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ABSTRACT

In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD)
simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks
showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole
through opposing “plunging streams” and global precession of the disk powered by a torque provided by the
black hole. However, those simulations used a traditional spherical-polar grid that was purposefully under-
resolved along the pole, which prevented us from assessing the behavior of any jets that may have been
associated with the tilted disks. To address this shortcoming we have added a block-structured “cubed-sphere”
grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and
polar regions. Here we present our implementation of this grid and the results of a small suite of validation
tests intended to demonstrate that the new grid performs as expected. The most important test in this work
is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the
cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on
their orientation with respect to the grid alignment. This dependence arises from the differing treatment of
current sheets within the disks, especially whether or not they are aligned with symmetry planes of the grid.
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1. INTRODUCTION

We have recently undertaken a series of numerical studies of
titled accretion disks around rapidly rotating black holes, first
in the hydrodynamic (Fragile & Anninos 2005) and then in the
magnetohydrodynamic (MHD; Fragile et al. 2007b) limits. All
of these simulations have been fully general relativistic, using
the Kerr—Schild metric to represent the spacetime of the black
hole.

Tilted accretion disks are of particular interest because they
are subject to differential warping due to the Lense—Thirring
precession of the rotating black hole. For very thin disks, close to
the black hole the competition between the differential twisting
and “viscous” damping may cause the angular momenta of the
disk and hole to align. Further out in the disk, beyond some
warp radius, the disk maintains its misaligned state.

For moderately thin to thick disks, such as the ones we sim-
ulated previously, the situation is more complex and interest-
ing. The primary difference is that warping is transported via
bending waves rather than diffusively, as for thin disks. One
consequence of this is that the midplane of a thick disk does
not tend to align with the symmetry plane of the black hole
at small radii, as in the thin disk case. In fact, the relative tilt
between the black hole and disk angular momenta can increase
at small radii. Having the tilted disk penetrate very close to the
black hole has many interesting consequences. For instance, we
found that accretion onto the hole occurs predominantly through
two opposing “plunging streams” that start from high latitudes
with respect to both the black hole and disk midplanes (Fragile
et al. 2007a). There is also a strong epicyclic driving within
the disk attributable to the gravitomagnetic torque of the mis-
aligned (tilted) black hole (Fragile & Blaes 2008). The induced
motion of the gas can be coherent over the scale of the entire
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disk. The gas also experiences periodic (twice per orbit) com-
pressions. The compressions occur as the gas orbits past the
line of nodes between the black hole symmetry plane and disk
midplane. Near the black hole these compressive motions can
become supersonic and transform into a pair of quasistationary
shocks. The shocks act to enhance angular momentum transport
and dissipation near the hole, forcing some material to plunge
toward the black hole from well outside the innermost stable
circular orbit. Finally, because we are simulating disks with fi-
nite radial extents and fast sound-crossing times, the torque of
the black hole causes the entire disk body to precess globally.

The main shortcoming of our work so far comes from
limitations imposed on us by our use of a spherical-polar
grid. First, construction of a uniform spherical-polar grid in
three dimensions results in very small zones surrounding the
two poles, where all of the lines of longitude converge. These
very small zones constrain the Courant-limited time step to
be exceedingly small, such that the required CPU cycle count
becomes prohibitively large. To avoid this problem, researchers
have either excised a small conical section around each pole
(e.g., De Villiers & Hawley 2003) or used a lower grid resolution
near the poles (Fragile et al. 2007b). Although these techniques
are reasonable when one is primarily interested in studying
the equatorial region (where a disk may form), these are not
satisfactory when one is interested in what is happening in the
polar regions (where jets may form). A second problem with
the spherical—polar grid is that the poles themselves actually
represent coordinate singularities, which present significant
challenges for numerical advection and curvature coupling
schemes (e.g., solving Riemann curvature source terms).

For these reasons we have added the cubed-sphere grid
(Sadourny 1972; Ronchi et al. 1996) as an option within
our numerical code, Cosmos++. The advantage of this grid
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construction is that its topological properties more closely
resemble a Cartesian coordinate system than a spherical—polar
system. The cubed-sphere grid uses a more uniform zone
spacing than spherical polar, so the time step can remain
reasonably large even in high-resolution simulations. Also
important, the grid does not contain any coordinate singularities
except at the origin, which is not a concern for our intended use
since we truncate the grid just inside the event horizon of the
black hole. Ours is not the first application of the cubed-sphere
grid to problems in computational astrophysics; it has been used
previously to study accretion onto rotating stars with inclined
magnetic fields (Koldoba et al. 2002; Romanova et al. 2003) and
a few problems in stellar evolution (Dearborn et al. 2005, 2006).
However, our work is one of the first applications of this grid to
the study of black hole accretion disks and their attendant jets
(see also Zink et al. 2008).

The paper is organized as follows: Section 2 describes the
cubed-sphere mesh in detail and our particular implementation.
In Section 3 we discuss results of basic gradient tests on the
cubed-sphere grid. In Section 4 we compare two sets of numer-
ical simulations of black hole accretion disks. In the first set we
compare simulations of disks accreting onto a Schwarzschild
black hole. We compare different grids, resolutions, and orien-
tations of the disk with respect to the grid. Because these sim-
ulations use a Schwarzschild black hole, the orientation should
have no physical meaning. However, we show that there are,
nevertheless, considerable differences in their evolution at early
times. We present the case that the differences have to do with the
differing treatments of the midplane current sheets in the disks,
which forms from the differential winding of our initial poloidal
field loops. Finally, we compare simulations of tilted accretion
disks around Kerr black holes. We use a tilt of §yp = 15° and a
spin of a/Mpy = Jpu/ MéH = 0.5, in geometrized units where
G = ¢ = 1, and Mgy and Jpy are the mass and angular momen-
tum of the black hole, respectively. One of these simulations is
run on a spherical—polar mesh, the others on the cubed-sphere
grid. We demonstrate that, for the most part, the simulations
agree very well.

2. THE CUBED SPHERE

The cubed-sphere grid gets its name from its construction—
it is actually composed of six “blocks” that are morphed into
segments of a sphere. Each block is constructed of segments
of concentric radial shells. In the present work, these shells
are spaced exponentially based upon their distance from the
hole, similar to a logarithmic radial coordinate. The other two
coordinates are constructed such that, on any given block, the
grid lines trace out “great circles” on each radial shell segment.
It is as if there are two longitude coordinates, ¢; and ¢,, on each
block. The range of ¢; and ¢, on each block is /2 so that the
full 47 steradian is covered by the six blocks.

The difficulty with the cubed-sphere grid is that the “great
circles” cannot be made continuous across all six blocks, and
hence the block-structured nature of the mesh. Stated differ-
ently, the coordinates ¢; and ¢, cannot maintain a consistent
orientation across all blocks. At each block boundary, the co-
ordinate system has a discontinuous jump. Fortunately, this can
be handled with the proper application of boundary conditions
and communication between blocks, as we shall describe.

Another problem with the cubed-sphere grid is that the ¢,
and ¢, coordinates are not orthogonal. There are techniques
available to try to improve the orthogonality of the cubed-
sphere grid at the cost of reducing its uniformity. However, such

techniques have been shown not to perform significantly better
than the standard cubed-sphere grid implemented here (Putman
& Lin 2007). Furthermore, such techniques are not necessary
in our Cosmos++ code, which is designed with tremendous
mesh flexibility to handle a variety of grids including fully
unstructured and nonorthogonal ones.

2.1. Implementation Within Cosmos++

When working with more traditional spherical—polar meshes,
the Cosmos++ code actually evolves the MHD equations in a
generalized coordinate system {xg, x, x2, X3}, with the curva-
ture implemented through metric terms. This is done even for
the Newtonian formulation. The corresponding physical coordi-
nates in general relativity are the Kerr—Schild polar coordinates
{t,r, 0, ¢}. For the cubed sphere, instead, we construct the grid
in physical space using the Kerr—Schild Cartesian coordinate
system {t, x, y, z}. The two Kerr—Schild coordinate systems are
related through the following transformations:

x =rsinf cos¢ — asinf sin ¢,
y =rsinfsin¢g +asiné cos ¢,
z =rcos#, @))]
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Ultimately the Cosmos++ code just needs to know the
coordinate locations of all the zone vertices. From those it is
able to fully reconstruct all of the necessary zone properties
such as volumes and face areas. We find it easiest for the
cubed-sphere grid to start from the cubed-sphere coordinates
{r, @1, ¢,} of each vertex, then use the transformations given in
the Appendix to convert to the Kerr—Schild polar coordinates
{r, 8, ¢}, and finally use Equation (1) to obtain the correct Kerr—
Schild Cartesian coordinates {x, y, z} from the polar ones. For
convenience we label the six blocks 0-5, with their orientations
described in the Appendix. Samples of blocks 0, 1, and 2 are
illustrated in Figure 1.

One consequence of using Kerr—Schild Cartesian coordinates
is that, whereas in the spherical—polar case we were able to tilt
the black hole with respect to the grid (Fragile & Anninos 2005;
Fragile et al. 2007a, 2007b), in the cubed-sphere case the black
hole must remain aligned with the grid for a rotating black hole
(a # 0). This is because in Kerr—Schild Cartesian coordinates,
the z-axis is chosen to be the spin axis of the black hole and the
event horizon is only symmetric about this axis. Thus, in order
to get the inner boundary of the cubed-sphere grid to align with
the black hole event horizon, the black hole spin axis must align
with the grid z-axis.

2.2. Boundary Conditions

As we said, one of the difficulties with the cubed sphere is that
the coordinates are not continuous across block boundaries. This
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Figure 1. Examples of blocks O (right), 1 (center), and 2 (left) that might make up a cubed-sphere grid. Note that in this illustration we use a very low resolution for

clarity.

requires some care when setting up communications between
blocks. Even once the communication pattern between blocks is
established, there are certain subtleties about the grid that must
be dealt with. For instance, as we show in Section 3, the gradient
operator can only be made to converge properly (second order
in our case) if a set of ghost zones are constructed that are an
extension of the coordinates on the current block. However, such
ghost zones then do not correspond directly to any of the zones
on the neighboring block; instead, they tend to straddle more
than one zone, and a simple domain exchange is not exactly
valid. Fortunately, at any inter-block boundary it is only one of
the ¢ coordinates that is discontinuous; the radial coordinate
and the other ¢ coordinate are consistent across any given inter-
block boundary (Ronchi et al. 1996). Therefore, for a single
layer grid with uniform zone spacing, the ghost zones of one
block will never overlap more than two zones on the neighboring
block. In such a case, we can get away with applying a boundary
condition that simply fills the ghost zone with a field Fy that is
a weighted average of the fields in the two real zones it overlaps,
Fy and F;. The weighted average we use is

Fo(L — — Fi(L — —
Fy = o( [Xo XDZ 1( x4 Xl)’ 3)

where
L =|x; —x|+[xp —x][, 4

and Xx, Xg, and x; are the coordinate centers of the ghost zone
and the two real zones it overlaps on the neighboring block,
respectively. This weighting scheme is applied any time a
normal domain exchange would be needed between neighboring
processors, such as after fields are updated, but before any
gradients are taken. Something slightly different must be done
for advection as explained in the following section.

2.3. Advection

Because Cosmos++ was written using finite-volume methods,
and designed for arbitrary mesh topologies, few changes were
needed to apply the code to the cubed-sphere mesh. The one
thing (in addition to the ghost zone construction) that was mod-
ified, if only slightly, was the algorithm for advection. A number
of different options for advection are available in Cosmos++ in-
cluding upwind, subzonal polyhedral reconstruction and global

monotonic flux-limiter methods, described by Anninos et al.
(2005). These methods are designed to operate on multidimen-
sional vector quantities (e.g., gradients) constructed from the
convex attributes of arbitrary covariant cell geometries and con-
nectivities. However, for the cubed-sphere mesh we found that
flux estimates performed with local one-dimensional-limited
projections (or differences) across individual cell faces are gen-
erally more robust than computing vector fluxes across the entire
cell structure, even with appropriate multidimensional flux lim-
iters.

The method is only slightly modified from that presented by
Anninos et al. (2005), so we present only an abbrevi-
ated discussion. The advection terms are solved for each
evolved field quantity using an upwind time-explicit, first-order
forward Euler scheme with appropriately time-centered fluxes.
Letting F represent any of the evolved fields (or their consistent
transport counterparts with F — F/D, where D is the mass den-
sity), the discrete finite-volume representation of the advection
source term can be written as

faces

HEV) === (FVAy, (5)
S

where V., is the local donor cell volume of zone z, (A;)f is
the inward pointing area normal vector associated with face
f of the donor cell, and (V') ¢ is the face-centered velocity
defined as a weighted average across neighboring cells. In
Anninos et al. (2005), the quantity (F*) represents piecewise
linearly reconstructed zone-centered fields extrapolated to each
cell face by a monotonic Taylor’s series expansion, F* = F, +
(0 F)E(r" — rl), projected from the donor cell center r! to either
the face center r' = r;} or the advection control volume center
r = r} — (At/2)(V'), over a time-step interval Az. The zone-
centered—limited gradient (BiF)ZL forces monotonicity in the
extrapolated fields using polyhedral subzonal interpolations and
control volume integrals to construct upwind, downwind, and
centered variations. The difference here, for the cubed sphere,
is that the monotonic multidimensional gradient is replaced
by a local one-dimensional calculation separately across each
donor cell face, and along the direction of the cell face normal
(perpendicular to the cell face) using the generalized minmod
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limiter in the form

|:1(a b) 1<a c) 1<b c):|

VF, =|-[—+— ) x=-|—+— ) x=|—+—

2 \la| |b| 2 \lal | 2\16] el
x min (|al, |bl, |c|), (6)

wherea = (1+A)VFp,b = VF¢,c = (1+41)VFy, A is an order
parameter between zero and unity specifying the steepness of
the applied limiter, and VFy, VFp, and VF¢ are the upwind,
downwind, and center-difference gradients, respectively. The
upwind and downwind gradients are defined as VFypy =
k6F/8s, where k = =1 depending on the upwind direction
with respect to the coordinate orientation, §F = F, — Fp, is the
difference between donor and opposite cell field values, and §s
is the magnitude of the distance between donor and neighbor
cell centers. The center-difference representation of the gradient
is approximated as VF¢c = ) ;. . (k/2)(8F/8s), where the sum
is over opposite cell face pairs. A projected estimate for the
advected fields contributing to the flux in Equation (5) at each
cell face is provided by the donor cell as F* = F, + §F =
F, — kVF| x 8r, where §r = |X; — X, — 0.5At(VI A;))A/
(A7A ;)| is the distance to the advection control volume center
along the direction aligned parallel to the cell face normal vector
A (between neighbor zone centers).

For advection from one block to another, in order to conserve
mass, energy, and momentum to round-off instead of truncation,
it is important not to interpolate values between ghost zones as
was done for the extrapolated field gradients in the previous
section. Instead, for advection we use the ghost zones as
“buckets” to capture material advecting off of the host block. The
mass, energy, and momentum collected in this bucket are then
deposited into the corresponding real zone on the neighboring
block that shares a face with the originating real zone as part of
a final loop in the advection routine. This is appropriate since
zones along inter-block boundaries share faces with only a single
neighbor.

3. GRADIENT TEST

Because the cubed-sphere grid uses the same basic gradient
operators that were already tested in Cosmos++ (Anninos et al.
2005), we fully expect the same second-order convergence for
smooth fields, at least in the interior zones. Nevertheless, it
is worthwhile to conduct a simple gradient test for a variety
of fields to verify second-order convergence over the entire
domain, including at the inter-block boundaries where we have
introduced a new procedure for interpolation of fields beyond
local grid domains.

In our first attempt at implementing the cubed-sphere grid,
we actually did not achieve uniform second-order convergence.
In that attempt, instead of constructing the ghost zones as ex-
tensions of each block as described in Section 2, we constructed
the ghost zones to be exact replicas of the nearest zone on
the neighboring block and to mimic the behavior of periodic
boundaries on spherical-polar grids. However, this introduces a
discontinuity into the gradient operator and actually prevents the
convergence of gradients at the inter-block boundaries. For in-
terior zones not touching an inter-block boundary, we found the
L1-normalized error for the gradient of a simple scalar field to
converge at second order as expected (the L1-normalized error
is defined as E| = Zi’j’k la; jx — Ai jxl/(nin;ng), where a; j
and A, ; ; are the numerical and exact solutions, respectively, in
each zone n;, n;, and ny are the number of zones in each of the

three directions). However, for the interior zones fouching the
inter-block boundaries (not the ghost zones themselves, but the
zones that touch them), the L1-normalized error did not con-
verge. To explain where this failure arises we first note that the
gradient of a generic field F in Cosmos++ is calculated as (akin
to Equation (5))

faces

1
G, =0F =—— F*A)r, 7
7 g} )f @)

where the summation is performed over all cell faces. The
problem arises in calculating F*, the face-centered value of
the field; Cosmos++ uses a simple average of the zone-centered
values F’, in the two zones adjoining at face f. However, when the
line connecting the two zone centers does not pass through the
center of the zone face, as is the case for nearest neighbor cells
across an inter-block boundary, this simple averaging does not
give the correct face-centered value F*. In fact, it is relatively
easy to show in this case that the absolute error (|a; j« — A; j «|)
in each zone along the inter-block boundary remains essentially
constant, regardless of the resolution (it only depends weakly
on the location of the zone along the boundary), thus explaining
the nonconvergence in these zones.

The ghost-zone construction described in Section 2, on the
other hand, which is the only one used for the remainder of this
work, restores second-order convergence in all interior zones
by giving a properly extrapolated value for F*. Here, F* =
0.5(F, + Fy) is a simple average of the zone-centered value
F, in the interior zone and the ghost-zone-weighted average
Fy from Equation (3). We have confirmed that all interior
zones (including those touching the inter-block boundaries) give
errors at the level of round-off for flat fields and second-order
convergence for all linear and higher order fields.

4. TILTED ACCRETION DISKS

Having demonstrated that our implementation of the cubed-
sphere grid preserves the correct convergence order for our code,
we can confidently move on to testing our primary application
of interest: black hole accretion disks. We begin with a review
of how the simulations are initialized and then consider two
sets of test cases: in Section 4.1 we study disks of differing
alignments relative to a Schwarzschild black hole; in Section 4.2,
we compare tilted disk simulations around a Kerr black hole,
one carried out on a spherical-polar mesh and the others on the
cubed sphere.

Most of the accretion disk simulations presented in this work
using the cubed-sphere grid are carried out at a resolution of
128 x 64 x 64 x 6, where there are 128 radial shells and each
of the blocks are resolved with 64 x 64 angular zones. Along
its symmetry planes, such a grid looks like a spherical-polar
grid of resolution 128 x 128 x 256. However, the more uniform
distribution of zones in the cubed-sphere grid means we are
able to achieve such resolution with a smaller number of zones
overall (by a factor of 3/4). Also, because of the more uniform
zone sizing, we are able to run with a Courant time step that is
almost 30 times larger than could be used with a spherical—polar
grid of that resolution, which means the required CPU cycle-
count is smaller by the same factor. An image of the actual
grid used in these simulations is shown in the left panel of
Figure 2. This can be compared with the spherical-polar grid
used in Fragile et al. (2007b), including the underresolved polar
regions, which is shown in the right panel of Figure 2. The time
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Figure 2. Left: plot of the cubed-sphere grid geometry used for the disk simulations presented in this work. Right: plot of the spherical-polar grid used in Fragile et al.

(2007b), including an under-resolved polar region.

step for the cubed-sphere grid is even 25% larger than for that
special grid, where the pole was under-resolved precisely to
keep the time step reasonable.

The inner and outer radial boundaries are set at 0.98rgy and
1207, respectively, where rpy is the radius of the black hole
horizon and rg = G Mgy /c2 is the gravitational radius. Note
that, because we use the Kerr—Schild form of the Kerr metric,
we are able to place the inner radial boundary inside the black
hole horizon. In principle, this should keep the inner boundary
causally disconnected from the flow, although numerically there
is still some communication. At both the inner and outer radial
boundaries we apply “outflow” conditions: Fluid variables are
set the same in the external boundary zone as in the neighboring
internal zone, except for velocity, which is chosen to satisfy

r
roo_ int
ext — _yr

int

V7 points off the grid,

V'’ points onto the grid. ®)

For the initial conditions of the simulations we start from
the commonly used analytic solution for a hydrostatic fluid
torus orbiting the black hole. In this case, we choose the torus
parameters to be the black hole spin (a/ Mpp), the inner radius of
the torus (ry, = 15r¢), the radius of the pressure maximum of the
torus (Feenter = 257¢), and the power-law exponent (g = 1.68)
used in defining the specific angular momentum distribution,

€= —uy/u; = kA9, ©

where u,, = g, u", g, is the 4-metric, and u* is the fluid 4-
velocity. We then follow the procedure in Chakrabarti (1985) to
solve for the initial state of the torus. Knowledge of reeper leads
directly to a determination of £.cneer by setting it equal to the
geodesic value at that radius. The numerical value of k comes
directly from the choice of g and the determination of Acenter,

where 1 p
+

2o 8t¢ 81t ‘ (10)

A2 £g¢¢ + Zzgmg
Finally, having chosen rj, we can obtain uy, = u,(ri,), the
surface binding energy of the torus, from u; 2 = g'" — 2£g'? +
02g%9.

The solution of the torus variables can now be specified. The

internal energy of the torus is (De Villiers et al. 2003)

1 |: Uin f (Lin) ]

CO=F o e )

an

where £;, = £(rj,) is the specific angular momentum of the fluid
at the surface and

f(g) — |1 _ k2/neo¢|1/a ’

(12)
where n =2 — g and o« = (2n — 2)/n. Assuming an isentropic
equation of state for the initialization only, the gas pressure and
density must be related by the expression P = pe(I'—1) = «kp",
and so the density is given by p = [e(I" — 1)/« ]"/T~D. We take
I' = 5/3 and « = 0.01 (arbitrary units). Finally, the angular
velocity of the fluid is specified by

8wt Lgs

Q=V?= .
8¢p + 810

13)

The torus is then seeded with weak poloidal magnetic field
loops with non-zero spatial components B = —dyA, and
B’ = 9,A,, where

b(p = pew) for p = peu,

Ay = { 0 for p < peut- (14)
The parameter pyy = 0.50max.0 is used to initially keep the
field a suitable distance inside the surface of the torus, where
Pmax.0 18 the initial density maximum within the torus. Using
the constant b in Equation (14), the field is normalized such
that initially Bmag = P/Pp = Bmago = 10 throughout the
torus, where P is the magnetic pressure. The magnetic field is
added in order to seed the magnetorotational instability (MRI;
Balbus & Hawley 1991), which is now commonly believed to
be the source of angular momentum transport within black hole
accretion disks (Balbus & Hawley 1998).

As mentioned in Section 2, our implementation of the cubed
sphere requires that the black hole be aligned with the grid.
Therefore, unlike our previous work where we tilted the black
hole, if we want a tilted configuration now we must tilt the disk.
By itself, tilting the disk is a rather trivial operation, simply
requiring the following coordinate transformation be applied
prior to constructing the torus:

x" = x cos By — z sin By,
Yy =y, (15)
7' = x sin By + z cos By,
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Table 1
Schwarzschild Simulation Parameters
Simulation a/M  Tilt Resolution® Start”  End® Me
Angle Time Time

oLd 0 0 64 x32x32x%x6 0 4 —0.0129
OHY 0 0 128 x 64 x 64 x 6 0 4 —0.0090
015H¢ 0 15° 128 x 64 x 64 x 6 0 4 —0.0085
0SP® 0 0 1283 0 4 —0.0141
Notes.

® In the case of the spherical-polar grid this represents the equivalent peak
resolution of an unrefined grid.

Y In units of tor, = 785G M /3, the geodesic orbital period at the initial pressure
maximum 7ceper-

¢ Calculated from the slopes of M vs. t over the interval 3 < 1/t < 4.

d Cubed-sphere grid.

¢ Multiresolution-layer spherical—polar grid.

where By is the initial tilt of the disk. However, as we describe
in the following section, we were surprised to discover that our
tilted disks evolved differently than our untilted disk, at least
at early times, even for nonrotating, Schwarzschild black holes,
for which a tilt should have no physical meaning or significance.

4.1. Schwarzschild Black Hole

Here we compare simulations of black hole accretion disks
carried out for a Schwarzschild black hole (a/Mpy = 0).
Table 1 summarizes the parameters for these runs. In our naming
convention, the first number indicates the dimensionless spin of
the black hole (a/ M) without the decimal; the second number, if
present, gives the tilt angle of the disk in degrees; the final letter
is used to distinguish what resolution the simulation is carried
out at, “H” being our high resolution (128 x 64 x 64 x 6) and
“L” being low (64 x 32 x 32 x 6). The two main simulations,
OH and 015H, begin from identical initial conditions except for
the tilt of the disk with respect to the grid, which are 0° and
15°, respectively. We also include results of a simulation that
uses the spherical—polar grid from Fragile et al. (2007b); this
simulation is denoted by the suffix “SP” and has an equivalent
peak resolution of 128°. We showed in Fragile et al. (2007b)
that this was roughly the minimum resolution needed to get
a relatively well converged result for this type of problem.
Therefore, in the present work, we do not expect our low-
resolution simulation (OL) to be converged; it is instead included
for the purpose of estimating the rate of convergence when using
the cubed-sphere grid.

Our first concern with the cubed-sphere grid is that the angular
momentum conservation may not be sufficient for the purpose
of following the long-term evolution of an accretion disk,
particularly as the flow crosses the coordinate discontinuities
at block boundaries. At a minimum we want to quantify our
angular momentum conservation error, which we do graphically
in Figure 3, where we plot the total angular momentum in each
simulation as a function of time for runs OL, OH, 015H, and OSP.
The total angular momentum is defined as

/17$.L-gdv, (16)
14

where sz? = (ph +2Pp)u’uy — (B°B,)/(47), g is the deter-
minant of the 4-metric, B* is the magnetic field 4-vector, and

P
h=1+e+— (17)
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Figure 3. Plot of the total angular momentum as a function of time for
simulations OH (solid), 015H (dashed), OL (dot-dashed), and OSP (dotted). All
plots have been normalized to their initial angular momenta. Simulation OSP
uses the spherical—polar grid described in Fragile et al. (2007b).

is the relativistic enthalpy. We only plot part of the first orbital
period (r < 0.8¢#,) of data because after this time significant
amounts of angular momentum begin to advect into the black
hole and leave the outer boundary of the grid in jets and
winds, so that it is much more difficult to track the global
conservation. Ideally all the lines in Figure 3 would be perfectly
horizontal, indicating exact angular momentum conservation,
but we do not really expect this (slight imbalances in the
momentum “source” terms and imperfect boundary conditions,
for instance, can prevent exact conservation). The angular
momentum conservation in our “low” resolution simulation OL
is 0.18% (extrapolated to a full orbital period); this drops down
to 0.048% per orbital period at our normal resolution, about the
level of convergence (second order) we expect. Furthermore,
it appears that this error is not strongly dependent on the
orientation of the disk with respect to the grid, based on
a comparison of simulations OH and O15H. Simulation OSP
is included to give some indication of our typical angular
momentum conservation error on the multiresolution-layer
spherical—polar grid used in our previous work. The error in
this case is 0.019% per orbital period, somewhat better but still
comparable to simulation OH, suggesting we suffer only a small
degradation in angular momentum conservation in going from
our spherical—polar grid to the cubed-sphere grid.

Because we are simulating a nonrotating black hole in this
section, any tilt we assign the disk has no physical meaning;
it can only be defined relative to the grid. We would expect,
therefore, that this tilt would not have any physical effect on the
evolution. Interestingly, that is not what we find at early times.
The difference is perhaps shown most graphically in Figure 4,
which shows the gas density of the disk for simulations OH and
015H along one azimuthal slice after one orbital period (fo)
at the initial pressure maximum (7center). In simulation OH (left
panel of Figure 4), the disk has spread radially to such an extent
that it reaches all the way to the event horizon of the black
hole (inner boundary of the computational grid). In simulation
015H, on the other hand (right panel), the disk has hardly spread
radially at all, having started at rj, = 15r¢ and only penetrated
to 12r¢.

The primary mechanism responsible for the radial spreading
of the disk over the first orbital period is not solely the MRI,



488

Z-Axis

10

15
X-Axis

20 25 30

FRAGILE ET AL.

15

Vol. 691

Pseudocolor
Var: tho
0.85

-0.27

0.085

0.027

0.0085
Max: 0.9366
Min: 4.224e-13
o 5 10 15 20 25 30
X-Axis

Figure 4. Plot of logarithm of density (normalized to pp max) along an azimuthal slice at ¢ = 0 at t = l#,y, for simulations OH (left panel) and 015H (right panel).
Because the black hole is not rotating in this simulation, the tilt should have no physical effect and we would expect the two simulations to evolve nearly identically.
The observed differences are due to the numerical treatment of the current sheet that forms in the midplane of the disk, as described in the text.

(A color version of this figure is available in the online journal.)

but also the differential winding of the initial radial component
of the poloidal field loops, the so-called Q-dynamo. The
amplified toroidal and radial field components allow for efficient
angular momentum transport essentially from the beginning
of the simulation. This is, of course, peculiar to an initial
field configuration such as ours which includes a radial field
component. If, instead, we started from a purely toroidal field,
differential winding would not play a role initially and angular
momentum transport would have to await a more complete
development of the MRI, which occurs on roughly an orbital
timescale.

Something in simulation 015H appears to be shorting out the
shear amplification of the field as compared to simulation OH.
Growth of the MRI also appears to be delayed, as evidenced by
the less turbulent appearance of simulation 015H in Figure 4.
This may be related to the lack of an Q-dynamo since the MRI
has less field to grow on whenever this is inactive (Hawley &
Krolik 2002). Furthermore, we can see for certain in Figure 5
that the total magnetic energy is growing more slowly in
simulation 015H than in OH (and OSP). Here we define the
magnetic and kinetic energies as

(13)

0po0
/_g I:(g00+2u0u0) PB _ B"B ]

4

and Dh(u® — 1), respectively, where D = Wp is the generalized
fluid density with boost W = ,/—gu’. Both energies are
summed over the entire simulation domain. All three simulations
show a very rapid initial growth of the magnetic energy due to
the combination of shear amplification and the MRI. They also
show a gradual increase in kinetic energy over the first orbit
as gravitational potential energy is converted into kinetic. After
approximately 1z, the growth of the magnetic fields saturates.
Atabout the same time in simulations OH and OSP, kinetic energy
begins accreting into the black hole in significant amounts,
accounting for the sudden change in slope. This happens about
an orbit and a half later in simulation 015H.

The culprit for the retarded field growth in simulation 015H
appears to be the numerical treatment of the current sheet
that forms in the midplane of the disk as a result of the
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Figure 5. Plot of the total magnetic (top) and kinetic (bottom) energies as
functions of time for simulations OH (solid), 015H (dashed), and OSP (dotted).
All plots have been normalized by the initial kinetic energy of simulation OH.

differential winding. For an untilted simulation, such as OH,
this current sheet resides almost exactly along an interfacial
boundary, right along one of the symmetry planes of the grid
(see the left panel of Figure 6). Furthermore, because this is a
nearly perfect symmetry plane for the flow, there is very little
advection of fluid across this boundary, and so the current sheet
remains relatively stationary. In effect, the current sheet remains
unresolved, because it spans less than a full zone’s width in the
vertical direction. Note how narrow the current sheet is in the
left panel of Figure 6. This is not the case for a tilted-disk
simulation. By necessity, the disk midplane in a tilted disk is
no longer aligned with any symmetry plane of the grid (right
panel of Figure 6). This means that the disk midplane, and
more importantly the midplane current sheet, passes through the
interiors of some zones rather than always along their boundary.
Numerically this is a critical distinction. For a zone-centered
code such as Cosmos++ whenever a current sheet is aligned
along an interfacial boundary that experiences no advection, as
is approximately the case in our untilted simulations (OH and



No. 1,2009 APPLICATION OF THE CUBED-SPHERE GRID TO TILTED BLACK HOLE ACCRETION DISKS 489

15

10

z-Axis ©

=5

=10

(] 5 10 15 20 25 30
X-Axis

Pseudocolor
Var; %/
030

0.015

-0.015

-0.030
Max: 0.01101
Min:-0.01103
(] 5 10 15 20 25 30
X-Axis

Figure 6. Pseudocolor plot representing the value of BY (in code units) along an azimuthal slice at ¢ = 0 at t = 1z, for simulations OH (left panel) and 015H (right
panel). The midplane current sheet (represented by the line where the color changes from red to blue) remains essentially subzonal in simulation OH, whereas it is
spread across approximately three zones in simulation 015H (greenish yellow zones between red and blue).

(A color version of this figure is available in the online journal.)

OSP), there can be no numerical reconnection and magnetic
fields are preserved. If, on the other hand, the current sheet
passes through a zone center, as it does in our tilted simulation
(015H), numerical reconnection is greatly enhanced. The effect
is to drain energy from the magnetic field. In the present work,
which uses the internal energy-conserving form of Cosmos++
this energy is simply lost from the simulations (see Fragile &
Meier 2008 for a discussion of the implications of the different
forms of energy conservation in numerical simulations of black
hole accretion disks).

This is a somewhat worrisome discovery; however, we
emphasize that it is restricted to the particular field geometry we
start with, as no strong midplane current sheet forms if one starts
from a purely toroidal field. Furthermore, as the disk becomes
more turbulent with the action of the MRI, we find that the
discrepancies between the tilted and untilted simulations are
dramatically reduced to the point that, at late times, they are
nearly indistinguishable. For instance, in Figure 7, we show
plots equivalent to Figure 4, except at t = 4f,y, as opposed to
1o, Which show the two disks to be nearly identical. The late-
time mass accretion rates are also quite similar (see Table 1).

For a more rigorous comparison, in Figure 8, we present time-
and shell-averaged values of density (p), gas pressure (P), di-
mensionless stress (), plasma magnetization parameter (Bmag),
specific angular momentum (£), and radial inflow velocity (Vr)
as functions of radius for simulations OH, 015H, and OSP at late
time, where

lu"u?||B||* — B" BY|
o= (19)

- 4m P

and V' = (pV7")/(p). Angle brackets indicate that a radial shell
average has been taken, where

1 2 b4
(Q)r, 1) = X/ / QV—gdbdg, (20)
0 0

and A = 02” Iy V/=8dfd¢ is the surface area of a given
radial shell. The time averaging is done over the interval

3 < t/tony < 4. The shell averages for P, o, Biyag, £, and V' are

mass weighted. Measurements of p, P, and ¢ show very good
agreement between all three simulations, with errors everywhere
< 20% and generally much less. The discrepancies in o, Bag,

and V' are similarly small for simulations OH and OSP, but
considerably larger for simulation 015H. This is not unexpected
as these quantities depend sensitively on the distribution of
magnetic field, meaning they are more affected by the delayed
growth of the MRI.

4.2. Kerr Black Hole

Having shown that the late-time evolution of simulated black
hole accretion disks on our cubed-sphere grid is relatively
independent of the orientation of the disk with respect to the
grid by analyzing a few Schwarzschild test cases, we can
now evaluate the treatment of tilted accretion disks around
modestly rotating (a/Mpy = 0.5) Kerr black holes. Here our
test simulations (515L and 515H), which use the new cubed-
sphere grid, are compared to a reference simulation (515SP),
which uses the multiresolution-layer spherical—polar grid from
Fragile et al. (2007b; shown in the right panel of Figure 2). All
simulations have an initial tilt angle 8y = 15°. Again we do not
expect the low-resolution simulation (515L) to be converged;
instead, it is included to provide some indication of the rate
of convergence. The parameters for each run are described in
Table 2.

First we show in Figure 9 that the general disk properties of
simulations 515H and 515SP are quite similar. Again, the largest
discrepancies are in the dimensionless stress o and the plasma
magnetization parameter By, = P/Pg. This is not surprising
since both of these properties have been shown in previous
studies to be quite sensitive to resolution (Hawley et al. 1996;
Fromang & Papaloizou 2007), and although the total number of
zones in these two simulations is comparable, the distribution
of those zones is considerably different. The level of agreement
in the other parameters is really quite remarkable given the very
different structures of the grids. Of course, this was exactly what
we were hoping to see.

Now, because the black hole is rotating, the tilt of the disk
has some physical meaning and consequently causes changes in
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Figure 8. Main disk properties plotted as a function of radius for simulations OH, 015H, and OSP. The data have been time averaged over the final orbital period of
each simulation (3 < 1/fory < 4). P, o, B, €, and V" are mass-weighted averages of the pressure, dimensionless stress, plasma equipartition parameter, specific angular
momentum, and radial inflow velocity, respectively.

(A color version of this figure is available in the online journal.)
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Table 2

Kerr Simulation Parameters
Simulation  a/M Tilt Resolution? End® Me

Angle Time
51514 0.5 15° 64 x32x32x%x6 10 —0.0032
515H¢ 0.5 15° 128 x 64 x 64 x 6 10 —-0.0114
515Sp¢ 0.5 15° 1283 10 —0.0122
Notes.

* In the case of the spherical-polar grid this represents the equivalent peak
resolution of an unrefined grid.

Y In units of tor, = 789G M /3, the geodesic orbital period at the initial pressure
maximum 7¢eper-

¢ Calculated from the slopes of M vs. t over the interval 3 < ¢/t < 4.

d Cubed-sphere grid.

¢ Multiresolution-layer spherical—polar grid.

its evolution relative to an untilted disk, as described in Fragile
etal. (2007b) and Fragile & Blaes (2008). For instance, although
the disk begins with a uniform tilt of 8y = 15°, we expect a
warp caused by the gravitomagnetic torque of the black hole

to propagate through the disk as a bending wave. This will
cause the tilt B to become an oscillating function of radius
(Ivanov & Illarionov 1997; Lubow et al. 2002). In Figure 10,
we plot B(r), time averaged over the interval 8z, < ¢ < 10fp,
for simulations 515L, 515H, and 515SP. As in previous work
(Fragile & Anninos 2005; Fragile et al. 2007b), we recover the
tilt using the definition

ey

B(r) = arccos [ Jeu - Jpisk(r) ] ’

[IBr! I Disk ()]

where Jpy is the angular momentum vector of the black
hole and Jpis(r) is the angular momentum vector of each
radial shell of the simulation domain (dominated by the disk).
Again simulations 515H and 515SP produce remarkably similar
results, with discrepancies no larger than ~10% and generally
much smaller. The discrepancies likely have their root in the
small differences in conditions at the inner edge of the disk (see
Figure 9) where the bending waves are launched. The simulation
515L exhibits considerably larger discrepancies over most of the
disk as expected.
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Figure 10. Plot of the tilt B as a function of radius through the disk for
simulations 515L, 515H, and 515SP. The data for this plot has been time
averaged over the final two orbital periods of each simulation (8 < # /o < 10).
The initial tilt was By = 15°.

Along with warping the disk, the gravitomagnetic torque of
the black hole also causes it to precess, particularly in disks
such as the ones in our simulations where the fast sound-
crossing time causes the disk material to be tightly coupled
and respond globally to the torque of the black hole. Global
precession of this nature has been noted before in low Mach
number hydrodynamic (Fragile & Anninos 2005) and MHD
(Fragile et al. 2007b) disks. We track the overall precession
(twist), defined as

JBH X Jpisk A:| , 22)

y = arccos [ .
[Jer % Jpisk|

where Jpis is the total angular momentum vector of the disk
and Y is the unit vector that points along the initial line of nodes
between the black hole symmetry plane and disk midplane.
In order to capture twists larger than 180°, we also track the
projection of Jpy X Jpisk onto X, allowing us to break the
degeneracy in arccos. By plotting the cumulative precession
as a function of time as we have done in Figure 11, we make it
easy to calculate the precession period of the disk—in this case
0.7(M /M) s, which agrees nicely with our predictions for a
black hole of this spin (Fragile et al. 2007b).

5. CONCLUSION

In this paper we have presented our implementation of the
cubed-sphere grid within Cosmos++. The cubed-sphere grid has
at least three significant advantages over more-traditional grid
options: (1) it has topological properties similar to a Cartesian
grid, but generally conserves angular momentum much better
(and nearly as well as a spherical-polar mesh); (2) it can run at
a larger Courant-limited time step than a spherical-polar mesh
at comparable resolution (almost a factor of 30 at the resolution
used in this work); and (3) it distributes zones more evenly than a
spherical-polar mesh, which is desirable for problems where the
symmetry is imperfect, such as in tilted accretion disks around
rotating black holes, a problem of particular interest to us.

Section 2 and the Appendix give detailed prescriptions for
the construction of the cubed-sphere grid and convey a few
“lessons learned” in regard to extrapolating fields at inter-
block boundaries and applying limiters to the field gradients
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Figure 11. Plot of the precession (twist) y as a function of time for simulations
515L, 515H, and 515SP. The slope of this plot can be used to estimate the
precession period of the disk as a whole, which is 0.7(M /M) s.

in advection. After implementing these lessons ourselves, we
found we could recover second-order convergence over the
entire grid, including along the inter-block boundaries.

To specifically demonstrate that the cubed-sphere grid is a
viable option for the black hole accretion disk work we have in
mind, we have carried out a series of such simulations on our
new cubed-sphere grid, using results from our spherical—polar
grid as a reference standard. From these tests we conclude the
following.

1. The cubed-sphere grid conserves angular momentum nearly
as well a spherical—polar grid at comparable resolution.

2. The angular momentum conservation error on the cubed-
sphere grid is only weakly dependent on the tilt of the disk.

3. Results on the cubed-sphere grid converge to the same
solutions obtained on a spherical-polar grid when the two
grids approach comparable resolutions. This is true for both
untilted and tilted disks.

4. Important disk properties, such as density, pressure, specific
angular momentum, inflow velocity, tilt, and twist, agree to
better than 10%—20% for simulations carried out on cubed-
sphere and spherical—polar grids with roughly (2-3) x 10°
zones.

During our testing, we made one surprise discovery—that
the early-time evolution was considerably different between
our untilted and tilted simulations on the cubed-sphere grid.
We found this to be true even for nonrotating Schwarzschild
black holes, for which a tilt should have no physical meaning
or significance. This is something we had not seen on the
spherical-polar grid, but there we had tilted the black hole,
not the disk as we do now. We did not anticipate how important
this difference would be for the initial growth and development
of the Q-dynamo and MRI.

We attribute the disparate early-time behavior to the differing
ways in which the strong initial current sheet in our disk is
handled numerically when it is tilted with respect to the grid.
This is another reminder of the important role that numerical
reconnection plays in the evolution of numerically simulated
magnetized flows even though this topic is perhaps not given
enough emphasis in the literature. The appearance of current
sheets is virtually unavoidable in strongly sheared MHD flows
such as accretion disks. One possible technique for treating
the current sheets more consistently throughout the simulation
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may be to use an artificial resistivity. This would ensure that
the current sheets are always resolved in a similar fashion
regardless of their orientation with respect to the grid. However,
this technique has only been implemented very recently in
relativistic MHD (Komissarov 2007). An alternative, although
only partial, solution might be to use a total-energy conserving
scheme instead of the internal-energy conserving one used here.
This, at least, guarantees that the energetics of the flow remain
consistent by recapturing in the form of thermal energy any
energy lost through magnetic reconnection. When coupled with
aradiative cooling package, this can give a much more physical
description of the evolution of the flow (Fragile & Meier 2008).

Although the numerical treatments of current sheets and
reconnection are important to understand and appreciate, it
is equally important in the context of this paper to point out
that we demonstrated by numerical example that the long-term
evolution of our disks is relatively unaffected by whether or not
they are tilted with respect to the grid. As expected, only when
the tilt is relative to a rotating black hole are there long-term
implications within the disk.

We are not surprised to find significant discrepancies be-
tween our “low” and “high” resolution simulations, as previous
experience had shown us that 128* was roughly the minimum
resolution necessary to follow the evolution of black hole accre-
tion disks in global general-relativistic MHD simulations such
as these. Below that resolution the characteristic MRI wave-
length (Avrr = 2mva/Q, where vy is the Alfvén speed) is
not covered by a sufficient number of zones over much of the
disk volume. This has nothing to do with the cubed-sphere
grid itself, but is rather a universal constraint for these types of
problems.

Overall we consider our experimentation with the cubed-
sphere grid to be a success. In future work we will present further
analysis of tilted disks (and their associated jets) evolved using
this new grid option.

We would like to recognize Joseph Niehaus for his help
testing the cubed-sphere grid. We gratefully acknowledge the
support of Faculty Research and Development grants from
the College of Charleston, SURF, and RPG grants from the
College of Charleston 4th Century Initiative Program, and a
REAP grant from the South Carolina Space Grant Consortium.
A portion of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344. This
work was supported by the National Science Foundation through
TeraGrid resources provided by the Texas Advanced Comput-
ing Center (TACC). This work also made use of computing
resources provided by the Barcelona Supercomputing Center
under activity AECT-2007-3-0002.

APPENDIX A
CUBED-SPHERE TRANSFORMATIONS

Included in this Appendix are the transformations necessary
to go from the cubed-sphere coordinates {r, ¢, ¢} to the
corresponding spherical—polar ones {r, 8, ¢} on each block.

(1) Block 0 (centered about the +x-axis; 7/4 < ¢ < 3w /4;
—7/4 < ¢y < 7/4):
COS ¢ COS ¢

V1= (cos ¢ sin ¢,)? '

cosf =

sinf = v 1 — cos2 0,

sin¢ = sin ¢y,
cos ¢ = cos ¢;. (A1)

(2) Block 1 (centered about the +y-axis; 7/4 < ¢ < 37w /4;
/4 < ¢y < 3m/4):

cos ¢y sin ¢,
/1= (cos ¢y cos ¢)*
sinf = +/1 — cos2 9,

sing = sin¢;,
cos¢ = cos ¢. (A2)

cosf =

(3) Block 2 (centered about the —x-axis; 7/4 < ¢ < 37w /4;
3n/4 < ¢ < Sm/4):

—COS ¢] COS ¢
V1= (cos ¢y sin¢)?’
sinf = v 1 — cos2 0,

sin¢ = sin ¢y,
cos ¢ = cos ¢;. (A3)

cosf =

(4) Block 3 (centered about the —y-axis; m/4 < ¢ < 3w /4;
Sn/4 < ¢ < Tm/4):

— cos ¢ sin ¢,
/T = (cos ¢y cos ¢
sinf = /1 — cos2 9,

sing = sin¢;,
cos¢ = cos ¢. (A4)

cosf =

(5) Block 4 (centered about the +z-axis; —w/4 < ¢y < w/4;
/4 < ¢ < 7/4):

COoS ¢1 COS ¢
/1= (sin gy siny)?
sin@ = /1 — cos2 9,
cos ¢y sin ¢,
sinf+/1 — (sin ¢; sin )2
sin ¢ cos ¢,

= . AS
cos¢ sin@+/1 — (sin ¢; sin ¢,)? A

cosfh =

sing =

(6) Block 5 (centered about the —z-axis; —7w/4 < ¢ < w/4;
/4 < < 7/4):

— COS ¢ COS ¢,
/T = (sin gy singy)?’
sinf = /1 — cos2 0,
Cos ¢ sin ¢
sin@+/1 — (sin ¢; sin ¢,)? ’
— sin ¢y cos ¢,
sinfy/1 — (sin; sin )2

cosf =

sing =

cos¢p = (A6)
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