across all of the central

region of the transverse Brillouin zone. Fig. (8.7) shows the transverse wavevector-

resolved Fermi-level local density of states for layers 8, 10, 12 (the last Cr layer),

and 16. Layer 8 is typical of bulk Cr, while layer 16 is typical of bulk Au. Layer 12,

however, shows features of both materials; in particular, populations of states within

the region of the Cr Brillouin zone with no propagating modes are responsible for

the localized interface resonance. Fig. (8.8) shows the total local-density of states

as a function of energy for layers near the interface. The rapid relaxation toward

bulk values away from the the interface is apparent. The interface layer has a highly

distorted density of states function, a high density of states at the Fermi level, and

a higher moment density which is responsible for a net ferromagnetic moment [114]

contribution from the interface region. Apparently interruption of antiferromagnetic

order both narrows the majority-spin bands and lowers the energy of minority spins

in this interface layer. Hopping of down-spins from the sub-interface layer on which

they are the majority to the spacer layer is enhanced by the minority spin interface

resonance.

The enhanced moment density in the interface layer is accompanied by more

attractive spin-up potentials on this layer and spin-dependent bonding across the

Cr/Au interface. The effective hopping matrix elements across the interface have

a spin-dependent contribution that is about 1% of their total values. In order

to determine whether it is spin-dependent hopping or resonances related to spin-

dependent site energies, we have symmetrized hopping of the interface to remove

its spin dependence, and re-calculated the conductance. We find the same value

for the current polarization, indicating that it is the interface resonance that is
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Figure 8.7: Number of propagating states in the [001] direction at the Fermi energy
for bulk antiferromagnetic Cr.

largely responsible for the polarization. The fact that the GMR is due to interface

resonances, rather than to phase-coherent multiple-scattering across the spacer layer,

suggests that the effect will be robust at elevated temperatures.

As mentioned in Sec. (8.3), the antiferromagnet/normal interface resistance

is not spin-dependent in the toy model systems. The key property of the toy model

which leads to this spin-independent interface resistance is that each antiferromag-

netic unit cell is invariant under a combination of space and spin inversion. The

ab-initio mean-field Hamiltonian does not have this property. A spin-dependent re-

sistance will occur in the toy model when either the hopping amplitude from spacer

to the top antiferromagnetic layer is made spin-dependent or the exchange-splitting

in the top layer is shifted from its bulk value. In this sense the interface resonance,

while not directly responsible for transport, indirectly enables spin dependent trans-

mission.
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Figure 8.8: Density of states at the fermi energy in the Brillouin zone for layers
10-14of the single interface Cr-Au system. The DOS relaxes to its bulk shape a
couple of layers away from the interface..

8.4.3 CIT in Cr-Au

We have evaluated the current induced torques for a system with a four Au mono-

layer spacer. The angle between the staggered moments of the Cr leads was initial-

ized to 90◦: the staggered magnetization is along the ẑ direction in the Cr layers

to the left of the spacer and along the −x̂ direction in the Cr layers to the right.

A self-consistent non-collinear solution to the Kohn-Sham equations was obtained

with this configuration. The resulting layer resolved torques, evaluated as described

in Sec. 6.6, are plotted in Fig. (8.9). For this data, electron flow is from right

to left lead. We find strong torques peaked in the first Cr layer, in contrast to the

toy model case in which the torques were constant in magnitude and alternated in

direction from layer to layer.

For the torques in Fig. (8.9), the antiferromagnetic order parameters of the

two layers would rotate together in a pinwheel fashion, much as in the case of stan-

dard spin torques in ferromagnets. If the right lead’s order parameter were pinned

in some fashion (for example by exchange coupling the layer to a ferromagnet), then

for electron flow from right to left lead, the direction of the left lead’s interfacial

layer will tend to anti-align with that of the right lead’s interfacial layer. This is

consistent with a negative spin polarization induced by the interfacial resonance

states found in the single interface calculation.
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To shed light on the origin of the new antiferromagnet current-induced-torque

physics revealed by these ab-initio calculations we focus on differences between the

toy-model case, in which analytic calculations are possible, and the realistic Au/Cr

case. Because the equilibrium torques that impose the antiferromagnetic order will

always be much stronger than the current-induced torques, we are mainly inter-

ested in the sum of the layer resolved torques which drives the antiferromagnetic

order parameter and therefore competes only with anisotropy torques. The perfectly

staggered torque obtained in the toy model case arises from an out-of-plane current-

induced spin density that is spatially constant within each antiferromagnet. (Here

in-plane refers to the plane spanned by the orientations of the two antiferromagnetic

layers and out-of-plane refers to the perpendicular direction, the ŷ-direction in our

case.) The constant out-of-plane current-induced spin density in the toy model can

be partially explained by the fact that Bloch wave vectors of up and down spin

states are not spin-split in antiferromagnets. It follows that a linear combination

of transmitted up and down spins have a transverse spin density that is position-

independent. (In contrast to the ferromagnetic case, in which the transverse spin

density of a particular channel shows spatial oscillations with a period given by

(k↑ − k↓)−1) [89].

To see where this physics breaks down in our calculation, consider Fig. (8.6),

which shows that a particular transverse channel has 1-4 possible values of kz. For

those channels with a single kz value at the Fermi energy, we find that the contri-

bution to the transverse spin density is spatially constant. Evidently the toy model

does a good job of describing this type of transverse channel, suggesting that our

earlier conclusion that there is a bulk contribution to the staggered spin-torque in

an antiferromagnet does have general validity. The present calculations emphasize,

however, that there is also an interface contribution coming dominantly from chan-

nels with more than one kz value at the Fermi energy. In this case the transmitted

145



wave function is a linear combination of states with different kzvalues. These states

interfere with each other to produce an oscillating transverse spin density. Summing

over many channels with different oscillation periods of the transverse spin density

leads to a rapid decay of the transverse spin density, exactly as in the case for ferro-

magnets [89]. A material with a simpler, single valued Fermi surface would not have

this interface contribution to the total staggered torque. The complex Fermi surface

is necessary to stabilize the AFM order via nesting in the first place, however. In our

case, the interface torque dominates the total staggered torque. It is nevertheless

substantial, totalling .049 µB/e.

To estimate the critical current for switching the antiferromagnetic order pa-

rameter, we take the anisotropy of bulk Cr with spins pointing along the n direction

as:

E(n) = K1(ẑ · n)2 + 4K2(x̂ · n)2(ŷ · n)2 (8.5)

where[119] K1 = 103Jm−3, and K2 = 10 J m−3, and take the magnetic damping

parameter to be α = 0.1 [119]. Here K1 is positive for T > Tsf = 123.5K, and

Q, the spin density wave vector, is taken to be in the z-direction. Near the fixed

point, n = x̂, the damping torque per area is then Γ = αγ(K1 + 4K2)t, where t is

the thickness of the layer. (Note that antiferromagnets possess no demagnetizing

field, so that the anisotropy does not include shape anisotropy and is due only to

magnetocrystalline anisotropy.) The current required to have the current-induced-

torque overcome damping is therefore .049(µb/e)Γ ≈ 6.3 · 1018t(A/m3). (In this we

assume that the transfer torque efficiency calculated at θ = 90◦ is the same as that

for small or large angle.) Typical values for critical current densities in ferromagnets

are up to 100 times larger, primarily because of the large demagnetizing fields present

in ferromagnets. We therefore expect that it will be possible to achieve current

induced switching in a circuit containing only antiferromagnetic elements.
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Chapter 9

Spin Torques Between FM and

AFM layers.

9.1 Introduction

In the previous chapters, we considered the torques present in spin valve structures

with two FM or two AFM layers separated by a nonmagnetic spacer. We next

consider a hybrid system with a FM layer adjacent to an AFM layer. As discussed

in Sec. (2.5), this configuration is used in applications for shifting the hysteresis loop

of the FM via the exchange bias effect. There is experimental evidence consistent

with the notion that spin torques at an AFM-FM interface may effect exchange bias

[120], motivating the present study.

Another important aspect of this system is that the AFM layer adjacent

to the interface is compensated, or has 0 net spin. This also distinguishes the

present calculation from that of the previous chapter, in that the SDW vector Q is

perpendicular to the current (whereas the previous chapter considered Q parallel to

current). We will see that this configurations highlights the qualitative distinctions

of spin transfer torques in AFM versus conventional FM STT.
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The specific choice of materials in our calculation is the antiferromagnetic

alloy NiMn and ferromagnetic Co. We describe the equilibrium properties of this

system in Sec. (9.2.1). In Sec. (9.2.2), we discuss the spin transfer torques that

occur - the STT are of a qualitatively different character than in conventional FM

STT. Whereas conventional STT varies as sin θ, where θ is the angle between layer

orientations, we find a torque with sin 2θ dependence. In Sec. (9.3), we explore

general implications of this new form of spin torque. We find very unusual qualitative

features for the behavior of a ferromagnetic layer under this torque, including the

stabilization of the ferromagnetic orientation out of the easy plane, and stabilization

of ferromagnetic orientation opposite the applied field direction. Sec. (9.4) considers

the effect of torque on the switching field of FM layer in exchange bias the AFM-FM

system.

9.2 NiMn-Co – Equilibrium properties

Figure 9.1: Coordinates and spin stucture for Co-NiMn interface.
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9.2.1 General properties

The materials used in this study are antiferromagnetic NiMn and ferromagnetic Co.

The structure of the interface is shown in Fig. (9.1). This system has been studied

before in the context of calculating exchange interactions and their effect on the

magnitude of exchange bias [121]. The crystal structure of NiMn is face centered

tetragonal in which the Ni and Mn layers alternate in the (001) direction [97]. In

our calculation, we use a = 3.697 Å, with c/a ratio of 0.9573. Following Ref. [121],

we use a crystal structure of Co that matches with NiMn, with c/a ratio taken to

conserve the experimental atomic volume of hexagonal Co. The interface with the

Co is in the (001) direction, and in our calculation the NiMn terminates with a Ni

layer. The Ni atoms are approximately nonmagnetic, while the Mn atoms form a

compensated antiferromagnetic 2-dimensional lattice within each plane. We label

the two oppositely oriented sublattices A and B (see Fig. (9.1)). Fig. (9.2) shows

the resulting layer-resolved magnetic moment for each sublattice. (Here layers ≤
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12 are NiMn, with odd layers Mn, and even layers Ni, and layers ≥ 13 are Co.)

The magnetic moment on Mn atoms is approximately 3.1 µB
1, consistent with

the previous result in Ref. [121] of 3.2 µB, both of which are smaller than the

experimental value of 3.8 µB [97]. The Co moment is 1.65 µB, and the terminating

Ni layer acquires a small net moment of 0.24 µB.

9.2.2 Spin transfer torques in AFM-FM system

To find the spin torques in the system, it is necessary to introduce non-collinearity

between the FM and AFM layers. To do so, we choose a plane and rotate the

magnetic orientation on one side of the plane, leaving the other side’s magnetization

fixed. The choices of plane we use are shown in Fig. (9.2), and are labelled P1,

P2, and P3 (for rotating layers ≥ 12, 13, and 14, respectively). Unless otherwise

explicitly stated, results shown are for choice P2, in which all of the Co layers are

rotated and all NiMn layers kept fixed. With a rotated magnetic configuration, we

find the spin torques present in the nonequilibrium systems as in the previous two

chapters.

As in previous systems, exchange interactions between magnetic moments

are dominant, so that the order parameter is driven coherently by current-induced

torques. Because the AFM layers consist of a staggered spin configuration, its order

parameter is rotated by torques which differ by a sign on the 2 sublattices (see Fig.

(9.3)).

Fig. (9.4) shows the total torques on the AFM and FM layers vs. angle. We

define the θ as the angle between the FM orientation and the z-axis. There is a

dramatic difference from the standard ferromagnetic spin torque case: usually the

spin torques goes as sin θ, whereas here there is an approximately sin 2θ behavior.

1Apparently the larger electronegativity of Ni results in a full shell for Ni (8→10). The loss of
2 electrons in the Mn shell (7→5) results in a magnetic moment of about 3 for Mn, according to
Hund’s rules

151



Figure 9.3: Illustration of the need for torques to differ by sign on the A and B
sublattices in order to rotate the AFM moment. The torques are shown with gray
arrows. For current from FM to AFM, the torque pulls the AFM axis toward the
FM, and the FM perpendicular to the AFM axis.

The physical picture of these torques is that for electrons flowing from FM to AFM,

the torque tends to align the axis of AFM with the FM orientation, while for electron

flow from AFM to FM, the torques tend to make the AFM axis perpendicular to

the FM, within their common plane (shown in Fig. (9.3)).

The existence of these torques (at least on the FM) and their form can be

anticipated on general grounds. For the collinear configuration, the spin polarization

is nonzero: P = (G↑ − G↓) /(G↑ + G↓) = 6.4%. Not surprisingly, spins parallel with

the FM transmit more easily. A spin-polarized current in collinear magnetic systems

generally implies the presence of spin transfer torques on ferromagnetic layers when

the system deviates slightly from collinearity. Fig. (9.5 (a)) shows the direction of

this spin torque on the FM for small θ. By symmetry, the current is completely

aligned with the FM for θ = 90◦, therefore the spin torque vanishes.2 For θ > 90◦,

the spin-polarization and resulting spin transfer torque changes sign, as shown in

2The non-vanishing numerical value for torque at θ = 90◦ is due to the fact that the interface
Ni layer has a small net uniform moment.
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Figure 9.4: Spin torque per current on FM and AFM layers for compensated inter-
face.

in Fig. (9.5 (c)). Therefore the torque on the FM must behave approximately as

sin 2θ.

This general argument rests on the notion of spin torques arising from spin

currents. For the AFM layer, this notion is no longer useful: the net spin of a single

AFM layer is 0, and we will see in the following data that the AFM order parameter

in a layer is only driven for vanishing net spin flux.

Fig. (9.2.2) shows the layer resolved torques on sublattices A and B for

several different relative layer orientations. There is a trend in which the sublattices

in the AFM layer closest to the FM (layer 11) experience an approximately equal

and opposite torque, while the subsequent Mn layer (layer 9) sublattices experience

approximately the same torque. In Fig. (9.7), we plot the torques acting on the

sublattices in these first two Mn layers vs. angle. The net torques act on the first

layer, and approximately cancel on subsequent layers. The torque from an individual

transverse channel does not show this generic property or trend; it is only observed

after averaging over the Fermi surface. It remains unclear to what extent this trend

is an accident, or the result of something more fundamental.
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Figure 9.5: Cartoon showing the spin transfer torques present in a compensated
AFM - FM interface. (a) The presence of the ferromagnet leads to spin-polarized
current and STT for small θ. (b) At θ = 90◦, the current’s spin polarization is due
only to the FM, as seen from symmetry considerations, and there is no torque. (c)
For θ > 90◦, the sign of current polarization and spin transfer torque changes.

The spin torques on the AFM operate in an entirely distinct manner from the

conventional FM case. We find vanishing net spin flux into the first Mn layer, yet

a nonzero spin torque. On the other hand, there is a net spin current flux into the

second Mn layer, yet exchange interactions lead to a vanishing spin torque. Here the

perspective of torques arising from instantaneous misalignment of the magnetization

with the current-induced exchange-correlation field is especially useful.

In Fig. (9.8) we show the torques present on the FM and AFM layer for

different choices of system division. The labelling P1, P2, and P3 are denoted in

Fig. (9.2), and correspond to rotating the magnetization for layers ≥ 13, 14, and

15, respectively. For cuts P1 and P2, the surface between the two rotated layers

is compensated, and both cases reveal a sin 2θ behavior. On the other hand, for

cut P3 the surface layer is a uniformly magnetized Co layer - an uncompensated

interface. Here the torque on the FM is more sin θ-like. As a general rule then, it

seems as though the extent of compensation on the interface is correlated with the

sin 2θ nature of the spin torque.
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Figure 9.6: Torques on sublattices A and B vs. layer, for several different relative
orientations.

9.3 Effect of sin 2θ torque in single domain magnetics

Now we consider the implications of this qualitatively different form of the spin

transfer torque for the stability and dynamics of a magnetic layer. Here we suppose

the AFM layer is fixed with axis in the n2 direction, and consider how the orientation

of a FM layer n1 evolves with time. Noting that sin 2θ = 2 cos θ sin θ, the current

induced torque calculated in the previous section takes the following form (omitting
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Figure 9.7: Torques on the first two layers of Mn. One the first layer, the torques
cooperate, while on the second layer, they cancel each other.

some constant prefactors)3:

ΓSTT = 2gI cos θ (n1 × n2 × n1). (9.1)

We are interested in exploring the dynamics that follow from such a torque.

The phase diagram of stability and dynamical modes of the LL equation + Slon-

czewski torque is well studied analytically [122] and numerically [123, 124], and we

discuss this standard phase diagram in following section (Sec. (9.4)). Our attempt

here is to perform a similar type of analytic and numerical analysis for the current

induced torque described above, of sin 2θ type.

The system we have in mind is slightly different than the AFM-FM system of

the previous section. It is shown in Fig. (9.9), and has a spacer layer to remove the

complicated and largely unknown direct exchange interactions between the AFM

and FM. The FM possesses a hard axis from shape anisotropy, and is subject to an

3There is also an in-plane torque which follows a sin θ behavior, however its impact on the
following discussion is not significant.
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Figure 9.8: Torques vs. angle on FM and AFM layer for different choices of system
cuts. An interface with compensated moment (cuts A and B) shows a sin 2θ be-
havior, while an interface with uncompensated moment (cut C) shows a more sin θ
behavior.

applied field and spin torques of the form sin 2θ. We omit easy-axis anisotropy -

its inclusion doesn’t substantially change the picture described below. We suppose

that the AFM orientation is fixed.

Figure 9.9: System to consider the implications of sin 2θ torque. The field and AFM
axis point in the ẑ-direction, and the hard axis is in the x̂-direction.
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Landau Lifshitz equation and dimensionless units

To integrate the Landau-Lifshitz numerically, we use a dimensionless time vari-

able τ = γµ0Mst, where γ and Ms denote the gyromagnetic ratio and saturation

magnetization, respectively. In these units, the applied field H is scaled by the de-

magnetization field Hd = µ0Ms, and we denote the dimensionless applied field by

happ = H/µ0Ms. For typical ferromagnets such as Co, µ0Ms ∼ 1 T, so the value of

dimensionless applied field nearly corresponds to its dimensionful value in Tesla.

The form of spin torque in the Landau Lifshitz equation is

|ΓSTT | =
gJµB

Msℓe
sin 2θ ≡ Hst, (9.2)

where J is current density, ℓ is the FM layer thickness, e is electron charge, and g

is the spin transfer efficiency. The form of this prefactor is explained in Sec. (6.3).

Fig. (9.4) shows that g ∼ 0.1 for the FM. The dimensionless spin torque is also

scaled by µ0Ms, and if we assume a FM thickness of 3 nm and Ms = 1.3 · 106 A/m,

the dimensionless spin transfer torque prefactor, denoted by hst, is proportional to

J and is given by:

hst ≡
Hst

µ0Ms
= J (A/m2) (5.2 · 10−15). (9.3)

In the following results, hst varies between ±0.05, corresponding to current densities

between ±9.6 × 1012A/m2, which is similar to current densities attained in experi-

ments [28]. (The conversion of the dimensionless hst into a real current density for

a material with demagnetization field of 1 T is J = (hstt)× 3.8 · 109A/cm2, where t

is the thickness of the FM layer in nm.)
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Coordinates for solutions of the Landau Lifshitz equation

Studying the properties of the system analytically is facilitated by a convenient

choice of coordinates. For describing motion on a unit sphere, we follow the proce-

dure described in Ref. [122] and use the following coordinate system (Shown in Fig.

(9.10)):

eφ = (− sinφ, cos φ, 0) ;

eθ = (− cos θ cos φ,− cos θ sinφ, sin θ) . (9.4)

Figure 9.10: Coordinates used for magnetic orientation and torques.

In these coordinates, the Landau-Lifshitz equation takes the form [122]:





φ̇

θ̇



 =
1

1 + α2





1/ sin(θ) −α/ sin(θ)

−α −1









Γφ

Γθ



 , (9.5)

where the torques are expressed in terms of the φ, θ components:

Γφ = (Γ · eφ) ;

Γθ = (Γ · eθ). (9.6)
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The Cartesian form of the current induced torques, assuming that the AFM layers

is pinned in the ẑ direction, is given by:

ΓSTT = Hst

(

−nxn2
z,−nyn

2
z, (1 − n2

z)nz

)

= Hst

(

− sin θ cos φ cos2 θ,− sin θ sinφ cos2 θ, sin2 θ cos θ
)

. (9.7)

The physical picture of this form of the torque is that for negative current

(Hst < 0), the torque tends to align the magnetization perpendicular to ẑ, while for

positive current, the torque tries to align the magnetization with ẑ.

For the particular case considered here, we also include the demag field Hd =

µ0Ms, which acts as a hard axis in the x̂ direction (Hd = −|Hd|nx), and an applied

field H which points in the ẑ direction. These torques then take the Cartesian form:

H = (−Hdnx, 0, H) ; (9.8)

⇒ Γtot = (−Hny, Hnx + Hdnxnz,−Hdnxnz) + ΓSTT

= (−H sin θ sinφ, H sin θ cos φ + Hd sin θ sinφ cos θ,

−Hd sin θ cos φ cos θ) + ΓSTT. (9.9)

Expressing the total torque in the coordinates of Eq. (9.4) results in:

Γθ = −1

2
sin(θ) sin(2φ)Hd + sin(2θ)Hst ;

Γφ = sin(θ)H +
1

2
sin(2θ) cos2(φ)Hd . (9.10)

Solutions to Landau Lifshitz equation

Equilibrium points satisfy Γφ = 0 and Γθ = 0. Not all equilibrium points are stable;

if the magnetization is slightly perturbed from an equilibrium, it is stable only if it

decays back into the equilibrium point. The procedure for determining the stability
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of an equilibrium point is describe in Appendix D. Here we specify the equilibrium

points and their regions of stability. We then verify numerically that these are

indeed stable solutions.

Solution 1: We first consider Hst < 0, or a spin transfer torque that tends

to make the FM perpendicular to the AFM axis. An equilibrium point is given by:

θ = ±π

2
+

H

Hd
;

φ =
−2HHst

H2
d

. (9.11)

This describes a magnetization that points approximately out of the plane. The

region of stability for this solution is:

Hst ≤
αHd

2

(

2 cos2 h − h sinh

h sin h − cos 2h

)

. (9.12)

The stable solution is possible for only a finite range of applied field, with the

asymptotic stable applied field found from Eq. as the solution to

h sin h = 1 − 2 sin2 h . (9.13)

This has the solution of h = 0.608, implying that for applied field greater than

µ0Ms(0.608), the out-of-plane configuration is never stable.

Solution 2: The other solution for Hst < 0 is simply mz = ±ẑ, describing

simple alignment of the magnetization with the applied field. The stability of this

solution is given by:

mz =
H

|H| ;

Hst ≥ α

2

(

−|H| − Hd

2

)

. (9.14)
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Solution 3: We next find solutions for Hst > 0. For 0 ≤ H ≤ Hd, there are

configurations in which the magnetization is approximately anti-aligned with the

applied field. The are given by:

θ = cos−1

(−H

Hd

)

;

φ =
−2HstH

H2
d

. (9.15)

These solutions are stable for a range of applied fields and currents:

Hst ≥ −αHd

2

(

h2 − 2

3h2 − 1

)

(9.16)

Solution 4: For Hst > 0 and H ≥ Hd, the equilibrium solutions consist of

mz = ±1. The solution and stability condition for the magnetization anti-aligned

with the field are:

mz =
−H

|H| ;

Hst ≥ α

2

(

|H| − Hd

2

)

. (9.17)

Fig. (9.11) shows the x and z components of the magnetization as a function

of applied field and current, determined numerically. We have taken the damping

α = .01, and the applied field and spin transfer torque are scaled by the demagneti-

zation field, as described earlier. Also shown is the magnitude of the power spectrum

peak of z(t) (labelled “PZ”) - a nonzero value indicates a precessing solution. Also

shown is the stability boundaries defined by Eqs. (9.12),(9.14),(9.16),(9.17). The

numerics verify the stability of the unusual out-of-plane and field-anti-aligned solu-

tions.

We first discuss the physical picture for the stable out-of-plane configuration

under negative current. The origin for the instability of the easy-plane configuration
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Figure 9.11: Magnetic configuration (Mx, Mz) and peak of power spectrum Pz (ar-
bitrary units) versus applied field and current. Also shown is stability boundaries
found analytically (the labels ±x,±z refer also to solutions which point approxi-
mately in these directions). The stability boundary plot also shows the reduced
out-of-plane solution space for negative to positive field sweep with a dashed line.

can be understood from Fig. (9.12). Here the AFM axis is labelled û = ẑ and the

magnetization is m̂, and we consider small excursion from the plane. For simplicity

we first consider no external field. If a small fluctuation drives the magnetization out
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of plane, it will precess about the hard axis and eventually damp back into the easy

plane. The presence of the sin 2θ torque, however, tends to make the magnetization

perpendicular to û within their common plane. As m̂ precesses around the hard-

axis, this torque vector has a component Γx which points out of the y − z plane. If

the angle between ẑ and the in-plane component of m̂ is β, the magnitude varies as

Γx = 2Hstmx sin2 β, as shown in the figure. The crucial point is that this torque is

always positive throughout the precession . When this torque exceeds the damping,

the out-of-plane configuration is stabilized. The eventual out-of-plane orientation

is +x̂ or −x̂ depending on the direction of the initial fluctuation out of the plane.

The presence of an applied field changes the trajectory of the magnetization upon

an excursion from the easy-plane. For a sufficiently large applied field, the torque is

unable to stabilize the out-of-plane configuration, and the magnetization undergoes

simple precession around the ẑ-axis (double check that).
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Figure 9.12: Saddle shape shows the out of plane torque vs β for small excursions
from the y − z plane. The torque is always positive.

The data for each (h, hst) point of Fig. (9.11) is obtained beginning from

an initial condition close to the solution given by Eq. (9.11). These equilibrium

solutions are not universal attractors, and are attained for a subset of initial con-
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ditions. To see the effect of initial conditions, we have also swept the applied field

from negative to positive for each applied current, using the slightly perturbed final

coordinates of a trajectory as the initial condition for the next value of applied field.

The out-of-plane solution space is reduced, shown by the dotted line in Fig. (9.11)

in the stability boundaries plot .

We next consider the physical picture configuration in which magnetization

points opposite to the applied field for Hst > 0. This state only occurs if the

magnetization is initially close to anti-aligned to the applied field. The reason for

its stability is that this form of the spin torque does not distinguish between +ẑ and

−ẑ - it merely tends to make to direct the FM to the nearest available ẑ-axis. The

region for such a solution is shown in Fig. (9.11), labelled ±z. It is seen that the

applied field must be sufficiently large for this solution to be stabilized. The exact

condition for stability is

|H| ≥ Hd√
3

. (9.18)

It may be surprising that a sufficiently large field is required to stabilize an anti-

aligned configuration. The reason is that for a small applied field, the reversal

process consists mostly of a precession about the hard-axis and takes place near

the easy plane. This hard-axis-precession-assisted reversal is too strong for the spin

torque to inhibit. On the other hand, for large applied field, the precession is mostly

around the applied field, and the reversal is due mostly to damping. The spin torque

is able to compete with and prevent this damping-dominated reversal process.

To see this state experimentally, it is necessary to initialize the magnetization

in a direction nearly anti-aligned to an applied field. One possibility is to initialize

the magnetization in the −ẑ direction with a negative field, apply a large positive

current, and then sweep to a sufficiently large positive field. If the sweeping time is

fast enough so that the magnetization remains close to the anti-aligned state, then
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the magnetization should remain in the −ẑ state. The required sweep rate is on the

order of γα ∼ 10−10 T/s.

Experimental considerations

We now comment on the experimental possibilities of seeing these effects. In the

preceding analysis, we assume that the AFM is fixed. This can be accomplished

by placing a large FM adjacent to the AFM, so that the AFM is pinned via the

exchange bias effect. The presence of this pinning FM may influence the dynamics

of the free FM, but its signature should be very distinct from the influence of the

AFM layer on the free FM.

We first consider the stabilization of the out-of-plane configuration. A virtue

of this effect is that the surface of the AFM need not be single domain for its

observation. As long as the magnetization of the AFM is compensated and points in

the plane, different orientations of domains at the AFM surface should cooperatively

push the FM out of the plane. For the stabilization of the field anti-aligned FM

configuration, it is necessary to have a AFM surface with an axis pointing mostly

along a single direction. If averaging over domains reduces the average orientation

magnitude to f (f=1 for single domain, f=0 for uniform distribution of domain

orientations), the critical field required to stabilize the anti-aligned configuration

will increase as approximately 1/f .

9.4 Effect on switching field

The way in which to incorporate the spin transfer torques present at an AFM-FM

interface into a model of FM field driven switching is not clear. We mention here a

number of approaches for the sake of comparing to experimental data [120]. The data

with which we compare is deceivingly simple: the switching field changes linearly

with current, for both positive and negative current. We will first consider the effect
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of current on a model of exchange bias. Next we consider how a conventional sin θ

torque acting between a partially compensated AFM and FM changes the switching

field of the FM. It turns out that neither mechanism can capture the experimental

data, but we include the calculations here for the sake of demonstrating how simple

explanations for the effect seem to be deficient.

9.4.1 Effect on exchange bias model

We consider a specific model of exchange bias, and how spin torques change the

behavior of the model. The data of Ref. [32] indicate that the origin of exchange

bias for IrMn is the presence of pinned moments, as described in Sec. (2.5). The

average orientation of the pinned moments determines the unidirectional exchange

field. In our model, we suppose that the pinned moment directions are taken from

a uniform distribution, with a specified maximum angle, as indicated in Fig. (9.13).

The distribution and net moment are therefore parameterized by a single variable

β. The average moment for a given β is simply given by:

〈mz〉 =
1

2β

∫ β

−β
cos θdθ

=
sinβ

β
. (9.19)

In this model of exchange bias, the magnitude of exchange bias is proportional to the

average of the uncompensated, pinned moments along the bias direction - precisely

〈mz〉.
If spin torque acts directly on these pinning moments to change their distri-

bution, the net moment of the AFM layer will change, and the exchange bias will

change by the same proportion. We find the effect of spin torques on the distribution

in the next section.
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Figure 9.13: For a uniform distribution of spin orientations spanning θ ∈ [−β,+β],
the average ẑ-component is (sinβ)/β, plotted above.

9.4.2 Effect of current on uniform spin distribution

Using the BJZ coordinate system for an applied field in the (sin ξ, 0, cos ξ) direction,

the torques are given by:

Γθ = B sin ξ sinφ + Bst sin θ ;

Γφ = B (sin θ cos ξ − cos θ cos φ sin ξ) . (9.20)

The equilibrium points of the above are given by:

θ = ±ξ ;

φ =
−Bst

B
. (9.21)

Carrying out the procedure to find the stability of these fixed points as described

before results in the stability condition Bst < αB
cos ξ . The orientations are therefore
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given by:

θ =







ξ for Bst < αB
cos ξ

−ξ for Bst > αB
cos ξ

(9.22)

The physical picture of the action of STT on a spin with pinning field orien-

tation ξ with respect to the fixed layer is as follows: the STT is most effective for

smaller ξ, and when the STT is sufficiently large to overcome damping, it induces

a switch to the direction −ξ. Fig. (9.14) shows a numerical check of the above

solutions for stability. The numerics verify the stability and switching condition of

Eq. (9.22).
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Figure 9.14: Numerical check of the solution to LL+Slonczweski equation with
tilted pinning field. The black squares indicate the stability boundary determined
analytically.

So for a distribution of spins and a given spin torque Bst, only a subset will

undergo switching, those that satisfy the condition of Eq. (9.22). This means that
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spins will switch if their orientation satisfies the criterion:

ξ < cos−1

(

αB

Bst

)

≡ ξ∗ . (9.23)

This modifies the distribution, and therefore modifies the average value of mz. In

the formula below, we start with the original averaged mz, then subtract off the

portion of the distribution that has switched, and replace it with its switched value.

If we assume Bst > 0, the modification of the distribution can be understood from

Fig. (9.15). The resulting average value of mz is:

〈mz〉 =
sinβ

β
− 2

2β

∫ ξ∗

−ξ∗
cos(θ)dθ ;

⇒ 〈mz〉 =











sin β
β − 2

β

√

1 −
(

αB
Bst

)2
for ξ∗ < β

− sin β
β for ξ∗ > β

(9.24)

(a) (b)

Figure 9.15: (A) Set of switched moments are shown in darker gray for a given
distribution and Bst > 0. (b) Dark gray shows set of switched moments for Bst < 0;
here only moments sufficiently close to θ = π undergo switching.

For Bst < 0, only moments whose pinning field satisfies ξ > π/2 switch

(again refer to Fig. (9.15). The condition for switching for these moments is the
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θ ∈ [ξ∗, β]. The average then becomes:

〈mz〉 =
sinβ

β
− 2

β

∫ β

ξ∗
cos(θ)dθ

= −sinβ

β
+

2

β

√

1 −
(

αB

Bst

)2

. (9.25)
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Figure 9.16: (a) Ratio of 〈Mz〉 /
〈

M0
z

〉

vs. Bst/Bpin for 3 moment distributions
- a value of +1 signifies no change to exchange bias, and −1 signifies a reversed
exchange bias orientation. (b) shows a contour plot of 〈Mz〉 /

〈

M0
z

〉

vs Bst/Bpin and
β.

Fig. (9.16 (a)) shows the average value of Mz for various distributions and

applied currents. There is a threshold current of Bst > αBpin for any modification

of Mz to occur. For β < π/2, a negative current does not affect the distribution

at all. For Bst slightly greater than αBpin, the average orientation of Mz changes

sign, which would result in a reversal of the exchange bias field. This is not at all

seen experimentally, indicating that this is not a good model for the experimental

results.
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9.4.3 Direct torque on FM

We now consider effect on the switching field of a ferromagnet from a conventional

spin transfer torque. When the ferromagnet possesses only uniaxial anisotropy, the

switching field is easily obtained:

Bsw = ±K +
Bst

α
. (9.26)

However, the addition of easy-plane anisotropy complicates the (I,B) phase diagram.

This has been studied in detail analytically and numerically, and there is very good

agreement between experimental and theoretical results. We include numerical re-

sults of our own for the sake of contrasting to the phase diagram of the sin 2θ case

and for comparing to experimental data for current modulated switching field. Fig.

(9.11) shows the Mz component of the magnetization versus applied field and cur-

rent, for both forward and backward applied field sweeps. In this calculation, there

is a uniaxial anisotropy of .01, so that for Bst = 0, there is hysteresis between the

two field sweeps. The current affects the switching field only above a critical cur-

rent Bst > αHd/2, and for only one sign of the current. This is due to the known,

and curious fact that spin transfer torque is able to assist the magnetization from

escaping a local minimum and therefore reduce the switching field; however it does

not retard the escape process, and so does not increase the switching field. This is

shown schematically in Fig. (9.18).

Fig. (9.19) shows the resulting hysteretic magnetization loops for several

applied currents. This plot emphasizes the fact the spin transfer torque shifts only

one of the switching branches, in accord with the previous discussion.

For this reason, a simple spin transfer interaction between the AFM and FM

is unable to explain the data of Ref. [120], because in the data, the switching field

of both branches is shifted, and the switching field of 1 branch changes for both
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Figure 9.17: Mz vs applied field and current, for forward and backward field sweeps.

Figure 9.18: Illustration of the role of STT for field-induced magnetization switching
of an easy plane FM: STT can assist the switching, reducing the switching field;
however STT can not retard switching.

positive and negative current.

Clearly then more refined models of the exchange interaction between the

AFM and FM, and the effect of STT on this interaction are needed in moving

forward. This likely represents a difficult line of work, as exchange bias interactions

are very complicated and still the subject of much debate [125].
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Figure 9.19: Hysteresis loops for several values of spin transfer torque. Only 1
branch is shifted by the spin transfer torque.

9.5 AGMR in compensated AFM systems

In this section we briefly review some results for a system composed of two com-

pensated antiferromagnets NiMn, separated by a Cu spacer. The system geometry

consists of NiMn layers, each of which terminates with the antiferromagnetic, com-

pensated Mn layer, with 6 ML of Cu atoms in between. The 2d lattice of the facing

Mn layers are offset from each other, as shown in Fig. (9.20). As before, the collinear

self-consistent ground state is obtained, and one of the layers magnetic orientation

is rotated. Subsequently the transmission is calculated.

Fig. (9.21) shows the transmission versus θ. (θ = 0 corresponds to the

spin lattice structure shown in Fig. (9.20). There is a striking behavior, in which

the transmission is lowest, and approximately equal for θ = 0, 90, 180. The data

is likely fit to a function of the form T (θ) = | sin(2θ)|. For both θ = 0, 180, the

current is unpolarized, T↑ = T↓. We suspect that the difference in conductance as

the relative orientation is varied is due to phase coherent effects, as in the toy model
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Figure 9.20: The lattice structure of the NiMn-Cu-NiMn system. There are 6 ML
of Cu (atoms not shown explicitly), and the terminating Mn layers 2d lattices are
offset in real space, as shown.

of AGMR present in the last chapter. It is not known if the angular dependence is a

generic properties of compensated antiferromagnets, and it is also not clear if the fact

that the transmission is minimized for collinear and perpendicular orientations is

general. It is the suspicion of this author that the angular behavior is generic within

a phase coherent regime, and that the location of transmission minima/maxima is

not general, but model specific. These constitute important issues for further study.
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Figure 9.21: Conductance vs. relative orientation for two compensated antiferro-
magnets. The conductance is minimized (or resistance maximized) for θ = 0, 90, 180.
The difference in conductance is likely due to phase-coherent effects.
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Chapter 10

Conclusion.

In this thesis, we implemented a general formulation of current induced torques into

a NEGF+DFT code. With this, we found the torques present in realistic structures

containing both FM and AFM materials. This is the first direct calculation of

current induced torques from first principles. We found that spin transfer torques

exist in AFM, and are qualitatively different than in FM. We predict a new phase

diagram for the magnetic configuration versus applied field and current for a AFM-

FM hybrid structure.

The current induced torque is derived from the misalignment between nonequi-

librium quasiparticle spin and the local magnetic condensate. This formulation does

not rely on conservation of spin angular momentum arguments, and is therefore ap-

plicable to antiferromagnets and materials with strong spin-orbit coupling. There

are a number of future directions that this work can go. Here we describe some of

them:

1. The effect of current on exchange bias can be studied in more detail.

There are a number of fairly complex models of exchange bias, which rely on domain

structure of the antiferromagnet interface [126]. It is possible that the effect of spin

transfer on exchange bias is only properly understood in the context of these more
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elaborate models.

2. We found that the application of a bias voltage can induce magnetization

dynamics when a circuit contains noncollinear magnetic configurations. That leads

to the question as to whether a bias voltage change other properties of the magneti-

zation besides its direction? For example, can it change the transition temperature

[127]? The exchange calculator enables us to do this calculation. Usually exchange

is found from change in energy upon small rotation, but we find it as a torque.

This brings up the deeper question of the role of the equilibrium quantity energy in

nonequilibrium situations [128].

3. Another type of system to consider carefully is one in which spin is not

conserved, specifically a system with strong spin orbit coupling. We have imple-

mented spin orbit coupling into our code following Ref. [129], and so we can find

the torques present in such a system. One potentially enlightening route is de-

fine a total angular momentum current and see if torques from nonequilibrium spin

densities correspond to net angular momentum flux [130].

4. Finally, the NEGF formalism is highly flexible, and can accurately model

molecular systems. This brings up the obvious question as to whether or not spin

transfer torques would be manifest in magnetic molecules. Magnetic molecules are

a rich subject matter in their own right. If a magnetic molecule were sandwiched

between leads with noncollinear magnetization, certainly one would expect some

measure of spin transfer torque to be exerted on the molecule’s magnetization. It

is possible that this torque will have unique features because of the reduced dimen-

sionality of the molecular system. Recall that the standard picture of spin torque

relies on the decay of spin torques away from the interface, which in turn relied

on the interference of many transverse channels’ spin densities. With a 1-d or 0-d

system, such interference will not occur, so that qualitatively different physics may

emerge in such systems. The most experimentally viable choice of molecule to study
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is an important consideration in moving forward on this topic.
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Appendix A

Exchange-Correlation

Parameterizations

For the LSDA exchange-correlation functional, we have implemented that of Perdew

and Zunger, described in Ref. [70]. Here we give its details. The potential is written

in terms of the total density n and polarization ζ:

n =
(

4πr3
s/3

)−1
(A.1)

ζ = (n↑ − n↓) /n (A.2)

The form of the exchange-correlation potential is:

v↑xc = −
(

6n↑
π

)1/3

+ µc + f(ζ)(µP
c − µU

c ) + (ǫP
c − ǫU

c )(1 − ζ)
df

dζ
(A.3)

v↓xc = −
(

6n↓
π

)1/3

+ µc + f(ζ)(µP
c − µU

c ) + (ǫP
c − ǫU

c )(1 − ζ)
df

dζ
(A.4)
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Where f is

f(ζ) = (1+ζ)4/3+(1−ζ)4/3−2

24/3−2
(A.5)

The expressions for the correlation contribution to the potential are:

ǫc(rs, ζ) = ǫU
c (rs) + f(ζ)

[

ǫP
c (rs) − ǫU

c (rs)
]

, (A.6)

µσ
c (rs, ζ) = µU

c (rs) + f(ζ)
[

µP
c (rs) − µU

c (rs)
]

+

[

ǫP
c (rs) − ǫU

c (rs)
]

[sgn(σ) − ζ] df
fζ (A.7)

The parameters appearing in the Eq. (A.7) and (A.7) are given below. The super-

script i runs over U andP :

ǫi
c = γi/

(

1 + βi
1
√

rs|βi
2rs

)

(A.8)

µi
c =

(

1 − rs
3

d
drs

)

ǫi
c = ǫi

c
(1+ 7

8
βi
1

√
ts+

4

3
βi
2
rs)

(1+βi
q
√

rs+βi
2
rs)

(A.9)

ǫi
c = Ailnrs + Bi + Cirslnrs + Dirs (A.10)

µi
c = Ailnrs +

(

Bi − 1
3Ai

)

+ 2
3Cirslnrs + 1

3 (2Di − Ci) rs. (A.11)

AU,P and BU,P are constants:

AU = 0.0311

BU = −0.048

AP = 0.01555

BP = −0.0269 (A.12)
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Appendix B

Derivations for equilibrium and

nonequilibrium spin torques

B.1 Exchange parameters from energy and torques.

Here we prove that the expression for exchange parameters found in Ref. [83] is

identical to the expression for the torque associated with a non-self-consistent [H, ρ]

pair. We start with a collinear ground state:

ρ0 =
1

2
(ρ0 + mτz) (B.1)

H0 = H0 +
1

2
∆τz (B.2)

We now rotate some portion of the magnetization by an angle θ, which gives a new

Hamiltonian H1:

H1 = H0 + δH

δH =
∆

2
((1 − cos(θ)) τz + sin(θ)τx) . (B.3)
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Now we would like to find the instantaneous resulting spin density. This is found

from the new density matrix ρ1:

ρ1 =
1

π

∫

Im

(

1

E(+) − H1

)

dE (B.4)

Considering only the integrand G(E) = (E(+)−H1)
−1. We can find an approximate

expression for G by expanding to second order in θ:

G1(E) = (E − H0 − δH)−1 (B.5)

G1(E) = G0 (1 − δHG0)
−1 ≈ G0

(

1 + δHG0 + (δHG0)
2
)

(B.6)

Eq. (B.6) determines the instantaneous spin density in the presence of the perturbed

magnetization configuration described by Eq. (B.3). The resulting torque is then

Γ = ∆1 × m1 (B.7)

⇒ Γy = ∆x
1mz

1 − ∆z
1m

x
z (B.8)

=
∆ sin(θ)

32

{

8m + 6m2∆ + 3m3∆2 − 2∆G2
0

−4m2∆(1 + m∆) cos(θ) + m3∆2 cos(2θ)
}

(B.9)

This has the form sin(θ) as expected. Dividing the sin factor, and taking the limit

of θ → 0

Γy/ sin(θ) =
∆

16

(

m(4 + m∆) − ∆G2
0

)

(B.10)

Finally, making the replacement G0 = G↑ + G↓, m = G↑ − G↓, and including the

integral over energy gives:

Γy

sin(θ)
=

1

4π

∫

Im (∆(G↓ − G↑) + ∆G↑∆G↓) dE (B.11)
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This reproduces the result of Leichtenstein for the stiffness. This verifies that our

approach for calculating stiffness from instantaneous torques is equivalent to calcu-

lating ∂E/∂m directly.

B.2 Spin current operator

Here we give a derivation of Eq. (6.38), which relates the spin current flux to

magnetization precession around nonequilibrium spin density.

ρi′i;s′s =
1

2

[

ρ
(0)
i′i δs′s + ~mi′i · ~τs′s

]

.

Hi′i;s′s = H
(0)
i′i δs′s −

1

2
~∆i′i · ~τs′s. (B.12)

In the 2x2 submatrix which is diagonal in orbital space (or the on-site term),

the prefactors of the pauli matrices are real. (Physically these prefactors are related

to the spin polarization of the orbital and the effective magnetic field for ρ and

H, respectively.) For 2x2 submatrices off-diagonal in orbital index, the prefactors

(such as ρ(0) and ~m) are complex. Any hermitian matrix may be decomposed in the

manner above. We are ultimately interesting in spin current. To find the expression

for the spin current operator, we consider the following:

ρ̇ =
1

i~
[H, ρ] (B.13)

ṡi = Tr[ρHσ̃i − Hρσ̃i] (B.14)
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Where the trace is in spin space. Using the following:

[σi, σj ] = iǫi,j,kσ
k (B.15)

{σi, σj} = δij (B.16)

σi2 = 1 (B.17)

σi3 ∼ σi (B.18)

Tr[σi] = 0 (B.19)

Considering only the cross term of B.14 with both spin-dependent contribu-

tions (~m and ~∆), and taking the z-component of the spin time derivative:

Tr[(m̃ · τ̃)(∆̃ · τ)σz − (∆̃ · τ)(m̃ · τ̃)σz] (B.20)

In each of the above, if the z-component of one of ~m, ~∆ is taken, and the other

component is taken to be j 6= z, one is left with Tr[σj ] = 0 (from B.17). If both

components of ~m, ~∆ are z, then left over is Tr[σz] = 0. Hence only the following

terms contribute:

[(mx∆y)ii + (my∆x)ii − (∆ymx)ii − (∆xmy)ii]i(σ
z)2 (B.21)

Implicit in the above is an orthogonal basis set (in saying that the density present

on site i is ρii). Rewriting the above, and including the trace and 1/i~ prefactor

from Eq. (B.14):

1

4~
Tr





∑

j

(mx
ij∆

y
ji − my

ij∆
x
ji + ∆y

ijm
x
ji − ∆x

ijm
y
ji)



 (B.22)

Now consider the cross terms in which only one factor is spin-dependent,

and again restricting attention on the z-component (for example: Tr[(m̃ · τ̃)H −
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H(m̃ · τ̃)σz]). The only component of ~m that survives the trace over (~mσz) is the

z-component (since σ2
z = 1). Hence the relevant terms are as follows:

1

2i~
Tr





∑

j

[

H
(0)
ij mz

ji − mz
ijH

(0)
ji + ∆z

ijρ
(0)
ji − ρ

(0)
ij ∆z

ji

]





Clearly cross terms with both spin-independent factors will vanish under the

trace. Thus, combining the two nonzero factors, one obtains:

Ṡz
i = Tr





1

2i~

∑

j

[

H
(0)
ij mz

ji − mz
ijH

(0)
ji + ∆z

ijρ
(0)
ji − ρ

(0)
ij ∆z

ji

]

+

1

4~

∑

j

(mx
ij∆

y
ji − my

ij∆
x
ji + ∆y

ijm
x
ji − ∆x

ijm
y
ji)



 (B.23)

Extending the expression to other vector components may be done simply by cyclic

permutation of indices.

B.2.1 Spin-dependent hopping

In the charge current, it makes no difference if you consider the current flowing from

site i to i + 1 versus the current flowing from i + 1 to site i. They are equivalent,

with only a minus sign difference. It turns out when you have non-collinear spin

current, and spin-dependent hopping, the two are not quite equivalent. The differ-

ence between the two is very small, so for practical purposes, they may as well be

the same. However, for completeness let me explain the origin of the difference. In

the following, I’ll have a convention where “IL” refers to where the source is to the

left of the target, and “IR” refers to the opposite case (the source to right of the

target). For normal charge current, and collinear spin current, the label of source

and target is arbitrary, and normally the current calculated by “IL” and “IR” are

the same, with only a sign difference. When one has spin-dependent hopping, “IL”
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and “IR” may differ. This is shown explicitly in the following calculation for general

hopping between 2 sites 1 and 2:

IL : ρ12H21 − H12ρ21 (B.24)

IR : ρ21H12 − H21ρ12 (B.25)

where, as above, H12 = H
(0)
12 + ~∆12 · ~τ , where H

(0)
12 , ~∆12 are complex, and H21 =

H†
12,

~∆21 = ~∆†
12. Computing the above two expressions for spin current, one finds,

and condensing notation into ρ12 = ρ + ~ρ, ρ21 = ρ∗ + ~ρ∗ (and using (~m · ~τ)(~s · ~τ) =

(~m · ~s) + i~τ · (~m × ~s):

~IL = ρH∗ + (~ρ · ~H∗) + i~τ(~ρ × ~H∗) + ρ( ~H∗ · ~τ) + H∗(~ρ · ~τ) (B.26)

− [Hρ∗ + ( ~H · ~ρ∗) + i~τ · ( ~H × ~ρ∗) + H(~ρ∗ · ~τ) + ρ∗( ~H · ~τ)]

~IR = ρ∗H + (~ρ · ~H∗) + i~τ(~ρ∗ × ~H) + ρ∗( ~H · ~τ) + H(~ρ∗ · ~τ) (B.27)

− [H∗ρ + ( ~H∗ · ~ρ) + i~τ · ( ~H∗ × ~ρ) + H∗(~ρ · ~τ) + ρ( ~H∗ · ~τ)]

We find that:

~IL + ~IR = 2i~τ · [(~ρ × ~H∗) − ( ~H × ~ρ∗)] = 4Im[τ̃ · (H̃∗ × ρ̃)] (B.28)

Clearly the expected identity IL = −IR holds for collinear, or spin-independent

hopping (or current). The inequality in the case of noncollinear and spin-dependent

hopping can be understood in the following intuitive sense (...). It should be noted,

however, that this contribution to the net current is very small compared to the

other contributions (even after summing over thousands of transverse channels) -

so it has been checked (at least in my Co-Cu baseline system) that ignoring the

distinction between “L” and “R” leads to no practical consequence. The physical
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origin of the difference can be understood intuitively with the cartoons shown below:

Figure B.1: Spin-dependent noncollinear hopping between two sites i and i+1. The
spin is rotated by the “hopping” effective magnetic field (points into the page).

Figure B.2: Spin-dependent noncollinear hopping between two sites i and i + 1.
When you reverse the labels of “source” and “target”, the sign of the current changes,
but in this case, the sense of rotation of the spin changes as well. This is the source
of the violation of IL = −IR. The difference is usually very small.
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Appendix C

Toy scattering formulation

Schrödingers equation with scattering boundary conditions can be solved for toy

models with the following scheme. The Hamiltonian is given by

Hk = −t
∑

〈i,j〉,σ
c†k,i,σ ck,j,σ + h.c.

+
∑

i,σ,σ′

[

(ǫi + ǫk)δσ,σ′ − ∆iΩ̂i · ~τσ,σ′

]

c†k,i,σ ck,i,σ′ . (C.1)

Here, k denotes the transverse wave number, t the hopping amplitude and ǫk the

transverse kinetic energy. For simplicity in illustrating the method, we take ∆i = 0.

The boundary condition is an outgoing Bloch state.

cn = eikn (C.2)

cn−1 = cik(n−1) (C.3)
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The wave function is then defined, and can be constructed directly from a real-space

representation of the Schrödinger equation:

ci =
ci+1

t
(E − Ui+1) − ci+2 (C.4)

c1 = R̃e−ik + Ĩeik (C.5)

c2 = R̃e−2ik + Ĩe2ik (C.6)

Given the wave function at points 1 and 2, Eqs. (C.5) and (C.6) can be easily solved

for Ĩ , R̃. This determines the reflection and transmission amplitude.

t =
1

Ĩ
(C.7)

r =
R̃

Ĩ
(C.8)

To consider systems with antiferromagnetic leads, it is necessary to project

the asymptotic wave function on to the Bloch state of a antiferromagnet. If the unit

cell of an antiferromagnet is given as:

Hk
± =





±U t
(

1 + e2ik
)

t
(

1 + e−2ik
)

∓U



 (C.9)

The ± subscript refers to up and down spin. The eigenvectors are given in terms of
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a basis with labels |1〉, |2〉 (see Fig. (C.1):

uE
± =

±u −
√

u2 + (2t cos(k))2

t(1 + e2ik)
(C.10)

uO = 1 (C.11)





ψ↑

ψ↓



 = A





uO|1〉 + uE
+|2〉

uO|1〉 + uE
−|2〉



 (C.12)

Where the factor A ensures a normalized wave function.

Figure C.1: Unit cell of antiferromagnet (shown for up spin, the down spin has
opposite signs for U .)
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Appendix D

Stability analysis of Landau

Lifshitz equation

In spherical coordinates, the Landau-Lifshitz equation takes the form [122]:





φ̇

θ̇



 =
1

1 + α2





1/ sin(θ) −α/ sin(θ)

−α −1









Γφ

Γθ



 , (D.1)

where the torques are expressed in terms of the φ, θ components:

Γφ = (Γ · eφ) ;

Γθ = (Γ · eθ). (D.2)

Equilibrium points satisfy Γφ = 0 and Γθ = 0. Not all equilibrium points are

stable; if the magnetization is slightly perturbed from an equilibrium, it is stable

only if it decays back into the equilibrium point. To find its stability, we first
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evaluate the Jacobian, defined as:

V̂ =





∂Γφ/∂φ ∂Γφ/∂θ

∂Γθ/∂φ ∂Γθ/∂θ



 . (D.3)

This leads to the stability matrix D̂ as described in Ref. [122]:

D̂ =
1

1 + α2





1/ sin(θ) −α/ sin(θ)

−α −1



 V̂ . (D.4)

The eigenvalues of D̂, labelled λ1, λ2 determine the stability of the equilibrium

point. When the eigenvalues are complex conjugates, with negative real part, the

equilibrium is stable. The stability boundary is therefore determined from

Re [λ1,2] = 0 . (D.5)

For the case considered here, we can expand to first order in Hst/Hd and find an

explicit expression for the region of stability for the solution given by Eq. (D.5) in

terms of h = H/Hd.
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[62] N. Troullier and José Luis Martins. Phys. Rev. B, 43:1993, 1991.

[63] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garćıa, and J. M. Soler.
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