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Mitogen-activate protein kinases (MAPKs) phosphorylate protein substrates in the 

presence of magnesium and adenosine triphosphate in response to extracellular 

environmental signals to carry out signal-dependent intracellular responses.  Extracellular 

signal-regulated protein kinase 2 (ERK2), a member of the MAPK family, mediates 

cellular growth, differentiation, and proliferation in response to growth factors.  

Understanding the mechanism by which MAPKs specifically recognize their protein 

substrates to carry out phosphoryl-transfer on specific residues within these 

macromolecules is critical for understanding the mechanism of signal transduction 

fidelity.  Phage display was carried out against the active form of ERK2 to find novel 

ERK2-binding peptides.  One peptide, KKKIRCIRGWTKDIRTLADSCQY, inhibited 

ERK2 phosphorylation of the protein substrate Ets∆138, exhibiting competitive and 

mixed inhibition towards Ets∆138 (Ki = 20.7 ± 5.5 µM) and MgATP2-, respectively.  



 vii

Steady-state kinetics combined with a novel fluorescence anisotropy binding assay were 

used to quantitatively elucidate the roles of several proposed ERK2 exosites in forming a 

macromolecular docking complex with Ets∆138 required for efficient phosphorylation.  

An ERK2–Ets∆138 docking complex (Kd of 6.6 ± 1.2 µM) was shown to form 

independent of the substrate phospho-acceptor.  Docking motif peptides proposed to bind 

ERK2 exosites could dissociate the ERK2–Ets∆138 docking complex, however, 

dissociation did not occur using a peptide containing an ERK2 phospho-acceptor 

indicating the lack of active site interactions in the docking complex.  Mutation of ERK2 

residues Lys-229 and His-230 to p38 MAPKα-like residues, an enzyme that does not 

efficiently phosphorylate Ets∆138, led to a 20-fold decrease in the specificity constant 

(kcat/Km) of Ets∆138 phosphorylation largely due to its inability to bind Ets∆138.  This 

structure/function analysis offers a quantitative approach towards understanding the 

molecular determinants of protein substrate recognition by a protein kinase prior to 

phosphorylation. 
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CHAPTER 1: MAPK SIGNALING 

 
 

SIGNAL TRANSDUCTION PATHWAYS 

Cells respond to both their intracellular and extracellular environment in order to 

adapt to changing conditions or to carry out various cellular fates such as growth, 

differentiation, proliferation, and apoptosis.  Upon epidermal growth factor (EGF) 

binding to the epidermal growth factor receptor (EGFR), an intracellular signal 

transduction pathway is activated (Scheme 1) that allows the cell to respond to the EGF.  

The EGFR is a membrane spanning protein that recognizes EGF in the extracellular 

portion of the cell and upon binding to EGF forms homodimers which allows their 

intracellular tyrosine kinase domains to autophosphorylate one another on tyrosine 

residues.  The phosphorylated tyrosine residues recruit proteins containing Src homology 

2 (SH2) domains such as Grb and Shc which recognize and bind such motifs.  Grb 

contains an SH3 domain that binds a proline-rich region of a protein called son-of-

sevenless (SOS), thereby recruiting this molecule to the intracellular cell surface.  SOS is 

a guanine nucleotide exchange factor (GEF) which activates Ras by exchanging the 

inactivating guanine diphosphate for the activating guanine triphosphate.  Through 

unknown mechanisms, Raf is recruited to the membrane and activated by Ras.  Raf 

phosphorylates mitogen-activated protein kinase kinase 1 (MAPKK1) which leads to its 

activation.  Active MAPKK1 can then activate extracellular signal-regulated protein 

kinase 2 (ERK2) through dual-phosphorylation of Thr-183 and Tyr-185, residues 

conserved throughout the MAPK family.  ERK2 phosphorylates multiple proteins within 

the cell which can lead to transcriptional activation of genes in response to EGF [1].  In 
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this fashion, an extracellular signal can lead to an intracellular response of the cell via 

transcriptional changes as a result of an intricate signal transduction pathway. 

 

 

 
Scheme 1.  EGF-induced signal transduction pathway.  EGF binds the EGFRs on the 
cell surface (top left) and induces an intracellular signal transduction pathway of 
phosphorylation events, protein–protein interactions, nucleotide exchange, and protein 
localization that leads to ERK2 activation via dual-phosphorylation of a threonine (T) and 
tyrosine (Y) residue (bottom right). 

 

 

SPECIFICITY DETERMINANTS OF SIGNAL TRANSDUCTION 

Cell signaling specificity is derived from several components consisting of the 

type of input signal, type of cell, gene expression levels, temporal and spatial location of 

proteins, chemical catalytic events, and the specificity of macromolecular interactions 

that are dependent upon all of the aforementioned factors.  The input signal is the first 

step towards switching a signaling transduction pathway on.  In the case of EGF-
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mediated ERK2 activation, the EGF is that signal that binds the EGFR on the cell surface 

leading to its activation and a cellular response.  Other MAPK family members, such as 

p38 MAPK and c-jun amino-terminal kinase (JNK), are activated in response to other 

cellular stresses such as UV irradiation, osmotic shock, heat shock, and through cytokine 

signaling.  ERK activation generally leads to cellular proliferation or differentiation, 

while JNK and p38 activation generally lead to apoptosis, an immune response, or 

cytokine production.  Therefore, the input signal determines which signal transduction 

pathway(s) are activated and determines the type of cellular response.   

Since different types of cells have differential gene expression, the cell type also 

plays a critical role in the specificity of cell signaling.  For example, some cells may not 

express EGFRs or certain transcription factors and, therefore, would not be able to 

respond to EGF signaling or have a differential response, respectively.  Signaling 

specificity also occurs through temporal and spatial location of proteins within the cell 

which is dependent upon the state of cell.  Recruitment of proteins to the intracellular cell 

surface in EGFR signaling occurs by protein-protein interactions which include proteins 

containing SH2 and SH3 domains that specifically recognize and bind phosphorylated 

tyrosines and proline-rich regions, respectively.  In the former situation, chemical 

catalysis via phosphorylation of specific residues by protein kinases can mediate the 

spatial location of proteins, while in the latter situation the SH3 domain does not require 

chemical catalysis for recruitment.  Since phosphorylation events are reversible due to 

dephosphorylation by phosphatases, the specificity of protein localization in the case of 

EGF signaling is dependent upon the level of protein phosphorylation within the cell.  

Alternatively, the ability of Ras to recruit Raf to the cell surface is dependent upon 

whether Ras is bound to the triphosphate or diphosphate form of guanine indicating that 

the phosphorylation state of bound nucleotides is also a critical determinant of protein 
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localization.  Therefore, spatial and temporal location of proteins is dependent upon 

protein-protein interactions which can be regulated by their phosphorylation state and 

bound-ligand state.  

 

 

MITOGEN-ACTIVATED PROTEIN KINASES 

 

Members of the mitogen-activated protein kinase (MAPK) family of proteins, 

including ERK, p38, and JNK, are capable of transferring the γ-phosphate of adenosine 

triphosphate (ATP) to the hydroxyl group on protein substrates that contain a serine or 

threonine immediately followed by a proline (Ser/Thr-Pro) [2].  These phosphoryl-

transfer reactions are the predominant mechanism of post-translational modifications 

within a cell.  Dual phosphorylation of MAPKs causes a conformational change of the 

enzyme that aligns catalytic residues in the active site and increases their ability to 

phosphorylate protein substrates within the cell and activate cell signaling pathways.  

When protein substrates are phosphorylated, the addition of a covalent negatively 

charged phosphate moiety may cause proteins to undergo a conformational change, 

localize to a new region in the cell, regulate differential protein-protein interactions, or 

regulate its stability within the cell.  Phosphorylation of proteins is a major “means” of 

cell signaling and is highly regulated so that the cell can achieve its “ends”.  Therefore, 

the MAPKs play a significant role in carrying out specific cell signaling in response to 

mitogens by phosphorylating its protein substrates. 

MAPKs can exist in a catalytically inactive (unphosphorylated) or activated 

(phosphorylated) state depending on whether or not it has been dually-phosphorylated by 
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a MAPKK [3].  For example, dual phosphorylation of the inactive form of ERK2 by 

MAPKK1 induces an intramolecular conformational change leading to the alignment of 

catalytic residues in the active form of ERK2 [4] causing an increase in its catalytic 

efficiency toward protein substrates1 [5].  Activation of ERK2 occurs by dual-phosphate 

incorporation into Thr-183 and Tyr-185 by MAPKK1 and is further activated by 

magnesium binding [6].  In the presence of saturating magnesium, active ERK2 forms a 

ternary complex with MgATP2- and a protein substrate (Ets∆138) through a sequential 

random order mechanism [7] prior to phosphate transfer from the ATP to Ets∆138.  All 

protein kinases bind ATP in their active site but less is known about how protein 

substrates bind the protein kinases in order to carry out efficient phosphorylation of the 

Ser, Thr, or Tyr in the active site.  MAPKs are thought to phosphorylate Ser/Thr-Pro 

motifs, however, although many proteins contain Ser/Thr-Pro motifs only a small 

percentage of them are actually phosphorylated by MAPKs.  Therefore, a mechanism 

other than Ser/Thr-Pro recognition in the active site of the active kinase must exist to 

facilitate the specificity of substrate phosphorylation that exists in cells.  The question 

remains as to how protein kinases specifically recognize their cognate protein substrates 

within a cell.   

Protein kinases recognize consensus phosphorylation sites, consisting of the 

phospho-acceptor and its surrounding residues, in their active site [8], however, the 

protein kinases also recognize protein substrates through an enzymic site (termed an 

exosite) that lies outside of the active site.  Here, we refer to an “exosite” as a small patch 

of amino acids existing on the surface of the protein kinase that binds to a “docking 

motif” on the surface of an interacting protein such as a substrate to form a docking 

complex.  A “docking complex” is defined as a protein-protein interaction occurring 
                                                 
1 The catalytic efficiency of ERK2 is increased 600,000-fold towards the non-specific protein substrate 
MBP when activated by dual-phosphorylation. 
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between an exosite and a docking motif to form a stable tethered complex independent of 

other proteins and is separate from active site interactions.   

The substrates of MAPKs are diverse and include transcription factors, protein 

kinases, and phosphatases which all play a role in intracellular signaling.  MAPKs 

phosphorylate serine or threonine residues placing them in the kinase sub-family of 

serine/threonine kinases distinct from the tyrosine kinase sub-family.  MAPKs also prefer 

a proline immediately adjacent to the phospho-acceptor, thereby, preferring to 

phosphorylate Ser/Thr-Pro motifs within their active site [9].  For this reason, MAPKs 

are referred to as proline-directed kinases.  Each of the subclasses of MAPKs contain 

several related homologs (e.g. ERK1, 2, 3, 5 and 7) and also contain splice-variants (e.g. 

ERK1b) which allows for differential primary amino acid sequences, expression patterns, 

and ultimately lends to functional differences. 

 

 

THE IMPORTANCE OF CHARACTERIZING PROTEIN-PROTEIN INTERACTIONS 

 Protein–protein interactions are of critical importance in many cellular events 

including signal transduction and the regulation of protein phosphorylation.  The spatial 

and temporal activity of these interactions is also of critical importance to the fidelity of 

signal transduction.  In the case of EGF signaling, protein–protein interactions are crucial 

for the recruitment of proteins to the membrane, ligand exchange of Ras, and are required 

for the MAP kinase phosphorylation cascade which ultimately leads to several proteins 

being phosphorylated.  Of course, the downregulation of this signaling pathway through 

dephosphorylation is also dependent on protein–protein interactions.  A critical 

understanding of the protein–protein interactions in cells and how they are regulated and 

mediate catalysis is crucial towards learning how the fidelity of signal transduction is 
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maintained.  Disrupting protein–protein interactions in a site-specific fashion is also of 

interest towards developing drugs that interrupt specific signal transduction pathways. 

 

 

Elucidating Sites of MAPK Protein-Protein Interactions 

COMPUTATIONAL STUDIES TO DETERMINE FUNCTIONAL DIFFERENCES BETWEEN 
SUBFAMILIES 

A computational study was carried out to predict regions of functional difference 

between subfamilies of MAPKs [10].  With the hypothesis that physicochemical 

differences between homologous residues amongst subfamilies can confer functional 

differences such as specificity determination, Caffrey et al. compared the primary 

sequences of MAPKs and searched for regions amongst subfamily members that 

significantly changed after gene duplication and remained conserved amongst subfamily 

members thereafter.  In other words, MAPKs are hypothesized to be related through gene 

duplication.  After gene duplication, a region of a protein that confers a functional 

difference between subfamilies will undergo a physicochemical change and conserve this 

change amongst the subfamily.  This study computationally predicted two exosite regions 

of interest on ERK2 that were later shown to confer functional differences.  One 

predicted region (Figure 1) was the TT/ED exosite of ERK2/p38 MAPKα (corresponding 

to residues Thr-157 and Thr-158 in ERK2 and the homologous residues Glu-160 and 

Asp-161 in p38 MAPKα) thought to be involved in substrate specificity determination 

[11].  Another predicted region was the residues Lys-229 and His-230 in ERK2 (Figure 

1) which were shown to mediate MAPKK1 binding and phosphorylation of ERK2 [12] 

and the nonspecific protein substrate myelin basic protein (MBP) [12], phosphoprotein 

enriched in astrocytes-15 kDa (PEA-15) binding [13], ERK2 induced activation of 
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MAPK phosphatase 3 (MKP3), and Elk-1 phosphorylation [14].  Therefore, this 

computational study proved to be an excellent way to determine residues of MAPKs that 

confer functional differences amongst subfamilies, however, the functional differences 

that the residues confer remain largely unknown and their elucidation by further studies 

with proteins of interest must be pursued. 
 

 
 

Figure 1.  Structural representation of dual-phosphate ERK2 and proposed 
specificity determining residues.  A computational study was carried out by Caffrey et 
al. to predict regions of MAPKs conferring specificity differences amongst the MAPK 
subfamily members [10].  Residues from Table 1 of this study comparing ERK and p38 
are displayed here for ERK2 (PDB: 2ERK) in 5 regional colors: (red: His-59, Tyr-62, 
Gln-64, Leu-67), (blue: Tyr-111, Lys-112, Cys-125, Leu-154, Thr-157, Thr-158), (cyan: 
Glu-184), (green: Lys-201, Gly-202, Lys-205, and Ser-206), and (burnt orange: Lys-229, 
His-230). 
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GENETIC STUDIES REVEAL SITES OF INTEREST 

 Genetic studies lend a powerful approach toward finding novel docking motifs 

and exosites involved in MAPK protein–protein interactions.  An excellent example was 

the identification of a gain-of-function mutation in the Drosophila rolled gene, a homolog 

of ERK, which led to the initiation of several cell signaling pathways in the absence of a 

mitogenic signal [15].  A single point mutation of a conserved MAPK residue was shown 

to disrupt interactions with a phosphatase, allowing for sustained activation in response to 

mitogenic stimuli indicating that this residue was critical for the ability of a phosphatase 

to down regulate its activity through dephosphorylation [16].  This residue was shown to 

be required for several MAPK protein–protein interactions including binding to 

activators, substrates, and phosphatases, and led to the establishment of the common 

docking (CD) exosite on MAPKs required for multiple protein–protein interactions [17]. 

Another genetic study led to the discovery of a MAPK substrate recognition motif 

found in ETS (E26 transformation specific) proteins that mediates phosphorylation by 

ERK.  The genetic model system C. elegans was probed for mutations that led to 

defective vulva development and suppression of the multivulva phenotype [18].  Multiple 

gain-of-function mutations in LIN-1, a MAPK transcription factor substrate, led to the 

discovery of a conserved Phe-X-Phe-Pro (FXFP) substrate recognition motif that was 

conserved in some ETS protein substrates and facilitated efficient phosphorylation by a 

homolog of ERK.  The FXFP motif was later termed a docking site for ERK, FXFP 

(DEF) and it was shown that the two phenylalanines in the DEF motif mediated binding 

to ERK and could also be substituted for tyrosines indicating the importance of the 

phenyl ring in mediating ERK binding [19].  These studies indicate the power of genetic 

studies in elucidating sites on both the MAPK and its substrates that mediate protein–
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protein interactions and play a critical role in signal transduction pathways required for 

development. 
 

 

YEAST 2-HYBRID STUDIES 

The yeast 2-hybrid system is an excellent technique to study specific protein-

protein interactions in vivo for two eukaryotic proteins of interest in the absence of other 

eukaryotic proteins [20].  Unfortunately, yeast proteins may act as intermediates in the 

protein-protein interactions.  The technique utilizes the transcription factor Gal4 that can 

be separated into two functional domains: a DNA binding and a transcriptional activation 

domain.  Two proteins suspected to bind one another are genetically fused to each of the 

Gal4 functional domains.  If both fusion proteins are present within a single yeast cell and 

bind to one another, the DNA binding domain of Gal4 (bound to DNA) lies in close 

proximity to the activation domain which recruits RNA polymerase transcription of a 

marker gene indicating a functional protein–protein interaction between the two proteins 

of interest. 

An excellent yeast 2-hybrid study was carried out to determine ERK2 point 

mutations that were unable to bind the activator MAPKK1/2 but could still bind other 

interacting proteins such as phosphatases and substrates [12].  This study allowed the 

dissection of regions of ERK2 involved in specific protein-protein interactions with 

MAPKK1/2 that did not mediate other protein–protein interactions.  An ERK2 mutant 

library was created and fused to the Gal4 transcription activation domain and transformed 

into a yeast MATa strain and plated on minimal agar (-Leu).  The yeast transformed with 

the plasmid could synthesize their own leucine and survive growth conditions in the 

absence of leucine.  The yeast were replica plated onto a lawn of MATα strain of yeast 
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that were transformed with either pLexA-MAPKK1 or pLexA attached to an ERK2 

interacting protein and plated on minimal agar (-Trp).  The two haploid strains of yeast 

(MATa and MATα) were able to mate and share their genetic information to form a 

diploid strain that could survive when replica plated onto minimal agar lacking both 

amino acids (-Leu/Trp).  The LexA-MAPKK1 represents the activator of ERK2 fused to 

a DNA binding domain (LexA).  Protein-protein interactions between MAPKK1 and the 

ERK2 mutant library were detected by replica plating onto minimal agar lacking three 

amino acids (-His/Leu/Trp).  If the proteins of interest could bind one another, close 

proximity of the LexA DNA binding domain and the Gal4 transcriptional activation 

domain allowed transcription of a marker gene that allowed the yeast to produce 

histidine.  Yeast that were not able to survive on -His/Leu/Trp agar contained ERK2 

mutations that disrupted ERK2-MAPKK1 binding.  Interestingly, the catalytic activity of 

MAPKK1 led to decreased binding of ERK2 so the catalytically inactive form of 

MAPKK1 (MAPKK1-K97M) was used. 

Each ERK2 mutant identified to have a defect in binding MAPKK1 was shown to 

bind other proteins such as the C-terminal ERK2 docking motif of chicken ribosomal S6 

kinase (RSK) from chicken (residues 689-752, most similar to human RSK1), the 

phosphatase MKP3, and the substrate MAPK-interacting kinase (MNK1) in the yeast 2-

hybrid assay.   

Interestingly, each of the mutants shown to disrupt protein-protein interactions 

with MAPKK1 were found in the C-terminus of ERK2.  The mutants were found to 

precede (H230R) or lie within (N236K) the αG helix of ERK2 or lie near the MAPK 

insert region (Y261N, S264P) found exclusively in MAPKs (insert: residues 243-273), 

cyclin-dependent kinases (CDKs), and glycogen synthase kinase 3 (Figure 2).  A similar 

region of ERK2 is thought to be involved in binding PEA-15 [13] as well as Ets∆138 
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binding (Rainey, K229T/H230D mutant) indicating the importance of this region for 

ERK2 protein-protein interactions.  Interestingly, the ERK2 CD exosite mutant 

(D316/319A) was shown to be defective in binding MAPKK2, RSK, MKP3, and MNK1 

as previously shown [17] but was able to bind MAPKK1-K97M [12].  These results 

indicate that a region near the αG helix and the MAPK insert region may contribute more 

toward binding MAPKK1 than the CD exosite. 

 

 
Figure 2.  Structural representation of dual-phosphate ERK2.  The crystal structure 
of the dual-phosphate form of ERK2 (PDB: 2ERK) is shown with several alpha helices 
(α), beta sheets (β), loops (L), and the MAPK insert region (residues 243-273) shown. 
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The yeast 2-hybrid system has been used to study protein-protein interactions 

between protein kinases and their interaction proteins including substrates, activators, and 

phosphatases.  Some seminal research was carried out using the yeast MAPK signaling 

pathway to show that Ste5 could tether each of the three-tiered MAPK members Ste11 (a 

MAPK kinase kinase), Ste7 (a MAPK kinase), and Fus3 (a MAPK) each using different 

domains of Ste5 while Fus3 and a related homolog Kss1 bound to a similar Ste5 binding 

site [21].  Another study used p38hog or SAPK (both MAPKs) fused to the Gal4 

transcription factor DNA binding domain and its activator MAPKK fused to the Gal4 

transactivation domain.  The kinase activators MAPKK3, MAPKK6, and SAPKK1 were 

shown to bind p38hog while only SAPKK1 was able to bind SAPK [22] indicating that the 

specificity of protein–protein interactions can also be determined using this technique. 

The yeast 2-hybrid system has also been used to find novel proteins that bind 

MAPKs such as the ERK2 binding protein FLH2 pulled out of a cardiomyocyte cDNA 

library and shows preference toward binding active ERK2 [23].  Another ERK2 binding 

protein Naf1 (Nef-associated factor 1α) was identified and found to hold ERK2 in the 

cytoplasm while overexpression of Naf1 decreased ERK2-dependent Elk-1 transcription 

[24].  JNK3 was found as a target of β-arrestin 2 which acts as a scaffold to increase the 

activation of JNK3 [25].  Another study showed that MKP1 could bind ERK1/2, p38α, 

and JNK and helped define a docking motif on MKP1 required for ERK2 and p38α 

binding but not JNK [26].  The yeast 2-hybrid system has shown to be an excellent 

system for studying whether or not proteins bind one another in vivo, it can be used to 

select for residues that are required for protein–protein interactions, and can also help 

elucidate novel binding partners. 
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CO-CRYSTALLIZATION OF A DOCKING MOTIF PEPTIDES AND A MAPK 

Unfortunately, crystal structures are not readily available for MAPKs co-

crystallized with other interacting proteins such as substrates, activating kinases, or their 

phosphatases.  However, two crystal structures were reported recently in which docking 

motif peptides derived from a p38 MAPKα activator (MKK3b) and a substrate (MEF2a) 

are bound to the inactive form of p38 MAPKα [27].  These structures highlight a 

“docking groove” exosite on p38 MAPKα responsible for binding some docking motif 

peptides that is distinct from the active site.  Both the MKK3b and the MEF2a peptide 

bind to the same docking groove exosite on p38 MAPKα that lies between the αD and αE 

helicies and the reverse turn between the β-sheets β7 and β8 (Figure 3) that is distinct but 

near to the CD exosite [17].  Since both peptides derived from different types of MAPK-

interacting proteins bind to the same exosite on the inactive p38 MAPKα it is possible 

that this single docking groove exosite may be responsible for other protein-protein 

interactions that contain a similar docking motif.  Interestingly, the peptides share a basic 

region followed by a homologous φ-X-φ motif (where φ is a hydrophobic residue, 

usually leucine, valine, or isoleucine, and X is any residue usually basic) thought to bind 

MAPKs, however, the peptides bind with different orientations to one another.  Peptides 

exhibiting a basic region near a φ-X-φ motif that bind MAPKs have been termed a 

docking site for ERK/JNK, LEL (DEJL motif).  Point mutations on the enzyme in the 

peptidyl docking exosite disrupted the binding of full length MKK3b and MEF2a 

indicating the usefulness of the peptide/MAPK structure in determining docking exosites 

on MAPKs [27].  The location of the docking groove exosite on p38 MAPKα was also 

confirmed using deuterium hydrogen exchange mass spectrometry [28] indicating that the 

docking groove exosite exists in solution as well as the static crystal structure.  In 

addition, it was shown that ERK2 DEJL motif peptides in a similar location [28].  It will 
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be interesting to see co-crystal structures of MAPKs and their interacting proteins to gain 

further insight into protein-protein interactions with MAPKs as well as insights into the 

catalytic activity carried out by the MAPKs, their activators, and their inactivators. 
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Figure 3.  Structure of inactive p38 MAPKα bound to a MEF2a docking motif 
peptide.  The crystal structure of the inactive form of p38 MAPKα (grey) bound to the 
docking motif peptide derived from the substrate MEF2a (black) (1LEW) is shown.  The 
peptide binds in a groove created between the helicies αD and αE and the β7/β8 reverse 
turn.  Another peptide derived from MKK3b (not shown) binds a similar site with a 
different orientation with respect to its φ-X-φ motif on p38 MAPKα (1LEZ) [27].  

 

 

HYDROGEN EXCHANGE MASS SPECTROMETRY 

Deuterium hydrogen exchange mass spectrometry has been used to determine 

regions of MAPKs that are protected from hydrogen exchange in the presence of 

substrate docking peptides that bind MAPKs to determine enzymic exosites for the 

docking peptides.  The amide hydrogens of the peptide backbone of proteins are 

constantly being exchanged with hydrogen donors from water; therefore, deuterium 

hydrogen exchange can be used to follow a time course of enzymic exposure to 

deuterated water (D20) by following the incorporation of the heavier deuterium into the 
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peptide backbone.  The exchange of side chain and N-terminal amide hydrogens is not 

seen due to rapid back-exchange as compared to amide hydrogens.  Following enzymic 

exposure to D20 in the presence or absence of a deuterated docking motif peptide, the 

reactions were quenched/chilled at various time points, the proteins were subjected to 

limited proteolysis, and the masses of the proteolytic peptides were determined using 

liquid chromatography/mass spectrometry (LC/MS).  Peptides exposed to solution in D20 

yield a higher mass than that of peptides in H20 due to incorporation of deuterium. 

Deuterium exchange of MAPKs in the presence and absence of a deuterated 

docking motif peptide in D20 can yield three possible outcomes: no change, an increase, 

or a decrease in the mass of the enzymic peptides following proteolysis.  Peptidyl regions 

that do not have a change in mass indicate regions of the MAPK that are unaffected by 

the binding of the docking motif peptide.  An increase or decrease in peptidyl mass 

represents regions that become more or less exposed to solution, respectively.  Increased 

exposure could indicate enzymic regions transitioning from a more buried state to a more 

solvent exposed state upon peptide binding due to a peptide-induced conformational 

change distal to the peptide binding site.  A decrease in hydrogen exchange upon peptide 

binding might be due to the bound docking peptide directly protecting amide hydrogens 

from exchange or due to a peptide-induced conformational change distal to peptide 

binding site leading from an exposed state to a buried state.  Therefore, it is often helpful 

to have co-crystallization experiments and other binding experiments using docking 

mutants to support any hypotheses. 

Two substrate-derived peptides that bind MAPKs (a DEJL and DEF motif 

peptide) were examined for their ability to bind the inactive and active from of ERK2 as 

well as the inactive form of p38 MAPKα using deuterium hydrogen exchange [28].  The 

results suggest that the DEJL and DEF motif bind ERK in two distinct regions from one 
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another.  The DEJL motif binds ERK and p38 MAPKα in the docking groove exosite as 

previously described for inactive p38 MAPKα [27].  The DEJL motif shown to bind 

ERK2 in the docking groove exosite (residues 311-327 in Elk-1: 

QKGRKPRDLELPLSPL [29]) contains a basic motif near a hydrophobic φ-X-φ.  The 

DEJL peptide binding also increased the accessibility of the P+1 proline binding region 

of both p38 MAPK and ERK2 [28] as was seen in the co-crystal structure [27] indicating 

that DEJL motif binding in the MAPK exosite causes the disorder of the P+1 region on 

the opposite side of the enzyme.  Unfortunately, the Elk-1 derived peptide contains a 

potential phosphorylation site (SP) which could potentially bind in the P+1 site.  

Interestingly, a RSK-derived peptide similar to, but distinct from, a DEJL peptide was 

also proposed to bind the docking groove exosite in ERK2 [28].   

Alternatively, the DEF peptide (Elk-1 residues 387-398, PRSPAKLSFQFP) 

containing an FXFP motif was hypothesized to bind at a different site than the DEJL 

peptide locating it to the P+1 site, αF helix, and the MAPK insert region of ERK2.  

Interestingly, the DEF motif peptide could only bind a pocket formed in the active ERK2 

complex that was absent in the inactive form indicating that the DEF motif binds ERK2 

in a phospho-dependent manner (Figure 4).  Once again, the DEF peptide contained a 

potential phosphorylation site (SP) which could potentially bind the P+1 site on ERK2. 
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Figure 4.  Exposure of a DEF binding pocket on the active form of ERK2.  The 
unphosphorylated (PDB:1ERK, left) and the dual-phosphate/active form of ERK2 
(PDB:2ERK, right) are shown with its phospho-acceptor residues Thr-183 and Tyr-185 
(black).  In the phosphorylated form, both Thr-183 and Tyr-185 are phosphorylated and 
create a conformational change of the enzyme revealing a proposed docking motif 
peptide binding pocket for DEF motif substrates [28].  In the inactive enzyme (left), Met-
197 and Leu-198 (burnt orange) are buried and upon ERK2 phosphorylation (right) are 
exposed.  Met-197 and Leu-198 form a DEF binding pocket in active ERK2 along with 
the residues Tyr-231, Leu-232, Leu-235 (green), and Tyr-161 (red).  It is hypothesized 
that this conformational change acts as a gate that allows DEF binding of substrates such 
as Elk-1 to the active form of the enzyme and discriminates binding to the inactive 
enzyme.  The proposed DEJL docking groove exosite is located at the left/middle of 
ERK2. 
 
 

Hydrogen exchange mass spectrometry can be used to determine enzymic peptide 

regions that bind a specific peptide; however, individual residues involved in binding 

cannot be discerned using this technique.  Interestingly, experiments mentioned here 

correlate well with co-crystallization studies of a MAPK bound to two DEJL motif 

peptides [27].  Hydrogen exchange has also been employed to determine regions of a 
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MAPK that changed accessibility upon dual-phosphorylation [30] indicating 

conformational changes upon phosphorylation that correlated well with existing crystal 

structure data.  A limit to this technique is that peptidyl exposure changes may be due to 

direct or indirect binding so additional data indicating binding is necessary to interpret 

results (e.g. mutational data that indicates a lack of binding). 
 

 

FOOTPRINTING 

Individual residues that make up docking motifs on MAPK-binding proteins have 

been mapped using the biophysical technique of NMR footprinting.  NMR footprinting 

involves the 15N-labeling of a small protein and determining the NMR spectrum of the 

labeled protein in the presence and absence of a MAPK.  When a complex is formed 

between the labeled protein and the MAPK, the large complex tumbles slower in 

solution, thereby, broadening the NMR spectrum of residues at the interface of the 

labeled protein and the MAPK.  The docking motif of PEA-15, a small non-catalytic 

protein that binds ERK2, was determined using NMR footprinting [31].  The authors 

found several residues thought to be involved in binding the inactive form of ERK2 and 

used site-directed mutagenesis to confirm that the residues were required for binding 

ERK2 in an in vitro pull-down assay.  Another NMR footprinting study was used to 

determine residues on the ERK2 binding (EB) domain of the phosphatase MKP3 required 

for binding ERK2 [32].  Once again, residues that showed significant NMR spectra 

broadening were confirmed as residues involved in ERK2 binding by site-directed 

mutagenesis followed by in vitro pull-down assays.  Interestingly, this study showed that 

dual-phosphorylation of ERK2 did not affect binding to the EB domain of MKP3 

consistent with a previous study [33] indicating that the EB domain does not recognize 
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the phosphorylated region of ERK2 and binding is not affected by the conformational 

change of ERK2 upon activation.  Both of these studies indicate that NMR footprinting is 

a useful tool to elucidate docking motif residues located on the surface of a MAPK 

interacting protein. 

Recently, a technique called misincorporation proton-alkyl exchange (MPAX) has 

been developed where footprinting of protein–protein interactions can be carried out at 

the individual amino acid level in the absence of heavy isotope labeling on small 

quantities of protein [34].  Briefly, a misincorporator tRNA (encoding for a charged 

cysteine) with an anticodon specific for any of the 20 amino acid codons is added with a 

protein of interest into E. coli so that low-level incorporation of a cysteine occurs at the 

specific amino acid codon of interest.  Ultimately, the other 19 amino acids could be 

analyzed in this fashion by misincorporation of a cysteine.  A small percentage of 

purified protein incorporates a single unnatural cysteine located at the amino acid site of 

interest.  A thiol-specific alkylating reagent can react with the protein of interest if it 

contains a cysteine; therefore, proteins must be devoid of cysteines prior to MPAX.  The 

technique is similar to deuterium hydrogen exchange protection in the presence of a 

docking peptide but exchange of the alkylating reagent occurs on the cysteine side chain 

and not at the amide portion of the amino acid.  In this fashion, an unnatural cysteine 

residue will be alkylated in the absence of an interacting protein and protected from 

alkylation if it is bound to the interacting protein.  Alkylated proteins are then cleaved 

with a cysteine-specific cutting reagent while the masked residues refrain from cleavage.  

After radiolabeling the protein, an SDS-PAGE gel can be run for each misincorporator 

tRNA comparing lanes in the presence and absence of the interacting protein to find 

different peptide fragments pertaining to differential labeling which indicates residues 

involved in binding the interacting protein.  This technique can be used in conjunction 
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with mass spectrometry to find individual amino acids that are protected from solution 

labeling at the interface of a protein-protein interaction in the absence of heavy isotope 

labeling.  The MPAX technique is not limited to protein size and can be carried out on 

microgram quantities of protein.   
 

 

Quantifying and Characterizing Protein-Protein Interactions 

NON-QUANTITATIVE PULL-DOWN STUDIES 

Protein–protein interactions are often times interpreted by pull-down studies or 

immunoprecipitations where two proteins of interest are probed for their ability to 

interact with one another.  Usually, a cellular extract is incubated with an antibody to a 

protein of interest or an affinity tag that is linked to a heavy bead such as sepharose or 

agarose.  The protein of interest and its interacting proteins are extracted from the cellular 

milieu with a centrifugation step and then washed several times to rid of non-specific 

binding proteins.  Other proteins bound to the protein of interest can be elucidated by 

running an SDS-PAGE gel followed by a Western blot with an antibody to the interacting 

protein of interest.  A positive result indicates that the two proteins are closely associated 

or directly bind one another.  The difficulty in interpretation is that the binding may not 

be a direct interaction (e.g. another intermediate protein may hold the two proteins 

together).  Therefore, another test for direct binding is necessary.  The pull-down studies 

are non-quantitative and do not allow an affinity of interaction to be determined.  To 

understand protein–protein interactions on the molecular level, quantitative binding 

studies must be carried out to understand the specificity of interactions and how they are 

regulated. 
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ISOTHERMAL TITRATION CALORIMETRY 

Isothermal titration calorimetry (ITC) has been used to determine the equilibrium 

dissociation constant (Kd) of MAPKs and their ligands based on the enthalpy and the 

stoichiometry of the binding interaction.  Zhou et al. used ITC to determine the Kd of 

docking motif peptides that bind ERK2 (presumably inactive ERK2) [35].  When key 

residues of the docking motif peptides were mutated, the peptides showed an increase in 

the Kd indicating the importance of individual amino acids in mediating ERK2 binding.  

Our laboratory has used ITC to show that ATP does not bind active ERK2 in the absence 

of magnesium, however, a potent inhibitor of ERK2 (5-iodotubercidin) [36] was able to 

bind the active form of ERK2 and could be used to titrate the number of active sites in the 

active form of ERK2 [6].  A similar study was carried out to determine the Kd of the tight 

binding p38 MAPKα inhibitor SB 203580 (Kd ~ 15 nM) to the inactive form of p38 

MAPKα [37].  Our laboratory has used ITC to discern the Kd of a protein-protein 

interaction between the active form of p38 MAPKα and the N-terminal portion of the 

transcription factor ATF-2 (A. Szfranska) as well as the association between the dual-

phosphate form of ERK2 and a protein substrate Ets∆138 (M. Rainey).  ITC is a 

quantitative study of protein–protein interactions useful for determining the stoichiometry 

of binding as well as the thermodynamics of MAPKs interacting with their substrates 

and/or products under conditions that do not allow phosphoryl-transfer to occur (as 

phosphorylation would disrupt equilibrium and change the binding energetics of the two 

partners). 
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SURFACE PLASMON RESONANCE 

Surface plasmon resonance (SPR) allows the measurement of direct protein-

protein and protein-ligand interactions as they occur so that the rates of association and 

dissociation can be measured and used to calculate the Kd (koff/kon) of unlabeled proteins.  

Unfortunately, the proteins are trapped on a solid surface and are not free in solution.  

Similar to ITC, conditions that do not allow phosphoryl-transfer must be employed to 

ensure equilibrium conditions.  SPR is carried out by binding an analyte to a dextran 

layer attached to a gold-coated glass surface.  The analyte is expected to be free to bind 

ligands that pass by in solution.  Polarized light is reflected off the glass surface 

underneath the analyte and the reflected light is analyzed for an increase in refractive 

index due to ligand binding the analyte and an increase in the apparent molecular mass of 

the analyte.  SPR has been utilized to determine the Kd of a JNK DEJL-motif inhibitor 

peptide (TI-JIP peptide: RPKRPTTLNLF) which was shown to bind to both JNK2 and 

JNK3 (both presumed to be the inactive forms) but did not bind the JNK substrates GST-

ATF-219-96, GST-c-Jun1-135, and Elk-1307-428 [38].  The TI-JIP peptide displayed a low 

micromolar affinity (1-10 µM) which was not affected by salt (0-200 mM) or pH (7.4 ± 

1.0) changes [38].  These studies indicate that the specificity of protein–protein 

interactions can be measured using SPR in a quantitative fashion in a variety of buffer 

conditions.  Another group has used SPR to determine the Kd for the tight binding p38 

MAPKα inhibitors SB 203580 (Kd = 22 nM) and RWJ 67657 (Kd = 10 nM) with the 

inactive form of the enzyme indicating that this is a useful tool for studying drug 

interactions as well.  Although the data generated for the SB 203580 inhibitor appears 

consistent with similar data obtained from ITC [37] and steady-state kinetic assays [39], 

the data was generated using rather high surface densities of protein and gave large errors 

for the dissociation phase of the experiment indicating that this technique may not be 
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suitable for small ligands.  SPR can be used to determine the rates of association and 

dissociation of direct interactions between MAPKs and their interacting peptides, 

proteins, and small molecules. 
 

 

FLUORESCENCE ANISOTROPY/POLARIZATION 

An alternative method to finding the Kd for interacting MAPK ligands is 

fluorescence anisotropy (or polarization) which utilizes a fluorescent probe attached to 

the ligand of interest.  The advantage of anisotropy over SPR is that the assays are carried 

out in solution and not on a solid-state; however, fluorescence anisotropy assays require 

the use of a labeled ligand.  Fluorescence anisotropy is carried out in a fluorometer using 

polarized light to excite the fluorophore of interest.  The emitted light is measured both 

horizontal and vertical to the stimulated light and the ratio of these measured emissions 

gives an anisotropy value which is low for fluorophores attached to low molecular weight 

molecules and high for fluorophores attached to high molecular weight molecules.  

Anisotropy measures the molecular tumbling of the fluorophore in solution and is 

dependent upon temperature, viscosity, and molecular volume.  By holding temperature 

and viscosity constant, changes in molecular volume can be measured through anisotropy 

changes.  Usually the smaller of the two binding partners is attached to a fluorophore and 

a decrease in molecular tumbling of the labeled ligand is observed as an increase in 

anisotropy (molecular volume is inversely proportional to anisotropy) when a larger 

protein binds the labeled ligand.  Fluorescence anisotropy has been used to determine the 

Kd of a fluoresceinated MAPKK1 derived peptide (Kd = 77 nM) and active ERK22 [40].  

Interestingly, the same peptide showed an IC50 of 7 µM for in vitro activation of ERK2 

                                                 
2 The figure shows that it is active ERK2, no mention of which antibody was used. 
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but did not affect the activation of JNK3 and p38 [40], however, fluorescence anisotropy 

was not carried out with JNK3 and p38 to determine the specificity of the peptide for 

MAPKs.  It would be interesting to use fluorescence anisotropy as a tool to measure 

specificity differences of protein substrates and their protein kinases.   

A fluorescence polarization assay (similar to anisotropy) was used to determine 

steady-state kinetics of inactive JNK-1 phosphorylation of ATF-2 for high-throughput 

screening of inhibitors that disrupt the phosphorylation event [41].  This assay was set up 

differently than the aforementioned by adding a fluorescent phosphorylated peptide 

(called a tracer) that can bind to a phospho-specific antibody.  The tracer peptide was 

similar to the ATF-2 phosphorylation site of interest.  As JNK-1 phosphorylated the 

ATF-2 protein, the antibody could bind either the phosphorylated ATF-2 or the tracer.  In 

the presence of increased amounts of phosphorylated ATF-2, more tracer was free in 

solution thereby yielding a lower polarization signal than when bound to the antibody.  

This assay was used to determine the Km of both ATP and ATF-2 and was automated for 

studies of kinase inhibition.  However, inhibitors that exhibited their own fluorescence 

caused false positive results and some inhibitors may also disrupt the antibody/tracer 

interaction causing alternate problems in the data analysis.  Our lab has developed a 

fluorescence anisotropy assay capable of measuring the Kd of protein-protein interactions 

between a MAPK and an interacting protein and can be used for structure-function 

studies and determining the specificity of protein–protein and protein–peptide 

interactions.  It may also prove useful for the development of inhibitors that disrupt 

protein–protein interactions.  
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The Function of MAPK Protein-Protein Interactions 

KINETIC STUDIES OF MAPK CATALYSIS 

Our lab has been interested in characterizing MAPK catalytic events towards their 

protein substrates, mainly the catalytic events of fully activated MAPKs.  Kinetic studies 

are an excellent means of understanding the order in which substrates bind to the enzyme, 

the rate of the enzymatic activity of both the nucleotide and protein substrate turnover, 

and elucidating rate-determining steps of catalysis.  We have shown that an active form 

of p38 MAPKα phosphorylates the transcription factor ATF-21-115 at two sites in a two-

step distributive mechanism, whereby, the first phosphorylation occurs on the enzyme, 

followed by dissociation of the docking complex, and re-association for a second 

phosphorylation [42].  Such a mechanism indicates that a transient docking complex 

between the kinase and the substrate exists long enough to allow a single phosphorylation 

event.  Other evidence of a docking complex mediating phosphorylation came from 

product inhibition studies with ERK2 and a protein substrate Ets∆138 indicating that the 

monophosphorylated form of Ets∆138 could form an unproductive docking complex with 

ERK2 in the absence of active site interactions [7].  This study also suggested that both 

the nucleotide and protein substrate could bind ERK2 in a random order mechanism 

while other another study suggested that the homologous protein p38 MAPKα binds the 

protein substrate prior to the nucleotide in an ordered sequential mechanism [39] 

suggesting that the order of substrate binding may differ amongst MAPKs or perhaps 

may even be substrate dependent [43].  We have also used transient state kinetics to 

demonstrate that both phosphoryl-transfer and product release are partially rate-limiting 

for ERK2 phosphorylation of Ets∆138 [44]. 
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ENZYMIC MAPK EXOSITES 

Protein kinases are thought to mediate protein–protein interactions through 

enzymic exosites that are spatially distinct from their active sites.  While the active site 

mediates ATP binding and phosphoryl-transfer to the hydroxyl group of a protein 

substrate, the exosite is thought to mediate recognition of interacting proteins and 

regulate its activity, localization, and catalytic properties.  A protein kinase exosite was 

first identified by Kallunki et al. who showed that JNK2 residues that lie outside of the 

active site mediated binding to the substrate GST-c-jun 25-fold more efficiently than the 

homologous protein JNK1.  These results were obtained using Western blot analysis after 

loading equal amounts of JNK onto a GST-c-jun column and assaying for retention of the 

JNKs.  When residues 208-230 of JNK2, located in the L13 and αG region based on the 

JNK3 structure (Figure 5a, JNK3, yellow), were swapped with homologous residues from 

JNK1 to form a chimera, the ability of the chimera to bind the substrate c-jun3 was 

reduced 25-fold [45].  Alternatively, the reverse experiment allowed a JNK1 chimera 

with residues 208-230 from JNK2 to bind c-jun more efficiently.  These results indicate 

that the JNK2 residues of this region mediate c-jun binding and that a similar region in 

JNK1 is unable to bind c-jun as efficiently.  Phosphorylation of c-jun by JNK was more 

efficient with the JNK2 residues as well indicating that an efficient exosite may enhance 

                                                 
3 HA-JNK2, immunopurified from Jurkat cells treated with 50 ng/mL of anisomycin, was added to a 
glutathione-agarose-GST-c-jun1-79 affinity resin and found to bind 25-fold more efficiently than HA-JNK1 
in an immunoprecipitation study followed by a Western blot.  HA-JNK2 phosphorylated the substrate c-jun 
~3-fold more “efficiently” than HA-JNK1.  Substitution of homologous JNK1 residues into the 208-230 
region of JNK2 caused the binding of the chimeric JNK2 to decrease 25-fold and phosphorylation to 
decrease 3-fold, indicating that the substituted amino acids were involved in docking and phosphorylation 
of c-jun.  The reverse experiment allowed a JNK1 chimera containing JNK2 residues 208-230 to bind c-jun 
30-fold greater than JNK1 increased c-jun phosphorylation 5-fold.  No affects on the JNK/c-jun docking 
complex formation occurred as a result of anisomycin stimulation (it is unclear whether the chimeras are 
activated).  Data was similar using a GST-JNK affinity resin to bind 35S-labeled c-jun generated in vitro.  
The Km of JNK1 and JNK2 towards c-Jun was determined to be 2.5 µM and 0.4 µM, respectively. 
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substrate phosphorylation.  An exosite in a similar region of a homologous protein kinase 

was seen several years earlier in cyclic AMP-dependent protein kinase binding to a 

peptidyl protein kinase inhibitor (PKI) [46].  In a co-crystal structure, the N-terminal α-

helical portion of PKI lies in the same groove as the proposed exosite for JNK2 proposed 

by Kallunki et al.  Both of these early studies indicated that protein kinases could 

recognize protein substrates at regions distinct from the active site. 
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Figure 5.  Structural representation of proposed exosites on JNK3, ERK2, and p38 
MAPKα.  The crystal structures of (a) inactive JNK3 (PDB: 1JNK), active ERK2 (PDB: 
2ERK), and inactive p38 MAPKα bound to a MEF2a docking motif peptide (PDB: 
1LEW) are shown.  The yellow region represents the JNK docking exosite for c-jun 
located in the L13 and αG helix and the homologous region in ERK2 and p38 MAPKα 
(JNK3: residues 246-268; ERK2: 209-231; p38: 206-228).  The red region represents the 
CD and YY exosites located in L16 conserved amongst MAPKs (JNK3: 362-368; ERK2: 
314-320; p38: 311-317).  The cyan region represents the TT/ED exosite located in L11 
(β7-β8 reverse turn) (JNK3: 199-200; ERK2: 157-158; p38: 160-161).  The green region 
represents the MAPK docking groove for DEJL docking peptides located in αD-L8-αE 
(JNK3: 154-165; ERK2: 111-123; p38: 114-126).  The purple peptide represents the 
MEF2a docking motif peptide.  The phosphorylation loop is shown with the Thr- and 
Tyr- residues highlighted (grey sticks) in JNK3 (middle right), ERK2 (middle right), and 
absent in inactive p38 MAPKα (broken strand). 
 

 

Recently, several proposed exosites for MAPK-interacting proteins have been 

identified on ERK2.  The CD exosite of ERK2 (Figure 5b, red), also conserved in the 

related MAPK family members (red), is thought to mediate both the cellular localization 

of ERK24 [47] and the ability to bind5 its activators (MAPKKs), inactivators (MKPs), 
                                                 
4 As measured from the ability of overexpressed ERK2 to stay localized in the cytoplasm in the presence of 
overexpressed MAPKK1 in CHO cells under unstimulated conditions. 

A B C
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and substrates [17].  The CD exosite, composed of acidic residues, has been shown to 

mediate the binding of several different proteins including MKP3, MNK1, MAPKK1 

[17], MSK1, and RSK2 [11].  Nearby hydrophobic residues Tyr-314 and Tyr-315 form 

the YY exosite in ERK2, also conserved among MAPKs, and have been suggested to 

mediate the localization of ERK2 [47] and MAPKK1 binding6 [48].  The TT/ED exosite 

(Figure 5, cyan) of ERK2/p38 MAPKα, is thought to regulate the specificity 

determination of MAPK substrates in conjunction with the CD exosite for the binding7 of 

interacting proteins such as MAPKAPKs [11].  PEA-15, is thought to bind an exosite on 

inactive ERK2 at the αG helix as well as the MAP kinase insert region (243-273) 

(although data not shown) [31] in a similar site as that proposed to mediate ERK2–

MAPKK1/2 binding [12] and JNK/c-jun binding [45].     

In addition to the CD and TT/ED, other exosites have been identified in p38 

MAPKα, which has 46% sequence similarity to ERK2.  The αD-L8-αE region (Figure 5, 

green ribbon) was originally identified as an exosite thought to mediate MAPKAPK-2/3 

binding and phosphorylation8, and interestingly, did not affect similar interactions with 

                                                                                                                                                 
5 Immunoprecipitations using lysates from NIH-3T3 cells showed that HA-MEK1 (xenopus), Myc-MKP3 
(rat) and Myc-MNK1 (hum) could co-immunoprecipitate with WT ERK2 (xenopus) but not D321N ERK2.  
Mutation of D321N/D324N decreased binding further.  S323D increased binding to MEK1.  The MEK1 
peptide (1-30) was able to inhibit HA-ERK2 from binding MEK1, MKP3, and to a lesser extent MNK1 
(figure 2c). 
6 Immunoprecipitations were performed using HEK293 cells co-transfected with mutants of Myc-ERK2 
and HA-MAPKK1.  The Y314/315A and the D316/319A E320A ERK2 mutants both showed a small 
decrease in the ability to co-immunoprecipitate with HA-MEK1. 
7 TT/ED and CD site mutants (E160T/D161T to make the TT/ED domain ERK-like and D313/315/316N, 
respectively) were made in human HA-p38 MAPKα and co-transfected with human Myc-3pk in NIH3T3 
cells.  The ERK2-like p38 MAPKα and CD mutant exhibited a decreased ability to co-immunoprecipitate 
with 3pk.  The double mutants were unable to bind indicating that both p38 MAPKα sites contribute to 3pk 
binding.  The p38like-ERK2 (xenopus, T157E/T158D and S318D) mutant was able to co-
immunoprecipitate with Myc-3pk and MSK2, whereas, WT ERK2 could not.  In the case of MSK2 
binding, the TT/ED site was more important than the CD site. 
8 Both p38 MAPKα and p38 MAPKδ can phosphorylate the substrates ATF-2 and MBP, the former can 
also phosphorylate both MAPKAPK2 and 3, while the latter can not.  A chimera was made in which 
residues 110-184 from p38 MAPKα were replaced with the homologous residues 111-184 of p38 MAPKδ 
leading to a total of 12 amino acid changes that lie between residues 114-127.  The chimera could not co-
immunoprecipitate or phosphorylate MAPKAPK2 or 3 while it maintained the ability to phosphorylate 
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ATF-2 and MBP [49].  Later, it was shown that point mutations within this region, I116A 

and Q120A, disrupted p38 MAPKα binding9 to the transcription factor MEF2; the former 

mutant could not bind a constitutively active form of MAPKK3b [27].  These results 

indicate that MAPKs have several exosites thought to be involved in protein-protein 

interactions, each of which may be the exosite for various proteins to dock via substrate 

docking motifs. 
 

 

MAPK-INTERACTING DOCKING MOTIFS 

Docking motifs are short peptidyl sequences located on MAPK interacting 

proteins that function to recognize kinase exosites to form a tethered docking complex 

between the two.  In several cases deletion or mutation of the docking motif ameliorates 

the protein kinases ability to phosphorylate the substrate indicating their importance in 

mediating phosphorylation [50-52].  Indeed, MAPK substrates that contain both a 

docking motif and a consensus phosphorylation sequence surrounding the phospho-

acceptor are more efficiently phosphorylated10 [51].  Several docking motifs have been 

identified in activators, substrates, and phosphatases including the DEJL, DEF, and RSK-

like motifs which mediate MAPK protein–protein interactions and recent biochemical 

and structural studies have elucidated their binding sites on p38 MAPKα and ERK2 [27, 

28]. 
  

                                                                                                                                                 
ATF2 and MBP indicating that the swapped residues may be an exosite for MAPKAPK2/3 but not ATF2 
or MBP. 
9 HA-p38 MAPKα (murine) and either MEF2A or MAPKK3b(EE) were co-transfected in HEK 293 cells 
and immunoprecipitated using an anti-HA antibody. 
10 c-Jun has a docking motif for JNK2 and two major Ser-Pro phosphorylation sites, whereas a related 
substrate, JunB, has a docking motif but lacks the P+1 prolines in the phosphorylation sites.  Adding a 
proline at the P+1 positions of the two homologous JunB serines (Ser-63 and Ser-73 of c-jun) allows JunB 
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THE DEF DOCKING MOTIF 

The DEF motif was found in a genetic study and coined by Jacobs et al. to 

describe a docking for ERK/FXFP that was composed of a consensus sequence of Phe-X-

Phe-Pro (FXFP), where X represents any amino acid [19].  A DEF motif is thought to 

mediate ERK2 binding to several ETS family proteins.  The two phenylalanine residues 

contribute most of the binding energy and can be substituted to tyrosines and retain 

functional docking.  Peptides resembling a DEF motif act as general inhibitors of ERK2 

function [19].  The reason for general inhibition may be due to the fact that the DEF 

peptide (Elk-1 residues 391-399: PRSPAKLSFQFP) contained a phosphorylation 

consensus sequence (SP) as well as an FXFP motif and could possibly bind the active site 

region of ERK2 [28].  If this were the case, general inhibition of the kinase could be due 

to blockade of the active site in addition to exosite binding.  As mentioned earlier, a study 

using deuterium hydrogen exchange in the presence of the DEF peptide to predict ERK2 

exosites was carried out and suggested that the peptide protected amide exchange in 

regions near the active site including αF helix, αG helix, and the MAPK insert region [28].  

Therefore, the DEF peptide may dock into the active site of ERK2 causing protection 

from amide exchange or, alternatively, bind the αF/αG helix and the MAPK insert region 

inducing conformational changes that affect movement within the active site.  

Conformational changes distal to peptide binding sites have been shown for MAPKs 

using docking motif peptides [27].  The authors claim that the DEF motif binding pocket 

is occluded in inactive ERK2 [28] (K. Cox).  Since the DEF motif has a phosphorylation 

                                                                                                                                                 
to be phosphorylated similar to c-jun following UV irradiation of F9 cells as measured by phospho-peptide 
mapping. 
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site (SP motif), it could be also be argued that the peptide does not bind inactive ERK2 

due to P+1 exclusion of the proline from the active site of ERK2. 
 

 

THE DEJL DOCKING MOTIF  

The DEJL docking motif was also coined by Jacobs et al. to describe a docking-

site for ERK/JNK LEL (DEJL) [19] composed of a consensus sequence of several basic 

residues followed by a φ-X-φ motif (where φ is a hydrophobic residue and X is any 

residue and usually basic).  The DEJL motif is similar to the kinase interaction motif 

(KIM) found in phosphatases [53] and the D-domain found in MAPK substrates [29].  

KIM peptides inhibit MAPKK2 binding and phosphorylation of ERK2, ERK2 

phosphorylation of Elk-1, and MKP1 dephosphorylation of ERK2 [54] indicating that the 

KIM inhibition occurs at an exosite on ERK2 important for many different types of 

protein-protein interactions such as activator, substrate, and regulator binding, 

respectively.  It was thought that the KIM may form a docking complex with the CD 

exosite of ERK2 since the CD site is thought to regulate similar protein-protein 

interactions [17].  However, a recent co-crystal structure of two DEJL-like peptides, 

derived from the activator MKK3b and the substrate MEF2a, bound to inactive p38 

MAPKα suggest that neither peptide shows direct contact with the CD exosite and 

instead binds the nearby β7-β8 reverse turn [27].  Hydrogen exchange experiments 

verified the p38 MAPKα docking groove for DEJL motifs and also verify a similar 

binding region in the active form of ERK2 for a DEJL peptide derived from Elk-1 [28].   
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A MAPKAPK/RSK-LIKE DOCKING MOTIF 

Another type of docking motif similar to the KIM/DEJL/D-domain motifs, found 

on the C-terminus of MAPKAPKs, such as RSK, contains both basic and hydrophobic 

residues and is critical for in vivo activation by ERK2 [55, 56].  The RSK docking motif 

mediates binding between inactive ERK2 and RSK but upon phosphorylation of RSK at a 

residue near to the docking motif, binding is disrupted so that active ERK2 cannot bind 

RSK [57].  Hydrogen exchange showed that the RSK docking peptide also bound to the 

docking groove exosite of ERK2 thought to bind DEJL motifs [28].   
 

 

DOCKING MEDIATES  ENZYMATIC SPECIFICITY 

Docking motifs are thought to mediate binding to the protein kinase exosite and 

are found on variety of different proteins including substrates, regulators, and activators.  

Docking motifs that differ amongst homologous substrates may specify phosphorylation 

by a specific kinase.  Docking motifs have been genetically switched causing a switch in 

substrate specificity by a kinase.  For example, p38 MAPKα can phosphorylate 

MAPKAPK1 in vitro and in vivo in response to stress when an ~35 residue docking motif 

from its normal substrate MAPKAPK2 is attached to MAPKAPK1 [58] while under 

similar conditions p38 cannot phosphorylate MAPKAPK1.  Phosphatase activity of Ptp3 

towards Fus3 (MAPK) is dependent upon the non-catalytic amino-terminal docking motif 

of Ptp3 [59] and the amino-terminal docking motif on MAPKK1 is required for the 

binding and activation of ERK2 [60] indicating the importance of docking motifs in 

mediating phosphorylation and dephosphorylation of MAPKs in addition to determining 

MAPK substrate specificity.   
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DEJL MOTIF SPECIFICITY 

The DEJL motif residues are highly variant and can be found in substrates for 

ERK, JNK, and p38 MAPK indicating that a DEJL motif alone does not determine the 

specificity of phosphorylation.  Perhaps subtle differences exist in DEJL motifs which 

help to mediate specificity.  Some substrates containing a DEJL motif are phosphorylated 

by several kinases indicating the lack of specificity that these domains achieve.  For 

example, Elk-1 is a substrate for JNK, p38 MAPK, and ERK2, SAP-1 and SAP-2 are 

substrates for ERK and p38, and ATF-2 has been shown to be phosphorylated by p38, 

JNK [61], and ERK [62].  In addition, both ERK2 and p38 MAPKα have been shown to 

bind DEJL motifs in a homologous docking groove exosite [27, 28] although DEJL 

motifs specific for each MAPK were used, it will be interesting to determine the 

specificity of each DEJL motif for the different MAPKs. 

 

 

REGULATION OF MAPK DOCKING INTERACTIONS 

Docking complexes between MAPKs and their interacting proteins determine the 

specificity of their binding events.  The ability to form a docking complex can be 

regulated by both phosphorylation and proteolytic cleavage.  In some cases, the ability of 

docking motifs to bind exosites is regulated by the phosphorylation state of either the 

MAPK or the interacting protein [57, 63].  However, other kinetic evidence indicates that 

substrate phosphorylation does not affect the docking complex formation as seen by the 

ability of dual-phosphate ERK2 to form a docking complex with Ets∆138 regardless of 

the phosphorylation state of Ets∆13811 [42].  Phosphorylation of ERK2 causes 

                                                 
11 The Km of Ets∆138 for activated ERK2 was similar to the Ki of phosphorylated Ets∆138 indicating that 
they bind ERK2 with similar affinities. 
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destabilization of the docking that occurs between cytosolic inactive ERK2 and its 

substrates MNK [64], RSK [57, 65], and MAPKK1 [66].  Phosphorylation of Ser-231 in 

the docking motif of the phosphatase PTP-SL causes a decrease in ERK2s ability to bind 

the phosphatase and causes ERK2 translocation into the nucleus [67].  Other protein 

substrates, such as GST-Elk-1310-428 and IEX-1, can increase their affinity for ERK2 when 

ERK2 is phosphorylated [29, 68] indicating that phosphorylation can both positively and 

negatively regulate docking complex formation.  Alternatively, a protein component of 

the anthrax toxin known as lethal factor proteolytically cleaves the N-terminal docking 

motif of MAPKKs [69] eliminating their ability to bind and activate ERK2 [60].  

Therefore, docking complexes between MAPKs and their interacting proteins can be 

positively and negatively regulated by phosphorylation and negatively regulated by 

proteolysis. 
 

 

PROLINE BINDING POCKET 

The crystal structure of activated ERK2 reveals a proposed substrate binding 

pocket that is accessible to the P+1 proline of a MAPK protein substrate in its active site 

(Figure 6) [4].  Alternatively, the inactive structure of ERK2 indicates that the proline 

binding pocket is blocked by Arg-192 [70].  The P+1 proline binding region is conserved 

among the proline-directed MAPKs and is also conserved with an unrelated proline-

directed kinase termed the cyclin-dependent kinase (CDK).  Other kinases do not 

preferentially bind and phosphorylate substrates with a P+1 proline as different kinase 

families have differing phospho-acceptor recognition motif specificities [8].  The P+1 

binding pocket of ERK2 consists of residues 185-192 (YVATRWYR) in the 

phosphorylation lip of ERK2 that is recognized and phosphorylated by MAPKK1 for 
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ERK2 activation.  Interestingly, one of the two phosphorylated residues on active ERK2 

(phosphorylated Tyr-185, cyan, Figure 6) is responsible for forming the proline binding 

pocket.  Upon phosphorylation and activation of ERK2, Tyr-185 forms two hydrogen 

bonds with Arg-192 which blocks the proline binding pocket in the inactive structure.  

Phosphorylation allows the phosphorylation lip to flip toward the active site to form the 

proline binding pocket.  Val-186 and Ala-187 also bind to Arg-192 to form the proline 

binding pocket.  The binding pocket is thought to only mediate the binding of prolines in 

the trans-configuration and exclude those in the cis-configuration.  This is not surprising 

as only 5% of all prolines in protein structures are in the cis-conformation and it has been 

shown that the trans-configuration of the P+1 is preferred for catalysis by ERK2 [71]. 

Amino acids larger than proline at the P+1 position were hypothesized to be excluded due 

to blockage by Arg-192 and amino acids such as glycine and alanine were hypothesized 

to be unstructured and not amenable to catalysis [4].  It has been shown that peptides 

containing serines or threonines followed by a proline at the P+1 position (a MAPK 

recognition motif) are efficiently phosphorylated by ERK [9] and that removal of the P+1 

proline leads to less efficient phosphorylation.  It has also been shown that addition of 

prolines C-terminal to a serine phospho-acceptor to a protein substrate with a MAPK 

docking motif can convert a protein that was not an efficient substrate into an efficient 

protein substrate [51].  These results suggest that both a docking motif and a P+1 proline 

are required for efficient substrate phosphorylation. 
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Figure 6.  Structural representation of the proposed P+1 binding pocket on ERK2.  
A ribbon diagram of the activated dual-phosphate form of ERK2 (taken from the PDB 
file 2ERK) is shown with the active site Lys-52 (dark gray) and the catalytic base (Asp-
147) as a reference with the proposed P+1 proline binding pocket composed of residues 
185-192 (YVATRWYR, yellow/cyan).  One of the phosphorylated residues of ERK2 
(Tyr-185, cyan) is thought to form the proline binding pocket along with residues 186-
192 (yellow).  Tyr-185, Val-186, and Ala-187 bind Arg-189 in the active structure which 
excludes P+1 binding in the inactive ERK2 structure.  The proposed catalytic base is 
shown in red (Asp-147). 
 

 

SUBSTRATE PHOSPHORYLATION 

A model has been proposed for substrate phosphorylation in which docking 

motifs and enzymic exosites mediate a protein-protein interaction between the protein 

kinase and the protein substrate followed by the phosphorylation of the substrate’s 
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phospho-acceptor [29, 51].  It has also been suggested that these docking events are not 

involved in enzyme/substrate complexes [72] assuming significant non-productive 

binding or that docking to an inactivated kinase is not the same as docking to activated 

proteins.  However, this hypothesis was not tested using an activated version of the 

MAPK containing an exosite to phosphorylate a protein substrate containing a docking 

motif which might lead to an alternate hypothesis.  Our laboratory has characterized an 

activated protein kinase (ERK2) and proposed the role of the docking complex [7] in 

mediating the phosphorylation of a protein substrate (Ets∆138) containing a docking 

motif [52]. 

 

 

Highly Specific Enzymatic Interactions 

MAPKK–MAPK DOCKING 

MAPKKs show a high degree of specificity for their cognate MAPK members 

during signal transduction which is crucial for the fidelity of the cellular response.  High-

affinity docking complexes (Kd ~ 5 nM)12 are formed between the MAPK yeast 

homologs Ste7 (MAPKK) and Kss1/Fus3 (MAPK), however, mutation of the MAPK 

phospho-acceptor region decreased the apparent affinity of the complex by 10-fold [72] 

indicating that the enzymic active site of MAPKs may contribute to the highly specific 

docking complexes formed between MAPKKs and MAPKs in yeast.  It was suggested 

                                                 
12 The apparent Kd is based on the immunoprecipitation of in vitro translated proteins that were partially 
purified by ammonium sulfate precipitations.  The immunoprecipitation was carried out “using very brief 
washes with ice-cold buffer”.  Ste7 (1 pmol) was immunoprecipitated in the presence and absence of Kss1 
or Fus3 (1 pmol).  The affinity was determined by calculating the amount of complex formation based on 
how much Kss1 or Fus3 bound to Ste7 using the equation Kd ~ ([A]eq × [B] eq)/[AB] eq.  In the absence of 
Ste7, Kss1 and Fus3 were not immunoprecipitated and other yeast MAPKs such as Hog1 and Mpk1 as well 
as a mammalian MAPK (ERK2) were not precipitated under these conditions. 
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that these high-affinity complexes do not facilitate catalysis because dissociation of the 

two proteins occurs prior to the phosphorylation of the substrate upon the addition of 

MgATP2- [72].  However, it is not mechanistically clear in this study whether MgATP2- 

can bind to the activated kinase Ste7 in the presence of the docked MAPK substrate 

(Kss1 or Fus3).  Our laboratory has shown that in the case of activated mammalian 

ERK2, MgATP2- has access to the active site even in the presence of the docked protein 

substrate Ets∆138 [7].  Later studies by Bardwell et al. show that human MAPKK1 and 

MAPKK2 bind to GST-ERK1 (human) and GST-ERK2 (rat) with apparent affinities in 

the low micromolar range (Kd ~ 9 µM and 29 µM, respectively) and that the deletion of 

the N-terminal docking motif on the MAPKKs led to a 5-10-fold decrease in affinity13 

[73] indicating the importance of the docking motif in determining the specificity of 

binding.  However, the contributions of the active site interactions were not addressed for 

the mammalian proteins.  These studies indicate that docking complexes are formed 

between both active and inactive enzymes and their substrates and that mutation of active 

site residues such as phospho-acceptors can lead to weaker docking interactions.  It is 

interesting to note that the mammalian MAPKK–MAPK docking complexes [73] are 

weaker than those from yeast [72]. 

 

 

MAPK–MKP DOCKING 

Another highly specific interaction in the MAPK signaling pathway is that of the 

MKPs and their cognate MAPKs which is also crucial for the fidelity of the cellular 

response.  Activation of ERK2 by dual-phosphorylation is reversible by 
                                                 
13 Radio-labeled MAPKKs were translated in vitro, partially purified by ammonium sulfate precipitation, 
and allowed to bind glutathione-agarose-GST-ERKs affinity resins that had been expressed and purified 
from bacteria. 
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dephosphorylation by the enzyme MKP3.  MKP3 is an ERK2-specific phosphatase and is 

one of the phosphatases responsible for the regulatory control of ERK2 activity.  MKP3 

forms a tight docking complex with ERK2 (Kd ~ 170 nM) [14], and can act as a dual-

specificity phosphatase to dephosphorylate both Thr-183 and Tyr-185 [74].  Tight-

binding is achieved through a KIM located in the N-terminal region of MKP3 (residues 

61-75) that contributes to the docking complex [35].  The KIM contains a positively 

charged sequence cluster that is thought to bind to the CD exosite of ERK2 due to 

evidence that the KIM sequence competes with other proteins thought to bind the same 

exosite [54].  ERK2 also stimulates para-nitrophenyl phosphate hydrolysis by MKP3 

indicating that the general phosphatase activity is stimulated in the presence of its natural 

substrate ERK2 [33].  Other phosphatases increase their enzymatic activity when bound 

to their natural substrates indicating that specific binding to MAPKs through docking 

motifs may lead to their specific inactivation by phosphatases.  MKP3 also contains a 

DEF motif that is required for the activation of MKP3 phosphatase activity by ERK2 [35] 

indicating that both a KIM and a DEF motif are involved in docking complex formation.  

Site-directed mutagenesis has shown that residues of ERK2 may differentially regulate 

the binding and activation of MKP3 (Figure 7) suggesting that the two interactions can be 

separated from one another. 
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Figure 7.  Structural representation of the proposed MKP3 activation and high-
affinity binding exosites on ERK2.  A ribbon diagram of the activated dual-phosphate 
form of ERK2 (PDB: 2ERK) is shown with the active site Lys-52 (dark gray) as a 
reference with the proposed MKP3 activation site composed of residues Tyr-111, Thr-
116, Leu-119, Lys-149, Arg-189, Trp-190, Glu-218, Arg-223, Lys-229, and His-230 
highlighted in brown.  This region is distinct from the active site and the MKP3 high-
affinity binding site composed of residues Tyr-314, Asp-316, Asp-319, Glu-79, Tyr-126, 
Arg-133, and Asp-160 highlighted in green.  Asp-319 is the most critical residue 
involved in the binding of MKP3 and all of these residues are centered at the CD exosite 
of ERK2, a negatively charged cluster of residues. 
 

 

Non-Enzymatic Protein-Protein Interactions with MAPKs 

Phosphoprotein enriched in astrocytes-15 kDa (PEA-15), a protein with a death 

effector domain implicated in apoptosis, has a docking motif for ERK2 that does not 

correspond to known docking motifs [31].  Although PEA-15 binds ERK more readily 

than p38 and JNK, it is not a substrate of ERK2 but is a substrate of PKA [75].  PEA-15 
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is thought to anchor ERK2 in the cytoplasm as deletion of PEA-15 causes increased 

ERK2 entry into the nucleus and subsequent increase in c-fos transcription and 

overexpression of PEA-15 decreased the ability of ERK2 to enter the nucleus after serum 

stimulation resulting in decreased Elk-1 phosphorylation and subsequent decreased 

transcriptional activity due to its retention in the cytoplasm [75].   Furthermore, PEA-15 

was shown to bind both active and inactive ERK2 indicating that phosphorylation of 

ERK2 does not affect PEA-15 binding.  However, our laboratory has data to suggest that 

phosphorylation of ERK2 does alter the affinity of PEA-15 (K. Cox).  The NMR 

structure of PEA-15 has been determined and NMR footprinting was carried out in the 

presence of ERK2 to find residues of PEA-15 involved in binding ERK2 and the 

importance of individual residues in mediating ERK2 binding were elucidated using a 

GST-pulldown assay [31].  PEA-15 is thought to bind ERK2 in the αG helix and the 

α1L14 helix of the MAPK insert, specifically ERK2 residues Y213, L232, K257, and 

R259 were found to disrupt binding after mutagenesis to glutamic acid [13]; these ERK2 

mutants were reported to have no defects in their ability to be activated by a MAPKK.  

The same region of ERK2 was shown to be important for ERK2–MAPKK1/2 interactions 

where ERK2 mutants H230R, N236K, Y261N, and S264P showed decreased interactions 

with MAPKK1/2 and also exhibited defects in MBP phosphorylation as determined by an 

increase in the Km [12].  We also have data that suggests that ERK2 residues Lys-229 and 

His-230 near the αG helix may mediate docking interactions with Ets∆138 (Rainey). 
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Figure 8.  A structural representation of the ERK2 exosite involved in PEA-15, 
MAPKK1/2, and Ets∆138 binding.  A structural representation dual phosphorylated 
ERK2 (2ERK) is shown where the residues in red represent residues involved in PEA-15 
binding, the residues in blue represent residues involved in MAPKK1/2 binding and 
phosphorylation of ERK2 and MBP phosphorylation (His-230, Asn-236, Tyr-261, and 
Ser-264), and the residues in olive represent those residues involved in Ets∆138 binding 
and phosphorylation. 
 

 

Conclusions 

In this review of MAPK signaling, we have discussed the importance of protein–

protein interactions in mediating the fidelity of signal transduction from the cell surface 

to an intracellular response with respect to EGF-induced signaling.  Specific protein–

protein interactions in this pathway and others ensure the fidelity of signaling and are 

driven by the ability of proteins to recognize one another.  These interactions can be 
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regulated by conformational changes, chemical catalysis such as phosphorylation and 

dephosphorylation, they are temporally and spatially dependent, and cell-type and cell-

state dependent.  We specifically detail protein–protein interactions of the MAPK family 

and how these interactions can be regulated with respect to binding their upstream 

activating kinases (MAPKKs), their substrates, and their regulators (phosphatases, 

MKPs). 

A variety of techniques have been used in which sites of interaction on the MAPK 

and its interacting proteins have been elucidated.  Computational studies have been 

carried out by comparing sequence homology amongst MAPK subfamily and family 

members to determine residues conserved amongst the subfamilies that differ amongst 

other family members to discern residues and regions of specificity determination.  

Genetic studies have been critical in the elucidation of docking motifs on substrates and 

exosites on the MAPK that mediate protein–protein docking complexes.  The yeast 2-

hybrid system has been useful for detecting residues involved in specific protein 

interactions that are absent in others and also to identify novel MAPK binding partners.  

Although, no co-crystallization studies exist with a MAPK bound to a protein substrate, 

co-crystals have been produced in which DEJL peptide docking motifs are bound to a 

MAPK exosite giving insight to the regions of MAPKs that bind interacting proteins to 

form a docking complex.  Hydrogen exchange mass spectrometry confirmed the co-

crystal results and identified a novel DEF peptide exosite on a MAPK.  And footprinting 

studies have allowed the detection of residues involved in docking MAPKs. 

Quantifying protein–protein interactions is also of importance in order to better 

understand the specificity of interactions and how they are regulated by phosphorylation.  

Classic analysis of protein–protein interactions have utilized non-quantitative 

immunoprecipitation or pull-down studies but give little insight to the strength, duration, 
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and regulation of the protein–protein interactions.  Therefore, we have outlined several 

techniques now being used to quantitate binding events with MAPKs and their substrates.  

ITC, SPR, and fluorescence anisotropy/polarization experiments have been used to 

discern the Kd values of protein–ligand, protein–peptide, and protein–protein interactions.  

The strength of ITC is that it measures enthalpy changes and thermodynamic parameters 

of the interaction but has the disadvantage of using a lot of protein.  The strength of SPR 

is that it uses smaller amounts of protein and measures both on rates and off rates but has 

the disadvantage of measuring these values for a protein bound in a solid-state.  

Fluorescence anisotropy has the advantage of measuring protein–protein interactions in 

solution using relatively small amounts of protein but has the disadvantage of a 

fluorescently labeled protein or ligand. 

All of these techniques can be used to discern sites of interaction, quantify the 

interactions, and used in conjunction with steady-state and pre-steady state kinetics to 

understand protein kinases and their interactions with other proteins.  In conjunction with 

mutagenesis, enzymic exosites and MAPK interacting docking motifs have shown to be 

required for efficient protein–protein interactions to generate a docking complex and 

mediate the enzymic specificity of signaling, phosphorylation, and dephosphorylation 

events.  Efficient substrate phosphorylation requires both a docking interaction as well as 

specific recognition of the phospho-acceptor and the P+1 proline in the active site of 

MAPKs.  Our goal is to achieve a thorough understanding of the MAPKs and how they 

interact with other proteins to carry out specific cellular signaling.  Once this has been 

achieved we can begin to design novel inhibitors to disrupt specific protein–protein 

interactions that will abrogate specific cellular signaling pathways. 
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CHAPTER 2:  PHAGE DISPLAY IDENTIFIES NOVEL PEPTIDES 
THAT BIND ERK2 AND COMPETE WITH TRANSCRIPTION 

FACTOR BINDING 

 
 

OVERVIEW 

PURPOSE 

Mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated 

protein kinase 2 (ERK2) phosphorylate a plethora of protein substrates within a cell.  

However, the mechanism by which ERK2 recognizes protein substrates prior to 

phosphorylation is poorly understood.  It was hypothesized that ERK2 may recognize a 

subset of motifs or patches of amino acids on the surface of protein substrates [17].  To 

identify such peptide motifs, random peptides were displayed on the surface of phage and 

tested for their ability to bind the active form of ERK2 in a process known as biopanning 

[76].  DNA encoding each of the ERK2-binding phage was purified and sequenced to 

determine the amino acid composition of displayed peptides responsible for ERK2-

binding. 

   

 

APPROACH 

The dual-phosphate form of ERK2 was purified, biotinylated, and immobilized in 

streptavidin-coated wells.  Each round of phage display biopanning consisted of ERK2 

immobilization, several washes to remove unbound ERK2, phage binding to ERK2, 

several washes to rid of unbound phage, and then the phage were eluted from biotin-
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ERK2 (b-ERK2) using acidic conditions.  Several rounds of phage display were carried 

out with an X2CX14CX2 cyclic peptide library fused to the N-terminus of protein III on 

the surface of the phage.  After several rounds of biopanning, phage clones selected for 

their ability to bind ERK2 were sequenced.  Phage clones displaying the cyclic peptides 

were tested for their ability to bind b-ERK2 in the presence of a reducing agent, a small 

molecule substrate for ERK2 (MgATP2-), and a protein substrate (Ets∆138) to test 

whether or not cyclization of peptides, small molecule binding, and protein substrate 

binding affect phage affinity for b-ERK2, respectively.  One of the phage sequences was 

selected and a peptide with that sequence was chemically synthesized and assayed for its 

ability to inhibit the binding of MgATP2- and the protein substrate Ets∆138 using steady-

state inhibition kinetics.  The synthesized peptide was also assayed with a homologous 

protein kinase (p38 MAPKα) to test whether or not the peptide was specific for ERK2-

binding.  
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RESULTS 

B-ERK2 maintained its catalytic activity following immobilization and several 

washes as determined by its ability to phosphorylate Ets∆138 when bound in the solid-

state.  The catalytic activity was dependent on the amount of plated b-ERK2.  The 

number of eluted phage in each round of biopanning was also dependent upon the amount 

of plated b-ERK2.  Several phage clones were identified that could bind b-ERK2 by both 

a phage attachment assay as well as an enzyme-linked immunosorbent assay (ELISA).  

Reduced phage binding to ERK2 was seen in the presence of a reducing agent, MgATP2-, 

and Ets∆138.  A chemically synthesized peptide derived from these experiments, 

inhibited ERK2 phosphorylation of the protein substrate Ets∆138, exhibiting competitive 

and mixed inhibition towards Ets∆138 and MgATP2-, respectively.  Surprisingly, the 

same peptide displayed equally potent inhibition towards the phosphorylation of ATF2 

by p38 MAPKα, a MAP kinase that has 46% sequence similarity to ERK2.   
 

 

CONCLUSIONS 

This study indicates that phage display can be used to identify peptides that bind 

the dual-phosphate form of ERK2.  Furthermore, binding of selected phage to ERK2 was 

dependent upon the cyclization of the displayed peptides as detected by the reduction of 

binding in the presence of a reducing agent.  Phage also displayed reduced binding in the 

presence of both a nucleotide and protein substrate indicating that either direct 

competition occurs between the phage and these ERK2 substrates or perhaps a 

conformational change occurs upon substrate binding to ERK2 that inhibits or excludes 

the phage from binding.  Steady-state inhibition kinetics of ERK2 in the presence of a 



 51

chemically synthesized peptide indicates that the peptide directly competes with the 

Ets∆138 binding site.  However, the peptide shows mixed inhibition with MgATP2- 

indicating that phage can bind to ERK2 whether or not it is bound to its nucleotide 

substrate.  This study shows that active ERK2 can be targeted by phage display to find 

novel antagonists to kinase function and suggests that protein-binding sites within the 

MAPK family may contain conserved features that render them susceptible to ligand 

binding. 
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INTRODUCTION 

Since the activation of ERK2 induced by growth factors stimulates cells to 

proliferate, many cancers and transforming agents utilize the MAPK cell-signaling 

pathway to carry out unregulated cell growth [77].  Therefore, ERK2 is an obvious target 

for the development of small molecule inhibitors for cancer therapeutics.  However, 

development of antagonists specific to individual members of the protein kinase family 

has proven difficult due to the conservation of active site residues in the hydrophobic 

MgATP2- binding pocket of protein kinases.  Many inhibitors of protein kinases target the 

MgATP2- binding site as seen in the case of polyhydroxylated flavones [78], 

isoquinolinesulfonamides [79, 80], and both pyridinyl imidazoles and triarylimidazoles 

[39, 81, 82] which inhibit cyclin-dependent kinase (CDK), cAMP-dependent protein 

kinase, and p38 MAPKα, respectively.  Unfortunately, these inhibitors often bind other 

enzymes that utilize MgATP2- [83] and must compete with high intracellular 

concentrations of ATP (3.2 ± 1.7 mM) [84].   

An alternative approach to kinase inhibition involves the use of peptides that 

resemble a consensus phosphorylation site that is recognized by an enzyme’s active site 

[46].  Active site-directed peptide inhibitors, however, are not typically potent due to 

weak binding affinities and since several kinases tend to recognize similar 

phosphorylatable regions, they may also be fairly nonspecific.  For example, both 

MAPKs and CDKs phosphorylate serine or threonine residues followed by a proline so a 

peptide inhibitor designed to inhibit a MAPK containing a Ser/Thr-Pro-like site may also 

inhibit a CDK.  A recent approach physically linked ATPγS and a peptide inhibitor, both 

capable of binding the enzyme independently, to generate bisubstrate inhibitors that 

inhibit in the nanomolar range [85]. 
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Another potentially more promising approach towards the inhibition of certain 

protein kinases is to block protein binding sites on the enzyme that lie distant to the active 

site.  Some protein kinases, including members of the MAPK and CDK family, contain 

docking regions for proteins located outside of the active site [17, 86].  In the case of the 

MAPKs these regions regulate the specificity of interactions of the kinase with protein 

substrates, as well as with positive and negative regulators of their activity.  The C-

terminal region of ERK2 for example, contains acidic residues Asp-316 and Asp-319, 

that function as an exosite for the activator MAPKK1, the inactivator MAPK phosphatase 

3, and several protein substrates including Elk-1, MAPK signal-integrating kinase 1, and 

ribosomal S6 kinase [11, 17].  Therefore, these putative exosites are attractive drug 

targets in that they may contain primary and/or secondary structure information specific 

to an individual kinase and its interactions with other proteins.  Indeed, peptides with an 

Arg-X-Leu motif have been shown to disrupt substrate binding to CDK2 through such a 

mechanism [87]. 

Proteins that contain “hot-spots,” such as human growth hormone [88], integrins 

[89], and streptavidin [90], have evolved to bind small peptide motifs tightly.  Hot spots 

have been proposed to be regions where intramolecular backbone hydrogen bonds are not 

sufficiently dehydrated.  These bonds have been termed under-dehydrated hydrogen 

bonds (UDHBs) [91].  Thus, a UDHB on the surface of the protein may indicate a 

potential binding site, or hot spot, that can associate with proteins or peptides to exclude 

water from backbone hydrogen bond.  Such hot spots have been elucidated using peptide 

phage display [92].  Phage display is a technique used to select phage that bind a protein 

of interest (referred to as a receptor of phage binding) from a large library of phage, each 

expressing a novel peptide on their protein coat.  Each peptide is displayed as a fusion to 

a protein on the extracellular surface of the phage coat and can potentially be captured by 
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binding to the receptor protein.  Each peptide is physically linked to its internal phage 

DNA allowing rapid identification.  Using this technique, phage particles with a 

phenotype of interest can be selected through receptor binding and their genotype 

determined. 

Previously, Zwick et al. used phage display to select peptides that bind ERK1/2 

MAP kinase.  However, a peptide substrate (TGPLSPGPF) was used to competitively 

elute the phage, presumably targeting only the phage that bind the active site [93].  The 

selected sequences found to bind ERK1/2 in their study, FHKPLKR and NPAHSPW, 

were not further characterized for their ability to bind or inhibit ERK1/2.   

In this study, phage display was performed to select for novel peptides that bind 

an activated form of ERK2 using a disulfide-constrained peptide library fused to the 

phage minor coat protein III (pIII) using multiple rounds of affinity purification 

(biopanning) [92]. 
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RESULTS AND DISCUSSION 

PURIFICATION OF ACTIVE ERK2 

A plasmid encoding both His6-tagged ERK2 and a constitutively active form of 

MAPKK1 (MAPKK1G7b) [94] was transformed into BL21 cells, grown in the presence 

of 50 µg/mL carbenicillin, and induced with IPTG for 12 hours.  During the induction 

and 12 hour incubation, MAPKK1G7b phosphorylated some of the ERK2 in vivo which 

was separated from the monophosphorylated and unphosphorylated forms of ERK2 in 

later procedures.  The bacterial cells were pelleted by centrifugation and separation from 

the media, snap frozen, and lysed.  All forms of ERK2 were purified using nickel-nitrilo-

triacetic acid (Ni2+-NTA) affinity chromatography to capture the His6-tagged ERK2.  The 

protein was washed and then eluted with imidazole which competes for Ni2+-NTA 

binding sites to release the Ni2+-NTA-bound His6-ERK2.  His6-ERK2 was subjected to 

anion exchange chromatography using a Mono Q HR 5/5 column and eluted with a linear 

gradient of NaCl to separate non-, mono-, and the dual-phosphorylated (active) form of 

ERK2.  When run on an SDS-PAGE gel, the active form of ERK2 can be discerned from 

the inactive form by a band shift toward slower mobility due to the incorporation of two 

phosphates (Figure 9) [7]. 

  

 

BIOTINYLATION OF ERK2 

The dual-phosphate form of ERK2 was biotinylated so that it could be 

immobilized for phage display biopanning in streptavidin-coated wells.  ERK2 was 

biotinylated on primary amine-containing side chains adding a 2:1 mol/mol ratio of 
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sulfosuccinimidyl-6-(biotinamido)hexanoate (sulfo-NHS-LC-biotin) to ERK2 in the 

presence of ATP.  The sulfo-NHS-LC-biotin formed an irreversible carbamate bond with 

ERK2, thereby, biotinylating ERK2.  ATP was added to competitively inhibit labeling of 

the active site lysine, Lys-52 [95], so that ERK2 could maintain its catalytic activity.  

Unreacted biotin was removed by buffer-exchange.  To confirm the biotinylation of 

ERK2, a Western Blot was performed using a primary antibody to detect the biotin 

(Figure 9).  B-ERK2 was also compared to unbiotinylated ERK2 to show that the 

observed catalytic rate constant (kobs) of b-ERK2 was within 2-fold of unbiotinylated 

ERK2 (data not shown), indicating that biotinylation did not greatly affect the activity of 

the enzyme. 
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Figure 9.  Western Blot of biotinylated active ERK2.  (A) The dual-phosphate form of 
ERK2 was biotinylated (biotin-PP~ERK2) and separated on a 10% SDS-PAGE gel with 
inactive ERK2 that was not biotinylated.  The dual-phosphate form of b-ERK2 migrated 
slower than inactive ERK2.  The proteins were transferred from the gel to nitrocellulose 
using electrophoresis.  (B) A Western Blot was performed on the nitrocellulose using a 
horseradish-peroxidase conjugated secondary rabbit anti-goat antibody (1:10,000) and 
primary goat anti-biotin antibody (1:10,000) as described by the manufacturer (Pierce). 

 
 

IMMOBILIZED B-ERK2 IS ACTIVE 

To carry out biopanning, b-ERK2 was immobilized in streptavidin-coated wells.  

To ensure that b-ERK2 maintained catalytic activity during biopanning and phage 

binding, b-ERK2 was immobilized, subjected to biopanning conditions prior to the 

addition of phage, and assayed for catalytic activity.  Two different concentrations of b-

ERK2 were captured in streptavidin-coated wells via high affinity biotin-streptavidin 

interactions, blocked with a non-specific protein bovine serum albumin (BSA), washed 
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several times with buffer to remove unbound b-ERK2 and BSA, then assayed by 

measuring initial rates of phosphate incorporation into the model protein substrate 

Ets∆138 (Scheme 2, Figure 10a).  Using the data from Figure 10a, the observed catalytic 

rate was determined by finding the slope of the line (kobs immobilized ~ 0.01 nmol min-1 

for 0.8 µg of plated b-ERK2).   
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Scheme 2.  Catalytic activity assay of immobilized b-ERK2.  B-ERK2 was 
immobilized in a streptavidin-coated well.  The wells were washed once to remove the 
unbound b-ERK2 (not shown) prior to the addition of blocking buffer (not shown).  The 
wells were washed 6× with buffer to prepare for the assay in either reducing or non-
reducing conditions.  Immobilized b-ERK2 assays were carried out in the streptavidin-
coated wells by adding Ets∆138 (triangle, ETS1) in assay buffer and then initiating the 
reaction with ATP.  Over time, aliquots of the reaction were taken, spotted on P81 paper, 
washed, and counted to determine the number of phosphorylated Ets∆138 molecules 
(P~ETS1). 
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A 

B  

 

Figure 10.  Immobilized b-ERK2 maintains activity during biopanning.  (A) Two 
concentrations of plated b-ERK2 (0.8 µg, circles; 0.4 µg, squares) and unlabeled active 
ERK2 (0.9 µg, triangles) were immobilized in streptavidin-coated wells in buffer B0 for 
1 h at 4 ºC, blocked with buffer B1 for 1 h, washed 6 times with buffer B0 in the presence 
(filled) or absence (open) of 2-mercaptoethanol.  Assays were performed in a 100 µl 
volume using 11.3 µM Ets∆138, 10 mM MgCl2, 100 µg/mL BSA, and 100 µM [γ-32P] 
ATP (500-1000 cpm pmol-1) in buffer S0 at 25 ºC.  (B) B-ERK2 (1.5 nM, open circles; 
0.75 nM closed circles) were assayed as above without immobilization. 
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The specific activity of non-immobilized b-ERK2 was measured in solution by 

measuring initial rates of phosphate incorporation into Ets∆138.  The specific activity of 

b-ERK2 in solution was determined by finding the observed catalytic rate from the data 

in Figure 10b (the slope) and dividing by the mass of b-ERK2 (1587 nmol min-1 mg-1).  

Using Equation 1, the amount of active ERK2 immobilized during biopanning was 

determined (~ 6.3 × 10-6 mg).  After converting to grams, Equation 2 was used to 

determine the number of molecules of active immobilized b-ERK2 (~ 9.0 × 1010) when 

using 0.8 µg of plated b-ERK2. 
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The catalytic activity of immobilized b-ERK2 increased when the amount of 

plated b-ERK2 was increased (Figure 10a) as expected due the increased chance of b-

ERK2 capture in streptavidin-coated wells.  In addition to the Western Blot, these results 

further confirm the biotinylation of b-ERK2 and demonstrate that streptavidin is capable 

of capturing the catalytically active receptor using biopanning conditions prior to the 

addition of phage.  Since immobilized b-ERK2 maintains functional protein binding sites 

as indicated by its ability to phosphorylate a protein substrate, b-ERK2 represents an 

excellent receptor for phage display.  These data also indicate that b-ERK2 can be 
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immobilized and maintain activity even after washes using non-reducing conditions.  

Therefore, non-reducing washes were carried out prior to phage binding (also carried out 

in non-reducing conditions) to maintain the cyclization of the peptide library on the 

phage surface.  
 

 

BIOPANNING SCHEME FOR SELECTING PHAGE THAT BIND B-ERK2 

Biopanning was carried out using a large library of fd-tet bacteriophage 

displaying a single polypeptide (X2CX14CX2) fused to the N-terminus of the surface coat 

protein pIII [96].  When the phage were produced in E. coli, the N-terminus of pIII is 

exposed to the oxidized environment of the periplasm causing disulfide bridge formation 

between the two cysteines in the displayed peptides, thereby, maintaining conformational 

rigidity of the peptides favored for binding [97, 98].  Each round of biopanning against 

the phage receptor (b-ERK2) was carried out as seen in Scheme 3.   
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Scheme 3.  Biopanning scheme for phage display against b-ERK2.  (Left) The 
receptor for phage display (b-ERK2) was immobilized in streptavidin-coated wells for 1 
h at 4 ºC, unbound b-ERK2 was washed away and non-specific binding sites in the wells 
were blocked using BSA for 1 h at 4 ºC (not shown), phage were allowed to bind the 
receptor (top), wells were washed to remove weak or non-binding phage (right), the 
bound phage were eluted with acidic conditions (bottom), and either prepared for 
sequencing or amplified in E. coli for further rounds of selection. 
 

 

Following each round of biopanning, the eluted phage were amplified in E. coli to 

create multiple copies of each selected member and purified so that they could be re-

introduced to subsequent rounds of selection.  Each round used increased selection 

pressures to encourage the selection of tight binding phage over weak binders.  The 

stringency of selection was increased using methods such as extending the washing times 

following phage binding (to encourage the release of phage with fast koff rates prior to the 

elution of those with slow koff rates), lowering the concentration of receptor used to 

capture the phage (to select for tight binding phage via competition for rare receptors), 
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decreasing the phage binding time (to select for those phage with higher kon rates), and by 

increasing the concentration of the detergent in the washing steps (to discourage weak 

and non-specific binding).  Phage selected in later rounds were individually purified and 

tested for their ability to bind b-ERK2 in a phage attachment assay and by phage ELISA 

to specifically select for receptor-binding phage over non-specific binders.  Non-specific 

binding phage may bind other members in the phage library or the streptavidin-coated 

wells prior to elution and must be selected against to exclude these as receptor-binding 

phage.  The genomic DNA of each receptor-binding phage was purified and sequenced to 

determine the primary amino acid sequence of the polypeptide displayed on the phage 

surface. 
   

 

TITERING PHAGE STOCKS 

To determine the titer of the phage (i.e. the number of phage present) serial 

dilutions of the phage pools were made and infected into K91BluKan E. coli cells to 

determine the number of transduced units (TUs) [76].  A TU is defined as an E. coli cell 

that is infected by phage and gains resistance to tetracycline encoded by the phage 

genome.  An overnight culture of K91BluKan was grown in terrific broth (TB) 

containing kanamycin.  The following day, the overnight culture was diluted, grown to 

late log phase in TB containing kanamycin, infected with serial dilutions of phage for 10 

min at room temperature, allowed to incubate at 37 ºC, and plated on Luria broth 

(LB)/agar plates containing kanamycin and tetracycline.  A colony gaining resistance to 

tetracycline represented a TU.  
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AMPLIFICATION OF PHAGE LIBRARIES 

A library containing 3.1 × 1011 TU/mL was obtained from B. Wang’s laboratory 

and amplified in K91BluKan cells.  The amplification of the original library and the 

eluted phage following each ensuing round of phage biopanning was carried out on a 

large scale.  K91BluKan cells were grown to late log phase in TB containing kanamycin.  

After slow shaking to allow bacteria to regenerate their F-pili, phage were added and 

allowed to infect the bacteria.  These infected cultures were added to 2 L of LB 

containing a small amount of tetracycline and later the concentration of tetracycline was 

increased and the phage were amplified overnight.  Purification of phage was carried out 

as described [76] preceding the cesium chloride purification steps that remove trace 

amounts of polyethylene glycol (PEG).  The purified phage were raised in Tris-buffered 

saline (TBS) containing glycerol, snap-frozen in liquid nitrogen, stored at -80 °C and a 

portion of these phage were titered. 
 

 

ROUND I: NON-STRINGENT BIOPANNING CONDITIONS TO SELECT PHAGE THAT 
BIND B-ERK2 

It is critical in early rounds to use non-stringent biopanning conditions that allow 

the phage an opportunity to bind the receptor since each member of the phage library is 

only represented by a few copies and the yields of tight binding phage are usually less 

than 1% [76].  In later rounds, the selected phage were amplified several-fold so that the 

members were not as scarce, and the stringency of selection was increased to select for 

tighter binding phage.  Therefore, 4 µg of receptor was allowed to bind the streptavidin-

coated well and biopanned in the presence of 7.9 × 1010 TU of phage in the first round of 

biopanning.  Since 4 µg of receptor was added, and ~ 9.0 × 1010 active molecules of b-
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ERK2 were predicted when allowing only 0.8 µg of b-ERK2 to bind the wells (above), 

these conditions allowed for ~ 1:1 ratio of phage TU to b-ERK2 giving each of the phage 

a sufficient opportunity to bind b-ERK2.  Biopanning was carried out using an acid 

elution of phage and eluted phage titers from wells containing b-ERK2 were 1.2-fold 

higher than those eluted from wells lacking the receptor (Figure 11) indicating that the 

presence of b-ERK2 increased phage capture.  However, these results indicate that a 

significant portion of the eluted phage in the presence of receptor were binding non-

specifically to the wells lacking receptor (non-specific binders are estimated from the 

number of phage eluted from wells lacking receptor).  The phage eluted from the 

receptor-containing well were amplified, purified, and biopanned in Round II to 

discriminate against non-specific binding phage. 
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Figure 11.  Eluted phage from Round I of biopanning.  Streptavidin-coated wells were 
allowed to bind in the presence or absence of b-ERK2 in buffer B0 for 2h at 4 ºC with 
mild shaking.  The wells were washed once with buffer B0 to remove the unbound b-
ERK2 prior to the addition of blocking buffer B1 for one hour at 4° C.  The wells were 
briefly washed 6× with buffer B2.  The phage (7.9 × 1010 TU) were added in buffer B2 
and allowed to bind immobilized b-ERK2 for 1 h at 25 ºC with mild shaking.  After 
phage binding, 0.1 mM biotin was added for 5 min to free any streptavidin-binding 
phage.  The wells were washed 12 × 1 min with buffer B2 containing 0.1% Tween-20.  
Phage were eluted for 10 min using 100 µl 0.2 M glycine, pH 2.2, containing 1 mg/mL 
BSA and immediately buffered with 15 µl of 1 M Tris-HCl, pH 9.1, following the 
elution, and titered. 
 

 

ROUND II: EXTENDING WASH TIME TO SELECT FOR SMALL KOFF RATES 

In the second round, the stringency of selection was increased by temporally 

extending the washes following phage binding to enhance selection of phage with small 

koff values.  Also, several concentrations of the receptor were biopanned under identical 
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conditions to determine the affects of receptor concentration on phage binding.  Eluted 

phage were shown to increase with increasing receptor concentrations (Figure 12), 

indicating that members of the Round II phage pool could specifically bind b-ERK2 and 

that increased receptor enhanced the binding opportunities for the phage.  These results 

are consistent with immobilized b-ERK2 phosphorylation assays of Ets∆138 that 

exhibited an increase in phosphorylation of Ets∆138 with higher plated concentrations of 

b-ERK2 (Figure 10a).  The enrichment ratio, defined as the number of eluted phage from 

wells containing receptor divided by the number of phage eluted from wells lacking 

receptor in a given round [99], increased in Round II to 63-fold above non-specific 

binding as compared to 1.2-fold in Round I (Table 1).  Enrichment ratios above unity 

indicate that the phage can bind the receptor.  The increase in enrichment ratio is 

expected to rise in early rounds and indicates an increase in selectivity for the receptor.  It 

should also be noted that the number of non-specific phage binding to wells lacking the 

receptor also increased as compared to Round I, albeit, at a lesser extent than those phage 

eluted from wells containing receptor.  These results can be explained by the fact that 

both b-ERK2-binding phage and non-specific binding phage were selected for in Round I 

and amplified prior to Round II.  To discourage the selection of non-specific phage in 

later rounds, the amplified pool of phage should contain a large ratio of receptor-binding 

to non-specific binding phage to increase the chance of selecting receptor-binding phage.  

Therefore, the phage pool eluted from wells containing 1000 ng of plated receptor were 

amplified for further selection. 
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Figure 12.  Eluted phage from Round II of biopanning.  Streptavidin-coated wells 
were allowed to bind in the presence or absence of b-ERK2 in buffer B0 for 2h at 4 ºC 
with mild shaking.  The wells were washed once with buffer B0 to remove the unbound 
b-ERK2 prior to the addition of blocking buffer B1 for one hour at 4° C.  The wells were 
briefly washed 6× with buffer B2.  The phage (1.4 × 1011 TU) were added in buffer B2 
and allowed to bind immobilized b-ERK2 for 1 h at 25 ºC with mild shaking.  After 
phage binding, 0.1 mM biotin was added for 5 min to free any streptavidin-binding 
phage.  The wells were washed 12 × 10 min with buffer B2 containing 0.1% Tween-20.  
Phage were eluted for 10 min using 100 µl 0.2 M glycine, pH 2.2, containing 1 mg/mL 
BSA and immediately buffered with 15 µl of 1 M Tris-HCl, pH 9.1, following the 
elution, and titered. 
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Round 
Plated b-ERK2 

(ng) 

Input Phage 

(TU) 

Eluted Phage 

(TU) 

Background 

(TU) 

1 4000 7.9 × 1010 2.3 × 105 2.0 × 105 

2 1000 1.4 × 1011 6.9 × 107 1.1 × 106 

3 10 2.0 × 1011 6.0 × 105 1.9 × 105 

4 0.1 2.0 × 1010 1.1 × 104 4.0 × 103 

 

Table 1.  Yields of eluted phage from biopanning experiments used for subsequent 
rounds.  In the first round, an amplified version of the original X2CX14CX2 library was 
used.  Thereafter, eluted phage were amplified from wells containing the amount of 
plated receptor concentration shown here and added as input phage to subsequent rounds.  
The concentrations of phage were determined by titering experiments based on the 
number of bacterial infections from eluted phage (Experimental Procedures). 
 
 

ROUND III: DECREASED RECEPTOR CONCENTRATION TO ENCOURAGE PHAGE 
COMPETITION 

The stringency of selection was increased in Round III by using multiple receptor 

concentrations during biopanning and selecting the phage eluted from wells containing b-

ERK2 with titers just above non-specific phage binding [100].  As receptor 

concentrations were lowered and became limiting, the phage had to compete with one 

another for limited receptor sites creating conditions where tighter binders could be 

selected for.  In addition, the detergent concentration was increased to 0.3% Tween-20 

during washes to further discriminate against non-specific binding.  In wells in which 1 

and 10 ng of receptor was plated, eluted phage titers were only ~ 3-fold above non-

specific binding (Figure 13).  To ensure that individual phage could bind to b-ERK2 at 

this stage of the biopanning, individual phage selected from Round III were purified and 

tested for b-ERK2 binding in a phage attachment assay.   
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Figure 13.  Eluted phage from Round III of biopanning.  Streptavidin-coated wells 
were allowed to bind in the presence or absence of b-ERK2 in buffer B0 for 2h at 4 ºC 
with mild shaking.  The wells were washed once with buffer B0 to remove the unbound 
b-ERK2, prior to the addition of blocking buffer B1 for one hour at 4° C.  The wells were 
briefly washed 6× with buffer B2.  The phage (2 × 1011 TU) were added in buffer B2 and 
allowed to bind immobilized b-ERK2 for 1 h at 25 ºC with mild shaking.  The wells were 
washed 12 × 5 min with buffer B2 containing 0.3% Tween-20.  Phage were eluted for 10 
min using 100 µl 0.2 M glycine, pH 2.2, containing 1 mg/mL BSA and immediately 
buffered with 15 µl of 1 M Tris-HCl, pH 9.1, following the elution, and titered. 
 

 

INDIVIDUAL PHAGE PREPARATION 

Single colonies of bacteriophage-infected K91BluKan cells were selected from 

titering plates, grown in LB containing tetracycline and kanamycin, and purified on a 

small scale.  To purify the phage, the E. coli and phage suspension was centrifuged to rid 

of the bacterial pellet.  The supernatant containing the phage was precipitated twice by 

the addition of PEG and NaCl and the phage were raised in TBS.  This procedure usually 
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yielded ~ 1× 108 TU/µL.  The phage were frozen and stored at -80 °C in TBS containing 

glycerol.  
 

 

PHAGE ATTACHMENT ASSAY 

Individually purified phage were selected from the Round III elution from wells 

containing 1 ng of plated b-ERK2 and subjected to a phage attachment assay (Scheme 4).  

The phage attachment assay verified whether or not a pool of an individual phage clone 

could bind the receptor.  The phage attachment assay was similar to biopanning, except 

that it was carried out with a pool of a single phage clone, and instead of eluting the 

phage in the final step of biopanning, the immobilized phage were allowed to infect 

K91BluKan cells.  Bacterial cells that were infected by phage were selected for by their 

ability to grow in LB containing tetracycline.  Individual phage clones showing a positive 

result in the phage attachment assay in the presence of b-ERK2 and not in the absence of 

the receptor were identified as phage that could specifically bind b-ERK2. 



 73

 

 

Scheme 4.  Phage attachment assay.  Biopanning conditions were carried out using 1 ng 
of plated b-ERK2 and 1 × 1010 TU of a single phage clone.  Instead of eluting bound 
phage after several washes, late log phase K91BluKan cells were added and allowed to 
incubate with the b-ERK2-bound phage.  Phage-infected bacterial cells gained resistance 
to tetracycline and were allowed to grow.  Control wells in the absence of b-ERK2 were 
tested with each phage to select against clones that could bind the wells in the absence of 
b-ERK2. 
 

 

Of 40 phage clones tested, 11 tested positive for receptor binding which is 

consistent with the fact that eluted phage from this well was ~ 3-fold above background 

(~13 expected).  Single-stranded genomic DNA was purified from these clones and 

sequenced to reveal the sequence of the displayed peptide responsible for binding b-

ERK2 (Table 2). 
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Clone Amino acid sequence 

1 HQCDSLHYPTSGWWATACHG 

2 SWCDAMSGNLFKGQALYCVL 

3 GACEGFLLPGFGRTAGQCTH 

4 SYCDQLLESGSVNRPLDCMR 

5 GTCPQDAVTMSMDLASRCEV 

6 TTCHSRGNGSNFPSTRACLS 

7 HECRLTFSLGSQVARI-CPL 

8 DTCYNGEDRRVARGTFICNR 

9 *IRCIRGWTKDIRTLADSCQY* 

 

Table 2.  Phage clone peptidyl sequences from Round III that mediated binding to 
b-ERK2.  Round III phage selected for their ability to bind b-ERK2 by a phage 
attachment assay were amplified, their DNA was purified using a phenol extraction, and 
sequenced to determine the primary amino acid sequence of the displayed peptide on the 
phage.  (*) - indicates the sequence was selected for 3 times. 
 

 

Three of the selected phage sequences were similar indicating that the selected 

clone bearing the peptide IRCIRGWTKDIRTLADSCQY was being selected for more 

often than the others.  No other sequences were identical to one another and a consensus 

sequence was not observed.  The lack of consensus sequence is possibly due to the 

complexity of the library since all possible combinations of amino acids cannot be 

represented in libraries greater than X6-7.  However, it could also be due to the fact that 



 75

ERK2 recognizes and binds a variety of protein surfaces, where individual amino acids 

make a small contribution to binding.  Single phage clones eluted from wells containing 

more receptor (100 ng of plated b-ERK2) showed that 17/20 were able to bind b-ERK2 in 

a phage attachment assay, further indicating that phage selected from wells containing 

more receptor are more likely to bind b-ERK2 due to a greater ratio of b-ERK2-binders 

to non-specific binders. 
 

 

ROUND IV: DECREASED RECEPTOR 

A fourth round of biopanning was carried out to determine if a consensus 

sequence could be reached or to confirm the selection of similar phage from the previous 

round.  Several receptor concentrations were biopanned using decreased phage binding 

time to select for high kon rates (Figure 14).  Individual phage eluted from wells 

containing 0.1 ng of plated receptor were subjected to a phage attachment assay and an 

ELISA assay and the positive clones were sequenced.  Six of the thirteen positive phage 

clones (Table 3) contained the peptide sequence IRCIRGWTKDIRTLADSCQY (termed 

hereafter peptide 20) also seen in Round III (Table 2) indicated that the selection of 

phage bearing peptide 20 was favored under these conditions.  Only one other sequence, 

HQCDSLHYPTSGWWATACHG, was similar to those selected in Round III, indicating 

that both displayed peptides were selected under the conditions of both Round III and IV. 
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Figure 14.  Eluted phage from Round IV of biopanning.  Streptavidin-coated wells 
were allowed to bind in the presence or absence of b-ERK2 in buffer B0 for 2h at 4 ºC 
with mild shaking.  The wells were washed once with buffer B0 to remove the unbound 
b-ERK2, prior to the addition of blocking buffer B1 for one hour at 4° C.  The wells were 
briefly washed 6× with buffer B2.  The phage (2 × 1010 TU) were added in buffer B2 and 
allowed to bind immobilized b-ERK2 for 20 min at 25 ºC with mild shaking.  The wells 
were washed 12 × 5 min with buffer B2 containing 0.3% Tween-20.  Phage were eluted 
for 10 min using 100 µl 0.2 M glycine, pH 2.2, containing 1 mg/mL BSA and 
immediately buffered with 15 µl of 1 M Tris-HCl, pH 9.1, following the elution, and 
titered. 
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Clone Amino acid sequence 

12 IWCNGGGMTNGLLDAVRCHS 

20a,b IRCIRGWTKDIRTLADSCQY 

32a HQCDSLHYPTSGWWATACHG 

40 QHCQGIWKSCSKHSTKCCSL 

52 TGCRTTWIRWGWGQAETCTS 

55 YSCKAWNRTVSGRIASGCLW 

68 MGCVRRVTRPGLAVAEACSV 

76 VFCRDVTRTPFGSFAPQCMR 

 
Table 3.  Round IV b-ERK2-binding peptides displayed on phage.  Isolated phage 
clones selected in Round IV were tested using a phage attachment assay and phage 
ELISA for the ability to bind b-ERK2.  The DNA of positive clones was purified and 
sequenced to determine the primary amino acid sequence of the displayed peptide on the 
phage.  a, sequence also represented in phage after Round III; b, selected at a frequency 
6× greater than the others. 
 

 

DTT INHIBITS CYCLIC PEPTIDE BINDING 

To determine whether the cyclization of the peptides on the surface of the phage 

were important for b-ERK2 binding, a reducing agent, dithiothreitol (DTT), was added to 

an ELISA using the phage clones selected from Round IV.  An ELISA detects the ability 

of a population of an individual phage to bind the receptor [101].  The ELISA was carried 

out in a manner similar to biopanning, however, instead of eluting the receptor-bound 

phage, a horse-radish peroxidase-linked antibody specific for the phage coat was used to 
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detect the relative amount of receptor-bound phage using a colorometric assay utilizing 

the reduction of hydrogen peroxide.  Addition of DTT during the phage binding 

significantly reduced the ELISA signal for all of the phage clones when compared to 

similar experiments in the absence of DTT indicating that the reduction of intramolecular 

disulfide bonds in each of the phage polypeptides ameliorates binding to b-ERK2 (Figure 

15) [98].  These results indicate that the disulfide constraint within the displayed peptide 

is critical for efficient binding to b-ERK2 and also emphasizes the importance of 

biopanning in non-reducing conditions when using disulfide-constrained phage libraries. 

 

 

Figure 15.  Phage binding to b-ERK2 decreases in the presence of a reducing agent. 
An ELISA was performed using ~1 × 108 TU of individually purified phage clones and 
500 ng of plated b-ERK2 in the presence of 0 mM (black) and 10 mM DTT (grey) during 
phage binding.  A control was performed in the absence of b-ERK2 (white) revealing 
background phage binding to wells lacking DTT. 
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ETS∆138 DISRUPTS PHAGE BINDING TO B-ERK2 

The effects of protein-protein interactions on phage binding to b-ERK2 were 

studied using the transcription factor protein substrate Ets∆138 [42] to inhibit phage 

binding in a competition ELISA.  A competition phage ELISA was carried out with 

phage selected from Round IV using several concentrations of Ets∆138 to compete with 

phage binding using a limited quantity of b-ERK2.  The results indicate that the presence 

of Ets∆138 decreased phage binding to b-ERK2 in a concentration-dependent manner 

(Figure 16).  Conversely, the addition of BSA, a protein that does not bind ERK2, did not 

have a concentration-dependent effect (data not shown).  The data indicates that a protein 

capable of binding ERK2 can release the bound phage or prevent them from binding 

since Ets∆138 was added prior to the addition of the phage.  Whether or not Ets∆138 is 

competing with phage for a similar binding site or simply detaching phage due to a 

conformational change of the enzyme upon substrate binding cannot be elucidated from 

these experiments. 
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Figure 16.  The transcription factor Ets∆138 reduces phage binding to b-ERK2 in a 
phage ELISA. An ELISA was performed using 500 ng of b-ERK2 and ~1 × 108 TU of 
individually purified phage clones in the presence of 0 µM (black),  100 µM (dark grey), 
and 200 µM (light grey) Ets∆138 added 10 min prior to the phage.  A control was 
performed in the absence of b-ERK2 and in the presence of phage (white). 
 

 

MGATP2- INHIBITS PHAGE BINDING 

The effects of a smaller non-protein ERK2 substrate on phage binding was also 

studied using MgATP2- in a competition ELISA.  MgATP2- binds ERK2 in a hydrophobic 

pocket and is required for protein phosphorylation.  In the absence of a protein substrate, 

ERK2 can bind MgATP2- and carry out its hydrolysis to form the products ADP and 

inorganic phosphate.  MgATP2- showed the ability to inhibit phage binding in a phage 

ELISA in a concentration-dependent manner (Figure 17).  The mechanism by which 

MgATP2- is capable of inhibiting phage binding to b-ERK2 in a competition ELISA 
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cannot be elucidated by these experiments but is possibly due to competitive binding or 

through an indirect conformational change upon binding b-ERK2. 

 

 

 

Figure 17. MgATP2- reduces the phage binding to b-ERK2 in a phage ELISA. An 
ELISA was performed using 500 ng of b-ERK2 and ~1 × 108 TU of individually purified 
phage clones in the presence of 0 mM ATP and 0 mM MgCl2 (black),  5 mM ATP and 10 
mM MgCl2 (dark grey), and 10 mM ATP and 10 mM MgCl2 (grey).  A control was 
performed in the absence of b-ERK2 and in the presence of phage (white). 

 

 

PURIFICATION OF CYCLIC PEPTIDE 20A 

Since the phage displaying peptide 20 were predominantly selected in Rounds III 

and IV, this peptide was chemically synthesized and examined for inhibition of ERK2 

catalytic activity as measured by ERK2 phosphorylation of Ets∆138.  This experiment 

accomplished two goals: (i) the characterization of the peptide binding ERK2 in the 
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absence of the phage coat proteins and (ii) an interaction study with active ERK2 in the 

absence of biotin to assure that the biotin moiety is not being recognized by the peptide.  

Unfortunately, peptide 20 was not readily soluble at neutral pH.  To circumvent this 

problem, the peptide was synthesized with 3 lysines attached to the N-terminus (N-

KKKIRCIRGWTKDIRTLADSCQY-C, termed peptide 20a hereafter) that increased the 

solubility of the peptide significantly.  Peptide 20a was purified using reverse phase 

HPLC, oxidized to form a cyclic peptide with a disulfide bond formed between the 

cysteine residues, and re-purified using reverse phage HPLC (Figure 18).  The oxidation 

was confirmed by mass using electrospray ionization (ESI) mass spectrometry by 

revealing the loss of two protons due to cyclization (Table 4). 
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Figure 18. Cyclic peptide 20a purification.  The oxidized form of peptide 20a was 
dissolved in equilibration buffer (0.1% trifluoroacetic acid (v/v) and 5% acetonitrile) and 
purified by reverse phase chromatography using an Econosil C18 10u column (Alltech), 
developed with a linear acetonitrile gradient of 5-80% over 75 min using a flow rate of 5 
mL/min.  Fractions absorbing at 280 nm were applied to MALDI and analyzed for 
peptide purity; the pooled fractions were further analyzed by ESI. 
 

 

Peptide Mass (Da) 

Linear 20a 2782.6 

Cyclic 20a 2780.4 

Table 4.  Mass analysis of peptide 20a in linear and the oxidized/cyclic form.  A 
linear and an oxidized/cyclic form of peptide 20a (KKKIRCIRGWTKDIRTLADSCQY) 
were purified by reverse phase HPLC, lyophilized, raised in 0.1% TFA containing 50% 
acetonitrile and analyzed by ESI to show a loss of two protons in the oxidized/cyclic 
form due to the formation of an intramolecular disulfide bond. 
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INHIBITION OF ERK2 BY CYCLIC PEPTIDE 20A 

Peptide 20a (cyclic) inhibited ERK2 phosphorylation of Ets∆138 and a mode of 

inhibition was assigned for the substrates Ets∆138 and MgATP2- (Table 5).  Inhibitors are 

classified according to whether they affect the apparent specificity constant (kcat/Km)app by 

affecting only the apparent Henri-Michaelis-Menten constant app
mK  (competitive 

inhibition), only the apparent observed rate constant app
catk  (uncompetitive inhibition), or 

both (mixed inhibition).  By plotting the data in reciprocal form as 1/v against 

1/[substrate] at varied concentrations of inhibitor, one can determine the mechanism of 

inhibition by noting whether an inhibitor affects the slope or intercept of a plot.  A 

competitive inhibitor increases the slope while maintaining a constant y-intercept, an 

uncompetitive inhibitor increases the intercept while maintaining a constant slope, while 

a mixed inhibitor affects both the slope and intercept of such plots.  A mixed inhibition 

pattern was seen for peptide 20a with respect to MgATP2- (Figure 19a) and a competitive 

inhibition pattern with respect to Ets∆138 (Figure 19b). 
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Table 5.  Inhibition Patterns for the Phosphorylation of Ets∆138 by ERK2a. 
 

Varied 
Substrate Fixed substrate Inhibitor Mechanism kobs, s-1 Km, µM app

iK , µM 

MgATP2- b Ets∆138 c Peptide d Mixed h 15.9 ± 0.4 91.3 ± 9.5 76.7 ± 32.9 
Ets∆138 e MgATP2- f Peptide d Competitive g 15.3 ± 0.6 13.0 ± 2.2 20.7 ± 5.5 

aInitial velocities were measured using 1 nM ERK2, 20 mM MgCl2, (62.5-2000 µM) 
ATP, and (6.25-200µM) Ets∆138, 20 mM HEPES pH 7.3, 0.1 mM EDTA, 0.1 mM 
EGTA, 27 °C, and an ionic strength of 0.1 M (KCl).  
b62.5-2000 µM  
c25 µM 
d0-50 µM 
e6.25-200 µM 
f270 µM 
g Best fit of the data according to V = (Vmax×[S])/(Km(1+[I]/Ki) + [S]) for competitive 
inhibition using global fitting in the program Scientist.  
h Best fit of the data according to V = (Vmax×[S])/(Km(1+[I]/Ki) + [S](1+[I]/Kii)) for mixed 
inhibition using global fitting in the program Scientist. 
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Figure 19.  Cyclic peptide 20a inhibition of ERK2 with respect to MgATP2- and 
Ets∆138.  (A) Initial velocities were measured using 1 nM ERK2, 20 mM MgCl2, 25 µM 
Ets∆138, in the presence of several fixed concentrations of peptide 20a (1, 0 µM; 2, 12.5 
µM; 3, 25 µM; and 4, 50 µM), varied concentrations of ATP (62.5-2000 µM), 20 mM 
HEPES pH 7.3, 0.1 mM EDTA, 0.1 mM EGTA, 27°C, and an ionic strength of 0.1 M 
(KCl).  The data were globally fit to the equation V = (Vmax×[S])/(Km(1+[I]/Ki) + 
[S](1+[I]/Kii)) using the program Scientist. (B) Initial velocities were measured using 1 
nM ERK2, 20 mM MgCl2, 270 µM ATP, in the presence of several fixed concentrations 
of peptide 20a (1, 0 µM; 2, 12.5 µM; 3, 25 µM; and 4, 50 µM), and varied concentrations 
of Ets∆138 (6.25-200 µM), 20 mM HEPES pH 7.3, 0.1 mM EDTA, 0.1 mM EGTA, 
27°C, and an ionic strength of 0.1 M (KCl).  The data were globally fit to the equation V 
= (Vmax×[S])/(Km(1+[I]/Ki) + [S]) using the program Scientist. 
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As seen in Scheme 5, a productive complex (E·S·ATP) leading to a 

phosphorylated product (P) is formed when ERK2 (E) binds both MgATP2- (ATP) and 

Ets∆138 (S).  In order to bind Ets∆138, ERK2 cannot be bound to the peptide 20a 

inhibitor (I) as determined by the competitive inhibition results.  Since the inhibition of 

ERK2 by peptide 20a is mixed with respect to MgATP2-, the enzyme can bind ATP in the 

presence and absence of the inhibitor.  Therefore, peptide 20a binds a region of ERK2 

that is distinct from the MgATP2- binding site. 
 

 

 

Scheme 5.  Mechanism of ERK2 inhibition by peptide 20a.  The mechanism of peptide 
20a inhibition where (I) represents the peptide 20a inhibitor, (E) represents ERK2, (S) 
represents the protein substrate Ets∆138, (ATP) represents the nucleotide substrate 
MgATP2-, (P) represents the phosphorylated Ets∆138 product, and (ADP) represents the 
nucleotide product MgADP1-.  

 

 

The kinetic inhibition data are in accord with the experimental evidence that 

Ets∆138 competed with phage 20 in a dose-dependent manner for binding to ERK2 in a 
competition ELISA (Figure 16).  The app

138)i(Ets∆K , a measure of the affinity of the peptide 

for the enzyme, has a similar affinity to the Km of the protein substrate Ets∆138 [42] 

indicating that they not only compete for the same binding site but also bind with similar 
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affinities (Table 5) despite their difference in size.  While it remains to be determined 

how peptide 20a competes with Ets∆138 for ERK2 binding it is certainly conceivable 

that it binds an enzymic MAPK exosite utilized by Ets∆138 that lies outside of the active 

site.  This is consistent with the observation that the peptide is not a competitive inhibitor 

of MgATP2-.   
 

 

INHIBITION IS NOT SPECIFIC TO ERK2 

A related member of the MAPK family, p38 MAPKα, was also inhibited by 

peptide 20a.  In this case, the kinetic data of inhibition was best fit to a competitive 

inhibition mechanism with respect to the protein substrate GST-ATF2-(1-115) (kcat = 0.7 

± 0.1 s-1, Km = 3.6 ± 0.9 µM, Ki =  5.6 ± 1.4 µM,) (data not shown).  These results 

indicate that peptide 20a, although selected for ERK2 binding, is not specific for ERK2 

and may recognize an enzymic MAPK exosite shared amongst this family.  Indeed, both 

MAPK family members, 46% identical, have a number of regions of similarity that the 

peptide may be recognizing.  One region could be the semi-conserved active site region 

responsible for peptide substrate recognition and MgATP2--binding.  However, peptide 

20a could bind ERK2 in the presence and absence of MgATP2-, indicating that the 

peptide may not be targeting the active site.  Both MAPKs share a similar 

phosphorylation loop containing a phosphorylated threonine and tyrosine residue 

required for the activation of each enzyme.  Basic residues on peptide 20a could bind this 

region through recognition of the negatively charged phosphate groups, thereby, 

inactivating the enzyme.  Another region of similarity between p38 MAPKα and ERK2 

is the common docking MAPK exosite composed of acidic residues responsible for 

binding substrates, activating kinases, and phosphatases [17].  Several basic residues in 
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peptide 20a could mediate the binding to this acidic region through electrostatic 

interactions.  However, it has not yet been determined whether Ets∆138 and GST-ATF2-

(1-115) utilize the common docking exosite on ERK2 and p38 MAPKα.  It is also 

plausible that the peptide recognizes a novel hot spot, conserved amongst ERK2 and p38 

MAPKα, mediating protein substrate docking. 
 

 

CONCLUSIONS 

We have shown that phage display can be used to select peptides that bind the 

active form of ERK2.  One of the peptides selected, peptide 20a, was chemically 

synthesized and shown to competitively inhibit the ability of ERK2 to phosphorylate a 

model transcription factor substrate, Ets∆138.  However, the selected peptide also 

inhibited a closely related MAPK family member p38 MAPKα.  These results suggest 

that there may be a hot spot on ERK2 and p38 MAPKα that has evolved to bind ligands 

and serves as a superficial target for phage display.  In nature, this same region on ERK2 

may bind other ligands within the cell and mediate their recognition of ERK2.  
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EXPERIMENTAL PROCEDURES 

MATERIALS 

The X2CX14CX2 fd-tet phage library, inserted into a fUSE5 virion, was a gift from 

B. Wang (Case Western Reserve University, Cleveland, OH) and the E. coli K91BluKan 

strain used for propagation of the phage was a gift from G. Smith (Washington 

University, St. Louis, MO).  Tween-20 was obtained from J.T. Baker (Phillipsburg, NJ). 

Sulfo-NHS-LC-biotin, biotin, streptavidin-coated 96-well plates, antibodies, and ELISA 

reagents were purchased from Pierce (Rockford, IL).  Kinase assays utilized Na4ATP 

(Roche, Indianapolis, IN) and [γ-32P]ATP4- (ICN, Irvine, CA).  BSA was obtained from 

Fisher Scientific (USA), DTT from USBio (Swampscott, MA), Tris base from EM 

Industries (Gibbstown, NJ), and all other reagents from Sigma.  Proteins were 

concentrated using Centricon-10 centrifugation filter devices with a molecular weight 

cutoff of 10 kDa (Millipore, Bedford, MA). 

 

 

PURIFICATION OF ERK2 

DNA encoding rat-His6-ERK2 and MAPKK1 R4F (a gift from M. Cobb, 

Southwestern, Dallas, TX) were simultaneously expressed in E. coli BL21 (DE3) pLysS 

giving rise to the dual-phosphate form of ERK2 and purified essentially as described 

[102].  The proteins were expressed in E. coli BL21 (DE3) pLysS, grown to an OD600 of 

0.6-0.8 at 30 ºC in LB containing 50 µg/mL carbenicillin, and induced with 0.5 mM 

IPTG for 12 h.  The cells (21 grams from 7.2 liters) were centrifuged at 6,000 rpm at 4 ºC 
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in a GS3 rotor (Sorvall) and the pellet was snap-frozen.  The cells were thawed, 

resuspended in 200 mL 50 mM Tris-HCl, pH 8.0, 0.1% 2-mercaptoethanol (v/v), 0.1 mM 

PMSF, 0.1 mM TPCK, 1 mM benzamidine, 2 mM EDTA, 2 mM EGTA, 1% Triton X-

100 (w/v), 0.25 M NaCl, and sonicated on ice (5 × 30 second pulses) to maintain a 

temperature lower than 4 ºC.  The cellular debris was pelleted by spinning at 16,000 rpm 

for 30 min at 4 ºC in an SS34 rotor (Sorvall).  The supernatant was gently mixed for 1.5 h 

at 4 ºC with 2 mL of Ni-NTA agarose beads to bind the His6-ERK2.  The beads were 

washed with 50 mM Tris-HCl, pH 8.0, 0.1% 2-mercaptoethanol (v/v), 0.1 mM PMSF, 

0.1 mM TPCK, 1 mM benzamidine, 2 mM EDTA, 2 mM EGTA and eluted with a 

similar buffer containing 200 mM imidazole.  Fractions containing protein were applied 

to a Mono Q HR 5/5 column pre-equilibrated with 20 mM Tris pH 8.0, 20 mM bis-Tris, 

0.1% 2-mercaptoethanol, 0.03% Brij-30, 0.1 mM EDTA, 0.1 mM EGTA (buffer A).  

Protein was eluted with and mixture of buffer B (buffer A at pH 5.5) and buffer C (buffer 

B + 0.5 M NaCl) following the procedure below at a flow rate of 1.5 mL/min: 
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     Buffers (%) 
Minutes   A B C 
0    100 0 0 
15    100 0 0 
30    35 65 0 
35    30 70 0 
40    30 50 20 
90    30 0 70 
120    0 0 100 
 

Purified ERK2 was run on a gel, analyzed for a gel shift indicating dual-phosphorylation, 

and dialyzed overnight at 4 ºC into buffer S0 (20 mM HEPES pH 7.3, 100 mM KCl, 0.1 

mM EDTA, 0.1 mM EGTA, and 2 mM DTT) containing 10% glycerol, concentrated 

using a Centricon-10 filter, snap-frozen in liquid nitrogen, and stored at -80 °C. 
 

 

PURIFICATION OF HIS6- AND GST-TAGGED PROTEINS 

DNA encoding murine His6-Ets∆138 in a pET28a vector (Invitrogen) was 

expressed and purified as described previously [42], however, DNaseI was omitted from 

the lysis buffer and the Mono Q HR 10/10-purified Ets∆138 was dialyzed overnight into 

S0 buffer at 4 ºC, concentrated to 25 mg/mL, snap-frozen in liquid nitrogen, and stored at 

-80 °C. 

DNA encoding inactive rat-His6-p38 MAPKα in a pET14b vector (Invitrogen) 

was expressed in E. coli BL21 (DE3) pLysS, grown in LB containing 50 µg/mL 

ampicillin to an OD600 0.6-0.8 at 30 ºC, and induced for protein expression with 0.5 mM 

IPTG for 3h.  The His6-tagged protein was purified using Ni-NTA-affinity 
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chromatography as described [42], dialyzed overnight in S0 buffer containing 10% 

glycerol at 4 ºC, concentrated to 2 mg/mL, and snap-frozen. 

DNA encoding the mutant GST-MAPKK6b (S207E/T211E) fusion protein was 

expressed in E. coli BL21 (DE3) pLysS, grown to an OD600 of 0.6-0.8 at 30 ºC in LB 

containing 50 µg/mL ampicillin, and induced with 0.5 mM IPTG for 3 h.  The cells (9 

grams from 3.2 liters) were centrifuged at 6,000 rpm at 4 ºC in a GS3 rotor (Sorvall) and 

the pellet was snap-frozen.  The cells were thawed, resuspended in 50 mM Tris-HCl, pH 

7.5, 0.1% 2-mercaptoethanol (v/v), 0.1 mM PMSF, 0.1 mM TPCK, 1 mM benzamidine, 2 

mM EDTA, 2 mM EGTA, 1% Triton X-100 (w/v), 0.25 M NaCl, and sonicated on ice (5 

× 30 second pulses) to maintain a temperature lower than 4 ºC.  The cellular debris was 

pelleted by spinning at 16,000 rpm for 15 min at 4 ºC in an SS34 rotor (Sorvall).  The 

supernatant was gently mixed for 2 h at 4 ºC with 2 mL of glutathione agarose resin to 

bind the fusion protein.  The agarose beads were washed with 30 mL of 50 mM Tris-HCl, 

pH 7.5, 0.1% 2-mercaptoethanol (v/v), 0.1 mM PMSF, 0.1 mM TPCK, 1 mM 

benzamidine, and 0.125 M NaCl.  The fusion protein was eluted with 10 mL of 20 mM 

reduced glutathione dissolved in 50 mM Tris-HCl, pH 8.0, 0.1% BME, 0.1 mM PMSF, 

0.1 mM TPCK, 1 mM benzamidine to yield 1.4 mg of total protein.  The GST-MKK6b 

fusion protein was dialyzed at 4 ºC in buffer S0 containing 10% glycerol, concentrated to 

2 mg/mL, and snap-frozen. 

DNA encoding GST-ATF2-(1-115) was expressed and purified as described 

[103], omitting protease inhibitors from the Mono Q buffers. 
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ACTIVATION OF P38 MAPKα 

p38 MAPKα (4 µM) and a constitutively active mutant form of its activator 

(GST-MAPKK6b) (0.3 µM) were incubated with an activation buffer containing 10 mM 

HEPES pH 8.0, 4 mM ATP, 20 mM MgCl2, and 2 mM DTT for 3 h to phosphorylate p38 

MAPKα.  Activated p38 MAPKα was purified using methods similar to activated ERK2 

[7] and eluted from the Mono Q HR 10/10 at 0.42 M NaCl.  The eluted protein was 

dialyzed overnight in buffer S0 containing 10% glycerol at 4 ºC, concentrated to 2 

mg/mL, snap-frozen in liquid nitrogen, and stored at -80 °C.  An analogous reaction was 

carried out in the presence of [γ-32P]ATP (150 cpm pmol-1) to determine the mol/mol 

ratio of phosphate incorporated into p38 MAPKα.  This was carried out by spotting 

portions of the reaction on P81 cellulose paper [7] or TCA precipitated, washed to rid of 

radiolabeled ATP, counted in a scintillation counter, and determined to be 2.8 mol/mol 

phosphate (only 2 mol/mol is expected for active p38 MAPKα).     
 

 

BIOTINYLATION OF ERK2 

Biotin was covalently linked to dual-phosphate ERK2 to form biotin-ERK2 using 

sulfo-NHS-LC-biotin.  The NHS mixed carbonate reacts with primary amine side chains 

to form a stable carbamate bond with ERK2.  A 2:1 mol/mol ratio of NHS-LC-biotin to 

ERK2 was added in buffer S0 containing 1 mM ATP on ice for 2 h.  ATP was added to 

protect biotin incorporation into Lys-52 of ERK2, which is required for efficient catalysis 

[95].  Unreacted biotin was removed using a Centricon-10 filter by buffer-exchange (at 

least 3 × 2 mL of buffer S0 containing 10% glycerol).  Aliquots were snap-frozen in 

liquid nitrogen and stored at -80° C.  Biotinylation was confirmed by Western Blot 
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analysis using a horseradish-peroxidase conjugated secondary rabbit anti-goat antibody 

(1:10,000) and primary goat anti-biotin antibody (1:10,000) as described by the 

manufacturer (Pierce).  ERK2 that was not biotinylated was not detected in the Western 

Blot. 

 

 

 KINETIC MEASUREMENTS OF B-ERK2 IN SOLUTION 

The specific activity of ERK2 was determined by measuring initial rates of 

radiolabeled phosphate incorporation into the substrate Ets∆138 by spotting the reaction 

on P81 paper as previously described [42].  Reactions were performed in a 100 µl volume 

in the presence of 1 nM b-ERK2, 11.3 µM Ets∆138, 10 mM MgCl2, 100 µg/mL BSA, 

and 100 µM [γ-32P] ATP (500-1000 cpm pmol-1) in buffer S0 at 25 ºC. 
 

 

KINETIC MEASUREMENTS OF IMMOBILIZED B-ERK2 

Immobilization of b-ERK2 in 96-well streptavidin-coated wells was carried out 

by adding the enzyme in binding buffer B0 (buffer S0 containing 0.1% 2-

mercaptoethanol substituted for DTT) for 2 h at 4 °C with mild shaking.  The wells were 

washed once with buffer B0 to remove the unbound b-ERK2, prior to the addition of 

blocking buffer B1 (buffer B0 containing 5 mg/mL BSA and 0.1 µg/mL streptavidin, to 

bind any contaminating biotin in the BSA) for one hour at 4° C.  The wells were washed 

(6 × 5 min) with buffer S0 lacking DTT to remove residual 2-mercaptoethanol in 

preparation for non-reducing biopanning conditions.  Immobilized b-ERK2 assays were 

carried out in the streptavidin-coated wells using similar conditions to the kinetic assays 

described above without addition of ERK2, since it is already immobilized.  The number 
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of active b-ERK2 molecules was estimated using the observed rate constant (kobs) of 

immobilized b-ERK2 and the specific activity (SA) of b-ERK2 in solution. 
 

 

LARGE SCALE AMPLIFICATION AND PURIFICATION OF PHAGE 

K91BluKan cells were grown to late log phase at 37 ºC in 200 mL of TB [104] 

containing 100 µg/mL kanamycin.  Fd-tet bacteriophage were added after slow shaking 

for 5 min to allow F-pili regeneration.  Slow shaking was continued to allow infection for 

15 min.  The cultures were added to 2 L of LB containing 0.22 µg/mL tetracycline and 

shaken at 300 rpm for 35 min.  The concentration of tetracycline was increased to 18 

µg/mL and shaken overnight.  Purification of phage was carried out as described [76] 

preceding the cesium chloride purification steps that remove trace amounts of PEG.  The 

purified phage were raised in TBS (25 mM Tris-HCl, pH 7.5, 3 mM KCl, 137 mM NaCl) 

containing 15% glycerol and snap-frozen in liquid nitrogen.  To determine the quantity of 

phage, phage were titered using serial dilutions in TBS and allowed to infect late log 

phase K91BluKan cells at 25 ºC for 10 min, followed by a 30 minute incubation at 37 ºC 

in 100 µl of TB containing 0.22 µg/ml tetracycline, plated on agar plates containing 40 

µg/mL tetracycline and 100 µg/mL kanamycin, and grown overnight to select for phage-

infected E. coli.  The number of TUs were determined by counting the colonies that 

gained resistance to tetracycline via bacteriophage infection [76]. 
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BIOPANNING CONDITIONS 

Similar procedures described above were carried out to immobilize b-ERK2.  

After blocking with BSA, the wells were briefly washed 6× with phage binding buffer B2 

(TBS containing 5 mg/mL BSA).  The phage were added in buffer B2 and allowed to 

bind immobilized b-ERK2 for one hour (Rounds I-III) or 20 min (Round IV) at 25 ºC 

with mild shaking.  After phage binding in the first two rounds, 0.1 mM biotin was added 

for 5 min to free any streptavidin-binding phage.  The wells were washed 12× with buffer 

B2 containing 0.1% Tween-20 in the first two rounds, increasing to 0.3 % Tween-20 in 

the third and fourth rounds.  Washes were carried out for one minute in Round I, 

extended to 10 min in Round II, and 5 min in Round III and IV.  Phage were eluted for 10 

min using 100 µl 0.2 M glycine, pH 2.2, containing 1 mg/mL BSA and immediately 

buffered with 15 µl of 1 M Tris-HCl, pH 9.1, following the elution.  To prepare phage for 

freezing, 15 µl of 100% glycerol was added prior to snap freezing in liquid nitrogen and 

storage at -80° C.  After each round of biopanning, eluted phage were titered and 

amplified for further rounds using phage eluted from wells containing 4 µg, 1 µg, and 10 

ng of plated b-ERK2 following Rounds I, II, and III, respectively. 

 
 

SMALL SCALE PHAGE AMPLIFICATION 

Individual phage were obtained by growing a single TU (phage infected colony) 

overnight in 3 mL of LB containing 40 µg/mL tetracycline and 100 µg/mL kanamycin.  

The phage were purified in 1.5 mL centrifuge tubes by subjecting 1200 µL of cleared 

supernatant to two overnight precipitations at 4 ºC by adding 200 µL of  16.7% PEG 

8000 and 3.3 M NaCl followed by extensive mixing.  The precipitated phage were raised 
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in 100 µL TBS containing 10% glycerol, snap-frozen in liquid nitrogen, and stored at -80 

ºC.  Yields were ~1 × 108 TU/µL.   

 

 

ENZYME-LINKED IMMUNOSORBENT ASSAY 

Similar conditions to biopanning were carried out by plating 500 ng of b-ERK2 

and using ~1 × 108 TU of an individually purified phage clone for binding b-ERK2 in 

buffer B2 for 1 h at 25 ºC.  Following phage binding, the wells were washed (12 × 5 min) 

with buffer B2 containing 0.1% Tween-20.  Phage bound to the immobilized b-ERK2 

were detected by horseradish peroxidase-conjugated anti-M13 antibody (1:5000 dilution 

in buffer B2 + 0.5% Tween-20) using the hydrogen donor immunopure ABTS to reduce 

hydrogen peroxide as described by the supplier (Pierce, Rockford).  The colorometric 

assay was monitored using a 96-well plate reader (Bio-Tek Instruments, Winooski, VT) 

following absorbance at 405 nm.  ELISAs using 10 mM DTT to reduce cyclic phage 

peptides were carried out by adding the DTT to buffer B2 during phage binding.  ELISAs 

using Ets∆138 to compete with phage binding were carried out by adding Ets∆138 in 

buffer S0 lacking DTT to buffer B2 for 10 min prior to phage addition.  ELISAs using 

MgATP2- to compete with phage binding were carried out by adding MgATP2- in buffer 

B2 10 min prior to phage addition in buffer B2. 
 

 

SEQUENCING  SINGLE-STRANDED PHAGE DNA 

Single-stranded DNA (ssDNA) was purified from individual phage.  Usually 100 

µL of ~1 × 108 TU/ µL was vortexed for 30 sec with 50 µL of phenol neutralized twice 
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using a 1/10 volume of Tris-HCl pH 8.0 to separate the DNA and proteins.  The mixture 

was allowed to settle for 1 min then vortexed for 30 sec again.  A centrifugation step at 

12 000 rpm for 1 min was carried out at 25 °C.  The upper aqueous phase containing the 

DNA (~100 µL) was transferred to 300 µL of an ethanol/NaOAc solution containing a 

25:1 ratio of ethanol to 3 M NaOAc pH 5.2.  After brief vortexing, the solution was 

placed at -20 °C for 1 h or overnight to precipitate the DNA.  A centrifugation step at 12 

000 rpm was carried out for 10 min at 4 °C, the supernatant was discarded, centrifuged 

again for 15 sec, and the remaining supernatant removed.  The pelleted DNA was washed 

with 200 µL of 70% ethanol at 25 °C, vortexed briefly, and centrifuged again for 10 min 

at 12 000 rpm at 4 °C.  The supernatant was discarded, the pellet was dried at 25 °C for 

10 min, and dissolved in 50 µL of water.  The DNA could be seen on a 1% agarose gel 

and ran between 6 and 7 kb consistent with the fd-tet bacteriophage genome.  The 

concentration of ssDNA was determined using an absorbance at 260 nm where an 

absorbance of one was equal to 40 µg/mL.  The ssDNA was sequenced using the primer -

96gIII (5’ – CCCTCATAGTTAGCGTAACG-3’). 

 

 

SYNTHESIS AND PURIFICATION OF PEPTIDE 20A 

The peptide NH2-KKKIRCIRGWTKDIRTLADSCQY-COOH (peptide 20a) was 

synthesized using Fmoc-based solid-phase synthesis.  The crude form of the peptide was 

dissolved in equilibration buffer (0.1% trifluoroacetic acid (v/v) and 5% acetonitrile) and 

purified by reverse phase chromatography using an Econosil C18 10u column (Alltech), 

developed with a linear acetonitrile gradient of 5-80% over 75 min using a flow rate of 5 

mL/min.  Fractions absorbing at 280 nm were applied to MALDI and analyzed for 
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peptide purity.  Pure fractions were pooled and analyzed by ESI and determined to have a 

molecular weight of 2782.6 Da for the linear peptide. 
 

 

OXIDATION OF PEPTIDE 20A 

Pure linear peptide 20a was oxidized to form an intramolecular disulfide bond 

between the cysteine residues using iodine essentially as described [105].  The peptide 

was oxidized while stirring in 80% acetic acid by dropwise addition of iodine (in 100% 

acetic acid) until a pale yellow color appeared indicating the completion of the reaction 

and allowed to react for 10 further min at 25 ºC.  The reaction was quenched with two 

volumes of water and the iodine was extracted 6× with equal volumes of 

dichloromethane.  The aqueous phase, containing the peptide, was lyophilized and re-

purified using reverse phase (as described above).  Analysis with ESI showed a shift to 

2780.4 Da in accordance with the cyclization of the peptide and loss of 2 protons.  The 

peptide was >90% pure as determined by reverse phase HPLC analysis.  The 

concentration of peptide was determined by denaturation in 6 M guanidine hydrochloride 

using ε = 7210 M-1 cm-1 at 280 nm [106]. 
 

 

PEPTIDE INHIBITION 

Inhibition studies were carried out using an active form of ERK2 and p38 

MAPKα as described previously by measuring radiolabeled phosphate incorporation into 

the protein substrates Ets∆138 and GST-ATF2-(1-115), respectively [7, 103], in the 

presence and absence of the cyclic form of peptide 20a.  All assays were carried out at 27 
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ºC without a reducing agent in S1 buffer (20 mM HEPES, pH 7.3, 100 mM KCl, 0.1 mM 

EDTA, 0.1 mM EGTA, 20 mM MgCl2).  ERK2/Ets∆138 assays were carried out with 1 

nM ERK2 and varied peptide 20a (0-50 µM) using either (a) varied Ets∆138 (6.25-200 

µM) and fixed ATP (270 µM or 2 mM in separate experiments with similar results) or (b) 

fixed Ets∆138 (25 µM) and varied ATP (62.5-2000 µM).  p38 MAPKα assays were 

performed in S1 buffer containing 4 nM p38 MAPKα, varied GST-ATF2-(1-115) (3-15 

µM), fixed ATP (2 mM), and varied peptide 20a (0-20 µM).  Concentrations of all 

proteins were determined using either Bradford assay [107] or 6M guanidine 

hydrochloride denaturation [106].   
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CHAPTER 3: A STEADY-STATE KINETIC ANALYSIS OF ERK2 
EXOSITE MUTANTS AND DOCKING MOTIF MUTANTS OF 

ETS∆138 
 

 

PURPOSE 

This chapter describes a purification scheme for the dual-phosphate form of 

ERK2 [44] containing two phosphates on Thr-183 and Tyr-185 via MAPKK1 

phosphorylation.  A steady-state kinetic analysis was carried out using dual-phosphate 

form of ERK2 and a model protein substrate Ets∆138 [42] that contains a single 

phosphorylation site.  Several known exosites on ERK2, regions that confer protein–

protein interactions outside of the active site, were mutated to elucidate whether or not 

these regions were involved forming an efficient enzyme–substrate (E–S) docking 

complex leading to the phosphorylation of Ets∆138.  We found two residues, Lys-229 

and His-230, that may form a part of the ERK2 exosite for Ets∆138 as mutation of these 

residues led to decreased binding of Ets∆138 using fluorescence anisotropy and 

decreased efficiency of Ets∆138 phosphorylation.  Mutations of proposed docking motifs 

in the substrate Ets∆138 were also generated and two regions of Ets∆138 were shown to 

be required for efficient phosphoryl-transfer suggesting that these docking motifs are 

involved in forming an efficient E–S docking complex. 
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INTRODUCTION 

Intracellular signaling in the MAPK family is highly dependent upon 

phosphorylation events which are the predominant form of post-translational 

modification within cells.  Members of the MAPK family must recognize their protein 

substrates in an efficient manner to ensure the fidelity of specific signaling pathways.  It 

has been proposed that MAPKs and their protein substrates form a docking complex 

using residues that lie outside of the active site of the enzyme [51, 103] and that this 

docking complex allows for efficient macromolecular recognition followed by 

phosphoryl transfer in the active site of the enzyme.  We were interested in understanding 

the contributions of the MAPK exosites and the substrate docking motifs in mediating 

efficient phosphorylation of a protein substrate.  As a model system, we chose to study 

the phosphorylation of Ets∆138 [42], a protein substrate derived from a transcription 

factor, by a highly active form of ERK2 [7, 44].   

We describe the purification and characterization of a highly pure form of the 

dual-phosphate ERK2 enzyme containing two covalently linked phosphates on Thr-183 

and Tyr-185.  The unphosphorylated form of ERK2 and a constitutively active form of its 

activator MAPK kinase 1 (MAPKK1) termed MAPKK1G7b were expressed in E. coli 

and purified by metal-affinity chromatography.  The unphosphorylated form of ERK2 

was further purified by Mono Q anion exchange.  In the presence of MgATP2-, 

MAPKK1G7b transferred two γ-phosphates from ATP to ERK2 as seen by a radiolabel 

assay following phosphoryl-transfer.  The dual-phosphate form of ERK2, containing the 

two covalently bound phosphates, was purified away from the MgATP2- and MgADP1- 

using DEAE-Sepharose Fast Flow anion exchange and then separated from 

MAPKK1G7b using Mono Q anion exchange.  Radiolabeled dual-phosphate ERK2 was 



 104

proteolytically cleaved using trypsin and a peptide containing two covalently attached 

phosphates was purified using reverse phase chromatography and confirmed by mass 

spectrometry analysis.  The ERK2 peptide containing two phosphates was acid 

hydrolyzed into individual amino acids and analyzed by phosphoamino acid analysis and 

shown to contain both a phospho-threonine and a phospho-tyrosine residue.  These 

results confirmed the activation of the unphosphorylated ERK2 by MAPKK1G7b by dual 

phosphate incorporation into Thr-183 and Tyr-185. 

A steady-state kinetic analysis was carried out using the dual-phosphate form of 

ERK2 to phosphorylate its protein substrate Ets∆138 [7].  Several ERK2 mutants were 

generated in which surface-exposed residues proposed to be MAPK exosites were 

mutated to either alanine or the homologous residues of a related protein kinase p38 

MAPKα that does not efficiently phosphorylate Ets∆138 to find residues that were 

required for the formation of the E–S complex with Ets∆138.  The ERK2 mutants were 

phosphorylated by MAPKK1G7b and their steady-state kinetic parameters towards the 

protein substrate (Ets∆138) and the nucleotide substrate (ATP) were examined in order to 

determine the contribution of proposed ERK2 exosites towards phosphorylation of the 

substrate Ets∆138.  In addition, proposed docking motifs on Ets∆138 were mutated to 

determine the steady-state kinetic parameters of the mutants in an effort to understand the 

contributions of docking motifs in protein phosphorylation by an active MAPK. 
  

 



 105

RESULTS AND DISCUSSION 

THE PURIFICATION OF UNPHOSPHORYLATED ERK2 

The inactive/unphosphorylated form of His6-tagged ERK2 was expressed and 

purified from E. coli.  The bacterial lysate was incubated in the presence of Ni2+-NTA-

agarose beads that captured the His6-tagged ERK2.  The beads were washed and the 

ERK2 was eluted with imidazole by competing with the histidine tag for Ni2+-NTA-

agarose binding.  The ERK2 was applied to a Mono Q HR 10/10 anion exchange column 

and eluted with a linear gradient of NaCl (Figure 20).  The unphosphorylated ERK2 

eluted as two separate peaks occurring at ~ 0.28 and ~ 0.36 M NaCl.  Only the first peak 

was kept for further analysis as it has a higher basal activity than the latter peak.  The 

Mono Q-purified unphosphorylated ERK2 was run on a 10% SDS-PAGE gel to confirm 

the purity of the protein (Figure 21). 
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Figure 20.  Unphosphorylated His6-tagged ERK2 purified by Mono Q anion 
exchange.  Unphosphorylated His6-tagged ERK2 was eluted from the Ni2+-NTA-agarose 
beads with imidazole, filtered, and applied to a Mono Q HR 10/10 anion exchange 
column with a flow rate of 1.5 mL/min in buffer H1 and eluted with buffer H2 containing 
NaCl.  The ERK2 eluted as two major peaks as determined by the absorbance of 
tyrosines and tryptophans at 280 nm.  Only the first peak was collected for further 
analysis. 
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Figure 21.  SDS-PAGE gel of unphosphorylated ERK2 after purification by Mono Q 
anion exchange.  A 10% SDS-PAGE gel was loaded with a fraction of (1) Ni2+-NTA 
column flow through, (2) Ni2+-NTA column wash, (3) a pooled fraction of the first peak 
eluted from the Mono Q HR 10/10 anion exchange column, and (4) a 10 kD Protein 
Ladder.  The gel was stained with Coomassie Blue stain.  
 

   

PURIFICATION OF MAPKK1 

Unphosphorylated ERK2 can be phosphorylated and activated by the enzyme 

MAPKK1 in the presence of MgATP2-.  To purify a constitutively active form of 

MAPKK1, termed MAPKK1G7b (MAPKK1/∆44-51/S218D/M219D/N221D/S221D), 

His6-tagged MAPKK1G7b was expressed in E. coli and purified in a similar fashion to 

the unphosphorylated ERK2 using Ni2+-NTA-agorose beads to capture the His-tagged 

protein.  The MAPKK1G7b was eluted from the Ni2+-NTA-agorose beads with imidazole 

and applied to a 10% SDS-PAGE gel (Figure 22) to confirm the heterogeneous 
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purification of the ~50 kD MAPKK1G7b [44].  Fractions containing MAPKK1G7b were 

dialyzed into S1 buffer and frozen. 

 

 

Figure 22.  SDS-PAGE gel analysis of MAPKK1G7b eluted from a Ni2+-NTA-
agarose column.  His6-tagged MAPKK1G7b was bound to a Ni2+-NTA-agarose column 
and eluted with 250 mM imidazole by collecting 1 mL fractions.  Fractions 2-7 (left to 
right with a protein ladder on the right) were run on a 10% SDS-PAGE gel and stained 
with Coomassie Blue stain. 
 
 

ACTIVATION OF ERK2 USING MAPKK1 

Unphosphorylated ERK2 was activated via phosphorylation of residues Thr-183 

and Tyr-185 by MAPKK1G7b in the presence of ATP, and MgCl2.  The activation was 

carried out using radiolabeled ATP to follow phosphate incorporation into ERK2.  Over 

the course of the activation, aliquots were spotted on P81 cellulose paper to follow 

phosphate incorporation into ERK2 over the course of the reaction.  ERK2 bound to the 

P81 paper and radiolabeled phosphates incorporated into ERK2 by MAPKK1G7b were 

detected in the scintillation counter (Figure 23).  Alternatively, aliquots of the reaction 

could be precipitated in TCA to give similar results.  The results indicated that an average 

of 2 phosphates were incorporated for every molecule of ERK2, however, this data did 

not confirm which residues were phosphorylated.  
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Figure 23.  Phosphate incorporation into unphosphorylated ERK2 by the activator 
MAPKK1G7b.  Unphosphorylated ERK2 (4 µM) was phosphorylated by MAPKK1G7b 
(0.4 µM) in the presence of 4 mM ATP4- (with 125 cpm/pmol γ-32P-ATP) and 20 mM 
MgCl2 in 40 mM Hepes, pH 8.0, 100 mM KCl, 0.5 mM EGTA, and 2 mM DTT for 5 
hours at 27 °C.  During the reaction, aliquots were spotted on P81 cellulose paper, dried, 
washed 4 × 5 min in 50 mM phosphoric acid, 1 × 1 min in acetone, dried, and counted in 
scintillant fluid in a scintillation counter to determine the number of moles of phosphate 
per mole of ERK2.  
 

 

PURIFICATION OF DUAL-PHOSPHATE ERK2 

Following the activation of ERK2 by MAPKK1G7b, ERK2 was purified away 

from the ATP using a DEAE-Sepharose Fast Flow anion exchange column equilibrated in 

buffer H1 [7].  The ATP flowed through the column while the column retained ERK2.  

The ERK2 was eluted using a NaCl gradient.  The eluted protein was subjected to a 

Bradford assay to determine where the protein eluted by monitoring the absorbance at 

595 nm (Figure 24). 
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Figure 24.  Elution of dual-phosphate ERK2 from the DEAE-Sepharose anion 
exchange column.  Following the activation of ERK2, the activation solution containing 
MAPKK1G7b, ERK2, MgATP2-, and MgADP1- was applied to a DEAE-Sepharose Fast 
Flow anion exchange column.  The column was washed with 20 column volumes of H1 
buffer and eluted with 1 mL fractions using a linear gradient of NaCl (H2 buffer) in 0.05 
M increments.  A Bradford assay was conducted on each eluted fraction to follow the 
elution of the ERK2 protein using the absorbance at 595 nm. 
 

 

The fractions containing the dual-phosphate ERK2 (fractions 4-6 containing ~ 0.5 

mg of ERK2) were applied to a Mono Q HR 10/10 anion exchange column in 7 mL of 

buffer H1 to ensure a low NaCl concentration so that the dual-phosphate ERK2 could 

bind the column.  The column was developed similar to that of unphosphorylated ERK2 

(Figure 20) and the dual-phosphate ERK2 eluted at ~ 0.29 M NaCl (Figure 25).  The 

eluted fractions were collected and dialyzed overnight in either 1 L of 50 mM Tris pH 8.6 

to prepare for proteolysis by trypsin or 1 L of S1 buffer and snap frozen for steady-state 

kinetic assays. 
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Figure 25.  Purification of dual-phosphate ERK2 using Mono Q HR 10/10 anion 
exchange.  Following elution from the DEAE column, the dual-phosphate ERK2 was 
diluted with buffer H1 and loaded onto a Mono Q HR 10/10 column using a 10 mL 
superloop and a flow rate of 1.5 mL/min.  The column was developed using a linear 
gradient of NaCl using buffer H2.  The dual-phosphate ERK2 eluted at 0.29 M NaCl. 
 

 

TRYPTIC PEPTIDE AND PHOSPHOAMINO ACID ANALYSIS OF ERK2 

To determine which residues were phosphorylated in the radiolabeled ERK2 

protein, a tryptic peptide digest was carried out, the peptides were purified by reverse 

phase, the radiolabeled tryptic peptide was acid hydrolyzed, and phosphoamino acid 

analysis on the peptide was performed [108].  Following dialysis of the radiolabeled dual-

phosphate ERK2, the protein was incubated with trypsin to proteolytically cleave the 

ERK2 into smaller peptides by proteolytic cleavage following the basic residues lysine 

and arginine.  The tryptic peptide digest was purified by reverse phase HPLC using a C18 

column so that individual peptides could be separated.  A single radiolabeled peak was 

found that eluted at 25% acetonitrile indicating that only one peptide had radiolabeled 
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phosphates covalently attached (Figure 26).  A portion of the radiolabeled peptide was 

analyzed by matrix assisted laser desorption ionization (MALDI) mass spectrometry 

which revealed a peptide of 2306.2 Da (2307.3 Da calculated) indicating that the peptide 

N-171VADPDHDHTGFLTEYVATR189-C of ERK2 was phosphorylated at two positions. 

 

 

Figure 26.  Tryptic peptide analysis of activated ERK2 using reverse phase HPLC 
following activation by MAPKK1G7b.  Radiolabeled dual-phosphate ERK2 was 
dialyzed overnight in 50 mM Tris, pH 8.6, and cleaved with 10 µg of trypsin for 10 
hours.  The tryptic digest was filtered and applied to a reverse phase C18 column in 0.1% 
TFA and peptides were eluted with a linear gradient of 50% acetonitrile containing 0.1% 
TFA.  All fractions were collected and counted in a scintillation counter and radiolabeled 
fractions were kept for further analysis. 

 

 

To determine which amino acids of the ERK2 phospho-peptide were 

phosphorylated, the peptide was partially hydrolyzed into its individual amino acids using 

hydrochloric acid.  The hydrolyzed peptide was subjected to phosphoamino acid analysis 

by running the samples on a cellulose plate under electrophoretic conditions to separate 
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phospho-serine, phospho-threonine, and phospho-tyrosine (Figure 27).  The results 

indicate that a threonine and a tyrosine (most likely Thr-183 and Tyr-185) are 

phosphorylated on the ERK2 peptide consisting of residues 171-189.  Since there is only 

one tyrosine in the phosphorylated peptide, tyrosine 185 is phosphorylated.  There are 

several threonines in the peptide and it is expected that Thr-183 is the phosphorylated 

residues.  These results indicate that ERK2 can be phosphorylated to a 2 mol/mol ratio 

with phosphates incorporated into Thr-183 and Tyr-185. 
 

 
 
Figure 27.  Phosphoamino acid analysis of the acid-hydrolyzed radiolabeled ERK2 
tryptic peptide.  The radiolabeled ERK2 tryptic peptide consisting of residues 171-189 
was hydrolyzed using 6 M hydrochloric acid for 60 min at 110 °C and separated with pH 
3.5 buffer for 2 h at 200 V.  The cellulose plate was exposed to film, developed, and 
compared to the cold phosphoamino acid standards as shown; Ser – phospho-serine; Thr 
– phospho-threonine; Tyr – phospho-tyrosine.  The bottom portion of the film shows the 
non-hydrolyzed peptide near the cathode and the upper portion of the film shows the free 
phosphate near the anode.  The analysis is shown for 500 (left) and 1000 (right) cpm.   
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METHODOLOGY TOWARD UNDERSTANDING EXOSITES 

MAPKs bind to their activators, inactivators, and substrates at regions that are 

distinct from the active site to form docking complexes that regulate the activity of 

MAPKs [17].  We term these regions “exosites” for enzymic sites that lie outside of the 

active site and facilitate MAPK protein-protein interactions.  Proteins that bind MAPKs 

have “docking motifs” that facilitate docking complex formation with a MAPK, we 

hypothesize that residues that make up a docking motif on activators, inactivators, and 

substrates can bind to the exosite on the MAPK.  One such exosite conserved amongst 

MAPK family members was shown to mediate protein-protein interactions with 

activators, inactivators, and substrates [17], indicating that proteins with docking motifs 

compete for MAPK exosite binding.  To understand the role of exosites in mediating 

phosphoryl-transfer, several putative exosites on ERK2 were mutated, the mutant 

proteins were purified, activated by MAPKK1G7b, and characterized by studying the 

steady-state kinetic parameters of Ets∆138 phosphorylation.  We hypothesized that 

mutagenesis of an exosite required for macromolecular recognition of the protein 

substrate Ets∆138 would lead to an increase in the Henri-Michaelis-Menten constant 

(Km) but would not affect the steady-state rate of catalysis (kcat) as compared to the WT 

enzyme with a functional exosite.  In other words, mutations in the exosite that are 

required for Ets∆138 docking would disrupt the efficient formation of the ERK2–

Ets∆138 Enzyme–Substrate (E–S) complex prior to phosphoryl-transfer and would lower 

the specificity constant (kcat/Km) of Ets∆138 phosphorylation.  A decrease in the 

specificity constant indicates the substrate is phosphorylated less efficiently. 
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THE COMMON DOCKING (CD) AND THE HYDROPHOBIC (YY) EXOSITES  

The Common Docking (CD) exosite was identified as an acidic patch conserved 

throughout MAPK family members located on the surface of MAPKs, Asp-316 and Asp-

319 in ERK2 (Figure 28), that mediates protein-protein interactions with activators, 

inactivators, and substrates [17].  The importance of the CD exosite was first identified as 

a gain-of-function mutation14 in an ERK2 homolog in Drosophila termed rolledSem [15].  

Mutagenesis of the CD exosite disrupted the ability of ERK2 to bind and activate15 the 

phosphatase MKP-3 [33], and showed reduced sensitivity to dephosphorylation by the 

phosphatases MKP-3 [33], CL100 [16], PAC1, and MKP-2 [109].  These results suggest 

that the CD exosite plays a critical role in the dephosphorylation of ERK2 by several 

phosphatases.  The CD exosite is also required for cytoplasmic retention of inactive 

ERK2 when overexpressed with MAPKK1 [47] but not required for dual-

phosphorylation16 of ERK2 [47] or ERK1 [110].  These results suggest that the CD 

exosite may be involved in ERK2 binding to MAPKK1 but not required for ERK2 

phosphorylation by MAPKK1.  Whether or not other proteins are involved in the 

cytoplasmic retention of ERK2 in the presence of overexpressed MAPKK1 is unclear.  

However, in another report, the phosphorylation of ERK2 by MAPKK117 and ERK2 

                                                 
14 The rolledSem mutation, D331N (corresponding to rat ERK2 D319 in the CD exosite), was found in a 
genetic screen for photoreceptor R7-type cell formation in the absence of an upstream signal. 
15 GST-ERK2 and GST-ERK2 D319N were expressed in E. coli, purified, and used to immunoprecipitate 
His6-tagged MKP3.  D319N ERK2 showed a decrease in binding compared to ERK2.  ERK2 activates the 
p-NPP hydrolysis activity of the phosphatase MKP3.  D319N ERK2 showed a decreased ability to activate 
MKP3 phosphatase activity. 
16 CHO cells were co-transfected with WT-GFP-ERK2 or a mutant form of GFP-ERK2 (residues 312-319 
changed to alanines) along with MAPKK1 and stimulated with VOOH for 15 min to activate ERK2.  
Lysates were prepared and both forms of ERK2 were shown to be activated using an anti-double 
phosphorylated ERK2 antibody and also showed similar abilities to phosphorylate MBP. 
17 Active HA-MAPKK1 (Xenopus) was immunoprecipitated from oestrogen-stimulated ∆B-Raf:ER cells 
and used to phosphorylate GST-ERK2 (Xenopus) and a CD exosite mutant GST-ERK2 D321N/D324N.  
The CD site mutant was shown to have a small decrease in the amount of phosphorylation while 
maintaining the ability to phosphorylate MBP and autophosphorylate itself. 
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phosphorylation18 of the substrate MNK1 using one concentration of MNK1 is decreased 

by mutating the CD exosite [17].  These results suggest that the CD exosite may not be 

required for activation of ERK2, however, the efficiency of ERK2 activation may be 

affected by CD exosite mutations.  In addition, the CD exosite may be important for 

substrate phosphorylation.  CD exosite mutants of ERK2 are active enzymes as shown by 

the ability of the CD exosite mutant to autophosphorylate itself and phosphorylate a non-

specific substrate myelin basic protein (MBP), however, efficient substrate 

phosphorylation of MNK1 appears to require the CD exosite [17]. 

The first study to characterize kinase exosite mutation effects on the kinetics of 

phosphorylation appeared recently showing that single CD exosite mutants caused less 

than a 4-fold decrease in the specificity constant of MBP phosphorylation mostly due to 

an increase in Km [14].  The same mutant displayed a 24-fold decrease in the specificity 

constant of Elk-1(307-428) phosphorylation with the major defect in kcat.  Unfortunately, 

these studies were carried out with inactive ERK2 phosphorylating two different 

substrates that contain multiple phosphorylation sites and lend no insight into the role of 

exosites in the dual-phosphorylated/active form of ERK2 catalyzing the phosphorylation 

of a specific phosphorylation site.  These results indicate that CD exosite mutations can 

affect both the Km and the kcat for certain substrates, however, the mutations in the dual-

phosphate form of ERK2 towards any substrate have not been examined. 
 

                                                 
18 Activated ERK2 CD exosite mutants, similar to above, were immunoprecipitated from oestrogen 
stimulated ∆B-Raf:ER cells and assayed for their ability to phosphorylate Myc-GST-MNK1 and MBP.  
The CD site mutant showed a 90% decrease in the ability to phosphorylate MNK1 while showing similar 
phosphorylation to MBP as that of WT ERK2. 
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Figure 28.  A surface view of potential exosites on dual-phosphate ERK2.  The 
crystal structure of ERK2 (PDB: 2ERK) is shown highlighting acidic (red), hydrophobic 
(yellow), basic (blue), and neutral (gray) residues.  Exosite residues thought to be 
involved in protein-protein interactions are labeled for the CD (D316/D319), YY 
(Y314/Y315), and TT/ED exosites (T157/T158).  
 

 

All MAPK family members, from the budding yeast to human, contain two 

conserved large hydrophobic side chains (bold) that lie immediately N-terminal to the CD 

exosite (underlined): YYD316, WYD, and YHD, for ERK1/2, JNK1/2, and p38 

MAPKα/β, respectively.  These hydrophobic residues, termed the YY exosite for ERK2, 

are also exposed on the surface of both the unphosphorylated [70] and dual-phosphate  

forms of ERK2 [4] (Figure 28) indicating that they could also interact with other proteins 

in concert with the nearby CD exosite.  Mutation of the YY exosite in Myc-tagged ERK2 

(Y314A/Y315A) decreased its ability to bind HA-tagged MAPKK1 as determined by co-

immunoprecipitation from HEK 293 cells [48] indicating this region may facilitate 

binding to its upstream activator.  When co-expressed with a constitutively active form of 
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MAPKK1 and immunoprecipitated, the activated Y314A/Y315A mutant was shown to 

have similar catalytic activity as compared to WT ERK2 towards the substrate MBP, but 

displayed a 25% decrease in the phosphorylation of an unknown concentration of 

catalytically deficient MAPKK1 suggesting that mutation of the hydrophobic YY exosite 

near the CD exosite may also affect the phosphorylation of some substrates.  The steady-

state kinetic parameters of the YY exosite mutant were not reported.  Under similar 

conditions, both the CD exosite mutant (D316A/D319A E320A; AAA) and the 5A 

exosite mutant (Y314A/Y315A and AAA) had defects in both MBP and MAPKK1 

phosphorylation19 [48].  These results indicate that the YY exosite may play a role in 

protein-protein interactions and affect the efficient phosphorylation of some substrates. 

Since mutations of the CD and nearby YY exosites on ERK2 led to decreased 

protein-protein interactions and decreased phosphorylation of several substrates, we 

hypothesized that these exosites might be involved in forming a docking complex with 

the model protein substrate Ets∆138 [42].  To test this hypothesis, site-directed mutants 

of the CD and YY exosites were generated, fully activated, and the steady-state kinetic 

parameters of Ets∆138 phosphorylation were determined and compared to WT ERK2.  

We assumed that a 3-fold change in the specificity constant was a significant finding. 

Residues in the CD and YY exosite of ERK2 were mutated to alanine to generate 

D316A/D319A and Y314A/Y315A, respectively.  These mutants were activated and their 

steady-state kinetic parameters towards the phosphorylation of Ets∆138 were measured 

(Table 6) and neither mutant showed more than a 2-fold decrease in the specificity 

constant towards Ets∆138 phosphorylation (Figure 29) indicating that both mutants are 

catalytically efficient with respect to Ets∆138 phosphorylation and ATP binding and 
                                                 
19 These results indicate that mutant proteins may not be fully activated at the time of immunoprecipitation 
or that the CD site mutation decreases MBP and MAPKK1 phosphorylation.  It is difficult to determine 
whether or not these ERK2 mutants were fully activated or if their defects are due to docking deficiencies 
caused by mutations in the CD and YY sites. 
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indicate that mutagenesis does not affect their ability to be activated by MAPKK1G7b.  

These results indicate that the CD and YY exosites do not have significant contributions 

towards formation of the catalytically competent ERK2–Ets∆138 docking complex.  

Single CD exosite mutants, D316A and D319A, were also analyzed and neither showed 

significant effects on the specificity constant of Ets∆138 phosphorylation (data not 

shown). 

Together with the aforementioned data, these results suggest that the CD and YY 

exosites are not required for the activation of ERK2 by a constitutively active form of 

MAPKK1 as previously suggested [47].  In addition, these exosites are not required for 

E–S formation between ERK2 and its substrates Ets∆138 and ATP.  Although this is the 

first kinetic evidence that suggests the CD and YY exosites on the dual-phosphate form 

of ERK2 do not have large affects on protein substrate phosphorylation, other reports also 

support these conclusions [47, 48, 110]. 
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Figure 29.   Specificity constant comparisons of Ets∆138 phosphorylation by 
activated CD and YY exosite ERK2 mutants.  The specificity constants were 
determined in Table 6 and plotted here to show relative differences between the WT 
ERK2 enzyme and the CD (D316A/D319A) and YY (Y314/Y315A) ERK2 exosite 
mutants.  
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Mutant kcat Km, Ets∆138 Km, ATP kcat/Km(Ets) 
WT 19.6 ± 0.7 8.8 ± 1.4 98.7 ± 4.4 2.2 n=12 
Y111N/K112N 14.9 ± 0.1 21.3 ± 0.2 - 0.7 n=2 
L113A 21.6 ± 3.8 7.1 ± 2.4 104.6 ± 15.7  3.0 n=1 
Q117A 18.1 ± 2.8 18.8 ± 3.0 108.5 ± 8.2  1.0 n=1 
H123A 33.3 ± 2.9 43.3 ± 4.6 132.1 ± 10.4  0.7 n=2 
T157E/T158D 15.9 ± 2.4 15.1 ± 3.1 102.2 ± 5.3 1.1 n=3 
K229T/H230D   7.8 ± 2.1 127.9 ± 27.3 92.3 ± 9.3 0.1 n=3 
Y314A/Y315A 24.6 ± 2.9 16.6 ± 2.4 140.9 ± 26.4n=2 1.5 n=3 
D316A/D319A 17.6 ± 1.7 15.3 ± 3.2 129.2 ± 17.1n=2 1.1 n=3 
 
Table 6. The steady-state kinetic parameters for Ets∆138 phosphorylation by dual-
phosphate ERK2 mutants.  These values were obtained with radiolabeled P81 assays 
[7].  For the determination of the Km for Ets∆138 saturating ATP (2 mM) was used while 
varying the Ets∆138 concentration from 6.3-200 µM.  For the determination of the Km for 
ATP saturating Ets∆138 concentrations (200 µM) were used while varying the ATP 
concentration from 31.3-1000 µM.  Each value was determined using 6 initial velocities 
fit to the equation kobs = (kcat×[S])/(Km+[S]).  Assay contained 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, 20 mM MgCl2, 2 mM DTT, 1 
nM ERK2, Ets∆138, and ATP.  Values are shown as a mean ± standard error.  The mean 
kcat was determined using the values obtained from both Ets∆138 and ATP analyses and 
were found to be similar.  Units: kcat, s-1; Km, µM; kcat/Km, µM-1 s-1. 
 
 

THE TT/ED SPECIFICITY-DETERMINING EXOSITE  

A computational prediction carried out by Caffrey et al., suggested several 

residues in ERK2 and p38 MAPKα that might be involved with substrate specificity 

determination based on non-conserved mutations that occurred between the two kinases 

after gene duplication [10].  One of the predicted specificity-determining regions from 

this study was the TT/ED exosite of ERK2/p38 MAPKα composed of the residues Thr-

157 and Thr-158 in ERK2 and the corresponding residues Glu-160 and Asp-161 of p38 

MAPKα.  The location of the TT/ED exosite is shown with respect to the CD and YY 

exosites in Figure 28.  An independent study identified the TT/ED exosite and found that 
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it was involved in the substrate specificity determination of ERK2 and p38 MAPKα.  p38 

MAPKα was shown to bind its substrate MAPKAPK-3/3pk whereas ERK2 could not, 

however,  ERK2 could bind 3pk when its TT/ED exosite was switched from ERK2-like 

(TT) to p38 MAPKα-like (ED) residues to generate the p38 MAPKα-like ERK2 mutant 

T157E/T158D [11].  These experiments were carried out with the inactive forms of the 

enzymes so it is difficult to interpret the effects of the exosite on the dual-phosphate form 

of ERK2.   

One of the residues in the TT/ED region, Glu-160 of inactive p38 MAPKα, was 

also shown to form a hydrogen bond in a co-crystal structure of inactive p38 MAPKα and 

a docking motif peptide derived from the substrate MEF2A [27].  Glu-160 and His-126 

are thought to determine the directionality of this peptide in the co-crystal structure.  

These results indicate that the TT/ED specificity-determining exosite was 

computationally predicted to be a specificity-determining region, was later shown to 

determine substrate specificity of binding and phosphorylation of the substrate 3pk for 

ERK2 and p38 MAPKα, and a docking motif peptide derived from the substrate MEF2a 

has been shown to bind the TT/ED exosite in a co-crystal structure indicating the 

importance of this exosite in several protein-protein interactions.  Zhang et al. showed 

that inactive ERK2 T157A and T158A mutants exhibited up to a 3-fold decrease in 

specificity constant towards MBP phosphorylation and a ~13-fold decrease towards Elk-

1(307-428) phosphorylation indicating the involvement of the TT/ED exosite in ERK2 

towards Elk-1 [14].  However, these experiments were also carried out with inactive 

ERK2 on two substrates that have multiple phosphorylation sites making the results 

difficult to interpret for the active form of ERK2. 
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Interestingly, the active form of ERK2 has an ~100-fold higher specificity 

constant20 towards the substrate Ets∆138 than does the active form of p38 MAPKα 

(Rainey and Dalby, unpublished).  Therefore, if the TT/ED exosite in ERK2 and p38 

MAPKα mediate the specificity of Ets∆138 phosphorylation, we hypothesized that a 

mutation of ERK2 in this region to p38 MAPKα-like residues (T157E/T158D ERK2) 

would have a large decrease in the specificity constant towards the substrate Ets∆138.  

The T157E/T158D ERK2 mutant was activated and assayed for its ability to 

phosphorylate Ets∆138 (Table 6) and had an ~ 2-fold effect on the specificity constant of 

Ets∆138 phosphorylation (Figure 30) indicating that this region does not mediate the 

~100-fold specificity difference seen in ERK2 and p38 MAPKα towards the 

phosphorylation of the substrate Ets∆138. 

                                                 
20 Steady state kinetic parameters of active p38 MAPKα  phosphorylation of Ets∆138: kcat = 1.8 ± 0.3 s-1, 
Km = 85.5 ± 19.5 µM, kcat/ Km = 0.02 (n=3).  Dual-phosphate ERK2 phosphorylation of Ets∆138: kcat/ Km = 
2.2. 
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Figure 30.  Specificity constant comparisons of Ets∆138 phosphorylation by 
activated WT and the T157E/T158D ERK2 exosite mutant.  The specificity constants 
were determined in Table 6 and plotted here to show relative differences between the WT 
enzyme and the p38-like ERK2 TT/ED (T157E/T158D) exosite mutant.  

 
 

THE DOCKING GROOVE OF MAPKS 

Two crystal structures were reported for the inactive form of the ERK2-related 

kinase p38 MAPKα bound to docking motif peptides derived from both an activating 

enzyme, MAPKK3b, and a substrate, MEF2A [27].  Both peptides contain a DEJL 

(Docking Site for ERK/JNK, LEL) motif found in MAPK substrates consisting of R/K-

X4-φA-X-φB (where X represents any amino acid and φ represents a hydrophobic residue: 

Leu, Ile, or Val).  Both peptides bind in an extended conformation to the same binding 

groove of p38 MAPKα near to, but distinct from, the CD exosite and the active site.  
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These results suggest that this p38 MAPKα docking groove may represent a MAPK 

exosite for protein-protein interactions.  The docking groove exosite identified in the co-

crystal structures exists in the carboxy-terminus of p38 MAPKα between the αD and αE 

helicies and the reverse turn between strands β7 and β8 [27].  This exosite was postulated 

several years earlier for p38 MAPKα’s ability to bind and phosphorylate its substrates 

MAPKAPK-2 and MAPKAPK-3 [49] and is distinct from the exosite hypothesized for 

JNK [45].  In the co-crystal structure, the p38 MAPKα residues Ile-116, Gln-120, and 

His-126 (homologous to the conserved ERK2 residues Leu-113, Gln-117, and His-123, 

respectively) line the docking groove exosite for both peptides and make either 

hydrophobic or hydrogen bond contacts with the DEJL peptide derived from the substrate 

MEF2A [27].  Mutagenic data showed that p38 MAPKα mutants I116A and Q120A 

failed to bind full-length MEF2A in a pull-down assay, whereas mutation of the TT/ED 

and CD exosite residues to alanine did not completely eliminate binding.  These results 

suggest that I116 and Q120 are perhaps more critical than the TT/ED and CD exosites for 

p38 MAPKα to bind the substrate MEF2A.  I116A and the CD exosite p38 MAPKα 

mutants could not bind MAPKK3b in similar pull-down assays indicating their 

importance in activator binding as well.  Interestingly, phosphorylation of MEF2A was 

drastically reduced by p38 MAPKα mutations I116A and Q120A [27], while mutated CD 

and ED exosites did not have this effect.  Unfortunately, the extent to which the 

phosphorylation was reduced by the docking mutants was not shown and it is not clear 

whether the results were obtained with the active or inactive form of the enzyme. 

Since the residues lining the docking groove exosite on p38 MAPKα are critical 

for binding and phosphorylating the transcription factor MEF2a, and the fact that these 

residues are conserved among p38 MAPKα and ERK2, we hypothesized that mutation of 

these residues in ERK2 might affect E–S formation between ERK2 and Ets∆138 if this 
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exosite was involved in macromolecular recognition of Ets∆138.  Our results indicate 

that the dual-phosphate forms of the ERK2 mutants L113A and Q117A did not have a 

significant effect on the specificity constant of Ets∆138 phosphorylation (Table 6, Figure 

31).  The H123A mutation, however, displayed a small 3-fold decrease in the specificity 

constant due to a small increase in kcat and a larger increase in the Km which may be due 

to the fact that Km is a function of the steady-state rate of turnover as well as the forward 

and reverse rates of ES formation.  These results suggest that mutation of His-123 to the 

smaller alanine residue may lead to a small decrease in the affinity of Ets∆138 for ERK2, 

however, the affect is not large.  It cannot be ruled out that the H123A mutation does not 

cause a global change in structure, because it lies within the αE helix.  
 

 

Figure 31.  Specificity constant comparisons of Ets∆138 phosphorylation by 
activated WT and proposed docking groove exosite mutants of ERK2.  The 
specificity constants were determined in Table 6 and plotted here to show relative 
differences between the WT enzyme, L113A, Q117A, and H123A exosite mutants of 
ERK2.  The mutations were based on conserved residues in p38 MAPKα shown to be 
involved in binding and phosphorylating the DEJL motif-containing proteins MEF2a and 
MKK3b. 
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SPECIFICITY DETERMINATION THROUGH EVOLUTIONARY CHANGES AFTER GENE 
DUPLICATION 

As mentioned earlier, Caffrey et al. compared the amino acid sequences of p38 

MAPK and ERK, two kinases related by gene duplication, and examined the residues that 

had undergone physicochemical changes conserved amongst subfamily ancestors (e.g. 

ERK1, ERK2, ERK5), but differed from the homologous residues found in p38 MAPK 

subfamily ancestors.  Residues that scored high burst after duplication (BAD) values, or 

variance from the residues from which they duplicated from, were proposed to confer 

functional specificity differences between the two families while remaining conserved 

amongst subfamilies for other unknown functions [10].  Unfortunately, no experiments 

were carried out to test the hypothesized specificity differences.  Furthermore, the 

proteins in which these residues confer specificity differences towards remain unknown.  

As mentioned earlier, the TT/ED exosite was predicted this computational study [10] 

prior to experimental values carried out elsewhere [11] confirming the validity of this 

method in determining specificity-determining exosites.   

We chose two regions of ERK2 that scored high BAD values, in addition to the 

TT/ED exosite, and hypothesized that mutations of ERK2 residues to p38 MAPKα-like 

residues would decrease the specificity constant towards Ets∆138 if these exosites are 

involved in the formation of the E–S complex.  One of the predicted specificity-

determining exosites of ERK2, Y111N/K112N, lies near to the DEJL motif docking 

groove on p38 MAPKα [27] described above indicating that the computational data 

predicted specificity-determining residues that lie one residue N-terminal to residues in 

the docking groove exosite on p38 MAPKα.  Obviously, the residues involved in the 
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peptide binding groove exosite of p38 MAPKα were not predicted by Caffrey et al. 

because these residues are conserved between ERK2 and p38 MAPKα.   

Another computationally predicted exosite [10], K229T/H230D, was recently 

found to be a specificity-determinant based on a mutation made in inactive ERK2, 

H230R.  H230 was identified from a yeast 2-hybrid study as a residue required for 

MAPKK1 binding and inactive H230R ERK2 had a 10-fold decrease in the specificity 

constant of phosphorylation towards MBP [12] indicating that this residue may be 

involved in substrate binding.  Years earlier, a mutant was found in a genetic study 

(D227N in fus3p, homologous to H230 in ERK2) that showed a gain of function 

phenotype in the homologous yeast MAPK protein fus3p [111].  Recently, K229 and 

H230 were shown to be required for binding and activating the ERK2 phosphatase MKP3 

[14] and their homologous residues lie in the predicted JNK2 exosite for the substrate c-

jun [45] indicating that these residues may form a MAPK exosite involved in the 

specificity of several protein-protein interactions.  This region is also distinct from the 

CD, YY, and docking groove exosite on ERK2.  Homologous residues also lie close to a 

hydrophobic domain21 described by Knighton et al. reported to aid in the binding of a 

peptide inhibitor, PKI, to cAPK [46].  These results suggest that the computational study 

by Caffrey et al. may be very useful in determining those residues of protein kinases 

involved in specificity determination and may predict regions among protein kinases that 

are susceptible to physicochemical differences that determine the specificity of kinase 

interactions.  

Activated Y111N/K112N ERK2 displayed a small ~3-fold decrease in the 

specificity constant of Ets∆138 phosphorylation as compared to WT ERK2 (Table 6, 

Figure 32) indicating that this exosite may have a small contribution toward the 
                                                 
21 cAPK residues 235-239 were shown to bind the P-11 phenylalanine of PKI in a co-crystal structure.  
These residues correspond to ERK2 residues 223-227, which lie near to 229/230. 
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formation of the E–S complex between the dual-phosphate form of ERK2 and Ets∆138.  

The mutant Y111N/K112N may cause a global change due to helix misformation since 

these residues lie in the αD helix.  Interestingly, the K229T/H230D ERK2 mutant 

displayed a large decrease (~22-fold) in the specificity constant towards Ets∆138 (Table 

6, Figure 32) indicating that one or both of these residues affect E–S formation leading to 

phosphorylation of Ets∆138.  Since residues K229 and H230 lie in the L13 loop between 

αF and αG it is considered unlikely that mutations in these residues cause global structural 

change.  To give perspective to the large effects of this mutation on phosphorylation of 

Ets∆138, mutagenesis of the active site residue proposed to be involved with the 

phosphoryl-transfer of the phosphate from ATP to the protein substrate (K149A), led to a 

~73-fold decrease in the specificity constant of Ets∆138 phosphorylation22 mostly due to 

a defect in kcat.   

The decrease in the specificity constant of the K229T/H230D ERK2 mutant 

towards Ets∆138 was not due to incomplete activation as ~ 2 mol/mol phosphates were 

shown to be incorporated by MAPKK1G7b in a radiolabeled assay (data not shown) and 

only one radiolabeled peptide was observed following trypsinization of the activated 

protein (Figure 33).  The mass of the radiolabeled peptide was confirmed by mass 

spectrometry to mostly contain the predicted activation loop peptide corresponding to 

ERK2 residues 178-196 containing two phosphates (Figure 34).   

 

                                                 
22 This is based on dual-phosphate K149A ERK2 steady-state kinetic parameters of Ets∆138 
phosphorylation where kcat = 1.1 ± 0.2 sec-1 (n=4), Km

Ets∆138 = 42.8 ± 25.6 µM (n=2); Km
ATP = 64.1 ± 9.1 µM 

(n=2), (kcat/Km)Ets∆138 = 0.03 µM-1 sec-1. 
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Figure 32.  Specificity constant comparisons of Ets∆138 phosphorylation by 
activated WT and proposed specificity determining exosites of ERK2.  The 
specificity constants were determined in Table 6 and plotted here to show relative 
differences between the WT enzyme and two computationally predicted regions thought 
to confer specificity differences between ERK2 and p38 MAPKα.  Two regions were 
selected and ERK2 residues were mutated to p38 MAPKα-like residues: Y111N/K112N 
and K229T/H230D. 
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Figure 33.  Tryptic peptide analysis of activated K229T/H230D ERK2 using reverse 
phase HPLC following activation by MAPKK1G7b.  Radiolabeled active 
K229T/H230D ERK2 was dialyzed into 50 mM Tris, pH 8.6, overnight and cleaved with 
10 µg of trypsin for 10 hours.  The tryptic digest was filtered and applied to a reverse 
phase C18 column in 0.1% TFA and peptides were eluted with a linear gradient of 50% 
acetonitrile containing 0.1% TFA.  All fractions were collected and counted in a 
scintillation counter and radiolabeled fractions were kept for further mass analysis. 
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Figure 34.  Mass spectrometry of the K229T/H230D phospho-peptide.  The 
radiolabeled peptide from Figure 33 was analyzed by mass spectrometry.  The peptide 
mass is shown as a mass:charge ratio (m/z).  Peptide masses from left to right: (predicted 
in the format ERK2residue-residue, actual mass shown in Da from mass spectrometry, 
calculated mass in Da) ERK2261-72, 1509.82, 1508.7; unknown, 1586.19; unknown, 
1714.38; ERK21-20, 2140.68, 2139.4; ERK2178-196(monophosphate) 2225.70, 2224.2, and 
ERK2178-196(dual-phosphate) 2305.69, 2304.2.  The unknown 1586.19 Da peptide is near 
to the predicted mass of monophosphorylated peptide corresponding to ERK261-72 
(predicted 1588.7 Da).  This is unlikely since all calculated values shown are lower than 
the actual mass (on average ~1.4 Da), whereas, in this situation, the predicted value was 
2.5 Da higher. 
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To further characterize the K229T/H230D ERK2 exosite mutant, the steady-state 

kinetics of ERK2 phosphorylation of Ets∆138 were measured with respect to ATP.  

Initial rates were measured for phosphate incorporation into Ets∆138 using several 

concentrations of ATP while holding the Ets∆138 at a high concentration (not saturating) 

so that the app
mK  of ATP could be elucidated.  If the protein concentration is not 

saturating, the app
mK  will appear slightly smaller than the Km.  However, the mutant was 

shown to be similar to WT indicating that the mutation that affected the kcat of Ets∆138 

did not drastically affect the ability of ATP to bind efficiently.   

Since the kcat of the mutant was lower than WT, we also measured the ATPase 

activity of the mutant enzyme to gain insight into whether or not the active site turnover 

of ATP was affected.  To measure the ATPase activity in the absence of the protein 

substrate Ets∆138, ERK2 was added to a solution containing the substrate ATP and a 

coupled-enzyme milieu containing phosphoenol pyruvate, pyruvate kinase, NADH, and 

lactate dehydrogenase [112].  The coupled-enzymes allowed the indirect measurement of 

the slower ATP hydrolysis reaction mediated by ERK2 by coupling the rate of ADP 

formation to the production of the oxidized form of NADH (Scheme 6). 
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Scheme 6.  The coupled-reaction for ATPase measurement.  ATP is converted to 
ADP and inorganic phosphate (Pi) by ERK2.  ADP is rapidly phosphorylated by pyruvate 
kinase (PK) in the presence of the phospho-donor phosphoenol pyruvate (PEP) yielding 
pyruvate and ATP.  Pyruvate was reduced to lactate by lactate dehydrogenase (LDH) in 
the presence of the reduced form of β-nicotinamide adenine dinucleotide (NADH) to 
yield the oxidized form of NAD+.  The reaction was monitored at 340 nm for the 
disappearance of NADH upon formation of the colorless NAD+. 

 

 

In the ATPase assay, ERK2 hydrolyzed ATP to form ADP and inorganic 

phosphate.  The pyruvate kinase (PK) phosphorylated ADP in the presence of the 

phospho-donor phosphoenol pyruvate (PEP) to form ATP and pyruvate.  Pyruvate was 

reduced to lactate by lactate dehydrogenase (LDH) in the presence of the reduced form of 

NADH to form the oxidized NAD+.  The coupled reactions were monitored by following 

the rate of NADH oxidation which was proportional to the rate of ATP hydrolysis by 

ERK2 since the ATP hydrolysis was the rate-limiting reaction.  The K229T/H230D 

ERK2 mutant had a similar ATPase activity to that of WT ERK2 at several 

concentrations of enzyme (Figure 35) indicating that the mutant could hydrolyze ATP as 

efficiently as the WT protein.  These results further indicate that the defects in the steady 
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state kinetics of the phosphorylation of Ets∆138 are a result of defects in the protein-

protein interaction outside of the active site.   

 

 

 
Figure 35.  The ATPase activity of WT and K229T/H230D ERK2 are similar.  WT 
and K229T/H230D ERK2 were incubated in the presence of ATP and a coupled-enzyme 
milieu (Scheme 6) to measure the rate of ATP hydrolysis occurring in the active site.   

 

 

We have developed a fluorescence anisotropy assay to measure the equilibrium 

dissociation constant (Kd) between ERK2 and a fluorescent form of Ets∆138.  The Kd for 

the inactive K229T/H230D ERK2 mutant was significantly higher than the inactive form 

of WT ERK2 further indicating a deficiency in the mutant’s ability to bind Ets∆138 

(Figure 36).  These results suggest that the steady-state kinetic defects of K229T/H230D 

ERK2 stem from its inability to facilitate efficient macromolecular recognition of 

Ets∆138 and form an efficient E–S docking complex while the ATPase activity and the 

Km of ATP in the presence of Ets∆138 remain similar to that of WT.  Since dual-
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phosphate ERK2 exhibits ~2000-fold higher ATPase activity than unphosphorylated 

ERK2 with respect to kcat [5], we hypothesize that the catalytic residues and the 

phosphorylation loop of the K229T/H230D are in the proper orientation and do not affect 

the binding of Ets∆138 even though these residues lie near the phosphorylated Thr-183 

and Tyr-185 of ERK2 in the crystal structure [4].  The decrease in this mutants ability to 

bind Ets∆138 could be due to the large physicochemical differences in the side chains at 

this position of ERK2 and p38 MAPKα and implies that this is an ERK2 exosite that not 

only determines the ability of activators (MAPKK1) [12] and inactivators (MKP3) [14] to 

bind but also determines substrate specificity and macromolecular recognition of the 

substrate Ets∆138 and Elk-1 [14]. 
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Figure 36.  Fluorescence anisotropy of WT and K229T/H230D ERK2 binding to 
Ets∆138-Fluorescein.  Fluorescence anisotropy was carried out using several 
concentrations of inactive WT (closed circles) and inactive K229T/H230D ERK2 (open 
circles) in the presence of 100 nM Ets∆138-Fluorescein.  Assay conditions were 25 mM 
Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL 
BSA, and 2 mM DTT; slit widths were 5 nm, integration time was 300 msec, data points 
represent the average of 12 data points taken for a single sample.  Each reaction was 
excited with both vertically- and horizontally-polarized light at 492 nm and the emission 
was measured both vertically and horizontally to the excited light at 515 nm.  The data 
were fit as described (Chapter 4) and the equilibrium dissociation constants determined to 
be 0.7 ± 0.1 µM and 37.7 ± 1.0 µM for WT and K229T/H230D, respectively.  Although 
both endpoints fit to a similar value from the data shown, the Kd of K229T/H230D 
assumes that this value is correct. 
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PUTATIVE DEJL MOTIF ON ETS∆138 

To find regions on the substrate Ets∆138 that mediate macromolecular 

recognition of ERK2, we mutated individual residues in a putative DEJL motif and made 

an N-terminal deletion mutant that deleted this region and tested the mutant substrates for 

defects in their steady-state kinetic parameters of phosphorylation by ERK2.  The amino-

terminus of Ets∆138 contains a putative DEJL motif which have been shown to mediate 

binding to MAPKs.  The putative DEJL motif was determined by primary amino acid 

sequence comparison to conserved DEJL motifs found in the ERK2 interacting proteins 

MAPKK1 and Elk-1 (Figure 37) [19, 29].  The putative DEJL motif has both the 

conserved lysine and leucine residues found in DEJL motifs and lies amino-terminal to 

the phospho-acceptor site (Thr38) in Ets∆138 similar to other known DEJL motifs.  

Peptides derived from Elk-1 and MAPKK1 DEJL motifs (Figure 37) inhibit ERK2 

phosphorylation of the transcription factor Elk-1, MAPKK2 binding to ERK2, and MKP-

1 dephosphorylation of ERK2 [54].  These results suggest that the DEJL peptides bind 

and inhibit ERK2, presumably, by binding the MAPK exosite involved in binding 

activators, regulators, and substrates.  It has been suggested that DEJL motif peptides 

bind to the CD exosite of ERK2 which has been shown to interact with several proteins 

[17], however, the co-crystal structure of the inactive form of p38 MAPKα binds two 

DEJL peptides in the docking groove exosite near to, but distinct from, the CD exosite 

[27].  The Elk-1 DEJL motif has also been shown to recruit ERK2 to phosphorylate an 

Elk-1 consensus sequence peptide more efficiently [113] indicating the usefulness of 

docking motifs in increasing the catalytic efficiency of phosphorylation.  We have also 

shown that the Elk-1 DEJL motif peptide is a competitive inhibitor towards Ets∆138 
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phosphorylation, indicating that Ets∆138 may form a docking complex via a DEJL motif 

on an ERK2 exosite (Chapter 4). 
  

Sequence   Protein 
-KTEK-VDLELFPSP- Ets∆138 
-KGRKPRDLELPLSPS- Elk-1 
MPKKKPTPIQLNPAPDG- MAPKK1  

Figure 37.  Sequence alignment comparing known DEJL motifs with a putative 
Ets∆138 DEJL motif.  The N-terminal portion of Ets∆138 (residues 15-27 shown) 
contains residues that align well with known DEJL motifs that mediate ERK2 exosite 
recognition of activators, substrates, and phosphatases.  The Elk-1 and MAPKK1 
peptides have shown to inhibit ERK2 phosphorylation of Elk-1 indicating that this 
putative region in Ets∆138 may be a docking motif that directs the phosphorylation of 
Thr-38. 
 
 

We hypothesized that the putative DEJL motif of Ets∆138 might be mediating 

macromolecular recognition of ERK2 since a similar region on Elk-1 recruits ERK2 and 

JNK to phosphorylate its multiple Ser/Thr-Pro phosphorylation sites [19, 29].  The 

amino-terminus of Ets∆138 is very flexible and unstructured, as determined by the 

multiple conformations seen in the NMR structure of a truncated version of this protein 

[114].  An amino-terminal truncation of Ets∆138 has been generated that lacked the 

putative DEJL motif (Ets29-138) and was shown to bind ERK2 using affinity 

chromatography [52], however, the authors did not report the kinetic parameters for its 

phosphorylation by ERK2.  These results indicate that the amino-terminus is not 

absolutely required for Ets∆138 to bind to ERK2, but its contribution to binding and 

phosphorylation was unknown. 

Therefore, we constructed an amino-terminal deletion of Ets∆138 lacking the first 

23 amino acids (Ets∆24-138) that contained the putative DEJL motif to study the effects 
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of the deletion on the steady-state kinetic parameters of Ets∆138 phosphorylation.  The 

truncation led to a 10-fold increase in the app
mK  as compared to WT Ets∆138 with no 

effects on the apparent catalytic rate constant of the enzyme (Table 7, Figure 38).  These 

results are expected for a substrate docking motif required for E–S formation through a 

docking complex, but not required for efficient chemical transfer of phosphate from ATP 

to the protein substrates phosphorylation site.  Ets∆24-138 did not affect the app
mK  of the 

nucleotide substrate (Table 7), indicating that ATP binding to ERK2 is not affected by 

the truncated substrate.  These results indicate that the amino-terminus of Ets∆138 is 

required for efficient phosphorylation of the protein substrate, but interestingly, was not 

found to be required for binding ERK2 from a calf thymus nuclear extract [52].  Perhaps 

the binding experiment did not require a high ERK2–Ets∆13829-138 affinity or another 

possibility is that other proteins such as scaffold proteins may have enhanced their 

interactions.  Additional data indicating the importance of the N-terminus of Ets∆138 in 

mediating the ERK2–Ets∆138 docking complex was generated using a fluorescence 

anisotropy competition assay to measure the Kd of the mutant protein and ERK2.  The 

data indicate that the Kd for Ets∆24-138 is ~ 13-fold higher than that of Ets∆13823 in line 

with the steady-state kinetic results (~ 15-fold increase in Km).  However, it is not clear 

which individual residues contribute to the binding of ERK2 or if the N-terminus is 

simply required for structural support during formation of the E–S docking complex 

leading to phosphoryl-transfer. 

                                                 
23 The Kd of Ets∆24-138 was determined to be 82.8 ± 3.2 µM (n = 2) in a fluorescence anisotropy competition 
assay, whereas WT was determined to be 6.6 ± 1.2 µM (n = 3); in the absence of both nucleotide and 
magnesium chloride (Chapter 5). 
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Figure 38.  Specificity constant comparisons of dual-phosphate WT ERK2 
phosphorylation of Ets∆138 containing mutations of the putative DEJL motif.  The 
specificity constants were determined in Table 7 and plotted here to show relative 
differences between the WT Ets∆138 and the putative DEJL motif mutants of Ets∆138.  
An N-terminal mutant missing the first 23 amino acids of Ets∆138 (Ets∆24-138, 
abbreviation ∆24-138) lacks the putative DEJL motif.  K15A/K18A and L21A/L23A 
Ets∆138 are mutants of both the conserved lysines and leucines in the putative DEJL 
motif.  
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Mutant kcat Km, Ets∆138 Km, ATP kcat/Km(Ets) 
WT 19.6 ± 0.7 8.8 ± 1.4 98.7 ± 4.4 2.2 n=12 
∆24-138 20.5 ± 1.7 127.6 ± 19.4 117.3 ± 13.4app  0.2 n=1 
K15A 17.3 ± 0.9 10.4 ± 2.3 - 1.7 n=4 
K18A 18.4 ± 0.5 8.0 ± 0.9 - 2.3 n=1 
L21A 19.2 ± 1.0 12.0 ± 2.5 - 1.6 n=1 
L23A 18.3 ± 0.6 12.3 ± 1.7 - 1.5 n=1 
K15A/K18A 22.5 ± 3.4 10.8 ± 2.0 - 2.1 n=2 
L21A/L23A 22.0 ± 0.4 13.3 ± 0.8 - 1.7 n=2 

 

Table 7.  The steady-state kinetic parameters for Ets∆138 mutants phosphorylated 
by dual-phosphate ERK2.  These values were obtained with radiolabeled P81 assays 
[7].  For the determination of the Km for Ets∆138 saturating ATP (2 mM) was used while 
varying the Ets∆138 concentration from 6.3-200 µM.  For the determination of the Km for 
ATP saturating Ets∆138 concentrations (200 µM) were used while varying the ATP 
concentration from 31.3-1000 µM.  Each value was determined using 6 initial velocities 
fit to the equation kobs = (kcat×[S])/(Km+[S]).  Assay contained were 25 mM Hepes, pH 
7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, 20 mM MgCl2, 2 mM 
DTT, 1 nM ERK2, Ets∆138, and ATP.  Values are shown as a mean ± standard error.  
The mean kcat was determined using the values obtained from both Ets∆138 and ATP 
analyses and were found to be similar.  Units: kcat, s-1; Km, µM; kcat/Km, µM-1 s-1. 
 

 

To elucidate the contribution of individual residues in the putative DEJL motif 

towards phosphorylation, we carried out alanine mutagenesis on the lysine and leucine 

residues corresponding to those conserved in DEJL motifs (Figure 37).  We hypothesized 

that if these residues are involved in E–S formation, the specificity constant would 

decrease due to an increase in the Km for the mutants.  We found that neither the single 

mutants nor double mutants (K15A/K18A and L21A/L23A Ets∆138, Table 7, Figure 38), 

had adverse effects on the specificity constant.  These results indicate that there may be 
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other residues in the initial 23 amino acids of the protein24 that are contributing to the 

formation of the E–S complex or that the structural integrity of this N-terminal region is 

important for docking.  In addition, a C-terminal deletion of Ets∆138 (Ets11-52) was 

reported to have a Km of 190 µM [52], indicating that both the N- and C-terminal region 

of Ets∆138 are required for efficient E–S formation leading to phosphoryl-transfer. 

 

 

AN ETS∆138 PHENYLALANINE DOCKING MOTIF 

Some ERK2 substrates have been shown to contain docking motifs containing 

two phenylalanine residues separated by a single amino acid that allows efficient 

macromolecular recognition by ERK2.  The “docking site for ERK, FXFP” (DEF) motif 

was first identified as a gain-of-function mutation in the lin-1 ETS gene leading to a 

vulvaless phenotype in C. elegans due to a lack of negative regulation by an ERK2 

homolog (MPK-1) [18].  The two phenylalanine residues in the FXFP motif are the most 

important determinants for ERK2-binding [19], however, replacement of these residues 

with tyrosines does not disrupt the function of the DEF motif [115].  These results 

indicate the importance of the phenyl ring in DEF motif binding to ERK2.  Many 

substrates utilize a DEF motif for ERK2 docking such as IEX-1 [68], SAP-1 [116], c-Fos 

[117], c-Myc, N-Myc of the immediate early gene family, transcription factors Elk-1 and 

GATA-2, MKP-1, KSR-1 [19], and PDE4D3 cAMP-specific phosphodiesterase [118].  A 

docking motif on Ets∆138 was discovered in which a C-terminal LxLxxxF120 motif 

                                                 
24 The N-terminus of Ets∆138 may contain an additional DEJL-like motif: M1-K-A-A-V-D-L-K-P-T-L-T-
I-I14.  Mutation of the underlined DEJL-like residues may elucidate the N-terminal docking motif.  Two 
mutants VDL/ADA and LTI/ATA could be tested.  Another N-terminal mutant leaving the 
K15XXKXXLXL23 motif to indicate that the binding site is N-terminal to this motif could also be carried 
out. 
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enhances efficient phosphorylation by ERK2; the phenylalanine contributes the bulk of 

the binding energy as measured by a large increase in Km when mutated to alanine [52].  

It has not been determined whether or not a tyrosine can be substituted for the 

phenylalanine in Ets∆138.  The Ets∆138 C-terminal docking motif appears to be a hybrid 

of the known ERK2 docking motifs (DEJL and DEF), where it contains both the 

hydrophobic portion of the DEJL motif (LEL residues) followed by one Phe residue 

(DEF-like). 

Since DEF motifs usually contain two Phe residues and Ets∆138 lacks an FXFP 

motif, we searched the NMR structure for another nearby Phe residue and found that Phe-

88 lies within 9Å of Phe-120 (Figure 39) [114], but distant by 32 amino acids in the 

primary amino acid sequence.  Mutagenesis of Phe-88 to an alanine (F88A) had an ~3-

fold effect on ERK2 phosphorylation as measured by its steady-state kinetic parameters 

(Table 8, Figure 40), whereas, mutation of Phe-120 (F120A) [52] led to an ~24-fold 

increase in Km for Ets∆138 phosphorylation (Table 8, Figure 40).  Mutation of both 

phenylalanines, F88A/F120A, did not lead to further abrogations in the Km than the 

F120A mutation (Table 8, Figure 40), further indicating the importance of Phe-120 and 

lack of a strong binding contribution by Phe-88 in forming the E–S complex with ERK2.  

As expected for a docking motif residue involved in E–S formation with ERK2 and not 

catalysis, F120 does not affect the app
mK  for ATP binding to ERK2 (Table 8).  These 

results indicate that a single phenylalanine (Phe-120) on Ets∆138, and not Phe-88, 

contributes a significant amount of binding energy towards E–S formation with ERK2. 
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Figure 39.  Structural representation of Ets∆138 and the phenylalanine docking 
motif.  A ribbon structure of Ets∆138 is shown (1BQV) with the phosphorylation site 
Thr-38 (red), the Phe-120 (blue) involved in formation of the ERK2-Ets∆138 docking 
complex, and Phe-88 (green). 
 

 
Figure 40.  Specificity constant comparisons of activated WT ERK2 
phosphorylation of Ets∆138 phenylalanine mutants.  The specificity constants were 
determined in Table 8 and plotted here to show relative differences between the WT 
Ets∆138 and phenylalanine mutants. 



 146

 
 
Mutant kcat Km, Ets∆138 Km, ATP kcat/Km(Ets) 
WT 19.6 ± 0.7 8.8 ± 1.4 98.7 ± 4.4 2.2 n=12 
F88A 16.5 ± 0.8 19.5 ± 3.3 - 0.8 n=1 
F120A 18.6 ± 3.6 210.2 ± 26.4 96.1 ± 7.9 0.1 n=2 
F88A/F120A 15.2 ± 5.6 264.9 ± 132.9 - 0.1 n=1 
 
Table 8.  The steady-state kinetic parameters for Ets∆138 phenylalanine mutants 
phosphorylated by dual-phosphate ERK2.  These values were obtained with 
radiolabeled P81 assays [7].  For the determination of the Km for Ets∆138 saturating ATP 
(2 mM) was used while varying the Ets∆138 concentration from 6.3-200 µM.  For the 
determination of the Km for ATP saturating Ets∆138 concentrations (200 µM) were used 
while varying the ATP concentration from 31.3-1000 µM.  Each value was determined 
using 6 initial velocities fit to the equation kobs = (kcat×[S])/(Km+[S]).  Assay conditions 
were 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL 
BSA, 20 mM MgCl2, 2 mM DTT, 1 nM ERK2, Ets∆138, and ATP.  Values are shown as 
a mean ± standard error.  The mean kcat was determined using the values obtained from 
both Ets∆138 and ATP analyses and were found to be similar.  Units: kcat, s-1; Km, µM; 
kcat/Km, µM-1 s-1. 
 
 

 

CONCLUSIONS 
 

MAPKs bind and phosphorylate a wide variety of proteins within the cell 

including kinases, transcription factors, and phosphatases that regulate cell-signaling 

pathways.  Understanding how protein kinases recognize their protein substrates, catalyze 

the phosphorylation of those substrates, and regulate cell signaling is crucial to 

understanding the basis of a cells response to various input signals. 

We studied the steady-state kinetics of a particular protein kinase of the MAPK 

family, ERK2, in its dual-phosphate/activated form under conditions where residues on 

the surface of either ERK2 or the protein substrate Ets∆138 had been mutated to 

understand the role of individual amino acids in carrying out phosphorylation.  Several 
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putative exosites on the surface of MAPKs have been elucidated as contributing to 

specific protein-protein interactions with either an upstream kinase, a phosphatase, or its 

substrates outside of the catalytic cleft of MAPKs.  Most of these studies have been 

carried out using non-quantitative methods with the inactive form of the enzyme and with 

substrates that have multiple phosphorylation sites.  Here, we carried out a study using 

the active form of the protein kinase ERK2 since it has an enhanced catalytic rate of ~ 

50,000-fold over the inactive enzyme [5] and is likely the most physiological relevant 

species that phosphorylates substrates within the cell. 

Regions of ERK2 that mediate macromolecular recognition of protein substrates 

remain largely unknown.  The CD exosite for MAPKs was shown to be a common 

binding site for several MAPK binding interactions including activators, substrates, and 

phosphatases [17].  However, the CD exosite does not appear to be required for activation 

of ERK2 by MAPKK1 and is not required for efficient phosphorylation of the substrate 

Ets∆138.  Mutation of the CD exosite residues Asp-316 and Asp-319 to alanine (D316A 

and D319A) did not significantly alter the steady-state kinetic parameters of Ets∆138 

phosphorylation by ERK2.  These results indicate that although the common docking 

exosite might be required for efficient binding to MAPKK1 it is not essential for ERK2 

activation by dual-phosphorylation.  A nearby region termed the hydrophobic (YY) 

exosite on ERK2 consisting of Tyr-314 and Tyr-315 was shown to be required for 

efficient phosphorylation by MAPKK1 [48] but was not required for efficient Ets∆138 

phosphorylation.  These results suggest that another region on ERK2 besides the CD and 

YY exosite is required for its protein–protein interaction with Ets∆138. 

The docking groove exosite of p38 MAPKα lies near to the CD and YY exosite 

and has been shown to bind DEJL motifs found in MAPK-interacting proteins as 

revealed by a crystal structure of the inactive form of p38 MAPKα with two DEJL-
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derived peptides [27].  A similar exosite on the dual-phosphate form of ERK2, including 

the loop that spans from the αD helix to the αE helix and the β7-β8 reverse turn, was 

hypothesized to bind a DEJL peptide derived from the MAPK protein substrate Elk-1 

[28].  Therefore, a homologous exosite conserved in both ERK2 and p38 MAPKα may 

also be involved in binding activators, substrates, and phosphatases.  The homologous 

residues on the inactive form of p38 MAPKα that made contacts with the DEJL peptide 

of MEF2a and MKK3b in co-crystallization experiments [27] were mutated to alanine to 

produce the ERK2 mutants L113A, Q117A, and H123A.  These mutants were activated 

by MAPKK1 and H123A was shown to have small 3-fold decrease in the specificity 

constant, while L113A and Q117A remained largely unchanged.  While His-123 may 

play a small role in forming the E–S complex formed between ERK2 and Ets∆138, this 

mutation may also induce a global conformational change since this residue lies in the αF 

helix and not on a loop.  These results indicate that these residues within the docking 

groove exosite of dual-phosphate ERK2 do not play a large role in directing E–S 

formation between ERK2 and Ets∆138. 

MAPK members are thought to be related through gene duplication from a single 

gene and their novel protein functions have been obtained through physicochemical 

changes in residues involved in novel protein-protein interactions [10].  ERK and p38 

MAPKα were compared and shown to have regions in which there were physicochemical 

differences between the two MAPK members following gene duplication whereas these 

same residues were conserved amongst the two subfamilies [10] indicating that 

specificity differences may exist in these regions.  We have shown that Ets∆138 is a more 

efficient substrate for ERK2 than it is for p38 MAPKα.  Therefore, in mutating ERK2 

residues to the homologous p38 MAPKα-like residues that differ in physicochemical 

properties, we hypothesized that we could find an enzymic exosite on ERK2 that 
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mediated E–S formation with Ets∆138 by finding p38-like ERK2 mutants that 

phosphorylated Ets∆138 less efficiently.   

The TT/ED exosite was shown to confer specificity differences for the ability of 

p38 MAPKα, but not ERK2, to bind and phosphorylate the substrate 3pk [11].  We 

mutated this region in ERK2 to form the T157E/T158D ERK2 mutant and showed that 

this mutation did not have a large affect on Ets∆138 steady-state kinetic parameters.  

Similar mutations were made to generate Y111N/K112N and K229T/H230D ERK2 and 

were shown to have a ~3 and ~22-fold decrease in the specificity constant.  While the 

Y111N/K112N may cause global conformational changes since these residues lie in the 

αD helix, it is unlikely that the K229T/H230D mutation causes global conformational 

changes due to the fact that it lies in a loop (L13) between the αF and αG helicies.  The 

K229T/H230D ERK2 mutant was shown to contain 2 phosphates upon activation by 

MAPKK1G7b in the phosphorylation loop indicating that it was bis-phosphorylated 

similar to WT ERK2.  The dual-phosphate K229T/H230D ERK2 mutant was also shown 

to have a similar ATPase activity as that of WT ERK2 indicating that the mutant does not 

have large conformational changes within its active site.  It was also shown that the 

inactive K229T/H230D had a >40-fold increase in the Kd as compared to the WT enzyme 

for its ability to bind a fluorescent form of Ets∆138 indicating that this exosite may be 

responsible for ERK2 binding to Ets∆138 to form the E–S complex required for efficient 

phosphoryl-transfer. 

The substrate Ets∆138 was also analyzed by mutagenesis studies to find docking 

motifs that were required for efficient phosphorylation by the dual-phosphate form of 

ERK2.  The N-terminus of Ets∆138 contained a putative DEJL motif that has been shown 

to bind the docking groove exosite on inactive p38 MAPKα [27] and a similar site on 

dual-phosphate ERK2 [28].  We made an N-terminal deletion of Ets∆138 lacking the 
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putative DEJL motif and showed that this region was required for efficient phosphoryl-

transfer.  Upon mutating individual residues of the putative DEJL motif, we found that 

neither the conserved lysines nor the leucines in the DEJL motif were required for 

efficient phosphoryl-transfer indicating that the N-terminal region may be required for 

structural support of the phosphorylation reaction or may contain another docking motif 

that has yet to be elucidated.   

A previously determined docking motif in the  C-terminus of Ets∆138 consists of 

an LxLxxxF120 motif [52] which appears to be a hybrid of the DEJL motif and a DEF 

motif.  It was confirmed that Phe-120 is required for efficient phosphorylation by ERK2 

due to a large increase in Km when mutated to alanine.  Since DEF motifs contain two 

phenylalanines we also mutated a nearby phenylalanine and found that Phe-88 was not 

required for efficient phosphoryl-transfer.  These results suggest that the Ets∆138 

substrate contains a C-terminal docking site required for forming the E–S docking 

complex which appears to be a hybrid form of the DEJL and DEF motif docking sites. 

This study has shown that steady-state kinetics of the active form of ERK2 and its 

protein substrate Ets∆138 containing a single phosphorylation site can be carried out 

using mutant forms of either the enzyme or the substrate to determine residues that are 

involved in efficient E–S formation leading to efficient phosphoryl transfer.  We have 

shown that the N-terminal 23 residues of Ets∆138 are required for efficient phosphoryl-

transfer in addition to the Phe-120 docking site in the C-terminus.  Several exosites on 

ERK2 (CD, YY, TT/ED, and docking groove residues) were mutated to elucidate 

whether or not these residues were required for efficient phosphorylation of Ets∆138 and 

shown to have negligible effects.  However, mutation of residues 229 and 230 in ERK2 

to p38 MAPKα-like residues caused a significant reduction in the efficiency of 

phosphorylation of Ets∆138 mostly due to an increase in Km.  The dissociation constant 
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for ERK2 binding of this mutant was also shown to increase significantly indicating that 

this mutation largely affected binding and not the rate of phosphoryl-transfer.  These data 

are consistent with residues 229 and 230 binding involved in forming a docking complex 

with ERK2 indicating this region as an exosite required for Ets∆138 binding and efficient 

phosphorylation. 
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EXPERIMENTAL PROCEDURES 
 

MATERIALS  

All oligonucleotides were synthesized by Genosys.  Ni2+-NTA was purchased 

from Qiagen. 
 
 

CONSTRUCTION OF SITE-SPECIFIC ERK2 MUTANTS  

A bacterial expression vector, NpT7-5 encoding a hexa-histidine tag followed by 

cDNA encoding the rat ERK2 (NpT7-5 His6-ERK2, a gift of N. Ahn, University of 

Colorado, Boulder, Colorado), was modified by PCR using site-directed mutagenesis to 

construct K229T/H230D, D316A, D319A, D316A/D319A, and Y314A/Y315A ERK2.  

The NpT7-5 His6-ERK2 vector was digested with SacII and HindIII and ligated into a 

SacII-HindIII digested pBluescript (pBS) vector using T4 DNA ligase to create pBS-

ERK2.  The mutations were produced by a two-step PCR reaction using the following 

conditions: 94 °C for 5 min to denature the complementary strands; 30 cycles of 55 °C 

for 30 sec to anneal the primers, extension for 1 min at 72 °C, followed by a denaturation 

step at 94 °C for 45 sec; complementary strands were extended a final 10 min at 72 °C.  

The first round of PCR generated two overlapping products, fragment A and B, from two 

separate reactions using pBS-ERK2 as template.  Fragment A was amplified using an 

outer forward primer that contained an EcoRI restriction site (underlined) (5’-TAT GTT 

GAA TTC CAA GGG TTA TAC-3’) and an inner reverse primer containing the 

mutation (italics) for K229T/H230D (5’-CTG GTC AAG GTA GTC GGT TCC TGG 

GAA GAT-3’), D316A (5’-ACT TGG GGC ATA ATA CTG CTC C-3’), D319A (5’-GC 
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AAT GGG CTC GGC ACT TGG-3’), or Y314A/Y315A (5’-ACT TGG GTC AGC AGC 

CTG CTC CAG G-3’).  Fragment B was amplified with an inner forward primer 

containing the mutation for K229T/H230D (5’-ATC TTC CCA GGA ACC GAC TAC 

CTT GAC CAG-3’), D316A (5’-G GAG CAG TAT TAT GCC CCA AGT-3’), D319A 

(5’-CCA AGT GCC GAG CCC ATT GC-3’), or Y314A/Y315A (5’-C CTG GAG CAG 

GCT GCT GAC CCA AGT-3’) and an outer reverse primer containing the beginning of 

the HindIII restriction site in ERK2 (5’-GGT CGA CGG TAT CGA TAA GC-3’).  

Fragments A and B were purified and used as templates for a second round of PCR using 

only the outer primers.  The product was digested with EcoRI and HindIII and ligated 

into EcoRI-HindIII digested pBS-ERK2.  The pBS-ERK2 mutants were digested with 

SacII and HindIII and subcloned into SacII-HindIII digested NpT7-5 His6-ERK2.  

Mutants containing two mutations were made using single mutant DNA as template and 

incorporating a second mutation. 

Construction of Y111N/K112N, L113A, Q117A, H123A, and T157E/T158D 

ERK2 mutants were carried out similar to above using different outside primers.  

Fragment A was amplified with an outer forward primer that lies 5’ to the SacII 

restriction site (5’-GAA TTG TAA TAC GAC TCA CTA TAG-3’) and an inner reverse 

primer containing the mutation for Y111N/K112N (5’-GT CTT CAA GAG GTT GTT 

AAG ATC TGT CT-3’), L113A (5’-CTG TGT CTT CAA GGC CTT GTA AAG ATC-

3’), Q117A (5’-TT GCT GAG GTG CGC TGT CTT CAA GAG-3’), H123A (5’-G AAA 

ATA GCA GAT GGC ATC ATT GCT GAG G -3’), or T157E/T158D (5’-CTT GAG 

ATC ACA ATC TTC GTT CAG CAG GAG-3’).  Fragment B was amplified with an 

inner forward primer containing the mutation for Y111N/K112N (5’-AG ACA GAT CTT 

AAC AAC CTC TTG AAG AC-3’), L113A (5’-GAT CTT TAC AAG GCC TTG AAG 

ACA CAG C-3’), Q117A (5’-CTC TTG AAG ACA GCG CAC CTC AGC AA-3’), 
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H123A (5’-C CTC AGC AAT GAT GCC ATC TGC TAT TTT C-3’), or T157E/T158D 

(5’-CTC CTG CTG AAC GAA GAT TGT GAT CTC AAG-3’) and an outer reverse 

primer containing an EcoRI restriction site (5’-GTA TAA CCC TTG GAA TTC AAC 

ATA-3’).  Fragments A and B were purified and used as templates for a second round of 

PCR using only the outer primers.  The product was digested with SacII and EcoRI and 

ligated into SacII-EcoRI digested pBS-ERK2.  The pBS-ERK2 mutants were digested 

with SacII and HindIII and subcloned into SacII-HindIII digested NpT7-5 His6-ERK2.  

All mutations were verified by sequencing the DNA at UT core facilities using an 

Applied Biosystems automatic DNA sequencer. 

 

CONSTRUCTION OF SITE-SPECIFIC ETS∆138 MUTANTS  

A pET-28a bacterial expression vector encoding a hexa-histidine tag followed by 

the cDNA encoding murine Ets1 residues 1-138 (pET-28a Ets∆138, a gift of L. P. 

McIntosh, University of British Columbia, Vancouver) was modified by PCR using site-

directed mutagenesis to construct an N-terminal truncation mutant containing Ets1 

residues 24-138 with an initial methionine (pET-28a Ets∆24-138) and the Ets∆138 

mutants K15A, K18A, L21A, L23A, F88A, and F120A.  To construct the pET-28a 

Ets∆24-138 N-terminal truncation mutant, pET-28a Ets∆138 was PCR amplified with a 

forward primer containing an NdeI site (encoding the initial methionine) followed by the 

codon encoding Phe-24 (5’-GG GAA TTC CAT ATG TTC CCT TCC CCG GAC ATG-

3’) and an outer reverse primer (5’-GCT AGT TAT TGC TCA GCG GTG G-3’) using 

PCR conditions described for ERK2 mutants.  The N-terminal mutant PCR product was 

digested with NdeI and HindIII and ligated into NdeI-HindIII digested pET-28a.  All 

proteins produced from pET-28a have an N-terminal sequence of M-G-S-S-H-H-H-H-H-
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H-S-S-G-L-V-P-R-G-S-H- prior to the initial methionine encoded by the Ets∆138 cDNA 

giving Ets∆24-138 an approximate mass of 15, 391 Da whereas Ets∆138 has a mass of 

17, 681 Da (lacking the initial methionine) [7]. 

For the Ets∆138 point mutations, fragment A was PCR amplified with an outer 

forward primer (5’-GGT GAT GCC GGC CAC GAT GC) and an inner reverse primer 

containing the mutation for K15A (5’-TTC TGT GGC GAT GAT GGT GAG AGT-3’), 

K18A (5’-AAG CTC GAG ATC CAC GGC TTC TGT-3’), L21A (5’-CTC GGC ATC 

CAC TTT TTC TGT C-3’), L23A (5’-GTC CGG GGA AGG GAA GGC CTC-3’), F88A 

(5’-C TTT CAG GCT AGC CTC ATT CAC A-3’), or F120A (5’-AT ATC CCC AAC 

AGC GTC TGG AGC CA-3’).  Fragment B was amplified with an inner forward primer 

containing the mutation for K15A (5’-ACT CTC ACC ATC ATC GCC ACA GAA-3’), 

K18A (5’-ACA GAA GCC GTG GAT CTC GAG CTT-3’), L21A (5’-G ACA GAA 

AAA GTG GAT GCC GAG-3’), L23A (5’-GAG GCC TTC CCT TCC CCG GAC-3’), 

F88A (5’-T GTG AAT GAG GCT AGC CTG AAA G-3’), or F120A (5’–TG GCT CCA 

GAC GCT GTT GGG GAT AT-3’) and an outer reverse primer (5’-GCT AGT TAT 

TGC TCA GCG GTG G-3’).  Fragments A and B were purified and used as templates for 

a second round of PCR using the outer primers.  Mutants containing two mutations were 

made using single mutant DNA as template and incorporating a second mutation.  The 

mutant PCR products were digested with NdeI and HindIII and ligated into NdeI-HindIII 

digested pET28a.  All mutations were verified by sequencing the DNA at UT core 

facilities using an Applied Biosystems automatic DNA sequencer. 
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PURIFICATION OF UNPHOSPHORYLATED ERK2 

The inactive/unphosphorylated form of ERK2 and its mutants were expressed and 

purified from E. coli [7].  The DNA vector NpT7-5 ERK2 encoding a His6-tagged ERK2 

(N. Ahn, Boulder, CO) was electroporated into BL21 (DE3) E. coli cells and plated on 

Luria Broth (LB)/agar plates containing 50 µg/mL ampicillin.  A single colony was 

grown overnight in 25 mL of LB containing freshly added ampicillin (50 µg/mL) in an 

autoclaved 125 mL Erlenmeyer flask at 30 °C.  The next morning, 4 mL of the overnight 

culture was transferred to 4 flasks each containing 800 mL of autoclaved LB (3.2 L total) 

containing freshly added ampicillin (50 µg/mL).  The bacteria was grown to mid-log 

phase growth so that the optical density at 600 nm (OD600) was ~0.6-0.8 and induced for 

protein expression with 0.5 mM IPTG for 5 hours.  The cells were cleared of the media 

by centrifugation for 10 min, 6,000 rpm, at 4 ºC.  The supernatant was decanted and the 

pellet was scraped from the bottom of the centrifuge tubes, weighed, snap frozen in liquid 

nitrogen, and stored at -80 °C. 

The bacterial pellet (~10 g) containing the ERK2 protein was raised in 200 mL of 

lysis buffer (50 mM Tris pH 8.0, 0.1% 2-mercaptoethanol, 0.03% Brij-35, 5 mM 

imidazole, 1% Triton X-100, 500 mM  NaCl, 1 mM benzamidine, 0.1 mM TPCK, 0.1 

mM PMSF) and kept on an ice water bath at a temperature below 4 ºC to inhibit protease 

activity.  The cells were sonicated in small volume batches in a 50 mL glass beaker 5 × 

20 sec to break open the cells while ensuring that the lysate remained below 4 ºC.  The 

sonicated lysate was centrifuged for 30 min, 16,000 rpm, at 4 °C in an SS-34 rotor.  The 

His6-tagged ERK2 remaining in the supernatant was rotated slowly for at least one hour 

at 4 °C in the presence of 15 mL of Ni2+-NTA-agarose beads equilibrated in lysis buffer.  

The Ni2+-NTA-agarose-bound His6-tagged ERK2 was applied to a plastic Econo-column 

(Bio-Rad) and allowed to drain while the beads remain in the column, washed with 10 
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column volumes of wash buffer (50 mM Tris pH 8.0, 0.1% 2-mercaptoethanol, 0.03% 

Brij-35, 10 mM imidazole, 1 mM benzamidine, 0.1 mM TPCK, 0.1 mM PMSF), and 

eluted with 50 mL of elution buffer (50 mM Tris pH 8.0, 0.1% 2-mercaptoethanol, 0.03% 

Brij-35, 250 mM imidazole, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM benzamidine, 0.1 

mM TPCK, 0.1 mM PMSF).  The His6-tagged ERK2 elutes due to imidazole binding and 

competing for the histidine binding sites on the Ni2+-NTA-agarose beads. 

The eluant containing the His6-tagged ERK2 was filtered with a 0.45 µm filter 

and measured for protein concentration by Bradford assay to determine the approximate 

amount of protein present (usually, 1 mL of Ni2+-NTA-agarose beads could bind 5-10 mg 

of ERK2).  The ERK2 was applied to a Mono Q HR 10/10 anion exchange column 

equilibrated with H1 buffer (20 mM Tris, pH 8.0, 0.1% 2-mercaptoethanol, 0.03% Brij-

35, 0.1 mM EDTA, 0.1 mM EGTA) and allowed to equilibrate for 10 min using a flow 

rate of 1.5 mL/min.  The ERK2 was eluted with a linear gradient of NaCl (0-0.5 M) for 

80 min using H2 buffer (H1 buffer containing 0.5 M NaCl).  The unphosphorylated 

ERK2 eluted as two separate peaks occurring at ~ 0.28 and ~0.36 M NaCl.  Only the first 

peak was kept for further analysis as it has a higher basal activity than the latter peak.  

The Mono Q-purified unphosphorylated ERK2 was run on a 10% SDS-PAGE gel to 

confirm the purity of the protein, pooled, and dialyzed overnight in storage (S1) buffer 

(25 mM Hepes, pH 7.5, 50 mM KCl, 2 mM DTT, 10% glycerol).  The protein 

concentration was determined using the Gill and Von Hippel method [119] by denaturing 

the protein in 6 M guanidine hydrochloride and measuring the absorbance of tryptophans 

and tyrosines at 280 nm.  The concentration of protein was determined using Beer’s law 

(Equation 3) 
 

Equation 3 A = C × ε × λ 
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where A is the absorbance at 280 nm, C is the concentration of protein in M-1, ε is the 

extinction coefficient or molar absorptivity (44 825 M-1 cm-1) [5], and λ is the length that 

the wavelength of light has to traverse in centimeters (usually 1 cm).  Amino acid 

analysis of purified dual-phosphate ERK2 was also performed yielding an extinction 

coefficient of 52 067 M-1 cm-1 [44].  The protein was snap frozen in liquid nitrogen in 

aliquots of ~ 2 mg/mL and stored at -80 °C.  Precipitation of the unphosphorylated 

protein often occurred following dialysis.  It was found that dilution of the 

unphosphorylated ERK2 into the dialysis buffer at ~ 1:1 ratio prior to dialysis could 

alleviate precipitation if a high concentration of ERK2 was not required in further 

experiments.  If precipitation occurred, even during the thawing process before 

experiments, the protein was allowed to warm to room temperature and found to be 

suitable. 

 

 

PURIFICATION OF MAPKK1G7B 

DNA encoding His6-tagged MAPKK1G7b, a constitutively active form of 

MAPKK1 (MAPKK1/∆44-51/S218D/M219D/N221D/S221D) in the plasmid pRSETa 

(N. Ahn, Boulder, CO), was electroporated into BL21 (DE3) E. coli cells and selected on 

LB/agar plates containing 50 µg/mL ampicillin.  The bacterial cells were grown similar to 

the unphosphorylated ERK2 and the His6-tagged MAPKK1G7b was purified by affinity 

chromatography using Ni2+-NTA-agorose beads similar to the methods carried out for 

unphosphorylated ERK2 (Purification of Unphosphorylated ERK2).  The yield of 
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MAPKK1G7b production was much poorer than that of ERK2, therefore, only 2 mL of 

Ni2+-NTA-agarose beads were used for 3.2 L of culture.  The Ni2+-NTA-agarose column 

was washed with 10 volumes of wash buffer, eluted with 3 volumes of elution buffer, and 

collected in 1 mL fractions.  Eluted fractions containing protein were applied to a 10% 

SDS-PAGE gel to confirm the heterogeneous purification of the ~50 kD MAPKK1G7b 

[44].  Fractions containing MAPKK1G7b were dialyzed into S1 buffer, snap frozen in 

liquid nitrogen, and stored at -80 °C.  Mono Q-purified MAPKK1B7b can also be 

obtained [44].  

 
 

ETS∆138 PURIFICATION 

Ets∆138 and its mutants were purified essentially as described [42] with the 

exception that proteins were dialyzed into 1.25 mM Hepes, pH 7.5, 2.5 mM KCl, and 2 

mM DTT. 

 
 

ACTIVATION OF ERK2 USING MAPKK1 

Unphosphorylated ERK2 was activated via phosphorylation of residues Thr-183 

and Tyr-185 by MAPKK1G7b in the presence of radiolabeled or cold ATP, and MgCl2.  

The radiolabeled activation was carried out by incubating 4 µM ERK2 and 0.4 µM 

MAPKK1G7b in a volume of 3 mL in activation buffer (40 mM Hepes, pH 8.0, 100 mM 

KCl, 4 mM ATP (with 125 cpm/pmol γ32P-ATP, 5 µL of γ32P-ATP stock), 20 mM 

MgCl2, 0.5 mM EGTA, and 2 mM DTT) for 5 hours at 27 °C.   
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Over the course of the activation, 10 µL aliquots were spotted on P81 cellulose 

paper to follow phosphate incorporation into ERK2 over the course of the reaction.  

ERK2 bound to the P81 paper and radiolabeled phosphates incorporated by 

MAPKK1G7b were detected in the scintillation counter.  The P81 papers were dried at 

room temperature for at least 10 min, washed 4 × 5 min with 500 mL of 50 mM 

phosphoric acid (H3PO4
1-), 1 × 1 min in acetone, and dried briefly in a 100 °C oven.  The 

papers were individually placed into 1.5 mL centrifuge tubes with scintillant fluid and 

counted in the scintillation counter.  Alternatively, aliquots were precipitated on ice for 

10 min in 1 mL of 20% TCA containing 10 µg of BSA (to enable visualization of the 

pellet), centrifuged at 14,000 rpm at 4 ºC for 10 min, the pellet was washed briefly with 3 

× 1 mL with 10% ice-cold TCA in a similar fashion, dried, and counted in scintillant 

fluid to give similar results to the P81 paper assay indicating that the TCA precipitation 

and P81 paper assay were equivalent. 

The specific activity of the reaction was determined by diluting 5 µL of the 

reaction in 5 mL of water and determining the concentration of ATP using the absorbance 

at 259 nm (ε = 15, 400 M-1 cm-1) and counting 10 µL of the 1:1000 dilution in 

scintillation fluid.  The specific activity was determined by dividing the counts per 

minute of the sample by the volume counted and the concentration of the ATP in the 

diluted sample.  By knowing the specific activity of the reaction and the molar quantity of 

the total ERK2 on each piece of P81 paper, an estimate of the counts per spotted aliquot 

was determined for the completion of the reaction with 2 mol/mol phosphate.  For this 

reaction, 1.2 nmol of ERK2 were activated, therefore, 40 pmol of ERK2 was spotted on 

each piece of P81 paper.  If two moles of phosphate were incorporated into ERK2 using a 

specific activity of 125 cpm/pmol, one would expect ~ 10,000 cpm at the completion of 

the reaction.  Each spotted aliquot yielded a value in counts per minute per aliquot, this 
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number was converted to the number of moles of phosphate per aliquot using the specific 

activity of the reaction, then dividing by the mole quantity of ERK2 per aliquot yielded 

the mol/mol ratio of phosphate to ERK2.  This mol/mol ratio was plotted against time.  

The activation assay indicated that MAPKK1G7b was capable of phosphorylating ERK2 

by incorporating ~2 mol of phosphate into each molecule of ERK2. 

WT ERK2 and its mutants were also activated by MAPKK1-G7b in cold assays 

lacking radiolabeled ATP [7].  Assay conditions for the activation were 0.4 µM 

MAPKK1-G7b, 4 µM ERK2, 20-50 mM Hepes pH 7.5, 50 mM KCl, 0.5 mM EGTA, 20 

mM MgCl2, 2 mM DTT at 27 ºC for 3-5 h and in the presence of 4 mM unlabeled ATP.  

    

 

PURIFICATION OF DUAL-PHOSPHATE ERK2 

Following the activation of ERK2 by MAPKK1G7b, ERK2 was purified away 

from the ATP using a DEAE-Sepharose Fast Flow anion exchange column (Amersham 

Biosciences) equilibrated in buffer H1 [7].  The activation solution was applied with an 

equal volume of buffer H1 to a 0.5 mL DEAE-Sepharose Fast Flow column.  The column 

was washed with 10 mL of buffer H1 and eluted with 1 mL fractions using a linear 

gradient of buffer H1 containing 0-0.5 M NaCl in 0.05 M increments.  The eluted protein 

was subjected to a Bradford assay to determine where the protein eluted by monitoring 

the absorbance at 595 nm. 

The fractions containing the dual-phosphate ERK2 were applied to a Mono Q HR 

10/10 anion exchange column in buffer H1 to ensure a low NaCl concentration so that the 

dual-phosphate ERK2 could bind the column.  The column was developed similar to that 

of unphosphorylated ERK2 and the dual-phosphate ERK2 eluted at ~ 0.29 M NaCl.  The 

eluted fractions were collected and dialyzed overnight in either 1 L of 50 mM Tris pH 8.6 
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to prepare for proteolysis by trypsin (radiolabeled protein) or 1 L of S1 buffer and snap 

frozen for steady-state kinetic assays. 

 
 

PHOSPHOAMINO ACID ANALYSIS 

Mono Q-purified radiolabeled ERK2 was dialyzed into 50 mM Tris-HCl, pH 8.6, 

250 µg of ERK2 was incubated with 5 µg of sequencing grade trypsin (Roche) in a 200 

µL volume at 37 °C for 4 h to proteolytically cleave the ERK2 following basic residues 

(lysine and arginine).  Another 5 µg of trypsin was added for 6 h and the digests were 

frozen at -20 °C overnight.  The tryptic peptide digest was thawed, filtered with a 0.2 µm 

filter, raised in 0.1% trifluoroacetic acid (TFA) and applied to a 250 mm × 4 mm reverse 

phase C18 column (Separations Group, Hesperia, CA) equilibrated with 0.1% TFA at a 

flow rate of 0.7 mL/min.  Following a 10 min equilibration period the peptide was eluted 

using a linear gradient of 50% acetonitrile containing 0.1% TFA over 110 min.  Fractions 

were collected every minute and counted in the scintillation counter in the absence of 

scintillant fluid.  The radioactivity of each fraction was plotted versus time with the 

acetonitrile gradient shown.  Only one radiolabeled peptide eluted at 25% acetonitrile 

indicating that only one tryptic peptide had phosphates covalently attached.  This 

radiolabeled peak was pooled and separated into two centrifuge tubes so that one could 

be analyzed by mass spectrometry to determine the mass of the peptide and the other for 

phosphoamino acid analysis to determine which residue or residues were phosphorylated 

within that peptide.  The radiolabeled peptide purified from reverse phase HPLC was 

precipitated using a speed-vac centrifuge.  The peptide was raised in 50% acetonitrile and 

precipitated using the speed-vac twice to eliminate the TFA.  The precipitated peptide 

was raised in a small volume (~20 µL) of 50% acetonitrile and analyzed by MALDI mass 
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spectrometry by spotting equal portions of the peptide and α-cyano-4-hydroxycinnamic 

acid [44].  The mass revealed a peptide of 2306.2 Da (2307.3 Da calculated) as expected 

indicating that the peptide N-171VADPDHDHTGFLTEYVATR189-C was phosphorylated 

at two positions. 

The phospho-peptide was lyophilized and raised in 6 M hydrochloric acid for 60 

min at 110 °C to partially hydrolyze the peptide into its individual amino acids.  The 

hydrolyzed peptide was lyophilized in a speed-vac centrifuge and raised to 1000 cpm/µL 

in the pH 3.5 buffer (5% glacial acetic acid (v/v) and 0.5% pyridine in water, pH 

adjustment is not recommended) used for amino acid separation.  The samples were 

spotted in 0.5 µL aliquots, dried prior to each additional spot, on a 20 × 20 cm cellulose 

glass-backed plate without fluorescent indicators (Sigma).  Each spot contained 500-1000 

cpm of a sample in addition to 1 µg of each cold phosphoamino acid standard for 

phospho-serine, phospho-threonine, and phospho-tyrosine spotted as 2 × 0.5 µL of a 

mixture containing 1 mg/mL of each standard in water.  Outside lanes contained 0.5 µL 

of both 5 mg/mL ε-dinitrophenyl (DNP)-lysine (yellow) and 1 mg/mL xylene cyanol FF 

(blue) solubilized in pH 3.5 buffer and allowed the direct visualization of the 

electrophoresis.  The pH 3.5 buffer was carefully applied to the cellulose plate so that the 

spotted reactions were not mobile and electrophoresed at 200 V for ~ 2 h.  The plates 

were dried, stained with 0.25% ninhydrin in acetone to expose the cold phosphoamino 

acid standards, exposed to film for 24 hours, and developed. 
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KINETIC METHODS FOR ETS∆138 PHOSPHORYLATION 

Protein kinase assays were conducted as described previously by spotting 5 µL 

aliquots of a 50 µL reaction on P81 cellulose paper [7].  Assays contained 1 nM ERK2 

(for some mutants a higher concentration was used), 25 mM Hepes pH 7.5, 50 mM KCl, 

20 mM MgCl2, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, and 2 mM DTT, while 

keeping ATP constant (2 mM) and varying Ets∆138 (6.3-200 µM) or while keeping 

Ets∆138 constant (150 or 200 µM) and varying ATP (31.3-1000 µM).  Initial rates were 

measured at each given concentration using at least 5 data points that lie in a straight line 

and saturation curves were fit to the Henri-Michaelis-Menten equation using 

Kaleidagraph (Synergy Software).  Assays with F120A and F88A/F120A Ets∆138 were 

carried out using 5 nM ERK2.  ERK2 mutants K149A and K229T/H230D were assayed 

using 15 nM and 2 nM ERK2, respectively. 
 

 

ATPASE ASSAYS 

The ATPase activity of WT and K229T/H230D ERK2 were examined using an 

enzyme-coupled spectrophotometric assay [112].  All reactions were performed in 25 

mM Hepes pH 7.5, 50 mM KCl, 20 mM MgCl2, 2 mM DTT, 0.1 mM EDTA, 0.1 mM 

EGTA, 40 µg/mL BSA, various concentrations of ERK2 (100-400 nM), 960 µM ATP4-, 1 

mM Phospho(enol) Pyruvate (PEP), 1.4 units Pyruvate Kinase (PK), 0.2 mM β-

Nicotinamide Adenine Dinucleotide (reduced form) (NADH), 3 units L-Lactate 

Dehydrogenase (LDH) in a total volume of 200 µL at 27 °C.  PK and LDH were buffer 

exchanged 3 × 400 µL in MMix buffer (50 mM Hepes, pH 7.5, 100 mM KCl, 0.2 mM 

EDTA, 0.2 mM EGTA, 50 mM MgCl2, 3 mM DTT, 80 µg/mL BSA) using a Microcon 
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YM-10 centrifugal filter device (Amicon-#42406).  PEP and NADH were raised in 

MMix buffer immediately prior to the assays.  Reactions were made by adding the 

appropriate concentrations of PK, LDH, PEP, and NADH in 80 µL MMix buffer, 40 µL 

of ERK2 in ERK2 dilution buffer (25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 

0.1 mM EGTA, 2 mM DTT, 40 µg/mL BSA), 40 µL of Ets∆138 dilution buffer (1.25 

mM Hepes, pH 7.5, 2.5 mM KCl 0.05 mM EDTA, 0.05 mM EGTA, 2 mM DTT) 

although no Ets∆138 is added, and 40 µL of ATP, pH 7.5.  Each reaction was initiated by 

the addition of ATP after incubation for 5 min at 27 °C.  The rate of ATP hydrolysis to 

form ADP and Pi was monitored by measuring the decrease in NADH absorbance at 340 

nm as NAD+ is formed using a molar extinction coefficient of 6220 M-1 cm-1 at 340 nm 

(Scheme 7).  A blank containing the buffer and ATP was used in the absence of NADH 

and the enzymes. 

 

 

 
Scheme 7.  Structures of NADH and NAD+.  The ATPase activity of ERK2 was 
followed by UV absorbance by following the disappearance of NADH as NAD+ was 
formed. 
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SDS-PAGE GEL 

The SDS-PAGE gels were prepared by making a stacking gel on top of a 

separating gel.  The separating gel was poured first by adding a small aliquot to a final 

concentration of 0.1% ammonium persulfate and 0.1% N,N,N’,N’-

tetramethylethylenediamine (TEMED) just prior to pouring the gel to a 10 mL solution 

containing 10% acrylamide/bis-acrylamide (29:1), 37.5 mM Tris, pH 8.8, and 0.1% 

lauryl sulfate (sodium dodecylsulfate, SDS).  A staking gel was prepared by adding a 

small aliquot to a final concentration of 0.25% ammonium persulfate and 0.16% TEMED 

just prior to pouring the gel to a 6 mL solution containing 5% acrylamide/bis-acrylamide 

(29:1), 12.5 mM Tris, pH 6.8, 0.25% SDS.  Samples were boiled at 100 °C for 5 min in 

1x protein loading buffer (a stock of 2x protein loading buffer contained 100 mM Tris-

HCl, pH 6.8, 4% SDS, 0.2% bromophenol blue, 20% glycerol, with 1 mM 2-

mercaptoethanol added fresh before use).  The gels were run in protein electrophoresis 

buffer containing 25 mM Tris base, 200 mM glycine, 0.1% SDS (w/v) for 50 min at 200 

V. 
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EXPERIMENTAL DATA 

 

WT ERK2  

~2 mol/mol phosphate incorporated 
[Ets∆138], 

µM kobs, s-1 
200 16.5 15.4 17.5 21.3 19.9 23.0 18.2  16.5 16.8 20.2 20.5 

100 12.9 13.7 16.8 18.3 20.5 23.4 17.7 19.3 19.7 15.4 19.9 18.4 

50 10.2  12.6 21.0 19.1 21.2 15.3 17.5 16.4 17.0 18.5 18.3 

25 9.3 13.1 16.7 15.9 17.3 17.6 16.1 11.6 13.3 12.0 17.2 17.6 

12.5 5.5 11.6 12.1 14.0 13.3 14.0 11.5 8.6 12.6 9.2 15.5 14.8 

6.3 3.6 9.1 9.9 9.8 8.1 9.1 8.0 5.6 10.4 5.2 8.5 8.9 

 
[Ets∆138], 

µM kobs, s-1 
200 18.0 
100 17.8 
50 16.2 
25 13.5 

12.5 9.2 
 
2/25/04 
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Y111N/K112N ERK2 

~ 2.2 mol/mol phosphate incorporated 
 
[Ets∆138], µM kobs, s-1 

200 12.1 13.4 
100 11.0 12.6 
50 9.6 10.1 
25 7.6 8.3 

12.5 4.9 5.6 
6.3 2.6 3.3 

 
7/13/02 – 50 mM Hepes, pH 7.3, 120 mM KCl, 0.01 mM EDTA/EGTA, 1 µg/mL BSA, 
10 mM MgCl2, 2 mM ATP, 2.8 mM DTT 
9/16/02 – 25 mM Hepes, pH 7.3, 100 mM KCl, 0.1 mM EDTA/EGTA, 1 µg/mL BSA, 10 
mM MgCl2, 2 mM ATP, 2 mM DTT 
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L113A ERK2 

~ 2 mol/mol phosphate incorporated 

    
[Ets∆138], µM kobs, s-1 

200 21.2 
100 23.3 
50 21.8 
25 20.9 

12.5 17.0 
6.3 8.5 

 
10/25/02 – 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 2 mM 
ATP, 2 mM DTT 

 

 
L113A ERK2 
 
[ATP], µM kobs, s-1 

1000 17.2 
500 16.2 
250 12.4 
125 9.8 
62.5 8.0 

31.25 4.4 
 
10/25/02 – 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 200 µM 
Ets∆138, 2 mM DTT 
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Q117A ERK2 
 
~ 2.3 mol/mol phosphate incorporated 
 
[Ets∆138], µM kobs, s-1 

200 17.9 
100 16.6 
50 16.2 
25 11.1 

12.5 7.6 
6.3 4.9 

 
10/25/02 - 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 2 mM 
ATP, 2 mM DTT 

 

 
Q117A ERK2 
 
[ATP], µM kobs, s-1 

1000 14.4 
500 13.6 
250 10.7 
125 8.7 
62.5 5.9 
31.5 3.7 

 
10/25/02 - 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 200 µM 
Ets∆138, 2 mM DTT 
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H123A ERK2 

~ 2.1 mol/mol phosphate incorporation 
 
[Ets∆138], µM kobs, s-1 

200 27.3 27.9 
100 24.8 26.5 
50 20.5 18.6 
25 12.2 12.5 

12.5 6.7 7.2 
6.3 3.6 4.2 

 
11/13/02 - 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 2 mM 
ATP, 2 mM DTT 

 

 
H123A ERK2 
 
[ATP], µM kobs, s-1 

1000 26.2 
500 24.3 
250 19.2 
125 14.7 
62.5 10.2 
31.3 5.0 

 
11/13/02 - 50 mM Hepes, pH 8.2, 50 mM KCl, 40 µg/mL BSA, 20 mM MgCl2, 200 µM 
Ets∆138, 2 mM DTT 
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T157E/T158D ERK2 
 
~ 2.3 mol/mol phosphate incorporated 
 
[Ets∆138], µM kobs, s-1 

200 12.2 11.2 19.8
100 12.1 9.7 18.6
50 10.7 9.5 16.5
25 9.1 7.6 13.4

12.5 5.5 6.8 8.7 
6.3 2.9 4.7 4.3 

 
6/28/02 and 7/9/02 - 50 mM Hepes, pH 7.3, 100 mM KCl, 0.01 mM EDTA/EGTA, 8 
µg/mL BSA, 10 mM MgCl2, 2 mM ATP, 0.8 mM DTT 
5/31/03 - 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 40 µg/mL BSA, 20 
mM MgCl2, 2 mM ATP, 2 mM DTT 

 

 
T157E/T158D ERK2, 5/31/03 
 
[ATP], µM kobs, s-1 

1000 18.5 
500 16.7 
250 14.0 
125 11.2 
62.5 7.5 
31.3 5.1 

 
5/31/03 – 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 40 µg/mL BSA, 20 
mM MgCl2, 200 µM Ets∆138, 2 mM DTT 
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K229T/H230D ERK2 
 
~ 2 mol/mol phosphate incorporated 
 
[Ets∆138], µM kobs, s-1   

200 3.0   
100 2.4   
50 1.5   
25 0.9   

12.5 0.6   
6.3 0.6   

 
8/6/02 – 5 nM K229T/H230D, 50 mM Hepes, pH 7.3, 100 mM KCl, 0.01 mM 
EDTA/EGTA, 10 mM MgCl2, 2 mM ATP, 2.8 mM DTT 
 

[Ets∆138], 

µM 
kobs, s-1 

200 6.1 6.1 
150 5.0 5.2 
100 4.0 4.1 
75 3.1 3.4 
50 2.4 2.3 
25 2.1 1.8 

 
6/25/04 (ii) – 2.5 nM K229/H230D, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM 
EDTA/EGTA, 20 mM MgCl2, 2 mM ATP, 2 mM DTT, 40 µg/mL BSA 

 
K229T/H230D ERK2 
 
[ATP], µM kobs, s-1 

1045.0 2.7 
522.5 2.7 
261.3 2.3 
130.6 1.8 
65.3 1.2 
32.7 0.8 

 
8/6/02 – 5 nM K229T/H230D, 50 mM Hepes, pH 7.3, 100 mM KCl, 0.01 mM 
EDTA/EGTA, 10 mM MgCl2, 2 mM ATP, 2.8 mM DTT 
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Y314A/Y315A ERK2, 5/17/02, 9/11/02 WTC, 5/29/03 (ii) 

~ 1.8 mol/mol phosphate incorporation 
 
[Ets∆138], µM kobs, s-1 

200 28.7 29.2 18.4 17.9
100 25.4 24.5 19.5 18.5
50 21.7 22.6 15.0 14.5
25 19.1 20.1 15.3 11.9

12.5 11.8 14.2 9.4 8.0 
6.3 6.6 7.3 7.7 4.0 

 
5/17/02 – 22 mM Hepes, pH 7.3, 60 mM KCl, 10 mM MgCl2, 2 mM ATP 
5/29/03 (ii) – 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 2 mM DTT, 20 
mM MgCl2, 40 µg/mL BSA, 2 mM ATP 

 
Y314A/Y315A ERK2 
 
[ATP], µM kobs, s-1 

1032 21.0  
516 19.5  
258 14.5  
129 10.8  
64.5 6.9  
32.3 4.2  
1000  17.8 
500  16.5 
250  13.9 
125  10.1 
62.5  7.0 
31.3  4.6 

 
6/3/03 – 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 40 µg/mL BSA, 20 
mM MgCl2, 2 mM DTT, 200 µM Ets∆138 
7/25/02 – 50 mM Hepes pH 7.3, 100 mM KCl, 10 µM ED/EGTA, 10 mM MgCl2, 2.4 
mM DTT, 200 µM Ets∆138 
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D316A/D319A 
 
~ 1.5 mol/mol phosphate incorporated 
 
[Ets∆138], µM kobs, s-1 

200 26.4 14.0 13.1 
100 22.9 - 14.7 
50 19.6 11.5 13.2 
25 15.4 11.5 11.3 

12.5 12.7 3.6 7.8 
6.3 9.2 3.5 5.9 

 
5/17/03 – 22 mM Hepes, pH 7.3, 60 mM KCl, 10 mM MgCl2, 2 mM ATP 
5/29/03 (ii) – 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 2 mM DTT, 20 
mM MgCl2, 40 µg/mL BSA, 2 mM ATP  

 

 

D316A/D319A 

 
[ATP], µM kobs, s-1 

1032 17.6  
516 14.9  
258 12.5  
129 9.3  
64.5 6.1  
32.3 3.7  
1000  13.7 
500  13.1 
250  10.5 
125  8.1 
62.5  5.6 

31.25  3.4 
 
7/25/02 – 50 mM Hepes, pH 7.3, 100 mM KCl, 10 µM EDTA/EGTA, 10 mM MgCl2, 2.4 
mM DTT, 200 µM Ets∆138 
6/3/03 – 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA/EGTA, 2 mM DTT, 20 mM 
MgCl2, 40 ug/mL BSA, 200 µM Ets∆138 
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Anisotropy data 

 

Inactive ERK2, 2/3/04, 4/13/04, 4/16/04 

 
ERK2, µM Anisotropy, <r> 

0 0.1136 0.11166 0.11386 
0.45 0.14389 0.1477 0.14032 
0.9 0.16458 0.16731 0.16217 
1.3 0.1806 0.18107 0.17619 
1.8 0.1916 0.19139 0.186 
3.5 0.212 0.21436 0.21088 
5.3 0.21977 0.22314 0.2198 
7 0.226 0.22857 0.22607 

8.8 0.2292 0.23217 0.23262 
10.5 0.23257   
12.3 0.23309   
14 0.23676   

15.8 0.23682   
17.5 0.24027   

 
Assay conditions: 100 nM Ets∆138–Fluorescein (Cys-31 labeled Ets∆138-C31*), 25 mM 
Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, 2 mM 
DTT, 2% glycerol 
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Inactive K229T/H230D ERK2, 1/31/04 

 

K229T/H230D, µM Anisotropy, <r> 
0 0.10916 0.10899 

2.4 0.11499 0.11443 

4.7 0.11956 0.11888 

7.1 0.12443 0.12407 

9.4 0.12809 0.12737 

14.4 0.13547 0.1356 

18.8 0.14324 0.14223 

 
Assay conditions: 100 nM Ets∆138–Fluorescein (Cys-31 labeled Ets∆138-C31* 
containing only one cysteine), 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 
mM EGTA, 40 µg/mL BSA, 2 mM DTT, 2% glycerol 
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Ets∆24-138, 11/9/01 

 
[Ets∆24-138], 

µM kobs, s-1 
171.0 11.9 
85.5 7.7 
42.8 5.3 
21.4 3.1 
10.7 1.8 
5.3 1.0 

 

 

 

Ets∆24-138 

 
[ATP], µM kobs, s-1 

1032 10.7 
516 9.5 
258 8.4 
129 5.7 
64.5 4.6 
32.3 2.5 

 
7/23/02 – 50 mM Hepes, pH 7.3, 100 mM KCl, 10 µM EDTA/EGTA, 10 mM MgCl2, 8 
µg/mL BSA, 3.2 mM DTT, 200 µM Ets∆24-138 (non-saturating) 
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K15A Ets∆138, 1/14/02, 3/7/02, and 6/4/02 (ii) 

 
[K15A], µM kobs, s-1 

200 18.2 19.0 
100 18.9 15.1 
50 17.8 14.0 
25 14.9 10.4 

12.5 13.0 -   
6.25 7.8 4.7 
160.0   13.8 14.6
80.0   12.3 12.4
40.0   12.6 13.6
20.0   10.7 11.7
10.0   7.2 8.7 
5.0   4.7 4.7 

 
6/4/02 (ii) – 25 mM Hepes, pH 7.3, 120 mM KCl, 10 mM MgCl2, 8 µg/mL BSA, 2.4 mM 
DTT, 0.1 nM ERK2, 2 mM ATP 

 

K18A, L21A, and L23A Ets∆138, 11/2/01 

 
 kobs, s-1 

[Ets∆138], 
µM K18A L21A L23A 
200 18.0 18.7 16.6 
100 16.3 16.7 16.5 
50 16.4 15.3 15.0 
25 14.2 12.3 12.4 

12.5 10.7 11.5 9.8 
6.3 8.3 5.5 5.1 
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K15A/K18A Ets∆138, 1/14/02 and 5/31/02 
 
[K15A/K18A], µM kobs,s-1 

170.0 17.6  
85.0 16.6  
42.5 15.2  
21.3 12.3  
10.6 9.4  
5.3 5.1  

100.0  23.4
50.0  22.6
25.0  21.0
12.5  14.0
6.3  12.0

 

 

 

L21A/L23A Ets∆138, 1/14/02 and 5/31/02 

 
[L21A/L23A], µM kobs, s-1 

200 21.0 20.2
100 19.0 18.5
50 18.2 18.2
25 14.8 13.9

12.5 9.5 10.8
6.25 7.3 7.1 
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F88A Ets∆138 
 
[F88A], µM kobs, s-1 

200.0 14.8 
100.0 14.3 
50.0 11.4 
25.0 9.2 
12.5 7.4 
6.3 3.1 

 
8/2/02 – 50 mM Hepes, pH 7.3, 100 mM KCl, 10 µM EDTA/EGTA, 8 µg/mL BSA, 10 
mM MgCl2, 2 mM ATP, 1 nM ERK2, 3.2 mM DTT 
 
 
 
F120A Ets∆38 
 
[F120A], µM kobs, s-1 

200 7.8 10.2 
100 5.2 6.6 
50 3.4 3.8 
25 1.8 2.1 

12.5 0.8 1.3 
6.3 0.2 0.7 

 
5/17/02 – 25 mM Hepes, pH 7.3, 60 mM KCl, 10 mM MgCl2, 2 mM ATP, 5 nM ERK2 
5/31/02 – 25 mM Hepes, pH 8.0, 120 mM KCl, 0.1 mM EDTA/EGTA, 8 µg/mL BSA, 10 
mM MgCl2, 2 mM ATP, 2.4 mM DTT, 5 nM ERK2 
 
 
 
F120A Ets∆138 
 
[ATP], µM kobs, s-1 

1032.0 5.5 
516.0 5.2 
258.0 4.2 
129.0 3.6 
64.5 2.4 
32.3 1.5 

 
6/23/02 – 50 mM Hepes, pH 7.3, 100 mM KCl, 10 µM EDTA/EGTA, 10 mM MgCl2, 8 
µg/mL BSA, 3.2 mM DTT, 200 µM F120A Ets∆138 (non-saturating) 
 



 182

 
F88A/F120A 
 
[F88A/F120A], µM kobs, s-1 

200 5.6 7.0 
100 4.3 4.1 
50 2.5 2.4 
25 1.5 1.3 

12.5 0.7 0.6 
6.3 0.3 0.3 

 
5/17/02 – 25 mM Hepes, pH 7.3, 60 mM KCl, 10 mM MgCl2, 2 mM ATP, 5 nM ERK2 
5/31/02 – 25 mM Hepes, pH 8.0, 120 mM KCl, 0.1 mM EDTA/EGTA, 8 µg/mL BSA, 10 
mM MgCl2, 2 mM ATP, 2.4 mM DTT, 5 nM ERK2 
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CHAPTER 4: PHOSPHORYLATION DIFFERENTIALLY 
REGULATES MAPK PROTEIN-PROTEIN INTERACTIONS: A 

QUANTITATIVE ANALYSIS USING FLUORESCENCE 
ANISOTROPY 

 

PURPOSE  

 This chapter describes the development of a fluorescence anisotropy assay that 

measures the equilibrium dissociation constant (Kd) of the docking complex formed 

between ERK2 and its protein substrate Ets∆138.  Three cysteines within Ets∆138 were 

mutated to alanine and the remaining cysteine was covalently attached to a fluorescein 

moiety to generate fluorescent Ets∆138 (Ets∆138-F).   The fluorescence anisotropy, a 

measure of molecular rotation, of the unbound fluorescent Ets∆138 Ets∆138-F was low 

and increased upon binding ERK2 due to decreased molecular rotation of the ERK2-

bound Ets∆138-F.  By measuring the fluorescence anisotropy of Ets∆138-F at several 

concentrations of ERK2 we were able to determine the dissociation constant for the 

ERK2–Ets∆138-F complex.  Unlabeled competitors that bind ERK2 and disrupt its 

ability to bind Ets∆138-F were added to disrupt formation of the fluorescent complex so 

that the Kds of unlabeled competitors could be determined.  This quantitative binding 

assay allows the Kd of peptides, proteins, and presumably small molecules that disrupt the 

ERK2–Ets∆138-F docking complex to be determined.  This assay will be useful in 

elucidating target candidates for the disruption of a specific protein–protein interaction 

and possibly lead to the discovery of drugs that disrupt ERK2 phosphorylation of a 

specific subset of targets by inhibiting specific protein–protein interactions.  
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INTRODUCTION 

Extracellular signal-regulated protein kinase 2 (ERK2, EC 2.7.1.37) is an enzyme 

capable of transferring the γ-phosphate of adenosine triphosphate (ATP) to the hydroxyl 

group of Thr-38 on one of its protein substrates Ets∆138 [42], thereby, phosphorylating 

Ets∆138.  The NMR structure for the C-terminal portion of Ets∆138 has been solved for 

residues 29-138 [114] of the transcription factor Ets-1 (Accession: P27577) [120].  The 

dual-phosphate form of ERK2 efficiently phosphorylates Ets∆138 with a kcat/Km of 1.0–

2.5 × 106 M-1 s-1 [6, 52] under conditions where ATP and MgCl2 are saturating.  In 

quiescent cells, ERK2 is located in the cytoplasm and upon cell stimulation is 

phosphorylated and localized to the nucleus [102] where it can phosphorylate nuclear 

transcription factors such as Ets-1 that lead to cell morphology changes. 

Steady-state [7] and pre-steady state kinetics [44] of Ets∆138 phosphorylation 

have been carried out in the presence of the dual-phosphate form of ERK2 to understand 

the catalytic events of the enzyme–substrate pair.  Ets∆138 is a model protein substrate 

for ERK2  because it is a physiologically relevant protein substrate25 [121], yields a high 

amount and purity of protein when expressed in bacteria [42], contains only one 

phosphorylation site (Thr38-Pro39), contains a docking motif that enhances the efficiency 

of its phosphorylation [52], and its NMR structure has been solved [114].  Analytical 

techniques to directly measure the equilibrium dissociation constant (Kd) of the ERK2–

Ets∆138 interaction have not been developed and are critical for studying molecular 

recognition determinants of the enzyme–substrate (E–S) pair under various conditions 

such as different phosphorylation states of the enzyme, phosphorylation states of the 

substrate, and under conditions where alternate substrates and enzymes are utilized.  An 

                                                 
25 Phosphorylation of Ets-1 leads to an increase in its transactivation capabilities. 
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analytical binding assay will make it possible to understand the rates of association and 

dissociation of the E–S or enzyme–product pair and determinants that affect these events, 

thereby, allowing a better understanding of the enzyme and its functions.  We have 

developed a fluorescence anisotropy assay that allows the direct measurement of the Kd 

of the ERK2–Ets∆138 docking interaction and facilitates the ability to carry out 

structure-function analyses. 

The fluorescence anisotropy assay was carried by covalently labeling the smaller 

of the two proteins (Ets∆138 ~ 18 kD) with a fluorescein moiety26 to generate Ets∆138-

Fluorescein (Ets∆138-F).  The fluorescence anisotropy of Ets∆138-F, a measure of the 

rate of molecular tumbling of a fluorescent molecule, was shown to increase in the 

presence of ERK2 due to an increase in molecular volume of the fluorescent substrate 

upon complexation with ERK2 to form an ERK2–Ets∆138-F docking complex.  

Hyperbolic binding curves were generated which allowed for the determination of the Kd 

for the ERK2–Ets∆138-F docking complex.  Results indicate that both the 

unphosphorylated and phosphorylated forms of ERK2 form a docking complex with 

Ets∆138-F with relatively similar affinities.  The ERK2–Ets∆138-F docking complex 

was disrupted by the addition of non-fluorescent proteins and peptides that competed for 

an ERK2 binding site for Ets∆138 (an enzymic binding termed an exosite) and allowed 

for the determination of the Kd for the unlabeled competitors and ERK2.  The 

fluorescence anisotropy and competition assay described here will facilitate further 

structure-function analyses on this enzyme–substrate pair and allow further insight into 

                                                 
26 Fluorescein was chosen as it has a long excitation and emission wavelength which helps to avoid light 
scattering which is inversely proportional to the fourth power of wavelength.  Fluorescein has a high 
absorption coefficient, a high quantum yield of fluorescence, it can be detected at very low concentrations, 
and has an excited-state lifetime of 4 ns which is the time required for significant rotation of 
macromolecules less than 100 kD. 
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the determinants of molecular recognition required for a protein kinase to phosphorylate a 

protein substrate.  

 

 

FLUORESCENCE ANISOTROPY 

Fluorescence anisotropy/polarization uses the molecular rotation rates of 

fluorescent molecules or their ability to tumble in solution to measure ligand-receptor 

complexation and dissociation.  Fluorescence anisotropy/polarization has been used to 

study DNA–Protein, Protein–Protein, and Antibody–Ligand interactions.  This technique 

exploits the fact that small molecules tumble quickly in solution and larger molecules 

tumble slowly.  A fluorescently-labeled molecule that is excited with plane-polarized 

light can emit light that is either in the same plane or in a different plane than that with 

which it was excited.  The plane of the emitted light is determined by the rotational 

relaxation time which is proportional to molecular volume and viscosity and inversely 

proportional to temperature.  Anisotropy experiments were carried out by holding the 

temperature and viscosity of the solution constant while measuring changes in the 

molecular volume of fluorophore-bound protein upon addition of a macromolecule 

(protein) that binds the fluorophore-bound protein. 

Fluorescence polarization was first described in 1926 by Perrin, who showed that 

a large fluorescently labeled molecule excited with plane-polarized light remained 

stationary between its excitation and emission states and, therefore, emitted light into the 

same plane as that in which it was excited.  Smaller molecules excited with plane-

polarized light that rotate or tumble through solution quickly during the excited state do 

not emit light back into the same plane.  Therefore, molecules of different size give 
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different polarization values.  Polarization is proportional to the rotational relaxation time 

of a molecule which is defined as the time it takes to rotate through an angle of 68.5° 

(often referred to as the magic angle).  Rotational relaxation time (ρ) is proportional to 

the viscosity (η) of the solution and the molecular volume of the fluorophore (V) and 

inversely proportional to the absolute temperature (T) of the solution; where R is the gas 

constant 8.314 J mol-1 K-1 (Equation 4). 

 

Equation 4 Debye rotational relaxation time (ρ) = 
RT
ηV3  

 

Therefore, if temperature and viscosity are held constant and the molecular 

volume of the labeled molecule changes by binding to another non-labeled molecule, 

then the polarization of the molecule changes due to an increase in the rotational 

relaxation time.  These changes in polarization due to varying complex size allow 

protein–protein interactions to be measured using fluorescence polarization/anisotropy.  

To measure polarization/anisotropy, a fluorescent molecule is excited with a 

vertical plane of light (defined as 0°) and the intensity of the emitted light in both the 

vertical plane (0°) and the horizontal plane (90°) are measured.  The measured intensity 

(I) is denoted as IVV or IVH (where the first subscript describes the plane of excitation 

light and the second describes the plane of emitted light).  Polarization and anisotropy are 

mathematically similar and are often used interchangeably.   

Equation 5 and Equation 6 are used to calculate polarization and anisotropy, 

respectively.  Both equations share similar numerators, however, the denominator for 

polarization describes the natural light intensity whereas anisotropy describes total light 

intensity.  
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Equation 5 Polarization (P) = 
)I(I
)I(I

VHVV

VHVV

+
−

 

Equation 6 Anisotropy <r> = 
)I(I

)I(I

VHVV

VHVV

×+
−
2

 

 

When the fluorometer contains monochromators, the monochromator grating 

factor (G factor) is included into the polarization and anisotropy equations to “correct for 

the wavelength response to polarization of the emission optics and detectors” (Jobin 

Yvon Horiba users manual).  The G factor also describes the “ratio of relative 

transmission efficiencies (intensities) of the emission channel for horizontally and 

vertically polarized light.”  Mathematically, the G factor is defined as G = IHV/IHH.  The 

G factor is dependent on wavelength so it must be measured at each wavelength for 

experiments that involve scanning the emission monochromator.  For experiments that do 

not involve scanning, as described below, the G factor can be measured before or during 

each experiment.  Equation 7 and Equation 8 describe polarization and anisotropy in a 

fluorometer which includes the G factor. 

 

Equation 7 (P) in spectrophotometer = 
)IG(I
)IG(I

VHVV

VHVV

×+
×−

 

Equation 8 <r> in spectrophotometer = 
)IG(I

)IG(I

VHVV

VHVV

××+
×−

2
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To determine the polarization/anisotropy change of a binding interaction, usually 

the anisotropy of the smaller of the two molecules of interest is followed.  This allows for 

a larger change in anisotropy between the bound and unbound state as compared to 

labeling the larger molecule (since the change in anisotropy is proportional to the change 

in molecular volume).  The anisotropy of the fluorescent molecule complexed with a 

larger molecule is expected to increase as the size of the fluorescent complex increases.  

This is due to an increase in the molecular volume which increases the rotational 

relaxation time and, therefore, increases the polarization/anisotropy.  Experiments were 

carried out by holding the fluorescent molecule at a constant concentration while the 

larger molecule is titrated in to determine the steady-state equilibrium dissociation 

constant of the complex. 

 

 

RESULTS AND DISCUSSION 

CHOOSING A SUBSTRATE AMENABLE TO FLUORESCENT LABELING 

The recombinant protein Ets∆138 is a model protein substrate for studying the 

mechanism of phosphorylation by the dual-phosphate from of ERK2 [7, 42].  To study 

the protein-protein interactions between ERK2 and Ets∆138 under conditions that do not 

involve phosphoryl-transfer, we developed a fluorescence anisotropy binding assay.  

Ets∆138 has four cysteines (Figure 41) making it sub-optimal for fluorescent labeling on 

a single cysteine, however, removal of three of the cysteines by site-directed mutagenesis 
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generated an excellent substrate for fluorescent labeling using sulfhydryl chemistry.  

Since the change in fluorescence anisotropy upon binding a ligand is proportional to the 

change in molecular volume of the fluorescent species, we attached the fluorescent label 

to the smaller protein Ets∆138 (18 kD) so that binding the larger protein kinase ERK2 

(42 kD) to form the docking complex would lead to the maximal change in anisotropy. 
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Figure 41.  Structural representation of the ERK2 substrate Ets∆138.  The four 
cysteines in Ets∆138 (1BQV) are highlighted in blue and shown with respect to the 
location of the phospho-acceptor residue (Thr-38).  Each of the four cysteines is near the 
surface of the NMR structure (1BQV) with greater than 10% accessibility to the solution 
(as determined in DeepView/Swiss-PdbViewer (GlaxoSmithKline)).  The structure was 
generated using DeepView/Swiss-PdbViewer and rendered in POV-Ray version 3.1. 
 
 
 

CYSTEINE MUTAGENESIS 

To label a protein with a fluorophore at a single site using sulfhydryl chemistry, 

we needed to generate an Ets∆138 protein containing only one surface exposed cysteine.  

To discern whether or not Ets∆138 was a feasible substrate for ERK2 in the absence of 

cysteines, each of the four cysteines (Cys-31, Cys-99, Cys-106, and Cys-112) were 

mutated to alanine using site-directed PCR mutagenesis.  Ets∆138 lacking all four 

cysteines was termed Ets∆138 No Cysteines (Ets∆138NC).   

We hypothesized that 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) would react to 

form thiolate anions with the surface exposed cysteines of Ets∆138 (containing 4 



 192

cysteines) but not with Ets∆138NC (Scheme 8).  Reactive surface exposed cysteines were 

quantified by comparing the molar ratio of thiolate anion formation and the molar ratio of 

protein in the reaction.  

  

 

 
Scheme 8.  Labeling of surface exposed cysteines on Ets∆138.  Surface exposed 
cysteines on Ets∆138 and Ets∆138 mutants lacking cysteines were reacted with DTNB to 
determine the number of surface exposed reactive cysteines.  Sulfhydryl chemistry 
between the side chain of cysteines and DTNB form a labeled cysteine moiety and 
produce a thiolate anion that can be followed by its yellow color.  The molar amount of 
thiolate anion formation was compared to the molar amount of Ets∆138 protein to 
determine the molar ratio of reactive cysteines per molecule of Ets∆138. 

 

 

The reaction was monitored using a spectrophotometer to follow the formation of the 

yellow thiolate anion.  Ets∆138NC was shown to contain no cysteines while Ets∆138 
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contained 3 reactive cysteines (Table 9).  These results indicate that the cysteines were 

removed in the Ets∆138NC construct and that one of the four cysteines in Ets∆138 was 

not surface exposed for DTNB labeling.  Phosphorylation of Ets∆138NC by dual-

phosphate ERK2 was carried out and shown to have similar steady-state kinetic 

parameters to that of Ets∆138 (Figure 42) indicating that the cysteine residues are not 

essential for binding or phosphorylation by dual-phosphate ERK2. 

 

 Cysteinesa Exposed Cysteinesb Massc
 Labeled Massd 

Ets∆138e 4 3.0 17 664 N/A 

Ets∆138NC 0 0.05 17 534 17 535 

Ets∆138-C31* 1 1 17 566 17 955 

Ets∆138-C99* 1 N/A 17 566 17 955 

 
Table 9.  Characterization of the surface exposed cysteines of Ets∆138 and its 
cysteine and their mass before and after labeling with fluorescein.  The number of 
cysteines present in each mutant protein was determined by the amino acid sequencea.  
The number of surface exposed cysteines were determined by DTNB labelingb.  The 
mass of each protein (units: Daltons) was determined by electrospray ionization mass 
spectrometry beforec and afterd labeling with 5-IAF (fluorescein).  Fluorescein 
incorporation into each protein was characterized by a 389 Da increase in mass (386 Da 
expected).  Each Ets∆138 contained an Ser26Ala mutatione [44].  The expected mass for 
labeled and unlabeled Ets∆138, Ets∆138 NC, Ets∆138-C31*, and Ets∆138-C99* were 
within 2 Da on average. 
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Figure 42.  Steady-state kinetics of Ets∆138NC phosphorylation by dual-phosphate 
ERK2. An Ets∆138 mutant was generated that lacked cysteines (Ets∆138NC, open 
squares).  This mutant showed similar steady-state kinetic parameters to Ets∆138 (closed 
squares) indicating that the cysteines are not required for substrate phosphorylation by 
ERK2.  Varying concentrations of Ets∆138 were examined for initial rates of phosphate 
incorporation into Thr-38 by ERK2.  The observed initial rates (kobs) were plotted against 
the concentration of substrate and the data were fit to the equation 
kobs=(kcat×[S])/([S]+Km) to derive the steady-state parameters for Ets∆138NC: kcat = 23.1 
± 1.3 s-1 and Km = 13.1 ± 2.9 µM and Ets∆138: kcat = 19.6 ± 0.7 s-1 and Km = 8.8 ± 1.4 
µM.  Assay conditions were 50 mM Hepes, pH 8.2, 50 mM KCl, 20 mM MgCl2, 2 mM 
DTT, 40 µg/mL BSA, 2 mM ATP. 
 
 

LABELING ETS∆138 WITH FLUORESCEIN 

An Ets∆138 mutant was generated that contained a single cysteine at position 31 

(termed Ets∆138-C31*) so that it could be labeled with a fluorophore.  Ets∆138-C31* 

was shown to contain one reactive cysteine when mixed with DTNB indicating that Cys-

31 could be labeled with a fluorophore (Table 9).  The fluorophore 5-iodoacetomido-
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fluorescein (5-IAF) reacted with Ets∆138-C31* to generate the fluorescently labeled 

Ets∆138-Fluorescein (Ets∆138-F) protein (Scheme 9). 

 

 

 
Scheme 9.  Fluorescein-labeling of a surface exposed cysteine.  Ets∆138 mutants 
containing a single exposed cysteine (Ets∆138-C31* and Ets∆138-C99*) were mixed 
with 5-iodoacetomidofluorescein (5-IAF) to generate Ets∆138-F with a fluorescein 
moiety attached to the sulfhydryl group of either the Cys-31 or Cys-99 side chain. 

 

 

The reaction was quenched, unreacted 5-IAF was removed, and the Ets∆138-F was 

further purified on a Mono Q HR 5/5 anion exchange column.  As expected, the Ets∆138-

C31* co-eluted with fluorescein indicating an Ets∆138-F complex had formed (Figure 
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43).  Similar labeling was achieved with Ets∆138-C99* containing a single cysteines at 

position 99 (K. Cox). 

 
 

 

Figure 43.   Mono Q HR 5/5 anion exchange purification of fluorescein-labeled 
Ets∆138-C31* (Ets∆138-F).  Ets∆138-C31* was mixed with a 15-fold molar excess of 
5-IAF and labeled on Cys-31 to generate Ets∆138-F.  The unreacted 5-IAF was removed 
using a PD-10 desalting column and the fluorescent protein was applied to a Mono Q HR 
5/5 anion exchange column.  The protein was eluted with a linear gradient of NaCl (not 
shown) and the eluted protein was monitored for the presence of protein (tryptophan and 
tyrosine absorbance: A280) as well as for the presence of fluorescein (A492).  The 
Ets∆138-C31* and the fluorescein co-eluted indicating the complex Ets∆138-F had 
formed. 

 

 

The mass of the unlabeled Ets∆138-C31* was 17 566 Da (expected 17 568 Da) 

while the mass of the Ets∆138-F complex was 17 955 Da (expected 17 953 Da) 

indicating the covalent attachment of fluorescein in the Ets∆138-F complex (K. Cox).  

No unlabeled Ets∆138-C31* was detected in the Ets∆138-F indicating complete labeling 
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(although mol/mol ratio of fluorescein to Ets∆138-C31* using spectrophotometry 

suggests ~77% labeled).  Similarly the mass of the unlabeled Ets∆138-C99* was 17 566 

Da (expected 17 568 Da) and the labeled Ets∆138-C99*-F had a mass of 17 955 Da 

(expected 17 953 Da) (K. Cox).  A similar labeling procedure was carried out with 

Ets∆138NC, however, no labeling was detected27 (K. Cox) (Table 9). 

To ensure that the fluorescein moiety was covalently attached to Cys-31 in 

Ets∆138-F, a tryptic digest was carried out followed by the purification of a single 

fluorescent tryptic peptide.  The mass of the fluorescent peptide was 2 974 Da (expected 

2 974 Da) indicating the fluorescent labeling of the tryptic peptide corresponding to 

V19DLELFPAPDMEC31ADVPLLTPSSK42 that contained a single cysteine at position 31 

labeled with fluorescein.  The Ets∆138-F protein had an excitation and emission maxima 

of 491 and 515.5 nm, respectively, indicating its similarity to the spectral properties of 

fluorescein. 

 

 

FLUORESCENCE ANISOTROPY OF ETS∆138-F INCREASES WHEN 
BOUND TO ERK2 

Ets∆138-F generated a fluorescence anisotropy signal of <r> = 0.11 and was 

expected to increase upon binding a larger ligand.  Upon addition of both 

unphosphorylated and dual-phosphorylated ERK2, the anisotropy signal of Ets∆138-F 

increased indicating that the Ets∆138-F was able to bind both the inactive and active 

form of ERK2 (Figure 44).  The increase in anisotropy was due to an increase in the 

molecular volume of the Ets∆138-F since both temperature and viscosity were held 

                                                 
27 The mass of Ets∆138NC was 17 534 Da (expected 17536 Da) and after an attempt to label Ets∆138NC 
the mass was still 17 535 (expected 17 921 Da for labeled Ets∆138NC-F) indicating that no fluorescein was 
incorporated.  
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constant in the assay.  The data were fit to Equation 9  to yield a Kd of 0.7 ± 0.1 µM and 

5.3 ± 0.1 µM for unphosphorylated and dual-phosphorylated ERK228, respectively, 

indicating that both forms of ERK2 bind with similar affinity irrespective of its 

phosphorylation state.  The difference in the anisotropy change between the 

phosphorylated and unphosphorylated ERK2 may be due to a difference in molecular 

shape of the different phosphate forms of ERK2.  It is interesting that the amplitude of 

the anisotropy change for the inactive ERK2 is twice that of the active ERK2 indicating 

that Ets∆138-F may bind a dimer of inactive ERK2 and only a monomer of active ERK2. 

                                                 
28 Ets∆138-C99*-F gave a similar Kd value of 4.7 ± 0.6 µM for dual-phosphate ERK2 indicating that 
location of the fluorophore does not affect the Kd (K. Cox).  Phosphorylation of Ets∆138-C31*-Fluorescein 
did not have a significant affect on dual-phosphate ERK2 affinity (Kd = 4.1 ± 0.5 µM) (K.Cox). 
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Figure 44.  The fluorescence anisotropy of Ets∆138-F increases when bound to 
ERK2.  Fluorescence anisotropy values (<r>) were measured using 100 nM Ets∆138-F 
with varying amounts of inactive (closed) and active (open) ERK2 in 25 mM Hepes, pH 
7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 
mM DTT.  Each reaction was excited with both vertically- and horizontally-polarized 
light at 492 nm and the emission was measured both vertically and horizontally to the 
excited light at 515 nm.  Anisotropy values were calculated using Equation 8.  The data 
were plotted using KaleidaGraph and fit to Equation 9 to obtain a Kd of 0.7 ± 0.1 µM and 
2.7 ± 0.1 µM for unphosphorylated and dual-phosphorylated ERK2, respectively.  Error 
bars indicate the standard deviation from the mean for the inactive (n=3) and active (n=2) 
ERK2.  Slits were set at 5 nm.  Integration time was 300 msec.  The G-factor did not vary 
between samples (0.75-0.76).   
 

 

COMPETITION ASSAY 

A fluorescence anisotropy competition assay (Scheme 10) was used to determine 

the Kd for non-fluorescent Ets∆138.  The fluorescence anisotropy of an ERK2–Ets∆138-F 
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complex was monitored in the presence of several concentrations of non-fluorescent 

Ets∆138.  For the competition assay, we make the assumption that the unlabeled 

competitor binds an Ets∆138-F exosite on ERK2 that competes with the ability of 

Ets∆138-F to form a docking complex with ERK2.  Therefore, increasing the 

concentration of the competitor decreases the amount of Ets∆138-F bound to ERK2 and 

leads to a smaller anisotropy value as compared to the ERK2–Ets∆138-F docking 

complex.  We show that unlabeled Ets∆138 acts as a competitor and disrupts both 

unphosphorylated and dual-phosphorylated forms of the ERK2–Ets∆138-F complex 

(Figure 45).  The data was simultaneously fitted to Equation 10 and Equation 11 using 

the pre-determined Kd for the ERK2-Ets∆138-F complex for both ERK2 phospho-forms 

(derived from Figure 44) to solve for the Kd of the non-fluorescent ERK2–Ets∆138 

complex (Kd’2) for both unphosphorylated (Kd = 2.5 ± 1.3 µM) and dual-phosphorylated 

(Kd = 6.6 ± 1.2 µM) ERK2.  Interestingly, the value of Kd for the fluorescent Ets∆138-F 

and the unlabeled Ets∆138 were similar indicating that the fluorophore on Cys-31 does 

not affect the affinity of Ets∆138-F for ERK2.  Bovine serum albumin, the main protein 

in mammalian blood tissue that binds several proteins, was used as a nonspecific protein 

competitor and did not dissociate the ERK2–Ets∆138-F docking complex with 

concentrations up to 200 µM (K. Cox, data not shown).  Using the competition assay, a 

single fluorescent protein, Ets∆138-F, can be used to determine the value of Kd for non-

fluorescent proteins that compete with Ets∆138-F for a similar ERK2 exosite. 
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Scheme 10.  Fluorescence anisotropy competition assay.  A docking complex was 
formed between ERK2 (dark gray) and Ets∆138-F (light gray) that yields a high 
anisotropy value.  Upon addition of a non-fluorescent competitor that binds ERK2, 
Ets∆138-F dissociates from ERK2, thereby, yielding a lower anisotropy value.  Using 
several concentrations of the non-fluorescent competitor and the known Kd for the 
ERK2–Ets∆138-F docking complex, the value of Kd of the non-fluorescent ERK2–
Ets∆138 docking complex was determined.  We make the assumption that the competitor 
binds an ERK2 exosite for Ets∆138-F. 
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Figure 45.  A fluorescence anisotropy competition assay to determine the Kd of non-
fluorescent ERK2 ligands.  A docking complex was formed using ERK2 (9.55 µM) and 
Ets∆138-F (100 nM) and the anisotropy of the fluorescent complex was monitored in the 
presence of several concentrations of non-fluorescent Ets∆138.  Non-fluorescent Ets∆138 
competed for ERK2 binding and decreased the ERK2–Ets∆138-F concentration which 
decreased the anisotropy.  Both the unphosphorylated (closed circles) and the dual-
phosphorylated (open circles) ERK2 were analyzed.  The data were simultaneously fit to 
Equation 10 and Equation 11 using pre-determined Kd values for the ERK2-Ets∆138-F 
docking complex.  The Kd for Ets∆138 and inactive ERK2 was 2.5 ± 1.3 µM (n=1) and 
that of active ERK2 was 6.6 ± 1.2 µM (n=3).  Data points are shown as mean ± SD.  Kd 
are depicted as mean ± SE. 

 

 

DOCKING MOTIF PEPTIDES COMPETE FOR ETS∆138 EXOSITES ON 
ERK2 

MAPK docking motifs exist on proteins that interact with MAPKs and mediate 

binding to specific MAPKs or a subset of MAPKs.  These docking motif peptides have 

been shown to bind MAPKs and disrupt the protein-protein interactions and catalytic 

events between MAPKs and their activators, substrates, and inactivators.  One such 
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docking motif is termed a docking for ERK/FXFP (DEF) motif and contains a consensus 

sequence of Phe-X-Phe-Pro (FXFP), where X represents any amino acid [19].  A DEF 

motif is thought to mediate ERK2 binding to the ETS family of proteins, however, 

Ets∆138 does not contain a DEF motif.  Peptides resembling a DEF motif act as general 

inhibitors of ERK2 catalysis [19].  A recent study using amide exchange proposed that a 

DEF motif peptide derived from the ERK2 substrate Elk-1 can bind only the dual-

phosphate form of ERK2 in a region near the αF helix, αG helix, and the MAPK insert 

region that is not available in the inactive protein [28]. 

Another docking motif is termed the kinase interaction motif (KIM) [53] (also 

referred to as both a docking-site for ERK and JNK LEL (DEJL) [19] and a D-domain 

[29]) which contains both basic and small hydrophobic residues in the consensus 

sequence R/K-X4-φA-X-φB where φ is a hydrophobic residue such as leucine, isoleucine, 

or valine.  Peptides containing a KIM inhibit MAPKK2 binding and phosphorylation of 

ERK2, ERK2 phosphorylation of Elk-1, and MKP1 dephosphorylation of ERK2 [54] 

indicating that the KIM inhibition occurs at an exosite on ERK2 important for many 

different types of protein-protein interactions such as activator, substrate, and inactivator 

binding.  It was originally proposed that the KIM of MAPKK1 may form a docking 

complex with the common docking (CD) exosite on ERK2 since this region is thought to 

regulate similar protein-protein interactions [17].  However, a recent co-crystal structure 

of two DEJL motif peptides, derived from the activator MAPKK3b and the substrate 

MEF2a, bound to inactive p38 MAPKα suggest that neither peptide shows direct contact 

with the CD exosite and instead binds a region between the β7-β8 reverse turn and the 

αD-αE helix [27].  Hydrogen exchange experiments also verify this MAPK binding region 

for a similar DEJL motif peptide (derived from Elk-1) binding to both the active and 

inactive forms of p38 MAPKα as well as the dual-phosphate form of ERK2 [28]. 
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A DEJL and a DEF motif peptide derived from the ERK2 substrate Elk1 (Elk1-

DEJL: N-QKGKPRDLELPLSPSLR-C [122] and Elk1-DEF: N-AKLSFQFPS-C [19]) 

were used as competitors in our fluorescent anisotropy assay to test whether the docking 

motif peptides could bind the Ets∆138-F exosite on ERK2 and disrupt the ERK2–

Ets∆138-F docking complex.  The proposed docking exosite on the dual-phosphate form 

of ERK2 for the Elk1-DEJL and Elk1-DEF peptides have been proposed [28].  Here, we 

show that both peptides were capable of disrupting the dual-phosphate ERK2–Ets∆138-F 

complex as seen by the decrease in anisotropy with increased peptide concentration 

(Figure 46a).  The Elk1-DEJL peptide (Kd = 5.1 ± 2.0 µM) had a greater affinity than the 

Elk1-DEF peptide (19.3 ± 2.4 µM) for the dual-phosphate form of ERK2.  However, the 

unphosphorylated ERK2 was unable to bind the Elk1-DEF peptide (Kd = 1.0 ± 0.2 mM; 

K. Cox) while maintaining a similar affinity for the Elk1-DEJL peptide (Kd = 2.6 ± 0.7 

µM; K. Cox) (Figure 46b).  These results suggest that the different phospho-forms of 

ERK2 can discriminate against one type of docking motif peptide (Elk1-DEF) but cannot 

discriminate against another docking motif peptide (Elk1-DEJL).  There are 

conformational changes that occur when ERK2 is phosphorylated [4] which may account 

for the specificity of binding for the Elk1-DEF peptide [28] but not the Elk1-DEJL 

peptide which has been proposed to bind an exosite on ERK2 that does not undergo a 

conformational change upon phosphorylation [28].  The fact that both the Elk1-DEF and 

Elk1-DEJL peptides disrupt the docking complex between ERK2 and Ets∆138-F 

indicates that the exosites proposed to bind these peptides on ERK2 [28] may be utilized 

for Ets∆138 binding. 
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Figure 46.  A fluorescence anisotropy competition assay to determine the Kd of 
docking motif peptides.  A docking complex was formed using (A) dual-phosphate 
ERK2 (9.55 µM) or (B) unphosphorylated ERK2 (5 µM) with 100 nM Ets∆138-F and the 
anisotropy of the fluorescent complex was monitored in the presence of several 
concentrations of the Elk1-DEJL (open squares) and Elk1-DEF (closed squares) peptides.  
Both peptides competed for Ets∆138 exosites on the dual-phosphate ERK2 as seen by the 
decrease in fluorescence anisotropy (A), whereas the Elk1-DEF could not bind 
unphosphorylated ERK2 (B).  The data were simultaneously fit to Equation 10 and 
Equation 11 using pre-determined Kd values for the ERK2-Ets∆138-F docking complex. 
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Since the Elk1-DEJL peptide is thought to bind the docking groove exosite on 

ERK2, similar to the docking motif peptides used in the co-crystallization study with the 

inactive form of p38 MAPKα [27], we were interested in studying the specificity of 

docking motif peptides towards MAPKs.  The docking motif peptides that bind in the 

docking groove exosite of p38 MAPKα [27] were derived from an upstream activator 

(MAPKK3b) and a substrate (Mef2a).  Neither MAPKK3b nor Mef2a are thought to 

interact with ERK2, however, the docking motifs for these proteins contain basic amino 

acids and a hydrophobic φA-X-φB motif that are similar to DEJL motifs that bind ERK2.  

Both the MAPKK3b and Mef2a peptide were able to bind the dual-phosphate ERK2 

exosite for Ets∆138 and compete for Ets∆138-F binding as revealed by their ability to 

disrupt the ERK2–Ets∆138-F complex in a competition anisotropy assay (Figure 47).  

These results suggest that docking motif peptides of MAPK-interacting proteins may 

regulate binding to more than one MAPK and that other factors and perhaps additional 

docking motif interactions may regulate the specificity of MAPK protein-protein 

interactions. 
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Figure 47.  A fluorescence anisotropy competition assay to determine the Kd of p38 
MAPKα docking motif peptides and ERK2.  A docking complex was formed using 
dual-phosphate ERK2 (9.55 µM) and Ets∆138-F (100 nM) and the anisotropy of the 
fluorescent complex was monitored in the presence of several concentrations of the 
Mef2a (closed) and the MAPKK3b (open) docking motif peptides.  Both peptides 
competed for Ets∆138 exosites on the dual-phosphate ERK2 as seen by the decrease in 
fluorescence anisotropy.  The data were simultaneously fit to Equation 10 and Equation 
11 using pre-determined Kd values for the ERK2-Ets∆138-F docking complex to obtain a 
Kd for the Mef2a (54.0 ± 7.2 µM) and MAPKK3b (35.9 ± 10.4 µM) peptides. 

 

 

PEA-15 CAN DISTINGUISH BETWEEN DIFFERENT PHOSPHORYLATION 
FORMS OF ERK2 

Phosphoprotein enriched in astrocytes-15 kDa (PEA-15) [123] is a protein with a 

death effector domain [124] that binds ERK2 [31] and has been shown to inhibit 

apoptosis and potentiate Ras-mediated ERK signaling implicating the importance of 
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PEA-15 in oncogenesis [124].  PEA-15 binds ERK more readily than p38 and JNK and is 

not a substrate or regulator of ERK2 activity.  Deletion of PEA-15 caused an increase in 

ERK2 entry into the nucleus and a subsequent increase in c-fos transcription [75] 

indicating that PEA-15 is important for anchoring ERK2 in the cytoplasm.  

Overexpression of PEA-15 decreased the ability of ERK2 to enter the nucleus after serum 

stimulation resulting in decreased Elk-1 phosphorylation and subsequent decreased 

transcriptional activity [75].   Furthermore, PEA-15 was shown to bind both active and 

inactive ERK2, however, binding affinities for the dual-phosphorylated and 

unphosphorylated forms of ERK2 were not discussed.   

The NMR structure of PEA-15 is known and NMR “footprinting” was used in the 

presence of ERK2 to find residues of PEA-15 that had significantly broadened NMR 

peaks upon introduction to ERK2 indicating residues involved in the docking complex 

[31].  PEA-15 is thought to bind ERK2 in the αG helix and the α1L14 helix of the MAPK 

insert, specifically residues Y213, L232, K257, and R259 which were found to disrupt 

ERK2 binding after mutagenesis to glutamic acid [13]; the ERK2 mutants did not have 

defects in their ability to be activated by MAPKK1.  This region is the same region 

elucidated by ERK2–MAPKK1/2 interactions where it was also shown that ERK2 

mutants H230R, N236K, Y261N, and S264P had the largest affect on MBP 

phosphorylation as determined by an increase in the Km [12] and is also a region thought 

to mediate ERK2 binding to Ets∆138 (Chapter 3). 

A fluorescence anisotropy competition assay was carried out where 

unphosphorylated PEA-15 was labeled with fluorescein and allowed to bind both the 

active and inactive forms of ERK2.  It was found that PEA-15 had a much higher affinity 

for the unphosphorylated form of ERK2 (Kd = 12 ± 3 nM; K. Cox) in comparison to the 

dual-phosphate form of ERK2 (Kd = 706 ± 122 nM; K. Cox).  These results suggest that 
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PEA-15 can distinguish between the active and inactive forms of ERK2 and may regulate 

cell signaling differences in astrocytes and other cells expressing PEA-15. 

 

 

CONCLUSIONS 

A direct binding assay had not been established to determine the equilibrium 

dissociation constants for ERK2 and its interacting proteins.  Here we have developed a 

fluorescence anisotropy assay and a competition assay that allows the equilibrium 

dissociation constant of ERK2-interacting proteins and peptides to be determined.  The 

protein substrate Ets∆138 was mutated so that it lacked each of its 4 cysteines and was 

shown to have similar steady-state kinetics of ERK2 phosphorylation as that of WT 

Ets∆138 (Figure 42) indicating that the lack of cysteines did not affect its ability to be 

phosphorylated by dual-phosphate ERK2.  One cysteine was incorporated into Ets∆138 

at either position 31 or 99 to generate Ets∆138-C31* and Ets∆138-C99*, respectively, 

and covalently labeled with a fluorescein moiety at a single cysteine site.  An Ets∆138 

construct lacking cysteines was not susceptible to DTNB or fluorescent labeling while the 

Ets∆138-C31* and Ets∆138-C99* were, indicating that the label was incorporated into a 

single cysteines.  To further confirm the labeling of a specific site, the fluorescent 

Ets∆138-F construct was purified, digested with trypsin, the tryptic peptides were 

purified on a reverse phase HPLC column, and shown to be labeled on a peptide that 

contained either Cys-31 or Cys-99 by determining the mass of the single fluorescent 

peptides using mass spectrometry.   

The fluorescence anisotropy signal of Ets∆138-F increased in the presence of 

ERK2 indicating that a docking complex was formed between ERK2 and Ets∆138-F.  
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The binding affinities for Ets∆138-F labeled at Cys-31 or Cys-99 did not differ indicating 

that the position of the fluorophore on Ets∆138 did not affect their affinity for ERK2.  

Both unphosphorylated and dual-phosphorylated ERK2 were able to bind Ets∆138 with 

similar affinities (within 3-fold of one another) indicating that the ERK2–Ets∆138-F 

docking complex can exist with both the catalytically inactive and active form of ERK2 

(Figure 44).  By adding ERK2 directly to the Ets∆138-F, equilibrium dissociation 

constants were discerned for the ERK2-Ets∆138-F complex.  However, true dissociation 

constants for unlabeled proteins were desired. 

To elucidate the Kds for unlabeled proteins and peptides, a fluorescence 

anisotropy competition assay was developed.  In this assay, a fluorescent docking 

complex was formed between ERK2 and Ets∆138-F and allowed to dissociate in the 

presence of a competitor that could bind ERK2 (Scheme 10).  Various amounts of 

unlabeled Ets∆138 competitors caused a decrease in the anisotropy due to dissociation of 

the ERK2–Ets∆138-F complex and increasing free Ets∆138-F in solution.  The 

competition assay was used to determine the Kd for unlabeled Ets∆138 (Figure 45) and 

shown to be similar to the Kd for the labeled Ets∆138-F indicating that the label did not 

alter the binding affinity for ERK2. 

The competition assay was also used to determine the affinity of docking motif 

peptides that bind ERK2.  Both the Elk1-DEJL motif peptide and the Elk1-DEF motif 

peptide have been shown to bind two different exosites on the dual-phosphate form of 

ERK2 [28], however, their binding affinities were not established.  Here, we show that 

both the Elk1-DEJL and Elk1-DEF peptides displace Ets∆138-F from dual-phosphate 

ERK2, however, while the Elk1-DEJL peptide could also displace Ets∆138-F from 

unphosphorylated ERK2, the Elk1-DEF peptide could not.  These results suggest that the 

Elk1-DEJL peptide binds to ERK2 with a slightly higher affinity than the Elk1-DEF 
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peptide and that the Elk1-DEF peptide can only bind the dual-phosphate form of ERK2.  

It has been hypothesized that a conformational change occurs on the dual-phosphate form 

of ERK2 that exposes the ERK2 exosite that binds the DEF motif, whereas, this exosite is 

buried in the unphosphorylated form of ERK2 [28].  This may be a means for ERK2 to 

differentially bind DEF-containing substrates only when it is activated allowing it to 

avoid DEF-mediated contacts when inactivated.    

The competition anisotropy assay was also used to determine the affinity of PEA-

15 and ERK2, a protein that is neither an activator, inactivator, nor a substrate of ERK2.  

PEA-15 has a nuclear export sequence and can anchor ERK2 in the cytoplasm preventing 

its nuclear presence [75].  We show that the unphosphorylated form of ERK2 binds PEA-

15 much tighter than phosphorylated ERK2.  These results suggest that PEA-15 can 

selectively bind different phospho-forms of ERK2 and may help to mediate signaling 

specificity within the cell.  Perhaps PEA-15 can remove unphosphorylated ERK2 from 

the nucleus more efficiently than dual-phosphorylated ERK2.  PEA-15 itself is regulated 

by phosphorylation by at least two different protein kinases including protein kinase C 

[123] and calcium/calmodulin kinase II [125] and can exist in an unphosphorylated, 

monophosphorylated, or dual-phosphorylated form.  It will be interesting to examine 

whether or not phosphorylation of PEA-15 regulates its ability to bind ERK2. 

The fluorescence anisotropy assay described here will prove to be a valuable 

assay in studying ERK2 interactions with its protein substrates.  Here we have shown that 

it can be used to study the affinities of different phospho-forms of both the labeled 

protein substrate and the larger ERK2 molecule.  Different phospho-forms of an 

unlabeled competitor of the interaction could also be used.  We were also able to 

determine the Kds of peptides that bind to MAPK exosites so that information regarding 

the specificity of interactions can be elucidated.  We found that some peptides bind both 
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phospho-forms of ERK2 while others do not and that some peptides thought to be 

specific for another MAPK (p38 MAPKα) can also bind ERK2.  This assay could also be 

used for high-throughput screening of small molecules that disrupt the ERK2–Ets∆138-F 

interaction so that small molecules that disrupt a specific protein–protein interaction 

could be determined very quickly as long as the chemical library being screened does not 

contain molecules that resemble the spectral properties of fluorescein.  This assay and 

other assays that determine the binding affinities of protein–protein interactions are 

valuable for studying the regulation of protein–protein interactions, specificity of cellular 

signaling pathways, and for carrying out structure–function analyses of binding events.   
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EXPERIMENTAL PROCEDURES 

 
MATERIALS 

All proteins were produced in the Escherichia coli strain BL21 (DE3) purchased 

from Novagen (Madison, WI).  5’-Iodoacetamidofluorescein (5-IAF) was purchased from 

Molecular Probes (Eugene, OR).  The Mono Q HR 10/10 and HR 5/5 anion exchange 

columns and PD-10 desalting columns were purchased from Amersham Biosciences 

(Piscataway, NJ) and run on a Waters (Milford, MA) HPLC system (600E/650E) with an 

absorbance detector (2487). 

 

   

ANALYTICAL INSTRUMENTS 

The concentrations of ERK2 and Ets∆138 were determined by UV absorbance 

using a Cary Model 50 spectrophotometer purchased from Varian (Walnut Creek, CA).  

Mass spectrometry of Ets∆138 proteins peptides were carried out as described [7].  

Fluorescence anisotropy measurements were made at 27 °C using a Fluorolog Model 

FL3-11 fluorometer (Jobin Yvon, Edison, NJ) using three-window fluorescence grade 

quartz cuvettes with a 1.0 cm path length and 55 µL aqueous volume purchased from 

Hellma (Plainview, NY).  The program Instrument Control Center (Jobin Yvon, Edison, 

NJ) was used to collect fluorescence anisotropy data and the programs KaleidaGraph 

(Reading, PA) and Scientist (North Andover, MA) were used to plot and fit the data, 

respectively. 
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SITE-DIRECTED MUTAGENESIS OF ETS∆138   

A pET-28a bacterial expression vector encoding a hexa-histidine tag followed by 

a thrombin cleavage site and the cDNA encoding murine Ets1 residues 1-138 (pET-28a 

Ets∆138, a gift of L. P. McIntosh, University of British Columbia, Vancouver) was 

modified by PCR to construct the C31A, C99A, C106A, C112A Ets∆138 mutants in an 

S26A Ets∆138 background [44].  A two-step PCR reaction was carried out using the 

following conditions: 94 °C for 5 min to denature the complementary strands; 30 cycles 

of 55 °C for 30 sec to anneal the primers, extension for 1 min at 72 °C, followed by a 

denaturation step at 94 °C for 45 sec; complementary strands were extended a final 10 

min at 72 °C.  The first round of mutagenic PCR generated two overlapping products, 

fragment A and B, from two separate reactions using pET-28a Ets∆138 as a template.  

Fragment A was PCR amplified with an outer forward primer (5’-GGT GAT GCC GGC 

CAC GAT GC) and an inner reverse primer containing the mutation (underlined) for 

C31A (5’- GG GAC ATC TGC GGC TTC CAT GTC CG-3’), C99A (5’-GC TCC ACT 

CAT GGC GAA CTT CTG GA-3’), C106A (5’-TTT ACC CAG GGC GGC CAG TGC 

TGC TC-3’), and C112A (5’-AG CTC GAG GAA GGC TTC TTT ACC CA-3’).  

Fragment B was amplified with an inner forward primer containing the mutation for 

C31A (5’- CG GAC ATG GAA GCC GCA GAT GTC CC-3’), C99A (5’-TC CAG AAG 

TTC GCC ATG AGT GGA GC-3’), C106A (5’-GA GCA GCA CTG GCC GCC CTG 

GGT AAA-3’), C112A (5’-TG GGT AAA GAA GCC TTC CTC GAG CT-3’) and an 

outer reverse primer (5’-GCT AGT TAT TGC TCA GCG GTG G-3’).  PCR fragments A 

and B were purified and used as templates for a second round of PCR using the outer 

primers.  Mutants containing two mutations were made using single mutant DNA as 

template and incorporating a second mutation.  The mutant PCR products were digested 

with NdeI and HindIII and ligated into NdeI-HindIII digested pET28a.  Ets∆138-C31* 
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containing a single cysteine at position 31 was generated by mutating Cys-99, 106, and 

112 to alanine.  Cys-31 was mutated to alanine in the Ets∆138-C31* construct to generate 

Ets∆138NC containing no cysteines.  Ets∆138-99* containing a single cysteine at 

position 99 was generated by mutating Cys-31, 106, and 112 to alanine.  All mutations 

were verified by sequencing the DNA at UT core facilities using an Applied Biosystems 

automatic DNA sequencer.  All proteins produced from pET-28a have an N-terminal 

sequence of M-G-S-S-H-H-H-H-H-H-S-S-G-L-V-P-R-G-S-H- prior to the methionine 

encoded by the Ets∆138 giving a mass of 17, 664 Da for Ets∆138 (the initial methionine 

is cleaved [42], all Ets∆138 constructs have an S26A mutation [44] with the exception of 

T38A/P39A which has Ser-26). 

 

 

DTNB LABELING 

Ets∆138 mutants were dialyzed into 20 mM Hepes, pH 8.1, 50 mM KCl, and 2 

mM EDTA so that the DTT in the storage buffer would not interfere with the DTNB 

labeling.  The concentration of protein was determined using guanidine hydrochloride 

[119] and an extinction coefficient of ε280 = 23 231.5 M-1 cm-1 [42] for each of the 

mutants.  A fresh stock solution of 4 mM DTNB was prepared in 50 mM NaAc and 

stored at 4 °C.  A reaction containing 20 µM protein, 400 µM DTNB, 20 mM Hepes, pH 

8.1, 50 mM KCl, and 2 mM EDTA was mixed, incubated 5 min at 25 °C, and measured 

for optical absorbance at 412 nm.  The concentration of thiolate anion formation due to 

DTNB reacting with free sulfhydryl groups on cysteines was determined using the 

extinction coefficient for the reagent (ε412 = 13 600 M-1 cm-1).  The concentration of 

thiolate anion formation was compared to the protein concentration to determine the 

molar ratio of surface exposed cysteines per molecule of Ets∆138. 
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PREPARATION OF ETS∆138-FLUORESCEIN (ETS∆138-F)   

Ets∆138-C31* containing only one cysteine at position 31 was purified 

essentially as described [42] and dialyzed into 1.25 mM Hepes, pH 7.5, 2.5 mM KCl, and 

2 mM DTT.  The concentration was determined using the absorbance at 280 nm using 

ε280 = 23 231 cm-1 M-1 [42] in 6 M guanidine hydrochloride [119].  Ets∆138-C31* was 

covalently linked to a fluorescein moiety through a thioether linkage at cysteine 31.  

Ets∆138-C31* (7.8 mg) was buffer exchanged to remove the reducing agent DTT using a 

pre-equilibrated PD-10 desalting column or by dialysis into L1 buffer (25 mM Hepes, pH 

7.3, containing 50 mM KCl).  The eluant was collected in 1 mL fractions and probed for 

protein using a Bradford assay.  A fresh stock of 10 mM 5’-iodoacetamidofluorescein (5-

IAF) was made in dimethylformamide and kept in the dark.  The concentration of 

fluorescein was determined using the absorbance at 492 nm using ε492 = 78 000 cm-1 M-1 

and measuring an absorbance below 0.05 (Molecular Probes) in L1 buffer; the quantum 

yield and absorption of fluorescein is pH sensitive, pKa ~ 6.5 [126].  The 5-IAF was 

added dropwise to the Ets∆138-C31* in a 12 mL reaction of L1 buffer and 7.8 mg of 

Ets∆138-C31* and incubated in the dark for 2 h at 23 °C with a 15-fold molar excess of 

5-IAF.  The reaction was quenched by adding 2 mM free thiols using 2-mercaptoethanol.  

Unreacted 5-IAF was separated from the Ets∆138-C31*-Fluorescein (Ets∆138-F) using a 

PD-10 desalting column.  The labeled protein was further purified by anion exchange 

chromatography using a Mono Q HR 5/5 column as described [42] and dialyzed in the 

dark into 25 mM Hepes, pH 7.5, 50 mM KCl, and 2 mM DTT, concentrated to 40 µM, 

and snap frozen in liquid nitrogen.  The concentration of Ets∆138-F used in assays was 

determined by using the fluorescein absorbance (A492) in dialysis buffer.  By comparing 



 217

the molar fluorescein concentration to the corrected molar Ets∆138 concentration in the 

Ets∆138-F (A280 protein = A280 measured – (A494/5) Molecular Probes), the molar ratio of the 

labeling procedure was obtained (~77% mol/mol fluorescein incorporated). 

 

 

TRYPTIC DIGEST OF ETS∆138-F 

A tryptic digest was carried out on 1 mg of Ets∆138-F to confirm the labeling site 

as Cys-31.  Overnight dialysis was carried out in 50 mM Tris pH 8.65, followed by 

cleavage with 5 µg of sequencing grade trypsin for 4 h, and another 5 µg for 6 hours.  The 

tryptic digest was filtered with 0.2 µm nylon membrane filter (Pall), applied to a 250 mm 

× 4 mm Vydac RP C18 column (218TP54) and eluted with a linear gradient of aqueous 

acetonitrile (99.9% v/v) containing 0.1% trifluoroacetic acid (TFA; 0.1%) at a flow rate 

of 0.7 mL min-1 and collecting 0.7 mL fractions.  Two peptides eluted at 48% and 49% 

acetonitrile.  The molecular mass and purity of both peptides were verified by 

electrospray ionization mass spectrometry to give a mass of 2973.6 (C31-labeled) and 

3333.3 Da (unknown). 

 
 

PREPARATION OF ERK2 

The unphosphorylated and dual phosphorylated forms of ERK2 were purified as 

described [44], dialyzed into S1 buffer (25 mM Hepes, pH 7.5, 50 mM KCl, 2 mM DTT, 

and 10% glycerol), concentrated in a Centricon YM-10 filter device (Millipore, Bedford, 

MA) at 4 °C, and snap frozen in 95.5 µM aliquots, and stored at -80 °C.  The 

concentration of ERK2 was determined by absorbance at 280 nm using ε280 = 44 825 cm-

1 M-1 [5] in 6 M guanidine hydrochloride [5]. 
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CALIBRATING THE POLARIZERS: MEASURING GLYCOGEN/LUDOX SCATTER 

A small amount of glycogen/Ludox diluted in water was used to test that the 

polarizers in the fluorometer were working property.  The method described here 

measures the scatter of light by glycogen/Ludox and not anisotropy.  Glycogen/Ludox 

was sufficiently diluted in water so that a reading of 1-1.5e6 cps was obtained with the 

polarizers both aligned at the vertical position (in-line polarizers decrease the light 

intensity), 370 nm excitation, 370 nm emission, 300 msec integration time, and the 

excitation and emission slits (bandpass) set at 1.7-3.0 nm.  Once the concentration of the 

scattering agent was determined, the anisotropy or polarization should be r > 0.97 or P > 

0.98, respectively.  If this is not the case, polarizer alignment was carried out in which the 

fluorometer automatically sets the slit widths and aligns the polarizers so that the 

anisotropy was greater than 0.98. 

The fluorometer should be set up so that arc lamp sends the excitation light into 

the each of the following in order: excitation monochromator, excitation polarizer, 

sample cuvette, emission polarizer, emission monochromator, and finally to the 

photomultiplier tube.  Slits are usually set at 1.7-3.0 nm during the calibration.  Once 

calibrated, it was determined that IVV = 1.15e6 cps and IVH = 14900 cps, therefore, the 

anisotropy and polarization were calculated to be <r> ~ 0.96 and <P> ~ 0.97, 

respectively.  If the anisotropy was lower than 0.96, the concentration of the scattering 

sample was adjusted and the polarizers were checked for proper alignment. 
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FLUORESCENCE ANISOTROPY BINDING ASSAY 

The binding of Ets∆138-F to ERK2 was monitored using fluorescence anisotropy.  

Fluorescence anisotropy, r, is defined in Equation 8 where IVH is the intensity of the 

horizontal emission (second subscript) of the fluorescein moiety stimulated with 

vertically polarized light (first subscript), and G is the monochromator grating factor 

(IHV/IHH) to correct for emission components.    

 

Equation 8  
)G2(

)G(

VHVV

VHVV

II
IIr
××+

×−=  

 

Various amounts of ERK2 were added to Ets∆138-F, the fluorescence anisotropy of 

Ets∆138-F signal increased and neared a saturating value indicating saturation of 

Ets∆138-F binding to ERK2.  All binding assays were carried out using 100 nM 

Fluorescein-Ets∆138 (as measured by fluorescein concentration) in 25 mM Hepes, pH 

7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, 2 mM DTT, 2% 

glycerol, and various concentrations of ERK2 in a 60 µL volume.  Assays were made by 

adding a 5x concentration of ERK2 in 12 µL of S1 buffer, a 10x concentration of 

Ets∆138-F in 6 µL of S1 buffer lacking glycerol, 30 µL of Master Mix buffer (35 mM 

Hepes, pH 7.5, 70 mM KCl, 80 µg/mL BSA, 0.2 mM EDTA, 0.2 mM EGTA, and 2 mM 

DTT), followed by 12 µL of Competition buffer (1.25 mM Hepes, pH 7.5, 2.5 mM KCl, 

and 2 mM DTT) to make a final volume of 60 µL. 

Discontinuous assays were carried out by incubating separate reactions for 7 min 

at 27 °C, exciting the fluorescein moiety with both vertically and horizontally polarized 

light at 492 nm, and measuring the emission of polarized light at both the vertical and 

horizontal positions at 515 nm.  Excitation and emission slit widths were set to 5 nm the 

integration time for each reading was 0.300 sec.  The anisotropy of each assay point was 



 220

measured every 15 sec for 3 min and the average anisotropy was calculated from the 12 

data points.  The G factor was near 0.75-0.76. 

Anisotropy data were fit to Equation 9 to determine the equilibrium dissociation 

constant (Kd), where rf, and rb are the anisotropy values of the free and bound Ets∆138-F, 

respectively, and [ET] and [ST] are the total ERK2 and Ets∆138-F concentration. 

 

Equation 9 29      

<r> = 
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]][S4[E])[S][E(][S][E

T

TT
2

TTdTTd −++−++
+

KK
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COMPETITION ASSAY 

Unlabeled Ets∆138 and docking motif peptides that bind ERK2 were used to 

compete with an Ets∆138-F exosite on ERK2, the data was simultaneously fit to 

Equation 10 and Equation 11 using the program Scientist to determine the equilibrium 

dissociation constant (Kd’2) of the unlabeled competitor and ERK2, where Kd is the 

equilibrium dissociation constant for Ets∆138-F and ERK2 in the absence of competitor, 

[C] is the concentration of the unlabeled competitor, and [EC] is the concentration of the 

ERK2–Ets∆138 or the ERK2–peptide docking complex. 

 

Equation 10 29  <r> = 
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Equation 11   
]EC[
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×=K

                                                  
29 Derivation of Equation 9 and reference to the derivation of Equation 10 in section below (Equation Derivation).  If fluorescence 
yield of the bound and free forms of the labeled protein differ, as in the case of Ets∆138-Fluorescein labeled at Cys-31 (the bound 
form has a fluorescence yield that is 50% of the unbound form), see “Equation Derivation” below. 
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Assays were made similar to above with the addition of ERK2 (5x), Master Mix buffer, 

the competitor (5x) in Competition buffer, followed by Ets∆138-F (10x).  Peptides were 

raised in water and brought to pH 7.5 by the addition of sodium hydroxide.  The 

concentration of each peptide was determined by amino acid analysis.  The docking motif 

peptides used were Elk1-DEF: N-AKLSFQFPS-C, 1024 Da [19], Elk1-DEJL: N-

QKGKPRDLELPLSPSL-C, 1934 Da [122], Mef2a: N-RKPDLRVVIPPS-C, 1377 Da 

[27], and MAPKK3b: N-SKGKSKRKKDLRISCNSK-C, 2064 Da [27].  The molecular 

weight of each peptide was determined by MALDI mass spectrometry. 
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EQUATION DERIVATION 

The binding reaction is defined as in Equation 12 where E represents the enzyme 

ERK2, S represents the substrate Ets∆138-F, and ES represents the Enzyme–Substrate 

complex formed between the two proteins. 

Equation 12  ESSE ⇔+         

The definition of the association and dissociation binding constants is shown in Equation 

13 and Equation 14 while the relationship between the two is shown in Equation 15. 

Equation 13  
[E][S]
[ES]K a =   

Equation 14  
[ES]

[E][S]K d =  

Equation 15  
a

d K
1K =        

In the binding reaction the free substrate concentration [S] in the reaction where the 

subscript T represents the total concentration of any given species can be represented as 

seen in Equation 16. 

Equation 16   [S] = [ST] - [ES]        

The total enzyme concentration [ET] is expressed as seen in Equation 17. 

Equation 17   [ET] = [E] + [ES]        

Equation 15 can be rearranged to give Equation 18. 
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Equation 18  
[S]K

[ES][E]
a

=        

  
Substitution of Equation 18 into Equation 17 and then substitution of Equation 16 into the 

resulting equation yields Equation 19. 

Equation 19  [ES]
ES])[]([S

[ES]][E
Ta

T +
−

=
K

 

Solving for [ES] using the quadratic equation gives Equation 20. 

Equation 20 

 
a
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Using Equation 15, Equation 20 can be arranged to Equation 21. 

Equation 21 

 
2

]][S4[E])[S][E(][S][E
[ES] TT

2
TTdTTd −++−++

=
KK

 

Equation 21 gives the concentration of the complex [ES] at any given concentration of 

ERK2 [E] in terms of the total enzyme and substrate concentration added to the reaction.  

The concentration of the [ES] complex also depends on Kd.  Since the amount of total 

substrate and enzyme in known in the reaction and the amount of [ES] is unknown, we 

can relate the anisotropy signal to the amount of [ES] in order to be able to solve for the 

unknown Kd.  

The binding density of the docking complex (ν) is given in Equation 22. 
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Equation 22  
][S

[ES]ν
T

=  

The observed anisotropy <r> of Ets∆138-F is given by Equation 23 where the maximum 

anisotropy (rb) occurs when the fluorescent substrate is “bound” to the enzyme and the 

minimum anisotropy (rf) is seen when the fluorescent substrate is tumbling “free” in 

solution. 

Equation 23  <r> = ν)-r(r r fbf +  

Substituting Equation 22 into Equation 23 and then Equation 21 into the resulting 

equation gives Equation 9 which was used to fit the anisotropy data for the titration of 

ERK2 into Ets∆138-F.  

Equation 9 <r> = 
]2[S

]][S4[E])[S][E(][S][E

T

TT
2

TTdTTd −++−++
+

KK
)-r(r r fbf  

Equation 10 for the competition fluorescence anisotropy assay was derived as in 

[127]. 

 

If the fluorescence yield of the bound and free forms of the fluorescein-labeled 

protein differ, as in the case of the Ets∆138-Fluorescein labeled at Cysteine-31 when 

mixed with ERK2, the dissociation constants were determined by fitting the average 

anisotropy values to Equation 24 using Kaleidgraph 3.6 (Synergy software) 
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Equation 24    
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where rf and rb are the anisotropies of the free and bound fluorescein-labeled protein, R is 

the ratio of fluorescent yields of the bound form and the free form, [St] and [Et] are the 

total concentration of the fluorescein-labeled protein and ERK2, and Kd is the 

dissociation constant.  R was also calculated from the anisotropy experiments by 

measuring the polarized intensities for the free and bound form of the fluorophore, 

according to Equation 25 

 

Equation 25  
fHV

bHV

GII
GII

R
)2(
)2(

+
−

=  

 

where IV and IH are the intensity of the emission at polarizations both parallel and 

perpendicular to the excitation source and G is a factor to correct for instrumental 

differences in detecting emission components.  For competition experiments where the 

fluorescence yield of the bound and free forms of the fluorescein-labeled protein differ, 

the average anisotropy values were calculated and fit using Equation 26-Equation 30 in 

Scientist (Micromath). 

 

Equation 26  

r =

[ES]
[St ]

(rbR − rf ) + r
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Equation 27  [ES] =
[E f ][S f ]
Kd + [E f ]

  

Equation 28  
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Equation 29  ECCC ft +=   

Equation 30  ECEE ft +=    
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EXPERIMENTAL DATA 

Ets∆138NC, 2/28/03 

[Ets∆138NC], µM kobs, s-1 
200.0 20.1 
100.0 20.8 
50.0 19.7 
25.0 16.3 
12.5 10.3 
6.3 6.5 

 

 

Ets∆138, average n=12 

Ets∆138, µM kobs, s-1 
200.0 18.7 
100.0 18.0 
50.0 17.0 
25.0 14.8 
12.5 11.9 
6.3 8.0 
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Anisotropy Data 

 

Active ERK2, 1/26/04, 2/26/04 
 
[ERK2], 

µM <r>  [ERK2], 
µM <r> 

   0 0.110 
0 0.110  0.96 0.123 

2.4 0.140  1.91 0.133 
4.8 0.154  2.4 0.141 
7.2 0.164  4.8 0.154 
9.6 0.170  7.2 0.163 
14.3 0.179  9.6 0.170 
19.1 0.183  19.1 0.183 

 
Assay: 100 nM Ets∆138-F, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM 
EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT 
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Inactive ERK2, 2/3/04, 4/13/04, 4/16/04 
 
[ERK2], 

µM <r> 
0.0 0.114 0.112 0.114 
0.5 0.144 0.148 0.140 
0.9 0.165 0.167 0.162 
1.3 0.181 0.181 0.176 
1.8 0.192 0.191 0.186 
3.5 0.212 0.214 0.211 
5.3 0.220 0.223 0.220 
7.0 0.226 0.229 0.226 
8.8 0.229 0.232 0.233 
10.5 0.233   
12.3 0.233   
14.0 0.237   
15.8 0.237   
17.5 0.240   

 
Assay: 100 nM Ets∆138-F, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM 
EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT  
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Competition Data 

 

Competition with unphosphorylated ERK2, 4/13/04 

 

[Ets∆138], 

µM 
<r> 

0 0.222 
5 0.209 

10 0.190 
15 0.176 
20 0.165 
25 0.158 
30 0.153 
50 0.140 
100 0.127 
150 0.122 

 
Assay: 100 nM Ets∆138-F, 9.55 µM unphosphorylated ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT  
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Competition with dual-phosphate ERK2, 1/26/04, 3/3/04, 4/22/04 

 
[Ets∆138], µM <r> 

0 0.170 0.178 0.175 
6.25  0.171 0.166 
12.5 0.154 0.160 0.157 
25 0.136 0.148 0.144 
50 0.127 0.133 0.129 

100 0.121 0.124 0.122 
200 0.118 0.115 0.119 

 
Assay: 100 nM Ets∆138-F, 9.55 µM dual-phosphate ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT  
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Competition with Elk1-DEJL peptide, dual-phosphate ERK2, 5/18/04, 5/20/04 

 
[Elk1-DEJL], 

µM <r> 

0.0 0.167 
4.4 0.157 
8.9 0.143 

17.8 0.134 
35.5 0.122 
71.0 0.119 
142.0 0.115 

0 0.170 
6.25 0.150 
12.5 0.140 
25 0.126 
50 0.122 

100 0.116 
200 0.117 
500 0.115 

 
Assay: 100 nM Ets∆138-F, 9.55 µM dual-phosphate ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT 
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Competition with Elk1-DEF peptide, dual-phosphate ERK2, 5/18/04, 5/20/04 

 
[Elk1-DEF], 

µM <r> 

0 0.167 
4 0.164 
8 0.164 
16 0.157 
32 0.153 
64 0.141 
96 0.136 

128 0.132 
0 0.170 

12.5 0.161 
25 0.154 
50 0.143 
75 0.141 

100 0.135 
125 0.134 
150 0.131 
175 0.129 
200 0.127 

 
Assay: 100 nM Ets∆138-F, 9.55 µM dual-phosphate ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT 
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Competition with Mef2a peptide, dual-phosphate ERK2, 7/20/04 

 
[Mef2a 

peptide], µM <r> 

0 0.179 
0 0.179 

48.75 0.17 
97.5 0.157 
195 0.148 
390 0.138 
780 0.128 
1950 0.125 
3900 0.122 

18720 0.125 
 
Assay: 100 nM Ets∆138-F, 9.55 µM dual-phosphate ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT 
rf = 0.212 ± 0.002, rb = 0.121 ± 0.001, Kd fit to 2.7 µM, Kd Mef2a = 54.9 ± 7.2 µM 
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Competition with MAPKK3b peptide, dual-phosphate ERK2, 7/20/04 

 
[MAPKK3b 

peptide], µM <r> 

0 0.179 
0 0.179 
30 0.165 
60 0.154 

120 0.135 
240 0.127 
480* 0.128 
1200* 0.133 
2400* 0.146 

11280* 0.176 
 
Assay: 100 nM Ets∆138-F, 9.55 µM dual-phosphate ERK2, 25 mM Hepes, pH 7.5, 50 
mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2% glycerol, 40 µg/mL BSA, and 2 mM DTT 
rf = 0.222 ± 0.005, rb = 0.102 ± 0.009, Kd fit to 2.7 µM, Kd MKK3b = 35.9 ± 10.4 µM 
excluding the data points with * due to increasing anisotropy values at high peptide 
concentration, fitting the data to rf = 0.11 does not have a large affect on the Kd 
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CHAPTER 5:  MACROMOLECULAR RECOGNITION OF A 
PROTEIN SUBSTRATE BY A PROTEIN KINASE 

 

 

PURPOSE 

This chapter extends on the use of mutagenesis, fluorescence anisotropy, and 

steady-state kinetics to describe a model for macromolecular substrate recognition of 

Ets∆138 by ERK2.  We show that a region that lies N-terminal to the phospho-acceptor 

in Ets∆138 is required for efficient docking complex formation and for efficient 

phosphorylation by ERK2.  A C-terminal docking motif is also required for efficient 

binding and phosphorylation by ERK2.  Several lines of evidence suggest that the 

phospho-acceptor region of Ets∆138 (including the phospho-acceptor and the P+1 proline 

determinant for MAPK substrates) does not contribute to the formation of docking 

complex.  However, the P+1 proline is required for efficient catalysis of the phospho-

acceptor and the fidelity of the phosphorylated residue.  We also show that large 

concentrations of magnesium chloride decreases the affinity of the docking complex that 

can partially be rescued in the presence of an ATP analog (AMP-PNP) that binds the 

active site.  However, in the presence of AMP-PNP and magnesium, conditions that 

mimic phosphorylation conditions, the phospho-acceptor does not form a strong 

interaction in the active site of the enzyme indicating that the docking interactions 

occurring outside of the active site are a major determinant of macromolecular substrate 

specificity.    
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INTRODUCTION 

More than 500 human genes have been predicted to encode protein kinases [128] 

which are capable of phosphorylating protein substrates by transferring the gamma-

phosphate of adenosine triphosphate (ATP) to a hydroxyl acceptor on a serine, threonine, 

or tyrosine residue (Scheme 11).  Kinases are spatially and temporally activated in 

response to cellular signaling allowing them to phosphorylate a specific subset of proteins 

in the presence of MgATP2- leading to a cellular response.  An efficient response relies 

upon the fidelity of the kinase to recognize specific macromolecules and phosphorylation 

sites within the macromolecular substrates; however, the molecular mechanism of protein 

substrate recognition by protein kinases remains unclear. 
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Scheme 11.  The phosphorylation of a peptide substrate by a serine/threonine 
kinase.   Phosphorylation of a protein substrate occurs on a hydroxyl-containing side 
chain such as a serine, threonine, or tyrosine.  ERK2, a serine/threonine kinase, catalyzes 
the transfer of the γ-phosphate from ATP to the peptide substrate (P-X-S/T-P where P is 
proline, X is any amino acid) on either a Ser (S) or Thr (T) residue in the presence of 
MgATP2-; a tyrosine kinase can phosphorylate tyrosine residues (not shown).  
Phosphorylation generates two products: a phosphorylated peptide/protein substrate and 
MgADP1-. 

 
 

Serine/Threonine-specific kinases such as Protein Kinase A (PKA) [8, 129, 130], 

Protein Kinase B (PKB)/AKT [131], ERK1/2 [132-134], cdc2 [135], Cyclin-Dependent 

Kinase (CDK) 5, Casein Kinase (CK) I δ and γ, Phosphorylase Kinase, 

Calcium/Calmodulin Kinase II [133], CKII [136], and others [137] have been 

hypothesized to recognize and phosphorylate their substrates based on small recognition 

motifs (Scheme 12) that include the sequence of amino acids that surround the 

phosphorylation site (P-site).  Since members within a kinase sub-family phosphorylate 

similar recognition motifs but phosphorylate distinct protein substrates, macromolecular 

substrate recognition must occur by some alternate means distinct from active site 
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interactions.  For example, both mitogen-activated protein kinase (MAPK) and CDK 

families are proline-directed kinases in that they phosphorylate surface exposed Ser-Pro 

or Thr-Pro recognition motifs, yet they preferentially recognize distinct macromolecular 

substrates.  On average, human proteins of ~ 40 kD whose structures are known contain 

~1.6 Ser-Pro or Thr-Pro sites that are surface exposed, however, not all of these potential 

phosphorylation sites are phosphorylated30.  Clearly, kinases could benefit from other 

factors beyond active site recognition of recognition motifs to determine substrate 

specificity. 

                                                 
30 The Protein Data Base was searched for human proteins of ~40 kD (350-375 amino acids, n=40 proteins) 
that were intracellellular proteins.  The primary sequence was scanned for Ser-Pro and Thr-Pro motifs and 
these were checked for surface exposure using Swiss-PDB Viewer (GlaxoSmithKline).  A phosphorylation 
motif was considered surface exposed if one of the two residues of either a Ser-Pro or Thr-Pro motif was 
more than 10% exposed.  
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Scheme 12.  Recognition motif substrate specificity of several serine/threonine 
protein kinases.  Ser-Thr (S/T) protein kinases have been shown to preferentially 
phosphorylate serine or threonine residues (***) surrounded by amino acids with specific 
physicochemical properties.  The phosphorylation site and the surrounding residues make 
up the recognition motif.  Three classes of S/T protein kinases have been established 
whose active sites recognize basic (+), proline, or acidic residues (-) within recognition 
motifs. 
 

 

Substrate specificity can be described by the specificity constant (kcat/Km) which is 

the apparent second-order rate constant for an enzyme–substrate reaction.  The specificity 

constant relates the velocity of the reaction to the concentration of free enzyme at any 

substrate concentration and can be used to determine specificity differences between two 

competing substrates.  MAPK peptide substrates have a lower specificity constant than 

protein substrates [138] indicating that peptides are not as efficiently phosphorylated as 

proteins usually due to the higher affinity of protein substrates for MAPKs as compared 
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to peptide substrates.  Increased enzymatic activity toward protein substrates over peptide 

substrates has also been seen in other macromolecule modification enzymes such as 

proteases [139] and phosphatases [140].  This may be explained by the lack of 

conformational freedom seen in proteins versus that of free peptides reducing the entropic 

cost of protein-protein interactions with respect to fewer conformational states [139].   

An alternate explanation may be due to larger protein substrates containing 

docking motifs, small peptide fragments or individual residues, which facilitate enzymic 

binding and thereby enhance enzymic activity towards the protein substrate.    Several 

MAPKs appear to bind protein substrates using small motifs that lie outside of their 

active site [17] and this docking interaction is thought to increase the efficiency of protein 

substrate phosphorylation by enhancing the affinity of kinase–substrate interactions [61].  

Enzymic regions of the MAPK that bind docking motifs outside and distinct from the 

active site to mediate docking interactions are termed enzymic exosites (Scheme 13) and 

it is hypothesized that these exosites determine macromolecular substrate recognition 

independent of active site binding and enzymic catalysis.  Indeed, the addition of a small 

docking motifs to a MAPK recognition motif peptide has been shown to enhance the 

efficiency of recognition motif phosphorylation by decreasing the apparent affinity (Km) 

thereby increasing the specificity constant [115].  Other enzymes that modify 

macromolecular substrates have taken advantage of their size to spatially separate 

macromolecular substrate recognition and catalysis.  For example, prothrombinase 

undergoes a bimolecular mechanism in which an enzymic exosite binds the substrate 

prethrombin followed by intramolecular recognition of the scissile bond in the active site 

[141]. 
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Scheme 13.  Protein and peptide substrate recognition by a protein kinase.  (A) The 
protein kinase ERK2 is shown containing both an exosite for protein substrate docking 
and an active site for catalysis.  A protein substrate (Ets) is shown containing both a 
docking motif (located on the larger circular domain) and a recognition motif containing 
the threonine phospho-acceptor (TP: Thr-Pro).  The protein substrate is thought to form a 
docking complex with ERK2 where the docking motif of the substrate binds the ERK2 
exosite (A).  The docking complex (ERK2–Ets) is hypothesized to aid active site 
recognition of the phosphorylation site.  (B) A peptide substrate containing only the 
recognition motif, including the phosphorylation site, in the absence of a docking motif is 
shown in which the phosphorylation site is not efficiently recognized by ERK2. 
 

 

We were interested in understanding the relative contributions of the exosite and 

active site interactions in macromolecular substrate recognition and the catalytic 

mechanism of the dual-phosphate form of ERK2 [44, 102] with a protein substrate 

Ets∆138 [42, 114].  Surprisingly we found evidence for a two-step process suggestive of 

(1) macromolecular substrate recognition of Ets∆138 and (2) phospho-acceptor selection.  

We propose that primary macromolecular substrate recognition by ERK2 is achieved by 

exosite recognition of a docking motif to form an ERK2–Ets∆138 tethered complex (KS, 
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Scheme 14) and a secondary form of intramolecular substrate recognition occurs through 

enzymic active site interactions with the recognition motif of the substrate (KS*, Scheme 

14).  Together, macromolecular substrate recognition through exosite/docking motif and 

active site/recognition motif interactions act in concert to ensure the efficient post-

translational covalent phosphate modification of a specific phospho-acceptor within a 

specific protein substrate to prevent cross-talk and aberrant cell signaling. 

  

 

Scheme 14.  A proposed two-step docking mechanism for Ets∆138 recognition by 
ERK2.  A docking complex forms between Ets∆138 (Ets) and ERK2 via the exosite on 
ERK2 and the docking motif of Ets (middle).  The formation of the docking complex is 
referred to as macromolecular substrate recognition.  Intramolecular recognition of the 
recognition motif occurs as the phosphorylation site enters the active site of the kinase 
(right).  An equilibrium dissociation constant is shown for both the intermolecular (KS) 
and the intramolecular (KS*) steps. 
 

 

RESULTS AND DISCUSSION 

FLUORESCENCE ANISOTROPY COMPETITION ASSAY  

A novel fluorescence anisotropy binding assay was generated (Chapter 4) to study 

the mechanism by which ERK2 recognizes the protein substrate Ets∆138.  A binary 

fluorescent docking complex was formed between ERK2 and Ets∆138-Fluorescein 
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(Ets∆138-F) to generate an ERK2–Ets∆138-F docking complex which dissociated upon 

the addition of unlabeled Ets∆138 or an Ets∆138 mutant.  As the smaller Ets∆138-F 

dissociated from the larger docking complex, its fluorescence anisotropy decreased 

indicating that the Ets∆138-F was free in solution.  The equilibrium dissociation constant 

(Kd) of the unlabeled Ets∆138 proteins were measured by their ability to dissociate the 

binary fluorescent complex through competition with an ERK2 exosite required for 

Ets∆138 binding. 
 

 

THE HIS6-TAG ON ETS∆138 DOES NOT HAVE A LARGE AFFECT ON THE AFFINITY 
FOR ERK2  

To test whether or not the His6-tag used to purify Ets∆138 affected the affinity of 

the ERK2–Ets∆138-F docking complex, we cleaved the His6-tag off of Ets∆138, purified 

the Ets∆138 lacking the His6-tag (Ets∆138NoHis, Scheme 15), and measured the Kd of 

Ets∆138NoHis and Ets∆138 (containing a His6-tag) using a fluorescence anisotropy 

competition assay.  His6-tagged Ets∆138 was purified using Ni2+-NTA metal-affinity 

chromatography followed by Mono Q HR 10/10 anion exchange chromatography [42].  

The purified protein was subjected to proteolysis with thrombin and cleavage occurred 

following the proline-arginine pair following the His6-tag.  The Ets∆138NoHis was 

purified on the Mono Q HR 10/10 anion exchange column and eluted at 0.17 M NaCl 

(Figure 48a).  An SDS-PAGE gel shows a large shift towards a smaller protein indicating 

that the cleavage of the His6-tag had occurred (Figure 48b).  The purified Ets∆138NoHis 

was run on a reverse phase HPLC C18 column (Figure 49a) and mass spectrometry of the 

Ets∆138NoHis was performed to confirm the cleavage as indicated by a mass of 15 912 
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Da (expected 15 914 Da) (Figure 49b)31.  The Ets∆138NoHis was used as a competitor in 

a fluorescence anisotropy competition assay with dual-phosphate ERK2 and Ets∆138-F 

and yielded a Kd of 10.0 ± 0.1 µM (Figure 50) for ERK2 similar to Ets∆138 (Kd = 6.6 ± 

1.2 µM) indicating that the His6-tag did not have a large affect on the formation of the 

docking complex between ERK2 and Ets∆138. 

 

 
 

Scheme 15.  Schematic of Ets∆138 and truncation mutants.  Ets∆138 is composed of 
138 residues of the N-terminus of the Ets-1 gene and contains a single phosphorylation 
site at Thr-38 within a MAPK recognition motif (PLLTP).  To facilitate purification of 
Ets∆138 and its mutants a His6-tag was placed N-terminal to Ets∆138.  The His6-tag was 
cleaved to generate Ets∆138NoHis.  Two N-terminal truncations were generated in which 
the first 23 and 50 amino acids, respectively, were deleted to generate Ets∆24-138 and 
Ets∆51-138.  The docking motif residue Phe-120, required for efficient binding to ERK2 
[52], is shown in the C-terminal portion of Ets∆138. 

                                                 
31 The mass was calculated based on the sequence of Ets∆138 with a Ser26Ala mutation and cleaved with 
thrombin after the His6-tag and the proline-arginine pair. 
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Figure 48.  Purification of Ets∆138NoHis.  Ets∆138 (containing a His6-tag) was 
cleaved with thrombin and applied to a (A) Mono Q HR 10/10 anion exchange column 
equilibrated in 20 mM Hepes, pH 8.0, 0.1% 2-mercaptoethanol (v/v), 0.03% Brij-35 
(w/v), 0.1 mM EDTA, and 0.1 mM EGTA and eluted with NaCl as shown using a flow 
rate of 1.5 mL min-1.  A 5 µg portion of the reaction lacking thrombin (lane 1) was run on 
a 15% SDS-PAGE gel along with the cleaved fractions purified from the Mono Q (lane 
2-8; representing 61’-67’ of the Mono Q trace) and a protein ladder (lane 9).  Lanes 3-7 
containing Ets∆138NoHis were kept for further analysis.  The gel was stained with 
Coomassie blue stain. 
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Figure 49.  Mass spectrometry analysis of Ets∆138NoHis.  (A) Purified 
Ets∆138NoHis was applied to a reverse phase C18 column equilibrated in 0.1% 
trifluoroacetic acid and eluted with an acetonitrile gradient in equilibration buffer as 
shown at a flow rate of 0.7 mL min-1.  (B) Both peaks were collected, the fractions from 
each peak were pooled separately, lyophilized, raised in 50% acetonitrile, lyophilized 
again, and analyzed by electrospray ionization mass spectrometry to reveal that the 
second peak contained Ets∆138NoHis that lacked a His6-tag.  The first peak in (A) was 
also analyzed by electrospray mass spectrometry, however, no significant protein or 
peptide was detected and may be due to solvent exchange. 
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Figure 50.  A fluorescence anisotropy competition assay to determine the Kd of 
Ets∆138NoHis.  A docking complex was formed using dual-phosphate ERK2 (9.55 µM) 
and Ets∆138-F (100 nM) and the anisotropy of the fluorescent complex was monitored in 
the presence of several concentrations of non-fluorescent Ets∆138NoHis.  Ets∆138NoHis 
competed for ERK2 binding and decreased the ERK2–Ets∆138-F docking complex 
concentration which decreased the anisotropy.  The data were simultaneously fit to 
Equation 10 and Equation 11 using the pre-determined Kd value for the ERK2-Ets∆138-F 
docking complex (Kd = 2.7 µM).  The Kd for Ets∆138NoHis and dual-phosphate ERK2 
was 10.0 ± 0.1 µM (n=2).  Data points are shown as mean ± SD.  Kd is depicted as mean 
± SE. 

 

 

ETS∆138 DOCKING MOTIFS MEDIATE MACROMOLECULAR SUBSTRATE 
RECOGNITION  

We found that efficient macromolecular substrate recognition of Ets∆138 by dual-

phosphate ERK2 was dependent upon a region found in both the N- and C-terminal 

portions of Ets∆138.  An N-terminal truncation of residues 1-23 and 1-50 on Ets∆138 

(Scheme 15) led to a 13- and 19-fold increase, respectively, in the Kd when compared to 

Ets∆138 (Table 10) indicating that a region in the first 23 amino acids of Ets∆138 was 



 249

required for forming an efficient docking complex with ERK2.  Interestingly, the 

additional mutation of residues 24-50 in Ets∆51-138 led to less than a two-fold increase 

in the Kd as compared to the mutant lacking residues 1-23 in Ets∆24-138 indicating that 

the recognition motif of Ets∆138, located in residues 35-39 of Ets∆138 (Scheme 15), 

may not contribute a large amount towards Ets∆138 binding ERK2. 
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Ets∆138 
Mutant rf rb Kd, µM 

WT 0.111 ± 0.002 0.209 ± 0.004     6.6 ± 1.2n=3 
NoHis 0.096 ± 0.001 0.220 ± 0.003   10.0 ± 0.1n=2 
∆24-138 0.11* 0.209 ± 0.001   82.8 ± 3.2n=2 
∆51-138 0.11* 0.203 ± 0.001 128.6 ± 6.8n=1 
F120A 0.11* 0.211 ± 0.001   67.8 ± 3.1n=2  
P39A 0.114 ± 0.001 0.199 ± 0.001     8.0 ± 0.5n=1 
P39D 0.114 ± 0.001 0.198 ± 0.001     8.5 ± 1.0n=1 
P39G 0.112 ± 0.002 0.197 ± 0.003     7.9 ± 0.5n=2 
P39R 0.114 ± 0.002 0.202 ± 0.005     4.9 ± 0.8n=2 
P39V 0.109 ± 0.000 0.195 ± 0.003     8.8 ± 0.3n=2 

T38A/P39A 0.112 ± 0.002 0.209 ± 0.004   11.0 ± 0.8n=3 
 

Table 10.  Ets∆138 docking motif and proline-determinant mutant’s equilibrium 
dissociation constants as measured by a fluorescence anisotropy competition assay.  
Fluorescent anisotropy competition assays were carried out by allowing several 
concentrations of unlabeled Ets∆138 mutants (6.25-200 µM) to compete with 100 nM 
Ets∆138-F forming a complex with 9.55 µM ERK2.  A decrease in anisotropy occurred 
upon introduction of non-fluorescent mutant competitors and the equilibrium dissociation 
curves were simultaneously fit to Equation 10 and Equation 11.  The Kd for the 
fluorescent complex was fixed at 2.7 µM.  Since the Ets∆24-138, Ets∆51-138, and 
F120A mutants were particularly poor binders, the rf was fixed at 0.110 (the anisotropy 
of the free Ets∆138-F) assuming that these mutants completely dissociate Ets∆138-F at 
high concentrations of competitor.  All data are shown as a mean ± SE.  The number of 
experiments for each competitor are shown. 
 

 

Mutation of the proposed docking motif residue Phe-120 to alanine in the C-

terminal portion of Ets∆138 led to a 10-fold increase in the Kd as compared to Ets∆138 

indicating that a docking motif exists in the globular C-terminal portion of Ets∆138 (a 

similar mutation decreased the specificity constant of Ets∆138 phosphorylation by ERK2 

[52]).  We hypothesized that the N-terminal 23 residues and the C-terminal docking motif 

mediate efficient Ets∆138 docking onto ERK2 exosites.  The specificity constant of 
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phosphorylation for both Ets∆24-138 and the F120A docking motif mutant [52] were 

also less than Ets∆138 due to an increase in the Km (Chapter 3) and not a result of a 

deficiency in its steady-state rate of catalysis.  The steady-state kinetics and equilibrium 

binding assays of ERK2–Ets∆138 interactions indicate that docking motifs enhance the 

specificity constant of substrate phosphorylation by increasing the affinity of the docking 

complex and do not appear to affect the steady-state rate of catalysis.  These results are 

indicative of a loss of a docking motif required for enzymic exosite recognition at a 

protein–protein interface outside of the enzymic active site. 
 

 

THE P+1 PROLINE DETERMINANT IS REQUIRED FOR EFFICIENT CATALYSIS 

ERK2 is defined as a proline-directed kinase capable of phosphorylating the 

alcohol group on a serine or threonine residue that lies in the consensus sequence -Pro-X-

Ser/Thr-Pro- [132, 134], where X can be any amino acid.  The Ser/Thr phosphorylation 

site is referred to as the P-site while the residues that lie n residues N- and C-terminal to 

this site are termed P-n and P+n, respectively, where n is any integer.  Steady-state 

kinetic studies of ERK2 phosphorylation of a synthetic peptide derived from epidermal 

growth factor receptor (EGFR) were carried out in the early 1990’s [9].  Mutation of the 

conserved P-2, P+1, and P-2/P+1 prolines to alanine in the EGFR peptide led to a 10-, 

100-, and 1000-fold decrease in Vmax (however another Figure suggests only 5 and 10-

fold decrease) [9] suggesting that the proline-determinants surrounding the phospho-

acceptor determine the catalytic rate of phosphorylation.  Since these studies were carried 

out with a peptide substrate, we were interested in studying the role of the P+1 proline 

determinant in the recognition motif of a protein substrate with a docking motif. 



 252

Another study suggested that the P+1 proline-determinant of the substrate can 

enter a competent proline binding pocket in the active form of ERK2 [4] that is absent in 

the inactive form due to Val-187 and Arg-192 blocking this site [70].  As mentioned 

previously, MAPK protein substrates containing docking motifs are more efficiently 

phosphorylated than peptide substrates [42, 138], therefore, we sought to determine the 

role of the proline-determinant in mediating phosphorylation of the protein substrate 

Ets∆138 which contains a MAPK docking motif. 

We carried out a steady-state kinetic analysis of Ets∆138 in the presence and 

absence of the prolines surrounding the P-site in the recognition motif.  Since Ets∆138 

does not contain a P-2 proline normally found in the ERK recognition motif, we mutated 

the prolines at the P-3 and P+1 position (P35-L-L-T-P39) to alanines to generate P35A, 

P39A, and the double mutant P35/39A Ets∆138 (Figure 51).  The P35A mutation did not 

have an adverse affect on the specificity constant (Figure 52, Table 11) which is 

consistent with results that there are MAPK substrates that lack the P-2 proline [142, 

143].  Although, Pro-35 did not contribute to the specificity constant of Ets∆138, it 

cannot be ruled out that this is the case for all MAPK substrates.  A study carried out 

using peptide phosphorylation suggested that the P-2 proline enhanced the Vmax of 

peptide phosphorylation over a peptide that has a P-3 proline; however, it was only a 3-

fold difference [132].  These results suggest that a proline at the P-3 position is not 

required for efficient phosphorylation of Ets∆138.   
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Figure 51.  SDS-PAGE gel of Ets∆138 proline mutants.  (A) A 15% SDS-PAGE gel 
was prepared and loaded with 2 µg of (1) WT, (2) P35A, (3) P39A, (4) P35/39A 
Ets∆138, and a (5) protein ladder.  (B) A similar gel was prepared and loaded with 1 µg 
of (1) P39R, (2) P39K, (3) P39D, (4) P39E, (5) T38A/P39A, (6) Ets∆51-138, and a (7) 
protein ladder. 
 
 

 

Figure 52.  Specificity constant comparisons of dual-phosphate ERK2 
phosphorylation of Ets∆138 proline mutants.  The specificity constants were 
determined in Table 11 and plotted here to show relative specificity constant differences 
between Ets∆138 and the proline mutants. 
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Mutant kcat Km, Ets∆138 Km, ATP kcat/Km(Ets) 
WT 19.6 ± 0.7   8.8 ± 1.4 98.7 ± 4.4 2.2 n=12 
P35A 16.5 ± 0.9   8.7 ± 1.2  1.9 n=4 
P39A*   4.9 ± 1.2 45.8 ± 8.7  0.1 n=3 
P39A   3.9 ± 0.2 38.4 ± 4.5* 75.1 ± 2.4 0.1 n=6 
P35/39A   2.6 ± 0.1 39.8 ± 6.8  0.1 n=4 
P39V   1.1 ± 0.2 73.8 ± 10.8  0.01 n=2 
P39G   0.7 ± 0.1 34.3 ± 0.6  0.02 n=2 
P39R 0.12 ± 0.02 48.3 ± 2.0  0.002n=3 
P39K 0.07 ± 0.05 56.9 ± 8.8  0.001n=2 
P39D 0.05 ± 0.01 56.0 ± 9.6  0.001n=5 
P39E 0.06 ± 0.01 91.7 ± 31.7  0.001n=2 

 

Table 11.  The steady-state kinetic parameters for Ets∆138 proline mutants 
phosphorylated by dual-phosphate ERK2.  These values were obtained with 
radiolabeled P81 assays [42].  For the determination of the Km for Ets∆138 saturating 
ATP (2 mM) was used while varying the Ets∆138 concentration from 6.3-200 µM.  For 
the determination of the Km for ATP saturating Ets∆138 concentrations (150-200 µM) 
were used while varying the ATP concentration from 31.3-1000 µM.  Each value was 
determined using 6 initial velocities fit to the equation kobs = (kcat×[S])/(Km+[S]).  Assay 
conditions were 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 
µg/mL BSA, 20 mM MgCl2, 2 mM DTT, ERK2, and ATP.  Values are shown as a mean 
± standard error.  The mean kcat was determined using the values obtained from both 
Ets∆138 and ATP analyses and were found to be similar.  Units: kcat, s-1; Km, µM; kcat/Km, 
µM-1 s-1.  * - denotes that the Ets∆138 had Ser-26 while all other Ets∆138 constructs 
contained a Ser26Ala [44]. 
 

 

In contrast, the P39A mutation at the P+1 position of Ets∆138 exhibited a 5-fold 

decrease in kcat and 4-fold increase in Km for Ets∆138 while showing little defects in the 

ability to bind ATP (Figure 52, Table 11).  These data suggest that the P+1 proline is 

required for efficient phosphoryl-transfer.  The P+1 proline may be required for a 

conformational change leading to the activation of the enzyme and catalysis or may act to 

stabilize the transition state leading to catalysis.  It is clear that the lack of proline at 



 255

position 39 decreases the catalytic rate of the enzyme indicating that the proline is 

required for proper chemistry of phosphoryl-transfer in the active site.  Interestingly, in 

the absence of a P+1 proline, Ets∆138 is still able to undergo phosphorylation, albeit at a 

slower rate.  The P39A mutation does not change the specificity of the phosphorylation 

site as seen by a single phosphorylated peak following limited phosphorylation and a 

tryptic digest analysis (Figure 53A), followed by phosphoamino acid analysis of the 

phosphorylated peptide (Figure 53B) to indicate that a threonine is phosphorylated [42].  

Mutation of Thr-38 to alanine eliminated the phospho-threonine in the phosphoamino 

acid analysis (data not shown).    
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Figure 53.  Tryptic peptide digest and phosphoamino acid analysis of radiolabeled 
P39A Ets∆138 phosphorylated by active ERK2.  P39A Ets∆138 was phosphorylated 
under initial rate conditions by ERK2 so that 6% and 21% of the total substrate was 
phosphorylated.  The products were purified, cleaved with trypsin, and (A) run on a 
reverse phase C18 column to locate the radiolabeled peptide (only the 21% product is 
shown, the 6% product was similar).  (B) The major radiolabeled tryptic peak from both 
initial rate conditions were collected, hydrolyzed with acid, and subjected to 
phosphoamino acid analysis to determine which residue was phosphorylated; both 250 
(left) and 500 cpm (right) were loaded for each initial rate conditions.  These experiments 
were carried out with P39A Ets∆138 that contained Ser-26 which is normally mutated to 
alanine to prevent phosphorylation of this secondary site.  Both the 6% and 21% 
phosphorylated P39A Ets∆138 indicate that a threonine is phosphorylated (presumed to 
be Thr-38 as mutation of Thr-38 to alanine eliminated the phospho-threonine spot). 

 

 

The efficiency of phosphorylation of the double mutant (P35/39A) was not 

significantly different from the P39A mutant (Figure 52, Table 11) further indicating the 

lack of importance of Pro-35 in mediating phosphorylation of Ets∆138 and the 

importance of Pro-39 in mediating efficient catalysis.  The 5-fold decrease in the kcat of 
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the P39A Ets∆138 mutant is in stark contrast to phosphorylation studies of the EGF 

peptide that showed a 100-fold decrease in the rate of phosphorylation when mutating the 

P+1 proline to alanine.  These results suggest that a protein substrate containing a 

docking motif may be phosphorylated even in the absence of a Pro-X-Ser/Thr-Pro 

recognition motif. 

To further understand the role of the proline-determinant in MAPK recognition of 

a protein substrate, we mutated the proline determinant at position 39 of Ets∆138 to long 

chain polar residues as well as other small hydrophobic residues besides alanine to test 

whether or not Ets∆138 could be phosphorylated by ERK2 with residues other than 

alanine and proline at the P+1 position.  Mutation of the P+1 proline to long chain polar 

residues led to a significant decrease in the efficiency of Ets∆138 phosphorylation as 

indicated by a decrease in kcat and an increase in the Km of the mutants (Table 11).  In 

addition, the site-specificity of phosphorylation in the P39K and P39D mutants was lost 

as seen by the phosphorylation of both serine and threonine residues as determined by 

phosphoamino acid analysis (data not shown). 

Mutation of the P+1 proline to glycine and valine showed an ~ 20-fold decrease in 

kcat (Table 11) indicating that small nonpolar residues are tolerated more than large polar 

residues but much less than a proline or alanine.  These results suggest that the P+1 

proline directs or guides the residue to be phosphorylated and that an alanine at the P+1 

position can be tolerated albeit ~ 22-fold less efficiently by comparing the specificity 

constant to Ets∆138. 

The importance of the P+1 proline in a protein substrate may be less important in 

directing the phosphorylation of a protein substrate containing a docking motif than 

previously seen with alanine mutagenesis in a peptide substrate.  It was previously 

thought that proteins must contain a proline at the P+1 position to be phosphorylated by 
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ERK2 although our study suggests that an alanine at the P+1 position can be 

phosphorylated ~ 22-fold less efficiently at sub-saturating concentrations of substrate and 

~5-fold less efficiently at saturating concentrations.   

It is interesting to note that the EGF-peptide studies showed that mutation of the 

P-1 site to proline decreased the Vmax by ~ 20-fold [9].  However, ATF2 was shown to be 

an in vivo substrate of ERK2 with the consensus phosphorylation sequence Thr69-Pro-

Thr71-Pro where only the latter Thr-71 is phosphorylated by ERK2 [62].  These results 

suggest that a proline directly preceding the phosphorylation site is tolerated in vivo and 

that a substrate phosphorylated ~ 20-fold less efficiently at saturating conditions can be 

an in vivo substrate suggesting that ERK2 substrates lacking a P+1 proline may also exist. 

 

 

THE P+1 PROLINE DETERMINANT IS NOT REQUIRED FOR THE ERK2-ETS∆138 
DOCKING COMPLEX AND MACROMOLECULAR RECOGNITION  

The Ets∆24-138 mutant contains an ERK2 recognition motif including the 

phospho-acceptor Thr-38 and shows less than a two-fold increase in affinity as compared 

to a protein that lacks this region (Ets∆51-138) (Table 10).  These results suggest that the 

recognition motif contributes little to the formation of the docking complex.  We 

synthesized a peptide that was selected as the optimal peptide substrate of ERK1 (N-

TGPLSPGPF-C) [133], a protein with 83% homology that phosphorylates similar 

recognition motifs as that of ERK2, and found that this peptide could only displace 20% 

of the ERK2-Ets∆138-F docking complex at a high concentration of 3.2 mM (Kd ~ 4.7 ± 

0.2 mM) indicating that this ERK recognition motif either binds very poorly to ERK2 or 

does not compete with Ets∆138 binding and can bind ERK2 while it is bound to 

Ets∆138-F.  Further support that the recognition motif does not mediate macromolecular 
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recognition of Ets∆138 is that the phosphorylated product (Ets∆138~P) binds ERK2 with 

similar affinity as that of the unphosphorylated substrate and shows competitive 

inhibition with respect to Ets∆138 binding to ERK2 but does not compete with the 

alternate substrate MgATP2- in the active site [7].  These results were further confirmed 

by fluorescence anisotropy assays using the phosphorylated Ets∆138 substrate (K. Cox)32 

indicating that a docking complex can exist when the recognition motif is 

phosphorylated. 

Based on crystal structure data of the inactive and active form of ERK2, it has 

been proposed that a competent proline binding pocket exists in dual-phosphate ERK2 

[4] that is absent in unphosphorylated ERK2 due to Val-187 and Arg-192 blocking this 

site [70].  It was suggested that the P+1 proline of a MAPK substrate could bind in this 

pocket in the active form of ERK2 but not the inactive form.  However, we have shown 

that both dual-phosphate ERK2 and unphosphorylated ERK2 bind Ets∆138 with similar 

affinity (Chapter 4) indicating that the formation of the proline-binding pocket in dual-

phosphate ERK2 does not have a large affect on the affinity for the substrate Ets∆138.  

To understand whether or not the P+1 proline facilitates ERK2 macromolecular substrate 

recognition of Ets∆138, we used the P+1 mutants in a fluorescence competition assay to 

see whether or not different residues at the P+1 position affected the Kd of the docking 

complex.  We hypothesized that the proline mutations would not affect the Kd if the 

docking complex occurred primarily through exosite interactions on ERK2 and excluded 

the enzymic active site and the recognition motif in the substrate Ets∆138.  All of the P+1 

proline mutants exhibited less than a 2-fold affect on the Kd of the docking complex with 

ERK2 (Table 10, Figure 54a) indicating that Ets∆138 docking motifs mediate 

macromolecular substrate recognition independent of the P+1 proline.  Mutation of both 
                                                 
32 Fluorescence anisotropy was carried out using Ets∆138~P (containing only one cysteine at position 31) 
labeled with fluorescein and titrated with ERK2 to yield a Kd of 4.1 µM (K. Cox). 
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the P+1 proline and the phospho-acceptor to alanine (T38A/P39A) caused less than a 2-

fold increase in the Kd (Table 10, Figure 54a) indicating that neither the phospho-acceptor 

nor the P+1 proline is required for macromolecular substrate recognition.  Conversely, 

mutation of the P+1 proline had a dramatic affect on kcat (Figure 54b).  These results 

indicate that the P+1 proline does not facilitate macromolecular substrate recognition of 

Ets∆138 and, hence, formation of the docking complex, but is required for the dual-

phosphate from of ERK2 to efficiently phosphorylate Thr-38 on Ets∆138.  These data 

suggest that an efficient docking complex occurs between ERK2 and Ets∆138 in the 

absence of active site interactions, however, the P+1 proline is required for efficient 

chemistry for the phosphorylation of Thr-38. 
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A 

B  

 

Figure 54.  The P+1 proline of Ets∆138 is not required for macromolecular substrate recognition by 
ERK2 but is required for catalysis.  (A) The equilibrium dissociation constants (Kd) of several Ets∆138 
P+1 mutants were determined using a fluorescence anisotropy competition assay (Table 10).  (B) The kcat of 
each P+1 mutant was determined in Table 11. 
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MAGNESIUM CHLORIDE DECREASES THE AFFINITY OF ETS∆138 AND ERK2 

Mg2+ is required to stabilize negative charges on the ATP4- so that it can bind in 

the active site of ERK2 as a MgATP2- complex and is necessary for catalytic activity.  

Increasing concentrations of Mg2+ have been shown to increase the catalytic rate of 

ERK2 turnover of the Ets∆138 substrate and increase the Henri-Michaelis-Menten 

constant (Km) for Ets∆138 phosphorylation by ERK2 [6].  However, the mechanism of 

magnesium’s effects on ERK2 function is not fully understood.  To test whether or not 

Mg2+ affects the affinity of ERK2 and Ets∆138, fluorescence anisotropy experiments 

were carried out using both the unphosphorylated and dual-phosphate forms of ERK2 in 

the presence and absence of MgCl2.   

The addition of 1-2 mM free MgCl2 had less than a 2-fold affect on the affinity of 

the ERK2–Ets∆138-F complex (Table 12) indicating that concentrations above free 

magnesium concentrations in mammalian cells (0.25-1 mM) [144] does not greatly affect 

the affinity of this complex.  When carrying out steady state [7] and pre-steady state [44] 

phosphorylation assays we typically use 20 mM MgCl2 so that MgATP2- is saturating.  

The addition of 20 mM MgCl2 led to an increase in the Kd for the ERK2–Ets∆138-F 

complex for both the unphosphorylated (8-fold) and dual-phosphate (7-fold) forms of 

ERK2 as compared to the Kd in the absence of MgCl2 (Table 12).  These results indicate 

that high MgCl2 concentrations are capable of decreasing the affinity of ERK2 and 

Ets∆138-F for both phospho-forms of ERK2 suggesting that the MgCl2 affect on binding 

is independent of the activation state of ERK2.  These results are consistent with previous 

data suggesting that the Km of Ets∆138 increases as a function of increasing magnesium 

concentration [6].  The free magnesium concentration in cells can fluctuate based on 

cellular conditions such as growth, differentiation, proliferation, and senescence [145, 
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146] indicating that magnesium concentration fluctuation could regulate the activity of 

ERK2 and possibly other protein kinases through their ability to bind other proteins. 
 

Dual-phosphate ERK2 

Free Mg2+, mM AMP-PNP, 
mM 

rf rb Kd, µM 

20 - 0.106 ± 0.001 0.205 ± 0.009 17.2 ± 2.6n=3 
20 2 0.108 ± 0.001 0.192 ± 0.007   8.8 ± 1.2n=3 
2 - 0.113 ± 0.001 0.208 ± 0.002   2.6 ± 0.3n=1 
2 2 0.112 ± 0.001 0.199 ± 0.006   4.5 ± 0.8n=1 
1 -    
1 1 0.111 ± 0.001 0.188 ± 0.004   3.6 ± 0.6n=1 
- - 0.110 ± 0.000 0.203 ± 0.000   2.7 ± 0.1n=2 

Unphosphorylated ERK2    
20 - 0.107 ± 0.001 0.231 ± 0.003   6.0 ± 0.4n=1 
20 2 0.106 ± 0.002 0.254 ± 0.003   3.9 ± 0.4n=2 
2 - 0.111 ± 0.001 0.253 ± 0.002   1.2 ± 0.1n=1 
2 2 0.111 ± 0.001 0.253 ± 0.002   1.2 ± 0.1n=1 
1 - 0.111 ± 0.002 0.256 ± 0.004   1.2 ± 0.2n=1 
1 1 0.108 ± 0.001 0.224 ± 0.002   1.2 ± 0.1n=1 
- - 0.113 ± 0.000 0.247 ± 0.005   0.7 ± 0.1n=3 

 
Table 12.  The affinity of ERK2 and Ets∆138-F in the presence of MgCl2 and AMP-
PNP. Fluorescent anisotropy assays were carried out using several concentrations of 
dual-phosphorylated and unphosphorylated ERK2 and 100 nM Ets∆138-F in the presence 
and absence of the concentrations of MgCl2 and AMP-PNP shown using standard 
conditions.  The hyperbolic curves generated were fit to Equation 9.  All data are shown 
as a mean ± SE.  The number of experiments for each are shown. 
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 To further understand the role of Mg2+ in disrupting macromolecular recognition 

of Ets∆138 by ERK2, several concentrations of MgCl2 were added to two different 

concentrations of dual-phosphate ERK2 (9.55 and 4.8 µM) while using a fixed 

concentration of Ets∆138-F (Figure 55a).  As expected from the previous results, the 

apparent Kd increased with increasing concentrations of MgCl2.  As magnesium 

concentrations increased, the affinity of ERK2 for Ets∆138 decreased indicating that 

magnesium binding to ERK2 can compete with Ets∆138-F binding. 

If we assume that magnesium competes with Ets∆138-F binding by binding 

directly to ERK2, we can use the same data from Figure 55a to determine the dissociation 

constant for Mg2+ binding to ERK2.  When the data from Figure 55a was plotted as 

anisotropy versus MgCl2 concentration, the Kd of Mg2+ for ERK2 was elucidated (Kd
Mg ~ 

3.3 mM for both concentrations of ERK2 when rf was fixed at a value of 0.110) (Figure 

55b).  These results are in close proximity to Ki values obtained for magnesium in kinetic 

studies with ERK2 [6]. 

From Figure 55a, equilibrium dissociation constants for the ERK2–Ets∆138 

complex can be estimated at each concentration of MgCl2 and used to predict equilibrium 

dissociation constants at any give MgCl2 concentration (data not shown).  When the 

estimation of the dissociation constants are compared with the actual measured 

dissociation constants, the results are very consistent.  For example, at 0 mM MgCl2 it is 

estimated that the Kd of the ERK2–Ets∆138-F complex should be ~ 2 µM and the 

measured value was 2.7 µM (Table 12).  At 20 mM MgCl2, the estimated Kd was ~ 18 

µM and the measured value was 17.2 µM (Table 12).  We also carried out an ITC 

experiment to measure Ets∆138 binding to ERK2 in 10 mM MgCl2 (using similar assay 

conditions except that 0.1% 2-mercaptoethanol was used in place of 2 mM DTT) and 

found that the measured Kd was 21.4 ± 3.2 µM (n=2) while the predicted dissociation 
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constant was ~ 8.5 µM for the ERK2-Ets∆138-F complex.  ITC experiments also 

suggested that the Kd for ERK2 and Ets∆138 was 7.1 ± 0.3 µM (n=2) in the absence of 

magnesium chloride similar to the measured value using anisotropy (Kd  = 6.6 µM). 

 

 

 

Figure 55.  Mg2+-dependence of the equilibrium dissociation constant of the ERK2–
Ets138 complex.  Fluorescence anisotropy was performed using 100 nM Ets∆138-F and 
varying concentrations of MgCl2 using two concentrations of ERK2 (as shown above) 
using 25 mM Hepes, pH 7.5, 50 mM KCl, 40 µg/mL BSA, 0.1 mM EDTA, 0.1 mM 
EGTA and 2 mM DTT. 
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MACROMOLECULAR SUBSTRATE RECOGNITION IN THE PRESENCE OF MAGNESIUM 
AND AN ATP-MIMIC 

Analyses of protein kinase activity are carried out in the presence of both MgCl2 

and ATP, therefore, we were interested in the protein–protein binding events in the 

presence of MgATP2-.  Since the addition of ATP allows for the phosphorylation of 

Ets∆138-F by ERK2 to occur and disrupt the equilibrium of the binding assays, we 

measured the Kd in the presence of a non-hydrolyzable ATP mimic in which the oxygen 

bridging the β- and γ- phosphate group of ATP was replaced with a nitrogen (AMP-PNP, 

5'-adenylylimidodiphosphate) (Figure 56).  AMP-PNP has been used in several situations 

to mimic ATP binding in crystal structures of protein kinases [147-149] indicating that it 

binds sufficiently in the active site of several kinases and mimics ATP. 
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Figure 56.  The structures of the nucleotide ATP and the non-hydrolyzable analog 
AMP-PNP.  ATP and AMP-PNP are shown and differ by the linker between the β- and 
γ-phosphate where ATP contains a hydrolyzable oxygen and AMP-PNP contains a non-
hydrolyzable nitrogen.  AMP-PNP was used in fluorescence anisotropy binding assays in 
the presence of MgCl2 to mimic the active ternary complex required for phosphorylation 
(Mg-ERK2-MgATP-Ets∆138) [6]. 
 
 

Interestingly, the addition of 2 mM AMP-PNP led to an ~ 2.0-fold decrease in the 

dissociation constant for Ets∆138-F and the unphosphorylated and dual-phosphate forms 

ERK2 as compared to the absence of nucleotide in the presence of 20 mM MgCl2 (Table 

12).  Similarly, the addition of 2 mM ADP33, a product of the phosphorylation reaction 
                                                 
33 At 2 mM ADP and 20 mM MgCl2, the parameters were rf = 0.111 ± 0.001, rb = 0.193 ± 0.015, Kd = 5.9 ± 
2.1 µM (n=2 association).  A displacement assay under similar conditions gave values of rf = 0.110 fixed, rb 
= 0.190 ± 0.001, and Kd = 27.0 ± 2.0 µM (n=1) for Ets∆138 and values of rf = 0.110 fixed, rb = 0.187 ± 
0.002, and Kd = 83.3 ± 12.8 µM (n=1).  KS* ~ 0.5.   
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that lacks a γ-phosphate group, led to a small 3-fold decrease in the Kd in the presence of 

20 mM MgCl2 indicating that the presence of a nucleotide has a small affect on the 

affinity of the docking complex.  These results indicate that nucleotide binding to ERK2 

(MgAMP-PNP2- and MgADP1-) may have a small affect on stabilizing the docking 

complex between ERK2 and Ets∆138-F, however, the binding affinity was not as good as 

that seen in the absence of MgCl2.  At low concentrations of MgCl2 (between 0-2 mM), 

the affinity of the docking complex was not largely altered by the addition of AMP-PNP 

(Table 12) which may be due to a poor affinity of the nucleotide for ERK2 at low 

magnesium concentrations [6].  These results suggest that nucleotide binding in the form 

of MgAMP-PNP2- and MgADP1- do not considerably stabilize the docking complex 

indicating the lack of strong active site binding affinity. 
 

 

A MODEL FOR ETS∆138 SUBSTRATE RECOGNITION BY ERK2 

We have determined the equilibrium dissociation constant for the ERK2–Ets∆138 

complex and shown evidence that an Ets∆138 docking motif is required for efficient 

exosite interactions with ERK2 for macromolecular substrate recognition.  In addition, 

we have shown that Ets∆138 residues that enter into the active site of ERK2 for 

phosphorylation (Thr-Pro site) are not required for macromolecular substrate recognition 

(Figure 54a) but are crucial for efficient catalysis (Figure 54b).  Based on these data, we 

propose a two-step binding model leading towards the phosphorylation of Ets∆138 by the 

dual-phosphate form of ERK2 in which (1) an intermolecular binding step occurs to 

facilitate macromolecular substrate specificity followed by (2) intramolecular binding of 

the recognition motif in the active site leading to the active complex required for 

phosphorylation.  We propose that intermolecular binding occurs between an ERK2 
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exosite and the Ets∆138 docking motif independent of active site interactions (KS).  Once 

the exosite-tethered docking complex has formed, an intramolecular binding event allows 

the kinase active site to associate with the recognition motif of the substrate (KS*).  

Therefore, the Kd of the ERK2–Ets∆138 docking complex measured using the 

fluorescence anisotropy assay was hypothesized to be an apparent equilibrium 

dissociation constant ( app
dK ) that includes both KS and KS*. 

In order to determine the internal equilibrium dissociation constant (KS*) for 

ERK2 active site recognition of the substrate recognition motif, we must make a few 

assumptions.  If we assume that app
dK  involves both the intermolecular and 

intramolecular binding steps of Ets∆138, then the Kd of the ERK2–Ets∆138 complex is 

indistinguishable from app
dK .  On the other hand, the T38A/P39A Ets∆138 mutant has a 

docking motif for ERK2 recognition but lacks a recognition motif required for 

phosphorylation, therefore, we can assume that the Kd of the T38A/P39A mutant is 

indistinguishable from KS and does not include KS*.  If these assumptions are made, then 

the internal equilibrium dissociation constant (KS*) can be estimated using Equation 31. 

   

Equation 31 
1*S

*SSapp
d +

×=
K

KKK  

  
Using Equation 31 and the Kd obtained from WT and T38A/P39A Ets∆138 in the 

absence of MgCl2, presence of 20 mM MgCl2, and in the presence of 20 mM MgCl2 and 

2 mM AMP-PNP2- (Table 13), were used to estimate the three internal equilibrium 

constants KS*, KS*Mg, and KS*·A·Mg to be 1.5, 1.3, and 1.0, respectively.  Each of the 

estimated internal equilibrium constants were not largely favorable (where KS* << 1) for 

the active conformation in which the recognition motif is bound in the enzymic active 
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site.  We must also assume that the binding of AMP-PNP (catalytically inactive) is 

similar to that of ATP (catalytically active).  These results suggest that neither 

magnesium nor the MgAMP-PNP2- lead to a significant stabilization of the active ternary 

complex where the phospho-acceptor of Ets∆138 is in the active site consistent with the 

results that active site interactions for this E–S complex are weak.  Since the active site 

interactions are not strong interactions, the mechanism of phosphoryl-transfer relies 

largely upon the docking complex mediated outside of the active site to ensure the 

fidelity of macromolecular recognition.  The docking complex formed between Ets∆138 

and ERK2 must exist long enough for a nucleotide substrate to bind (if not already bound 

to the enzyme) and for the phospho-acceptor of Ets∆138 to enter the active site in the 

absence of strong interactions.  Certainly, a proline at the P+1 position to the phospho-

acceptor helps to mediate efficient recognition and phosphorylation of this site by ERK2.
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Ets∆138 
Free Mg2+, 

mM 
AMP-PNP, 

mM 
rf rb Kd, µM 

0 - 0.111 ± 0.002 0.209 ± 0.004 6.6 ± 1.2n=3 
20 - 0.112 ± 0.001 0.184 ± 0.003 29.0 ± 12.8n=2

20 2 0.110* 0.188 ± 0.001  29.5 ± 1.7n=1 
T38A/P39A Ets∆138    

Free Mg2+, 
mM 

AMP-PNP, 
mM    

0 - 0.112 ± 0.002 0.209 ± 0.004   11.0 ± 0.8n=3

20 - 0.113 ± 0.001 0.189 ± 0.004 50.9 ± 4.2n=2 
20 2 0.110* 0.186 ± 0.002 57.6 ± 6.4n=1 

 

Table 13.  Competition anisotropy assays to determine the Kd of the ERK2–Ets∆138 
and ERK2–Ets∆138(T38A/P39A) in the presence of MgCl2 and AMP-PNP.  A 
competition fluorescence anisotropy assay was carried out to determine the Kd of the 
ERK2–Ets∆138 and ERK2–Ets∆138(T38A/P39A) in the presence and absence of MgCl2 
and AMP-PNP.  These data were used to estimate the docking complex dissociation 
constant (KS) and the internal equilibrium constant (KS*) under conditions of no Mg2+, 20 
mM free Mg, and 20 mM free Mg2+ and 2 mM AMP-PNP.  Values of app

dK  were derived 
from the Kd of Ets∆138.  Values of KS were derived from the Kd of T38A/P39A assuming 
that the KS* equilibrium does not occur for this mutant.  KS* was estimated using Equation 
31. 
 

 

CONCLUSIONS 

A mechanism of macromolecular substrate recognition by a post-translational 

modification enzyme as proposed here using exosite interactions to tether the enzyme–

substrate interaction followed by intramolecular recognition of the recognition motif in 

the active site seems evolutionarily advantageous for cell signaling pathways utilizing 

covalent modifications such as phosphorylation, dephosphorylation, proteolysis, 

methylation, acetylation, and ubiquitination.  Since the chemistry that occurs in the active 



 272

site of these enzymes are similar amongst family members, small changes of non-

catalytic residues in the active site could be made to facilitate a subset of family-specific 

recognition motif sequences while excluding other non-family-specific recognition 

motifs.  However, according to our data, these recognition motifs do not bind strongly in 

the active site even in the presence of magnesium and a nucleotide.  Multiple isoforms of 

sub-family members with similar recognition motif preferences could evolve to have 

unique macromolecular substrate specificities by positively or negatively evolving 

exosites specific for new substrates bearing family-specific recognition motifs.  We 

proposed that these exosite–docking motif interactions help to ensure the fidelity of 

cellular signal transduction mediated through post-translational modifications such as 

phosphorylation by ERK2 and other members of the MAPK family. 
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EXPERIMENTAL PROCEDURES 

CONSTRUCTION OF SITE-SPECIFIC ETS∆138 MUTANTS  

A pET-28a bacterial expression vector encoding a hexa-histidine tag followed by 

the cDNA encoding murine Ets1 residues 1-138 (pET-28a Ets∆138, a gift of L. P. 

McIntosh, University of British Columbia, Vancouver) was modified by PCR using site-

directed mutagenesis to construct an N-terminal truncation mutant containing Ets1 

residues 24-138 with an initial methionine (pET-28a Ets∆24-138) and the Ets∆138 

mutants P35A, P39A, P39R, P39K, P39D, P39E, P39G, P39V.  To construct the pET-28a 

Ets∆24-138 and Ets∆51-138 N-terminal truncation mutants, pET-28a Ets∆138 was PCR 

amplified with a forward primer containing an NdeI site (underlined, encoding the initial 

methionine) followed by the codon encoding Phe-24 (5’-GG GAA TTC CAT ATG TTC 

CCT TCC CCG GAC ATG-3’) or encoding Ala-51 (5’-GG GAA TTC CAT ATG GCT 

ACT TTC AGT GGT TTC ACA) and an outer reverse primer (5’-GCT AGT TAT TGC 

TCA GCG GTG G-3’) using the following PCR conditions: 94 °C for 5 min to denature 

the complementary strands; 30 cycles of 55 °C for 30 sec to anneal the primers, extension 

for 1 min at 72 °C, followed by a denaturation step at 94 °C for 45 sec; complementary 

strands were extended a final 10 min at 72 °C.  The N-terminal mutant PCR products 

were digested with NdeI and HindIII and ligated into NdeI-HindIII digested pET-28a.   

Each Ets∆138 construct and mutants were generated and purified essentially as 

described [42] and dialyzed into 1.25 mM Hepes, pH 7.5, 2.5 mM KCl, and 2 mM DTT.  

All proteins produced from the pET-28a vector have an N-terminal sequence of M-G-S-

S-H-H-H-H-H-H-S-S-G-L-V-P-R-G-S-H- prior to the initial methionine encoded by the 

Ets∆138 cDNA, however, usually the initial methionine is cleaved after production in 
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bacteria [42].  All Ets∆138 constructs used here have an S26A mutation [44] unless 

otherwise denoted (* - P39A contains Ser-26). 

For the Ets∆138 point mutations, fragment A was PCR amplified with an outer 

forward primer (5’-GGT GAT GCC GGC CAC GAT GC) and an inner reverse primer 

containing the mutation for P35A (5’-AGT TAA CAG CGC GAC ATC TGC ACA-3’), 

P39A (5’-TC TTT GCT GCT AGC AGT TAA CAG CG-3’), P39R (5’-AT TTC TTT 

GCT GCT ACG AGT TAA CAG-3’), P39K (5’-TTC TTT GCT GCT TTT AGT TAA 

CAG CG-3’), P39D (5’-C TTT GCT GCT ATC AGT TAA CAG CGG -3’), P39E (5’-C 

TTT GCT GCT TTC AGT TAA CAG CGG -3’), P39G (5’-TTC TTT GCT GCT GCC 

AGT TAA CAG CGG-3’), P39V (5’-TC TTT GCT GCT CAC AGT TAA CAG CG-3’) 

or F120A (5’-AT ATC CCC AAC AGC GTC TGG AGC CA-3’).  Fragment B was 

amplified with an inner forward primer containing the mutation for P35A (5’-TGT GCA 

GAT GTC GCG CTG TTA ACT-3’), P39A (5’-CG CTG TTA ACT GCT AGC AGC 

AAA GA-3’), P39R (5’-CTG TTA ACT CGT AGC AGC AAA GAA AT-3’), P39K (5’-

CG CTG TTA ACT AAA AGC AGC AAA GAA-3’), P39D (5’-CCG CTG TTA ACT 

GAT AGC AGC AAA G-3’), P39E (5’-CCG CTG TTA ACT GAA AGC AGC AAA G-

3’), P39G (5’-CCG CTG TTA ACT GGC AGC AGC AAA GAA-3’), P39V (5’-CG 

CTG TTA ACT GTG AGC AGC AAA GA-3’), or F120A (5’–TG GCT CCA GAC GCT 

GTT GGG GAT AT-3’) and an outer reverse primer (5’-GCT AGT TAT TGC TCA 

GCG GTG G-3’).  Fragments A and B were purified and used as templates for a second 

round of PCR using the outer primers.  Mutants containing two mutations were made 

using single mutant DNA as template and incorporating a second mutation.  The mutant 

PCR products were digested with NdeI and HindIII and ligated into NdeI-HindIII 

digested pET28a.  All mutations were verified by sequencing the DNA at UT core 

facilities using an Applied Biosystems automatic DNA sequencer. 
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CLEAVAGE OF THE HIS6-TAG OF ETS∆138 

Ets∆138 (5 mg) was subjected to thrombin proteolysis in a 5 mL reaction volume 

containing 7 units of thrombin (Novagen) in 20 mM Tris-HCl, pH 8.4, 1.5 M NaCl, and 

25 mM CaCl2 at 23 °C for 4 hours.  The reaction was filtered with a 0.22 µm nylon filter 

(Pall) and applied to a Mono Q HR 10/10 anion exchange column pre-equilibrated in H1 

buffer (20 mM Tris, pH 8.0, 0.1% 2-mercaptoethanol (v/v), 0.03% Brij-35 (w/v), 0.1 mM 

EDTA, and 0.1 mM EGTA) and eluted with a linear gradient of H2 buffer (H1 containing 

0.25 M NaCl) over 80 min at a flow rate of 1.5 mL min-1.  The resulting Ets∆138NoHis 

was dialyzed into 1.25 mM Hepes, pH 7.5, 2.5 mM KCl, and 2 mM DTT at 4 °C, 

concentrated, snap frozen in liquid nitrogen, and stored at -80 °C. 

For mass spectrometry analysis, 1 mg of Ets∆138NoHis was applied to a 250 mm 

× 4 mm Vydac RP column (218TP54) equilibrated with 0.1% trifluoroacetic acid (TFA) 

and eluted with a linear gradient of aqueous acetonitrile (99.9% v/v) containing 0.1% 

TFA at a flow rate of 0.7 mL min-1 and collecting 0.7 mL fractions.  All fractions from 

both major peaks were pooled as separate peaks, lyophilized, raised in 50% acetonitrile, 

lyophilized again, and raised in 200 µL of 50% acetonitrile.  The solution was filtered in 

a 0.22 µm nylon filter (Pall), diluted 1:10, and analyzed by electrospray ionization as 

previously described [42].  The molecular mass of the second C18 peak was 

Ets∆138NoHis (15 912 Da) while the first peak was devoid of protein. 
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KINETIC METHODS FOR ETS∆138 PHOSPHORYLATION 

Protein kinase assays were conducted as described previously by spotting 5 µL 

aliquots of a 50 µL reaction containing γ-32P-ATP (ICN) onto P81 paper as described 

[42].  Assays contained 0.5-1 nM ERK2, 25 mM Hepes pH 7.5, 50 mM KCl, 20 mM 

MgCl2, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, and 2 mM DTT, while keeping 

ATP constant (2 mM) and varying Ets∆138 (6.3-200 µM) or while keeping Ets∆138 

constant (200 µM) and varying ATP (31.3-1000 µM).  Initial rates were measured at each 

given concentration using at least 5 data points that lie in a straight line and saturation 

curves were fit to the Henri-Michaelis-Menten equation using Kaleidagraph (Synergy 

Software).  Assays with P39A and P35/39A Ets∆138 used 2 nM ERK2, those with P39R 

were 100 nM ERK2, and those with P39K, P39D, P39E Ets∆138 were 200 nM ERK2. 

 

 

PHOSPHOAMINO ACID ANALYSIS 

Phoshpoamino acid analysis was carried out essentially as described [103].  

Radio-labeled Ets∆138 was run on a 15% SDS-PAGE gel at 200V for 40 min, transferred 

to nitrocellulose in 25 mM Tris-HCl, 200 mM glycine, 20% methanol (v/v), and 0.1% 

SDS at 30 V for 12 h.  The nitrocellulose was stained with 1% acetic acid (v/v) 

containing 0.1% Ponceau S to ensure the transfer occurred and to locate the target protein 

bands, destained in water 3 × 10 min, soaked in 100 mL of 0.1 M acetic acid containing 

0.5% polyvinylpyrollidone for 30 min at 37 ºC.  Bands containing Ets∆138 were cut into 

small pieces with a razor blade, washed 3 × 1 mL with water, 2 × 1 mL with 25 mM 

ammonium carbonate, pH 8.5, raised in 200 µL of ammonium carbonate with 10 µg of 

sequencing grade trypsin (Roche), and shaken vigorously at 37 ºC for 4 h.  Another 10 µg 
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of trypsin was added overnight.  The digest was centrifuged for 10 min at 13,000 rpm and 

the supernatant containing the tryptic peptides was removed, dehydrated under vacuum, 

and raised in 0.1% TFA for reverse phase HPLC analysis.  The sample was injected onto 

a reverse phase C18 column (Vydac 218TP54) in 0.1% TFA using a linear gradient of 0-

99.9% acetonitrile over 100 min at a flow rate of 0.7 mL/min.  Each 0.7 mL fraction was 

counted in the scintillation counter to locate radioactive samples.  A peptide 

corresponding to phosphorylated Ets∆138 eluted at 40% acetonitrile.  The labeled peptide 

was hydrolyzed in 6 N HCl for 60 min at 110 ºC and analyzed by phospho-amino acid 

analysis by electrophoresis of ~ 250-500 cpm on a 20 × 20 cm cellulose plate w/o 

fluorescent indicator using running buffer containing 5% acetic acid (v/v) and 0.5% 

pyridine (v/v), pH 3.5.  Samples were electrophoresed at 250 V for 2 hours, the plate was 

dried, stained with 0.25% ninhydrin in acetone to expose the standard phosphorylated 

amino acids (P-Ser, P-Tyr, and P-Thr), exposed to film for 24 hours, and developed. 
 

 

FLUORESCENCE ANISOTROPY BINDING ASSAY 

The binding of Ets∆138-F to ERK2 was monitored using fluorescence anisotropy.  

Fluorescence anisotropy, r, is defined in Equation 8 where IVH is the intensity of the 

horizontal emission (second subscript) of the fluorescein moiety stimulated with 

vertically polarized light (first subscript), and G is the monochromator grating factor 

(IHV/IHH) to correct for emission components.    

 

Equation 8  
)G2(

)G(

VHVV

VHVV

II
IIr
××+

×−=  
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Various amounts of ERK2 were added to Ets∆138-F, the fluorescence anisotropy of 

Ets∆138-F signal increased and neared a saturating value indicating saturation of 

Ets∆138-F binding to ERK2.  All binding assays were carried out using 100 nM 

Fluorescein-Ets∆138 (as measured by fluorescein concentration) in 25 mM Hepes, pH 

7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 40 µg/mL BSA, 2 mM DTT, 2% 

glycerol, and various concentrations of ERK2 in a 60 µL volume.  Assays were made by 

adding a 5x concentration of ERK2 in 12 µL of S1 buffer (25 mM Hepes, pH 7.5, 50 mM 

KCl, 2 mM DTT, and 10% glycerol), a 10x concentration of Ets∆138-F in 6 µL of S1 

buffer lacking glycerol, 30 µL of Master Mix buffer (35 mM Hepes, pH 7.5, 70 mM KCl, 

80 µg/mL BSA, 0.2 mM EDTA, 0.2 mM EGTA, and 2 mM DTT), followed by 12 µL of 

Competition buffer (1.25 mM Hepes, pH 7.5, 2.5 mM KCl, and 2 mM DTT) to make a 

final volume of 60 µL.  AMP-PNP, ADP, and MgCl2 were added at a 2x concentration in 

the Master Mix buffer. 

Discontinuous assays were carried out by incubating separate reactions for 7 min 

at 27 °C, exciting the fluorescein moiety with both vertically and horizontally polarized 

light at 492 nm, and measuring the emission of polarized light at both the vertical and 

horizontal positions at 515 nm.  Excitation and emission slit widths were set to 5 nm the 

integration time for each reading was 0.300 sec.  The anisotropy of each assay point was 

measured every 15 sec for 3 min and the average anisotropy was calculated from the 12 

data points.  The G factor was near 0.75-0.76. 

Anisotropy data were fit to Equation 9 to determine the equilibrium dissociation 

constant (Kd), where rf, and rb are the anisotropy values of the free and bound Ets∆138-F, 

respectively, and [ET] and [ST] are the total ERK2 and Ets∆138-F concentration. 
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Equation 9 34 <r> = 
]2[S

]][S4[E])[S][E(][S][E

T

TT
2

TTdTTd −++−++
+

KK
)-r(r r fbf

  

 

 

COMPETITION ASSAY 

Unlabeled Ets∆138 and magnesium were used to compete with an Ets∆138-F 

exosite on ERK2, the data was simultaneously fit to Equation 10 and Equation 11 using 

the program Scientist to determine the equilibrium dissociation constant (Kd’2) of the 

unlabeled competitor and ERK2, where Kd is the equilibrium dissociation constant for 

Ets∆138-F and ERK2 in the absence of competitor, [C] is the concentration of the 

unlabeled competitor, and [EC] is the concentration of the ERK2–Ets∆138 or the ERK2–

Mg2+ complex. 

 

Equation 10 34  <r> = 
1

]E[
]C[

)(

Td'2

d'2
d

fb
f

+
×
+
−+

K
KK

rrr  

 

Equation 11  
]EC[

]C[]E[ T
d'2

×=K

  

Assays were made similar to above with the addition of ERK2 (5x), Master Mix buffer, 

the competitor (5x) in Competition buffer, followed by Ets∆138-F (10x). 

 

 

                                                 
34 If fluorescence yield of the bound and free forms of the labeled protein differ, as in the case of Ets∆138-
Fluorescein labeled at Cys-31 (the bound form has a fluorescence yield that is 50% of the unbound form), 
see “Equation Derivation” in Chapter 4. 
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ISOTHERMAL TITRATION CALORIMETRY 

An MCS isothermal titration calorimeter (MicroCal Inc.) was used for titrations of 

Ets∆138 into ERK2 at 27 °C in 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 

mM EGTA, and 0.1% 2-mercaptoethanol (v/v).  The buffer was also used as the 

reference solution.  Dual-phosphate ERK2 (30 µM) was titrated with concentrated 

Ets∆138 (600 µM) after overnight dialysis at 4 °C in the same buffer.  Titrations were 

initiated with a 2 µL injection followed by 30 × 10 injections with a 5 s injection duration 

and a 120 s in between injections.  Origin 2.3 data analysis software (MicroCal Inc.) was 

used for the integration of thermograms by fitting to a one-binding site model.  Data 

fitting produced values for the binding stoichiometry (n), dissociation constant (Kd), and 

molar enthalpy change (∆H).  The change in molar entropy (∆S) and the Gibbs free 

energy (∆G) were calculated from the thermodynamic relationships.  Experiments done 

with 10 mM MgCl2 were carried out by dialyzing the proteins in buffer also containing 

MgCl2; for these experiments the ERK2 concentration was 44 and 50 µM in the presence 

of 600 and 800 µM Ets∆138, respectively.  
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EQUATION DERIVATION 

From Scheme 14 
 

]ES[
]S][E[

S =K  can be rearranged to 
S

]S][E[]ES[
K

=  

]ES*[
]ES[

*S =K  can be rearranged to 
*S

]ES[]ES*[
K

=  and then to 
*SS

]E][S[]ES*[
KK

=  

 
ET = [E] + [ES] + [ES*] 
 
 
The dissociation constant is defined as the free substrate concentration in which half of 
enzyme is bound to substrate and half is free.  Therefore: 
 

 
*][][][

][5.0
][
][

ESESE
E

E
E

T ++
==  

 
Divide by E to get: 
 

0.5 = 

][
*][

][
][1

1

E
ES

E
ES ++

 

 
Substitute [ES] and [ES*] in and solve for [S] 
 

Equation 31 
1

][
*

*

+
==

S

SSapp
d K

KKKS  
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EXPERIMENTAL DATA 

Table 10 

Ets∆138NoHis, Competition Fluorescence Anisotropy, 7/23/04 (ii) 
[Ets∆138NoHis], µM <r> 

0 0.178 0.176 
6.25 0.169 0.167 
12.5 0.160 0.157 
25 0.144 0.145 
50 0.130 0.129 

100 0.116 0.119 
150 0.110 0.111 
200 0.106 0.108 

 

 
Ets∆138, Competition Fluorescence Anisotropy, 1/26/04, 3/3/04, 4/22/04 (two different 
batches) 
[Ets∆138], µM <r> 

0 0.170 0.178 0.175 
6.25  0.171 0.166 
12.5 0.154 0.160 0.157 
25 0.136 0.148 0.144 
50 0.127 0.133 0.129 

100 0.121 0.124 0.122 
200 0.118 0.115 0.119 
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Ets∆24-138, Competition Fluorescence Anisotropy, 4/22/04 (ii – two different batches) 
[Ets∆24-138], 

µM <r> 

0 0.175 
6.25 0.173 
12.5 0.173 
25 0.168 
50 0.164 
100 0.157 
200 0.146 

 
[Ets∆24-138], 

µM <r> 

0 0.175 
9.4 0.170 
18.8 0.169 
37.5 0.164 
75 0.157 
150 0.149 
176 0.147 

 

 

Ets∆51-138, Competition Fluorescence Anisotropy, 1/30/04 
[Ets∆51-138], µM <r> 

0 0.169 
12.5 0.169 
25 0.166 
50 0.163 

100 0.157 
200 0.149 
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F120A Ets∆138, Competition Fluorescence Anisotropy, 3/5/04 (ii) 
[F120A], µM <r> 

0 0.175 0.176 
6.25 0.172 0.173 
12.5 0.173 0.171 
25 0.169 0.167 
50 0.163 0.160 

100 0.154 0.152 
200 0.143 0.143 

 

 

P39A Ets∆138, Competition Fluorescence Anisotropy, 1/27/04 

[P39A], µM <r> 

0 0.169 
12.5 0.154 
25 0.144 
50 0.133 
100 0.125 
200 0.119 
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P39D Ets∆138, Competition Fluorescence Anisotropy, 1/27/04 

[P39D], µM <r> 

0 0.169 
12.5 0.154 
25 0.145 
50 0.134 
100 0.125 
200 0.121 

 

 

P39G Ets∆138, Competition Fluorescence Anisotropy, 5/1/04 

[P39G], µM <r> 

0 0.168 0.166 
12.5 0.160 0.157 
25 0.151 0.153 
50 0.143 0.141 
100 0.130 0.131 
200 0.123 0.123 
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P39R Ets∆138, Competition Fluorescence Anisotropy, 1/27/04, 3/3/04 

[P39R], µM <r> 

0 0.168 0.178 
6.25  0.167 
12.5 0.148 0.157 
25 0.137 0.139 
50 0.126 0.127 
100 0.121 0.122 
200 0.118  

 

 

P39V Ets∆138, Competition Fluorescence Anisotropy, 5/1/04 (ii) 

[P39V], µM <r> 

0 0.165 0.162 
6.25 0.160 0.158 
12.5 0.151 0.149 
25 0.143 0.140 
50 0.128 0.129 
100 0.121 0.121 
200 0.116 0.115 
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T38A/P39A Ets∆138, Competition Fluorescence Anisotropy, 1/30/04, 3/3/04 (ii) 

[T38A/P39A], µM <r> 

0 0.168 0.178 0.178 
6.25 0.161 0.170 0.171 
12.5 0.155 0.164 0.164 
25 0.147 0.153 0.153 
50 0.134 0.139 0.140 
100  0.129 0.129 
200  0.123 0.122 
75 0.128   
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Table 11 

WT Ets∆138 data can be found in Chapter 3, Experimental Data, n=12 

 

P35A Ets∆138 
kobs, s-1 [P35A], µM 6/28/02 7/9/02 1/16/03 1/20/03 

200 13.8 17.4 14.1 17.6 
100 13.3 17.3 14.4 15.2 
50 13.7 16.7 11.9 14.8 
25 10.8 14.6 11.8 11.5 

12.5 9.3 13.8 9.4 10.3 
6.3 6.3 8.4 4.7 6.2 

 
6/28/02 50 mM Hepes, pH 7.3, 100 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 10 mM 
MgCl2, 2 mM ATP, 8 µg/mL BSA 
 
7/9/02, 50 mM Hepes, pH 7.3, 100 mM KCl, 10 mM MgCl2, 2 mM ATP, 8 µg/mL BSA, 
2.8 mM DTT 
 
1/16/03 50 mM Hepes, pH 8.2, 100 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 µg/mL 
BSA, 2 mM DTT 
 
1/20/03 50 mM Hepes, pH 8.2, 50 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 µg/mL BSA, 
2 mM DTT 
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P39A Ets∆138 containing Ser-26 
kobs, s-1 [P39A], µM 5/11/03 1/30/03 1/30/03

200 2.3 4.0 4.5 
100 2.1 3.8 3.7 
50 1.5 2.9 2.6 
25 1.0 1.9 1.7 

12.5 0.7 1.4 1.1 
6.3  1.0 0.6 

 
5/11/03 25 mM Hepes, pH 7.3, 60 mM KCl, 20 mM MgCl2, 2 mM ATP, 8 µg/mL BSA, 
2 mM DTT 
 
1/30/03 (ii) 50 mM Hepes, pH 8.2, 50 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 µg/mL 
BSA, 2 mM DTT 

 

P39A Ets∆138 lacking Ser-26 (S26A) 
kobs, s-1 [P39A], µM 6/20/02 6/21/02 1/16/03 2/28/03 6/14/03 6/14/03 

200 3.0 3.7 3.2 3.6 3.6 2.6 
100 2.5 2.7 2.9 3.2 3.5 2.8 
50 2.3 2.2 2.3 2.1 2.2 1.9 
25 1.3 1.3 1.3 1.4 2.0 1.4 

12.5 1.6 1.2 1.1 0.9 1.7 0.5 
6.3 0.4 0.8  0.7 0.6 0.4 

 
6/20/02 and 6/21/02 60 mM Hepes, pH 7.3, 120 mM KCl, 0.1 mM EDTA, 0.1 mM 
EGTA, 10 mM MgCl2, 2 mM ATP, 8 µg/mL BSA, 2 mM DTT 
 
1/16/03 and 2/28/03 50 mM Hepes, pH 8.2, 50 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 
µg/mL BSA, 2 mM DTT 
 
6/14/03 (ii) 25 mM Hepes, pH 7.5, 50 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 µg/mL 
BSA, 2 mM DTT 

2 preps of P39A 
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P35/39A Ets∆138 
kobs, s-1 [P35/39A], µM 6/20/02 6/20/02 1/20/3 1/29/03

200 2.5 2.2 2.1 1.9 
100 2.1 1.5 2.0 1.6 
50 1.4 1.3 1.7 1.1 
25 1.1 1.1 1.1 0.8 

12.5 1.0 0.5 0.8 0.5 
6.3 0.4  0.7 0.3 

 
6/20/02 (ii) 60 mM Hepes, pH 7.3, 120 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 10 
mM MgCl2, 2 mM ATP, 8 µg/mL BSA, 2 mM DTT 
 
1/20/03 (ii) 50 mM Hepes, pH 8.2, 50 mM KCl, 20 mM MgCl2, 2 mM ATP, 40 µg/mL 
BSA, 2 mM DTT 
 
 
 
P39V and P39G Ets∆138: initial rate data with 200 µM Ets∆138 
 
 
 
P39R Ets∆138 

kobs,s-1 [P39R], µM 1/8/04 12/11/03 12/11/03 
200 0.098  0.081 
150 0.094 0.116 0.072 
100 0.081 0.093 0.064 
75 0.074 0.090 0.063 
50 0.058 0.085 0.050 
25 0.047 0.040 0.042 0.034 

12.5  0.031  
 
1/8/04, 12/11/03 (ii), 100 nM ERK2, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM 
EDTA, 0.1 mM EGTA, 20 mM MgCl2, 2 mM ATP, 40 µg/mL BSA, 2 mM DTT 
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P39K Ets∆138 
kobs,s-1 [P39K], µM 1/8/04 1/10/04 

200 0.060 0.041 
150 0.055 0.043 
100 0.042 0.038 
75 0.041 0.032 
50 0.032 0.027 

25 0.024 
0.023 0.018 

 
1/8/04, 1/10/04, 200 nM ERK2, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 
mM EGTA, 20 mM MgCl2, 2 mM ATP, 40 µg/mL BSA, 2 mM DTT 
 
 
 
P39D Ets∆138 

kobs,s-1 [P39D], µM 12/13/03 1/8/04 1/10/04 1/14/04 1/14/04 
200 0.031 0.038 0.039 0.039 0.041 
150 0.027 0.035 0.040 0.040 0.038 
100 0.023 0.031 0.035 0.033 0.033 
75 0.021 0.030 0.031 0.029 0.027 
50 0.016 0.022 0.028 0.025 0.023 

25 0.011 0.017 
0.017 0.023 0.016 0.014 

 
12/13/03, 1/8/04, 1/10/04, 1/14/04 (ii), 200 nM ERK2, 25 mM Hepes, pH 7.5, 50 mM 
KCl, 0.1 mM EDTA, 0.1 mM EGTA, 20 mM MgCl2, 2 mM ATP, 40 µg/mL BSA, 2 mM 
DTT 
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P39E Ets∆138 
kobs,s-1 [P39E], µM 1/8/04 1/10/04 

200 0.036 0.036 
150 0.034 0.031 
100 0.028 0.027 
75 0.026 0.023 
50 0.020 0.016 

25 0.013 
0.016 0.009 

 
1/8/04, 1/10/04, 200 nM ERK2, 25 mM Hepes, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 
mM EGTA, 20 mM MgCl2, 2 mM ATP, 40 µg/mL BSA, 2 mM DTT 
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Table 12 
 
Dual-phosphate ERK2, 20 mM MgCl2 

<r> 
[ERK2], µM 

2/25/04 2/26/04 
0 0.105 0.108 

2.4 0.113 0.114 
4.8 0.118 0.119 
9.6 0.128 0.128 
14.3 0.134 0.136 
19.1 0.141 0.142 

 
 

<r> [ERK2], µM 
5/15/04 

0 0.106 
3.2 0.116 
6.4 0.121 

9.55 0.129 
12.7 0.133 
15.9 0.139 
19.1 0.142 
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Dual-phosphate ERK2, 20 mM MgCl2, 2 mM AMP-PNP 
<r> [ERK2], µM 3/6/04 7/21/04 7/21/04 

0 0.106 0.108 0.108 
3.2 0.122 0.122 0.123 
6.4 0.131 0.132 0.127 
9.55 0.136 0.137 0.139 
12.7 0.142 0.145 0.142 
15.9 0.146 0.148 0.148 
19.1 0.151 0.155 0.152 

 
 
 
Dual-phosphate ERK2, 2 mM MgCl2 

<r> [ERK2], µM 5/17/04 
0 0.113 

1.6 0.136 
3.2 0.150 
6.4 0.164 
9.55 0.176 
12.7 0.179 
15.9 0.186 
19.1 0.188 

 
 
 
Dual-phosphate ERK2, 4 mM MgCl2, 2 mM AMP-PNP, 2 mM free Mg2+ 

<r> [ERK2], µM 5/17/04 
0 0.111 

1.6 0.127 
3.2 0.135 
6.4 0.149 
9.55 0.154 
12.7 0.163 
15.9 0.167 
19.1 0.173 
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Dual-phosphate ERK2, 2 mM MgCl2, 1 mM AMP-PNP, 1 mM free Mg2+ 

<r> [ERK2], µM 4/23/04 
0 0.109 

0.96 0.122 
1.9 0.126 
2.4 0.131 
4.8 0.141 
7.2 0.149 
9.6 0.154 
19.1 0.168 

 
 
 
Dual-phosphate ERK2, 0 mM MgCl2 

<r> <r> [ERK2], µM 2/26/04 1/26/04 
0 0.110 0.110 

0.96 0.123  
1.91 0.133  
2.4 0.141 0.140 
4.8 0.154 0.154 
7.2 0.163 0.164 
9.6 0.170 0.170 
14.3  0.179 
19.1 0.183 0.183 

 
 
 
 
Dual-phosphate ERK2, 20 mM MgCl2, 2 mM ADP 

<r> [ERK2], µM 6/16/04 6/16/04 
0 0.110 0.109 

1.6 0.123 0.125 
3.2 0.129 0.131 
6.4 0.140 0.142 
9.6 0.146 0.144 
12.7 0.153 0.152 
15.9 0.160 0.155 
19.1 0.166 0.162 
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Unphosphorylated ERK2, 20 mM MgCl2 
<r> [ERK2], µM 2/4/04 

0 0.107 
1.8 0.122 
3.5 0.134 
5.3 0.146 
7 0.153 

8.8 0.159 
10.5 0.164 
12.3 0.170 
14 0.174 

15.8 0.178 
17.5 0.180 

 
 
 
Unphosphorylated ERK2, 20 mM MgCl2, 2 mM AMP-PNP 

<r>  [ERK2], µM 4/27/04 5/15/04 
0 0.106 0.108 

0.45 0.113  
0.9 0.119  
1.3 0.125  
1.8 0.124 0.137 
3.5 0.146 0.155 
5.3 0.158 0.171 
7 0.164 0.182 

8.8 0.178 0.191 
8.8 0.186  
10.5  0.195 
12.3 0.201 0.200 
14  0.204 

15.8  0.209 
17.5 0.207 0.213 

 
4/27/04, data fit to rb ~ 0.254 as the original rb fit had a lot of error 
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Unphosphorylated ERK2, 2 mM MgCl2 
<r> [ERK2], µM 5/17/04 

0 0.111 
1 0.153 
2 0.175 
3 0.192 
5 0.207 
7 0.219 
9 0.223 

 
 
 
Unphosphorylated ERK2, 4 mM MgCl2, 2 mM AMP-PNP, 2 mM Free Mg2+ 

<r> [ERK2], µM 5/17/04 
0 0.111 
1 0.153 
2 0.175 
3 0.192 
5 0.207 
7 0.219 
9 0.223 

 
 
 
Unphosphorylated ERK2, 1 mM MgCl2 

<r> [ERK2], µM 4/16/04 
0 0.112 

0.45 0.132 
0.9 0.150 
1.3 0.164 
1.8 0.171 
3.5 0.201 
5.3 0.211 
7 0.219 

8.8 0.225 
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Unphosphorylated ERK2, 2 mM MgCl2, 1 mM AMP-PNP, 1 mM Free Mg2+ 
<r> [ERK2], µM 4/23/04 

0 0.109 
0.45 0.124 
0.9 0.138 
1.3 0.149 
1.8 0.157 
3.6 0.177 
5.3 0.187 
7 0.193 

8.8 0.199 
 
 
 
Unphosphorylated (inactive) ERK2, 0 mM MgCl2, data in Chapter 4 
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Table 13 
 
T38A/P39A, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 
µM, 20 mM MgCl2, Kd fit to 17.2 µM 
 

<r> 
[T38A/P39A], µM 

3/2/04 3/2/04 
0 0.1290 0.1289 
0 0.1281  
0 0.1277  

3.125 0.1277  
6.25 0.1279 0.1278 
12.5 0.1265 0.1268 
25 0.1242 0.1248 
50 0.1214 0.1217 
100 0.1190 0.1191 
150 0.1172 0.1179 
200 0.1165 0.1157 
200 0.1169  

 

 
Ets∆138, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 µM, 20 
mM MgCl2, Kd fit to 17.2 µM 
 

<r> 
[Ets∆138], µM 

3/2/04 3/2/04 
0 0.1269 0.1269 

6.25 0.1273 0.1276 
6.25 0.1256 0.1242 
12.5 0.1237 0.1244 
25 0.1203 0.1216 
50 0.1176 0.1203 
100 0.1156 0.1162 
150 0.1158 0.1156 
200  0.1141 
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T38A/P39A, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 
µM, 20 mM MgCl2, 2 mM ADP, Kd fit to 5.9 µM 

 

<r> [T38A/P39A], 

µM 6/16/04 
0 0.1450 

6.25 0.1426 
12.5 0.1442 
25 0.1394 
50 0.1377 

100 0.1311 

 

 
Ets∆138, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 µM, 20 
mM MgCl2, 2 mM ADP, Kd fit to 5.9 µM 

 

<r> 
[Ets∆138], µM 

6/16/04 
0 0.1450 

6.25 0.1435 
12.5 0.1400 
25 0.1365 
50 0.1284 

100 0.1222 
200 0.1169 
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T38A/P39A, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 
µM, 20 mM MgCl2, 2 mM AMP-PNP, Kd fit to 8.8 µM 
 

<r> 
[T38A/P39A], µM 

7/21/04 
0 0.1376 

12.5 0.1345 
25 0.1304 
50 0.1265 
100 0.1233 
150 0.1206 
200 0.1198 

 
 
 
Ets∆138, Competition Fluorescence Anisotropy, Dual-phosphate ERK2, 9.55 µM, 20 
mM MgCl2, 2 mM AMP-PNP, Kd fit to 8.8 µM 

 

<r> 
[Ets∆138], µM 

7/21/04 
0 0.1376 

12.5 0.1319 

25 0.1288 

50 0.1247 

100 0.1190 

150 0.1160 

200 0.1153 
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ERK1 peptide (TGPLSPGPF), Competition Fluorescence Anisotropy, Dual-
phosphate ERK2, 9.55 µM, Kd fit to 2.7 µM, rf fit to 0.11 
 

[peptide], µM <r> 
0 0.166 0.166 
80 0.164 0.164 

160 0.167 0.166 
320 0.163 0.162 
640 0.164 0.164 
3200 0.155 0.154 

rb = 0.197 ± 0.001, Kd = 4.7 ± 0.2 mM 
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