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The semiconductor industry provides vast opportunities for process

monitoring and multivariate fault detection. Most of the multivariate methods

currently used in the industry are statistically-based techniques. These meth-

ods are also extended to monitor batch processes such as the process tools

used in semiconductor manufacturing.

In this dissertation, the existing statistical fault detection method-

ologies are discussed and compared to non-parametric modeling techniques

for multivariate outlier detection. Inspired by these non-parametric model-

ing techniques, a new k Nearest Neighbor (KNN) multivariate fault detection

method is proposed to augment the existing statistical methods. In this tech-

nique, instead of pre-computing a model, only a window of historic reference

data is retained. The fault detection performance metric used in this algorithm

provides universal scaling and confidence limits for the overall metric value,
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the block contributions, and individual variable contributions. It also has the

flexibility to be tuned for local or global sensitivity when multiple populations

are present within the reference data.

This new KNN method also is extended to monitor batch processes.

Two applications of the KNN method are created by simply unfolding the

batch data or by selecting only reference data similar in batch time for each

individual trace sample. Both KNN batch methods are compared against other

existing batch methods to detect induced faults using a plasma etch experi-

ment. The trace sample method performs among the best of all investigated

batch techniques.

This dissertation also introduces additional methods for monitoring sys-

tems with multivariate models. A complete software architecture is presented

for reporting and visualization of multivariate results. This method takes

advantage of block and variable contributions to guide users to the process

variables with the most extreme and most frequent excursions. This system

is applied to monitor final wafer electrical test data. In addition, methods are

presented which assist the monitoring of drifting processes. A simple tech-

nique to recursively adapt the centering and scaling coefficients of a principal

component analysis (PCA) model is presented. Movement metrics are also

introduced to monitor the changes in these coefficients over time. These move-

ment metrics allow visibility into the process changes which caused the model

to adapt.
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Chapter 1

Introduction

1.1 Fault detection

In the chemical process industries (and most any manufacturing envi-

ronment), monitoring an ever growing number of processes and instruments

is an ongoing challenge. Many methods have been developed for monitoring

individual variables and for simultaneous multivariate analysis. In general,

the first step of process monitoring is detecting an excursion. Then, more

sophisticated monitoring systems can be used to identify the root cause of

the excursion, estimate the excursion, and possibly reconstruct excursion-free

sensor values.

This field of fault detection varies from application to application based

on how well-known the process is to be monitored, the amount of effort that is

available to model and monitor a system, the risk involved in the system itself,

and the time required to make calculations between process samples. Many

methods have been developed and are applicable to a variety of systems.

The most basic statistical process control (SPC) systems monitor a

single process variable and signal an alarm when statistically-based limits are

exceeded. The models for these systems are simple to compute and are based
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on only a mean and standard deviation of each variable within a historical

period. From this model, limits are computed based on probability levels.

Engineering time and effort are required to maintain limits for all the individual

variables to be monitored.

Multivariate techniques have been developed to take historic data in-

cluding a number of process variables and look at the normal range of each

process variable and also the relationship between the variables. The general

hypothesis assumed in these methods is that a historical data set defines a

characteristic region of the n-dimensional space that represents normal oper-

ation. Any new data outside this region is considered an outlier and hence is

characterized as an excursion.

There are many statistical modeling techniques to capture this normal

space and most involve using the correlation matrix within the data set or

principal component analysis (PCA) to capture the most important directions

within the correlation among the variables. With this statistical model, PCA

can determine both an estimated probability that the model can accurately

predict the new data point and that the point is within the normal operat-

ing space of the model. The statistical models are precalculated based on a

known set of reference data, and as new data become available, the perfor-

mance statistics can quickly be calculated based on the model parameters,

without requiring a historical reference data set. These statistical methods

have also been extended to monitor batch processes such as processing tools

in the semiconductor industry.
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Other existing techniques are non-parametric as apposed to the exist-

ing parametric model-driven techniques, and focus on simply detecting outliers

within the reference data set. Instead of estimating a set of model parame-

ters based on modeling assumptions of the reference data, the data itself are

retained as the model. When a new point is collected, a fault metric is deter-

mined by clustering of the data, kernels, or by nearest neighbor analysis. These

calculations are generally more expensive than ones based on a pre-computed

model, but they are more flexible and potentially easier to maintain, only

requiring the retained historic data.

After every new sample, the results of the fault detection metric and

any contributions to the metric are captured (regardless of the method used to

generate them). When excursions occur, automated responses can be set up

to quickly notify operators and shut down abnormally operating systems. In

addition, the results from these techniques are made available for root cause

analysis by operators and engineers to quickly diagnose the problem, make

corrective action, and get the faulting equipment operational again. The avail-

ability of the analysis results in an easy to navigate and informative medium

is a key to making any monitoring system usable and effective.

1.2 Microelectronic fabrication introduction

This work focuses on the application of fault detection techniques to

the semiconductor manufacturing industry, but by no means does this prevent

the application of these methods and techniques to other industries or prob-
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lems. The semiconductor industry does pose a special set of problems where

fault detection can be readily applied. The semiconductor industry is one of

the most capital-intensive industries compared to revenue and only recently

has attention been focused on control, optimization, and system-wide fault

detection required for competitive operation of state of the art factories[84].

The manufacturing of integrated circuits involves the creation of sev-

eral layers of specifically patterned films on the surface of a silicon wafer.

Each silicon wafer is divided into a large number of functional die. Specific

electrical characteristics are achieved in each die by chemically altering the dif-

ferent films and layers and by the specific layout of the patterns. These films

and layers are created by generally over a hundred batch operation steps.

These steps include various operations of crystal growth, oxidation, deposi-

tions of dielectrics, silicon, and metals, physical and chemical vapor deposi-

tion, dopant diffusion, dopant ion implantation, photolithography, etch, and

chemical-mechanical polishing[33]. Once the wafer is complete (after usually

a month or more of processing), it undergoes many testing steps. Usually the

measurement of electrical parameters on test structures occurs when the final

layer of metal is attached to the wafer. At this stage all the underlying circuits

can be verified indirectly using test structures built into the wafer, and the

quality of the entire process can be monitored.

Each unit operation in the factory takes place in an isolated process

tool. Each tool, if it is properly equipped, can report all the data from onboard

sensors during or after each process run. As device technologies shrink and

4



the size of the wafers increase, a growing number of software applications are

being created in the industry to monitor this process data[84].

Many statistical methods exist for building multivariate models which

could be applied to final wafer electrical test data and for building batch models

for analyzing process tool data. This dissertation presents a new method

that improves on existing non-parametric techniques that can be applied for

analyzing both types of data sets. In addition, a method for communicating

and navigating the results of any multivariate monitoring system is presented.

1.3 Dissertation outline

The next chapter contains a review of the current literature on fault de-

tection techniques, visualization of these techniques, and different applications

of these techniques to semiconductor tool trace data. This chapter includes

a discussion on both statistic approaches for static and batch processes and

non-parametric approaches for anomaly detection.

Chapter 3 discusses a new k-nearest neighbors (KNN) multivariate fault

detection method attempting to bridge the non-parametric approaches with a

similar statistical performance metric. This chapter provides results of many

test simulations examining the properties of the method.

Chapter 4 focuses on a generic technique for organizing multivariate

analysis results and presenting them in a way that provides quick investiga-

tions into fault analysis regardless of the multivariate method. This chapter

5



discusses the reports and charting necessary to navigate through the monitor-

ing results and provides the results of this system implemented to monitor the

final wafer electrical tests of a semiconductor factory.

Chapter 5 focuses on application of multivariate analysis on semicon-

ductor process tools. The first half of the chapter discusses techniques for

monitoring drifting processes and investigates a new adaptation method with

simulations on summary data from an etch process tool. The second half

of the chapter discusses two different applications of the KNN algorithm to

batch processes and provides a comparison of these methods to existing batch

methods based on an industrial etch experiment with induced faults from the

literature.

In the final chapter a summary of the work is presented along with

recommendations for future work.
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Chapter 2

Fault monitoring background

The field of process monitoring is essentially the study of methods to

make decisions from data sets. The first step in all monitoring is fault de-

tection, indicating whether or not a process excursion has occurred. After

an excursion is identified, many other techniques can be used to classify the

fault, identify the fault, estimate the fault magnitude, and even reconstruct

the fault-less process data. A survey of the full field of statistical process

monitoring can be found in [19, 66, 83, 110]. Obviously, as more analysis is

performed on the faults, the more complicated these methods become and the

more a priori knowledge of the system is required.

The focus of this work is simply on the fault detection step, gener-

ally applied to semiconductor manufacturing. In this industry specifically, the

manufacturing process and products change rapidly on the scale of months,

and each processing tool sees a high mix of manufacturing operations, prod-

ucts, and tool states. All monitoring applications have to be as automatic as

possible and adapt to the changing conditions. Operators and engineers are

typically already burdened with maintaining process operations and do not

have much time for maintaining the monitoring system itself. The addition of

7



new monitoring tools should help operators and engineers understand where

exceptions are occurring within the factory, but without adding the burden of

large sets of limits to maintain and charts to monitor. The goal of this work is

to provide additional methods for fault detection, provide a system to commu-

nicate and effectively navigate results, and provide results from semiconductor

applications.

2.1 Univariate fault detection

The simplest case of process monitoring is monitoring a single variable

and sampling its population by taking measurements from the manufacturing

process. From the historic samples, an estimate of parameters describing the

population can be made. The more data that are collected the better the

population can be estimated but at a higher cost to sample the data. When a

new piece or set of data arrives, it is compared against the known population

and a decision is made whether or not the new data contains enough proof that

the process is no longer operating satisfactorily. Statistically speaking, that is

to say there is the null hypothesis that the process is good and this is assumed

to be true until proven otherwise. The new piece of data is evaluated to

attempt to prove the null hypothesis false. To make this decision the confidence

in the population is evaluated with respect to the new data, and a risk must

be taken in classifying the new data. If the process has not really changed and

it is identified as a fault (a “false positive”), wasted time and effort could be

used troubleshooting or needlessly shutting down a process tool. If the process
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has really changed but it is not identified as a fault, then the risk is the tool

will continue to operate and create product off specification.

Based on this simple premise, Statistical Process Control (SPC) has

been successfully used for monitoring univariate data particularly of product

quality variables, but also continuous process variables. Originally introduced

by Shewhart[95], SPC operates by estimating the mean and variation of an

individual variable based on data from a period of time when the process is

known to be operating free from faults. Any change in the statistical nature

indicates an excursion which should be investigated. Many rule sets have been

developed for identifying conditions that have a small probability of occurring

naturally in a normal distribution, and the most prevalent is the Western

Electric rules[106]. These rules indicate the process is out of control if:

• a single data point is outside the mean plus or minus three standard

deviations,

• two out of three consecutive points are outside the mean plus or minus

two standard deviations,

• four out of five consecutive data points are outside the mean plus or

minus one standard deviation, or

• eight consecutive points are on one side of the center line.

Any of these events have a small probability of occurring randomly in a normal

distribution, so when they occur, notifications can be automatically created
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in the monitoring system. More detailed explanations of SPC are included in

[75].

2.2 Multivariate fault detection

To improve upon univariate fault detection, methods exist that consider

a set of process variables simultaneously and detect not only if the process

variable goes outside its normal range, but also if the historical correlation

between the process variables has been violated. When process variables are

highly correlated, the values can simultaneously change within the normal

univariate limits but still break from the normal correlation[66]. In addition,

these methods have multivariate performance metrics that can be monitored

in lieu of all the individual single variable control charts, as discussed below.

2.2.1 Mahalanobis distance and Hotelling’s T 2

The Mahalanobis distance was introduced by Mahalanobis in 1936 (and

discussed in [68]) as a metric to detect similarity between a new vector and a

sample set. Given a vector of quality measurements x = (x1, x2, x3, ..., xp), the

vector of means from the sample set µ = (µ1, µ2, µ3, ...µp) and the covariance

matrix Σ of the sample set, the Mahalanobis distance can be given as:

DM =
√

(x− µ)T Σ−1(x− µ). (2.1)

An upper control limit can be constructed for the DM metric based on a

central Chi-squared distribution with p degrees of freedom[66]. The χ2
α(q)
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can be calculated with α level of significance for performing the test. This

test works well with a small number of process variables, but can have rank-

deficient Σ matrices when the process variables are highly correlated. This

formulation also matches the Hotelling’s T 2 statistic with an estimate of the

sample variance used in place of the correlation matrix Σ.

2.2.2 Principal component analysis

The use of principal component analysis (PCA) forms the basis of mul-

tivariate data analysis and has shown great utility as a Multivariate Statisti-

cal Process Control (MSPC) tool when samples can be considered independent

observations. PCA as described by Jackson[52] and Wold et al.[117] was intro-

duced by Pearson[81] in 1901 and then developed by Hotelling[50] in 1933[54].

PCA is the method of reducing a large multivariate data set into a set of latent

variables that captures most of the variation within the data set. This allows

the estimation of a covariance matrix based on the principal directions while

removing the influence of noisy directions.

To compute the PCA analysis according to Qin[83] and many others,

for a new sample vector of m sensors, let x ∈ <m denote the sample vector.

Assuming there are N samples for each sensor, a data matrix X ∈ <N×m is

composed with each row representing a sample. For correlation-based PCA

the matrix X is scaled to zero-mean and unit variance, and for covariance-

based PCA the matrix X is simply scaled to zero-mean. The matrix X can

be decomposed into a score matrix T and a loading matrix P , whose columns
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are the right singular vectors of X,

X = TP T + X̃ = TP T + T̃ P̃ T = [T T̃ ][P P̃ ]T , (2.2)

where X̃ = T̃ P̃ T is the residual matrix. Since the columns of T are orthogonal,

the covariance matrix is

Σ ≈ 1

N − 1
XT X = [P P̃ ]Λ[P P̃ ]T (2.3)

where

Λ =
1

N − 1
[T T̃ ]T [T T̃ ] = diag{λ1, λ2, ..., λm} (2.4)

λi =
1

N − 1
tTi ti = var{ti} (2.5)

and ti is the ith column of T and λi are the eigenvalues of the covariance matrix

in descending order. For variance-scaled X, Equation 2.3 gives the correlation

matrix R.

Once the model is generated, a sample vector x can be projected on

the principal component space (Sp) and the residual space (Sr) as,

x̂ = PP T x ∈ Sp (2.6)

x̃ = P̃ P̃ T x = (I − PP T )x ∈ Sr. (2.7)

Since (Sp) and (Sr) are orthogonal,

x̂T x̃ = 0 (2.8)

and

x̂ + x̃ = x. (2.9)
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In order to produce the optimal PCA model for a given data set, the

general goal is to choose the number or principal components such that x̂

(the PC space) contains mostly information and x̃ (the residual space) con-

tains mostly noise. In order to calculate the model given a certain number of

principal components, either the NIPALS[117] algorithm or singular value de-

composition (SVD) is used. Many different algorithms are used to choose the

optimal number of principal components. Wold’s work on cross validation[115]

was one of the first methods appearing in 1978. Recently Valle et al.[102] and

Qin and Dunia’s work[85] suggest the variance of reconstruction method that

includes an optimization function that guarantees the global minimum for

determining the number of principal components. A complete discussion of

methods for principal component selection can be found in [103].

2.2.2.1 PCA fault detection metrics

For process monitoring, historically two metrics are calculated for a

new sample vector x, the squared prediction error (SPE) and the Hotelling’s

T 2. The SPE statistic measures the projection of the sample vector on the

residual space, indicating how well the sample conforms to the model,

SPE = ‖x̃‖2 = ‖(I − PP T )x‖2. (2.10)

The Hotelling’s T 2 measures the variation in each sample within the principal

component space as the sum of the normalized squared scores,

T 2 = tiΛ
−1tTi = xiPΛ−1P T xT

i . (2.11)
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In both of these equations the loadings matrix P and the eigenvalues Λ are

the only first l values, where l is the number of principal components chosen

in the model.

Using these metrics, an excursion is hypothesized when either

SPE ≥ δ2 (2.12)

or

T 2 ≥ χ2
α(l) ≡ τ 2 (2.13)

where δ2 and τ 2 are the control limits for the SPE and T 2 metrics, given a

1− α confidence level[17]. The SPE control limit was derived by Jackson and

Mudholkar[53] assuming that x follows a multivariate normal distribution.

Given the same assumptions, T 2 follows a χ2 distribution with l degrees of

freedom[121]. A full formulation for the limits can be found in [22].

A third process monitoring metric with its associated limit was intro-

duced by Yue and Qin[121]. This metric combines the two above metrics into

a combined index weighting each metric against its respective limit as

ϕ =
SPE(x)

δ2
+

T 2(x)

χ2
α(l)

= xT Φx (2.14)

where

Φ =
I − PP T

δ2
+

PΛ−1P T

χ2
α(l)

. (2.15)

The limit for this metric takes the form of

ϕ ≥ gχ2
α(h) ≡ ζ2 (2.16)
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where g and h are estimated by Yue and Qin based on ϕ being a quadratic

function of the x vector and Φ being positive-definite.

2.2.2.2 Automatic adaptation techniques

Multivariate analysis using PCA over a long period of time requires

a stable process. In practice, especially in the semiconductor manufacturing

industry, the tools are relatively stable but drift over the maintenance cycle

of the tool, giving limited life to a single static model. A number of attempts

have been made to adapt PCA models to slowly changing systems, while main-

taining a valid model.

Wold discussed exponentially weighted moving principal component

analysis in 1993. He established a solution for the model updates that balanced

a number of competing objectives for the model[116]; the model

• should be a good summary of the local process data,

• should be stable against unwarranted rotation,

• should have an optional long term memory, and

• should be robust against spikes.

His solution is mathematically complicated and iterative but consists of a

weighted average between the present model and some golden reference data

(reference data that is known to be normal). The mean, standard deviations,
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and correlation update have contributions from the historical data and the

current model.

Gallagher et al.[38] studied monitoring a semiconductor etch process

with varying methods for adaptation. They investigated simply moving the

means of the centering step for PCA and not changing the standard devia-

tions or correlation structure. They also investigated using an exponentially

weighted moving covariance where the covariance matrix was adapted element

by element with an EWMA filter. They found that although the adaptation

methods performed better than the static model, neither case created a robust

model that could last through preventative maintenance, additional cleaning,

new equipment installs, or extended tool drifts.

Li et al.[64] proposed the first recursive algorithms for PCA model up-

dated based simply on the old vector of means, vector of standard deviations,

the correlation matrix, and the new sample vector of data. They included

a discussion of how to update the number of principal components and con-

fidence limits recursively as well. This algorithm has been implemented by

Cherry[16]. Cherry’s implementation of recursive PCA is used throughout

this dissertation when RPCA is mentioned.

2.2.2.3 Robust monitoring issues

One issue of high importance is how to create robust models and how

to keep the model robust when incomplete or corrupt data is encountered.

The initial steps for building a PCA model require that an estimate of the
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mean and standard deviation for each process variable within the reference

data. Chiang et al.[22] discusses robust methods for estimating non-biased

centering and scaling factors for the PCA model based on medians and other

methods less sensitive to outliers. They also introduce a robust calculation

of the correlation matrix. These methods allow a more robust model to be

created to initialize the monitoring system even when outliers exist in training

data.

Another concern for a robust monitoring system using PCA is how the

performance metrics are calculated when a full vector of sample data is not

available. When monitoring univariate data, when a sensor fails or a variable

is not available, only the single SPC chart is affected. For multivariate mon-

itoring in the case of a missing sensor value, the monitor must continue to

operate and if possible give an estimate of the missing value for the sensor

based on the model. The first proposed method of data reconstruction based

on simultaneous multiple components was proposed by Cleason[23]. The first

PCA-based method introduced by Wold for reconstruction used a single prin-

cipal component[114]. Wise and Ricker[111], Nelson et el [77], and Dunia et

al.[32] all present methods that are similar for data and fault reconstruction.

All these methods are able to estimate a missing variable in the sample vector.

A more recent work by Nelson et al.[76] also gives a method for estimating the

confidence region for the reconstructed variable.
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2.2.2.4 Nonlinear PCA methods

Another area of research to improve the application of PCA to real

processes is the incorporation of nonlinear components into the model. PCA

assumes Gaussian distributions, normal density estimates, and that the key

directions within the reference data are linear throughout the whole reference

data space. Methods have been introduced that relax these assumptions and

attempt to build models that allow more complicated data sets to be monitored

with PCA techniques.

The details of most nonlinear methods can be found in [28]. Initial

methods by Oja[80] and others that followed used Hebbian networks to com-

pute principal components with unsupervised networks with nonlinear activa-

tion functions. These networks did not have a geometrical interpretation to

extend the PCA monitoring metric concepts to these new components. This

was followed by autoassociative neural networks, which use a reduced number

of hidden layer nodes in the neural network to predict the output values from

the input values. This method works to reduce the number of dimensions in

the data but leads to very complex nonlinear optimization problems that can

lead to local optimum[61]. Further work looked at generating principal curves

(or surfaces) with iterative calculations to capture the structure of the data.

These curves are made principal components by mapping each point in the

reference data to the closest point on the curve and finding the curve where

each point on the curve is the average of all the data points projected onto

it[29, 48]. One limitation of this approach is that the number of principal com-
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ponents has to be specified before creating the nonlinear model. The other

main difference between these nonlinear methods and PCA is that in PCA the

principal components have a decreasing amount of information, while in these

nonlinear methods the amount of information seemed to be evenly distributed

between the components[18].

Later methods of nonlinear PCA involved the use of kernel functions to

give nonlinear estimates of the dot product internal to the PCA calculation to

create a kernel principal component analysis (KPCA) model. In this method

all properties of the PCA model still apply in the mapped nonlinear space

and do not necessarily require an expensive neural optimization[94]. Another

nonlinear extension for PCA is the use of radial basis functions (RBF) to create

principal manifolds for process monitoring[44, 109]. A detailed description of

RBF can be found in [10].

Most recently, attempts have been made to improve the neural network

mapping to predict orthogonal nonlinear principal components, and then to

add a linear principal component model step. Improvements to the last step

of the neural network have been added to insure that the output of the neural

network has orthogonal components, prior to the linear PCA model step[71].

Many nonlinear methods have been successfully applied for monitoring

real industrial processes. Chen et al.[14] used Kernel PCA and Yoo et al.[120]

used adaptive fuzzy nonlinear multivariate analysis to monitor waste water

plants. Martin et al.[70] used similar Kernel PCA to monitor a batch methyl

methacrylate polymerization reactor. Anomaly detection with RBF neural
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nets has been used successfully in Iraq to detect faults in the swashplate ball

bearings of Apache helicopters[9].

2.2.3 Non-parametric approaches

To this point in this chapter, the concept of fault detection has taken

the form of a preconstructed statistical model built from historical data, then

each new sample is compared to the model and its limits. In this section, the

concept of fault detection simply answers the question: is a new sample point

an outlier given a history of known good reference data? Outlier detection in

multivariate data sets has a long history and is not covered in detail in this

document. Historically outlier detection has mostly been a binary property.

Most outlier detection algorithms were not designed for outlier detection in

itself, but to remove outliers only to make another method more robust such

as in classification. In some cases there have been methods that generate a

metric that characterize a degree to which data is an outlier and in a few cases

a limit representing a confidence limit for the data.

Hawkins[49] defines an outlier as “an observation that deviates so much

from other observations as to arouse suspicions that it was generated by a dif-

ferent mechanism” which is exactly the goal of statistical-based fault detection.

A review of multivariate outlier detection can be found in [4]. Many different

outlier tests have been created based on distributions, whether the distribu-

tion parameters are known, the number of expected outliers, and the expected

types of outliers. Most of the outlier tests are simply univariate and most
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are statistical in nature. The most used outlier test for multivariate data is

the Mahalanobis distance (as described in Section 2.2.1) based on covariance

measures[37, 41].

Markou and Singh have done an extensive review of statistical ap-

proaches for novelty detection[69]. The detection of novelties in the field of

machine learning is the identification of new or unknown data or signals that

the system was not made aware of during training. This class of methods

has been used successfully for fault detection in industrial applications. These

included statistical parametric methods and nonparametric classification, clus-

tering, and nearest neighbor techniques.

2.2.3.1 Classification and clustering using distance metrics

Statistical classification is the procedure in which new samples are

placed into groups based on a training set of previously labeled reference data.

A historical review of classification can be found in [25]. Fisher discriminant

analysis is a two-way classifier that attempts to find the linear combination

of features which best separates two classes. Support vector machines (SVM)

also search for a decision surface that best separates two classes but they op-

timize the margin between the two classes[104]. The Bayes naive classifier

is a probability-based training method that weighs the mixed probabilities of

each class[74]. Neural nets can also be trained to predict the classification

vector[51]. Finally, k-nearest neighbor classification classifies a sample point

as the class which is most common among its k nearest neighbors[27, 31].
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In all these approaches, the attribute used to classify the data is in-

cluded in the training reference data. When the reference data is not pre-

classified, an unsupervised classification algorithm must be used first to clus-

ter the data and assign classes to each point. A number of methods can be

used for clustering[5]. By far the most popular is k-means clustering devel-

oped by Hartigan and Wong[47]. In this method, k clusters are specified each

with a corresponding centroid, assuming each point belongs to the nearest

centroid. Iterations calculate the centroids and the centroid membership until

the algorithm converges. Improvements to this approach have been developed

which help the computations of the algorithm and have different weights on

the feature space[36].

2.2.3.2 Anomaly detection using clustering

Algorithms that identify anomalies have been generated from unsuper-

vised clustering algorithms. The problem of anomaly detection is more difficult

than classification. In classification only boundaries between different popula-

tions are constructed which extend infinitely in space. In anomaly detection

methods separate populated space from anomalous space. Portnoy[82] intro-

duced a method of outlier detection using unlabeled data based on clustering

to detect network intrusions in computer networks. This method uses a k

means clustering technique to build a model of normal reference data of net-

work use. New incoming data is classified based on the nearest cluster using

a Euclidean distance. If the point is farther from the nearest centroid than
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the cluster width of that centroid (the farthest distance between two points

within the centroid’s cluster), then the point is considered an outlier.

Eskin et al.[34] introduce two methods for anomaly detection using

classification and clustering. The first method simply counts the number of

reference data points N within a sphere of radius w from the sample point.

If N is below a certain threshold, then the sample point is considered an

outlier (given a certain width w). The second method computes the sum of

the distances from the sample point to its k nearest neighbors. This algorithm

is made computationally efficient for a fixed reference data set using canopy

clustering. The third method Eskin describes from [93] first maps the reference

data into a second feature space with a radial basis kernel function and then

uses support vector machines to isolate a region of space near the reference

data from the origin. This is done by simultaneously maximizing the distance

from a separation hyperplane to the origin while penalizing any reference point

not separated from the origin by the hyperplane.

Chan et al.[13] introduced their clustering for anomaly detection (CLAD)

algorithm that relates to k nearest neighbor algorithms. It attempts to iden-

tify local as well as global outliers. In this method, clusters are considered to

have a fixed radius and clusters are allowed to overlap. This method suggests

the fixed radius by sampling 1% of the reference data and calculating the pair-

wise distance between the points, then taking the average of the shortest 1%

of the pair-wise distances as the cluster width. Since each cluster is of fixed

radius, the density of a cluster is determined by the number of points within

23



a cluster. The distance to other clusters for a particular cluster (inner cluster

distance, ICD) is calculated as the average of the distance to all other clusters.

An outlier is considered a cluster that is both distant and sparse. The cluster

is considered distant (and a global outlier) if its ICD is more than a standard

deviation away from the average ICD. The cluster is considered sparse (and a

local outlier) if the count of points within the cluster is more than one median

absolute deviation (MAD)[43] smaller than the median count.

2.2.3.3 Anomaly detection metrics

In a number of algorithms, the detection of an outlier is a binary de-

cision[3, 59, 90]. In this section a number of anomaly detection criteria and

anomaly metrics are introduced.

Knorr and Ng formally define an outlier as an object O in a data set

T is a DB(p,D)-outlier (a distance-based outlier given p and D) if at least a

fraction p of the objects in T lies greater than distance D from O[58]. They

show this is consistent with Hawkins’ definition of an outlier, and this general-

ization is consistent with statistical definitions such as the normal distribution

with three standard deviations with po = 0.9988 and Do = 0.13σ. This for-

mulation represents a global method for outlier detection. They present two

algorithms that attempt to evaluate this metric on a data set (with reference

database buffering for large data sets) that stop searching each point once the

p fraction of points have been found.

Ramaswamy et al.[87] investigate the problem finding up to n outliers
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within a reference data set. They characterize outliers by ranking each point

within the reference data by its distance to its kth nearest neighbor (using any

distance metric). The largest n points on the list are considered outliers. Their

algorithm efficiently partitions the large input space and prunes partitions that

cannot contain the top outliers.

Breunig et al.[6] introduce what they claim is the first metric for the

degree to which a point is local outlier. The local outlier factor (LOF) uses

a local perspective and locates outliers with respect to the density in the

neighboring region of the reference data. This work functions similarly to

the algorithm generated in Chapter 3 so it is described in detail. First the k-

distance of an object p in the reference data set, dk(p), is defined as the distance

from p to its kth nearest neighbor. The k-distance neighborhood of an object

p, dnk(p), is defined as all the reference data points within the k-distance of p

(and hence are defined as the k-nearest neighbors of p). The third definition

is the reachability distance of object p with respect to object o, rdk(p, o), as

the maximum of the k-distance or the actual distance between p and o. This

reachability distance allows points that are very close to the reference point

to be considered at the k-distance apart for smoothing purposes. So given

a tunable minimum number of points z, the local reachability density of p,

lrdz(p), is defined as

lrdz(p) =

[
Σo∈dnz(p)rdz(p, o)

|dnz(p)|
]−1

. (2.17)
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Finally, the local outlier factor of p is defined as

LOFz(p) =
Σo∈dnz(p)

lrdz(o)
lrdz(p)

|dnz(p)| . (2.18)

The LOF determines the degree to which a point is an outlier. For most objects

within a cluster of data the LOF is approximately 1. Given this metric, there

is no specification on a generic upper bound on LOF for “fault detection”, but

there are examples of the metric on simulated data that give confidence in its

ability to measure outliers. Breunig et al. also discuss rules for picking values

of z that relate to the selecting a number of k nearest neighbors. They suggest

a minimum value of 10 to remove statistical fluctuations, a value greater than

the threshold of minimum points that define a cluster, and an upper bound of

the number of “close by” objects that can potentially be local outliers.

Harmeling et al. recently proposed three metrics for outlier detec-

tion[45]. Their Kappa index is simply the distance from a point to its kth

nearest neighbor. Their Gamma index for a sample point is the average dis-

tance to its k nearest neighbors. Their Delta index is the length of the mean

of vectors pointing from the sample point to its k nearest neighbors. This

Delta index works well since an outlier generally is the same direction from its

nearest neighbors (if all the neighbors lie within the same cluster). Rieck[89]

presents another metric based on the above Gamma metric that attempts to

remove the density dependence of the Gamma metric. The Gamma metric

does not take on similar values for points in and around clusters of different

density. Rieck’s improvement is the Zeta metric which is the Gamma metric
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value minus the average inner-clique distance of its neighbors:

ζk(x) =
1

k
Σk

i=1d(x, nni(x))− 1

k(k − 1)
Σk

i=1Σ
k
j=1d(nni(x), nnj(x)). (2.19)

This metric performs well as a global or local method depending on the value of

k selected, but there is no limits given for Zeta metric values to be considered

an outlier.

2.3 Fault detection visualization

One of the critical pieces in a fault detection system is the commu-

nication of the excursions to engineers and operators. In some cases every

excursion can be directly linked to shutting down a process line, process tool,

or a process chamber. In most cases, though, there are far too many excur-

sions to intervene directly with the process on every alarm. The goal is to alert

engineers and operators and present all the information about the excursion

as quickly and as completely as possible. In addition, the goal is to present

trends and contributions to turn the fault detection results into meaningful

information so that an engineer can take corrective action as soon as possible.

Many works have presented basic visualization suggestions for PCA-

based fault detection techniques[15, 65, 72, 105, 107]. In most cases the first

set of charts is a time series plot of each T 2 and SPE along with its respec-

tive limit. In the case of Yue and Qin[121], these are replaced with a single

combined index with its corresponding limit. Some authors have made the

suggestion of scaling the performance metrics to their limit so that a constant
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value (usually unity) is used as the limit value for all charts[15, 72]. These

charts function like SPC for the whole set of process variables included in

the model. Like traditional Shewhart SPC charts, the T 2 and SPE can also

be placed on cumulative sum (CUSUM) and exponentially weighted moving

average (EWMA) control charts[66, 107].

Another method for understanding the principal components of a PCA

model is to plot scatter plots of the various scores. Since the first two principal

components capture the largest percentage of the information in a PCA model,

it is common to plot a scatter of the first score value and the second score value.

From this plot, outliers and clustering within the reference data can clearly

be identified and a model can be refined and tuned. In addition to the scores,

the loading vectors can be plotted on a scatter plot as well to visualize which

input process variables dominate the principal components corresponding to

the selected loadings. The individual scores can also be displayed on a time

series chart to identify trends (possibly along with calculated confidence limits

for the individual scores[79]).

When excursions occur in the performance metrics, information as to

which input process variables contributed to the excursion are needed. Con-

tributions are calculated for the T 2, the SPE, and the combined index. The

calculation for contributions vary among many authors for a multitude of rea-

sons which are beyond the scope of this summary[24, 72, 86, 105] and are even

patented by Hopkins et al.[92]. The contribution calculations used for PCA

throughout this work are based on the work of Cherry et al.[15]. Using any
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contribution method, a bar chart for each performance metric can be created

for an individual sample. Each process variable bar represents the contribu-

tion to the performance metric from the corresponding input process variable.

These contribution charts are simple to calculate but do not necessary point to

the variables that are the root cause of the fault. They simply indicate those

variables that are inconsistent with the normal operating condition. Miller

et al. suggest referring to the univariate SPC charts with limits to quickly

inspect the major contributors[72].

A major improvement on contribution plots was the addition of the

block contributions[16, 65, 86]. To compute block contributions, only a subset

of the process variables is used to calculate the performance metrics. This

gives an indication if any of the subset of process variables has a univariate

fault or there is a break in correlation between the subset of process variables.

The block contributions allow a knowledgeable engineer to break the process

variables into logical groups by function or process subsystem. Multiple blocks

can be used to indicate subsystems where the excursions may occur. These

blocks values can help reduce the number of bars in a contribution plot to an

understandable number for systems with a large number of process variables.

Beyond time series plots of performance metrics, scores and loading

plot, contribution and block contribution plots, and univariate time series

plots, few other concepts exist in the literature for visualization of faults.

Chiang and Braatz [20] introduced the modified distance and modified causal

dependency for continuous process monitoring when a causal map is available.
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Their work focuses on the correlation of causal steps by examining the paired

contributions between pairs of variables. They use the paired contributions

(similar to block contributions) to assign causal relationships between process

variables that are indicating faults and those that are the root cause to the

fault. The set of excursions and pairing are used to indicate on a control panel

the variables in alarm and the probable causes. Examples of this work are

given for the Tennessee Eastman Process[30]. Another interesting visualization

method was the presentation of fault specific control charts introduced by

Goodlin et al.[39]. This work used Fisher linear discriminants to pick fault

directions that discriminated samples from the particular fault classes from

the normal process and from other fault classes. The normal process data is

then projected onto these fault directions and the results are used to create a

control chart for the particular fault class.

Even with all the existing multivariate fault detection visualization

techniques, improvements are still needed to communicate excursions to oper-

ators and engineers and help convince them that there is a problem. As more

analysis methods are added, care must be taken not to add additional false

alarms which cause wasted time investigating normal processes. As more sig-

nals are added for operators and engineers to analyze, additional verification

tests must be placed at their fingertips. All methods and calculation steps

must be convincing and available in one place.
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2.4 Algorithms for batch process analysis

A number of algorithms have been developed to extend principal com-

ponent analysis to monitor batch processes. In the semiconductor industry

these methods have proved very useful for monitoring the wealth of trace data

from process tools. In typical PCA process monitoring, data is typically avail-

able in a two-dimensional matrix where process variables are represented in

columns and time-based samples are represented as rows. In batch analysis,

each batch is a particular run in a piece of equipment and has its own matrix

of process variables and time-based samples. In general batch processes are

represented by a three-dimensional array (I×J×K), where I is the number of

batches, J is the number of process variables, and K is the number of time-

based observations made of each variable during a batch. This data array is

then decomposed differently in a number of methods.

2.4.1 Multi-way PCA

Multi-way principal component analysis was introduced by Wold et

al.[118] and similarly introduced by Nomikos and MacGregor[78, 79], and has

been used extensively[110]. In this method the batch array is decomposed into

a two-dimensional matrix by slicing the array in the time dimension and setting

each matrix of batches (I) by variables (J) side by side for each time sample

(K). This decomposition maintains a row in the data matrix for each batch and

creates a column for each combination of variable and time sample (creating

a I by J ∗ K matrix). This matrix can then be mean-centered and variance
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scaled in order to perform PCA analysis. Centering the data is particularly

meaningful because this results in subtracting the mean trajectory of each

variable. The scaling of each column handles the differences in units between

each measured variable and can be performed on each column individual or

globally for each process variable. Once the data is unfolded, centered, and

scaled, then traditional PCA analysis can be applied. This method allows

the normal trajectory of the batch to be monitored along with the correlation

between process variables and different time periods within the batch.

MPCA has the limitations that each batch is required to have the same

number of time samples and that the results for a batch can not be analyzed

until the batch is complete. Nomikos and Macgregor[79] discuss methods for

online batch monitoring for calculating current results when the batch is being

processed. Improvements to using MPCA without making assumptions about

the rest of the batch are introduced by Rannar et al.[88]. Kosanovich et al.

give a detailed description of MPCA and show its effectiveness for monitoring

a batch reactor and improving process understanding [60].

2.4.2 Three-way models for batch data

Another set of methods for analyzing the array of batch data are three-

way models. Smilde et al.[96, 99] present a thorough summary of these meth-

ods, although an introduction is presented here. A number of methods have

been developed to improve upon the “unfolding” used in MPCA including

parallel factors (PARAFAC) (also known as CANDECOMP) and Tucker mod-
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els[11, 46, 97, 101, 123].

In the PARAFAC (and trilinear) model, each element of the data array

is predicted by

xijk =
R∑

r=1

airbjrckr + eijk (2.20)

where air, bjr, and ckr are the elements of the loading matrices A (I×R), B

(J×R), and C (K×R) respectively, eijk is the residual error, and R is the

number of PARAFAC components. The differences between PARAFAC and

trilinear decomposition (TLD) are simply in the way the models are deter-

mined. A complete method for constructing a PARAFAC model can be found

in [7]. The original method for estimating a TLD model can be found in

[91, 108] with a discussion on improving convergence in [73]. Kiers discusses

methods for visualizing the results of three-way models[56].

Two extensions to PARAFAC have since been proposed to remove the

constraint that batches must have the same number of samples as originally

defined. These methods also allow monitoring of a batch while it is still in

progress. Wold et al.[119] propose a two level model for batch analysis. The

inner model simply models each time sample individually, but instead of simply

building a PCA model on all the traces, a projection to latent structures

model using partial least squares (PLS) is used to predict a batch “maturity

metric”. This maturity metric can simply be time or a process variable that

is monotonically changing indicating the progression of the batch. This inner

model is monitored while a batch is progressing at each time period. Once a

batch is complete, a batch health metric is calculated based on the scores of
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the inner model. This method is referred to as MPLS. The other extension to

PARAFAC is PARAFAC2 as introduced by Kiers et al.[57] and Bro et al.[8].

In this method the K direction is given a different set of loadings for each

different size of k. The set of outer loading matrices must be proportional and

their matrix cross product must be a constant for every value of k in order to

create a unique model. When analyzing the MSPC limits for PARAFAC2 the

squared residuals are scaled by the number of samples to provide consistent

results[113].

The other approaches to use three-way models are based on Tucker

models. In the Tucker3 model, each element of the data array is predicted by

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk (2.21)

where aip, bjq, and ckr are the elements of the loading matrices A (I×P ),

B (J×Q), and C (K×R) respectively, gpqr is an element of the array G

(P×Q×R), eijk is the residual error, and P , Q, and R are the number of

Tucker components in the three modes. If only two modes are reduced, the

Tucker model becomes the Tucker2 model and is predicted by

xijk =
P∑

p=1

Q∑
q=1

aipbjqgpqk + eijk (2.22)

similar to the Tucker3 except the array G is now extended to (P×Q×K).

Similarly, other models could be created by instead reducing the first and

third or the second and third modes and still result in a Tucker2 model. If
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only the first mode is reduced, then a Tucker1 model can be created by

xijk =
P∑

p=1

aipgpjk + eijk (2.23)

where aip is the elements of the loading matrix A, gpjk is an element of the

further extended array G (P×J×K), and eijk is the residual error[99]. The

Tucker1 model is identical to the multi-way PCA model (PCA with unfolding).

Methods for building the various Tucker models can be found in [98].

Throughout the literature there are a number of comparisons of these

different methods. To date there is no clear winner; they all seem to perform

well depending on the application. One of the most complicated concerns us-

ing these multi-way models is the application of preprocessing steps. For batch

processes centering or scaling across more than one direction simultaneously

can destroy trilinear structure and multilinear structure[46]. In most cases cen-

tering is performed across the batch mode. This method essentially removes

the average nonlinear batch trajectory for each process variable, focusing the

three-way model on deviations from this mean trajectory[99]. Scaling is gen-

erally performed similarly in the batch mode, but the results of the trilinear

methods are less sensitive to scaling choices.

2.4.3 Batch process analysis applications

A variety of industrial applications exist implementing these previously

described batch process analysis methods. MPCA has been used successfully

in a number of applications[67, 122].
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Wise et al.[112] apply MPCA, PARAFAC, and TLD to the trace data

from a plasma etch process for chamber monitoring. In this investigation

PARAFAC appeared to work best, followed closely by both the normal PCA

model on the step means and TLD. Wise et al. conclude that the single largest

effect on the ability to detect faults is handling sensor drift. Wise et al.[113] in

another work also apply the PARAFAC2 model to the same data set and find

they gained the flexibility of handling batches of various size but see slightly

decreased performance. This etch process and the results are described more

in Chapter 5. These results are used as a benchmark for the new algorithms

described in this dissertation.

Dahl et al.[26] compare MPCA and PARAFAC on a polymerization

batch reactor and discuss a thorough investigation of the scores and loadings

of the polymerization reactor. They found that PARAFAC was able to identify

clearly three of the four main process zones in the clustering of the identified

model loadings. They also found that both methods were able to find the

increased variability in the beginning of the process, which agreed with the

process operators’ knowledge. In the end they recommended MPCA over

PARAFAC for robust factory applications due to its handling of missing data

and the ability to interpret less ambiguously the model information.

Chiang et al.[21] compare MPCA, MPLS, and Tucker3 analysis on a

batch fermentation process. They found that overall all three were comple-

mentary to each other, and that persons who are trained and understand each

technique should find all three methods useful. In their work MPCA seemed
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more sensitive to overall batch variation, MPLS seemed more sensitive to the

localized batch variation, and Tucker3 was a good balance of both. They did

find the MPLS was most helpful at identifying bad batches during the model

building process, but once models were built with all methods while excluding

the rogue batches, all methods were able to clearly identify the excursions.

In very recent work Aguado et al.[1] applies a number of batch meth-

ods to a sequencing batch reactor for wastewater treatment. They compare

MPCA, MPLS, and PCA applied samplewise to data that was unfolded, scaled,

and centered like MPCA then stacked back to variable-wise unfolding. Their

analysis looks at the methods both for offline monitoring of batches as a whole

and also online monitoring of batches as they evolve. Overall they found

that all three methods were able to describe the sequencing batch reactor,

detect most of the faulty batches, and identify the responsible variables. How-

ever, for offline analysis, they preferred the MPCA approach because it was

straightforward and slightly more consistent. They took some issues with the

results of the online MPLS approach, especially with a single model for the

whole process, although it had normal performance when the batch process

was modeled with three phases. The final contribution of this work was the

suggestion that online and offline monitoring should be coupled, and since this

batch reactor was non-stationary, a moving window of good batches detected

by batch analysis should be used to build adapting models for online realtime

analysis.
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2.4.4 Nonlinear extensions for batch analysis

All of the previously discussed algorithms for batch analysis have been

linear. These algorithms generally center the data and remove the majority of

the nonlinearities within the batch dynamics. Recently there have been a few

applications to extend batch monitoring with nonlinear techniques. Lennox

et al.[63] predicted that neural nets would be added to multi-way methods.

They started with using a RBF neural net to predict the “maturity” metric

during the evolution of a batch with success. The biomass concentration of an

industrial fed-batch fermentation system was predicted.

Lee et al.[62] introduced multiway kernel principal component analysis

(MKPCA) based on the kernel PCA methods discussed in Section 2.2.2.4.

In this method, the batch array is treated identically to MPCA where the

array is unfolded, the mean trajectory of each variable is removed, and each

variable at each time is variance scaled. At this point, instead of calculating a

normal PCA model, a KPCA model is constructed and the KPCA equivalents

of T 2 and SPE are used for batch to batch monitoring. For within batch

monitoring, Lee et al. uses the same methods suggested in the original MPCA

work[78, 79], which include filling in the future values with zero, filling in the

missing values with the current value, or using the ability of the PCA to

predict the missing data subject to the PCA model and the known data. This

algorithm was applied to a simulation of a fed-batch penicillin fermentation

system and showed improved results for MKPCA over MPCA.
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2.5 Existing software for fault detection

Many software packages have been developed to perform offline and on-

line multivariate process monitoring. Most of these software packages have im-

plemented the statistical MSPC and multiway batch methods. The Umetricsr

company grew out of the work by Svante Wold, Rolf Carlsson, and others and

now offers a commercially mature multivariate and batch analysis tools and

online process monitoring in SIMCA-P+r1. The McMaster Advanced Control

Consortium has put together a full monitoring system BatchSPCr based on

the work of John MacGregor, Theodora Kourti, Paul Nomikos, and others2.

The work of Barry Wise, Neal Gallagher, Rasmus Bro, Jeremy Shaver, and

others is captured in the Eigenvector Researchr PLS Toolboxr3, which is a

very popular toolbox for MATLABr. This toolbox has a very large array of

multivariate analysis techniques including all the previously discussed multi-

way batch monitoring methods. The CAMOr company also offers a mature

product for multivariate analysis called Unscramblerr which seems to have

wide use in academia and industry4. Emerson Process Managementr has

integrated the MDC Technologyr batch process monitor MSPC+ into their

DeltaVr system for industrial monitoring5.

Two industrial implementations of non-parametric modeling techniques

1www.umetrics.com
2macc.mcmaster.ca
3software.eigenvector.com/toolbox/pls toolbox
4www.camo.com
5www.mdctech.com/products/mspc/mspc.htm
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exist. Triantr’s product ModelWarer was one of the first industrial prod-

ucts to robustly monitor semiconductor process tools6. Their technique uses

a method called universal process monitoring (UPMr), which is a nearest

neighbor-based algorithm based on the work of Jack Mott[2]. In this method,

the model simply maintains a reference set of historical process data. In or-

der to evaluate a new point, the k nearest neighbors are located within the

reference set. A weight is determined for each neighbor and the neighbors are

linearly combined to determine prediction for the new point. Signal health

metrics (contributions) and a system health metrics (overall performance) are

calculated by comparing the residual of the prediction to normal ranges within

the reference data.

The MASA Groupr and STMicroelectronicsr published an article in-

troducing BlueKaizenr WaferFitr with advanced statistical learning con-

cepts[35]7. Their method has a simple hypothesis for novelty detection: using

the learning set L, build a model able to decide whether a test point w is novel

with respect to the elements of L. Their method uses a nonlinear abnormality

score and calculates its distribution for all the data within the reference set.

If a new test points has a metric outside a threshold of this distribution, then

it is considered novel.

6www.triant.com
7www.bluekaizen.com
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2.6 Conclusions

This chapter presents a summary of the literature for fault detection

methodologies. The literature is dominated by statistical approaches which

mostly utilize linear models. These methods are fairly mature and include all

the attributes required for robust fault detection monitoring. They provide

multivariate performance metrics with statistically generated limits, provide

process variable contributions (and block contributions) also with statistically

generated limits, handle missing data, and can provide updated models in

most cases. In addition, nonlinear extensions exist for these methods, although

generally the use of the nonlinear implementations in practice is limited due

to the model complexity.

Non-parametric modeling methods for multivariate outlier or anomaly

detection were also introduced. The multivariate fault detection problem de-

scribed in the statistical-based literature is identical to the anomaly detection

problem. The non-parametric techniques have the advantage of simply storing

reference data and making less assumptions about the structure of the data.

They function well even when data is nonlinearly distributed and can have

local and global properties for outlier metrics. One shortcoming of the exist-

ing literature is generating generic limits on a non-parametric metric without

processing the entire reference set and making sure that the same value of

the metric is equally an outlier in all areas of space even with different local

population densities. In the next chapter a k nearest neighbor algorithm is

developed that attempts to solve the issues with generating limits and creat-
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ing a metric with similar values around different population densities. This

method is also extended to have all the robust monitoring properties discussed

for statistical approaches.

Methods in the literature for visualization of the various MSPC meth-

ods were also discussed in this chapter. The current methods for MSPC vi-

sualization focus on a single model and the results of a single analysis. This

background sets the framework for the integrated visualization architecture

that is described in Chapter 4.

In most tool monitoring applications in the semiconductor industry,

batch monitoring methods are used. The batch monitoring methods presented

in this chapter help motivate the extension of the k nearest neighbor to tool

trace data. In Chapter 5 the extension of the k nearest neighbor method to

monitor batches are described and the results are compared to existing batch

methods.
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Chapter 3

k-Nearest Neighbor Fault Detection

Algorithm Development

This chapter describes the development of a k-Nearest Neighbor (KNN)

fault detection algorithm based on local distance distributions. The first sec-

tion of this chapter gives the motivation and all the details of the algorithm.

The second section provides examples showing results for a variety of different

simulated data sets in order to validate the new algorithm and its properties.

3.1 Algorithm background

All fault detection algorithms have a hypothesis about the data set they

are trying to analyze and a metric that gives an indication of an agreement

with the hypothesis. In this method, the fundamental hypothesis is that the

density distribution within the reference data set can be used to determine

if a new data point is characteristic of the reference data set. Instead of

characterizing model parameters from a selected training data set (such as in

PCA), the method simply uses a set of samples from the training set as its

model. For each decision about a new sample point, only the nearest region

of the reference set to the sample point is analyzed, and a decision is made
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about the sample point. This analysis makes no linearity assumptions about

the data set and can have different detection properties for different regions of

the reference data set.

In order to characterize the new sample point, the sample point pop-

ulation is created by calculating the distances from the point to its k-nearest

neighbors within the reference set. This sample point distribution by itself

can not give a sense if a point is representative of the data set. In order to

characterize the local region of the data set, this same calculation of the dis-

tance from the point to its k-nearest neighbors is performed for each of the

n nearest points (from the sample point) within the reference set. If there is

a constant characteristic distribution from each point to its k-nearest neigh-

bors, as n increases this distribution should not change significantly. All of

the distances from n nearest points to their k-nearest neighbors are pooled

into a single population to form the characteristic population. Finally, the

distributions are compared to identify how characteristic the sample point is

to the rest of the reference set.

To give a visual explanation to motivate this analysis, one thousand

normally distributed points (with a mean of zero and a standard deviation of

2.5) were taken as a reference set. Then for various sample points from -10 to

10, the local characteristic population, the sample point population, and the

estimated gamma probability distributions were generated. For this analysis,

a k value of 32 and an n value of 334 was used. Figures 3.1 through 3.4 show

the results for the sample points -8, -3, 0, and 3. In Figure 3.1 the sample
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Figure 3.1: Characteristic and sample distributions from a normal data set
with sample point at -8.

point is over 3 standard deviations from the mean of the data set and there is

essentially no overlap of the distributions. As the sample point moves inside

the reference population for the following 3 figures, the local characteristic

population noticeably changes shape as the neighbors that are being used also

become internal points of the reference population. Also, for all three values

from -3 to 3 (just over one standard deviation from the mean), the sample

point distribution has a high overlap with the local characteristic distribution.

These figures show that the gamma distribution model does not perfectly fit

these truncated populations, but it gives a good indication of the overlap of

the populations.

From these observations on the four simulations, it is clear when the
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Figure 3.2: Characteristic and sample distributions from a normal data set
with sample point at -3.

Figure 3.3: Characteristic and sample distributions from a normal data set
with sample point at 0.
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Figure 3.4: Characteristic and sample distributions from a normal data set
with sample point at 3.

sample point lies far outside the reference set, there is little overlap between

the two probability distributions. Also, when the sample point is internal

to a population of the reference data, there is a much higher overlap in the

probability distributions. The following subsections go through the details of

fitting the distributions, determining where confidence limits should be placed

to segregate data that is determined to be statistically normal, creating a

performance index metric, and extending the method to multiple dimensions.
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3.1.1 Modeling the distributions

In order to model the two populations in this work, the gamma distri-

bution was used as described in [42]:

f(x; η, λ) =

{
λη

Γ(η)
xη−1e−λx, x ≥ 0, λ > 0, η > 0

0 otherwise
(3.1)

Fitting the populations to a statistical distribution provides smoothing of the

population data and allows a continuous function to be integrated in the per-

formance index metric calculation. The gamma distribution may not be tech-

nically appropriate for these two populations since they are truncated distrib-

utions (k is not the length of the entire data set), but this class of distributions

fit adequately for a large range of cases. The gamma distribution allows for

a changing shape and scaling through η and λ for a wide range of popula-

tions. In addition, it fits the long tails in these populations much better than

approximating the populations with a characteristic mean and standard devi-

ation based on a normal distribution and allows continuous parameterization

as compared to the discrete number of degrees of freedom in the χ2 distribu-

tion. This class of distributions was also chosen because it is appropriate in an

extreme case as well. If we allowed the value of k to approach the full length

of the reference set, then the characteristic distribution should approach a χ2

distribution for normally distributed data, which is a subclass of the gamma

distribution (when λ = 1
2

and η is a multiple of 1
2
).

In order to fit the populations to the gamma distribution the method

of maximum likelihood was used as implemented in the MATLABr Statistics
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Toolbox and described in [42] based on the original work by Greenwood and

Durand[40].

3.1.2 Non-overlap probability calculation

Once these two distributions are characterized, they are used to evalu-

ate how likely it is that the sample point population is representative of the

local characteristic population. It was decided to calculate the non-overlay

probability as the area above the characteristic probability distribution func-

tion and below the sample point probability distribution function starting

from the 50th percentile of the characteristic probability distribution function

to positive infinity. The non-overlap probability Pno is calculated as

Pno =
∫∞

C
f(x)dx

where f(x) =

{
SPDF (x)− CPDF (x), SPDF (x) > CPDF (x)
0 otherwise

(3.2)

where C is the distance corresponding to the 50th percentile of the character-

istic cumulative distribution function, SPDF (x) is the sample point probability

distribution function, and CPDF (x) is the characteristic probability distribu-

tion function. The 50th percentile of the characteristic CDF was used as a

starting point so that having a large portion of the sample point PDF inside

the average of the cumulative population was not penalized.

To illustrate this calculation, the non-overlap probability was calculated

for a sample point at +7, -4, and 0 using the same reference data set used before

in Figures 3.1 through 3.4 with 1000 normally distributed points with zero

mean and a standard deviation of 2.5. The respective non-overlap probabilities
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Figure 3.5: Non-overlap probability calculation region for a sample point at 7,
Pno = 0.8802

were 0.8802, 0.1336 and 0.0998, and the calculations are illustrated in Figures

3.5, 3.6, and 3.7 respectively. The non-overlap probability will be asymptotic

to 1.0 as the sample points moves away from the reference data and will have

values closer to zero for the sample points near the densest regions of the

reference data.

3.1.3 Threshold estimation based on a specified confidence limit

Unfortunately, the non-overlap probability values calculated in the pre-

vious section do not correspond to confidence limit values. For instance a value

of 0.995 does not relate to the 99.5% confidence limit of the normal distribu-

tion that was used to generate the reference set. In order to find a relationship

between the non-overlap probability values and the confidence limit, a sim-
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Figure 3.6: Non-overlap probability calculation region for a sample point at
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Figure 3.7: Non-overlap probability calculation region for a sample point at 0,
Pno = 0.0998
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ulation approach was used. There may exist an theoretical solution to this

problem, but it is beyond the scope of this research and could be a topic of

future research.

In order to find a relationship between the non-overlap probability

threshold value and a given confidence limit, simulations were performed for

a series of different reference data sizes (s), values of k, and values of n all

using different data generated from the same normal distribution. Then the

values of the non-overlap probability were calculated at the sample points cor-

responding to the different confidence limits (L values of 0.999, 0.997, 0.975,

0.9, 0.8, and 0.85) calculated from the normal distribution. All combinations

of reference data of size (s) of 40, 100, 300, 800, 1500 entries, n values of 10,

20, 35, 66, 150, 500, and s, and k values of 10, 20, 33, 40, 60, 150, and 250

were used where k < n < s. It is worth pointing out that simulations with low

values of s, k, and n provided very noisy results (as would be expected with

the statistics involved with small sample sizes). Since this area is not where

the algorithm will be used in the future, these values were not given as much

weight in the fitting analysis.

The initial observation from the results (see simulation experiment data

in Appendix A) reveal that the relationship does not seem to be based on the

value of k. On the other hand there is a strong relationship between the

threshold value and the ratio of n/s for each confidence limit. The final model

that was generated to estimate the non-overlap probability threshold value
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Pcrit for a given n/s ratio and confidence limit is

Pcrit = 1− ((1−B)e
An
s + B)

B = 0.1617394 log(1− L) + 1.1575
A = −0.685645(1− L)−0.612522

(3.3)

where L is the confidence limit (0.9975 for a 99.5% confidence limit). The fit

of this model to the simulation data is show in Figure 3.8. Although there is

significant scatter in these simulated data sets, the model form requires the

threshold to go through 1 at a value of n/s equal to zero and then decay to

an asymptote that varies by the confidence limit and decays at a rate that is

a function of the confidence limit as well.

3.1.4 Scaling the results to form a performance index

Once this threshold value is determined, the non-overlap probability

could be scaled by this threshold in order to determine a performance index

for this method (similar to the combined index used in PCA[15] and the tool

health used in Triantr’s ModelWarer package). Unfortunately, if the ratio

of the probability and threshold values is used, the value of this ratio varies

for different problem sizes after the critical value of 1. To relate this metric

to the PCA combined metric, the goal is to have the same metric values

regardless of the values of k, n, and s and also to have a value with a consistent

meaning for different population densities. In order to satisfy these goals the

performance index C was chosen to be the ratio of the χ2 inverse of the non-

overlap probability to the χ2 inverse of the threshold with the number of
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Figure 3.8: 1 minus non-overlap probability versus n/s ratio for various con-
fidence limits with model fit to simulation experiments
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degrees of freedom ν tuned for the problem size.

C =
F−1(Pno|ν)

F−1(Pcrit|ν)
(3.4)

where

F−1(p|ν) = {x : p = F (x|ν) =

∫ x

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt} (3.5)

as implemented by the MATLABr statistical toolbox and ν is the number of

degrees of freedom corresponding to the problem parameters.

In order to determine the ν as a function of the problem parameters,

again simulations were used. Simulations were designed to cover the broad

range of reference data length (s = 42, 98, 308, 812, 1512), a full range of

characteristic depths (n = s/7, 2s/7, ..., s), various values of nearest neighbors

(k = 2s/14, 3s/14, ... , n) and four different confidence limit values (L = 0.999

0.9975 0.975 0.9). For each simulation, the value of ν was calculated such that

the metric would have a value of 10 at a sample point that was
√

10 times the

distance from the mean as the confidence limit location. This should provide

a two point calibration of the overall performance index C fitting the value of

10 and the value of 1 (the confidence limit). Data from these simulations are

tabulated in Appendix B.

From these experiments, the value of ν was determined to be a strong

function of
√

k/s, n/s, s, and the confidence limit L. Each influence was

individually investigated, then merged into a nonlinear model and fit with

nine coefficients simultaneously. The resulting model took the form

ν(k, n, s, L) = e

√
k/s−(x1 ln(1−L)+x2s+x3)

x4(1−L)+x5s+x6 + x7(n/s)2 + x8(n/s) + x9 (3.6)
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where the optimized values for x1 through x9 are displayed in Table 3.1.

Table 3.1: Fitting parameters for degrees of freedom(ν) calculation

Parameter Value
x1 -0.080919
x2 -3.4359E-05
x3 0.64843
x4 -0.87983
x5 -3.8949E-05
x6 -0.27710
x7 -13.502
x8 20.230
x9 -8.1403

3.1.5 Extension to multiple dimensions

The algorithm development thus far has been achieved by simulating

data in strictly one dimension. The goal in the development of the distance

distributions was to reduce the multivariate problem into a univariate-based

distribution, thus allowing the algorithm to be extended to multiple dimen-

sions with only minor changes. Therefore, the calculation of the non-overlap

probability and its threshold value remains the same for the multivariate case.

The main difference is that the distances are calculated in multiple

dimensions. In order to compare different variables with different units, all

variables are mean centered and scaled by the standard deviation of the vari-

able within the reference data set. The sample points are then analyzed after

applying the same transformation.

56



3.1.6 Block contributions

Once an overall metric is calculated in any fault detection algorithm, an

engineer or operator is interested in the contribution of each variable or of each

group of variables. For this algorithm, a blocking structure was implemented

similar to that in [86]. It allows for a blocking matrix with multiple levels.

At each level, variables can be blocked into arbitrary groups without any

necessary relationships between the levels. Usually the last level has each

variable in its own block in order to calculate the univariate contributions

to each variable. When a blocking structure is configured for a problem, in

addition to calculating the performance index for the overall problem with all

input variables, the entire algorithm is repeated for each block in each level.

For a block contribution, only the variables within the block are used in the

sample point and characteristic distance calculations. In this way, the block

performance index is based only the subspace defined by the variables within

the block. Finally the overall index and all the block contributions are reported

as a part of the algorithm results for each sample.

3.2 Algorithm validation simulations

To this point this method may seem very empirical, and there may

exist an analytical solution that better implements the goals of looking at the

local distance probabilities and comparing them to a sample point. In order to

justify moving ahead with this fault detection method, a series of simulation

results are presented to convince the reader of the power of this method.
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3.2.1 One-dimensional problem with various configurations

The first set of seven simulations builds various reference sets by creat-

ing one-dimensional data from normal distributions with seven different means

and standard deviations. The performance index is then evaluated for sample

points from eight standard deviations below each mean to eight standard de-

viations above each mean. Table 3.2 describes the different configurations for

each of the seven experiments. The resulting performance index are plotted in

Figure 3.9 overlaying the experiments by the number of standard deviations

away from the mean. For very different reference data sets and model para-

meters, there are very few false negatives or false positives using the limit of

1.0, and the overlap above this limit is acceptable. These results validate the

scaling that was use to generate the threshold of the non-overlap probability

and the scaling used to form the performance index, C.

Table 3.2: Configuration for one-dimensional simulations

Exp. Mean Std. Dev. s k n L
1 5 2 1000 30 300 0.995
2 10 20 500 25 200 0.995
3 100 1 750 25 200 0.995
4 50 5 1200 35 400 0.995
5 -2000 10 750 40 300 0.995
6 -2000 10 750 150 400 0.995
7 -2000 10 1250 200 400 0.995
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Figure 3.9: Performance metric plotted versus standard deviations from the
mean for multiple simulations

59



3.2.2 One-dimensional non-normal distributions

Another set of simulations evaluates the performance of the KNN method

when applied to non-normal distributions and evaluates the effect of the num-

ber of reference data used on the performance of the C metric. For this simu-

lation, ten probability distributions were analyzed with the given distribution

parameters,

• Normal distribution, µ = 0, σ = 2.5

• Exponential distribution, µ = 5

• χ2 distribution, V = 16

• Rayleigh distribution, b = 2.5

• Uniform distribution, -4 < x < 4

• Weibull distribution, A = 2, B = 1

• Lognormal distribution, µ = 1, σ = 0.2

• f distribution, v1 = 5, v2 = 8

• Poisson distribution (discrete), λ = 20

• Geometric distribution (discrete), P = 0.3.

Reference data and the theoretical 99% confidence limits were generated based

on each distribution for each simulation using the MATLABr Statistics Tool-

box. For each simulation, reference data were generated and used to create a
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KNN model (simply the reference data) and a PCA model (mean and standard

deviation estimate). Using these two models, 150 samples points were evalu-

ated from 20% less than the lower confidence limit (or zero for the one-sided

distributions) to 20% higher than the upper confidence limit. For each distri-

bution this simulation was repeated five times for each of 8 different reference

data sizes (33, 100, 200, 400, 850, 1250, 2500, and 5000). For each simulation,

the k and n values were selected as k =
√

s and n = s/3, where s is the number

of reference data within the model.

The results for these simulations are illustrated in Figure 3.10 through

Figure 3.17 for each of the eight different reference sizes. For each distribution

and each number of reference data, the C metric for each sample point is plot-

ted as a function of the sample point value with all five simulations combined,

and C values above 5 are shown at the value of 5. Also, a histogram which

pools the reference data of the five simulations together is overlaid. For the

two-sided distributions, the 0.5 and 99.5 percentile theoretical limits are plot-

ted, and for the one sided distributions the 99.0 percentile theoretical limit is

plotted. Finally a horizontal line is placed at C = 1 to show the warning limit

of the KNN model.

In order to analyze the performance of the KNN method to identify

excursions from non-normal distributions, the counts of the Type I and Type

II errors for each distribution were summed for each of the five simulations

(for a total of 750 sample points). In Figure 3.18, the Type I and Type II

errors (along with the total count) are plotted for the KNN and PCA model
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Figure 3.10: Non-normal distribution simulations using 33 reference points
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Figure 3.11: Non-normal distribution simulations using 100 reference points
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Figure 3.12: Non-normal distribution simulations using 200 reference points
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Figure 3.13: Non-normal distribution simulations using 400 reference points
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Figure 3.14: Non-normal distribution simulations using 850 reference points
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Figure 3.15: Non-normal distribution simulations using 1250 reference points
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Figure 3.16: Non-normal distribution simulations using 2500 reference points
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Figure 3.17: Non-normal distribution simulations using 5000 reference points
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for each distribution as a function of the number of reference data that was

used. In Figure 3.18.a, the normal distribution is compared. For the normal

distribution (and most others), as the number of reference data increases, the

error counts for the KNN model decrease initially then generally approach an

asymptote. For the normal distribution, the KNN model does not perform

as well as the PCA model (simply a Gaussian model), but does decrease to

an error count of 30 at 850 reference data points. In the exponential, χ2,

uniform, Weibull, log normal, and f distributions the KNN method performs

quite well reaching error counts of 50 or less at 850 reference points, and

it clearly outperforms the Gaussian model. For the Rayleigh distribution in

Figure 3.18.d, both the KNN and PCA methods perform similarly.

For the discrete Poisson and geometric distributions, as the number

of reference data increases, the error counts for the KNN method actually

increase. Internally to the KNN calculation, the estimation of the sample

point distribution and characteristic distribution break down when there is a

high number of repeated identical values. When all the k nearest neighbors

for a sample point have an identical distance and when each of the k nearest

neighbors of n nearby points all have identical values, there is no way to

estimate the distributions. For robustness in the algorithm, as long the sample

point is within one discrete step from n reference points which each have at

least k identical values, then the C metric is defined to be zero. As the number

of sample points increases, each value within the discrete distribution simply

gets an increasingly larger population, and a larger range of sample points are
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assigned a value of zero, which leads to the increase in Type II errors for these

distributions.

In all the different continuous distributions, Figure 3.18 shows that

there are limited performance gains for models above 400 to 1250 reference

data points. Also, models with reference data sizes below 100 or 200 reference

data points are significantly improved when larger reference data sizes are

used.

In addition to looking at the performance of the KNN algorithm, the

total calculation time for each simulation of all ten distributions was collected

for each reference data size. The calculation times were scaled by time to

calculate the simulation with 33 reference data points and the resulting relative

values are displayed in Table 3.3. These relative calculation times are plotted

versus the number of reference data used in the simulation in Figure 3.19.

From this calculation time data, it was determined that the KNN algorithm

(when analyzing data for a one-dimensional problem) is O(s2), where s is the

number of reference data within the model.

Further timing experiments were run varying the number of variables

within the reference data and the number of reference data in the model.

Reference data was generated by creating random data from a mean vector

and covariance matrix for each problem size. The number of variables was

varied using values of 1, 2, 4, 7, 12, 25, 50, 100, 200, 250, 650, 1000, and 1250.

The number of reference data points was varied using values of 33, 100, 200,

400, 850, and 1250. In each simulation the overall C value was calculated
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Figure 3.18: Type I errors, Type II errors, and combined errors for non-normal
distribution simulations using various number of reference points for both KNN
and PCA models
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Figure 3.19: Relative computation time for all KNN simulations for each num-
ber of reference points
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Table 3.3: Relative computation time for each simulation

# Ref Data Relative Computation Time
33 1.0
100 0.9
200 1.1
400 2.1
850 7.1
1250 14.8
2500 59.2
5000 255.8

along with C value for each univariate contribution. It was determined that

the relative computation time could be predicted by

tr(s, v) = (v + 1)(1.43e−6s2 + 0.349) + 3.39e−7(v + 1)3 (3.7)

where s is the number of reference data within the model and v is the number

of process variables within the model. For models with less than around 400

process variables the algorithm is O(vs2). For models in this range, the algo-

rithm scales linearly with the number of process variables, which is reasonable

since the algorithm calculation repeats for each block contributions in addi-

tion to the overall metric calculation. For models with more process variables,

the algorithm goes to O(vs2 + v3). For these very large models, there is more

than a linear increase in computation time as the number of process variables

within the model increases.
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3.2.3 Multiple dimensional problem with induced faults

In this example, 3000 sample points are simulated for 5 process variables

(p1 through p5) with some internal correlations. The first 500 samples are

considered normal, have no faults, and are used for the model building step.

The next 250 samples also have no faults. Starting at sample 751, each set of

150 samples has a different fault. The fault types used are ramp disturbances,

step disturbances, and changes in variation. In addition, some are applied

before the correlation and some are after the correlation. All the simulated

data are plotted as a time series in Figure 3.20. Scatter plots of the modeling

data for the first 500 points showing the internal correlation are shown in

Figure 3.21. In these figures it is clear that there is correlation between process

variables 1, 3 and 5 and also between process variables 2 and 4. Scatter plots

for the remaining test data are shown in Figure 3.22. Faults can be seen in

this figure that go outside the previous range of data and that clearly violate

the previous correlation of the data.

The reference data for the KNN fault detection method was taken as

the first 500 points. Then, each of the data points (including the first 500) was

treated as a sample point and the overall, block contributions, and univariate

contributions were calculated and are shown in Figure 3.23. The values for k,

n, and L that were used were 23, 167, and 0.995 respectively. The blocking

structure included a block for process variables 1, 3, and 5 and a second block

for process variables 2 and 4.

This data set has many interesting features that illustrate the properties
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Figure 3.20: Simulated data for 5 variables used for multivariate test
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Figure 3.21: Scatter plots of modeling set for 5 variables
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Figure 3.22: Scatter plots of testing set for 5 variables

78



0 500 1000 1500 2000 2500 3000
0

5

Overall
C

0 500 1000 1500 2000 2500 3000
0

5

Parameters 1, 3, and 5 block contribution

C

0 500 1000 1500 2000 2500 3000
0

5

Parameters 2 and 4 block contribution

C

0 500 1000 1500 2000 2500 3000
0

5

knn parameter block contribution p1

C

0 500 1000 1500 2000 2500 3000
0

5

knn parameter block contribution p2

C

0 500 1000 1500 2000 2500 3000
0

5

knn parameter block contribution p3

C

0 500 1000 1500 2000 2500 3000
0

5

knn parameter block contribution p4

C

0 500 1000 1500 2000 2500 3000
0

5

knn parameter block contribution p5

C

Figure 3.23: Performance index and contributions for simulated fault data
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Figure 3.24: Scatter plot of process variable 4 versus process variable 2 with
reference and fault data from samples 751 to 900

of the KNN method. In the first set of faulty data from samples 751 to 900

as shown in Figure 3.24, process variable 4 has an output step disturbance of

2.5 standard deviations. The univariate contribution identifies it as seen in

Figure 3.23.g. This same fault is also amplified in the block contribution in

Figure 3.23.c. This block contribution for process variables 2 and 4 has an

even larger magnitude because this fault also violates the strong correlation

between process variables 2 and 4. In addition, the overall contribution shown

in Figure 3.23.a still has a significant fault signal although it is muted from

the block contribution signal.

In the faulty samples from 1501 to 1650 there is a ramp disturbance

that is seen in both process variables 2 and 4 as shown in Figure 3.25. Here
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Figure 3.25: Scatter plot of process variable 4 versus process variable 2 with
reference and fault data from samples 1501 to 1650

this fault follows the correlation of 2 and 4 but moves outside the modeled

range, resulting in a fault. The magnitude of the block contribution in Figure

3.23.c and the individual contributions in Figures 3.23.e and 3.23.g are the

same, signifying that there is no violation of the correlation structure, but still

a faulty block.

A third type of fault that is identified is a ramp disturbance in process

variable 4 that occurs from sample 1351 to 1500 and is shown in Figure 3.26.

This fault is of small enough magnitude that the individual contribution of

process variable 4 in Figure 3.23.g remains below its threshold for this period.

The fault does represent a clear violation of the correlation structure, and the

block contribution and overall index show the appropriate violations in figures
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Figure 3.26: Scatter plot of process variable 4 versus process variable 2 with
reference and fault data from samples 1351 to 1500

3.23.b and 3.23.a respectively.

This multivariate simulation validates the use of this method in multiple

dimensions. The threshold value remains appropriate for the five-dimensional

problem, the two and three-dimensional problems for the block contributions,

and the one-dimensional problems for the individual contributions. In ad-

dition, the overall contributions seem to reflect the faults in the individual

process variables and the relationships between the variables. The block con-

tributions clearly show violations in the individual variables and the relation-

ships between the variables within the block. The individual process variable

contributions seem to also be appropriate univariate fault indexes, as they are

the same as the one-dimensional problems discussed earlier.
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3.2.4 Two-dimensional problems with multiple populations

The final simulations are designed to show the method’s ability to seg-

regate multiple populations, ability to tolerate isolated outliers within the

reference set, and the ability to tune the algorithm to be sensitive to local

densities. In the first simulation, the reference data set is built with two 500

point populations generated with different linear correlations that have a slight

overlap. In addition, 30 points are randomly generated with a uniform proba-

bility over the entire region and were added to the reference set. Sample points

were taken over a 100 by 100 grid, and the overall performance index was cal-

culated for each point. A contour plot of the performance index calculated

with k, n, and L equal to 33, 344, and 0.995 respectively is plotted in Figure

3.27. The performance index calculation was repeated with this same reference

set with n as 688 and 172 and plotted in Figures 3.28 and 3.29 respectively.

In the all of these figures, the threshold limit of 1 captures a reasonable

boundary around the two correlated populations. The uniformly distributed

(outlying) points do affect the value of the metric to some degree, but the

method does allow points within the reference set to have values greater than

1 if they do not fit the distributions assumed within the method. This feature

of the method allows it to be tolerant of outliers getting into the reference data

set. When enough points from an outlying region cluster within the reference

data set, the performance index will go below the threshold limit and create

another acceptable region.

Also, this simulation helps show that as the value of n decreases, the
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Figure 3.27: Contour plot of performance metric for two-dimensional problem,
n=344
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Figure 3.28: Contour plot of performance metric for two-dimensional problem,
n=688
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Figure 3.29: Contour plot of performance metric for two-dimensional problem,
n=172

metric becomes more sensitive to local populations. In Figure 3.28 with an n

value of 688 (two thirds the population size), the contours above and below the

two data sets are essentially parallel to the correlations. As the value of n de-

creases to 344 and then to 172 in Figures 3.27 and 3.29, the contours get closer

together near the dense regions of the reference data indicating an increase of

the gradient of the performance metric. These lower values represent a higher

sensitivity of the performance index in dense regions than in the sparse re-

gions. The n value can be thought of as the tuning knob for this sensitivity

to balance allowing multiple populations with different distance distributions

versus having smoother global expectations of the distance distributions.

In order to validate this observation about local to global sensitivity, a

final simulation was performed. In this simulation, 200 points were generated
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for each of 5 populations in a two dimensional space. Each population used

a separate standard deviation from the mean that was applied in the both

dimensions to create a reference data set with variable population densities.

The locations of and the standard deviations for each population are described

in Table 3.4. The contours of the performance index are plotted in Figures

3.30 through 3.33 for this reference set using a k value of 32, an L value of

0.995, and n values of 167, 334, 667, and 1000 again for sample points covering

the two-dimensional space.

Table 3.4: Location of and standard deviation for each population in the 5
population simulation

Center x1 Center x2 Std. Dev. Population
-5 5 1 200
5 5 0.5 200
0 0 0.75 200
-5 -5 2 200
5 -5 0.1 200

In this simulation, it is clear that the gradient of the performance index

is very different for different values of n. For the lowest value of n = s
6
, the

performance index is very dependent of the local population as seen in Figure

3.30. In this graph, the region near (5,-5) has very steep gradients reflecting

the very dense and isolated local population. As n increases, the contours

broaden and more reflect the global population density and distributions. As

n approaches the s value for the reference set, the region of values less than 2

in Figure 3.33 is entirely continuous and is approaching a convex region.
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Figure 3.30: Contour plot of performance metric for 5 population problem,
n=167
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Figure 3.31: Contour plot of performance metric for 5 population problem,
n=334
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Figure 3.32: Contour plot of performance metric for 5 population problem,
n=667
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Figure 3.33: Contour plot of performance metric for 5 population problem,
n=1000
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These last two simulations show the value of having an available tuning

knob to balance between local and global contributions. If n is too high, the

performance metric may not indicate local gross faults between population

centers, and if the n value is too low, the global shape of contours may not be

the shape expected around continuous population areas.

3.3 Conclusions

In this chapter a new method for performing fault detection based on

nearest neighbor distributions is introduced and evidence of its performance

is presented. The concept of the sample point distribution and the character-

istic distribution for a sample point is explained and illustrated. Then, based

upon these distributions a new fault detection metric is defined with three

tunable parameters (the number of nearest neighbors to search for each point

(k), the number of nearest neighbors to use in the characteristic distribution

(n), and the confidence level (L)). This new method’s performance index is

shown to have a threshold limit similar to the specified confidence limit for

normal distributions, and the method is flexible enough to have similar limits

even when multiple populations or non-normal distributions are present. The

performance index also scales similarly for different problem sizes and different

values of k and n. This method is shown to generalize in multiple dimensions

and provides appropriate individual variable and block contributions values.
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Chapter 4

Multivariate Analysis Reporting and

Visualization

This chapter describes a new general methodology to monitor a steady

state system (or one with slow dynamics) with a multivariate fault detec-

tion method. The goal is to leverage an adaptive multivariate fault detection

method (such as PCA or KNN) and its contribution results organized into

a hierarchy to monitor a set of related process variables (or electrical test

parameters as is used in this chapter) while allowing easy navigation of the

important results. This visualization and navigation system takes advantage

of the fault detection results, the parameter blocking structure created by the

end user, the adaptive model updates, the dynamically calculated univariate

limits, and any existing available fixed limits. It enables the user to navigate

from the highest level performance metric for a given sample or time period

and quickly find the most extreme and most frequent excursions, identify the

parameters blocks in which they occur, and quickly visualize the parameter

charts with all the known control limits.

In addition to describing this general methodology, the last section of

this chapter describes the results of applying this resulting system to monitor
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electrical test data at Spansion’s Fab25 (Austin, TX) with use of the RPCA

method based on the work by Cherry[17].

4.1 Motivation

The goal of fault detection for any given process is to provide notifi-

cation when a process excursion occurs and to diagnose the root cause of the

problem as quickly as possible. Historically, monitoring and visualizing prod-

uct quality values was predominantly performed by statistical process control

(SPC) charts. SPC charts utilize statistical analysis to monitor a single para-

meter at a time. They can notify the user if a statistically significant excursion

occurs based on set limits or an estimated mean or standard deviation. SPC

charts provide the security that any time a parameter exceeds the specified

control limits, proper notification will occur. They also provide a historical

record of the parameters over time and can visually identify trends and bi-

ases in the data. Unfortunately, if a large number of parameters are to be

monitored, the number of SPC charts and the number of manually configured

limits can become unmanageable. In addition, when an excursion occurs, all

the individual parameter alarms and their corresponding charts need to be

examined to identify a root cause.

In order to advance from this basic monitoring system, improvements

can be made by taking advantage of multivariate fault detection results. A

first requirement is that the system must retain the individual parameter chart

views similar to SPC charts because end users are comfortable using these for
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troubleshooting. These parameter charts are also supplemented with many

different types of limits such as high and low static and dynamic limits. The

second requirement is to incorporate multivariate performance metrics that ex-

amine the correlation between all the parameters and within parameter blocks.

The third requirement is to provide a structure to these block results so the

user can obtain a high level overview of excursions and then drill down to the

individual results.

The final component of the visualization system is to provide reports

that highlight to the user the individual parameters and blocks of parameters

where the most extreme and most frequent excursions are occurring over a

recent time period. This is accomplished by monitoring high and low limits

on both static and dynamic control limits for each parameter and multivariate

block. All these checks are then summarized in a periodic summary report

that has a rolling historical window and in a sample summary report that

gives all the results for a single sample or small group of samples.

4.2 Analysis methods and results

This section describes the necessary organization of the parameters into

logical groupings and the results that need to be calculated and retained for

each parameter and each grouping in order to enable the multivariate fault

detection system.
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4.2.1 Parameter blocking structure

In order to keep the monitoring system manageable as the number

of parameters increases, it is important to break the parameters into logical

blocks. These parameter blocks are to some extent arbitrary, but should have

meaning to the engineer in charge of monitoring the system. These blocks

are formed into a hierarchy so that the user can have a high level view of

the system and see where the excursions are located. This is done by making

sure that each level in the blocking structure forms parent-child relationships

in the form of a branching tree from the overall node down to the parameter

contribution nodes. As more detail is required within the results, the user

can also drill down deeper into the parameter hierarchy until the individual

parameters are reached. An example of a parameter hierarchy is illustrated

in Figure 4.1. In this example 18 parameters are being monitored. They are

divided into six level 1 contributions, three level 2 contributions, and an overall

performance node. This flexible architecture allows for an arbitrary number

of blocking levels between the parameters and the overall node and allows for

an arbitrary number of blocks within each level. Results are provided not only

for each of the 18 univariate parameters, but also for each block within the

hierarchy.

4.2.2 Univariate analysis

In the overall monitoring scheme there are a series of static limits that

are used to monitor the system. These static limits parallel traditional SPC
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Figure 4.1: Example parameter hierarchy[12]

limits. These must be manually maintained by an engineer if the process

happens to be changing frequently. Not all parameters are required to have

every limit, and depending on the importance of the parameter to the system

(or to achieve quick detection of a fault of the system) some limits can be

omitted.

The first limit applied to the data is a physical significance limit. This

is simply a check to see if the signal is a reasonable measurement at all. These

are usually fairly wide and cover the entire range of the measurement device.

Any data outside this range is treated as missing data. If a small percentage

of the total number of parameters is missing, then the missing data can be

reconstructed using the multivariate fault detection algorithm. This concept
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takes advantage of the redundancy of having multiple well correlated sensors.

The next limit is the static fault limit. This is usually a specification

limit that should rarely be exceeded. Any parameter values beyond this will

be reported as a very high priority alarm. It is important to set these spec-

ification limits at levels so that the range has equally “high” importance for

each parameter.

The final static limit is the warning limit. The warning limit should

be set as the traditional control limit with a value of plus or minus three

standard deviations or at a specific confidence limit from the expected mean

for each parameter. These static warning limits provide an early warning that

a parameter is beginning to move significantly and provide a good safety net

when there is a heavy reliance on dynamic limits that may slowly drift from

the actual process window.

For each univariate parameter, the result of the static warning and

static fault check are saved. For each hierarchy node, the node value is simply

the logical “or” of the results of all the child parameters within the span of

the node. So unlike multivariate results (as introduced in the next section),

if a parent hierarchy node has an excursion, then at least one of it children

parameters had an excursion.

4.2.3 Multivariate analysis

In order to implement a multivariate analysis method, in most cases

the parameters to be analyzed will be preprocessed. In most methods, some
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attempt will be made to put all parameters into a common unit system. Most

commonly this is done by performing mean centering and standard deviation

scaling based on the mean and standard deviation of each parameter. This

translation of the data allows parameters with arbitrary units to be compared

in a multivariate sense.

In addition, historical data will be processed to build an appropriate

model for the multivariate technique. In the case of RPCA used in this work,

one of the model building steps is to remove the parameters that do not have a

normal or near-normal distribution from the multivariate model. Parameters

that take on few distinct values can cause a serious problem if they are left

in the model, because small (normal) changes in the parameter can lead to

large changes in the performance metric. For these parameters the system

will simply suggest fixed univariate limits, and remove the parameter from the

multivariate model.

Once the parameter selection is complete, a multivariate model of his-

torical reference data can be performed as described in section 2.2.2. For each

new sample, the overall performance metric is calculated, along with each

block contribution, and the block contribution for each univariate parameter.

In addition, the equivalent limits for the univariate parameters in their origi-

nal parameter space are calculated. After the calculation is complete, a model

update is calculated (in the case of RPCA, by updating the parameters mean,

standard deviation, and correlation structure as described in 2.2.2.2). This

model update allows the multivariate model to provide dynamic limits in both
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the multivariate space and specific limits in the univariate original parameter

space.

For each node in the parameter hierarchy, the performance metric is

compared to the current warning and fault limit. For PCA, the performance

metric is scaled so that a value above 1.0 is a warning (outside the 99.5%

confidence limit) and a value 10 times that represents a very serious fault.

Due to the multivariate nature of the performance metric, a parent

node within the parameter hierarchy may have a fault when none of its child

parameters have a fault and also may not have a fault even when all the child

parameters have a fault. An example of a two parameter block contribution

appears in Figure 4.2. In this example there are four classes of points; points

that

• fail both univariate and multivariate limits,

• pass univariate and multivariate,

• pass univariate but fail multivariate limits, and

• fail univariate but pass multivariate limits.

4.3 Charting overview

This section describes the three main charts that best visualize results

from monitoring a set of parameters with univariate and multivariate fault
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Figure 4.2: Multivariate and univariate limits on a 2 parameter block[12]

detection. The first section describes the most basic single parameter chart.

The next section describes highest level overall performance metric chart. The

third section describes the middle layer visualization of block level contribution

plots.

4.3.1 Single parameter charts

The most basic chart in the visualization system is the parameter chart.

This chart view is very similar to an SPC chart and provides the history of

a parameter for a certain historical period of time. Along with the historical

time series, all the univariate limits for a certain parameter are overlaid. An

example parameter chart is shown in Figure 4.3. In this chart there are static
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Figure 4.3: Example parameter chart of normal data

warning and fault limits, dynamic warning limits, and the dynamic moving

average plotted to give the user a reference to the quality of the historical

data. In the case of the parameter in Figure 4.3, it is clear that the parameter

is well within its normal limits, and there is little or no change in the mean

and standard deviation over the time period.

In a second example of a parameter chart in Figure 4.4, an excursion is

identified that clearly violated both the static and the dynamic warning limits,

but is not a major fault by either the static or dynamic fault limits. Also in

this figure, there is a consistent offset between the static and dynamic limits

suggesting a possible need to change the static limits.
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Figure 4.4: Example parameter chart with warning

4.3.2 Overall sample performance charts

The highest level chart for monitoring a particular multivariate analysis

model is the overall performance chart. In this chart the value of the overall

performance metric is plotted along with its corresponding limits for a historic

time period, say the most recent seven days as illustrated in Figure 4.5. This

chart gives the high level view of if there is any issue with any of the model in-

put parameters or the internal correlation between the parameters. This chart

gives a visual indication if there are any excursions and shows the magnitude

of the excursions. Once excursions are identified, more information can be

acquired by looking at block contributions and single parameter charts.
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Figure 4.5: Example overall performance chart with fault and warning limits

4.3.3 Contribution charts

The simplest way to display the contribution information is to plot

a bar chart for a single sample. In this chart there is a bar for each block

contribution parameter on each level of the blocking structure. Since the

multivariate analysis metrics are scaled to a common warning limit of 1.0, this

line can be added (along with other fault limits if necessary) to quickly identify

the parameters contributing to the excursion. An example of a contribution

bar chart is displayed in Figure 4.6 for a single sample.

In order to provide this same information, but observe these contri-

butions over a window of multiple samples, a contribution symbol chart can

be displayed as in Figure 4.7. This chart has the samples on the x-axis sim-
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Figure 4.6: Example contribution bar chart with fault and warning limits

ilar to the overall sample chart, then has a row on the y-axis for each block

contribution. On the chart there is a symbol representing if the sample is

normal, a warning, or a fault. This contribution symbol chart allows a very

quick overview of the faults identified in a window of time and which blocks

contributed to the excursion. The chart in Figure 4.7 shows the results for the

blocks as described in Section 4.2.1.

4.4 Reports for navigation

In order to make the charts in the previous section useful for an engi-

neer to quickly diagnose a particular problem or see a periodic issue with a

particular parameter, summary reports are provided. The sample summary
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Figure 4.7: Example symbol block contribution plot with fault and warning
indications

report merges the results for a group of samples (such as wafers into their

parent lot in the semiconductor industry). This report summaries the univari-

ate parameter checks and visually indicates the problem parameters within

the group. The period summary report takes a moving window of the most

recent data and counts the number of faults for each parameter and each block

contribution. It summarizes the results such that the most extreme and most

frequent violations are highlighted for the monitoring engineer. In both of

these reports direct links are provided to the corresponding charts to give the

engineer a clear picture of the data behind the summary statistics.
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4.4.1 Sample summary reports

Sample summary reports summarize individual parameter excursions

for a single sample or a group of samples. This report is used when there is

an issue with the particular sample, and the engineer would like to quickly

examine which parameters were abnormal. For each parameter the univari-

ate mean and range are displayed along with the limits for each check. The

rows are sorted so that the most severe faults are displayed first, followed by

the warnings, and then the normal parameters. The parameter values and

the checks that are in violation are highlighted. Figure 4.8 shows the first

twelve rows of a sample report of a model with 100 parameters. This report

summarizes the twelve samples that were in a specific group (LotXX). Para-

meter 51 had one wafer (8% of the group) that violated specification limits,

the RPCA fault limits, and the RPCA warning limits. Since this was the only

specification violation, this parameter was sorted to the very top of the sam-

ple summary report and colored red. The next parameter had eight samples

(66% of the group) that failed the configured SPC limit and one that failed

the RPCA warning limit. This parameter is then sorted as the second row

because SPC limits were given preference over RPCA warnings and is colored

orange to indicate an SPC violation. The next six parameters are colored

yellow to indicate a RPCA warning violation in at least one sample and are

sorted in descending number of samples that had a violation. The rest of the

report (the four remaining lines and the other 88 lines that were not displayed)

include the parameters that have no violation and are simply sorted by pa-
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Figure 4.8: Example sample summary report

rameter name and included for completeness. Each line in the report has a

link to the parameter chart (as described in section 4.3.1) corresponding to

the parameter and a start and end time (a number of days before and after

the sample was obtained). This report provides a quick health of group of

samples across all parameters and provides links to understand the univariate

parameter violations.

4.4.2 Periodic summary reports

The period summary report attempts take all data from a recent win-

dow of results and identify the most severe and frequent excursions that are

caught from the multivariate blocks and the univariate parameters. The re-
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port is created by querying the results for a single model from a recent time

period such as the last week’s worth of data. Then the number of faults that

occurred for each parameter and block contribution are counted for each limit

check. Instead of simply sorting each parameter by the number of faults, the

block hierarchy is sorted to highlight the blocks that have the most severe and

frequent excursions. First the top level of the hierarchy is sorted, then the

child nodes within the next level are sorted. This process is repeated until the

parameter level is sorted (the lowest level nodes of the parameter hierarchy).

When nodes are sorted there is an order of precedence between the dif-

ferent limit checks. The order used from most severe to least severe is specifi-

cation faults, RPCA faults, SPC limit violations, and finally RPCA warnings.

If two nodes have the same number of specification faults, for example, then

they would be sorted based on the number of RPCA faults, and this process

would be repeated until the order of the rows are resolved.

Once the entire parameter hierarchy tree is sorted, rows are created

within the report starting with the highest level within the tree for the node

that sorted highest. Then a row is created for its highest child, and again for

its highest child, until the parameter level is reach. Once all the parameters in

this one node are added, then the next rows are filled in with all the blocks and

their children, essentially flattening the sorted tree into rows within a table as

illustrated in Figure 4.9. In each row of the table, the node name is printed

under the appropriate node level (in this case Overall, Layer/Device, Scrap

Code, or Parameter), then the count of each type of violation that occurred
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Figure 4.9: Example periodic summary report

during the window of time the report covers.

This report accomplishes the goals of identifying the highest level blocks

that have the most severe and frequent faults by putting together the fault

counting, block sorting, and the fault severity ordering. In Figure 4.9 the

“Diode” Layer/Device is sorted higher than the “Core” Layer/Device because

the “Diode” block contained three specification violations compared to the two

specification violations in the “Core” block. Within the “Diode” Layer/Device,

the “COREDIODE” Scrap Code comes before the “DIODE” Scrap Code also

because it has more specification violations. Within the “DIODE” Scrap Code,

the first two parameter each have one specification violation, each have one

RPCA fault, neither have SPC checks, but the first has nine RPCA warnings
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so it was placed first in the sorting.

4.4.3 Navigation

In order to provide meaningful navigation for a factory wide deployment

of multivariate monitoring based on the system that has be described in this

chapter, the final step was to give every engineer a common starting point.

Every day a periodic summary report is created for every model that is online

and has results. Then the top “Overall” line from each report is taken to

create a model summary list. This list is also sorted similarly by severity and

frequency and sent to every engineer in an email (and posted on a common

website). From this list the engineer can click on the model and see the

individual periodic summary report for the last week.

From the periodic summary report the user can drill down to any of

the charting types described in Section 4.3. The “Overall” column header is

linked to the overall sample performance chart to quickly view the value of the

performance metric over the period of the report. The block contribution nodes

in the report such as “Diode”, “Core”, “COREDIODE”, “CORETRAN”, etc.

are links to the symbol block contribution plots which contain rows within the

graph of all the children of the selected node and have a time range of the

period of the report. The parameter names in the final level of the hierarchy

link directly to the univariate parameter chart with all the limits overlaid for

the period of the report.

From any of these three types of charts, the user can also select a data
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point which corresponds to a particular sample. From the sample, a link is

provided to the sample report to review all the other parameters for the sample

group.

These navigation options allow an engineer to become completely em-

powered to discover the excursions within a huge data set and understand

them very quickly. Dozens of models each with hundreds of parameters can

be summarized into detailed information, and for the important parameters,

the engineer can drill down and learn the root causes of concern. Unlike a

simple SPC system, where individual charts (and hence each parameter) is

monitored individually, this system allows all the parameters to be integrated

and sorted. This system takes advantage of static limits along with dynamic

limits, warning levels along with fault levels, and multivariate FDC metrics

to sort parameter blocks. This sorted result leads the engineer directly to the

most extreme and most frequent excursions within the data set and puts the

important data right at their fingertips.

4.5 Results for electrical parameter monitoring

This software architecture for monitoring a multivariate FDC method

was implemented in Spansion’s Fab25 in Austin, TX to monitor final electrical

wafer test results. The system was originally implemented with results from

the RPCA algorithm based on the work by Cherry[17]. This implementation

was then extended to also use the KNN method as described in Chapter 3.

Near the end of the manufacturing line for semiconductors, many cir-
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cuits are measured at many sites on a selection of wafers. For wafers that

are measured, over 700 circuit measurements are made at each selected site.

The manufacturing system summarizes the site measurements into a single

measurement for each parameter for each measured wafer.

Prior to this new monitoring application, the monitoring engineers were

only able to monitor 40 parameters (of the 700) per device with the SPC sys-

tem. The SPC system would require maintaining SPC limits for each parame-

ter for each device and responding to each excursion for which they received

an email notification. Working with the team responsible for monitoring the

system, parameter hierarchies with meaningful block contribution nodes were

built. In most cases, around 150 parameters were included in the parame-

ter hierarchies, which is a significant improvement in coverage from the SPC

system. In all cases the same parameters and hierarchy were shared by all

the devices within the same technology. This allowed additional summary re-

ports that included counts for the same parameters and nodes across multiple

devices within the same technology.

For each device, a RPCA model was built using an offline utility and

placed into the system. The system was integrated with the factory to get

a daily update of SPC, physical significance, and specification limits for each

device to keep these up to date.

This system is currently running on multiple electrical testing process

steps with dozens of device models. Now that the system is installed, verified,

and demonstrated, about 20 engineers have signed up to get the daily reports
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emailed to their inbox and others routinely consult the web page for results

information.

4.5.1 Application results

Using this technique to monitor the results of electrical test data proved

very successful. It provided significant information to engineers, and made this

information much easier to access.

The combination of fixed and adapting limits made the system more

robust. Generally the dynamic RPCA warning limits are tighter than the

manual fixed SPC limits as illustrated in Figure 4.10. In this case the RPCA

limits provide earlier detection that something has shifted, but also change

with the data, so they require no maintenance as compared to the SPC limits.

Also, occasionally the RPCA limits are outside the manual fixed warning limits

as illustrated in Figure 4.11. In this case the SPC limits provide warnings

before the parameters move past known fixed boundaries. Together both types

of limits maintain the security of not moving past a fixed boundary while

also providing notification of tighter, maintenance-free limits that reflect the

changing mean and standard deviation of the data.

The combination of two severity levels of each limit type also adds

information in the results and robustness to the model updates. Observing

the application, in general the RPCA fault alarms correlated highly with the

specification violation alarms. Both fault indicators from the dynamic RPCA

model and the static factory limits would both identify extreme violations.
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Figure 4.10: Typical parameter chart with RPCA limits tighter than SPC
limits

Figure 4.11: Parameter chart with tighter SPC limits than RPCA limits

112



Occasionally the RPCA fault alarm would trigger even with data inside the

manual specification limit providing early indication of an extreme excursion.

Having two severity levels allowed the system to point out the gross excur-

sions in the model reports. This was valuable in quickly pointing out the

worse samples in the period summary reports and in identifying a sample list

for the previous day that engineers can go troubleshoot. The identification

of gross errors was also utilized in the RPCA model updating. Samples with

gross errors in overall performance were not used to update the model. Also

parameters that had gross errors in parameter contribution performance were

reconstructed again before model updates were performed. This kept the mod-

els updates robust, so that parameter estimates did not become unstable, and

kept the acceptable region within the model from growing unreasonably large.

With a robust underlying multivariate monitor for each device com-

bined with the static factory limits and two levels of alarms, the reporting

infrastructure was successful. Many engineers use the system because all the

alarm information is together in one place and they feel they have access to

valuable information. They also realized the value and importance of the block

contribution naming as they recognized the groups they had specified early in

the model building phase. Frequently the monitoring application was point-

ing out exactly the parameters in the devices that the engineers were getting

notified about from the factory operators.
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4.6 Conclusions

In this chapter a novel monitoring infrastructure has been described

that can be used to monitor the results of any multivariate analysis method

along with its application to electrical parameter monitoring. This infrastruc-

ture took advantage of a hierarchical tree structure for block contributions

with labels provided by the monitoring engineers. These custom block labels

were critical to communicating effectively the results of very large data sets.

The reporting system was effective at highlighting the most severe and most

frequent problem areas within the data sets. The incorporation of dynamic

and static limits on parameters helped the monitoring system stay effective

and robust for data sets with realistic factory variations. Integrating this appli-

cation into the existing factory system for fixed limits and using self updating

models made the application maintenance-free.

For the specific application that was developed, the reduction in limit

maintenance allowed monitoring engineers expand the scope of the number of

parameters they could continuously monitor with their limited time. Overall,

engineers were very engaged with this application from its first roll-out, and the

application highlighted important problems in the data sets that were being

worked on. It also provides some assistance in visually triggering engineers to

adjust the SPC limits or specification limits that may no longer be accurate.

Overall this investigation showed that monitoring of semiconductor electrical

test data is feasible with the developed analysis tools and visualization system.
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Chapter 5

Semiconductor Process Tool Analysis

In this chapter work is presented relating the application of multivariate

analysis to monitoring semiconductor process tools. In the first section an

alternative approach is proposed for updating a PCA model to monitor a non-

stationary process. To complement monitoring with adaptive models, two

metrics are presented to monitor the movement of process variables between

two points in time when a PCA model is constantly being adapted. Results

for these methods are presented on an oxide etch process.

The second section of this chapter describes the extension of the KNN

algorithm to monitoring batch processes. Two separate methods for applying

the algorithm are presented. In addition, the two methods are compared along

with PCA, MPCA, TLD, PARAFAC, and PARAFAC2 on an induced fault

experiment available in the literature[112, 113] from a metal etch process.

5.1 Monitoring dynamic processes

Monitoring most semiconductor process tools historically has been a

very challenging task. In many process tools, especially in plasma etch and

other plasma-based processes, the chambers undergo frequent maintenance
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cycles. Each cycle begins with a cleaned and conditioned chamber, and from

this point the tool process variables may drift and vary until the chamber is

shut down again. When the tool is idle, key parts are cleaned or replaced. This

process is repeated in order to avoid incorrectly processing wafers or creating

defects on the wafer surface.

In order to monitor such a drifting system, a PCA model can be used as

described in Section 2.2.2. When a static PCA model is applied to a drifting

system, eventually the process variables will drift beyond the model limits,

and every new run will be considered an excursion. Existing methods that

attempt to solve this issue are discussed in Section 2.2.2.2 and in Wold[116],

Gallagher et al.[38], and Li et al.[64]. In this work, a method for model updates

to provide local fault detection is proposed that simply updates the mean

and standard deviation coefficients used to center and scale the input data

after each run. This update method is computationally simpler and easier

to implement than periodically building a new PCA model[38] or using the

recursive PCA technique[64].

In this method the centering and scaling coefficients are updated using

a recursive scheme. The means of each summary statistic are updated with

an EWMA filter

x̄n = λx̄n−1 + (1− λ)xn (5.1)

where x̄n is the estimated mean after n points, xn is the new data point, and

λ is the filter coefficient. In this investigation λ was set to 0.92 in order to
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produce very slow adaptations. The scaling coefficient for each variable sum-

mary statistic is updated with the following exact recursive standard deviation

formula

σn =

√
n− 2

n− 1
σ2

n−1 +
1

n
(xn − x̄n−1)2 (5.2)

where σn is the estimated standard deviation, x̄n−1 is used instead of the

actual previous mean value, and n is the number of points that have been used

previously in the standard deviation calculation. In order to create a recursive

filter from this expression, a fixed value of n of 500 is used representing a long

window length.

When a drifting process is monitored by an adapting model, there is

no indication of the variables contributing to the drift from the multivariate

model performance metrics. In order to communicate the variables which are

changing between two reference runs, the relative change in the centering and

scaling coefficient for each variable can be calculated between two runs. This

calculation is performed by subtracting the mean estimate at an initial run

from the mean estimate at a final run for each variable, then scaling each

difference by the corresponding standard deviation used for scaling in the

initial run. The mean movement metric MX̄ is calculated between run a and

run b as

MX̄ |a,b =

∣∣∣∣
X̄b − X̄a

σa

∣∣∣∣ . (5.3)

The scaling movement metric Mσ is calculated as the difference in standard
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deviations scaled with the mean used for centering that step statistic

Mσ|a,b =

∣∣∣∣
σb − σa

X̄a

∣∣∣∣ . (5.4)

The components of these movement metrics are then displayed in a Pareto or

contribution chart to identify the variables that exhibited the largest relative

change in mean and standard deviation during the period. A typical fault

contribution plot indicates the local deviation from a particular run to the

model at the current time. These movement metric contributions indicate the

variables with changes over a period of time in which the model has adapted.

The movement metrics are an important supplement to the typical contribu-

tion plot. In the periodic summary reports discussed in Section 4.4.2, in each

process variable row the mean and standard deviation movement metric can

be provided to indicate if the variable has changed significantly within the

reporting period. This addition allows the system to highlight that process

variables are changing, although they may not be changing fast enough to get

detected by the performance metrics of the adapting model.

5.1.1 Plasma etch process monitoring

The plasma etch process is used in semiconductor manufacturing to

precisely and selectively remove material from the wafer surface. Prior to the

etch process, a uniform film of photoresist is placed on the wafer. This film is

then exposed with a precise pattern with a lithography tool, developed, and

then the exposed material is removed. This process leaves behind gaps in the

photoresist, which expose the sites on the surface to be etched. This work
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focuses on the etching of silicon oxide for trenches and vias (wiring lines and

vertical connections between wiring layers within the chip). The etch process

uses plasma above the wafer surface to generate high energy ions that are

accelerated through the plasma sheath to the surface of the wafer. Due to

the voltage potential of the sheath being perpendicular to the wafer surface,

the high energy ions that strike the surface in areas that are not protected by

photoresist and then react to create essentially vertical notches in the surface.

These notches grow until either the plasma is extinguished or the reaction at

the surface is quenched. The goal of the oxide etch process is to etch a notch

in the silicon oxide material and stop the etch before it proceeds into the

next material while making sure to clear the oxide in all notches throughout

the wafer without much variation. The use of chemically selective etchant

gases such as fluorinated and chlorinated species provide a tool to etch one

material at much higher rates than the underlying material, stopping the etch

propagation into the new layer.

The industrial plasma etcher is a modular production tool. A cas-

sette of wafers, usually holding 25 wafers, is loaded into the tool. Then the

wafers are individually removed from the cassette, aligned, and placed into

the process chamber. Within the process chamber a preprogrammed recipe

of many process steps is executed. Usually the recipe consists of sets of steps

beginning with a stabilization step, a powered etch step, and then a pow-

ered over-etch step. The stabilization step starts the flow of the process gases

into the chamber an continues until the pressure and temperature within the
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chamber stabilize. Once stabilized, the powered step begins and the power is

turned on. Quickly the matching network adjusts the reactivity of the deliv-

ered power, and after this stabilizes, the rest of the step is essentially a steady

state process with constant power, temperature, pressure, and gas flow rates.

This step lasts for a fixed time or until an optical sensor detects the endpoint

by a change in composition within the chamber. After this endpoint detection,

there are a few seconds of “over-etch” time in the final step to make sure the

entire wafer has uniformly reached endpoint. These three step types can be

repeated within a single recipe to etch different materials on the surface of the

wafer with different gases and power settings.

5.1.2 Adaptation and movement metric results

Process data were acquired from Tokyo Electron Unity II DRM CCP

chambers that operate an oxide etch with C4F8/CO/Ar + O2 chemistry. This

tool operates in a batch mode with a fixed process recipe for each lot. Typ-

ically a single recipe is used lot after lot for a particular process step in the

manufacture of a device. The same tool frequently is used for many different

device layers and steps, but for each process step, the recipe is the same. Data

collected include the chamber pressure, applied power, various temperatures

and process gas flow rates, and other variables relating to the power and tem-

perature control. A complete list of variables used in this investigation is given

in Table 5.1. The process recipe used in this study has three main steps: a

photoresist cleaning, the main etch step, and a photoresist stripping step. The
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scope of this study is limited to the main etch step, but there may be signifi-

cant diagnostic value in monitoring the other steps as well. For each process

step, the mean and standard deviation of each tool variable were calculated

from roughly 160 samples for each wafer. The beginning portion of the step

where the RF power increases was ignored in these statistical calculations in

an attempt to remove the variation due to matching network when the power

is turned on. The resulting mean and standard deviation summary statistics

were used to monitor the chamber on a wafer-by-wafer basis. The mean sum-

mary statistics for variables with direct control (such as the gas flows) were

omitted from the model, and only the step standard deviations were used.

In this investigation a principal component analysis model was created

for the first 500 wafers using the same recipe in a single chamber. The standard

PCA methods implemented in MATLABr were used with mean centering

and unit variance scaling as described in [52]. Also, the standard Q residuals

(SPE) and Q contributions were calculated using the Eigenvector Researchr

PLS Toolboxr.

The PCA model built from the first 500 wafers in the first chamber

was applied to all 3200 wafers from this chamber. Figure 5.1 shows that the

resulting Q statistic exceeds the 95% confidence limit in the model in less than

250 wafers after the model was built and never returns to below that level. In

addition, distinct outliers and distinct step-like changes are apparent. When

the centering and scaling constants are adapted, the Q statistic is much more

stable across all the remaining wafers. Figure 5.2 shows that after the first
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Table 5.1: Tool Variable Descriptions

Area Variable Descriptions
Gas flow and PRESSURE Chamber Pressure
Pressure APC Throttle Valve Angle

Ar Ar Flow Rate
C4F8 C4F8 Flow Rate
CO CO Flow Rate

Power and RF-FORWARD-LO Lower Electrode Power
Matching C1-POSITION-LO Matching Network Capacitor 1

C2-POSITION-LO Matching Network Capacitor 2
ESC-CURRENT Electrostatic Chuck Current
ESC-VOLTAGE Electrostatic Chuck Voltage
MAGNITUDE Matcher Magnitude
PHASE Matcher Phase
RF-VDC-LO Lower Electrode DC Voltage
RF-VPP-LO Lower E. Peak to Peak Voltage

Temperature LOWER-TEMP Lower Electrode Temperature
and Cooling UPPER-TEMP Upper Electrode Temperature

WALL-TEMP Wall Temperature
COOL-GAS-FLOW1 He Edge Cooling Flow Rate
COOL-GAS-FLOW2 He Center Flow Rate
COOL-GAS-P1 He Edge Cooling Gas Pressure
COOL-GAS-P2 He Center Cooling Gas Pressure

500 wafers, the data predominantly stay inside the same limit.

Wafer 1492 has the largest Q value in the adaptive case. The residual

contribution plots for both the static and adaptive cases for this wafer as

shown in Figure 5.3. This figure indicates that C1-POSITION-LO mean, RF-

VPP-LO mean, LOWER-TEMP mean, and ESC-CURRENT mean are the

extreme contributors. The arbitrarily scaled summary statistics for the ESC-

CURRENT mean and the RF-VPP-LO mean are plotted in Figure 5.4. These
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Figure 5.1: Calculated Q for static PCA model of first 500 wafers
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Figure 5.2: Calculated Q for PCA model with adaptive mean and centering
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Figure 5.3: Q contributions for extreme outlier, wafer 1492

four variables account for the large spikes in the data at four points, which

could indicate an issue with the matching system. This type of outlier is clear

in both the static model and adaptive model Q charts, but only the adaptive

case allows for a fixed limit for all time.

The next type of excursion that can be identified is a step-like change

that is observed in the input summary data. In the static case such changes

are clearly evident in the Q chart, although automating detection of these

changes with a static limit would prove quite difficult. In the adaptive case

there are only 4 periods where the Q statistic violates the confidence limit

for more than five consecutive wafers (starting at wafers 1880, 2535, 2683,
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Figure 5.4: Summary statistics for process variables leading to the highest Q
deviations for wafer 1492
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and 2948). When the mean movement metric is calculated about each of

these four periods (from the wafer before the period to the wafer after the

period), the most extreme contribution values occur for wafers 1880 and 2946

on variables C1-POSITION-LO mean and LOWER-TEMP mean, respectively.

The mean movement metric contributions for these two periods are shown in

Figure 5.5. The arbitrarily scaled summary data for the two variables are

displayed in Figure 5.6. The two major changes in the Q statistic seem to be

dominated by these two variables. The shift in these variables may have been

caused by a tool cleaning, where the replacing of key parts could have changed

the electrical or heat transfer characteristics of the chamber. Although the

temperature is regulated in the process chamber, this is performed only at the

upper electrode and walls. The lower temperature is not controlled and could

be affected by different materials or part configurations in the chamber. The

fault contribution plots for the static case and the adaptive case for wafer 1880

both are dominated by the C1-POSITION-LO. For 2948, LOWER-TEMP is

the dominant contribution in the adaptive case, but in the static case it is only

slightly larger than the C1-POSITION-LO value (which does not change at

this run).

After looking at the major changes over time for one chamber, the

same model from the first 500 wafers is applied to a set of 800 wafers from a

second chamber. Figure 5.7 shows that the plot of the Q statistic for the static

model is many orders of magnitude greater than the confidence limit (around

4.0) for the model. Figure 5.8 shows the same model with adaptive means and
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Figure 5.5: Mean movement metric contributions for the first chamber from
wafers 1870-1890 and from wafers 2937-2960
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Figure 5.6: Process variable charts for largest mean movement metric contrib-
utors LOWER-TEMP-M and C1-POSITION-LO-M
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centering applied. The performance metric value is below the model confidence

limit after only 25 wafers (the typical load for a single cassette). After the

initial adaptation period, the model is still able to indicate the same gross

outliers, but also it can highlight other variations such as the region between

wafer 445 and 455. With this same model applied to a second chamber, a

contribution plot can again be used to identify the cause of the single point

excursions. The fault contribution plot for the extreme excursion at wafer

422 is shown in Figure 5.9. The contribution plot based on the static model

for this wafer compared to the contribution based on the adaptive scheme no

longer point necessarily to the same contributors. The adaptive contributions

most likely indicate the local faults in the second chamber. The contributions

from the static model are a mix of the contributions to the excursion and

to the difference between the operating conditions between the two different

chambers.

In order to investigate the sudden shifts of the system, periods of consec-

utive violations were noted from the data in Figure 5.8. Three different regions

had more than five consecutive points exceeding the confidence limit (occur-

ring at wafers 1, 91, and 446). The movement metric for the first 22 wafers,

where the model was adapting to the new chamber values, highlighted signif-

icant changes in RF-VPP-LO mean, ESC-VOLTAGE mean, C2-POSITION-

LO mean, ESC-CURRENT mean, and RF-FORWARD-LO standard devia-

tion, indicating that many of the electrical characteristics have offset between

the two chambers. The period beginning with wafer 91 has two large spikes
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Figure 5.7: Calculated Q for initial model applied to second chamber in a
static mode
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Figure 5.8: Calculated Q for initial model applied to second chamber with
adaptive mean and centering
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Figure 5.9: Q contributions for extreme outlier on second chamber, wafer 422
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within five runs, causing the movement metric to identify the adaptation of

the model to the outliers. In the final region starting at wafer 446, the metric

contributions shown in Figure 5.10 points to a mean change in APC mean and

COOL-GAS-FLOW1 standard deviation and points to a standard deviation

change in COOL-GAS-FLOW1 standard deviation and the UPPER-TEMP

standard deviation. The wafer summary data for these variables exhibit a

clear jump at wafer 446 at this time as seen in Figure 5.11. Further analysis

would be necessary to speculate on a type of problem that would be char-

acterized by a shift in the throttle valve angle used to control pressure, in

the variability in the helium flow used to control temperature on the lower

electrode, and in the variability in the upper temperature.

5.1.3 Adaptation methodology compared

Spitzlsperger et al.[100] compared this proposed method for adaptive

centering and scaling without correlation updates with a number of other fault

detection methods. In their work, the authors similarly looked at a plasma etch

tool utilizing at ArO2C4-F8 chemistry. They analyzed the step means for only

the RF system variables, the temperature variables, and the pressure control

valve actuator. For multivariate monitoring in this study, the Hotelling’s T 2

was used simply on the correlation matrix (and a PCA reduction was not

performed).

Spitzlsperger et al. showed clearly that the etch process was not stable

over a series of five wet cleans (over 10,000 runs). They compare the method
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Figure 5.10: Mean and standard deviation movement metric contributions for
the second chamber from wafers 445-454
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Figure 5.11: Process variable charts for largest mean movement metric contrib-
utors at wafer 445, UPPER-TEMP-S, COOL-GAS-FLOW1-S, and APC-M
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used by Gallagher et al.[38], which utilizes continuous model rebuilding from

recent windows of data, and the previously proposed method of simply re-

cursively updating the means and standard deviations. In addition, they in-

corporated process knowledge by selecting variables typically without drifts

and chose not to update these variables. They also looked at limiting updates

when the T 2 value exceeds its current limits.

They concluded that all methods were able to identify the extreme

step changes at the beginning of a wet clean cycle. All methods also identified

RF voltage instabilities during one of the clean cycles. During an excursion

where the temperature clearly drifts, the fully adapting model tracks with

the drift and does not detect the fault. In their partially updating model

(where temperature is considered a known non-drifting variable and is hence

not updated), the drift can be clearly identified, as expected. In the model

with a moving window model update and in the model with an update that

uses all the data since the beginning of the experiment, a similar performance

is shown as the fully updating model. In all the adapting cases drifts are

difficult to identify.

Spitzlsperger et al.[100] also looked at a number of values for the tuning

parameters λ and n used in the recursive updates for the mean and standard

deviation, respectively. They found that for values of λ between 0.5 and 0.999

and values of n between 200 and 800, the Hotelling’s T 2 value for both full

updating and partially updating models did not change significantly. They

concluded that the exact values of the tuning parameters are not critical to
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the performance of the T 2 metric.

Spitzlsperger et al. concluded that all the adaptive methods success-

fully keep the T 2 statistic inside its fixed control limit, which is a major im-

provement over a static model. As a side effect of removing known uncritical

process drifts, these adaptive methods also remove slowly rising excursions.

They also concluded that adding computational effort to perform remodeling

of the correlation structure did not improve fault identification performance.

For the best monitoring results, they suggest the incorporation of engineering

knowledge to allow some process variables to adapt while others remain fixed.

Overall they found the method of recursively updating the means and centers

very useful and practical.

5.1.4 Dynamic process monitoring summary

In this section it was shown that a static PCA model can be inade-

quate for monitoring a etch process chamber for a long period and cannot

be effectively applied from one chamber to other chamber without updates.

The adaptive centering and scaling of a PCA model did allow monitoring of

a drifting process without rebuilding the model, and was able to utilize the

original model limits. Even with the adaptation scheme, contribution plots

of the squared prediction error, Q, were able to discriminate the root cause

variables of the local deviations instead of global changes. In addition, the

contribution plots of the proposed movement metrics discriminated variables

that have sharp changes during a period of successive excursions or between
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any two points that were monitored.

The work of Spitzlsperger et al. also validated the utility of this adapta-

tion scheme for monitoring drifting processes without performing more compli-

cated and computationally expensive model updates. Improvements could be

made to incorporate process knowledge to selectively determine which variables

are allowed to adapt. In any case, the burden of monitoring many univariate

control charts and continuously updating acceptable limits are removed, and

multivariate analysis techniques can be applied to monitor dynamic semicon-

ductor process tools.

5.2 KNN algorithm extended to trace data

In this section two methods for applying the KNN method (described

in Chapter 3) to tool trace data are proposed. In Section 2.4 algorithms for

batch process monitoring are described. A three-dimensional array (I×J×K)

is analyzed for model building, where I is the number of batches, J is the

number of process variables, and K is the number of time-based samples made

of each variable during a batch. The KNN methods will be applied to these

same data arrays. The nonlinear properties of the underlying KNN methods

will create a novel multiway method. In addition, the second KNN method

will take advantage of the non-parametric aspect of the method to dynamically

build a model for each time sample by using only reference data with similar

step times.
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5.2.1 Unfolding

One method to implement the KNN algorithm for trace data is to

simply unfold the data in the time dimension for each batch data set, similar

to multiway PCA as discussed in Section 2.4.1. This transformation takes the

value of each process variable at each time as an entry in the sample vector. If a

batch has 20 process variables being monitored for each of 30 time samples (for

example a 1 minute process sampled every two seconds), this would result in a

sample vector for the batch of 600 variables. For the KNN analysis method, a

history of these sample vectors would be collected to create the reference data

set.

For an overall performance metric, C is calculated as in Equation 3.4

for a multivariate problem. In order to obtain individual process variable,

individual time sample, and step level contributions, block contributions are

used as described in Section 3.1.6. One level in the block contributions is

dedicated to individual process variables with all times of that variable sharing

a block. Another level in the block contributions is used for each time sample,

with all process variables sampled at that time sharing a block. A third level

corresponds to each process step within the batch (if there is more than one)

with a block for all the time samples within that step with the complete set

of process variables. A final level is dedicated to all the univariate (process

variable and time combinations) contributions with each element in the sample

vector having its own contribution. Other custom levels can then be added if

there are process variable groupings that of interest to a user. For each batch
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sample, the overall metric is calculated and the analysis is repeated for each

block within each level of the contributions. The results are a useful set of

contributions to diagnose the root cause of an identified excursion.

One major drawback of this unfolding technique is that each batch must

have an identical number of samples representing the exact same periods in

time for each batch. In reality, data collection systems do not necessarily pro-

vide data at exact periodic rates, and fab processes do not necessarily always

have the exact same duration on every run. In order to accommodate these

realistic constraints, system data must be preprocessed into a fixed number of

time samples that represent a similar time (or event) within the process step.

The simplest method is to simply pick a fixed number of time periods that

correspond to a fixed set of step times. Then for each time period interpolate

the values from the process data at these times. Other more sophisticated

methods for particular processes have been devised that attempt to look at

the signals and align them such as dynamic time warping[55], but these were

not the focus of this research.

The other drawback of this technique is its computational complexity.

This method requires dynamically generating the relationship between points

in a very large dimensional space. This technique must maintain enough refer-

ence data to characterize a region of space at every evaluation. As the number

of dimensions of the space increase (both due to the number of process vari-

ables and the number of time samples per batch), this adds to the number

of samples that are required. As the number of samples and the number of
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dimensions grow, the computation time grows quickly.

5.2.2 Trace sample analysis

An alternative approach to the unfolding method takes advantage of

the fact the KNN method does not have to build a fixed model ahead of time.

The trace sample analysis technique assumes that reference data around the

same time period within the batch (or process step) should be characteristic of

a single sample within a new batch. To analyze a single sample trace sample

within a batch, the algorithm simply queries all the reference data traces

with step times within ±m seconds from the sample trace. The results of

the query become the reference data for the individual sample trace, and the

KNN algorithm is executed resulting in a performance value C for the single

trace and process variable contributions for the single trace. This process is

repeated for each trace sample within the batch to be analyzed. To obtain

the overall batch performance metric, a weighted average of the time-based C

metric is calculated as

Cbatch = log10(
1

n

n∑
i=1

10Ci), (5.5)

where n is the number of traces within the batch. Similarly, the individual

process variable contributions are also calculated as the weighted average of

the time-based contributions. This exponentially weighted average was chosen

so that faults which are extreme, but only occur during a small fraction of the

process time, still result in a larger than average batch metric. Additionally,

they still have the property that values between zero and one are normal

142



values and values of greater than one are excursions. Values of C above four

are considered to be extreme faults.

This technique also adds a tuning parameter m, which is the number

of seconds to scan within the reference data to find reference trace samples.

The parameter m adds flexibility to use the KNN algorithm to monitor traces

from a process that have variability in the timing of a particular feature. For

instance in monitoring a plasma etch tool, the etch process may clear the

main etch layer at varying times (based on a slowly drifting etch rate). This

would cause the endpoint signals for monitoring emissions to have a transient

earlier or later within a step. Since the KNN algorithm can model multiple

populations within the reference data, if the m time window is wide enough to

cover this variation in the time of a transient, these types of processes can be

monitored without having unacceptably large windows around the transient

period.

In order to illustrate the usefulness of m, a simulation of three vari-

ables was performed for a number of batches. To generate data with random

variations in sample rate and time-based dynamics, a time counter and three

process variables were generated as

ti+1 = ti + 1/3 + 0.01ωi (5.6)

xi+1 =





5 + 0.5ωi, i < 6
xi + ((i− 6)/2)2 + 0.25ωi, 6 ≤ i < 17
81 + 0.5ωi i ≥ 17

(5.7)

yi+1 = yi + 0.1xi + 0.5ωi (5.8)
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zi+1 = zi + xi − yi + 0.5ωi (5.9)

where the initial vector of [t0, x0, y0, z0] = [0, 5, 0, 0] and ω is random sequence

of normally distributed values with mean zero and unity standard deviation.

This system was simulated 35 times and the example traces are shown in

Figure 5.12. From these 35 batches, many static KNN trace models were built

on x, y, and z using various values of m. An additional 35 test batches were

created by simply adding time delays from -0.8 seconds to +0.8 seconds to the

existing simulated batches and are shown in Figure 5.13. Each of the models

with various values of m were then applied to the test batches, and the KNN

trace performance metric versus time delay for the various models is shown in

Figure 5.14. For models with a small value of m, even when there is a small

change in the time delay, there is a large increase in the performance metric. As

the m value increases, the sensitivity of the performance metric to the change

in time delay decreases. For processes that are known to shift in time, the

m value can be tuned to allow this normal variation, but still will provide an

alarm as the shift becomes too great. MPCA and KNN models using unfolding

were also built with the simulated batches. Similarly these models were then

applied to the same 35 test batches with various time delays. The resulting

overall performance metric for each method with respect to the time delay is

shown in Figure 5.15. The methods using unfolding have no inherent tuning

capability to allow for varying time delay. These models could be rebuilt with

data reflecting various time delays, but reference data with future time delays

may not be available when the model is built.
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Figure 5.12: Simulated data for model building
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Figure 5.13: Simulated data with time delay of ±0.8s for testing
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Figure 5.14: KNN trace performance metric C versus delay time for models
built with varying values of m

Figure 5.15: Performance metrics versus time delay for KNN methods and
PCA
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One disadvantage of this technique is that it no longer models the

autocorrelation within the process step. In this technique reference data is

used from a time period around each sample and only the correlation between

variables during the time range is modeled. In the unfolding techniques, the

correlation of the same variable at all different time periods is explicitly mod-

eled. One major advantage this technique has over unfolding is that there is no

longer a restriction that each batch must have the same number of time sam-

ples or even have the same sampling rate. In practice, tool sampling rates can

vary and process steps terminated with endpoint systems will lead to very dif-

ferent batch durations. This advantage combined with the ability to tune the

algorithm for accommodating time delay makes this a very useful algorithm

for monitoring batch processes.

5.2.3 Algorithm comparison on plasma etch with induced faults

In order to compare the proposed KNN algorithms applied on trace

data with existing algorithms, the machine data from a metal etch process

with induced faults was used from the investigation of Wise et al.[112]. This

data set is publicly available1 in a MATLABr format.

This investigation attempts to monitor an aluminum stack etch process

performed on a Lamr 9600 plasma etch tool. The detailed process informa-

tion and sensor information can be found in [112]. Each batch consists of

19 tool sensor values and has nominally 70 time samples. Three independent

1software.eigenvector.com/Data/Etch/
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experiments were performed (29, 31, and 33) where faults were intentionally

induced by changing the TCP power, RF power, pressure, Cl2 or BCl3 flow

rate, and He chuck pressure. These experiments consisted of a total of 129

wafers with 21 faults. To make detection of these faults a non-trivial task, the

sensor values for the induced faults were reset back to their original values in

the data sets. This induced method simulates a sensor fault where the onboard

controllers believe there is a change in a variable, when in reality the sensor

reading is simply biased.

The three experiments were run at widely spaced intervals, each a

month apart. Within each of the three experiments, trace data were collected

for a number of normal runs, then the selected induced fault runs, and finally

more normal runs. Between the experiments extreme tool drifts are apparent,

and the univariate means of the three periods are very different. The data

can be easily separated into three groups, one for each experiment. Because

of this separation, a local model can be built for each of the three periods and

a global model can be built from the entire data set.

Wise et al.[112] compared a number of methods in their investigation,

which are discussed in Section 2.4. They looked at PCA models built (1) on

the step means (with both global and local models), (2) on each raw data point

(both global and local models), and (3) on mean-centered data (global model

only). They created local and global multiway PCA models with unfolding

along with a global model with mean-centering. They also created trilinear

decomposition and PARAFAC models for each local region and the global
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model. In Wise et al.[113] the authors also analyzed the same data set with the

PARAFAC2 method, although they did not provide results of each individual

fault. A summary of the previous results from these two investigations for

each fault for the PCA, MPCA, TLD, PARAFAC, and PARAFAC2 models

are shown in Table 5.2.

In order to compare the KNN methods, the raw data from the etch

process was preprocessed. Similarly to [112], all the trace samples were ignored

except for the last 25 samples from step 4 and the first 45 samples of step 5. For

the KNN method with unfolding, the variables were then autoscaled. A KNN

unfolding and a KNN trace model were built for each of the three experiments

based on the normal data within the experiment and for a global model based

on the normal data for all the experiments. For the KNN model with unfolding,

the reference data for the local model consisted of 34 to 37 batches with 1330

unfolded variables (19 process variables by 70 samples per batch). With so

few samples compared to variables, relatively high values of k and n of 20 and

30 were used. For the unfolding KNN global model, every other reference data

point was used instead of all the reference data to speed up computations. For

the KNN trace model, a value of m of 3.5 seconds (for the 1 sample per second

sampling rate) was used. In addition, a reference data size is used which is

long enough for each process step to cover all the reference data used in each

experiment (and for all the experiments for the global model). The k and

n values used in this model were configured to vary with each trace sample

computation, and were computed as k =
√

s and n = s/3, where s is the
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Table 5.2: Simulation results for various algorithms on fault runs, ∗∗[112],
+[113]
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number of reference data points selected in the particular trace calculation.

For each local model, the overall C metric was calculated for each

induced fault run that occurred during that experiment. The global model

was then applied to all the induced fault runs. For both KNN methods, C

values greater than one are considered warnings and values greater than four

are considered extreme faults. The results for the KNN with unfolding and

KNN trace are shown in Table 5.2 along with the results of the other methods.

Overall, the KNN with unfolding method successfully identified many

of the faults using local models. It performs similar to PARAFAC for detecting

the most (17) of the 19 faults. The global model outperforms all other global

methods. Unfortunately, the KNN model with unfolding also identifies some

of the training data as excursions. Six of the 107 normal runs were identified as

warnings by the local models and the global model identified seven reference

data as extreme faults. So although this method was very sensitive to the

induced faults, it did not validate satisfactorily with normal data. With only

34-37 batches used as reference data within the local KNN models, the KNN

method does not have enough data to adequately characterize the distributions

within the reference variables. In Section 3.2.2, simulations were performed

on a number of different distributions with varying reference data sizes. For

the normal distribution simulations with 33 reference data points as shown in

Figure 3.10.a, the performance of the KNN method with this few reference

data is poor even for a single reference variable. Figure 3.18.a shows that an

increase in the number of reference data significantly improves the performance
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of the method when the number of reference data is this low.

The KNN trace method also identified the induced faults well. The

local models for this method captured 16 of the 19 faults, performed the same

as PCA on local means, and identified only one fault less than PARAFAC.

The global model for KNN trace was able to identify 13 of the faults, also

exceeding any other global model from an existing method. The KNN trace

models also validated much better than the KNN unfolding method. In each

of the four KNN trace models, at most one normal run was identified as an

extreme fault, and in the global model only two normal runs exceeded the

warning limit.

The KNN methods both exceeded all methods in identifying the in-

duced faults with a global model covering three distinct populations. This

result helps to verify the ability of the KNN method to identify excursions

even when the reference data is clustered into different populations. All the

other methods are based on linear assumptions that only allow one continuous

region of “normal” operating space. The KNN methods allow for separate

populations and have the ability to identify faults between the data popula-

tions, compared to the linear methods that just expand the “normal” operating

space to include all the populations within the modeled data.

5.3 Conclusions

In this chapter two new methods for monitoring semiconductor batch

processes were presented. The first half of the chapter was dedicated to mon-
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itoring drifting processes with adapting models. A method for updating the

means and standard deviations used to center and scale the process variables

within a PCA model after each run was presented. This method was shown

to bring the squared prediction error (Q) calculated by the model back under

the limit calculated for the model and maintain it there even as the process

drifts. In addition, when the model is applied to a second process chamber,

the Q value returned to below the model confidence limit in only 25 wafers.

Spitzlsperger et al.[100] also compared this method to others and found that

for monitoring a drifting system it performed comparably to other methods,

including complete model rebuilds at every run.

The introduction of the mean and range movement metrics is another

improvement to assist monitoring systems with drifting processes. These met-

rics allow the process variables contributing to process changes to be identified

between two points in time when the model has adapted to them. This in-

formation is important to engineers monitoring the process because it is not

available from normal fault contributions when models are configured to au-

tomatically adapt to changing conditions. This method also allows engineers

to implement time-saving automatically adapting methods without concerns

about missing slow adaptations.

The second half of this chapter discusses two techniques for applying

the KNN algorithm developed in Chapter 3 to tool trace data. The KNN

algorithm can be applied using unfolding similar to MPCA or it can be applied

by searching ranges of trace data to create separate time-based reference data
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for each time sample. The detailed implementations of these methods were

discussed. The new tuning parameter in the time-based algorithm was shown

to allow monitoring of batches with variable time delay without modeling

reference data with all the possible time delays.

These two methods were compared to a large number of existing batch

methods using the induced fault etch experiments provided by Wise et al.[112].

The KNN methods both performed quite well and ranked among the best

of the methods for identifying the induced faults. Unfortunately, the KNN

method with unfolding failed to validate normal runs as normal. Not much

can be concluded about this approach since the reference data available in this

experiment is smaller than what is needed for the KNN method. The KNN

trace method performed very well and was able to validate normal runs. It

showed that a KNN global model could be used to model multiple populations

with only a slight loss of sensitivity compared to local models, and a better

sensitivity than any other global model type. In addition, the KNN trace

method includes flexibility for batches with varying sample rates, varying step

durations, and a tuning parameter for treating variable time delays within the

batch.
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Chapter 6

Conclusions and Recommendations

6.1 Summary of work

In this work a number of improvements to multivariate fault detection

are introduced and applied to semiconductor monitoring applications. The

background for many existing statistically-based multivariate fault detection

algorithms is presented. These mature algorithms have all the attributes re-

quired for robust fault monitoring. They include performance metrics with

statistically calculated limits, include variable and block contributions, they

handle missing data, and they provide options for automatic model updating.

Existing methods for visualizing the results from these algorithms are also

discussed. In addition, existing methods for analyzing batch processes using

statistical multivariate algorithms are presented in detail.

Outside from the parametric statistical methods, non-parametric mod-

eling methods for fault detection are also presented that come from the field

of outlier and anomaly detection within multivariate data sets. These meth-

ods have identical goals as the parametric statistical fault detection methods.

They have the advantage of simply storing reference data and make fewer as-

sumptions about the structure of the data. These non-parametric methods
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even function well when data is nonlinearly distributed and can have outlier

metrics with local and global properties. Unfortunately, when all the existing

non-parametric metrics are applied to data sets with populations of varying

densities, the metrics take on different values near the different populations.

These outlier metrics do not have uniform outlier limits that parallel the sta-

tistically generated confidence limits in all regions of the reference data.

Based on these non-parametric concepts, a k nearest neighbor algorithm

for fault detection is proposed and evaluated in Chapter 3. This algorithm is

based on comparing the sample point distribution to the characteristic dis-

tribution for a new sample point. From the overlap of these distributions, a

fault detection metric C was created, with the tuning parameters of k, n, and

the confidence limit of the model. The C metric scales such that all prob-

lem sizes yield a similar response of the metric and have the same confidence

limit of unity. In addition, this univariate metric is applied to multiple dimen-

sions to generate an overall performance metric and block contributions. This

technique provides a non-parametric method with all the attributes required

for robust fault monitoring and allows for clustered populations within the

reference data.

In Chapter 4 a novel infrastructure is introduced to monitor any multi-

variate analysis method. To expand on the existing overall performance metric

and contribution charts, periodic and sample reports are added. Periodic re-

ports such as a daily report summarizing the weeks worth of model results

provide significant information to monitoring engineers. Based on the variable

157



hierarchies created by the engineer, these reports have the ability to high-

light the most extreme and most frequent excursions in both the multivariate

analysis technique and the univariate factory limits, to identify the contribut-

ing variables or blocks of variables, and to put the supporting historical data

right at an engineer’s fingertips. They utilize two levels of alarms for both

fixed and dynamic monitoring and require very limited maintenance by the

monitoring engineer. This system was applied to monitor final wafer electrical

test data for all products within Spansion’s Fab25 and results are presented.

Methods to help monitor drifting processes with multivariate analysis

techniques are discussed in Chapter 5 with applications to monitor semicon-

ductor process tools. A method to recursively calculate the centering and

scaling coefficients used in a PCA model is proposed. This method allows

the model to incorporate the slow moving drifts and provide meaningful con-

tributions relative to the current state of the process without the need to

recalculate or recursively update the PCA model. It also allows a model built

for one process chamber to be applied to another process chamber. Along

with the method for adaptation, movement metrics are proposed that allow

monitoring of the centering and scaling coefficients in adaptive models. When

adaptive models are used, slow drifts in the process and model limits may

go unnoticed. The movement metrics yield the relative process variable con-

tributions to changes in the means and standard deviations between the two

reference times. These can be used in periodic monitoring reports to highlight

variables contributing to drifts over the period or can be used to highlight
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the variables that contribute to the difference between two different chamber

models. These methods are illustrated on an oxide etch process with variable

drifts.

The final contribution of this work is two different approaches of ap-

plying the k nearest neighbor algorithm to batch systems. The first method

applying the KNN algorithm is identical to the unfolding algorithm used in

MPCA. The second method analyzes traces separately based only on reference

traces within a window of time within a process step, essentially creating a

separate model for each time period within the reference data set. This sec-

ond method introduces a tuning parameter that adds flexibility for monitoring

processes that have time delays within a batch. This method also removes the

restriction that each batch must have the same sample rate and the same num-

ber of samples within each batch. Both the unfolding method and the trace

sample method are applied to a metal etch process with induced faults[112].

The fault detection results are compared to a number of other batch techniques

that have been used to analyze this same data set.

6.2 Summary of results

The development of the k nearest neighbor algorithm adds a new option

for multivariate fault detection. In Chapter 3 this method was shown to have

a similar response on various one-dimensional sample problems with different

reference data population sizes, means, and standard deviations and when

different values of k and n tuning parameters are applied. On a simulated
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five variable problem with induced faults, the algorithm was able to identify

faults, the blocks that contributed to the faults, and the individual variables

that contributed to the faults. In both these sets of simulations, when the

performance metric was applied in a different number of dimensions, the use

of a common confidence limit of unity was shown to be appropriate for all

cases. It was also shown that the n tuning parameter could be used to tune

the global or local response of the algorithm in two-dimensional simulations

with multiple populations of varying densities. These simulations also verify

that the algorithm is tolerant to outliers within the reference data set, and is

capable of identifying reference data as an outlier. This fault detection method

has been shown to have all the attributes of a robust fault detection algorithm

and provide sensitivity to multiple populations within the reference data set.

This algorithm was also extended to analyze batch process tool data

in Chapter 5. The unfolding method and the trace sample method are each

evaluated and the trace sample method is shown to be a viable candidate

for monitoring batch processes. When the KNN algorithm with unfolding is

applied to the metal etch process to identify induced faults, the method is

able to identify the most faults, but it did not always validate known normal

data. This method struggles from the small reference data size available in

the experiment. When the KNN algorithm with trace sample analysis is used

to identify the induced faults, it performs very well and (unlike the unfolding

method) it is able to validate the known normal data. This algorithm ranks

among the top methods using local models and has the highest detection rate
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of any of the global models for this induced fault experiment. This result helps

to show the usefulness of non-parametric algorithms to model processes with

multiple data populations. It was also shown that this method’s configuration

parameter allows it to be robust when used to monitor processes with variable

time delay within batches.

In addition to the creation of a new fault detection method, improve-

ments for visualization of any multivariate method and additional methods

for monitoring adapting methods are introduced in this work. A software in-

frastructure is proposed in Chapter 4 for monitoring an existing system with

the addition of a multivariate method. The proposed reports with all their

integrated charts and limits have proven to be very useful and informative in

industrial practice. The periodic reports are used daily for multiple final wafer

test steps by a number of engineers. They provide instant access to an overview

of the number of excursions, a sorted list of the most important variables and

variables blocks, and links directly to the historical data for the period. This

application was able to expand the number of test parameters that are moni-

tored by engineers because of the low maintenance that is required to use such

an automated system.

In order to improve upon monitoring systems with slow drifts, a method

to update the centering and scaling coefficients of a PCA model is proposed in

Chapter 5 without requiring the model to be periodically rebuilt or recursively

updated. When a static PCA model is applied to a drifting process, the

squared prediction error quickly exceeds the limit and never returns to below
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the limit. When the recursive method was applied, the squared prediction error

for the model was kept generally below the confidence limit associate with the

model. This adaptation method was also applied successfully to use a model

from one process chamber to monitor the performance of process data from

another chamber. In both cases the contributions of excursions were shown

to better represent the changes in the sample from recent runs instead of the

differences of the sample to the runs used to build the model.

Another improvement to monitoring systems with adapting models was

the introduction of relative movement metrics. When adapting models are

used, information is lost concerning the dynamics to which the model is adapt-

ing. The movement metrics are shown to identify the variables that contribute

to drifts and changes in variance of the system. They can also be used effec-

tively to identify the differences between two models applied to two different

process chambers. Overall, these metrics identify to engineers the signals that

are causing the models to adapt. This information allows engineers to con-

fidently use adaptive models without worrying that the models will adapt to

unknown disturbances and never generate alarms.

This work has made a number of improvements to existing fault de-

tection methods. The k nearest neighbor algorithm has the advantage of the

flexibility of simply retaining reference data without pre-computing a model,

and it has unique properties for detecting local outliers in reference data with

multiple populations. This algorithm applied to trace data extends the exist-

ing batch process monitoring techniques. The method of trace sample analy-
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sis provides improved performance of global models and provides additional

flexibility of time delays and variable batch lengths. The visualization in-

frastructure adds to the existing simple charting methods that currently exist

and provides a summary over a specified duration to identify both extreme

and frequent excursions. The method of adaptive means and centering coef-

ficients and the movement metric calculations both assist in the monitoring

of a drifting process by accommodating change without losing the informa-

tion contributing to the change. All of these improvements help in performing

multivariate fault detection, especially in the semiconductor manufacturing

industry.

6.3 Recommendations for future work

Based on this work, many areas of improvement could be investigated in

the future. In the KNN algorithm, better rules could be developed for selecting

values of k and n to use. The square root rule for k and the one third rule for

n work well for large reference data sizes, but for small reference data sizes,

k and n should most likely have minimum thresholds. In addition, the value

of n is tuned so that the algorithm can be sensitive to multiple populations.

For robustness, this feature should not be used until the reference data size

reaches a certain minimum size.

Also, since the KNN algorithm seeks to create continuous distributions,

when discrete or rounded process data are included that only take on a few

individual values, the selection of nearest neighbors and the estimation of

163



distributions are difficult. Discrete exception handling could be investigated

to replace the continuous distributions when there are many repeated values

within the reference data.

In order to make the KNN algorithm adaptive in this work, a simple

moving window of reference data is used. In this case, only the model length

is available to tune the dynamic memory of the model, the robustness of the

non-parametric estimates, and the computation time of the method. An im-

provement could be made to enhance the moving window and attempt to keep

memory by selecting which sample of the old reference data to disregard when

a new sample is added. Similar to Wold’s [116] method, key reference data

could be maintained while other reference data could be removed. Alterna-

tively, quick calculations such as the Zeta metric[89] could be performed on

the reference data to rank the normality of each sample. Then traces could be

selected to be removed based on probability, in order to balance keeping the

reference data on the periphery but also not allowing the acceptable region

defined by the reference data to only grow over time.

Finding simpler calculations that have similar properties could be in-

vestigated. This task could be performed along with simplifying the models

used in Equations 3.3 and 3.6 to unify the metric for all values of k, n, s,

and L. In addition, more theoretical approaches could be used to fitting these

models to improve upon the empirical approach used in this work.

For the KNN algorithm applied to batch data, two areas for improve-

ment could be investigated for the trace sample analysis method. First, the
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time variable used to search for trace samples within the reference data could

be replaced with a monotonically changing “batch maturity metric”, if one

exists. Similar to the PLS method used in Wold et al.[119], this change would

allow the current trace to be compared with traces at a similar maturity in-

stead of necessarily in the same time period. Another current problem with

using the process recipe step time is that there is no support for variable length

batches when the sample batch time exceeds the longest batch time in the ref-

erence data set plus m. Samples after this time period have no reference data

and simply generate alarms. Providing some performance index calculation for

samples beyond this time would be a valuable improvement to the algorithm.

165



Appendices

166



Appendix A

Non-overlap threshold raw data sets

As discussed in section 3.1.3, in order to find a relationship between

the non-overlap probability threshold value and a given confidence limit, sim-

ulations were performed for a series of different reference data sizes (s), values

of k, and values of n all using different data generated from the same normal

distribution. Then the values of the non-overlap probability were calculated

at the sample points corresponding to the different confidence limits (L values

of 0.999, 0.997, 0.975, 0.9, 0.8, and 0.85) calculated from the normal distribu-

tion. All combinations of reference data of size (s) of 40, 100, 300, 800, 1500

entries, n values of 10, 20, 35, 66, 150, 500, and s, and k values of 10, 20, 33,

40, 60, 150, and 250 were used where k < n < s. It is worth pointing out

that simulations with low values of s, k, and n provided very noisy results (as

would be expected with the statistics involved with small sample sizes). Since

this area is not where the algorithm will be used in the future, these values

were not given as much weight in the fitting analysis. The raw data from these

experiments are in the following two tables.
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Table A.1: Table of experimental results for confidence limit overlap probabil-
ity threshold, part 1

Experiment Settings Overlap Threshold Value for various L Percent Absolute Prediction Error
Exp. s k n 0.999 0.997 0.975 0.9 0.8 0.85 0.999 0.997 0.975 0.9 0.8 0.85

1 40 10 10 0.222 0.371 0.659 0.791 0.815 0.871 82 41 2 13 18 8
2 40 10 20 0.119 0.238 0.483 0.713 0.827 0.828 66 8 19 18 13 9
3 40 20 20 0.154 0.255 0.511 0.768 0.899 0.868 74 15 13 9 4 4
4 40 10 35 0.078 0.181 0.409 0.674 0.835 0.831 49 21 38 19 10 5
5 40 20 35 0.115 0.206 0.449 0.733 0.896 0.872 65 6 25 10 2 0
6 40 33 35 0.185 0.275 0.518 0.783 0.927 0.89 78 21 9 3 1 2
7 40 10 40 0.121 0.239 0.485 0.728 0.888 0.865 67 9 16 10 3 0
8 40 20 40 0.155 0.257 0.513 0.783 0.929 0.907 74 15 9 2 2 4
9 40 33 40 0.222 0.317 0.567 0.826 0.949 0.923 82 31 1 3 4 6
10 100 10 10 0.168 0.375 0.865 0.916 0.82 0.969 71 23 9 3 20 0
11 100 10 20 0.086 0.236 0.678 0.831 0.89 0.884 53 5 0 9 9 7
12 100 20 20 0.133 0.265 0.694 0.847 0.94 0.933 70 15 2 7 3 2
13 100 10 35 0.038 0.152 0.552 0.811 0.925 0.894 7 44 10 7 3 3
14 100 20 35 0.077 0.181 0.568 0.836 0.952 0.934 48 20 6 4 0 1
15 100 33 35 0.12 0.222 0.595 0.872 0.975 0.956 66 2 2 1 2 4
16 100 10 66 0.015 0.099 0.467 0.817 0.925 0.891 173 120 21 0 0 1
17 100 20 66 0.044 0.128 0.489 0.841 0.951 0.929 9 70 16 3 2 5
18 100 33 66 0.079 0.166 0.521 0.878 0.971 0.95 49 31 9 7 4 7
19 100 40 66 0.097 0.186 0.537 0.892 0.976 0.961 59 17 6 8 5 8
20 100 60 66 0.161 0.253 0.58 0.902 0.984 0.973 75 14 2 9 6 9
21 100 10 100 0.024 0.12 0.5 0.825 0.927 0.89 71 81 12 3 1 3
22 100 20 100 0.056 0.148 0.518 0.851 0.949 0.927 28 47 8 6 4 6
23 100 33 100 0.093 0.187 0.549 0.89 0.967 0.948 57 17 2 10 6 8
24 100 40 100 0.114 0.208 0.565 0.905 0.972 0.959 65 5 1 12 6 10
25 100 60 100 0.182 0.278 0.61 0.926 0.981 0.974 78 22 8 14 7 11
26 300 10 10 0.112 0.203 0.904 0.826 0.946 0.92 113 180 1 19 5 8
27 300 10 20 0.054 0.194 0.887 0.814 0.926 0.924 51 94 5 18 7 6
28 300 20 20 0.149 0.313 0.945 0.879 0.961 0.975 45 20 11 10 3 0
29 300 10 35 0.021 0.116 0.825 0.814 0.93 0.927 110 129 7 15 5 4
30 300 20 35 0.086 0.216 0.873 0.871 0.968 0.974 49 23 12 8 1 1
31 300 33 35 0.146 0.282 0.877 0.913 0.979 0.986 70 6 13 3 0 2
32 300 10 66 0.005 0.05 0.655 0.81 0.918 0.942 740 340 2 11 5 0
33 300 20 66 0.037 0.122 0.689 0.876 0.95 0.975 10 81 4 3 2 3
34 300 33 66 0.077 0.175 0.695 0.913 0.965 0.988 48 27 4 1 0 5
35 300 40 66 0.093 0.192 0.695 0.928 0.97 0.991 57 15 4 3 0 5
36 300 60 66 0.127 0.228 0.695 0.947 0.977 0.995 68 3 4 5 1 5
37 300 10 150 0 0.009 0.525 0.74 0.916 0.914 18998 2291 10 13 2 1
38 300 20 150 0.006 0.049 0.536 0.783 0.94 0.95 523 343 8 7 0 5
39 300 33 150 0.026 0.084 0.537 0.821 0.951 0.962 55 160 8 2 1 6
40 300 40 150 0.035 0.096 0.535 0.839 0.955 0.967 14 126 8 0 2 7
41 300 60 150 0.056 0.122 0.533 0.86 0.964 0.977 28 78 8 3 3 8
42 300 150 150 0.135 0.213 0.564 0.869 0.97 0.95 70 2 2 4 3 5
43 300 10 300 0 0.009 0.526 0.733 0.929 0.919 29180 2211 7 9 2 6
44 300 20 300 0.006 0.049 0.537 0.789 0.942 0.943 606 342 5 1 3 8
45 300 33 300 0.025 0.084 0.537 0.825 0.951 0.954 58 161 4 3 4 9
46 300 40 300 0.035 0.096 0.536 0.842 0.954 0.958 16 127 5 5 4 9
47 300 60 300 0.055 0.122 0.534 0.865 0.961 0.967 27 79 5 8 5 10
48 300 150 300 0.135 0.213 0.564 0.88 0.976 0.977 70 2 1 9 6 11
49 300 250 300 0.228 0.308 0.618 0.891 0.986 0.977 82 29 9 10 7 11
50 800 10 10 0.324 0.389 0.95 0.666 0.956 0.795 77 105 2 49 4 25
51 800 10 20 0.216 0.316 0.935 0.647 0.96 0.78 55 105 0 52 4 27
52 800 20 20 0.222 0.379 0.948 0.805 0.983 0.917 51 71 2 22 1 8
53 800 10 35 0.151 0.241 0.946 0.62 0.957 0.847 7 103 6 57 4 16
54 800 20 35 0.154 0.271 0.972 0.784 0.981 0.942 6 81 8 24 1 5
55 800 33 35 0.165 0.312 0.972 0.865 0.991 0.969 2 57 8 13 0 2
56 800 10 66 0.094 0.167 0.903 0.62 0.955 0.868 36 95 10 54 3 12
57 800 20 66 0.098 0.178 0.935 0.782 0.98 0.939 39 83 13 22 1 4
58 800 33 66 0.101 0.208 0.948 0.859 0.989 0.965 41 56 14 11 0 1
59 800 40 66 0.107 0.222 0.95 0.883 0.99 0.972 44 46 14 8 0 0
60 800 60 66 0.133 0.262 0.956 0.924 0.986 0.981 55 24 15 3 0 1
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Table A.2: Table of experimental results for confidence limit overlap probabil-
ity threshold, part 2

Experiment Settings Overlap Threshold Value for various CL Percent Absolute Prediction Error
Exp. s k n 0.999 0.997 0.975 0.9 0.8 0.85 0.999 0.997 0.975 0.9 0.8 0.85
61 800 10 150 0.044 0.1 0.794 0.601 0.956 0.829 9 125 13 52 2 15
62 800 20 150 0.051 0.104 0.827 0.758 0.98 0.893 21 117 17 20 1 6
63 800 33 150 0.053 0.119 0.833 0.823 0.981 0.922 23 90 17 11 1 3
64 800 40 150 0.055 0.129 0.833 0.844 0.981 0.927 27 75 17 8 1 2
65 800 60 150 0.068 0.158 0.833 0.878 0.975 0.937 41 43 17 4 0 1
66 800 150 150 0.151 0.262 0.807 0.927 0.987 0.948 73 14 15 2 2 0
67 800 10 500 0.005 0.035 0.591 0.505 0.935 0.789 692 518 4 63 1 13
68 800 20 500 0.013 0.038 0.601 0.653 0.967 0.825 198 469 5 26 4 8
69 800 33 500 0.015 0.04 0.588 0.711 0.971 0.849 174 449 3 16 4 5
70 800 40 500 0.015 0.042 0.584 0.729 0.968 0.855 164 416 3 13 4 4
71 800 60 500 0.018 0.054 0.578 0.76 0.959 0.864 125 303 2 8 3 3
72 800 150 500 0.048 0.108 0.553 0.788 0.961 0.876 17 102 3 4 3 1
73 800 250 500 0.081 0.149 0.547 0.803 0.963 0.885 50 46 4 2 3 0
74 800 10 800 0.004 0.034 0.638 0.563 0.952 0.846 832 545 12 42 4 3
75 800 20 800 0.014 0.04 0.644 0.699 0.963 0.842 190 451 13 14 5 3
76 800 33 800 0.016 0.044 0.63 0.749 0.966 0.868 151 390 11 7 5 0
77 800 40 800 0.017 0.049 0.626 0.764 0.967 0.876 136 341 10 4 6 1
78 800 60 800 0.021 0.065 0.619 0.793 0.968 0.889 89 233 9 1 6 2
79 800 150 800 0.06 0.128 0.593 0.83 0.966 0.905 33 70 5 4 5 4
80 800 250 800 0.097 0.172 0.586 0.845 0.969 0.916 59 26 4 6 6 5
81 1500 10 10 0.676 0.789 0.973 0.944 0.891 0.769 10 12 1 5 12 30
82 1500 10 20 0.66 0.754 0.953 0.95 0.866 0.756 16 4 1 4 15 32
83 1500 20 20 0.673 0.84 0.977 0.966 0.941 0.89 18 7 1 3 6 12
84 1500 10 35 0.513 0.589 0.949 0.95 0.879 0.801 30 13 1 4 13 24
85 1500 20 35 0.518 0.668 0.976 0.966 0.927 0.922 31 1 4 2 7 8
86 1500 33 35 0.523 0.686 0.98 0.983 0.954 0.96 31 3 4 0 4 3
87 1500 10 66 0.374 0.48 0.957 0.938 0.858 0.85 57 2 7 4 16 16
88 1500 20 66 0.374 0.543 0.966 0.967 0.893 0.946 57 10 8 1 11 4
89 1500 33 66 0.375 0.554 0.95 0.978 0.93 0.961 57 12 6 0 7 3
90 1500 40 66 0.375 0.556 0.949 0.981 0.933 0.967 57 12 6 1 6 2
91 1500 60 66 0.377 0.558 0.954 0.988 0.951 0.97 57 12 7 1 4 2
92 1500 10 150 0.233 0.296 0.857 0.942 0.873 0.817 79 2 8 1 13 19
93 1500 20 150 0.226 0.347 0.847 0.975 0.91 0.915 78 17 7 3 8 6
94 1500 33 150 0.223 0.357 0.833 0.985 0.946 0.933 78 19 5 4 4 4
95 1500 40 150 0.221 0.359 0.831 0.982 0.952 0.938 78 20 5 4 3 3
96 1500 60 150 0.22 0.36 0.83 0.981 0.961 0.944 78 20 5 3 2 3
97 1500 150 150 0.234 0.368 0.82 0.993 0.987 0.981 79 22 4 5 0 1
98 1500 10 500 0.108 0.1 0.657 0.871 0.875 0.806 63 117 7 0 9 14
99 1500 20 500 0.095 0.151 0.644 0.906 0.911 0.91 58 45 5 4 5 1
100 1500 33 500 0.089 0.165 0.628 0.922 0.945 0.93 55 32 3 6 1 1
101 1500 40 500 0.087 0.167 0.623 0.925 0.946 0.936 54 31 2 6 1 1
102 1500 60 500 0.084 0.168 0.612 0.932 0.951 0.943 52 30 0 7 0 2
103 1500 150 500 0.088 0.171 0.589 0.929 0.973 0.967 54 27 4 6 2 5
104 1500 250 500 0.105 0.189 0.589 0.931 0.981 0.967 62 15 4 7 3 5
105 1500 10 1500 0.083 0.062 0.6 0.806 0.874 0.819 52 249 6 1 4 6
106 1500 20 1500 0.068 0.106 0.578 0.843 0.923 0.909 41 105 3 5 1 5
107 1500 33 1500 0.062 0.121 0.558 0.86 0.919 0.917 36 80 1 7 1 5
108 1500 40 1500 0.06 0.123 0.552 0.865 0.923 0.917 33 77 2 8 1 5
109 1500 60 1500 0.057 0.124 0.539 0.875 0.931 0.919 30 76 4 9 2 6
110 1500 150 1500 0.06 0.126 0.513 0.889 0.95 0.928 33 73 9 10 4 7
111 1500 250 1500 0.072 0.141 0.511 0.893 0.958 0.936 44 55 10 11 5 7
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Appendix B

Scaling the KNN metric for problem size

As discussed in section 3.1.4, in order to determine the ν as a function

of the problem parameters simulations were used. Simulations were designed

to cover the broad range of reference data length (s = 42, 98, 308, 812, 1512),

a full range of characteristic depths (n = s/7, 2s/7, ..., s), various values of

nearest neighbors (k = 2s/14, 3s/14, ... , n) and four different confidence limit

values (L = 0.999 0.9975 0.975 0.9). For each simulation, the value of ν was

calculated such that the metric would have a value of 10 at a sample point that

was
√

10 times the distance from the mean as the confidence limit location.

This should provide a two point calibration of the overall performance index

C fitting the value of 10 and the value of 1 (the confidence limit). The raw

data from these experiments are in the following ten tables.
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Table B.1: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 1

Exp. s k n L ν ν̂ %Abs.Pred.Error
1 42 6 6 0.999 11.514 13.796 20
2 42 6 12 0.999 12.858 15.859 23
3 42 9 12 0.999 8.757 10.797 23
4 42 12 12 0.999 5.796 7.575 31
5 42 6 18 0.999 14.688 17.371 18
6 42 9 18 0.999 10.113 12.309 22
7 42 12 18 0.999 6.942 9.087 31
8 42 15 18 0.999 5.418 6.858 27
9 42 18 18 0.999 4.38 5.233 19
10 42 6 24 0.999 16.735 18.332 10
11 42 9 24 0.999 12.357 13.27 7
12 42 12 24 0.999 8.595 10.049 17
13 42 15 24 0.999 6.635 7.819 18
14 42 18 24 0.999 5.309 6.194 17
15 42 21 24 0.999 4.442 4.965 12
16 42 6 30 0.999 18.584 18.742 1
17 42 9 30 0.999 13.789 13.68 1
18 42 12 30 0.999 9.74 10.459 7
19 42 15 30 0.999 7.563 8.229 9
20 42 18 30 0.999 6.025 6.604 10
21 42 21 30 0.999 4.988 5.375 8
22 42 6 36 0.999 17.514 18.601 6
23 42 9 36 0.999 13.561 13.539 0
24 42 12 36 0.999 9.75 10.318 6
25 42 15 36 0.999 7.627 8.088 6
26 42 18 36 0.999 6.134 6.463 5
27 42 21 36 0.999 5.105 5.234 3
28 42 6 42 0.999 16.961 17.909 6
29 42 9 42 0.999 10.408 12.847 23
30 42 12 42 0.999 7.465 9.626 29
31 42 15 42 0.999 5.842 7.396 27
32 42 18 42 0.999 4.713 5.771 22
33 42 21 42 0.999 3.956 4.542 15
34 98 14 14 0.999 11.363 13.229 16
35 98 14 28 0.999 14.739 15.293 4
36 98 21 28 0.999 11.293 10.412 8
37 98 28 28 0.999 8.552 7.298 15
38 98 14 42 0.999 16.431 16.805 2
39 98 21 42 0.999 14.453 11.924 18
40 98 28 42 0.999 10.922 8.81 19
41 98 35 42 0.999 8.223 6.652 19
42 98 42 42 0.999 6.455 5.076 21
43 98 14 56 0.999 18.414 17.766 4
44 98 21 56 0.999 16.404 12.885 21
45 98 28 56 0.999 12.824 9.772 24
46 98 35 56 0.999 9.612 7.613 21
47 98 42 56 0.999 7.465 6.037 19
48 98 49 56 0.999 5.954 4.844 19
49 98 14 70 0.999 18.584 18.176 2
50 98 21 70 0.999 17.588 13.295 24
51 98 28 70 0.999 14.063 10.182 28
52 98 35 70 0.999 10.607 8.023 24
53 98 42 70 0.999 8.275 6.447 22
54 98 49 70 0.999 6.627 5.254 21
55 98 14 84 0.999 18.533 18.035 3
56 98 21 84 0.999 18.276 13.154 28
57 98 28 84 0.999 14.611 10.041 31
58 98 35 84 0.999 10.823 7.882 27
59 98 42 84 0.999 8.338 6.306 24
60 98 49 84 0.999 6.599 5.113 23
61 98 14 98 0.999 18.535 17.343 6
62 98 21 98 0.999 15.537 12.462 20
63 98 28 98 0.999 11.704 9.349 20
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Table B.2: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 2

Exp. s k n L ν ν̂ %Abs.Pred.Error
64 98 35 98 0.999 8.727 7.19 18
65 98 42 98 0.999 6.784 5.614 17
66 98 49 98 0.999 5.407 4.42 18
67 308 44 44 0.999 7.602 11.316 49
68 308 44 88 0.999 10.945 13.38 22
69 308 66 88 0.999 6.99 9.103 30
70 308 88 88 0.999 5.051 6.353 26
71 308 44 132 0.999 14.219 14.892 5
72 308 66 132 0.999 9.107 10.615 17
73 308 88 132 0.999 6.574 7.866 20
74 308 110 132 0.999 5.086 5.946 17
75 308 132 132 0.999 4.041 4.536 12
76 308 44 176 0.999 17.005 15.853 7
77 308 66 176 0.999 10.856 11.576 7
78 308 88 176 0.999 7.793 8.827 13
79 308 110 176 0.999 5.988 6.907 15
80 308 132 176 0.999 4.749 5.497 16
81 308 154 176 0.999 3.862 4.424 15
82 308 44 220 0.999 18.584 16.263 12
83 308 66 220 0.999 12.631 11.987 5
84 308 88 220 0.999 9.04 9.237 2
85 308 110 220 0.999 6.923 7.318 6
86 308 132 220 0.999 5.466 5.908 8
87 308 154 220 0.999 4.415 4.834 9
88 308 44 264 0.999 18.533 16.122 13
89 308 66 264 0.999 13.544 11.846 13
90 308 88 264 0.999 9.636 9.096 6
91 308 110 264 0.999 7.319 7.177 2
92 308 132 264 0.999 5.747 5.766 0
93 308 154 264 0.999 4.624 4.693 1
94 308 44 308 0.999 15.555 15.43 1
95 308 66 308 0.999 9.949 11.153 12
96 308 88 308 0.999 7.137 8.404 18
97 308 110 308 0.999 5.494 6.484 18
98 308 132 308 0.999 4.365 5.074 16
99 308 154 308 0.999 3.552 4.001 13
100 812 116 116 0.999 5.157 7.79 51
101 812 116 232 0.999 7.566 9.853 30
102 812 174 232 0.999 5.052 6.658 32
103 812 232 232 0.999 3.748 4.568 22
104 812 116 348 0.999 10.149 11.365 12
105 812 174 348 0.999 6.728 8.17 21
106 812 232 348 0.999 4.947 6.08 23
107 812 290 348 0.999 3.801 4.6 21
108 812 348 348 0.999 3.098 3.498 13
109 812 116 464 0.999 12.699 12.326 3
110 812 174 464 0.999 8.387 9.131 9
111 812 232 464 0.999 6.135 7.042 15
112 812 290 464 0.999 4.696 5.561 18
113 812 348 464 0.999 3.742 4.459 19
114 812 406 464 0.999 3.085 3.61 17
115 812 116 580 0.999 14.887 12.736 14
116 812 174 580 0.999 9.774 9.541 2
117 812 232 580 0.999 7.103 7.452 5
118 812 290 580 0.999 5.409 5.971 10
119 812 348 580 0.999 4.273 4.869 14
120 812 406 580 0.999 3.497 4.02 15
121 812 116 696 0.999 16.563 12.595 24
122 812 174 696 0.999 10.699 9.4 12
123 812 232 696 0.999 7.67 7.311 5
124 812 290 696 0.999 5.793 5.83 1
125 812 348 696 0.999 4.541 4.728 4
126 812 406 696 0.999 3.673 3.879 6
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Table B.3: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 3

Exp. s k n L ν ν̂ %Abs.Pred.Error
127 812 116 812 0.999 11.374 11.903 5
128 812 174 812 0.999 7.549 8.708 15
129 812 232 812 0.999 5.538 6.618 19
130 812 290 812 0.999 4.247 5.138 21
131 812 348 812 0.999 3.437 4.036 17
132 812 406 812 0.999 2.813 3.187 13
133 1512 216 216 0.999 3.95 4.528 15
134 1512 216 432 0.999 5.947 6.592 11
135 1512 324 432 0.999 3.874 4.351 12
136 1512 432 432 0.999 2.92 2.855 2
137 1512 216 648 0.999 8.179 8.104 1
138 1512 324 648 0.999 5.312 5.863 10
139 1512 432 648 0.999 3.878 4.367 13
140 1512 540 648 0.999 3.078 3.288 7
141 1512 648 648 0.999 2.489 2.472 1
142 1512 216 864 0.999 10.109 9.065 10
143 1512 324 864 0.999 6.533 6.824 4
144 1512 432 864 0.999 4.718 5.328 13
145 1512 540 864 0.999 3.665 4.249 16
146 1512 648 864 0.999 2.963 3.433 16
147 1512 756 864 0.999 2.475 2.796 13
148 1512 216 1080 0.999 12.078 9.475 22
149 1512 324 1080 0.999 7.783 7.234 7
150 1512 432 1080 0.999 5.601 5.738 2
151 1512 540 1080 0.999 4.259 4.659 9
152 1512 648 1080 0.999 3.422 3.843 12
153 1512 756 1080 0.999 2.856 3.206 12
154 1512 216 1296 0.999 13.457 9.334 31
155 1512 324 1296 0.999 8.578 7.093 17
156 1512 432 1296 0.999 6.093 5.597 8
157 1512 540 1296 0.999 4.57 4.518 1
158 1512 648 1296 0.999 3.632 3.702 2
159 1512 756 1296 0.999 2.982 3.065 3
160 1512 216 1512 0.999 9.097 8.642 5
161 1512 324 1512 0.999 5.906 6.401 8
162 1512 432 1512 0.999 4.287 4.905 14
163 1512 540 1512 0.999 3.363 3.826 14
164 1512 648 1512 0.999 2.759 3.01 9
165 1512 756 1512 0.999 2.306 2.372 3
166 42 6 6 0.9975 8.79 9.109 4
167 42 6 12 0.9975 10.51 11.172 6
168 42 9 12 0.9975 7.253 7.353 1
169 42 12 12 0.9975 5.194 4.92 5
170 42 6 18 0.9975 12.916 12.684 2
171 42 9 18 0.9975 9.188 8.866 4
172 42 12 18 0.9975 6.808 6.432 6
173 42 15 18 0.9975 4.946 4.746 4
174 42 18 18 0.9975 3.883 3.516 9
175 42 6 24 0.9975 15.084 13.645 10
176 42 9 24 0.9975 10.483 9.827 6
177 42 12 24 0.9975 7.625 7.393 3
178 42 15 24 0.9975 5.555 5.707 3
179 42 18 24 0.9975 4.372 4.477 2
180 42 21 24 0.9975 3.679 3.546 4
181 42 6 30 0.9975 16.198 14.055 13
182 42 9 30 0.9975 11.741 10.237 13
183 42 12 30 0.9975 8.733 7.803 11
184 42 15 30 0.9975 6.463 6.117 5
185 42 18 30 0.9975 5.119 4.887 5
186 42 21 30 0.9975 4.281 3.956 8
187 42 6 36 0.9975 16.278 13.914 15
188 42 9 36 0.9975 12.682 10.096 20
189 42 12 36 0.9975 9.108 7.662 16
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Table B.4: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 4

Exp. s k n L ν ν̂ %Abs.Pred.Error
190 42 15 36 0.9975 6.581 5.976 9
191 42 18 36 0.9975 5.138 4.746 8
192 42 21 36 0.9975 4.274 3.815 11
193 42 6 42 0.9975 13.368 13.222 1
194 42 9 42 0.9975 9.389 9.404 0
195 42 12 42 0.9975 6.983 6.97 0
196 42 15 42 0.9975 5.14 5.284 3
197 42 18 42 0.9975 4.02 4.054 1
198 42 21 42 0.9975 3.366 3.123 7
199 98 14 14 0.9975 7.608 8.712 15
200 98 14 28 0.9975 9.255 10.775 16
201 98 21 28 0.9975 6.414 7.085 10
202 98 28 28 0.9975 4.663 4.728 1
203 98 14 42 0.9975 11.695 12.288 5
204 98 21 42 0.9975 8.057 8.597 7
205 98 28 42 0.9975 5.967 6.24 5
206 98 35 42 0.9975 4.588 4.604 0
207 98 42 42 0.9975 3.516 3.408 3
208 98 14 56 0.9975 14.406 13.249 8
209 98 21 56 0.9975 9.753 9.558 2
210 98 28 56 0.9975 7.097 7.201 1
211 98 35 56 0.9975 5.407 5.565 3
212 98 42 56 0.9975 4.146 4.369 5
213 98 49 56 0.9975 3.304 3.463 5
214 98 14 70 0.9975 15.901 13.659 14
215 98 21 70 0.9975 10.89 9.968 8
216 98 28 70 0.9975 7.989 7.611 5
217 98 35 70 0.9975 6.125 5.975 2
218 98 42 70 0.9975 4.705 4.779 2
219 98 49 70 0.9975 3.746 3.873 3
220 98 14 84 0.9975 16.615 13.518 19
221 98 21 84 0.9975 11.841 9.827 17
222 98 28 84 0.9975 8.579 7.47 13
223 98 35 84 0.9975 6.442 5.834 9
224 98 42 84 0.9975 4.896 4.638 5
225 98 49 84 0.9975 3.864 3.732 3
226 98 14 98 0.9975 12.401 12.826 3
227 98 21 98 0.9975 8.643 9.135 6
228 98 28 98 0.9975 6.448 6.778 5
229 98 35 98 0.9975 4.966 5.142 4
230 98 42 98 0.9975 3.822 3.946 3
231 98 49 98 0.9975 3.05 3.04 0
232 308 44 44 0.9975 5.236 7.366 41
233 308 44 88 0.9975 7.48 9.429 26
234 308 66 88 0.9975 4.952 6.168 25
235 308 88 88 0.9975 3.675 4.069 11
236 308 44 132 0.9975 10.194 10.941 7
237 308 66 132 0.9975 6.722 7.68 14
238 308 88 132 0.9975 4.956 5.581 13
239 308 110 132 0.9975 3.837 4.115 7
240 308 132 132 0.9975 3.033 3.036 0
241 308 44 176 0.9975 12.153 11.902 2
242 308 66 176 0.9975 8.003 8.642 8
243 308 88 176 0.9975 5.87 6.543 11
244 308 110 176 0.9975 4.52 5.076 12
245 308 132 176 0.9975 3.566 3.997 12
246 308 154 176 0.9975 2.888 3.176 10
247 308 44 220 0.9975 14.469 12.312 15
248 308 66 220 0.9975 9.488 9.052 5
249 308 88 220 0.9975 6.928 6.953 0
250 308 110 220 0.9975 5.312 5.486 3
251 308 132 220 0.9975 4.175 4.407 6
252 308 154 220 0.9975 3.359 3.586 7
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Table B.5: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 5

Exp. s k n L ν ν̂ %Abs.Pred.Error
253 308 44 264 0.9975 16.09 12.171 24
254 308 66 264 0.9975 10.45 8.911 15
255 308 88 264 0.9975 7.526 6.812 9
256 308 110 264 0.9975 5.694 5.345 6
257 308 132 264 0.9975 4.433 4.266 4
258 308 154 264 0.9975 3.545 3.445 3
259 308 44 308 0.9975 11.154 11.479 3
260 308 66 308 0.9975 7.358 8.219 12
261 308 88 308 0.9975 5.415 6.12 13
262 308 110 308 0.9975 4.182 4.653 11
263 308 132 308 0.9975 3.304 3.574 8
264 308 154 308 0.9975 2.677 2.753 3
265 812 116 116 0.9975 3.329 4.85 46
266 812 116 232 0.9975 5.24 6.913 32
267 812 174 232 0.9975 3.48 4.433 27
268 812 232 232 0.9975 2.55 2.809 10
269 812 116 348 0.9975 7.101 8.425 19
270 812 174 348 0.9975 4.689 5.945 27
271 812 232 348 0.9975 3.416 4.321 26
272 812 290 348 0.9975 2.619 3.169 21
273 812 348 348 0.9975 2.134 2.311 8
274 812 116 464 0.9975 8.987 9.387 4
275 812 174 464 0.9975 5.922 6.906 17
276 812 232 464 0.9975 4.303 5.282 23
277 812 290 464 0.9975 3.287 4.13 26
278 812 348 464 0.9975 2.617 3.272 25
279 812 406 464 0.9975 2.154 2.611 21
280 812 116 580 0.9975 10.734 9.797 9
281 812 174 580 0.9975 7.04 7.316 4
282 812 232 580 0.9975 5.085 5.692 12
283 812 290 580 0.9975 3.862 4.54 18
284 812 348 580 0.9975 3.057 3.682 20
285 812 406 580 0.9975 2.469 3.021 22
286 812 116 696 0.9975 12.03 9.656 20
287 812 174 696 0.9975 7.784 7.175 8
288 812 232 696 0.9975 5.559 5.551 0
289 812 290 696 0.9975 4.189 4.399 5
290 812 348 696 0.9975 3.291 3.541 8
291 812 406 696 0.9975 2.636 2.88 9
292 812 116 812 0.9975 8.044 8.964 11
293 812 174 812 0.9975 5.309 6.483 22
294 812 232 812 0.9975 3.862 4.859 26
295 812 290 812 0.9975 2.955 3.707 25
296 812 348 812 0.9975 2.361 2.849 21
297 812 406 812 0.9975 1.949 2.188 12
298 1512 216 216 0.9975 2.868 2.477 14
299 1512 216 432 0.9975 4.297 4.54 6
300 1512 324 432 0.9975 2.943 2.762 6
301 1512 432 432 0.9975 2.397 1.575 34
302 1512 216 648 0.9975 5.814 6.052 4
303 1512 324 648 0.9975 3.945 4.275 8
304 1512 432 648 0.9975 2.987 3.087 3
305 1512 540 648 0.9975 2.511 2.23 11
306 1512 648 648 0.9975 2.085 1.581 24
307 1512 216 864 0.9975 7.379 7.013 5
308 1512 324 864 0.9975 4.83 5.236 8
309 1512 432 864 0.9975 3.54 4.048 14
310 1512 540 864 0.9975 3.023 3.191 6
311 1512 648 864 0.9975 2.474 2.542 3
312 1512 756 864 0.9975 2.054 2.035 1
313 1512 216 1080 0.9975 8.749 7.423 15
314 1512 324 1080 0.9975 5.623 5.646 0
315 1512 432 1080 0.9975 4.141 4.458 8
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Table B.6: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 6

Exp. s k n L ν ν̂ %Abs.Pred.Error
316 1512 540 1080 0.9975 3.235 3.601 11
317 1512 648 1080 0.9975 2.765 2.952 7
318 1512 756 1080 0.9975 2.278 2.445 7
319 1512 216 1296 0.9975 9.78 7.282 26
320 1512 324 1296 0.9975 6.106 5.505 10
321 1512 432 1296 0.9975 4.51 4.317 4
322 1512 540 1296 0.9975 3.405 3.46 2
323 1512 648 1296 0.9975 2.962 2.811 5
324 1512 756 1296 0.9975 2.411 2.304 4
325 1512 216 1512 0.9975 6.609 6.59 0
326 1512 324 1512 0.9975 4.422 4.813 9
327 1512 432 1512 0.9975 3.217 3.625 13
328 1512 540 1512 0.9975 2.732 2.768 1
329 1512 648 1512 0.9975 2.269 2.119 7
330 1512 756 1512 0.9975 1.903 1.612 15
331 42 6 6 0.975 3.388 1.075 68
332 42 6 12 0.975 3.179 3.138 1
333 42 9 12 0.975 2.188 1.514 31
334 42 12 12 0.975 1.641 0.459 72
335 42 6 18 0.975 3.711 4.65 25
336 42 9 18 0.975 2.579 3.026 17
337 42 12 18 0.975 1.975 1.972 0
338 42 15 18 0.975 1.63 1.23 25
339 42 18 18 0.975 1.295 0.68 47
340 42 6 24 0.975 4.661 5.612 20
341 42 9 24 0.975 3.231 3.987 23
342 42 12 24 0.975 2.484 2.933 18
343 42 15 24 0.975 2.037 2.191 8
344 42 18 24 0.975 1.621 1.641 1
345 42 21 24 0.975 1.294 1.22 6
346 42 6 30 0.975 5.144 6.022 17
347 42 9 30 0.975 3.576 4.397 23
348 42 12 30 0.975 2.698 3.343 24
349 42 15 30 0.975 2.169 2.601 20
350 42 18 30 0.975 1.713 2.051 20
351 42 21 30 0.975 1.366 1.63 19
352 42 6 36 0.975 5.525 5.881 6
353 42 9 36 0.975 3.808 4.256 12
354 42 12 36 0.975 2.797 3.202 14
355 42 15 36 0.975 2.189 2.46 12
356 42 18 36 0.975 1.694 1.91 13
357 42 21 36 0.975 1.333 1.489 12
358 42 6 42 0.975 2.339 5.189 122
359 42 9 42 0.975 1.679 3.564 112
360 42 12 42 0.975 1.304 2.51 93
361 42 15 42 0.975 1.078 1.768 64
362 42 18 42 0.975 0.893 1.218 36
363 42 21 42 0.975 0.74 0.797 8
364 98 14 14 0.975 2.327 0.945 59
365 98 14 28 0.975 3.422 3.008 12
366 98 21 28 0.975 2.215 1.426 36
367 98 28 28 0.975 1.604 0.396 75
368 98 14 42 0.975 4.095 4.52 10
369 98 21 42 0.975 2.687 2.938 9
370 98 28 42 0.975 1.98 1.909 4
371 98 35 42 0.975 1.562 1.183 24
372 98 42 42 0.975 1.273 0.645 49
373 98 14 56 0.975 5.31 5.481 3
374 98 21 56 0.975 3.466 3.899 13
375 98 28 56 0.975 2.557 2.87 12
376 98 35 56 0.975 2.012 2.144 7
377 98 42 56 0.975 1.615 1.607 0
378 98 49 56 0.975 1.32 1.194 10
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Table B.7: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 7

Exp. s k n L ν ν̂ %Abs.Pred.Error
379 98 14 70 0.975 6.19 5.891 5
380 98 21 70 0.975 3.974 4.309 8
381 98 28 70 0.975 2.917 3.28 12
382 98 35 70 0.975 2.282 2.554 12
383 98 42 70 0.975 1.814 2.017 11
384 98 49 70 0.975 1.467 1.604 9
385 98 14 84 0.975 7.089 5.75 19
386 98 21 84 0.975 4.506 4.168 7
387 98 28 84 0.975 3.283 3.139 4
388 98 35 84 0.975 2.537 2.413 5
389 98 42 84 0.975 1.982 1.876 5
390 98 49 84 0.975 1.57 1.463 7
391 98 14 98 0.975 4.709 5.058 7
392 98 21 98 0.975 3.079 3.476 13
393 98 28 98 0.975 2.257 2.447 8
394 98 35 98 0.975 1.774 1.721 3
395 98 42 98 0.975 1.417 1.183 16
396 98 49 98 0.975 1.16 0.771 34
397 308 44 44 0.975 0.776 0.493 36
398 308 44 88 0.975 1.24 2.557 106
399 308 66 88 0.975 0.947 1.118 18
400 308 88 88 0.975 0.802 0.176 78
401 308 44 132 0.975 1.774 4.069 129
402 308 66 132 0.975 1.287 2.631 104
403 308 88 132 0.975 1.075 1.689 57
404 308 110 132 0.975 0.922 1.021 11
405 308 132 132 0.975 0.785 0.523 33
406 308 44 176 0.975 2.297 5.03 119
407 308 66 176 0.975 1.599 3.592 125
408 308 88 176 0.975 1.315 2.65 102
409 308 110 176 0.975 1.118 1.982 77
410 308 132 176 0.975 0.95 1.484 56
411 308 154 176 0.975 0.808 1.1 36
412 308 44 220 0.975 2.787 5.44 95
413 308 66 220 0.975 1.894 4.002 111
414 308 88 220 0.975 1.515 3.06 102
415 308 110 220 0.975 1.28 2.392 87
416 308 132 220 0.975 1.078 1.894 76
417 308 154 220 0.975 0.913 1.511 66
418 308 44 264 0.975 3.207 5.299 65
419 308 66 264 0.975 2.119 3.861 82
420 308 88 264 0.975 1.648 2.919 77
421 308 110 264 0.975 1.371 2.251 64
422 308 132 264 0.975 1.146 1.753 53
423 308 154 264 0.975 0.958 1.37 43
424 308 44 308 0.975 1.919 4.607 140
425 308 66 308 0.975 1.411 3.169 125
426 308 88 308 0.975 1.185 2.227 88
427 308 110 308 0.975 1.014 1.559 54
428 308 132 308 0.975 0.865 1.061 23
429 308 154 308 0.975 0.739 0.677 8
430 812 116 116 0.975 1.816 -0.391 122
431 812 116 232 0.975 2.754 1.672 39
432 812 174 232 0.975 1.814 0.509 72
433 812 232 232 0.975 1.303 -0.264 120
434 812 116 348 0.975 3.781 3.185 16
435 812 174 348 0.975 2.467 2.022 18
436 812 232 348 0.975 1.765 1.248 29
437 812 290 348 0.975 1.327 0.693 48
438 812 348 348 0.975 1.045 0.274 74
439 812 116 464 0.975 4.721 4.146 12
440 812 174 464 0.975 3.044 2.983 2
441 812 232 464 0.975 2.166 2.209 2

177



Table B.8: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 8

Exp. s k n L ν ν̂ %Abs.Pred.Error
442 812 290 464 0.975 1.625 1.654 2
443 812 348 464 0.975 1.265 1.235 2
444 812 406 464 0.975 1.022 0.909 11
445 812 116 580 0.975 5.511 4.556 17
446 812 174 580 0.975 3.54 3.393 4
447 812 232 580 0.975 2.509 2.619 4
448 812 290 580 0.975 1.882 2.064 10
449 812 348 580 0.975 1.454 1.645 13
450 812 406 580 0.975 1.16 1.319 14
451 812 116 696 0.975 6.159 4.415 28
452 812 174 696 0.975 3.879 3.252 16
453 812 232 696 0.975 2.702 2.478 8
454 812 290 696 0.975 2.01 1.923 4
455 812 348 696 0.975 1.533 1.504 2
456 812 406 696 0.975 1.211 1.178 3
457 812 116 812 0.975 4.195 3.723 11
458 812 174 812 0.975 2.719 2.56 6
459 812 232 812 0.975 1.961 1.786 9
460 812 290 812 0.975 1.47 1.231 16
461 812 348 812 0.975 1.154 0.812 30
462 812 406 812 0.975 0.942 0.486 48
463 1512 216 216 0.975 1.58 -1.287 181
464 1512 216 432 0.975 2.209 0.776 65
465 1512 324 432 0.975 1.486 -0.119 108
466 1512 432 432 0.975 1.126 -0.725 164
467 1512 216 648 0.975 2.957 2.289 23
468 1512 324 648 0.975 1.937 1.393 28
469 1512 432 648 0.975 1.471 0.787 46
470 1512 540 648 0.975 1.18 0.345 71
471 1512 648 648 0.975 0.976 0.007 99
472 1512 216 864 0.975 3.808 3.25 15
473 1512 324 864 0.975 2.359 2.354 0
474 1512 432 864 0.975 1.774 1.748 1
475 1512 540 864 0.975 1.419 1.306 8
476 1512 648 864 0.975 1.169 0.968 17
477 1512 756 864 0.975 0.98 0.701 28
478 1512 216 1080 0.975 4.493 3.66 19
479 1512 324 1080 0.975 2.789 2.764 1
480 1512 432 1080 0.975 2.043 2.158 6
481 1512 540 1080 0.975 1.62 1.716 6
482 1512 648 1080 0.975 1.327 1.378 4
483 1512 756 1080 0.975 1.107 1.111 0
484 1512 216 1296 0.975 4.972 3.519 29
485 1512 324 1296 0.975 2.988 2.623 12
486 1512 432 1296 0.975 2.159 2.017 7
487 1512 540 1296 0.975 1.709 1.575 8
488 1512 648 1296 0.975 1.391 1.237 11
489 1512 756 1296 0.975 1.153 0.97 16
490 1512 216 1512 0.975 3.421 2.827 17
491 1512 324 1512 0.975 2.153 1.931 10
492 1512 432 1512 0.975 1.623 1.325 18
493 1512 540 1512 0.975 1.295 0.883 32
494 1512 648 1512 0.975 1.069 0.545 49
495 1512 756 1512 0.975 0.898 0.278 69
496 42 6 6 0.9 1.245 -2.064 266
497 42 6 12 0.9 1.919 -0.001 100
498 42 9 12 0.9 1.351 -0.717 153
499 42 12 12 0.9 1.062 -1.204 213
500 42 6 18 0.9 2.697 1.511 44
501 42 9 18 0.9 1.91 0.796 58
502 42 12 18 0.9 1.467 0.309 79
503 42 15 18 0.9 1.154 -0.048 104
504 42 18 18 0.9 0.925 -0.322 135
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Table B.9: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 9

Exp. s k n L ν ν̂ %Abs.Pred.Error
505 42 6 24 0.9 3.629 2.472 32
506 42 9 24 0.9 2.564 1.757 31
507 42 12 24 0.9 1.934 1.27 34
508 42 15 24 0.9 1.508 0.913 39
509 42 18 24 0.9 1.196 0.639 47
510 42 21 24 0.9 0.946 0.422 55
511 42 6 30 0.9 4.226 2.883 32
512 42 9 30 0.9 2.922 2.167 26
513 42 12 30 0.9 2.156 1.68 22
514 42 15 30 0.9 1.654 1.323 20
515 42 18 30 0.9 1.311 1.049 20
516 42 21 30 0.9 1.043 0.832 20
517 42 6 36 0.9 4.503 2.742 39
518 42 9 36 0.9 3.075 2.026 34
519 42 12 36 0.9 2.157 1.539 29
520 42 15 36 0.9 1.574 1.182 25
521 42 18 36 0.9 1.209 0.908 25
522 42 21 36 0.9 0.947 0.691 27
523 42 6 42 0.9 2.789 2.049 27
524 42 9 42 0.9 2.016 1.334 34
525 42 12 42 0.9 1.488 0.847 43
526 42 15 42 0.9 1.09 0.49 55
527 42 18 42 0.9 0.849 0.216 75
528 42 21 42 0.9 0.678 -0.001 100
529 98 14 14 0.9 0.439 -2.108 580
530 98 14 28 0.9 0.673 -0.044 107
531 98 21 28 0.9 0.45 -0.747 266
532 98 28 28 0.9 0.348 -1.226 452
533 98 14 42 0.9 1.018 1.468 44
534 98 21 42 0.9 0.666 0.765 15
535 98 28 42 0.9 0.491 0.286 42
536 98 35 42 0.9 0.39 -0.066 117
537 98 42 42 0.9 0.32 -0.336 205
538 98 14 56 0.9 1.375 2.429 77
539 98 21 56 0.9 0.879 1.726 96
540 98 28 56 0.9 0.626 1.247 99
541 98 35 56 0.9 0.49 0.896 83
542 98 42 56 0.9 0.398 0.626 57
543 98 49 56 0.9 0.33 0.412 25
544 98 14 70 0.9 1.585 2.839 79
545 98 21 70 0.9 1.014 2.136 111
546 98 28 70 0.9 0.72 1.657 130
547 98 35 70 0.9 0.556 1.306 135
548 98 42 70 0.9 0.451 1.036 130
549 98 49 70 0.9 0.375 0.822 119
550 98 14 84 0.9 1.748 2.698 54
551 98 21 84 0.9 1.104 1.995 81
552 98 28 84 0.9 0.768 1.516 97
553 98 35 84 0.9 0.583 1.165 100
554 98 42 84 0.9 0.47 0.895 90
555 98 49 84 0.9 0.388 0.681 76
556 98 14 98 0.9 0.971 2.006 107
557 98 21 98 0.9 0.688 1.303 90
558 98 28 98 0.9 0.524 0.824 57
559 98 35 98 0.9 0.424 0.473 11
560 98 42 98 0.9 0.352 0.203 42
561 98 49 98 0.9 0.295 -0.011 104
562 308 44 44 0.9 0.283 -2.261 899
563 308 44 88 0.9 0.438 -0.197 145
564 308 66 88 0.9 0.333 -0.856 357
565 308 88 88 0.9 0.245 -1.307 632
566 308 44 132 0.9 0.59 1.315 123
567 308 66 132 0.9 0.447 0.656 47
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Table B.10: Table of experimental results for scaling the KNN metric by pre-
dicting ν, part 10

Exp. s k n L ν ν̂ %Abs.Pred.Error
568 308 88 132 0.9 0.336 0.206 39
569 308 110 132 0.9 0.26 -0.127 149
570 308 132 132 0.9 0.21 -0.383 282
571 308 44 176 0.9 0.729 2.276 212
572 308 66 176 0.9 0.548 1.618 195
573 308 88 176 0.9 0.416 1.167 181
574 308 110 176 0.9 0.326 0.835 156
575 308 132 176 0.9 0.266 0.579 117
576 308 154 176 0.9 0.221 0.375 70
577 308 44 220 0.9 0.85 2.686 216
578 308 66 220 0.9 0.626 2.028 224
579 308 88 220 0.9 0.472 1.577 234
580 308 110 220 0.9 0.37 1.245 237
581 308 132 220 0.9 0.301 0.989 228
582 308 154 220 0.9 0.251 0.785 213
583 308 44 264 0.9 0.891 2.545 186
584 308 66 264 0.9 0.651 1.887 190
585 308 88 264 0.9 0.491 1.436 193
586 308 110 264 0.9 0.384 1.104 187
587 308 132 264 0.9 0.313 0.848 171
588 308 154 264 0.9 0.26 0.644 148
589 308 44 308 0.9 0.618 1.853 200
590 308 66 308 0.9 0.479 1.195 149
591 308 88 308 0.9 0.367 0.744 103
592 308 110 308 0.9 0.289 0.412 42
593 308 132 308 0.9 0.237 0.156 34
594 308 154 308 0.9 0.196 -0.048 124
595 812 116 116 0.9 0.347 -2.578 844
596 812 116 232 0.9 0.522 -0.514 199
597 812 174 232 0.9 0.4 -1.083 371
598 812 232 232 0.9 0.323 -1.476 558
599 812 116 348 0.9 0.719 0.998 39
600 812 174 348 0.9 0.552 0.43 22
601 812 232 348 0.9 0.446 0.037 92
602 812 290 348 0.9 0.372 -0.256 169
603 812 348 348 0.9 0.313 -0.483 254
604 812 116 464 0.9 0.906 1.959 116
605 812 174 464 0.9 0.682 1.391 104
606 812 232 464 0.9 0.55 0.998 81
607 812 290 464 0.9 0.458 0.706 54
608 812 348 464 0.9 0.386 0.479 24
609 812 406 464 0.9 0.329 0.297 10
610 812 116 580 0.9 1.04 2.369 128
611 812 174 580 0.9 0.792 1.801 127
612 812 232 580 0.9 0.637 1.408 121
613 812 290 580 0.9 0.529 1.116 111
614 812 348 580 0.9 0.444 0.889 100
615 812 406 580 0.9 0.378 0.707 87
616 812 116 696 0.9 1.134 2.228 96
617 812 174 696 0.9 0.853 1.66 95
618 812 232 696 0.9 0.68 1.267 86
619 812 290 696 0.9 0.559 0.975 74
620 812 348 696 0.9 0.467 0.748 60
621 812 406 696 0.9 0.394 0.566 43
622 812 116 812 0.9 0.793 1.536 94
623 812 174 812 0.9 0.609 0.968 59
624 812 232 812 0.9 0.493 0.575 17
625 812 290 812 0.9 0.412 0.283 31
626 812 348 812 0.9 0.349 0.056 84
627 812 406 812 0.9 0.298 -0.126 142
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