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The research presented herein concentrates on the quantification, as-

sessment and forecasting of intra-hour wind power variability. Wind power

is intrinsically variable and, due to the increase in wind power penetration

levels, the level of intra-hour wind power variability is expected to increase

as well. Existing metrics used in wind integration studies fail to efficiently

capture intra-hour wind power variation. As a result, this can lead to an

underestimation of intra-hour wind power variability with adverse effects on

power systems, especially their reliability and economics.

One major research focus in this dissertation is to develop a novel vari-

ability metric which can effectively quantify intra-hour wind power variability.

The proposed metric, termed conditional range metric (CRM), quantifies wind

power variability using the range of wind power output over a time period. The

metric is termed conditional because the range of wind power output is condi-

tioned on the time interval length k and on the wind power average production

viii



lj over the given time interval. Using statistical analysis and optimization ap-

proaches, a computational algorithm to obtain a unique pth quantile of the

conditional range metric is given, turning the proposed conditional range met-

ric into a probabilistic intra-hour wind power variability metric. The proba-

bilistic conditional range metric CRMk,lj ,p assists power system operators and

wind farm owners in decision making under uncertainty, since decisions involv-

ing wind power variability can be made based on the willingness to accept a

certain level of risk α = 1− p.

An extensive performance analysis of the conditional range metric on

real-world wind power and wind speed data reveals how certain variables af-

fect intra-hour wind power variability. Wind power variability over a time

frame is found to increase with increasing time frame size and decreasing wind

farm size, and is highest at mid production wind power levels. Moreover,

wind turbines connected through converters to the grid exhibit lower wind

power variability compared to same size simple induction generators, while

wind power variability is also found to decrease slightly with increasing wind

turbine size. These results can lead to improvements in existing or definitions

of new wind power management techniques. Moreover, the comparison of the

conditional range metric to the commonly used step-changes statistics reveals

that, on average, the conditional range metric can accommodate intra-hour

wind power variations for an additional 15% of hours within a given year, sig-

nificantly benefiting power system reliability.

The other major research focus in this dissertation is on providing intra-

hour wind power variability forecasts. Wind power variability forecasts use pth

CRM quantiles estimates to construct probabilistic intervals within which fu-

ture wind power output will lie, conditioned on the forecasted average wind

power production. One static and two time-adaptive methods are used to ob-

ix



tain pth CRM quantiles estimates. All methods produce quantile estimates of

acceptable reliability, with average expected deviations from nominal propor-

tions close to 1%. Wind power variability forecasts can serve as joint-chance

constraints in stochastic optimization problems, which opens the door to nu-

merous applications of the conditional range metric.

A practical example application uses the conditional range metric to

estimate the size of an energy storage system (ESS). Using a probabilistic

forecast of wind power hourly averages and historical data on intra-hour wind

power variability, the proposed methodology estimates the size of an ESS which

minimizes deviations from the forecasted hourly average. The methodology is

evaluated using real-world wind power data. When the estimated ESS ca-

pacities are compared to the ESS capacities obtained from the actual data,

they exhibit coverage rates which are very close to the nominal ones, with an

average absolute deviation less than 1.5%.
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Chapter 1

Introduction

This chapter sets the scene for research on the assessment of intra-hour

wind power variability. The notions of wind power variability and uncertainty

are distinguished and the various perceptions of variability are explained in

Section 1.1. Moreover, the need for developing a novel wind power variability

metric is justified, and desired features of this metric are presented. The main

research objectives are clearly stated in Section 1.2 and the approach taken

to meet each of these objectives is summarized in Section 1.3. Finally, major

and supporting research contributions are identified and a list of publications

is provided in Section 1.4, while an outline of the dissertation is given in

Section 1.5.

1.1 Background and Motivation

Wind farm installed capacity surpassed 60 GW in the United States, 93

GW in Europe and 282 GW worldwide at the end of 2012 [1]. Despite wind’s

stochastic nature and the risks associated with it, large scale wind power in-

tegration in utility systems has seen distinct increasing trends worldwide in

the past years. Wind power is very variable and unpredictable and these char-

acteristics of wind power pose significant risk to both system planners and

operators. Within the past decade numerous wind integration studies have

been performed with the goal to investigate the effect of wind power variabil-
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ity and unpredictability on system reliability, as well as system operations and

their cost. Regarding wind power variability, wind integration studies also at-

tempt to estimate its effect on system flexibility, which appears in the form of

increased ramp rates, increased time periods with minimum generation, and

increased operating reserve requirements.

The risks associated with the integration of wind in utility systems are

attributed to its stochastic nature and specific characteristics. Wind is often

characterized as a very variable, highly unpredictable and non-dispatchable

source of energy. While wind power variability and unpredictability are often

used interchangeably, a distinction between these terms is important. Fig-

ure 1.1 shows the variability and predictability content of various renewable

energy sources. From this graph it is evident that some sources can have a

very volatile but known output, such as tidal power, while others, like wind

power, have both a volatile and a very uncertain output. In the past years

wind power forecasting has undergone extensive research and significant im-

provements have been made in reducing wind power forecasting uncertainty.

However, it is crucial to realize that wind power variability will be present and

will have to be dealt with even when all uncertainty is removed under perfect

forecasts, making the analysis and quantification of wind power variability a

significant research topic.

Regarding wind’s characterization as being a non-dispatchable source,

a necessary distinction to be made is between intermittent, variable, and non-

dispatchable sources of energy. An intermittent source of energy is character-

ized by unintentional pauses which make the output of the source completely

unavailable, while a variable source is any source with undesired or uncon-

trolled changes in output. On the other hand, a non-dispatchable source is

characterized by the inability to control its output on demand. These charac-
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Figure 1.1: Variability versus predictability for various common renewable
energy sources. Some sources can have a very volatile but known output, such
as tidal power, while others, like wind power, have both a volatile and a very
uncertain output.

teristics have to do more with the control over the source’s output and less with

the knowledge of it. As with variability and predictability, a source’s output

can have only one or all of the above characteristics. Figure 1.2 depicts some

examples of various sources and their outputs regarding variability. The out-

put in MW from three sources, denoted wind, sinewave and direct geothermal,

is depicted over a time period of 10 hours. Though the three sources produce

similar amounts of energy over the 10-hour period the variability content in

their power output varies significantly. The sinewave is considered a variable

yet not intermittent source. The direct geothermal power is a fictitious source,

which would correspond to a thermal power station using geothermal steam
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in a steam turbine without any other controls. Since geothermal steam has

a constant flow, this source represents a steady and not intermittent output,

yet it is a non-dispatchable source. Using the above definitions wind power

is an intermittent source of energy, since wind speeds below cut-in and above

cut-off make it completely unavailable. (Notice the total unavailability of the

wind power in Fig. 1.2 close to minute 60 and after minute 590). Moreover,

wind power is variable since it changes uncontrollably with time. Furthermore,

wind power is a non-dispatchable source of energy, since its output cannot be

dictated. Various ways have been shown to reduce wind power variability,

however it is important to understand that the only way wind power inter-

mittency and non-dispatchability can be overcome is by coupling wind with

dispatchable and fully controllable generators, such as gas turbines, or with

energy storage units.

Acknowledging that wind power variability will be present even under

perfect forecasts makes its analysis of critical importance, since underestimat-

ing wind power variability can have adverse effects on power systems, espe-

cially their reliability and economics. Therefore, a metric which can efficiently

quantify the short-term variability of wind power is of big significance, not

only for power system planners and operators, but also for wind farm owners

and investors. However, the prevalent wind power variability metric used in

wind integration studies, which is based on the step-changes of wind power

taken over various time frames, fails to effectively capture wind power variation

within an interval, since it is calculated from the differences between average

wind power values. On the other hand, other recently proposed metrics lack

a clear connection to power system operations. Thus, a novel intra-hour wind

power variability metric is deemed necessary, especially with the current rate

at which wind power penetration levels increase, since for large penetrations
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Figure 1.2: Examples of outputs from sources of energy (wind, sinewave, direct
geothermal) with different notions of variability. Wind is a variable, intermit-
tent and non-dispatchable source of energy. Notice the total unavailability of
the wind power close to minute 60 and after minute 590.

the intra-hour variation of wind power becomes comparable in size to the intra-

hour demand variation.

The novel metric should not only efficiently characterize wind power

variability and effectively overcome the shortcomings of current metrics, but

it should also be of practical value to power system operators and wind farm

owners. Quantifying wind power variability, regardless of its uncertainty, can

provide important characteristics a generator must have so as to accommo-

date wind power fluctuations, essentially improving wind power management

techniques. At the planning time scale, ramping requirements of controllable

units and an adequately flexible system generation portfolio can be specified
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to accommodate wind power. At the operational time scale, generation out-

put and reserve allocation can be tuned to achieve desired short-term (hours

to minutes) variability. In addition, analysis of wind power variability and

especially the factors which affect it can lead to ways of reducing wind power

variability to more acceptable risk levels for power systems, however keeping

in mind that wind power variability cannot be eliminated without the use of

some dispatchable source of energy.

1.2 Research Objectives

The main objective of the work presented herein is to assess intra-hour

wind power variability. For this purpose a novel intra-hour wind power vari-

ability metric is proposed. The new metric is expected to assist power system

operators and wind farm owners in quantifying and hence more efficiently

managing wind power variability over various time frames. Moreover, the new

metric can be used to obtain wind power variability forecasts, which can assist

in decision making under uncertainty, when the uncertainty comes from wind

power variability.

Specific research objectives towards assessing intra-hour wind power

variability are listed below:

• Objective 1: To develop a metric to quantify intra-hour wind power vari-

ability

This objective involves developing a formal definition and a detailed com-

putational algorithm for the proposed intra-hour wind power variability

metric.
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• Objective 2: To assess intra-hour wind power variability

This objective requires an extensive performance analysis of the proposed

intra-hour wind power variability metric using a large set of real-world

wind power data.

• Objective 3: To evaluate the proposed metric against existing metrics

This objective entails the identification of shortcomings of currently used

wind power variability metrics and the demonstration of how they can

be overcome by the proposed metric.

• Objective 4: To develop methods to forecast wind power variability

This objective links the proposed intra-hour wind power variability met-

ric to the definition of a wind power variability forecast and explains how

the forecast can be obtained.

• Objective 5: To demonstrate the utility of the proposed metric

This objective demonstrates the practical value of the proposed intra-

hour wind power variability metric to power system operators and wind

farm owners through an example application.

1.3 Research Approach

The approach taken towards meeting each of the previously defined

research objectives is summarized in this section.

1.3.1 To Develop a Metric to Quantify Intra-hour Wind Power
Variability

The approach taken towards defining a wind power variability metric

involves the use of the range as a measure of dispersion. Thus, the general idea
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of the proposed intra-hour wind power variability metric lies in quantifying the

variability of a source using its range of outputs over a given period. The pro-

posed conditional range metric (CRM) defines the endpoints of an interval

[Mlow,Mup] within which the wind power output lies over a given length intra-

hour time frame. The size of this interval provides a measure of wind power

variability, which corresponds to the largest change the wind power output

can undergo within the given time frame. The metric is termed conditional

since the range of wind power output is conditioned on the time frame length

k and on the wind power average production lj over the given time frame.

A single value of the conditional range metric provides information on

an instance of wind power variability. The quantiles of the CRM are used

to obtain a measure of intra-hour wind power variability over the course of

a longer period. Using statistical analysis and optimization approaches a

computational algorithm to obtain a unique pth quantile of the conditional

range metric is given. In this manner the proposed conditional range metric

CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

] is turned into a probabilistic intra-hour wind

power variability metric. The provision of pth CRM quantiles is of significance,

because it gives power system operators and wind farm owners a measure of

intra-hour wind power variability in the long term and allows them to make

decisions involving wind power variability based on their willingness to accept

a certain level of risk α = 1− p.

1.3.2 To Assess Intra-hour Wind Power Variability

To asses intra-hour wind power variability the proposed conditional

range metric is applied on a large set of real-world wind power and wind

speed data. The purpose of this analysis is to identify how certain variables
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affect intra-hour wind power variability, which in turn can lead to diagnosing

time periods and conditions with increased wind power variability, as well

as providing characteristics of means used to reduce wind power variability

to more acceptable risk levels. The sensitivity analysis quantifies wind power

variability due to intrinsic variables, such as changes in the average wind power

output directed by changes in wind speed, as well as wind power variations

due to extrinsing factors, such as the wind turbine size and technology.

1.3.3 To Evaluate the Proposed Metric against Existing Metrics

The evaluation of the proposed metric against existing metrics is done

by comparing the performance of the conditional range metric against the

step-changes statistics. Wind power step-changes are differences of wind power

averages taken over different length time intervals and their standard devia-

tion is the prevalent wind power variability metric used in numerous wind

integration studies. The purpose of the comparison between the conditional

range metric and the step-changes is to evaluate the ability of both metrics

to assess intra-hour wind power variability, and more specifically their ability

to estimate the size of the largest change in wind power output over a given

length time frame, and the rate at which this change occurs.

1.3.4 To Develop Methods to Forecast Wind Power Variability

Towards meeting this objective, first a wind power variability forecast

is defined as the interval [Pw,min, Pw,max] within which the wind power output

Pw over an intra-hour time frame will lie, given the forecast for the average

wind power production over this time frame. Hence, a wind power variability

forecast is essentially a future value of the conditional range metric. To obtain
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a probabilistic wind power variability forecast, i.e. a forecast which provides

several interval estimates [Pw,min, Pw,max] associated with different probabili-

ties p, conditional range metric quantiles are estimated employing static and

time adaptive quantile estimation methodologies.

1.3.5 To Demonstrate the Utility of the Proposed Metric

The utility of the proposed metric is demonstrated by providing an ex-

ample practical application of the conditional range metric. The application

considered involves the coupling of wind power with an energy storage system

so as to reduce wind power variability. The methodology provided estimates

the size, in terms of power and capacity, of an energy storage system with the

goal of minimizing wind power imbalances from the hourly average, essentially

’firming’ the wind power output.

The validation of the studies performed towards meeting Objectives 2-5

is done using real-world wind power and wind speed data. All algorithms and

computations have been implemented in MATLAB.

1.4 Original Research Contributions

In this section the major and supporting research contributions towards

meeting the previously defined objectives, along with the relevant publications

are listed.

1.4.1 Major Contributions

The major research contributions are:
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• To meet Objective 1 a novel probabilistic intra-hour wind power vari-

ability metric, termed conditional range metric is defined. The proposed

metric quantifies wind power variability by measuring the size of an in-

terval within which the wind power output lies. The metric is based on

the range of the wind power output over a given time frame, conditioned

on the average wind power production over that time frame. The formal

definition and a detailed computational methodology to obtain a unique

pth quantile of the conditional range metric are given in Chapter 3. The

work has been published in [2]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability using the conditional range metric,“ Sustainable Energy,

IEEE Transactions on, vol. 3, no. 3, pp. 369-378, July 2012.

• As part of Objective 2 the conditional range metric has been applied on

real-world wind power data from 18 wind farms spanning a period of 1 up

to 4 years, and on two 30-week long wind speed series. Among others, the

effects of wind power production, wind farm size, wind turbine size and

wind turbine technology on wind power variability have been examined.

The effects of these variables are not only described in a qualitative

manner, but are also quantified using the conditional range metric. The

results from this analysis are presented in Sections 4.1 and 4.2 and have

been published in [2, 3]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability using the conditional range metric,“ Sustainable Energy,

IEEE Transactions on, vol. 3, no. 3, pp. 369-378, July 2012.
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– T. Boutsika and S. Santoso, “Quantifying the effect of wind tur-

bine size and technology on wind power variability,“ in Power and

Energy Society General Meeting, 2013 IEEE, July 2013, pp. 1-5.

• To achieve Objective 4, probabilistic wind power variability forecasts are

proposed which can be used in conjunction with state-of-the-art wind

power forecasts. The wind power variability forecasts are defined as in-

tervals within which the wind power output will lie, conditioned on the

forecasted average wind power production. The pth CRM quantiles are

used to construct such intervals, essentially wind power inequalities of

the form {Mlowk,lj ,p
≤ xn ≤ Mupk,lj ,p

with probability p}, which bound

the wind power output xn over a time interval of length k and average

wind power production lj . The importance of these inequalities stems

from the fact that they can serve as so-called joint chance constraints

in several stochastic optimization problems. Thus, wind power variabil-

ity forecasts open the door to numerous applications of the conditional

range metric which can reduce the risk in decision making due to uncer-

tainty from wind power variability, starting at the wind turbine or farm

level and ranging up to the balance authority aggregated level. One

static and two time adaptive methodologies to obtain CRM quantile

estimates for wind power variability forecasts are provided. These are

based on sample quantiles, from historical wind power variability data,

and their adaptations, using an exponentially weighted moving average

and a stochastic approximation approach. The definition of wind power

variability forecasts and the methodologies to obtain them are given in

Chapter 5.
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1.4.2 Supporting Contributions

Supporting research contributions are

• Working towards meeting Objective 3, the wind power conditional range

is compared under three different schemes to the wind power step-changes

and forward differences statistics, which are the prevalent wind power

variability metric applied in wind integration studies. The results of this

comparison reveal the shortcomings of the currently used step-changes

approach, and quantify their inability to reliably assess the size and rate

of change in wind power output over intra-hour time intervals. Part of

the comparative analysis presented in Section 4.3 has been published in

[4]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability,“ in Power and Energy Society General Meeting, 2011

IEEE, July 2011, pp. 1-7.

• To meet Objective 5 a practical example application of the conditional

range metric is given. In this application, a detailed algorithm to es-

timate the size of an energy storage system is presented. The storage

system is coupled with a wind farm, with the goal of firming its output,

by minimizing the deviations of the wind power output from the wind

power hourly average. Its size is estimated using a forecast of hourly

wind power averages and historical wind power variability values, and is

evaluated using real-world wind power data. The energy storage system

sizing algorithm is described in Chapter 6 and has been published in [5]:

– T. Boutsika and S. Santoso, “Sizing an energy storage system to

minimize wind power imbalances from the hourly average,“ in Power
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and Energy Society General Meeting, 2012 IEEE, July 2012, pp. 1-

8.

1.5 Dissertation Outline

This document is outlined as follows. Common measures of variability

and a summary of wind power variability metrics used in wind integrations

studies are given in Chapter 2, followed by the definition and computational

algorithm of the proposed conditional range metric, which is presented in

detail in Chapter 3. The conditional range metric is evaluated in Chapter 4

using real-world wind power and wind speed data. The evaluation involves an

extensive performance analysis of the conditional range and its comparison to

the commonly used step-changes. Then, wind power variability forecasts and

methods to obtain them are elaborated in Chapter 5, whereas the practical

example application of the conditional range metric is reported in Chapter 6.

Finally, Chapter 7 provides the conclusion and future research directions.
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Chapter 2

Prior Work in Wind Power Variability

In statistics, statistical dispersion or variability refers to the spread of

values of a random variable. On the other hand, location or central tendency

refers to the mean or expected value of the random variable. Dispersion and

location are the most important properties of a probability distribution. In

physical sciences, sources of statistical dispersion of a measured quantity can

be extrinsic, such as systematic or random measurement errors, or the ob-

served variability might be intrinsic to the phenomenon.

Wind power can be considered as a random variable with intrinsic vari-

ability, since it is determined by a number of variables that are seldom un-

changing and hardly stable. These variables include wind speed and direction,

temperature and atmospheric pressure. But even if these variables are consid-

ered static, other parameters such as the wind turbine size and technology may

affect the variability of the wind power output. Though much effort has been

placed in mitigating the adverse effects of wind power uncertainty in recent

years, by providing ever improving methods to estimate the central tendency

of wind power, little focus has been given on wind power variability.

This chapter provides a review of common measures of statistical dis-

persion (Section 2.1) along with their applications in wind power (Section 2.2).

The most widely used wind power variability metric in wind integration stud-

ies is presented in Section 2.2.1, while other approaches to characterize wind
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power variability are given in Section 2.2.2.

• Publications: Part of the work presented in this chapter has been pub-

lished in [2, 4]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability,“ in Power and Energy Society General Meeting, 2011

IEEE, July 2011, pp. 1-7.

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability using the conditional range metric,“ Sustainable Energy,

IEEE Transactions on, vol. 3, no. 3, pp. 369-378, July 2012.

2.1 Common Measures of Dispersion

Measures of dispersion (or measures of spread) are used to characterize

the spread of values of a random variable X . Common measures of dispersion

include the following [6]:

• Variance, Var

• Standard deviation, σ

• Coefficient of variation, cv

• Mean (or median) absolute deviation, MAD

• Interquartile range, IQR

• Range, R
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Let X be a continuous random variable with probability density function fX

and cumulative density function FX . The variance of X is its second order

central moment, given by:

V ar(X) =

∫ ∞

−∞
(x− µ)2fX(x)dx = E[(X − µ)2] = E[X2]− E[X ]2 (2.1)

where µ =
∫∞
−∞ xfX(x)dx = E[X ] is the mean of X . The variance describes

how far the values of X lie from its mean.

The standard deviation of X is the positive square root of the variance:

σ(X) =
√

V ar(X) (2.2)

The standard deviation is easier to manipulate since it has the same units as

the random variable X , while the variance has the units of X2. Moreover,

though both measures are location invariant, only the standard deviation is

linear in scale.

Variance and standard deviation are suitable measures of dispersion

when X is normally distributed. One of the most frequent uses of standard

deviation is to construct confidence intervals of a random variable’s mean,

using the Central Limit Theorem. The most known example is the 3σ-rule or

empirical rule, which states that under the assumption of a normal distribution

99.7% of all values lie within three standard deviations of the mean.

The coefficient of variation is a dimensionless measure of dispersion,

given by:

cv =

√

E[(X − E[X ])2]

E[X ]
=
σ

µ
(2.3)

Essentially, the coefficient of variation is the standard deviation normalized by

the value of the mean. Thus, it gives a measure of dispersion of the random

variable relative to its location. This measure is suitable for comparison be-

tween two variables with very different means, however it cannot be applied
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to variables having zero (or near-zero) mean. The inverse of the coefficient of

variation is the signal to noise ratio, used in signal processing to quantify how

much a signal has been corrupted by noise.

The mean absolute deviation of X is given by:

MAD(X) = E[|X − E[X ]|] (2.4)

For the median absolute deviation, mean E[·] is replaced by the median in

the above equation. The mean absolute deviation is a more robust estimator

of scale than standard deviation or variance, because it is more resilient to

outliers. It has been used widely in the concept of forecasting under the name

of mean absolute error MAE =
∑n

i=1 |ei|/n with ei = yi − fi, where for each

observation ei is the error, fi is the forecast and yi is the true value.

The interquartile range of X is given by the difference between the 75th

and the 25th percentile of X :

IQR(X) = QX(0.75)−QX(0.25) (2.5)

In (2.5) QX(i) denotes the i
th percentile of X , i = 1, 2, · · · , 99%, given by:

QX(i) = F−1
X (i) = inf{x : P [X ≤ x] ≥ i} (2.6)

where F−1
X is the inverse of the cumulative distribution function of X . The

interquartile range is mostly used to build box plots, which are graphical rep-

resentations of probability distributions. The IQR of data from a sample of X

can be estimated using order statistics or optimization techniques.

Finally, the range of X is the length of the smallest interval which

contains all the values from the support of X , i.e. all values of X for which

fX(x) 6= 0. It should be noted that only random variables supported on a
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bounded interval have a finite range, such as the beta, the continuous uniform

or the truncated normal. However, the sample range from a sample of the ran-

dom variable X is always finite. It is calculated by subtracting the smallest

(sample minimum) from the greatest (sample maximum) observation:

R(X) = max(X)−min(X) (2.7)

The above measures of dispersion can be applied to discrete random

variables by replacing integrations with summations and the probability den-

sity function with the probability mass function. Care should be taken when

the above measures of dispersion are estimated from a data sample, since they

are all prone to outliers. This means that an outlier in the data, i.e. a value

that is separate from the body of the data, can skew the measure significantly.

The median absolute deviation does not move quite as much as the

standard deviation or variance in response to data with outliers. This is be-

cause in the standard deviation, the distances from the mean are squared, so

large deviations are weighted more heavily, and thus outliers can heavily in-

fluence it. On the other hand, unless used with a large sample size the range

can be a poor and weak measure of dispersion, since it only depends on two of

the observations. However, since only the middle 50% of the data affects the

interquartile range, this measure is the most robust to outliers.

2.2 Measures of Wind Power Dispersion

Wind power is intrinsically very variable and attempts have been made

to characterize wind power variability. The most widely used variability met-

ric in wind integration studies is the standard deviation of the wind power

or net demand step-changes taken over various time frames, as described in
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Section 2.2.1. A short overview of wind power variability metrics proposed in

other reports and research papers is given in Section 2.2.2.

2.2.1 Step-Changes

Time series models have been extensively used for short-term wind

power forecasting, however, one of the purposes of analyzing wind speed and

wind power time series and performing statistical analysis on historical data

has also been to obtain a measure of wind power variability. Indeed, the most

widely used measure of dispersion to characterize the variability of wind power

is the standard deviation of the wind power step-changes taken over various

time frames, which can be obtained from the analysis of the wind power time

series.

2.2.1.1 Definition of Step-changes

To estimate the variability of wind power using step-changes, first the

continuous wind power output x(t), with t being the time, is measured at

successive points in time spaced at uniform time intervals of length Ts so as

to generate a discretized wind power time series xn, n = 1, 2, · · · , N . The

step-changes time series yk,i for the desired time frame k, where k ≥ Ts, is

then defined from the difference between two successive average wind power

outputs x̄k,i taken over k-long time intervals:

yk,i = x̄k,i+1 − x̄k,i, i = 1, 2, · · · , q − 1 (2.8)

where q = ⌊N/k⌋ = max{m ∈ Z|m ≤ N/k}. In (2.8) x̄k,i refers to the sample

mean of the wind power over the desired time frame k:

x̄k,i =
1

k

k
∑

m=1

xk(i−1)+m, i = 1, 2, · · · , q (2.9)
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To estimate the standard deviation of the time series yk,i the unbiased sample

standard deviation, syk,i, can be used:

syk,i =

√

√

√

√

1

q − 2

q−1
∑

i=1

(yk,i − ȳk,i)2 (2.10)

where ȳk,i is the sample mean of the entire wind power step-changes series yk,i:

ȳk,i =
1

q − 1

q−1
∑

i=1

yk,i (2.11)

2.2.1.2 Applications of Step-changes in Wind Integration Studies

A summary of findings of wind integration studies from several utilities

in the United States on the grid impacts of wind power variability can be found

in [7], whereas a description of how wind integration studies have evolved in

the past years in terms of determining the operating reserves requirements is

given in [8]. The operating reserves are spinning and non-spinning reserves

used to balance load and generation at all times, and are chosen in ways so

as to comply with the resource and demand balancing reliability standards

imposed by North American Electric Reliability Corporation [9].

The effect wind variability has on operating reserves, such as the in-

crease in regulation (seconds up to 5 minutes) and load following (intra-hourly

effects) or the changes in unit commitment (hourly impacts), is estimated by

applying statistical methods on wind power and demand time series, either

specifically generated for the study or taken from historical data. When the

sample standard deviation syk,i of the step-changes from (2.10), calculated over

various time frames k using data from the whole time series or some subset

of it, is used as a variability metric, the operating reserves requirements are
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estimated to be equal to 3syk,i so as to accommodate variability at 99.7% of

all instances under the assumption that the step-changes are normally dis-

tributed.

The standard deviation of the step-changes has been used as a metric

for variability in numerous older [10–13], as well as more recent wind integra-

tion studies [14–18]. The Minnesota Wind Integration Study [10] is one of

the first wind integration studies in the U.S. and estimates the impact of 1500

MW of wind power on the system’s projected 2010 peak load of 10,000 MW,

corresponding to a 15% penetration level (ratio of nameplate wind generation

to peak system load). An additional 8 MW for regulation and 30 MW for load

following reserves are determined by taking three times the standard deviation

of the 1-minute and 10-minute net demand (load minus wind) step-changes,

respectively. The New York ISO Wind Integration Study [12] looks at the im-

pact of 3,300 MW wind power on the system’s 33,000 MW peak load. Using

the same approach this study estimates that a 10% penetration level would

result in a need for 36 MW more regulation and in a 3% increase in the stan-

dard deviation of net demand 5-minute step-changes. The Electric Reliability

Council of Texas Wind Integration Study[13] also uses the standard deviation

of the step-changes over various time frames, ranging from 1 minute to 1 hour,

as a measure to characterize net demand variability. This study estimated the

impact of various wind power penetration levels, ranging from 7.67% to 23%

based on the 2008 estimated peak load, on the ERCOT system and resulted in

an increase in the standard deviation of 1-minute, 5-minutes and 15-minutes

step-changes by 14%, 18% and 19% respectively for the highest wind power

penetration level.

Increased needs in load following reserves due to wind power variability

are estimated based on the standard deviation of the 10-minute net demand
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step-changes in the Montana [15] and Nebraska [16] Wind Integration Studies,

as well as the Western Wind and Solar Integration Study (WWSIS) [17]. The

Montana Wind Integration Study estimates the impact of an additional 10-150

MW wind power, while the Nebraska Wind Integration Study evaluates the

effects of wind energy penetration levels, based on wind energy to total energy

sales, ranging between 10% and 40%. The focus of the Western Wind and

Solar Integration Study (WWSIS) is to investigate the operational impact of

up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating

solar power (CSP) on the power system operated by the WestConnect group

of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming. Finally,

the Southwest Power Pool (SPP) Wind Integration Study [18] evaluates the

impact of integrating high levels of wind penetration on the SPP transmission

system, by examining wind energy penetration levels of 10%, 20% and 40%.

In this study the 5th and 95th percentiles of the the 10-minute step-changes

are used as a metric to estimate increased needs in up and down regulation,

respectively.

2.2.1.3 Shortcomings of the Step-changes Approach

Although the standard deviation of step-changes has been widely used

to characterize wind power and net demand variability, this approach suffers

from the following shortcomings:

1. Step-changes are calculated between average values over two time inter-

vals and thus they do not convey any information about the variability

within the intervals, which can lead to an underestimation of variability.

2. The knowledge conveyed by step-changes is partial, since they provide

information on ramp rates, but not on their duration, information which
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can benefit power system operators in planning their reserves needs.

3. Three standard deviations of the step-changes (variability instances) cap-

ture 99.7% of all variability instances only under the assumption that the

step-changes are normally distributed, which means that three standard

deviations of the step-changes might be insufficient reserves.

Generation providing regulation reserves has to be able to follow the variability

of net demand within the 5-minute time frame, while load following reserves

account for the variability of demand within the 1-hour time frame. In wind

integration studies where the step-changes approach is used, regulation and

load-following reserves are estimated using three standard deviations of the

1-minute and 10-minute step-changes, respectively. However, as the simple

case study in [4] reveals, using the step-changes over smaller time frames as

a measure to characterize variability within longer time frames can lead in

an underestimation of the variability. The case study deals with the vari-

ability exhibited from two test sources, sources 1 and 2, within the 1-hour

time frame. Figure 2.1 shows the 10-minute step-changes histograms of the

two sources over a 24-hour period, which are identical. When three standard

deviations of the 10-minute step-changes are used as a metric to characterize

variability within the 1-hour time frame, the two sources have equal variability

with 3σ10minS1
= 3σ10minS2

=45.5 MW.

Yet, the two test sources exhibit a completely different intra-hour be-

havior, as is depicted in Fig. 2.2. Thus, determining the intra-hour variability

of a source using the 10-minute step-changes can lead to an underestimation

of the source’s variability. Moreover, from the step-changes histogram a high-

est ramp rate of 25 MW/10 min is perceived, but without any information

on the duration of this ramp rate, no safe conclusion about the largest ramp
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Figure 2.1: Frequency of appearance of the 10-minute step-changes for two
test sources (Source 1, Source 2). The two sources have equal variability with
3σ10min(S1) = 3σ10min(S2) = 45.5 MW.
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Figure 2.2: Output of two test sources with equal 10-minute step-changes
distribution over a four-hour period. The second source exhibits a larger intra-
hour variability.
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rate in the 1-hour time frame can be drawn. The proposed metric overcomes

these shortcomings, since the two sources have different variability under the

proposed metric as is shown in Section 3.4. In addition, the first two shortcom-

ings of using wind power step-changes to characterize wind power variability

are exposed with the comparative analysis presented in Section 4.3 using real-

world wind power data.

Regarding the third shortcoming, the misconception about step-changes

arises from the fact that in most wind integration studies where wind power

step-changes have been used, the metric for wind power variability is taken

to be three standard deviations of the step-changes. The 3σ rule is widely

adopted because, under the assumption of a normal distribution, it captures

99.7% of all instances. If wind speeds are considered independent the addi-

tion of the output from a large number of wind farms will result in a normal

distribution per the central limit theorem. However, recent studies have ex-

hibited results which reject the assumption that the wind power step-changes

are normally distributed for variation times of one up to four hours [19, 20]. In

[19] a beta distribution is used to describe the wind power output, while the

distribution of the wind power step-changes is found to follow an exponential

decay. In [20] χ2-goodness-of-fit tests are performed to evaluate the suitability

of a Laplace, a general extreme value, and a normal distribution for describing

wind power variability, with the Laplace distribution outperforming the other

distributions. In all cases, however, the step-changes distributions remain lep-

tokurtic, indicating larger tails than the normal distribution. Hence, the use

of the 3σ rule for quantifying wind power variability may provide insufficient

results if the underlying normality assumption is not satisfied.
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2.2.2 Other Wind Power Variability Metrics

Other than the step-changes, in a few wind integration studies reserves

are determined using a multiple of the standard deviation of the differences zi

of the net demand xi, i = 1, 2, · · · , N from a rolling moving average:

zi = xi − x̄i−k,i+k (2.12)

where

x̄i−k,i+k =
1

2k + 1

2k+1
∑

i=1

xi (2.13)

denotes the net demand rolling moving average. This approach has been

adopted in [21–23]. The Arizona Public Service Wind Integration Study [21]

examines the operating impacts and costs of integrating various wind energy

penetration levels ranging from 1% to 10%, whereas the New England [22]

and Portland [23] Wind Integration Studies examine the impact from an ad-

ditional 400 MW and 10 GW to the respective systems. Under this approach

regulation reserves are determined using the differences of the 1-minute net

demand from a 20-minute moving average, whereas for the load-following re-

serves the differences of 10-minute average values from an hourly trend are

used. A similar approach is used in Avista Corporation Wind Integration

Study [24], which examines the impact of wind power penetration levels rang-

ing from 5% to 30%. In this study the load-following reserve requirements are

specifically tied to the system’s reliability performance using the Power Bal-

ancing Control Performance CPS2 compliance, which requires the 10-minute

average Area Control Error to be less than a specified bound for more than

90% of all available 10-minute time intervals.

In a few wind integration studies wind power variability is not esti-

mated by applying only measures of dispersion on the wind power time series,
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but it is also combined with wind power uncertainty [25, 26]. This approach is

adopted despite the fact that wind power variability will be present and pose

risks to system operations even when all uncertainty is removed with perfect

wind power forecasts. Eastern Wind Integration and Transmission Study [25]

combines wind variability with wind forecast errors. In this study the stan-

dard deviation of 1-minute step-changes is estimated to be 1 MW per 100 MW

wind plant for the wind step-changes and 0.33% of the total hourly load for the

load step-changes. Assuming that for the 1-minute time frame load and wind

variability are independent the standard deviations of load and all wind farms

are geometrically added. The result showed that the variability of adding 60

GW of wind power on a 100 GW load was estimated not to have an effect on

the regulation reserves requirements. However, the wind uncertainty is deter-

mined to have a more significant effect on regulation reserves than the wind

variability, an effect which is incorporated by using the standard deviation of

the wind hourly forecast error in the regulation requirements (RR) equation:

RR = 3
√

(0.33%l1h)2 + (σwind∆1h
)2 (2.14)

where l1h is the hourly total load and σwind∆1h
is the standard deviation of the

wind power hour ahead (∆1h) forecast error.

The California Independent System Operator (CAISO) Wind Integra-

tion Study [26] is another study to estimate operating reserves by combining

variability and uncertainty of wind and load. In this study a completely differ-

ent approach is performed and the increase in operating reserves is calculated

based on a detailed mathematical model of the CAISO’s actual scheduling, real

time dispatch and regulation processes and their timelines, using appropriate

forecasted load and wind data series. Though this methodology provides a

robust and accurate assessment of the additional capacity, ramping and ramp
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duration requirements that the CAISO regulation and load following systems

will be facing when the 20% Renewable Portfolio Standard is achieved, the

proposed methodology is not only very complicated but also very system spe-

cific.

Finally, some recently proposed metrics to characterize wind power vari-

ability involve analysis in the frequency domain and make use of the power

spectral density of the wind power output. In [27] the measured wind power

data with sampling resolutions of 1 second up to 1 hour are found to follow the

Kolmogorov spectrum of energy between frequencies of 30 seconds to 2.6 days.

The Kolmogorov’s energy spectrum E is proportional to the wave number k

and the rate ψ of energy dissipation per unit volume:

E(ψ, k) = Cψ2/3k−5/3 (2.15)

In [28] the power spectral density is used to show the reduction of wind vari-

ability due to geographic disparity. The wind power variability reduction is

measured by providing a methodology to quantify the deviation (∆β) from

the Kolmogorov spectrum when multiple wind farms are aggregated:

E = Cψ2/3k−5/3+∆β (2.16)

where log(∆β) is a function of the correlation coefficient and the nameplate

capacity ratio between the wind farm to be interconnected and the already

interconnected wind farms.

Another attempt to use the power spectral density in [29] results in

an ultra-diurnal variation metric to quantify intra-day wind power variabil-

ity. The proposed ultra-diurnal variation metric (UDVM) compares variations

with infra-diurnal frequencies to the mean wind power output. A derating
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factor α is calculated by summing the power density values at all frequen-

cies higher than the diurnal frequency and dividing by the total power. The

UDVM is then given by the multiplication of the derating factor α with the

coefficient of variation (σ/µ). Thus, the ultra-diurnal variation metric mea-

sures the magnitude of the variance resulting from deviations with cycle less

than once per day.

However, the power spectral density loses all temporal information,

since it provides information only about the amplitudes and not the phases

of the associated sine waves, making it extremely difficult to derive useful

conclusions in the time domain. Instead, Fourier transforms can be used to

incorporate both the magnitude and the phase information of the signal. Still,

when the signal is described using a partial sum Fourier series, two significant

shortcomings remain. The first is the computational complexity which arises

from manipulating trigonometric functions. The second, and more significant,

is that it is extremely hard to derive useful conclusions about the signal in

the time domain from the frequency domain analysis, because the partial sum

Fourier series expansion of a function converges to the function in L2, but

pointwise convergence is not guaranteed. In fact, the Gibbs phenomenon de-

scribes that the partial sum Fourier series oscillates near the jumping points

of the function, resulting in larger maximum values than the actual maxima

of the function [30]. Most importantly, variability metrics relying on analysis

in the frequency domain lack a clear connection to power system operations.

2.3 Summary

This chapter provides definitions and applications of most common

measures of dispersion of random variables in Section 2.1. A summary of how
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wind power variability is estimated in various wind power integration studies is

given in Section 2.2. The step-changes approach, which is most widely used as

a measure of wind power variability, along with its shortcomings is presented

in Section 2.2.1. Other wind power variability metrics from wind integration

studies and papers are summarized in Section 2.2.2.
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Chapter 3

Proposed Conditional Range Metric (CRM) to

Quantify Intra-hour Wind Power Variability

Wind power variability is an inherent characteristic of wind power and

will be present in all wind conditions. Even in the case of a perfect hourly

wind power forecast, the effects of intra-hour wind power variability cannot

be ignored. Hence, the ability to measure variability is of critical importance

because it allows engineers to quantify and therefore manage wind power vari-

ability at the desired time scale. The importance of measuring wind power

variability is highly recognized by the North American Electric Reliability Cor-

poration. Therefore, characteristics of potential metrics for variable generation

and system flexibility requirements to accommodate high levels of wind power

are described in [31].

The need for a metric to quantify intra-hour wind power variability in-

creases with increasing wind power penetration levels, because the intra-hour

variation of wind power (in MW) becomes comparable to that of load varia-

tion. For example, for a given year in the ERCOT service area, the maximum

wind power production was 4777.06 MW compared to a system peak load of

62258.15 MW. For this modest 7.7% wind penetration level, the largest change

in wind power within a 5-minute interval was 781.42 MW versus a respective

load variation of 892.52 MW [4]. Moreover, the inability of current variability

metrics presented in Section 2.2 to effectively capture intra-hour variations in
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wind power deem a novel intra-hour wind power variability metric necessary.

Desired features of a novel intra-hour wind power variability metric are

listed below:

1. The proposed metric should efficiently quantify intra-hour wind power

variability.

2. The proposed metric should be straightforward to compute and of prac-

tical value to power system operators as well as wind farm owners and

investors.

3. The proposed metric should characterize wind power variability regard-

less of its uncertainty error level.

This chapter presents the proposed metric to quantify intra-hour wind power

variability in detail. The fundamental concept of the metric is laid out in

Section 3.1, while the formal definition of the metric is given in Section 3.2.

The methodology to extend the proposed metric into a probabilistic metric is

outlined in Section 3.3. The chapter concludes with examples which compare

the values of the proposed metric on various sources and explain how the

proposed metric encompasses the aforementioned desired features.

• Publications: Part of the work presented in this chapter has been pub-

lished in [2, 4]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability,“ in Power and Energy Society General Meeting, 2011

IEEE, July 2011, pp. 1-7.
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– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability using the conditional range metric,“ Sustainable Energy,

IEEE Transactions on, vol. 3, no. 3, pp. 369-378, July 2012.

3.1 Fundamental Concept of the Proposed Metric

Contrary to the step-changes approach where average values are used,

the proposed metric should be defined in a way which entails information

about all the data within the desired variability time frame, so as to be able

to distinguish the variability of the two sources from the case study presented

in Section 2.2.1.3. A measure of dispersion which envelopes all the data in

a random sample is the range, which is defined as the difference between the

maximum and the minimum observations of the set. Thus, the proposed met-

ric uses the range as a measure of dispersion for the varying wind power output.

Since wind power output X is bounded below by zero (or some small

negative number due to ancillary loads) and above by the wind farm nameplate

capacity PN , the range of the wind power is R = max(X) − min(X) = PN .

However, over a smaller time frame wind power is expected to vary by much

smaller amounts. The proposed conditional range is the size Mk of the inter-

val within which wind power output X lies over a given time frame k. The

conditional rangeMk provides a measure of wind power variability, which cor-

responds to the largest change the wind power output can undergo within the

given time frame k. It is termed conditional, because the range’s value is con-

ditioned on the length of the time frame k.

In Fig. 3.1 wind power values for a time period of one hour are de-

picted, normalized based on the wind farm nameplate capacity. For two time

intervals having different lengths, k1 and k2, wind power values lie in two inter-
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Figure 3.1: Characterizing the variability of wind power using two intervals’
sizes (M1 and M2) of different magnitudes over two time frames (k1 and k2,
respectively). The shaded rectangle’s width M depends on its length k and
corresponds to the largest change the wind power can undergo within it.

vals of different sizes, M1 and M2, respectively. The length of the first shaded

rectangle is chosen to be k1 = 7 minutes and the resulting width is M1 = 0.04

p.u. This means that within the specific 7-minute interval the largest change

in wind power is 4% of the wind farm’s nameplate capacity. For the first rect-

angle this is a ramp down starting at minute 25 up to minute 27. The length

of the second shaded rectangle is k2 = 28 minutes and the resulting width is

M2 = 0.335 p.u. Thus, for the specific 28-minute interval, the largest change

in wind power is a ramp up starting at minute 30 up to minute 45 and having

a magnitude of 33.5% of the wind farm’s nameplate capacity.
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3.2 Definition of the Conditional Range Metric

Let Mk be the conditional range of the wind power output x(t) in an

interval [ti, ti + k],

Mk =Mupk −Mlowk
(3.1)

where

Mlowk
≤ x(t) ≤Mupk , ∀t ∈ [to, to + k] (3.2)

Given a discretized wind power output time series xn, n = 1, 2...N , for each

initial time i and time interval length k, the endpoints Mlowi,k
and Mupi,k of

the conditional range Mi,k are uniquely defined by:

Mi,k =Mupi,k −Mlowi,k
= max

n∈Ki

xn − min
n∈Ki

xn (3.3)

where Ki is the interval [i, i+ k − 1].

The conditional range series Mi,k is generated by calculating the inter-

val’s size Mk over all available k-long time intervals Ki, i = 1, 2...N − k + 1,

using (3.3) over the entire wind power series. The series consists of pairs of

values (Mlowi,k
,Mupi,k). However, the conditional range endpoint valuesMlowi,k

and Mupi,k have a large span. For example, Mlowi,k
can range from zero, when

the wind power production is low, up to approximately the nameplate capac-

ity, when the production is at the highest. Conditioning the range not only

on the length of the time interval k, but also on the interval average wind

production level lj , limits the span of Mlowi,k,lj
and Mupi,k,lj

, forcing them to

take values closer to lj, as is illustrated in Fig. 3.2.

Based on the above discussion, the proposed conditional range metric

CRM is defined as the interval:

CRMi,k,lj = [Mlowi,k,lj
,Mupi,k,lj

] (3.4)

36



0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60

W
in

d
 P

o
w

e
r 

[p
u

] 

Time [min] 

ai,k,lj 

k 

Mupi,k,lj 

Mlowi,k,lj 

lj 

bi,k,lj 

i 

Mi,k,lj 

Figure 3.2: Definition of the conditional range metric. For each initial time
i, time interval length k and wind power interval average production level
lj the endpoints Mlowi,k,lj

and Mupi,k,lj
uniquely define the conditional range

Mi,k,lj and the wind power output lies in the interval [Mlowi,k,lj
,Mupi,k,lj

] with

probability p = 1.

and the conditional range CR is the size of this interval:

CRi,k,lj =Mupi,k,lj
−Mlowi,k,lj

(3.5)

which serves as a measure of wind power variability over a time interval start-

ing at point i, having length k and average wind power production lj . For the

shaded rectangle given in Fig. 3.2 the initial minute in time is i = 20, the time

interval length is k = 28 minutes and the interval average wind power produc-

tion is lj = 0.376 p.u., normalized based on the wind farm nameplate capacity.

For this specific time interval the conditional range metric is CRM28,0.376,20 =
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[0.228, 0.563] p.u., which means that the minimum and maximum wind power

output in this interval is 0.228 and 0.563 p.u., respectively. The resulting con-

ditional range is CR28,0.376,20 =Mup28,0.376,20 −Mlow28,0.376,20 = 0.335 p.u. and it

equals the size of the largest wind power ramp in this interval.

3.3 Probabilistic Conditional Range Metric

Just like the step-changes are used to characterize variations in wind

power, the conditional range metric (CRM), as defined in (3.4), also consti-

tutes a wind power variability metric. This metric, which corresponds to the

largest change the wind power output can undergo within an interval, can be

considered as a random variable. However, a single sample from the CRM

random variable provides little general information on wind power variabil-

ity. Indeed, to obtain a measure of how much the conditional range values

vary over the course of a longer period, for example to get a feeling of the

15-minute CRM interval size variation over the course of a year, some statis-

tic of the CRM random variable needs to be estimated. In wind integration

studies three standard deviations of the step-changes are used to estimate the

biggest variations in wind power output, but for the conditional range metric

the chosen statistic is its quantile. In this section, the approach taken to-

wards extending the CRM to a probabilistic wind power variability metric is

described in Section 3.3.1, while a detailed algorithm to obtain a unique pth

CRM quantile, denoted CRMk,lj ,p, is given in Section 3.3.2.
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3.3.1 Motivation and Approach

For a specific k-long time interval with initial point i and interval av-

erage wind power production lj the wind power output lies in the interval

[Mlowi,k,lj
,Mupi,k,lj

] with probability p = 1. However, this information is of

little use to power system operators, since for another k-long time interval

with initial point m and interval average wind power production lj the size

or endpoints of the respective interval [Mlowm,k,lj
,Mupm,k,lj

] may be completely

different. On the other hand, using a time series of conditional range metric

values, the proposed metric can be extended into a probabilistic intra-hour

wind power variability metric, i.e. a metric of the form:

Metric has value at most A with probability at least B

When a metric X follows a normal distribution, then taking A = 3σX leads

to B = 99.7%. But, to avoid possible violations of any normality assumptions

instead of using the standard deviation as a measure of dispersion for the CRM

values, quantiles are used to extend the proposed metric into a probabilistic

metric. In this sense, the CRM has value at most equal to its pth quantile (A)

with probability at least p (B). An empirical probability distribution of the

proposed metric can be obtained by calculating several quantiles p of the CRM.

The provision of pth CRM quantiles is of significance, because it gives power

system operators and wind farm owners a measure of wind power variabiliy

and allows them to make decisions involving wind power variability based on

their willingness to accept a certain level of risk α = 1−p. Next, the approach
to obtain a unique pth CRM quantile is described.

The pth quantile QX(p) of a random variable X is defined in (2.6) us-

ing the inverse of the cumulative distribution function F−1
X , thus QX(p) =
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F−1
X (p) = inf{x|P (X ≤ x) ≥ p}. When the underlying distribution and

hence the cumulative distribution function is unknown, the pth sample quan-

tile QX(p) from an N -long sample of X can be estimated using order statistics.

For this, the N values of X are sorted and the desired quantile resolution 1/q

is selected, with p = r/q (r is the quantile rank, r = 1, 2, ...q). To compute

QX(p), the estimate for the rth q-quantile of X , a real valued index h is com-

puted. When h is an integer, the hth smallest of the ordered values, X(h), is

the quantile estimate. Otherwise an interpolation scheme is used to compute

the quantile estimate from the ceiling function X(⌈h⌉) and the floor function

X(⌊h⌋). Throughout this work the sample quantiles are calculated from:

QX(p) =

{

X(h) if h ∈ Z
X(⌈h−1/2⌉)+X(⌊h+1/2⌋)

2
if h /∈ Z

(3.6)

where h = Np + 1/2. Equation (3.6) represents the inverse of the empirical

cumulative distribution function, but with averaging at the discontinuities.

The ordering of values in a one-dimension sample is straightforward.

However, when it comes to multiple variables, such as the conditional range

metric, there is no unique definition for a multivariate quantile analogous to

(2.6). Several attempts have been made to extend the concept of the quantile

to a multivariate setting and to obtain quantile definitions with certain de-

sired attributes. The two most common methods involve analytical approaches

through inverse distribution functions and L1 optimization [32], or geometrical

considerations such as halfspace depth and projections [33]. The advantages of

using analytical approaches to define vector-valued quantile functions include

efficient algorithms and tractable asymptotics, whereas geometric approaches

benefit from equivariance properties and intuitive contents.

Thus, conditional range values CRi,k,lj of a wind power series xn com-

puted using (3.5) can be easily ordered and a sample quantile can be obtained
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from (3.6). However, the estimation of a pth sample quantile of CRM, denoted

[Mlowk,lj ,p
,Mupk,lj ,p

], involves a more sophisticated approach. The proposed

probabilistic wind power variability metric has to be given in a form suitable

for direct use by power system operators and wind farm owners, thus it is

necessary to provide a methodology to calculate a scalar-valued instead of a

vector-valued quantile function. The procedure towards this methodology is

described below.

The first quality a pth CRM sample quantile [Mlowk,lj ,p
,Mupk,lj ,p

] should

have, follows from the {P (X ≤ x) ≥ p} part of (2.6). That is, the Mlowk,lj ,p

and Mupk,lj ,p
values should be such, that over all available k-long time inter-

vals with average wind power production lj the probability that the interval

[Mlowk,lj ,p
,Mupk,lj ,p

] envelopes the wind power should be at least p. Two obvi-

ous such values valid for any time frame k, average production lj and quantile

p are Mlowk,lj ,p
= 0 and Mupk,lj ,p

= PN , the range of the wind power. To nar-

row this range, the condition that the resulting interval (Mupk,lj ,p
−Mlowk,lj ,p

) is

minimized is requested, in analogy to the infimum imposed in (2.6). Hence, the

initial problem of calculating a pth conditional range metric sample quantile

[Mlowk,lj ,p
,Mupk,lj ,p

] from an N -long wind power series xn can be mathemati-

cally formulated as follows:

Given k, lj, and p

Find Mlowk,lj ,p
and Mupk,lj ,p
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such that (Mupk,lj ,p
−Mlowk,lj ,p

) is minimized and such that over all k-long time

intervals Ki:

P

({

inf
n∈Ki

xn ≥Mlowk,lj ,p

}

⋂

{

sup
n∈Ki

xn ≤ Mupk,lj ,p

}
∣

∣

∣

∣

x̄n = lj

)

≥ p, i = 1, 2, . . . , N − k + 1, (3.7)

where:

k is the desired time interval length,

lj is the desired production level,

p is the desired quantile (or coverage probability),

Ki is the interval [i, i+ k − 1], and

x̄n is the interval average wind production, x̄n = 1
k

∑

n∈Ki
xn.

Thus, given the length of the time interval k and the interval average wind

power production level lj, we search for valuesMlowk,lj ,p
andMupk,lj ,p

that have

the desired coverage probability p, i.e. that envelope (or cover) the wind power

with at least probability p, and form a range with minimum width. For ex-

ample, given a wind power time series from a 100 MW wind farm over a year

period, we want to find the lowerMlowk,lj ,p
and upperMupk,lj ,p

endpoints of the

wind power range, taken over 15-minute (k) intervals with 30 MW (lj) average

production and coverage probability at least 90% (p). The pointsMlowk,lj ,p
and

Mupk,lj ,p
should be such, that within the specific year in 90% of the 15-minute

intervals with 30 MW average production, the wind power output falls within

[Mlowk,lj ,p
,Mupk,lj ,p

]. Moreover, the interval [Mlowk,lj ,p
,Mupk,lj,p

] should be the

smallest possible.

However, it is possible for multiple pairs (Mlowk,lj ,p
,Mupk,lj ,p

) to min-

imize (Mupk,lj ,p
− Mlowk,lj ,p

) and satisfy (3.7). Indeed, consider an interval
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[Mlowk,lj ,p
,Mupk,lj ,p

] which satisfies (3.7) and has widthMupk,lj ,p
−Mlowk,lj ,p

= α.

Then it is possible for other pairs (Mlowk,lj ,p
,Mupk,lj ,p

), which are on the line

y = α + x, to define intervals which provide the same coverage probability p.

Therefore, another condition is added to ensure that a unique pair of values

and hence a scalar-valued quantile function is defined. For this purpose the

deviation time series are introduced. The minimum ai,k and maximum bi,k

deviation series are generated by calculating the minimum and maximum de-

viation from the interval average production over all available time intervals

Ki of length k:

ai,k =
1

k

∑

n∈Ki

xn − min
n∈Ki

xn (3.8)

bi,k = max
n∈Ki

xn −
1

k

∑

n∈Ki

xn (3.9)

where Ki = [i, i + k − 1], i = 1, 2, ...N − k + 1. The deviation series ai,k

and bi,k are then filtered by the interval average wind power production level

x̄n = 1
k

∑

n∈Ki
xn = lj resulting in separate deviation series for each production

level, ai,k,lj and bi,k,lj , i = 1, 2, ..Nk,lj .

Given a wind power output over a time interval, the deviation series

essentially measure the largest excursions of the wind power output (in both

directions) from the interval average production. For example, in Fig. 3.2

the shaded rectangle depicts the wind power output from a wind farm over a

k = 28 minutes time interval starting at minute i = 20. The interval average

production is lj = 0.376 p.u., normalized on the wind farm nameplate capacity.

For this specific interval, the minimum deviation is a28,0.376,20 = 0.148 p.u. and

it provides the largest excursion of the wind power output from the interval

average in the negative direction. Similarly, the maximum deviation shows

that the furthest the wind power output can deviate from the interval average
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production in the positive direction is b28,0.376,20 = 0.187 p.u.

Here it should be noted that the deviation series are actually filtered

not using production levels but production level intervals. Let 1/m denote

the production level resolution, i.e. lj = j/m p.u. with j = 1, 2, · · · , m, then

throughout this dissertation {x̄n = lj} refers to the normalized average wind

power production interval x̄n lying in ((2j − 1)/2m, (2j + 1)/2m].

Using the deviation series the following constraint is added to (3.7):

P ( sup
n∈Ki

{xn − x̄n} ≤Mupk,lj ,p
− lj) =

P ( sup
n∈Ki

{x̄n − xn} ≤ lj −Mlowk,lj ,p
) (3.10)

which essentially imposes the condition that over all Ki intervals the probabil-

ities that ai,k,lj ≤ lj −Mlowk,lj ,p
and bi,k,lj ≤ Mupk,lj ,p

− lj be equal. Thus, the

solution of the system of equations (3.7) and (3.10) that minimizes (Mupk,lj ,p
−

Mlowk,lj ,p
) provides a unique pair of values (Mlowk,lj ,p

,Mupk,lj ,p
).

3.3.2 Computation of the Probabilistic CRM

Starting with anN -long wind power time series xn, n = 1, 2, · · · , N , the

desired time interval length k, desired production level lj, and desired coverage

rate p are specified. The algorithm described next provides the endpoints of

the pth quantile of the CRM, CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

].

First, the minimum ai,k and maximum bi,k, i = 1, 2, ...N −k+1, devia-

tion series are calculated from (3.8) and (3.9), respectively. Next, the deviation

series are filtered by the desired interval average wind power production level

x̄n = 1
k

∑

n∈Ki
xn = lj resulting in the production specific deviation series

ai,k,lj and bi,k,lj , i = 1, 2, ..Nk,lj . The additional constraint in (3.10) requires

the values lj − Mlowk,lj ,p
and Mupk,lj ,p

− lj to be same rank quantiles of the
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deviation series ai,k,lj and bi,k,lj , respectively. Since no assumption about the

underlying distribution of the deviation series is made, a quantile estimate can

be calculated from the sample data series. For this, the Nk,lj values of the de-

viation series ai,k,lj and bi,k,lj are sorted and the desired quantile resolution 1/q

is selected, with τ = r/q (r = 1, 2, ...q). To compute QAk,lj
(τ) and QBk,lj

(τ),

the estimates for the rth q-quantile of ai,k,lj and bi,k,lj (3.6) is used:

QAk,lj
(τ) =

{

a(h) if h ∈ Z
a(⌈h−1/2⌉)+a(⌊h+1/2⌋)

2
if h /∈ Z

(3.11)

QBk,lj
(τ) =

{

b(h) if h ∈ Z
b(⌈h−1/2⌉)+b(⌊h+1/2⌋)

2
if h /∈ Z

(3.12)

where h = Nk,ljτ + 1/2.

The sample quantiles calculated from (3.11) and (3.12) partition the

Nk,lj ordered samples from the deviation series ai,k,lj and bi,k,lj in q disjoint

sets SAk,lj and SBk,lj . The rth set contains (Nk,lj)/q values from an inter-

val with quantile endpoints (QAk,lj
(r/q − 1/q), QAk,lj

(r/q)] and (QBk,lj
(r/q −

1/q), QBk,lj
(r/q)], where r = 1, 2, ...q. Using all available pairs (a, b) sampled

jointly from the deviation series ai,k,lj and bi,k,lj the joint probability density

matrix Vk,lj(i, j) can be calculated from:

Vk,lj(i, j) = P ({a ∈ SAk,lji
} ∩ {b ∈ SBk,ljj

}) (3.13)

Thus, the value of V (i, j) gives the probability that a sample (a, b) from the

deviation series has a in the ith of the SAk,lj sets (i.e. a ∈ (QAk,lj
(i/q −

1/q), QAk,lj
(i/q)]) and b in the jth of the SBk,lj sets (i.e. b ∈ (QBk,lj

(j/q −
1/q), QBk,lj

(j/q)]).

The pth q-quantile of the conditional range Mk,lj can then be estimated

from:

QMk,lj
(p) = (QAk,lj

(τp) +QBk,lj
(τp)) (3.14)
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where

τp = inf{τ :

τ
∑

i=1

τ
∑

j=1

Vk,lj(i, j) ≥ p} (3.15)

Hence, instead of choosing an arbitrary sample pair (a, b) from the devia-

tion series as the pth quantile for the conditional range, values QAk,lj
(τp) and

QBk,lj
(τp) are restricted to be same rank (τp) quantiles of the deviation series

ai,k,lj and bi,k,lj . Thus, the pairs (a, b) from which the pth quantile for the con-

ditional range is chosen are forced to lie on a line in the Euclidean space. The

rank τp of the deviation series quantiles is a function of the desired conditional

range quantile rank p, and in general τp 6= p.

The pair (QAk,lj
(τp), QBk,lj

(τp)) indicates deviations from the interval

average wind power production level, accordingly the corresponding endpoints

of the wind power interval x ∈ [Mlowk,lj ,p
,Mupk,lj ,p

] would be Mlowk,lj ,p
=

lj − QAk,lj
(τp) and Mupk,lj ,p

= QBk,lj
(τp) + lj. Thus, the endpoints of the

pth CRM quantile, denoted CRMk,lj ,p, are given by [Mlowk,lj ,p
,Mupk,lj ,p

] =

[lj − QAk,lj
(τp), lj + QBk,lj

(τp)], with τp from (3.15). It should be noted that

because the range is not centered around the interval average production, the

quantiles of the two deviation series ai,k,lj and bi,k,lj are in general not the

same, QAk,lj
(τp) 6= QBk,lj

(τp).

Figure 3.3 illustrates graphically the concept of choosing a unique pair

from the minimum a and maximum b deviation pair values. In this figure, the

dots represent deviation pairs (a, b) from the deviation series ai,k,lj and bi,k,lj .

The pairs (a, b) from which the pth quantile for the conditional range is chosen,

are forced to lie on the blue curve, for which a = QAk,lj
(τp) and b = QBk,lj

(τp)

are same rank quantiles. The blue curve is obtained by connecting the points

(QAk,lj
(τp), QBk,lj

(τp)) for successive values of p. The dotted line represents

the line a = b, and since the solid blue and the dotted black line do not coin-
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cide, it becomes evident that QAk,lj
(τp) 6= QBk,lj

(τp). For a specific coverage

probability p = 75%, the unique pair (a∗p, b
∗
p) from the solid blue line is chosen

in such a way, that the box formed by the red lines and the x and y axes, i.e

the rectangle with corners the points (0,0), (0, b∗p), (a
∗
p, b

∗
p) and (a∗p, 0), is the

smallest perimeter box to contain at least p = 75% of the total number of

(a, b) pairs. In this case, a∗p = QAk,lj
(τp) and b

∗
p = QAk,lj

(τp).

Moreover, in Fig. 3.3 the dashed green line is the line b = QAk,lj
(τp) +

QBk,lj
(τp)− a for p = 75%. Any rectangle with corners the points (0,0), (0, d),
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Figure 3.3: Graphical representation of the conditional range metric quantile
using the minimum a and maximum b deviation pairs (dots). The pairs (a, b)
from which the pth quantile for the conditional range is chosen are forced to
lie on the blue line, for which a = QAk,lj

(τp) and b = QBk,lj
(τp) are same

rank quantiles. The number of (a, b) pairs enclosed by the box formed from
the red lines and the x and y axes equals p% of the total number of (a, b)
pairs. The dotted line is the a = b line. The dashed line is the line b =
QAk,lj

(τp) +QBk,lj
(τp)− a for p = 75%.
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(c, d), (c, 0), for which the upper right corner (c, d) lies on the dashed green

line has the same perimeter with the depicted rectangle (red lines). Thus, for

any such rectangle the CRM interval has the same widthMupk,lj ,p
−Mlowk,lj ,p

=

QBk,lj
(τp) +QAk,lj

(τp). From this it becomes evident, that there may be more

than one pair of values (c, d) for which the respective rectangle contains p%

of the total number of (a, b) pairs. This is why (3.7) by itself is not sufficient

to obtain a unique (Mlowk,lj ,p
,Mupk,lj ,p

) pair, and an additional constraint is

needed.

The data presented in Fig. 3.3 come from real-world wind power data

of a 160 MW wind farm spanning a period of one year. The dots (a, b) come

from the deviation series ai,k,lj and bi,k,lj calculated for k = 60 minutes and

lj= 0.5 p.u. The desired probability for the conditional range is p= 0.75

and the deviation series quantile rank is τp= 0.815, for which QA60,0.5(0.815)=

0.1468 p.u. and QB60,0.5(0.815)= 0.1395 p.u. The conditional range endpoints

are Mlow60,0.5,0.75 = 0.5 − QA60,0.5(0.815) = 0.3532 p.u. and Mup60,0.5,0.75 =

0.5 + QB60,0.5(0.815) = 0.6395 p.u. Thus, for the specific 160 MW wind farm,

over all hour-long time intervals in the given year with average wind power 80

MW the wind power falls within [56.5,102.3] MW at least 75% of the time.

Consequently, using a wind power production series xn the pth quantile

of the conditional range can be calculated from (3.8)-(3.9) and (3.11)-(3.15)

for any interval average wind power production level lj and any desired time

interval length k:

CRk,lj ,p = QAk,lj
(τp) +QBk,lJ

(τp) (3.16)

while, the pth quantile of the conditional range metric is:

CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

]

= [lj −QAk,lj
(τp), lj +QBk,lJ

(τp)] (3.17)
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Since the probability of realization of any pth quantile (p = r/q, r =

1, 2, ...q) is 1/q, averaging the CR and CRM values over all q-quantiles pro-

vides expected values for the conditional range and the conditional range met-

ric:

CRk,lj =

∑

p CRk,lj ,p

q
(3.18)

CRMk,lj =

[

lj −
∑

pQAk,lj
(τp)

q
, lj +

∑

pQBk,lj
(τp)

q

]

(3.19)

A weighted sum of the CRk,lj ,p values, with weights wj equal to the

probability of the interval average production x̄n being lj , gives the p
th quantile

of the conditional range CRk,p. This is the average size of the largest possible

wind power ramp within a time interval length k:

CRk,p =
∑

j

CRk,lj ,p · wj =
∑

j

CRk,lj,p · P (x̄n = lj) (3.20)

and its expected value can be calculated from:

CRk =

∑

p CRk,p

q
(3.21)

In summary, the variability of the wind power is characterized by the

size of the interval within which the wind power output lies over a given

time frame (the larger the size of this interval the higher the wind power

variability). The interval endpoints (CRM) can be calculated from (3.17) or

(3.19), while the size of this interval (CR) can be calculated from (3.16) or

(3.18), as percentiles or expected values respectively.

3.4 Using the Conditional Range Metric to Distinguish
between Variable Sources

This section illustrates how effective the conditional range metric is at

distinguishing between variable sources and attempts a preliminary evaluation
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of the conditional range metric against the desired features of an intra-hour

wind power variability metric presented in the beginning of this chapter. A

more detailed evaluation using real-world wind power and wind speed data is

presented in Chapter 4.

First, the conditional range metric values of the sources presented in

Section 1.1 are compared. The three sources depicted in Fig. 1.2 correspond

to the wind power output of a 82.5 MW wind farm (Source A - Wind), a

sinewave output with period one hour (Source B - Sinewave) and a constant

output (Source C - Direct Geothermal). Sources B and C have hourly averages

of lj = 40 MW, thus their conditional range will be compared to the conditional

range of the wind farm under k =60 minutes and lj = 40 MW. For Source

C the conditional range is CR60min,40MW,p(SC) = 0 MW for all probabilities p,

which is expected since Source C is a constant output source and thus exhibits

no variability. The conditional range of Source B is CR60min,40MW,p(SB) = 48

MW, which is double the amplitude of the sinewave. The conditional range

is constant over all probabilities p, which is attributed to the fact that the

variation in Source B is of a systematic fashion. Finally, for Source A over the

period of a year the conditional range varies between CR60min,40MW,0.05(SA) =

6.5 MW for p = 0.05 and CR60min,40MW,0.95(SA) = 49 MW for p = 0.95, which

means that the conditional range effectively recognizes that wind power varies

in a random manner. Thus, the largest change the wind power undergoes

within an hour is less than 6.5 MW for 5% of the hours in a year and exceeds

49 MW for another 5% of the hours in a year.

Comparing the conditional range to the step-changes the two variable

sources (Source 1 and Source 2) of the case study presented in Section 2.2.1.3

are examined. The two sources have the same standard deviation of 10-

minute step-changes. Thus, in the context of load-following reserves, using
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three standard deviations of the 10-minute step-changes as a metric to char-

acterize variability within the 1-hour time frame, the two sources have equal

variability with 3σ10min(S1) = 3σ10min(S2) = 45.5 MW. However the 99.7th per-

centile (p = 0.997) of the conditional range from (3.16) for k = 60 minutes

and average hourly production equal to lj = 145 MW (which is constant over

the entire period), yields CR60min,145MW,0.997(S1) = 75 MW for the first and

CR60min,145MW,0.997(S2) = 192.4 MW for the second source, respectively. Thus

the proposed metric can more efficiently capture the intra-hour variability of

the two sources, effectively revealing the higher variability of the second source.

It should be noted that the use of quantiles for the conditional range satisfies

that the desired coverage probability is always achieved, whereas the use of

three standard deviations guarantees a coverage probability of 0.997 only un-

der normality assumptions.

Since the conditional range corresponds to the biggest change the source

output can undergo within a given time frame, the conditional range value re-

veals that 99.7% of all intra-hour ramps (here ramp denotes the largest change

within an hour) are less than 75 MW and 192.4 MW for the first and second

source, respectively. However the metric fails to assign a rate to these ramps.

But even without a rate the wind power (or net demand) ramping information

is valuable to power system operators, since they can assign the total ramping

requirement to multiple generators and thus achieve any ramp rate. On the

other hand, the currently used step-changes metric recognizes that the biggest

ramp from one 10-minute interval to the next is close to 25 MW, but it also

fails to provide a rate and a duration for this ramp. Assuming the ramp rate

to be 25 MW/10 minutes and using the worst case scenario with a ramp rate

duration of 60 minutes results in an hourly ramp of 150 MW, which is an

overestimate of the ramping capabilities of the first source and an underes-
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timate of the ramping capabilities of the second source. A more thourough

comparison between the step-changes and the conditional range capabilities in

asessing wind power ramps is presented in Section 4.3 using real-world wind

power data.

These simple evaluations show that the proposed metric satisfies the

first desired feature, since it efficiently quantifies intra-hour wind power vari-

ability and overcomes the shortcomings of current metrics. Moreover, the

conditional range is conditioned on the time interval average wind power and

assumes it to be known, but its calculation does not depend on the uncertainty

level of this production or how a forecast of this production is obtained, as

will be further explained in Section 5.5.

Finally, regarding the utility of the proposed metric, the methodology

to calculate the probabilistic CRM CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

] presented

in Section 3.3 is straightforward. This methodology essentially estimates wind

power variability intervals [Mlowk,lj ,p
,Mupk,lj ,p

], which bound wind power xn

with average wind power production lj over a k-long time frame. These in-

tervals are probabilistic, since they are associated with a coverage rate p, and

they define inequalities of the form

Mlowk,lj ,p
≤ xn ≤Mupk,lj ,p

with probability p (3.22)

These inequalities can serve as so-called joint chance constraints in several

stochastic optimization problems where the uncertainty comes from the wind

power output xn. Hence, these inequalities open the door to numerous appli-

cations of the proposed metric useful for power system operators as well as

wind farm owners and investors, as will be outlined in Chapter 6.
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3.5 Summary

This chapter provides the fundamental concept of the proposed intra-

hour wind power variability metric in Section 3.1 and a formal definition of the

proposed conditional rage metric (CRM) in Section 3.2. With the conditional

range metric the variability of the wind power is characterized by the size

of the interval [Mlow,Mup] within which the wind power output lies over a

given time frame (the larger the size of this interval the higher the wind power

variability). The methodology to obtain uniquely defined pth CRM quantile

estimates CRMk,lj ,p for average wind power production level lj over a time

interval k is presented in Section 3.3. The example computations of the CRM

given in Section 3.4 provide a preliminary positive evaluation of the proposed

variability metric.
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Chapter 4

Evaluation of the Conditional Range Metric

The importance of measuring intra-hour wind power variability and the

inability of current metrics to adequately capture intra-hour variations in wind

power has lead to the proposed conditional range metric (CRM), defined in the

previous chapter. One of the desired features a novel intra-hour wind power

variability metric should possess, is its ability to efficiently quantify intra-hour

wind power variability and effectively overcome the shortcomings of current

metrics. The efficacy of the conditional range metric in distinguishing be-

tween different variable sources is briefly outlined in Section 3.4, in which a

preliminary evaluation of the proposed against current variability metrics is

attempted.

In this chapter a more detailed evaluation of the conditional range met-

ric as an intra-hour wind power variability metric is presented, by applying it

on real-world wind power and wind speed data. Using the conditional range

metric on real-world wind power and wind speed data can help determine the

factors which aggravate the adverse effects of wind power variability, and at

the same time define circumstances which alleviate these effects. In this way,

conditions or time periods with increased variation in wind power, as well as

remedies to reduce wind power variability, can be identified. Quantification of

wind power variability can also be used to determine requirements and charac-

teristics of other dispatchable generators and energy storage units, which can
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be used to accommodate wind power fluctuations across different operating

time scales.

Section 4.1 illustrates the efficacy of the conditional range metric in

quantifying intra-hour wind power variability by presenting the results of an

extensive performance analysis of the proposed metric in wind power variabil-

ity assessment. In Section 4.2 the conditional range metric is used to quan-

tify the effect of wind turbine technology and size on wind power variability.

Moreover, Section 4.3 compares the performance of the conditional range met-

ric to the step-changes statistics in assessing the size of intra-hour wind power

ramps. The comparison reveals the shortcomings of the prevalent step-changes

approach, while at the same time points out why they are overcome when the

conditional range metric is used.

• Publications: Part of the work presented in this chapter has been pub-

lished in [2–4]:

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability using the conditional range metric,“ Sustainable Energy,

IEEE Transactions on, vol. 3, no. 3, pp. 369-378, July 2012.

– T. Boutsika and S. Santoso, “Quantifying the effect of wind tur-

bine size and technology on wind power variability,“ in Power and

Energy Society General Meeting, 2013 IEEE, July 2013, pp. 1-5.

– T. Boutsika and S. Santoso, “Quantifying short-term wind power

variability,“ in Power and Energy Society General Meeting, 2011

IEEE, July 2011, pp. 1-7.
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4.1 Wind Power Variability Assessment Using the Con-
ditional Range Metric

The purpose of the sensitivity analysis presented in this section is to

evaluate qualitative and quantitative effects certain influential variables have

on the conditional range metric. The variables investigated include the condi-

tions, which are the production level lj, the quantile p and the time interval

length k, as well as the wind farm nameplate capacity PN . The real-world

wind power data used in this Section come from 17 wind farms in the ERCOT

system, with nameplate capacities ranging from 28.5 MW to 226.5 MW, and

include wind power production data with a 1-minute resolution spanning a

period of one year (WF2 - WF18, year 4 – see Appendix A.1).

4.1.1 Wind Power Variability as a Function of the Wind Power
Production

The 95th percentile of the conditional range metric of one wind farm

taken over a one-year period and for a time interval length of k = 15 minutes is

depicted in Fig. 4.1, as a function of the interval average wind power production

level lj . It is reminded that, the depicted range values are actually conditioned

on the average wind power production level intervals, where x̄n ∈ lj = j/m

if (2j − 1)/2m < x̄n ≤ (2j + 1)/2m. Here the average production levels

are set to lj = 0.01, 0.02, ..., 1 p.u., normalized on the wind farm nameplate

capacity PN = 91.5 MW (WF15). To obtain this graph the system of equations

(3.7) and (3.10) is solved repeatedly for average production level values lj =

0.01, 0.02, ..., 1 p.u., keeping the parameters k = 15 minutes and coverage

probability p = 0.95 constant, using the methodology given in Section 3.3.2 .

For each interval average production level lj shown on the x-axis, the
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respective circle and plus-sign have y-valuesMup15,lj ,0.95
= lj+QB15,lj

(τ0.95) and

Mlow15,lj ,0.95
= lj −QA15,lj

(τ0.95) such that over all the 15-minute long intervals

in the given year P (Mlow15,lj ,0.95
≤ x(t) ≤Mup15,lj ,0.95

) ≥ 0.95. The dashed line

is the line y = lj , representing the CRM values of a source that exhibits no

variation within a 15-minute interval.

As an example, for an interval average production level lj = 0.8 p.u.,

the conditional range metric (CRM) is determined from Fig. 4.1 by the y-values

of the plus-sign (Mlow = 0.7166 p.u.) and the circle (Mup = 0.8747 p.u.),
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Figure 4.1: The 95th percentile of the conditional range metric(CRM =
[Mlow,Mup]) of a 91.5 MW wind farm’s (WF15) power production. The con-
ditional range is conditioned on the time interval of interest k = 15 minutes
and the interval average production level lj . For each production level lj the
y-values of the circle and the plus-sign are the points Mup and Mlow, respec-
tively.
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respectively. Thus, if the 15-minute interval average wind power production

is lj = 0.8 p.u. the wind power production lies within [0.7166, 0.8747] p.u.

with probability p = 0.95. For this production level, the largest variation in

wind power output is less than conditional range CR15,0.8,0.95 =Mup−Mlow =

0.1581 p.u. or approximately 14.5 MW for 95% of the 15-minute intervals in

a year. The respective deviations would be QB =Mup − lj = 0.0747 p.u. and

QA = lj −Mlow = 0.0834 p.u., from which it can be seen that the deviations

are not centered around the interval average production level.

From Fig. 4.1 it is evident that wind power variability is higher at mid-

level production (0.3 ≤ lj ≤ 0.7 p.u.), since the conditional range assumes

much smaller values at very low or very high production levels. Based on

Fig. 4.1, for the specific 91.5 MW wind farm a production level of lj = 0.59

p.u. exhibits the highest 15-minute variability with a conditional range of

CR15,0.59,0.95 = 0.225 p.u. In fact, mid-level wind power production is most

variable for all wind farms considered, regardless of the percentile p and time

interval length k.

To explain the high variability of mid-level wind power production a

typical wind power curve, such as the one depicted in Fig. 4.2 corresponding

to a variable speed wind turbine, is examined. This curve relates input wind

speed at the turbine hub height to wind power output from the turbine. Wind

power output is negligible for wind speeds lower than the cut-in wind speed

(4 m/sec) and rises between the cut-in and the rated wind speed (15 m/sec).

The higher variability at mid-level production depicted in Fig. 4.1 is attributed

exactly to this large slope of the wind power versus wind speed curve at mid-

level production, which causes even a small change in the input wind speed to

have a large effect on the wind power output.
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Figure 4.2: Typical wind power versus wind speed curve for a variable speed
wind turbine. The large slope of the wind power curve for mid-level wind
power production causes wind power variability to be higher at mid-level than
low or high-level productions.

4.1.2 Wind Power Accommodation for Different Coverage Proba-
bilities

The effect of the quantile p for the same 91.5 MW wind farm (WF15)

used in Section 4.1.1 but for a time interval length of k = 60 minutes is de-

picted in Fig. 4.3. As expected, the CRM interval increases with increasing

percentiles p, meaning larger intervals for higher coverage rates. For example,

for a production level of lj = 0.5 p.u. the conditional range metric takes values

CRM60,0.5,p=0.9 = [0.299, 0.699] p.u. and CRM60,0.5,p=0.3 = [0.428, 0.577] p.u.

for coverage rates 90% and 30%, respectively. Thus, wind power variations

over certain length time intervals do not have a constant size but vary over

time, and small size variations are more frequent than large ones. For this spe-
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cific example the magnitude of the respective conditional range reveals that in

30% over all hours in the given year (with lj = 0.5 p.u.), the largest intra-hour

change in wind power output has size less than 13.6 MW (≈ 0.577 − 0.428

p.u.). On the other hand, in 90% of all hours with average production lj = 0.5

p.u. the largest intra-hour change in wind power output has size less than 36.6

MW (= 0.699− 0.299 p.u.). This means that only 10% of the hours exhibit a

largest intra-hour change in wind power output greater than 36.6 MW .

The provision of an empirical probability distribution for the condi-

tional range metric, by solving the system of equations (3.7) and (3.10) with

the methodology given in Section 3.3.2 for various coverage probabilities p,
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Figure 4.3: The conditional range metric (CRM = [Mlow,Mup]) of a 91.5 MW
wind farm (WF15) for k = 60-minute time intervals and various percentiles p,
as a function of the hourly average production level lj. The interval around the
average wind power production preserves the same shape for all percentiles,
but increases in size with increasing coverage rate.
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allows power system operators and wind farm owners to make decisions based

on their willingness to accept a certain level of risk. Thus, a power system

operator may choose the size of generation to be used for accommodating

wind power variability according to a desired coverage rate, which should be

linked to a minimum acceptable level of power system reliability. Similarly, a

wind farm owner may choose the appropriate size for an energy storage system

to integrate a certain level of wind power variability, by evaluating the cost

against the benefit of the storage system for various probabilities p.

4.1.3 Wind Power Variability over Various Time Frames

Figure 4.4 depicts the 95th percentile of the conditional range for the

same 91.5 MW wind farm as a function of interval average wind power produc-

tion for time intervals of length k equal to 5, 10 15, 30 and 60 minutes. The

time interval length k chosen represents critical time frames for power system

operations (economic dispatch, hour-ahead scheduling), ancillary services (reg-

ulation, load following) and forecast updates (demand and wind). The figure

reveals that the larger the time interval k is, the larger the CRM interval is,

indicating larger variations in wind power over longer time frames. This effect

is more pronounced at mid-level wind power productions. For example, for an

interval average wind power production of lj=0.4 p.u. the conditional range

varies from CR5,0.4,0.95=0.075 p.u. for k=5 minutes up to CR60,0.4,0.95=0.52

p.u. for k=60 minutes.

Figure 4.5 gives the expected conditional range CRk,lj value, calcu-

lated from (3.18) with lj=0.5 p.u., as a function of the time interval length k

for five wind farms of different sizes, ranging from 37.5 to 210 MW (WF14,

WF12, WF4, WF2, WF7). From this figure it is also evident that the con-
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Figure 4.4: The 95th percentile of the conditional range metric CRMk,lj ,p=0.95

of a 91.5 MW wind farm for various time intervals (k = 5, 10, 15, 30, 60
minutes) as a function of the interval average production level. The variability
increases with increasing time intervals k and this effect is more pronounced
at mid-level wind power productions.

ditional range value increases with increasing time interval length k, however

this relationship is not linear but rather follows a cubic polynomial function

(i.e. CR ≈
∑3

i=0 ai · ki).
To explain the effect of the time interval length, the power output of

a large wind farm can be viewed as the aggregated output of its many wind

turbines. At smaller time scales the fluctuations in the output of these tur-

bines are uncorrelated, and the addition of their uncorrelated variabilities is

expected to result in a lower aggregated variability. However, over longer time

frames the change in the wind power output of all turbines follows the same

trend, increasing or decreasing, which is dictated by weather related changes

in the wind speed. Quantifying wind power variability over different length
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Figure 4.5: The effect of the time interval length k on the mid-level production
(lj = 0.5 p.u.) expected wind power conditional range CRk,lj . Variability
increases with increasing time interval length k and decreases as the wind
farm nameplate capacity increases.

time frames is useful for determining the optimal ampere-hours (Ah) of an

energy storage unit coupled with a wind farm with the purpose of reducing

the variability and intermittency of wind power.

Observing Fig. 4.1, Fig. 4.3, and Fig. 4.4 it is noted that the curves

of the upper Mupk,lj ,p
and lower Mlowk,lj ,p

CRM endpoints as a function of the

average wind power production level lj always exhibit a similar shape, resem-

bling some polynomial function. The preservation of this shape for varying

time interval lengths k and coverage probabilities p suggests that the upper

Mupk,lj ,p
and lower Mlowk,lj ,p

CRM endpoints can be represented as functions

of the average wind power production level lj using some regression analysis

technique.
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Moreover, the effects of the time interval length, average wind power

production and coverage rate, i.e. the conditions k, lj, p, on the conditional

range metric values for all wind farms considered are qualitatively similar to

the ones presented here for a 91.5 MW wind farm. Next, the wind power

variability difference between the considered wind farms due to their different

sizes is quantified.

4.1.4 The Effect of the Wind Farm Nameplate Capacity

From Fig. 4.5 it is evident that wind power variability, normalized on

the wind farm size, decreases with increasing wind farm nameplate capacity.

The effect of the wind farm’s size on the conditional range is also depicted in

Fig. 4.6 which gives the conditional range CRk,p, calculated from (3.20) over

all production levels for p = 0.9 and for various time interval lengths k, as a

function of the wind farm nameplate capacity PN . The 17 wind farms consid-

ered have nameplate capacities ranging from 28.5 to 226.5 MW. This figure

reveals that the higher the wind farm capacity is, the lower the conditional

range value is, and thus the smaller the size of wind power output changes (in

p.u. values).

The effect of the wind farm nameplate capacity on the conditional

range values can again be attributed to the power output of a large wind

farm being the aggregated output of its many wind turbines. Thus, a posi-

tive change from one minute to the next in one wind turbine’s output can be

canceled out by a negative change in another turbine’s output, resulting in a

smaller change in the wind farm’s total wind power output. A higher number

of wind turbines with a wider geographical spread in a large wind farm has a

more pronounced effect on this averaging, especially over shorter time frames.
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Figure 4.6: The effect of the wind farm nameplate capacity on the conditional
range CRk,p taken over all production levels for p = 0.9 and for various time
frames (k = 5, 10, 15, 30, 60 minutes). Wind power variability is inversely
proportional to the wind farm nameplate capacity, but this effect is more
pronounced for smaller time intervals.

Indeed, from Fig. 4.6 a trend in reduced variability with increasing wind farm

nameplate capacity PN can be seen, especially for smaller time intervals k.

However, for larger time intervals this trend is not so distinct and using only

the wind farm size no robust conclusion can be drawn regarding the effect it

has on the wind power conditional range. This is because there are multiple

factors affecting wind power variability, such as the individual type and num-

ber of wind turbine generators in each wind farm as well as their location.

The effect of wind turbine size and technology on wind power variability is

presented in the next section.
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4.1.5 Concluding Remarks

In this section the effect certain influential variables have on wind power

variability is examined. The variables include the conditions of the proposed

metric, i.e the time interval length k, the average wind power production level

lj , and the coverage probability p, as well as the wind farm size PN . Using

the proposed conditional range metric CRMk,lj ,p the wind power variability

is found to be larger at mid-level wind power production lj and increase with

increasing time interval length k and increasing coverage probability p. The

higher variability at mid-level wind power productions is attributed to the large

slope of the wind power curve at mid-level productions. Moreover, for varying

values of the conditions {k, lj, p}, the upper Mupk,lj ,p
and lower Mlowk,lj ,p

CRM

endpoints can always be represented as polynomial functions of the average

wind power production level lj . Regarding the effect of wind farm size, wind

power variability appears to decrease with increasing wind farm nameplate

capacity PN , since a large number of wind turbines allows for more averaging in

the variability of their outputs. However, other factors influencing wind power

variability, such as the location of the wind farm and the turbine size and

technology, cause wind farms of similar sizes to exhibit different conditional

range metric values.

4.2 Quantifying the Effect of Wind Turbine Size and

Technology on Wind Power Variability

This section examines the effect of wind turbine size and technology

on wind power variability. For this, two wind speed series (WS1 and WS2 -

see Appendix B.1) comprising of real-world wind speed data with a 1-minute

resolution spanning a period of 30 weeks are used. The wind speed series are
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passed through six different wind power curves, corresponding to wind turbines

of different technologies and sizes (Type I-IV, Size A-B - see Appendix B.2).

4.2.1 Generating the Wind Power Series

To quantify wind power variability the wind speed series need to be

converted to wind power series by passing them through wind power curves,

which relate wind speed at the turbine hub height to wind power output from

the turbine. To study the effect of wind turbine technology four wind power

curves are used (Type I-IV), and two additional curves are used to study

the effect of wind turbine size (Size A-B). Table 4.1 presents the wind power

curves names and respective turbine generator description, along with the wind

turbine size. Figure 4.7 depicts the wind power curves with wind power given

in p.u. values. The wind turbine classification is according to [34] and the wind

power curves have been taken from the manufacturers’ technical specifications.

More information on the wind turbines is given in Appendix B.2.

The wind power curve relates wind speed at the turbine hub height

to wind power output from the turbine. Only two wind turbines (Type I and

Table 4.1: Wind Power Curves

Curve Generator Power

Name Description [kW]

Type I Fixed speed induction 1500

Type II Variable slip induction 1500

Type III Double-fed induction (DFIG) 1500

Type IV Full converter (synchronous with IGBT) 1500

Size A Variable slip induction 660

Size B Variable slip induction 1650
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Figure 4.7: Six different wind power curves representing wind turbines of the
same size (1500 kW) but different technologies (TypeI-fixed speed, TypeII-
variable slip, TypeIII-DFIG, TypeIV-full converter) , as well as units of the
same technology (TypeII) but different sizes (SizeA-660 kW, SizeB-1650 kW).

Type II) have hub heights which are not equal to the measurement height. For

these turbines the measured wind speed needs to be converted to a wind speed

at the turbine hub height, by applying a wind power logarithmic or power law

profile [35]. A power law profile is of the form:

u

ur
=
( z

zr

)a
(4.1)

where u is the estimated wind speed at height z and ur is the measured wind

speed at the measurement height zr. In (4.1) a is an empirically obtained

exponent, with typical value 1/7. However, since the deviation of the hub

height from the measurement height is very small, and decreases even more

with the power law, no adjustment is made to the measured wind speed series.

Thus, each wind speed series (WS1, WS2) is passed directly through each
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wind power curve (Type I-IV, Size A-B) and twelve wind power series with a

1-minute resolution and a 30 week span are calculated. Six more wind power

series are produced by summing the wind power series calculated from WS1

and WS2 for each wind power curve. The first wind speed series WS1 and the

four respective wind power series (Type I-IV) are depicted in Fig. 4.8.

From Fig. 4.8 it is evident that the generated wind power series have

similar profiles. The rated wind speed, i.e. the input wind speed which pro-

duces the rated output of the wind turbine, is close to 13-14 m/sec for all wind

turbines. For wind speeds below the rated wind speed, the full converter wind

turbine (Type IV) has a lower output than the other wind turbine types. For
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Figure 4.8: The first wind speed series (dashed line, right hand y-axis) and the
respective wind power series (TypeI, II, III and IV, left hand y-axis) for a time
period of 30 minutes. For wind speeds below the rated (13-14 m/sec) the wind
power output of the TypeIV-full converter is lower than the other types. For
wind speeds beyond rated all wind turbines generate their maximum power
with the exception of TypeI-fixed speed (stall effect).
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wind speeds beyond the rated wind speed, all wind turbines generate their

rated output, except for the fixed speed wind turbine (Type I). This is at-

tributed to the fact, that the fixed speed wind turbine has no power control on

the blades. When the wind speed exceeds the rated value, wakes are formed

above the top surface of the airfoils, causing the blades to stall and the wind

power output to decrease [35].

4.2.2 Quantifying Wind Power and Wind Speed Variability

The conditional range metric (CRM) is used on the generated wind

power series to quantify wind power variability. All CRM values are calculated

for time lengths k = 5, 10, 15, 30, 60 minutes and for 200 quantiles p = r/200,

r = 1, 2, ...200, by solving the system of equations (3.7) and (3.10) with the

methodology given in Section 3.3.2. For each of the 18 generated wind power

series the CRM of the wind power, denoted CRM{W}k,lj ,p:

CRM{W}k,lj ,p = [M{W}lowk,lj ,p
,M{W}upk,lj ,p] (4.2)

is calculated for wind power averages lj = 0.01, 0.02, ...1 p.u., where x̄n ∈
lj = j/m if (2j − 1)/2m < x̄n ≤ (2j + 1)/2m, j = 1, 2, · · · , 100, m = 100.

Similarly, for the two wind speed series the CRM of the wind speed series,

denoted CRM{S}k,sj,p, is calculated from:

CRM{S}k,sj ,p = [N{S}lowk,sj ,p
, N{S}upk,sj,p] (4.3)

for wind speed averages sj = 0.25, 0.50, ...25 m/sec, by using the wind speed

series instead of the wind power series as input in the system of equations (3.7)

and (3.10). Thus, in (4.3) points N{S}lowk,sj,p
and N{S}upk,sj,p refer to minimum

and maximum wind speed in an interval with average wind speed sj.
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In addition, a new CRM value, denoted CRM{W,S}k,sj,p is calculated

for the wind power series:

CRM{W,S}k,sj,p = [M{W}lowk,sj ,p
,M{W}upk,sj,p] (4.4)

for wind speed averages sj = 0.25, 0.50, ...25m/sec. In (4.4) pointsM{W}lowk,sj ,p

and M{W}upk,sj,p refer to minimum and maximum wind power values in an

interval for which the respected wind speed values have average sj. The

new CRM{W,S}k,sj,p has the following interpretation: In a k-long time inter-

val with wind speed average sj the wind power output lies in the interval

[M{W}lowk,sj ,p
,M{W}upk,sj,p] with probability p.

4.2.3 The Effect of Wind Turbine Technology

The effect of wind turbine technology is shown in Fig. 4.9, which de-

picts the expected conditional range CRk,lj as a function of the wind power

production level lj for the four wind turbine types (Type I-IV). The CRk,lj

is calculated from (3.18) for k = 15 minutes using the wind power series

CRM{W}k,lj ,p calculated by passing the first wind speed series (WS1) through

the wind power curves (Types I-IV). For example, Fig. 4.9 reveals that for a

15-minute interval with wind power average production lj = 0.25 p.u. (375

kW), the expected size of the largest change in wind power output within the

interval is 0.37 p.u. (549 kW) for wind turbine Type I, 0.35 p.u. (532 kW) for

wind turbine Type II, 0.23 p.u. (341 kW) for wind turbine Type III, and 0.22

p.u. (333 kW) for wind turbine Type IV.

A hypothetical constant power output generator would have CRk,lj val-

ues equal to zero under all production levels, whereas wind power variability

appears to be higher at mid production levels lj . This is true for all types,
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Figure 4.9: The conditional range CRk,lj for k = 15 minutes as a function
of wind power production level lj for all wind turbine types. Wind turbines
connected through converters to the grid (Types III-IV) exhibit lower wind
power variability compared to simple induction generators (Types I-II)

.

while Type I (fixed speed) and Type II (variable slip) wind turbines present

higher wind power variability than Type III (DFIG) and Type IV (full con-

verter) for all production levels. Wind power variability also increases with

increasing time interval length for all wind turbine types, as can be seen in

Fig. 4.10, which illustrates the conditional range CRk from (3.21) as a function

of time interval length k, using again the wind power CRM{W}k,lj ,p (WS1 and

Type I-IV).

Figures 4.11 and 4.12 depict the 95th percentile of the conditional range

metric CRM{W,S}k,sj,p = [M{W}lowk,sj ,p
,M{W}upk,sj,p] for wind speed averages sj

ranging from 3 to 20 m/sec taken over 15-minute long time intervals, for wind

turbine Types I and IV, respectively. The CRM values in Fig. 4.11 are ob-
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Figure 4.10: The conditional range CRk as a function of time interval length
k for all wind turbine types. Wind power variability increases with increasing
time interval length.

tained by passing the first wind speed series (WS1) through wind power curve

Type I, which corresponds to the output from a fixed speed wind turbine.

Similarly, the CRM values in Fig. 4.12 are obtained by passing the first wind

speed series (WS1) through wind power curve Type IV, which corresponds to

the output from a wind turbine connected to the grid through a converter. In

these figures, the solid line refers to upper Mup and the dashed to lower Mlow

endpoints of the CRM wind power interval, whereas the dotted line depicts

the respective wind power curve.

As expected, the CRM curves resemble shifted versions of the re-

spective wind power curves (dotted lines). Thus, for full converter turbines

(Fig. 4.12), wind power variability (Mup−Mlow) reduces to zero for wind speeds

higher than the rated. However, for fixed speed turbines (Fig. 4.11), the lower

CRM interval endpoint Mlow (dashed line) is zero at high wind speeds, in-
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Figure 4.11: The 95th percentile of the conditional range metric
CRM{W,S}k,sj,p = [M{W}lowk,sj ,p

,M{W}upk,sj,p] for k = 15 minutes as a func-

tion of wind speed level sj for wind turbine TypeI (fixed speed). The solid
line refers to upper Mup and the dashed to lower Mlow endpoints of the CRM
wind power interval, which envelopes the respective wind power curve (dotted
line).
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Figure 4.12: The 95th percentile of the conditional range metric
CRM{W,S}k,sj,p = [M{W}lowk,sj ,p

,M{W}upk,sj,p] for k = 15 minutes as a func-

tion of wind speed level sj for wind turbine TypeIV (full converter). For wind
speeds higher than the rated wind power variability reduces to zero.
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creasing wind power variability to the nameplate capacity. This is due to the

fact that the fixed speed turbine’s cut-out wind speed, i.e. the wind speed

beyond which the turbine stops generating electricity, equals 20 m/sec. Thus,

in a 15-minute long time interval with average wind speed equal to 20 m/sec

some wind speed values will be higher than the fixed speed turbine cut-out

wind speed and the wind turbine will cease to generate electricity.

4.2.4 The Effect of Wind Turbine Size

The effect of the wind turbine size is depicted in Fig. 4.13, which plots

the conditional range CRk,p from (3.20) as a function of the percentile p for

the two different size wind turbines (Size A and B) and for two time intervals
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Figure 4.13: The conditional range CRk,p as a function of the percentile p
for two time interval lengths (k = 5 and k = 60 minutes). The smaller wind
turbine (SizeA-660 kW) exhibits slightly higher variability than the larger
turbine (SizeB-1650 kW).
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(k = 5 and k = 60 minutes). Again, the wind power series are calculated using

the first wind speed series (WS1). As anticipated, the CRk,p values increase

with increasing percentile p and time interval length k. Regarding the turbine

size, the output from the smaller wind turbine (Size A) exhibits slightly higher

variability in p.u. values than the larger wind turbine (Size B), an effect which

is more pronounced at higher percentiles and larger time intervals.

4.2.5 The Effect of Wind Power Aggregation

The effect of wind power aggregation on wind power variability is stud-

ied by comparing the conditional range values of one wind power series calcu-

lated from either one of the wind speed series (WS1 or WS2) to the sum of

both wind power series (denoted WS1+WS2) for each wind power curve. Fig-

ure 4.14 illustrates the effect of wind power aggregation for wind turbine Size

A (variable slip - 660 kW), by depicting the 95th percentile of the conditional

range metric CRM{W}k,lj ,p = [M{W}lowk,lj ,p
,M{W}upk,lj ,p] for k = 60 minutes.

The two wind speed series have similar mean and standard deviation values

and thus, the generated wind power series exhibit similar wind power variabil-

ity levels. However the aggregated wind power output exhibits less variability

in p.u. values despite the fact that the two wind speed series are not correlated

(correlation coefficient rWS1,WS2 = −0.0414). The y-values of the dotted line

in Fig. 4.14 represent the conditional range metric for a hypothetical constant

power output generator, for which CRM = [Mlow,Mup]k,lj ,p = [lj , lj]k,lj ,p, ∀k, p.
Similarly, Fig. 4.15 compares the conditional range CRk,lj from (3.18)

for the 15-minute long time interval under all wind turbine types. The com-

parison between the wind power variability from the wind speed series WS1 to

the variability from the sum of both wind power series (from WS1 and WS2)
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Figure 4.14: The 95th percentile of the conditional range metric
CRM{W}k,lj ,p = [M{W}lowk,lj ,p

,M{W}upk,lj ,p] for k = 60 minutes as a function of

wind power production level lj for wind turbine Size A using the wind power
series from wind speed series WS1 and WS2, as well as the sum of the two
wind power series (denoted WS1+WS2). The aggregated wind power output
exhibits lower wind power variability under all production levels.

reveals that the aggregated wind power output is less variable for all wind

turbine types.

Two factors contribute to the reduced wind power variability when

the wind power output from two wind turbines is summed. The first is that

in the aggregated output some positive changes in wind power output of the

first turbine are canceled out by negative changes in wind power output of

the second turbine. Indeed, in the case where both wind turbines have av-

erage wind power output lj taken over k-long time intervals the aggregated

average wind power output is also lj. Then, for some of these k-long time

intervals with aggregated average wind power production lj , the sign of the
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Figure 4.15: The conditional range CRk,lj for k = 15 minutes as a function
of wind power production level lj for all wind turbine types and for wind
power series from WS1 as well as the sum of both respective wind power series
(WS1+WS2). The aggregated wind power output exhibits lower wind power
variability under all turbine types.

conditional range, i.e. the sign of the largest change in wind power output, of

each wind turbine may be opposite. In this case, the conditional range value

of the summed output will be much smaller than the individual conditional

range values of each wind turbine. The existence of such intervals with low

conditional range value causes the expected conditional range CRk,lj of the

summed output to be much lower than the expected conditional range of the

individual turbines. Since wind power variability is highest at mid-production

wind power levels, the existence of time intervals with small conditional range

values over these intervals, results in a higher reduction in the expected con-

ditional range value of the summed output. Thus, wind power variability is
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higher at mid-production levels, but reduction in wind power variability due

to aggregation is also higher at these levels, as is verified from the dip at 0.5

p.u. for the dashed lines in Fig. 4.15.

The other reason for reduced variability when wind power is aggregated,

has to do with the relationship between the average wind power production

of each individual turbine. Consider the case where the average wind power

production of the individual turbines, taken over a k-long time interval, is

lj + α and lj − α, respectively. Then for these k-long time intervals the ag-

gregated average production is lj . Averaging the conditional range values, i.e.

the largest changes in wind power output, over these k-long time intervals, it

is obvious that the two wind turbines exhibit very different expected condi-

tional range values. For example, for lj = 0.3 p.u. and α = 0.2 p.u., the wind

turbine with average production 0.5 p.u. has higher variability than the wind

turbine with average production 0.1 p.u. However, as can be seen in Fig. 4.15,

the expected conditional range values do not vary proportionally to the av-

erage wind power production level (e.g. for Type I CRk=15,lj=0.5p.u. = 0.43

p.u. compared to CR15,0.1 = 0.25 p.u.). Hence, for these k-long time in-

tervals with aggregated average wind power output lj = 0.3 p.u., the ex-

pected conditional range of the aggregated output is lower than the respec-

tive conditional range of the individual turbines (e.g. for Type I in Fig. 4.15

0.38 = CR15,0.3 > (CR15,0.1 + CR15,0.5)/2 = 0.34 p.u.). For large α values, for

which one or both the individual turbine averages (lj+α and lj−α) go to very

low or very high values, this effect is even more pronounced. For example, for

aggregated average wind power output lj = 0.5 p.u., in some of the k-long time

intervals the average wind power output of the individual turbines is 0.1 p.u.

and 0.9 p.u. Since wind power variability at these production levels is much

lower than wind power variability at mid-production levels, the aggregated
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wind power variability is significantly reduced. Hence, this is another reason

why the expected conditional range CRk,lj for the aggregated output depicted

in Fig. 4.15 exhibits a dip at 0.5 p.u. production level.

Table 4.2 lists the CRk values from (3.21) for 15-minute time intervals.

The conditional range values are calculated by passing the first wind speed

series through wind power curves Type I - IV (denoted WS1) and by taking

the sum of the wind power series obtained by passing both wind speed series

through the respective wind power curves (denoted WS1+WS2). Conditional

range values are given in p.u. and kW values. The increase in % of the condi-

tional range values between WS1 and WS1+WS2 is also listed as a percentage

of the WS1 value. The conditional range values in Table 4.2 reveal that an in-

crease by 100% in wind power installed capacity causes an increase by no more

than 75% in wind power variability. This outcome verifies reduction in wind

power variability due to wind power aggregation, calling for further study of

the factors that influence it, along with inspection of their quantitative effect

on this reduction.

Table 4.2: Effect of Wind Power Aggregation on CRk (k=15 minutes)

WS1 WS1+WS2 Increase

[p.u.] [kW] [p.u.] [kW] [%]

Type I 0.212 317.26 0.185 553.92 75

Type II 0.205 307.26 0.179 538.07 75

Type III 0.199 297.80 0.163 489.08 64

Type IV 0.188 282.45 0.157 470.58 67
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4.2.6 Concluding Remarks

The conditional range metric is applied on two wind speed series passed

through six wind power curves, corresponding to wind turbines of different

technologies and sizes, in order to quantify the effects wind turbine size and

technology have on wind power variability. The results reveal that wind tur-

bines connected through converters to the grid exhibit lower wind power vari-

ability compared to same size simple induction generators, and that wind

power variability decreases slightly with increasing wind turbine size. Most

importantly, wind power aggregation offers a significant reduction in wind

power variability for all wind turbine technologies and sizes. For the specific

non-correlated wind speed series, an increase by 100% in wind power installed

capacity results in an increase in wind power variability intervals by no more

than 75%, for all considered wind turbines. This outcome leaves ample room

for the study of methodologies to reliably estimate this reduction, under more

general conditions.

4.3 Comparison of the Conditional Range Metric to the
Step-changes and Forward Differences Statistics

In this section, the proposed conditional range is compared to the step-

changes and forward differences statistics, which have been used in wind in-

tegration studies to characterize wind power variability. Through this com-

parison possible shortcomings of the step-changes and forward differences, in

terms of their ability to estimate wind power ramp sizes and their rates, are

identified and it is demonstrated why these shortcomings can be overcome by

the proposed metric. The comparison is done using real-world wind power

data, which come from 13 wind farms in the ERCOT system, with nameplate
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capacities ranging from 28 MW to 210 MW, and include wind power produc-

tion data with a 1-minute resolution spanning a period of one year (WF1 -

WF7, WF11, WF13 - WF15, WF17, WF18, year 3 – see Appendix A.1).

4.3.1 Comparison Pairs

The purpose of comparing the conditional range to the step-changes

is to find out whether the information derived from the statistical analysis of

the step-changes is sufficient to assess the size and rate of wind power ramps.

Here wind power ramps constitute the largest possible changes in wind power

output over a certain length time interval. These wind power changes (ramps)

can be regarded to have a specific rate (ramp rate) over a specific duration

(ramp duration):

ramp size [MW] = ramp rate [MW/min] · ramp rate duration [min] (4.5)

As has been noted in Section 2.2.1, the prevalent wind power variability

metric used in numerous wind integration studies is based on the spread of the

wind power step-changes yk,j, taken over successive time intervals, captured

by their standard deviation syk,j . It is reminded that, starting from the wind

power time series xn, n = 1, 2...N , the wind power step-changes time series

yk,j for the desired time frame k can be created using the following equation:

yk,j = x̄k,j+1 − x̄k,j, j = 1, 2, ...q − 1 (4.6)

where q = ⌊N/k⌋ and x̄k,j refers to the sampled mean of the wind power over

the desired time frame k:

x̄k,j =
1

k

k
∑

m=1

xk(j−1)+m, j = 1, 2, · · · , q (4.7)
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Then, the unbiased sample standard deviation, syk,j , can be used to estimate

the standard deviation of the time series yk,j:

syk,j =

√

√

√

√

1

q − 2

q−1
∑

j=1

(yk,j −
1

q − 1

q−1
∑

j=1

yk,j)2 (4.8)

Step-changes, as they are given in (4.6), are essentially forward differ-

ences of wind power averages. Alternatively, wind power variability of a wind

power series over a k-long time interval can be characterized using forward

differences of spacing k of the wind power series itself. Using an N -long wind

power series xn, the wind power forward differences time series zk,i is then

defined by:

zk,i = xi+k − xi, i = 1, 2, ...N − k (4.9)

Thus, each value of the step-changes series yk is the average of k successive

forward difference values zk. Obviously, for k = 1 the step-changes and forward

differences series are identical.

On the other hand, using the basic concept of the conditional range

metric described in Chapter 3 the wind power conditional range series Mk,i is

generated by calculating the interval’s size Mk over all k-long time intervals:

Mk,i =Mupk,i −Mlowk,i
= max

n∈Ki

xn − min
n∈Ki

xn i = 1, 2, ...N − k (4.10)

where Ki is the interval [i, i + k − 1]. By definition, the conditional range is

the largest change (largest possible ramp) the wind power output can undergo

within a given time frame. However, contrary to the step-changes, the condi-

tional range provides the largest change in wind power output in an interval,

without specifying the sign of this change. That is, the conditional range pro-

vides only the size of the largest wind power ramp in an interval.
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To provide a ramp rate (in MW/min) for the ramp of size Mk,i defined

by the conditional range in each k-long time interval Ki, the following series

is defined:

rMk,i
=

Mk,i

nmax,i − nmin,i

i = 1, 2, ...N − k (4.11)

where nmax,i ∈ Ki is the time-point at which the wind power output attains

its maximum in the Ki interval:

nmax,i = argmax
n∈Ki

xn (4.12)

and nmin,i ∈ Ki is the time-point at which the wind power output attains its

minimum in the Ki interval:

nmin,i = arg min
n∈Ki

xn (4.13)

It should be noted, that the ramp rate defined in (4.11) might not be the

largest possible rate of wind power output change within the specific time

interval. Rather this rate is the rate associated with the largest possible size

of wind power output change within the interval.

Similarly, to relate a ramp rate (in MW/min) to the step-changes yk

and forward differences zk it is observed that they too can be viewed as wind

power changes over a k-long time interval, having units [MW/k min]. Thus,

dividing the step-changes series yk and the forward differences zk by the length

k of the time interval, the following ramp rate series are defined:

ryk,j =
yk,j
k

j = 1, 2, ... ⌊N/k⌋ − 1 (4.14)

and

rzk,i =
zk,i
k

i = 1, 2, ...N − k (4.15)
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To compare the ability of the conditional range against the step-changes

and the forward differences in assessing the size of wind power ramps over k-

long time intervals, the statistics of the conditional range series Mk,i from

(4.10) are compared against the statistics of the absolute step-changes |yk,j|
from (4.6) and the absolute forward differences |zk,i| from (4.9). Step-changes

and forward differences distinguish between positive and negative changes in

wind power output, however here absolute values are taken since the condi-

tional range specifies only a size and not a sign for the change in wind power

output. To compare the information regarding the ramp rates associated with

the wind power ramp sizes the statistics of the ramp rate series defined by

(4.11), (4.14) and (4.15) are compared.

For the comparison, the conditional range and step-changes or forward

differences ramp sizes and rates may be taken over time intervals of different

lengths and the conditional range can also be compared against multiples of

the step-changes and forward differences. The comparison pairs used in this

section are given in Table 4.3. In Table 4.3, K refers to the time interval

length of the conditional range, whereas k refers to the time interval length of

the step-changes or forward differences. L is the multiple of the step-changes

or forward differences against which the conditional range is compared. The

same variables are used for both ramp sizes and ramp rates.

4.3.2 Comparison Schemes

By comparing the conditional range to the step-changes approach, the

two main shortcomings of the step-changes are being exposed. The first is

that because step-changes are calculated as differences of average wind power

values from one time interval to the next they do not convey information of the
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Table 4.3: Comparison Pairs

Pair Ramp Size [MW]

1 MK L · |yk|
2 MK L · |zk|

Ramp Rate [MW/min]

3 rMK
L · ryk

4 rMK
L · rzk

wind power variability within each time interval. The second is that although

the step-changes provide some information on ramp rates they do not provide

adequate information on their duration, and are thus of little use to power

system operators since they cannot fully assess the size of wind power ramps.

The comparison of the conditional range to the forward differences statistics,

reveals that these shortcomings are apparent in forward differences as well,

however at a lesser extent.

The following comparison schemes are used to expose the two short-

comings of the wind power step-changes and forward differences:

• Scheme A: k = K, L = 1

This comparison scheme examines whether by tracking the step-changes

or forward differences and their rates over k-long time intervals a conclu-

sion on the wind power variability within these intervals can be drawn.

• Scheme B: k < K, L = 1

This comparison scheme examines whether step-changes or forward dif-

ferences and their rates taken over time intervals of length k can be used

to estimate the size and rates of wind power ramps in longer time frames

of length K.
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• Scheme C: k < K, L = K/k

This comparison scheme examines whether taking exact multipliers K/k

of the step-changes or forward differences and their rates is suitable for

estimating wind power variability in longer time frames of length K.

From their definition in (4.6) and (4.9), step-changes yk and forward differences

zk cannot convey information of the wind power variability within the time

interval of length k. This is due to the fact that a step-change yk,i is essentially

an average of k wind power output forward differences of the form (xi+k −xi).

However, these forward differences are taken from sampled wind power points

xi+k and xi belonging to two different k-long time intervals. On the other

hand, the conditional range Mk is the difference between two sampled wind

power points in the same k-long time interval. The simple case study from

[4] given in Section 2.2.1.3 using two fictitious sources with sinusoidal out-

puts exposes this shortcoming of the step-changes. In this Section, the results

from comparison scheme A using real-world wind power data indicate if the

information that the step-changes and the forward differences fail to capture

is actually essential in assessing the size of wind power ramps. That is, com-

parison scheme A examines whether it is common for the wind power output

changes within an interval to be larger than the changes from one interval to

the next.

Because step-changes yk are averages of wind power output forward

differences zk over k-long time intervals, they can be considered as average

ramp rates [MW/k·min], as the definitions of the ramp rate series ryk and

rzk in (4.14) and (4.15) imply. However, by looking at the step-changes yk

no information about the duration of these ramp rates is revealed in order

to estimate the size of a ramp over a larger time interval K. Nonetheless,
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in some wind integration studies it has been assumed that step-changes yk

taken over intervals of length k can be used as is to estimate power variability

over larger intervals K [8]. For example, 1-minute net demand step-changes

have been used to estimate regulation needs in the 5-minute frame and 10-

minute net demand step-changes have been used to estimate intra-hour load

variability [10, 15–17]. The wind power output in Fig. 3.1 actually justifies

this assumption, since for the larger shaded rectangle (k2 ×M2) the largest

ramp in the time frame of length 28 minutes (K) has a duration of 15 minutes

(k). The results from comparison scheme B evaluate the general validity of

this assumption.

Comparison scheme C on the other hand examines whether another

simplistic approach, namely to use the exact multiplierK/k of the step-changes

yk and forward differences zk, yields better results in assessing wind power

ramps in the K-minute frame. Since the duration of the wind power ramp

rate is unknown, this comparison scheme evaluates the validity of the assump-

tion about wind power step-changes yk having duration K/k over K-long time

intervals. In other words, under this assumption the largest change in the

wind power output (MWin K min) over a K-long time interval would be equal

to (MW/k·min)·(K/k), which translates toMK = yk ·(K/k). The results from
comparison schemes B and C essentially reveal the importance of the knowl-

edge of the ramp rate duration in assessing the size of wind power ramps.

Using the available wind power data (WF1 - WF7, WF11, WF13 -

WF15, WF17, WF18, year 3 – see Appendix A.1) wind power step-changes

time series yk,j and wind power forward differences time series zk,i are gener-

ated from (4.6) and (4.9), respectively, over time frames of k = 1, 5, 10, 15, 30

and 60 minutes. The respective ramp rates series ryk,j and rzk,i are calculated

from (4.14) and (4.15). Similarly, wind power conditional range series Mk,i
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and ramp rate series rMk,i are calculated over time intervals of length k = 5,

10, 15, 30 and 60 minutes using (4.10) and (4.11), respectively. As before,

the chosen time interval lengths k represent critical time frames for power sys-

tem operations (economic dispatch, hour-ahead scheduling), ancillary services

(regulation, load following) and forecast updates (load and wind).

For all the comparison pairs listed in Table 4.3 the comparison is made

using the time interval lengthsK and k given in Table 4.4 under the three com-

parison schemes A, B, and C. It is reminded that under comparison schemes

A and B the multiplier of the step-changes or forward differences is L = 1,

whereas under comparison scheme C the multiplier is L = K/k. For exam-

ple, for comparison pair 1 (conditional range against absolute step-changes)

Table 4.4 shows that, the 5-minute conditional range M5 is compared to the

same time interval length 5-minute step-changes |y5| under scheme A. Un-

der scheme B the 5-minute conditional range M5 is compared to the shorter

time interval length 1-minute step-changes |y1|, whereas under scheme C it is

compared to the exact multiplier (5) of the 1-minute step-changes 5 · |y1|.

4.3.3 Comparison Outcomes

For reasons explained in Section 2.2.1.3 the comparison between the

conditional range and the step-changes or forward differences is done not us-

ing their standard deviation but rather by comparing their sample quantiles

QMK
(p) and Q|yk|(p) or Q|zk|(p). Sample quantiles are also used when compar-

ing the respective ramp rate series. It is reminded that the pth quantile QX(p),

p ∈ [0, 1], of a random variable X with cumulative distribution function FX(x)

is given by:

QX(p) = F−1
X (p) = inf{x : P (X ≤ x) ≥ p} (4.16)
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Table 4.4: Time Interval Lengths under the three Comparison Schemes

Comparison Conditional Range Step-changes/Forward Differences

Scheme K [min] k [min]

A 5 5

10 10

15 15

30 30

60 60

B 5 1

10 5

15 5

30 10

30 15

60 10

60 15

60 30

C 5 1

10 5

15 5

30 10

30 15

60 10

60 15

60 30

Since no assumption about the underlying distribution of the condi-

tional range, the step-changes or the forward differences is made a quantile

estimate can be calculated from the sample data series. The sample quantile

QXN
(p) can be estimated from the order statistics of a sample X1, X2, ...XN ,
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where the ith order statistic X(i) is such that X(1) ≤ X(2) ≤ ... ≤ X(N).

When order statistics are used, the estimate of the pth sample quantile Q̂XN
(p)

from an N -long sample can be derived by computing a real-valued index

h = N · p+1/2. When h is an integer the sample quantile estimate Q̂XN
(p) is

given by the hth order statistic:

Q̂XN
(p) = X(h) (4.17)

Otherwise one can choose from several rounding or interpolation schemes, the

most simple being the inverse of the empirical cdf, where Q̂XN
(p) = X(⌈h⌉).

From the quantile definition in (4.16) it is evident that the percentage

of values from the sample xn which are less than the sample quantile QX(p) is

equal to p. If the random variable is the conditional range Mk, then the prob-

ability of the largest wind power ramp in a k-long time interval having size less

than the sample quantile QMk
(p) is at least p. If the wind power ramps are

undesired, e.g. they appear in time periods of little demand variation or they

are negatively correlated with demand ramps, then reserves have to be set

aside to counteract the wind power ramps. Setting aside reserve power equal

to the conditional range sample quantile QMk
(p) would result in an ability to

counteract the wind power ramps in k-long time intervals with a coverage rate

of at least p (thus, p is the percentage of successfully counteracted wind power

ramps). Since the sign of the power ramp is unknown, generators would have

to be able to ramp both up and down in order to counteract down and up

wind power ramps, respectively. Moreover, the provision of quantiles QMk
(p)

allows power system operators to choose the amount of reserves according to

the desired coverage rate p.

Similarly, the generators which provide the necessary reserves to coun-

teract wind power ramps must have certain ramp rate capabilities, which can
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be determined by the sample quantiles of the conditional range ramp rate se-

ries rMk
. A generator with a ramp rate capability equal to QrMk

(p) manages

to counteract wind power ramp rates with a coverage rate of at least p. It

should be noted that since ramp rates can be both positive and negative, low

rank sample quantiles correspond to high negative ramp rates, while high rank

sample quantiles correspond to high positive ramp rates. Thus, for a proba-

bility p, only (1 − p)% of the positive wind power ramp rates in k-long time

intervals are larger than the sample quantile QrMk
(p), whereas only (1 − p)%

of the negative wind power ramp rates in k-long time intervals are larger than

the sample quantile QrMk
(1− p).

The question that arises is how well the respective step-changes sample

quantile Q|y|(p) (Qry(p)) or forward differences sample quantile Q|z|(p) (Qrz(p))

perform with respect to counteracting wind power ramp sizes (or rates). To

address this question, for each time interval pair listed in Table 4.4, the fol-

lowing results from the comparison between the step-changes or the forward

differences and the conditional range are denoted:

1. Ramp Size Difference dx

This quantity is the answer to the question: For a given coverage rate p

what is the difference in reserve power dx needed so that L·Q|yk|(p)+dx =

QMK
(p) (or L ·Q|zk|(p)+dx = QMK

(p))? In other words, how much more

(or less) reserves dx are needed, in addition to L ·Q|yk |(p) (or L ·Q|zk|(p)),

so as to achieve the same coverage rate p (percentage of successfully coun-

teracted wind power ramps) as the respective conditional range reserves

QMK
(p)?

2. Ramp Rate Difference dr

This quantity is the answer to the question: For a given coverage rate
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p what is the difference in ramp rate capability dr needed so that L ·
Qryk

(p)+dr = QrMK
(p) (or L·Qrzk

(p)+dr = QrMK
(p)))? In other words,

how much more (or less) ramping capability do the generators providing

reserves need to have, in addition to L ·Qryk
(p) (or L ·Qrzk

(p)), so as to

achieve the same coverage rate p (percentage of successfully counteracted

wind power ramp rates) as the respective conditional range ramp rate

QrMK
(p)?

3. Coverage Rate Difference dp

This quantity is the answer to the question: What is the actual cov-

erage rate p + dp of a given step-changes quantile L · Q|yk|(p) (or for-

ward difference quantile L · Q|zk|(p)) in terms of accommodating the

size of wind power ramps? That is, dp is the solution to the equation

L · Q|yk|(p) = QMK
(p + dp) (or L · Q|zk|(p) = QMK

(p + dp)). When

using reserves equal to a step-changes quantile L · Q|yk|(p) (or forward

difference quantile L · Q|zk|(p)) it is assumed that they can successfully

counteract p percent of the wind power ramps (nominal coverage rate)

over a given time period. However, this quantile can in fact counteract

p+ dp percent of the wind power ramps, and thus dp represents the de-

viation from the nominal coverage rate p. Stated differently, a negative

dp is the additional percentage of K-long time-intervals with wind power

ramp sizes successfully counteracted by the conditional range quantile

QMK
(p) which the absolute step-changes quantile L ·Q|yk|(p) (or forward

differences quantile L·Q|zk|(p)) fails to counteract. Since the focus of this

comparison is in assessing the size of wind power ramps, the deviation

from nominal coverage rate dp is calculated only for the size and not

the rate of wind power ramps. Deviations from nominal coverage rates
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are of critical importance since large deviations can severely affect the

system reliability.

An estimate of how large these deviations can get can be obtained by the

results presented in [4], in which the 99.7th conditional range quantile is com-

pared to the 99.7th percentile of the absolute step-changes using aggregated

wind power and demand data with a 1-minute resolution spanning a period of

one year. More specifically in [4], the 5-minute wind power and net demand

conditional range 99.7th percentile QM5(0.997) is compared to 1-minute abso-

lute wind power and net demand step-changes 99.7th percentile Q|y1|(0.997).

In addition, the 60-minute wind power and net demand conditional range

99.7th percentile QM60(0.997) is compared to the sum of the 1-minute and 10-

minute wind power and net demand absolute step-changes 99.7th percentiles

Q|y1|(0.997) +Q|y10|(0.997).

The chosen time length comparison pairs are according to comparison

scheme B and stem from the fact that in several wind integration studies,

regulation reserves which correspond to the accommodation of net-demand

variability in the 5-minute time frame are estimated using three standard de-

viations of the 1-minute step-changes, while load following reserves which cor-

respond to reserves accommodating intra-hour net demand variations are esti-

mated using three standard deviations of the 10-minute step-changes. Since a

system carries both regulation and load-following reserves to account for intra-

hour net demand variability, the sum of both absolute step-changes quantiles

(current metrics) is compared to the respective conditional range quantile (pro-

posed metric).

The results for the coverage rate differences dp5, where Q|y1|(0.997) =

QM5(0.997+ dp5), and dp60, where Q|y1|(0.997)+Q|y10|(0.997) = QM60(0.997+
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dp60), for the two comparison pairs are summarized in Table 4.5. The quantiles

are calculated from the respective conditional range and step-changes series,

which are formed either using the whole year wind power series or some sea-

sonal subset of it. All coverage rate differences are negative, which reveals the

inability of the step-changes to effectively assess the size of wind power and

net demand ramps.

From Table 4.5, it becomes evident that for wind power ramps the cov-

erage rate differences dp5 and dp60 remain relatively low. This is attributed to

the high rank of the nominal rate p and to the fact that the wind power time

series is the aggregated output of numerous wind farms which has a dimin-

ishing effect on wind power variability. However, the 99.7th percentile of the

hourly net demand conditional range can counteract net demand ramp sizes

in up to 20.87% more hours in a year (or even 41.77% more hours during the

summer months). In fact, when the absolute step-changes and the conditional

range are compared using three times their standard deviations, as is adopted

in wind integration studies, the coverage rate difference can even exceed −50%.

A part of the net demand intra-hour ramps, as they are captured by

the conditional rangeM60, is covered through the economic dispatch operating

setpoints of generators providing energy. But the rest has to be covered by

generators providing load-following reserves. If these generators don’t have

enough ramping capabilities to accommodate for the intra-hour net demand

variability the system reliability performance is heavily affected. Thus, esti-

mating reserves using quantiles of the proposed conditional range can signifi-

cantly improve the system reliability performance.
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Table 4.5: Coverage Rate Difference dp for Wind Power and Net Demand

Wind Net Demand

dp5 dp60 dp5 dp60

Total −0.38% −1.53% −2.32% −20.87%

Spring −0.14% −1.17% −1.70% −15%

Summer −0.51% −1.28% −3.27% −41.77%

Fall −0.50% −1.61% −2.29% −21.66%

Winter −0.58% −2.15% −2.29% −12.38%

4.3.4 Comparison Results

In this section a summary of the most important results from the com-

parison between the wind power conditional range and the wind power step-

changes or forward differences statistics is presented.

4.3.4.1 The Effect of the Wind Farm Size on Wind Power Variabil-
ity across Different Time Scales

Figure 4.16 depicts the 95th percentile of the wind power conditional

range QMk
(0.95), the absolute wind power step-changes Q|yk|(0.95) and the

absolute wind power forward differences Q|zk|(0.95) as a function of the wind

farm size. The percentiles for each wind farm are given in p.u. values based

on the wind farm nameplate capacity PN and are depicted for various time

interval lengths k. For all wind farm sizes and time interval lengths depicted

the conditional range percentile exhibits a higher value than the respective

forward difference percentile, which in turn exhibits a higher value than the

respective step-changes percentile. As expected, the wind power forward dif-

ferences can characterize wind power variability more efficiently than the wind
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power step-changes, which are averages of forward differences. However, the

performance of the forward differences is still inferior to that of the proposed

conditional range.

From this figure it is evident that for each wind farm the values of the

wind power conditional range, as well as the wind power step-changes and

forward differences increase as the time interval k increases. This result is in

accordance to the results depicted in Fig. 4.5. As has already been denoted,

the higher wind power variability over longer time frames is attributed to the

fact that over longer time frames the changes in wind power output are weather

dictated and the effect of cancellations between positive and negative changes

of the wind farm’s turbines wind power output subsides.

Regarding the effect of the wind farm nameplate capacity on wind

power variability, a higher number of wind turbines with a wider geographical

spread in a large wind farm has a more pronounced effect on the variability

cancellations in their output, resulting in reduced wind power variability as

the wind farm size increases. Indeed, from Fig. 4.16 a trend in reduced vari-

ability with increasing wind farm nominal power can be seen. However, the

relationship between the conditional range Mk or the step-changes yk or the

forward differences zk and the wind farm nameplate capacity PN is not strictly

linear, since wind power variability is affected by numerous factors including

the exact number and type of wind turbines and their location.

Nonetheless, using linear fittings (Q = a · PN + b) for the depicted

percentiles of Mk, yk and zk for each time length k the resulting slopes a are

negative, which indicates a reduction in wind power variability for increasing

wind farm size over all time frames. In fact the slope a decreases (in absolute

numbers) as the time interval length k increases, demonstrating that this trend

is less pronounced in longer time frames. Moreover, comparing the linear fit-
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Figure 4.16: The 95th percentile of (a) the conditional range Mk, (b) the step-
changes yk, and (c) the forward differences zk in p.u. values as a function
of the wind farm nameplate capacity PN for various time intervals lengths k.
The size of the conditional range as well as the step-changes and the forward
differences grows with increasing time intervals k and decreasing nameplate
capacities PN of the wind farms. The conditional range exhibits higher values
than the forward differences and the step-changes for all k and PN .
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tings it is found that the slope of the Mk percentiles fitting has higher values

than the slope of the yk or zk percentiles fitting, revealing that the proposed

metric can capture the cancellation effects from geographical wind power av-

eraging in large wind farms more efficiently.

Figure 4.17 and Fig. 4.18 depict the 95th and 5th percentile of the con-

ditional range ramp rates QrMk
(0.95), the step-changes ramp rates Qryk

(0.95),

and the forward differences ramp rates QrMk
(0.95) as a function of the wind

farm size PN for various time interval lengths k, respectively. Thus, only 5%

of the ramp rates in the given year have positive values higher than the rates

depicted in Fig. 4.17 and negative values lower than the rates depicted in

Fig. 4.18. In both these figures the conditional range ramp rates are higher

(in absolute values) than the respective time frame step-changes and forward

differences ramp rates, which shows the inability of the latter to effectively

capture wind power ramp rates. Moreover, positive and negative ramp rate

values appear fairly symmetric around zero. For all wind farm sizes and time

interval lengths depicted the ramp rates decrease in absolute values with in-

creasing wind farm size. As has been noted, the size of the wind power ramps

increases with increasing time interval length k, however, the ramp rates de-

crease in absolute values with increasing k. This means that high ramp rates

which appear in smaller time intervals don’t have a large enough duration to

produce high ramp rates over longer time intervals.

4.3.4.2 Wind Power Variability as a Function of the Wind Power
Production Level

To study the effect of the production level the conditional range series

as well as the step-changes and forward differences series are first filtered by

the interval average production level x̄k,i = lj to create separate series for each
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Figure 4.17: The 95th percentile of (a) the conditional range ramp rate rMk
,

(b) the step-changes ramp rate ryk , and (c) the forward differences ramp rate
rzk in p.u./min values as a function of the wind farm nameplate capacity PN

for various time intervals lengths k. The ramp rates of the conditional range
as well as the step-changes and the forward differences grow with decreasing
time intervals k and decreasing nameplate capacities PN of the wind farms.
The conditional range exhibits higher ramp rates than the forward differences
and the step-changes for all k and PN .
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Figure 4.18: The 5th percentile of (a) the conditional range ramp rate rMk
, (b)

the step-changes ramp rate ryk , and (c) the forward differences ramp rate rzk
in p.u./min values as a function of the wind farm nameplate capacity PN for
various time intervals lengths k. The ramp rates of the conditional range as
well as the step-changes and the forward differences grow (in absolute values)
with decreasing time intervals k and decreasing nameplate capacities PN of
the wind farms. The conditional range exhibits higher ramp rates than the
forward differences and the step-changes for all k and PN .
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production level lj. In fact separate series are created for average wind power

production level intervals x̄n ∈ lj = j/m if (2j − 1)/2m < x̄n ≤ (2j + 1)/2m,

which are normalized based on the wind farm nameplate capacity PN (lj =

0.01, 0.02, ...1 p.u.). Thus, for the lj-production level conditional range and

forward differences series only those indexes iplj ∈ [1, N − k] from the initial

series are used for which lj − 0.005 < x̄k,iplj ≤ lj + 0.005. The filtered samples

form new series, Mk,iplj
and zk,iplj , and the quantiles of these modified series

are calculated using (4.17). The same indexes are used to obtain the filtered

conditional range ramp rate series rMk,plj
and forward differences ramp rate

series rzk,plj . Similarly, for the lj-production level step-changes series indexes

jplj ∈ [1, ⌊N/k⌋ − 1] are chosen for which lj − 0.005 < x̄k,jplj ≤ lj + 0.005, to

create the filtered step-changes series yk,jplj and step-changes ramp rate series

ryk,plj .

Figure 4.19 depicts the 95th percentile of the wind power conditional

range QM30(0.95), the wind power absolute step-changes Q|y30|(0.95) and the

wind power absolute forward differences Q|z30|(0.95) at the k = 30-minute time

frame as a function of the wind farm nameplate capacity PN for three interval

average production levels: low (lj = 0.2 p.u.), medium (lj = 0.5 p.u.), and

high (lj = 0.8 p.u.). Similarly, Fig. 4.20 depicts the 95th and Fig. 4.21 the 5th

percentile of the three respective ramp rate series. From Fig. 4.19 - Fig. 4.21 it

is evident that wind power variability produces wind power ramps with larger

sizes and absolute ramp rates at mid-level wind power production under all

three considered wind power variability metrics. As has already been stated,

this is due to the large slope of the wind power vs. wind speed curve at mid-

production levels, which causes even a small change in the input wind speed

to have a large effect on the wind power output.

Since only a 5% of ramp rates have values lower than QrMk
(0.05) and
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Figure 4.19: The 95th percentile of (a) the conditional range Mk, (b) the step-
changes yk, and (c) the forward differences zk in p.u. values taken over time
intervals of length 30 minutes and three different average interval production
levels (low=0.2 p.u., medium=0.5 p.u., high=0.8 p.u.), as a function of the
wind farm nameplate capacity PN . Wind power ramp sizes are larger at mid-
level wind power production.
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(b) Step−Changes Ramp Rate y30/30 (95th percentile)
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(c) Forward Differences Ramp Rate z30/30 (95th percentile)
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Figure 4.20: The 95th percentile of (a) the conditional range ramp rate rMk
,

(b) the step-changes ramp rate ryk , and (c) the forward differences ramp rate
rzk in p.u./min values taken over time intervals of length 30 minutes and three
different average interval production levels (low=0.2 p.u., medium=0.5 p.u.,
high=0.8 p.u.), as a function of the wind farm nameplate capacity PN . Wind
power ramp rates are larger at mid-level wind power production.
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Figure 4.21: The 5th percentile of (a) the conditional range ramp rate rMk
, (b)

the step-changes ramp rate ryk , and (c) the forward differences ramp rate rzk
in p.u./min values taken over time intervals of length 30 minutes and three
different average interval production levels (low=0.2 p.u., medium=0.5 p.u.,
high=0.8 p.u.), as a function of the wind farm nameplate capacity PN . Wind
power ramp rates are larger at mid-level wind power production.
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another 5% have ramp rate values higher than QrMk
(0.95), 90% of all ramp

rates fall within the interval [QrMk
(0.05), QrMk

(0.95)] under the conditional

range ramp rate series. Similarly, 90% of all ramp rates fall within the interval

[Qryk
(0.05), Qryk

(0.95)] and [Qrzk
(0.05), Qrzk

(0.95)] under the step-changes and

forward differences ramp rate series, respectively. The ramp rate intervals with

90% coverage probability defined previously are given in Table 4.6 for k = 5-

minute time intervals and in Table 4.7 for k = 60-minute time intervals for all

considered wind farms under the three ramp rate series. The values in these

tables are weighted averages of the respective quantiles for all production levels

lj . For example, the given QrM5
is calculated from [wlj · QrM5,plj

(0.05), wlj ·
QrM5,plj

(0.95)], where the weight wlj is the probability that the 5-minute time

interval has average wind power production lj , i.e. wlj = P (x̄5,j ∈ lj). The

respective quantiles are also calculated using a wind power series formed by

the aggregated output of the 13 wind farms, denoted ’sumWF’, as well as the

average quantile values of the 13 wind farms, denoted ’avgWF’.

From Table 4.6 and Table 4.7 it becomes evident, that when the ramp

rates are estimated based on the step-changes and forward differences they

are significantly lower than the actual ramp rates over the respective time

intervals. Moreover, under all ramp rate series, the positive ramp rates are

larger than the negative ramp rates, which means that wind ramps up faster

than it ramps down. The higher ramp rates of the 5-minute intervals compared

to the ramp rates within hourly time frames, denote that high ramp rates over

small time frames don’t have large durations. In addition, aggregation of

wind power output reduces not only the wind power ramp sizes but also the

wind power ramp rates, as can be seen by the large difference between the

aggregated (sumWF) and average (avgWF) quantiles.
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Table 4.6: Ramp Rate Intervals with Coverage Probability 90% for 5-minute
Time Intervals

Wind Qry5
Qrz5

QrM5

Farm [p.u./min] [p.u./min] [p.u./min]

WF1 [-0.0078,0.0081] [-0.0097,0.0099] [-0.0215,0.0225]

WF2 [-0.0061,0.0063] [-0.007,0.0071] [-0.012,0.0124]

WF3 [-0.007,0.0073] [-0.0083,0.0084] [-0.0162,0.0166]

WF4 [-0.0083,0.0081] [-0.0102,0.0102] [-0.0224,0.0233]

WF5 [-0.008,0.0084] [-0.01,0.0103] [-0.0238,0.0248]

WF6 [-0.0063,0.0066] [-0.0073,0.0074] [-0.0133,0.0136]

WF7 [-0.0059,0.0061] [-0.0067,0.0069] [-0.0115,0.0118]

WF11 [-0.0061,0.0063] [-0.0069,0.0072] [-0.0117,0.0122]

WF13 [-0.0064,0.0067] [-0.0079,0.0081] [-0.0171,0.018]

WF14 [-0.0078,0.0079] [-0.0096,0.0097] [-0.0226,0.0233]

WF15 [-0.0071,0.0075] [-0.0083,0.0086] [-0.0157,0.0164]

WF17 [-0.0058,0.0059] [-0.0067,0.0068] [-0.0127,0.013]

WF18 [-0.005,0.0053] [-0.0058,0.0061] [-0.0113,0.012]

sumWF [-0.0002,0.0002] [-0.0003,0.0003] [-0.0053,0.0054]

avgWF [-0.0067,0.007] [-0.008,0.0082] [-0.0163,0.0169]
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Table 4.7: Ramp Rate Intervals with Coverage Probability 90% for 60-minute
Time Intervals

Wind Qry60
Qrz60

QrM60

Farm [p.u./min] [p.u./min] [p.u./min]

WF1 [-0.0025,0.0028] [-0.003,0.0032] [-0.0086,0.0089]

WF2 [-0.0025,0.0028] [-0.0029,0.003] [-0.0062,0.0068]

WF3 [-0.0024,0.0026] [-0.0029,0.0031] [-0.0079,0.0082]

WF4 [-0.0025,0.0027] [-0.003,0.0033] [-0.0074,0.0107]

WF5 [-0.0024,0.0027] [-0.0031,0.0032] [-0.0087,0.0102]

WF6 [-0.0024,0.0026] [-0.0029,0.003] [-0.0065,0.0068]

WF7 [-0.0024,0.0027] [-0.0028,0.003] [-0.0059,0.0064]

WF11 [-0.0023,0.0025] [-0.0028,0.0028] [-0.006,0.0068]

WF13 [-0.0021,0.0022] [-0.0026,0.0026] [-0.0068,0.0076]

WF14 [-0.0023,0.0026] [-0.0029,0.003] [-0.0087,0.0091]

WF15 [-0.0024,0.0027] [-0.003,0.0031] [-0.0071,0.0085]

WF17 [-0.0023,0.0025] [-0.0026,0.0028] [-0.006,0.0063]

WF18 [-0.002,0.0023] [-0.0025,0.0026] [-0.005,0.0058]

sumWF [-0.0014,0.0015] [-0.0016,0.0017] [-0.0027,0.0029]

avgWF [-0.0023,0.0026] [-0.0028,0.003] [-0.007,0.0079]
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4.3.4.3 Comparison Results as a Function of the Coverage Rate

Figure 4.22 depicts the comparison outcomes when the 5-minute wind

power conditional rangeM5 and its respective ramp rate series rM5 of one wind

farm of capacity PN=160.5 MW (WF6) are compared to the step-changes, as

a function of the conditional range coverage rate p ∈ [0, 1] (percentage of suc-

cessfully counteracted wind power ramp sizes or ramp rates). The comparison

results depicted are the ramp size difference dx in p.u. (Fig. 4.22(a)), the ramp

rate difference dr in p.u./min (Fig. 4.22(b)) and the coverage rate difference

dp in % (Fig. 4.22(c)), as they have been defined in Section 4.3.3. In each sub-

figure of Fig. 4.22, the solid line represents results under comparison scheme

A, the dashed line results under comparison scheme B and the dotted line re-

sults under comparison scheme C. For the 5-minute time frame the ramp size

difference dx and coverage rate difference dp are obtained by comparing the

quantiles ofM5 to |y5| under scheme A,M5 to |y1| under scheme B, andM5 to

5 · |y1| under scheme C. To obtain the ramp rate difference dr the comparison

is done between the quantiles of the ramp rates rM5 to ry5 under scheme A, rM5

to ry1 under scheme B, and rM5 to 5 · ry1 under scheme C. Similarly, Fig. 4.23

depicts the comparison outcomes when the conditional range M is compared

to the respective forward differences z for the 5-minute time frame.

For the 5-minute time frame, e.g. the time frame for which regulation

reserves are calculated, let’s assume that the necessary reserves to counteract

undesired wind power ramps are set equal to QM5(p) p.u. and that the gen-

erators providing such reserves should have a ramping capability of QrM5
(p)

p.u./min. Then, Fig. 4.22(a) and Fig. 4.23(a) depict the reserves dx needed,

in addition to L · Q|yk|(p) or L · Q|zk|(p), so as to achieve the same coverage

rate as the conditional range quantile QM5(p), as a function of the conditional
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Figure 4.22: Comparison results for (a) ramp size difference dx, (b) ramp
rate difference dr, and (c) coverage rate difference dp between between the
conditional rangeM and the step-changes y for the 5-minute time frame under
the three comparison schemes as a function of the coverage rate p. The solid
line represents comparison scheme A, the dashed line scheme B and the dotted
line scheme C.
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Figure 4.23: Comparison results for (a) ramp size difference dx, (b) ramp
rate difference dr, and (c) coverage rate difference dp between between the
conditional rangeM and the forward differences z for the 5-minute time frame
under the three comparison schemes as a function of the coverage rate p. The
solid line represents comparison scheme A, the dashed line scheme B and the
dotted line scheme C.
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range coverage rate p given in the x-axis. The results from this comparison

reveal that the absolute step-changes |y1|, which equal the forward differences

|z1|, are inadequate to assess the size of wind power ramps over longer time

intervals K = 5 minutes (comparison scheme B - dashed line), since more

reserves are needed to achieve the conditional range coverage rate. On the

other hand, taking an exact multiplier (L = 5) of the absolute step-changes

|y1| (comparison scheme C - dotted line) overestimates the size of the wind

power ramps resulting in an overdeployment of reserves. This effect is more

pronounced at high coverage rates where the ramp size difference dx can ex-

ceed absolute values of 0.2 p.u. of the wind farm nameplate capacity. Under

comparison scheme A the smallest differences in ramp size are observed, which

implies that using the absolute step-changes |y5| and forward differences |z5|
quantiles to assess the size of wind power ramps in the same length 5-minute

time frame results in the least error (number of not counteracted wind power

ramps).

The results regarding the difference in ramping rate capabilities dr are

given in Fig. 4.22(b) and Fig. 4.23(b). In these figures the ramp rates dr

needed, in addition to L ·Qryk
(p) or L ·Qrzk

(p), so as to achieve the same cov-

erage rate as the conditional range ramp rate quantile QrM5
(p), as a function

of the conditional range ramp rate coverage probability p given in the x-axis

are depicted. Under comparison scheme A, where the conditional range ramp

rate rM5 is compared to step-changes ramp rate ry1 and the forward differences

ramp rate rz1, as well as under comparison scheme B, where rM5 is compared

to ry1 = rz1 , the least differences in ramp rate capabilities are observed. How-

ever, under comparison scheme C, where the conditional range ramp rate rM5

is compared to the exact multiple 5 ·ry1 = 5 ·rz1, positive differences dr are ob-
served for low coverage rates and negative differences for high coverage rates p.
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This means that taking exact multiples of ramp rates over smaller time frames

to assess ramp rates over larger time frames results in an overestimation of the

actual ramp rates, especially for high positive ramp rates, since dr is negative

for high coverage rates p, and high negative ramp rates, since dr is positive

for low coverage rates p.

In Fig. 4.22(c) and Fig. 4.23(c) the y-axis depicts the difference dp be-

tween the conditional range coverage rate p (nominal), given in the x-axis,

and the actual step-changes or forward differences coverage rate p + dp. In

these figures a negative deviation for some coverage rate p indicates that the

step-changes or forward differences pth quantile has much lower value than the

respective conditional range pth quantile. This means that assigning reserves

based on a step-changes or forward differences pth quantile results in an actual

coverage rate of value lower than p. On the contrary, a positive deviation

means that a much higher coverage rate than desired is actually achieved.

From Fig. 4.22(c) and Fig. 4.23(c) it is evident that step-changes or forward

differences taken over 1-minute intervals result in much lower coverage rates

with respect to counteracting wind power ramp sizes in the larger 5-minute

time frames (comparison scheme B), with differences reaching values of 50%

(e.g. a p=0.75 step-changes quantile can actually counteract only 25% of the

wind power ramp sizes within the year). When the absolute step-changes |y5|
and forward differences |z5| quantiles are compared to the same time frame

M5 conditional range quantiles (comparison scheme A) the deviation from the

nominal coverage rate has much lower values. This is true especially at higher

coverage rates, since negative deviations are observed for low p values (at the

order of 10− 20%), with the forward differences exhibiting smaller deviations

than the step-changes. Taking exact multipliers of the absolute step-changes

|y1|, which are equal to the forward differences |z1|, to estimate the size of
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wind power ramps over the longer 5-minute time frame (comparison scheme

C) shows that 5 · |y1| step-changes exhibit lower than the desired coverage

rates at low p values and much higher than the desired coverage rates at high

p values, with differences reaching 20%.

The same comparison results for the 60-minute time frame are given

in Fig. 4.24 for the step-changes and Fig. 4.25 for the forward differences, as a

function of the conditional range coverage rate p. Thus, in these figures step-

changes and forward differences quantiles are compared to the conditional

range quantiles QM60(p) and QrM60
(p). The ramp size difference dx in p.u.

is depicted in Fig. 4.24(a) and Fig. 4.25(a), the ramp rate difference dr in

p.u./min is depicted in Fig. 4.24(b) and Fig. 4.25(b), and the coverage rate

difference dp in % is depicted in Fig. 4.24(c) and Fig. 4.25(c). In each subfigure

of Fig. 4.24 and Fig. 4.25, the solid line represents results under comparison

scheme A, the dashed line results under comparison scheme B and the dotted

line results under comparison scheme C.

Under comparison scheme B the conditional rangeM60 values (or ramp

rates rM60) are compared against the step-changes |y10| (or ry10) and the for-

ward differences |z10| (or rz10) taken over the smaller 10-minute time frame.

The dashed lines in Fig. 4.24 and Fig. 4.25 indicate that using step-changes

and forward differences over a time frame to assess the size and rate of wind

power ramps over longer time frames results in an underestimation of both

size and rate of wind power ramps, with differences in coverage rates reaching

70%. On the other hand, under comparison scheme C, the conditional range

M60 values (or ramp rates rM60) are compared against exact multiples of the

step-changes 6 · |y10| (or 6 · ry10) and the forward differences 6 · |z10| (or 6 · rz10)
taken over the smaller 10-minute time frame. However, this approach results

in an overestimation of the size and rate of wind power ramps, which results in
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Figure 4.24: Comparison results for (a) ramp size difference dx, (b) ramp
rate difference dr, and (c) coverage rate difference dp between between the
conditional range M and the step-changes y for the 60-minute time frame
under the three comparison schemes as a function of the coverage rate p. The
solid line represents comparison scheme A, the dashed line scheme B and the
dotted line scheme C.
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Figure 4.25: Comparison results for (a) ramp size difference dx, (b) ramp
rate difference dr, and (c) coverage rate difference dp between between the
conditional range M and the forward differences z for the 60-minute time
frame under the three comparison schemes as a function of the coverage rate
p. The solid line represents comparison scheme A, the dashed line scheme B
and the dotted line scheme C.
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positive coverage rate differences dp of values close to 10%. Under comparison

scheme A, where the step-changes y60 and forward differences z60 (absolute

values or ramp rates) are compared to the same time frame M60 conditional

range or ramp rate values, the differences in ramp size dx, ramp rate dr and

coverage rate dp exhibit the smallest values, with forward differences perform-

ing better than the step-changes. Nonetheless, the positive dx differences for

high p values and the coverage rate differences reaching values of 30% reveal,

that the proposed conditional range is a more effective mean in assessing the

size and rate of intra-hour wind power ramps.

4.3.4.4 Average Comparison Results under all Comparison Schemes

Since ramp rates differences dr depicted in Fig. 4.22 - Fig. 4.25 exhibit

small values under all comparison schemes, focus is placed on ramp size differ-

ences dx and coverage rate differences dp. Figure 4.26 depicts mean ramp size

differences under all comparison schemes, as a function of the time interval

length k, for five different wind farms with nameplate capacities ranging from

37.5 MW to 210 MW. In every subfigure the x-value of each marker shows the

time interval length K, for which the conditional range is calculated, and the

y-value shows the mean dx, averaged over all coverage rates p, for each com-

parison scheme. In Fig. 4.26(a)-(c) the mean ramp size difference dx is given

for comparison pair 1, i.e. when the conditional range quantiles QMK
(p) are

compared to the absolute step-changes quantiles L · Q|yk|(p), under compari-

son schemes A, B, and C, respectively. Similarly, in Fig. 4.26(d)-(f) the mean

ramp size difference is depicted for comparison pair 2, i.e. when the condi-

tional range quantiles QMK
(p) are compared to the absolute forward differences

quantiles L · Q|zk|(p). When several k values are used for a single K value,
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e.g. 30-minute conditional range quantiles are compared against 10-minute

and 15-minute step-changes under comparison scheme B, the depicted value

is the average of all K − k pair differences dx. Mean coverage rate differences

dp are depicted in Fig. 4.27, as a function of the time interval length k, for

the same five wind farms used in Fig. 4.26. Figures 4.27(a)-(c) give the mean

coverage rate difference dp for comparison pair 1 under comparison schemes

A, B, and C, respectively, whereas Fig. 4.27(d)-(f) gives the mean coverage

rate difference for comparison pair 2 under the three comparison schemes.

Figure 4.26 reveals that for comparison schemes A (subfigures (a)

and (d)) and B (subfigures (b) and (e)), the mean ramp size difference dp

is positive, indicating an underestimation of wind power ramp sizes, and in-

creases with increasing time interval length K and decreasing wind farm size

PN . However for comparison scheme C, depicted in Fig. 4.26(c) and (e), which

exhibits much lower mean ramp size differences than the other schemes, the

least ramp size difference appears at the 15-minute time frame when the step-

changes are used and at the 10-minute time frame when the forward differences

are used, indicating a non-linear relationship between time interval length K

and the ramp size difference dp. Moreover, under comparison scheme C, step-

changes underestimate the size of wind power ramps (except for the 5-minute

time frame), whereas forward differences overestimate the size of wind power

ramps. The inconsistent results under comparison scheme C indicate that

the duration of wind power ramp rates is different across different time scales

and thus is not easy to estimate. Hence, just by looking at the wind power

step-changes or forward differences and without an accurate estimation of the

wind power ramp rate duration a reasonable assessment of the size of wind

power ramps is not guaranteed. On the contrary, the proposed conditional

range metric is by its definition the size of the largest wind power ramp in

118



0 20 40 60
0

0.02

0.04

0.06

0.08

Time Interval Length K [min]

dx
 [p

.u
.]

(a) Comparison Scheme A − Pair 1

 

 

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

0.12

Time Interval Length K [min]

dx
 [p

.u
.]

(b) Comparison Scheme B − Pair 1

 

 

0 20 40 60
−0.03

−0.02

−0.01

0

0.01

0.02

Time Interval Length K [min]

dx
 [p

.u
.]

(c) Comparison Scheme C − Pair 1

 

 

0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

0.06

Time Interval Length K [min]

dx
 [p

.u
.]

(d) Comparison Scheme A − Pair 2

 

 

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

Time Interval Length K [min]

dx
 [p

.u
.]

(e) Comparison Scheme B − Pair 2

 

 

0 20 40 60
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

dx
 [p

.u
.]

(f) Comparison Scheme C − Pair 2

 

 

P1=37.5 MW P2=82.5 MW P3=114 MW P4=160 MW P5=210 MW

Figure 4.26: Mean ramp size difference dx as a function of the time interval
length K for five wind farms of different nameplate capacities PN when the
conditional range is compared against the step-changes (pair 1) under (a)
comparison scheme A, (b) comparison scheme B, (c) comparison scheme C, and
when the conditional range is compared against the forward differences (pair
2) under (d) comparison scheme A, (e) comparison scheme B, (f) comparison
scheme C. Ramp size differences increase in absolute numbers with decreasing
wind farm capacity and increasing time interval length.

an interval, and thus its pth quantile QMk
(p) gives an accurate probabilistic

estimate of the size of a wind power ramp in a k-long time interval.

Most mean coverage rate differences dp depicted in Fig. 4.27 are neg-

ative, with the exception of comparing 5-minute conditional range quantiles

with 1-minute absolute forward differences quantiles, which means that under

all comparison schemes choosing reserves based on step-changes and forward

differences quantiles results in a smaller percentage of successfully counter-
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Figure 4.27: Mean coverage rate difference dp as a function of the time inter-
val length K for five wind farms of different nameplate capacities PN when
the conditional range is compared against the step-changes (pair 1) under (a)
comparison scheme A, (b) comparison scheme B, (c) comparison scheme C,
and when the conditional range is compared against the forward differences
(pair 2) under (d) comparison scheme A, (e) comparison scheme B, (f) com-
parison scheme C. Coverage rate differences increase in absolute numbers with
increasing time interval length.

acted wind power ramps than the desired coverage rate p. Similarly to the

ramp size, coverage rate differences dp increase in absolute numbers with in-

creasing time interval length K. However, the effect of wind farm size PN on

coverage rate differences dp is not clear from Fig. 4.27. Nonetheless, under

all time interval lengths K and wind farm sizes PN the coverage rate differ-

ences dp are highest under comparison scheme B and lowest under comparison

scheme C.
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Table 4.8: Mean Absolute Deviations from the Nominal Coverage Rate (|dp|
[%]) for Comparison Pair 1 (Conditional Range - Step-changes

Comparison Scheme A

K [min] 5 10 15 30 60

avgWF 10.45 15.89 17.92 20.22 21.71

sumWF 8.53 13.05 14.41 15.51 16.04

Comparison Scheme B

K [min] 5 10 15 30 60

avgWF 28.63 25.11 31.44 31.36 36.04

sumWF 33.44 26.47 34.18 32.27 37.44

Comparison Scheme C

K [min] 5 10 15 30 60

avgWF 8.37 9.01 7.41 11.6 10.43

sumWF 9.85 7.76 6.83 9.41 8.45

Table 4.8 and Table 4.9 provide mean absolute deviations dp from the

nominal coverage rate (calculated as averages of the absolute dp values over

all coverage rates p) similar to Fig. 4.27 for comparison pairs 1 and 2, respec-

tively. In these tables ’sumWF’ corresponds to mean absolute coverage rate

difference dp when the aggregated wind power (summed wind power output

of the 13 wind farms) is used, while ’avgWF’ is the average of the mean ab-

solute deviations dp of the 13 wind farms. Under comparison schemes A and

C, taking the sum of the wind farms outputs seems to slightly reduce wind

power variability resulting in lower deviations, due to the uncorrelated varia-

tions in wind farms outputs being canceled out by their addition. Comparison

scheme B exhibits the largest mean absolute deviations, which indicates the

importance of knowing the ramp rate duration in assessing the size of wind

power ramps when using step-changes and forward differences. Moreover, the
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Table 4.9: Mean Absolute Deviations from the Nominal Coverage Rate (|dp|
[%]) for Comparison Pair 2 (Conditional Range - Forward Differences)

Comparison Scheme A

K [min] 5 10 15 30 60

avgWF 6.93 11.89 13.86 16.22 17.82

sumWF 5.82 10.06 11.49 12.81 13.44

Comparison Scheme B

K [min] 5 10 15 30 60

avgWF 28.63 21.96 28.76 28.36 33.65

sumWF 33.44 23.86 32.05 30.12 35.83

Comparison Scheme C

K [min] 5 10 15 30 60

avgWF 8.37 6.13 5.75 8.17 8.37

sumWF 9.85 5.97 5.89 7.36 7.31

large deviations under comparison scheme A, with an average value close to

15%, reveal the inability of the step-changes and the forward differences to

effectively convey information about the wind power ramps within an interval.

4.3.5 Concluding Remarks

The concept of the proposed conditional range Mk presented in Chap-

ter 3 lies in quantifying the variability of a source using its range of outputs

M over a given time interval length k. Using real-world wind power data

from 13 wind farms, the step-changes, which are the most prevalent metric in

quantifying wind power variability, and the forward differences are compared

to the proposed conditional range. Under comparison scheme A it is exam-
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ined whether tracking step-changes (or forward differences) and their rates over

time frames k a conclusion on wind power variability within these intervals can

be drawn, whereas under comparison schemes B and C it is examined whether

step-changes (or forward differences) taken over time frames k are suitable for

estimating the size and rate of wind power ramps over longer time frames. The

comparison is done using the conditional range and the step-changes (or for-

ward differences) quantiles, and the outcomes include the difference in ramp

size dx and ramp rate dr, as well as the deviation dp from the conditional

range nominal coverage rate p.

The comparison reveals that all metrics effectively recognize that wind

power variability increases with increasing time interval length k, decreas-

ing wind farm nameplate capacity PN and is highest at mid-production wind

power levels lj . However, the comparison also exposes the two shortcomings of

the step-changes (and forward differences), which are their inability to convey

information about the wind power variability within a time interval and their

lack to provide the duration of the wind power ramp rates. The first shortcom-

ing is verified by the large deviations dp from nominal coverage rates under

comparison scheme A, with average values close to 15%. Under comparison

scheme B, using step-changes (or forward differences) over smaller time frames

results in an underestimation of the wind power ramp sizes and rates within

longer time frames. On the other hand, under comparison scheme C, using an

exact multiple K/k of the step-changes (or forward differences) over smaller

time frames k results in an overestimation of wind power ramps within longer

time frames K. This reveals the second shortcoming of the step-changes, and

signifies the importance of associating a duration with a ramp rate, so as to

effectively estimate a wind power ramp size.

123



4.4 Summary

This chapter evaluates the proposed conditional range metric using

real-world wind power data. In Section 4.1 a performance analysis of the pro-

posed metric in wind power variability assessment is summarized. Using this

analysis, the wind power variability over a time frame is found to increase

with increasing time frame size and decreasing wind farm size. Moreover,

wind power variability is highest at mid production wind power levels. In

Section 4.2 the conditional range metric is used to quantify the effect of wind

turbine technology and size on wind power variability. The results reveal that

wind turbines connected through converters to the grid exhibit lower wind

power variability compared to same size simple induction generators, and that

wind power variability decreases slightly with increasing wind turbine size.

Most importantly, wind power aggregation offers a significant reduction in

wind power variability for all wind turbine technologies and sizes.

Moreover, Section 4.3 compares the performance of the conditional

range metric to the step-changes and forward differences statistics in assessing

the size and rate of intra-hour wind power ramps. The comparison reveals the

shortcomings of the prevalent step-changes approach, which are their inability

to convey information about the wind power variability within a time interval

and their lack to provide the duration of the wind power ramp rates. The

results show that the size of wind power ramps taken over a certain length

k time interval is on average less than the pth step-changes quantile only in

p−15% of the k-long time intervals within a year. Since the conditional range

is by definition the size of the largest wind power ramp within a k-long time

interval, the power system reliability could benefit significantly by using the

conditional range quantiles to estimate the size of wind power ramps.
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Chapter 5

Forecasting the Conditional Range Metric

Wind is uncertain in its nature, which means that the actual value of

wind power output in the future is unknown. To mitigate the effects of wind

power uncertainty in power system planning and operations wind power fore-

casts are used. Different look ahead times and time resolutions are employed,

depending on the system planning or operation procedures which use the wind

power forecasts. Thus, hourly wind power forecasts for a 48-hour ahead time

period can be used with respect to unit commitment, whereas 6-hour ahead

wind power forecasts with a 5-minute resolution are used as input for economic

dispatch. Several methods to obtain wind power forecasts have been developed

in the past years, ranging from time series analysis to deployment of neural

networks, and significant reduction in wind power forecast errors has been

achieved. Nonetheless, with currently used wind power forecasting methods

mean absolute prediction errors are in the range of 10%–20% for day-ahead

forecasts and 5%–10% for hour-ahead forecasts.

The output of a wind power forecast consists of single values for each

look ahead time, which correspond to the expected wind power output aver-

aged over the time resolution of the forecast. Hence, a day-ahead hourly wind

power forecast consists of 24 hourly averaged wind power values. However,

the actual trajectory of wind power is not constant within the forecast time

resolution interval, and existing wind power forecasts can not account for this
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variability. Even when the hourly wind power forecast is perfect, wind power

still varies within the hour and, if underestimated, this variability can have

adverse effects on power system operations. These effects become more pro-

nounced with increasing wind power penetration levels, since then intra-hour

wind power variability becomes comparable to demand variability. Recall that

for a 7.7% wind penetration level in the ERCOT service area, the largest wind

power change in a 5-minute time interval within a given year was 781.42 MW

versus a demand change of 892.52 MW.

Although the actual intra-hour wind power trajectory for an hour-

period in the near future is unknown, intervals within which the wind power

will lie over that hour-period can be estimated. These intervals form a wind

power variability forecast, since they provide an upper and lower bound on the

excursions the actual wind power output may take from the forecasted time

interval average. Hence, a wind power variability forecast uses a wind power

forecast as input, but provides supplemental information to the wind power

forecast. This information allows for better management of wind power vari-

ability at the desired time scale with several applications, such as determining

regulation and ramping requirements of controllable units to accommodate

wind power variability, as well as sizing and control requirements of energy

storage systems so as to achieve a more controllable wind power output. It

should be noted that wind power variability forecasts rely on wind power fore-

casts but not on the way they are obtained. Thus, they provide a way of

mitigating the adverse effects of wind power variability using state-of-the-art

wind power forecasting methods. However, as the accuracy of wind power fore-

casts improves the reliability of wind power variability forecasts is expected to

improve as well.

This chapter describes how wind power variability can be forecasted us-
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ing the conditional range metric. A literature review of wind power forecasting

technologies is given in Section 5.1. Section 5.2 presents how the conditional

range metric quantiles can be used to provide wind power variability forecasts.

Given an hourly wind power forecast, wind power variability is predicted by es-

timating the size of an interval within which the actual intra-hour wind power

trajectory will lie. A probability distribution of this interval’s endpoints can

be obtained by estimating future CRM quantiles. Details on quantile esti-

mation and quantile estimates evaluation are presented in Sections 5.3.1 and

5.3.2, respectively. The conditional range metric quantiles are estimated in

Sections 5.3.3–5.3.5 with three different methods, one static method (sample

quantile) and two time-adaptive methods (exponentially weighted moving av-

erage, exponentially weighted stochastic approximation). The resulting quan-

tile estimates are evaluated based on their reliability and the three methods are

compared using the quantiles’ sharpness and resolution in Section 5.3.6. The

results of CRM quantile estimation taking seasonality into account are given

in Section 5.4. In Section 5.5 the incremental wind power variability forecast

error, i.e. the wind power variability forecast error attributed to the wind

power forecast error, is investigated, while Section 5.6 concludes the chapter.

5.1 Prior Work in Wind Power Forecasting

Numerous papers have been published in the past decades pertaining

to wind speed and wind power prediction methodologies, turning the multi-

disciplinary area of wind power forecasting into an emerging technology. A

detailed literature overview of the state-of-the-art in short-term wind power

prediction can be found in [36], while more recent reviews of wind power and

wind speed forecasting methods with different time horizons are given in [37]
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and [38].

A wind power forecast provides the estimated available wind power

output P (t+ h) from a turbine, wind farm or region in the near future, with

P (t) being the wind power at time t. Depending on the look ahead time h the

following time classification of wind forecasts is suggested in [37]:

• very short-term forecasting (few seconds to 30 minutes ahead),

• short-term forecasting (30 minutes to 6 hours ahead),

• medium-term forecasting (6 hours to 1 day ahead),

• long-term forecasting (1 day to 1 week or more ahead).

The forecasting horizons are determined by the different applications of wind

power forecasts in the various power system operations. Thus, a short-term

wind power forecast could be useful in economic load dispatching, while a

long-term wind power forecast could aid in unit commitment decisions.

Regarding the methods employed, wind power forecasts can be broadly

divided into two categories:

• the ones employing a physical approach, and

• the ones employing a statistical approach,

though many new wind power forecasting models use a combination of both

approaches. Another classification can be made based on whether the fore-

casting method employs a numerical weather prediction (NWP) model or not.

The simplest forecasting method is the persistence method (also called

the naive predictor), for which the forecast for all times ahead is set to the
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value it has now, i.e. P (t+ h) = P (t). Since this method is very accurate for

very short-term and short-term forecasts, i.e. h < 6 hours, it is often used as

a benchmark which all other forecasting methods have to beat.

For short forecasting horizons, up to a few hours ahead, forecasting

methods employing a statistical approach prove to be very accurate. These

can be implemented either by direct time series analysis or with the use of

artificial neural networks (ANN). The most widely used time series model is

the Auto Regressive Moving Average (ARMA) and its variations, ARIMA

and ARMAX. These models have been used on the wind power as well as the

wind speed series and the results show that they can outperform the persis-

tence model by 7-18% [39] for short-term and up to 30% [40] for very short-

term forecasts. The range of improvements in [39] suggests that the ability

of ARMA models varies with varying forecasting time periods. Many more

time series models have been suggested employing diverse methods, such as

Kalman filtering of the wind speed series [41] and wavelet transforms [42], or

even the recently used smoothing techniques [43]. In addition the predictors

employed in wind power forecasting vary from linear predictors [44, 45] up to

grey models [46].

Though time series methods are improvements over the persistence

method for short-term forecasts, in general they are outperformed by neu-

ral network (NN) models. Methods involving neural networks have been em-

ployed for short-term as well as medium-term wind power forecasting. There is

great variety among these methods, including feed-forward [47, 48], recurrent

[49] and radial basis function [50, 51] neural networks. Though these methods

greatly outperform the persistence method results in [52] show that the neural

network model configurations vary widely with site and error criteria, render-

ing that the selection of a suitable neural network model requires careful and
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detailed analysis.

Prediction models using NWP forecasts also outperform time series ap-

proaches after about 6 hours look ahead time. These models use meteorological

data such as wind speed and direction, pressure, temperature, humidity and

terrain structure and their implementation usually involves three stages:

• downscaling, which yields a wind speed and direction for the turbine hub

height,

• power conversion, in which the wind speed is converted to wind power

through a wind power curve, and

• upscaling, which sums the single wind turbine results to an area total.

Due to their very high computational demands they are only run few times

a day, limiting their usage to the preparation of medium and long-term wind

power forecasts. The most common NWP systems include the Global Forecast

System (GFS) run by the National Oceanic and Atmospheric Administration

[53], the MM5 modeling system developed at Penn State and NCAR as a

community mesoscale model [54], the international research program HIRLAM

(HIgh Resolution Limited Area Model) [55] and Prediktor, a commercial prod-

uct developed by the Wind Power Meteorology research program at Risø Na-

tional Laboratory for Sustainable Energy in Denmark [56].

However, the inability of an NWP model alone to provide sufficient

downscaling for a particular wind farm at a particular site has led to the

adoption of hybrid methods. A hybrid forecasting method combines different

approaches, such as physical and statistical, or different models, such as short-

term and medium-term. An advanced statistical forecasting method combin-

ing artificial neural networks and meteorological forecasts of wind speed and
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direction is given in [57]. But even without a meteorological model, the com-

bination of neural networks with fuzzy logic (ANFIS) and wavelet transforms

presented in [58] provides very good results for short-term wind power forecast-

ing. Other models combine neural networks with particle swarm optimization

[59] or deploy entropy based training for the neural network model [60], with

significant improvements in performance.

Moreover, the use of spatial correlation between the wind speed to be

estimated and the wind speed from neighboring sites has been investigated in

several papers. In [61] a neural network model using spatial correlation is used

to estimate wind speed 3 hours ahead, while a fuzzy interfaced model in [62] is

used to predict wind speed 2 hours ahead. Both methods show improvement

over the persistent method by 28% and 29%, respectively.

Finally, the wind power output prediction is traditionally provided in

the form of point forecasts, i.e. a single value for each look ahead time h,

which corresponds to the expectation or most-likely outcome. However, such

forecasts have limited value in decision making under uncertainty and for this

reason probabilistic (ensemble) wind power forecasts have gained increasing

attention in the last years. Wind power ensemble forecasts provide not just a

point value but a whole probability density function of the wind power output.

Indeed, quantile forecasts, interval forecasts and density forecasts, i.e. full pre-

dictive distributions for each look ahead time, are the most common ways to

provide uncertainty estimates which are used to produce several scenarios of

the future development of wind power. Scenarios are a critical input for various

decision making problems with temporal or spatial interdependence, such as

probabilistic power flows or optimal trading in multiple markets. Wind power

ensemble forecasts can be created from wind speed ensembles [63, 64] or by

extending wind power point forecasts [65, 66] with various statistical methods.
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5.2 Forecasting Intra-hour Wind Power Variability

5.2.1 Approach

The output of an hourly wind power point forecast is one single wind

power value for each look ahead time, which corresponds to the expected wind

power hourly average. Given an hourly wind power point forecast, the intra-

hour wind power variability can be predicted by estimating the endpoints of an

interval [Mlow,Mup] within which the actual intra-hour wind power trajectory

will move.

Figure 5.1 depicts an hourly wind power forecast, i.e. forecast time

resolution is one hour, for four hours ahead, i.e. h=1,2,3, and 4 hours, for a

160 MW wind farm. The hourly forecast is depicted with a solid line and the

actual wind power trajectory at a 1 minute resolution is given with a dotted

line. The forecast is perfect, since the actual hourly average equals the fore-

casted hourly average. The dashed lines depict the points Mlow and Mup, the

minimum and maximum instantaneous wind power within each hour, which

define the desired intra-hour wind power variability interval [Mlow,Mup].

These intra-hour wind power variability intervals are the smallest in-

tervals to envelope the actual wind power production. Indeed, for a 160 MW

wind farm an obvious wind power variability interval, valid under any wind

power trajectory, is the interval [0, 160] MW defined by its nameplate capacity.

But from Fig. 5.1 it is evident that for wind power averages ranging from 84

MW in the first hour to 102 MW in the fourth hour, the instantaneous wind

power values range from a minimum of 68 MW to a maximum of 123 MW in

the third and fourth hour respectively, forming much smaller intervals than

the obvious [0, 160] MW.

The points Mlow and Mup given in Fig. 5.1 are in reality nothing but
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Figure 5.1: Hourly wind power forecast and intra-hour variability intervals
for a 160 MW wind farm under no uncertainty. The solid line represents the
perfect hourly forecast for four hours ahead, while the dotted line is the actual
wind power trajectory at minute resolution. The dashed lines represent the
minimum Mlow and maximum Mup power output within each hour, and define
the smallest intervals to envelope the actual wind power production.

the endpoints of the respective CRM intervals in these four hours. Indeed,

the conditional range metric CRMi,k,lj = [Mlowi,k,lj
,Mupi,k,lj

], as defined with

(3.4) in Section 3.2, is the interval within which the wind power output lies

over a time interval starting at point i, having length k and average wind

power production lj . Thus, the dashed lines in Fig. 5.1 actually define the

CRM intervals [Mlowi,k,lj
,Mupi,k,lj

] for minutes i = 0, 60, 120, 180 and k = 60

minutes, e.g. for the third hour with i = 180, k = 60, hourly average lj = 102

MW the CRM is [Mlow180,60,102 ,Mup180,60,102 ] = [69, 123] MW.

When the actual intra-hour wind power is known, the intra-hour vari-
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ability intervals are uniquely defined by the endpoints of the respective CRM

intervals [Mlowi,k,lj
,Mupi,k,lj

]. However, the actual wind power output is hardly

ever known in advance and hence it is almost impossible to predict the exact

wind power variability intervals. Instead, given an hourly wind power forecast

a probabilistic forecast of these intervals, such as that given in Fig. 5.2, can be

constructed. Figure 5.2 depicts the intra-hour wind power variability intervals

for various probabilities, ranging from 5% to 95%, as differently shaded inter-

vals around the hourly forecast. For example, with a probability of 5% the

intra-hour wind power trajectory will move within the darkest shaded inter-

val. The hourly forecast and the actual intra-hour wind power trajectory are

again represented with a solid and dotted line, respectively, while the actual

variability intervals are given with dashed lines. As expected, the actual wind

power variability intervals are larger than the 5% and smaller than the 95%

probability predicted intervals.

Thus, a wind power variability forecast is defined as a set of intervals,

within which the actual wind power is expected to lie, with different prob-

abilities assigned to them. Such a probabilistic forecast of intra-hour wind

power variability intervals can be made using the pth quantiles of the condi-

tional range metric CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

] as intervals. In that case,

the interpretation of the wind power variability forecast is that, given a wind

power forecast being lj over a time interval of length k, the actual wind power

output over the k-long time interval will fall within the CRMk,lj ,p interval with

probability at least p. Thus, the problem of constructing wind power variabil-

ity forecasts is turned into a quantile estimation problem and the details of

this problem are outline in the next section.
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Figure 5.2: Intra-hour wind power variability intervals for various probabilities,
ranging from 5% to 95%, for a 160 MW wind farm over a period of four hours.
The variability intervals are depicted as differently shaded intervals around
the hourly forecast. The dashed lines define the actual intervals of intra-hour
wind power variability.

5.2.2 Problem Description

The wind power variability of a wind power point forecast for a unique

future point in time i, with average wind power production lj over a time

interval k, e.g. an hourly wind power point forecast, can be forecasted by

estimating the points [Mlowi,k,lj
,Mupi,k,lj

] of the CRM interval. Estimating

only one pair (Mlowi,k,lj
,Mupi,k,lj

) of future CRM endpoint values yields a sin-

gle CRM estimate, denoted ˆCRM i,k,lj . However, estimating future CRM pth

quantiles, denoted ˆCRMk,lj ,p, a probabilistic forecast of CRM can be gener-

ated. Thus, given a wind power forecast series with time resolution k, for

each point of this series with value lj a probabilistic forecast of CRM from the
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quantile estimates ˆCRMk,lj,p is used to forecast wind power variability. Such

a probabilistic forecast of CRM states that, given a forecast of the average

wind power being lj over a time interval of length k, the actual wind power

over this k-long interval will fall within the ˆCRMk,lj ,p = [M̂lowk,lj ,p
, M̂upk,lj ,p

]

interval with probability at least p.

The calculation of the pth CRM quantile CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

]

from a wind power series xn, n = 1, 2, . . . , N ·k, can be done by solving the sys-

tem of equations (3.7) and (3.10) with the methodology given in Section 3.3.2.

The solution to this system is a unique pair of values (Mlowk,lj ,p
,Mupk,lj ,p

). Av-

eraging the wind power over non-overlapping k-long time intervals results in

an N -long wind power series xk,i, i = 1, 2, . . . , N , with xk,i =
1
k

∑k
m=1 xk(i−1)+m

being the average of the ith interval [k(i − 1) + 1, k(i − 1) + k], denoted Ki.

Let x̃k,i denote a forecast of such an interval average production series xk,i.

Also, let ˜CRM denote the CRM when the wind power range is conditioned

not on the actual interval average production, xk,i = lj, but on the forecasted

interval average production, x̃k,i = lj. In that case the problem of finding the

pth quantile of the conditional range metric [M̃lowk,lj
, M̃upk,lj

] from an N · k-
long wind power series xn and an N -long interval average wind power forecast

series x̃k,i can be mathematically formulated as follows:

Given k, lj, and p

Find M̃lowk,lj ,p
and M̃upk,lj ,p

such that (M̃upk,lj ,p
−M̃lowk,lj ,p

) is minimized and such that over all k-long time

intervals Ki:
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P

({

inf
n∈Ki

xn ≥ M̃lowk,lj ,p

}

⋂

{

sup
n∈Ki

xn ≤ M̃upk,lj ,p

}
∣

∣

∣

∣

x̃k,i = lj

)

≥ p, i = 1, 2, . . . , N, (5.1)

and

P ( sup
n∈Ki

{xn − x̃k,i} ≤ M̃upk,lj ,p
− lj) =

P ( sup
n∈Ki

{x̃k,i − xn} ≤ lj − M̃lowk,lj ,p
) (5.2)

where:

k is the time resolution of the forecast (e.g. hourly averages),

lj is the forecasted wind power production level,

p is the desired coverage rate, and

Ki is the ith k-long interval [k(i− 1) + 1, k(i− 1) + k] in the actual

wind power production series xn, n = 1, 2, . . . , N · k.

When the actual wind power series xn and the forecast series x̃k,i are known,

equations (5.1) and (5.2) form a system with a unique solution. The solution

values (M̃lowk,lj ,p
, M̃upk,lj ,p

) define the pth quantile of ˜CRMk,lj , which states

that, given a forecast of the average wind power being lj over a time interval

of length k, the actual wind power over this k-long interval will fall within the

˜CRMk,lj ,p = [M̃lowk,lj ,p
, M̃upk,lj ,p

] interval with probability at least p.

However, trying to solve this system of equations using only the fore-

cast series x̃k,i is impossible, since with the N · k actual wind power val-

ues unknown, the system is underdetermined. Thus, to forecast wind power

variability an estimate of the pth quantile ˜CRMk,lj,p = [M̃lowk,lj ,p
, M̃upk,lj ,p

]
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from historical data is used, turning wind power variability forecasting into a

quantile estimation problem. The quantile estimate of ˜CRMk,lj ,p is denoted

ˆCRMk,lj ,p = [M̂lowk,lj ,p
, M̂upk,lj ,p

]. Using these quantile estimates for various

probabilities p a probabilistic forecast of wind power variability is generated.

It should be noted that for a perfect forecast, i.e. x̃k,i =
∑

n∈Ki
xn

∀i ∈ [1, N ], systems (3.7) and (3.10) and (5.1) and (5.2) yield the same so-

lution, [Mlowk,lj ,p
,Mupk,lj ,p

] = [M̃lowk,lj ,p
, M̃upk,lj,p

]. Due to lack in forecasted

data for the actual wind power data at our disposal, a perfect forecast is used

in all the ˆCRM quantile estimating methods presented in Section 5.3. In

this way, the wind power variability forecasting error of each of the presented

methods is evaluated ignoring the forecasting error of the wind power forecast.

Section 5.5 presents an example of the wind power variability incremental er-

ror, i.e. the error in addition to the wind power forecasting error, using an

artificially generated wind power forecast.

5.3 Estimating CRM Quantiles

This section presents a brief overview of quantile estimation techniques

and evaluation criteria. Three different methods to obtain CRM quantile es-

timates are given and a comparison of these methods is provided. The data

used in this section come from 10 wind farms (WF2, WF3, WF4, WF5, WF6,

WF7, WF11, WF13, WF14, WF15 – see Appendix A.1), which are carefully

chosen so that data from all regions, wind farm sizes and wind turbine tech-

nologies are represented in the analysis. The quantile estimates are calculated

from the data in a training set (year 3) and evaluated on the data of a test set

(year 4).
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5.3.1 Prior Work in Quantile Estimation

As has already been stated, the pth quantile qX(p) of a random variable

X with cumulative distribution function FX is defined using the generalized

inverse F−1
X :

qX(p) = F−1
X (p) = inf{x : P (X ≤ x) ≥ p} (5.3)

When the distribution of X and hence the cdf FX is unknown the quantile

qX(p) must be estimated.

The natural estimator of qX(p) is of course its sample quantile QXN
(p):

QXN
(p) = F−1

XN
(p) (5.4)

where FXN
is the empirical cumulative distribution function defined as:

FXN
(x) =

1

N

N
∑

i=1

I(Xi ≤ x) (5.5)

with I being the indicator function, i.e. I(Xi ≤ x) =1, if (Xi ≤ x) and

0 otherwise. Here, X1, X2, ...XN denote independent identically distributed

replicates of the random variable X .

The sample quantile QXN
(p) can be estimated from the order statistics

of the sample X1, X2, ...XN , where the ith order statistic X(i) is such that

X(1) ≤ X(2) ≤ ... ≤ X(N). When order statistics are used, the estimate of

the pth sample quantile Q̂XN
(p) from an N -long sample can be derived by

computing a real-valued index h = N · p + 1/2. When h is an integer the

sample quantile estimate Q̂XN
(p) is given by the hth order statistic:

Q̂XN
(p) = X(h) (5.6)

Otherwise one can choose from several rounding or interpolation schemes, the

most simple being the inverse of the empirical cdf, where Q̂XN
(p) = X(⌈h⌉).
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It should be noted that sample quantiles are biased, and the bias

depends highly on the definition of the quantile and the underlying distri-

bution of X . However, sample quantiles are asymptotically unbiased, i.e.

limN→∞E[QXN
(p)] = qX(p). Moreover, though it is relatively easy to cal-

culate a point estimate for the pth quantile qX(p), calculating a confidence

interval for such an estimate requires special techniques like sectioning, boot-

strap and Jackknife approaches [67]. Variance reduction can also be achieved

using a Wilks estimator or some control variate [68].

Another way to find an estimator of qX(p) is via quantile regression,

where the sample quantile is estimated not with sorting but with optimiz-

ing. Indeed, in regression analysis estimates of the regression coefficients β are

found with various optimization methods, e.g. least squares, to approximate

the conditional mean of the response variable Y given a set of predictor vari-

ables X , E[Y |X ] = f(X, β). In quantile regression it is not the conditional

mean but the conditional median or other quantiles of Y that are approxi-

mated.

Let yi denote the ith observation of the response variable from an N -

long sample and xi,j denote the ith observation of the jth predictor variable,

then a general linear regression model with k predictors is given by:

yi = β0xi,0 + β1xi,1 + β2xi,2 + ...+ βkxi,k + ǫi (5.7)

where β0, β1, ..., βk are the k+1 regression coefficients. The predictor xi,0 takes

the value 1 for all observations, thus β0 is the intercept. For the i
th observation

of predictor variables an estimated value of E[yi|xi], denoted ŷi, is given by:

ŷi = β̂0xi,0 + β̂1xi,1 + β̂2xi,2 + ...+ β̂kxi,k = f(xi, β̂) (5.8)

where β̂0, β̂1, β̂2, ..., β̂k are the estimates of β0, β1, ..., βk and ei = yi−ŷi is the ith

residual. For the least squares method, the estimators of β0, β1, ..., βk are the
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values which minimize the sum of the N squared residuals Q =
∑N

i=1(yi− ŷi)2.
Thus, the conditional expectation function E[Y |x] is obtained by solving the

optimization problem:

min
β∈Rk+1

N
∑

i=1

(yi − f(xi, β))
2 (5.9)

Under the assumption that the deviations ǫi are following a normal N(0, σ2)

distribution and using matrix notation, where X is N × (k + 1), Y is N × 1

and β is (k + 1) × 1, the regression coefficient estimates are given by β̂ =

(XTX)−1XTY . The least squares estimator β̂ has least variance among the

class of unbiased estimators [69].

Acknowledging the deficiency of the least squares estimator in linear

models with non-Gaussian errors a new class of statistics called regression

quantiles is introduced in [70]. Using similar notation to (5.9), in quantile

regression an estimate of the pth conditional quantile function QYN
(p)|X can

be found by solving the optimization problem [71]:

min
β∈Rk+1

n
∑

i=1

ρp(yi − g(xi, β)) = (5.10)

min
β∈Rk+1

n
∑

i=1

ρp(yi − (βp,0xi,0 + βp,1xi,1 + βp,2xi,2 + ... + βp,kxi,k))

where ρp(·) is the loss function defined as:

ρp(e) =

{

pe if e ≥ 0
(p− 1)e if e < 0

(5.11)

and βp,0, βp,1, βp,2, ..., βp,k are the k + 1 quantile regression coefficients. Thus,

an estimated value of the pth conditional quantile QYN
(p)|xi, denoted q̂yi(p),

is given by:

q̂yi(p) = β̂p,0xi,0 + β̂p,1xi,1 + β̂p,2xi,2 + ...+ β̂p,kxi,k (5.12)
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where β̂p,0, β̂p,1, β̂p,2, ..., β̂p,k are the regression coefficient optimizers:

β̂p = arg min
β∈Rk+1

N
∑

i=1

ρp(yi − g(xi, β)) (5.13)

The loss function is quantile regression’s analog of the squared-error function

from standard linear regression, since in quantile regression the absolute values

in (5.9) are replaced by ρp(·) in (5.10).

A goodness-of-fit process for quantile regression analogous to the con-

ventional R2 statistic of least squares regression, the ratio of explained to total

variance in the model, is given in [72]. A linear programming formulation of

the optimization problem in (5.10), which can be solved with a simplex or

internal point algorithm, can be found in [73], while [74] uses a quadratic op-

timization problem for non-parametric quantile estimation.

Quantile regression has been used in the recent years with respect to

wind power, either to produce probabilistic wind power forecasts [66, 75] or to

model the uncertainty of wind energy forecasts by modeling the quantiles of

wind forecast errors [76]. Moreover, a time-adaptive quantile regression algo-

rithm, which uses a simplex method and a suitable updating procedure, can

be found in [77]. When applied to wind power data, the time-adaptive model

exhibits superior performance than the static quantile regression model in all

the considered parameters.

The accuracy of a sample quantile estimate, both when using order

statistics or quantile regression, is expected to improve as the size of the set of

historical observations, i.e. the sample size N , increases. On the other hand,

incremental quantile estimation refers to the case of dynamic monitoring of

the quantity to be estimated, where the purpose is to estimate a quantile of

the current behavior of the entity being monitored, rather than to reproduce
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a number that would be obtained from the entire history of monitoring.

Incremental quantile estimation is very popular for problems involving

monitoring of networked applications, since in these problems approximate

quantiles from a large amount of streaming (non-static) data have to be calcu-

lated in a time-efficient manner (on-line) with devices of limited memory and

computational capacity. The majority of incremental quantile estimation algo-

rithms for network modeling assume a limited size buffer which usually holds

only a subset of the observations seen so far [78, 79], while in some algorithms

the buffer size is allowed to vary [80]. Accurate quantile estimates are also

used in database applications and data mining to characterize the distribution

of evolving data sets. In these cases the quantile estimation algorithms handle

not only the insertion of new but also the deletion of old data [81].

Let X1,i, X2,i, ..., XN,i be the observations stored in a limited size N

buffer at the ith filling of the buffer from streaming data. These N observa-

tions are considered as a random sample from a distribution with cdf FX,i and

pth quantile QX,i(p). For i = 1 the best estimate of the pth quantile is the

sample quantile Q̂X,i(p). An incremental estimate of the pth quantile QX,i(p)

of the ith iteration is computed knowing only the current set of N observations,

the quantile estimate Q̂X,(i−1)(p) from the previously filled buffer, and a few

tuning parameters. Methods considered for updating the quantile estimate

include moving average and stochastic approximation approaches [82–84].

A simple moving average is the unweighted sample mean of the previ-

ous N points in a sample. Thus, under the moving average approach the pth

quantile estimate of the ith iteration AXN ,i(p) is updated using:

AXN ,i(p) = (1− i−1) · AXN ,i−1(p) + i−1 · Q̂XN ,i(p) (5.14)
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where Q̂XN ,i(p) is the sample quantile of the ith iteration. Replacing i−1 in

(5.14) with w, (0 < w < 1), yields the exponentially weighted moving average

estimate. For a fixed w the contribution of old observations is faded out mak-

ing this method more appropriate in cases where the underlying probability

distribution of the monitored entity changes over time.

Stochastic approximation approaches are based on the following algo-

rithm, presented in [85]. LetM(x) be a non-decreasing function of x for which

the equation M(x) = α has a unique root x = θ, with M ′(θ) > 0. If instead

of M(x) only observations of N(x) are given, for which E[N(x)] =M(x) and

N(x) is uniformly bounded, then a series xn which converges in probability to

θ can be obtained by:

xn+1 − xn = an(α−N(xn)) (5.15)

Here a1, a2, · · · , an is a series of positive step sizes which satisfy
∑∞

n=0 a
2
n <∞

and
∑∞

n=2 an/(a1 + a2 + · · ·+ an−1) = ∞. Sequences which satisfy these con-

ditions are of the type 1/n.

Applying the previous algorithm to quantile estimation, it is first ob-

served that a pth quantile of X , qX(p), is the solution to the equation F (x) = p

since F (qX(p)) = p. Let zn be observations for which P (zn ≤ x) = F (x) and

yn be a series defined by:

yn =

{

1 if zn ≤ xn
0 otherwise

(5.16)

Then, the series

xn+1 − xn = an(p− yn) (5.17)

converges in L2 and hence in probability to qX(p). In (5.17) x1 is the best

guess of qX(p) and an are of the type 1/n.
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5.3.2 Evaluation of Quantile Estimates

To compare the various quantile estimation methods several perfor-

mance parameters of the quantile estimates Q̂XN
(p) can be used. The most

important performance parameters pertaining to wind power prediction are

given in [76]:

• Reliability

The quantile estimate Q̂XN
(p) should be as close as possible to the true

quantile qX(p). Since the true quantile is unknown, the quantile estimate

is compared to the sample quantile QXN
(p). This desired quality of the

quantile estimate is termed reliability. Indeed, reliability refers to the

property of a pth quantile estimate Q̂XN
(p) having a coverage rate close

to the nominal p and is defined as:

rp = p̂(p) − p =
n(p)

N
− p (5.18)

where N is the test set length, and n(p) is the number of samples where

the observed X value actually lies below the estimated pth quantile (num-

ber of hits).

Reliability is given in the form of reliability diagrams, either showing the

observed (p̂(p)) proportions or the deviation (p̂(p) − p) between observed

and nominal proportions of the quantile estimates, as a function of the

nominal proportion p. The reliability of an estimate can be improved

using recalibration methods such as general bootstrapping, smoothed

bootstrapping, and adaptive resampling [86]. These approaches reduce

the effect outliers in the training set can have on a quantile estimate of

the test set.
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• Sharpness

The sharpness of a quantile estimate can be calculated by looking at how

far symmetric around 0.5 the quantile estimates are, thus how large the

interval around the median is. In most cases this is done by looking at

the interquartile range (IQR), i.e. the difference Q̂XN
(0.75)−Q̂XN

(0.25)

between the 75th and the 25th percentile estimates. Given two quantile

estimates with acceptable reliability the one with the smaller interval

is preferred. Measures of sharpness include the mean or the median of

IQR.

• Resolution

Resolution of a quantile estimate is its ability to distinguish between

various conditions, thus to have a situation-dependent size. A quantile

estimate with larger variations under the various conditions is rewarded.

Measures of resolution include the standard deviation, the mean absolute

deviation and the difference between the 5th and 95th percentile of IQR.

Other quantile estimate performance criteria for wind power forecasts include

the spread/skill relationship and the skill score. The spread/skill relationship

refers to the relationship between some point forecast and the actual value.

On the other hand, the skill score is a numerical value used to summarize the

performance of the forecast, such as the generalization of the loss function in

quantile regression [87].

5.3.3 Sample Quantile

The simplest method to obtain a pth quantile estimate ˆCRMk,lj ,p is to

use the sample quantile from the wind power data in the training set (xm) as
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the CRM quantile estimate for the wind power data in the test set (yn). Let

CRM{X}k,lj ,p = [M{X}lowk,lj ,p
,M{X}upk,lj ,p ] denote a sample quantile from the

data in set {X}. Then, under the sample quantile estimate approach we have:

ˆCRM {Y }k,lj ,p = [M̂{Y }lowk,lj ,p
, M̂{Y }upk,lj ,p] = [M{X}lowk,lj ,p

,M{X}upk,lj ,p] (5.19)

where (M{X}lowk,lj ,p
,M{X}upk,lj ,p) is the solution of the system of equations (3.7)

and (3.10) solved in Section 3.3.2 using the xm wind power data as input.

The reliability rk,lj,p of the p
th quantile estimate for a given k-long wind

power production level lj is given by:

rk,lj ,p = p̂
(p)
k,lj

− p (5.20)

which is the deviation of the actual (p̂
(p)
k,lj

) from the nominal (p) proportion.

Here, p̂
(p)
k,lj

is the number n
(p)
k,lj

of k-long time intervals in the test set with

average production yk,i = 1
k

∑k
m=1 yk(i−1)+m = lj for which the wind power

lies within the interval [M{X}lowk,lj ,p
,M{X}upk,lj ,p] from (5.19), divided by the

total number Nk,lj of k-long time intervals with average production lj. The

reliability rk,lj ,p should be viewed as how well the quantile estimate performs

on a wind power forecast of production lj with forecast time resolution k, e.g.

an hourly forecast of production 0.5 p.u. It should be noted that a negative

reliability value means that the forecast underestimates the actual wind power

variability, i.e. the actual CRM interval [M̃{Y }lowk,lj ,p
, M̃{Y }upk,lj ,p] is larger

than the estimated interval [M̂{Y }lowk,lj ,p
, M̂{Y }upk,lj ,p ], which makes positive

reliability favorable over negative reliability.

Figures 5.3 and 5.4 depict the reliability, i.e. the deviation from the

nominal proportion, of various quantile estimates as a function of the wind

power forecast lj . For the deviations given in Fig. 5.3 data from a 114 MW

wind farm (WF4) over k = 5 minute intervals have been used, while the
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Figure 5.3: Reliability of various CRM percentile estimates as a function of
the wind power forecast level lj with forecast resolution k = 5 minutes for a
114 MW wind farm (WF4). Low and high quantiles are more reliable than
the median and the quartiles.

deviations given in Fig. 5.4 come from the data of a 91.5 MW wind farm

(WF15) over k = 60 minute intervals.

Regarding the effect of the nominal proportion p on the reliability

of the CRM quantile estimates, from both Fig. 5.3 and Fig. 5.4 it is evident

that high rank percentiles (95th) are more reliable than the median (50th) or

the quartiles (25th, 75th). This quality is highly desired, since in most cases

it is the high rank quantiles, associated with low risk parameters, that are of

interest. Moreover, the wider spread of the deviations in Fig. 5.4 implies that

certain quantile estimates are less reliable with increasing wind power forecast

resolution k. With respect to the effect of the wind power forecast level lj on

the reliability of the CRM quantile estimates no safe conclusion can be drawn

from Fig. 5.3 and Fig. 5.4, since e.g. under a 5-minute forecast resolution the

median appears less reliable for low wind power productions (lj = 0.3 p.u.)

than for high productions (lj = 0.9 p.u.), whereas under the hourly forecasts
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Figure 5.4: Reliability of various CRM percentile estimates as a function of
the wind power forecast level lj with forecast resolution k = 60 minutes for a
91.5 MW wind farm (WF15).

this effect is reversed.

Another way to present reliability is by tabulating the nominal and

actual proportions of the quantile estimates. Tables 5.1, 5.2, and 5.3 present

the nominal and actual probabilities (proportions) in percent for a 160.5 MW

wind farm (WF6) under various forecast time resolutions k for wind power

forecast levels lj = 0.1, 0.5 and 0.9 p.u, respectively. The data in these tables

are in agreement with the previous conclusion that higher percentile estimates

perform better than lower ones. From these tables it also becomes evident

that for most quantile estimates, especially low percentiles, the performance

is worse for high than for medium or low wind power forecast levels, with

the reliability being best at mid-production levels. This result denotes that

though wind power variability is highest at wind power mid-production levels

it is more predictable at these levels.
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Table 5.1: Nominal and Actual Probabilities in percent for a 160.5 MW Wind
Farm (WF6, Wind Power Level lj = 0.1 p.u.)

Forecast Time Resolution k

Nominal 5 min 10 min 15 min 30 min 60 min

5 4.98 4.29 4.80 4.11 3.74

10 10.25 9.40 9.59 8.22 8.46

15 15.57 14.75 15.77 12.73 15.35

20 20.44 19.01 21.12 16.63 20.87

25 25.91 24.29 26.28 21.74 26.18

30 30.52 30.63 31.12 27.45 30.71

35 36.18 36.22 35.71 33.07 36.02

40 40.92 41.57 41.17 37.78 41.93

45 46.12 46.24 46.07 42.99 45.87

50 51.41 50.46 51.63 50.40 52.76

55 56.75 56.15 56.48 55.31 56.69

60 62.33 60.95 61.33 60.52 60.43

65 67.26 65.93 66.43 66.93 64.76

70 72.90 70.32 71.33 70.84 68.90

75 77.41 75.33 76.89 75.85 71.46

80 81.76 80.72 81.79 80.66 75.98

85 86.48 85.14 86.22 83.37 80.51

90 91.30 89.81 90.71 87.07 85.24

95 95.68 94.34 94.95 91.28 91.54
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Table 5.2: Nominal and Actual Probabilities in percent for a 160.5 MW Wind
Farm (WF6, Wind Power Level lj = 0.5 p.u.)

Forecast Time Resolution k

Nominal 5 min 10 min 15 min 30 min 60 min

5 5.81 5.34 5.68 6.37 6.28

10 10.72 10.59 11.37 11.32 9.66

15 15.55 16.08 16.72 15.09 15.46

20 20.31 20.50 21.20 21.23 17.39

25 25.71 25.23 25.79 24.76 21.26

30 30.88 30.11 30.82 30.90 26.57

35 35.86 35.75 36.50 37.74 34.78

40 40.35 41.08 41.31 42.22 39.13

45 46.02 45.43 46.45 45.75 43.00

50 51.45 51.37 51.04 48.82 49.28

55 56.32 56.40 55.74 53.54 52.66

60 61.27 61.66 60.66 58.02 55.56

65 65.42 65.62 65.46 63.21 61.35

70 71.23 70.20 70.38 67.69 64.25

75 76.59 76.60 74.43 73.35 70.05

80 81.20 80.95 78.14 77.59 77.29

85 85.81 85.14 82.73 83.73 83.57

90 90.75 89.86 87.98 90.09 88.41

95 95.58 94.97 93.88 95.28 94.20
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Table 5.3: Nominal and Actual Probabilities in percent for a 160.5 MW Wind
Farm (WF6, Wind Power Level lj = 0.9 p.u.)

Forecast Time Resolution k

Nominal 5 min 10 min 15 min 30 min 60 min

5 8.45 9.99 10.38 10.53 10.67

10 14.92 15.79 16.17 14.57 14.22

15 20.17 20.92 22.46 21.05 19.11

20 25.81 25.25 28.54 25.10 24.89

25 31.22 30.65 33.83 30.16 28.44

30 36.06 36.44 37.43 34.82 32.44

35 41.00 43.04 40.92 40.28 37.78

40 46.64 48.03 45.11 43.72 44.00

45 51.79 52.43 48.70 48.79 48.44

50 57.06 56.63 53.99 52.83 52.44

55 61.80 60.23 59.68 58.70 56.00

60 66.51 65.42 64.07 62.96 60.89

65 71.45 69.42 67.96 69.84 64.44

70 75.53 75.08 72.75 74.49 68.89

75 80.07 78.88 78.54 79.35 76.00

80 84.27 82.54 81.94 83.60 82.22

85 88.08 87.34 86.43 86.84 85.78

90 92.39 91.47 91.62 92.31 90.67

95 95.96 96.07 95.51 96.36 95.11
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However, in many cases a unique reliability value of a pth CRM quantile

estimate over all wind power forecast levels lj is desired. Such a value can be

obtained by taking a weighted sum of the proportions (p̂
(p)
k,lj

) with weights wj

equal to the probability of the k-long interval average production being lj , i.e.

wj = Nk,lj/Nk where Nk is the total number of k-long intervals. Thus, the

total reliability rk,p of a pth CRM quantile estimate is given by:

rk,p =

∑

j Nk,lj · p̂
(p)
k,lj

∑

j Nk,lj

− p =
∑

j

Nk,lj

Nk
· p̂(p)k,lj

− p (5.21)

The total reliability penalizes deviations from the nominal proportions accord-

ing to their probability of appearance. Thus, a quantile estimate can have a

poor performance on some wind power level lj, but be overall highly reliable

if this level has a low probability of appearance.

A typical quantile estimate reliability diagram is given in Fig. 5.5. Such

a diagram presents the total reliability of all quantile estimates, by plotting

the actual
∑

j wj · p̂(p)k,lj
against the nominal proportion p of a quantile. Fig-

ure 5.5 depicts the reliability diagrams of a 120.6 MW wind farm (WF3) for

various wind power forecast resolutions k. In Fig. 5.5 the solid line represents

the actual and the dotted line the nominal quantile proportion p. The almost

invisible deviations of the solid from the dotted line under all forecast resolu-

tions k indicate the high performance of all quantile estimates. Thus, to better

visualize reliability the deviations from nominal proportions instead of the ac-

tual proportions are used, as they are presented in the reliability diagram of

Fig. 5.6.

The results of the individual reliability diagrams in Fig. 5.6 are sum-

marized in Fig. 5.7 to better visualize the effect of forecast resolution k on CRM

quantile estimates’ reliability. Figure 5.7 depicts deviations from nominal pro-

portions for various percentiles and forecast resolutions k as a function of the
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Figure 5.5: Actual proportions of the CRM quantile estimates of a 120.6 MW
wind farm (WF3) for various wind power forecast resolutions k = 5, 10, 15, 30
and 60 minutes. The solid line represents the actual and the dotted line the
nominal proportion p.
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Figure 5.6: Reliability diagram of the CRM quantile estimates of a 120.6 MW
wind farm (WF3) for various wind power forecast resolutions k = 5, 10, 15, 30
and 60 minutes. The solid line represents the deviations from nominal of the
actual and the dotted line of the nominal proportion p. The total reliability is
significantly higher than the production specific reliability and improves with
increasing forecast resolution.
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nominal proportion p. From Fig. 5.7 and in comparison with the previous

figures it becomes evident that the total reliability of each quantile estimate is

significantly better than the production specific reliability, since for the total

reliability deviations from nominal proportions vary between -1% and 1.5%.

The reduced total reliability is attributed to the fact that performance of a

quantile estimate might be low for high wind power productions, but these

time intervals of high production are rare compared to low and medium wind

power productions. Moreover, for quantiles above the median reliability ap-

pears to improve with decreasing forecast resolution k. This improvement is

not in an absolute manner, since deviations from nominal for 5-minute averages

and 60-minute averages have similar sizes, but rather because 5-minute aver-

ages have positive and 60-minute averages have negative deviations. Quantile

estimates with negative deviations from the nominal are less favorable since

they underestimate wind power variability.

Tables 5.4 and 5.5 provide the nominal and actual total probabilities,

i.e weighted over all production levels, for all wind farms for forecast time

resolutions k = 5 and 60 minutes, respectively. Regarding the 95th percentile,

for the majority of the wind farms the CRM quantile estimates for a 5-minute

forecast resolution overestimate wind power variability, while for an hourly

forecast resolution the CRM estimates underestimate wind power variability.

These results indicate that the test year has more hourly intervals with higher

deviations from the hourly average than the training year, whereas at the 5-

minute resolution extreme deviations appear to be less frequent.

For comparison purposes the root mean square error (RMSE) of reli-

ability is used, given by:

RMSE(rk) =

√

∑

p

rk,p =

√

∑

p

∑

j

wj · rk,lj ,p (5.22)
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Figure 5.7: Reliability of CRM percentile estimates for various forecast reso-
lutions k as a function of the nominal quantile p for a 120.6 MW wind farm
(WF3). Deviations from nominal proportions vary between -1% and 1.5%.

The reliability RMSE summarizes the performance of all quantiles in a single

value, however it does not distinguish between estimates with positive and neg-

ative deviations. Nonetheless, it is a useful means of comparing the reliability

of the CRM quantile estimates among the various wind farms considered.

Figure 5.8 depicts the reliability RMSE of the CRM quantile estimates

as a function of the wind farm nameplate capacity PN for various wind power

forecast resolutions k. The depicted mean deviations from nominal propor-

tions of the CRM quantile estimates vary between 0.5% and 5.5%, while for

hourly forecast resolutions deviations are less than 4%. Regarding the effect

of forecast resolution k, most wind farms exhibit a small spread of reliability

RMSE with varying resolution, which means that the reliability of a quantile

estimate is not drastically affected by the forecast resolution. This result is

also supported by the fact that there is no unique ordering of quantile esti-

mate performance by forecast resolution, as for some wind farms the estimates
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Table 5.4: Nominal and Actual Total Probabilities in percent for all Wind
Farms (Forecast Time Resolution k = 5 minutes)

Wind Farm

Nom. 2 3 4 5 6 7 11 13 14 15

5 6.4 4.7 5.1 6.9 4.8 5.3 6 5.5 8.2 4.5

10 10.7 10.4 10.2 12.9 9.7 10.5 11.2 10.5 12.5 9.8

15 15.1 16.2 15.6 18.1 14.8 16.0 16.8 15.5 16.1 15.2

20 19.6 21.5 21.2 23.0 19.8 21.3 22.4 20.7 19.6 20.8

25 24.2 26.4 26.3 27.9 24.9 26.8 28.0 25.8 23.3 26.3

30 28.9 31.5 31.7 32.9 29.8 32.1 33.8 30.7 27.1 31.6

35 33.8 36.3 36.8 38.0 34.8 37.1 38.8 35.8 31.3 36.9

40 38.8 41.3 42.1 43.1 39.9 42.5 43.6 41.0 35.7 42.2

45 44.1 46.3 47.1 48.0 45.1 47.6 48.3 46.2 40.3 47.6

50 49.2 51.5 52.2 52.9 50.3 52.7 52.8 51.4 45.1 52.7

55 54.7 56.6 57.1 58.0 55.5 57.8 57.5 56.6 50.2 57.7

60 60.0 61.6 62.0 63.0 60.9 62.7 62.2 61.9 55.3 62.7

65 65.4 66.6 67.2 68.0 66.0 67.8 66.9 67.1 60.4 67.7

70 70.8 71.6 72.1 72.7 71.2 72.8 71.7 72.3 65.5 72.6

75 76.1 76.5 77.2 77.5 76.3 77.6 76.5 77.5 70.6 77.5

80 81.4 81.6 82.2 82.2 81.3 82.6 81.4 82.4 76.0 82.3

85 86.4 86.5 87.0 86.9 86.3 87.3 86.2 87.4 81.6 87.1

90 91.4 91.4 91.7 91.3 91.1 91.6 90.9 92.1 87.5 91.8

95 96.0 96.0 96.1 95.9 95.7 95.9 95.5 96.4 94.3 96.1
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Table 5.5: Nominal and Actual Total Probabilities in percent for all Wind
Farms (Forecast Time Resolution k = 60 minutes)

Wind Farm

Nom. 2 3 4 5 6 7 11 13 14 15

5 5.1 6.4 5.9 7.2 4.4 6.4 7.6 5.4 3.9 6.6

10 9.6 11.4 11.6 12.4 9.2 11.8 14 10.6 7.7 12.3

15 14.6 16.2 17.3 17.5 14.1 17.3 20.6 15.5 11.9 17.5

20 19.0 20.8 22.4 22.9 19.4 22.9 26.7 20.6 16.4 23.1

25 24.1 25.2 27.9 27.9 24.7 28.4 32.3 26.0 21.1 28.0

30 29.2 30.5 33.1 32.9 30.2 33.3 36.7 31.1 25.8 33.1

35 34.4 35.5 37.9 37.6 35.5 38.5 41.1 36.2 29.9 38.0

40 39.0 39.7 42.9 43.0 40.5 42.6 45.2 41.0 34.1 42.7

45 44.1 44.3 47.5 48.2 45.4 47.2 49.2 46.0 39.7 47.3

50 49.4 49.5 52.2 53.0 50.3 52.0 53.3 51.1 44.7 51.7

55 55.2 54.7 56.7 57.9 55.2 56.5 57.5 56.0 49.2 56.3

60 60.0 59.4 61.5 63.3 59.8 61.1 62.0 61.3 54.3 60.7

65 65.0 64.2 66.1 68.8 64.5 66.0 66.2 66.4 60.5 65.2

70 69.9 69.0 70.9 73.7 69.3 70.4 70.4 71.2 66.6 69.8

75 74.6 74.0 74.9 78.3 73.6 74.8 74.9 75.6 71.6 74.3

80 79.3 79.1 79.9 83.2 78.5 79.3 79.4 80.4 76.7 79.3

85 84.0 84.5 84.6 87.7 83.5 84.0 84.2 84.8 82.7 84.0

90 89.6 89.2 89.5 92.1 88.5 88.9 89.0 89.6 88.4 89.3

95 95.2 94.4 94.5 96.3 94.0 94.6 93.8 94.3 93.8 94.5
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Figure 5.8: RMSE of CRM quantile estimates’ reliability for various wind
power forecast resolutions k as a function of wind farm nameplate capacity.

perform better for hourly forecasts, while for others the best performance is

for 5-minute averaged forecasts. On the other hand, for wind farms within the

same region deviations from nominal tend to decrease with increasing wind

farm nameplate capacity and increasing wind turbine size.

For the remainder of this chapter focus will be placed on the total

rk,p and not the production specific rk,lj,p reliability of the CRM quantile esti-

mates and their root mean squared error of reliability RMSE(rk). Specifically,

for the time adaptive quantile estimation methods presented next, the tuning

parameters are chosen with respect to minimization of the RMSE(rk).
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5.3.4 Exponentially Weighted Moving Average

In Section 5.3.3 a static method to obtain CRM quantile estimates is

provided, in which the pth quantile estimate ˆCRMk,lj ,p does not change over

time. In this section a time adaptive method to estimate CRM quantiles is de-

scribed, using an exponentially weighted moving average (EWMA) approach

to update the quantile estimates following an equation similar to (5.14).

Under this method, a limited size buffer holds the last Nb,k observed

wind power values xn, n = 1, 2, ..., Nb,k. Let the sample quantile of the val-

ues contained in the buffer at it’s ith filling be denoted as CRM{I}k,lj ,p =

[Mlow{I}k,lj ,p
,Mup{I}k,lj ,p

]. The pair (Mlow{I}k,lj ,p
,Mup{I}k,lj,p

) is the solution of

the system of equations (3.7) and (3.10) solved in Section 3.3.2 using the Nb,k

wind power data stored in the ith filling of the buffer as input. Also, let

CRM ∗
{I}k,lj ,p denote the pth CRM quantile estimate for the wind power val-

ues stored in the ith filling of the buffer. An exponentially weighted moving

average estimate of the pth CRM quantile CRM ∗
{I}k,lj ,p of the ith iteration is

computed as follows:

CRM ∗
{I}k,lj ,p = (1− wb,k) · CRM ∗

{I−1}k,lj ,p + wb,k · CRM{I}k,lj ,p (5.23)

where CRM ∗
{I−1}k,lj ,p is the estimate of the pth CRM quantile obtained from

the previously filled buffer, CRM{I}k,lj ,p is the sample quantile of the ith itera-

tion and wb,k is the weight. For i = 1 the best estimate of the pth CRM quantile

is the sample quantile. i.e. CRM ∗
{1}k,lj ,p = CRM{1}k,lj ,p and CRM

∗
{0}k,lj ,p = 0.

After each evaluation of (5.23) the obtained quantile CRM∗
{I}k,lj ,p is used as

an estimate for the wind power data of the (i+1)th filling of the buffer. Thus,

for the wind power data in the (i + 1)th iteration ˆCRM{I+1}k,lj ,p is used as a

pth quantile estimate, where

ˆCRM {I+1}k,lj ,p = CRM ∗
{I}k,lj ,p i = 1, 2, ... (5.24)
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For i = 1 the last Nb,k wind power points of the training set (year 3) are

used to fill the buffer. Then the buffer fills from the data in the test set (year

4). For each of the considered Nb,k-long subsets the exponentially weighted

moving average estimate of the pth CRM quantile CRM∗
k,lj ,p

is calculated from

(5.23). Then, each of the calculated quantiles is used as an estimate on the

wind power data of the next Nb,k-long set, according to (5.24).

The values of the buffer size Nb,k and weight wb,k used to obtain the

quantile estimates for each wind farm and forecast time resolution k are given

in Table 5.6. These values are the outcome of iterative calculations with the

goal of minimizing the RMSE(rk) for each forecast time resolution. For most

wind farms a buffer size corresponding to Nb,k= 2 weeks of wind power data

is used for forecast time resolutions k= 5, 10 and 15 minutes, while Nb,k= 4

weeks is used for forecast time resolutions k= 30 and 60 minutes. For two of

the wind farms Nb,k= 8 weeks produces the most optimal results under the

method considered. The choice of the buffer size Nb,k is significant, because it

affects the sample quantile CRM{I},k,lj ,p at each iteration i, thus a small buffer

size may produce a very inaccurate sample quantile. Regarding the weights

wb,k, small weights indicate that older quantile estimates are taken more into

account than the current sample quantile. A weight of wb,k = 0 corresponds

to using the sample quantile of a subset of the training set as the quantile

estimate for the entire test set. On the other hand, large weights indicate that

the sample quantile of the previous filled buffer performs better than older

quantile estimate values. The wb,k values in Table 5.6 vary from zero to one,

with optimal wb,k values being small for half of the considered wind farms.

The pth CRM quantile estimates ˆCRM {I}k,lj ,p, i ≥ 2, are evaluated us-

ing their total reliability from (5.21). Fig.5.9 depicts the reliability diagrams,

i.e. deviations from nominal proportions, of the CRM quantile estimates of a
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Table 5.6: Buffer Size Nb,k in Weeks and Weights wb,k for all Wind Farms and
Forecast Time Resolutions k (Exponentially Weighted Moving Average)

Forecast Time Resolution k

5 min 10 min 15 min 30 min 60 min

WF2 wb,k 0.6 0.2 0.2 0.3 0.14

Nb,k 2 2 2 4 4

WF3 wb,k 0.8 0.8 0.9 0.9 1

Nb,k 8 8 8 8 8

WF4 wb,k 0.7 0.7 0.7 1 1

Nb,k 2 2 2 4 4

WF5 wb,k 0.3 0.4 0.5 0.6 0.5

Nb,k 2 2 2 4 4

WF6 wb,k 0.1 0.06 0.05 0.2 0.1

Nb,k 2 2 2 4 4

WF7 wb,k 0.7 0.7 0.7 1 1

Nb,k 2 2 2 4 4

WF11 wb,k 0 0 0 0.2 0.1

Nb,k 2 2 2 4 4

WF13 wb,k 0.8 0.7 0.7 0.56 0.5

Nb,k 8 8 8 8 8

WF14 wb,k 1 1 0.9 1 1

Nb,k 2 2 2 4 4

WF15 wb,k 0.5 0.6 0.6 0.3 0.2

Nb,k 2 2 2 4 4
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210 MW wind farm (WF7) for various wind power forecast resolutions k = 5,

10, 15, 30 and 60 minutes. In these diagrams, the dotted line represents de-

viations from nominal of the nominal proportions p, i.e. zero deviations. The

dashed line represents deviations from nominal proportions using the sample

quantile from data in the training set (year 3) as a CRM quantile estimate on

the wind power data in the test set (year 4), as described in Section 5.3.3. The

solid line depicts deviations from nominal proportions when the exponentially

weighted moving average quantile is used as an estimate on the test set (year

4).

Figure 5.9 reveals that when the quantile estimate is updated period-

ically using an exponentially weighted moving average approach its reliability

shows improvement for small forecast time resolutions and high rank quantiles.

To compare the performance of the exponentially weighted moving average ap-

proach on the considered wind farms and forecast resolutions the reliability

RMSE from (5.22) is used, which summarizes the performance of all CRM

quantile estimates. The reliability RMSE values are depicted in Fig. 5.10 as a

function of the wind farm nameplate capacity for various forecast time resolu-

tions. Under the exponentially weighted moving average approach reliability

RMSE values range from 0.5% to 4%, a range reduced compared to the re-

spective Fig. 5.8 of the sample quantile estimate approach.

Indeed, Fig. 5.11 depicts the reliability RMSE difference between the

exponentially weighted moving average and the sample quantile estimate ap-

proach as a function of the wind farm nameplate capacity for various wind

power forecast resolutions. A negative difference indicates that the exponen-

tially weighted moving average is more reliable than the sample quantile es-

timate. The reliability RMSE of the time adaptive estimate is higher than

that of the static sample quantile estimate by no more than 0.67%, while the
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Figure 5.9: Reliability diagram of the CRM quantile estimates of a 210 MW
wind farm (WF7) for various wind power forecast resolutions k = 5, 10, 15,
30 and 60 minutes under the exponentially weighted moving average quantile
estimate approach. The solid line represents the deviations from nominal
proportions using an exponentially weighted moving average (ewma) quantile
estimate, while the dashed line represents deviations from nominal using a
sample quantile estimate. Updating the quantile estimate at each iteration
improves the quantile estimate reliability, especially for small forecast time
resolutions and high rank quantiles.
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Figure 5.10: RMSE of CRM quantile estimates’ reliability under the exponen-
tially weighted moving average quantile estimate approach for various wind
power forecast resolutions k as a function of wind farm nameplate capacity.

maximum reduction reaches 4.3%. Average reliability RMSE reduction for all

wind farms considered is 1% under all forecast resolutions.

Comparing Fig.5.10 and Fig.5.11, it is observed that in all the cases

where the sample quantile estimate has reliability RMSE more than 1% a re-

duction in RMSE is observed with the exponentially weighted moving average

quantile estimate. However, in some cases with sample quantile estimate reli-

ability RMSE less than 1% a slight increase in reliability is observed, which is

not of high significance since an RMSE of 1% already indicates a quantile esti-

mate of adequate reliability. Thus, the exponentially weighted moving average

quantile estimate performs better than the sample quantile for the wind farms

and forecast resolutions considered, however finding the optimal buffer size

Nb,k and weight wb,k can be cumbersome. Consequently, though time adaptive
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Figure 5.11: CRM quantile reliability RMSE difference between the exponen-
tially weighted moving average and the sample quantile estimate approach as
a function of wind farm nameplate capacity for various wind power forecast
resolutions. The time adaptive exponentially weighted moving average quan-
tile estimate is in most cases at least as reliable as the static sample quantile
estimate.

methods seem to better capture the variable nature of wind power resulting in

more reliable pth CRM quantile estimates, their computational aspects should

also be taken into account.

5.3.5 Exponentially Weighted Stochastic Approximation

In this section an exponentially weighted stochastic approximation ap-

proach is considered for obtaining a CRM quantile estimate. Expanding on

(5.17) for a random variable X and an N -long buffer the following update

equation is proposed in [83] for the pth quantile estimate of the ith iteration
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SXN ,i(p):

SXN ,i(p) = SXN ,i−1(p) + f̂XN ,i(p)
−1 · wi ·

(

p−
∑N

i=1 I(XN,i ≤ SXN ,i−1(p))

N

)

(5.25)

where I(·) is the indicator function, wi is the weight, and f̂XN ,i(p) is the in-

cremental density estimate at the ith iteration. The weights wi can be of the

form 1/n for stationary data or constant for non-stationary data. In reality,

the stochastic approximation quantile estimate is essentially derived from a

local linear approximation of the true cdf FX,i at the true quantile qX,i(p),

since fX,i(p) = F ′
X,i(qX,i(p)) is the density of FX,i at qX,i(p). The complexity

of the stochastic approximation approach stems from using this density of the

underlying distribution, which is in general unknown and has to be estimated

from the data. Definitions of the fX,i estimates and methods to update them

can be found in [83, 84].

For the CRM quantile estimates the algorithm presented in [84] is

adopted. In this algorithm the weights are constant, thus this quantile estima-

tion method is an exponentially weighted stochastic approximation approach.

As before, a limited size buffer holds the last Nb,k observed wind power values

yn, n = 1, 2, ..., Nb,k of the data in the test set Y . Let the sample quantile from

the wind power values in the training set X be denoted as CRM{X}k,lj ,p =

[Mlow{X}k,lj ,p
,Mup{I}k,lj ,p

], and let CRM ∗
{I}k,lj ,p = [M∗

low{I}k,lj ,p
,M∗

up{I}k,lj,p
] de-

note the pth CRM quantile estimate for the wind power values stored in the

ith filling of the buffer.

The initialization of the algorithm is done by calculating CRM ∗
{0}k,lj ,p

and f ∗
{0}k,lj ,p:

1. Set CRM ∗
{0}k,lj ,p to be the sample quantile of the wind power values in
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the training set X , i.e.

CRM ∗
{0}k,lj ,p = CRM{X}k,lj ,p = [Mlow{X}k,lj ,p

,Mup{X}k,lj,p
] (5.26)

2. Estimate the scale of f ∗
{0}k,lj ,p using the interquartile range r∗{0}k,lj . Take

c∗up{0}k,lj = r∗up{0}k,lj

Mk,lj
∑

i=1

i−1/2

Mk,lj

= (Mup{X}k,lj ,0.75
−Mup{X}k,lj ,0.25

)

Mk,lj
∑

i=1

i−1/2

Mk,lj

(5.27)

c∗low{0}k,lj = r∗low{0}k,lj

Mk,lj
∑

i=1

i−1/2

Mk,lj

= (Mlow{X}k,lj ,0.25
−Mup{X}k,lj ,0.75

)

Mk,lj
∑

i=1

i−1/2

Mk,lj

(5.28)

where Mk,lj is the length of the subset of the test set with k-long average

wind power being lj.

3. Take the initial density estimate f ∗
{0}k,lj ,p to be:

f ∗
{0}k,lj ,p = (2c∗{0}k,ljMk,lj)

−1max{
Mk,lj
∑

i=1

A{0}i,k,li,p, 1} (5.29)

where

A{0}i,k,lj ,p =I(|Mupi,k,lj
−Mup{X}k,lj,p

| ≤ c∗up{0}k,lj)·

I(|Mlowi,k,lj
−Mlow{X}k,lj ,p

| ≥ c∗low{0}k,lj) (5.30)

and c∗{0}k,lj = (c∗up{0}k,lj +c
∗
low{0}k,lj)/2. This is the density of observations

in a neighborhood of size 2c∗{0}k,lj of CRM ∗
{0}k,lj ,p, unless the fraction of

observations in the neighborhood is zero.

When the Nb,k wind power values of the ith filling of the buffer from the

test data become available, the quantile CRM ∗
{I}k,lj ,p and the density f ∗

{I}k,lj ,p

estimates are updated as follows:
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1. The quantile estimate CRM ∗
{I}k,lj ,p is given by:

CRM ∗
{I}k,lj ,p = CRM ∗

{I−1}k,lj ,p +
wb,k

f ∗
{I−1}k,lj ,p

(

p− B{I}k,lj ,p

Nb,k,lj

)

(5.31)

where

B{I}k,lj ,p =

Nb,k,lj
∑

i=1

I(Mupi,k,lj
≤M∗

up{I−1}k,lj ,p
) · I(Mlowi,k,lj

≥ M∗
low{I−1}k,lj ,p

)

(5.32)

with Nb,k,lj being the length of a subset of the data in the buffer with

k-long average wind power being lj .

2. The density estimate f ∗
{I}k,lj ,p is given by:

f ∗
{I}k,lj ,p = (1− wb,k)f

∗
{I−1}k,lj ,p +

wb,k

2c∗{I−1}k,ljNb,k
max{

Nb,k
∑

i=1

A{I}i,k,lj ,p, 1}

(5.33)

where

A{I}i,k,lj ,p =I(|Mupi,k,lj
−Mup{I−1}k,lj ,p

| ≤ c∗up{I−1}k,lj)·

I(|Mlowi,k,lj
−Mlow{I−1}k,lj ,p

| ≥ c∗low{I−1}k,lj) (5.34)

3. The neighborhood size of the next updating c∗{I}k,lj is defined using the

interquartile range of the current quantile estimate:

c∗up{I}k,lj = r∗up{I}k,lj · c(I, k, lj) = (Mup{I}k,lj,0.75
−Mup{I}k,lj ,0.25

) · c(I, k, lj)
(5.35)

c∗low{I}k,lj = r∗low{I}k,lj ·c(I, k, lj) = (Mlow{I}k,lj ,0.25
−Mup{I}k,lj ,0.75

)·c(I, k, lj)
(5.36)

where c(I, k, lj) =
∑I·Nb,k,lj

i=1+(I−1)·Nb,k,lj
i−1/2/Nb,k,lj is the average updating

weight the stochastic approximation estimator would assign to the Nb,k,lj

values of the ith filling of the buffer and c∗{I}k,lj = (c∗up{I}k,lj+c
∗
low{I}k,lj)/2.
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After each evaluation of (5.31) the obtained quantile CRM∗
{I}k,lj ,p is used as

an estimate for the wind power data of the (i+1)th filling of the buffer. Thus,

for the wind power data in the (i + 1)th iteration ˆCRM{I+1}k,lj ,p is used as a

pth quantile estimate, where

ˆCRM {I+1}k,lj ,p = CRM ∗
{I}k,lj ,p i = 0, 1, ... (5.37)

For i = 0 the initial quantile and density estimated are obtained from

all the data in the training set (year 3) and not an Nb,k-long subset of it. Then

the buffer fills from the data in the test set (year 4). For each of the consid-

ered Nb,k-long subsets the stochastic approximation estimate of the pth CRM

quantile CRM ∗
k,lj ,p

is calculated from (5.31). Then, each of the calculated

quantiles is used as an estimate on the wind power data of the next Nb,k-long

set, according to (5.37).

The reason for choosing a large training set to obtain initial estimates

is because under the exponentially weighted stochastic approximation method

initial estimates are crucial for the convergence of the method, since poor es-

timates of CRM∗
{0}k,lj ,p and f

∗
{0}k,lj ,p will lead to estimates further along in the

process being no better than the sample quantile estimate. Moreover, since

a large number of iterations is necessary so as to reach convergence, a fairly

small buffer size Nb,k of one week is considered for all forecast time resolutions

and wind farms. The values of the weight wb,k used to obtain the quantile

estimates for each wind farm and forecast time resolution k are given in Ta-

ble 5.7. These values are the outcome of iterative calculations with the goal

of minimizing the RMSE(rk) for each forecast time resolution. As is the case

for the exponentially weighted moving average, small weights wb,k put more

weight on the initial quantile estimates with wb,k = 0 corresponding to using

the sample quantile of the training set as the quantile estimate for the entire
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Table 5.7: Weights wb,k for all Wind Farms and Forecast Time Resolutions k
(Stochastic Approximation)

Forecast Time Resolution k

5 min 10 min 15 min 30 min 60 min

WF2 0.24 0.62 0.46 0.26 0.18

WF3 0.56 0.44 0.44 0.24 0.2

WF4 0.76 0.7 0.84 0.48 0.38

WF5 0.76 0.68 0.62 0.56 0.36

WF6 0.46 0.08 0.06 0 0.22

WF7 0.66 0.64 0.62 0.56 0.46

WF11 0.7 0.72 0.66 0.46 0.36

WF13 0.7 0.54 0.5 0.18 0.26

WF14 0.34 0 0.02 0.02 0

WF15 0.68 0.64 0.5 0.44 0.34

test set. On the other hand, large weights indicate that the initial quantile

estimate needs heavier adjustment. The wb,k values in Table 5.7 vary from

zero to 0.84, with optimal wb,k taking mid-range values ([0.4-0.7]) for half of

the considered wind farms. Comparing the values in Tables 5.6 and 5.7, the

optimal wb,k values have similar levels under both methods for most of the

considered wind farms.

The pth CRM quantile estimates ˆCRM {I}k,lj ,p, i ≥ 2, are evaluated us-

ing their total reliability from (5.21). Fig.5.12 depicts the reliability diagrams,

i.e. deviations from nominal proportions, of the CRM quantile estimates of a

210 MW wind farm (WF7) for various wind power forecast resolutions k = 5,

10, 15, 30 and 60 minutes. In these diagrams, the dotted line represents de-
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viations from nominal of the nominal proportions p, i.e. zero deviations. The

dashed line represents deviations from nominal proportions using the sample

quantile from data in the training set (year 3) as a CRM quantile estimate

on the wind power data in the test set (year 4), as described in Section 5.3.3.

The solid line depicts deviations from nominal proportions when exponentially

weighted stochastic approximation is used to obtain a quantile estimate on the

test set (year 4).

Figure 5.12 reveals that when the quantile estimate is updated peri-

odically using an exponentially weighted stochastic approximation approach

its reliability shows improvement, especially for small forecast time resolu-

tions, for all rank quantiles. For large forecast time resolutions high rank

quantiles under the exponentially weighted stochastic approximation approach

have positive reliability, which is favored over the negative reliability of the

sample quantiles. To compare the performance of the exponentially weighted

stochastic approximation approach on the considered wind farms and forecast

resolutions the reliability RMSE from (5.22) is used, which summarizes the

performance of all CRM quantile estimates. The reliability RMSE values are

depicted in Fig. 5.13 as a function of the wind farm nameplate capacity for

various forecast time resolutions. Using an exponentially weighted stochastic

approximation approach the reliability RMSE values of the CRM quantile es-

timates are less than 1% for all but two wind farms.

Indeed, Fig. 5.14 depicts the reliability RMSE difference between

the stochastic approximation and the sample quantile estimate approach as a

function of the wind farm nameplate capacity for various wind power forecast

resolutions. The reliability RMSE of the exponentially weighted stochastic

approximation estimate is at least as good as the sample quantile’s for all

forecast time resolutions and wind farms considered, since all differences are
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Figure 5.12: Reliability diagram of the CRM quantile estimates of a 210 MW
wind farm (WF7) for various wind power forecast resolutions k = 5, 10, 15,
30 and 60 minutes under the exponentially weighted stochastic approximation
quantile estimate approach. The solid line represents the deviations from
nominal proportions using exponentially weighted stochastic approximation
(ewsa) quantile estimate, while the dashed line represents deviations from
nominal using a sample quantile estimate. The reliability of the CRM quantiles
under the exponentially weighted stochastic approximation approach is very
close to the nominal one, especially for small forecast time resolutions, for all
rank quantiles. For large forecast time resolutions high rank quantiles under
the exponentially weighted stochastic approximation approach have positive
reliability, which is favored over the negative reliability of the sample quantiles.
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Figure 5.13: RMSE of CRM quantile estimates’ reliability under the expo-
nentially weighted stochastic approximation quantile estimate approach for
various wind power forecast resolutions k as a function of wind farm name-
plate capacity.

either zero or negative. For the majority of the wind farms reliability is signif-

icantly improved with deviations reaching 3% and average reliability RMSE

reduction for all wind farms considered is close to 1% under all forecast time

resolutions k.

However, for a 37.5 MW wind farm (WF14) quantile estimates under a

sample and an exponentially weighted stochastic approximation approach are

almost identical since in both cases reliability RMSE values are similar and

in the range of 4%. In this case the optimal weights under the exponentially

weighted stochastic approximation approach are close to zero and lead to a

quantile estimate as good as the initial guess. On the other hand, for the same

wind farm under the exponentially weighted moving average with weights close
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Figure 5.14: CRM quantile reliability RMSE difference between the expo-
nentially weighted stochastic approximation and the sample quantile estimate
approach as a function of wind farm nameplate capacity for various wind
power forecast resolutions. The exponentially weighted stochastic approxima-
tion quantile estimate is in all cases at least as reliable as the sample quantile
estimate.

to 1, a significantly reduced RMSE compared to that of the sample quantile

estimate is reached. This means that for the specific wind farm the training

set’s sample quantile is a bad initial estimate. But although the exponentially

weighted moving average can recover from this bad initial estimate in the

period of a year, the exponentially weighted stochastic approximation would

need more time to do so. Thus, though the exponentially weighted stochas-

tic approximation approach leads to more reliable CRM quantile estimates,

the choice of initial estimates and iterations, i.e. lenght and number of filled

buffers, significantly affects the convergence of the method.
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5.3.6 Method Evaluation and Comparison

In this section the three considered CRM quantile estimation method-

ologies are compared using the reliability RMSE, the sharpness and the reso-

lution of the resulting quantile estimates. Let ym, m = 1, 2, ...,M , denote the

actual wind power data in the test set and the k-averaged wind power data of

the test set yk,i =
∑ik

m=(i−1)k+1 ym, i = 1, 2, ..., ⌊M/k⌋ denote a perfect wind

power forecast series with forecast time resolution k. For each point yk,i of

the wind power forecast series a wind power variability forecast consisting of

CRMk,lj=yk,i,p quantile estimates for various probabilities p is generated with

one of the three considered approaches: static sample (Sample), exponentially

weighted moving average (EWMA) and exponentially weighted stochastic ap-

proximation (EWSA).

The reliability of the quantile estimates for each method and forecast

time resolution is calculated from (5.21) and the reliability RMSE from (5.22).

The sharpness of the quantile estimates is evaluated using the sample mean

of the interquartile range series, while for the resolution the sample standard

deviation of the interquartile range series is used. The interquartile range

series IQRk,i is calculated from the 75th and 25th quantile estimates of each

point in the wind power forecast series yk,i. Two positive interquartile range

series are generated for the upper Mup and lower Mlow interval endpoints of

the conditional range interval, i.e:

IQRupk,i =Mupk,lj=yk,i,0.75
−Mupk,lj=yk,i,0.25

i = 1, 2, ..., ⌊M/k⌋ (5.38)

and

IQRlowk,i
=Mlowk,lj=yk,i,0.25

−Mlowk,lj=yk,i,0.75
i = 1, 2, ..., ⌊M/k⌋ (5.39)
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Thus, for each quantile estimation methodology two sharpness values:

sk,up =
∑

i

IQRupk,i

⌊M/k⌋ (5.40)

and

sk,low =
∑

i

IQRlowk,i

⌊M/k⌋ (5.41)

along with two resolution values

RESk,up =

√

√

√

√

1

⌊M/k⌋ − 1

⌊M/k⌋
∑

i=1

(

IQRupk,i − sk,up
)2

(5.42)

and

RESk,low =

√

√

√

√

1

⌊M/k⌋ − 1

⌊M/k⌋
∑

i=1

(

IQRlowk,i
− sk,low

)2
(5.43)

are calculated.

The reliability RMSE, sharpness (up and low) and resolution (up and

low) values under the three considered approaches (sample, ewma and ewsa)

are given in Tables 5.8, 5.9, 5.10, 5.11, and 5.12, respectively, for all wind

farms considered and for wind power forecast time resolutions k= 5, 10, 15,

30 and 60 minutes. In these tables for each wind farm and forecast time res-

olution the performance of the best quantile estimate is highlighted in bold.

It is reminded that the lowest reliability RMSE, the lowest sharpness and the

highest resolution are rewarded.

The reliability RMSE of the quantile estimates under the three different

approaches has already been analyzed in Sections 5.3.3–5.3.5. As is verified

by Table 5.8 adapting the quantile estimate using an exponentially weighted

moving average or stochastic approximation approach leads in more reliable

quantile estimates than the static sample quantile approach, with the exponen-

tially weighted stochastic approximation achieving on average lower deviations
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Table 5.8: RMSE of Reliability (RMSE(rk)) in percent for all Wind Farms
using three Quantile Estimate Approaches (Sample, EWMA, EWSA)

k = 5 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.97 1.34 1.7 2.59 0.74 2.11 2.31 1.55 3.55 1.95

EWMA 0.84 1.32 0.55 0.66 0.46 0.91 1.79 0.91 1.12 0.75

EWSA 0.97 0.63 0.99 0.46 0.7 0.23 1.22 0.43 3.48 0.61

k = 10 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.09 0.96 1.96 2.52 0.61 2.38 2.76 1.56 4.92 2.14

EWMA 0.97 1.26 0.81 0.84 0.55 1.21 1.78 1.01 1.2 1.01

EWSA 0.84 0.56 0.63 0.54 0.61 0.54 1.1 0.71 4.8 0.51

k = 15 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.11 0.85 1.91 2.4 0.56 2.46 2.85 1.32 5.47 2.01

EWMA 1.05 1.12 0.69 0.93 0.72 1.51 2.28 1.09 1.17 1.18

EWSA 0.98 0.42 0.95 0.35 0.59 0.86 1.48 1.08 5.3 0.41

k = 30 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.9 0.59 1.93 2.81 0.59 2.28 3.3 0.93 4.82 2.2

EWMA 0.7 1.2 0.84 0.54 0.61 1.39 2.38 1.3 1.54 0.78

EWSA 0.8 0.62 1.16 0.68 0.64 0.46 3.24 0.75 4.62 0.51

k = 60 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.58 0.83 1.82 2.83 0.82 1.96 3.93 0.86 3.91 1.9

EWMA 0.96 1.51 1.08 0.72 0.46 1.56 2.97 1.15 1.66 0.8

EWSA 0.52 0.75 0.72 1.48 0.8 0.95 2.36 0.73 3.65 1.07
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Table 5.9: Sharpness of Mup (sk,up) in percent for all Wind Farms using three
Quantile Estimate Approaches (Sample, EWMA, EWSA)

k = 5 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.28 1.43 1 0.8 0.91 0.96 1.01 0.87 0.85 0.72

EWMA 1.44 1.56 0.96 0.91 0.97 0.99 1.03 0.87 0.88 0.77

EWSA 1.72 1.66 1.61 1.02 1 1.21 1.09 0.98 0.93 0.72

k = 10 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2.07 2.27 1.67 1.46 1.52 1.58 1.7 1.55 1.47 1.26

EWMA 2.26 2.37 1.51 1.66 1.62 1.65 1.74 1.5 1.53 1.36

EWSA 2.42 2.61 2.01 1.94 1.61 1.79 1.84 1.72 1.61 2.21

k = 15 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2.7 2.83 2.16 1.99 1.99 2.06 2.22 2.07 1.96 1.69

EWMA 2.8 3.01 1.89 2.27 2.12 2.16 2.3 2.03 2.09 1.87

EWSA 3.14 3.21 2.19 2.49 2.22 1.14 2.41 2.29 2.13 1.85

k = 30 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 4.16 3.97 3.16 3.22 3.06 3.1 3.37 3.29 3.11 2.72

EWMA 4.12 4.14 2.76 3.39 3.3 3.28 3.58 3.38 3.36 3

EWSA 4.65 4.4 3.13 3.64 3.34 3.4 3.65 3.58 3.37 2.75

k = 60 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 6.27 5.57 4.49 5.1 4.62 4.59 5.14 5.29 4.84 4.32

EWMA 5.95 5.82 3.89 5.15 5.03 4.92 5.43 5.48 5.23 4.69

EWSA 6.82 5.97 4.33 5.5 4.99 4.93 5.47 5.63 5.16 4.52
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Table 5.10: Sharpness of Mlow (sk,low) in percent for all Wind Farms using
three Quantile Estimate Approaches (Sample, EWMA, EWSA)

k = 5 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.27 1.42 1.01 0.81 0.91 0.96 1.01 0.87 0.86 0.73

EWMA 0.89 1.58 0.97 0.92 0.99 1 1.05 0.89 0.89 0.78

EWSA 1.66 1.68 0.55 0.89 1.05 0.94 1.17 1 0.94 0.9

k = 10 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2 2.24 1.67 1.45 1.52 1.57 1.7 1.55 1.47 1.25

EWMA 1.58 2.43 1.64 1.67 1.66 1.69 1.79 1.54 1.58 1.4

EWSA 2.75 2.64 1.59 1.44 1.84 1.78 1.96 1.79 1.63 0.58

k = 15 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2.55 2.76 2.13 1.95 1.99 2.05 2.21 2.07 1.94 1.67

EWMA 2.2 3.04 1.98 2.35 2.18 2.22 2.37 2.07 2.2 1.92

EWSA 3.42 3.25 2.28 2.03 2.23 3.46 2.55 2.38 2.17 1.98

k = 30 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 3.74 3.81 3.05 3.08 2.98 3.02 3.29 3.28 3.06 2.64

EWMA 3.47 4.19 2.8 3.53 3.35 3.32 3.65 3.48 3.47 3.08

EWSA 4.99 4.48 3.22 3.43 3.44 3.44 3.75 3.75 3.45 3.21

k = 60 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 5.29 5.17 4.26 4.83 4.34 4.35 4.88 5.04 4.68 4.06

EWMA 5.68 5.95 4 5.42 5.09 5 5.58 5.7 5.68 4.89

EWSA 6.93 6.07 4.41 5.52 4.93 4.89 5.57 5.78 5.31 4.49
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Table 5.11: Resolution of Mup (RESk,up) in percent for all Wind Farms using
three Quantile Estimate Approaches (Sample, EWMA, EWSA)

k = 5 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.59 0.61 0.35 0.35 0.32 0.33 0.37 0.34 0.29 0.25

EWMA 0.54 0.61 0.37 0.51 0.4 0.41 0.42 0.32 0.29 0.31

EWSA 1.4 0.55 3.01 0.38 0.38 0.79 0.49 0.32 0.3 0.68

k = 10 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.84 0.88 0.57 0.6 0.57 0.61 0.62 0.58 0.54 0.46

EWMA 0.93 1.01 0.54 0.93 0.71 0.76 0.71 0.54 0.48 0.61

EWSA 1.17 0.83 1.8 1.08 0.98 0.6 0.74 0.57 0.56 5.58

k = 15 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.05 1.04 0.71 0.78 0.75 0.79 0.82 0.76 0.74 0.62

EWMA 1.23 1.32 0.76 1.26 0.97 1 0.97 0.76 0.69 0.88

EWSA 1.17 1.02 0.79 1.04 0.8 7.12 0.95 0.76 0.77 0.69

k = 30 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.52 1.37 1.01 1.16 1.14 1.22 1.2 1.11 1.2 1

EWMA 1.67 1.79 1.19 1.72 1.41 1.59 1.55 1.29 1.22 1.49

EWSA 1.87 1.45 1.23 1.39 1.36 1.33 1.35 1.2 1.29 2.26

k = 60 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2.15 1.85 1.4 1.77 1.76 1.91 1.81 1.79 1.91 1.61

EWMA 2.57 2.8 1.85 2.83 2.22 2.57 2.51 2.29 1.87 2.54

EWSA 2.41 2.12 1.86 2.45 2.02 2.21 2.1 2.02 2.1 1.83
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Table 5.12: Resolution ofMlow (RESk,low) in percent for all Wind Farms using
three Quantile Estimate Approaches (Sample, EWMA, EWSA)

k = 5 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.61 0.61 0.37 0.35 0.33 0.33 0.38 0.35 0.29 0.26

EWMA 0.29 0.61 0.35 0.51 0.4 0.41 0.42 0.33 0.29 0.31

EWSA 1.49 0.54 3.03 0.57 0.27 0.97 0.4 0.32 0.29 0.54

k = 10 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 0.88 0.92 0.6 0.62 0.58 0.6 0.64 0.61 0.54 0.48

EWMA 0.49 1.04 0.69 0.92 0.72 0.75 0.71 0.53 0.49 0.61

EWSA 1.02 0.82 1.74 1.55 0.64 0.54 0.6 0.58 0.53 5.86

k = 15 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.12 1.12 0.76 0.82 0.78 0.78 0.85 0.8 0.75 0.66

EWMA 0.76 1.31 0.74 1.26 0.99 0.99 0.95 0.7 0.76 0.86

EWSA 1 1.02 0.73 1.53 0.89 6.55 0.78 0.77 0.73 1.05

k = 30 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 1.64 1.49 1.1 1.27 1.2 1.21 1.28 1.24 1.25 1.09

EWMA 1.22 1.74 1.19 1.66 1.43 1.57 1.46 1.23 1.22 1.43

EWSA 1.65 1.36 1.17 1.67 1.05 1.16 1.23 1.19 1.24 1.82

k = 60 minutes

Wind Farm

Estimate 2 3 4 5 6 7 11 13 14 15

Sample 2.34 2.05 1.67 2.09 1.87 1.9 2.01 1.95 2.05 1.75

EWMA 2.16 2.63 1.9 2.73 2.12 2.48 2.42 2.18 2.16 2.51

EWSA 1.89 1.85 1.91 2.17 1.88 2 2.04 1.86 2.02 1.8
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Figure 5.15: Sharpness of CRM upper endpoint estimate Mup as a function of
the wind farm nameplate capacity under the three quantile estimation methods
(sample, ewma, ewsa) for forecast time resolutions k = 5 minutes (dashed
lines) and 60 minutes (solid lines). Sharpness increases with increasing forecast
time resolution, has similar values under the three methods and is lowest under
the sample quantile approach.

from nominal proportions.

Figure 5.15 depicts the sharpness of the upper CRM endpoint estimate

Mup as a function of the wind farm nameplate capacity for forecast time res-

olutions k = 5 and 60 minutes under the three considered quantile estimation

methods (sample, ewma, ewsa). In this figure dashed lines refer to 5-minute

resolution and solid lines to 60-minute resolution. As expected, from Fig. 5.15

it is evident that sharpness increases with increasing forecast time resolution

k for all methods considered, since wind power is more variable over longer pe-

riods of time. Moreover, the quantile estimate’s sharpness is similar under all

methods, but is in general lower under the sample quantile estimate approach.
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Figure 5.16: Sharpness of the CRM lower endpoint estimate Mlow as a func-
tion of the wind farm nameplate capacity under the three quantile estimation
methods (sample, ewma, ewsa) for forecast time resolutions k = 5 minutes
(dashed lines) and 60 minutes (solid lines). The difference in sharpness of
Mlow estimates between the three methods is more pronounced than in the
case of the sharpness of Mup.

Thus, the sample quantiles result in the smallest intra-hour wind power vari-

ability intervals, but not in the most reliable ones. Similarly, Fig. 5.16 depicts

the sharpness of the lower CRM endpoint estimate Mlow as a function of the

wind farm nameplate capacity for forecast time resolutions k = 5 and 60 min-

utes under the three considered quantile estimation methods (sample, ewma,

ewsa). The conclusions are analogous with more pronounced differences be-

tween the three methods, especially for larger forecast time resolutions.

The resolution of the upper and lower CRM endpoints Mup and Mlow

is given in Fig. 5.17 and Fig. 5.18, respectively, as a function of the wind

farm nameplate capacity for forecast time resolutions k = 5 minutes (dashed
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lines) and 60 minutes (solid lines). Again, the resolution of the estimates pre-

sumes similar values under the three considered quantile estimation methods

and increases with increasing forecast time resolution k. For small forecast

time resolutions the exponentially weighted stochastic approximation quantile

has larger resolution, whereas for large forecast time resolutions the exponen-

tially weighted moving average estimate produces the largest resolution. An

increased resolution reveals that the time-adaptive methods can better dis-

tinguish between situations of different wind power variability, making them

more appealing for wind power variability forecasts. However, the computa-

tional burden to obtain these estimates should also be considered.
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Figure 5.17: Resolution of the CRM upper endpoint Mup as a function of the
wind farm nameplate capacity under the three quantile estimation methods
(sample, ewma, ewsa) for forecast time resolutions k = 5 minutes (dashed
lines) and 60 minutes (solid lines). For 5-minute forecasts quantile resolution
is higher under the exponentially weighted stochastic approximation approach,
whereas for 60-minute forecasts the exponentially weighted moving average
estimate is more situation-dependent.
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Figure 5.18: Resolution of the CRM lower endpoint Mlow as a function of the
wind farm nameplate capacity under the three quantile estimation methods
(sample, ewma, ewsa) for forecast time resolutions k = 5 minutes (dashed
lines) and 60 minutes (solid lines).

5.4 CRM Sample Quantiles with Seasonal Considera-

tions

Since sample quantiles have acceptable levels of reliability, sharpness

and resolution, and are the easiest to calculate, a sample quantile estimate

approach with seasonal considerations has also been examined, using data from

wind farms WF1, WF2, WF5, WF6, WF11, WF13, WF17, and WF18 (see

Appendix A.1). The training set includes the data spanning from December

of year 1 to November of year 2, while the test set includes the data spanning

from December of year 2 to November of year 3. Under this approach, for a

wind power forecast time resolution k, the pth CRM quantile estimate of each

wind power forecast level lj , of a specific month and season in the test set, is
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set equal to the pth CRM sample quantile of a subset of the training set.

Let lj,m,s denote a wind power forecast of average production lj at

month m and season s. Also, let CRM{X}k,lj ,p denote a sample quantile from

the data in set {X}. Then considering seasonal effects, for a wind power

forecast time resolution k the pth CRM quantile estimate of each wind power

forecast level lj at month m and season s can be calculated from:

ˆCRMk,lj,m,s,p = CRM{X}k,lj ,p (5.44)

where {X} is a subset of the training set.

Three subsets {X} of the training set are used to determine the CRM

quantile estimate:

• {X} = year

which includes all the data in the test set (year = December of year 1 –

November of year 2) ,

• {X} = season

which includes the data in the test set from season s (s = winter (De-

cember of year 1 – February of year 2), spring (March – May of year 2),

summer (June – August of year 2), fall (September – November of year

2)),

• {X} = month

which includes the data in the test set from month m (m = December

of year 1 and each month of year 2).

Thus, when seasonality is taken into account the CRM quantile estimate in

the test set is set equal to the same production level and forecast time resolu-

tion sample quantile of the entire training set (year) or the respective seasonal
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(season) or monthly (month) subset of the training set.

Figure 5.19 depicts the overall reliability diagrams of the CRM quantile

estimates of a 160.5 MW wind farm (WF6) using yearly, seasonal and monthly

sample quantiles as estimates. The reliability diagrams depict the deviation

from nominal proportions (reliability) of the CRM quantiles as a function of

the nominal proportions p for various wind power forecast time resolutions k=

5, 10, 15, 30 and 60 minutes. In these diagrams the dotted line represents the

reliability of the nominal proportions (zero deviations) and the solid lines the

reliability of the actual quantile estimates, according to the three subsets used

to determine the sample quantile (year, season, month).

From Fig. 5.19 it is evident that the three sample quantiles (yearly,

seasonal, monthly) exhibit similar reliability values, with differences increasing

slightly with increasing wind power forecast time resolutions. From the relia-

bility diagrams of the specific wind farm given in Fig. 5.19 the monthly sample

quantile seems to perform better than the seasonal and yearly sample quan-

tiles. However, this is true only for low rank quantiles, since for higher ranks it

is the yearly sample quantile that exhibits the lowest deviations from nominal

proportions. Moreover, this result is not universal, since for other wind farms

the seasonal sample quantile presents a slightly better performance than the

monthly and the yearly sample quantile, but again not for all quantiles.

To compare the performance of the yearly, seasonal and monthly sample

quantiles their reliability RMSE from (5.22) is used. The reliability RMSE of

the three estimates is given in Table 5.13 for all wind farms considered and for

various wind power forecast time resolutions. For each wind farm and forecast

time resolution the performance of the best quantile estimate is highlighted in

bold.

The results in Table 5.13 are in agreement with the previous conclu-
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Figure 5.19: Reliability diagrams of the CRM quantile estimates of a 160.5
MW wind farm (WF6) for various wind power forecast resolutions k = 5,
10, 15, 30 and 60 minutes. Yearly, seasonal and monthly quantiles are used as
quantile estimates. The solid lines represent the deviations from nominal of the
actual and the dotted line of the nominal proportion p. Yearly, seasonal and
monthly sample quantiles exhibit similar reliability values, with the monthly
sample quantile outperforming the others for small rank quantiles, and the
yearly sample quantile performing best for high rank quantiles.
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Table 5.13: RMSE of Reliability in percent for all Wind Farms using three
Sample Quantiles (Year, Season, Month)

k = 5 minutes

Wind Farm

Sample 1 2 5 6 11 13 17 18

Year 0.65 3.72 0.82 2.49 1.34 3.09 1.63 1.06

Season 0.36 3.68 1.00 2.17 1.41 2.91 0.44 0.81

Month 0.88 2.92 1.10 2.17 0.32 1.94 2.26 1.80

k = 10 minutes

Wind Farm

Sample 1 2 5 6 11 13 17 18

Year 0.83 4.16 1.20 3.11 1.66 3.17 2.03 1.20

Season 0.53 4.37 0.77 2.99 1.96 3.05 0.41 0.95

Month 1.14 3.41 1.45 2.84 0.52 1.73 2.59 2.06

k = 15 minutes

Wind Farm

Sample 1 2 5 6 11 13 17 18

Year 1.00 4.34 1.33 3.56 1.94 3.28 2.29 1.24

Season 0.58 4.72 0.71 3.59 2.19 2.97 0.50 0.83

Month 1.26 3.65 1.58 3.18 0.56 1.83 2.75 2.13

k = 30 minutes

Wind Farm

Sample 1 2 5 6 11 13 17 18

Year 1.24 4.32 1.42 4.12 2.43 3.23 2.38 1.22

Season 0.43 4.79 0.61 4.14 2.73 3.05 0.59 0.80

Month 1.51 3.56 1.81 3.64 0.64 1.86 2.96 2.27

k = 60 minutes

Wind Farm

Sample 1 2 5 6 11 13 17 18

Year 1.46 4.57 1.26 4.51 2.41 3.22 2.58 1.32

Season 0.40 5.05 0.74 4.52 2.99 3.60 0.95 0.75

Month 1.74 3.60 2.04 3.69 0.49 1.96 3.21 2.36
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sion, that no sample quantile performs best for all wind farms, as for half of the

wind farms the seasonal quantile performs best, while for the rest the monthly

quantile has lower reliability RMSE, with deviations approaching 2%. But

even when each wind farm is considered individually, the best sample quantile

varies by wind forecast time resolution k, e.g. for WF3 and k = 5 minutes

the yearly sample quantile outperforms the other quantiles, while for all other

forecast resolutions the seasonal sample quantile performs best.

Moreover, the results in this table verify again that even when seasonal-

ity is considered, the performance of the sample quantiles does not necessarily

present a monotonic relation to wind power forecast time resolution k. In-

deed, only for WF6 reliability RMSE of the yearly, seasonal and monthly

sample quantiles increases with increasing k, while for all other wind farms

reliability RMSE presents a non-monotonic relationship with k. Nonetheless,

monotonicity is more frequent for monthly sample quantiles, than for yearly

or seasonal.

Figure 5.20 depicts the reliability RMSE of the three CRM quantile es-

timates as a function of the wind farm nameplate capacity PN for wind power

forecast resolutions equal to 5 and 60 minutes. Blue markers indicate reliability

RMSE for 5-minute and pink markers for 60-minute wind forecast resolution.

The filled markers represent reliability RMSE of monthly and seasonal sample

quantiles. The results in this figure verify that no unique sample quantile per-

forms best for all wind farms, however for most wind farms reliability RMSE of

the yearly quantile falls between reliability RMSE of the seasonal and monthly

quantiles. Regarding the effect of wind farm nameplate capacity on reliability

RMSE no safe conclusion can be drawn, indicating that the performance of

quantile estimates is affected more by the estimation method used and less by

other factors.
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Figure 5.20: Reliability RMSE of the three CRM quantile estimates (yearly,
seasonal, monthly) for wind power forecast resolutions k = 5 and 60 minutes as
a function of wind farm nameplate capacity. For most wind farms reliability
RMSE of the yearly sample quantile falls between reliability RMSE of the
monthly and seasonal sample quantiles.

5.5 Wind Power Variability Incremental Forecast Error

In Sections 5.3.3 – 5.3.6 methods to obtain pth CRM quantile estimates

ˆCRMk,lj ,p are presented and compared. Due to lack in forecasted data these

methods are all evaluated on perfectly forecasted k-averaged wind power pro-

ductions. Since wind power variability is present even under perfect forecasts,

the need to provide reliable wind power variability forecasting methods is es-

sential and in this sense the results from the previous sections indicate the

reliability levels the presented methods can reach as wind power forecasting

technologies improve.

In this section a wind power forecast of the test set is generated artifi-
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cially by making certain assumptions on wind power forecast errors and their

distribution. The sample quantiles of the training set are used as CRM quan-

tile estimates for the forecasted wind power series and the reliability RMSE of

these estimates is calculated. Comparing the results between a perfect and the

generated forecast the incremental forecast error, i.e. the wind power variabil-

ity forecast error attributed to the wind power forecast error, is investigated.

5.5.1 Wind Power Forecast Series Formation

Given a k-averaged wind power series yk,i, i = 1, 2, ..., N , and the re-

spective forecasted series ỹk,i the forecast error series ǫk,i is defined by the

difference between the actual and the forecasted value:

ǫk,i = yk,i − ỹk,i (5.45)

To make true inferences about a forecast error distribution an actual forecasted

wind power series is necessary, and more specifically the forecasted wind power

series pertaining to the actual wind power series at our disposal. In the ab-

sence of such a forecast series, certain assumptions have been made about the

forecast error distribution, which enable the generation of a wind power fore-

cast series from an actual wind power series.

If the actual and forecasted wind power series of a wind farm are nor-

malized based on the wind farm nameplate capacity, then the forecast error

in (5.45) is the normalized forecast error and the normalized mean absolute

error (NMAE) is defined by:

NMAEk =
1

N

N
∑

i=1

|ǫk,i| (5.46)

In the absence of any other information, the forecast errors ǫk are assumed to

follow a Normal distribution as in [88], with mean µǫk and variance σ2
ǫk

such
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that:
∫ ∞

−∞
|ǫk| ·

1

σǫk
√
2π
e

−(ǫk−µǫk
)2

2σ2
ǫk dǫk = NMAEk (5.47)

In (5.45), negative forecast errors ǫk,i overestimate the actual wind power, while

positive forecast errors indicate underestimation of the actual wind power.

The frequencies of over- and underestimation forecasting errors provide useful

information about the forecast error distribution. However, when only the

NMAE is known, equal chances of overestimation and underestimation can be

assumed. In this case:

∫ 0

−∞

1

σǫk
√
2π
e

−(ǫk−µǫk
)2

2σ2
ǫk dǫk = 0.5 (5.48)

The solution of the system of equations (5.47) and (5.48) yields:

µǫk = 0 (5.49)

and

σǫk =
NMAEk

2
·
√
2π (5.50)

The NMAE is a value which, most of the times, forecast providers make

available to their end-users. In [89] normalized wind power forecast errors for

various central wind power forecasting programs in the United States and

Canada are given, while [90] summarizes results from various European wind

power forecasting models. Based on the values given in [90] NMAE for hour-

ahead forecasts lies between 5% and 10%, while for day ahead forecasts the

range of NMAE is between 10% and 15%. The values of NMAEk used for

the various wind power forecast resolutions k are given in Table 5.14. The

reasoning behind these values is that forecasts with smaller time resolution

values k are updated more frequently and thus an hour ahead forecast error is
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Table 5.14: NMAEk for various Forecast Resolutions k

k [min] NMAEk

5 8%

10 8%

15 8%

30 15%

60 15%

assumed, while for forecasts with larger time resolutions a day-ahead forecast

error is considered more suitable.

Assuming Gaussianity, a normalized forecast series ỹk = yk − ǫk can

be generated from an actual normalized wind power series yk by sampling the

forecast errors ǫk randomly from a normal distribution N(µǫk , σ
2
ǫk
). However,

each normalized wind power forecast point ỹk,i is bounded below by zero and

above by one:

0 ≤ ỹk,i ≤ 1 ⇒ 0 ≤ yk,i − ǫk,i ≤ 1 (5.51)

⇒ yk,i − 1 ≤ ǫk,i ≤ yk,i

Thus, for each actual wind power yk,i the forecast error ǫk,i has to be sampled

randomly from a truncated normal distribution TN
b
a(µ, σ

2) with mean µ =

µǫk = 0, standard deviation σ = σǫk = NMAEk

2
·
√
2π, lower bound a = ak,i =

yk,i − 1 and upper bound b = bk,i = yk,i.

The probability density function fX(x) of a variable X following a

truncated normal distribution X ∼ TN
b
a(µ, σ

2) is defined by:

fX(x) =







1
σ
√
2π

e
−(x−µ)2

2σ2

Φ( b−µ
σ

)−Φ(a−µ
σ

)
for a ≤ x ≤ b

0 otherwise

(5.52)
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where Φ(·) is the cumulative distribution function of the standard normal

N(0, 1) distribution. Figure 5.21 depicts the density of normalized forecast

errors ǫk following a normal N(0, σ2
ǫk
) and a truncated normal TNyk

yk−1(0, σ
2
ǫk
)

distribution with σ2
ǫk

= π · NMAE2
k/2. For Fig. 5.21 the actual wind power

value is set to yk = 0.7 p.u. and the normalized mean absolute error is taken

to be NMAE=0.25. As expected, the truncated normal acquires more density

within the bounds [−0.3, 0.7] than the normal distribution.

To generate a random sample from a truncated normal distribution it

is first noted that if X ∼ TN
b
a(µ, σ

2), then:

z ≡ x− µ

σ
∼ TN

bz
az(0, 1) (5.53)

follows a truncated standard normal distribution with bounds:

az =
a− µ

σ
(5.54)
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Figure 5.21: Density of normalized forecast errors ǫk under a normal
N(0, π · NMAE2

k/2) and a truncated normal Nyk
yk−1(0, π ·NMAE2

k/2) distribu-
tion with yk = 0.7 and NMAE=0.25.
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and

bz =
b− µ

σ
(5.55)

To generate standard normal random numbers the inverse cumulative distri-

bution function method is used. The cdf of the random variable Z is:

FZ(z) =
Φ(z)− Φ(az)

Φ(bz)− Φ(az)
(5.56)

Then, for a uniform random variable U ∼ U(0, 1) we have:

u = FZ(z) ⇒ u(Φ(bz)− Φ(az)) + Φ(az) = Φ(z) (5.57)

thus,

z = F−1
Z (u) = Φ−1(Φ(az) + u(Φ(bz)− Φ(az))) (5.58)

where Φ−1(·) is the inverse of the standard normal cdf, termed probit function,

and is defined for p ∈ (0, 1) using the inverse of the error function erf(v) =

2√
π

∫ v

0
e−t2dt:

Φ−1(p) =
√
2erf−1(2p− 1) (5.59)

Thus the algorithm used for producing the forecast series ỹk,i is sum-

marized as follows. For each actual wind power yk,i:

1. Generate a uniform random number uk,i ∼ U(0, 1).

2. Calculate zk,i from (5.58) using az = 2(yk,i− 1)/(
√
2πNMAEk) and bz =

2yk,i/(
√
2πNMAEk).

3. Get the forecasted wind power ỹk,i = yk,i − zk,i
√
2πNMAEk/2.

For each forecast time resolution k the values of the normalized mean absolute

errors NMAEk are taken from Table 5.14. The algorithm is implemented in

MATLAB which has a ready to use inverse error function erf−1 and a random

uniform number generator.
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5.5.2 Evaluation of the CRM Quantile Estimates from the Forecast
on the Actual Wind Power Data

The sample quantile estimate approach is used to evaluate the CRM

quantile estimate on the forecasted wind power series. Under this approach,

the sample quantile from the wind power data in the training set is used as

the CRM quantile estimate for the data in the test set according to (5.19).

Let ym, m = 1, 2, ...,M , denote the actual wind power data in the test set and

yk,i, i = 1, 2, ..., ⌊M/k⌋ the k-averaged wind power data of the test set. Also,

let ỹk,i be a forecast wind power series calculated from yk,i using the algorithm

described in Section 5.5.1. Then, for each point ỹk,i = lj in the forecast series

the pth CRM quantile estimate ˆCRMk,lj ,p = [M̂lowk,lj ,p
, M̂upk,lj ,p

] is set equal to

the sample quantile of the training set, conditioned on the k-averaged wind

power x̄k of the training set being x̄k = lj .

ˆCRM {Y }k,lj=ỹk,i,p = [M̂{Y }lowk,lj=ỹk,i,p
, M̂{Y }upk,lj=ỹk,i,p

] = [Mlowk,x̄k=lj ,p
,Mupk,x̄k=lj ,p

]

(5.60)

where (Mlowk,lj ,p
,Mupk,lj ,p

) is the solution of the system of equations (3.7) and

(3.10) solved in Section 3.3.2 using the xn wind power data as input. It should

be noted that in (5.60) the wind power level lj refers to the forecasted wind

power series. Thus, for each forecasted wind power level lj the respective CRM

sample quantile of the training set is used as an estimate on the test set.

However, the quantile estimates are then evaluated on the actual and

not the forecasted wind power data of the test set. Indeed, the pth CRM

quantile estimate should be such, that:

P

({

inf
m∈Ki

ym ≥ M̂lowk,lj ,p

}

⋂

{

sup
m∈Ki

ym ≤ M̂upk,lj ,p

}
∣

∣

∣

∣

ỹk,i = lj

)

≥ p, i = 1, 2, · · · , ⌊M/k⌋ (5.61)
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where Ki is the i
th k-long interval [k(i − 1) + 1, ki] in the actual wind power

series ym, m = 1, 2, . . . ,M , of the test set.

The wind farms considered for wind power variability analysis using

sample quantile as estimates and artificially generated wind power forecasts

are WF2, WF3, WF4, WF5, WF6, WF7, WF11, WF13, WF14, and WF15

(see Appendix A.1). The training set from which the sample quantiles come

includes the data from year 3, while the test set from which the actual and

perfect wind power forecast series are generated includes the data from year

4. The resulting quantile estimates are evaluated using their reliability and

RMSE of reliability.

The total reliability rk,p of a pth CRM quantile estimate is again given

by:

rk,p =
∑

j

Nk,lj

Nk
· p̂(p)k,lj

− p (5.62)

where Nk is the length of the forecasted wind power series ỹk,i of the test set

and Nk,lj is the length of the subset of these data with ỹk,i = lj . Here p̂
(p)
k,lj

is the proportion of the k-long intervals in the test set with forecasted pro-

duction ỹk,i = lj for which the actual wind power ym lies within the interval

[M̂lowk,lj ,p
, M̂upk,lj ,p

] from (5.60).

The reliability diagrams, i.e. deviations from nominal proportions, of

the CRM quantile estimates of a 120.6 MW wind farm (WF3) for various

wind power forecast time resolutions k = 5, 10, 15, 30 and 60 minutes are

given in Fig. 5.22. In these diagrams, the dotted line represents deviations

from nominal of the nominal proportions p, i.e. zero deviations. The dashed

line represents deviations from nominal of the actual proportions using a CRM

quantile estimate on a perfect wind power forecast and the solid line deviations

when an actual (artificial) wind power forecast is used.
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As expected, deviations from nominal proportions are higher in the

case of an actual forecast and increase with increasing wind power forecast

time resolution k. However, for higher rank quantiles differences between the

perfect and actual forecast quantile estimates are smaller. Table 5.15 presents

the reliability RMSE in percent for all wind farms under various wind power

forecast resolutions, using a perfect and an actual wind power forecast.

From Fig. 5.22 it becomes evident that the reliability of each quantile

estimate when an actual wind power forecast is used is much less than the

NMAEk of the wind power forecast for each wind power forecast time reso-

lution k. For example, though the NMAEk for k= 60 minutes is 15% (taken

from Table 5.14), the reliability of all quantile estimates is less than 11%. Thus

the uncertainty of the wind power variability forecast is less than the uncer-

tainty of the wind power forecast used as input. This is true for all wind farms

considered, as can be seen from Table 5.15. However, the reliability RMSE

and the NMAE should not be confused. An NMAE of 15% means that the

average absolute wind power forecast error is 0.15 p.u. (based on the wind

farm’s nameplate capacity). Thus, NMAE refers to deviations of a forecast

from an actual wind power production and is measured in power units. On

the other hand, reliability RMSE refers to the ability to produce quantile esti-

mates with proportions close to the nominal. Thus, reliability of RMSE refers

to deviation from proportions and is a unitless number. A reliability RMSE

of 10% means e.g. that the CRM 75th percentile estimate using an artificial

forecast corresponds on average to an actual 85th or 65th percentile.
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Figure 5.22: Reliability diagram of the CRM quantile estimates of a 120.6
MW wind farm (WF3) for various wind power forecast resolutions k = 5, 10,
15, 30 and 60 minutes under the sample quantile estimate approach using an
artificial wind power forecast. The solid line represents the deviations from
nominal of the actual proportion using an actual forecast, while the dashed line
represents deviations from nominal of the actual proportions using a perfect
forecast. Uncertainty in the wind power forecast increases deviations from
nominal proportions.
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Table 5.15: RMSE of Reliability in percent for all Wind Farms using Sample
Quantiles on Actual and Perfect Wind Power Forecasts

k = 5 minutes

Wind Farm

Forecast 2 3 4 5 6 7 11 13 14 15

Perfect 0.97 1.34 1.70 2.59 0.74 2.11 2.31 1.55 3.55 1.95

Actual 3.45 3.92 3.29 6.45 2.06 3.77 6.62 3.58 2.78 3.79

k = 10 minutes

Wind Farm

Forecast 2 3 4 5 6 7 11 13 14 15

Perfect 1.09 0.96 1.96 2.52 0.61 2.38 2.76 1.56 4.92 2.14

Actual 3.78 3.95 4.09 6.54 2.29 4.45 7.05 3.71 1.68 4.38

k = 15 minutes

Wind Farm

Forecast 2 3 4 5 6 7 11 13 14 15

Perfect 1.11 0.85 1.91 2.40 0.56 2.46 2.85 1.32 5.47 2.01

Actual 3.91 3.97 4.37 6.66 2.41 4.59 7.28 3.67 1.61 4.37

k = 30 minutes

Wind Farm

Forecast 2 3 4 5 6 7 11 13 14 15

Perfect 0.90 0.59 1.93 2.81 0.59 2.28 3.30 0.93 4.82 2.20

Actual 7.75 6.94 7.89 11.34 5.59 7.29 11.90 6.84 5.72 7.96

k = 60 minutes

Wind Farm

Forecast 2 3 4 5 6 7 11 13 14 15

Perfect 0.58 0.83 1.82 2.83 0.82 1.96 3.93 0.86 3.91 1.90

Actual 8.26 6.62 9.36 11.64 6.35 7.69 12.69 6.67 7.44 8.56
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5.5.3 Comparison of the CRM Sample Quantiles between a Perfect
and an Actual Wind Power Forecast

Figure 5.23 depicts the reliability RMSE increment when the actual

(artificial) instead of the perfect wind power forecast is used as a function

of the wind farm nameplate capacity for various wind power forecast time

resolutions k. The reliability RMSE increment is on average 2% for wind power

forecast resolutions k=5, 10 and 15 minutes and 6% for wind power forecast

resolutions k=30 and 60 minutes and does not vary much by wind farm size.

It is reminded that the respective wind power forecast mean absolue errors are

NMAEk=8% for k=5, 10 and 15 minutes and NMAEk=15% for k= 30 and 60

minutes.
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Figure 5.23: CRM quantile reliability RMSE increment when an actual (artifi-
cial) instead of a perfect wind power forecast is used as a function of wind farm
nameplate capacity for various wind power forecast time resolutions. The reli-
ability RMSE increment is similar for same NMAE values, regardless of wind
farm size.
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To better understand the effect of the wind power forecast NMAE on

the CRM quantile estimates the expected size ĈRk of the estimated CRM

interval will be used, as defined in (3.21):

ĈRk =

∑

p ĈRk,p

q
=

∑

p

∑

j ĈRk,lj ,p · P (ỹk,i = lj)

q
(5.63)

where q is the quantile resolution, wj = P (ỹk,i = lj) are the frequencies

of appearance of the various forecasted wind power production levels, and

ˆCRMk,lj ,p = M̂upk,lj ,p
− M̂lowk,lj ,p is the size of the respective estimate CRM

interval. When the sample quantile of the training set is used the estimate

ˆCRMk,lj ,p takes the same values, regardless of whether a perfect or an actual

forecast is used. Then, the mean absolute difference in the expected interval

size when an actual instead of a perfect forecast is used is given by:

MADCR =

∑

p

∑

j ĈRk,lj,p · |P (ỹk,i = lj)− P (yk,i = lj)|
q

(5.64)

Thus, the reason why CRM quantile estimate size and reliability RMSE change

with varying wind power forecast NMAE is that the weights wj change between

a perfect and an actual forecast.

Figure 5.24 depicts the CRM expected size difference when an actual

instead of a perfect wind power forecast is used as a function of wind farm

nameplate capacity for various wind power forecast time resolutions. For wind

power forecast resolutions k=5, 10 and 15 minutes the wind power forecast

NMAE is 0.08 p.u. while the difference in expected CRM interval size is

less than 0.002 p.u. (normalized on the wind farm size). Respectively, for

wind power forecast resolutions k=30 and 60 minutes the wind power forecast

NMAE is 0.15 p.u. while the difference in expected CRM interval size is less

than 0.015 p.u.
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Figure 5.24: CRM expected size difference when an actual (artificial) instead
of a perfect wind power forecast is used as a function of wind farm nameplate
capacity for various wind power forecast time resolutions. The difference in
CRM size is much smaller than the respective wind power forecast NMAE.

The CRM quantile estimate reliability RMSE of all wind farms as a

function of the wind power forecast NMAE is depicted in Fig. 5.25 for wind

power forecast resolution k=5 minutes and in Fig. 5.26 for wind power forecast

resolution k=60 minutes. Similarly, Fig. 5.27 and 5.28 depict the expected

increase in CRM interval size of all wind farms as a function of NMAE. In

these figures the solid lines refer to smaller wind farms with capacities less

than 100 MW and the dashed lines to wind farms with capacities greater than

100 MW.

From Fig. 5.25 and Fig. 5.26 it is evident that the reliability RMSE

of the CRM quantile estimates increases with increasing wind power forecast

error NMAE, and in fact this increase is higher for smaller than for larger wind

farms, especially for smaller forecast time resolutions. However, the relative
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Figure 5.25: CRM quantile estimate reliability RMSE as a function of the
wind power forecast NMAE for wind power forecast resolution k=5 minutes.

increase in reliability RMSE is decreasing as the wind power forecast errors

increase.

Regarding the CRM interval size, it also increases with increasing

forecast error, and in fact in an almost linear relationship as can be seen from

Fig. 5.27 and Fig. 5.28. The mean absolute CRM interval size increment is less

than 0.005 p.u. regardless of NMAE for k=5 minutes, and for k=60 minutes

the highest CRM increment is almost ten times lower as the respective NMAE.

Thus, with increasing uncertainty in the average wind power production the

expected CRM interval size increases as well, but at a much slower rate.

It should be noted that the results obtained in this section regarding

the effect of wind power forecast uncertainty on wind power variability forecast

uncertainty are based on certain assumptions on the forecast error sizes and

their distribution. More accurate results and conclusions require the use of a

large set of forecasted data paired with actual data.
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Figure 5.26: CRM quantile estimate reliability RMSE as a function of the
wind power forecast NMAE for wind power forecast resolution k=60 minutes.
Reliability RMSE increases with increasing wind power forecast error by a
higher rate for smaller (solid lines) than for larger (dashed lines) wind farms.
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Figure 5.27: CRM expected size difference when an actual instead of a perfect
wind power forecast is used as a function of the wind power forecast NMAE
for k=5 minutes.
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Figure 5.28: CRM expected size difference when an actual instead of a perfect
wind power forecast is used as a function of the wind power forecast NMAE
for k=60 minutes. With increasing uncertainty in average wind power its
variability increases too, but by a much smaller increment.

5.6 Concluding Remarks

Wind power is inherently variable and uncertain. The effects of wind

power uncertainty on power system planning, operations and costs are mit-

igated using wind power forecasts, which are generated from an increasing

number of methods with significant reduction in forecast errors, as is summa-

rized in Section 5.1. Realizing that intra-hour wind power variability exists

even under perfect hourly forecasts and becomes comparable to demand vari-

ability as wind power penetration levels increase, makes the call for intra-hour

wind power variability forecasts natural.

The proposed wind power variability forecasts consist of intervals within

which the wind power output will lie with a certain probability as is de-

scribed in Section 5.2. To obtain these probabilistic intervals the conditional
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range metric quantiles are estimated with one static (sample quantile) and

two time-adaptive methods (exponentially weighted moving average, expo-

nentially weighted stochastic approximation) presented in Section 5.3. The

resulting quantile estimates from the three methods are compared using their

reliability, sharpness and resolution. Reliability refers to the method’s abil-

ity to produce quantiles with proportions close to the nominal ones, whereas

sharpness indicates consistence in quantile estimates and resolution signifies

the ability to produce situation-dependent quantile estimates.

Under all considered methods, reliability tends to be better at mid-

production levels, denoting that though wind power variability is highest at

mid-production levels it is more predictable at these levels. Moreover, the total

reliability of each quantile estimate is significantly better than the production

specific reliability. Average expected deviations from nominal proportions are

close to 1% under all methods, whereas maximum expected deviations don’t

exceed 5% and minimum expected deviations are lower than 0.5%. Regarding

the effect of the nominal proportion, high rank quantiles tend to be more reli-

able than lower rank quantiles for all methods, a quality highly desired since

it is the high rank quantiles associated with low risk parameters that are of in-

terest. While reliability appears to be unaffected by wind power forecast time

resolution, it tends to improve with increasing wind farm nameplate capacity

and increasing wind turbine size.

Both time-adaptive quantile estimation approaches considered produce

more reliable estimates than the static sample quantile method, since they can

effectively improve upon the reliability of a bad initial sample quantile esti-

mate. Evolving quantiles are also more appropriate for distinguishing between

different wind power variability situations, however the computational aspects

of time-adaptive methods need to be factored in. In addition, as can be seen
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from the results in Section 5.4, seasonal analysis of historical data can lead to

better initial estimates for the time-adaptive methods.

Finally, the analysis using an artificial wind power forecast presented

in Section 5.5 reveals that the reliability of the quantile estimates deteriorates

with increasing wind power forecast error levels. In fact, the increase in de-

viation from nominal proportions is higher for smaller sized wind farms and

larger wind power forecast time resolutions. Nonetheless, the increase in the

expected wind power variability interval size is not proportional, revealing that

intra-hour wind power variability increases with increasing hourly wind power

uncertainty, but at a much slower rate.
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Chapter 6

Example Application of the Conditional

Range Metric: Energy Storage System Size

Estimation

Wind power is very variable and unpredictable and these characteris-

tics of wind power pose significant risk to both system planners and operators,

as well as wind farm owners and investors. The effects of wind power variabil-

ity on system planning and operations, which appear in the form of increased

ramp rates, increased time periods with minimum generation, and increased

operating reserve requirements, have been examined in the various wind in-

tegration studies presented in Section 2.2. Regarding wind farm owners and

investors, wind power variability has been considered as one of the largest

inhibiting factors in participating in day-ahead and hour-ahead markets. De-

viations from wind generation schedules beyond a certain tolerance band would

incur significant penalties [91, 92].

The proposed conditional range metric and the resulting wind power

variability forecasts provide system operators and wind farm owners with use-

ful information about past, present and future wind power variability. This

information can be summarized in sets of wind power inequalities of the form:

Mlowk,lj ,p
≤ xn ≤Mupk,lj ,p

with probability p (6.1)

for various probabilities p. When xn refers to historical wind power time

series data with average production level of lj over k-long time intervals,
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the endpoints of the inequality in (6.1) are obtained using the methodol-

ogy presented in Section 3.3. When xn refers to future wind power data,

(6.1) forces wind power production with k-long forecast x̃k = lj to lie within

[M̂lowk,lj ,p
, M̂lowk,lj ,p

], which are the quantile estimates of CRM calculated with

one of the methodologies presented in Section 5.3.

Probabilistic wind power inequalities in the form of (6.1) using histori-

cal data can be useful in assessing wind power variability, as has already been

pointed out in Chapter 4. Through these inequalities influential variables on

wind power variability, such as the wind farm nameplate capacity or the wind

turbine generator size, can be identified. The quantification of wind power

variability under various conditions is useful in determining critical periods

with increased wind power variability or large wind power ramps, and allows

for better management of wind power variability in general. Moreover, the ex-

ploration of the characteristics of wind power variability can assist in deciding

the flexibility requirements of future generation portfolios so as to accommo-

date the increasing wind power penetration.

Indeed, acknowledging that the effects of wind power variability become

more adverse as wind power penetration levels increase, deems the develop-

ment of wind power management strategies necessary. Wind power variability

forecasts in the form of the inequalities of (6.1) can be used as input in new

wind power management tools or be integrated in existing power system key

management functions. Such inequalities can then be applied to decision sup-

port tools which use stochastic analysis and optimization, such as probabilistic

power flow problems, optimal generation scheduling algorithms (e.g. stochas-

tic economic dispatch), or even transmission congestion management tools.

Furthermore, the use of short-term wind power variability forecasts can aid in

the establishment of new reserve estimation algorithms and reserve allocation
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procedures. On the other hand, and perhaps more from a wind farm owner’s

perspective, wind power variability forecasts are a significant tool to hedge

against wind power uncertainty through the coordination between wind power

plants and pumping storage plants.

This chapter provides an example application of how wind power vari-

ability forecasts can be used to mitigate the effects of intra-hour wind power

variability, by providing a methodology to estimate the size (power and energy

capacities) of an energy storage system with the goal of minimizing deviations

from the forecasted hourly average wind power production. The coupling of

wind farms with energy storage units so as to reduce the effects of wind power

variability and uncertainty has been the subject of numerous papers within

the past years [93–99]. A simple probabilistic method to predict the abil-

ity of energy storage in increasing the penetration of intermittent renewable

generation in weak electricity grids is presented in [93]. The application of

storage-based standing reserves in managing wind power fluctuations and un-

certainty in wind generation forecasts is investigated in [94]. In [95] authors

use dynamic programming for computing the optimal energy storage - wind

farm coordination so as to minimize the wind generation schedule deviation.

Similarly, in [96] authors model a co-located power generation and energy stor-

age block, which contains wind generation, a gas turbine and a fast-ramping

energy storage unit. The system is designed to produce near-constant power at

a reasonable cost, while still delivering a fraction of that power from wind. In

[97] a battery energy storage system is sized to obtain an optimal dispatched

power level from a wind farm. Dynamic sizing of energy storage capacity is

proposed for different delivery periods in [98], essentially using energy storage

as a risk hedging means against penalties for deviations from the agreed wind

generation schedule.

214



While some of these papers contain methodologies for simulating differ-

ent forecast errors, e.g. Gaussianity is proposed in [94] and an exponentially

weighted moving average approach is given in [99], most of these papers are

based on given wind power profiles, and in others wind power is erroneously

represented with an average wind power value over a time interval (ranging

from 5 minutes to one hour). In the proposed energy storage size estimation

methodology, a probabilistic forecast of the hourly average wind power pro-

duction and the inverse of the joint cumulative distribution of the maximum

and minimum deviations from the hourly average are used to generate hour-

long wind power production scenarios, following an approach similar to that

described in [100].

In Section 6.1 the methodology to generate the hour-long wind power

production scenarios is presented and Section 6.2 describes how the energy

storage system characteristics and their statistics are determined. The pro-

posed methodology is then applied on real-world wind power production data

and the evaluation of the results is given in Section 6.3, while Section 6.4

concludes the chapter.

• Publication: Part of the work presented in this chapter has been pub-

lished in [5]:

– T. Boutsika and S. Santoso, “Sizing an energy storage system to

minimize wind power imbalances from the hourly average,“ in Power

and Energy Society General Meeting, 2012 IEEE, July 2011, pp. 1-

8.
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6.1 Generation of Hour-long Wind Power Production
Scenarios

When an energy storage system is used to minimize power imbalances,

it essentially operates as an integrator of the respective energy imbalances.

Thus, its capacity is determined not only by the magnitude but also by the se-

quence of the power imbalances, making a wind power time series a necessary

input for the energy storage system sizing methodology. This section describes

the methodology to generate wind power production scenarios with qualities

similar to an actual wind power profile. Generating scenarios instead of using

a real-world wind power time series allows for a larger number of realistic cases

to be explored and improves the performance of the resulting statistics.

The proposed methodology to generate hour-long wind power produc-

tion scenarios with a one-minute resolution requires a probabilistic forecast fL

of the hourly average wind power production lj, and the inverse of the joint

cumulative distribution F−1
(A,B),lj

of the minimum a and maximum b deviations

from the hourly average lj .

For the wind power production time series xn with a one-minute res-

olution the probabilistic forecast of the hourly average lj is defined as its

probability mass function:

fL(lj) = P (x̄n ∈ lj), (6.2)

where x̄n refers to average wind power production:

x̄n =
1

60

k+59
∑

n=k

xn, k = (i− 1) · 60 + 1, i ∈ N (6.3)

Here x̄n ∈ lj = j/m refers to the normalized average wind power production

interval (2j − 1)/2m < x̄n ≤ (2j + 1)/2m, where 1/m is the production reso-

lution and j = 1, 2, · · · , m. The desired one-minute resolution stems from the
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typical resolution of real-world wind power data used to evaluate the proposed

methodology. However (6.2) and (6.3) can be adapted to match any desired

time series or average production level resolution. The cumulative probability

mass function of x̄n is then given by:

FL(lj) = P (x̄n ≤ lj) =
∑

i≤j

fL(li). (6.4)

Figures 6.1 and 6.2 depict the probability and the cumulative probability mass

function, respectively, for a production resolution of 1/m=0.05 p.u., using data

from a 160.5 MW wind farm over one year (WF6, year 4 - see Appendix A.1).

The joint cumulative probability distribution function F(A,B),lj of the

minimum a and maximum b deviations from the hourly average lj is defined

as:

F(A,B),lj (a, b) = P ((A ≤ a) ∩ (B ≤ b)) (6.5)
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Figure 6.1: Probability mass function of the hourly averages over a year for
a 160.5 MW wind farm (WF6, year 4). Most mass is concentrated at low
production levels.
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Figure 6.2: Cumulative probability mass function of the hourly averages over
a year for a 160.5 MW wind farm (WF6, year 4).

which states that the wind power production xn stays within the interval

[lj−a, lj+b] for all points within the hour, n ∈ [k, k+59], k = (i−1)·60+1, i ∈
N, with probability at least p. The respective inverse of the joint cumulative

distribution function, also known as the quantile function Q(A,B),lj (p), is then

defined as:

F−1
(A,B),lj

(p) = Q(A,B),lj (p) (6.6)

= {(a, b) : F(A,B),lj (a, b) = p}

Thus, for any lj hourly average wind power production and any given p ∈
(0, 1) the previously defined quantile function essentially provides the values

a = lj −Mlowk,lj ,p
and b = lj +Mupk,lj ,p

. To obtain a finite subset of the target

set of the quantile function in (6.6) from an N -long wind power time series xn,

the system of equations (3.7) and (3.10) from Section 3.3 is repeatedly solved

for various discrete probabilities p over its support p ∈ (0, 1). Figure 6.3 de-
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picts the quantile function for lj=0.5 p.u., m = 20 and p = 0.1, 0.2, · · · , 0.9,
using data from a 160.5 MW wind farm over one year (WF6, year 4). For

example, Fig. 6.3 shows that with a 70% probability the largest mimimum

deviation from the hourly average is less than a = 0.122 p.u., whereas the

largest maximum deviation is less than b = 0.126 p.u.

To generate one hour-long wind power production scenario xn, with

n ∈ [1, 60], first an hourly average production level x̄n = lj = j/m has to

be decided. For this, a production level lj is randomly chosen so as to follow

the probability distribution of hourly average production levels fL. To gen-

erate the random variable L from a uniform random variable U(0, 1) it needs

to be passed through the inverse of the cumulative probability mass function

FL (L ∼ F−1
L (U)), with FL taken from (6.4). It should be noted that since

the probability distribution of the hourly average fL(lj) is discrete rather than
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Figure 6.3: Quantile function of the minimum a and maximum b deviations
from the hourly average lj = 0.5 p.u. over a year for a 160.5 MW wind farm
(WF6, year 4).
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continuous, there may be gaps between values in the domain of its cumulative

distribution function FL(lj), which means that the randomly chosen hourly

averages may not exactly follow fL(lj).

After deciding the hourly average lj the minimum a and maximum b

deviations from the hourly average are chosen randomly. Again, to generate

the random variable pair (A,B) from a uniform random variable U(0, 1) it

needs to be passed through the inverse of the cumulative joint probability dis-

tribution function F(A,B) ((A,B) ∼ F−1
(A,B)(U)) from (6.6). Thus, sampling a

random number p uniformly from (0, 1) and passing it through the quantile

function Q(A,B),lj in (6.6) returns a unique pair of minimum a and maximum

b deviations from the hourly average lj . In this way two points of the hour-

long wind power production scenario are defined, the minimum production

x1 = lj − a and the maximum production x2 = lj + b.

Next, the remaining 58 points from the hour-long wind power produc-

tion scenario xn, n = 3, ..., 60, need to be chosen. Disregarding any other possi-

bly obtained information on the parametric wind power production intra-hour

distribution, the points are chosen from a common probability distribution. A

first choice for a common distribution is the normal distribution N(µ, σ2), with

parameters mean µ = lj and standard deviation σ = (b+ a)/4 = (x2 − x1)/4.

The reasoning for choosing the above mean is that the randomly chosen wind

power production points will have an average close to lj . The choice of

the standard deviation stems from the fact that 95% of the values from a

normal distribution lie within two standard deviations from the mean, thus

95% of the randomly chosen wind power production points will lie within

[lj − (b+ a)/2, lj + (b+ a)/2]. Alternatively, the remaining 58 points from the

hour-long wind power production scenario can be sampled randomly from a

uniform distribution U(lj − a, lj + b), which however will provide satisfactorily
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results only if a and b are almost equal.

In general, the deviations a and b are not centered around the hourly

average lj , thus b − a 6= 0. In this case, choosing the wind power production

points uniformly from U(lj − a, lj + b) results in the average of the gener-

ated hour-long production differing from the desired average lj by (b − a)/2.

If the wind power production points are chosen from a normal distribution

N(µ, σ2) = N(lj , (b+ a)2/16) the desired average lj is preserved, but probably

more than 5% of the generated wind power production points will lie outside

[lj − a, lj + b], which alters the desired maximum and minimum wind power

production points in the scenario. To overcome this issue, the wind power

production points can be sampled randomly from a truncated normal distri-

bution with parameters µ = lj , σ = (b + a)/4, minimum value lj − a and

maximum value lj + b. For the truncated normal the desired minimum a and

maximum b deviations are preserved, while, according to [101], the average of

the generated hour-long production will differ from the desired average lj only

by:

1√
2π

[

e
− 1

2
16a2

(a+b)2 − e
− 1

2
16b2

(a+b)2

]

Φ
(

4b
a+b

)

− Φ
(

− 4a
a+b

) σ (6.7)

where Φ(·) is the standard normal cumulative distribution function. Since the

inverse of the joint cumulative probability distribution F−1
(A,B),lj

of the minimum

a and maximum b deviations from the hourly average lj is conditioned on lj

a distribution which produces an hourly average closer to lj is preferable, and

thus the remaining 58 points from the hour-long wind power production sce-

nario are chosen from the truncated normal distribution TN
lj+b
lj−a(lj, (b+a)

2/16)

using the algorithm described in Section 5.5.1.

Finally, since the size of the energy storage needed to minimize the
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deviations xn − x̄n from the hourly average x̄n is dependent not only on the

magnitude but also on the sequence of the deviations, the sequence of the 60

generated wind power production points xn, n = 1, 2, ...60 is randomized by

rearranging their order, either ascending or descending with equal probabili-

ties. The reason behind this simplistic arrangement is that over longer time

frames the changes in the output of a wind farm appear less as noise and rather

follow a distinct trend, increasing or decreasing, which is dictated by weather

related changes in the wind speed.

Thus the algorithm used for producing one hour-long wind power pro-

duction scenario xn, with n ∈ [1, 60], is summarized as follows:

1. Generate a uniform random number u ∼ U(0, 1) and pass it through the

inverse of (6.4) to obtain an hourly average lj.

2. Generate a uniform random number p ∼ U(0, 1) and pass it through

(6.6) to obtain minimum a and maximum b deviations from the hourly

average lj .

3. Take two points to be the minimum x1 = lj − a and the maximum

production x2 = lj + b in the scenario.

4. Obtain the remaining 58 points by sampling randomly from a truncated

normal TN
lj+b
lj−a(lj , (b+ a)2/16).

5. Perform a Bernoulli trial with p = 0.5. If the result is 0 order the

xn generated wind power points in ascending order, else order them in

descending order.

Figure 6.4 shows five hour-long wind power production scenarios having the

same average lj = 0.3 p.u., maximum lj + b = 0.382 p.u., and minimum
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lj − a = 0.186 p.u., generated using the described methodology. The dashed

line corresponds to an actual wind power production series of a 160.5 MW

wind farm (WF6), from which the hourly average probability distribution and

the inverse of the joint cumulative probability distribution function of the min-

imum and maximum deviations from the hourly average have been taken using

the data in one year (year 4). The dashed line in Fig. 6.4 clearly contradicts

the ordering (ascending or descending) of the minute wind power values as-

sumption, however the evaluation of the proposed ESS sizing methodology on

real-world wind power data will quantify the effect of the invalidity of this

simplistic assumption.
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Figure 6.4: Five 60-minute wind production scenarios having the same hourly
average, maximum and minimum production. The dashed line corresponds to
an actual hourly wind power production of a 160.5 MW wind farm (WF6).
The required storage size to compensate for wind power imbalances from the
hourly average is different for each scenario, since it is determined by both the
exact magnitude and sequence of the imbalances.
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6.2 Statistical Calculation of the ESS Capacities

In this section the methodology to calculate the statistics of the capac-

ities (power and energy) of the energy storage system (ESS) used to minimize

power imbalances from a desired production level is presented. For each hour-

long wind power production scenario m generated using the methodology pre-

sented in Section 6.1 the following time series are defined with a one-minute

resolution, i = 1, 2, ..., 60:

• Wind power production Pw,m(i),

• ESS power Pb,m(i),

• ESS energy Eb,mb(i).

For each minute i = 1, 2, ..., 60 the ESS power Pb,m(i) is defined as

the difference between the desired power production Pd and the wind power

production Pw,m(i):

Pb,m(i) = Pd − Pw,m(i) (6.8)

Similarly, the ESS energy Eb,m(i) is defined as the difference between the

energy in the previous time-step Eb,m(i − 1) and the energy charged into the

battery or discharged from the battery in the current cycle Pb,m(i) (actually

Pb,m(i) · ∆t, where ∆t refers to one step in the time series, i.e. 1 minute).

When the ESS power output is positive Pb,m(i) ≥ 0 there is a wind power

deficiency and the ESS is discharged:

Eb,m(i) = Eb,m(i− 1)− Pb,m(i) ·
√
η (6.9)

while a negative ESS power output Pb,m(i) < 0 signifies a wind power surplus

and the charging of the ESS:

Eb,m(i) = Eb,m(i− 1)− Pb,m(i)/
√
η (6.10)
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In (6.9) and (6.10) η refers to the roundtrip efficiency of the storage system,

defined as the ratio of the energy used for charging to the energy used for

discharging the storage system:

η =
Echarging

Edischarging

(6.11)

The losses are then divided geometrically between the charging and discharg-

ing portions of the ESS cycle as in [96]. The described methodology is generic

and sets no limit to the technology used in the ESS, which could be imple-

mented using batteries, flywheels, supercapacitors or even ancillary services.

However, it should be noted that the choice of technology heavily affects the

resulting roundtrip efficiency, which can range from 70% for batteries and su-

percapacitors to 90% for flywheels.

For each wind power production scenario m the following ESS charac-

teristics are then defined:

• Minimum ESS power

Pmin,m = min
i
Pb,m(i) (6.12)

• Maximum ESS power

Pmax,m = max
i
Pb,m(i) (6.13)

• ESS power capacity

Psize,m = max
i

|Pb,m(i)| (6.14)

• Minimum ESS energy

Emin,m = min
i
Eb,m(i) (6.15)
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• Maximum ESS energy

Emax,m = max
i
Eb,m(i) (6.16)

• ESS energy capacity

Esize = Emax −Emin (6.17)

In (6.9) and (6.10) the ESS is considered to be initially discharged, Eb(0) = 0,

and the energy of the ESS is assumed to take negative values. This assumption

simplifies the calculation of the ideal initial energy in the ESS, which for each

scenario is the resulting minimum ESS energy Emin, i.e. Eb(0)ideal = |Emin|.
Moreover, if the desired production Pd is taken as the hourly average, then Pb

will assume both positive and negative values forcing Pmin to be negative.

ForM hour-long wind power production scenarios, generated using the

methodology described in Section 6.1, the ESS characteristics form M-long

data samples from which their statistics, such as the sample mean, the sample

standard deviation and the sample quantiles, can be estimated. The reason

for choosing to calculate the sample quantiles of the ESS characteristics is that

they can easily be linked to a desired risk parameter α = 1− p. Choosing an

ESS with energy capacity Esize = QEsize
(p), where QEsize

(p) is the (p)th sample

quantile of the Esize characteristic, means that there is a risk of (1 − p)% of

not covering potential wind power imbalances from the hourly average with

the specific ESS. Since p is the probability that the ESS can actually cover

potential wind power imbalances from the hourly average, p is often referred

to as the coverage rate.

In the work presented in this application the desired production is set at

the forecasted hourly average wind power production, Pd = lj , since the goal

is to estimate the size of an ESS so as to minimize wind power imbalances
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from the hourly average. All power imbalances have to be absorbed, thus

wind curtailment is not considered as an option. It is worthwhile to point out

that the purpose of the proposed method is to minimize deviations from the

generation schedule, which is set at the forecasted hourly average, and thus

allow wind farm owners to fully participate in electricity markets and avoid

deviation penalties. The proposed method is not intended to result in profit

maximization.

Alternatively, in [97] the optimal desired production Pd for each wind

power production scenario is estimated so as to maximize the benefit W of

producing Pd. The benefit is considered the income from selling the produced

energy at the unit price of the wind energy cprice, deducted by the amortized

capital costs of the ESS power capacity cpower (in $/MW ) and the ESS energy

capacity cenergy (in $/MWh):

W = cprice · Pd − cpower · Psize − cenergy · Esize (6.18)

To find the optimal P ∗
d the benefit in (6.18) is calculated in an iterative man-

ner for values of Pd = 0.01, 0.02, ..., 1 p.u. It should be noted that (6.18) does

not take into account operating costs of the ESS and deviation costs incurred

from deviating from the desired production Pd.

Estimating the optimal desired production requires prior knowledge of

energy market prices and deviation costs, which can vary by region, season and

time of day. In addition, operating and capital costs of an ESS depend heavily

on the storage technology used (e.g. batteries, flywheels, supercapacitors) and

these costs are even harder to estimate if the wind power imbalances are com-

pensated using other generators (ancillary services). Indeed, the investment in

an ESS should be the result of a detailed feasibility study which goes beyond

the scope of this example application. The proposed methodology deals only
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with a first step in this process which is to estimate the size of the ESS based

on a wind power production forecast. Depending on the resulting size, the

most profitable can then be chosen from the available storage technologies.

6.3 Application of the ESS Size Estimation Methodol-

ogy to Real-world Wind Power Data

The proposed methodology to estimate the capacities of an ESS so as

to minimize the deviations from the wind power production hourly average

is evaluated using real-world wind power production data. The data come

from 10 wind farms in the ERCOT system, with nameplate capacities ranging

from 28.5 MW to 210 MW (WF2 - WF7, WF11, WF13, WF14, WF15 - see

Appendix A.1). They include wind power production data with a 1-minute

resolution spanning a period of two years. One year is used as a training year

for the proposed methodology and the other one as a test year (years 3 and 4,

respectively - see Appendix A.1). The evaluation process involves evaluation

of the validity of the generated scenarios as well as of the ESS size estimation

methodology. The estimated ESS characteristics for a specific wind farm are

presented in detail and the performance of the estimated ESS characteristics

quantiles using the data in the training year is evaluated on the data of the

test year, for all the considered wind farms.

6.3.1 Evaluation of the Generated Scenarios

The evaluation of the validity of the generated scenarios is done by com-

paring the probability distributions of the actual data and the data from the

generated scenarios. The probability distributions are compared by measuring

their statistical distance [102]. The total variation distance of two probability
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measures f and f̂ with an event space comprising of a finite set of discrete

events x is given by:

δ(f, f̂) =
∑

x

|f(x)− f̂(x)| (6.19)

Alternatively, the statistical distance of two distributions can be measured

using their Kullback-Leibler divergence:

DKL(f ||f̂) =
∑

x

f(x) log
f(x)

f̂(x)
(6.20)

which is the expected number of extra bits required to code samples from f

when using a code based on f̂ , rather than using a code based on f .

To evaluate the validity of the generated scenarios the probability dis-

tribution fL of the hourly average wind power production lj, as well as the

inverse of the joint cumulative distribution F−1
(A,B),lj

of the minimum a and

maximum b deviations from the hourly average lj from wind power produc-

tion data of a 160.5 MW wind farm (WF6) from the training year (year 3) are

used. Using the methodology described in Section 6.1 50, 000 hour-long wind

power production scenarios are generated, a number large enough to guarantee

an adequate number of scenarios for each hourly average wind power produc-

tion level.

Figure 6.5 depicts the probability mass functions of the hourly aver-

age wind power production of the actual data fL and the generated scenarios

data f̂L. The two distributions are very similar and their statistical distance

using (6.19) is found to be δ(fL, f̂L) = 0.02. Since the probability distributions

of the hourly average wind power production exhibit such a small statistical

distance the joint probability mass functions of the minimum a and maximum

b deviations from the hourly average productions are compared using devi-

ations over all the hourly averages f(A,B) = P (A = a ∩ B = b), calculated
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Figure 6.5: The probability mass functions of the hourly average wind power
production using the actual data (year 3) and the data from the generated
scenarios for a 160.5 MW wind farm (WF6). The two distributions have a
small statistical distance (total variation distance = 0.02)

from all the points in the deviation pairs series (ai, bi) defined in (3.8) and

(3.9) of Section 3.3, rather than using deviations by individual hourly aver-

age f(A,B),lj = P (A = a ∩ B = b|x̄n = lj). The difference between the joint

probability mass functions of the maximum and minimum deviations from

the hourly average wind power production using the actual data f(A,B) and

the data from the generated scenarios f̂(A,B) for the 160.5 MW wind farm is

presented in Fig. 6.6. The Kullback-Leibler divergence of the two joint dis-

tributions using (6.20) is found to be DKL(f(A,B)||f̂(A,B)) = 1.4612, which is

considered acceptable, although the biggest differences occur for small devia-

tions which are the deviations with most mass.

The results in Fig. 6.5 and Fig. 6.6 reveal that the generated sce-
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Figure 6.6: The difference (actual - scenarios) between the joint probability
mass functions of the maximum and minimum deviations from the hourly
average wind power production using the actual data (year 3) and the data
from the generated scenarios for a 160.5 MW wind farm (WF6).

narios are probabilistically correct, since they respect the hourly wind power

production distribution and the joint probability distribution of the deviations

from the hourly average. Figure 6.7 depicts the probability mass functions of

the wind power production using all the wind power production points from

the actual data in the training year (year 3) and the data from the generated

scenarios for the 160.5 MW wind farm. The probability mass function of the

wind power production is defined as:

fW (w) = P (xn = w), (6.21)

where xn is the whole wind power production series formed from the minute-

points in all the available hours. The comparison of the distributions fW

from the original data and f̂W from the generated data is used to evaluate
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Figure 6.7: The probability mass functions of the wind power production using
the actual data (year 3) and the data from the generated scenarios for a 160.5
MW wind farm (WF6). The two distributions have a small statistical distance
(total variation distance = 0.01)

the assumption made in Section 6.1 that the wind power production points

in an hour are normally distributed between the minimum and maximum.

The small statistical distance of the two distributions which is found to be

δ(fW , f̂W ) = 0.01 using (6.19) justifies this assumption.

6.3.2 Statistics of the ESS Characteristics

With the methodology described in Section 6.1, M = 50, 000 hour-long

wind power production scenarios are generated using the data of a 160.5 MW

wind farm (WF6) from the training year (year 3). For each of the 50, 000 gen-

erated hours for the 160.5 MW wind farm the characteristics of the ESS, as

defined in Section 6.2, are calculated from the ESS power Pb,m(i) and energy
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Figure 6.8: The probability mass functions of the a) minimum power Pmin,
b) maximum power Pmax, c) minimum energy Emin, and d) maximum energy
Emax of the ESS for a 160.5 MW wind farm (WF6) calculated from 50, 000
hour-long generated scenarios using the data in the training year (year 3).
Most mass is concentrated on small absolute values.

Eb,m(i) series, m = 1, 2, · · · ,M , using a roundtrip efficiency of η = 0.9.

Figure 6.8 depicts the probability mass functions of the ESS charac-

teristics (minimum and maximum ESS power Pmin,m and Pmax,m, minimum

and maximum ESS energy Emin,m and Emax,m) of the respective 50, 000-long

time series. The minimum and maximum ESS power Pmin,m and Pmax,m are

calculated from (6.12) and (6.13), respectively, while the minimum and max-

imum ESS energy Emin,m and Emax,m are calculated from (6.15) and (6.16),
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respectively, for m = 1, 2, · · · ,M . Most probability mass is concentrated on

small absolute values for all ESS characteristics (0 − 0.2 p.u.P for ESS power

and 0 − 2 p.u.E for ESS energy). It should be noted that the ESS power is

per-unitized based on the wind farm nameplate capacity, 1 p.u.P = 160.5 MW,

while the ESS energy is per-unitized based on the wind farm nameplate capac-

ity times the time step unit which is 1 minute, thus 1 p.u.E = 160.5 MW·min.

It is reminded that, according to (6.8), in each scenario m, the minimum ESS

power Pmin,m appears at the minute i when the wind power production has the

largest positive deviation from the hourly average for which Pb,i = Pd−Pw,i ≤ 0

and thus Pmin,m assumes negative values. Similarly, since the ESS is consid-

ered initially discharged the minimum ESS energy Emin,m in each scenario m

assumes non-positive values.

The percentiles Q(p%) of the ESS power capacity Psize,m and the ESS

energy capacity Esize,m calculated from the respective M = 50, 000-long data

samples, m = 1, 2, · · · ,M , are given in Fig. 6.9 as a function of the percentile

rank p. Figure 6.10 depicts the same informations as Fig. 6.9, but only for

ranks within [85, 100].

From Fig. 6.10 it can be observed that a risk parameter of α = 0%, rep-

resenting a completely risk averse operator, results in a necessary ESS size of

QPsize(100%) = 0.72 p.u.P = 116.6 MW andQEsize(100%) = 5.95 p.u.E = 15.9

MWh to cover for all wind power imbalances from the hourly average wind

power production. Such an ESS size is significantly larger than the respective

size for a risk parameter of α = 5% with QPsize(95%) = 0.21 p.u.P = 32.9

MW and QEsize(95%) = 2.29 p.u.E = 6.1 MWh. Thus, as expected, lower

risk parameters signify lower penalties due to deviations from the generation

schedules but higher investment costs.

Figure 6.11 depicts the 95th percentile of the ESS power (QPsize(95%))
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Figure 6.9: The quantile Q(p) of the a) power size Psize b) energy size Esize

of the ESS as a function of the quantile rank p for a 160.5 MW wind farm
(WF6) calculated from 50, 000 hour-long generated scenarios using the data
in the training year (year 3).

and energy (QEsize(95%)) capacities as a function of the hourly average wind

power production level lj for the same 160.5 MW wind farm (WF6). To obtain

this graph M = 50, 000 scenarios are generated for each hourly average wind

power production level lj = 0.01, 0.02, ...1 p.u. Essentially, this means that for

each hourly average production level lj the algorithm described in Section 6.1 is

repeated 50, 000 times omitting step 1 and using the quantile function of (6.6)

calculated from the data in the training year (year 3). Then, for each hourly

average production lj the ESS power Psize,m and energy Esize,m for each sce-
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Figure 6.10: The 85th to 100th percentiles Q(p) of the a) power size Psize b)
energy size Esize of the ESS as a function of the quantile rank p for a 160.5
MW wind farm (WF6) calculated from 50, 000 hour-long generated scenarios
using the data in the training year (year 3).

nario are calculated from (6.14) and (6.17), respectively, for m = 1, 2, · · · ,M
and the respective 95th percentiles are obtained by sorting the series. Thus, an

ESS with the power and energy capacities depicted in Fig. 6.11 fails to capture

the imbalances from the respective hourly average lj in at most 0.05·50,000
= 2,500 of the 50,000 generated hours. From Fig. 6.11 it is observed that

the ESS power capacities for mid-level hourly average wind power productions

(0.3 ≤ lj ≤ 0.7 p.u.) are in the range of 0.3 p.u.P , which are almost tripple in

size compared to the ESS capacities for low (0 ≤ lj ≤ 0.1 p.u. p.u.) and high

(0.9 ≤ lj ≤ 1 p.u.) wind power productions. This is also true for the ESS en-

ergy capacities which are close to 3 p.u.E for mid-level, compared to values less

than 1 p.u.E for low and high hourly average wind power productions. This

indicates a higher variability for mid-level wind power productions, attributed
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Figure 6.11: The 95th percentile of the a) power size Psize and b) energy size
Esize of the ESS for a 160.5 MW wind farm (WF6) as a function of the hourly
average wind power production lj calculated from 50, 000 hour-long generated
scenarios for each lj using the data in the training year (year 3). ESS capacities
are higher at mid-level wind power production.

to the large slope of the wind power versus wind speed curve at mid-level pro-

duction, which causes even a small change in the input wind speed to have a

large effect on the wind power output.

6.3.3 Evaluation of ESS Characteristics Coverage Rates

To evaluate the proposed ESS size estimation methodology the real-

world wind power data from 10 wind farms in the ERCOT system are used

(WF2, WF3, WF4, WF5, WF6, WF7, WF11, WF13, WF14, and WF15 -

see Appendix A.1). Using the methodology described in Section 6.1 50, 000

hour-long wind power production scenarios with a one-minute resolution are
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generated for each wind farm. To generate the scenarios the inverse of the joint

cumulative distribution F−1
(A,B),lj

of the minimum a and maximum b deviations

from the hourly average lj from the data in the training year (year 3) and the

probability mass function fL of the hourly average wind power production lj

from the data in the test year (year 4) are used. The percentiles (p%) of the

ESS characteristics from all the scenarios are then calculated for each wind

farm.

The 95th percentile of the minimum and maximum ESS power Pmin

and Pmax, as well as the minimum and maximum ESS energy Emin and Emax

for each wind farm is given in Table 6.1. For example, from Table 6.1 it can

be seen that for a 160.5 MW wind farm, in 47,500 out of the 50,000 gener-

ated hours, the largest positive deviation from the hourly average is less than

|Pmin|=31.8 MW, whereas in 47,500 hours (not necessarily the same as before)

Table 6.1: 95th Percentile of the ESS Characteristics

WF Size Pmin Pmax Emin Emax

[MW ] [MW ] [MW ] [MWh] [MWh]

28.5 -5.5142 4.9915 -0.909 0.8135

37.5 -8.1898 7.7907 -1.3668 1.2198

74.9 -13.7183 12.875 -2.2277 1.9901

82.5 -16.1886 15.7229 -2.6351 2.3571

91.5 -19.0653 17.5752 -3.0218 2.7593

114 -21.3965 20.3066 -3.5357 3.1578

120.6 -22.0853 20.5871 -3.5893 3.2011

160 -29.6718 28.8935 -4.8991 4.3494

160.5 -31.7706 30.1854 -4.9307 4.5259

210 -36.0137 33.9795 -5.7061 5.1079
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the largest negative deviation from the hourly average is less than Pmax=30.2

MW. Similarly, in 47,500 hours the largest amount of energy charged into

the ESS is less than Emax=4.5 MWh, whereas in some other 47,500 hours

the largest amount of energy discharged from the ESS is less than |Emin|=4.9

MWh.

Figure 6.12 depicts the 95th percentile of the ESS power capacity Psize

and the ESS energy capacity Esize as a function of the wind farm nameplate

capacity. Though the ESS characteristics increase with wind farm size in ab-

solute numbers, the decreasing trend in Fig. 6.12 indicates that wind power

variability decreases with increasing wind farm size. This decrease is attributed

to the fact that a higher number of wind turbines with a wider geographical

spread in a large wind farm has a more pronounced effect on the variability

cancellations in their output.

Using Fig. 6.12 it can be seen that for a 160.5 MW wind farm in 47,500

out of the 50,000 generated hours an ESS with size Psize=0.2141 p.u.P=33.7

MW and Esize=2.33 p.u.E=6.23 MWh is sufficient to accommodate imbalances

from the hourly average. From the analyzed 95th percentiles of the 160.5 MW

wind farm it becomes evident that QEsize
(0.95) ≤ QEmax(0.95)−QEmin

(0.95),

since a largest amount of charged energy equal to QEmax(0.95) hardly ever

coincides with a largest amount of discharged energy of QEmax(0.95) in the

same hour. Similarly, QPsize
(0.95) ≥ max{|QPmin

(0.95)|, |QPmax(0.95)|}, since
the ESS power capacity Psize time series is calculated using the maximum of

either the largest positive or largest negative deviation from the hourly av-

erage, and thus assumes values that are larger than the respective Pmax and

Pmin ESS time series.

To estimate the ESS capacities the generated scenarios use the inverse

of the joint cumulative distribution F−1
(A,B),lj

of the minimum a and maximum
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Figure 6.12: The 95th percentile of the a) power size Psize and b) energy size
Esize of the ESS as a function of the wind farm nameplate capacity. The de-
creasing trend indicates that wind power variability decreases with increasing
wind farm size.

b deviations from the hourly average lj from one year’s data (year 3) and the

probability mass function fL of the hourly average wind power production lj

from the next year’s data (year 4). This corresponds to the case where a wind

farm owner (or the system operator) generates scenarios to estimate the neces-

sary ESS capacities so as to firm its future production having some knowledge

only on past wind power variability and a forecast of future wind power pro-

duction. The probability mass function fL can be considered a probabilistic

forecast for one specific hour for which the wind farm owner has to cover po-

tential imbalances with a certain coverage rate p. When the wind farm owner

has a perfect forecast of the hourly average lj, the necessary ESS size can be

estimated by creating a graph similar to that presented in Fig. 6.11 for the

240



desired coverage rate p.

However, for the specific evaluation methodology considered, the wind

farm owner’s goal is to estimate the size of an ESS so as to be able to cover de-

viations from the hourly average not for just one hour but for at least 1−a% of

the hours in the test year. Here a% could be the maximum allowable percent-

age of hours in a year, where wind power imbalances from the hourly average

are not covered, for which no penalty is applied. An application of such a cri-

terion for applying penalties is probable, since such criteria are already used

for power system reliability performance [9]. To estimate this ESS size the

wind farm owner uses historical data for wind power variability, i.e. the quan-

tile function of the minimum a and maximum b deviations from the hourly

average lj of the data in the training year. Moreover, it is assumed that the

wind farm owner has perfect knowledge of the probability mass function fL of

the hourly averages in the test year. This assumption may not seem realistic,

but in general there is bigger uncertainty with respect to the near-future wind

power production than the average wind power output over the long run.

At this point it should be noted, that the proposed ESS size estimation

methodology provides the ESS power and energy capacities to minimize im-

balances from the hourly average assuming that a same size ESS is available

at the beginning of each hour. Thus, the estimated ESS size can be thought

of as the storage size to be rented at each hour from a hypothetical energy

storage market. The storage power and energy capacities of the market should

be such, that in each hour the wind farm owner can use up all the rented power

and energy in either direction (charging or discharging). When the problem

is viewed from a power system operator perspective, the generators providing

ancillary services form such a market. Obtaining the ESS size which optimizes

the wind farm performance over the whole test year would need the application
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of dynamic programming and the generation of year-long scenarios to account

for relations between successive hours.

To evaluate the estimated ESS size the wind farm owner can compare

it against the size he would choose if he had knowledge about actual wind

power variability over the hours in the test year. Indeed, since the goal of

the proposed methodology is to estimate the size of an ESS, its evaluation is

done by comparing the resulting estimated ESS capacities (Qscen) for a certain

risk parameter α to the same risk parameter ESS capacities of the actual data

(Qactual). That is the estimated ESS size quantiles, QPsize,scen(1 − α%) and

QEsize,scen(1 − α%), from the generated scenarios are compared to the actual

ones, QPsize,actual(1− α%) and QEsize,actual(1− α%). The estimated quantiles

are calculated from the generated scenarios using minimum and maximum de-

viations from the data in the training year and the probability mass function

of the hourly average wind power production from the data in the test year.

The actual quantiles are calculated from the data in the test year. Using the

ESS power Pb(i) and energy Eb(i) series, i = 1, 2, · · · , 60, from each hour in

the test year the ESS characteristics of each hour are calculated from (6.12)

- (6.17) and the resulting quantiles of the ESS characteristics time series are

termed the actual quantiles (Qactual). The results of this comparison for the

ESS power and energy sizes under a risk parameter α = 5% are given in Ta-

ble 6.2.

The results in Table 6.2 reveal that the estimated from the actual

ESS sizes have small differences for all the wind farms, with the absolute dif-

ference being on average 10%. Regarding the ESS power capacity, the wind

farm owner could achieve capturing wind power imbalances from the hourly

average for 95% of the hours in the test year with a smaller sized ESS than the

estimated one. On the other hand, the smaller estimated than the actual ESS
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Table 6.2: 95th Percentile of the ESS Characteristics Using the Generated
Scenarios and the Actual Data

WF Size Psize Esize Psize Esize

(scenarios) (scenarios) (actual) (actual)

[MW ] [MW ] [MWh] [MW ] [MWh]

28.5 5.9348 1.0858 5.1302 1.0608

37.5 8.9881 1.6135 8.4138 1.8148

74.9 14.8934 2.7317 13.4663 2.9368

82.5 17.9075 3.2631 17.4627 3.8228

91.5 20.6926 3.7457 19.1748 4.2814

114 23.6331 4.2822 22.4251 4.9283

120.6 24.1547 4.359 22.8293 5.0801

160 32.8279 6.0053 31.2786 6.9753

160.5 34.5712 6.2714 30.4 6.8147

210 38.8704 7.1603 35.4976 8.0049

energy capacity values indicate that the wind farm owner would eventually

not be able to capture wind power imbalances for less than 5% of the hours

in the test year, which would result in wind power imbalances penalties being

applied.

The ESS sizing methodology essentially provides ESS characteristics

quantile estimates, thus the reliability of the quantile estimates is used for

their evaluation. It is reminded that reliability refers to the difference be-

tween the actual from the nominal proportions (coverage rates), and ideally

the wind farm owner would like these differences to be zero. That is, when

the wind farm owner estimates the ESS characteristics for certain risk param-

eter α = 1 − p he would like the estimated ESS characteristics to be able to

cover wind power imbalances from the hourly average with a coverage rate p̂
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as close as possible to the nominal coverage rate p. The actual coverage rate

p̂ is defined as the value for which Qscen(p̂) = Qactual(p) and it corresponds to

the ratio of hours in the test year for which the estimated ESS can cover wind

power imbalances from the hourly average to the total number of hours in the

test year. If p̂ > p (positive reliability) the ESS covers imbalances but is more

expensive, whereas for p̂ < p (negative reliability) wind power imbalances are

not covered and penalties may apply. From this perspective, positive reliabil-

ity is favored over negative reliability. If the penalty considered is cdev $/MWh

of not firmed wind power energy, that is wind power energy imbalances not

covered by the ESS, then the quantity cdev(Qactual(p)−Qscen(p))(p̂−p)·(hours
in a year) provides an upper bound on the deviation penalties.

Figure 6.13 depicts the actual coverage rate of the estimated 95th

percentile for all the ESS characteristics on the actual data as a function of

the wind farm size. The dashed line in Fig. 6.13 corresponds to the nominal

coverage rate p = 0.95. The small deviations of the actual from the nominal

coverage rates indicate that the estimated ESS characteristics are very close

to the actual ones with absolute deviations from the actual coverage rates not

exceeding 2.4% and a mean absolute deviation of 1.2%. Figures 6.13(a)-(c)

reveal that the ESS estimated power characteristics have positive reliability,

which means that from a power perspective the estimated ESS can capture

wind power imbalances for more than 95% hours in the test year (close to

96%). However, in terms of energy, the estimated ESS manages to cover wind

power imbalances from the hourly average only for 93.5% of the hours in the

test year, as can be seen from Fig. 6.13(f). Moreover, similar ESS character-

istics for similar-sized wind farms in Table 6.2 imply that in the absence of

historical wind power variability data, the proposed methodology can be ap-

plied using respective data of similar-sized wind farms with analogous results.
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Figure 6.13: Actual coverage rate of the estimated 95th percentile of the a)
minimum power Pmin, b) maximum power Pmax, c) power size Psize, d) mini-
mum energy Emin, e) maximum energy Emax, and f) energy size Esize of the
ESS, as a function of the wind farm nameplate capacity. The dashed line
represents the nominal coverage rate p = 0.95. The mean absolute deviation
from the actual coverage rate is less than 1.5%.

Several factors account for the deviations in the ESS capacities in Ta-

ble 6.2, or similarly the deviations of the actual from the nominal proportions

in Fig. 6.13, which means that there might be room for further minimization

of the already small deviations. One factor contributing to the deviations

between the actual and the estimated quantities stems from the inability to

properly invert the cumulative probability mass function of the hourly aver-

ages given in (6.4), which results in differences between the probability mass

function of the hourly averages in the actual data and the generated scenarios.

245



As is pointed out in Section 5.5.3 a change in the probabilities (weights) of

the hourly averages can significantly affect the resulting ESS estimates. In

addition, the deviations in ESS power are also attributed to using the wind

power deviations from the hourly averages of the data in a past year, which

signifies that a better knowledge of future wind power variability, such as us-

ing an exponentially weighted stochastic approximation to periodically update

the quantile function in (6.6) as described in Section 5.3.5, can furthermore

improve the results. On the other hand, the deviations in ESS energy are

heavily affected by the way the intermediate points in a scenario are picked

(normality and ordering assumption), thus they could benefit from using more

realistic intra-hour wind power scenarios, for example by taking into account

the quantile functions for intra-hour time resolutions.

6.4 Concluding Remarks

Variability is an inherent characteristic of wind power and the coupling

of wind farms with energy storage units is considered a promising approach

in reducing the effects of wind power variability and uncertainty on power

system operations, and in allowing wind farm owners a higher participation

in day-ahead and hour-ahead energy markets. The example application of the

CRM presented in this chapter provides a methodology to estimate the size

(power and energy capacities) of an energy storage system with the goal of

minimizing deviations from the hourly average wind power production. Using

only a probabilistic forecast of the hourly average wind power production and

the inverse of the joint cumulative distribution of the maximum and minimum

deviations from the hourly average, hour-long wind power production scenar-

ios are generated from the algorithm described in Section 6.1. The statistics
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of the energy storage system’s characteristics, given in Section 6.2, are then

estimated from these scenarios as a function of the desired risk parameter.

The evaluation of the proposed methodology using real-world wind

power data presented in Section 6.3 reveals that the data from the gener-

ated scenarios have probability distributions which exhibit a small statistical

distance to those of the actual data. Moreover, when the estimated ESS ca-

pacities, calculated having some knowledge on past wind power variability and

knowledge of a forecast of future wind power production, are compared to the

ESS capacities of the actual data, they exhibit coverage rates which are very

close to the nominal ones, with an average absolute deviation less than 1.5%.

Thus, the proposed methodology can be used by wind farm owners so as to

estimate the size of an ESS which can firm the produced output and allow for

participation in energy markets. Alternatively, since the proposed methodol-

ogy poses no restrictions on the technology used to implement the ESS, it can

be used by power system operators so as to estimate the power and energy to

be provided from ancillary services.
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Chapter 7

Conclusion and Future Work

Variability is an inherent characteristic of wind power, which, along

with uncertainty, poses significant risk to power system planners and opera-

tors, as well as wind farm owners and investors. The adverse effects of wind

power variability and uncertainty on system-wide reliability, operations, an-

cillary services, and costs are examined in wind integration studies performed

all over the world in the recent years.

Realizing that wind power variability will be present even when all un-

certainty is removed with perfect wind power forecasts, makes the ability to

effectively measure wind power variability of critical importance, because it

allows engineers to quantify and therefore manage wind power variability at

the desired time scale. With nowadays wind power penetration levels, intra-

hour variation of wind power (in MW) becomes comparable to that of load

variation, hence the need for a metric to quantify intra-hour wind power vari-

ability is more prominent. However, current variability metrics presented in

Section 2.2 fail to effectively capture intra-hour variations deeming a novel

intra-hour wind power variability metric necessary.

This chapter summarizes the most important results from the research

contributions of the work presented herein and identifies future research ob-

jectives.
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• Development of the conditional range metric to quantify intra-hour wind

power variability

The main objective of the work presented herein is the development

of an intra-hour wind power variability metric and it is met with the

work described in Chapter 3, which provides a formal definition of the

proposed conditional rage metric (CRM) to quantify intra-hour wind

power variability. With the conditional range metric the variability of

wind power is characterized by the size of the interval [Mlowk,lj
,Mupk,lj

]

within which a wind power output with average lj lies over a given time

frame of length k (the larger the size of this interval the higher the wind

power variability). Using pth sample quantiles of the CRM, denoted

CRMk,lj ,p = [Mlowk,lj ,p
,Mupk,lj ,p

], the proposed metric becomes a prob-

abilistic intra-hour wind power variability metric, which allows power

system operators and wind farm owners to make decisions based on their

willingness to accept a certain level of risk.

• Assessment of intra-hour wind power variability

The performance analysis of the proposed metric in wind power variabil-

ity assessment given in Sections 4.1 and 4.2 reveals that intra-hour wind

power variability is larger at mid-level wind power production lj and

increases with increasing time interval length k and increasing coverage

probability p. The higher variability at mid-level wind power produc-

tions is attributed to the large slope of the wind power curve at mid-level

productions. Moreover, wind power variability appears to decrease with

increasing wind turbine and wind farm size, since a large number of wind

turbines allows for more positive changes being canceled out by negative

changes in their wind power outputs, and is lower when wind turbines
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are connected to the grid through converters.

Future Work : The efficacy of the proposed metric in quantifying wind

power variability should also be demonstrated using different sets of real-

world wind power data, such as data with higher resolutions, e.g. sec-

onds, or data from off-shore wind farms. In addition, the ability of the

proposed metric to effectively characterize wind power variation and es-

timate the size of wind power ramps over time frames exceeding the

hour should be investigated. Most importantly, since wind power aggre-

gation is found to offer a significant reduction in wind power variability

for all wind turbine technologies and sizes, the study of methodologies

to reliably estimate this reduction under more general conditions should

be explored. Thus, a future research contribution should be directed

towards providing a conditional range metric updating procedure when

the output of a new wind farm or turbine is added to an existing aggre-

gated output, using spatio-temporal correlation between the additional

and the existing wind power output.

• Evaluation of the conditional range metric against existing metrics

The comparison of the conditional range metric to the step-changes and

forward differences statistics in assessing the size and rate of intra-hour

wind power ramps presented in Section 4.3 reveals the shortcomings of

the prevalent step-changes approach, which are their inability to convey

information about the wind power variability within a time interval and

their lack to provide the duration of the wind power ramp rates. The

results show that reserves based on the conditional range metric manage

to accommodate intra-hour wind power variations for an additional 15%

of hours within a given year, with significant benefits for power system
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reliability.

Future Work : For the comparison purposes a ramp rate associated with

the conditional range is provided, but further analysis is deemed neces-

sary to determine whether the inclusion of ramp rates in the conditional

range metric is of significant benefit to power system operators. Another

aspect to be investigated is the addition of a sign to the conditional range

metric, indicating a positive or negative largest change in wind power

output over a time interval.

• Development of methods to forecast wind power variability

The proposed wind power variability forecasts described in Chapter 5

use pth CRM quantiles to construct probabilistic intervals within which

wind power output will lie. One static (sample quantile) and two time-

adaptive methods (exponentially weighted moving average, exponen-

tially weighted stochastic approximation) are given for estimating CRM

quantiles and the resulting quantile estimates are compared using their

reliability, sharpness and resolution. Reliability tends to be better at

mid-production levels, denoting that though wind power variability is

highest at mid-production levels it is more predictable at these lev-

els. Moreover, reliability appears to be unaffected by wind power fore-

cast time resolution, but it tends to improve with increasing wind farm

nameplate capacity and increasing wind turbine size. Under all consid-

ered methods, high rank quantiles tend to be more reliable than lower

rank quantiles, with average expected deviations from nominal propor-

tions close to 1% and maximum expected deviations less than 5%. Us-

ing time-adaptive quantile estimation approaches results in more reli-

able estimates and more effective differentiation between various wind

251



power variability situations, however the computational aspects of time-

adaptive methods need to be factored in. In addition, the analysis using

an artificial wind power forecast reveals that intra-hour wind power vari-

ability increases with increasing hourly wind power uncertainty, but at

a much slower rate.

Future Work : Though the proposed quantile estimation methods pro-

duce reliable CRM quantiles, the performance of additional methods

based on optimization techniques, such as quantile regression and time

adaptive regression, should also be investigated. Regarding the arti-

ficial wind power forecast results, a verification using real-world wind

power forecasts coupled with the respective actual wind power data is

necessary. Moreover, the methods to obtain the proposed wind power

variability forecasts are based on point wind power forecasts, but the in-

creasing popularity of ensemble wind power forecasts in the past decade

calls for an adaptation of these methods to produce reliable wind power

variability forecasts from probabilistic wind power forecasts.

• Demonstration of the utility of the conditional range metric

The provision of algorithms to construct wind power inequalities of the

form {Mlowk,lj ,p
≤ xn ≤ Mupk,lj ,p

with probability p}, which bound the

wind power output xn over a time interval of length k and average wind

power production lj, using either historical wind power data or future

CRM pth quantile estimates, opens the door to numerous applications.

Such an example application of the CRM, given in Chapter 6, presents

a methodology to estimate the size (power and energy capacities) of an

energy storage system with the goal of minimizing deviations from the

hourly average wind power production. The evaluation of the proposed
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methodology using real-world wind power data reveals that when the es-

timated ESS capacities, calculated having some knowledge on past wind

power variability and knowledge of future wind power production trough

a forecast, are compared to the ESS capacities of the actual data, they

exhibit coverage rates which are very close to the nominal ones, with an

average absolute deviation less than 1.5%.

Future Work : The proposed methodology can be enhanced using corre-

lation analysis between intra-hour variations over different length time

intervals, which will result in more representative hourly wind power

output scenarios. The generation of reliable scenarios is considered the

most important base product in wind power and other renewable en-

ergy forecasting methods. Using such scenarios, a sizing methodology

which provides the optimal ESS to counteract intra-hour variations over

a longer period, e.g. a 24-hour period, should also be considered by

applying dynamic programming techniques.
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Appendix A

Wind Power Data

A.1 Data Description

The real-world wind power data used in this dissertation come from

the Electric Reliability Council of Texas (ERCOT), one of the Independent

System Operators in North America. The ERCOT region occupies the entire

Texas Interconnection, which covers nearly all of the state of Texas in the

United States. The data come from a total of 18 wind farms, with nameplate

capacities ranging from 28 MW to 226.5 MW, from three different regions

in the ERCOT system. They include wind power production data with a 1-

minute resolution spanning a period from one up to four years. Table A.1

gives a detailed description of the wind farms capacities and turbines, while

Table A.2 presents the data timespan for each wind farm.
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Table A.1: Wind Farm Data

Wind Farm Capacity Number of Turbine Region

Name [MW] Turbines Manufacturer

WF1 28.0 42 Vestas 2

WF2 160.0 160 Mitsubishi 2

WF3 120.6 67 Vestas 1

WF4 114.0 76 GE 1

WF5 28.5 38 Zond 3

WF6 160.5 107 Enron 3

WF7 210.0 140 GE 1

WF8 184.0 80 Siemens 1

WF9 226.5 151 GE 1

WF10 115.0 50 Siemens 1

WF11 82.5 125 Vestas 3

WF12 84.0 56 GE 2

WF13 74.9 107 NegMicon 3

WF14 37.5 25 GE 1

WF15 91.5 61 GE 1

WF16 135.0 90 GE 1

WF17 150.0 100 Enron 1

WF18 159.7 242 Vestas 3
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Table A.2: Timespan of Wind Power Data

Name Year 1 Year 2 Year 3 Year 4

WF1 Jan–Dec Jan–Dec Jan–Dec —

WF2 Jan–Dec Jan–Dec Jan–Dec Jan–Dec

WF3 — — Jan–Dec Jan–Dec

WF4 — — Jan–Dec Jan–Dec

WF5 Jan–Dec Jan–Dec Jan–Dec Jan–Dec

WF6 Jan–Dec Jan–Dec Jan–Dec Jan–Dec

WF7 — — Jan–Dec Jan–Dec

WF8 — — — Jan-Dec

WF9 — — — Jan-Dec

WF10 — — — Jan-Dec

WF11 Jan–Dec Jan–Dec Jan–Dec Jan–Dec

WF12 — — — Jan-Dec

WF13 Jan–Dec Jan–Dec Jan–Dec Jan–Dec

WF14 — — Jan–Dec Jan–Dec

WF15 — — Jan–Dec Jan–Dec

WF16 — — — Jan–Dec

WF17 Jan–Dec Jan–Dec Jan–Dec Jan–Oct

WF18 Jan–Dec Jan–Dec Jan–Dec Jan–Oct
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A.2 Data Pre-processing

The available wind power data were pre-processed to eliminate bad

data, occurring either in the form of flat data or data spikes. Flat data seg-

ments, which are periods for which the accurate wind power measurement is

missing, having a length up to and including 5 minutes were filled in with

linear interpolation between the closest points, while flat data segments longer

than 5 minutes were excluded from the data set. Data spikes also represent

lost communication between the wind farm and the monitoring system which

is restored minutes later, and were recognized in the form of an unusual large

step-change of a negative sign followed by a step-change of almost equal mag-

nitude but opposite sign. Data segments between data spikes were treated

in the same manner as flat data, i.e. they were either excluded or replaced

with linear interpolation. Data pre-processing resulted in less than 10% of

the initial data being excluded or replaced. It should be noted that when the

wind speed rises above the cut-off speed the wind power output experiences

a sudden drop and the wind farm becomes unavailable. This situation also

appears as a large step-change of negative sign in the data, but it cannot be

considered a data spike, since it is due to the physical limitations of the wind

turbines and not because of a malfunction in the monitoring system. However,

these incidents are rare and none was present in our data.
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Appendix B

Wind Speed Data and Wind Power Curves

B.1 Wind Speed Data

The wind speed time series used in this dissertation are real-world wind

speed data with a 1-minute resolution spanning a period of 30 weeks. The data

are measured at a height of 65 m and come from measurements at two wind

farms in Iowa. The first wind speed series (WS1) has mean µ1 = 7.874 m/sec

and standard deviation σ1 = 3.578 m/sec, while the second series (WS2)

presents slightly less variability with µ2 = 7.167 m/sec and σ2 = 3.325 m/sec.

The histogram of the two wind speed series is given in Fig. B.1.

B.2 Wind Power Curves

The available wind power curves correspond to six different wind power

turbines. The turbines are classified according to their generator type [34] and

their size.

The generator types are:

1. Type I: Fixed Speed Induction Generator

2. Type II: Variable Slip Induction Generator

3. Type III: Double-fed Induction Generator (DFIG)

4. Type IV: Synchronous Generator with IGBT Converter (Full Converter).
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Figure B.1: Probability mass function of the wind speed series. The second
wind speed series (WS2) exhibits a lower mean and standard deviation than
the first series (WS1).

The considered turbines include four 1500 kW turbines (Type I, Type II, Type

III, Type IV), and two variable slip induction generator turbines with sizes 660

kW (Size A) and 1650 kW (Size B). The wind turbine data are summarized

in Table B.1 and the respective wind power curves are depicted in Fig. B.2.

All the data come from the manufacturers’ technical specifications.
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Table B.1: Wind Turbine Data

Curve Power Diameter Hubheight Manufacturer Model

Name [kW] [m] [m]

Type I 1500 72 62 Neg-Micon NM 72C

Type II 1500 63 64 Vestas V 63

Type III 1500 77 65 GE GE 1.5

Type IV 1500 65 65 Vensys VS 70

Size A 660 47 65 Vestas V 47

Size B 1650 66 65 Vestas V 66

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Wind Speed [m/sec]

W
in

d 
P

ow
er

 [p
.u

.]

 

 

Type I
Type II
Type III
Type IV
Size A
Size B

Figure B.2: Wind power curves.
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