
 

 

 

 

 

 

 

 

 

Copyright 

by 

Vladimir M. Rabinovich 

2011 

 

  



 

The Thesis Committee for Vladimir M. Rabinovich 

Certifies that this is the approved version of the following thesis: 

 

 

 

Pore Pressure and Fracture Pressure Prediction of 

Deepwater Subsalt Environment Wells in Gulf of Mexico 

 

 

 

 

 

 

 

       APPROVED BY 

       SUPERVISING COMMITTEE: 

 

        Supervisor:  ___________________________________ 
        Kenneth Gray 
 
 

        ___________________________________ 
        Pavel Syngaevsky 
 

 
 



 
 

 

Pore Pressure and Fracture Pressure Prediction of 

Deepwater Subsalt Environment Wells in Gulf of Mexico 

 

 

by 

Vladimir M. Rabinovich, BS PE 

 

Thesis 

Presented to the Faculty of the Graduate School of 

The University of Texas at Austin 

In Partial Fulfillment 

of the Requirements 

for the Degree of 

 

Master of Science in Engineering 

 

 

The University of Texas at Austin 

August 2011 

 



Dedication 

 

To my family and friends. 

 

 

 

  



Acknowledgements 

  

 First and foremost, I would like to give my sincere thanks to my supervisor, Dr. 

Kenneth Gray, for his continued support and supervision during the course of my 

academic career. I am very grateful for being given the opportunity to revitalize my 

academic career, be part of this project, and continuously further my knowledge. 

 I want to offer my deepest gratitude to Pavel Syngaevsky, who not only served as 

my co-supervisor, but also encouraged and challenged me throughout my internship and 

project at Newfield Exploration. None of this would have been possible without his help. 

 I would like to acknowledge Newfield Exploration for giving me the software and 

data to be able to complete this project. Newfield Exploration provided an immense 

working environment with great experiences that I will not forget. 

 My best wishes and thanks to my office colleague and friend, Xiaoyan Shi, who 

often enlightened and supported me during my two years of study. 

 Finally, I would not have been able to accomplish any of this without the 

continued love and support from my family, especially my father.   

 

 

 

 

  

v 
 



Abstract 

 

Pore Pressure and Fracture Pressure Prediction of 

Deepwater Subsalt Environment Wells in Gulf of Mexico 

 

Vladimir M. Rabinovich, M.S.E. 

The University of Texas at Austin, 2011 

 

 

Supervisor: Kenneth Gray 

 

There are many complications associated with abnormally high fluid pressures in 

overpressured formations. Pore pressure can directly influence all parts of operations 

including drilling, geological studies, completion, and production. Accurate predictions 

of pore pressure and fracture pressure are vital aspects to the production and completion 

of safe, time efficient, and cost efficient projects. Knowledge of pressure distribution in 

the formation can greatly reduce complexities associated with drilling and completing a 

well.  

A three-method pore pressure and fracture pressure study was performed on two 

prospect deepwater wells located in the Gulf of Mexico. More than thirty offset wells in 

the greater region were initially analyzed for similarities with the two prospect wells. In 

the final analysis, only six wells were used to create pore pressure and fracture pressure 
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models due to inconsistencies in similarities or lack of usable data in many of the offset 

wells. Pore pressure and fracture pressure models were constructed for the offset wells, 

and then applied and calibrated for the two prospect wells using drilling data such as mud 

weights, MDTs (Modular Dynamic Testing), and LOTs (Leak-off Test). Three types of 

pore pressure and fracture pressure models were used in the study: Eaton’s deep 

resistivity method; Eaton’s acoustic sonic method; and Bower’s interval seismic velocity 

method.  

Pore pressure and fracture pressure prediction was complicated by abnormal 

pressure in the formation due to undercompaction and seals. Both prospects were located 

in a deep subsalt environment. Low permeability and traps prevents fluid from escaping 

as rapidly as pore space compacts thus creating overpressure. Drilling through salt in 

deep water is expensive and risky. Elevated pore pressure and reduced fracture pressure 

underneath salt seals can create very tight mud weight windows and cause many drilling 

problems, as seen in the results of the offset wells’ pore pressure and fracture pressure 

models.  

Results indicate very small pore pressure and fracture pressure windows, or mud 

weight windows, because of overpressures in the formation caused by such a deep subsalt 

environment. Many casing points were needed in the final casing design of prospect wells 

to accommodate the smaller mud weight windows. Pore pressure has the most significant 

increase immediately below the salt, while the mud weight window remained constant or 

decreased with depth. The average mud weight window ranged between 1 to 2 pounds 

per gallon below the salt. 
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CHAPTER 1: INTRODUCTION 

Pore pressure, or the pressure of fluids within the pores of a formation, is an 

important assessment that must be carefully made when planning a drilling project.  

Formations with pressures higher than hydrostatic pressure can be encountered in varying 

areas and depths. Being unaware of areas with overpressures can create many potentially 

catastrophic events such as blown reservoir seals, drilling fluid losses, or formation fluid 

influxes. There are many causes of overpressure; thus, it is vital to take the time to 

strategically plan, analyze, and model pore pressures and fracture pressures as accurately 

as possible. 

 

1.1 Background 

 Hydrostatic pressure, or normal pressure, refers to formation pressures which are 

equal to the hydrostatic head of a column of water of equal depth. Sedimentary rocks 

maintain hydrostatic pressure if the fluid within their pore space is allowed to escape as 

sediment compacts. Typical values of hydrostatic pressure gradients range from 0.433 

psi/ft in fresh water to 0.465 psi/ft in salt water. Hydrostatic pressure is affected by the 

temperature of the column and the concentration of salts and gasses in the fluid column. 

The higher the salt concentration in the column, the higher the hydrostatic pressure will 

be. 

Overpressure is the amount of pore pressure that exceeds the hydrostatic pressure. 

The overburden stress is a typical upper limit for pore pressure and pressures in this range 

are dangerous. Shales are the preferred lithology for pore pressure and fracture pressure 
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predictions because they are the most responsive rock types to abnormal pressures. The 

causes of overpressure can be broken down into four categories: undercompaction, lateral 

transfer, tectonic loading, and fluid expansion. 

Undercompaction is the most common cause of overpressure and occurs when 

formations prevent pore fluids from escaping as rapidly as the formation compacts. The 

excess pressure builds up as pore space tries to compact and the weight of newly 

deposited sediments compresses the fluid. In many cases, an impermeable seal, such as a 

salt trap, would cause the pressure of an impermeable fluid to increase at the same rate as 

the overburden stress. Tectonic loading is similar to undercompaction; that is, it squeezes 

trapped pore fluids due to tectonically driven stresses and creates overpressure. However 

in many cases, the overpressure caused by tectonic loading is much greater than that of 

undercompaction. 

Fluid expansion can occur when pore fluids are heated up, hydrocarbon 

maturation takes place, or formation water expands. Therefore, as the fluid increases in 

size, overpressure is created. In low permeable layers, very high overpressures can be 

created. The overpressure due to fluid expansion reduces the weight, or load, being 

carried by the grains. Fluid expansion is one of the few causes of overpressure that can 

decrease effective stress. Another type of overpressure can result when fluids are driven 

from a higher-pressured zone to a lower-pressured zone; this is known as lateral transfer. 

A lateral transfer usually occurs in dipping layers and faults, which can drive pore fluids 

updip and transmit pressure into sands. 
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1.2 Literature Review 

 The majority of the world's hydrocarbons have been generated in seal-bound 

compartments from source rocks. The migration of this oil is a pressure driven process 

which is controlled by the pressures inside the fluid compartments. The concept that oil is 

originated in fine-grained source rocks and migrates into coarse-grained rocks was first 

suggested by Munn1 in 1909 as the hydraulic theory for migration and accumulation of 

oil. 

 Sedimentary basins often contain two types of hydrogeological systems: shallow 

or deep. The shallow systems exhibit normal hydrostatic pressure, while the deep systems 

often contain fluids at abnormal pressures. The deeper hydrogeological systems contain 

compartments that are not in hydraulic pressure communication with one another, and 

therefore exhibit variations in pressures that can pose problems for drillers. 

 M. King Hubbert2 was the first to publish a conceptual model for a flow field 

based on head potential. Hubbert applied ground-water flow techniques to the study of 

migration in rock formations. Hubbert's model predicted the characteristics of the flow 

net in both recharge and discharge areas. In 1953, Hubbert3 published a paper with 

several findings: subsurface fluids move parallel with bedding from regions of higher 

fluid potential to regions of lower fluid potential; fluid movement in one aquifer or 

compartment is independent of fluids in other compartments; and petroleum fluids can be 

shifted by moving water. However, Hubbert's methods only apply to shallow formations 

with pressures near hydrostatic pressure. 
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 As drilling projects aimed for deeper and deeper prospects, Hubbert's concepts 

that suggested pressures were attributed to fluid flow to and from the surface no longer 

applied to higher pressure formations. In 1959, Hubbert and Rubey4 suggested that unless 

the formation is completely impermeable, fluids must always flow away from pressures 

higher than hydrostatic until the excess pressure is relieved. However, in 1975, Bradley5 

proved that a slow drained mechanism would relieve the overpressure differences in a 

short period of time. Therefore, in order for a formation to maintain abnormal pressure 

for a long period of time, the formation must contain a fluid seal. 

 Stanescu et al.6 published a case study in 1969 showing data on the Romanian 

Ernie Dome field. The overpressure field contained a seal at 4,000 ft. The gradient above 

and below the seal were 0.45 psi/ft, but the pressure at the base of the seal was about 

1,600 psi greater than the top of the seal. This field was one of the first examples with 

abnormal pressure at the base of the seal, while assuming the same gradient above and 

below the seal.  

 Many case studies have been done on Cook Inlet, a field in Alaska. Cook Inlet is 

one of the many fields that exhibit top seals of overpressure starting at depths of around 

10,000 ft. North7 suggested that Cook Inlet is a planar topped seal because it is a fault-

bounded depression within a compressional forearc basin. Cook Inlet production 

occurred in reservoirs immediately above the seal. The maximum gradient in this 

formation was 0.465 psi/ft, which is slightly higher than the hydrostatic pressure in the 

area, 0.45 psi/ft. 

4 
 



 Once the presence of abnormal pressure is identified, the real challenge lies in 

modeling formation pore pressure and fracture pressure. The normal compaction trend, 

described in Chapter 2, is not always uniform and varies with different sedimentary 

basins. In 1953, Dickinson8 created a shale porosity-depth relationship for the Gulf Coast 

Tertiary basin. The curve shows high porosities due to abnormally high fluid pressure. 

This shows that the Gulf Coast shales have not reached their equilibrium condition of 

compaction. Based on Dickinson's findings, abnormal pressure exists in shales below 

7,000 ft, while shales above 7,000 ft contain hydrostatic pressure. 

 In 1948, Terzaghi and Peck9 created a soil-consolidation laboratory model that 

looked at the compaction phenomena of a water-saturated clay. Terzaghi's used 

perforated metal plates separated by metal springs in water in a cylindrical tube. The 

plates simulate the clay, while the springs simulate the contact between clay particles. 

Terzaghi found that pore pressure can be calculated as the difference between the 

overburden pressure and the effective pressure. Effective stress is the amount of 

overburden pressure that is carried by the rock matrix. Terzaghi's model is similar to the 

work of Hubbert and Rubey4. 

 Resistivity logs, sonic logs, neutron logs, and seismic velocities can be used to 

estimate pore pressure and fracture pressure. The resistivity of shale is affected by 

salinity, porosity, and temperature. Hottman and Johnson10 were the first to establish 

normal compaction trends for Texas and Louisiana fields. In an overpressure area, the 

values of transit-time deviates from the normal compaction trend, and this deviation is 

used to calculate the pore pressure. Eaton's11 method uses the difference in the measured 
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and estimated normal trend travel times and resistivity values to infer the increased pore 

pressure. Similarly, Bower's13 method uses the difference in seismic interval velocity 

values and normal compaction trend values to estimate the pore pressure. 

 

1.3 Problem Objectives 

 The objectives of this research is to model pore pressure and fracture pressure for 

two deepwater prospects and to create the safest and most efficient casing design. The 

steps taken during the project are as follows: 

• Find the most suitable offset wells for Prospect A and Prospect B 

• Quality control all the data 

• Create overburden gradient using bulk density log 

• Identify the shale zones using gamma ray log 

• Create normal compaction trends for each method using the shale points for deep 

resistivity log, sonic log, and seismic interval velocity log 

• Estimate pore pressure and fracture pressure for offset wells using Eaton's 

resistivity and sonic methods 

• Calibrate the models using drilling data and compare to original offset data 

• Create synthetic bulk density curve for Prospect A and Prospect B using offset 

wells bulk density for each respective prospect well 

• Estimate pore pressure and fracture pressure for prospect wells using Bower's 

seismic interval velocity method and calibrate the models  

• Create safe and efficient mud weight and casing designs for prospect wells 
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CHAPTER 2: DATA AND PROCEDURE 

 

2.1 Data Available 

Initially, more than thirty offset wells were analyzed. The optimum requirements 

needed to create precise pore pressure and fracture pressure models for offset wells are:  

• Location and depth 

• Salt seal or subsalt environment 

• Gamma ray log, GR 

• Deep resistivity log, RDEEP 

• Acoustic sonic log, DTCO 

• Bulk density log, RHOB 

• Modular Dynamic Testing formation pressure points, MDT 

• Leak-off test pressure points, LOT 

• Mud weight log, MW 

• Seismic interval velocities or trace logs 

Location and depth were the priority; the two prospect wells are located in a deep, subsalt 

environment. Offset wells needed to be located in a similar basin type with a salt seal. 

The three models for pore pressure and fracture pressure created for each offset well 

required high quality gamma ray logs, deep resistivity logs, and sonic logs. The majority 

of the offset wells that were not used in the final study lacked certain logs or missed 

entire sections of logs. Drilling data such as LOT (Leak-off Test) pressure points, MDT 
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(Modular Dynamic Testing) formation pressure points, and mud weight logs were crucial 

in calibrating and finalizing pore pressure and fracture pressure models.  

Limited data was available for the majority of the wells; those offset wells were 

not used in the final pore pressure and fracture pressure models. Many offset wells did 

not meet the requirements needed to create accurate pore pressure and fracture pressure 

models.  Other logs such as rate of penetration, caliper, and density correction benefited 

the study by allowing the creation of BADHOLE flag curves, or sections of log with 

faulty data. These sections were quality controlled with a patching function or a synthetic 

curve generator. Table 1 and Table 2 below show the summary of petrophysical data used 

to create pore pressure and fracture pressure models for offset wells. 

 

Table 1: Summary of petrophysical data of five offset wells for Prospect A study 

  A1 A2 A3 A4 A5 

Data Type TVD Range (ft) TVD Range (ft) TVD Range (ft) TVD Range (ft) TVD Range (ft) 
Gamma 
Ray 5000 - 29600 4900 - 31100 5100 - 30000 9500 - 22500 4000 - 26500 

Density 18000 - 29600 24239 - 30423 18275 - 29800 10750 - 23250 N/A 

Resistivity 5000 - 14060 4900 - 9724 5100 - 9200 10850 - 22900 4000 - 26500 

  17925 - 29600 18000 - 31100 13150 - 30000     

Sonic 17950 - 29600 24239 - 30285 17990 - 29773 10800 - 22100 22000 - 26500 

Caliper 17903 - 29600 24351 - 30364 18035 - 29960 N/A N/A 

Seismic 5000 - 29600 4900 - 31100 5100 - 30000 9500 - 22500 4000 - 26500 
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Table 2: Summary of petrophysical data of two offset wells for Prospect B study 

Data Type B1 B2 

Gamma Ray TVD Range (ft) TVD Range (ft) 

Density 4500 - 29663 4300 - 29736 
Resistivity 20500 - 29865 19500 - 28685 
  4500 - 29663 4500 - 28450 

Sonic 20500 - 26166  19824 - 27978 

Caliper 19191 - 29963 19418 - 28677 

Seismic 4500 - 29663 4300 - 29736 
 

2.2 Geological Setting 

The geology was dominated by salt tectonics influenced by terrigenous clastic 

sediments supplied primarily from the Mississippi River. Clastics can create many 

hydrocarbon reservoirs and seals. Early Miocene sedimentation occurred on unconfined 

slopes because the salt was not yet deformed. Sediment continued to accumulate in the 

deep troughs into the middle Miocene, and salt withdrawal began around the minibasins 

which resulted in anticlines. Late Miocene deposition became more restricted by middle 

Miocene salt movements. Large growth faults were created as a result in some basins. 

Four types of minibasins were observed in the area. The first minibasin is a 

symmetric salt roller that traps sands from turbidites near depressions. After the salt 

withdrawal, the depressions become structures that carry sands at the crest. The second 

minibasin forms on the edge of sloping salt domes. Sands are pinned against the 

basinward migrating salt and stack in an offset pattern. The third minibasin is a listric 

growth fault where sands become trapped against the fault on the downthrone side. These 

sands will downlap in a northerly direction against a salt weld. This was seen for one of 
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the prospect wells. The fourth minibasin was simply deposited by coarse-grained material 

due to the reduction in slope gradient. 

 

2.3 Methodology 

 There are several assumptions that must be made in order to interpret pore 

pressure and fracture pressure: 

• Mechanical compaction is the dominant mechanism for porosity reduction 

• Mechanical compaction depends on values of Terzaghi’s effective stress 

• Compaction is a one-dimensional process 

• Overburden can be estimated from bulk density log 

The pore pressure and fracture pressure models are based on Terzaghi’s effective stress 

principle which states that pore pressure is the difference between the overburden 

pressure and the effective stress. Effective stress is the amount of overburden pressure 

that is supported by the rock matrix.  

 

PP = σV – σE       (1) 

Where, 

PP = Pore pressure 

σV = Vertical stress 

σE = Effective stress 
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2.3.1 Overburden Pressure 

 Overburden pressure is an important part of the pore pressure and fracture 

pressure model and must be estimated as carefully as possible. At any depth, the 

overburden pressure is pressure, or stress, imposed on the layer by the weight of the 

overlying material. Overburden pressure was calculated using the RHOB log, or bulk 

density of the formation. Bulk density logs are generally obscured or absent at shallow 

depths; therefore, it is necessary to perform a density interpolation. 

 

   RHOB = ρf + A * (Dbml)B     (2) 

Where, 

RHOB = Bulk density, gm/cc 

ρf = Fluid density, gm/cc (1.03 gm/cc) 

Dbml = Depth below mudline, ft 

A = Compaction coefficient 

B = Compaction coefficient 

 

2.3.2 Shale Intervals 

Shales are the preferred lithology for pore pressure and fracture pressure 

predictions because they are the most responsive rock types to abnormal pressures. 

Gamma ray logs and a mud logs are used to select the shale intervals. This was done by 

creating two cut-off lines: a shale cut-off line at a maximum gamma ray reading; and a 

sand cut-off line at the minimum gamma ray reading. High reading of gamma ray near 
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the shale line represented shale layers, while low gamma ray readings near the sand line 

represented non-shale layers. Once the overburden gradient and the shale intervals were 

identified for each well, the pore pressure and fracture pressure models could be 

estimated using three methods: Eaton’s resistivity method; Eaton’s sonic method; and 

Bower’s interval velocity method. 

 

2.3.3 Salt Diffusion 

Salt diffusion is a process that allows ions or molecules to move from where they 

are more concentrated to where they are less concentrated. In rare cases, the salinity of 

water immediately below a salt seal can be significantly higher than proceeding depths 

due to salt diffusion. This observation was made for several offset wells and must be 

taken into account. Since Resistivity logs measure the electrical resistivity of formations, 

a large increase in salinity will cause Resistivity readings to decrease. This decrease can 

create erroneous pore pressure and fracture pressure predictions. It is important to have 

an accurate Sonic log measurements for pore pressure modeling because they are not 

affected by salinity.  

Figure 1 below illustrates an example of salt diffusion. A four-track "quad 

combo" is displayed:  a green gamma ray log; a red resistivity log; a pink bulk density 

log; and a blue sonic log. The fifth track places the sonic and resistivity logs together to 

show the effects of salt diffusion, represented as a neon green color. As observed, 

immediately below the salt, the resistivity is showing decreased readings while the sonic 

log is unaffected by the salt diffusion. At larger depths, the resistivity log and the sonic 
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log begin to share similar measurements. The resistivity log is no longer affected by salt 

diffusion at these depths.  

 

 

Figure 1.  Example of salt diffusion. 
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2.3.4 Eaton’s Resistivity Method 

An assumption is made that the salinity of water is constant throughout the 

formation. Changes in salinity, and thus in the resistivity log, suggest a change in the 

shale porosity. Eaton’s resistivity method uses the differences in resistivity and the 

normal compaction trend to find the pore pressure.  

 

  PP = OBG – (OBG – PPn)(Rob / Rnml )x   (3) 

Where, 

PP = Pore pressure gradient, ppg 

OBG = Overburden gradient, ppg 

PPn = Normal pore pressure gradient, 8.7 ppg 

Rob = Observed shale resistivity, ohm-m 

Rnml = Normal compaction trend shale resistivity, ohm-m 

x = Empirical exponent, 1.2  

 

2.3.5 Eaton’s Sonic Method 

Sonic measurements, or travel times, of normal compacted sediments decreases 

with depth due to decrease in porosity. Similar to Eaton’s resistivity method, a normal 

compaction trend is applied to the sonic measurements. Travel times that decrease less 

than the normal compaction trend suggest an overpressure due to pore fluids being unable 

to escape as rapidly as necessary. Eaton’s sonic method uses the difference in travel times 

and compaction trend to calculate the pore pressure. 
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  PP = OBG – (OBG – PPn)*(Sob /Snml)x   (4) 

Where, 

OBG = Overburden gradient, ppg 

PPn = Normal pore pressure gradient, 8.7 ppg 

Sob = Observed shale sonic transit time, μ/ft 

Snml = Normal compaction shale sonic transit time, μ/ft 

x = Empirical exponent, 3 

 

2.3.6 Bower’s Interval Velocity Method 

Similar to Eaton’s method, Bower’s method uses a compaction trendline and finds 

the difference in measurements to estimate the pore pressure. However, Bower observed 

that some abnormal pressures beginning at or near the mudline in deep water showed 

curved normal compaction trend. This was the case with seismic interval velocity data for 

offset and prospect wells.  

 

 PP = Sv – [(V – Vmudline)/a]1/b     (5) 

Where, 

Sv = Overburden vertical total stress, psi 

V = Velocity at given depth, ft/s 

Vmudline = Seismic interval velocity at mudline, 5000 ft/s 

a,b = Compaction trend coefficients 
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Seismic data can have significant changes with depth. To create an efficient pore pressure 

model, seismic interval velocity is smoothed towards shale responses. In these wells at 

depths above 10,000 - 15,000 feet, higher velocity readings represent shales. However, at 

a certain depth seismic responses in shale zones becomes the same or slower than in 

sands. Below 25,000 feet, shale zones are represented by the lower seismic interval 

velocity measurements. 

 

2.3.7 Drilling Data 

 Drilling data from the offset wells is an important addition to pore pressure and 

fracture pressure study. In each study, four types of physical drilling data was used:  

• MDT: Modular Dynamic Formation Test 

• LOT: Leak-Off-Test 

• MW: Mud weight 

• CSG: Casing design 

 

 MDT, also known as Modular Dynamic Formation Test, is a wireline tool that 

takes real-time formation pressure measurements. It can also be used to take fluid 

samples and measure permeability. In the model, MDT pressure points act as physical 

pore pressure data points. Accurate pressure and permeability measurements result from 

high-resolution gauges combined with precise flowline control. 

 LOT, or leak-off-test, determines the strength or fracture pressure of the open 

formation. This test is conducted immediately after drilling below a new casing shoe. 
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During this test, the well is shut in and fluid is pumped into the wellbore to gradually 

increase the pressure that the formation experiences. At some pressure, fluid will enter 

the formation, or leak off. The result is the maximum pressure the formation can handle, 

also known as fracture pressure. 

 The mud weight and casing design used to drill offset wells is easily accessible 

data and can be found for almost any well. Well reports provide mud weights at each 

casing point and describe any problems encountered during the drilling process. The mud 

log records mud weights at shorter depth intervals and therefore can add the benefit of a 

more accurate mud weight profile.    

 

2.3.8 Pore Pressure Calibration and Fracture Pressure 

Once the respective models are created, they can be calibrated respectively using 

drilling data such as MDTs, LOTs, and Mud Weights. Drilling data of offset wells is 

manually imputed into the program from drilling reports. The empirical constants of the 

normal compaction trends, “a” and “b”, are user-defined constants that can be 

appropriately changed to calibrate the pore pressure models and fitted to physical drilling 

data. Fracture pressure models are constructed once the final calibration of pore pressure 

models concludes.  

 

(shmin - pp) / (sv - pp) = km     (6) 

Where, 

Shmin = Minimum horizontal stress 

17 
 



 Sv = Overburden stress 

 Pp = Pore pressure 

 Km = Matrix stress coefficient 

 

 The empirical normal compaction trend values “a” and “b” can later be applied to 

prospect wells to create pre-drill and real-time pore pressure and fracture pressure 

models. Pre-drill evaluation of prospect wells is done using Bower’s seismic interval 

velocity method. Only interval seismic velocity data is available for prospect wells. Once 

drilling begins on a project, Eaton’s resistivity and Eaton’s sonic methods are used to 

monitor and necessarily alter pore pressure and fracture pressure models in real-time as 

the drilling occurs.      
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CHAPTER 3: RESULTS 

 More than thirty offset wells were initially analyzed for the pore pressure and 

fracture pressure study of Prospect A and Prospect B. Five offset well models were 

created for Prospect A and two offset well models were created for Prospect B. As 

described in the previous chapters, the following steps were taken to perform pore 

pressure and fracture pressure analysis on the two prospects: 

1. Find most suitable offset wells for Prospect A and Prospect B 

2. Quality control data 

3. Create overburden gradient using bulk density log 

4. Identify shale zones using gamma ray log 

5. Using the shale points for deep resistivity log, sonic log, and seismic interval 

velocity, create normal compaction trend for each method 

6. Estimate pore pressure and fracture pressure for offset wells using Eaton's 

resistivity and sonic methods 

7. Calibrate models using drilling data and compare to original offset data 

8. Create synthetic bulk density curve for Prospect A and Prospect B using offset 

wells bulk density for each respective prospect well 

9. Estimate pore pressure and fracture pressure for prospect wells using Bower's 

seismic interval velocity method  

10. Calibrate models using offset data 

11. Create safest and most efficient casing design 
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 In this chapter, the results will be analyzed and discussed in greater detail. Table 3 

and Table 4 show results of normal compaction trend empirical constants of offset wells 

for Prospect A and Prospect B, respectively. The final Bower’s seismic interval velocity 

models were applied to each prospect. Table 5 displays the results of empirical constants 

for Prospect A and Prospect B. 

 

Table 3: Prospect A offset wells' parameters for three methods 

  Eaton's Eaton's Bower's Seismic 
  Resistivity Sonic Interval Velocity 
  x A B x A B A B 

Well A1 1.2 0.01 0.000037 3 2.05 0.00002 14.2 0.714 
Well A2 1.2 -0.37 0.000062 3 2.012 0.000015 14.2 0.753 
Well A3 1.2 -0.06 0.00004 3 2.05 0.00002 14 0.735 
Well A4 1.2 0.08 0.00003 3 2.12 0.000034 14.2 0.73 
Well A5 1.2 0.08 0.000035 3 2.13 0.000034 14.2 0.754 

 

 

Table 4: Prospect B offset wells' parameters for three methods 

  Eaton's Eaton's Bower's Seismic 
  Resistivity Sonic Interval Velocity 
  x A B x A B A B 

Well B1 1.2 -0.5 0.000085 3 2.05 0.000025 15 0.8 
Well B2 1.2 -0.15 0.00004 3 2.05 0.000015 14 0.67 

 

 

Table 5: Empirical constants for Prospect A and Prospect B 

  Bower's Seismic 
  Interval Velocity 
  A B 
Prospect A 14.15 0.75 
Prospect B 14.5 0.8 
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3.1 Prospect A Offset Wells 

The table below describes four different parameters of offset wells used in the 

pore pressure and fracture pressure study for Prospect A: water depth; measured depth of 

well; true vertical depth of well; and location of salt seal. The water depth of offset wells 

for Prospect A varies from 2,800 ft to 5,000 ft. Each well is fairly deep, with depths 

reaching as deep as 32,000 ft. Small differences in measured depths and true vertical 

depths suggest that the offset wells are vertical. Although Well A4 does not reach the salt 

seal, it is a great model to use in the analysis of Prospect A because of the similarities 

they share. Seismic maps suggest that Well A4 and Well A5 resemble the most analogous 

wells in terms of structure of the formation. They are, in fact, the closest wells to 

Prospect A with respect to location. Well A4 and Well A5 were the most appropriate 

wells to use in modeling pore pressure and fracture pressure of Prospect A; however, 

neither well was sufficient enough to model pressures far away from the salt seal due to 

smaller well depths. This issue was resolved using Well A1, A2, and A3. These wells 

were deep enough to help create an accurate Prospect A model for deeper depths.    

 

Table 6: Description of Prospect A offset wells 

  Water Depth MD TVD Salt Seal 
  ft ft ft ft 
Well A1 4908 29749 29680 8855 - 14039 
Well A2 4334 31131 29062 9724 - 21919 
Well A3 4986 31146 29697 9205 - 13121 
Well A4 2828 22580 22576 22000 - 23000 
Well A5 2920 26569 26552 21190 - 22150 
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3.1.1 Offset Well A1 

Figure 2 through Figure 5 below show the results from steps taken to create pore 

pressure and fracture pressure models for Well A1. Shale points for resistivity, sonic, and 

seismic interval velocity are picked out using the gamma ray log. If the curve is too 

sensitive, a smoothing application can be used to make the curve smoother. Sharp 

changes in measurements of log data can greatly affect the resulting pore pressure and 

fracture pressure models. Once the non-shale points are excluded, a normal compaction 

trend is placed on each curve. The normal compaction trend coefficients can be altered to 

calibrate the pore pressure to the MDT pressure points and mud weight curve obtained 

from drilling data. The final calibrated pore pressure and fracture pressure model for Well 

A1 using Eaton’s resistivity and sonic methods is displayed below. As Figure 3 suggests, 

both method agree with MDT pressure points and mud weight gradient. LOT pressure 

points line up fairly well on the fracture pressure curve. 

The salt seal of Well A1 is located at a depth range of 8,855 to 14,039 ft. It is the 

shallowest salt seal out of all the offset wells. The pore pressure and fracture pressure 

above 14,039 ft are ignored because of unreliable data. Accurate Resistivity log and 

Sonic log readings begin at 18,000 ft. Data above this depth was synthetically generated 

using the gamma ray log to provide a consistency in log readings. The pore pressure and 

fracture pressure models between 20,000 ft and 30,000 ft closely follow the mud weight 

curve. Eaton’s resistivity and sonic methods show a huge increase in pore pressure below 

the salt. At a depth of 14,100 ft, the pore pressure gradient is 12.5 ppg and the fracture 

pressure gradient is 14. At the bottom of the well at a depth of 30,000 ft, the pore 
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pressure gradient is 15 ppg and the fracture pressure gradient is 16.75 ppg, giving us a 

1.75 ppg window.  

Three types of velocities were available for each offset well; however, only 

seismic interval velocity was used. The other seismic curves showed little to no variation 

in data with depth and would be impossible to use as a tool for pore pressure estimation. 

Similar to Eaton’s resistivity and sonic methods, the seismic interval velocity curve may 

be smoothed to create a more efficient pore pressure and fracture pressure model. 

Shallow depths of seismic interval velocity are ignored due to inconsistencies in data. 

Figure 5 illustrates the resulting pore pressure and fracture pressure models using 

Bower’s seismic interval velocity method. The seismic interval velocity pore pressure 

curve agrees with MDT pressure points and mud weight data, and the fracture pressure 

aligns with LOT pressure points. The three pore pressure and fracture pressure methods 

used for Well A1 correlate with measured drilling data. The results show that at depths 

below the salt seal the mud weight window ranges between 1.5 to 3 ppg.           
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Figure 2. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well A1  
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Figure 3. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity and 

Eaton’s sonic method for Well A1 
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Figure 4. Seismic interval velocity and normal compaction trend of Bower’s method for 

Well A1 
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Figure 5. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well A1 
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3.1.2 Offset Well A2 

The results for Well A2 pore pressure and fracture pressure models using Eaton’s 

resistivity, Eaton’s sonic, and Bower’s seismic interval velocity methods are displayed in 

Figure 6 through Figure 9. The results are not as reliable as in Well A1. The salt seal in 

Well A2 is located at a depth range of 9,724 to 21,919 ft. All data above 22,000 ft is 

ignored due to unreliability. Resistivity readings below the salt may rarely display a bowl 

shaped pattern, first decreasing then slowly increasing; this is due to salt diffusion. These 

incorrect measurements can create problems with pore pressure and fracture pressure 

models and must be ignored or altered manually. Sonic LWD readings ranged from 

24,000 to 30,000 ft. A synthetic curve generator was run for the rest of the depths, which 

created a curve that follows the same pattern as the resistivity log. Pore pressure and 

fracture pressure readings ranging from 21,000 ft to 24,500 ft are therefore also ignored. 

Sections of faulty pore pressure and fracture models can be easily noticed, as observed in 

Figure 7. At 22,500 ft, the pore pressure models increases significantly. This is due to the 

bowl-shaped decrease in Resistivity and Sonic logs below the salt.  

Bower’s method creates more accurate pore pressure and fracture pressure curves 

for deeper locations in the well. In this case, measurements at the salt and below the salt 

were ignored. MDT pressure points and LOT pressure points match up with the models 

starting at 21,000 ft. Right below the salt at 21,000 ft, the pore pressure and fracture 

pressure gradients are 13.25 and 15.25 ppg, respectively.  At the bottom hole depth, the 

pore pressure gradient is 15 ppg and the fracture gradient is 16.25 ppg. 
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Figure 6.  Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well A2 
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Figure 7. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity and 

Eaton’s sonic method for Well A2 
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Figure 8. Seismic interval velocity and normal compaction trend of Bower’s method for 

Well A2 
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Figure 9. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well A2 
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3.1.3 Offset Well A3 

Well A3 is a near perfect offset well to use for pore pressure and fracture pressure 

modeling.  High quality logs and drilling data are an important aspect for creating 

accurate estimations. A sharp increase in the resistivity immediately below the salt is 

observed. Again, this incorrect reading can be caused by improper tool measurements or 

salt diffusion. Salinity of the water in that section can be significantly higher, thus 

causing the resistivity measurements to increase.  Therefore, pore pressure and fracture 

pressure models using Eaton's resistivity method must be carefully inspected below the 

salt seal. Necessary adjustments to the models can be made in real-time if this increasing 

resistivity trend is observed. On the other hand, sonic measurements are not affected by 

changes in salinity. Eaton's sonic method can provide accurate predictions of pore 

pressure and fracture pressure models around salt seals. This can be observed in Figure 

11, which shows the resulting pore pressure and fracture pressure models using Eaton’s 

resistivity and sonic methods.  

Bower’s method, illustrated in Figure 13, lacks the accuracy displayed by Eaton’s 

methods. A large quantity of MDT pressure points and LOT pressure points benefits the 

creation and calibration of a precise mud weight window. MDT and LOT pressure points 

line up significantly well to Eaton's pore pressure and fracture pressure models. However, 

a less precise Bower's model is observed. The accuracy of the seismic interval velocity 

model may often relate to the extent of smoothing applied to initial data. Eaton's 

resistivity and sonic methods tend to always have more accurate pore pressure and 

fracture pressure models. 
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The salt seal in Well A3 ranges from 9,205 to 13,121 ft. Significant presence of 

salt in the well can defect the quality of logs and data, as observed in Well A2. Similar to 

previous offset wells, the average Mud Weight window below the salt is 1.5 to 2 ppg. 

Right below the salt at 13,200 ft, the pore pressure and fracture pressure gradients are 

12.5 and 14 ppg, respectively.  The pore pressure gradient at the bottom of the well, or 

29,000 ft, is 14.7 ppg and the fracture pressure gradient is 16.5 ppg. 
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Figure 10. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well A3 
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Figure 11. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity 

and Eaton’s sonic method for Well A3 
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Figure 12. Seismic interval velocity and normal compaction trend of Bower’s method for 

Well A3 
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Figure 13. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well A3 
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3.1.4 Offset Well A4 

 Well A4 provides a case where there is an abundance of drilling data but a lack of 

LWD log data. Although LWD log data is minimal, the quality of seismic interval 

velocity data is sufficient enough to create an accurate pore pressure and fracture pressure 

model, shown in Figure 17. LWD log readings fall several feet short of the salt seal. 

Resulting Eaton's resistivity and sonic models, presented in Figure 15, initially correlate 

with MDT pressure data and mud weight data. At 18,500 ft, the pore pressure models 

begin to deviate from the mud weight log. The quality of resistivity measurements are 

questioned due to the initial decrease and eventual increase in log readings. Resistivity of 

previous offset wells tend to show an increase with depth. An extreme increase or 

decrease in resistivity data will strongly affect the pore pressure model and create an 

inaccurate design. At 11,000 ft, Eaton's method shows a pore pressure gradient of 12.75 

ppg and a fracture pressure gradient of 14.5 ppg.      

 Bulk density, displayed in Figure 16, was recreated using analogous bulk density 

data from offset wells using Equation 3.1. This method, described in greater detail in 

Chapter 3.3, was applied to the two prospect wells. On the same figure, seismic interval 

velocity and smoothed seismic interval velocity are displayed. As mentioned in the 

previous chapter, seismic interval velocity is smoothed towards shale responses. In this 

well at depths above 15,000 ft, higher velocity readings represent shales. Below 25,000 

ft, shale zones are represented by the lower seismic interval velocity measurements. 

 Bower's pore pressure model for Well A4 correlates very well with MDT pressure 

points and mud weight drilling data. Seismic interval velocity readings stretch deeper 
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than LWD log data and reach the salt seal, located at 22,000 to 23,000 ft. Therefore, 

using seismic interval velocity to create pre-drill pore pressure and fracture pressure 

designs for the two deep prospect wells proves very beneficial. Bower's pore pressure and 

fracture pressure gradients for Well A4 at 30,000 ft are 16 ppg and 17.75 ppg, 

respectively.  
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Figure 14. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well A4 
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Figure 15. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity 

and Eaton’s sonic method for Well A4 
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Figure 16. Generated bulk density, seismic interval velocity, and normal compaction 

trend of Bower’s method for Well A4 
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Figure 17. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well A4 

 
 
 

44 
 



3.1.5 Offset Well A5 

 As stated above, Well A4 and Well A5 are the most appropriate wells to use in 

modeling a pre-drill pore pressure and fracture pressure design of Prospect A. Seismic 

maps suggest that Well A4 and Well A5 resemble the same formation structure as 

Prospect A. Similar to Well A4, Well A5 arguably lacks high-quality LWD log data, 

which it makes up with seismic interval velocity. However, Well A5 only has a limited 

amount of drilling data;  MDT pressure points were taken at a depth range of 23,000 to 

24,000 ft. Well A5 serves as a prime example of the importance of mud weight drilling 

data; pore pressure and fracture pressure was calibrated using only mud weight data, 

shown in Figure 19.  

 Drillers experienced problems with the wellbore at 21,000 ft. Casings were placed 

at 21,342 feet and 22,590 ft due to issues with pore pressure and the salt seal. This 

setback in drilling time can cause many financial problems. Figure 21 displays Bower's 

seismic interval velocity model. At 21,000 ft, pore pressure gradient is observed passing 

the mud weight drilling data curve. Problems arose at 21,000 ft, where mud weight was 

not high enough to support the pore pressure. Accurate pre-drill pore pressure and 

fracture pressure models would have prevented these setbacks. 

 The salt seal is located at a depth of 21,190 to 22,150 ft. Sonic data was only 

available below the salt, at a depth range of 22,000 to 26,500 ft. This data proved useful 

in creating a normal compaction trend to modeling pore pressure and fracture pressure. 

Both Eaton's resistivity and sonic pore pressure models followed the orientation of mud 

weight data and matched up to the limited MDT pressure points. The average mud weight 
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window below the salt ranged from 1 to 1.75 ppg. Right below the salt at 22,000 ft, the 

pore pressure and fracture pressure gradients are 14.5 and 16 ppg, respectively.  The pore 

pressure gradient at the bottom of the well at, or 26,000 ft, is 15.85 ppg and the fracture 

pressure gradient is 17.75 ppg. Using Bower's model, at 30,000 ft the projected pore 

pressure gradient is 16.3 ppg and the fracture pressure gradient is 17.9 ppg.    
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Figure 18. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well A5 
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Figure 19. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity 

and Eaton’s sonic method for Well A5 
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Figure 20. Generated bulk density, seismic interval velocity, and normal compaction 

trend of Bower’s method for Well A5 
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Figure 21. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well A5 
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3.2 Prospect B Offset Wells 

 Contrary to the availability of Prospect A offset wells, only two offset wells were 

evaluated for the pore pressure and fracture pressure study of Prospect B. This was due to 

the location of Prospect B and the lack of wells with similar formation structures in the 

area. However, in the final pre-drill pore pressure and fracture pressure model, only Well 

B1 Bower's method was used. Well B2 seismic interval velocity data was too messy and 

created many problems in the pore pressure model. Table 7 below provides a description 

of the two Prospect B offset wells. Well B1 and B2 share similar water depths and 

bottom-hole depths. Both wells are fairly vertical and have a salt seal running to about 

20,000 ft.  

 

Table 7: Description of Prospect B offset wells 

  Water Depth MD TVD Salt Seal 
  ft ft ft ft 

Well B1 4180 29894 29519 6647 - 19972 
Well B2 4266 28736 28721 10994 - 19829 

 

 

3.2.1 Offset Well B1 

 Well B1 was the first offset well to be used in the pore pressure and fracture 

pressure study of Prospect B. Figure 22 through Figure 25 display the steps and final 

models of pore pressure and fracture pressure using the three methods: Eaton's resistivity; 

Eaton's sonic; and Bower's seismic interval velocity. In this well, LWD data at and above 

the salt seal is either not available or ignored. A large quantity of MDT pressure points 
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were available to help calibrate the pore pressure and fracture pressure models, shown in 

Figure 23. However, at a depth range of 22,000 ft to 24,000 ft, MDT pressure points 

surpassed the mud weight used to drill the well. The inaccuracy of these MDT pressure 

points were taken into account in the final pre-drill model of Prospect B. 

 Similar to Well A5, drillers experienced issues with  overpressure in the 

formation close to the salt seal at 21,000 ft. The mud weight was raised too high and 

exceeded the fracture pressure. Many of the problems often occur around the salt seals. 

Several casings had to be placed relatively close to one another due to mud weight being 

too low or too high. In these areas of the well, the mud weight window is very narrow 

and can create difficulties with proper wellbore control if the pore pressure and fracture 

pressure models being used are not precise.  

 Bower's seismic interval velocity method, illustrated in Figure 24 and Figure 25, 

provided a reasonable pore pressure and fracture pressure model. The extent of accuracy 

is highly dependent on the quality of seismic data. Below the salt at 21,000 ft, the pore 

pressure gradient and fracture pressure gradient are 15 ppg and 15.75 ppg, respectively. 

Using Bower's model, at 29,000 ft, the pore pressure gradient is 16.6 ppg and the fracture 

pressure gradient is 17.75 ppg. Well B1 mud weight window below the salt ranges 

between 0.75 ppg and 1.25 ppg. 
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Figure 22. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well B1 
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Figure 23. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity 

and Eaton’s sonic method for Well B1 
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Figure 24. Seismic interval velocity and normal compaction trend of Bower’s method for 

Well B1 
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Figure 25. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well B1 
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3.2.2 Offset Well B2 

 Well B2 was the only other usable offset well available to model pore pressure 

and fracture pressure for Prospect B. Figure 26 through Figure 29 displays the modeled 

results for each method. The quality of seismic interval velocity data proved to be too 

poor to use in the final pre-drill model. Displayed in Figure 28, the data can only be 

described as a "spiky mess". A smoothing effort was applied to the data to attempt a 

modeling procedure. However, the initial seismic interval velocity data was so heavily 

altered that it was no longer credible. 

 Eaton's resistivity and sonic methods, illustrated in Figure 26 and Figure 27, show 

a reasonable pore pressure and fracture pressure model using LWD data. Resistivity and 

sonic measurements were available for almost the entire well. At a depth of 20,000 to 

21,000 ft, missing sonic measurements were synthetically generated using the gamma ray 

and resistivity logs, causing it to follow a similar pattern. As stated earlier, the most 

probably cause of resistivity increasing significantly below the salt seal is inaccurate tool 

response or salt diffusion.       

 The salt seal is located at a depth of 10,994 to 19,829 ft.  Using the three methods 

and available drilling data, the pore pressure gradient and fracture pressure gradient 

immediately below the salt is 13.5 ppg and 15 ppg, respectively. At 29,000 ft, the pore 

pressure gradient is 14 ppg and the fracture pressure gradient is 16.5 ppg. These ranges 

are slightly lower than previous offset wells. Well B2 was not used to model the final 

pre-drill pore pressure and fracture pressure gradients of Prospect B.  
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Figure 26. Shale point intervals and normal compaction trend of Eaton’s resistivity and 

Eaton’s sonic method for Well B2 
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Figure 27. Calibrated pore pressure and fracture pressure models of Eaton’s resistivity 

and Eaton’s sonic method for Well B2 
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Figure 28. Seismic interval velocity and normal compaction trend of Bower’s method for 

Well B2 
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Figure 29. Calibrated pore pressure and fracture pressure model of Bower’s seismic 

interval velocity method for Well B2 
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3.3 Prospect Wells 

Seismic interval velocity logs are the only available logs for the two prospect 

wells. A separate bulk density curve was generated for each prospect well based on the 

bulk density logs for respective offset wells. This will be discussed in more detail in the 

next sections. Table 8 below provides a description of the two prospect wells. 

 

Table 8: Description of prospect wells 

  Water Depth Salt Seal TVD 
  ft ft ft 

Prospect A 2612 22567 - 23381 N/A 
Prospect B 3395 8850 - 21480 N/A 

 

 Once a bulk density curve is generated for each prospect, overburden gradient can 

be calculated from the bulk density curve. Bower's method can then be applied to the 

seismic interval velocity data. Each well can be calibrated using respective offset well 

data: Bower's method compaction trend coefficients; MDT pressure points; LOT pressure 

points. Many other important aspects of offset wells need to be taken into account to 

finalize the design such as location and length of salt seals, water depths, geologic 

seismic data. The final pore pressure and fracture pressure models are highly based on 

user interpretation.  

 

3.3.1 Prospect Well A Model 

 Five offset wells were used in the final study of pore pressure and fracture 

pressure of Prospect A. A synthetic bulk density curve for Prospect A was manually 
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created using offset well bulk density data, illustrated in Figure 30; Equation 3.1 was 

used. 

 

Bulk Density = 0.194 * ln(TVD - WD) + 0.58   (7) 

Where, 

WD = Water depth 

TVD = Total vertical depth 

 

 Figure 30 shows the smoothing effect that was applied to Prospect A seismic 

interval velocity data. The extent of the smoothing was based on the offset wells. Figure 

32 displays the final pore pressure and fracture pressure model of Prospect A. Bower's 

method normal compaction trend coefficients A and B were set to 14.15 and 0.75, 

respectively. Offset well coefficients ranged from 14 to 14.2 for A and 0.713 to 0.754 for 

B. MDT pressure points and LOT pressure points were depth-corrected using the water 

depth of Prospect A and offset wells. Final mud weight window ranged from 1 ppg to 2 

ppg, averaging 1.5 ppg.  

 Table 9 and Table 10 show the proposed mud weight and casing designs for 

Prospect A based on final pore pressure and fracture pressure models. A total of eight 

casing sizes were proposed for Prospect A to accommodate the pore pressure and fracture 

pressure window. 
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Table 9: Proposed mud weight design for Prospect A 

TVD, MW MW 
ft ppg psi 

5800 11.8 3555.5 
7900 11.8 4842.8 

7900.01 12.71 5216.3 
11800 12.71 7791.4 

11800.01 14.3 8766.1 
16317 14.3 12121.7 

16317.01 15.45 13096.5 
23000 15.45 18460.4 

23000.01 15.81 18890.6 
25200 15.81 20697.5 

25200.01 16.85 22059.0 
 

Table 10: Proposed casing design for Prospect A 

TVD CSG 
ft in 

3200 36 
4100 28 
5000 22 
7900 17.875 
11800 16 
16317 13.625 
23000 9.875 
25200 7.625 
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Figure 30. Synthetic bulk density curve for Prospect A and offset well bulk density. 
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Figure 31 Generated bulk density, seismic interval velocity, and normal compaction trend 

of Bower’s method for Prospect A 
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Figure 32. Final pore pressure and fracture pressure model of Bower’s seismic interval 

velocity method for Prospect A 
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3.3.2 Prospect Well B 

 Well B1 was the only well used in the study of pore pressure and fracture pressure 

for Prospect B. The synthetic bulk density equation for Prospect B is displayed below. 

 

Bulk Density = 0.18 * ln(TVD - WD) + 0.675   (8) 

Where, 

WD = Water depth 

TVD = Total vertical depth 

 

 Similar to Prospect A, seismic interval velocity is smoothed to favor shale 

intervals, illustrated in Figure 35.  Bower's normal compaction trend coefficients A and B 

were set to 14.5 and 0.8, respectively. Offset well, or Well B1, coefficients were 14.75 

for A and 0.8 for B. Prospect B has a larger salt seal and therefore requires less casings. 

In each offset well for both prospects, typically only one casing point was set in the salt 

seal. Below the salt seal, Prospect B mud weigh window averages 1.25 ppg, which is 

smaller than Prospect A. Prospect B mud weight window ranges from 1 ppg to 1.75 ppg. 

 Table 11 and Table 12 exhibit the proposed mud weight and casing designs for 

Prospect B. Five casing points are used in the casing design. Although the mud weight 

windows of Prospect A and Prospect B are similar in size, Prospect B has a larger salt 

seal and therefore requires less casing points. 
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Table 11: Proposed mud weight design for Prospect B 

TVD MW MW 
ft ppg psi 

8149 12.5 5291.8 
20300 12.5 13182.3 

20300.01 15.05 15871.5 
23550 15.05 18412.5 

23550.01 15.85 19391.3 
28100 15.85 23137.8 

28100.01 16.6 24232.6 
 

Table 12: Proposed casing design for Prospect B 

TVD CSG 
ft in 

5588 28 
6729 22 
20300 17.875 
23550 13.625 
28100 9.625 
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Figure 33. Synthetic bulk density curve for Prospect B and offset well bulk density. 
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Figure 34. Generated bulk density, seismic interval velocity, and normal compaction 

trend of Bower’s method for Prospect B 
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Figure 35. Final pore pressure and fracture pressure model of Bower’s seismic interval 

velocity method for Prospect B 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

 In this chapter, the results and conclusions observed from pore pressure and 

fracture pressure predictions for offset and prospect wells will be summarized. Five pore 

pressure and fracture pressure models were created for Prospect A and two were created 

for Prospect B. Eaton's resistivity and sonic methods will be used for real-time drilling 

pore pressure and fracture pressure analysis. Eaton's seismic method was modeled to 

create pre-drill pore pressure and fracture pressure models for the two prospect wells. 

 

4.1 Summary of Offset Wells 

• Salt diffusion affected the resistivity log and in result provided incorrect 

estimations of pore pressure for depths immediately below salt seal. Well A2 

and A5 were affected. Eaton's resistivity method for these sections were 

ignored. 

• MDT, LOT, and mud weight drilling data agreed with pore pressure and 

fracture pressure models. This suggested that offset wells were grouped 

correctly and Eaton's resistivity and sonic methods were working properly. 

• Eaton's seismic method matched Eaton's resistivity and sonic methods.  

• Mud weight windows for all offset wells were tight: ranging from 1 to 2 ppg. 

Pore pressure and fracture pressure gradients followed similar patterns. 

However,  exact pore pressure and fracture pressure depended on many 

factors: depth, salt size and location, water depth, geologic location, and 

accuracy of available data. 
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• Casing designs ranged from six to eight casing points depending on size of 

salt and depth of well. 

 

4.2 Summary of Prospect Wells 

• Synthetic bulk density curve was created using offset well bulk density logs. 

Equation 3.1 and Equation 3.2 were used for Prospect A and Prospect B, 

respectively. 

• Seismic interval velocity for prospect wells was smoothed to favor shales in a 

similar manner to the offset wells. LWD logs were used to evaluate speeds of 

shale formations to see whether or not they were slower or faster than sand 

formations. 

• Prospect wells mud weight windows ranged from 1 to 2 ppg, averaging 1.5 ppg. 

Similar to the offset wells, the exact pore pressure and fracture pressure depends 

highly on many factors such as: depth, salt size and location, water depth, 

geologic location, and accuracy of available data. 

• Mud weight design and casing design depend on size of mud weight window and 

salt seal. Mud weight and casing design can be found in Table 9 through Table 

12. 
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4.3 Recommendations and Future Work 

• In many cases, Eaton's sonic method exhibited a better pore pressure prediction 

response. It is recommended to have accurate sonic log measurements for future 

pore pressure and fracture pressure models.   

• Being aware of the effects of salt diffusion can benefit real-time monitoring of 

drilling and pore pressure estimation. Resistivity logs can also help find salt seals 

if drillers are unaware of their location. 

• Seismic interval velocity is one of the only tools used in pre-drill pore pressure 

and fracture pressure modeling. "Spiky" or messy seismic data may need to be 

reprocessed in order to attain a precise pore pressure and fracture pressure model. 

• Eaton's resistivity and sonic method compaction trend coefficients will be used to 

monitor and calibrate real-time pore pressure and fracture pressure estimations. 
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APPENDICES 
 

 The mud weight drilling data, LOT pressure points, MDT pressure points, and 

casing points are represented below for each offset well. This data was taken from 

drilling data files and manually inputted into Excel and PPredict to calibrate pore 

pressure and fracture pressure models. 
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A. Data for Offset Wells 
 
A.1 Offset Well A1 
 
Table 13. Mud weight drilling data of Well A1 

MD From MD To TVD From TVD To MW 
ft ft ft ft ppg 

7670 8220 7669 8219 10.3 
8220 9020 8219 9018 10.4 
9020 9400 9018 9398 10.5 
9400 11920 9398 11915 11.3 
11920 12320 11915 12315 11.4 
12320 12700 12315 12694 11.3 
12700 13525 12694 13517 11.3 
13525 13920 13517 13911 11.3 
13920 15140 13911 15128 12.6 
15140 15200 15128 15187 13.0 
15200 15920 15187 15906 13.1 
15920 16740 15906 16725 13.2 
16740 17931 16725 17915 13.2 
17931 18520 17915 18503 13.7 
18520 18940 18503 18922 13.8 
18940 19750 18922 19728 13.8 
19750 20520 19728 20490 13.9 
20520 21020 20490 20984 14.0 
21020 21800 20984 21757 14.1 
21800 22160 21757 22116 14.0 
22160 22600 22116 22554 14.1 
22600 23820 22554 23769 14.1 
23820 25650 23769 25591 14.2 
25650 26320 25591 26258 14.0 
26320 27100 26258 27036 13.8 
27100 28700 27036 28630 14.3 

 

Table 14. Leak-off test drilling data of Well A1 
MD TVD LOT 
ft ft ppg 

7498 7497 10.9 
9347 9345 13.0 
13525 13517 14.2 
17931 17915 14.8 
22160 22116 15.6 
25246 25187 15.8 
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Table 15. MDT drilling data of Well A1 

TVD MDT 
feet ppg 

22318.44 12.838 
22580.47 12.892 
22697.22 12.875 
22786.87 12.858 
22788.82 12.865 
23493.94 13.975 
23495.83 13.970 
23771.47 13.910 
23773.54 13.915 
23836.29 13.897 
23948.67 13.874 
24216.02 13.818 
24337.23 13.793 
24700.3 13.686 

24776.95 13.669 
25107.77 13.617 
25160.51 13.606 
25309.68 13.587 
26161.12 14.820 
26465.82 13.854 
26910.49 14.207 
26939.38 14.452 
27353.1 14.530 

27386.12 14.516 
27611.31 14.381 
27669.07 14.367 
27704.17 14.358 
27742.79 14.351 
27863.82 14.334 
27884.71 14.321 
27905.58 14.323 
28230.57 14.339 
28248.49 14.307 
29137.27 14.650 
29159.24 14.641 
29398.71 14.796 
29410.55 14.793 
29427.97 14.793 
29435.47 14.791 
29444.42 14.798 
29446.39 14.802 

 

78 
 



Table 16. Casing points of Well A1 
MD TVD Casing 
ft ft in 

5264 5263.9 36 
5963 5962.9 28 
7498 7497.55 22 
9347 9345.25 17.875 
13525 13517.97 16 
17931 17915.28 13.375 
22160 22116.52 11.875 
25246 25187.99 9.625 
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A.2 Offset Well A2 
 
Table 17. Mud weight drilling data of Well A2 

MD To TVD From TVD To MW 
feet feet feet ppg 
5975 5543.92 5974.84 11.5 
6800 5974.84 6799.76 12 
7225 6799.76 7224.71 12.5 
7250 7224.71 7250.21 12.7 
7257 7250.21 7256.71 13 
8962 7256.71 8961.57 10.5 
10000 8961.57 9999.55 10.7 
12325 9999.55 12324.31 10.7 
12515 12324.31 12513.75 10.9 
13080 12513.75 13073.32 11.2 
14420 13073.32 14355.63 11.7 
14875 14355.63 14766.66 12 
15100 14766.66 14966.20 12.3 
16115 14966.20 15831.56 12.8 
16750 15831.56 16391.14 13.1 
18150 16391.14 17603.12 13.4 
20110 17603.12 19345.22 13.6 
20770 19345.22 19946.32 13.8 
22150 19946.32 21171.19 14.1 
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Table 18. Leak-off test drilling data of Well A2 
MD TVD LOT 
feet feet ppg 
7259 7258.71 10.9 
8962 8961.57 12.1 
11422 11421.54 15.1 
17955 17436.62 16 
24258 23003.32 15.7 
26285 24816.03 15.7 

 
Table 19. MDT drilling data of Well A2 

TVD MDT 
ft ppg 

24488.71 13.854 
24497.7 13.851 
24506.69 13.848 
24515.82 13.845 
24524.82 13.841 
23416.65 14.648 
23420.22 14.645 
23416.6 14.646 
24439.9 13.870 
24434.59 13.872 
24400.11 13.884 
24405.51 13.882 
24420.04 13.877 
24423.62 13.875 
24432.56 13.873 
24441.67 13.870 
24439.95 13.870 
24452.57 13.866 
24461.63 13.863 
24470.61 13.860 
24479.75 13.857 

 
Table 20. Casing points of Well A2 

MD TVD Casing 
ft ft in 

7259 7258.71 22 
8962 8961.57 18 
11422 11421.54 16 
17955 17436.62 13.625 
24258 23003.32 11.875 
26285 24816.03 9.625 
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A.3 Offset Well A3 
 
Table 21. Mud weight drilling data of Well A3 

MD From MD To TVD From TVD To MW 
feet feet feet feet ppg 
8102 9000 8101.56 8999.51 10.1 
9000 9207 8999.51 9206.50 10.2 
9207 13750 9206.50 9950.00 10.3 
13750 13925 9950.00 13783.51 13 
13925 15300 13783.51 15049.82 13 
15300 15750 15049.82 15468.95 13.1 
15750 16250 15468.95 15930.68 13.2 
16250 17100 15930.68 16715.64 13.3 
17100 18276 16715.64 17802.00 13.4 
18276 18400 17802.00 17916.22 13.5 
18400 18500 17916.22 18008.59 13.5 
18500 19707 18008.59 19123.53 13.8 
19707 25500 19123.53 24514.63 14 
25500 25600 24514.63 24560.88 14.1 
25600 26100 24560.88 25023.15 14.3 
26100 27725 25023.15 26528.38 14.5 
27725 29275 26528.38 27954.64 14.6 
29275 30550 27954.64 29128.16 14.7 

 
 
Table 22. Leak-off test drilling data of Well A3 

MD TVD LOT 
feet feet ppg 
8102 8101.56 11 
9821 9820.47 14.3 
15085 14851.18 13.8 
18276 17801.54 14.7 
25378 24355.56 15.7 
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Table 23. MDT drilling data of Well A3 
TVD MDT TVD MDT 
feet ppg feet ppg 

19253.73 13.819 24294.52 13.778 
19309.37 13.805 24337.88 13.769 
20213.37 13.239 26975.09 14.537 
20215.39 13.238 26986.1 14.533 
20492.22 13.041 27003.79 14.526 
20501.91 13.037 27009.04 14.526 
20921.87 14.317 27015.16 14.524 
20922.84 14.318 27027.24 14.520 
20927.56 14.318 27037.96 14.516 
20931.14 14.317 27046.7 14.514 
21116.7 12.959 27071.05 14.507 

21122.06 12.959 27078.48 14.506 
22270.9 12.847 27086.7 14.503 
22296.5 12.840 27094.64 14.501 

22318.37 12.839 27178.91 14.484 
22475.56 12.927 27191.55 14.481 
22483.78 12.925 27241.96 14.473 
22576.97 12.904 27266.64 14.466 
22620.41 12.903 27278.71 14.464 
23582.32 13.965 27424.52 14.507 
23628.13 13.955 27429.41 14.505 
23674.19 13.944 27449.5 14.498 
23729.28 13.935 27458.75 14.487 
23755.09 13.929 27458.83 14.496 
23780.63 14.354 27538.61 14.470 
24072.6 13.861 27542.18 14.472 
24092.2 13.854 27547.81 14.469 

24109.64 13.844 27551.46 14.468 
24174.45 13.807 27560.87 14.464 
24182.29 13.806 27574.7 14.461 
24184.69 13.804 27588.67 14.457 
24186.18 13.614 27596.98 14.455 
24186.44 13.803 27606.28 14.454 

24205 14.322 27796.26 14.484 
24236.95 13.791 27811.91 14.480 
24237.32 13.792 27862.5 14.463 
24285.45 13.495 27867.1 14.464 
24288.59 13.781 
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Table 24. Casing points of Well A3 
MD TVD Casing 
feet feet in 
5371 5371 38 
8102 8101.56 22 
9821 9820.47 18 
15085 14851.18 16 
18276 17801.54 13.625 
25378 24355.56 11.875 
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A.4 Offset Well A4 
 
Table 25. Mud weight drilling data of Well A4 

MD From MD To TVD From TVD To MW 
ft ft ft ft ppg 

3360 4399 3359 4398 8.6 
4399 5056 4398 5055 8.6 
5056 5084 5055 5083 10.3 
5084 6104 5083 6103 10.4 
6104 6953 6103 6952 10.4 
6953 7333 6952 7331 10.8 
7333 10077 7331 10075 11.2 
10077 11027 10075 11025 12.2 
11027 11228 11025 11226 12.4 
11228 14380 11226 14377 13 
14380 16335 14377 16332 13.7 
16335 17369 16332 17366 14 
17369 18492 17366 18488 14.4 
18492 19814 18488 19810 14.4 
19814 22500 19810 22496 14.5 

 
 
Table 26. Leak-off test drilling data of Well A4 

TVD LOT 
ft ppg 

4387 10.6 
5041 11.3 
6873 12.8 
11024 14.3 
14332 15.4 
17368 16.5 
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Table 27. MDT drilling data of Well A4 
TVD MDT 

ft ppg 
12225.58 12.478 
12238.06 12.457 
12242.03 12.490 
12827.53 12.993 
12866.96 13.173 
13361.98 12.388 
13574.09 12.554 
13953.19 12.940 
13962.01 12.936 
13969.95 12.933 
14210.03 13.752 
14307.08 13.784 
14828.1 13.645 
14841.04 13.634 
15552.2 14.212 
15889.18 14.259 
16135.22 14.290 

16261 14.299 
17060.07 14.319 
17068.15 14.352 
16677.27 14.174 
14828.1 13.645 
14841.04 13.634 
15552.2 14.212 
15889.18 14.259 
16135.22 14.290 

16261 14.299 
17060.07 14.319 
17068.15 14.352 
16677.27 14.174 
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Table 28. Casing points of Well A4 
TVD CSG 

ft ppg 
3141 36 
4387 20 
5041 16 
6873 13.375 
11024 11.75 
14332 9.625 
17368 7.625 
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A.5 Offset Well A5 
 
Table 29. Mud weight drilling data of Well A5 

MW From MW To TVD From TVD To MW 
ft ft ft ft ppg 

6783 10963 6782 10960 10.7 
10963 13346 10960 13342 12.1 
13346 15525 13342 15519 13.3 
15525 20907 15519 20899 14.4 
20907 21520 20899 21508 14.5 
21520 21672 21508 21660 15.7 
21672 22592 21660 22579 16.2 
22592 23950 22579 23936 16.6 
23950 24964 23936 24950 16.5 
24964 26569 24950 26555 16.4 

 
 
Table 30. Leak-off test drilling data of Well A5 

TVD LOT 
ft ppg 

4802 11 
6761 12.5 
10932 14 
14731 15.6 
21342 16.9 
22786 18 
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Table 31. MDT drilling data of Well A5 
TVD MDT 

ft ppg 
22955.13 16.64414 
22956.08 16.64371 
22933.01 16.60421 
22610.1 16.56342 
22595.24 16.57131 
22607.13 16.56779 
23819.62 16.17347 
23837.46 16.14315 
23845.65 16.14017 
23871.45 16.44937 
23820.4 16.1726 
23836.67 16.14628 
23597.86 16.80859 
23596.81 16.80884 
23493.89 16.18726 

 
Table 32. Casing points of Well A5 

TVD CSG 
ft in 

3201 36 
4023 28 
4802 22 
6761 17.875 
10932 16 
14731 13.625 
21342 11.875 
22590 9.875 
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A.6 Offset Well B1 
 
Table 33. Mud weight drilling data of Well B1 

MD From MD To TVD From TVD To MW, ppg 
ft ft ft ft ppg 

7180 7240 7179.8828 7239.8818 10.4 
7240 7320 7239.8818 7319.8794 10.5 
7320 7450 7319.8794 7449.8618 10.8 
7450 7920 7449.8618 7919.3677 10.9 
7920 8050 7919.3677 8049.3037 10.9 
8050 8110 8049.3037 8109.2988 11 
8110 8990 8109.2988 8989.2988 11.3 
8990 9990 8989.2988 9989.2988 11.5 
9990 10490 9989.2988 10489.2988 11.5 
10490 10660 10489.2988 10659.2988 11.7 
10660 11120 10659.2988 11119.2988 12.3 
11120 11610 11119.2988 11609.2979 12.7 
11610 13510 11609.2979 13509.2979 12.8 
13510 14510 13509.2979 14509.2969 13 
14510 14840 14509.2969 14839.2969 13.5 
14840 15470 14839.2969 15469.2949 13.8 
15470 16225 15469.2949 16224.291 14 
16225 16775 16224.291 16774.2871 14.3 
16775 16910 16774.2871 16909.2852 14.2 
16910 18070 16909.2852 18069.2754 14.4 
18070 19340 18069.2754 19339.2285 14.6 
19340 19580 19339.2285 19579.207 14.8 
19580 19630 19579.207 19629.2031 15 
19630 19700 19629.2031 19699.1992 15.2 
19700 19900 19699.1992 19899.166 15.3 
19900 19920 19899.166 19919.1602 15.4 
19920 19940 19919.1602 19939.1504 15.8 
19940 20190 19939.1504 20188.9492 15.9 
20190 20475 20188.9492 20473.7051 15.05 
20475 20525 20473.7051 20523.6699 15.3 
20525 20685 20523.6699 20683.5684 14.8 
20685 20980 20683.5684 20978.4375 15.1 
20980 21040 20978.4375 21038.4238 15.3 
21040 26990 21038.4238 26764.3633 15.4 
26990 28090 26764.3633 27812.668 15.5 
28090 29900 27812.668 29525.1387 15.6 
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Table 34. Leak-off test drilling data of Well B1 
TVD LOT 

ft ppg 
7910 13.5 
13454 15.7 
19931 15.3 
20470 15.6 
21508 16.1 

 
 
Table 35. MDT drilling data of Well B1 

TVD MDT 
ft ppg 

22472 15.62 
23153 15.60 
23289 15.47 
23293 15.47 
23297 15.46 
24147 15.66 
24773 15.66 
25319 15.58 
25338 15.58 
25363 15.57 
25587 15.49 
25596 15.49 
25600 15.49 
26356 15.42 
26916 15.50 
27163 15.50 
27514 15.50 
27585 15.47 
27705 15.45 
27723 15.44 
27759 15.44 
27948 15.40 
28024 15.40 
29136 15.33 
29137 15.34 
29177 15.32 
29210 15.31 
29398 15.33 
29402 15.33 
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Table 36. Casing points of Well B1 
TVD CSG 

ft in 
4588 36 
5479 28 
7154 22 
7910 17.875 
13454 16 
19931 13.625 
20471 11.875 
21508 9.625 
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A.7 Offset Well B2 
 
Table 37. Mud weight drilling data of Well B2 

MD From MD To TVD From TVD To MW 
ft ft ft ft ppg 

4450 6000 4450 6000 11 
6000 6400 6000 6400 11.5 
6400 6812 6400 6812 12 
6812 6950 6812 6950 10 
6950 7200 6950 7200 10.2 
7200 7350 7200 7350 10.4 
7350 7548 7350 7548 10.4 
7548 7600 7548 7600 10.7 
7600 7900 7600 7900 10.8 
7900 9600 7900 9599 10.9 
9600 11000 9599 10999 10.9 
11000 11100 10999 11099 11.1 
11100 12400 11099 12399 11.1 
12400 12910 12399 12909 11.1 
12910 13050 12909 13049 12 
13050 13350 13049 13349 12.2 
13350 13450 13349 13449 12.2 
13450 13850 13449 13848 12.4 
13850 14600 13848 14597 12.6 
14600 14650 14597 14646 12.9 
14650 15250 14646 15245 13 
15250 15950 15245 15944 13.4 
15950 16300 15944 16294 13.4 
16300 16400 16294 16394 13.6 
16400 16550 16394 16544 13.7 
16550 17150 16544 17143 13.8 
17150 17900 17143 17893 13.8 
17900 18800 17893 18792 13.8 
18800 18950 18792 18942 13.8 
18950 19800 18942 19790 14.7 
19800 19850 19790 19840 14.7 
19850 19950 19840 19940 14.7 
19950 20650 19940 20638 14.7 
20650 22150 20638 22138 14.7 
22150 23600 22138 23588 14.7 
23600 24117 23588 24105 14.7 
24117 24150 24105 24138 13.7 
24150 24750 24138 24738 13.8 
24750 25000 24738 24988 13.8 
25000 26200 24988 26186 13.8 
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26200 26550 26186 26536 13.8 
26550 27400 26536 27386 13.8 
27400 27825 27386 27811 13.8 
27825 27900 27811 27886 13.9 
27900 27950 27886 27936 14 
27950 28500 27936 28486 14 
28500 28700 28486 28686 14 

 
 
Table 38. Leak-off test drilling data of Well B2 

TVD LOT 
ft ppg 

6812 11 
7548 12 
12909 16 
24105 15.5 
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Table 39. MDT drilling data of Well B2 
TVD MDT TVD MDT 

ft ppg ft ppg 
28084 13.36515 27964 13.38435
28106 13.36257 28018 13.37613
28342 13.32519 25891 13.62497
28409 1.332087 25719 13.6575 
28456 13.30998 26087 13.61067
28506 13.30095 26150 13.59943
28536 13.29718 26325 13.53666
28594 13.28712 26341 13.53386
27386 13.45959 26371 13.52794
26756 13.47878 26483 13.51064
25837 13.63432 26501 13.50729
24363 13.08559 26510 13.50574
26888 13.46 26546 13.50062
26950 13.44979 26796 13.47206
26980 13.44483 24348 13.08926
27004 13.4404 24371 13.08566
27031 13.43698 24400 13.07999
27281 13.48109 24452 13.07663
27296 13.47871 24500 13.0874 
27361 13.46565 24501 13.08568
27406 13.45922 25432 13.71439
27423 13.45571 25411 13.71854
27580 13.44482 25587 13.68564
27746 13.42034 25797 13.6425 
27682 13.43168 25683 13.66556
27603 13.44185 25770 13.6477 
27812 13.40986 25835 13.63549
27866 13.40053 25861 13.63062
27964 13.38435

 
Table 40. Casing points of Well B2 

TVD Casing 
ft in 

6812 22 
7548 18 
12909 13 5/8 
24105 9 5/8 
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