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Building a Framework for Predicting the Settlements of Shallow 

Foundations on Granular Soils Using Dynamically Measured Soil 

Properties  

 

Onur Kacar, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Kenneth H. Stokoe, II 

 

In this dissertation, the framework is being developed for a new method to predict 

the settlements of shallow foundations on granular soil based on field seismic and 

laboratory dynamic tests. The new method combines small-strain seismic measurements 

in the field with nonlinear measurements in the field and/or in the laboratory. The small-

strain shear modulus (    ) of granular soil and the stress dependency of       is 

determined from the shear wave velocity measurements in the field. Normalized shear 

modulus (     ⁄ ) versus log shear strain(    ) curves are determined from field or 

laboratory measurements or from empirical relationships.  The      ⁄       curves and 

     values are combined to determine the shear stress-shear strain response of granular 

soil starting from strains of 0.0001% up to 0.2-0.5%. The shear stress-shear strain 

responses at strains beyond 1.0-2.0 % are evaluated by adjusting the normalized shear 

modulus curves to larger-strain triaxial test data. A user defined soil model (MoDaMP) 

combines these relationships and incorporates the effect of increasing confining pressure 

during foundation loading. The MoDaMP is implemented in a finite element program, 

PLAXIS, via a subroutine.  



 viii 

Measured settlements from load-settlement tests at three different sites where 

field seismic and laboratory dynamic measurements are available, are compared with the 

predicted settlements using MoDaMP. Predictions with MoDaMP are also compared with 

predictions with two commonly used methods based on Standard Penetration and Cone 

Penetration tests.  

The comparison of the predicted settlements with the measured settlements show 

that the new method developed in this research works well in working stress ranges. The 

capability of the new method has significant benefits in hard-to-sample soils such as in 

large-grained soils with cobbles and cemented soils where conventional penetration test 

methods fail to capture the behavior of the soil. The new method is an effective-stress 

analysis which has applicability to slower-draining soils such as plastic silts and clays. 
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Chapter 1:  Introduction 

1.1 INTRODUCTION 

When designing shallow foundations, permissible settlement and bearing capacity 

are the two main criteria considered. Permissible settlement generally becomes the 

governing factor for foundations on granular soil since the bearing capacities are 

relatively high for foundations on granular soil. An important aspect in evaluating 

settlements on granular soils is that it is difficult and/or expensive to obtain undisturbed 

samples of granular soil. Hence, the stress-strain behavior of undisturbed granular soil is 

generally not measured in the laboratory. Therefore, settlements of footings on granular 

soil are estimated from empirical correlations.   Foundation settlements are predicted 

using empirical correlations that relate in-situ penetration test results with load-settlement 

tests or case histories. It is worth noting that penetration test results incorporated in these 

correlations represent an indirect evaluation of soil stiffness.  

In most settlement predictions methods, an average representative stiffness of the 

granular soil is estimated based on the in-situ penetration tests. This average stiffness is 

expressed in terms of either the Young’s modulus estimated from Cone Penetration Test 

(CPT) data (Schmertmann et al., 1978) or directly expressed in terms blow counts in 

Standard Penetration Test (SPT) (Burland and Burbidge, 1985). However, it is widely 

known that the shear modulus,  , which is the most commonly stiffness parameter used 

in geotechnical engineering, is a stress and strain dependent parameter (Hardin and 

Drnevich, 1972). Based on the strain range, the soil response can be divided into the 

following four regions: 
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(1) Linear range (small-strain range) where the shear modulus is not strain 

dependent up to some strain level, typically denoted as the elastic threshold 

strain,    
 . In this range the shear modulus is called     . 

(2) Beyond    
 , the shear modulus is strain dependent and this range is called 

nonlinear elastic range up to a strain range,    
 , which is the cyclic threshold 

strain. 

(3) The soil response becomes moderately nonlinear beyond    
  up to a strain 

level of about 0.2 %. 

(4) Beyond this moderately nonlinear range, the soil response is highly nonlinear 

and the soil properties in this range are evaluated by cyclic and/or static 

measurements. 

 In a deformation based analysis, the shear modulus should be compatible with the 

shear strain range in the analysis. During loading of foundations, the soil is strained from 

the linear elastic range to the highly nonlinear range. The shear modulus of granular soil 

can be measured with a combination of field seismic and laboratory dynamic tests up to 

strain levels of 0.1-0.2%. Beyond this strain level, the response of the soil is evaluated 

with static or cyclic triaxial or simple shear test. Combining the results from seismic and 

dynamic measurements with the triaxial test data, a complete shear stress-shear strain 

response of the soil can be evaluated to be used in a settlement prediction analysis of 

shallow foundations. 

In addition to the strain dependency, shear moduli of granular soils at all strains 

are also stress dependent. The shear modulus increases as the confining pressures 

increases. Therefore, during loading of a shallow foundation, the soil mass beneath the 

foundation experiences increasing confining pressures. The effect of the increased 
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confining pressure due to loading is not taken into account in conventional settlement 

prediction methods that utilize an average soil stiffness. 

 Therefore, a method that accounts for the stress and strain dependency of shear 

modulus of granular soil in all strain ranges is essential in predicting the nonlinear load-

settlement curve of shallow foundations. Such a method does not exist today. 

1.2 RESEARCH OBJECTIVES 

Due to the lack of a comprehensive deformation-based method for predicting the 

settlements of shallow foundations that includes the stress and strain dependency of shear 

modulus of granular soil, a generalized framework is proposed in this research. This 

framework combines small-strain field seismic measurements, larger-strain strain field 

and laboratory dynamic measurements and large-strain triaxial test data to estimate the 

shear modulus over the wide strain range involved in settlement analyses.  

This research was undertaken to develop a soil model incorporating the 

aforementioned stress and strain dependencies of granular soil and to apply this model in 

predicting settlements of shallow foundations. The main objectives of this research are:  

(1) to create a data set of load-settlement tests where field seismic, field and/or 

laboratory dynamic and triaxial test data are available. All the load-settlement test 

results included in this research come from studies completed at the University of 

Texas at Austin. 

(2) to characterize the dynamic properties of the soils at the load-settlement test 

sites based on the field seismic and laboratory dynamic measurements conducted 

at these sites. It is worth noting that there are very few load-settlement tests 

reported in the literature where field seismic and laboratory dynamic tests are 

available (Smith, 2005). 
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(3) to write a user defined soil model in FORTRAN that incorporates the 

dynamically measured soil properties combined with the larger-strain 

measurements in the laboratory (MoDaMP).  

(4) to implement this user define soil model in a commercially available finite 

element program, PLAXIS and to verify that the developed soil model is working 

correctly by comparing the soil model with known analytical solutions. 

(5) and to predict the settlements of shallow foundations from load-settlement 

tests using MoDaMP and comparing them with the measured settlements. Also, to 

compare the predicted settlements using MoDaMP with the predicted settlements 

obtained using two widely known settlement prediction methods; Schmertmann et 

al., 1978 and Burland and Burbidge, 1985. 

1.3 ORGANIZATION OF DISSERTATION 

The objectives of this research are described in the previous section and are 

addressed in nine chapters. The content and the organization of these chapters are 

discussed as follows. 

In Chapter 1, the scope of the dissertation is introduced by addressing the 

importance and the need of a new method based on dynamically measured soil properties. 

The main objectives of the dissertation and the dissertation organization are discussed. 

Previous studies dealing with settlement prediction methods for shallow 

foundations on granular soil are presented in Chapter 2. The main characteristics of these 

methods and the differences between these methods are discussed. The shortcomings of 

these methods are discussed to emphasize the need of this research.   

In Chapter 3, dynamic soil properties of granular soils in the linear and nonlinear 

ranges are discussed. Field and laboratory testing methods and the results of these tests 
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on granular soils are presented in this chapter. Empirical relationships and comparison of 

these relationships with test results are also introduced in Chapter 3. 

In Chapter 4, the general procedure followed in creating user-defined soil models 

for PLAXIS is discussed. The conceptual and numerical issues in creating the user-

defined soil model, MoDaMP, are explained herein. The implementation and verification 

of the MoDaMP model are also presented in this chapter. 

The nonlinear elastic-perfectly plastic model, designated as MoDaMP-P, is 

presented in Chapter 5. A general description of the yield and flow rules for soils is 

given. The yield and flow rules incorporated in MoDaMP-P and the implementation of 

this model into PLAXIS are presented in the remainder of Chapter 5. 

With the user-defined soil model, MoDaMP, three case studies were undertaken. 

These case studies are described below. The user-defined soil model, MoDaMP-P, needs 

further research to be used in settlement predictions. Therefore, it was not included in 

these three case studies. 

The first case study is presented in Chapter 6. This case study involved 

comparisons with load-settlement tests performed at the National Geotechnical 

Experimentation (NGES) test site (Park et al., 2009). The field and laboratory test results 

are presented. Development of representative shear wave velocity profiles at the NGES 

site and determination of soil parameters used in MoDaMP are discussed. The PLAXIS 

model and the analysis details are also given. Comparison of predicted settlements with 

the measured settlements is presented. Modification of the normalized shear modulus-

shear strain relationship at larger strains and predicted settlements with this modified 

relationship are then presented. The effect of varying Poisson’s ratio is also discussed. 
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The second case study is presented in Chapter 7. This case study involved load-

settlement tests at the Hornsby Bend site conducted by Van Pelt (2010). The procedures 

followed to develop the shear wave velocity profiles, to obtain the soil parameters to be 

used in MoDaMP and to run the analyses are discussed. The predicted settlements are 

then compared with the measured settlements. 

The third case study is presented in Chapter 8. This case study involved load-

settlement tests at the Yucca Mountain site. The linear and nonlinear field and laboratory 

test results are presented. As discussed in Chapters 6 and 7, development of 

representative shear wave velocity profiles and the soil parameters used in MoDaMP are 

discussed. Predicted settlements are compared with measured settlements. The effect of 

varying Poisson’s ratio is also presented. 

 Chapter 9 presents the conclusions of this research and it also provides a summary 

of the findings in this research. The advantages and the applicability of the proposed 

method are discussed. Recommendations for future research are also presented. 
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Chapter 2:  Methods Used to Predict Settlements 

2.1 INTRODUCTION 

Calculation of settlements of shallow foundations is one of the fundamental topics 

in foundation engineering. The deformational behavior usually governs the design of 

shallow foundations on granular soil. Granular soils have higher limit loads compared to 

cohesive soils, thus the bearing capacity, which is a limit equilibrium phenomenon, is 

higher for granular soil. Hence, the design of shallow foundations is usually based on 

allowable settlement. Table 2.1 shows the maximum allowable settlement and maximum 

allowable distortion recommended by Skempton and MacDonald (1956) for foundations 

on sand and clay. 

Table 2.1: Limiting values for maximum settlements and limiting maximum distortions 

in buildings (after Skempton and MacDonald, 1956)  

Maximum  

Total Settlement 

In Sand 32 mm 

In Clay 45 mm 

Maximum 

Differential 

Settlement 

Isolated Foundations in Sand 51 mm 

Isolated Foundations in Clay 76 mm 

Raft in Sand 51-76 mm 

Raft in Clay 76-127 mm 

Maximum 

Distortion 
Maximum Angular Distortion 1/300 

 

One of the key difficulties in dealing with granular soils is that it is difficult 

and/or expensive to obtain undisturbed sample. Hence, the stress-strain behavior of 

undisturbed granular soil cannot be readily determined in the laboratory. Therefore, 

settlements of shallow foundations on such soil have traditionally been predicted based 

on correlations with in-situ penetration tests. Most in-situ tests results are incorporated in 

settlement prediction formulations either as an indirect or direct measure of soil stiffness 
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to be used in an equivalent elastic analysis or as a direct parameter to be used in an 

empirical analysis.  

There are various methods to predict the settlements of shallow foundations. Most 

of these methods are based on in-situ results from tests such as the cone penetrometer test 

(CPT), standard penetration test (SPT) or pressuremeter test (PMT). These results are 

then used to obtain a soil stiffness parameter which is utilized in equivalent, elasticity-

based predictions or they are incorporated into empirical formulations. In most of these 

methods, major parameters controlling the settlements of shallow foundations are: (1) 

applied pressure, (2) soil stiffness, (3) footing dimensions and shape (4) embedment 

depth and (5) soil layer thickness. In these methods, the soil stiffness is assumed as 

constant at a given depth. These methods are denoted as “constant elastic moduli 

methods” herein.  

In a few studies, the nonlinearity in the soil response, e.g., the strain dependency 

of the elastic moduli is also included in the formulations. These methods are denoted as 

“varying elastic moduli methods” herein. The most commonly used methods in practice 

are summarized in the following sections. These methods are discussed in chronologic 

order. It should also be noted that there are many more methods that were not included 

herein because they have received much less use in the profession. 

2.1 CONSTANT ELASTIC MODULI METHODS 

2.1.1 Terzaghi and Peck’s Method (1948) 

One of the first methods to predict the settlements of foundations on granular soils 

was proposed by Terzaghi and Peck (1948). They used results from plate-load test with 

300-mm square plates on sand. The sand had a wide range in standard penetration test 
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(SPT) blow count ( ). They related the observed settlements from the load tests to the 

expected settlements on actual foundations. The correlation they proposed is: 

 

                (
  

     
)
 

(
    

  
)               (2.1) 

where          is the footing settlement,        is the plate settlement,   is the foundation 

width and    is the embedment depth. 

2.1.2 Meyerhof’s Method (1965) 

Meyerhof (1965) proposed an approach to estimate the settlements of shallow 

foundations based on standard penetration test (SPT) blow count (N60). In this approach, 

the effects of applied pressure, foundation width and embedment depth is taken into 

account. Also, a distinction is made between foundations with widths larger and smaller 

than 1.22 m. The expression formulated by Meyerhof (1965) is as follows: 
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where          is the footing settlement,   is the foundation width and    is the 

embedment depth.  

2.1.3 Schmertmann’s Method (1970) and Schmertmann et al. Method (1978) 

Schmertmann (1970) presented a semi-empirical approach to predict the 

settlements on granular soils which has been widely used in practice. The approach is 
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based on elastic theory and is supported by experiments and numerical solutions. 

Schmertmann assumed a circular, rigid foundation resting on an elastic half space. Using 

the well-known expression of strain distribution developed by Ahlvin and Ulery (1962) 

given in Equation 2.4, Schmertmann defined a strain influence factor,   , that is presented 

in Equation 2.5.  

 

    
 

 
(   )[(    )   ]              (2.4) 

  
    (   )[(    )   ]              (2.5) 

In Equations 2.4 and 2.5,   is the applied uniform pressure,   is Young’s modulus,   is 

the Poisson’s ratio and   and   are dimensionless factors depending on the location of the 

point considered. In Figure 2.1, the distribution of the simplified strain influence factor, 

  , with depth beneath the footing that was proposed by Schmertmann (1970) is shown. 

To find the total settlement of the shallow foundation, Equation 2.4 should be integrated 

over the depth of influence which is taken as    (  = foundation width) by 

Schmertmann. The final form of the expression is given as:          

 

         ∑(
  
 
)

  

 

                (2.6) 

where   is the settlement,     is the net applied uniform pressure and     is the thickness of the 

considered layer. The Young’s modulus,  , is determined from the cone tip resistance,   , 

from CPT measurements. The value of   is obtained  with      . In addition,    and    
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in Equation 2.6 are correction factors for depth of embedment and creep, respectively, as 

presented below:   

 

         
  

 

  
                    (2.7) 

 

            (
  (  )

   
)             (2.8) 

where   
  is the initial vertical effective stress at the bottom of the footing,    is the increase in 

vertical pressure due to loading, and      is the time after construction of the foundation in years.  

Schmertmann et al. (1978) improved Schmertmann’s (1970) method further by numerical 

modeling and model tests. Additionally, the effects of width-to-length ratio,   ⁄ , of the 

foundations were also considered in this formulation. The main difference in these two models is 

the consideration of the effects of the foundation type, square or strip, i.e., axisymmetric or plane 

strain case. The modified strain influence factors are shown in Figure 2.1 and the peak values, 

       , are given by:  

 

                (
  

  
 
)
   

               (2.9) 

where   
  is the effective vertical stress computed at depth “z” where         occurs. In the 

Schmertmann et al. (1978) method, the correlation between modulus of elasticity and the 

CPT tip resistance is also modified by considering the effects of axisymmetric and plane 

strain cases. The modified correlations are          for the axisymmetric (  ⁄   ) case 

and         for plane strain (  ⁄   ) case.  
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Figure 2.1: Strain Influence Factors, Iz, proposed by Schmertmann (1970) and 

Schmertmann et al. (1978)  

2.1.4 Burland and Burbidge Method (1985) 

Burland and Burbidge analyzed over 200 cases of settlements of foundations, 

tanks and embankments on sand and gravels. From their analysis, they developed a  

simple expression correlating the settlements with applied pressure, foundation width and 

blow count from SPT tests,    , as follows. First, they defined a term that accounted for 

subgrade compressibility,   , which is the ratio of increase in settlement (  ) to increase 

in applied pressure (  ) ,         . It was noted that the depth of influence,   , which 
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is the depth at which 75% of the total settlement took place, could be estimated by 

       , where   is the footing width and both    and    are in meters. Next, they 

plotted the values of     
   , denoted as   , against the average SPT value over the depth 

of influence, denoted as  ̅. The following relationship was found: 

 

    
    

 ̅   
              (2.10) 

They proposed correcting the SPT blow counts as    
        (      ) if     

is greater than 15 for very fine sand and silty sand below the water table.  They also 

corrected the     value if the soil is gravel or sandy gravel as    
       . Their 

proposed equation to estimate settlements is: 

 
                          (2.11) 

where   is the settlement in mm,   is the pressure in kN/m
2
 and   is in meters. For 

overconsolidated soils with a preconsolidation pressure of     
  , Equation 2.11 becomes: 

 

   
 

 
                            

      (2.12) 

If    
  is greater than   , than the settlement prediction expression becomes: 

 

   (  
 

 
   

 )                            
      (2.13) 

Burland and Burbidge (1985) applied correction factors for the shape of the footing, for 

the depth of the granular soil layer and for creep. These correction factors are presented 

below in Equations 2.14 through 2.16.  
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    (
       

        
)
 

    (2.14) 

where   is the foundation length. If the foundation is not square shaped, the settlement 

given in Equation 2.11 should be multiplied with the shape correction factor in Equation 

2.14. If the depth of granular soil layer,   , is less than the depth of influence,   , than the 

correction factor given in Equation 2.15 should be applied.  

 

    
  

  
(  

  

  
)    (2.15) 

Upon investigating the data set, Burland and Burbidge realized that time is another factor 

in settlements of shallow foundations and they proposed the following correction factor: 

 

              
  

 
    (2.16) 

where    is a term accounting the time effects in the first three years, and    is a term that 

accounts for the time effects starting after three years of completion of the construction. 

If the foundation is not square, the settlement given in Equation 2.9 should be multiplied 

with the shape correction factor. 

2.1.5 Mayne and Poulos  Method (1999) 

Mayne and Poulos (1999) proposed a method to estimate the settlements of 

shallow foundations using the general form of settlement analysis derived from elasticity 

theory and applied several correction factors. They considered an axially loaded circular 

flexible foundation resting on elastic medium. The foundation they considered is shown 

in Figure 2.2 with the parameters used in their method. The Young’s modulus is assumed 
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to be increasing linearly with depth, with a value of    at foundation level. It should be 

noted that the Young’s modulus is constant a given depth and it doesn’t change with 

increasing stress. The settlements are calculated as: 

 

 

Figure 2.2: Model for a foundation resting on elastic medium (from Das and Sivakugan 

(2007) showing the nomenclature used by Mayne and Poulos ,1999)  

 

   
         (    )

  
    (2.17) 

where    is the pressure,    is the displacement influence factor,    is the rigidity 

coefficient factor,    is depth of embedment factor and    is the equivalent diameter of a 

rectangular footing that is calculated based on equal areas as    (     )   . 

 

The effect of the foundation rigidity on stress distribution and therefore on strains 

beneath the foundation is considered by introducing a rigidity coefficient factor: 
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      (
  

   
  

 
 
)(

  
  )

 

 

   (2.18) 

where     the modulus of elasticity of foundation material,    foundation thickness 

and    increase in soil stiffness per unit depth.  

The depth of embedment is another factor that affects the settlements of shallow 

foundations; however the importance of this factor is evaluated differently among 

researchers. The embedment depth correction coefficient proposed by Mayne and Poulos 

(1999) is: 

 

 
     

 

        (         ) [(
  

  
)     ]

 
   (2.19) 

where    is the equivalent diameter and    is the depth of embedment as shown in Figure 

2.2.  

The soil stiffness is one of the key parameters in the settlement analysis of Mayne 

and Poulos (1999). Figure 2.2 shows that Mayne and Poulos considered a soil profile 

where the soil stiffness E increases linearly with increasing depth (Gibson-type soil 

profile).  The rate of the increase in   per unit depth,  , and the thickness of the soil layer 

from the bottom of the foundation to the incompressible layer,   , affect the settlements. 

They proposed a correction factor,   , to account for these parameters. The variation of  

   with      
  and     

  is presented in Figure 2.3.  

The settlements can be calculated utilizing Equation 2.17. In this case, values for 

   and    are calculated using Equations 2.18 and 2.19, respectively, and the value for    

is taken from Figure 2.3. 
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Figure 2.3: Variation of    with      
  and     

  (from Mayne and Poulos, 1999) 

2.1.6 Briaud Method (2007) 

Briaud (2007) proposed a method based on a pressuremeter curve representative 

of the soil beneath the foundation to obtain a continuous load-settlement curve.  

According to Briaud, the reason to choose the pressuremeter test is the similarity 

of the deformation pattern during the pressuremeter test and during loading of the 

foundation. Briaud used 24 load-settlement tests, 15 three-dimensional numerical 

analyses, the elastic settlement calculation theory and the bearing capacity theory to 

develop his method. 

Briaud normalized the load-settlement curves by plotting the foundation 

pressure,  , divided by a measure of the soil strength (     or    depending on the 

availability of field data for a particular test site) versus the settlement divided by the 

foundation width,   ⁄ . Based on these normalized curves, he concluded that the load- 
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settlement curves are independent of scale and embedment. Therefore, he decided to 

obtain the load-settlement curve for a reference foundation from a soil test alone and the 

effects of the shape, load eccentricity and proximity to a slope could be incorporated via 

correction factors. 

The load-settlement curves and the pressuremeter test results are correlated by: 

(1) matching them at their ultimate strain levels and (2) transforming the pressures at the 

various strain levels.  The ultimate strain level used in this transformation is       ⁄  

for the foundation and           ⁄  for pressuremeter test where    is the increase in 

cavity radius and    is the initial cavity radius. This transformation procedure is given by 

the following equations: 

 

    ⁄         ⁄     (2.20) 

   

           (2.21) 

where    is the mean stress under the foundation,   is the pressure in the PMT and   is a 

function linking these two pressures. The recommended values for   are presented in 

Figure 2.4. It should be noted that these values are for the case of a square footing that is 

loaded vertically and concentrically and is also resting on a level ground surface.  Briaud 

proposed using correction factors that he obtained by running nonlinear numerical 

analyses for more general cases. The correction factor for the shape of the foundation is 

expressed as: 

 

    ⁄           ⁄     (2.22) 
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Figure 2.4: Recommended    values for different   ⁄  ratios (from Briaud, 2007) 

where   is the footing width and   is the footing length. Another correction factor,   , 

accounts for the eccentricity of the applied load and is calculated by: 

 
        (  ⁄ )                               (2.23) 

   

            (  ⁄ )                    (2.24) 

where   is the eccentricity of the load. A distinction between the center and the edge of 

the footing is made since the settlements under eccentric loading are not equal at these 

two locations. A similar distinction is also made for the inclined load correction factor,   , 

as presented by:  
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        (    ⁄ )                              (2.25) 

   

        (   ⁄ )                      (2.26) 

In Equations 2.25 and 2.26,   ,  is the inclination of the load from the vertical in degrees.  

The last correction factor in Briaud’s method accounts for the proximity of the 

foundation to sloping ground. Correction factors for 3 to 1 and for 2 to 1 slopes are 

provided as : 

 

       (      ⁄ )                            (2.27) 

   

       (      ⁄ )                              (2.28) 

where   ⁄  is the ratio of the distance of the slope to the foundation width. 

The proposed procedure to obtain the load-settlement curve can be summarized as 

follows: 

a) Plot   versus    ⁄   curves from the PMT results. Correct these curves for 

the initial expansion. 

b) Using the influence charts (Schmertmann, 1970), determine the mean 

pressuremeter curve within the depth of influence. 

c) Transform the pressuremeter curve into a short-term, load-settlement 

curve by finding the   function from Figure 2.4 and apply the correction 

factors for shape, inclination, eccentricity and slope at every increment of 

load. 
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3.2 VARYING ELASTIC MODULI METHODS 

3.2.1 Berardi and Lancelotta Method (1991) 

 Berardi and Lancelotta (1991) investigated the cases reported by Burland and 

Burbidge (1985) and they proposed a new settlement prediction method on granular soil. 

The proposed method takes the effect of strain level on Young’s modulus into account by 

modifying the modulus according to settlement to foundation width ratio (relative 

settlement) which is defined as    .  The proposed expression to evaluate the settlements 

is given as: 

 

     
  

 
    (2.29) 

where    is the influence factor for a rigid footing. The value of    determined from Table 

2.2. For simplicity, they assumed the depth of influence,   , equal to  . Berardi and 

Lancelotta back-calculated the Young’s modulus values according to Equation 2.29 for  

Table 2.2: Influence factor    for settlement evaluation (from Berardi and Lancelotta, 

1991) 

  /B 

L/B 

1 2 3 5 10 Circle 

0.5 0.35 0.39 0.40 0.41 0.42 0.34 

1.0 0.56 0.65 0.67 0.68 0.71 0.52 

1.5 0.63 0.76 0.81 0.84 0.89 0.59 

2.0 0.69 0.88 0.96 0.99 1.06 0.63 
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over a hundred cases. To account for the effects of overburden pressure, they found a 

nondimensional modulus number,  , using Janbu’s (1963) expression: 

 

       (
  

       

  
)

   

    (2.30) 

where   
  effective overburden pressure,     pressure increase due to foundation 

loading and    atmospheric pressure. They corrected the average SPT blow count for 

the overburden pressure according to: 

 

 (  )      (
 

    
 
)    (2.31) 

They used the corrected SPT blow count over the depth of influence to obtain an average 

value,  ̅. They then evaluated the relative density of the soil according to the formulation: 

 

    (
 ̅ 

  
)

   

    (2.32) 

They plotted     values at a relative settlement of   ⁄      , (  (  ⁄      )), as a 

function of   . Figure 2.5 presents this relationship. As a final step, they analyzed all 

available data for the stiffness reduction with increasing relative settlement by 

normalizing    with   (  ⁄      ) which is shown in Figure 2.6. 

The procedure proposed by Berardi and Lancelotta (1991) to evaluate the 

settlements of shallow foundations can be summarized as follows. 

 (a) Determine the average SPT blow count, N60, throughout the depth of influence 

which is assumed to be equal to foundation width. Apply an overburden pressure 

correction to N60 value according to Equation 2.31. 
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Figure 2.5: Variation of   (        ) with    (from Berardi and Lancelotta, 1991) 

 

Figure 2.6: Variation of       (        )with relative settlement,     representing the 

strain level (from Berardi and Lancelotta, 1991) 
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(b) Using the average corrected SPT blow count,  ̅, evaluate    from the 

expression given in Equation 2.32.  

(c) Use the    value to determine   (        )  from Figure 2.5. 

 (d) Find   from Equation 2.30 and using the value of     

(e) Evaluate the settlement,  , using Equation 2.29 

 (f) If the calculated     is not the same as assumed    , determine the new     

value from Figure 2.6 based on the calculated     value. Use the new    value to 

estimate a new settlement using Equations 2.29 and 2.30. 

 (g) Repeat this procedure until the assumed and calculated     values are the 

same.  

2.2.2 Mayne Method (2000) 

 Shear stress-shear strain response of a soil is highly nonlinear and the soil 

behavior is different at different strain ranges. Therefore, hybrid in-situ testing can 

provide more information about the soil by measuring different properties of the soil at 

different strain ranges. Mayne (2000) proposes that hybrid testing should consist of the 

seismic piezocone penetration test (SCPTu) and that this testing is appropriate for 

settlement analysis of both shallow and deep foundations. SCPTu testing provides four 

different types of measurements: (1) cone tip resistance (  ), (2) sleeve friction (  ), (3) 

porewater pressure ( ), and (4) downhole shear wave velocity (  ). 

The small-strain stiffness,     , is obtained using    measurements from the 

downhole part of the SCPTu testing. In this model, the reduction in shear modulus with 

increasing shear strain level is taken into account by reducing the shear modulus as a 

function of the mobilized strength. The formulation proposed by Fahey and Carter (1993) 

is used to express the shear modulus reduction by:  
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      ⁄     (     ⁄ )     (2.33) 

where   and   are fitting parameters. Mayne proposed using       and       for 

uncemented and unaged quartzitic sands and insensitive and unstructured clays. Figure 

2.7 shows the comparison of the modulus reduction from triaxial localized measurements 

and from a modified version of Equation 2.33 where   is converted to  . 

 The modulus reduction equation is then modified by substituting the mobilized 

shear strength ratio with mobilized bearing capacity and    with  . The equation 

becomes: 

 

      ⁄     (   ⁄ )     (2.34) 

where   is the foundation pressure,    is the ultimate bearing capacity,      and   

   . The bearing capacity is calculated using Vesic’s (1975) method. The friction angle of 

the soil,   , is obtained with: 

 

                   (   )    (2.35) 

where     is the normalized cone tip resistance and is calculated from: 

 

     
(    ⁄ )

(   
   ⁄ )   

    (2.36) 

where    is a reference stress equal to one atmosphere and    
  is the vertical effective 

stress. Mayne also proposed correlations to evaluate the undrained shear strength and the 
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Figure 2.7: Modulus reduction for Pisa clay (from LoPresti et al. 1995) 

overconsolidation ratio (OCR) of clays, with details found in Mayne (2000). Using the 

elastic theory method, the settlements are calculated with: 

 

   
     

     [  (   ⁄ )   ]
    (2.37) 

where      is the displacement influence factor from elastic theory and   is the foundation 

width. 

Mayne analyzed two shallow foundations using this method: (1) a 3-meter square 

foundation on sand at the Texas A&M national geotechnical experimentation site near 

College Station, TX and  (2) two square foundations with 2.2- and 2.4-meter widths on 

clay at the Bothkennar test site in Scotland. Figure 2.8 presents the comparison of the 

predicted and the measured settlements at the Texas A&M site. 

The method proposed by Mayne (2000) is based on the approximation of the 

shear modulus reduction curves; as such, the method incorporates an important factor, the 
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strain dependency of the shear modulus. However, it should be noted that      ⁄  curves 

are significantly affected by mean effective confining pressure, gradation of the soil, 

plasticity index and OCR. Moreover, the ultimate bearing capacity is not a measured 

quantity which results in a significant unknown remaining in the solution.  

 

 

Figure 2.8: Measured and predicted settlements of 3-meter square foundation on sand at 

College Station, Texas (from Mayne, 2000) 

The modulus reduction curves obtained using a calculated ultimate bearing capacity will 

inherently keep all uncertainties in the bearing capacity calculation. 

2.2.3 Lehane and Fahey Method (2002) 

Lehane and Fahey developed a simplified method to predict the settlements of 

shallow foundations on granular soil under typical working loads. Their method includes 

the effects of strain, stress and void ratio of the soil on soil stiffness. On the other hand, 

they assume a simplified Boussinesq’s stress distribution under the foundation. They 

compare and calibrate the results obtained with this simplified settlement analysis 
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procedure with the results obtained with a more sophisticated finite element analysis and 

with load-settlement tests. 

 In their stiffness formulation, they describe the modulus of elasticity reduction 

curves as follows: 

 

 

    

    
 

 

[  (
     
      

)
 
]
 

   (2.38) 

where     and    and   are empirical constants to adjust the shape of modulus reduction 

curve;    is the reference strain at which          ⁄      and     is the elastic threshold 

strain. The small strain modulus of elasticity,     ,  is evaluated from: 

 

 
    

  
    ( ) (

  
 

  
)

  

    (2.39) 

where     atmposheric pressure,     a material constant for granular soils,   
   the 

effective vertical stress,     empirical parameter with a typical value of 0.5. The void 

ratio function  ( ) is evaluated by:   ( )  (    )
 

(   )⁄  where    is typically taken 

as 2.17. Taking the derivative of      expression given in Equation 2.38, the tangent 

modulus of elasticity,   , is determined as follows: 

 

    
    [       (     )⁄ ]

[   ] [    (    )   
 ⁄ ]

    (2.40) 

where   (     )
 (      )

 ⁄ .  They suggest evaluating    based on 

     (  
   ⁄ )     where is a curve fitting parameter depending on the void ratio, 

mobilized stress ratio and   .  
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Using the Boussinesq’s stress distribution beneath the foundation, the tangent 

modulus is evaluated based on Equation 2.40 in an incremental form. Then the strain at 

any given location is then calculated using: 

  

     
   

 

  
 

     
 

  
    (2.41) 

The settlement at this point is then calculated by summing all the strains from a rigid 

boundary to this point.  

The method proposed by Lehane and Fahey is important since it includes the 

stress and strain dependency of the modulus of elasticity of the soil. Hence, the 

nonlinearity of the stress-strain response of the soil under typical working loads is 

included via a modulus reduction factor. On the other hand, the parameters used in the 

model can only be obtained by matching the stress-strain response from a high-quality 

triaxial test with local strain measurements. 

2.2.4 Elhakim Method (2005) 

Elhakim proposed a closed-form solution to predict the footing settlements based 

on a modified hyperbolic model. The modified hyperbolic model is the same model used 

in Mayne (2000) as explained previously: 

 

      ⁄      (     ⁄ ) 
 
    (2.42) 

where   and   are empirical curve fitting parameters,   is the applied pressure on the 

footing and      is the calculated ultimate bearing pressure. Elhakim attempted to provide 

a relationship of the empirical curve fitting parameters with the shear-stress response of 

soils. First, he developed a user-defined soil model integrating the modulus reduction 
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curves with perfect plasticity and implemented this model into a finite difference 

program, FLAC. For modulus reduction, he used the one-parameter logarithmic function 

proposed by Puzrin and Burland (1998). He replaced Young’s modulus in the original 

formulation with shear modulus. In this logarithmic function, the modulus reduction is 

expressed as: 

  

 
    

    
    

     

 
[  (       )]

     (2.43) 

where      and       are the secant shear modulus and small-strain shear modulus, 

respectively,         ⁄   normalized octahedral shear strain,    (       )     ⁄ , 

      shear strength of the soil,      initial shear stress,          ⁄  normalized 

threshold shear strain, and      elastic threshold shear strain. The expressions to find R 

and α are given as:  

  

 
  

(     )

(      )

(        )  (       )

    
 

 

   (2.44) 

    
    

(      )[  (       )]
 
    (2.45) 

where        ⁄  normalized and limiting strain,     shear strain at failure. 

Elhakim carried out a parametric study where he simulated hypothetical load-

settlement tests on granular soils under drained conditions and examined the effects of 

the small-strain shear modulus, foundation width and    which is the controlling 

parameter of the nonlinearity in Equation 2.43. Then he fitted the modified hyperbolic 

model given in Equation 2.42 to the simulated hypothetical load-settlement curves 
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obtained with the user-defined soil model. Thus, he obtained a relationship between    

and    for different values of the soil friction angle, ϕ’. For example, the relationship 

proposed for        is:          ⁄      . He proposed a constant value for    equal 

to 0.99. 

 As a result, Elhakim proposed a simplified load-settlement prediction procedure 

with the following steps: (1) Determine the ultimate bearing pressure of the footing,      

(2) Evaluate the normalized limiting strain,        ⁄  from laboratory and/or in-situ 

testing, and (3) Predict the settlement using: 

 

   
     

       (   )
 [    (

 

    
)
  

]    (2.46) 

where   is the applied pressure on the footing,   is the foundation width,   is the 

influence factor and   is Poisson’s ratio of the soil. 

2.3 SUMMARY 

Methods used in predicting the settlements of shallow foundations on granular 

soil are generally based on in-situ penetration tests. They usually correlate the in-situ test 

results with the load-settlement curves of shallow foundations based on the theory of 

elasticity and correction factors to account for the shape, embedment depth and rigidity of 

the footing.  Some recent studies incorporate the strain dependency of soil stiffness into 

account. Most of these methods use the ratio of the applied pressure on the footing to the 

shear strength of the soil to account for the nonlinearity. 

None of the methods discussed herein incorporate field seismic measurements of 

   to evaluate the      profile and then combine the profile with nonlinear      ⁄  

     relationships to calculate linear and nonlinear strains. In addition, the following 
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effects are not explicitly considered in the methods:  (1) gradation effects on the 

nonlinear stress-strain behavior of granular soil, and (2) the combined effects on soil 

stiffness of changing levels of stress state and shear strain. 
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Chapter 3:  Dynamic Soil Properties 

3.1 INTRODUCTION 

In this chapter, a literature review of the dynamic properties of granular soils is 

presented. The term “dynamic” is used because the initial mid-range portions of the shear 

stress-shear-strain relationship are evaluated with dynamic measurements as discussed 

herein. For this research, the dynamic shear stress-shear strain relationship of granular 

soil is separated into four strain ranges or parts as: (1) linear, (2) nonlinear elastic, (3) 

moderately nonlinear and (4) highly nonlinear parts. This relationship, often expressed in 

terms of normalized shear modulus vs γ, is shown in Figure 3.1. In this figure, the 

relationship is expressed as a normalized shear modulus (      ) versus log shear strain 

(γ) plot where      is the value of shear modulus and   (   ⁄ ) is the shear modulus at 

any shear strain. The first part, the linear range is usually referred to as the “elastic” or 

small-strain range. In this range, shear modulus (    ⁄ ) is independent of the value of 

shear strain ( ) and   is often denoted as     . An elastic threshold value of shear strain 

(   
 ) is defined to represent the shear strain value beyond which the stress-strain response 

becomes strain dependent. The value of    
 

 for granular soil varies with mean effective 

confining pressure   
 
, and gradation, usually expressed by the uniformity coefficient,     

and median grain size     (Menq, 2003).  For working stresses associated with shallow 

foundations,   
 

 likely ranges from 0.0001 to 0.003%.  

Above    
 , the value of shear modulus,  , decreases with increasing shear strain 

so that the stress-strain relationship is nonlinear. In part, dynamic laboratory testing 

methods, such as the torsional resonant column, have made it possible to investigate the 

linear and nonlinear behavior of granular soils over a wide range in shear strain  
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Figure 3.1: Idealized       ⁄       curve with the linear, nonlinear elastic, moderately 

nonlinear and highly nonlinear and nonlinear ranges 

(e.g., 0.0001 to 0.2 %). This range in shear strain encompasses the linear and moderately 

nonlinear ranges and extends somewhat into the highly nonlinear range. 

The small-strain shear modulus of granular soil and parameters affecting its value 

in the small-strain range are discussed in Section 3.2. Some proposed correlations to 

evaluate the small-strain shear modulus are also presented in this section. Shear modulus 

of granular soil at larger strain range (nonlinear range) and parameters affecting the 

nonlinearity in this range are discussed in Section 3.3. 

3.2 SMALL-STRAIN BEHAVIOR OF GRANULAR SOILS 

Shear modulus of granular soil in the small-strain range is essentially independent 

of the shear strain up to an elastic threshold shear strain level,   
 , as shown in Figure 3.1. 

Shear modulus in this range is denoted as      or   , although      is used herein.      

can be evaluated in both the laboratory and field by dynamic testing, a key aspect of 
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using dynamic soil properties in this research. The value of      is evaluated by 

measuring the shear wave velocity in these in-situ or laboratory tests and then using: 

 
         

      (3.1) 

where    is the shear wave velocity and   is the mass density of the soil. Field seismic 

methods such as downhole, crosshole and Spectral-Analysis-of-Surface-Waves (SASW) 

and seismic cone penetration testing (SCPT) can be used to evaluate    (Stokoe and 

Santamarina, 2000). The SASW or other surface-wave methods permit small-strain 

profiles to be evaluated very near the ground surface and in all types of granular soils, 

even soils with gravel and cobbles.      can also be evaluated by dynamic laboratory 

testing such as the torsional resonant column test and by cyclic torsional shear testing or 

cyclic or static triaxial tests with local measurements. The small-strain dynamic 

properties of granular soils measured in laboratory can be different from those measured 

in the field due to sample disturbance. Sample disturbance effects are discussed in 

Section 3.2.1.3. 

3.2.1 Parameters Affecting the Small-Strain Shear Modulus of Granular Soil 

The value of      of granular soils is affected by several soil parameters such as 

the gradation, effective confining pressure, void ratio, cementation, overconsolidation 

and sample disturbance.  Hardin and Richart (1963) studied the effects of confining 

pressure and void ratio on the small-strain characteristics of sandy soils using free-free 

and fixed-free resonant column devices. They showed that the small-strain shear wave 

velocities of sandy soils are a function of confining pressure and void ratio. Hardin 

(1973) tested granular soils and aggregates in a fixed-free resonant column device. He 

found that the dynamic properties of granular soils were affected by the mean effective 
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pressure, void ratio, particle shape and grain size. Seed et al. (1986) proposed shear 

modulus reduction curves for sands and gravels based on dynamic properties of granular 

soils using measured with resonant column and cyclic triaxial testing. Chang and Ko 

(1982) used a fixed-free resonant column device to investigate the effects of gradation 

characteristics on dynamic properties of sandy soils. They reported that the small-strain 

shear modulus of medium loose sand specimens is mainly a function of uniformity 

coefficient (  ). Intact gravelly soil specimens recovered by ground freezing method 

were tested in Japan and their dynamic properties were investigated (Kokusho and 

Tanaka, 1994, Kokusho et al., 1995).  

A major study was conducted by Menq (2003) at the University of Texas. Menq 

developed a large-scale, multi-mode, free-free resonant column device (MMD) and 

investigated the dynamic properties of 59 reconstituted sandy and gravelly soil 

specimens. He studied the effects of mean effective stress, void ratio, coefficient of 

uniformity, median grain size, water content and measurement frequency.  He found that 

the small-strain shear modulus can be expressed as a function of mean effective stress, 

coefficient of uniformity, median grain size and void ratio.  Hardin and Kalinski (2005) 

used a special large-scale torsional resonant column to tests gravelly soil. They 

investigated the effect of gradation characteristics and tried to find a representative 

particle size that could be an indicator of     . They found that      for relatively clean 

and graded gravels increases with increasing particle size, e.g., the median grain 

size (   ). They also proposed    as an approximate effective particle size in determining 

    . Wichtmann and Triantafyllidis (2009) conducted resonant column tests on quartz 

sand with 25 different grain-size distributions. They found that      is not dependent on 

    at a constant void ratio for the particle size range they considered (0.1 mm ≤    ≤6 
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mm). However, the test results showed that      decreased significantly with increasing 

coefficient of uniformity (  ). One likely contributor to this decrease is that relative density, 

(  ), decreases as    increases if   is kept constant. 

3.2.1.1 Effect of Mean Effective Confining Pressure and Void Ratio on Gmax of 

Granular Soil 

Mean effective confining pressure, is one of the most important parameters 

affecting shear wave velocity,   , and small-strain shear modulus,     , of granular soils. 

Hardin and Richart (1963) conducted free-free and fixed-free resonant column tests on 

sandy soils and they found that the shear wave velocity was a power function of the mean 

effective confining pressure. Their results for    of sandy soil can be formulated with the 

following expression: 

 
         ( )(  

 )       (3.2) 

where    and    are constants,   ( ) is the void ratio function and    is the void ratio. 

Hardin and Richart recommended        .  

There are various void ratio functions,  ( ), proposed in the literature. Two of the 

most commonly used functions are: 

 

  ( )  
(      ) 

   
                         (    ) 

 

    (3.3) 

  ( )  
 

         
               (    ) 

 

    (3.4) 

Table 3.1 shows    and    values reported in the literature (Kokusho, 1987; Ishihara, 

1996; as presented in Menq, 2003). As can be seen in the table,    values are around 0.5  
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Table 3.1 Values of    and    for sandy and gravelly soils (taken from Menq, 2003) 

 

 

for sandy soils, whereas they are higher for gravelly soils. There is a variation in the    

values for both sandy soils and gravelly soils. 

Seed et al. (1986) suggested a formulation where      is expressed as a function 

of mean effective confining pressure: 

 
          (  )   (  

 )       (3.5) 
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Table 3.2 (  )    values for sandy and gravelly soils (from Seed et al., 1986) 

  

 

where      and   
  are in units of psf and (  )    is a material constant that depends on 

the soil type and relative density. Table 3.2 shows the values of (  )    for different 

sand and gravelly soils. It can be seen in the table that (  )    values for gravelly soils 

are generally two to three times higher than the (  )    values for sand soils. 

Menq (2003) investigated the effects of   
  and void ratio along with the effects of 

gradation characteristics on      of granular soils. Figure 3.2 shows the effect of   
  on 

     of soils with    of ~1.2 and varying     values. It can be seen in the figure that the 

effect of   
  on      is the same for all values of     . Therefore, Menq proposed an 

expression for      as a function of      at a mean effective confining pressure of one 

atmosphere (   ) and a normalized mean effective pressure raised to a power as: 

Soil Type Location Depth (ft) (K2)max

Loose Moist Sand Minnesota 10 34

Dense Dry Sand Washington 10 44

Dense Saturated Sand Southern California 50 58

Dense Saturated Sand Georgia 200 60

Dense Saturated Silty 

Sand
Georgia 60 65

Dense Saturated Sand Southern California 300 72

Extremely Dense Silty 

Sand
Southern California 125 86

Sand, Gravel and Cobbles 

with Little Clay
Caracas 200 90

Dense Sand and Gravel Washington 150 122

Sand, Gravel and Cobbles 

with Little Clay
Caracas 255 123

Dense Sand and Sandy 

Gravel
Southern California 175 188

Gravelly Soils

Sandy Soils
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Figure 3.2:   Variation in small-strain shear modulus with effective confining pressure of 

sandy and gravelly soils with a constant    of about 1.2 (from Menq, 2003) 

 

         (  
   ⁄ )       (3.6) 

where    is a reference mean effective confining pressure  of one atm and    is a material 

dependent constant.   

3.2.1.2 Effect of Soil Gradation Characteristics on Gmax of Nonplastic Granular Soil 

 Gradation characteristics affect the small-strain shear modulus of nonplastic 

granular soil significantly. Soil gradation is usually expressed in terms of a coefficient of 

uniformity (  ), and some grain size such as median grain size (   ) or a representative  

particle diameter such as    . Hardin (1973) tested granular soils and aggregates in a 

free-free resonant column device. He found that    is the significant particle diameter in 

defining      of granular soil.  Iwasaki and Tatsuoka (1977) noted the significance of the 

gradation curve of granular soils on     . They found that    was a more important 
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parameter than    . Seed et al. (1986) tested gravels in cyclic triaxial device and he found 

that      for gravels are significantly higher than for sands. Chang and Ko (1986) tested 

sand specimens in a fixed-free resonant column device to investigate the effects of soil 

gradation on      of sand and gravelly soils. They reported that       is affected 

significantly by    and the effect of     was less pronounced. Kalinski and Hardin (2005) 

tested 17 specimen of sand and gravelly soil in a large-scale, free-free resonant column 

device. They found that      increases with increasing particle size for relatively clean 

uniform and graded gravels. They suggested to use    as an approximate effective 

diameter in evaluating       based on their study. 

Menq (2003) found in his study that the small-strain shear modulus of granular 

soil at a mean effective confining pressure of one atmosphere,    , was not only a 

function of void ratio but also a function of gradation characteristics. The effects of 

gradation characteristics were investigated systematically by categorizing the specimens 

based on    and    . Figure 3.3 shows examples of           and          

relationships. Menq also studied the effects of     and void ratio on     and he found that 

the effect of    on    was more dominant compared to the effect of void ratio (Figure 

3.4). Based on these results, Menq proposed the following expression to evaluate      of 

granular soil as a function of   
 ,   ,     and void ratio: 

 

             
       (

  
 

  
)

  

             (3.7) 

where      67.1 MPa,     coefficient of uniformity,      median grain size,      -

0.20,    void ratio,   -1-(   /20)
0.75 

and     0.48·  
    . Figure 3.5 shows the change  
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Figure 3.3:   (a) Log    - log ( ) relationships for a constant     and (b) log    - log ( ) 
relationships for a constant     (from Menq, 2003) 

 

                      

Figure 3.4:   (a) Log    - ( ) relationships and (b) log    - Log    relationships sand and 

gravelly soils (from Menq, 2003) 

in      values for three different types of soil (SP, SW and GW) with    
  based on the 

formulation given in Equation 3.7. 

 The formulation proposed by Menq (2003) can be used in cases where there are 

no in-situ seismic measurements available. As noted earlier,      can be evaluated using 

(a) (b)

(a) (b)
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 Figure 3.5:  Effects of coefficient of uniformity, median grain size and mean effective 

confining pressure on      based on Menq’s (2003) formulations 

various field seismic methods such as downhole, crosshole and Spectral-Analysis-of-

Surface-Waves (SASW) testing (Stokoe and Santamarina, 2000).  Field measurements of 

dynamic soil properties in the small-strain range implicitly incorporate the effects of   
 , 

gradation characteristics, void ratio, and cementation. 

3.2.1.3 Effects of Sample Disturbance  

Dynamic tests on intact specimens of granular soil are not commonly reported in 

the literature due to difficulties in obtaining undisturbed samples of granular soil. 

Therefore, comparisons of field tests and laboratory tests of granular soil at small-strain 

range are limited. The ground freezing method was perfected in Japan to extract high-

quality undisturbed samples that was needed in the nuclear power plant industry 

(Ishihara, 1996). 

Kokusho and Tanaka (1994) used ground freezing to obtain high-quality samples 

from four gravelly sites. Figure 3.6 shows values measured in the laboratory and values  
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Figure 3.6:   Comparison of small-strain shear modulus between in-situ and laboratory 

(from Kokusho and Tanaka, 1994)  

measured in the field using suspension and downhole testing methods. It can be seen in 

the figure that the      values measured in the laboratory are smaller than the      

values measured in the field. It should also be noted that        

values of samples recovered from A-site with ground freezing are higher than the       

values of samples from the same site recovered without ground freezing. 

Darendeli (2001) compared shear wave velocities  (  ) of 40 samples measured in 

the laboratory with    values measured in-situ. This comparison, presented in Figure 3.7, 

shows that the    and      values from in-situ measurements are higher than those from 

laboratory tests. He also indicates that this difference increases as soil stiffness increases. 

3.3 NONLINEAR  BEHAVIOR OF GRANULAR SOILS 

Shear modulus of granular soil becomes dependent on shear strain beyond the 

elastic threshold shear strain value,    
 , with G decreasing as shear strain increases. 

Therefore, the shear stress- shear strain relationship becomes nonlinear. This nonlinearity 

is usually expressed in terms of shear modulus and shear strain as  -      or       ⁄ -  
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Figure 3.7: Variation of sampling disturbance expressed in terms of               ⁄  and 

                  ⁄  with the in-situ shear wave velocity (from Darendeli, 

2001) 

      which are called as shear modulus reduction curve and normalized shear modulus 

reduction curve, respectively.  

The       ⁄ -      curves are   usually expressed in semi-logarithmic plots  where 

the shear strain  starts  at a very small value (0.00001-0.0001%)  and extends  

approximately to several percent. In geotechnical earthquake engineering, the      ⁄ -

      curves are usually separated into three ranges (Figure 3.8). The first range is where  

  is strain independent, is called “linear” and it extends up to an elastic threshold strain 

value,   
 , as noted earlier. The second range is called “nonlinear elastic” and it extends 

from   
  to a cyclic threshold shear strain value,   

 . The range beyond    
  generally is 

denoted simply as “nonlinear”. However, if the      ⁄ -      curves are converted to 

shear stress-shear strain ( - ) curves to be used in problems where the shear strains 

extend to strains well beyond   
  (say 20 to 30 times   

 ), another distinction of the strain 
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ranges should be made. This distinction is needed in problems where the soil mass goes 

under relatively large deformations such as footing settlements considered in this study. 

In this case, the      ⁄ -      curves (or  -  curves) can be separated into four ranges as: 

(1) “linear”, (2) “nonlinear elastic”, (3) “moderately nonlinear” and (4) “highly 

nonlinear” parts. The linear part extends to strains up to   
 . The range between   

   and   
  

is denoted as “nonlinear elastic”. and beyond   ,      ⁄ -       (or  -  curves) curves 

become highly nonlinear. This type of distinction of      ⁄ -       (or  -  curves) is 

presented in Figure 3.9. 

The      ⁄ -       relationships can be evaluated in the laboratory using tests 

such as Resonant Column, Torsional Shear or Triaxial tests with local measurements. If 

there is no laboratory test available,      ⁄ -       relationships are usually found from 

empirical correlations. There are also recent studies on determining the      ⁄ -       

relationships in-situ (Kurtulus and Stokoe, 2008; Park, 2010). 

3.3.1 Comparison of Field and Laboratory      ⁄ -      Relationships 

Dynamic laboratory testing methods, such as the torsional resonant column, have 

made it possible to investigate the nonlinear behavior of granular soils over a wide shear 

strain range (i.e., 0.00005 to 0.2 %). On the other hand, there are few studies to determine 

the nonlinear dynamic soil properties directly in the field.  Henke and Henke (1993) 

developed a method called the “torsional-cylindrical-impulse-shear-test (TCIST). In the 

TCIST, an instrumented probe is pushed in the soil and is exited at different levels of 

torsional impulses. Comparison of the modulus reduction curves measured in the field by 

Henke and Henke (1993) with those obtained in the laboratory and from empirical curves 

shows a considerable difference.  
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Figure 3.8: Idealized       ⁄       curve with the linear, nonlinear elastic, moderately 

nonlinear  and highly nonlinear ranges 

 

Figure 3.9: Typical     curve acquired using      ⁄       relationship and the linear, 

nonlinear and highly nonlinear ranges on     curve 
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Another attempt to measure nonlinear dynamic properties in-situ was made by 

Salgado et. al (1997).  They used a method called the “large-strain-seismic-crosshole-

test” (LSCT) to measure nonlinear dynamic properties.  

Kurtulus and Stokoe (2008) developed a method where they used a drilled shaft 

as a cylindrical, axisymmetric source for shear loading of the soil. They used a vibroseis 

truck as dynamic energy source and they conducted small-strain and intermediate-strain 

seismic testing to measure     ,  -      and      ⁄ -      relationships in-situ. The soil 

was a nonplastic silt (ML) with silty sand (SM) layers. The shear wave velocities (  ) 

measured in the field were higher than those measured in the laboratory. The authors 

attributed this difference mainly to sample disturbance. They also pointed out that 

differences in effective stresses or capillary stresses between laboratory and field 

conditions could cause this deviation between laboratory and field values of    . However, 

they observed that      ⁄ -      relationships from laboratory and field measurements 

were similar. The field and laboratory relationships also followed trends suggested by 

empirical relationships, such as Darendeli (2001) and Menq (2003). Figure 3.10 shows 

the comparison of      ⁄ -       relationship obtained in the field with the same 

relationship obtained in the laboratory. Figure 3.11 shows the comparison of      ⁄ -

       curves obtained at the field with empirical curves suggested Darendeli (2001).  

Park (2010) completed a similar study at the University of Texas to measure the 

in-situ linear and nonlinear shear moduli values of silty sands and cemented alluvium.  

The method consists of applying static vertical and dynamic horizontal loads on cast-in-

place reinforced concrete footings and measuring the dynamic response of the soil with 

embedded sensors beneath the footings.  An initial test was conducted at Fitzpatrick 

Ranch, located in Austin, TX. The soil at this site is poorly graded silty sand (SM-SP).  
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Figure 3.10:   Comparison of Shear Modulus Reduction Curves in the Field and in the 

Laboratory (from Kurtulus and Stokoe, 2008) 

 

Figure 3.11:   Comparison of Field Data with Empirical Curves for Silts from Darendeli 

(2001)  (from Kurtulus and Stokoe, 2008) 
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Figure 3.12:   The      ⁄ -       relationships developed from the linear and nonlinear 

dynamic tests at Fitzpatrick Ranch (from Park, 2010) 

Figure 3.12 shows the comparison of normalized modulus reduction curves measured in 

the field with those measured in the laboratory. As seen in the figure, there is some 

difference between the curves. Park attributed the difference primarily to the fact that soil 

sampling was performed after shaking the soil and disturbing the soil skeleton. The 

second part of Park’s study involved evaluating the linear and nonlinear shear moduli at 

three sites at Yucca Mountain, Nevada. The soil at these sites is a cemented alluvium. 

Details of the site and testing procedure can be found in Park (2010). Figure 3.13 shows 

the comparison of normalized shear modulus curves from field tests with those from  
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Figure 3.13: Comparison of the      ⁄ -       relationships of the cemented alluvium 

from field dynamic tests at LMY and TP7 and laboratory RC measurements 

laboratory tests. Empirical curves proposed by Menq (2003) are also included for 

comparison purposes.  

If there are no in-situ nonlinear dynamic measurements, of  -     , then      and 

     ⁄ -      relationships measured in the laboratory are correlated with      measured 

in–situ. In this correlation it is assumed that the      ⁄ -      relationship from 
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laboratory measurements have the same shape as the in-situ      ⁄ -      relationship. 

This correlation is expressed as: 

 

          (                  ⁄ )               (3.8) 

 

While using the correlation presented in Equation 3.8, effective stresses, capillary 

stresses, anisotropy and cementation in the field should be considered as these parameters 

affect the shear moduli and the shape of the  -      relationship.  

3.3.2 Parameters Affecting the Nonlinear Shear Modulus of Granular Soil 

Due to the difficulties in soil sampling and testing of granular soil, the number of 

studies investigating the parameters affecting the nonlinear dynamic shear modulus of 

granular soil is limited. One of the earliest comprehensive studies of nonlinear shear 

modulus and the important parameters affecting the  -      relationship was conducted 

by Hardin and Drnevich (1972). They tabulated the parameters affecting the nonlinear 

shear modulus according to their relative importance (Table 3.3). They noted that the 

three most important parameters affecting nonlinear shear modulus of granular soils are 

strain amplitude, confining pressure and void ratio. Kokusho (1980) conducted cyclic 

triaxial tests on Toyura Sand to investigate the effect of confining pressure on nonlinear 

shear modulus. Figure 3.14 shows the normalized shear modulus reduction curves 

reported by Kokusho (1980). It can be seen in the figure that the normalized shear 

modulus gets more linear with increasing confining pressure for Toyura sand. Tanaka 

(1987) tested reconstituted gravelly soils under different effective isotropic confining 

pressures and found that the effective isotropic confining pressure has a significant 

impact on the modulus reduction curves. Seed and Idriss (1970) proposed a mean  
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Table 3.3 Parameters affecting the nonlinear soil behavior and their relative importance 

(from Hardin and Drnevich, 1972) 

 

 

normalized shear modulus reduction curves for sands and they also proposed a range. The 

upper and lower limits can be attributed to the effects of gradation characteristics, 

uncertainties in the measurements, confining pressure and variability in shear modulus 

reduction curves (Darendeli, 2001). Seed et al. (1986) re-analyzed these curves and they 

proposed a set of shear modulus reduction curves for sands and gravels. These curves are 

shown in Figure 3.15.  

 

 

                                                                                  

Clean Sands Cohesive Soils

Strain Amplitude *** ***

Mean Effective Confining Pressure *** ***

Void Ratio *** *** *** Very Important      

Number of Loading Cycles + *   ** Less Important 

Degree of Saturation * ***
   * Relatively 

Unimportant   

Overconsolidtaion Ratio * **

Effective Strength Envelope ** **

Octahedral Shear Stress ** **     - Unknown

Frequency of Loading (above 0.1 Hz) * *

Other Time Effects (Thixotropy) * **

Grain Characteristics, Size, Shape, 

Gradation, Mineralogy
* *

Soil Structure * *

Volume Change Due to Shearing 

Strain  below 0.5% - *

Parameter

Impact on Modulus

 + Relatively 

Unimportant Except 

for Saturated Sands
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Figure 3.14:   Effect of confining pressure on normalized modulus reduction curves (from 

Kokusho, 1980) 

 

Figure 3.15:   Normalized Modulus Reduction Curves Proposed by Seed et al. (1986) 

(Note:   
   1 atm) 

3.3.2 Empirical Relationships for Nonlinear Shear Modulus of Granular Soil 

Hardin and Drnevich (1972) conducted one of the earliest studies on nonlinear 

shear modulus of granular soil. They proposed an empirical formulation to estimate the 
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nonlinear shear modulus of granular soil in terms of normalized shear modulus, shear 

strain and shear strength of the soil. They suggested using a modified hyperbolic 

relationship as: 

 

 
  

 

 
    

 
 

    

 
    (3.9) 

where    is shear strain,   is shear stress,      is the small-strain shear modulus and      

is the shear strength. If the expression in Equation 3.9 is rearranged, the following 

expression can be obtained: 

 

 
 

    
 

 

  
 
  

    (3.10) 

where    is the reference shear strain and is defined as            ⁄ . This hyperbolic 

model was modified by Darendeli (2001) based on a large dataset of combined resonant 

column and torsional shear tests (RCTS) as follows:  

 

 
     ⁄  

 

  (
 
  

)
     (3.11) 

where    curvature coefficient;     reference shear strain which is equal to γ at  

     ⁄   0.5; and   is the shear modulus at a shear strain value of  . Darendeli studied 

the parameters affecting the value of    by running statistical analyses on a large data set 

of combined resonant column and torsional shear tests performed only at the University 

of Texas. Darendeli reported mean and standard deviations for the normalized shear  
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modulus reduction curves. Since Darendeli’s (2001) study was mainly focused on 

cohesive soils, the modified hyperbolic model was further refined for sands and gravels 

by Menq (2003). Using a large-scale, free-free resonant column device that he developed, 

Menq tested 59 reconstituted specimens of sands and gravels. He studied the effects of 

confining pressure, gradation characteristics of the soil, void ratio and sample disturbance 

on the normalized shear modulus curves of granular soil. Menq proposed an empirical 

relationship which is discussed in detail below 

3.3.3 Empirical Relationships for Nonlinear Shear Modulus of Nonplastic Granular 

Soil Proposed by Menq (2003) 

 Menq (2003) tested 59 reconstituted specimens of nonplastic granular soil in a 

large-scale, free-free resonant column device to investigate the dynamic properties of 

granular soil in the small- to-moderate-strain ranges. The parameters affecting the small-

strain properties of the soil are discussed in Section 3.2 In this section, Menq’s (2003) 

study of the nonlinear behavior of granular soil in moderate-strain range will be 

discussed. 

 Menq (2003) used the modified hyperbolic formula presented in Equation 3.3 to 

define the nonlinear behavior of granular soil in the moderate-strain range (from   
  to   ) 

in terms of      ⁄       relationships. The two parameters in Equation 3.11; reference 

shear strain,   , and curvature coefficient, “ ”, were studied by determining the effects of 

mean effective confining pressure, void ratio and gradation characteristics on these 

parameters. The reference shear strain,   , is the shear strain where the value of       ⁄  

is equal to 0.5. Although, it does not provide physical information about the soil, it is 

very useful in defining the nonlinearity of the      ⁄       relationships. On the other 
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hand, the curvature coefficient is a scaling factor for the shape of the      ⁄       

curve, mainly over the range of   
  to   .  

 Figure 3.16 shows the effects of   ,      and void ratio  on    . Figure 3.16a 

shows the effect of void ratio on    for specimens with approximately same    (    ) and 

different     values. On the other hand, Figure 3.16b shows the effect of void ratio on    

for specimens with approximately same      (       ) and different   values. As seen  

 

       

Figure 3.16:   Variation of reference strain with (a) void ratio where     is constant, (b) 

void ratio where     is constant, (c)     and (d)    (from Menq, 2003) 

(c)

(a) (b)

(d)
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in these figures, void ratio does not have a significant effect on   . Figure 3.16c and 3.16d     

present the effects of the gradation characteristics of granular soil on    . As seen in the 

figures,    is a significant parameter affecting    of granular soil while     does not 

exhibit any consistent and discernable effect on   . The effects of the gradation 

characteristics and void ratio on the curvature coefficient,“ ”, was also investigated by           

 

         

Figure 3.17:  Variation of curvature coefficient “ ” with (a) void ratio where     is  

constant, (b) void ratio where     is constant, (c)     and (d)    (from 

Menq, 2003) 

(c)

(a)
(b)

(d)
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Menq (2003). The variation of “ ” with void ratio,    and     is given in Figure 3.17. 

Figure 3.17a shows the effect of void ratio on “ ” of soils with an approximately constant 

   (    ) and different     values whereas Figure 3.17b shows the effect of void ratio on 

“ ” of soils with an approximately constant     (       ) and different    values. As 

seen in these figures, there is no trend between the void ratio and “ ”  values of granular 

soils. The effects of    and     on “ ” are presented in Figure 3.1c and 3.17d. It is 

interesting to note that the gradation characteristics do not affect the “ ” value of granular 

soils. 

Another important parameter affecting the normalized shear modulus of granular 

soil is mean effective confining pressure. Menq (2003) investigated the effects of mean 

effective confining pressure on     and “ ”, thus he found how the nonlinearity of the 

shear modulus is changing with mean effective confining pressure.  Figure 3.18 shows 

the effects of mean effective confining pressure on    and “ ”. It should be noted that 

Darendeli (2001) proposed a constant value of  “ ” whereas Menq (2003) suggest that 

“ ” is a function of mean effective confining pressure. 

  Menq (2003) analyzed the tests results systematically by grouping them according 

to gradation, void ratio and mean effective confining pressures. Using the least square 

estimates method, he proposed the following relationships to calculate    and “ ” for 

nonplastic granular soil: 

 

                     
    (

  
 

  
)

     
     

    (3.12) 

              (
  

 

  
)              (3.13) 
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Figure 3.18: Variation of (a) reference strain with effective confining pressure (b) 

curvature coefficient “ ” with effective confining pressure  

where    is in %;     uniformity coefficient;   
   mean effective confining pressure in 

the same units as     and     reference mean effective confining pressure (1 atm). The 

relationships presented in Equation 3.12 and 3.13 indicate that      ⁄       curves are 

mainly a function of    
  and   .  Variation of       ⁄       curves with   

  and    based 

on Menq’s (2003) formulation for three types of granular soil are presented in Figure 

3.19a and 3.19b, respectively. The      ⁄       curves in Figure 3.19 show that the 

linearity of these curves increases with increasing   
  and decreases with increasing   . 

Another way to look at these curves is to plot         and      relationships obtained 

using the curves. The        relationships for the soils given in Figure 3.19 are 

determined by multiplying the      ⁄  values with       found using Equation 3.7. The 

effect of   
  and     on        relationships are given in Figure 3.20a and 3.20b, 

respectively. It should be noted that the   values for a given soil are lower for smaller 

confining pressures at all strain ranges. On the other hand, for soils with different    

 

(a) (b)
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Figure 3.19:  Effects of  (a) mean effective confining pressure and (b) coefficient of 

uniformity on     ⁄       curves based Menq’s (2003) formulation 

and     values and under the same mean effective confining pressure,   values are higher 

at smaller strains and they become smaller at larger strains with increasing    and     

values. The        relationships in Figure 3.20 can be converted to      relationships 

with      . These     relationships are presented in Figure 3.21. The increase in the 

shear strength of the soil given in Figure 3.20a is a result of the increase of        and 

increase in the linearity of      ⁄       curves due to mean effective confining 

pressure increase. If the     relationships of three types of granular soil (SP,SW and 

GW) in Figure 3.20b are investigated, it is seen that SW has  smallest shear strength. 

Moreover, GW has a smaller strength than SP, which is the opposite of the general trend 

in shear stress-shear strain behavior of granular soil. This behavior is the combined result 

of the increase of       with increasing    and the decrease in the nonlinearity of the 
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Figure 3.20:  Effects of  (a) mean effective confining pressure and (b) coefficient of 

uniformity on        curves based Menq’s (2003) formulation 

 

   

Figure 3.21:  Effects of  (a) mean effective confining pressure and (b) coefficient of 

uniformity on     curves based Menq’s (2003) formulation 
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     ⁄       curves with increasing   . This indicates that the      ⁄       curves 

might need to be modified for problems that extend to larger strains, such as footing 

settlements, to adjust for the shear strength value of the soil. Since the      ⁄       

relationships are controlled by    and “ ” values, the acquired      curves are also a 

function of these parameters. To manifest this dependency, one of these two parameters is 

varied while the other one is kept constant and the       ⁄       relationships are 

plotted (Figure 3.22). The acquired     curves are shown in Figure 3.23. As seen in 

Figure 3.21a, the nonlinearity of the      ⁄       curves increase with increasing    at 

all strains. However,       ⁄       curves become more nonlinear with increasing “ ” 

up to strains equal to   , however they become less nonlinear with increasing “ ” at 

strains beyond    (Figure 3.22b).  The     curves shown in Figure 3.23 present that the 

shear stress response of granular soil obtained with      ⁄       relationships are 

highly dependent on    and “ ”. The value of      is obtained with confidence in most of 

the RCTS tests since most of these tests extend to strains beyond   . On the other hand, 

the value of “ ” comes from the shape of the      ⁄       curves that usually do not 

extend beyond 0.1-0.3 % of shear strain and therefore the value of “ ” can be different at 

larger strains. One should be careful when converting      ⁄       curves into     

curves to use in problems involving large strains, such as footing settlements as in this 

study.  
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Figure 3.22:  Effects of  (a) reference shear strain,    and (b) curvature coefficient, “ ”  on 

     ⁄       curves  based on Menq’s (2003) formulation 

 

  

Figure 3.23:  Effects of  (a) reference shear strain,    and (b)  curvature coefficient, “ ”   

on     curves  based on Menq’s (2003) formulation 
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  3.4 SUMMARY 

Dynamically measured shear modulus of granular soil in small-strain (linear) and 

large-strain (nonlinear) ranges are discussed in this chapter. The parameters affecting the 

small-strain shear modulus (    ) of granular soil are presented. Empirical formulations 

to determine (    ) of granular soil are discussed next. It is shown that       is a 

function of mean effective confining pressure, grain characteristics and void ratio. 

Menq’s (2003) proposed empirical relationship to determine      is presented briefly. 

The effect of sample disturbance on      is introduced by comparing the laboratory and 

in-situ test results. Shear modulus of granular soil at large strains (nonlinear range) is 

discussed based on the studies in the literature. The parameters controlling the shear 

modulus at large strains are presented. The modified hyperbolic model first proposed by 

Darendeli (2001) and later refined by Menq (2003) for granular soil is discussed next. 

The      ⁄       curves proposed by Menq (2003) are studied in detail since they take 

the gradation characteristics of granular soils into account. The effect of the reference 

strain,   ,  and the curvature coefficient, “ ” on      ⁄        curves and on     

response  derived from these curves are presented. It is shown that these parameters have 

a great impact on the     response of granular soil and “ ” values at larger strains might 

need to be modified if      ⁄       curves are being used in problems where the 

expected strains are well beyond   .  
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Chapter 4:  Development of the Model of Dynamically Measured 

Properties (MoDaMP) 

4.1 INTRODUCTION 

Deformations of a soil mass can be determined if the stresses and stress-strain 

relationships of the soil layers are known. Shear failure is usually the governing failure 

mode in soils. Therefore, shear stress-shear strain response of soils provides the main 

parameters for the design in many geotechnical applications. Shear stress-shear strain 

response of soils is evaluated from in-situ and/or laboratory tests. Parameters such as 

shear modulus, angle of friction, cohesion or parameters pertaining the plasticity and 

viscous effects of the soil are determined based on these tests. A set of mathematical 

relationships, called constitutive models, are then formulated to model the stress-strain 

response of the soil to be used in analytical or numerical analyses.  

One of the key parameters in many constitutive models is the shear modulus of 

the soil. Shear modulus can be defined as the slope of the shear stress-shear strain curve. 

However, the stress-strain responses of soils are highly nonlinear. The shear modulus 

decreases as the shear strain increases as explained in Chapter 3. Hence, in a deformation 

based analysis, the value of the shear modulus used in the analysis should be compatible 

with the expected strain level. It should be noted that field tests and laboratory tests are 

generally performed at different strain levels depending on the type of test. Figure 4.1, 

from Mayne (2001), shows typical strain levels associated with different field and 

laboratory tests. Clearly, the values of shear modulus determined with different tests or 

with the same test at different operating strain levels will be different. Therefore, it is 

crucial to use a strain-dependent shear modulus value in design, especially in 

deformation-based analysis.  
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Figure 4.1:   Shear modulus reduction with increasing shear strain and typical shear strain 

levels associated with different field and laboratory tests (from Mayne, 

2001) 

In this chapter, development of a constitutive model based on normalized shear 

modulus reduction curves for granular soil is presented. First, the general relationships 

between stress and strain are introduced. Next, general trends of Poisson’s ratio and how 

values change with strain level based on laboratory and in-situ measurements are 

discussed. The implied Poisson’s ratio derived from the relationships between      ⁄  

     bulk modulus ( ) and constrained modulus ( ) are introduced and discussed. The 

tangential stiffness matrix based on      ⁄       relationships and Poisson’s ratio is 

formulated. Then, the general procedure for creating user defined-soil models (UDSM) in 

PLAXIS is presented. Finally, implementation of the constitutive model based on 

dynamically measured soil properties, given the acronym MoDaMP, and verification of 
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the model with element tests are discussed. A summary of the chapter is presented at the 

end of the chapter. 

4.2 STRESSES AND STRAINS 

 Stresses and strains in a material are correlated through mathematical 

formulations such as elasticity, plasticity and viscosity or a combination of them which 

are called constitutive models. In soil mechanics, the soil is considered as a continuum 

and stresses and strains are calculated using constitutive models which are based on 

observed trends in actual tests on soils.  

Elastic theory relies on the assumption that there is a one-to-one correspondence 

between stress and strain, or in other words, the strains are recoverable. The first order 

approximation to model a material behavior is linear elasticity. If a material behavior is 

linear elastic, the elastic modulus of this material is constant and all strains will be 

recovered upon unloading. However, shear stress-shear strain (   ) response of soils is 

highly nonlinear; therefore a linear elastic model is a crude first order approximation and 

cannot accurately model soil behavior as a stand-alone model. On the other hand, the 

nonlinear behavior of granular soil can be modeled by using a nonlinear elastic model, 

where the shear modulus is a function of the shear strain, stress state and gradation 

characteristics, as proposed in this study. It should be noted that the nonlinear elastic 

models assume that the strains are recoverable which contradicts the observations made 

in the field and laboratory tests. To overcome this difficulty in a model, there should be a 

distinction between the loading and unloading behavior of the soil. This distinction can 

be achieved by utilizing different shear modulus for loading and unloading as it is done in 

this study. The formulation used herein to define the loading and unloading/reloading 

shear moduli of soil is presented in Section 4.4.  
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Another approach to model the soil behavior under loading and 

unloading/reloading is to combine elastic behavior with plastic behavior. The material is 

assumed to behave elastically up to a yield stress state and the stress-strain relationship 

after yielding is expressed with plasticity theory. Strain magnitudes and directions after 

yielding are defined thorough a plastic flow and strain hardening/softening rules. Plastic 

deformations are irrecoverable and the stress-strain relationship is a function of the 

loading type (loading, unloading or reloading). In addition to plasticity, viscous effects 

can also be incorporated in a soil model. The viscosity theory defines the rate and time 

dependencies of the stress-strain relationships in soils. For this study, the viscous effects 

in soil are neglected as the main focus of this study is to model the immediate behavior of 

granular materials at small to intermediate strain levels. Moreover, it has been shown by 

Menq (2003) that the rate of loading on modulus reduction curves of granular soils is 

negligible. 

The state of stress acting on a point can be completely defined by three stress 

vectors, which can be represented by a 3x3 stress tensor as presented in Equation 4.1. The 

components of the second order stress tensor,     are presented in Figure 4.2a. As it is 

shown in Equation 4.1, the notation “x, y, z” is used interchangeably with the “1, 2, 3” 

notation. Similar to stresses, the strains at a given point can be fully described by a strain 

tensor,    , as presented in Equation 4.2.  
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The components of the strain tensor in three-dimensional space are presented in 

Figure 4.2b. The stresses and strains are related to each other with constitutive laws of 

different orders of complexity, as discussed previously. 

According to the well-known Hooke’s law, the elastic stresses and strains are 

linearly correlated via a fourth-order tensor,      , of 81 elements, which is also known as 

the stiffness tensor. This relationship is shown in Equation 4.3. In this equation, i and j 

are 1, 2 and 3 (x, y, z). Due to symmetry, the number of elements of the stiffness 

tensor,       reduces to 21 independent elastic coefficients. For isotropic materials, only 

two independent elastic coefficients are enough to describe the elastic stiffness tensor. 

These elastic coefficients can be any two of the following parameters; Young’s Modulus, 

 , Shear Modulus,  , Bulk Modulus,  , Constrained Modulus,  , or Poisson’s Ratio,  . 

Each of these elastic coefficients can be expressed as a function of any other two. 

Equation 4.4 shows the stress-strain relationship for a linear, elastic, isotropic material 

according to Hooke’s law in matrix notation.  
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Figure 4.2:  Presentation of (a) stresses (b) strains acting at a point in the Cartesian 

coordinate system 
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In soil mechanics, the stress-strain relationships are often expressed in terms of 

shear modulus, shear stress and shear strain because the soil is more likely to fail in shear. 

Shear modulus can be expressed in terms of Young’s modulus or bulk modulus, or 

constrained modulus and Poisson’s ratio as presented below: 
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Although Hooke’s law is valid for linear elastic materials, it can be extended to 

nonlinear materials by modifying it to a piecewise linear elastic model (Chen and 

Mizuno, 1990). The material nonlinearity is taken into account by discretizing the 

nonlinear-elastic part into smaller regions and assigning different linear, elastic material 

parameter values to each region. This procedure is explained in detail in Section 4.4. 

4.3 POISSON’S RATIO, BULK MODULUS AND CONSTRAINED MODULUS 

Poisson’s ratio is a parameter that relates the vertical and horizontal strains in an 

elastic medium and is defined as: 

 

   
  
  

 
 (4.6) 

where    is the vertical strain and    is the horizontal strain. The value of Poisson’s ratio 

in the small-strain range can be determined from dynamic in-situ or dynamic laboratory 

tests. The constrained compression wave velocity (  )  and shear wave velocity (  ) can 

be used to determine Poisson’s ratio for an isotropic material with: 
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(4.7) 

In most geotechnical analyses, Poisson’s ratio is assumed to be constant. The assumed 

value is usually between 0.20 and 0.35. In an elastic analysis, the value of the Poisson’s 

ratio defines the ratio between the vertical strains and horizontal strains. Also, it relates 

different types of moduli ( ,  ,   or  ). A constant Poisson’s ratio implies that the 

decrease in shear modulus with increasing shear strain is similar to the decrease in the 

other moduli with the increasing shear strain. In other words,      ⁄        curves and 
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other normalized modulus reduction curves such as      ⁄        or      ⁄       

will have the same shape. However, several studies showed that Poisson’s ratio increases 

with increasing strain. Lehane and Cosgrove (2000) compiled a data set of triaxial tests 

with local-deformation measurements on granular soil over a wide range of void ratios. 

They determined Poisson’s ratios from available localized measurements of vertical and 

horizontal strains. Change of Poisson’s ratio ( ) with increasing vertical strain,   , 

determined by Lehane and Cosgrove (2000) are shown in Figure 4.3. It should be noted 

that the theoretical, upper-bound value for Poisson’s ratio for an elastic material is 0.5. If 

a material has a Poisson’s ratio of 0.5, then the material is incompressible; theoretically 

the bulk modulus is infinite. 

 

 

Figure 4.3:   Change in Poisson’s ratio with increasing vertical strain (from Lehane and 

Cosgrove, 2000)  
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The volumetric changes upon loading of a soil mass are a combination of: (1) mean 

compression and (2) shear. Dense sand is usually dilative and therefore when the dense 

sand is sheared, the volume changes due to the particle reorientation. In case of dense 

sand, Poisson’s ratio determined from local vertical and horizontal strain measurements is 

higher than 0.5 as shown in Figure 4.3.  

 A change in the Poisson’s ratio value with increasing strain implies that the ratio 

of different elastic moduli is not constant but a function of strain. Other elastic moduli 

that are often used in geotechnical engineering are the bulk modulus,   and the 

constrained modulus,  . Bulk modulus,  , is the elastic modulus that relates the uniform 

pressure (confining pressure,   ) applied on a material to the change in material volume. 

If we assume that infinitesimal theory is valid, the volumetric change or volumetric 

strains are defined as: 

 
            

(4.8) 

where   ,     and    are the normal strains in x-,y- and z-directions, respectively. (See 

Figure 4.4a) If a uniform confining pressure of magnitude  ,  is applied over the soil 

body and the resulting volumetric strain is   , then the bulk modulus,   is defined: 

 

  
 

  
 

(4.9) 

The bulk modulus of an elastic material can be expressed as a function of shear modulus 

and Poisson’s ratio with the following relationship: 
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Figure 4.4:   Examples of (a) volumetric and  (b) constrained compressive strains in a soil 

mass in 3-dimensional space 
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For a constant value of Poisson’s ratio, the relationship in Equation 4.10 indicates 

that the ratio of shear modulus to bulk modulus is constant at all strain and stress levels. 

This relationship is true at small strains since the values of Poisson’s ratio and shear 

modulus are strain independent at small strains. However, the shear modulus decreases 

with increasing shear strain as discussed in Chapter 3. If Poisson’s ratio remains constant 

throughout moderate to large strains, the bulk modulus will approach zero at large strains. 

To avoid the bulk modulus decreasing with increasing strain, changes in Poisson’s ratio 

can be inversely related to changes in      ⁄  with     ; hence to      ⁄       

relationship. This procedure was also suggested in Fahey and Carter (1993). If the bulk 

modulus is assumed to be constant at all strain levels, then       , where      is the 

σy

σz

y

x

z

σy

σx

εy/2

εy/2

σx

εx/2εx/2

εz/2

εz/2

(a)

σx= σy= σz= P y

x

z

εy/2

εy/2

σy

σy

(b)

Note:
εx=εy=0



76 

 

small-strain bulk modulus and   is the bulk modulus at a given shear strain value. Using 

Equation 4.10,      and   can be expressed in terms of         , and      pairs, 

respectively where    is the small-strain Poisson’s ratio. Since       ,   can be 

determined manipulating this equality which results in: 
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(     )

 (    )  
 

    
(     )

 
(4.11) 

Figure 4.5 presents the change in   for a typical      ⁄       relationship of well-

graded sand according to Equation 4.11 with an assumed value of        .  

In Equation 4.11 where   is assumed to be constant, it is apparent that the change 

in the value of Poisson’s ratio is a function of      ⁄       relationship. Hence, any 

parameter affecting      ⁄       relationships also affects the change in Poisson’s 

ratio. The degree of dependency of Poisson’s ratio on      ⁄       relationships is 

investigated by plotting the Poisson’s ratio change with shear strain for different    and 

    values. These         curves for different     and     values are shown in Figure 4.6.   

As seen in the figure, both     and     values affect the change in Poisson’s ratio. 

However, the effect of    is more prominent. The values of Poisson’s ratio is increasing 

more rapidly for smaller values of     since the      ⁄       relationships become 

more linear with increasing   . Other elastic coefficients such as Young’s modulus,  , or 

constrained compression modulus,  , can be expressed in terms of   and   (or any other 

pair of elastic coefficients). Equations 4.12 and 4.13 show these relationships for   

and  , respectively, as:  
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Figure 4.5:   Change in Poisson’s ratio of a SW soil with increasing shear strain if    is 

assumed to be constant at all strain levels (using Equation 4.11) 
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Figure 4.6:   Change in Poisson’s ratio with increasing shear strain for different values of 

(a)     and (b)     in the      ⁄       relationships if    is assumed to be 

constant at all strain levels 

Poisson's ratio calculated using 
G/Gmax-log γ with γr= 0.034%,

and 

(a)

Poisson's ratio calculated using 
G/Gmax-log γ with a= 0.86

and 

(b)
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Relative changes in the values of   and   with increasing   based on: (1) the      ⁄  

     relationships, (2) assuming a constant  , and (3) using Equations 4.12 and 4.13, are 

plotted  in Figure 4.7. As seen in the figure, the trend of decrease in      ⁄  is similar to 

the trend of decrease in      ⁄ . The decrease in   is less compared to decrease in   or 

 . It should be noted that these changes are based on      ⁄       relationships and 

assuming Hooke’s law is valid with a varying Poisson’s ratio.  In order to fully define the 

changes in the elastic moduli, different moduli and the associated strains should be 

measured.  

As discussed in Chapter 3, in the last decade      ⁄       relationships have 

been measured successfully by newly developed in-situ methods (Kurtulus and Stokoe, 

2008; Park, 2010). Although      ⁄       relationships are measured in the laboratory 

successfully using triaxial devices with local measurements, direct in-situ measurements 

are not possible since all soil particles are confined by adjacent soil particles and they are 

not free to move horizontally during vertical loading. Therefore, the elastic moduli 

determined in the field by seismic measurements of compression wave velocities (  ) are 

normally under conditions where the horizontal movement of soil particles is constrained; 

hence,     . Moreover, comparison of      ⁄       and      ⁄       curves 

obtained in the laboratory are complicated. The first reason for this complication is that 

the shear strains and axial vertical strains occurring during deviatoric loading in the 

triaxial device can be correlated only if the Poisson’s ratio is known. The second reason 

is that the shape of the      ⁄       and      ⁄       curves are similar and if there 

is only a small scatter in one of these curves, the comparison of these curves will reveal 

unrealistic Poisson’s ratios. 
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Figure 4.7:   Change in      ⁄  and      ⁄  with increasing   obtained using      ⁄  
     relationships and assuming a constant                            

The few studies attempting to determine       ⁄       relationships in the field 

can be categorized into two groups: (1) methods that use strong ground motions due to 

earthquakes or large detonations, and (2) methods using seismic devices to generate and 

measure controlled ground motions (LeBlanc, 2013).  Only the results from the second 

group will be briefly discussed herein. The first in-situ constrained compression modulus 

measurements at linear and slightly nonlinear ranges were conducted by Axtell et al. 

(2002). Axtell measured compression wave velocities in the linear range by applying a 
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static load on a cast-in-place concrete footing using a hydraulic ram and conducting 

transient downhole and crosshole testing. In the nonlinear range, both static loads and 

steady-state excitations were applied with a vibroseis truck. The compression wave 

velocities,   , were measured by the geophones that were embedded beneath the footing. 

This method was then refined and improved by other researchers at the University of 

Texas at Austin to measure shear and constrained moduli of soil in-situ (Rathje et al., 

2001; Stokoe et al., 2001; Kurtulus and Stokoe, 2008; Park, 2010 and LeBlanc, 2013).  

LeBlanc (2013) used two vibroseis trucks, namely “T-Rex” and “Thumper” to measure 

the constrained and shear moduli of a sandy silt (ML) in-situ. A vertical static load was 

applied directly to the soil surface providing confining pressure to the soil beneath the 

loading plate where a sensor array was embedded. Steady-state sinusoidal vertical and 

horizontal excitations were applied in a gradually increasing magnitude to cover both 

linear and nonlinear strain ranges. It should be noted that the depth of the soil which was 

assumed to be restrained from lateral movement is different for tests conducted using T-

Rex and Thumper since the area of the base plate for these two shakers are different. T-

Rex has a base plate area of 44.2 ft
2
 whereas Thumper has a base area of 7.50 ft

2
. The 

generalized           ⁄  relationships obtained by LeBlanc (2013) and Axtell et al. 

(2002) are shown together in Figure 4.8. It is seen in the figure that, the normalized 

constrained modulus increases with increasing axial strain for the case where T-Rex was 

used (blue lines). On the other hand, the            ⁄  relationships decrease with 

increasing axial strain above    ~ 0.004% for the case where Thumper was used. This 

difference is mainly attributed to two facts by LeBlanc (20013) depending upon  (1) the 

location of the sensors relative to the load plate of the mobile shakers and (2) the changes 

in the soil structure due to the staged loading. LeBlanc emphasizes that the “active 
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Rankine zone” beneath T-Rex includes the whole sensor array whereas the zone beneath 

Thumper only includes the shallow sensors due to different sizes of the loading plates of 

two shakers. Also, he mentions that the loading at early stages could have altered some 

soil properties such as cementation, relative density, structure which would result in a 

different soil behavior in the following stages of the testing. 

The observed           ⁄   relationships reported by Axtell et al. (2002) and 

by LeBlanc (2013) for Stage 2 are similar. On the other hand, LeBlanc shows that 

     ⁄  is increasing with increasing   for the case where T-Rex was used.  

LeBlanc (2013) also measured the           ⁄  relationships in-situ, using   . 

These           ⁄  relationships and           ⁄   relationship can be used to 

evaluate the Poisson’s ratio change with shear or axial strain using Equation 4.14: 

 

  
    

 (   )
 

(4.14) 

To compare   and   values obtained by LeBlanc in-situ, the strain state at a given stress 

state should be known. In other words, a relationship between the axial strain and shear 

strain should be established. Since it is assumed that, soil particles in the vicinity of the 

centerline beneath the loading plate are horizontally restrained from movement, this case 

can be assumed reasonably approximate a uniaxial strain case. The shear strain,   

becomes equal to the axial strain,  . Therefore, comparison of   and   can be made 

directly. If      is assumed as 1 unit pressure, then the value of            unit 

pressure, calculated using the small-strain Poisson’s ratio (  ), which is given as 

approximately 0.33 by LeBlanc (2013) for test Site 2. Combining these       and       

values with           ⁄  and           ⁄   relationship and utilizing Equation 4.14,  
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Figure 4.8:   Generalized           ⁄  relationships by Axtell, (2002) and LeBlanc, 

(2013) with proposed constant           ⁄  relationship 

    

the Poisson’s ratios at larger strains were calculated and presented in Figure 4.9. As seen 

in the figure, for both Stage 2 and Stage 5, the Poisson’s ratio is increasing with 

increasing strain where the increase for Stage 5 is slightly higher compared to Stage 2. 

Poisson’s ratios are only calculated up to the largest strain at which a   measurement was 

performed.  

The measurements presented by LeBlanc (2013) shows that initially      ⁄  is 

increasing for both stages. However, it is decreasing with increasing axial strain for Stage 

Constant
M/Mmax

relationship Axtell (2002)
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Figure 4.9:   Generalized           ⁄  and           ⁄  relationships for Site 2 

(LeBlanc, 2013) and the calculated Poisson’s ratios 

2 beyond            . As an average trend for Stages 2 and 5, one can assume that the 

constrained modulus remains constant at all strain levels; hence,       , where      

is the small-strain constrained modulus and   is the constrained modulus at a given shear 

strain value. By manipulating Equation 4.14,      and   can be expressed in terms of 

        , and      pairs, respectively where    is the small-strain Poisson’s ratio. 

Because of the constant      assumption, (      ), therefore    can be determined 

with: 
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The change in Poisson ratio with increasing     for a well-graded sand (SW) based 

on       ⁄       relationships obtained using Menq (2003) formulation and based on 

Equation 4.15 is presented in Figure 4.10.  The small-strain Poisson’s ratio,  , is assumed 

as 0.25. The Poisson’s ratio and      ⁄       relationships reported by Le Blanc 

(2013) is not used in Figure 4.10 because      ⁄  relationships are measured only up to 

strains of 0.005% in his study. 

As seen in Figure 4.10,   increases with increasing   if      ⁄  is assumed to be equal to 

1.0 at all strains. The upper boundary of    is 0.5 since Eqution 4.15 is based on the 

theory of elasticity which indicates that   cannot be greater than 0.5. 

Similar to the case where we assumed a constant  , in the case of a constant  , 

Equation 4.15, indicates that  Poisson’s ratio change is a function of the      ⁄       

relationship. Hence, any parameter affecting      ⁄       relationships also affects the 

change in Poisson’s ratio. The degree of dependency of Poisson’s ratio on      ⁄       

relationships is investigated by plotting the Poisson’s ratio change with shear strain for 

different    and     values. These relationships are shown in Figure 4.11. As seen in the 

figure, both     and     values affect the change in the Poisson’s ratio. 

Young’s modulus,  , and bulk modulus,  , can also be expressed in terms of   

and    to investigate how these elastic coefficients change based on      ⁄       

relationships with constant  . Equation 4.16 and Equation 4.17 shows the relationships 

between         and      , respectively. With these equations and the 

     ⁄       relationships and assuming a constant  , the change in   and   with 

increasing   is presented in Figure 4.12. As seen in Figure 4.12, the trend of      ⁄  

decreasing more with increasing      is similar to the      ⁄       trend. However, 
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Figure 4.10:   Change in Poisson’s ratio of a SW soil with increasing shear strain if    is 

assumed to be constant at all strain levels (Equation 4.15) 
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Figure 4.11:   Change in Poisson’s ratio with increasing shear strain for different values 

of (a)     and (b)     in the      ⁄       relationships if    is assumed to 

be constant at all strain levels 

Poisson's ratio calculated using 
G/Gmax-log γ with γr= 0.034%,

and 

Poisson's ratio calculated using 
G/Gmax-log γ with a= 0.86

and 



88 

 

 

Figure 4.12:   Change in      ⁄  and      ⁄  with increasing   obtained using      ⁄  

     relationships and assuming a constant   

        increases with increasing shear strain. It should be noted that   is associated 

with the volumetric change in the soil. If is   increasing, the volume change due to a 

mean confining pressure is decreasing. However, the volume change in soils is not only 

due to mean confining pressure; dense sand dilates due to shear strains and the volume 

increases which cannot be modeled with  . Dilative behavior of soils are usually 

modelled with a nonassociated flow rule and using a dilation angle. The effects of 
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dilation on foundation settlements are not included in the developed model, MoDaMP. 

However, MoDaMP-P, which is still under development, incorporates plasticity and 

dilation angles and it can be a promising model for settlement predictions in the future.  

4.4 DERIVATION OF THE STIFFNESS MATRIX 

Nonlinearity in soil behavior is evident from laboratory tests such as Resonant 

Column (RC), Torsional Shear (TS) and Triaxial tests. Nonlinear behavior and 

parameters affecting this behavior are discussed in Chapter 3. 

The general case of Hooke’s law is valid for linear elastic materials. Strains 

occurring at a given point can be calculated using the stresses acting at this point and the 

stiffness matrix for this material (Equation 4.4) for a linear elastic material. This equation 

can be extended to nonlinear elastic materials by discretizing the nonlinear elastic part of 

the stress-strain curve into smaller regions and assigning different linear elastic material 

coefficients to each region (Chen and Mizuno, 1990). The number of independent elastic 

material coefficients is two for isotropic materials. The most commonly used coefficients 

are  ,  ,   and  . Any coefficient can be expressed in terms of any other two coefficients.  

As discussed in detail in Chapter 3, shear modulus of granular soil decreases with 

increasing shear strain and the rate of decrease is a function of several parameters such as 

mean effective confining pressure and gradation characteristics. The nonlinear soil 

behavior can be expressed in terms of normalized modulus reduction curves by the 

formulation developed by Darendeli (2001) and Menq (2003) as: 
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where    is the secant shear modulus at a shear  strain of  ,       is the small-strain shear 

modulus of the soil,    is the shear strain,    is the reference shear strain, and   is the 

curvature coefficient. The relationship between     and   is utilized to create the 

nonlinear elastic stiffness matrix for granular soil. Secant shear modulus is preferred 

usually in closed-form analytical solutions. However, in numerical applications, the 

stress-strain relationships are expressed usually in incremental form and tangent shear 

modulus is more suitable in numerical applications (Benz, 2007). The definition of secant 

and tangent shear moduli and the incremental formulation of shear stress-shear strain 

relationship is shown in Figure 4.13. The secant shear modulus reduction curve in 

Equation 4.18 is converted to a tangent shear modulus reduction curve by taking the 

derivative of the shear stress with respect to the shear strain as shown in Equation 4.19: 
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(4.19b) 

To calculate the equivalent     over a small shear strain increment, Equation 4.19b can be 

integrated over the interval of shear strain at the beginning of the current calculation step 

and the shear strain at the end of the current calculation step (Benz, 2007) The integration 

of Equation 4.19b over the shear strain increment between        and    results in the 

following expression: 
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Figure 4.13:  Definition of (a)    and    and (b) incremental formulation of shear stress-

shear strain curve based on     
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(4.20) 

 

where the subscripts   and       stands for the values at the beginning and at the end of 

the current calculation step, respectively. 

Assuming that the soil is isotropic, it can be assumed that the shear modulus 

reduction takes place in every direction. Therefore, a scalar valued parameter can be 

utilized to represent the shear strain in 3D space. In this study, octahedral shear strain is 
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used to represent the shear strain in 3D. Octahedral shear strain is a scalar measure of the 

shear strain acting on the octahedral plane, which is a plane making equal angles with the 

principal strain directions. The definition of octahedral shear strain is as follows:  
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 ) (4.21) 

 

Using octahedral shear strain enables definition of the shear stresses in the soil as 

a positive scalar quantity and hence the load-reversals (unloading/reloading) conditions 

could be identified in the subroutine by checking the current value and the previous value 

of the octahedral shear strain. Shear strains,  , in Equation 4.18 are replaced with 

octahedral shear strains,     , and the tangent shear modulus,     is calculated. The 

incremental tangent stiffness matrix for the soil is created using this tangent shear 

modulus and Poisson’s ratios as discussed in Section 4.2. Differences between the 

solutions based on different assumptions of Poisson’s ratio are discussed in Chapters 6,7 

and 8 where field case studies of settlement predictions are introduced. 

4.5 USER DEFINED SOIL MODELS 

4.5.1 Existing Soil Models in PLAXIS  

The main goal of this study is to provide a soil model that is based on dynamically 

measured soil properties. This model is implemented in a finite element program, 

PLAXIS, which is one of the most widely used geotechnical numerical software. 

PLAXIS provides many built-in soil models including the HS+small soil model which is 
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an extension of the hardening soil model that considers the small-strain stiffness of soil. 

However, the HS+small model does not include the effects of gradation and the effect of 

mean confining pressure on the      ⁄       relationships explicitly. Moreover, the 

HS+small model is based on the strength parameters and there is cut-off value beyond 

which the soil behavior is governed by plasticity.  This cut-off value cannot be altered 

and therefore the      ⁄       relationships cannot be utilized at strain ranges beyond 

some intermediate strain value.    

4.5.2 General Procedures in Implementing User Defined Soil Models in PLAXIS 

In addition to the existing soil models, PLAXIS allows users to develop their own 

constitutive soil models (stress-strain-time relationships). These models are programmed 

in FORTRAN or other computer languages and then converted to a “dynamic link 

library” (DLL). The DLL is then placed in the PLAXIS program directory. The DLL 

needs to have a specific header consisting of 31 variables so that the calculation kernel 

can recognize the constitutive model. Some of the key variables among these 31 variables 

are (Brinkgreve et al., 2011): 

Props = an array that contains the user-defined soil parameters 

Sig0 = an array with previous (at the beginning of the current step) effective stress 

components of the current stress point 

StVar0 = an array with the previous values of state variables of the current stress 

point (state variables are variables that are used to store information about any 

relevant parameter such as hardening parameters in plastic calculations). 

dEps = an array containing  strain increments in the current stress point at the 

current step 

D = effective stiffness matrix of the current stress point 
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Sig = an array of resulting constitutive stresses of the current stress point, and 

StVar = an array with resulting values of state variables of the current stress point 

The program works in an incremental form and the user provides the current 

stresses and state variables while PLAXIS provides the previous values of stress and state 

variables along with the strain and time increments. 

  The subroutine consists of several subdivisions which are called “IDTask”. 

There are six IDTasks in total and each of them should be defined correctly in the 

subroutine so that the calculation kernel can extract or provide data from or to the 

subroutine. The IDTasks are neither executed in the order they appear nor in the order 

they are numbered. These tasks and their content are presented in the following sections. 

4.5.2.1 IDTask 1 (Initilization of State Variables) 

As discussed above, state variables are user-defined variables that can store 

information about the current and previous calculation steps. In this study, the state 

variables are used to store information about load reversals, the number of the loading 

cycle and output parameters. 

  In IDTask 1, the state variables are declared and the initial values of these 

variables are assigned. During the stepwise calculation procedure in PLAXIS, the 

resulting state variables, StVar, are determined based on previous values of the state 

variables, StVar0 and updated stress and strain state. They are stored and automatically 

transferred to the next calculation step as StVar0 to be used in the next step. If the 

procedure on how the state variables are updated is clearly defined, PLAXIS transfers 

these values automatically, except the initial step. The state variables should be initialized 

with the proper values in IDTask 1 for the initial step. If no information is provided about 

the state variables in IDTask 1, the initial values will be set to zero by PLAXIS. 
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4.5.2.2 IDTask 4 (Return the Number of State Variables) 

The state variables are stored in arrays and before the calculation procedure starts, 

the size of the array must be input in the program. Therefore, in IDTask 4, the user 

assigns the size of the array by providing the number of state variables in the subroutine. 

It is important to avoid unnecessary state variables, as fewer numbers of state variables 

will result in a shorter calculation time. 

4.5.2.3 IDTask 3 (Creation of the Effective Stiffness Matrix) 

The effective stiffness matrix created in IDTask 3 can be linear elastic as it is in 

the built-in soil models in PLAXIS or it can be an elasto-plastic stiffness matrix (tangent 

stiffness matrix). These two approaches differ in the way the constitutive stresses are 

calculated. In the first approach, the elastic stiffness matrix is used to calculate the elastic 

stresses and the stress corrections are made in IDTask 2 based on the constitutive rules 

defined by the user. In this approach, a modified Newton-Raphson method is utilized. In 

the second approach, the created effective stiffness matrix is a full elasto-plastic stiffness 

matrix or a tangent stiffness matrix. If this method is adopted in the subroutine, there is 

no need for stress corrections in IDTask 2; the stresses are calculated by multiplying the 

tangent stiffness matrix with the incremental strains. If this method is preferred in the 

subroutine, then Newton-Raphson method is used to carry out the iterations. 

In this study, the second approach (tangent stiffness matrix) is preferred due to the 

incremental nature of the nonlinear soil behavior. Since the tangent stiffness matrix is 

created in this task based on the new stress and strain state, this task is the main task in 

the subroutine. 
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4.5.2.4 IDTask 2 (Stress Calculation based on the Constitutive Model) 

The importance of this task depends on the approach that the user chooses to use 

in the formulation. If the user chooses to define an elastic stiffness matrix in IDTask 3 

and apply nonlinearity of the stress-strain curve or check for yielding and then apply 

flow/hardening rules in this task, this task becomes the main task of the subroutine. In 

that case, the stresses calculated from the elastic stiffness matrix are corrected in this task 

based on the constitutive model defined by the user. The need of a stress correction is 

triggered by a “plasticity” switch. In other words, even if there is no plastic stress 

correction in the subroutine and only non-linear elastic behavior is modeled, the switch 

should be activated so that the program carries out the necessary stress corrections. On 

the other hand, if the nonlinear-elastic behavior is considered via a tangent stiffness 

matrix in IDTask 3, there is no need to activate the “plasticity” switch to carry out stress 

corrections in this task. 

4.5.2.5 IDTask 5 (Return Matrix Attributes) 

The effective stiffness matrix defined in IDTask 3 can have different properties. It 

can be stress-dependent, it can be a tangent or secant stiffness matrix or it can be 

asymmetrical. If the stiffness matrix is a secant stiffness matrix and stress-independent, 

then the stiffness matrix is created only at the beginning of the first calculation step and it 

is used throughout the entire calculation procedure. On the other hand, if it is stress-

dependent, then it will be created and decomposed at the beginning of each step. The 

stiffness matrix is created and decomposed at the beginning of each iteration if a tangent 

stiffness matrix is used. Moreover, if the stiffness matrix is symmetrical, only half of it 

will be created. The switches control the attributes of the stiffness matrix ensuring that 

the stiffness matrix is properly updated and stored during the calculation process. The 
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stiffness matrix created in this study is a stress-dependent, non-symmetric tangent 

stiffness matrix.  

4.5.2.6 IDTask 6 (Creation of the Elastic Stiffness Matrix) 

In this task of the subroutine, the elastic stiffness matrix is created. If the matrix 

created in IDTask 3 contains only elastic components, the same matrix can be adopted 

here. If a tangent stiffness matrix is created in IDTask 3, then the stiffness matrix created 

in this task should only include the elastic components. The elastic stiffness matrix is 

required by the program to calculate the current relative global stiffness of the finite 

element model. The relative global stiffness is then used in determining the global error 

during the calculations. 

4.5.3 Implementation of the User Defined Soil Model, MoDaMP, into PLAXIS 

A soil model based on dynamically measured soil properties (MoDaMP) 

discussed in Chapter 3 is created and implemented in PLAXIS via a subroutine following 

the general procedures described in the previous section. In this section, a step-by-step 

description of implementation of MoDaMP in PLAXIS is presented. This step-by-step 

procedure addresses both numerical and physical aspects of the model.   

The subroutine starts with the declaration of the parameters in IDTask 1 used in 

the model. The proposed soil model, MoDaMP consists of 5 input parameters. However, 

these parameters can be changed and modified if the user prefers to use a different type of 

information. For example, if the user prefers to define the reference shear strain,     

explicitly rather than having it calculated based on    and   
 , then these input parameters 

can be modified accordingly. The 5 input parameters are as follows: 
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(1)             Shear modulus of the granular soil under a mean effective 

confining pressure (  
 )  of 1 atm (    in Equation 3.6). This value is preferably 

determined from the             
  relationships of the soil based on the in-situ small-

strain measurements. If no in-situ measurements are available, it can be determined from 

laboratory measurements and adjusted to field conditions or it can be estimated by the 

formulation proposed by Menq (2001) based on the soil gradation characteristics and also 

adjusted to field conditions. 

(2)         This parameter is the slope of the             
  relationship (  ). It is 

determined from in-situ measurements. However if these measurements are not available, 

laboratory measurements can also be utilized with judgment. This value also can be 

estimated using     0.48·  
     as explained in Chapter 3 and adjusted to field 

conditions.  

(3)     = Coefficient of uniformity (  ) determined from soil gradation curves. 

(4)         Small-strain Poisson’s ratio (  ) which can be determined using in-

situ     and    measurements. 

(5)           Additional mean effective confining pressure to account for 

capillary stresses or to fit the shear wave velocity profile better at shallower depths. 

There are 120 state variables used in this subroutine.          (   ), which is 

the mean effective confining pressure,   
 , is the only state variable that has a non-zero 

initial value and it is declared in IDTask 1 as: 

 

      (   )  (     (         )      ( )      ( )      ( ))    ) 
(4.22) 

where      ( ) is the stress values in x, y and z direction at the beginning of the current 

step. The next task is IDTask 2 which involves multiplying the strain increment,     ,  
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with the effective stiffness matrix,  , which gives the stress increment,     . Also, based 

on the new stress state,   
 , state variables are updated in this task. 

 Next task is IDTask 3 which is the main task in the MoDaMP subroutine since the 

tangent stiffness matrix is created in this task based on strain and stress states and the 

loading condition. First,       is calculated based on the new stress state using Equation 

3.6. 

The strain increments,       ( ) where      , that are stored in IDTask 2 are 

used to determine the cumulative strain increments in IDTask 3 via state variables 

      ( ), where    7, 84. These 78 state variables refer to 6 cycles of 

loading/unloading/reloading. A maximum of 13 loading cycles based on the extended 

Masing rules are allowed in the subroutine. The unloading/reloading can also be modeled 

using different (  ) values for the soil in loading and unloading/reloading. However, the 

extended Masing criteria is preferred in this formulation since the hysteresis loops 

obtained with extended Masing criteria can be modified to obtain damping curves. This 

approach allows MoDaMP to be used in ground response analysis in the future. Masing 

behavior consists of two main criteria and two extended criteria defining the hysteresis 

loop of a soil under loading/unloading/reloading cycles. These criteria are defined as 

follows: 

(1) For initial loading, the stress-strain curve follows the backbone curve 

(2) If a stress reversal occurs at a point (         ), the stress-strain curve follows 

a path defined as: 

(
      

 
)    (

      
 

) 

     where    is the backbone curve. 
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(3) If the unloading/reloading curve exceeds the previous shear strain, then the 

stress-strain curve follows the backbone curve 

(4) If the unloading or reloading curve crosses the unloading/reloading curve 

from a previous cycle, the stress-strain curve cannot surpass the curve of that 

cycle; it follows the curve from that previous cycle. 

Chitas (2008) proposed a user defined soil model for PLAXIS to predict the 

ground response under seismic loading conditions and he implemented the Masing 

behavior in this model to predict the damping ratios. The extended Masing rules are 

implemented in MoDaMP by using a modified version of the code proposed by Chitas 

(2008). The main principles of the code are explained briefly below. To implement the 

extended Masing rules, detection of the octahedral shear strain reversals is crucial. This 

detection is achieved by storing the maximum octahedral shear strain in state variables  

      ( ) where          . The variable “   ” identifies the loading case. If    , it 

refers to initial loading; if       , the soil is being unloaded and if          then the 

soil is being reloaded where       . The maximum octahedral shear strain stored in the 

proper       ( ) is compared with the octahedral shear strain in the next calculation step. 

If the octahedral shear strain exceeds the maximum octahedral shear strain, there is no 

load reversal at that step and the octahedral shear strain at this step becomes the new 

maximum octahedral shear strain. If the octahedral shear strain is less than the maximum 

octahedral shear strain, then there is a load reversal and     is increased by one and the 

comparison procedure is repeated by moving to the next state variable with an initial 

value of zero. If the loading case is unloading/reloading, then second rule of the extended 

Masing criteria should be applied. This rule can be achieved by doubling the reference 
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shear strain in Equation 3.11 (Benz, 2007 and Chitas 2008). Increasing the value of     in 

Equation 4.22 by a factor of two gives: 
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(
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(4.22) 

 

To fulfill the fourth rule of the extended Masing criteria which implies that an 

inner hysteresis cycle at     cycle cannot surpass the       cycle, the strain values of 

the     cycle needs to be erased when moving from the     cycle to the       loop. 

Another variable, “   ”, is defined which controls the erasing of the state variables 

containing the strain values for each loading cycle. If the unloading/reloading has to 

follow the      cycle after the     cycle, then the strain values of     cycle are erased 

so that the stress-strain path follows the       cycle (Chitas, 2008). 

 Once the loading case is determined, the next step is determine   and Poisson’s 

ratio,  . The mean effective confining pressure,   
 , at the beginning of each calculation 

step is used to determine the      and     values, which are inserted in Equation 4.12 to 

determine   from      ⁄           relationships and     . The value of Poisson’s ratio 

is determined based on one of the two different approaches presented in Section 4.3 

(assuming a constant   or   value). The tangent stiffness matrix is then created based on 

the   and   values at the beginning of each iteration step. An important feature of 

MoDaMP is that   and   values are updated based on the strain and stress levels. This 

updating process of the     ,      ⁄           relationships and   of an arbitrary point 

in the soil mass is illustrated in Figure 14. As seen in the figure, before any loading takes  
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Figure 4.14:  Illustration of the updating procedure of     ,      ⁄           
relationships and   with increasing load levels 

place, the soil is at rest conditions and there are horizontal and vertical stresses acting on 

that chosen point in the soil mass. At this stage,        since no displacement has yet 

taken place and          . It should be noted that the value of      is stress dependent 

and it is determined based on the stress state prior to loading. When a load is applied on 

the soil mass, both horizontal and vertical stresses will increase resulting in a higher 

mean effective confining pressure. A new      is computed using the updated mean 

effective confining pressure. This new       value is inserted in the updated      ⁄  

         relationship and a new   is computed. When the load is increased further, the 

process will be repeated. Since    is stress and strain dependent, assembling of the 

stiffness matrix requires an iterative procedure. However, this procedure would add more 
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computation time since the finite element program utilizes already an iterative scheme to 

compute the stresses from a defined stiffness matrix. In order to reduce the computation 

time,   value and      ⁄           relationships at a calculation step are determined 

based on the stresses at the end of the previous calculation step which rendered the 

iteration unnecessary. The difference between using the stresses at the beginning of a 

calculation step and using iteration to determine the stresses for that calculation step is 

negligible since the load increments are very small.  

 The next step in the subroutine is creating the stiffness matrix. As discussed 

earlier, the created stiffness matrix is a tangent stiffness matrix and it is based on the 

shear modulus ( ) and the Poisson’s ratio ( ) which are determined based on the stress 

and strain states in the soil mass. The created effective tangent stiffness matrix,  , is then 

used in calculating the incremental stresses,     , in IDTask 2 by multiplying the 

incremental strains,     ,  with the tangent stiffness as shown in Equation 4.23. 

 

     (    )  (4.23) 

The attributes of the tangent stiffness matrix is defined in IDTask 5 by using the stiffness 

matrix switches. All switches except the time dependency switch is assigned as 1since the 

matrix is a nonsymmetric, stress-dependent tangent stiffness matrix. 

4.5.4 Verification of the User Defined Soil Model, MoDaMP 

The soil model MoDaMP is developed to predict the settlement of shallow 

foundations on granular soil. It can be used both in drained and undrained analyses. It can 

be potentially used in ground response analysis with an added damping-ratio function 

since it utilizes a modulus reduction scheme and obeys the extended Masing behavior. 
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Before using the model in settlement prediction analyses, the model was verified. The 

following capabilities of MoDaMP were tested to verify that the model was correctly 

developed, from theoretical and numerical points of view, for the following conditions: 

(1) monotonic loading, 

(2) pressure dependency of the model, and 

(3) loading and unloading/ reloading. 

First, the model was tested under pure shear loading. An incremental prescribed 

shear displacement with an ultimate value 0.01 ft was applied at the very top layer of a 

soil body with a 1ft x 1ft geometry. The bottom of the soil body was restrained from 

movement in both the horizontal and vertical directions whereas the sides of the soil body 

are only restrained from movement in the vertical direction. The resulting shear strains 

are constant throughout the soil with a value of 1.0%. In two-dimensional pure shear 

loading, the octahedral shear strains are about 82% of the shear strains applied (Chitas, 

2008). The soil was assumed to have                   ,          and       .  

Next, three simulations using PLAXIS and MoDaMP with different mean 

effective confining pressures,   
  , are carried out. The results from the numerical 

simulations were compared with the results found analytically. These comparisons are 

presented in Figure 4.15. As seen in the figure, the numerical and analytical results match 

very well for each pressure. It can be concluded that MoDaMP is working correctly in 

monotonic loading. Moreover, the stress dependency of the model is also verified since     

is calculated correctly.  

Another feature of MoDaMP is its ability to model loading and 

unloading/reloading correctly by obeying extended Masing rules. To verify that 

MoDaMP can correctly simulate different loading stages, the same geometry and soil 
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used in pure shear monotonic loading were used to create hysteresis loops. These 

hysteresis loops are created analytically, both by using secant shear moduli and tangent 

shear moduli to verify that the tangent stiffness formulations works correctly and it gives 

the same results as the secant stiffness matrix formulation. As seen in Figure 4.16, the 

secant and tangent shear moduli formulations give identical results. The numerical 

solution is found by utilizing PLAXIS with MoDaMP. It is seen in the figure that, 

MoDaMP is working correctly because: (1) shear stress-shear strain curve follows the 

backbone curve during initial loading and it is identical to the analytical solution, (2) 

upon unloading the stress-strain curve follows the same shape as the backbone curve, but 

it is doubled, (3) the stress-strain curve follows the backbone curve if the strain level 

during reloading exceeds the maximum previous strain, and (4) the inner loop follows the 

previous hysteresis loop after being closed.  

MoDaMP is developed mainly to predict settlements of shallow foundations on 

granular soil using field seismic combined with laboratory dynamic tests results as well 

as large-strain triaxial test results. One of its important features is the ability to take 

nonlinearity of the soil into account by following the      ⁄           relationships. 

MoDaMP can be converted to a stress-independent, elastic linear model by assigning a 

very large value to     and      .0. With this modification, MoDaMP can be verified by 

comparing the settlements of a shallow foundation found on an elastic half-space with the 

settlements prediction obtained using MoDaMP. The theoretical solution for a rigid 

circular footing on an elastic half-space (Richart et al., 1970) is:  

 

    
   

   
         4.24 



106 

 

 

 

Figure 4.15:  Verification of MoDaMP in pure shear loading by comparing     curves 

obtained numerically and analytically for different values of   
  

where   is the settlement,   is the applied load and   is the footing diameter (Figure 

4.17). This settlement is compared with the settlement of the same footing calculated 

with PLAXIS and MoDaMP. The soil is modeled by assuming     1000%,   1.0 and 

    0.0 so that the initial   value (    ) stays constant during loading and thus 

MoDaMP becomes a linear elastic model. The depth of the elastic layer, H, was varied 

between 5B and 100B.   and   were assumed to be 65MPa and 0.3, respectively, the 

same values as in the theoretical elastic solution. As seen in Figure 4.17, the settlement 
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Figure 4.16:  Verification of MoDaMP in pure shear loading by comparing     curves 

during loading and unloading/reloading obtained numerically and 

analytically  

calculated with elastic theory where   ⁄    is about 1.17 mm and the settlement 

calculated with MoDaMP for   ⁄      is about 1.16 mm. Therefore, the difference 

between these two methods is about 1%. This result show that: (1) MoDaMP can be used 

for linear elastic calculations such as footing settlements at low load levels where the soil 

is assumed to behave as linearly elastic and (2) the developed model, MoDaMP, has been 

verified in the linear elastic range. 
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Figure 4.17:  Verification of MoDaMP by comparing the settlements of a rigid footing on 

an elastic half space with theoretical approach with the predicted settlements 

obtained using MoDaMP as a linear elastic model 

4.6 SUMMARY 

In this chapter, development, implementation and verification of the soil model 

MoDaMP are discussed. First, the nonlinear and strain-dependent nature of the     

curves in soils are discussed. Then, the general definitions of stresses and strains acting 

on a point in a continuum medium are given. The relationships between stresses and 

strains for an elastic material are presented.  

d

H
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The elastic material coefficients and the equations relating these coefficients to 

each other are discussed. The behavior in Poisson’s ratio upon loading and unloading, 

which is usually assumed to have constant value, is investigated. Studies showing the 

change in Poisson’s ratio with increasing strains are presented. Moreover, in-situ 

measurements of   by Axtell et al. (2002) and LeBlanc (2013) are introduced and based 

on these measurements, the behavior of Poisson’s ratio with increasing strain levels is 

investigated.  This investigation revealed that if    or    is assumed constant, Poisson’s 

ratio is increasing with increasing shear strain based on the      ⁄        relationships 

for soils. 

In Section 4.4, the derivation of the stiffness matrix is discussed. The      ⁄  

      relationships proposed by Menq (2003) are used to define   at a given strain. The 

derivation of the tangent stiffness matrix with strain-dependent   and   is explained. 

In Section 4.5, the general procedures in implementing a user defined soil model 

into PLAXIS are presented. The general structure of the subroutine is explained. Next, a 

user defined soil model that utilizes field seismic test results combined with laboratory 

dynamic tests results as well as large-strain triaxial test results, is developed. Numerical 

issues in creating the model such as updating of the stress and strain states, and 

distinguishing between loading and unloading/reloading, and modifying the tangent 

stiffness matrix accordingly are explained. 

In the final section, the developed soil model, MoDaMP, is verified with element 

tests and an elastic settlement analysis. It is shown that MoDaMP is working correctly 

and it is capable of following the rules defined by the writer pertaining to stress and strain 

updates,      ⁄       relationships and Masing behavior. It is also shown that 

MoDaMP can correctly predict footing settlements in the linear elastic range.  
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 Chapter 5:  Development of the Model of Dynamically Measured 

Properties Combined with Perfect Plasticity (MoDaMP-P) 

5.1 INTRODUCTION 

A soil model of dynamically measured properties (MoDaMP) was developed in 

this research. MoDaMP is and presented in Chapter 4. MoDaMP is a nonlinear elastic 

model and mainly based on       and      ⁄       relationships that are obtained from 

in-situ and laboratory testing. Although MoDaMP is based on elastic theory, defining 

different soil moduli during loading and unloading/reloading enhanced the model with 

the ability of predicting irrecoverable (plastic) strains as well. The varying Poisson’s ratio 

based on      ⁄        measurements and    improved the model in predicting 

volumetric changes occurring in the soil under loading. 

 As explained in Chapter 4, since MoDaMP is based on Hooke’s Law, the model 

is not intended to be used in predicting the dilative behavior of dense soils. Dilative 

behavior implies that the soil increases in volume when it is sheared. In MoDaMP, 

Poisson’s ratios are            and therefore only contractive behavior is taken into 

account. Highly dilative behavior would result in smaller magnitudes of settlements for 

shallow foundations and ignoring this highly dilative behavior is a conservative approach 

in the settlement prediction analysis.  

On the other hand, comparing MoDaMP with a model which has the capability of 

modelling the dilative behavior of dense sands can give more insight about the effects of 

volumetric changes in the soil to the settlements. Therefore, MoDaMP was modified by 

adding a yield criterion (Drucker-Prager) and a nonassociated flow rule that uses a 

dilatancy angle. The new model is named as MoDaMP-P since the new model is working 

exactly the same as MoDaMP until the soil yields. After yielding, the     response of  
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Figure 5.1: Illustration of     responses of strain softening, strain hardening and 

perfectly plastic soils 

the soil is modelled as perfectly plastic as illustrated in Figure 5.1. The definition of yield 

functions in general and a more detailed discussion of Drucker-Prager yield function are 

presented in Section 5.2. Next, the flow rule and plastic potential concepts are introduced 

in Section 5.3. The flow rule and plastic potential function utilized in MoDaMP-P are 

discussed. The formulation and implementation of MoDaMP-P into PLAXIS is discussed 

in Sections 5.4 and 5.5, respectively. Finally, the developed model is verified with 

element tests and boundary value problems.  

5.2 YIELD FUNCTION  

A yield function describes a curve in 2D stress space and a surface in 3D stress 

space. The yield curves or surfaces separate the elastic and elastic-plastic regions from 

each other in stress space. When the state of stress reaches the yield surface, the material 

Perfectly Plastic

Strain softening

Strain hardening

τ

γ

γplastic
γelastic
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is assumed to reach the plastic state. The stress paths within the yield surface produce 

recoverable (elastic) strains whereas the stress paths that intersect the yield surface 

produce both recoverable and permanent (plastic) strains (Chen and Mizuno, 1990). The 

yield function  (       
 ) in general can be described as: 

 

  (       
 
)        (5.1) 

where     is the stress tensor and    
 

 is the plastic strain tensor. For perfectly plastic 

materials, the yield function is fixed and it is only a function of the stress tensor. Plastic 

deformations can only occur if the stress path moves on the yield surface. For strain 

hardening or strain softening materials, the yield surfaces are not fixed and they are 

expressed with hardening parameters. Hardening parameters define how the yield surface 

is evolving. The hardening parameters are functions of stress, strain and other soil 

parameters. The strain hardening or strain softening behavior of soils are modeled by 

adding hardening-softening rules in the plasticity formulation. However in this study; the 

main focus of developing MoDaMP-P is to investigate the effect of volumetric changes 

on settlements rather than the      response at larger strains and failure. Therefore, 

hardening-softening rules in plasticity formulation are out of the scope of this study and 

they will not be discussed herein.  

The following expressions define the complete stress conditions for elastic and 

plastic deformation as: 

 

                     
  

    
            (5.2) 
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            (5.3) 

If the stress state falls inside the yield surface,      and the deformations are all elastic. 

If      , the stress state is on the yield surface and the deformations are a combination 

of elastic and plastic deformations. For perfectly plastic materials, the consistency 

condition,     , forces the stress state to stay on the yield surface. In other words, it is 

not possible to have      (Figure 5.2). As seen in the figure, there is another surface 

similar to the yield surface which is called a plastic potential function. This function is 

discussed in Section 5.3.  

There are numerous yield functions proposed in the literature with different level 

of complexities. Usually, the number of parameters of the constitutive model increases 

with increasing complexity of the model. The most commonly used yield criterion in 

geotechnical engineering is probably the Mohr-Coulomb yield criterion. It is simple and  

its validity is verified for many types of soils. However, it neglects the effect of the 

intermediate principal stress and the corners of the yield surface cause singularities in the 

numerical applications (Chen and Mizuno, 1990). Drucker-Prager yield function is a 

smoother form of Mohr-Coulomb yield criterion as shown in Figure 5.3. The Drucker-

Prager yield surface is a right-circular cone with the symmetry about the hydrostatic axis. 

The yield surface is an extension of the Von Mises criterion but it is pressure dependent 

and it matches the behavior of granular geotechnical material better than the Von Mises 
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Figure 5.2: Definition of Yield and Flow Conditions for an Elasto-Plastic Material 

criterion (Chen and Mizuno, 1990). The mathematical expression for Drucker-Prager 

yield function is given as: 

 

   √               (5.4) 

where    and   are material constants.    is the second invariant of the deviatoric stress 

tensor and    is the first invariant of stress tensor. These invariants are defined as: 
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The Drucker-Prager yield surface can be matched with the Mohr-Coulomb yield 

surface by selecting proper values for   and  , the model parameters. This selection can 

be achieved by matching the major vertices or the minor vertices of Mohr-Coulomb  
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Figure 5.3: Drucker-Prager (a) and Mohr-Coulomb (b) yield surfaces in the π -plane 

 

Figure 5.4: Drucker-Prager and Mohr-Coulomb yield surfaces matched at the major and 

minor vertices 

 

 

(a) (b)
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surface representing axial compression and axial tension, respectively (Figure 5.4). Based 

on the matching process,   and   can be expressed in terms of    and  . The matching 

process for the axial-compression case results in Equations 5.7 and 5.8 giving the 

relationships between  ,   and  ,   (Chen and Mizuno, 1990). 

 

   
      

√ (       )
     (5.7) 

   
       

√ (       )
     (5.8) 

The reason for selecting axial compression for matching these two yield criteria is that 

soil is stronger in compression and, in vast majority of cases, the soil is under 

compression rather than tension. This type of matching can be used if the problem is an 

axisymmetric problem like settlement of circular footings as in this study. 

Drucker-Prager and Mohr-Coulomb models can also be matched to give identical 

limit loads for the plane strain case. The model parameters   and   of the Drucker-Prager 

model expressed in terms of the model parameters   and    of the Mohr-Coulomb model 

for the plane strain case are: 

 

 

   
    

√(         
     (5.9) 

   
  

√(         
    (5.10) 

The model MoDaMP-P gives the user the option to choose between axial 

compression matching and plane strain matching. Depending on the nature of the 



117 

 

problem, the user can decide which matching process suits better the problem in hand. A 

switch, pln_strn is added into the subroutine as a model parameter. The user should assign 

a value of “1” for the plane strain case or “0” for the axisymmetric case to the pln_strn 

parameter to have the Drucker-Prager and Mohr-Coulomb parameters matched 

accordingly. 

5.3 FLOW RULE AND PLASTIC POTENTIAL  

The strains in a soil body are purely elastic if the stress state is inside the yield 

surface; in other words, if    . Upon further loading, the stress state will reach yield 

surface and beyond this point, the strains will be a combination of elastic and plastic 

components: 

        
 
    

     (5.11) 

The elastic strains are calculated using Hooke’s law as explained in Chapter 4 for both 

linear and nonlinear     response curves. The plastic strains are determined based on a 

flow rule which states that the plastic strain increments can be expressed as a function of 

the current stress state,    ,  a plastic multiplier    and a plastic potential function,   as:  

 

     
 

   
  

    
   (5.12) 

The plastic potential function can be the same with the yield function,     for which 

Equation 5.12 becomes an associated flow rule. If   is different than  , then the flow rule 

is called a nonassociated flow rule. Equation 5.12 indicates that the direction of the strain 

increment     
 

  is normal to the surface of the potential function at the current stress 

state,    , as shown in Figure 5.2 The associated flow rule assumption is valid for metals 

but for granular materials such as soil and concrete, associated flow rule overpredicts the 
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volumetric changes in the soil. Therefore, soils are modeled usually using a 

nonassociated flow rule.  

A plastic potential function with the same form as the yield function given in 

Equation 5.4 is used in MoDaMP-P. The proposed potential function includes the same 

stress invariants,    and   . However the friction angle parameter,   , in the yield function 

is replaced with a dilatancy angle parameter,  ̅, expressed by:  

 

   √    ̅       (5.13) 

The same procedure followed to obtain the relationship between    and    can be applied 

to relate  ̅ and  , where   is the dilatancy angle of the soil. 

5.4 FORMULATION OF THE ELASTO-PLASTIC STIFFNESS MATRIX 

An elasto-plastic stiffness matrix can be formulated using Equations 5.4, 5.11, 

5.12 and 5.13. The derivation of this stiffness matrix is beyond the scope of this study but 

the details can be found in Chen and Mizuno (1990). The derived stiffness matrix is a 

function of  ,    and the elastic stiffness matrix   . The form of the matrix is: 
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      (5.14) 

The whole term in the bracket reduces to    if the stress state is in the elastic range. The 

evaluation of the elasto-plastic stiffness matrix requires the derivatives of   and   with 

respect to  . Using the chain rule, the derivative of the yield function with respect to 

stress tensor is: 
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The same procedure used for     ⁄  is applied to evaluate     ⁄ . Using the chain 

rule, the derivative of the potential function with respect to the stress tensor is: 
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By combining Equations 5.20 and 5.21, the derivative of the potential function can be 

expressed as: 
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    (5.22) 

The matrices given in Equations 5.19 and 5.22 and their transpose matrices are then 

inserted into Equation 5.14 to create the elasto-plastic stiffness matrix. The resulting 

stiffness matrix is then multiplied with the incremental strains to evaluate the stress 

increments. 

5.5 IMPLEMENTATION OF MODAMP-P INTO PLAXIS 

The procedure explained in Section 5.4 presents the mathematical background of 

the derivation of the stiffness matrix. Implementation of this mathematical formulation 

into PLAXIS as a constitutive model requires a certain procedure as explained in Chapter 

4. 
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The main steps of the subroutine are similar to the subroutine of MoDaMP 

explained in detail in Section 4.5.3 and the explanation is not repeated. Only additional 

steps, variables and switches created for MoDaMP-P are discussed. 

The subroutine starts with IDTask 1 where the soil parameters are defined and the 

state variables are initialized. In addition to the 5 soil parameters in Section 4.5.3, four 

new parameters are defined. These parameters are as follows: 

(1)        The friction angle of soil,   . It is converted to   using Equation 5.7 or 

5.9 depending on whether the problem is an axisymmetric or a plane strain case, 

respectively. 

(2)        The cohesion of the soil,   is in psf. It is converted to   by using 

Equation 5.8 or 5.10 depending on whether the problem is an axisymmetric or a 

plane strain case, respectively. 

(3)       The dilation angle of the soil,  . It is converted to  ̅ in the same way     

is converted to  . 

 (4) )           This is the switch that controls the matching procedure of 

Drucker-Prager and Mohr-Coulomb model parameters. For plane strain condition, 

             and for axisymmetric case            .  

 IDTask 2 is the same as in MoDaMP where incremental stresses,     , are 

calculated based on the stiffness matrix,  , and incremental strains,     . The main 

difference between MoDaMP and MoDaMP-P is in IDTask 3. First,       and      are 

calculated based on the formulation explained in Section 4.5.3 following the      ⁄  

          relationships. An additional state variable,      (   ), is defined in MoDaMP-P 

to store the value of   . In the elastic range, at each step,    will be updated and the new 

value will be assigned to      (   ). However, if the soil yields, then      (   ) will 
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not be updated and the value of       (   ) will be assigned to      (   ). Thus, the      

value of the soil at the time of yielding will be used throughout the plastic calculation 

range. If    is not kept constant after the soil yields, then the calculated strains will be 

excessive as the strains will be duplicated from the plastic flow rule and from the 

nonlinear elastic   formulation.  

 If the stress state reaches a point where the soil yields, the next step in MoDaMP-

P is defining and evaluating the derivatives presented in Equations 5.15 through 5.22. 

Using these derivatives, the elasto-plastic stiffness matrix defined in Equation 5.14 is 

created and the stresses are calculated in IDTask 2 according to this new elasto-plastic 

stiffness matrix.  

 The IDTasks 4, 5 and 6 are the same as in MoDaMP which is explained in 

Section 4.5.3.  

5.6 VERIFICATION OF THE NONLINEAR ELASTO-PLASTIC MODEL 

After MoDaMP-P was implemented into PLAXIS following the procedures 

explained in Sections 4.5.3 and 5.5, the model was verified with numerous tests. 

Verification of the model included comparison of triaxial test simulations of one-

element models using MoDaMP-P and Mohr-Coulomb model in the: (1) nonlinear elastic 

range, and (2) perfectly plastic range. 

5.6.1 Element Tests 

PLAXIS has a module to simulate different geotechnical tests. This module uses 

the selected constitutive model (built-in or user defined) to run element tests according to 

loading and boundary conditions for different geotechnical tests, including triaxial tests 

and simple shear tests. This module is utilized to verify MoDaMP-P by running triaxial 
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tests. These triaxial tests are simulated under different assumptions and the results are 

compared with results obtained using the Mohr-Coulomb model. 

5.6.1.1 Nonlinear-Elastic Range of MoDaMP-P 

MoDaMP-P consists of linear and nonlinear elastic and perfectly plastic parts as 

explained previously. The plastic part governs after the yielding state of stress is reached. 

The model can be verified in these ranges separately. To verify the linear and nonlinear 

elastic parts, the soil can be forced not to yield by increasing the    or    values of the 

soil. If the soil is forced not to yield, then MoDaMP-P should behave as a purely 

nonlinear elastic model. Simple shear tests are simulated in PLAXIS using MoDaMP-P 

and the results from the tests were compared with the analytical solution based on the 

     ⁄       curves. It should be noted that the    value is assumed to be 100
o
 which is 

physically unrealistic but it is used to prevent the soil from yielding, and resulting in pure 

nonlinear elastic response. Three simulations with different mean effective confining 

pressures were carried out. The comparison of the simulation results and the analytical 

solutions based on      ⁄       curves is presented in Figure 5.5. As seen in the figure, 

there is an excellent match between the numerical and analytical solution which verifies 

that the linearity and nonlinearity based on the      ⁄       curves is successfully 

implemented in the model. Moreover, the comparisons at different   
  values show that 

the stress-dependency of the      ⁄       curves is also taken into account correctly. 

5.6.1.2 Perfectly-Plastic Range of MoDaMP-P 

After the soil yields according to Equation 5.4, the strains occurring in the soil are 

controlled by the flow rule given in Equation 5.12. In MoDaMP-P, yielding is only a 

function of the stress state and therefore the linearity and nonlinearity in the elastic part 
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does not affect the values of the stress invariants at yielding. MoDaMP-P is tested in the 

plastic range to verify the yield and flow rules by assuming linear elastic behavior until 

yielding. This condition is achieved by assigning large constant value to    in the 

     ⁄       relationships to keep the      ⁄  value always 1.0 (or very close 1.0). 

The soil behaves linearly elastic pre-yielding and perfectly plastic post-yielding with this 

modification.  The soil testing simulation module in PLAXIS is used to model triaxial 

tests using MoDaMP-P and the Mohr-Coulomb model. In the simulation with  

 

 

Figure 5.5: Comparison of shear stress-shear strain curves obtained numerically with 

MoDaMP-P and obtained analytically based on the      ⁄       curves 

determined from Menq (2003) model  
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MoDaMP-P, the value of    is assumed to be 1000 % so that a comparison between these 

two models is possible. The soil parameters for MoDaMP-P are determined by matching  

  and   with   and  , respectively, considering an axisymmetric case. 

Figure 5.6 shows the deviatoric stress-axial strain response of soils with different 

stiffness and strength values. As it is seen in the figure, the nonlinear elasto-plastic model 

constrained to an insignificant modulus reduction by assuming   =1000 % gives almost 

identical results with the Mohr-Coulomb model. The agreement in yield stresses and 

strains from the models verify that the plastic formulation of the nonlinear elasto-plastic 

model is implemented correctly in the subroutine. 

5.7 SUMMARY 

The soil model based on the dynamically measured soil properties, MoDaMP was 

modified by incorporating a yield function and plastic flow rules to the existing nonlinear 

elastic model. The motivation for developing this new elasto-plastic model, called 

MoDaMP-P, is to investigate the effects of the volumetric changes in the soil or in other 

words the effect of the dilation angle. A very well-known yield function, Drucker-Prager, 

is used in this model along with a non-associated flow rule that uses the soil dilatancy 

angle. 

In Sections 5.2 and 5.3, general definitions of yield functions and plastic flow 

rules are introduced. The specific yield function and plastic flow rule for MoDaMP-P are 

also discussed. In Section 5.4, the formulation of the elasto-plastic stiffness matrix of 

MoDaMP-P is explained. The implementation procedure of MoDaMP-P into PLAXIS is 

discussed in Section 5.5. Finally, MoDaMP-P is verified by using element tests and 

comparing the results of the tests with the analytical results and Mohr-Coulomb soil 

model in the nonlinear-elastic and perfectly plastic ranges, respectively. 
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Figure 5.6: Comparison of shear stress-shear strain curves obtained numerically with 

MoDaMP-P and Mohr-Coulomb to verify MoDaMP-P in the plastic range 
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Chapter 6:  Load-Settlement Tests at the NGES Test Site 

6.1 INTRODUCTION 

Two small-scale footings with diameters of 3.0 and 1.5 ft (0.91 m and 0.46 m) 

were constructed at the National Geotechnical Experimentation Site (NGES) at Texas 

A&M University (see Figure 6.1). The footings were constructed as a part of a long-term 

project to create a dataset of load-settlement curves of footings on granular soil that had 

been evaluated with in-situ seismic measurements and either nonlinear dynamic      

     relationships measured in the laboratory or in-situ, or both. The small-scale footings 

were in the vicinity of the test site reported by Briaud and Gibbens (1994) where 

different- sized footings were tested for an ASCE Geo-Institute settlement prediction 

symposium in 1994. Several field tests, including SPT, CPT, pressuremeter, dilatometer 

and seismic crosshole tests, were conducted at the site (Briaud and Gibbens, 1994). 

Additional SASW tests near the small-scale footings were conducted by Park et al. 

(2009). Moreover, RCTS tests were conducted on two undisturbed samples at the 

University of Texas at Austin. 

The general soil properties at the test site are discussed in Section 6.2 and the 

results of SPT, CPT and triaxial test results are presented in Section 6.3. Then, the in-situ   

SASW test results and RCTS test results from laboratory measurements are presented in 

Section 6.4. The representative            
   relationships based on SASW tests and   

the           relationships based on RCTS results are discussed in Section 6.5. Next, 

the field load-settlement tests are presented in Section 6.6. Finally, the settlement 

predictions with MoDaMP are discussed in Section 6.7 and are compared with the field 

load tests.  
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Figure 6.1: Location of the NGES Test Site at College Station, Texas 

6.2 SOIL PROPERTIES AT THE NGES TEST SITE 

The soil at the NGES site is generally cohesionless. The soil profile reported by 

Briaud and Gibbens (1994) is shown in Figure 6.2. Four main layers were indicated over 

the 108-ft (33-m) depth of investigation at the field site. As seen in the Figure 6.2, the soil 

at the NGES site is predominantly sand to a depth of 36 ft (11 m). The gradation curves 

for the upper 30 ft (9.0 m) are given in Figure 6.3. The upper 11.5 ft (3.5 m) is medium 

dense, silty fine sand, classified as SP-SM in the USCS. The silty sand is underlain by an 

11.5-ft  (3.5-m) thick layer of medium dense sand with clay and gravel. From a depth of 

23 ft to 36 ft, the soil is silty sand to sandy clay. The soil below this layer is hard clay 

which has a negligible effect on the field load-settlement tests because of its depth below 

the footings. The water table is at a depth of 16.1 ft (4.9 m)  .  

 

NGES Test 
Site

Main Campus 
Texas A&M in 
10 miles

N
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Figure 6.2:   Soil types and layer depths at the NGES test site at Texas A & M University 

(after Briaud & Gibbens, 1994) 

 

Figure 6.3:   Grain size analysis (from Briaud & Gibbens, 1994) 

0 m (0 ft)

Medium Dense Tan Silty Fine Sand

Medium Dense  Silty Sand with Clay and 
Gravel

Medium Dense  Silty Sand to Sandy Clay 
with Gravel

Very Hard Dark Gray Clay

3.5 m (11.5 ft)

7.0 m (23.0 ft)

11.0 m (36.1 ft)

33.0 m (108.3 ft)

Removed Overburden Varies between 0.5 and 1.5 m

4.9 m (16.1 ft)
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Briaud and Gibbens (1994) report that the water content results from samples 

obtained using a drilling rig ranges from 11.1% to 33.5% whereas the results from 

samples obtained using a hand auger is about 5%. They attribute this variation to the 

seasonal moisture fluctuation occurring in the test site. Park et al. (2009) report a water 

content of 12-14 % and a total unit weight of about 126 lb/ft
3
 near the surface at the load-

settlement test site which is in the vicinity of the test site reported by Briaud and Gibbens 

(1994).  

6.3 SPT,CPT AND TRIAXIAL TEST RESULTS 

Standard Penetration Tests were performed on the NGES test site as a part of the 

extensive in-situ testing program for the settlement prediction symposium reported by 

Briaud and Gibbens (1994). The SPT energy measurements indicated that the average 

energy efficiency during the tests was about 53%. The results of the two SPT tests that 

were in the vicinity of the footing tests are shown in Figure 6.4. As seen in the figure, the 

average blow count between 3.5 ft and 36.1 ft (1.1 m and 11.0) is about 12 and it 

increases after 30 ft (9 m) where the hard clay layer starts.   

A total of five CPT soundings were performed in the vicinity of the NGES test 

site. Only three of the CPT tests are reported since the other two soundings had to be 

stopped because of high levels of pore pressures. The tip resistance and the side friction 

measured in these tests are shown in Figure 6.5. Only two of the three tests are shown in 

Figure 6.5 because they were close to the footing tests.  
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Figure 6.4:   SPT profiles at the NGES sand site (from Briaud and Gibbens, 1994) 

 

Figure 6.5:   CPT profiles at the NGES sand site (from Briaud and Gibbens, 1994) 
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6.4 SEISMIC IN-SITU AND DYNAMIC LABORATORY MEASUREMENTS 

6.4.1 SASW Tests 

As a part of the investigation of in-situ measurements of linear and nonlinear soil 

properties at the NGES test site, Park et al. (2009) performed Spectral-Analysis-of- 

Surface-Wave (SASW) tests along three lines around the two footings. Small-scale 

downhole tests were also conducted beneath the 3.0-ft (0.9 m) footing. The shear wave 

velocity, (  ), measurements from SASW and downhole tests were combined to find a 

best-estimate    profile. This best-estimate    profile from SASW tests is shown in Figure 

6.6 along with the crosshole data reported by Briaud and Gibbens (1994). As seen in the 

figure, the SASW and crosshole seismic measurements are generally in good agreement. 

However, the crosshole test data starts at a depth of about 6 ft, and most of the soil in 

which the strains and settlements beneath the footings are occurring is within this 6-ft 

(1.8-m) layer. Figure 6.6b is the expanded version of Figure 6.6a and shows the    profile 

more closely for depths that contribute most to the settlements of the footings. The 

average shear wave velocity at depths between 0-6 ft (0-1.8 m) is about 650 ft/s (198 

m/s). These shear wave velocities are used in determining the            
   relationships 

as explained in Section 6.5. 

6.4.2 RCTS Tests 

Two, hand-carved, intact specimens were obtained at the NGES test site and they 

were transported to the Soil Dynamics Laboratory at the University of Texas at Austin. 

These two specimens, denoted as UTA-62-A(1C) and UTA-62-B(2C) were tested in the 

combined Resonant Column Torsional Shear  (RCTS) device by Mr. Bohyoung Lee. 

Both specimens were classified as silty sand (SM). UTA-62-A(1C) and UTA-62-B(2C)  
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Figure 6.6: Shear wave velocity profiles at the NGES sand site (a) to a depth of 49 ft 

(15 m)  and (b) expanded to show the top 10 ft (3 m) (from Park et al., 2009)  
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had average  water contents of 8.0% and 9.9%, and total unit weights of 126.3 lb/ft
3 

and 

126.6 lb/ft
3
, respectively. 

Figure 6.7 shows    measurements in the small-strain range under different mean 

effective confining pressures,   
 , assuming negligible capillary stresses. As seen in the 

figure,    is increasing with increasing   
 . The shear wave velocities of UTA-62-A(1C) 

are slightly lower than the shear wave velocities of UTA-62-B(2C) . Also the slope of 

           
   relationship of UTA-62-A(1C) is slightly higher than the slope of UTA-

62-B(2C). As previously discussed in Chapter 3, the slope of the            
   

relationships,   , define the stress dependency of the   . A normally consolidated, 

uncemented sand typically exhibits a value of      in the range of 0.23-0.26 (generally 

assumed to be 0.25). The small-strain measurements of    of UTA-62-A(1C) and UTA-

62-B(2C) shows that    is smaller than 0.25, possibly indicating a cementation. The best 

fit to the            
   relationships of both specimens in the form of 

 

            (
  

 

  
)

  

     (6.1) 

are shown in Figure 6.7. In this formulation,         (also denoted as   ) is the shear 

wave velocity at a   
   of 1 atm, and    is the atmospheric pressure in the same units as 

  
 . These            

   relationships obtained from RCTS testing are compared with the 

same            
   relationships interpreted from the in-situ measurements in Section 

6.5. If no in-situ measurements were available, the laboratory measurements would be 

used in establishing the            
   relationships which are then used to determine the 

             
   relationships. MoDaMP incorporates the             value obtained  
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Figure 6.7: Log   -log σ‘o relationships for the NGES test site obtained from RCTS 

tests 
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using              
  relationships as one of the main input parameters. Evaluation of 

           is discussed in Section 6.5. 

Specimens UTA-62-A(1C) and UTA-62-B(2C) were also tested at large strains to 

determine the        behavior of the silty sand at the NGES site. The tests were 

performed under different   
  to investigate the stress dependency of the        

relationships. The results from the combined RCTS tests are presented in Figure 6.8 for 

  
  of 6 psi. Figures 6.9 and 6.10 show the        relationships for   

  24 psi and 

  
  48 psi, respectively. Comparing the        relationships from specimens UTA-62-

A(1C) and UTA-62-B(2C) shows that specimen UTA-62-B(2C) gives higher   values at 

all strains. The measurements from Resonant Column (RC) tests are performed at 

frequencies in the range of 186.7 Hz to 205.1 Hz and 71.6 Hz to 123.2 Hz for specimens 

UTA-62-A(1C) and UTA-62-B(2C), respectively. The Torsional Shear (TS) tests are 

performed at    0.5 Hz and comparisons of the results from RC and TS tests indicate 

that the values of   exhibit little frequency dependency, so this dependency can be 

neglected. Shear moduli of specimen UTA-62-B(2C) from RC tests are slightly higher 

compared to the TS results at   
  6 psi, but the results of specimen UTA-62-B(2C) at 

other pressures and the results of specimen UTA-62-A(1C) at all pressures are similar. 

Moreover, the measurements from the 1
st
 and 10

th
 cycles of the TS tests shows that shear 

modulus is not affected significantly by the number of cycles as reported by Darendeli 

(2001).   

The nonlinearity in the        relationships is usually expressed as normalized 

shear modulus curves, i.e,      ⁄       curves. Figures 6.11, 6.12 and 6.13 present the 

normalized shear modulus curves obtained in RCTS tests of specimens UTA-62-A(1C) 

and UTA-62-B(2C). The      ⁄       curves are linear up to   
  after which they  
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Figure 6.8:        relationships determined from RCTS tests at   
    psi of two 

intact specimen from the NGES test site 
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Figure 6.9:         relationships determined from RCTS tests at   
     psi of two 

intact specimen from the NGES test site 
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Figure 6.10:         relationships determined from RCTS tests at   
     psi of one 

intact specimen from the NGES test site 
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become nonlinear. The values of   
  are 0.0007%, 0.0010% and 0.0012% for   

  6 psi, 

  
  24 psi and   

  48 psi, respectively. The      ⁄       curves from UTA-62-A(1C) 

and UTA-62-B(2C) agree quite well even though measured    values are somewhat 

higher for specimen UTA-62-B(2C) as seen in Figures 6.7 through 6.10. 

It should be noted that      ⁄       curves from RCTS tests for the silty sand 

from NGES site are more nonlinear than the typical      ⁄       curves observed in a 

normally consolidated, uncemented sand. This somewhat higher nonlinearity is an 

indicator of cementation in the soil. The cementation of the soil might be disturbed 

during sampling and in that case the dynamic measurements in the laboratory will not 

manifest the cementation of the soil. In-situ testing of the soil, on the other hand, reveals 

more information about cementation as it is discussed in Section 6.5. 

Figure 6.14 shows all      ⁄       measurements from RCTS tests at different 

  
  values. The modified hyperbolic model proposed by Darendeli (2001): 

 

      ⁄   
 

  (
 
  

)
      (6.2) 

was fit to the data and the corresponding    and   values were determined from these 

best-estimate fits. The    values determined from these best-estimate curves are plotted 

against the corresponding   
  values (Figure 6.15). The         

  relationship shows a 

linear trend on this plot which can be represented by:  

 

             (
  

 

  
)         ( )      (6.3) 
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Figure 6.11:      ⁄       relationships for the NGES test site obtained from RCTS 

tests at   
    psi 
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Figure 6.12:      ⁄       relationships for the NGES test site obtained from RCTS 

tests at   
     psi 
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Figure 6.13:      ⁄       relationships for the NGES test site obtained from RCTS 

tests at   
     psi 
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Figure 6.14:      ⁄       relationships for the NGES test site obtained from RCTS 

tests at all    
  values and the best-estimate curves fit to the RCTS data based 

on the Darendeli (2001) model 
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Figure 6.15:         
  relationship based on the best-estimate curves to the RCTS test 

data using the Darendeli (2001) model 

 

The    values are smaller than the typical values for sands because of the higher 

nonlinearity of this material. The     values are also higher than the typical values of     

for sands. An average value of 1.00 is adopted in this study for     in the      ⁄       

curves for      ⁄      as explained in Section 6.7.2. 

The best-estimate       ⁄       curves are shown in Figure 6.16 along with the 

     ⁄       curves suggested by Menq (2003) for sands for comparison purposes. In 

Menq’s formulation, the average coefficient of uniformity,   , is taken as 3.0 based on 

the gradation curves reported by Briaud and Gibbens (1994). As seen in Figure 6.16, 
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Figure 6.16: Comparison of best-estimate       ⁄       relationships for the NGES 

test site with the      ⁄       relationships proposed by Menq (2003)  
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the best-estimate curves to the RCTS data are more nonlinear compared to the curves 

proposed by Menq (2003). This behavior is most probably a result of cementation of the 

silty sand since Menq’s formulation is for uncemented sands and gravels. The pressure 

dependency of the       ⁄       curves based on the RCTS data is less pronounced 

compared to the curves obtained using Menq (2003). Most of the      ⁄  values obtained 

from RCTS measurements are larger than 0.6. Hence, the extrapolated curves shown in 

Figure 6.15 based on    and   from the fitted curves do not completely 

reflect the      ⁄       behavior at larger strains. This issue is addressed in Section 

6.7.2 where the modification of the      ⁄       curves based on larger-strain triaxial 

test data is discussed.  

6.5 REPRESENTATIVE SHEAR WAVE VELOCITY PROFILE AT THE FOOTING LOCATIONS 

The best-estimate    profile from the SASW tests is shown in Figure 6.6 in 

Section 6.4.1. A representative in-situ             
   profile can be developed based on 

the best-estimate    profile by determining the corresponding in-situ   
 . Several points are 

chosen on the    profile and vertical stresses,   
  are calculated using the average total unit 

weight at the site which is 126 lbs/ft
3
. The in-situ mean effective stresses,   

  are 

estimated with: 

 

   
  

  
     

   

 
      (6.4) 

where    is assumed as 0.75. An initial pressure of 300 psf was added to   
 , hence, a 

negative pore water pressure of 300 psf was assumed to match the    profile better at 

shallower depths. The resulting            
  is given in Figure 6.17. As previously  
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Figure 6.17: Log   -log   
  relationships for the NGES test site obtained from the average 

SASW testing results  

shown in Equation 6.1,    can be expressed as a function of   
  and         (  ) which is 

the shear wave velocity at one atmosphere. The resulting            
  relationships 

indicate a two-layer system as shown in Figure 6.16. The best-fit lines to the       

     
  relationships using Equation 6.1 give the following results: (1) for the layer 

between 0-6.0 ft (0-1.83 m);           683 fps (208 m/s) and     0.09 and (2) for the 
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layer between 6.0 ft-15.0 ft (1.83 m-4.57 m);          711 fps (216 m/s) and     0.09. 

The    profile from the relationships given in Figure 6.17 for the two-layer system 

compare well with the in-situ    profile from SASW tests as shown in Figure 6.18. In-situ 

small-strain shear modulus,     , can be found by: 

 

        
         (6.5) 

 where   is the total mass density of the soil. By combining Equations 6.2 and 6.5, an 

expression for        can be found as: 

 

         (        (
  

 

  
)

  

)

 

             (
  

 

  
)

   

     (6.6) 

where             is the small-strain shear modulus at a mean effective confining pressure 

of one atm.  The resulting             and    (=2  ) parameters of the two layers are: 

Layer 1-                       (        ) and   = 0.18; and Layer 2-            

         (        ) and    = 0.18. These results are key input parameters for MoDaMP.  

6.6 LOAD-SETTLEMENT TESTS  

Two, circular, reinforced concrete footings with diameters of 3.0 ft and 1.5 ft 

(0.91and 0.46 m) were constructed at the NGES test site. Each footing had a thickness of 

1.0 ft (0.30 m). Prior to footing construction, a thickness of about 1 ft (0.3 m) of soil was 

removed from the surface and 0.5 ft (0.15 m) of backfill was placed after footing 

construction (see Figure 6.19). Before footing construction took place, vertical arrays of 

3D geophones were installed beneath each footing, with three arrays beneath the 3.0-ft 

(0.91-m) diameter footing as shown in Figure 6.19, and one array beneath the center of  
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Figure 6.18: Idealized, two-layer shear wave velocity profile from the      -log   
  

relationships compared with the average shear wave velocity profile from 

SASW tests 
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Figure 6.19: Cross-sectional view of 3.0-ft (0.91-m) diameter footing at the NGES test 

site (from Park et al., 2009) 

 

   

Figure 6.20: Load-settlement tests at the NGES sand site: (a) T-Rex loading the 3.0-ft  

(0.91-m) diameter footing, and (b) set-up of the instrumentation to load and 

measure the settlement of the 1.5-ft (0.46-m) diameter footing (from Park et 

al. 2009) 



152 

 

the 1.5-ft (0.46-m) diameter footing. These geophone arrays were used to perform small-

scale downhole testing beneath each footing. Two reference frames were placed near 

each footing to support displacement potentiometers which were arranged in an 

equilateral triangle on each footing. The load was applied by jacking against a large 

vibroseis truck, named “T-Rex”. T-Rex was positioned over each footing and the load 

was applied incrementally while measuring footing movement (See Figure 6.20). 

Each footing was loaded and unloaded in two or three stages, with increasing the 

peak loads in each subsequent stage. The load-settlement results of the 3.0-ft (0.91-m) 

and 1.5-ft (0.46-m) diameter footings are shown in Figures 6.21a and 6.22b, respectively. 

A backbone curve was fit to the staged loading/unloading cycles to approximate one 

continuous load-settlement curve. These backbone curves are shown by the dashed lines 

in Figures 6.21a and 6.22b.  

6.7 LOAD-SETTLEMENT PREDICTIONS 

In this section, load-settlement curves of the two small-scale footings at the 

NGES test site predicted using MoDaMP are presented and compared with the measured 

settlements. Two widely-used settlement-prediction methods, Schmertmann et al. (1978) 

using CPT data and Burland and Burbidge (1985), using SPT data, were also used to 

predict settlements of the two footings for comparison purposes. 

6.7.1 Load-Settlement Predictions with MoDaMP 

The user-defined soil model, MoDaMP, was implemented in PLAXIS as 

explained in Chapter 4. A finite element analysis was carried out to predict the 

settlements of the small-scale footings. The input parameters are assumed to be the same 

for both footings. Table 6.1 presents the input parameters values that were obtained in  
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Figure 6.21: Load-unload-reload settlement results for the 3.0-ft (0.91-m) diameter 

footing (a) and for the 1.5-ft (0.46-m) diameter footing (b) with backbone 

curves fitted to approximate simple continuous loading (from Park et. al, 

2009) 
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Table 6.1      Input parameters used in the settlement analysis with MoDaMP for NGES 

test site 

 

 

Section 6.5 and used in the finite element analysis. Each analysis is given a different 

identifier (analysis ID) to differentiate the site, footing diameter and Poisson’s ratio 

assumption used. The first two letters indicate the site; NG stands for NGES test site, the 

following number indicates the diameter of the footing in ft and the following letters (CP, 

CM or CK) indicates the assumption about the Poisson’s ratio. CP indicates a constant 

Poisson’s ratio equal to the small-strain Poisson’s ratio determined from shear wave and 

compression wave velocities whereas CM and CK indicates that the Poisson’s ratio is 

varying based on a constant   or constant   assumption, respectively. If these letters are 

followed by a ”mdf1” or “mdf2”, it means that the      ⁄       relationships were 

modified as explained in the following section. For example, NG-3.0-CM-mdf1 is the 

analysis for the footing at the NGES test site with a 3.0-ft (0.91-m) diameter where the 

Poisson’s ratio is based on a constant   and modified      ⁄       relationships are 

used in the analysis. 

6.7.1.1 PLAXIS Model for the Footings 

The subroutine MoDaMP was implemented into PLAXIS and finite element 

analyses of settlements of the footings were carried out using this subroutine. The soil-

Layer 1 Layer 2

Gmax_1atm 1827  ksf 1980 ksf

ν0 0.3 0.3

a 1.00 1.00

γr (%) Equation 6.3 Equation 6.3
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footing system was modeled as axisymmetric and symmetrical, therefore only half of the 

footing was modeled. To eliminate the boundary effects, the thickness of the soil beneath 

the footing was assumed as 15 ft (4.57 m) (equal to 5 times the footing diameter of the 

larger footing) as proposed by Brinkgreve et al. (2011). The reinforced concrete footings 

are modeled as flexible plate members.  

All boundaries except the top boundary are restrained from horizontal movement 

and the bottom boundary is restrained from both horizontal and vertical movements. 

PLAXIS automatically generates the mesh for the model but the size and type of mesh 

can be altered by the user. The mesh used in the analyses consisted of 946, 15-node 

triangular elements. The mesh is refined beneath the footings since most of the 

deformations are expected to occur in this region. The backfill soil is modeled as a 

surcharge of 60 psf (2.87 kPa) because the deformations due to loading are occurring 

beneath the footings. The water table is set at the lower boundary of the model since it is 

about at 16.1 ft (4.9 m).  

The standard settings of PLAXIS are utilized to perform the iterative calculations, 

which resulted in computational times ranging from  10 minutes to 5 hours depending on 

the assumptions and modifications in the model. The computation times increased for 

cases where the shear strain-shear stress response of the soil is flatter at larger strains. 

The main feature of MoDaMP is the ability to evaluate the        values based on the 

current stress state and the associated           relationships according to both stress 

and strain states. This procedure requires a continuously updating       , stress and strain 

state and           set.        values are calculated with Equation 6.5 based on the 

initial stress state. Values of    are calculated using the        values and Equations 3.11, 

3.12, and 3.13. As an example, the variation of        ⁄   in the soil mass with increased 
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pressure levels is shown in Figure 6.22 for analysis NG-3.0-CP-mdf2. The   values at 

these pressure levels are presented in Figure 6.23. Next, values of     and ν are used to 

establish the nonlinear elastic stiffness matrix. New stresses are calculated based on the 

nonlinear elastic stiffness matrix and, new         values are calculated with these stresses.  

To illustrate this procedure, three reference points at different depths beneath the 

3.0-ft diameter footing are used. These reference points are shown in Figure 6.24a. The 

octahedral shear strain and shear modulus at each reference point are determined under 

the five, increasing load levels applied to the footing shown in Figure 6.24b. Five 

          relationships determined for the five load levels identified in Figure 6.24b are 

plotted as solid lines in Figures 6.24c, 6.24d and 6.24e for Reference Points X, Y, and Z, 

respectively. The sets of  ,      coordinates that correspond to each of the five load levels 

on the load-settlement curve are identified on the appropriate           relationship by 

the solid circles and associated load-level number. The increase in          and general 

upward shifting of the           curves (solid lines) with increasing load level is seen in 

Figures 6.24c, 6.24d, and 6.24e. As loading increases, the net effect is   decreasing as 

     increases at each reference point. This effect diminishes with increasing depth 

because the incremental stress change decreases with depth. 

6.7.1.2 Predicted Settlements  

 Settlement analyses with the PLAXIS model using the MoDaMP subroutine are 

presented in this section. As explained previously, every analysis is given an 

identification name to distinguish between different footing sizes and different 

assumptions. The first analysis in this section, NG-3.0-CP, is the analysis for the 3.0-ft 

diameter footing on NGES site with the assumption of a constant Poisson’s ratio. The 

load-settlement curve predicted with this analysis is shown in Figures 6.25. It should be  
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Figure 6.22: Variation of        ⁄   in the soil mass with increased applied pressure levels 

for analysis NG-3.0-CP-mdf2. 
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Figure 6.23: Variation of   (psf) in the soil mass with increased applied pressure levels 

for analysis NG-3.0-CP-mdf2. 
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         (a) Geometry of soil-foundation model and reference points               (b) Load-settlement curve and five load levels 

 

    

Figure 6.24: Illustration showing how the modulus-strain relationships and secant shear moduli change in the numerical model 

during loading at three reference points beneath the 3.0-ft (0.91-m) diameter footing for NG-3.0-CP-mdf2 
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Figure 6.25:  Predicted footing settlements for the 3.0-ft (0.91-m) diameter footing at the 

NGES site using MoDaMP assuming constant Poisson’s ratio during 

loading 

noted that in this analysis, Poisson’s ratio is assumed constant and the           

relationship are based solely on the RCTS test results presented in Section 6.4.2. 

As seen in Figure 6.25, the predicted settlements match the measured settlements 

only up to ~ 600 psf (28.7 kPa) which is about 10% of the maximum applied pressure. 

Beyond 600 psf, the predicted settlements become extremely large and footing settles 

continuously almost with no additional load. This indicates a very soft behavior of the 

model. Therefore the settlement of the 1.5-ft (0.46-m) diameter footing is not presented 

here since the           relationship needs to be modified before performing further 

analyses. The reason for this modification is that the             relationships 

described in Chapter 3 have been primarily developed by torsional resonant column 

testing over small-to-moderate values of strains, typically shear strains less than 0.2 %. 
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The relationships need to be modified to use them in MoDaMP at larger strains which 

occur in problems such as shallow foundation settlements. 

6.7.2 Modification of             Relationships in MoDaMP 

The     results from CD triaxial tests conducted on reconstituted samples from 

the NGES site (Briaud and Gibbens, 1994) are presented in Figure 6.26. The     curves 

are found from the      results from the triaxial tests by using the relationships 

proposed by Kokusho (1980): 

 

   (   )       (6.7) 

   
     ⁄       (6.8) 

 

 The     relationships obtained by converting the             relationships to     

relationships are also shown in the same figure for comparison purposes. As seen in 

Figure 6.26, the     responses from the             relationships are stiffer at strains 

less than 0.1 % compared to the triaxial results. However, as the shear strains increase, 

the     responses from the             relationships are softer at strains above 0.1 to 

0.2 %. Therefore, the             relationships need to be modified in the larger strain 

range. This modification is achieved by adjusting the     parameter (only) in the larger 

strain range of the             relationships to match the triaxial results. The effect of 

the modified     parameter on the             relationships is shown in Figure 6.27 as 

an example. This adjustment of the     parameter consists of two parts as: 
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Figure 6.26: Comparison of shear stress-shear strain curves from triaxial tests and from 

            relationships 

 

 

          (1)      for                                                                                                   (6.9) 

 

           (2)      for           ;                   (
  
 

  
)                                          (6.10) 
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Figure 6.27: Comparison of unmodified and modified (1
st
 modification)             

relationships 

As the value of     changes from 1.0 to a smaller value at        smaller than 0.4, there 

is a sudden change in the             relationship. To avoid the discontinuity in the 

            relationships at           , the     parameter is changed gradually 

from the original value to the modified value between             and           . 

The     responses obtained using the             relationships with the modified 

    parameter are  presented in Figure 6.28 .The modified             relationships 

are implemented in MoDaMP and the model with the modified relationships, now 

designated as MoDaMP-1, is used to predict the settlements of the footings to investigate 

the effect of the adjustment on footing settlements. 
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Figure 6.28   Comparison of shear stress-shear strain responses from triaxial tests and 

from the modified (1
st
 modification)             relationships 

6.7.2.1 Settlement Predictions with modified             Relationships 

implemented in MoDaMP 

The settlements predicted using the modified             relationships are 

shown in Figure 6.29. As seen in the figure, the predicted settlements for the 3-ft (0.91-

m) diameter footing match the measured settlements up to pressures of about 2000 psf 

(95.8 kPa). Beyond this point, the predicted settlements become higher compared to the 

measured settlements. For the 1.5-ft (0.46-m) footing, the predicted settlements are 

higher than the measured settlements for almost all pressures, with the exception of 

pressures below about 2000 psf. 
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Figure 6.29: Predicted footing settlements using MoDaMP-1 with a constant Poisson’s 

ratio and modified (1
st
 modification)             relationships for (a) 

3.0-ft (0.91-m) diameter and (b) 1.5-ft (0.46-m) diameter footings at the 

NGES Site 
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The comparison of the predicted settlements of 3.0-ft (0.91-m)  and 1.5-ft (0.46-

m) diameter footings with the measured settlements indicates that the modified     

responses are still softer than the actual soil behavior. This behavior is attributed to two 

different phenomena: (1) horizontal stresses that increase in-situ during loading but 

which were not during loading in the triaxial test, and (2) the specimens used in the 

triaxial tests are reconstituted and are disturbed. The silty sand at the NGES test site is 

slightly cemented based on the field            
  relationships in Section 6.5. The low 

value of    (  =0.18) is an indication for cementation since an uncemented, normally 

consolidated sand typically has    =0.50 (also see Figure 6.17 in terms of field   ). 

Based on these facts,             relationships need to be modified for the 

second time to obtain a stiffer     response. This second modification is achieved 

following the same procedure as explained in the first modification but it is made stiffer 

to represent the increase in horizontal stresses during footing loading. This second 

modification resulted in the following set of equations: 

 

           (1)                 for                                                                                    (6.11) 

 

           (2)                 for           ;                   (
  
 

  
)                             (6.12) 

 

The effect of the modified     parameter on the             relationships is shown in 

Figure 6.30 as an example. The     responses obtained using the             

relationships with the 2
nd

 modification of the     parameter are presented in Figure 6.31. 

The settlements of the 3.0-ft (0.91-m) and 1.5-ft (0.46-m) diameter footings are predicted 

with the MoDaMP with the second modification on the             relationships  
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Figure 6.30: Comparison of unmodified and modified (2
nd

 modification)             

relationships 

 

Figure 6.31: Comparison of shear stress-shear strain responses from triaxial tests and 

from the 2
nd

 modification of the              relationships to account for 

increases in the horizontal stresses during footing loading 
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implemented in it (MoDaMP-2). The results of the settlement analyses for the 3.0-ft 

(0.91-m) diameter and 1.5-ft (0.46-m) diameter footings are presented in Figure 6.32a 

and 6.32b, respectively. As seen in the figure, the predicted settlements with the second 

modification of the             relationships are reasonably matching the measured 

settlements. 

6.7.3 Load-Settlement Predictions with CPT and SPT Based Methods 

The commonly-used, empirically-based, load-settlement prediction methods of 

Schmertmann et al. (1978) with CPT measurements, and Burland and Burbidge (1985) 

with SPT measurements are viewed in Chapter 2. These methods are used to predict the 

settlements of the two, small-scale footings tested at NGES test site. 

For the Schmertmann et al. (1978) method, the elastic modulus is calculated with 

       . The average tip resistance of the soil is assumed to be 50 tsf (4.8 MPa) based 

on the CPT results (Briaud and Gibbens, 1994). The upper 6 ft (1.83 m) of the soil 

beneath the footings is divided into 5 layers. Equations 2.6, 2.7 and 2.9 are then used to 

predict the settlements. The predicted settlements are compared with the measured 

settlements in Figure 6.33a for the 3.0-ft (0.91-m ) diameter  footing and in Figure 6.33b 

for the 1.5-ft (0.46-m) diameter footing. As seen in the figures, the settlements are 

overpredicted for both footings and the nonlinearity of the load-settlement curves is not 

captured. 

The Burland and Burbidge (1985) method utilizes SPT results in settlement 

predictions as explained in Chapter 2. Average SPT blow counts (   ) at the NGES site 

over the depth of influence, which about 3 ft for a 3-ft diameter footing is 10. Using 

Equation 2.10, the settlements are predicted and compared with the measure settlements 

in Figure 6.33a for the 3.0-ft (0.91-m) diameter footing and in Figure 6.33b for the 1.5-ft  
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Figure 6.32:  Predicted footing settlements using MoDaMP-2 with a constant Poisson’s 

ratio and the second modification of the              relationships for (a) 

3.0-ft (0.91-m) diameter and (b) 1.5-ft (0.46-m) diameter footings at the 

NGES Site 
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Figure 6.33: Comparison of settlements predicted using the CPT-based and SPT-based 

methods of Schmertmann et al. (1978) and Burland and Burbidge (1985), 

respectively with the measured settlements for the (a) 3.0-ft (0.91-m) and  

(b) 1.5-ft (0.46-m) diameter footings at the NGES test site 
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(0.46-m) diameter footing. As seen in the figures, the settlements with Burland and 

Burbidge (1985) method are higher than the measured settlements except for the 

settlements of 1.5-ft (0.46-m) diameter footing at applied pressures of above 20,000 psf. 

The predictions with Burland and Burbidge (1985) method are closer to the measured 

settlements compared to the predictions with Schmertmann et. al (1978) method. 

However none of these two methods captures the nonlinearity of the load-settlement 

curves. 

It should be noted that in both methods there is a correction for the creep, 

however, the load-settlement tests were not continued long enough to investigate the 

creep. Therefore, creep is neglected in these predictions. 

6.7.4 Load-Settlement Predictions with varying Poisson’s Ratio 

In the previous settlement predictions, the value of Poisson’s ratio is assumed 

constant for all strain ranges. On the other hand, a change in the value of Poisson’s ratio 

occurs with increasing shear strain levels as discussed in Chapter 4. In this section, the 

effect of the varying value of Poisson’s ratio on the settlement predictions of the footings 

is investigated. The initial values of Poisson’s ratios and their variation are determined 

following the procedures explained in Section 4.4. Figure 6.34a presents the results of the 

settlement analyses of the 3.0-ft (0.91-m) diameter footing by assuming a constant 

constrained compression modulus,  . The results of the settlement analyses with the 

constant bulk modulus,  , assumption are shown in Figure 6.34b. Figure 6.35a and 6.35b 

show the results of the settlement analyses of the 1.5-ft (0.46-m) diameter footing by 

assuming a constant constrained compression modulus,  , and constant bulk modulus,  , 

respectively. 
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Figure 6.34   Predicted footing settlements using MoDaMP with a varying Poisson’s ratio 

(a)    constant and   (b)    constant and modified             

relationships for  3.0-ft (0.91-m) diameter footing at the NGES test site 
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Figure 6.35   Predicted footing settlements using MoDaMP with a varying Poisson’s ratio 

(a)    constant and   (b)    constant and modified             

relationships for  1.5-ft (0.46-m) diameter footing at the NGES test site 

 



174 

 

As seen in Figures 6.34 and 6.35, the predicted settlements with the varying 

Poisson’s ratio assumption are smaller than the predicted settlements with a constant 

Poisson’s ratio assumption. This result can be attributed to the smaller volumetric strains 

occurring with the varying Poisson’s ratio assumption. Based on the predicted 

settlements, it can be concluded that varying Poisson’s ratio assumption can be a more 

realistic assumption in terms of the change in the material properties under changing 

stress state.  

6.7 SUMMARY 

The load-settlement tests of two, small-scale footings at the NGES test site at 

Texas A & M University in College Station, Texas are discussed. The load-settlement 

tests were performed in a study by Park et al. (2009) in the vicinity of the test site 

reported by Briaud and Gibbens (1994) where several field and laboratory tests were 

conducted to characterize the soil for a symposium. In addition to the tests reported by 

Briaud and Gibbens, SASW and downhole tests were also conducted at the site by Park et 

al.,(2009). Two, undisturbed soil samples were tested dynamically using RCTS 

equipment at the University of Texas at Austin by Mr. Bohyoung Lee. SASW 

measurements are then used in the settlement prediction procedure to create 

representative shear wave velocity profiles of the granular soil layers beneath the 

footings. These profiles were obtained by developing            
  relationships based 

on the average    profiled from SASW tests and the calculated mean effective confining 

pressures. Using the            
  relationship,    at one atmosphere (       ) and the 

slope of the            
  relationship were determined. Then         is converted to 

         and used in the settlement analyses with MoDaMP. The             

relationships are determined from the RCTS measurements with two undisturbed 

samples. The     relationships were determined from the             relationships 
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over the range of        from 1.0 to 0.4. Beyond this point, the      relationships were 

determined from modified             relationships which were modified to match 

the larger-strain triaxial test data. Due to horizontal stress increase beneath the footings 

during loading in the field and due to cementation in the granular soil, the             

relationships were modified for a second time. Settlement predictions after implementing 

these modifications into MoDaMP are in reasonable agreement with the measured 

settlements for both, 3.0- and1.5- ft  (0.91- and 0.46-m) diameter footings. The effect of 

the Poisson’s ratio on the settlement predictions was also investigated. This investigation 

was done by varying the value of Poisson’s ratio with increasing shear strain by assuming 

that: (1) the constrained compression modulus was constant during loading and (2) the 

bulk modulus was constant during loading. The predicted settlements with both of these 

assumptions are smaller compared to the constant Poisson’s ratio assumption. The reason 

for this difference is the smaller volumetric strains due to the increased Poisson’s ratio 

with the constant constrained compression modulus and bulk modulus assumption.  
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Chapter 7:  Load-Settlement Tests at the Hornsby Bend Test Site 

7.1 INTRODUCTION 

Two, small-scale footings with diameters of 3.0 ft and 1.5 ft (0.91 m. and 0.46 m) 

were constructed at the Hornsby Bend Site at Austin, Texas by Van Pelt (2010). The test 

area is located close to the Austin Bergstorm International (ABI) Airport. The location of 

the test site is shown in Figure 7.1. A detailed site investigation and soil characterization 

was conducted at this site between 2009 and 2010. In-situ field tests performed at this site 

included Cone Penetration Test (CPT), Spectral-Analysis-of-Surface-Waves (SASW) and 

crosshole seismic tests. Undisturbed and disturbed samples were obtained to perform 

laboratory tests to determine several soil properties. Figure 7.2 shows the plan view and 

locations of the footings and the locations of the various field and sampling tests at the 

site. 

Laboratory tests including grains size distribution, Atterberg limit tests and CD 

triaxial tests are discussed in Section 7.2. In-situ testing including CPT, crosshole and 

SASW, is discussed in Section 7.3. In Section 7.4, representative    profiles are 

determined and            
   relationships are developed.  In Section 7.5, the load-

settlement tests are introduced. The settlement predictions using MoDaMP are presented 

in Section 7.6. The settlement predictions with MoDaMP are compared with other 

settlement prediction methods. The effect of varying Poisson’s ratio on the settlement 

predictions is also studied. 

7.2 LABORATORY TESTS AND GENERAL SOIL PROPERTIES 

Disturbed samples obtained at various depths at the project site were used to 

perform grains size distribution analysis. Based on these grain size distribution tests 

(Figure 7.3), it was concluded that the soil at the site is primarily a “sandy silt” or a “silt 

with sand” (classified as ML according to the USCS). The coefficient of uniformity,   ,  
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Figure 7.1: Location of the Hornsby Bend Test Site at Austin, Texas 

is about 3.5. Also, Atterberg limit tests were performed on disturbed samples and they 

verified the result of the grain size distribution tests, revealing that the soil is non-plastic. 

The specific gravity of the soil was found to be 2.69 (Van Pelt, 2010). 

Consolidated-drained (CD) triaxial tests were performed with disturbed samples 

to investigate the strength properties of the soil at Hornsby Bend Site (Van Pelt, 2010). 

Undisturbed soil samples could not be used in triaxial testing due to the sandy and silty 

nature of the soil which made trimming of the soil difficult because samples would not 

remain intact. The specimens were prepared using the under-compaction method with a 
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Figure 7.2: Plan view of the layout of the project site (from Van Pelt, 2010) 

 

Figure 7.3:   Grain size distribution of the soil at the Hornsby Bend Site (from Van Pelt, 

2010) 

**All SASW arrays are 

positioned along the various 

sides of each footing

*bgs= below 
ground surface

Average grains size
distribution
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target unit weight,   ,  of 106 pcf and a water content,  , of 10%. The tests were 

conducted at three different confining pressures; 3, 9 and 27 psi. Figure 7.4 shows 

deviatoric stress vs. the axial strain curves from the CD triaxial test results. The strain 

rate was chosen as 0.005 inches per minute so that any excess pore pressures developed 

during loading also dissipated which resulted in freely draining conditions in the sandy 

silt soil at the Hornsby Bend site. Figure 7.5 presents the Modified Mohr-Coulomb 

failure envelope obtained from the CD triaxial tests results and the failure envelope 

results in a friction angle,  , of 39
0
 and a cohesion,  , of 0.88 psi. The cohesion is thought 

to be a result of a slight overconsolidation and/or possible cementation. This “cohesion” 

discussed further in Section 7.4. 

 

 

Figure 7.4: Deviatoric stress-axial strain curves from CD Triaxial tests (from Van Pelt, 

2010) 
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Figure 7.5:  Total-stress envelope from CD Triaxial tests (from Van Pelt, 2010) 

 Undisturbed samples were obtained at the site using thin-walled Shelby tubes. 

Density tests and combined one-dimensional compression and permeability tests were 

conducted on these samples. The average total unit weight,   , of the soil was 106 pcf and 

the average dry unit weight,   , of the soil was 91 pcf. The initial void ratio and the 

degree of saturation of the specimen are found as 0.85 and 52 %, respectively. 

7.3 IN-SITU TESTS  

Cone Penetration (CPT), Spectral-Analysis-of-Surface-Waves (SASW) and 

crosshole seismic tests were conducted over several months at the Hornsby Bend Site. 

The results of all these tests are discussed herein, albeit SASW is the main in-situ test 

used in the settlement analysis of the footings at the Hornsby Bend site. 

ϕ= 390

c=0.88 psi
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7.3.1 CPT Tests 

CPT testing was performed at the site using a hydraulic ram mounted to the 

vibroseis truck “T-Rex”. The cone tip resistance (  ), sleeve friction (  ), and the pore 

water pressures ( ), were measured up to a depth of 44 ft (13.4 m). The results from this 

testing indicated a layered soil profile with the top of the layers at 0, 0.75, 7, 33, 39 and 

42 ft (0, 0.23, 2.13, 10.06, 11.89 and 12.80 m).  The test was terminated due to refusal at 

a depth of approximately 44 ft (13.4 m) which was assumed to be shale. A visual 

inspection of the soil layers were also made with a exploration pit extending up to 8 ft 

(2.44 m) below the ground surface. The soil up to a depth of 0.75 ft (0.23 m) is classified 

as sandy clay (CL), between 0.75 (0.23 m) and 7 ft (2.13 m)  as sandy silt and between 7 

ft (2.13 m) and 8 ft (2.44 m) as a clay with sand (CL). The results of the CPT testing are 

shown in Figure 7.6. Average representative tip resistance (  ) and sleeve friction (  ) 

profiles are added to the test results. These average profiles are used in settlement 

predictions using Schmertmann’s (1978) and Burland and Burbidge methods (1985) for 

comparison purposes. Figure 7.7 presents an expanded version of the CPT test results up 

to a depth of 15 ft (~4.9 m) which is the lower boundary in the numerical analysis using  

MoDaMP. Based on the pore water pressure measurements, it was found that the water 

table is at a depth of about 34 ft (10.4 m). 

7.3.2 SASW Tests 

As the main part of the in-situ testing at the Hornsby Bend Site, SASW testing 

was performed in 2009 and 2010. Several arrays positioned along various sides of the 

two small-scale footings were used to test the soil. The details of the testing procedures 

and the dispersion curves can be found in Van Pelt (2010). Figure 7.8 and 7.9 show the 

shear wave velocities,   , measured near the 3.0-ft. and 1.5-ft. diameter footings. The 

average shear wave velocities are also shown 
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Figure 7.6:   Tip resistance and side friction profiles from CPT testing at the Hornsby 

Bend Site (after Van Pelt, 2010) 

 

Figure 7.7:   Tip resistance and side friction profiles from CPT testing at the Hornsby 

Bend Site up to 15 ft below the ground surface (after Van Pelt, 2010) 
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in these figures. The shear wave velocity profiles show that the variation of the shear 

wave velocity measurements is slightly higher close to the surface, especially for the 1.5-

ft. diameter footing. As the depth increases, shear wave velocities become more uniform 

except for measurements from the array located along the east side of the footings which 

is slightly lower than the other three arrays. 

7.3.3 Crosshole Tests 

Crosshole seismic testing was conducted beneath the footings to determine both 

the compression wave velocity,   , and also to measure the shear wave velocity profile 

directly beneath the footings (Van Pelt, 2010). Two borings were drilled on opposite 

sides of the footing, with the center of each boring being about 1ft (0.3 m) away from the 

outer edge of the footing. A Shelby tube attached to steel extension rods was used as the 

source. The top of the rods was hit with a hammer. A 3D geophone placed in the bottom 

of the other boring served as the receiver.  
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Figure 7.8:   Shear wave velocity profiles near the 3.0-ft (0.91-m). diameter footing at the 

Hornsby Bend site (after Van Pelt, 2010) 
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Figure 7.9:   Shear wave velocity profiles near the 1.5-ft (0.46-m) diameter footing at the 

Hornsby Bend site (after Van Pelt, 2010) 
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The compression and shear wave velocities were measured directly beneath each footing 

which made the calculation of the Poisson’s ratio at small strains possible. Figure 7.10 

shows the    and    measurements from crosshole testing. As it is seen in the figure,    

values from crosshole testing are very similar to the average    values obtained with 

SASW testing. Due to the good agreement between the    values evaluated with these 

two testing, the average SASW profile is used in the numerical analysis with MoDaMP in 

the settlement predictions. By using Equation 4.7, the small-strain Poisson’s ratios were 

calculated and an average value of 0.30 was found for the sandy silt. The small-strain 

Poisson’s ratios were slightly higher at shallower depths whereas they have a slightly 

smaller value at depths beyond ~1.5 ft (0.46 m).  

7.4 REPRESENTATIVE SHEAR WAVE VELOCITY PROFILE AT THE FOOTING LOCATIONS 

The average    profiles beneath the 3.0-ft (0.91-m) and 1.5-ft (0.46-m) diameter 

footings from SASW testing are shown in Figures 7.8 and 7.9, respectively. A 

representative in-situ             
   profile was developed based on the average     

profile by determining the corresponding in-situ   
  in a similar way to that explained in 

Section 6.5. Several points were chosen on the    profile and vertical stresses,   
 , were 

calculated using an average total unit weight of 106 lbs/ft
3
. Using Equation 6.3, and 

assuming a    value of 0.75, the in-situ             
   profiles were evaluated and are 

presented in Figures 7.11 and 7.12. An initial pressure of 100 psf (4.79 kPa)  (hence, a 

negative pore water pressure of 100 psf was assumed) was added to   
  to match the    

profile better at shallower depths. The resulting            
   profiles beneath the 3.0-ft 

(0.91-m) diameter and 1.5-ft (0.46-m) diameter footings can be expressed with Equations 

7.1 and 7.2, respectively. 
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Figure 7.10: Comparison of compression and shear wave velocities measured with 

crosshole seismic testing beneath the small-scale footings along with the 

average shear wave velocity profile obtained with SASW testing (after Van 

Pelt, 2010)  
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Figure 7.11: Log   -log σ‘o relationships for the Hornsby test site obtained from the 

average SASW testing results near the 3.0-ft (0.91-m) diameter footing 

 



189 

 

 

Figure 7.12: Log   -log σ‘o relationships for the Hornsby test site obtained from the 

average SASW testing results near the 1.5-ft (0.46-m) diameter footing 
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In Equations 7.1 and 7.2, 663 fps (202 m/s) and 700 fps (213 m/s) are the shear wave 

velocity values at one atmosphere of confining pressure.  Comparison of the    profiles 

obtained using Equations 7.1 and 7.2 and the average    profiles from SASW tests near 

each footing are shown in Figure 7.13 and Figure 7.14 for the 3.0-ft (0.91-m) diameter 

and 1.5-ft (0.46-m) diameter footings, respectively. As seen in the figures, the 

measurements and field results are in good agreement. Hence, the formulations in 

Equations 7.1 and 7.2 are used in the settlement prediction analyses. 

As explained in Section 6.5, the small-strain shear modulus at one atmosphere of 

pressure,             , can be expressed as a function of            and   . Moreover, the 

small-strain shear modulus,       , can be expressed as a function of             and   
  as 

shown in Equation 6.5. Using  = 3.29 slug/ft
3 

(1.70 g/cm
3
) and          =663 fps (202 m/s) 

and          =700 fps (213 m/s) and;             values are calculated as 1448 ksf and 1614 

ksf (69.3 MPa and 77.3 MPa) for the soils under the 3.0-ft (0.91-m)  and 1.5-ft (0.46-m) 

diameter footings, respectively. 

7.5              ⁄  RELATIONSHIPS FOR HORNSBY BEND SITE 

The soil model developed and explained in Chapter 4, combines         and 

            ⁄  relationships obtained from field seismic and laboratory dynamic tests, 

respectively. In case there are no in-situ tests at larger strains to evaluate the 

            ⁄  relationships, models such as Darendeli (2001) and Menq (2003) can be 
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used to estimate these relationships. Both the Darendeli (2001) and Menq (2003) 

relationships are modified hyperbolic models developed at the University of Texas at 

Austin with the form: 

 

 
     ⁄   

 

  (
 
  

)
              

(7.3) 

 

where    is the reference strain and     is the curvature coefficient. Figure 7.15 shows the 

            ⁄  relationships at various confining pressures based on the Darendeli 

(2001) and Menq (2003) models. In this study, the Menq (2003) model is used to 

evaluate the             ⁄  relationships for the Hornsby Bend site because it contains 

more specific parameters for granular soils. 

7.6 LOAD-SETTLEMENT TESTS AT THE HORNSBY BEND SITE 

Two, circular, reinforced concrete footings with diameters of 3.0 ft (0.91 m) and 

1.5 ft (0.46 m) were constructed at the site. Each footing was 1.0 ft (0.3 m) thick and was 

embedded into the ground 10 in. (0.25 m). The upper 10 in. (0.25 m) of the soil was 

removed prior to construction. Both foundations were reinforced with prefabricated steel 

rebar cages. To determine soil settlements at different depths below the 3.0-ft (0.91-m) 

diameter footing, tell-tales were installed. The settlements measured at different depths 

beneath the footing were then used to calculate the strain distribution beneath the footing. 

The cross-sectional views of both footings are presented in Figure 7.16. The surface 

settlements of the footings were measured with linear potentiometers which were 

attached to reference frames. Loads were applied with a hydraulic jack reacting against 

the weight of a vibroseis truck, “T-Rex”. The load-transfer mechanisms and the 
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Figure 7.13: Representative    profiles obtained from log   -log σ‘o relationships 

compared with the average     profiles obtained from SASW testing beneath 

the 1.5-ft (0.46-m). diameter footing 



193 

 

 

Figure 7.14: Representative    profiles obtained from log   -log σ‘o relationships 

compared with the average     profiles obtained from SASW testing beneath 

the 3.0-ft (0.91-m) diameter footing 
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Figure 7.15:             ⁄  relationships based on Darendeli (2001) and Menq (2003)   

relationships evaluated for the Hornsby Bend site 
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lay-out of the linear potentiometers are presented in Figure 7.17 for both footings. The 

load transfer mechanism differed slightly for each footing. For the 3.0-ft (0.91-m) 

diameter footing, the reaction force from T-Rex was transferred first to a 50-kip load cell. 

From the load cell, the load was directed to a T-shaped steel loading frame. The load was 

then applied to the footing through pads at each end of the steel frame. The steel frame 

was used to distribute the applied load over a larger area of the footing, thus the bearing 

pressure applied to the soil from the footing would be more uniform. For the 1.5-ft (0.46-

m) diameter footing, the load from T-Rex was transferred first to the load cell through 

three steel plates. The load was then directed to the footing by a solid steel plate (Van 

Pelt, 2010). 

Figure 7.18 shows T-Rex in position during loading of one footing while the 

operator monitors the applied pressure.  

The loading and unloading of the footings was achieved by increasing and 

decreasing the reaction force from T-Rex by adjusting the hydraulic ram. When an 

incremental load was applied, the load level was held constant until the settlement or 

rebound, respectively, was completed. Completion of the settlement was defined as when 

the change in measured footing settlement was less than 0.06 in. in 6 minutes. The 

completion of rebound was defined as when the change in measured settlement was less 

than 0.001 in. in 6 minutes (Van Pelt, 2010).  The measured load-settlement curves are 

presented in Figure 7.19. The settlements were measured using the linear potentiometers 

up to 2 inches which is the maximum stroke length of the linear potentiometers. The 

ultimate settlements at the end of loading and unloading stages were measured by 

surveying using a total station. The settlement values between 2 inches and the ultimate 

settlement were interpolated using the known data points. 
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(a) 

 

(b) 

 

                                                                            (c) 

Figure 7.16: Cross-sectional view of (a) the 3.0-ft (0.91-m) diameter footing, and (b) the 

1.5-ft (0.46-m) diameter footing and (c) tell-tales beneath the 3.0-ft (0.91-m) 

diameter footing (from Van Pelt, 2010) 

2 of 4 tell-tales 

are shown only
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(a) 

 

(b) 

Figure 7.17: Load-transfer system and the lay-out of the linear potentiometers for the (a) 

3.0-ft (0.91-m) diameter and (b) for the 1.5-ft (0.46-m) diameter footings 

(from Van Pelt, 2010) 
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Figure 7.18: T-Rex in position during loading, with the operator constantly monitoring 

the applied load (after Van Pelt, 2010) 

 

7.7 LOAD-SETTLEMENT PREDICTIONS 

In this section, load-settlement curves of the two small-scale footings at the 

Hornsby Bend site predicted using MoDaMP are presented. Moreover, two very widely-

used methods, Schmertmann et al. (1978) and Burland and Burbidge (1985), are also 

used to predict the settlements of two footings for comparison purposes. 

 

Hydraulic Jack

Reference Frames for 
Linear Potentiometers

Hydraulic Pump Used
To Apply a Static LoadTop of Footing
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Figure 7.19: Measured settlements for the 3.0-ft (0.91-m) and 1.5-ft (0.46-m) diameter 

footings at the Hornsby Bend site (after Van Pelt, 2010) 

7.7.1 Load-Settlement Predictions with MoDaMP 

The user-defined soil model, MoDaMP, is implemented in PLAXIS as explained 

in Chapter 4. A finite element analysis was carried out to predict the settlements of the 

small-scale footings. Table 7.1 presents the values of the input parameters that were 

obtained in Section 7.4 and used in the finite element analysis. Please note that    and     

3.0-ft (0.91-m) diameter footing

1.5-ft (0.46-m) diameter footing
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are stress-dependent parameters and therefore only the equations expressing these 

parameters are provided. Each analysis was given a different identifier (analysis ID) to 

differentiate the site, footing diameter, Poisson’s ratio assumption, as explained in 

Section 6.7.1. The first two letters indicate the site; HB stands for Hornsby Bend test site, 

the following number indicates the diameter of the footing in ft and the following two 

letters (CP,CM or CK) indicates which assumption about  Poisson’s ratio is made. CP 

indicates that the small-strain Poisson’s ratio is kept constant throughout all strain ranges, 

whereas CK indicates that Poisson’s ratio is varied by keeping K constant, and CM 

indicates that Poisson’s ratio is varied by keeping M constant. If a modification is made 

to             relationships, then “mdf” is added at the end of the identifier. For 

example, HB-3.0-CK-mdf1 is the analysis for the 3.0-ft diameter footing at the Hornsby 

Bend test site where the Poisson’s ratio is evaluated based on a constant K assumption 

and modified              relationships (MoDaMP -1) are used.  

Table 7.1: Input parameters used in the settlement analysis                                                         

with MoDaMP  for the Hornsby Bend   site 

              

 

7.7.1.1 PLAXIS model for the Footings 

The subroutine MoDaMP is implemented into PLAXIS and finite element 

analyses of settlements of footings are carried out using these subroutines. The soil-

36-in. Diameter 18-in. Diameter

Gmax_1atm 1448 ksf 1614 ksf

ν0 0.3 0.3

a Equation 3.13 Equation 3.13

γr (%) Equation 3.12 Equation 3.12
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footing system was modeled as axisymmetric and symmetrical, therefore only half of the 

footing was modeled. To eliminate the boundary effects, the thickness of the soil beneath 

the footing is assumed as 15 ft (5 times the diameter of the larger footing) as proposed by 

Brinkgreve et al, 2011. The reinforced concrete footings are modeled as flexible plate 

members.  

   PLAXIS automatically generates the mesh for the model but the size and type of 

the mesh can be altered by the user. The mesh used in the analyses consisted of 922, 15-

node triangular elements. The mesh is refined beneath the footings since most of the 

deformations are expected to occur in this region. The undeformed mesh is shown in 

Figure 7.20. The soil up to the depth of embedment of the footings is modeled as a 

surcharge because the deformations due to loading are occurring beneath the footings. 

       values are calculated with Equation 6.5 based on the initial stress states. 

Values of    are calculated using the        values and Equations 3.11, 3.12, and 3.13. 

Next, values of     and ν are used to establish the nonlinear elastic stiffness matrix. New 

stresses are calculated based on the nonlinear elastic stiffness matrix and new         

values are calculated with these stresses.  

To illustrate this procedure, three reference points at different depths beneath the 

3.0-ft diameter footing are used (Figure 7.21a). The octahedral shear strain and shear 

modulus at each reference point are determined under five, increasing load levels applied 

to the footing (Figure 7.21b). Five           relationships determined for the five load 

levels identified in Figure 7.21b are plotted as solid lines in Figures 7.21c, 7.21d and 

7.21e for Reference Points X, Y, and Z, respectively. The sets of ( ,     ) coordinates 

that correspond to each of the five load levels on the load-settlement curve are identified 

on the appropriate           relationship by the solid circles and associated load-level 

numbers. The increase in          and general upward shifting of the           curves  
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Figure 7.20: PLAXIS model geometry and mesh used in the settlement analysis with 

MoDaMP 

(solid lines) with increasing load level is seen in Figures 7.21c, 7.21d, and 7.21e. As 

loading increases, the net effect is   decreasing as      increases at each reference point. 

This effect diminishes with increasing depth because the incremental stress change 

decreases with depth. 

7.7.1.2 Predicted Settlements  

 Predictions with the PLAXIS model using MoDaMP are presented in this section. 

As explained previously, every analysis is given an identification name to distinguish 

between different footing sizes and different assumptions. The first analysis, HB-3.0-CP, 

15 ft

Footing

15 ft
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is the analysis for the 3.0-ft (0.91-m) diameter footing on Hornsby Bend site with a 

constant Poisson’s ratio using MoDaMP as the soil model, whereas HB-1.5-CP is the 

same analysis for the 1.5-ft (0.46-m) diameter footing. The results of these analyses are 

shown in Figures 7.22a and 7.22b for HB-3.0-CP and HB-1.5-CP, respectively. 

 As seen in Figure 7.22, the predicted settlements closely match the measured 

settlements up to applied pressures of 2000 psf and 1000 psf, for the 3.0-ft diameter and 

for the 1.5-ft diameter footings, respectively. However, in the working stress range, 

which is defined as 2000-8000 psf, the predicted settlements are considerably larger than 

the measured settlements. The reason is that the soil softens more rapidly at larger strains 

when modeled with MoDaMP and a constant Poisson’s ratio.  

 The             relationships described in Chapter 3 have been primarily 

developed by torsional resonant column testing over small-to-moderate values of strains, 

typically shear strains less than 0.2 %. The relationships need to be modified to use them 

in MoDaMP at larger strains which occur in problems such as shallow foundation 

settlements. 

7.7.2 Modification of             Relationships in MoDaMP 

Figure 7.23 presents the     results from the CD triaxial test conducted on 

reconstituted samples from the Hornsby Bend site (Van Pelt, 2010). The     

relationships obtained by converting the             relationships to     

relationships are also shown in the same figure for comparison purposes. As seen in 

Figure 7.23, the      responses from the             relationships are stiffer at 

strains less than 0.5% compared to the triaxial results. However, as the confining pressure 

increases, the     responses from the             relationships at strains above 

about 1 to 2% are softer. Therefore, the             relationships need to be modified 

in the larger strain range. This modification is achieved by adjusting the     parameter 
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only in the larger strain range of the              relationships to match the triaxial 

results. The effect of the modified     parameter on the             relationships is 

shown in Figure 7.24. This adjustment of the     parameter consists of two parts: 

 

       (1) for                            (
  
 

  
)                                                  (7.4) 

 

      (2) for                                   (
  
 

  
)                                        (7.5)  

 

 

 

To avoid the discontinuity in the             relationships at           , the     

parameter is changed gradually from the original value to the modified value between  

           and           . The     results from the CD triaxial tests and from 

the modified             relationships are presented in Figure 7.25. The modified 

            relationships are implemented into MoDaMP, which is now denoted as 

MoDaMP-1and the model with the modified relationships is used to predict the 

settlements of the footings to see the effect of the adjustment on footing settlements. 

 

7.7.2.1 Settlement Predictions with modified             Relationships 

implemented in MoDaMP 

The settlements predicted using the modified             relationships are 

shown in Figure 7.26. As seen in the figure, the predicted settlements for the 3-ft (0.91-

m) diameter footing match the measured settlements quite well for all stress ranges 

considered. For the 1.5-ft (0.46-m) footing, the predicted settlements are higher than the 

measured settlements for all applied pressure ranges. 
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                  (a) Geometry of soil-foundation model and reference points               (b) Load-settlement curve and five load levels 

    

      

 

 Figure 7.21:  Illustration showing how the modulus-strain relationships and secant shear moduli change in the 

numerical model during loading at three reference points beneath the 3.0-ft diameter footing at the Hornsby Bend 

site for HB-3.0-CP-mdf1

Vertical 
Loading

15 ft

Diameter=B=3.0 ft

Point X
0.5B

1.0B 1.5B
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Rigid boundary

(c) Secant Shear Modulus at       

Five Load Levels at Point X 

(d) Secant Shear Modulus at       

Five Load Levels at Point Y 

(e) Secant Shear Modulus at       

Five Load Levels at Point Z 
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Figure 7.22:  Predicted footing settlements using MoDaMP with an assumption of 

constant Poisson’s ratio for (a) 3.0-ft (0.91-m) diameter footing and (b) 1.5-

ft (0.46-m) diameter footing at the Hornsby Bend Site 
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Figure 7.23:  Comparison of shear stress-shear strain responses from the triaxial tests and 

from the             relationships 

 

Figure 7.24:  Comparison of unmodified and modified             relationships 
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Figure 7.25:  Comparison of shear stress-shear strain responses from the triaxial tests and 

from the modified             relationships 

7.7.2.2 Vertical Strains beneath the 3-ft Diameter Footing 

During footing construction at the Hornsby Bend site, tell-tales were installed at 

various depths to measure the displacements in the soil beneath the 3-ft (0.91-m) 

diameter footing. The measured vertical strains are compared with the predicted vertical 

strain profiles obtained using the modified             relationships. The predicted 

and measured vertical strains are presented in Figure 7.27. As seen in the figure, the 

general trend of the vertical strains matches well. However, the predicted maximum 

vertical strains are slightly smaller than the measured vertical strains. 
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Figure 7.26: Predicted footing settlements using modified             relationships 

(MoDaMP-1) with a constant Poisson’s ratio for (a) the 3.0-ft (0.91-m) 

diameter footing and (b) the 1.5-ft (0.46-m) diameter footing at the Hornsby 

Bend Site 
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7.7.3 Load-Settlement Predictions with CPT and SPT Based Methods 

Schmertmann et al. (1978) and Burland and Burbidge (1985) methods presented 

in Chapter 2, are very commonly used in predicting the settlements of shallow footings. 

These methods are also used to predict the settlements of the small-scale footings at the 

Hornsby Bend site.  

For the Schmertmann et al. (1978) method, the elastic modulus is calculated with 

       . The average tip resistance of the soil is assumed as 16 tsf (1.53 MPa) based on 

the CPT results presented in Figure 7.7. The upper 6 ft (1.83m) of the soil beneath the 

footings is divided into 5 layers and using Equations 2.6, 2.7 and 2.9, the settlements are 

predicted. Predicted settlements are compared with the measured settlements in Figure 

7.28. 

The Burland and Burbidge (1985) method utilizes SPT test results in the 

settlement predictions. Since no SPT tests were performed at the site, the SPT blow 

counts (   ) were estimated from the correlation proposed by Robertson et al. (1983). In 

this correlation, the CPT results are used to find an estimate for the SPT blow count,    . 

The average CPT tip resistance and the mean grain size of the soil over the depth of 

influence, which is about 3 ft (0.91-m) for a 3-ft diameter footing, results in a SPT blow 

count of      . Using Equation 2.10, the  settlements are predicted and compared with 

the measure settlements in Figure 7.28 .It should be noted that in both methods there is a 

correction for the creep.  However, the load-settlement tests were not continued long 

enough to investigate the creep. Therefore, creep is neglected in these predictions. 
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Figure 7.27:  Predicted and measured vertical strains beneath the 3.0-ft diameter footing 

at the Hornsby Bend site 

 

. 
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Figure 7.28:  Settlements predicted using the Schmertmann et al. (1978) and Burland and 

Burbidge (1985) methods and their comparison with the measured 

settlements for (a) the 3.0-ft (0.91-m) diameter footing and, (b)1.5-ft (0.46-

m) diameter footing at the Hornsby Bend site 
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7.7.4 Load-Settlement Predictions with varying Poisson’s Ratio 

In the previous settlement predictions, the Poisson’s ratio was assumed constant 

for all strain ranges. On the other hand, the value of Poisson’s ratio most likely increases 

with increasing shear strain levels as discussed in Chapter 4. In this section, the effect of 

the varying Poisson’s ratio on the settlement prediction of the footings is investigated. 

The values of the Poisson’s ratio are determined by following the procedures explained in 

Section 4.4. The settlements of the small-scale footings predicted by assuming a constant 

constrained compression modulus,  , are presented in Figure 7.29. The settlements 

predicted by assuming  a constant bulk modulus,  , are shown in Figure 7.30.  

As seen in the figures, the predicted settlements with the varying Poisson’s ratio 

assumption are smaller than the predicted settlements with a constant Poisson’s ratio 

assumption. This result can be attributed to the smaller volumetric strains occurring with 

the varying Poisson’s ratio assumption.  
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Figure 7.29: Predicted footing settlements with modified             relationships 

(MoDaMP-1) and a varying Poisson’s ratio (   constant) for (a) the 3.0-ft 

(0.91-m) diameter  footing and (b) the 1.5-ft (0.46-m) diameter footing at 

the Hornsby Bend Site 
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Figure 7.30: Predicted footing settlements with modified             relationships 

(MoDaMP-1) and a varying Poisson’s ratio (   constant) for (a) the 3.0-ft 

(0.91-m) diameter footing and (b) the 1.5-ft (0.46-m) diameter footing at the 

Hornsby Bend Site 
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7.8 SUMMARY 

The load-settlement tests of two, small-scale footings at the Hornsby Bend site in 

Austin, Texas are discussed in this chapter. Laboratory tests were conducted in a study by 

Jeff Van Pelt (2010) to identify the general soil properties of the sandy silt at the site and 

strength parameters of the soil. Field testing at the site included CPT and SASW testing. 

SASW measurements were used then in the settlement prediction procedure to create 

representative shear wave velocity profiles. These profiles were obtained by developing 

           
  relationships based on the average    profile and estimated mean effective 

confining pressures. Using the            
  relationship,    at one atmosphere (       ) 

and the slope of the            
  relationship were determined. Then         was 

converted to          and then used in the settlement analyses with MoDaMP.  

The settlement predictions using the             relationships proposed by 

Menq (2003) result in higher values of the settlement at large strains compared to the 

measured settlements. Therefore, the             relationships were modified at large 

strains based on triaxial test results. The predictions using these modified relationships 

give a better match with the measured settlements, especially for the 3.0-ft (0.91-m) 

diameter footing. 

The effect of the Poisson’s ratio on the settlement predictions was investigated by 

varying the value of Poisson’s ratio with increasing shear strain assuming that either: (1) 

the constrained compression modulus was constant or (2) the bulk modulus was constant. 

The effect of this assumption on Poisson’s ratio is discussed in Chapter 4. The 

predictions with these assumptions are smaller compared to the constant Poisson’s ratio 

assumption. The reason for this difference is the smaller volumetric strains due to the 

increased Poisson’s ratio with the constant constrained compression modulus and bulk 
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modulus assumption. The predicted settlements give a better match for the 1.5-ft (0.46-

m) diameter footing, however for the 3.0-ft (0.91-m) diameter footing; the predicted 

settlements are smaller than the measured values.  
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Chapter 8:  Loading Tests at the Yucca Mountain Test Site 

8.1 INTRODUCTION 

The Department of Energy (DOE) selected Yucca Mountain in Nevada as the 

location of the long-term nuclear waste repository because of the geological formation, 

location and arid climate. Yucca Mountain is located on federal lands about 100 miles 

north west from Las Vegas, Nevada in a remote area, on the western edge of the Nevada 

Test site (Park, 2010). The location of Yucca Mountain is shown in Figure 8.1. The 

proposed geological repository is about 1,000 ft below the crest of the mountain. As part 

of extensive geological and geotechnical investigations at Yucca Mountain, dynamic 

field testing was conducted by Park et al. (2010) to evaluate the linear and nonlinear 

shear moduli of cemented alluvium at three locations. The studies conducted by Park 

(2010) were done in support of the design of surface facilities at Yucca Mountain Test 

Site (YMTS). As part of Park’s studies, load-settlement tests were also performed which 

are analyzed in this chapter. 

The geology and general soil properties at Park’s test sites are discussed in 

Section 8.2.The dynamic field tests in the linear and nonlinear ranges include small-scale 

downhole and crosshole tests and SASW tests. These tests are presented in Section 8.3 

and Section 8.4. Determination of representative            
   relationships is also 

presented in Section 8.3. The static-load settlement tests conducted by Park (2010) and 

the resulting load-settlement curves are introduced in Section 8.5. Settlement predictions 

with MoDaMP for the small-scale footings at the YMTS are presented in Section 8.6. In 

Section, 8.7 a brief summary of the findings is given. 
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Figure 8.1: Location of Yucca Mountain, Nevada (from Park, 2010) 

8.2 SOIL PROPERTIES AT THE YUCCA MOUNTAIN TEST SITE 

The geologic formation of Yucca Mountain consists of layers of different types of 

volcanic rocks. The surface deposit in the north portal area where the small-scale footing 

test sites are located is naturally cemented alluvial materials. The thickness of the 

alluvium at the footing locations varies between about 150 ft  (45.7 m) to 200 ft (61.0 m). 

To investigate the characteristics of the shallow cemented alluvium, three test pits, named 

Test Pit 5, Test Pit 6 and Test Pit 7, were excavated in the north portal area. Each pit was 

square in plan view with a side length of about 75 ft. Visual inspection of the exposed 

alluvium in the test pits showed that the alluvium consists mainly of coarse grained 
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particles, ranging from poorly graded sand to gravel with varying amounts of cobbles and 

boulders. The cementation of the soil is spatially variable based on the visual inspection. 

From sieve analyses of disturbed samples, it was found that the mean grain size (   ) 

varies between 0.4-24.8 mm and the uniformity coefficient (  )  varies between 16 and 

86 (Park, 2010). 

Due to the cementation and the inhomogeneity of the alluvium at Yucca 

Mountain, the soil behavior in the linear and nonlinear range is quite complex. The study 

conducted by Park et al. (2010)  is important as it is only in-situ study on the nonlinear 

dynamic properties of cemented alluvium, to the best of the writer’s knowledge. 

8.3 LINEAR SEISMIC AND DYNAMIC TESTS AT THE YUCCA MOUNTAIN TEST SITE 

Field linear and nonlinear dynamic tests were conducted at three sites at YMTS in 

May through August, 2007 by Park et al. (2010). These tests were part of the soil 

characterization of the subsurface soil at the proposed locations of the surface facilities of 

the proposed permanent repository. 

For the linear and nonlinear dynamic tests, small-scale concrete footings were 

constructed at Test Pit 6 (TP6), Test Pit 7 (TP7) and Lower Muck Yard (LMY). At each 

site, two footings were constructed; a 3-ft (0.91-m) and a 1.5-ft (0.46-m) diameter 

footing. Only the results for the 3-ft diameter footings are discussed herein. Also, only 

the 3.0-ft (0.91-m) diameter footings at TP6 and TP7 are studied. The 3.0-ft (0.91-m) 

diameter footing at LMY is not investigated since no test pit was dug at this site and it is 

more than 1000 ft (305 m) for Test Pits 6 and 7. Figure 8.2 shows the plan view and 

locations of the footings and the SASW tests at Test Pit 6 as an example. Small-scale 

downhole and crosshole tests were conducted at these three sites. The results of the 

crosshole tests are not discussed in Park (2010). The shear moduli in the linear range at  
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Figure 8.2: Plan view of Test Pit 6 (not to scale) (from Park, 2010) 

Yucca Mountain are based on the downhole tests results presented by Park (2010). These 

results are also compared with the SASW test results. 

8.3.1 Downhole Test Results 

Shear and compression wave velocities were measured under varying static load 

levels applied to the concrete footings using geophones embedded beneath the footings at 
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various depths (6, 12, 18 and 24 in.) (15, 30, 46 and 61 cm). Details of the testing and 

data reducing procedure can be found in Park (2010). 

The measured    and    values can be expressed as            
   relationships to 

see the effect of confining pressure on    and   . Park calculated the vertical stresses 

beneath the footings by using the Boussinesq’s stress distribution method and he 

expressed the effect of the pressure on    and    in terms of vertical stresses. In this study, 

a linear elastic material model was used to model the stress distribution beneath the 

foundations via PLAXIS. The stress distribution beneath the footings for a linear elastic 

medium is not stiffness dependent. Poisson’s ratio ( ) is assumed to be 0.4. It should be 

noted that after determining the              and             relationships based on 

the horizontal and vertical stress distribution beneath the footings, the Poisson’s ratio at 

small-strains range was calculated from    and   . The average values of    for the 

footings at TP6, TP7 and LMY are 0.42, 0.40 and 0.30, respectively. To simplify the 

stress distribution analysis, the value of 0.4 was chosen. 

The              and             relationships for Test Pit 6 are shown in 

Figures 8.3 and 8.4, respectively. As seen in the figures, two layers are identified for both 

and              and             relationships. For both layers, the    value is 

determined as 0.12 which indicates that the alluvium is cemented. The          value for 

the depths of 3 in. (8 cm) and 21 in. (53 cm) is 1950 fps (594 m/s) and for the depths of 9 

in. (23 cm) and 15 in. (38 cm) is 1200 fps (366 m/s). This variation in         shows that 

the settlement prediction analyses with MoDaMP should be carried out with layers of soil 

extending from 0 in. to 6 in. (0 cm to 15 cm), from 6 in. to 12 in. (15 cm to 30 cm), from 

12 in. to 18 in. (30 cm to 46 cm) and from 18 in. (46 cm) to the rigid boundary. The 

             and             relationships for Test Pit 7 are shown in Figures 8.5 and  
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Figure 8.3:             relationships for Test Pit 6 obtained from small-scale 

downhole tests (after Park, 2010) 
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Figure 8.4:             relationships for Test Pit 6 obtained from small-scale 

downhole tests (after Park, 2010) 
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Figure 8.5:             relationships for Test Pit 7 obtained from small-scale 

downhole tests (after Park, 2010) 
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Figure 8.6:             relationships for Test Pit 7 obtained from small-scale 

downhole tests (after Park, 2010) 
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8.6, respectively. As seen in these figures, the             relationships indicate a two-

layer system, where          for the first layer is 2700 fps (823 m/s) and for the second 

layer          is 1400 fps (427 m/s). This variation in         also shows that the soil near 

the surface is stiffer, likely due to higher cementation. It should also be noted that the 

            relationship for the first layer is omitted since the    measurements for this 

layer are affected by the concrete footing and the measurements are too high and the 

slope of the             relationship is too low to be cemented alluvium. Instead a 

value for Poisson’s ratio of 0.46 was assumed. 

For each layer, the small-strain Poisson’s ratio was calculated by using Equation 

4.7 using the    and    measurements. It should be noted that in order to determine the 

Poisson’s ratio from    and    measurements, the slope of the              and 

            relationships (  ) should be equal. 

As discussed above, the mean stresses beneath the footings were calculated by 

using a linear elastic finite element analysis. Park (2010) presented the effect of the 

pressures at which the    and    measurements were made in terms of vertical stresses 

rather than mean stresses. To compare these two different ways of presenting the pressure 

dependency of    and   ,               and             relationships presented by 

Park (2010) for Test Pit 7 are given in Figures 8.7 and 8.8, respectively. By using    , 

        for the first layer is 2612 fps (796 m/s) but is 2700 fps (823 m/s) for   , and 

        for the second layer is 1298 fps (395 m/s) but is 1400 fps (427 m/s) for   . 

Moreover,    values are close as expected, 0.15 for the first layer for both    and    

cases, and 0.20 and 0.15 for the second layer, for     case and    case , respectively. 

 In addition to the small-scale downhole tests, 11 fixed- free resonant column (RC) 

tests were conducted at the University of Texas to characterize the cemented alluvium at  
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Figure 8.7:             relationships for Test Pit 7 obtained from small-scale 

downhole tests (after Park, 2010) 
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Figure 8.8:             relationships for Test Pit 7 obtained from small-scale 

downhole tests (after Park, 2010) 
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small-strain ranges. The sampling process to obtain undisturbed samples was extremely 

difficult and this process was achieved at a great cost (Schuhen, 2009). The      

measurements of the cemented intact samples from the RC tests in the small-strain range 

are presented in Figure 8.9. The             relationships obtained from these tests are 

grouped into three categories:  Group 1 is the stiffest alluvium, Group 2 is the slightly 

less stiff alluvium and Group 3 is the softest alluvium. As seen in the Figure 8.9, Group 1 

has the smallest slope (   ), 0.09, indicating stronger effect of cementation. Group 3 has 

        which is in the range of the    values obtained from small-scale downhole tests. 

8.3.2 SASW Test Results 

Spectral-Analysis-of-Surface-Waves (SASW) tests were also conducted at the 

proposed test-pit locations before they were excavated to investigate the small-strain 

shear wave velocity profile of the cemented alluvium in the test pits. Figure 8.10 presents 

the results of the SASW tests for TP 6 and TP 7. The shear wave velocities at both sites 

range between approximately 300 and 1600 fps (91 and 488 m/s). The shear wave 

velocity (  ) profile at Test Pit 6 based on the             relationships obtained from 

the small-scale downhole tests are presented in Figure 8.11. Based on the             

relationships shown in Figures 8.3, the     profile from the small-scale downhole tests is 

divided into three layers. The shear wave velocity  (  )  profile at Test Pit 7 based on the 

            relationships obtained from the small-scale downhole tests are presented in 

Figure 8.12. Similar to Test Pit 6, the    profile from the small-scale downhole tests is 

divided into two layers, based on the             relationships shown in Figures 8.5. As 

seen in Figure 8.11,    profile compare reasonably at depths up to 4 ft (1.2 m), but at 

greater depths than 4 ft (1.2 m),    values are higher from the small-scale downhole tests. 
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Figure 8.9:             relationships measured with the RC tests on 11 intact 

alluvium specimens (from Park, 2010, modified from Schuhen, 2009) 
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Figure 8.10:    profiles determined from SASW measurements at TP 6 and TP 7 sites 

(after Park,  2010)  
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Figure 8.11:  Comparison of    profiles determined from SASW measurements at TP 6 

and with    profiles determined from the small-scale downhole 

measurements beneath the 3.0-ft (0.91-m) diameter footing  
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Figure 8.12:  Comparison of    profiles determined from SASW measurements at TP 7 

and with    profiles determined from the small-scale downhole 

measurements beneath the 3.0-ft (0.91-m) diameter footing 
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It should be noted that the downhole tests are conducted up to a depth of 21 in. (53 cm) 

beneath the footings, and the values at greater depths are extrapolated based on the     

values at this depth. For Test Pit 7,    profile from downhole tests at the upper 0.5 ft. 

beneath the footing are higher, however below 0.5 ft,    values from the small-scale 

downhole tests and SASW tests are similar. 

The    profiles from the small-scale downhole tests are used in the settlement 

prediction analyses of the 3-ft (0.91-m) diameter footings at TP 6 and TP 7. The reason 

for choosing the small-scale downhole test measurements for the settlement prediction 

analyses is that the downhole measurements have a higher resolution compared to SASW 

tests since the SASW measurements average the   .  

8.4 NONLINEAR SEISMIC AND DYNAMIC TESTS AT THE YUCCA MOUNTAIN TEST SITE 

8.4.1 Steady-State Dynamic Tests 

The results of the steady-state dynamic tests at Lower Muck Yard and Test Pit 

(TP 7) conducted by Park (2010) are presented in Figures 8.13. The details of the testing 

and data reducing processes can be found in Park (2010). The dynamic tests are 

conducted at two different static load levels, ~ 4000 lbs (2 tons) and ~ 8000 lbs (4 tons), 

at the Lower Muck Yard. At Test Pit 7, only a static load level of ~ 4000 lbs was used. 

The results of the steady-state nonlinear dynamic tests show that the      ⁄       

curves are slightly more nonlinear for the static load level of ~ 8000 lbs. The reason or 

reasons for this difference are not known but could be the result of breakage of 

cementation bonds with increased load levels, general scatter in these tests in such 

difficult to test materials or other causes.  
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The      ⁄       model proposed by Darendeli (2001) was fitted to the data. 

The fitted curves are shown in Figure 8.13 along with the data.  The values of parameters 

obtained with the Darendeli (2001) model also indicate that the cemented alluvium is 

more nonlinear than uncemented sand; that is    at      5 psi (34.5 kPa) averages about 

0.012% for TP7 and Lower Muck Yard while the Darendeli curve for sand at      5 psi 

and     0.5 is 0.022%. 

High-amplitude resonant column (RC) tests were performed on intact specimens 

recovered from the test pits at three different confining pressures,    (     , 30 and 90 

psi) (      , 207 and 620 kPa). The highest strain levels that could be excited in the 

specimen varied from ~ 0.002 to ~0.01 %, depending on the confining pressure and the 

stiffness of the specimen. The results of these tests are shown in Figure 8.14. As seen in 

the figure, the      ⁄       curves in the RC tests are more linear compared to those 

from steady-state dynamic tests in the field. The reason for this difference is thought to be 

that the intact specimens tested in the RC tests do not represent the whole soil body 

because they are stiffer than the alluvium in the field. The Darendeli (2001) model was 

also fit to the data from the RC tests and the resulting    and   values are also presented 

in Figure 8.14.  

The      ⁄       curves from RC tests show that     is confining pressure 

dependent. Best-estimate      ⁄       curves which take the pressure dependency into 

account that is shown in the RC tests and also take the higher nonlinearity into account 

based on the field tests, are shown in Figure 8.15. The reference strain,   , versus the 

confining pressure,   , relationship from these best estimate curves are shown in Figure 

8.16.  This relationship is given by: 

 
           (

  

  
)           

            (8.1) 
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Figure 8.13:      ⁄       relationships obtained from steady-state dynamic tests at 

Lower Muck Yard and Test Pit 7 and the best fit curves to the data with 

Darendeli (2001) model (from Schuhen, 2009) 
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Figure 8.14:      ⁄       relationships obtained from steady-state dynamic tests at 

Lower Muck Yard and Test Pit 7 and from RC tests (Park, 2010 and 

Schuhen, 2009) 
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Figure 8.15: Best-estimate      ⁄       curves determined by combining the steady-

state dynamic tests in the field at Lower Muck Yard and Test Pit 7 with the 

results from laboratory RC tests on intact alluvial specimens 
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Figure 8.16: Reference strain-log confining pressure relationship based on the best-

estimate       ⁄       curves shown in Figure 8.15 

These curves were used in the settlement prediction analyses with MoDaMP. The 

average value of       that is obtained from the best-estimate      ⁄       curves is 

modified at larger strains based on laboratory triaxial test data on intact alluvial 

specimens discussed in Section 8.6.2. 

8.5 LOAD-SETTLEMENT TESTS  

A circular, reinforced concrete footings with a diameter of 3.0 ft (0.91 m) was 

constructed at both Test Pit 6 and Test Pit 7. The load-settlement tests were conducted by 

Dr. Kwangsoo Park. Each footing had a thickness of 1.5 ft (0.30 m). Prior to footing 

construction, a thickness of about 2.5 ft (0.75 m) of soil was carefully removed from the 
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surface and 1.0 ft (0.30 m) backfill was placed around the footing after it was constructed 

(see Figure 8.17). The load was applied on top of each footing in two load-unload cycles. 

A backbone curve was added to the load-unload cycles to obtain a continuous load-

settlement curve (Figure 8.18). As seen in the figure, the settlements for both sites are 

very similar and the measured settlements are less than 0.1 in. in both load-settlement 

tests. The load-settlement curve in Test Pit 6 is slightly more nonlinear compared to the 

load-settlement curve in Test Pit 7.  

 

 

 

Figure 8.17: Cross-sectional view of the 3-ft diameter footing at the TP 7 and TP 6 sites 

(from Park, 2010) 
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Figure 8.18: Load-unload-reload settlement results for the 3.0-ft (0.91-m) diameter 

footings with backbone curves fitted to approximate simple continuous 

loading at: (a) Test Pit 6 and (b) at Test Pit 7  
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8.6 LOAD-SETTLEMENT PREDICTIONS 

In this section, the load-settlement curves of the two, 3.0-ft (0.91-m) diameter  

footings at the Yucca Mountain Test Site predicted using MoDaMP are presented and 

compared with the measured settlements.  

8.6.1 Load-Settlement Predictions with MoDaMP 

A finite element analysis was carried out to predict the settlements of the small-

scale footings at Test Pit 6 and Test Pit 7. The input parameters were obtained from the 

           ,             and      ⁄       relationships described in Section 8.3. 

The input parameters for both test sites are given in Table 8.1.  Similar to the settlement 

analyses discussed in Chapter 6 and Chapter 7, each analysis is given a different identifier 

(analysis ID) to differentiate the site, footing diameter, Poisson’s ratio assumption and the 

soil model. For example, TP6-3.0-CP stands for the analysis of 3.0-ft (0.91-m) diameter 

footing at Test Pit 6 using MoDaMP. 

 

Table 8.1: Input parameters used in MoDaMP analyses for: (a) TP6 and (b) TP 7 

 

 

 

(a) Layer 1 ( 0-6 in.) Layer 2 ( 6-12 in.) Layer 3 ( 12-18 in.) Layer 4 ( > 18 in.)

Gmax_1atm 13357  ksf 5060 ksf 5060 ksf 13357  ksf

ν0 0.43 0.48 0.36 0.43

a 1.00 1.00 1.00 1.00

γr (%) Equation 8.1 Equation 8.1 Equation 8.1 Equation 8.1

(b) Layer 1 ( 0-6 in.) Layer 2 ( > 6 in.)

Gmax_1atm 25607  ksf 6885 ksf

ν0 0.46 0.35

a 1.00 1.00

γr (%) Equation 8.1 Equation 8.1
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8.6.1.1 PLAXIS Model for the Footings 

The subroutine MoDaMP is implemented into PLAXIS and finite element 

analyses of settlements of footings are carried out using this subroutine. The soil-footing 

system was modeled as axisymmetric and symmetrical as explained in Section 6.7.1.1  

All boundaries except the top boundary are restrained from horizontal movement 

and the bottom boundary is restrained from both horizontal and vertical movements. 

PLAXIS automatically generates the mesh for the model but the size and the type of the 

mesh can be altered by the user. The mesh used in the analyses consisted of  970, 15-

node triangular elements which is slightly different than the mesh used in Chapter 6 and 7 

due to layering of the soil. The backfill soil is modeled as a surcharge of 113 psf (5.7 

kPa) because the deformations due to loading are occurring beneath the footings. The 

soil-footing geometry and the undeformed mesh of Test Pit 7 are shown in Figure 8.19 as 

an example. 

The calculation process to evaluate the        values based on the current stress 

state and the associated           relationships according to both stress and strain states 

is the same with the procedure explained in Section 6.7.1.1. 

8.6.1.2 Predicted Settlements  

 Settlement analyses with the PLAXIS model using MoDaMP are presented in this 

section. In Figure 8.20, the predicted settlements are shown for TP6-3.0-CP and TP7-3.0-

CP, respectively. Measured settlements for TP 6 and TP 7 compared with the predictions 

in these figures. As seen, the predicted settlements match the measured settlements 

reasonably well  of around 2500 psf. Beyond this level, the predicted settlements increase 

rapidly, becoming much larger than the measured settlements and exhibiting a much 

softer system. The reason for this softer response can be seen in the     relationships 
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Figure 8.19: Geometry of the soil-footing model and the undeformed mesh for Test Pit 7 

obtained by converting the             relationships to     relationships. It should 

be noted that soil layers beneath the footings have different             values. Therefore,  

lower and upper boundaries of the     relationships were considered where the lower 

and upper boundaries refer to the softest and stiffest soil layers, respectively. The 

comparison of these     relationships with the     relationships obtained from quasi-

static triaxial tests is shown in Figure 8.21. The     relationships obtained from quasi-

static triaxial tests of intact specimens of undisturbed alluvium soils were performed at 

the Sandia National Laboratories (Schuhen, 2009). As seen in the figure, the     curves 

from the             relationships are much below the     relationships from the 

quasi-static tests at          . Therefore, the              relationships have to be 

modified at larger strains. This modification process is explained in the following section. 
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Figure 8.20:  Predicted footing settlements using MoDaMP with a constant value of 

Poisson’s ratio (see Table 8.1) for: (a) TP 6 and (b) TP 7 
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Figure 8.21:   Comparison of shear stress-shear strain responses from quasi-static tests 

and from the             relationships (quasi-static test results are from 

Schuhen, 2009) 

8.6.2 Modification of             Relationships in MoDaMP 

As explained in the previous section, the             relationships need to be 

modified in the larger strain range just as was done in Chapter 6 and 7. This modification 

is achieved by adjusting the     parameter (only) in the larger strain range of the   

          relationships to match the quasi-static test results. However, the intact 

specimens used in the quasi-static tests are assumed to be stiffer than the field conditions. 

This assumption is based on the condition found by comparing field and laboratory     

values shown in Figure 8.9. Therefore, the     curves from             relationships 
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are not exactly “matched” with the     curves from the quasi-static triaxial test results. 

Rather, the             relationships are adjusted in a way so that a softer response  

was obtained. This adjustment of the     parameter consists of two parts: 

 

          (1)       for                                                                                                  (8.2) 

 

           (2)     for           ;                                                                                       (8.3) 

 

The comparison of the unmodified and modified             relationships is 

presented in Figure 8.22. The     responses obtained using the             

relationships with the modified     parameter are presented in Figure 8.23. The modified  

 

 

Figure 8.22:  Comparison of unmodified (MoDaMP) and modified (MoDaMP-1) 

            relationships 
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Figure 8.23: Comparison of shear stress-shear strain responses from quasi-static tests and  

from modified              relationships (used in MoDaMP-1) 

            relationships are implemented into MoDaMP and the model with the 

modified relationships is used to predict the settlements of the footings to see the effect of 

the adjustment on footing settlements. 

8.6.2.1 Settlement Predictions with modified             Relationships  

The modified             relationships are implemented in MoDaMP and this 

model with the modification is designated as “MoDaMP-1”.  The settlements predicted 

using the modified             relationships are shown in Figure 8.24. As seen in the 

figure, the predicted settlements for footing at TP6 match the measured settlements well 

over much of the test-pressure range. The footing at TP7 showed a softer behavior and 

the predicted settlements are smaller than the measured settlements. It is important to  
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Figure 8.24: Comparison of   predicted footing settlements using MoDaMP-1 with a 

constant Poisson’s ratio value assumption and measured settlements for the 

3.0-ft (0.91-m) diameter footing at: (a) TP6 and (b) TP7 
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note that the measured settlements are relatively small and the difference between the 

measured and predicted settlements are not more than 0.02 in.  

8.6.3 Load-Settlement Predictions with varying Poisson’s Ratio 

In the previous settlement predictions, the value of Poisson’s ratio is assumed 

constant for the complete loading range. On the other hand, the value of Poisson’s ratio 

likely changes with increasing shear strain levels as discussed in Chapter 4 for 

uncemented to lightly cemented granular soil. In this section, the effect of the varying 

Poisson’s ratio with strain level on the settlement prediction of the footings is 

investigated. The value of Poisson’s ratio is determined by following the procedures 

explained in Section 4.4. The results of the settlement analyses with MoDaMP-1 and a 

constant constrained compression modulus,  , assumption, are given in Figure 8.25a and 

8.25b for the footings at TP6 and TP7,  respectively. As seen in the figures, the predicted 

settlements with MoDaMP-1 and constant   are smaller than the measured settlements. 

The results of the settlement analyses with MoDaMP-1 using a constant constrained 

compression modulus,  , assumption, are given in Figure 8.26a and 8.26b for the 

footings at TP6 and TP7, respectively. Similar to the constant   assumption case, the 

settlements for the constant   assumption are also smaller than the measured settlements. 

This result can be attributed to the smaller volumetric strains occurring with the varying 

Poisson’s ratio assumption since the Poisson’s ratio is increasing with strain for a 

constant   or   assumption. 
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Figure 8.25:  Comparison of   predicted footing settlements using MoDaMP-1 with a 

constant compression modulus ( ) assumption and measured settlements 

for the 3.0-ft (0.91-m) diameter footing at: (a) TP6 and (b) TP7 
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Figure 8.26: Comparison of   predicted footing settlements using MoDaMP-1 with a 

constant bulk modulus  ( ) assumption and measured settlements for the 

3.0-ft (0.91-m) diameter footing at: (a) TP6 and (b) TP7 
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8.7 SUMMARY 

The load-settlement tests of two, small-scale footings, each 3-ft (0.91-m) in 

diameter, at the Yucca Mountain Test Site, Nevada are discussed in this chapter. One 

footing was constructed near Test Pit 6 and one footing was constructed near Test Pit 7.In 

both cases, the footings were founded on a thick deposit of cemented alluvium. The test 

pits were excavated to investigate the alluvium. 

 The load-settlement tests were performed as a part of the geotechnical 

investigations for the proposed nuclear repository at Yucca Mountain. Several field 

seismic tests including small-scale downhole, and crosshole, and SASW tests were 

conducted at the footing locations. Steady-state dynamic tests were conducted at on each 

footing. The geotechnical material at footing locations, a naturally cemented alluvium, is 

very difficult and expensive to sample.  Researchers at the University of Texas at Austin 

were given the rare opportunity to have undisturbed samples from this site and test them 

in the laboratory in RCTS equipment. The results from the field downhole tests, field 

steady-state, dynamic tests, and RCTS tests were used to characterize the cemented 

alluvium in the linear and nonlinear ranges in terms of shear moduli. Representative 

           
  relationships for the soil behavior beneath the footings were determined 

and these relationships were used to model the stress dependency of the small-strain 

shear modulus (    ) of the cemented alluvium.  

The nonlinear shear modulus of the cemented alluvium is determined using the 

measurements from the steady-state dynamic tests. By comparing them with the results 

from RCTS tests,             relationships were determined.  

The stress dependency of      and stress and strain dependency of        

     relationships were implemented into MoDaMP. The settlements of the 3.0-ft (0.91-
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m) diameter footings at Test Pit 6 and Test Pit 7 were then predicted using MoDaMP. 

The     relationships determined from the             relationships obtained from 

the field steady-state dynamic tests and laboratory RCTS tests were combined and 

studied. It was found that the             relationships needed to be modified. This 

modification was achieved by adjusting the             relationships for        

   . Beyond this point, the      relationships were determined from modified        

     relationships with the modification guided by larger-strain, quasi-static, triaxial test 

data performed at Sandia National Laboratories. 

The effect of the Poisson’s ratio on the settlement predictions was also 

investigated by varying the Poisson’s ratio with increasing shear strain assuming that: (1) 

the constrained compression modulus ( )  was constant or (2) the bulk modulus ( ) was 

constant. Settlements predicted with these two assumptions are smaller than those 

predicted assuming a constant value for Poisson’s ratio. The reason for this difference is 

the smaller volumetric strains due to the increased Poisson’s ratio which results with the 

assumption of either a constant constrained compression modulus or a constant bulk 

modulus.  
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Chapter 9:  Summary, Conclusions, and Recommendations 

9.1 SUMMARY 

The governing factor in design of shallow foundations on granular soil is 

generally the settlement. Due to difficulties in obtaining undisturbed soil samples of 

granular soil, settlement predictions of shallow foundations have been traditionally made 

using empirical correlations. Soil penetration tests such as the Standard Penetration Test 

(SPT) and Cone Penetration Test (CPT) are used to correlate the penetration data with 

foundation settlements. These methods usually include some correction factors for 

embedment depth, foundation shape, foundation rigidity and time (Schmertmann, 1970; 

Burland and Burbidge, 1985; Briaud, 2007). In all conventional settlement prediction 

methods, the soil stiffness is taken as constant at all strain levels. Moreover, the effects of 

increasing stresses and strains during loading on soil stiffness are not considered in any of 

these methods. 

It has been widely known in geotechnical engineering for more than 40 years that 

soil stiffness, and therefore the shear stress ( ) - shear strain ( ) response is highly strain 

and stress dependent (Hardin and Drnevich, 1972). There are some more-recent methods 

in the literature that account for the strain dependency of the soil in predicting the 

settlements (Berardi and Lancelotta, 1991; Mayne, 2000; Lehane and Fahey, 2002; 

Elhakim 2005). However, none of these methods incorporate field seismic measurements 

of shear wave velocity  (  ) to evaluate the small-strain shear modulus (    ) profile and 

then combine the profile with nonlinear      ⁄       relationships to calculate linear 

and nonlinear strains. In addition, the following effects are not explicitly considered in 

the methods:  (1) the effects of gradation on the nonlinear stress-strain behavior of 

granular soil, and (2) the combined effects on soil stiffness of changing levels of stress 
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state and shear strain. Therefore, a new method that is deformation based and 

incorporates all effects described above is needed. 

In this study, a framework is being developed to predict the settlements of shallow 

foundations on granular soil using dynamically measured soil properties. The framework 

consists of: (1) determining the small-strain (linear) and larger-strain (nonlinear) 

properties of granular soil based on field seismic and laboratory dynamic measurements 

and (2) implementing these relationships in a user-defined soil model for use in FEM-

based numerical analyses.  

 9.1.1 Development of Soil Model using Dynamically Measured Properties 

(MoDaMP)  

The proposed framework utilizes the field seismic measurements of    from 

small-scale crosshole, downhole test or from Spectral-Analysis-of-Surface-Waves tests. 

The measured    profiles represent the soil beneath the shallow foundations before 

loading and are used to determine the             
  relationships of the granular soil. In 

this case,    
  represents the initial state of the geostatic stresses before loading the 

footing. The initial            
  relationships are then converted to              

  

relationships which are used to determine      just before the start of loading. The next 

step is to determine the normalized shear modulus- log shear strain (     ⁄      ) 

relationships. These relationships are typically evaluated from laboratory tests such as 

combined Resonant Column and Torsional Shear (RCTS) tests. These tests are conducted 

under different confining pressures; hence, a relationship between the      ⁄       

curves and the confining pressures is established. In this study,      ⁄       

relationships are expressed by the modified hyperbolic model proposed by Darendeli 

(2001). If    measurements in the nonlinear range are conducted in the field, as in the case 
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of Yucca Mountain presented in Chapter 8, the field data are used in determining the 

     ⁄       relationships. In case of lack of any laboratory or field measurements in 

the nonlinear range, the      ⁄       relationships are estimated from empirical 

models. In Chapter 7, the      ⁄       relationships for the Hornsby Bend site are 

determined from the model proposed by Menq (2003). In this model, soil gradation and 

confining pressure are taken into account. It should be noted that      ⁄       

relationships are also stress dependent and increased stresses beneath the foundation 

during loading make the      ⁄       relationships less nonlinear. The next step in the 

method is to combine      and      ⁄       relationships to calculate   at each stress 

and strain state.  

The      ⁄       relationships are based on laboratory and field measurements 

which usually do not include measurements at strains that corresponds to      ⁄  less 

than about    . Also, empirical      ⁄       relationships are established based on data 

that do not extend to larger strains. In many geotechnical applications, such as 

settlements of shallow foundations, the strain values are well beyond the strain values 

observed in field and laboratory dynamic measurements. Comparison of     

relationships obtained using      ⁄       relationships with those obtained from tests 

that extend to larger strains, such as triaxial or direct shear test data, shows that the     

relationships from      ⁄       relationships are softer at larger strains. Therefore, the 

     ⁄       relationships are modified at larger strains. To this end, the     parameter 

in the Darendeli (2001) model is modified using the     relationships at larger strains as 

a guide.  
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All dynamic properties and relationships at small-strain and larger-strain ranges 

and the modification of the      ⁄       relationships need to be combined in a 

subroutine that can be used in numerical analysis.   

9.1.2 Implementation of Soil Model using Dynamically Measured Properties 

(MoDaMP) into PLAXIS 

The proposed model (MoDaMP) described in the previous section is implemented 

as a user defined soil model via a subroutine in the finite element program, PLAXIS. The 

key point in implementing MoDaMP in PLAXIS is defining the stiffness matrix that 

follows the relationships between               
  and      ⁄       curves. The 

stiffness matrix consists of   and Poisson’s ratio ( ). To determine   accurately, a 

tangent stiffness matrix approach is adopted in the subroutine. To determine the tangent 

shear modulus, the derivative of the     curve is taken and it is integrated over the 

strain increment that is provided by the calculation kernel of PLAXIS. Thus, the tangent 

shear modulus,   , is obtained. Based on the stress state,      is updated and based on 

both stress and strain states,      ⁄       relationships are updated and    in the next 

calculation step is determined based on the updated values. Since the soil is assumed 

isotropic, it is concluded that the shear modulus reduction takes place in every direction. 

To this end, the shear strain ( ) is replaced with a scalar measure of shear strain, the 

octahedral shear strain  (    ), to represent the shear strain in 3D space. The small-strain 

Poisson’s ratio ( ) is calculated from small-strain field seismic    and    measurements 

and is used in the stiffness matrix at the start of loading. The effect of Poisson’s ratio ( ) 

on settlement predictions is also investigated by assuming that either: (1) the constrained 

compression modulus ( ) is constant or (2) the bulk modulus ( ) is constant. 
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9.1.3 Load-Settlement Predictions 

The user-defined soil model developed in this study, MoDaMP is used to predict 

the settlements of small-scale concrete footings at three different test sites where load-

settlement tests have been performed. The load-settlement tests were parts of other 

studies but were performed in an attempt to create a database of load-settlement tests 

which include comprehensive dynamic soil property measurements.  Field seismic and 

laboratory dynamic tests are conducted at these sites by researchers from the University 

of Texas at Austin.  

The first site that is considered in this study is the National Geotechnical 

Experimentation Site in College Station, TX. The load-settlement tests were conducted 

by Park et al. (2009). Two, small-scale concrete footings with diameters of 3.0 and 1.5 ft 

(0.91 and 0.46 m) were tested. The              
  relationships were determined by 

SASW testing. The      ⁄       curves were determined by RCTS testing with intact 

specimens. The predicted settlements with MoDaMP are larger than the measured 

settlements at applied pressures that are larger than about ~ 600 psf (28.7 kPa) the. The 

larger predicted settlements are not surprising since the     curves based on the 

     ⁄       relationships are below     curves from triaxial tests. As a result, the 

     ⁄       curves were modified at larger strains. The settlement predictions with the 

modified model, MoDaMP-1, were still larger than the measured settlements for both 

footings. The soil behavior predicted with MoDaMP-1 is still softer than the real 

behavior. This behavior is attributed to the effect of horizontal stresses beneath the 

footing that is not captured in triaxial tests at larger strains. Therefore, a second 

modification was applied to the      ⁄       curves to have a stiffer behavior of the 

soil. The model with the second modification, MoDaMP-2, was then used to predict the 
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settlements. Settlements predicted with MoDaMP-2 are in quite reasonable agreement 

with the measured settlements. The approach where the Poisson’s ratio is varying based 

on either constant   and   assumption is implemented in MoDaMP-2 to investigate the 

effects of Poisson’s ratio on settlements. It was found that the settlements predicted with 

constant   or   assumptions are similar to each other. Predicted settlements are smaller 

compared to those found with constant Poisson’s ratio.  

The second site that is considered in this study is the Hornsby Bend test site in 

Austin, TX. The load-settlement tests were conducted by Van Pelt (2010). Two, small-

scale concrete footings with diameters of 3.0 ft (0.91-m) and 1.5 ft (0.46-m) were tested. 

Vertical movements at various depths beneath the footings were also measured with tell-

tales. The              
  relationships were determined from SASW tests. The 

     ⁄       curves are determined from empirical relationships proposed by Menq 

(2003). The predicted settlements with MoDaMP are larger than the measured 

settlements at larger applied pressures. The reason for this softer behavior predicted with 

MoDaMP is that the     curves based on the      ⁄       relationships are exhibiting 

a softer behavior compared to those curves from triaxial tests at larger strains. Therefore, 

the      ⁄       curves are modified based on triaxial test data at larger strain on 

reconstituted samples. The settlement predictions with the modified model, MoDaMP-1, 

agree reasonably with the measured settlements for 3.0-ft (0.91-m) diameter footing and 

the predicted settlements are higher for the 1.5-ft (0.46-m) diameter footing. The effect of 

Poisson’s ratio on predicted settlements are shown by using constant constrained 

compression modulus ( ) and bulk modulus ( ). The predicted settlements with these 

constant   and   assumptions are in good agreement for the 1.5-ft (0.46-m) diameter 
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footing whereas the predictions for the 3.0-ft (0.91-m) diameter footings are smaller than 

the measured settlements.  

The third site investigated in this study is the Yucca Mountain Test Site in 

Nevada. Load-settlement tests at two locations, called Test Pit 6 and Test Pit 7, in Yucca 

Mountain are studied. The load-settlement tests were conducted by Park (2010). The 

small-scale concrete footings are 3.0 ft (0.91 m)   in diameter and 1.5 ft (0.46 m) in 

thickness. The              
  relationships were determined from small-scale 

downhole tests using embedded arrays beneath the footings. The      ⁄       curves 

were determined from steady-state dynamic tests and from RCTS tests with intact 

specimens. The predicted settlements with MoDaMP agree well with the measured 

settlements up to a level of applied pressure of ~ 3000 psf. At larger applied pressures; 

the predicted settlements are higher than the measured settlements since the     curves 

based on the      ⁄       relationships are softer than the     curves from quasi-

static triaxial tests at larger strain. Therefore, the      ⁄       curves were modified 

based quasi-static test data at larger strain on intact samples. The settlement predictions 

with the modified model, MoDaMP-1, agree reasonably well with the measured 

settlements for both tests sites. The predicted settlements at Test Pit 6 are slightly smaller 

than the measured settlements. The effect of Poisson’s ratio on predicted settlements are 

shown by using constant constrained compression modulus ( ) and bulk modulus ( ). 

The predicted settlements with these constant   and   assumptions are smaller than the 

measured settlements at both sites.  

It should be noted that assuming a constant value   and   is a first attempt in 

defining the change in these moduli with increasing strain and this assumption will be 

studied further. 
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9.2 CONCLUSIONS 

The research presented in this dissertation is composed of two parts. The first part 

is the initial development of a soil model that incorporates dynamically measured soil 

properties from field seismic and laboratory dynamic tests to represent the nonlinear 

response of granular soil over shear strains from the elastic range, 0.0001%, to the highly 

nonlinear range, 1 to 3% for use in deformational analyses. The second part is to 

investigate and to improve the developed model with load-settlement tests where field 

seismic and/or laboratory dynamic tests are available. The following conclusions 

concerning the developed method and its applicability can be drawn. 

1) A soil model that combines linear and nonlinear dynamic measurements of 

granular soil can be used in evaluating the stress-strain response of the soil under static 

loading conditions. 

2) The developed model, MoDaMP, is implemented into a finite element program 

and it is verified with element tests that the developed model is working correctly by 

comparing the numerical solutions with analytical solutions.  

3) Field seismic tests must be used to determine      at the start of the load-

settlement curve. 

4)      and              
  relationship must be determined from field seismic 

tests and then combined with      ⁄       relationships obtained from field seismic 

and/or laboratory dynamic tests to predict the settlements in the nonlinear elastic and  

moderately nonlinear ranges. 

5) The settlements corresponding to the highly nonlinear range can be predicted 

with modified      ⁄       relationships where the modification is guided by larger-

strain laboratory data such as triaxial test data. 
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6) The effect of using a varying Poisson’s ratio with constant   or   assumptions 

is less pronounced in stiffer soil. 

7) Settlements of larger (3.0-ft diameter) footings are generally more closely 

predicted than the settlements of smaller (1.5-ft diameter) footings 

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

The research presented in this dissertation has concentrated on building the 

framework for a deformation-based method of predicting the settlements of shallow 

foundations on granular soil. The following recommendations are made to improve the 

quality of this method. 

1) More load-settlement tests with comprehensive field seismic, laboratory 

dynamic and triaxial testing are needed to create a robust dataset. The proposed 

predictions need to be compared and refined.  

2) Laboratory methods to investigate the      ⁄       relationships at strains 

larger than 0.1-0.2% should be explored. The     relationships at larger strains are very 

important in predicting the settlements of shallow foundations since the strains observed 

in such problems are above the maximum strain range that can be measured in most 

dynamic laboratory tests. 

3) The effect of the increased horizontal stresses beneath the footings on the 

stiffness of the soil should be investigated. And if possible, laboratory tests that can 

simulate the increases in both vertical and horizontal stresses should be explored.  

4) The     parameter in Darendeli (2001) model to express the      ⁄       

relationships should be investigated further. This parameter is most likely a function of 

additional/different parameters at larger strain ranges (compared to the smaller strain 

ranges where it has been developed). It should be also noted that the trend of change in 
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    with increasing confining pressures is different at different strain ranges. This 

understanding is also important in geotechnical earthquake engineering where Darendeli 

(2001) and Menq (2003) models are widely used at shear strains well above 0.1-0.2% . 

5) In this study, relationships between shear modulus, constrained compression 

modulus and Poisson’s ratio based on the research completed by Le Blanc (2013) are 

investigated. It is found that these relationships which result in varying Poisson’s ratio, 

have a great effect on the settlement predictions. The effect of relaxing the constrained 

boundary, hence reducing constrained modulus at larger strains and how this affects the 

relationships between shear and constrained modulus and Poisson’s ratio needs studying. 

6) The proposed framework presented in this dissertation utilizes a nonlinear 

elastic soil response. The effect of the plastic deformations on the predicted settlements 

should be investigated. To this end, the additional soil model described in Chapter 5, 

MoDaMP-P, which is a soil model that combines nonlinear elastic and perfectly plastic 

soil behavior, can be used. MoDaMP-P is still under verification process but it promises a 

great benefit in understanding the compressive and dilative behavior of granular soil. 
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