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Interactions of engineered nanomaterials (ENMs) with environmental interfaces 

have become a critical aspect of environmental health and safety evaluations. Carbon 

fullerene (C60) has emerged at the forefront of nanoscale research and applications due to 

its unique properties. Although there are concerns associated with the harmful effects of 

fullerene towards living organisms, the mechanisms of fullerene toxicity are still under 

debate. A first step toward assessing these mechanisms requires evaluation of the bio-

accumulation and bio-uptake of fullerene through lipid membranes which serve as 

biological barriers in cells. In this dissertation, partitioning of fullerene between water 

and lipid membranes and cellular uptake of fullerene were investigated to assess 

bioavailability of this nanoparticle. 

Traditional methods to estimate the equilibrium partitioning of molecular level 

chemicals between water and lipid membranes (Klipw) cannot be applied to measure Klipw 

of nanoparticles due to the large size of nanoparticle aggregates. In this study, we 

developed an in vitro method to estimate Klipw of fullerene using solid supported lipid 

membranes (SSLMs) with various membrane compositions. Klipw of fullerene increased 

with increasing acyl chain length and Klipw values were higher after creating phase 
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separation in ternary lipid membranes compared to pre-phase separation. In addition, the 

partitioning values (Klipw) were found to depend on the lipid head charges. These results 

suggest that the lipid membrane composition can be a critical factor for assessing 

bioaccumulation of fullerene. Evaluation of the partitioning thermodynamics of fullerene 

demonstrated that the partitioning mechanism of fullerene is different from that of 

molecular level chemicals. It is generally acknowledged that molecular level chemicals 

partition into the hydrophobic center of lipid membranes (i.e., absorption), however, the 

partitioning mechanism of fullerene is a combination of adsorption on the lipid 

membrane surface and absorption.  

Caco-2 cellular uptake of fullerene nanoparticles was investigated using an in 

vitro method developed in this study to distinguish between active and passive transport 

across cell membranes. Energy dependent endocytosis is hypothesized to be the main 

cellular transport mechanism based on an observed temperature dependence of cellular 

uptake and evidence for saturation of the active sites of transport during cellular uptake of 

fullerene. Metabolic inhibitors decreased the mass of fullerene taken up by the cells, 

which supports an active transport mechanism of fullerene through the cell membranes.  

To evaluate bioavilability of fullerene under environmentally relevant conditions, 

the effects of humic acid and fetal bovine serum (FBS) on the lipid accumulation and 

cellular uptake were also investigated. Humic acid and FBS changed the surface 

characteristics of fullerene. The presence of FBS significantly decreased lipid 

accumulation of fullerene presumably due to higher steric hinderance of FBS coated 

fullerene as well as the changes in surface energy, water solubility, and lipid solubility of 

charged FBS coated fullerene relative to that of bare fullerene. Both humic acid and FBS 

also effectively lowered the cellular uptake of fullerene. These results imply that natural 
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organic matter and biomolecules in natural aquatic and biological environments have 

significant effects on the bioavilability of fullerene nanoparticles.  
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Chapter 1: Introduction 

1.1. PROBLEM STATEMENT 

The release of nanoparticles into the environment has been a forseeable 

consequence of the dramatic increase in the innovative use of engineered nanomaterials 

(ENMs) over past decades. Based on current production volumes, prominence in health 

and safety research, and potential widespread usage in applications ranging from 

sunscreens and cosmetics to paint pigments and antimicrobial agents (Hendren et al. 

2011), nanosilver (nano-Ag), carbon based nanomaterials (e.g., carbon nanotube and 

fullerene), cerium oxide (CeO2), and nano titanium dioxide (nano-TiO2) are of greatest 

concern with respect to their release to the environment and potential health concerns. 

Carbon fullerene (C60) has emerged at the center of nanoscale research and applications. 

Due to its unique properties (e.g., electron-rich cage structure, high reactivity, and ability 

to accept and release electrons), fullerene has been incorporated into numerous 

commercial (e.g., batteries, fuel cells, photovoltaics, and face creams) and medical 

applications (e.g., drug carriers, antioxidants, biosensor, and biomedical imaging). 

Indeed, estimated industrial production of fullerene has already approached 

approximately 10 tons per year in 2007 (Frontier Carbon Corporation, 2012) and the 

estimated global market for fullerene reached $1,312 million in 2011 with an expected 

70 % annual growth rate, which could approach $4.7 billion by 2016 (BCC Research, 

2006). As the production of fullerene increases rapidly, the release of fullerene from 

manufacturing facilities into the environment can occur. Thus, concerns related to the 

possible harmful effects of fullerene towards humans and the environment have grown.  

There are several critical reasons why potential biological and environmental 

effects of fullerene have raised considerable concern. First, fullerene is strongly 
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hydrophobic; its potential for partitioning to organic matter is greater than polycyclic 

aromatic hydrocarbons (PAHs) or polychlorinated biphenyls (PCBs). Due to its 

hydrophobic properties, fullerene can associate strongly with cell membranes and may 

easily penetrate and accumulate in lipid cell membranes. Second, although a single 

fullerene molecule exhibits low solubility in water, it is generally acknowledged that 

fullerene can form highly stable, negatively charged colloidal aggregates (nC60) when 

exposed to water. This change in solubility has critical implications for fullerene 

transport in the environment and its biological effects. Third, predicted fullerene 

concentrations in the environment are relatively high compared to other nanomaterials; 

predicted fullerene concentrations in water of 0.31 µg/L are greater than values reported 

for nanosilver, carbon nanotubes, and cerium oxides of 0.010-0.03 µg/L, 0.0005-0.0008 

µg/L, and < 0.0001 µg/L, respectively (Pérez 2009). The reactivity of fullerene including 

virus inactivation, cell toxicity, and lipid peroxidation of brain and gill cells in fish have 

been reported at concentrations less than 1 mg/L (Kasermann and Kempf 1997, 

Oberdörster 2004, Sayes 2004). Thus, environmental concentrations in the high hundreds 

of micrograms per liter range are of concern.  

Fullerene dispersions in water have been reported to exhibit toxicity toward living 

organisms in aquatic environments (Cho et al. 2009b, Lovern and Klaper 2006, Lyon et 

al. 2006, Sayes et al. 2005), but the mechanism of fullerene toxicity toward living 

organisms is still under debate. A first step toward assessing the mechanisms associated 

with fullerene toxicity requires evaluation of the bio-accumulation and bio-uptake of 

aqueous fullerene dispersions through lipid membranes which serve as biological barriers 

to target or reactive sites in cells. Transport of fullerene nanoparticles from aquatic 

environments to an organism occurs via lipid membranes. Storage and accumulation of 

fullerene within the lipid membranes of cells are also expected. In addition, it is generally 
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acknowledged that lipids affect the health of organisms (e.g., fish) by affecting growth, 

reproduction behavior, and immune response (Arts et al. 2009). Thus, understanding 

accumulation and uptake through lipid membranes is of critical importance for assessing 

environmental effects as well as potential toxicity of fullerene. Unfortunately, to date, 

only a few studies have addressed the lipid accumulation of fullerene using in vitro lipid 

membranes (Hou et al. 2011). Moreover, little to no research has been conducted to 

assess the impact of lipid head charges, hydrophobicity of the lipid (e.g., acyl chain 

length), and lipid surface structure (e.g., the height mismatch between unsaturated and 

saturated lipids in ternary lipid mixtures) on fullerene membrane diffusion in lipid 

membranes. With respect to uptake within cells, a number of studies have focused on 

quantitative estimation of cellular uptake of engineered nanoparticles (Cho et al. 2009a, 

Guarnieri et al. 2011, Lesniak et al. 2012) . However, no research has quantitatively 

evaluated cellular uptake of fullerene due to the difficulties associated with measuring 

fullerene concentrations in solutions containing biomolecules. In addition, although 

nanoparticle surface characteristics can be altered under environmentally relevant 

conditions (e.g., in the presence of natural organic matter and biological 

macromolecules), only a few studies have investigated the effects of environmentally 

relevant matrices on bioavailability of fullerene (Chen et al. 2014). Addressing these 

deficiencies in the scientific literature is the major focus of this research.  

 

1.2. RESEARCH OBJECTIVES, HYPOTHESES AND APPROACH 

The primary objectives of this research were to evaluate the bioavailability of 

aqueous fullerene dispersions by developing a more complete understanding of 1) 

partitioning of fullerene in lipid/water systems and, 2) the cellular uptake of fullerene. 

While a conceptual image of fullerene partitioning and transport through lipid 
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membranes is beginning to emerge (Figure 1.1), the importance of lipid membrane 

composition on partitioning and identification of the dominant transport mechanism are 

critical first steps toward prediction of fullerene partitioning in aquatic organisms and the 

bioavailability of fullerene in aquatic environments. 

 

 

 

Figure 1.1: System description of this study 

 

This dissertation addressed these objectives by testing four specific hypotheses 

that enabled us to develop a better screening tool and theoretical model for estimating the 

lipid water partition coefficient of fullerene and to elucidate the mechanisms of lipid 

membrane transport. The four main hypotheses of this study summarized in Table 1.1. 
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Table 1.1: Research hypotheses  

Hypotheses Related tasks 

Hypothesis I: The lipid water partitioning coefficient (Klipw) of 

fullerene is affected by lipid composition. 
Task 1, 2 

Hypothesis II: The lipid water partitioning mechanism of fullerene is 

different from that of molecular level chemicals and 

these differences can be explained by partitioning 

thermodynamics. 

Task 1, 3 

Hypothesis III: Fullerene can be transported into the cell membrane 

via active transport. 
Task 4 

Hypothesis IV: Lipid accumulation and cellular uptake of fullerene are 

affected by the presence of natural organic matter and 

biological macromolecules in environmentally relevant 

conditions. 

Task 5 

 

Five specific tasks were performed to address these hypotheses as shown in Table 1.1 and 

outlined below: 

1. To develop an in vitro method for quantifying partition coefficients for 

fullerene between water and lipid membranes of varying composition 

2. To elucidate the effects of lipid membrane composition (e.g., acyl chain 

length, lipid head charge, height mismatch in ternary lipid membrane) on 

lipid water partitioning of fullerene 
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3. To estimate thermodynamic parameters that describe lipid water 

partitioning of fullerene that supports the conceptual understanding  

plausible partitioning mechanism 

4. To develop a quantitative in vitro method to elucidate the cellular uptake 

mechanism of fullerene 

5. To evaluate the effects of environmentally relevant matrices (e.g., natural 

organic matter and biological macromolecule) on the lipid accumulation 

and cellular uptake of fullerene 

 

The first three tasks address hypotheses I and II by evaluating fullerene 

partitioning to lipid membranes of varying composition. The methods of Hou et al., (Hou 

et al. 2011) and methods previously developed by Liljestrand and co-workers (Kwon et 

al. 2006, Kwon et al. 2007, Yamamoto and Liljestrand 2004, Yamamoto et al. 2004) were 

modified to account for the significantly larger hydrodynamic diameter of fullerene 

relative to molecular chemicals. Specifically, solid supported lipid membranes (SSLMs) 

of varying lipid composition (e.g., different head charges and acyl chain lengths, and 

ternary lipid membranes before and after phase separation) were prepared and used to 

estimate Klipw partitioning coefficients of fullerene. In addition, partitioning 

thermodynamics were investigated by determining Klipw values as a function of 

temperature to help elucidate the relative impact of enthalpic and entropic contributions 

to the thermodynamics of the partitioning process (Hypothesis II). Comparisons to 

previous work (Ávila and Martínez 2003, Go and Ngiam 1997, Kwon et al. 2007, Seelig 

and Ganz 1991) with hydrophobic and ionic chemicals allowed us to distinguish 

partitioning of nanoparticles from more traditional molecular level contaminants.  
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With regard to hypothesis III, an in vitro model using the Caco-2 cell line was 

employed to describe membrane transport of fullerene in Task 4. Caco-2 cells, a human 

colon adenocarcinoma cell line, have been successfully used to demonstrate the 

membrane transport mechanism of drugs and molecular level chemicals (Buesen et al. 

2003, Hidalgo and Borchardt 1990, Sugano et al. 2010, Vasiluk et al. 2007). In addition, 

recent studies in pharmaceutical fields have reported that the main transport mechanism 

of nanosize particles is active transport using Caco-2 cell (Lin et al. 2012, Ma and Lim 

2003, Mao et al. 2005, Win and Feng 2005). Therefore, the in vitro method using Caco-2 

cells can be a realistic model for determining the mechanism of membrane transport of 

engineered nanomaterials as well.  

One of the unique features of this study is the assessment of the effects of 

environmentally relevant matrices on the bioavailability of fullerene (Hypothesis IV). 

Humic acid and fetal bovine serum (FBS) were selected as representative natural organic 

matter in the aquatic environment and biological macromolecules, respectively. To 

investigate the bioavailability of fullerene under environmentally relevant conditions, 

lipid accumulation and cellular uptake tests were employed in Task 5.  The in vitro 

methods developed in Tasks 1 and 4 were modified as necessary to compare humic acid 

and FBS coated fullerene partitioning and cellular uptake to that of bare fullerene.  

 

1.3. STRUCTURE OF THIS DISSERTATION 

In this dissertation, a research overview is provided in Chapter 2 which includes 

the physicochemical properties and known toxicity data for fullerene and a brief review 

of literature assessing the bioavilability of fullerene based on octanol water partitioning 

coefficient (Kow), lipid water distribution coefficients (Klipw) and cellular uptake studies 

of fullerene and its derivatives. Chapter 3 presents the details of the in vitro method 
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developed for estimating lipid water partitioning coefficients (Klipw) of fullerene for 

various lipid membrane compositions. Chapter 4 focuses on the influence of lipid 

membrane composition on the Klipw values.  Partitioning thermodynamics are used to 

support the proposed partitioning mechanism of fullerene between water and lipid 

membranes. Chapter 5 describes cellular uptake of fullerene in Caco-2 cells and 

elucidates the dominant mechanisms of membrane transport in these systems. Chapter 6 

examines the bioavailability of fullerene nanoparticles in the presence of environmentally 

relevant materials. Chapters 3 through Chapter 6 are drafts of papers to be submitted for 

peer-reviewed publications. Therefore, some introductory material and method 

development are repeated from previous chapters. In Chapter 7, major conclusions of 

each results chapter (Chapters 3 to 6) are summarized and suggestions for future research 

are presented.  
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Chapter 2: Literature Review 

2.1. INTRODUCTION 

In this dissertation, bioavailability of fullerene was investigated by determining 

the characteristics of fullerene accumulation in lipid membranes and cellular uptake in 

Caco-2 cells. As part of this research, a thorough literature review was conducted to 

assess the current state of knowledge regarding fullerene properties, partitioning and 

uptake. In section 2.2, the general characteristics of fullerene were reviewed, including its 

physicochemical properties, expected environmental fate and transport, and reported 

toxicity towards living organisms. In section 2.3, a brief review of prior research 

examining interactions of fullerene with model biological phases (e.g., octanol, synthetic 

lipid membranes, and cells) is provided. Finally, section 2.4 provides a review of the 

influence of environmentally relevant matrices on fullerene properties. 

 

2.2. CARBON FULLERENE (C60) 

2.2.1. Physicochemical properties 

Carbon fullerene (C60, Buckminsterfullerene) has a sp
2
 hybridized cage-like 

structure which consists of twenty hexagons and twelve pentagons of carbon. Fullerene 

was discovered by Kroto, Curl, Smalley and others (Kroto et al. 1985) and in the 1990s, 

production of large quantities of fullerene using condensation of vaporized graphite was 

possible (Isaacson et al. 2009).  

Representative physicochemical properties of fullerene molecules were 

summarized in Dresselhaus et al. ((Dresselhaus et al. 1996) and are reproduced in Table 

2.1. The molecular diameter of fullerene is approximately 7 Å, and it can easily accept 

electrons due to the high electron affinity (Table 2.1) associated with its structure. 
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Table 2.1: Physicochemical constants of the fullerene molecule (Dresselhaus et al. 1996) 

Quantity Value Quantity Value 

Average C-C distance 1.44 Å Bonding energy per atom 7.40 eV 

C-C bond length on a 

pentagon 
1.46 Å 

Heat of formation 

(per g C atom) 
10.16 kcal 

C-C bond length on a 

hexagon 
1.40 Å Electron affinity 2.65 ± 0.05 eV 

C60 mean ball diameter 7.10 Å 
Cohesive energy per C 

atom 
1.4 eV/atom 

C60 ball outer diameter 10.34 Å First ionization potential 7.58 eV 

Volume per C60 1.87 × 10
-23

/cm
3
 

Second ionization 

potential 
11.5 eV 

Fullerene’s electron rich cage structure results from the C=C double bonds 

(fullerene can be classified as an alkene) that are arranged in hexagonal rings 

(Dresselhaus et al. 1996). It undergoes redox reactions such as hydrogenation, alkylation, 

halogenation, and bridging reactions. It is generally acknowledged that in most cases, the 

carbon double bonds are the reactive sites in fullerene and the reactivity is strongly 

photosensitive and oxygen sensitive (Dresselhaus et al. 1996).  

Fullerene is a highly stable and hydrophobic molecule. Experimentally, fullerene 

molecule is thermally stable up to 1700 K (Eletskii and Smirnov 1995) and due to its 

strong hydrophobicity, fullerene has negligible solubility in water and polar H-bonding in 

solvents such as acetone, methanol and ethanol (Ruoff et al. 1993). Therefore, 

synthesizing water soluble fullerene derivatives for use in biomedical applications is 

challenging. However, fullerene is soluble in nonpolar solvents, especially aromatic 

solvents and solubility increases with increasing aromatic ring size (Ruoff et al. 1993). 

2.2.2. Environmental fate and transport 

Carbon fullerene can be produced by both natural and anthropogenic processes 

(Figure 2.1). Naturally occurring fullerene has been found in meteors and many geologic 
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samples (Becker et al. 1994, Pizzarello et al. 2001). As anthropogenic production of 

fullerene has increased, fullerene can be released into the environment from both point 

sources (e.g., production plants, and wastewater treatment) and nonpoint sources (e.g., 

non-intentional release during fullerene containing products) (Petosa et al. 2010).  

It is important to estimate fullerene concentrations in the various environmental 

compartments (e.g. soil, air, water) to perform risk assessment studies. However, only a 

few studies have reported the predicted environmental concentrations of fullerene using 

models (Boxall et al. 2008, Gottschalk et al. 2009) or through direct sampling and 

measurement (Farré et al. 2010). The estimated fullerene concentrations in environmental 

media are summarized in Table 2.2 which highlights the fact that there is not only a lack 

of data but also inconsistency in the limited amount of data available. Therefore, 

developing a standard method to estimate and measure fullerene concentrations in 

environmental media is of critical importance. 

 

Table 2.2: Estimated fullerene concentrations in environmental media 

 
Air 

(ng/m
3
) 

Soil 

(Δng/kg/y) 

Water 

(ng/L) 

Sediment 

(Δng/kg/y) 

Wastewater 

effluent 

(ng/L) 

ref 

Europe <0.005 0.057-0.605 0.015-0.12 6.22-530 4.23-26.4 

(Gottschalk 

et al. 2009)
a
 

U.S. <0.005 0.024-0.292 
0.0024-

0.021 
1.05-91.3 4.49-32.66 

Switzerland <0.005 0.016-0.058 0.018-0.19 8.2-787 3.69-25.1 

UK - 
13.2       

( μg/kg) 
310   

(Boxall et al. 

2008) 

Spain     0.5-19,100 
(Farré et al. 

2010) 
a
 For air, soil, water and wastewater effluent, simulation results show fullerene concentrations in 2008, and for soil and 

sediment, the annual increase of the fullerene concentrations were reported.    
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Recent studies have reported that fullerene characteristics can change during 

transport in the environment. First of all, although molecular fullerene has strong 

hydrophobicity, many previous studies have suggested that fullerene can form highly 

stable, negatively charged colloidal aggregates (nC60) when it is exposed to water 

(Andrievsky et al. 1995, Deguchi et al. 2001, Fortner et al. 2005). This change in 

solubility has critical implications for fullerene transport in the environment and its 

biological effects. Second, fullerene can form different size aggregates and the degree of 

dispersion depends on the presence and character of natural organic matter (Xie et al. 

2008), surfactants (Zhang et al. 2009a), and the ionic strength of the background water 

(Brant et al. 2005). Third, because fullerene is a very strong photosensitizing agent, 

photochemical transformation of fullerene can occur under sunlight (Hou and Jafvert 

2009b). Previous studies have demonstrated that this transformation produces reactive 

oxygen species (ROS) which can be responsible for cytotoxicity of fullerene (Cho et al. 

2011, Hou and Jafvert 2009a). In addition, UV irradiation (e.g. sunlight) can produce 

water soluble derivatives of fullerene (Hou et al. 2010) and decrease fullerene aggregate 

size in the aqueous phase (Cho et al. 2011). 

2.2.3. Toxicity 

A number of previous studies have reported that fullerene dispersions exhibit 

toxicity towards human cell lines (Sayes et al. 2005), bacteria (Cho et al. 2009b, Lyon et 

al. 2006), and aquatic organisms (Lovern and Klaper 2006, Oberdörster 2006). These 

studies have suggested potential mechanisms of fullerene toxicity towards living 

organisms including production of reactive oxygen species (ROS) and lipid peroxidation 

(Sayes et al. 2005), however, the operative mechanism is still under debate. The 

reactivity of fullerene including virus inactivation, cell toxicity, and lipid peroxidation of 
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brain and gill cells in fish have been reported at concentrations less than 1 mg/L 

(Kasermann and Kempf 1997, Oberdörster 2004, Sayes et al. 2005). Due to the 

heterogeneity of fullerene dispersions in water, previous studies have demonstrated that 

results from both in vivo and in vitro tests of fullerene toxicity depends on the particular 

physicochemical properties of the fullerene suspension (e.g., particle size and surface 

charge) as well as the preparation method of the fullerene dispersions in water (e.g., 

solvent exchange method vs. sonication method) (Chae et al. 2010, Lyon et al. 2006). 

Thus, it is imperative to develop standard methods for assessing toxicity of fullerene 

nanoparticles in aquatic environments. Table 2.3 summarizes the biological effects of 

fullerene reported in previous studies. 
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Table 2.3: Biological effects of fullerene nanoparticles 

C60 preparation 

method 

C60 concentration 

(ppm) 

Biological effects Reference 

Sonicated C60 -  C60 illuminating with visible light inactivates 

virus 

 In the presence of bovine serum albumin 

decreases the inactivation kinetics 

(Kasermann 

and Kempf 

1997) 

Solvent exchange 

method  

(THF/C60) 

0.5 - 1  C60 suspensions in water induce lipid 

peroxidation and glutathione (GSH) depletion in 

an aquatic organisms in vivo 

 C60 suspensions locate in cell membranes in vitro 

(Oberdörster 
2004) 

Solvent exchange 

method  

(THF/C60) 

0 - 2.4  Human cell cytotoxicity of C60 occurs by lipid 

peroxidation and resultant membrane damage 

(Sayes et al. 

2005) 

Solvent exchange 

method  

(THF/C60) 

Sonicated C60 

0.04 - 0.88 

 

 

0 - 9 

 C60 shows high toxicity to Daphnia Magna at low 

concentration (THF/C60 :100 mortality at 0.88 

ppm, mortality is not applicable with sonicated 

C60) 

(Lovern and 

Klaper 2006) 

Four preparation 

methods (THF/C60, 

sonicated/C60, 

aq/C60, and 

PVP/C60) 

2 - 15  C60 shows strong antibacterial activity 

 Antibacterial activity is affected by C60 

preparation method and particle size 

(Lyon et al. 

2006) 

Ozonated C60 0 - 10  C60 suspensions in water inactivate E.coli in the 

presence of light and oxygen 

 Ozonated C60 inactivates E.coli faster than parent 

C60 

 Ozonated C60 penetrates cell and induces 

oxidative damage to the cell cytoplasmic 

membrane 

(Cho et al. 

2009b) 

 

 

 

2.3. PARTITIONING OF FULLERENE BETWEEN MODEL BIOLOGICAL PHASES AND WATER 

2.3.1. The octanol-water partition coefficient (Kow) 

The octanol-water partition coefficient (Kow) has been widely used to estimate the 

bioaccumulation of chemicals.  Octanol is used frequently as a surrogate for fat tissue, 

natural organic phases such as humic acid, and lipid membranes of living organisms 
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(Schwarzenbach et al. 2003). To date, only one study has measured Kow values of 

fullerene using a cosolvent method, and from their measurement, the log Kow of fullerene 

is 6.67 (Jafvert and Kulkarni 2008). This reported Kow of fullerene is higher than many 

endocrine disrupting chemicals (EDCs), and in the range of strongly hydrophobic 

polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[a,c]anthraces (6.17), 

benzo[a]pyrene (6.35), and benzo[ghi]perylene (6.90). This implies that molecular 

fullerene has strong hydrophobicity and can be strongly associated with lipid membranes 

as well as natural organic materials in the environment.  

Even though Kow values for nonpolar contaminants have been successfully used 

to evaluate the bioaccumulation of these chemicals, previous research has demonstrated 

that partitioning thermodynamics between water and 1-octanol are significantly different 

than that between water and aquatic organisms (Kwon et al. 2006, Opperhuizen et al. 

1988). In contrast to a solution of bulky 1-octanol molecules, living organisms have 

highly organized lipid membranes. This structural difference between 1-octanol and lipid 

membranes is responsible for disparities between the partitioning thermodynamics in 

octanol/water and living organism/water systems. Equilibrium partition coefficients 

between water and lipid membranes (Klipw) are more appropriate for estimating the 

potential for bioconcentration of various contaminants.  

 

2.3.2. The lipid-water distribution coefficient (Klipw) 

As with other molecular hydrophobic chemicals, fullerene accumulation in lipid 

membranes can also be investigated by determining partition coefficients of fullerene 

between water and lipid phases (Klipw). For molecular scale contaminants, Klipw values 

have been successfully determined using an equilibrium dialysis technique (Kwon et al. 
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2006, Yamamoto and Liljestrand 2004). A schematic diagram depicting the equilibrium 

dialysis technique is presented in Figure 2.1. In this technique, molecular level chemicals 

(placed in the donor cell) and liposome solutions (placed in the acceptor cell) are 

separated by a dialysis membrane which allows chemical diffusion but not liposome 

diffusion. However, the equilibrium dialysis technique cannot be applied for estimating 

Klipw values of nanomaterials because nanoparticle aggregates cannot freely diffuse 

through the dialysis membrane due to their large size relative to the pore size of the 

dialysis membrane. Therefore, developing a new technique to measure Klipw values of 

nanomaterials was of critical importance in this research. 

 

 

Figure 2.1: Schematic diagram of the equilibrium dialysis technique 

A few recent studies have examined lipid water partitioning of engineered 

nanomaterials. Hou et al.(Hou et al. 2011) first developed a quantitative method for 

studying lipid water association coefficients (Klipw) of fullerene and fullerol using solid 

supported lipid membranes (SSLMs). They also applied SSLMs to gold nanoparticles 

(Hou et al. 2012b). SSLMs are solids (e.g., silica microspheres) that are uniformly coated 

with lipid bilayers (Figure 2.2). Employing SSLMs to investigate partitioning of 

nanomaterials between water and lipid membranes is novel and relevant for two reasons: 
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1) SSLMs are stable (Bayerl and Bloom 1990) and preserve fluidity of the lipid 

membranes (Baksh et al. 2004), and 2) SSLMs easily settle, which allows free 

nanoparticles in water to be separated from the SSLMs. The estimated values of log Klipw 

of fullerene and fullerol determined by Hou et al.(2011) were 2.99-3.05, and 2.42-2.45, 

respectively (the equilibrium fullerene concentration in water was 10 mg/L and the pH 

was 7.4).  

 

Figure 2.2: Structure of solid supported lipid membranes (SSLMs) (Baksh et al. 2004) 

 

Although these previous studies sucessfully applied SSLMs to estimate lipid 

water partitioning of nanomaterials, they utilized a commercial SSLM which provided 

only one lipid membrane composition, egg phospholipid, as a model membrane. 

However, actual lipid membranes consist of various components such as unsaturated 

lipids, saturated lipids, and cholesterol, and many previous studies revealed that 

partitioning values of molecular hydrophobic chemicals can be significantly affected by 

lipid membrane composition (Kwon et al. 2007, Yamamoto and Liljestrand 2004). Thus, 

it is imperative to investigate the effects of lipid composition on the partitioning of 

nanoparticles between water and lipids. 
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Thermodynamic parameters (enthalpy change (△H) and entropy change (△S)) 

describing molecular chemical partitioning have been estimated. Kwon et al. (Kwon et al. 

2007) demonstrated that for a series of endocrine disruptors, introduction of a solute into 

lipid bilayers leads to creation of a cavity in the membrane, which increases the enthalpy 

and entropy changes. However, partitioning processes of fullerene nanoparticles may be 

different from dissolved molecules due to their unique physicochemical properties and 

larger size relative to most dissolved molecules. Comparison of enthalpy and entropy 

values for partitioning of moleculer level chemicals and fullerene will help to elucidate 

these differences.   

 

2.3.3. Computational simulations used to elucidate the fullerene transport mechanism 

through lipid membranes  

Computational simulations have shown that pristine fullerene can easily diffuse 

into lipid bilayers and translocate into the membrane (Bedrov et al. 2008, Qiao et al. 

2007). In particular, Qiao et al. (Qiao et al. 2007) demonstrated that pristine fullerene 

(nC60) can easily diffuse into a dipalmitoylphosphatidylcholine (DPPC) membrane 

bilayer and translocate the membrane in a few milliseconds, while fullerol (C60(OH)20) 

did not significantly diffuse into the bilayer. Atomistic molecular dynamics simulations 

also suggested that fullerene can freely penetrate into the membrane (Bedrov et al. 2008).  

Wong-Ekkabut et al. (Wong-Ekkabut et al. 2008) also indicated that passive 

permeation through lipid membranes is the main mechanism for transport of small 

aggregated fullerene (< 10 molecules); when aggregated fullerenes are located close to 

the lipid head groups, only small clusters form and rapidly penetrate into the bilayer.  

Although these molecular dynamics studies provide insight into the behavior of 

fullerene, the focus of their research was only on molecular fullerene or small clusters. 
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Also, they only employed one lipid membrane composition and did not consider the 

possible interactions of fullerene with other membrane components such as other lipid 

rafts, proteins, and carbohydrates which can be responsible for active transport of 

chemicals through lipid membranes. Thus, further research should address the membrane 

transport mechanism of larger fullerene aggregates that exist in water. In addition, future 

studies must consider transport of fullerene through cell membranes which have 

membrane compositions that mimic organisms.  

2.3.4. Cellular uptake  

 Visulalization techniques have been employed to locate fullerene or fullerene 

derivatives inside cells (Foley et al. 2002, Porter et al. 2007, Porter et al. 2006, Rouse et 

al. 2006). For quantitave measurements of fullerene nanoparticle uptake by cells, 

radioactive or fluorescent labled fullerene has been used to easily detect the fullerene 

particles in bio-matrices (Cagle et al. 1999, Gulson and Wong 2006). A summary of 

methods and major conclusions from these cellular uptake studies is presented in Table 

2.4.  The main focus of these experiments was to confirm that fullerene accumulates 

inside cells. 

Other recent studies have demonstrated that nanoparticles (e.g., carbon nanotubes, 

gold nanoparticles, and polymeric nanoparticles) are transported through cell membranes 

via active transport (Chithrani et al. 2006, Ma and Lim 2003, Mao et al. 2005, Win and 

Feng 2005, Yaron et al. 2011). To date, there is no study which investigates the cellular 

transport mechanism of bare fullerene due to the difficulties associated with detecting 

bare fullerene taken up by cells. Only one quantitative study has suggested that a malonic 

acid fullerene derivative (C60(C(COOH)2)3) is transported through cell membranes via 

active transport (Li et al. 2008). While the physicochemical properties of fulllerene 
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derivatives may differ from that of bare fullerene, and hence the transport mechanisms 

may be different, evidence for active transport of any fullerene molecule provides support 

for further investigation of the transport mechanism of bare fullerene molecules . 
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Table 2.4: Summary of cellular uptake studies of fullerene and fullerene derivatives 

aFullerene added to distilled water containing 0.02 % of Tween 60, 0.9 DS carboxymethyl cellulose(CMC), and NaCl

Fullerene (C60) 

species 
Fullerene dimensions (nm) Cell line 

Dose, 

incubation time 
Methods Conclusions Reference 

C60 dissolved in 

tetrahydrofuran 

(THF) 

Individual particles: 60-270  

Clusters: 420-1300  

Human 

monocyte 

macrophages 

(HMMs) 

0.16 – 10 

μg/ml, 

over 48 hr 

1) Energy-filtered 

transmission electron 

microscopy (EFTEM) 

2) Scanning TEM (STEM)-

based electron tomography 

 Significant toxicity was not observed 

 C60 can accumulate inside cellular 

compartments (e.g., cell membranes,  

lysosome, and nucleus) 

(Porter et al. 2006) 

Aqueous 

suspensions of 

micronized C60
a 

7 % : 1000 < d < 1650 

43% : 500 < d< 1000 

28 % : 250 < d < 450 

22 % : d < 200 nm 

Rat liver cell 0.5 g/kg of 

body weight, 

up to 21 days 

1) HPLC with diode-array 

detection 

2) SEM 

 C60 can accumulate inside the liver cells, 

and an average size of C60 aggregates is 

less than 50 nm 

(Gharbi et al. 2005) 

Fullerol 

C60OH20-24) 

Average diameter : 218 nm Murine 

macrophage cell 

line      

(RAW 264.7) 

- TEM  Fullerol taken by RAW 264 cell line 

was revealed by Electron microscopy  

(Xia et al. 2006a) 

Fullerol Fullerol in 70 μM HBSS 

buffer: 695 ±50 nm 

Fullerol incubated with α 

crystalline : 23 ±2 nm,  

356 ±35 nm 

 

Human lens 

epithelial cell 

line (HLE B-3) 

~50 μM, 

~ 15 hr 

1) Phase contrast 

illumination 

2) Spectrometric 

determination (using 

fullerol absorbance at 405 

nm) 

 Fullerol was uptake by the cells and it 

accumulates in the cells  

(Roberts et al. 2008) 

Radiolabeling 

fullerol  

In H2O : 20 nm 

In 10 % FBS-DMEM : 81.7 

nm (12 hr) 

In DMEM : 230.9 nm (71.5 

%) 

CHO cell lines 50 μg/ml,  

up to 3 hrs 

Radio-tracer technique  Radiolabeling fullerol taken by CHO 

cell reached saturation in 3 hr 

 Uptake of fullerol incubated in serum-

free media is higher than in serum 

containing medium 

(Su et al. 2010) 

Fullerene-based 

amino acid 

- Human 

epidermal 

keratinocytes(H

EK) 

0.004, 0.04, 

and 0.4 

mg/mL, 

up to 48 hrs 

TEM  TEM confirmed that 0.04 and 0.4 

mg/mL fullerene-based amino acid 

localized inside the cell  

(Rouse et al. 2006) 
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2.4. FULLERENE UNDER THE PRESENCE OF ENVIRONMENTALLY RELEVANT MATRICES 

2.4.1. Natural organic matter (NOM) 

Natural organic matter (NOM), which is ubiquitous in natural water, consists of a 

hydrophobic backbone and various hydrophilic functional groups such as phenolic and 

carboxylic groups (Xie et al. 2008). Previous studies have revealed that NOM readily 

adsorbs onto colloidal particles and stabilizes those particles (Buffle and Leppard 1995, 

Jermann et al. 2008). NOM also has been reported to prevent the aggregation of many 

engineered nanomaterials (e.g., ZnO, TiO2, SiO2, and Al2O3), enhancing the stability of 

those nanoparticles in natural aquatic environments (Bian et al. 2011, Ghosh et al. 2010, 

Zhang et al. 2009b). 

As with other colloidal and engineered particles, NOM can interact with fullerene 

and affect its characteristics. NOM has been reported to increase the stability and 

mobility of fullerene nanoparticles (Chen and Elimelech 2007, 2008, Singh and Lillard 

2009, Xie et al. 2008). Major conclusions in previous research which concern the effects 

of NOM on the characteristics of fullerene are summarized in Table 2.5.  

Increasing stability and changing characteristics of fullerene in the presence of 

NOM can significantly affect the bioavailability of fullerene. To date, only one study has 

investigated the impact of humic acid on fullerene cellular uptake, and it was shown that 

humic acid effectively decreased the uptake of fullerene in two aquatic organisms: 

Daphnia magna and zebrafish (Chen et al. 2014). The authors proposed that the main 

reason for the reduction in fullerene uptake by the organisms in the presence of humic 

acid was the polarity change due to the surface modification of fullerene by the humic 

acid.  
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Table 2.5: Summary of the effects of NOM on fullerene characteristics and stability 

C60 preparation 

method 

C60 

concentration 

(mg/L) 

NOM type 
a 

(concentration) 

NOM effects on fullerene 

characteristics and stability 

Reference 

Stirred method  

(aq/C60) 

0.31, 0.35 SRHA II  

(20 mg/L) 

SRFA I 

(20 mg/L) 

 Presence of NOM significantly 

increase fullerene dispersion 

kinetics 

(Singh and Lillard 

2009) 

Solvent 

exchange 

method and 

stirred method 

(toluene/C60, 

THF/C60, and 

aq/C60) 

3 SRHA II 

(5-20 mg/L) 

SRFA I  

(5-20 mg/L) 

 Fullerene particle distributions 

are smaller in the presence of 

NOM 

 As SRFA concentration 

increased, negative surface 

charge density of fullerene 

increased 

(Xie et al. 2008) 

Solvent 

exchange 

method using 

ethanol 

5.8 SRHA II  

(1 mg/L as 

TOC) 

 Humic acid effectively decreases 

the deposition of fullerene on 

silica surfaces 

(Chen and 

Elimelech 2008) 

Solvent 

exchange 

method 

(toluene/C60) 

5.92 SRHA II  

(1 mg/L and 5 

mg/L as TOC) 

 Nanoparticle suspensions are 

significantly stabilized in the 

presence of humic acid 

 At higher CaCl2 concentrations, 

humic acid aggregations were 

created, resulting in fullerene 

aggregations 

(Chen and 

Elimelech 2007) 

a 
SRHA II: Suwannee river humic acid standard II, SRFA I: Suwannee river fulvic acid standard I. Both SRHA and 

SRFA were obtained from International Humic Substances Society (IHSS, St.Paul, MNO) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

2.4.2. Biological macromolecules 

One of the most promising uses of fullerene is in biological applications such as 

the use of fullerene as an inhibitor of the HIV protease (Friedman et al. 1993), as a drug 

carrier (Friedman et al. 1993), and as an anti-cancer drug (Fan et al. 2013). When 

fullerene nanoparticles are released into biological fluids in living organisms, the surface 

of fullerene can be covered by biological macromolecules (e.g., proteins and lipids). 

Indeed, it is generally accepted that proteins immediately adsorb and cover the surface of 

nanoparticles, resulting in surface modification of the nanomaterials (Lynch and Dawson 

2008). In addition, this surface modification can affect interactions of nanoparticles with 

living systems as well as possible toxicity towards them (Ehrenberg et al. 2009, Fabrega 

et al. 2009, Giri et al. 2014, Guarnieri et al. 2011, Lesniak et al. 2012).   

Previous research has reported that surface modification of nanoparticles (e.g., 

fullerene, carbon nanotubes, and polystyrene particles) by protein effectively prevented 

particle aggregation and increased stability of those materials (Casey et al. 2007, Deguchi 

et al. 2007, Ehrenberg et al. 2009, Saleh et al. 2010, Zhu et al. 2009). These changes in 

surface characteristics resulting from protein-coating can affect the nanoparticle’s 

interaction within biological systems. For example, many studies have demonstrated that 

in the presence of protein, cellular uptake of nanoparticles was significantly reduced due 

to the decrease in surface energy of the protein coated nanoparticles compared to bare 

particles (Guarnieri et al. 2011, Lesniak et al. 2012, Zhu et al. 2009). However, to our 

knowledge, no study has reported the effect of biological macromolecules on the 

bioavailability of fullerene nanoparticles.  
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Chapter 3: An in vitro method to estimate partitioning of fullerene 

between water and lipid membranes of varying composition1 

ABSTRACT 

An in vitro method for quantitative measurement of fullerene partition 

coefficients (Klipw) between water and solid supported lipid membranes was developed in 

this chapter. Klipw values of fullerene were determined for membranes comprised of three 

different unsaturated lipids over a range of temperatures. The log Klipw (L/kg) values for 

fullerene, which range from 3.1 to 5.3, were generally consistent with lipid-water 

association parameters and bioconcentration factors of fullerene reported in previous 

studies. Partition coefficients were found to increase with increasing temperature, 

increasing acyl chain length of the unsaturated lipids. The results indicate that lipid 

composition is a critical factor for bioconcentration of fullerene. 

Keywords 

fullerene, unsaturated lipid membranes, partitioning 

3.1. INTRODUCTION 

The release of engineered nanomaterials (ENMs) into the environment has 

significantly increased over the past decade. Carbon fullerene (C60), which is at the 

forefront of ENMs, has been used in applications ranging from electronic devices to 

cosmetics due to its unique properties (e.g., electron-rich cage structure, high reactivity, 

and ability to serve as an electron donor and acceptor). As the production of fullerene 

rapidly increases, concerns associated with the unknown risks of this nanoparticle 

towards humans and the environment have grown. 

                                                 
1 Part of this chapter was published in Water Science and Technology at 2013 (Yeonjeong Ha, Howard M. 

Liljestrand, Lynn E. Katz, 2013, Effects of lipid composition on partitioning of fullerene between water and 

lipid membranes, Water Science and Technology 68(2) 290-295). This paper was supervised by Dr. 

Howard Liljestrand and Dr. Lynn Katz. 
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A number of previous studies have reported that fullerene aggregates (nC60) in 

water exhibit toxicity toward aquatic organisms (Lovern and Klaper 2006, Oberdörster 

2004), however, the mechanisms of fullerene toxicity are still under debate (Wiesner et 

al. 2008).  A first step toward investigating the mechanisms of fullerene toxicity 

requires evaluation of the bioaccumulation of aqueous fullerene dispersions (nC60) 

through lipid membranes which act as biological barriers to target or reactive sites in 

cells. Previous studies suggested that fullerene can associate strongly with cell 

membranes because of its strong hydrophobicity (Wang et al. 1999), and accumulation of 

fullerene in lipid membranes in biological systems is one of the important routes 

controlling the fate of fullerene in water (Zhang et al. 2009a). Therefore, understanding 

lipid accumulation of fullerene is essential not only to evaluate toxicity, but also to assess 

its fate and transport in water. 

For hydrophobic chemicals such as estrogenic compounds and phthalates, lipid 

membrane accumulation has been investigated by determining partition coefficients 

between well-defined lipids and water (Klipw) using an equilibrium dialysis technique 

(Kwon et al. 2006, Yamamoto and Liljestrand 2004) . However, this method is less useful 

for fullerene because diffusion of the nanoparticles through the dialysis membrane may 

be limited by nanoparticle aggregation.  

Recently, Hou et al. (Hou et al. 2011) developed a novel method to determine 

lipid-water partitioning coefficients (Klipw) of fullerene using solid supported lipid 

membranes (SSLMs). However, because they purchased their SSLMs, their study 

focused on partitioning values with only one type of lipid, chicken egg 

phosphatidylcholine, as a model membrane. Actual lipid membranes consist of various 

lipid components, and previous studies indicate lipid-water partitioning values of organic 

chemicals can be affected significantly by the lipid membrane composition (Kwon et al. 
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2007, Yamamoto and Liljestrand 2004). Therefore, further research investigating the 

effects of lipid composition on partitioning of nanoparticles between lipids and water is 

necessary to assess the fate and transport of these potentially toxic substances.  

In this chapter, an in vitro method for determining lipid-water partition 

coefficients (Klipw) of fullerene was developed for membranes of varying composition 

using SSLMs. We synthesized the SSLMs in our lab. Nonporous silica beads were 

chosen as the solid support, and coatings of various composition were used to investigate 

the effects of lipid composition on the partitioning behavior of fullerene between water 

and lipids.  

3.2. MATERIALS AND METHODS 

Chemicals.  Carbon fullerene (C60, 99.5+ %) was obtained from SES Research 

(Houston, TX). Three unsaturated phospholipids, 1,2-dimyristoleoyl-sn-glycero-3-

phosphocholine (DMoPC, C 14:1, 14:1), 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(DOPC, C 18:1, 18:1), and 1,2-dierucoyl-sn-glycero-3-phosphocholine (DEruPC, C 22:1, 

22:1) were selected as representative lipid membrane phases. Various types of lipid 

components in chloroform were obtained from Avanti Polar Lipids (Albaster, AL). To 

make SSLMs, non-functionalized silica microspheres (mean diameter of 5.2 µm, 100 % 

solid content) were purchased from Bangs Laboratories, Inc. (Fisher, IN). To take a 

fluorescence image of the SSLMs, N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-

dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TRITC-DHPE) was purchased from 

Molecular Probes (Eugene, OR).  

Preparation of aqueous fullerene suspension (nC60). Aqueous fullerene 

solutions (nC60) were prepared using the SON/nC60 sonication method described in Brant 

et al. (Brant et al. 2006). In short, fullerenes were dissolved in toluene, and then the 
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solution was mixed with a large volume of deionized water. After the removal of the 

toluene under ultrasonic treatment, a yellowish fullerene aqueous solution remained. This 

fullerene suspension was filtered through a 0.8 µm membrane filter to remove any large 

aggregates. 

Preparation of solid supported lipid membranes (SSLMs). Liposome 

suspensions containing the selected lipid components were prepared using the thin film 

hydration technique followed by the rapid extrusion process as described previously 

(Kwon et al. 2006). Briefly, the lipid solution in chloroform was evaporated using a 

gentle nitrogen stream and the thin residue film was dissolved in deionized water and 

stored overnight at 4 °C. The resulting lipid suspensions were extruded through the 0.8 

µm polycarbonate membranes more than 10 times to reduce vesicle polydiversity. The 

silica beads were washed with 1 M nitric acid followed by extensive mixing with 

methanol and water. Then, synthetic vesicle dispersions were vigorously mixed with the 

silica beads for 60 seconds using a vortex mixer, and gently mixed in a shaker for 2 hrs. 

After mixing, excess vesicles that were not adsorbed onto the silica beads were removed 

by centrifugation which separated the silica beads from the supernatant. The mass of 

lipids adsorbed onto the silica beads was determined by measuring differences between 

initial lipid concentration and supernatant concentration. A total organic carbon analyzer 

(Tekmar Dohrmann Apollo 9000, Cincinnati, OH) was used to measure lipid 

concentration. 

Determination of Klipw of fullerene. The aqueous fullerene solution and SSLMs 

were placed into 1.8 mL amber vials with polytetrafluroethylene/silicon septa. The 

reactors were incubated for 80 hrs, and the SSLMs and fullerene dispersions were 

completely mixed at different temperatures (4, 11, 25 °C) using custom-made tumbling 

devices or shakers (30, 50 °C). For each temperature, one vial which contained fullerene 
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solution without SSLMs was prepared as a control to evaluate the potential for fullerene 

adsorption onto the vial in each experimental setup. The free fullerene concentration that 

does not interact with SSLMs did not change after 72 hrs based on preliminary 

experiments. Thus, we chose an apparent equilibrium time of 80 hrs for conducting the 

experiments.  After equilibration, the solid supported bilayers were allowed to settle, 

and the supernatant contained only free fullerene without lipid. Fullerene was 

destabilized with 0.1 M Mg(ClO4)2, extracted with toluene and analyzed using a Waters 

2690 high performance liquid chromatography system equipped with a Waters 996 

photodiode array detector (Milford, MA).  A YMC ODS-A column (5 µm, 6.0 × 150 

mm, YMA America Inc. Allentown, PA) was used in the HPLC analysis. The lipid-water 

partition coefficient was determined from a mass balance, as follows: 

mC

CC

mC

C
lipidkgLK

w

w

w

lip

lipw


 0)/(            (3-1) 

where Clip is the concentration of fullerene on the lipid side determined from the 

difference between the initial or control C60 concentration (C0) and the fullerene 

concentration in the supernatant (Cw). The variable m is the lipid concentration (kg-

lipid/L).  

3.3. RESULTS AND DISCUSSION 

Characterization of materials. Aqueous fullerene suspensions (nC60) prepared 

by the SON/nC60 method were characterized using dynamic light scattering (Malvern 

Zetasizer nano ZS, Malvern, England) to assess the size range and particle charge. The 

diameter and zeta potential of the prepared nC60 (1-8 mg/L) ranged from 120 to 130 nm 

and -35 to -50 mV, respectively. These values are generally consistent with 

measurements made in previous studies that used similar procedures to prepare fullerene 

dispersions in water (Brant et al. 2006, Chen et al. 2008). Figure 3.1 shows the effective 
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particle diameters and zeta potentials of fullerene suspensions used in this research. 

These data were collected after the experiment for each of the five different temperatures. 

As shown in Figure 3.1, neither size nor zeta potential of fullerenes changed significantly 

as a function of temperature. Preliminary experiments also showed that the values 

remained constant throughout the duration of the experiments. 
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Figure 3.1: (a) Effective particle sizes and (b) zeta potentials of fullerene dispersions in 

water (nC60 = 1.7 mg/L, pH = 6.3 ± 0.1) at different temperatures after 80 

hrs. Insets of Figure 3.1(a) and 1(b) are size distributions and zeta potentials 

of nC60 saved at 11°C, respectively. The error bars indicate standard 

deviations of triplicate analyses (not shown when the error bars are smaller 

than the symbol). 
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The SSLMs described schematically in Figure 3.2(a) are selected phospholipid 

membranes assembled on nonporous silica microspheres with an average hydrodynamic 

diameter of 5.2 µm. Uniform coating of the micro silica beads used in this study was 

confirmed by taking a confocal fluorescence microscope image with the aid of 0.1 mol% 

of TRITC-DHPE phospholipids that were labeled at the head group with bright, red-

orange fluorescent tetramethylrhodamine dye (Figure 3.2(b)). The known thickness of the 

outer lipid bilayer is approximately 4-5 nm (Baksh et al. 2004). Previous studies have 

reported that SSLMs have mechanical stability and retain the fluidity of their lipid 

membranes (Baksh et al. 2004, Bayerl and Bloom 1990). The lipid concentrations used in 

this study ranged from 2 to 12 mg-lipid/L.  

 

 

 

 

 

 

 

 

 

Figure 3.2: (a) Schematic diagram of a solid supported lipid membranes (SSLMs, 

modified from Baksh et al., (2004)). (b) confocal fluorescence image of 

SSLMs using DEruPC and 0.1 mol% TRITC-DHPE, a fluorescently labeled 

lipid 

 

(b) (a) 
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Mass balance recovery from reactors. Fullerene mass recovered from reactors 

was carefully measured at 4 °C and 50 °C, which were the lowest and highest 

temperatures used in this study. To perform the mass balance, supernatants that contain 

free fullerene were first moved to new vials. Then, SSLMs were re-suspended with DI 

water and carefully transferred to new vials. Free fullerene in supernatant and fullerene 

that interacted with the lipid membranes were extracted with 0.1 M Mg(ClO4)2 and 

toluene. Finally, to calculate the fullerene mass adsorbed onto the vials, original vials 

were washed with DI water and dried under nitrogen purging, and nC60 was extracted 

with toluene by gently rotating the vials. As shown in Figure 3.3, total mass recovered 

from the reactors reached more than 98 %, and less than 10 % of the total nC60 adsorbed 

onto vials. To consider possible adsorption of fullerene onto vials, one control vial which 

contained only fullerene suspensions in water was prepared at each temperature. We used 

C0 (eq 3-1) as the initial fullerene concentration since the difference between the 

concentration in the control vial and the initial concentration was negligible (less than 

2 %).  
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Figure 3.3: nC60 mass recovered from reactors at 4 °C and 50 °C. White bars indicate 

free nC60 remaining in the supernatants, gray bars indicate nC60 interacted 

with the solid supported lipid membranes (SSLMs), and black bars represent 

nC60 adsorbed onto the vials. The error bars indicate standard deviations of 

triplicate analyses. 

Lipie-water partition coefficients (Klipw). Klipw values of fullerene for the SSLM 

prepared from three different unsaturated lipids, DMoPC, DOPC, and DEruPC at five 

different temperatures are summarized in Table 3.1. Log Klipw (L/kg) values range from 

3.1 to 5.3 which are similar to partitioning values of highly or moderately hydrophobic 

molecular level chemicals such as endocrine disrupting chemicals (EDCs) (Kwon et al. 

2006) even though fullerene has been shown to exhibit stronger hydrophobicity (as 

discussed in more detail below in this chapter). The values obtained in this research are 

consistent with research by Hou et al. (Hou et al. 2011) examined partitioning between an 

egg phosphatidylcholine lipid bilayer and water in which they reported log distribution 
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coefficients of 3.2 and 3.7 at pH 7.4 using Freundlich and Langmuir models, respectively, 

when fullerene concentration in water was 2 mg/L. Moreover, estimates of the 

bioconcentration factor (BCF) of fullerene by Jafvert and Kulkarni (Jafvert and Kulkarni 

2008) (log BCF as 4.5, 5.4, and 5.7 for cod, earthworms, and salmon, respectively) and 

Tervonen et al. (Tervonen et al. 2010) (log BCF values of fullerene for Daphnia magna 

from 3.3 and 3.9) are in the range of the results of this study.  

As shown in Table 3.1, regardless of lipid types, partition coefficients increase 

with increasing temperature. It has been reported that the polar head groups of 

phospholipid membranes lie in the bilayer plane at lower temperature (5 °C); however, 

those head groups increasingly submerge in the hydrocarbon tail with increasing 

temperature, causing enhanced lateral head group repulsion and increased distance 

between bilayers in water (Dill and Stigter 1988). Because fullerene dispersions in water 

have much larger particle diameters than molecular scale chemicals, they can more easily 

penetrate into lipid membranes when the distance between the lipid bilayers is held at 

higher temperature for longer periods to time. Therefore, the observed increase in the 

partitioning values with increasing temperatures may be attributed to thermal changes 

associated with the lipid membrane structure. 
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Table 3.1: Lipid-water partition coefficients of fullerene at five different temperatures 

using three unsaturated lipids (DMoPC, DOPC and DEruPC). 

                                                     (Units : L/kg lipid) 

Lipids 4 ˚C 11 ˚C 25˚C 30 ˚C 50 ˚C 

DMoPC 

(C 14:1) 
2.54 (±1.18)×10

3
 5.87 (±3.08)×10

3
 7.17 (±1.25)×10

3
 1.51 (±0.13)×10

4
 2.19 × 10

4
 

DOPC 

(C 18:1) 
6.37×10

3
 6.70 (±3.81)×10

3
 1.27 (±0.34)×10

4
 3.16 (±0.67)×10

4
 5.05 × 10

4
 

DEruPC 

(C 22:1) 
7.85 (±4.93)×10

3
 1.03 (±0.70)×10

4
 2.40 (±1.34)×10

4
 6.51 (±1.55)×10

4
 1.90 (±0.04)×10

5
 

Average (± standard deviation) of triplicate analyses. For duplicate analyses, average values are used 

without standard deviation. 

 

Effects of acyl chain length of unsaturated lipid membranes. The main 

transition temperature of the unsaturated lipids DMoPC, DOPC, and DEruPC are less 

than -30, -22, and 11 °C, respectively. Thus, DMoPC and DOPC are present as liquid 

crystalline phase at all five temperatures, and only DEruPC has different physical states 

at the different temperatures studied: gel phase at 4 °C, ripple phase at 11 °C, and liquid 

crystalline phase above 25 °C. The Klipw values of fullerene obtained in these experiments 

using three different unsaturated lipids were highest with DEruPC (C 22:1, 22:1) and 

lowest with DMoPC (C 14:1, 14:1) regardless of temperatures (Table 3.1). Based on this 

result, it can be concluded that partitioning values of fullerene are higher for unsaturated 

lipids composed of longer acyl chains. This result agrees with those in Yamamoto and 

Liljestrand (Yamamoto and Liljestrand 2004) that reported Klipw values of 17 β-estradiol 

and p-nonylphenol in the order of DOPC (C18:1, 18:1) > POPC (C16:0, 18:1) above the 

transition temperature of each phospholipid. For saturated lipids which exist as a gel 

phase at room temperature, previous studies have reported that Klipw values of 

hydrophobic organic pollutants are higher for shorter acyl chain (Antunes-Madeira and 

Madeira 1987, Yamamoto and Liljestrand 2004) because shorter acyl chain lengths yield 
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a more fluid conformation to the bilayer which leads to greater partitioning. However, for 

unsaturated lipids which exist as liquid crystalline phases at room temperature, lipid 

fluidity may not be affected significantly by acyl chain length. Instead, a stronger 

hydrophobic interaction between fullerene and lipids with a longer acyl chain may result 

in higher partitioning values. Since it is generally acknowledged that in natural 

environments biological membranes contain higher unsaturated lipid content on a relative 

basis, the result of this study suggests that strongly hydrophobic fullerene nanoparticles 

can partition and accumulate to a greater extent in membranes composed of longer 

unsaturated acyl chains found in aquatic organisms.  

Differences in lipid-water partitioning mechanisms between hydrophobic 

chemicals and fullerene. For neutral organic chemicals such as endocrine disrupting 

chemicals (EDCs) and polycyclic aromatic hydrocarbons (PAHs), it is widely known that 

the relationship between octanol-water partition coefficients (Kow) and lipid-water 

partition coefficients (Klipw) generally follows a linear trend (Figure 3.4). This implies 

that more hydrophobic chemicals tend to have greater partitioning values between lipid 

and water. Although the log Kow of fullerene, which is reported as 6.67 by Jafvert and 

Kulkarni (Jafvert and Kulkarni 2008), is higher than that of EDCs, Klipw of fullerene is in 

the range of Klipw values of EDCs. Moreover, although the log Kow of fullerene is in the 

range of log Kow values of strongly hydrophobic PAHs such as benzo[a]pyrene (6.35), 

dibenzo[a,c]anthracene (6.17), and benzo[ghi]perylene (6.90), Klipw of fullerene is more 

than two orders of magnitude lower than the reported Klipw of these three PAHs (Kwon et 

al. 2009). Due to similarities between the molecular features of PAHs and fullerene (such 

as fused pentagonal, hexagonal structures and an extended π electron system) properties 

of PAHs have been used to estimate fullerene properties such as solubility (Martin et al. 

2007) and polarizability (Shanker and Applequist 1994). However, the results shown in 
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Figure 3.4 suggest that Klipw values of hydrophobic chemicals cannot be used as a good 

predictor for the Klipw values of fullerene. This may be explained by differences in the 

partitioning mechanisms between neutral organic chemicals and fullerene. First, in 

contrast to molecular fullerene (C60), fullerene aggregates (nC60) in water are negatively 

charged (Figure 3.1(b)), which can create electrostatic repulsion between fullerene 

aggregates and polar head groups of the lipid membranes, thereby increasing solubility in 

the polar aqueous phase. Second, the smaller Klipw value of fullerene compared to the 

values for the PAHs may be attributed to the larger particle size and bulky structure of 

fullerene, which suggests that more thermodynamic energy is required for fullerene to 

partition into the lipid membranes due to the increased cavity space that must be created 

inside the organized lipid membranes. Further investigations (i.e. using lipids consisting 

of different polar head groups and evaluating the partitioning thermodynamics) were also 

conducted in Chapter 4 to confirm the lipid-water partitioning mechanisms associated 

with fullerene.  
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Figure 3.4: Relationship between reported octanol-water partition coefficient (Kow) and 

unsaturated lipid-water partition coefficient (Klipw) of 19 endocrine 

disrupting chemicals (EDCs), five polycyclic aromatic hydrocarbons 

(PAHs), and fullerene. Kwon et al., (2006) conducted experiments at 22 °C 

and used 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, C 18:1, 

16:0) as a representative unsaturated lipid, and Klipw of fullerene in this 

figure was measured at 25 °C with DOPC (C 18:1, 18:1) unsaturated lipid.  

 

 

 

 

 

 

 



 50 

3.4. CONCLUSIONS 

An in vitro method for the quantitative measurement of lipid-water partitioning 

values of fullerene using SSLMs was developed and employed to study fullerene 

partitioning.  The main focus of this study has been on the effects of lipid composition 

on partitioning coefficients. As noted above, the hydrophobic acyl chain length of lipid 

membranes significantly affected the partitioning of fullerene between the lipids and 

water. This result suggests that lipid components should be carefully chosen to assess 

bioaccumulation of fullerene into aquatic organisms. Moreover, partitioning increases 

with increasing temperature, regardless of lipid type, indicating that temperature is also of 

critical importance to assess toxicity and bioavailability of fullerene. The relationship 

between octanol-water partitioning (Kow) and lipid-water partitioning (Klipw) of 

hydrophobic organic chemicals and fullerene appears to be different, which implies that 

the partitioning mechanism of fullerene may also differ from that of other hydrophobic 

chemicals due to the unique properties of fullerene nanoparticles.  These properties 

include the negative charge and large particle size of fullerene aggregates. The 

development of the in vitro method in this chapter makes it possible to determine the 

lipid-water partitioning thermodynamics of fullerene and to assess competitive lipid-

fullerene interactions with organic matter constituents such as humic acid and protein.  
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Chapter 4: Partitioning of fullerene nanoparticles between water and 

solid supported lipid membranes: Partitioning thermodynamics and 

effects of membrane composition on partitioning  

ABSTRACT 

The partition coefficient (Klipw) of fullerene between water and solid supported 

lipid membranes (SSLMs) was examined using different lipid membrane compositions. 

Klipw of fullerene was significantly higher with a cationic lipid membrane compared to 

that with a zwitterionic or anionic lipid membrane, potentially due to the strong 

interactions between negative fullerene dispersions and positive lipid head groups. The 

higher Klipw for fullerene partitioning to ternary lipid mixture membranes was attributed 

to an increase in the interfacial surface area of the lipid membrane resulting from phase 

separation. These results imply that lipid composition can be a critical factor that affects 

bioconcentration of fullerene. Partitioning of fullerene into zwitterionic unsaturated lipid 

membranes was dominated by the entropy (△S) contribution and the process was 

endothermic (△H > 0). This result contrasts the partitioning thermodynamics of highly 

and moderately hydrophobic chemicals indicating that the lipid-water partitioning 

mechanism of fullerene may be different from that of molecular level chemicals. 

Potential mechanisms for fullerene partitioning that may explain these differences include 

adsorption on the lipid membrane surfaces and partitioning into the center of lipid 

membranes (i.e. absorption).  

Keywords 

fullerene, lipid membranes, partitioning, thermodynamics 
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4.1. INTRODUCTION 

The increased use of engineered nanomaterials (ENMs) has raised concerns 

associated with the unknown harmful effects of these materials on humans and the 

environment. Fullerene (C60), one of the most prevalent carbon based nanomaterials, has 

been envisioned for numerous applications such as fuel cells (Wang et al. 2007), 

photovoltaic cells (McMahon et al. 2011), drug carriers (Hughes 2005), and face creams 

(Benn et al. 2011) due to its unique properties (e.g., electron-rich cage structure, 

antioxidant property, and high reactivity).  Indeed, the global market for fullerene could 

approach $4.7 billion by 2016 (BCC research 2006). Due to the rapid increase in 

fullerene production, potential biological effects of this nanoparticle have been raised 

considerable concern.  

To investigate possible harmful effects of nanoparticles on living organisms, 

bioaccumulation is of critical importance because it provides the link between chemical 

exposure in the environment and the uptake of nanoparticles through living organisms 

(Jonker and Van der Heijden 2007). A first step toward evaluating bioaccumulation is 

partitioning behavior into lipid membranes that act as biological barriers to target or 

reactive sites in cells. Bioaccumulation has been evaluated previously using lipid-water 

partitioning coefficients (Klipw) of molecular level chemicals such as pharmaceuticals (Go 

and Ngiam 1997, Wenk et al. 1996), organic acids and bases (Escher et al. 2000), metal 

complexes (Kaiser and Escher 2006), and endocrine disrupting chemicals (EDCs) (Kwon 

et al. 2006, Yamamoto and Liljestrand 2004).  

For the molecular organic chemicals, Klipw have been measured using an 

equilibrium dialysis technique in which chemicals dissolved in water and liposome 

solutions are separated by a dialysis membrane, and chemicals can diffuse through the 

membrane but the liposome cannot. However, this technique cannot be applied to 
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measure Klipw of nanoparticles because the diffusion of nanoparticles through a dialysis 

membrane may be limited by nanoparticle aggregation. Thus, it is essential to develop a 

new procedure to assess the lipid-water partitioning of nanoparticles.  

Very recently, a few studies have examined Klipw of nanoparticles. Hou et al. 

(Hou et al. 2011) performed a quantitative study measuring lipid-water association 

coefficients of fullerene using solid supported lipid membranes (SSLMs).  They also 

applied SSLMs to investigate the equilibrium and kinetics of gold nanoparticle 

partitioning between water and lipid bilayers (Hou et al. 2012b). Applying SSLMs to 

investigate partitioning of nanoparticles between water and lipids is novel and relevant 

because SSLMs are stable (Bayerl and Bloom 1990) and preserve the fluidity of lipid 

membranes (Baksh et al. 2004). In addition, after interaction with nanoparticles, SSLMs 

can be separated from the nanoparticles easily via sedimentation in water. However, these 

previous studies (Hou et al. 2012b, Hou et al. 2011) used commercial SSLMs and 

focused on only one type of lipid, egg phospholipid, as a model membrane. 

As nanoparticles are released to the environment, they will encounter a variety of 

organisms with different lipid membrane compositions. Even within a single organism, 

cell lipid composition can vary. For example, natural cell membranes consist of lipid 

membranes which have different head group charge (Ryhanen et al. 2006).  Unlike 

molecular level chemicals, many nanoparticles in water have significant charge 

associated with their surfaces either because they accumulate solution species that impart 

charge or due to their inherent chemical structure. Thus, while it is critical to investigate 

the electrostatic interactions between nanoparticles and lipids with different head charges, 

to date, no studies have considered the effect of lipid head charge on lipid-nanoparticle 

interactions. In addition, cell membranes typically consist of three components: 

unsaturated lipids, saturated lipids, and cholesterol (Arnaud 2009). Ternary lipid 
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membranes composed of these three components exhibit a single liquid phase above the 

critical temperature (Tc). However, this single liquid phase undergoes phase separation 

below Tc, building raft domains which are enriched in saturated lipids (e.g., 

sphinogomyelin) and cholesterol (Arnaud 2009, Brown and London 2000, Garcia-Saez et 

al. 2007, Kuzmin et al. 2005, Stottrup et al. 2005, Veatch and Keller 2003). This lateral 

organization of ternary lipid mixture membranes creates a height mismatch between 

unsaturated lipids and saturated lipids/cholesterol (Figure 4.1.). For this reason the 

hydrophobic surface area of lipids might increase after phase separation, which can affect 

lipid water partitioning of nanoparticles. Even though recent studies (Kuzmin et al. 2005, 

Veatch and Keller 2003) have emphasized the importance of rafts in membrane biology, 

the phase separation of the lipid components has not been considered in previous studies 

designed to estimate Klipw of various nanoparticles. 

Figure 4.1:  An AFM image of lipid membrane surface after phase separation in ternary 

lipid mixtures (DMoPC:SM:Cholesterol) provided by Garcia-Saez et al., 

(2007), and its schematic diagram. 

Previously, we successfully synthesized solid supported lipid membranes (SSLMs) 

with three unsaturated lipids which have different acyl chain lengths in our lab and 

demonstrated the effects of acyl chain lengths on the Klipw of fullerene (Ha et al. 2013). In 
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this study, SSLMs with lipid membranes containing different head charges, and ternary 

lipid membranes before and after phase separation were used to investigate the effects of 

lipid membrane composition. Partitioning thermodynamics (e.g., enthalpy change (△H) 

and entropy change (△S)) were evaluated to help identify plausible lipid-water 

partitioning mechanisms of fullerene. 

 

4.2. MATERIALS AND METHODS 

Chemicals.  Carbon fullerene (C60, 99.5+ %) was purchased from SES Research 

(Houston, TX). Three unsaturated phospholipids having zwitterion head groups were 

used in this study: (1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (DMoPC, C 14:1,  

14:1), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, C 18:1, 18:1), and 1,2-

dierucoyl-sn-glycero-3-phosphocholine (DEruPC, C 22:1, 22:1) . In addition, a lipid with 

a positively charged head group,  1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) 

and a lipid with a negatively charge head group,1,2-dioleoyl-sn-glycero-3-phospho-(1’-

rac-glycerol) (18:1 PG) were studied. Table 4.1 summarizes the main transition 

temperature, physical state at room temperature and charge of the lipid head groups for 

each of the lipids. Two sphinogomyelins (N-stearoyl-D-erythro-

sphingosylphosphorylcholine (18:0 SM) and Brain SM (BSM)) and cholesterol (Aldrich 

Chemical Co, Milwaukee, WI) were used to make ternary lipid membranes. The lipids 

were obtained from Avanti Polar Lipids (Alabaster, AL). The composition of the ternary 

lipid mixtures included one of the three unsaturated zwitterion lipids listed in Table 4.1, 

either SM or BSM as representative saturated lipids, and cholesterol. Table 4.2 shows the 

estimated phase height differences between the unsaturated lipids and the saturated 

lipids/cholesterol components. 
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To make the solid supported lipid membranes, non-functionalized silica 

microspheres (mean diameter of 5.2 µm, 100 % solid content) were purchased from 

Bangs Laboratories, Inc. (Fishers, IN). To prepare TEM images of fullerene nanoparticles 

and fullerene associated with SSLMs, carbon film grids (400 mesh) were purchased from 

Electron Microscopy Science (Hatfield, PA). 

 

Table 4.1: Summary of selected unsaturated phospholipid components 

Phospholipids Carbon chain: 

Double bonds 

Main transition 

temperature (°C) 

Physical state at 

room temperature 

Charge of lipid 

head 

DMoPC (C14:1, 14:1) <-30 Liquid crystalline Zwitterion 

DOPC (C18:1, 18:1) -22 Liquid crystalline Zwitterion 

DEruPC (C22:1, 22:1) 11 Liquid crystalline Zwitterion 

DOTAP (C18:1, 18:1) ~ -0 Liquid crystalline Positive 

18: 1 PG (C18:1, 18:1) -18 Liquid crystalline Negative 

 

Table 4.2: Summary of selected ternary lipid mixture membranes 

Lipid composition of ternary mixture 

lipids (2:1:1, w/w) 

Estimated critical 

temperature (°C) 

Estimated phase 

height difference
a
 

(pm) 

References 

DMoPC/SM/Cholesterol 38 ± 1 1560 ± 130 (Garcia-Saez et 

al. 2007) 

DOPC/SM/Cholesterol 46 ± 1 870 ± 100 (Garcia-Saez et 

al. 2007) 

DEruPC/SM/Cholesterol 66 ± 3 170 ± 70 (Garcia-Saez et 

al. 2007) 

DMoPC/BSM/Cholesterol - -  

DOPC/BSM/Cholesterol 28 - (Veatch and 

Keller 2003) 

DEruPC/BSM/Cholesterol - -  
a
Height different is a length between raft domain and unsaturated lipid after phase separation in ternary 

lipid membranes 

 

Aqueous fullerene suspensions.  Fullerene suspensions in water were prepared 

by the modified SON/nC60 method described in Brant et al (Brant et al. 2006). After 
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dissolving 3 mg of fullerene in 5 mL of toluene, 20 mL of deionized water was added to 

the solution. Then, the toluene was removed by ultrasonication with air purging leaving a 

yellowish fullerene aqueous solution. This fullerene suspension was filtered through a 0.8 

µm membrane filter (Millipore, Billerica, MA) to remove any large aggregates. The 

resultant fullerene suspension was characterized using Transmission Electron Microscopy 

(TEM, FEI Tecnai) and Dynamic Light Scattering (DLS, Malvern Zetasizer Nano ZS). 

The shape of the fullerene nanoparticles in the suspensions was spherical (Figure 4.2). 

The average diameter and zeta potential of the fullerene aggregates ranged from 120-130 

nm, and -35 - -50 mV, respectively. 

 

 

Figure 4.2: TEM image of fullerene aggregates (nC60) 

Solid supported lipid membranes (SSLMs). The synthetic membrane vesicles 

for each lipid composition were prepared using the thin film hydration technique 
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followed by the rapid extrusion process. The detailed procedure is described elsewhere 

(Escher et al. 2000, Kwon et al. 2006). Solid supported lipid bilayers were made using 

modified methods described in Bayerl and Bloom. (Bayerl and Bloom 1990), and Baksh 

et al. (Baksh et al. 2004). Silica beads were washed with methanol followed by extensive 

rinsing with water and nitric acid. The lipid vesicle dispersions were poured onto the 

silica beads with 60 sec of rigorous vortex mixing followed by 2 hrs of gentle mixing on 

a shaker. Then, the silica beads and lipid dispersion mixtures were centrifuged and the 

supernatants were discarded to remove excess vesicles not adsorbed on the solid surface.  

The mass of the lipids adsorbed on the silica beads was determined by measuring the 

difference between initial lipid concentration and supernatant concentration. Lipid 

concentrations were measured using a total organic carbon (TOC) analyzer (Tekmar 

Dohrmann Apollo 9000, Cincinnati, OH). 

For the solid supported ternary lipid mixture membrane vesicles, the weight ratio 

of unsaturated lipids: SM: cholesterol = 2:1:1 were used. Two replicate samples were 

prepared. One sample was stored at room temperature which is below the critical 

temperature (Tc). The other was initially stored at 70 ˚C (above Tc of all ternary lipid 

mixtures) overnight and transferred to room temperature to create a phase height 

difference between the unsaturated lipids and the saturated lipids/cholesterol. 

The formation of a uniform coating of the micro silica beads with lipid 

membranes was confirmed by confocal fluorescence microscopy and reported previously 

(Ha et al. 2013). 

Determination of lipid-water partition coefficient (Klipw). The solid supported 

lipid bilayer and aqueous fullerene dispersions were placed into 1.8 mL amber vials with 

PTFE/silicon septa. The vials were incubated for 80 hrs using custom-made tumbling 

devices or shakers over a range of temperatures. For the ternary lipid mixtures and 
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DOTAP, PG lipids, vials were incubated at room temperatures with a tumbling device. 

After an 80 hr incubation period, each vial sat quiescently for 1 hr to allow the solid 

supported lipid membranes (SSLMs) to settle. The fullerene concentration in the 

supernatant (Cw) was measured using a Waters 2690 high-performance liquid 

chromatography system equipped with a Waters 996 photodiode array detector (Milford, 

MA, USA) after extraction with toluene and 0.1 M of Mg(ClO4)2. Klipw values were 

calculated using equation (4-1) 
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where Clip is the fullerene concentration in the lipid side, which is equal to the difference 

between the initial or reference fullerene concentration (C0) and the fullerene 

concentration in the supernatant (Cw). m is the concentration of lipid (kg-lipid/L). 

Determination of thermodynamics of lipid-water partitioning. To assess lipid-

water partitioning mechanisms of fullerene, partitioning thermodynamics were 

investigated. Klipw values using three zwitterion unsaturated lipid membranes measured at 

five different temperatures (4, 11, 25, 30, and 50 ˚C). The enthalpy (ΔH) and entropy 

(ΔS) of lipid-water partitioning were determined using the van’t Hoff equation: 
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where R is the ideal gas constant (8.314 J/mol-K) and T is temperature (K). 
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4.3. RESULTS AND DISCUSSION 

Apparent time to equilibrium. To determine the apparent time for partitioning 

between the two phases to reach equilibrium, the concentration of fullerene in an aqueous  

suspension in contact with a solid supported lipid membrane was monitored over time 

(Figure 4.3). Bare silica beads (control) and silica beads coated with zwitterion DOPC 

lipids were prepared and combined with fullerene suspensions. As shown in Figure 4.3, 

apparent equilibrium was attained within 72 hrs. After 90 hrs, the concentration of free 

fullerene in water decreased suddenly possibly due to changes in the properties of the 

solid supported lipid membranes such as lipid fouling after a long incubation time (not 

shown here). Therefore, we chose 80 hrs as the apparent equilibrium time for lipid-water 

partitioning of fullerene. In addition to the zwitterion lipids, we confirmed that fullerene 

interactions with cationic and anionic lipids reached equilibrium within 80 hrs as well. 

Fullerene rarely interacted with bare nonporous silica beads as shown in Figure 4.3 and 

verified by TEM (Figure 4.4).  

 For molecular organic chemicals, the lipid-water partitioning equilibrium time 

varies from a few hours to days. For example, it was reported that less hydrophobic and 

smaller chemicals such as phenol, aniline, and hydroxyquinoline ligands reached 

equilibrium in 12 hrs (Escher et al. 2000, Kaiser and Escher 2006). On the other hand, the 

equilibrium time for endocrine disruptors, which are bulky and hydrophobic, was not 

obtained until 14 days (Kwon et al. 2006, Kwon et al. 2007). For engineered 

nanomaterials, which have sizes from a few to a hundred nanometers, it can be expected 

that the lipid water partitioning equilibrium may require a relatively long time compared 

to that of molecular level chemicals.  However, fullerene reached equilibrium in 72 hrs 

in this study. Also a few recent studies have reported that the interaction of lipid 

membranes with fullerene (Hou et al. 2011) and gold nanoparticles (Hou et al. 2012b) 
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reached equilibrium in 48 hrs and 24 hrs, respectively. This might be attributed to the 

different lipid-water partitioning mechanisms between molecular organic chemicals and 

nanomaterials. Details on the partitioning mechanisms of fullerene are discussed later in 

this chapter. 

 

Time (hr)

0 24 48 72 80

C
w

 (
m

g
/L

)

0

2

4

6

8

10

12

14

16

18

with bare non-porous silica beads

with solid supported lipid membranes

 

Figure 4.3: Interaction of fullerene suspensions with bare non porous silica beads (open 

diamond) and solid supported lipid membranes with DOPC (closed circle). 

Cw is free concentration of fullerene in water side after settling bare silica 

beads or solid supported lipid membranes (SSLMs). The error bars indicate 

standard deviations of triplicate analyses (not shown when the error bars are 

smaller than the symbol).  
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Figure 4.4: TEM images of (a) bare non porous silica beads (control) and (b) solid 

supported lipid membranes with DOPC lipids interaction with fullerene 

aggregates in water. Scale bar indicate 500 nm for Figure 4.4 (a) and (b), 

and 200 nm for the inset of Figure 4.3 (b). 

Effects of head charges of lipid membranes. To investigate the effects of lipid 

membrane head charge on partitioning, solid supported lipid membranes (SSLMs) with 

DOTAP, DOPC, and PG which have positive, zwitterion and negative charged head 

groups, respectively, were prepared. These are all unsaturated lipids and have identical 

acyl chain lengths (C18:1) (Table 4.1). After 80 hrs of incubation of the fullerene with 

SSLMs containing a DOTAP lipid membrane, more than 95 % (96.03 ± 1.27) of the 

fullerene nanoparticles were removed. However, with SSLMs containing only DOPC or 

PG, only 9.24 % (±0.84), and 3.40 % (±0.49) of the fullerene was removed from solution. 

As shown in Figure 4.5(a), the log Klipw values for fullerene between water and SSLMS 
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with DOTAP (5.82 ± 0.16) was significantly higher than that with DOPC (4.09 ± 0.12) 

and PG (3.25 ± 0.065). Also, we confirmed that many fullerene nanoparticles adsorbed 

onto the SSLMs coated with DOTAP, and the surfaces of some SSLMs were covered 

almost entirely by fullerene nanoparticles (Figure 4.5(b)). On the other hand, fullerene 

rarely adsorbed onto SSLMs with PG (Figure 4.5(c)).  

 Because fullerene particles in water are typically negatively charged (Brant et al. 

2006, Labille et al. 2009) there can be a strong affinity between fullerene particles and 

positive lipid head groups.  This implies that non-specific interactions between charged 

nanoparticles and oppositely charged lipid membranes are of critical importance for bio-

nanoparticle interactions. Indeed, previous studies have demonstrated that positively 

charged nanoparticles are more likely to be adsorbed and internalized into cell 

membranes compared to neutral and negatively charged nanoparticles due to the strong 

interactions between positively charged nanoparticles and the negative surface charge of 

many lipid membranes (Cho et al. 2009a, Santhosh et al. 2014, Verma and Stellacci 

2010). Even though the overall charge of most cell membranes is negative, some 

positively charged sites on cell surfaces have also been reported (Ghinea and Simionescu 

1985). Thus, it is possible that fullerene dispersions in water can be strongly adsorbed 

onto positively charged surface sites and internalized into cells.  This internalization is 

likely responsible for the harmful effects of fullerene towards living cells.  
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Figure 4.5: Effects of charge of lipid head groups on lipid-water partitioning of 

fullerene. (a) Klipw of fullerene using three lipid membranes with different 

head charges. DOTAP, DOPC, and PG are 18:1 lipids which have positive, 

zwitterion, and negative head charges, respectively. The error bars denote 

standard deviations of triplicate analyses. (b) and (c) are TEM images of 

solid supported lipids with DOTAP and PG after interaction with fullerene. 

Scale bar indicates 500 nm. 
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Effects of surface structure of ternary lipid mixtures. Lipid rafts are liquid 

ordered phases which are enriched in sphingolipids and cholesterols, and the rafts coexist 

with unsaturated lipids which are considered liquid disordered phases (Garcia-Saez et al. 

2007). The formation of lipid rafts can create a phase separation between rafts and 

unsaturated lipids which affects the surface structure of lipid membranes (Chiantia et al. 

2006, Dietrich et al. 2001, Garcia-Saez et al. 2007). Figure 4.6 shows the effect of phase 

separation on partitioning values. For all ternary lipid membranes except 

DMoPC/SM/Cholesterol (whose estimated critical temperature of 66 ˚C is not high 

enough to achieve phase separation) and DEruPC/BSM/Cholesterol (Klipw using 

DEruPC/BSM/Cholesterol before phase separation was not determined due to the 

negligible amount of fullerene that partitioned into the lipid membrane), the presence of 

cholesterol decreased Klipw values, and Klipw values increased after phase separation. One 

possible explanation for this effect is that the interfacial surface area covered by the lipid 

molecules decreases for the ternary mixtures. Indeed, previous research has shown that 

Cholesterol in a bilayer before phase separation decreases the surface area covered by 

lipid molecules (Hofsass et al. 2003). On the other hand, the height mismatch between 

saturated lipids/cholesterol and unsaturated lipids increases the interfacial surface area by 

creating raft domains after phase separation. Therefore, the decrease in surface area of 

lipid molecules due to cholesterol lowers Klipw values whereas increasing lipid surface 

area due to phase separation increases Klipw values. Thus, surface structure changes due to 

cholesterol content and phase separation in ternary lipid membranes are critical factors 

that impact fullerene partitioning.  
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Figure 4.6: Effects of phase separation of ternary lipid mixtures on Klipw values of 

fullerene. (a) DMoPC, (b) DOPC, and (c) DEruPC are the unsaturated lipids 

and SM and BSM are the saturated lipids. BPS and APS indicate before 

phase separation and after phase separation, respectively. The error bars 

indicate standard deviations of triplicate analyses. 

(a) 

(b) 

(c) 
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Partitioning thermodynamics. The fullerene Klipw values estimated with three 

unsaturated lipids (DMoPC (C14:1), DOPC (C18:1), DEruPC (C22:1))  (reported 

previously in Chapter 3) were used to determine enthalpy (ΔH) and entropy change (ΔS) 

via regression based on the van’t Hoff equation (Figure 4.7, and Table 4.3). As can be 

seen in Table 4.3, the partitioning of fullerene into the unsaturated lipids was driven by 

entropy gains (ΔS > 0), and the process was endothermic (ΔH > 0).  
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Figure 4.7: Determination of enthalpy (ΔH) and entropy (ΔS) values for lipid-water 

partitioning of fullerene using three unsaturated lipids (DMoPC, DOPC, and 

DEruPC). The error bars indicate standard deviations of triplicate analyses. 

For duplicate analyses, average values were used.  
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Table 4.3: Enthalpies (ΔH) and entropies (ΔS) for fullerene partitioning between water 

and selected zwitterion unsaturated lipids.  

 Δ H   (KJ/mol) TΔ S* (KJ/mol) r
2
 

Klipw,DMoPC 35.07 (±6.14)** 57.51 (±5.67) 0.92 

Klipw,DOPC 42.40 (±6.26) 66.26 (±5.78) 0.94 

Klipw, DeruPC 
T < Tm  22.67 (-) 46.28 (-) - 

T > Tm  62.01 (±13.28) 87.53 (±12.04) 0.96 

*. Entropy contribution (T ΔS) calculated at 25 ˚C 

**. Values in parentheses are standard deviations of the regression 

 

Partitioning thermodynamic values previously reported for molecular chemicals 

were significantly different from the results of this study. For endocrine disrupting 

chemicals and pharmaceuticals, partitioning has been driven by the enthalpy change of 

the liquid crystalline phase ( Ávila and Martínez 2003, Go and Ngiam 1997, Kwon et al. 

2007, Seelig and Ganz 1991, Wenk et al. 1996). As shown in Figure 4.8, the partitioning 

process of selected EDCs and pharmaceuticals into the unsaturated lipids was exothermic 

(ΔH < 0), whereas in most cases partitioning into the saturated lipids was endothermic 

(ΔH > 0). These differences between unsaturated and saturated lipids were attributed to 

the additional energy required for the chemicals to partition into the dense tail structures 

of saturated lipids. Both enthalpy and entropy contributions in fullerene partitioning into 

unsaturated lipids were higher than the reported values for the molecular chemicals– even 

when the values were similar to those for the saturated lipids (Figure 4.8). These results 

imply that the partitioning process of fullerene differs from that of molecular chemicals. 
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Figure 4.8: (a) Enthalpy (ΔH) and (b) entropy (ΔS) contributions of molecular level 

chemicals and fullerene. Closed diamond (♦), open triangle(△), open 

circle(○), red closed circle (  )are partitioning thermodynamics values of 

EDCs (Kwon et al. 2007), Pharmaceuticals (Go and Ngiam 1997, Seelig and 

Ganz 1991, Wenk et al. 1996), Benzocaine ( Ávila and Martínez 2003), and 

fullerene (this study), respectively. Enthalpy contribution calculated at 25 ˚C  

It is generally acknowledged that highly and moderately hydrophobic chemicals 

enter the hydrophobic tail region or center of the lipid bilayer. However, for nanoparticles, 

we hypothesize that the partitioning mechanism is a combination of adsorption and 

absorption: Large fullerene aggregates adsorb onto the head group of lipid membranes, 

and the fullerene aggregates partially disaggregate into small aggregates or molecular 

level fullerene which can then penetrate into lipid membranes (i.e., absorption) (Figure 

4.9). TEM images of the interaction of solid supported lipid membranes (SSLMs) and 

fullerene suspensions (Figure 4.4) clearly show fullerene aggregates adsorbed onto the 

head groups of lipid membranes. In addition, previous molecular modeling studies 

(Bedrov et al. 2008, Qiao et al. 2007)
 
simulated that pristine fullerene can easily diffuse 

into lipid bilayers and translocate the membrane within a few seconds. Wong-Ekkbut et 

al. (Wong-Ekkabut et al. 2008) reported that fullerene aggregates located close to the 
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lipid head group can form only small clusters and rapidly penetrate into the lipid bilayer. 

Also, Ikeda et al. (Ikeda et al. 2011) used differential scanning calorimetry (DSC) and 

13
C NMR to confirm that the location of fullerene in the liposome is the hydrophobic core 

of the lipid membrane. These results suggest the absorption is a possible mechanism of 

fullerene partitioning into lipid membranes. Thus, the total Gibbs free energy change 

(ΔGpartitioning) of lipid-water partitioning of fullerene can be determined from its 

components as shown below: 

 ΔGpartitioning = ΔGadsorption  + ΔGadsorption     (4-3) 

As illustrated in Figure 4.9, enthalpy and entropy changes depend on the operative 

partitioning processes. It is suggested that exothermic binding (ΔH < 0) initially occurs 

between negatively charged fullerene suspensions and
 

the N
+
 terminus of lipid 

membranes.  This binding is followed by an endothermic process (ΔH > 0) which is 

induced by partial gelation of the lipid membrane (Wang et al. 2008). Wang et al. (Wang 

et al. 2008) suggested that the adsorption of negatively charged nanoparticles onto the 

lipid membrane resulted in a local gelation of the lipid membrane. This gelation can 

cause shrinkage of the lipid membrane surface because the surface area of the lipid 

membrane is dominated by the fluid phase rather than the gel phase. The shrinkage 

induced by adsorption is considered an endothermic process (ΔH > 0). In addition, an 

adsorption mechanism can cause water molecules to be released from the lipid head 

groups. Consequently, adsorption can result in positive ΔS values (Li and Gu 2010).  

When relatively large fullerene particles penetrate into lipid membranes (e.g., 

absorption process), the distance between highly organized lipid membranes increases. 

Generally, positive ΔH and positive ΔS values are attributed to the introduction of large 

molecules into the lipid membranes (Kwon et al. 2007). These changes in enthalpy and 
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entropy contributions would be greater for fullerene compared to molecular chemicals 

because of the larger size of fullerene nanoparticles. 

 

 

 

Figure 4.9: Schematic illustrating the possible partitioning mechanism of fullerene 

between solid supported lipid membranes (SSLMs) and water, and its 

thermodynamics. 
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Limitation of solid supported lipid membranes (SSLMs). To investigate the 

effect of various lipid components on the partitioning values, we tried to use saturated 

lipids which mostly exhibit a gel phase in the temperature range employed in this study. 

However, the partitioning values obtained using these saturated lipids were not 

reproducible, particularly in the gel phase. Previous studies (Feng et al. 2005, Tokumasu 

et al. 2003) have reported that for gel-phase saturated lipid membranes, SSLMs generate 

cracks on the surface. However, when the transition from gel to liquid crystalline phase 

was completed, the solid supports were covered with a thin lipid bilayer that formed a 

featureless and homogeneous surface. Thus, it is difficult to precisely measure Klipw by 

applying solid supported lipid membranes using a gel phase consisting of saturated lipids 

which likely have defects on their surfaces. Figure 4.10 shows Klipw values for fullerene 

using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, C 18:0, Tm = 55˚C)  and 

DSPC/cholesterol mixtures at different temperatures below and above the transition 

temperature. DSPC exists a gel phase at 22, 30, 45, and 50 ˚C and liquid crystalline phase 

at 60 and 65 ˚C. On the other hand, the DSPC/cholesterol mixture is considered to be a 

liquid phase for all temperatures used in this study. As shown in Figure 4.10, the Klipw 

value determined using a DSPC/cholesterol mixture increased gradually across the 

transition temperature. However, for DSPC only, the Klipw value increased more 

dramatically above the transition temperature. It is possible that SSLMs have surface 

numerous defects below Tm, causing less fullerene attachment on the lipid membrane.  

However, above Tm, the SSLM surface is homogeneously covered by the lipid membrane 

leading to higher Klipw values. Further investigations examining Klipw values using gel-

phase lipid membranes are warranted.  
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Figure 4.10: Lipid-water partition coefficients using one saturated lipids (DSPC), and 

DSPC/cholesterol mixture. The error bar indicates standard deviations of 

triplicate analyses. The transition temperature of DSPC is 55 ˚C, thus DSPC 

exists as gel phase at 22, 30, and 45 ˚C and liquid crystalline phase at 60 and 

65 ˚C. Phase pf DSPC/cholesterol (f=0.46) is liquid ordered phase for all 

temperatures ranges in this figure. f denotes mole fraction of cholesterol.  
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4.4 ENVIRONMENTAL IMPLICATIONS 

This study demonstrates that fullerene nanoparticles accumulate in unsaturated 

lipid membranes depending on the membrane composition (i.e. the lipid head charge and 

phase separation of ternary lipid membrane mixtures). Cells of living organisms mainly 

consist of unsaturated lipids, which have varying head charges, and raft domains have 

been observed in various cell membranes (Jacobson et al. 2007). Therefore, the lipid 

surrogates used in this study are appropriate for mimicing actual living cells. Results of 

this study suggest that fullerene nanoparticles in water have higher affinity for cationic 

lipid membranes and lipid membranes containing raft domains after phase separation. It 

is generally acknowledged that cationic lipid membranes play a critical role in gene 

delivery due to interactions between cationic head groups and anionic phosphate groups 

of the genes (Zhi et al. 2013). In addition, raft domain formations in ternary lipid 

membranes are responsible for many biological functions such as endocytosis, adhesion, 

signaling, and protein transport (Stottrup et al. 2005, Veatch and Keller 2003). Thus, 

findings from this study can be used for the further evaluation of fullerene uptake and 

toxicity in organisms subjected to fullerene exposure.  

The partitioning process of fullerene was significantly different from that of 

molecular chemicals based on thermodynamic partitioning values determined in this 

study. It is proposed that the possible partitioning mechanisms are a combination of 

adsorption and absorption based on enthalpy and entropy contributions. This is the first 

study which presents partitioning thermodynamics via an in vitro method that includes 

both experimental and theoretical bases. The techniques used in this research with 

fullerene can also be used to understand the bioavailability of other engineered 

nanomaterials (e.g., nano-Ag, Carbon nanotubes, and TiO2) with lipid membranes.  
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Chapter 5: Cellular uptake of fullerene nanoparticles: Elucidating the 

mechanism of cellular uptake 

ABSTRACT 

The degree of interaction of engineered nanoparticles with biological cells plays a 

key role in determining their possible harmful effects towards humans and the 

environment.  In this study, we successfully developed a quantitative method to 

investigate the cellular uptake mechanism of carbon fullerene nanoparticles using Caco-2 

cell lines. Data from uptake studies demonstrated that the mass of fullerene taken up by 

cells at 37 °C was significantly higher than at 4 °C, which is an energy depleted 

condition. Cellular uptake of fullerene increased with increasing temperature which 

indicates that passive diffusion is one of transport mechanisms. In addition, cellular 

uptake efficiency was higher at lower fullerene concentrations and did not change 

significantly over a wide range of initial concentrations, indicating that fullerene uptake 

reached a plateau and the lipid membrane was likely saturated.  The temperature 

dependence and membrane saturability suggest that the main transport mechanism of 

fullerene through cell membranes is a combination of passive diffusion and energy 

dependent endocytosis.  Metabolic inhibitors decreased the amount of fullerene taken up 

by cells, which suggests active transport of fullerene across the lipid cell membrane. The 

results of this study support the hypothesis that fullerene transport occurs through 

microtubules and this microtubule transport can be affected by changes in fullerene 

characteristics over time. The implication of these results is that simple partitioning 

models may be inappropriate for describing fullerene uptake in cells. Instead, models 

associated with active transport can be used to estimate cellular uptake of fullerene as 

well as to control and reduce fullerene toxicity toward living organisms.  
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5.1. INTRODUCTION 

 

As production of engineered nanoparticles (ENPs) rapidly increases due to the 

expanding range of applications, concerns associated with unknown harmful effects of 

ENPs towards humans and the environment have grown. One of the promising 

applications of ENPs is in the biomedical field where applications include drug carriers 

(Singh and Lillard 2009), gene delivery (Panyam and Labhasetwar 2003), and 

biomolecular sensors (Saha et al. 2012). In these applications and others, ENPs 

frequently encounter cells in various organisms, including humans. It has been reported 

that, due to their small size, nanoparticles easily enter cells (Shang et al. 2014, Wang et al. 

2009) where they responsible for possible toxic effects. Thus, investigating cellular 

uptake of ENPs is of critical importance in order to understand the biological fate of 

nanoparticles as well as their possible harmful effects. 

Cell membranes, which serve as biological barriers to target sites within cells, 

control the extent of cellular uptake of ENPs. Recently, the mechanism of cellular uptake 

of ENPs has been reported to differ from that of molecular level chemicals. It is generally 

acknowledged that small hydrophobic molecules can transport through the cell membrane 

via passive diffusion driven by concentration gradients (Camenisch et al. 1998, Pade and 

Stavchansky 1997). However, recent studies have suggested that ENPs such as gold 

nanoparticles (Chithrani and Chan 2007), silica nanoparticles (Rancan et al. 2012), and 

carbon nanotubes (Jin et al. 2008) enter the cells through energy dependent active 

processes.   
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Carbon fullerene (C60) has emerged at the forefront of ENP production and 

application, and a number of previous studies have reported that fullerene dispersions 

exhibit toxicity toward human cell lines (Sayes et al. 2005), bacteria (Cho et al. 2009b, 

Lyon et al. 2006), and aquatic organisms (Lovern and Klaper 2006). The mechanisms of 

fullerene toxicity toward living organisms is still under debate and little is known about 

cellular uptake of fullerene due to the difficulties associated with quantitative 

measurement of fullerene nanoparticles taken up by cells. Previous studies examining 

cellular uptake of fullerene have used visualization techniques (e.g., transmission electron 

microscopy) to locate fullerene or water soluble fullerene derivatives inside cells (Foley 

et al. 2002, Porter et al. 2007, Porter et al. 2006, Rouse et al. 2006). A few studies have 

used radioactively or fluorescently labeled fullerene nanoparticles to easily quantify the 

fullerene particles from bio-matrices (Cagle et al. 1999, Gulson and Wong 2006). 

However, these labeled nanoparticles may have different characteristics compared to the 

bare fullerene dispersions in water, which may affect cellular uptake and toxicity of 

fullerene nanoparticles (Pycke et al., 2011). To our knowledge, only one qualitative study 

has shown that fullerene derivatives can translocate into the cell via active transport (Li et 

al. 2008). However, Li et al. (Li et al.2008) used synthesized fullerene derivatives, 

specifically the malonic acid derivative of fullerene (C60(C(COOH)2)3), which may have 

different biological impacts than bare fullerene dispersions in water (Li et al. 2008). Thus, 

it is imperative to develop a quantitative method to directly evaluate the cellular uptake 

mechanism of fullerene. 

In this study, the Caco-2 cell line was selected to describe cellular uptake of 

fullerene. The Caco-2 cell line is derived from a human colorectal adenocarcinoma and 

exhibits morphological and functional similarities to the small intestinal epithelium (Pade 

and Stavchansky 1997). Caco-2 cell monolayers have been successfully used to 
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determine the membrane permeability of drugs and molecular chemicals. In addition, 

unlike other in vitro models such as the parallel artificial membrane permeation assay 

(PAMPA) which can account for only passive transport of chemicals, Caco-2 cells can 

exhibit active transport as well as passive diffusion. Indeed, many previous studies 

characterized transport mechanisms through Caco-2 cell lines based on general features 

of passive and carrier-mediated transport (Buesen et al. 2003, Hidalgo and Borchardt 

1990, Sugano et al. 2010, Vasiluk et al. 2007). In addition, previous pharmaceutical 

studies suggested that the primary membrane transport mechanism of nanosize particles 

is energy dependent endocytosis using Caco-2 cells (Ma and Lim 2003, Mao et al. 2005, 

Win and Feng 2005). Therefore, the in vitro model using Caco-2 cells can be a relevant 

model for determining the mechanism of cellular uptake of fullerene. 

Here, we developed a quantitative in vitro method for cellular uptake of fullerene 

by applying a modified liquid-extraction method used with bio-matrices (Petersen and 

Henry 2012, Pycke et al. 2011, Xia et al. 2006b). The goal of the research was to use this 

method to identify the primary cellular uptake mechanism of fullerene from general 

features associated with different transport mechanisms such as temperature and 

concentration dependence. In addition, the mechanism was evaluated by employing 

metabolic inhibitors that eliminate active transport mechanisms. 

 

5.2. MATERIALS AND METHODS 

 

Preparation of nanoparticles. Carbon fullerene (C60, 99.5+ %) was obtained 

from SES Research (Houston, TX).  Fullerene dispersions in water were prepared by the 

modified sonication method in Brant et al. (Brant et al. 2006), and described in detail 

elsewhere (Ha et al. 2013). In brief, solid fullerene was dissolved in toluene followed by 
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adding a large volume of deionized water. Then, the toluene was removed by 4-5 hrs of 

ultrasonication with air-purging leaving yellowish fullerene aggregations in water. There 

are two purposes of air-purging: First, all residual toluene can be removed by air-purging, 

and second, air-purging can prevent fullerene adsorption on the glass vial during the 

ultrasonication.  The resultant fullerene suspension in water was filtered through a 0.8 

µm membrane filter (Millipore, Billerica, MA) to remove any large aggregations. 

Fullerene suspensions were stored in dark at 4 °C and applied to the cellular uptake test 

within 2 days to prevent any changes in particle characteristics over time.  For the 

experiment involving inhibitors, we stored the fullerene particles up to 14 days and 

applied employed them in the cellular uptake test weekly to investigate any possible 

changes of fullerene uptake mechanism over time. Particle size and zeta potential were 

characterized using Dynamic Light Scattering (Malvern Zetasizer Nano ZS). 

Cell culture. The Caco-2 cell line was obtained from American Type Culture 

Collection (ATCC, VA, USA). The procedure for culturing Caco-2 cells was described 

elsewhere (Hidalgo and Borchardt 1990, Pade and Stavchansky 1997). In short, Caco-2 

cells are maintained in flasks in Dulbecco’s modified Eagle medium (D-MEN) 

containing 10 % fetal bovine serum (FBS),  2 % nonessential amino acids, and 1 % L-

glutamine and penicillin in an atmosphere of 5 % CO2. The cells were transferred to 

tissue culture flasks and cell monolayers were incubated with trypsin and EDTA solution.  

Cells underwent at least two passages before being seeded on cellular uptake plates. 

Cellular uptake studies.  For cellular uptake studies, Caco-2 cells were washed 

with phosphate buffer solution (PBS) three times to remove metal ions and then 

trypsinized with trypsin and an EDTA solution. The cells were transferred into 6 

polycarbonate plates (Corning Inc., Corning, NY) at a seeding density of 10
5
 cells/cm

2
, 

incubated for two days in an atmosphere of 5 % CO2 at 37 °C. To perform uptake tests 
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under a fetal bovine serum (FBS) free condition, the cell culture medium was changed to 

a medium without FBS on the second day of incubation. After two days of incubation, 

the cell culture medium was changed to one made by diluting a 2 mL fullerene 

suspension 10 fold with cell culture medium without FBS. The solution was incubated for 

up to 24 hrs. Each experiment was terminated by washing cells with PBS to remove 

excess particles which had not interacted with the cells. Then, the cells were detached 

from the plates with 400 µL trypsin-EDTA solution, transferred into vials, and lysed 

under 30 min of ultrasonication. Fullerene was extracted from lysed cells in trypsin to 1 

mL toluene via liquid extraction using 400 µL 0.1 Mg(ClO4)2 and 2.5 mL glacier acetic 

acid (GAA). Fullerene concentrations in toluene were analyzed using a Waters 2690 

high-performance liquid chromatography system equipped with a Waters 996 photodiode 

array detector (Milford, MA, USA).  

For experiments at 4 °C, preincubation of cells and fullerene in cell culture 

medium was conducted at 4 °C for at least 30 min, followed by injection of nanoparticle 

dispersions. To specify the cellular uptake mechanism of fullerene, cells were 

preincubated with the metabolic inhibitors, sodium azide and 2,4-dinitrophenol, and a 

microtubule transport inhibitor, nocodazole, for 20 min prior to the the trypan blue 

exclusion method (Strober 2001) and more than 95 % of the total cells were still alive 24 

hrs after addition of the inhibitors. The applied concentration of each inhibitor and cell 

viability after 24 hrs of inhibitor injections are summarized in Table 5.1. After 20 min pre 

incubation with 2 mL of cell culture medium containing each inhibitor, 200 µl of 

fullerene suspensions in water were injected.  
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Table 5.1: Applied concentrations of inhibitors and cell viability after 24 hrs of 

injecting each inhibitor. 

 

Determination of recovery ratio of fullerene after liquid extraction. Due to the 

difficulties associated with quantitative measurements of fullerene nanoparticles within 

bio-matrices, previous studies have only evaluated the cellular uptake of fullerene using 

qualitative methods such as TEM and confocal microscopy. Here, we carefully 

performed liquid extraction of fullerene nanoparticles from different bio-matrices (e.g., 

cell culture medium and trypsinized cells after cell lysis), and calculated the recovery 

ratio for each solution. To determine the recovery ratio of fullerene after liquid-extraction, 

four different concentrations of fullerene suspensions were prepared with different 

dilution factors. Then, we injected each fullerene suspension into the cell culture medium 

without fetal bovine serum. Also, different concentrations of fullerene were injected into 

the trypsinized cells after cell lysis. Cell lysis was performed with 30 min of sonication.  

For liquid extraction of fullerene from bio-matrices, 0.1 M Mg(ClO4)2 , Glacier Acetic 

Acid (GAA), and toluene were added, followed by intensive mixing. We stored each 

sample after liquid extraction at -20 °C overnight to reduce emulsion formation after 

liquid extraction. Then, fullerene solutions in toluene were carefully transferred and 

concentrations were measured by HPLC.  

As shown in Figure 5.1, fullerene concentrations extracted from each bio-matrix 

increased linearly with increasing injected fullerene concentrations. The mean liquid 

inhibitors Sodium azide 2,4 dinitrophenol 
nocodazole 

Conc. 1.2 mM 0.17 mM 
6.35 µM 

Cell viability after 

24hrs (%) 
95.5 98.4 96.0 
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extraction recovery ratios from cell culture media that were exposed to Caco-2 cells and 

trypsinized Caco-2 cells were 61 % and 32 %, respectively.  These recovery ratios were 

applied to all experimental results in this chapter. 

 

Figure 5.1: HPLC peak areas for fullerene concentration after liquid extraction from 

fullerene dispersion in water (blue diamond), with cell culture media after 

contacting cells (red square), and fullerene in trypsin after cell lysis (green 

triangle) with different dilution factors. 

 

 

Transmission electron microscopy (TEM). To visualize fullerene nanoparticles 

internalized into the cells, transmission electron microscopy (TEM) was conducted on 

control Caco-2 cells and cells incubated with fullerene suspensions. Cells were 

trypsinized and transferred, and fixed with glutaraldehyde and paraformaldehyde. After 

one day, cells were washed with saline buffer and fixed with reduced osmium for 2-4 hrs 

in ice, dehydrated in an alcohol series, then embedded into epoxy resin, and sliced. 

Images of the cells were taken by FEI Tecnai TEM (Hillsboro, Oregon). 
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5.3. RESULTS AND DISCUSSION 

 

Developing a quantitative method to assess fullerene cellular uptake. The rate 

of cellular uptake of fullerene was investigated to determine whether the extent of 

partitioning was a rate-limited process. We prepared two different cell culture media: one 

containing 10 % fetal bovine serum (FBS), and the other without FBS. Caco-2 cells were 

incubated with fullerene suspensions (C0 = 0.8 mg/L) with and without FBS for up to 24 

hrs at 37 °C. After incubation, fullerene particles in medium were carefully transferred 

and extracted for concentration measurement. As shown in Figure 5.2(a), fullerene 

concentrations in the medium containing FBS did not decrease until after 24 hrs. 

However, fullerene concentrations in FBS free medium decreased continuously and 

reached a steady state value within 12 hrs. Results presented in Figure 5.2(a) suggest that 

protein adsorption onto fullerene particles in the presence of FBS can reduce the 

efficiency of cellular uptake compared to bare fullerene suspensions in serum free 

conditions.  

For all other experiments in this study, we studied uptake of fullerene suspensions 

in cell culture medium without FBS present. Figure 5.2(b) shows that the mass of 

fullerene taken up by the cells increased over time and reached equilibrium within 12 hrs 

A 24 hr equilibration period was selected as an appropriate fullerene incubation time with 

Caco-2 cells. 
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Figure 5.2:  (a) Kinetics of fullerene nanoparticle (C0 = 0.8 mg/L) removal in cell 

culture media in the presence of fetal bovine serum (FBS) and in FBS free 

media. (b) Kinetics of cellular uptake of fullerene nanoparticles (C0 = 4.1 

mg/L; Initial mass = 8.2 g) 
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Triplicate experiments examining uptake in FBS free medium showed reasonably 

reproducible results (Figure 5.3) when the extraction efficiency of 61 percent was applied 

to the cell culture medium (after cell contact) and 32 percent from the cell lysis solution 

containing trypsin.  While the majority of the fullerene was located within the cells, 

fullerene also remained in the cell culture medium and some fullerene was recovered 

from the PBS solution used to wash the cells.  Total mass recovered from each reactor 

was calculated using equation (5-1). 

 

SmassfromPB
mediumculturecellfrommasscellsizedtrypfrommass

masstotal 
61.032.0

sin
(5-1) 

As shown in Figure 5-3, the estimated total mass recovered from each reactor 

reached 74-98 %. 
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Figure 5.3: Mass of fullerene nanoparticles recovered from triplicate independent 

cellular uptake experiments. Gray bars show fullerene in saline phosphate 

buffer, white bars indicate fullerene remaining in the cell culture medium, 

and black bars represent fullerene taken up by Caco-2 cells. Initial fullerene 

concentration was 7.8 mg/L. 
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Temperature dependence on cellular uptake.  Figure 5.4 shows the effect of 

temperature on fullerene uptake by Caco-2 cells. Cell viability was confirmed at 4 °C 

using the trypsin blue method, and more than 95 % of the cells were living after 4 hrs of 

incubation. As shown in Figure 5.4(a), cellular uptake at 37 °C is significantly higher 

than at 4 °C at each incubation time. Decreasing the temperature from 37 °C to 4 °C 

reduced cellular uptake of fullerene between 38-54 %. Temperature dependence on 

cellular uptake is consistent with studies conducted with other nanomaterials such as gold 

nanoparticles (Chithrani and Chan 2007), polymeric nanoparticles (Ma and Lim 2003), 

and chitosan-insulin nanocomplexes (Mao et al. 2005). 

Figure 5.4(b) illustrates the possible cellular uptake mechanism of fullerene at two 

different temperatures. We postulate two steps associated with cellular uptake of 

fullerene: 1) physical adhesion on the cell surfaces, and 2) an internalization process such 

as passive diffusion into the cell membrane or energy dependent endocytosis. At 37 °C, 

fullerene first adheres on the cell surface due to electrostatic interactions. Because both 

the surface charge of the fullerene nanoparticles in water and the surface charge of the 

cells are negative, there is at best weak affinity between the particles and cell surface. 

However, a previous study (Cho et al. 2009a) suggested that SK-BR-3 Breast cancer cell 

surfaces have regions containing positively charged sites which allow negative particles 

to adhere to the cell surface. Once fullerene particles attach to the cell surfaces, they can 

translocate through lipid membranes by diffusion or internalization via endocytotic active 

transport. At 4 °C, the cells are expected to become energy-depleted; only adhesion and 

diffusion processes will be operative under these conditions. Therefore, the active 

transport mechanism of fullerene uptake may be partly responsible for the significant 

increase in uptake at higher temperature (diffusion processes are also faster at higher 

temperature). Also, our previous study (Ha et al. 2013) suggested that fullerene 
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association with lipid membranes increased with increasing temperatures possibly due to 

the thermal structural changes associated with lipid membranes. Thus, more fullerene 

adhesion on cell surfaces at 37 °C may be due to an increase in cellular uptake. In 

addition, molecular diffusion at 37 °C is higher than 4 °C, which may also contribute to 

differences in the rates of uptake at different temperatures.  

Previous studies which considered cellular uptake of gold (Cho et al. 2009a) and 

iron nanoparticles (Wilhelm et al. 2002) have demonstrated that the adherence process is 

much slower than the internalization step, and the adsorption process is the rate-

determining step that significantly affects the overall uptake rate as well as the number of 

nanoparticles associated with cells.  
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Figure 5.4:  (a) Temperature dependence on the cellular uptake of fullerene 

nanoparticles (C0 = 4.7 mg/L) (b) Schematic diagram of possible 

mechanisms of cellular uptake of fullerene at two different temperatures.  
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Concentration dependence on cellular uptake.  To determine the effect of 

nanoparticle concentration on cellular uptake, two sets of fullerene suspensions were 

prepared at different fullerene concentrations. After preparing the fullerene suspensions 

using the sonication method, stock fullerene suspensions of 20 mg/L and 120 mg/L were 

prepared for set 1 and set 2, respectively, and different nanoparticle dilutions were 

prepared from each stock solutions.  Each solution was then diluted 10 fold using cell 

culture medium, and the resultant concentration ranges were 1-2 mg/L and 3-12 mg/L for 

set 1 and set 2, respectively.  

As shown in Figure 5.5(a), uptake increased with increasing concentration for 

both set 1 and set 2. This suggests that passive diffusion through the lipid membrane is at 

least partially responsible for the membrane transport of fullerene. However, cellular 

uptake efficiency was higher in the lower concentration range (set 1) compared with the 

higher concentration range (set 2) (Figure 5.5(b)). If the main cellular transport 

mechanism of fullerene is passive diffusion which depends on the concentration gradient, 

cellular uptake efficiency is expected to increase with increasing concentration. However, 

if the main mechanism is active transport, there will be a limited number of binding sites 

for internalization into the cells. Lower cellular uptake efficiency at higher concentration 

in Figure 5.5(b) indicates that cellular uptake of fullerene can be limited by the presence 

of saturable binding sites on the cell surfaces. The consistency of the percent uptake at 

high concentration is consistent with equilibrium partitioning to the surface.  However, 

the plateau in cellular uptake at a relatively low concentration of 0.8 mg/L shown in 

Figure 5.5(b) suggests that there are a limited number of binding sites, and that the 

mechanism of uptake at low concentration results from a different uptake mechanism.  

Thus, this result suggests that a key transport mechanism of fullerene at low 

concentration is energy dependent endocytosis which has a limited number of binding 
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sites for active transport. At high concentration, cellular uptake efficiency did not change 

significantly, possibly indicating that more fullerene was adsorbed onto the lipid 

membrane surface with increasing concentration. Concentration dependence and 

saturability of cellular uptake in this study are consistent with other previous studies 

which concluded that uptake mechanisms of chitosan-insulin nanocomplexes (Ma and 

Lim 2003, Mao et al. 2005), polymer nanoparticles (Davda and Labhasetwar 2002), and 

oxide nanoparticles (Limbach et al. 2005) were dominated by endocytosis. 
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Figure 5.5:  (a) The effect of concentration on the cellular uptake of fullerene 

nanoparticles.  (b) The fullerene uptake efficiency related with initial 

fullerene concentration. For set 1 and set 2, 2 and 12 mg/L fullerene 

concentration were prepared, respectively and diluted for applying four 

different concentrations 
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Effect of inhibitors.  To investigate the effect of inhibitors on cellular uptake of 

fullerene, three inhibitors — sodium azide, 2,4 dinitro-phenol, and nocodazole—were 

applied.  In addition to specifying the uptake mechanism of fullerene aggregates over 

time with inhibitors, preliminary experiments were conducted to characterize changes in 

fullerene aggregations in the absence of inhibitors. Samples were examined weekly for 

up to 14 days and the size and zeta potential were measured to quantify potential changes 

in the fullerene dispersions in water over time. For every sampling event, fullerene 

aggregations were filtered using a 0.8 µm membrane filter to remove any large 

aggregates that would settle rapidly during the cellular uptake tests. 

The size distribution of fullerene nanoparticles did not change significantly up to 

14 days (Figure 5.6(a)), however, the zeta potential decreased continuously: Zeta 

potentials of initial fullerene, after 7 days, and after 14 days samples were -31.13 ± 0.58, 

-28.17 ± 0.58, and -19.37 ± 0.38, respectively (Figure 5.6(b)). These changes in the 

fullerene aggregates are consistent with previous results presented in Ma and Bouchard 

(Ma and Bouchard 2009) that reported variations in particle size and zeta potential of 

fullerene in de-ionized water over time. Fullerene aggregate surfaces are highly 

negatively charged. Thus, electrostatic repulsion can prevent further nanoparticle 

aggregation over time, which results in little change in the particle size distribution. The 

origin of the negative charge on the fullerene dispersions in water is still under debate. 

The main hypothesis for charge acquisition is adsorption of hydroxyl ions due to the 

donor-acceptor interaction of fullerene with water (Brant et al. 2006, Labille et al. 2009). 

During the 14 days of the experiment, the pH of the solution may decrease due to the 

dissolution of CO2 from air.  This decrease in pH leads to an increase in proton activity, 

which prevents the adsorption of OH- on the fullerene surface (Ma and Bouchard 2009). 
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This decrease in adsorption of OH- can be responsible for the zeta-potential reduction of 

fullerene over time. 

To examine the impact of the sodium azide and 2,4 dinitro phenol inhibitors, the 

data from the experiments in which fullerene was incubated in distilled water and then 

cells and inhibitors were added either simultaneously at the start of incubation (Day 0) or 

after several days of fullerene/water incubation (Day 7 and Day 14) was pooled.  The 

pooled data (see Appendix B) was analyzed to test the hypothesis that the mean value of 

uptake between controls (no inhibitors) and samples (with various inhibitors) were the 

same.  The statistical analysis showed that the inhibitors significantly decreased the 

cellular uptake for a p value of 0.05.  Thus, active transport is likely operative in these 

systems.  However, it should be noted that the cellular uptake in these experiments (in 

which 2-3 mg/L of fullerene was added) was not completely reduced in these systems 

which is consistent with the observations in Figure 5.5 for higher concentrations. Thus, 

passive transport may also be operative or the inhibitors did not completely shut down 

active transport.   

As shown Figure 5.6(c), with fullerene incubated for 7 days prior to addition of 

metabolic inhibitors and cells, sodium azide and 2,4 dinitro phenol, reduced fullerene 

uptake by the cells (p < 0.05), suggesting that energy dependent endocytosis is a key 

cellular transport mechanism of fullerene. However, when fullerene and cells and 

inhibitors were added simultaneously, the mean uptake was reduced in the presence of 

the inhibitors, but the differences were not statistically significant (p < 0.05). No 

statistically difference was observed for cellular uptake of fullerene by cells in control 

and fullerene samples that had been incubated for 14 days prior to cell and inhibitor 

additions either. While the lack of statistical significance of the impact of the inhibitors at 

14 days may be due to the changes in the surface charge, no explanation other than the 
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relatively large standard deviation explains the lack of impact when the fullerene, cell 

suspension and inhibitors are added simultaneously (Day 0).  

To further verify the endocytosis pathway, nocodazole, which inhibits 

microtubule transport, was applied. Microtubules are one of the cytoskeleton components 

and microtubule transport has been reported to be responsible for the cellular transport of 

polymer coated gold nanoparticles (Lin et al. 2012), polystyrene nanoparticles (Dausend 

et al. 2008, dos Santos et al. 2011) and quantum dots (Gao et al. 2008, Ruan et al. 2007, 

Sundara Rajan and Vu 2006). In addition, previous studies suggested that microtubule 

inhibition by nocodazole was affected by particle surface charge (Dausend et al. 2008, 

Lin et al. 2012) as well as particle size (dos Santos et al. 2011, Rejman et al. 2004). Once 

again, when all of the data is pooled (Day 0, Day 7 and Day 14), nocodazole, 

significantly decreases cellular uptake (See Appendix B).  Interestingly, 7 days after the 

start of the incubation period as the zeta potential of the fullerene nanoparticles decreased, 

nocodazole inhibited fullerene transport to a greater extent compared to fullerene at the 

start of the incubation period. Incubation for 14 days led to significant reduction in both 

control and samples containing inhibitors which may be due to the reduced interaction 

between positively charged surface groups on the cells and the negatively charged 

fullerene (as described by Cho et al. (2009a) and in section 4.3 of this dissertation) rather 

than changes in hydrophobicity of the fullerene. Nevertheless, the nocozole had a 

significant impact on uptake of fullerene after 14 days of fullerene/water incubation 

compared to the 14 day control.  Thus, it can be concluded that fullerene became more 

hydrophobic over time and this change may have lead to increased transport through cell 

membranes via the microtubule pathway which was inhibited by the nocozole. This result 

is consistent with results presented in Lin et al., (2012) (Lin et al. 2012) which indicated 

that more hydrophobic polymer coated gold nanoparticles have greater contributions 
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from microtubule transport to cellular uptake compared to that of hydrophilic 

nanoparticles.  
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Figure 5.6:  (a) Particle size and (b) zeta potential changes of fullerene nanoparticles in 

water as a function of incubation period. (c) Effect of inhibitors on fullerene 

uptake for varying fullerene incubation periods. Sodium azide and 2,4 

dinitrophenol are metabolic inhibitors, and nocodazole is a microtubule 

inhibitor. All inhibitors and cells were added 24 hours prior to sampling on 

the day indicated.   
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TEM imaging.  To locate the fullerene nanoparticles in the Caco-2 cells, TEM 

images were taken for control Caco-2 cells without fullerene (Figure 5.7(a)) and cells 

incubated for 24 hrs after fullerene injection (Figure 5.7(b)).  Black dots in Caco-2 cells 

also found in TEM images provided by Sigma-aldrich (assess on 

http://www.sigmaaldrich.com/technical-documents/articles/biowire/cell-culture-

collections.html). Unfortunately, because the control Caco-2 cells have small black 

particles along the plasma membranes as well as inside the cells (Figure 5.7(a)), it is 

difficult to distinguish the fullerene nanoparticles from particles that already existed 

inside the cells. For elemental analysis of the black spots on the control cells, we also 

performed TEM-EDS (insertion of Figure 5.7(a)). However, black particles in the control 

cells were predominantly carbon which is the main component of fullerene particles.  

Nonetheless, particles entrapped within vesicles (Figure 5.7(b)) were identified in Caco-2 

cells incubated with fullerene.  Previous studies also have shown that nanoparticles 

(Chithrani and Chan 2007, Wilhelm et al. 2002) can become entrapped within vesicles in 

the cells during the endocytosis process in which nanoparticles bind to the surface, the 

membrane wraps around the particles and the particles are internalized within the cells.  

Therefore, it appears that fullerene also can be deposited in small endocytic vesicles and 

fused into the cells.  
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Figure 5.7:  TEM images of (a) control Caco-2 cells (without fullerene injection) and (b) 

Caco-2 cells 24 hrs after fullerene nanoparticle injection. Insertion of Figure 

5.7(a) is elemental analysis of black spots in control Caco-2 cells using 

TEM-EDS. Note: copper is present in the TEM grids. 
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5.4. ENVIRONMENTAL IMPLICATIONS 

We compared the results of this study with reported values of bioconcentration of 

fullerene in aquatic organisms (Cbiomass) (Chen et al. 2014, Oberdörster et al. 2006, Tao et 

al. 2009, Tervonen et al. 2010). To calculate Cbiomass of fullerene the mass of fullerene 

taken up by Caco-2 cells was divided by the dry Caco-2 cell biomass. With 10
5
 cells/cm

2
, 

the cell dry mass was 2.67 mg (± 0.06). The log(Cbiomass) of this study is 2-3.6 mg/kg 

which are in the ranges of the reported values of log(Cbiomass) with aquatic organisms 

(1.6-4.8 mg/kg for Dalphnia and 2.2-2.3 mg/kg for Zebrafish). However, with a similar 

concentration of fullerene in water, Cbiomass with real aquatic organisms is higher than 

Cbiomass values obtained from this study, possibly suggesting that accumulating fullerene 

into organs (e.g., gill, gut, and intestine) of real organisms which have different surface or 

volume ratio per mass can be higher than uptake into in vitro cell lines. Indeed, it was 

reported that nanoparticles such as titanium dioxide (TiO2), silver nanoparticles, and 

cadmium accumulated considerably into fish gills and intestines (Farkas et al. 2011, 

Zhang et al. 2007). Thus, further work should be performed to estimate the 

bioaccumulations of fullerene in real organisms from quantitative in vitro studies. 

In the present study, we provide information necessary to develop a quantitative 

model for predicting the cellular uptake of fullerene which is necessary for controlling 

and reducing toxicity and to improve the design of biomedical applications of this 

nanomaterial.  In addition, this study is the first to identify the cellular transport 

mechanisms of fullerene based on a semi-quantitative approach.  We suggest that not 

only passive diffusion but also energy dependent active transport contribute to the 

cellular transport of fullerene based on temperature dependence, concentration 

saturability, and uptake reduction with metabolic inhibitors. Thus, this research provides 

guidelines for developing experimental methods for cellular uptake of other nanoparticles 
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and provides the basis for future research that incorporates active transport processes into 

monitoring tools and environmental assessment protocols of fullerene nanoparticles. In 

addition, because active transport processes directly depend on cell type and function, the 

toxic effects of fullerene on different species and organs which have different cell 

membrane composition should be investigated in the future, and the results of this 

research provide the framework for such evaluation.   
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Figure 5.8:  Comparisons of concentrations of fullerene taken up by Caco-2 cells 

compared to reported bioaccumulation values for  Dalphia and zebra fish. 

Closed circles (●)fullerene uptake by cells (mass of fullerene per weight of 

dry cells) Open rectangles (□) and triangles (△) show the reported mass of 

fullerene that accumulates in the Dalphia normalized by dry and wet 

biomass weight, respectively. Open diamonds (◊) are determined from the 

bioconcentration factor of fullerene taken up by Zebra fish. 
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Chapter 6: Bioavilability of fullerene under environmentally relevant 

conditions: Effects of humic acid and fetal bovine serum on the lipid 

accumulation and cellular uptake 

ABSTRACT 

 

Carbon fullerene (C60) has emerged at the forefront of nanoscale research and 

application due to its unique properties. As the production of this nanoparticle rapidly 

increases, it can be released into natural aquatic environments and can accumulate in 

biological environments. This research examined the effects of humic acid and fetal 

bovine serum (FBS), which are ubiquitous in aquatic environments and blood plasma in 

living organisms, respectively, on bioavailability of fullerene. Bioavailability was 

investigated using in vitro methods for lipid membrane accumulation and cellular uptake 

studies. Humic acid and FBS significantly changed the characteristics of fullerene 

including its particle size and surface charge. The effects of humic acid on lipid 

accumulation of fullerene depended on the lipid head charge. For lipids with positively 

charged head groups, lipid accumulation of humic acid coated fullerene was similar to 

lipid accumulation of bare fullerene. However, with zwitterion and negatively charged 

lipids, humic acid coated fullerene exhibited reduced levels of accumulation compared to 

bare fullerene. FBS also significantly decreased the lipid accumulation values when 

positively charged and zwitterion head groups were present on the lipids, possibly due to 

the higher steric repulsion of the protein coated nanoparticles. In addition, both humic 

acid and protein effectively lowered the amounts of fullerene taken up by Caco-2 cells. 

Results of this study suggest that surface modification of fullerene by environmentally 
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relevant matrices can significantly affect the biological transport, as well as the possible 

toxicity of this nanoparticle. 

Keywords 

fullerene, lipid accumulation, cellular uptake, humic acid, fetal bovine serum 

 

6.1. INTRODUCTION 

 

Carbon fullerene (C60) which was discovered by Kroto et al. (Kroto 1985) is at the 

center of nanotechnology due to its unique properties such as its electron rich cage 

structure, high reactivity, and ability to accept and release electrons. Recently, fullerene 

use has expanded to a broad range of commercial (Benn et al. 2011, McMahon et al. 

2011, Wang 2007) (e.g., batteries, fuel cells, photovoltaics, and face cream) and 

biomedical applications (Chen et al. 2005, Fan et al. 2013, Friedman et al. 1993, Hughes 

2005) (e.g., inhibitor of the HIV protease, drug carrier, and anti-cancer drug).  As usage 

of this nanomaterial rapidly increases, the potential for release into aquatic environments 

also increases. Thus, concerns related to the possible harmful effects of fullerene 

nanoparticles within mammalian cells and aquatic organisms (Cho et al. 2009b, Lovern 

and Klaper 2006, Lyon et al. 2006, Sayes et al. 2005) must be addressed.  

 It is now well accepted that when nanoparticles are released into natural aquatic 

and biological environments, surface modification of nanoparticles occurs due to 

interactions with natural organic matter (NOM) present in aquatic environments 

(Baalousha 2009, Thio et al. 2011, Zhang et al. 2009b) and biological macromolecules 
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(Lynch and Dawson 2008) in living organisms. Many previous studies have reported that 

this surface modification of nanomaterials affects nanoparticle interactions with living 

systems as well as possible toxicity toward them (Ehrenberg et al. 2009, Fabrega et al. 

2009, Giri et al. 2014, Guarnieri et al. 2011, Lesniak et al. 2012). Researchers have also 

suggested that NOM in natural waters as well as biological macromolecules (e.g., protein) 

affect the stability of carbon based nanomaterials such as fullerene and carbon nanotubes 

(Hyung and Kim 2009a, Li et al. 2009, Saleh et al. 2010, Xie et al. 2008, Zhu et al. 2009). 

In addition, it was suggested that protein coated nanoparticles can affect the immune 

system of living organisms (Dobrovolskaia and McNeil 2007). For example, when 

fullerene nanoparticles interact with protein, they can inhibit fibrillation of protein which 

can cause Alzheimer’s disease (Podolski et al. 2007). Thus, it is imperative to investigate 

the influence of NOM and biomolecules in natural environments on bioavailability of 

nanomaterials. 

 The objective of this study is to explore the effect of environmentally and 

biologically relevant materials on the bioavailability of fullerene. To understand 

bioavailability, we used two in vitro methods developed previously (Chapters 3 - 5): (i) 

lipid accumulation by solid supported lipid membranes (SSLMs) with synthetic lipid 

bilayers of varying composition; and, (ii) cellular uptake experiments using Caco-2 cells 

consisting of monolayer membranes. Transport of fullerene nanoparticles from aquatic 

and biological environments to an organism occurs via lipid membranes which serve as 

cell barriers. Thus, bio-accumulation and bio-uptake of fullerene nanoparticles through 
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these lipid membranes is of critical importance to assess bioavailability of this 

nanoparticle. As a representative NOM and biomacromolecule, we chose a commercially 

available humic acid and fetal bovine serum (FBS), respectively. Humic acid is 

ubiquitous in aquatic environments, which consists of a hydrophobic backbone and 

various functional groups such as phenolic and carboxylic groups (Xie et al. 2008). Due 

to the hydrophilic functional groups of humic acid, nanoparticles which are coated with 

humic acid exhibit a different polarity compared to that of bare nanoparticles (Bian et al. 

2011). FBS is a protein present in the blood plasma of living organisms, and it is usually 

used as protein supplement for cell cultures. As a rule of thumb, when nanoparticles 

contact protein, they are immediately covered by protein, forming a protective layer 

(Lynch and Dawson 2008, Zhu et al. 2009). This surface modification of nanoparticles by 

protein can influence the potential risk associated with these particles via occupational as 

well as environmental exposures. To date, only one study has suggested that humic acid 

reduced the uptake of fullerene through aquatic living organisms (Chen et al. 2014), and 

no study has reported the effects of humic acid and FBS on lipid accumulation and 

cellular uptake of fullerene. Thus, the focus of this research was to investigate changes in 

the particle characteristics of fullerene due to the presence of humic acid and FBS and 

evaluate the effect of these substances on fullerence cellular uptake.  
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6.2. MATERIALS AND METHODS 

 

Materials. Carbon fullerene (100% solid, 99.5+ %) was obtained from SES 

Research (Houston, TX). Suwannee river humic acid standard II and FBS (FBS) were 

purchased from the International Humic Substances Society (IHSS, St.Paul, MN) and 

Life Technologies (Grand Island, NY), respectively. Non-functionalized silica 

microspheres (Bangs Laboratories, Inc., Fisher, IN) were used as the solid support for the 

solid supported lipid membranes (SSLMs). The mean diameter of the microspheres was 

5.2 µm. Three lipids, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,2-dioleoyl-sn-glycero-3-phospho-

(1’-rac-glycerol) (18:1 PG) were purchased from Avanti Polar Lipids (Alabaster, AL).  

To perform the cellular uptake tests, Caco-2 cells were purchased from American Type 

Culture Collection (ATCC, Manassas, VA). All solvents used in this study were of 

analytical grade. 

Preparation of aqueous fullerene suspensions. Fullerene suspensions in water 

(nC60) were prepared by a liquid exchange method by ultrasonication (SON/nC60) and 

details are described elsewhere (Brant et al. 2006, Ha et al. 2013).  After dissolving 3 

mg of fullerene in 5 mL toluene, 30 mL of deionized water was added to the solution. 

Under ultrasonic treatment with air purging, the toluene layer was removed leaving 

yellowish fullerene aggregations in water. This fullerene suspension was filtered through 

a 0.8 µm membrane filter (Millipore, Billerica, MA) to remove particles that were not 

dispersed in water. The size and zeta potential of the resultant fullerene suspension were 
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measured using Dynamic Light Scattering (DLS, Malvern Zetasizer Nano ZS), and 

fullerene aggregates were used within 2 days to prevent any changes in particle 

characteristics. To investigate the effect of humic acid and FBS on bioavailability of 

fullerene, fullerene dispersions were incubated in the dark for 24 hours with humic acid 

(5-50 mg/L) or 10 % FBS for 24 hrs. Then, humic acid or FBS coated fullerene and was 

also characterized by DLS and used for lipid accumulation as well as cellular uptake 

experiments. 

Determination of accumulation of fullerene in lipid membranes. SSLMs with 

three different lipid membranes (DOTAP, DOPC, and PG) were synthesized.  The 

detailed procedure was reported in our previous study (Ha et al. 2013).  In brief, the 

synthetic membrane vesicles for each lipid were mixed with silica microspheres and 

vigorously mixed (vortex mixing) prior to 2 hrs of gentle mixing on a shaker. Then, the 

mixtures were centrifuged and supernatants that contained excess lipids not adsorbed 

onto silica beads were transferred to other vials. The mass of lipids that adsorbed onto the 

SSLMs was determined by measuring differences between initial lipid concentration and 

supernatant concentration using a TOC analyzer (Tekmar Dohrmann Apollo 9000, 

Cincinnati, OH). 

 The synthesized solid supported lipid membranes and fullerene dispersions were 

placed into 40 mL vials with PTFE/silicon septa. The vials were incubated at room 

temperature using a custom-made tumbling device. After a certain incubation time, each 

vial sat for 1 hr to allow settling of the solid supported lipid membranes (SSLMs). Then, 



 119 

0.5 mL of supernatant containing the fullerene particles that remained in solution were 

transferred to a new vial for liquid extraction of fullerene. For bare fullerene suspensions 

in water, liquid extraction was performed by adding 0.1 M Mg(ClO4)2 (0.4 mL) and 

toluene (0.5 mL) followed by vigorous mixing. After liquid extraction, the initial 

fullerene concentration (C0) and supernatant concentration (Cw) were measured using a 

Waters 2690 high performance liquid chromatography system equipped with a Waters 

996 photodiode array detector (Milford, MA). Fullerene accumulation in the lipids was 

calculated using equation (6-1) 

 
m

CC

m

C
lipidkgmglipidindaccumulateFullerene wlip 

 0)/(         (6-1)  

where Clip (mg/L) is the fullerene concentration in the lipid side, which can be determined 

from the difference between the initial fullerene concentration (C0) and the fullerene 

concentration in the supernatant C (Cw). m is the concentration of lipid (kg-lipid/L) in the 

system. 

 For liquid extraction of fullerene dispersions incubated with humic acid and 

protein, we additionally added 2.5 mL of glacier acetic acid (GAA) to 0.1 M Mg(ClO4)2 

and toluene to minimize emulsion creation.  GAA was successfully used in previous 

studies for extracting fullerene suspensions from solutions containing environmentally 

relevant materials and biomolecules (Hyung and Kim 2009a, Pycke et al. 2011, Xia et al. 
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2006b). The fullerene recovery from the extracted solution was 110 (±0.29) % for 20 

mg/L of humic acid and 96 (±23) % for 10 % FBS.   

Cell culture. Caco-2 cells were maintained in flasks in Dulbecco’s modified 

Eagle medium (D-MEN) containing 10 % FBS, 2 % nonessential amino acids, and 1 % 

L-glutamine and penicillin in an atmosphere of 5 % CO2 at 37 °C.  The cells were 

transferred to tissue culture flasks (75 cm
2
) until they reached confluence. Then, cells 

were detached with trypsin and EDTA solution, and transferred to larger cell culture 

flasks (150 cm
2
). Cell passages were performed every two to three days and we did at 

least two passages before being seeded on cellular uptake plates. 

Cellular uptake studies.  To investigate the effect of humic acid coating on 

cellular uptake of fullerenes, fullerene stock solutions incubated with different 

concentrations of humic acid (5, 10, and 20 mg/L) were prepared. Caco-2 cells placed in 

150 cm
2
 cell culture flasks were washed with phosphate buffer solution (PBS) three times 

to remove metal ions and detached with trypsin and an EDTA solution. Then, cells were 

seeded into 6 polycarbonate plates (Corning Inc., Corning, NY) at a density of 10
5
 

cells/cm
2
 and incubated for two days in an atmosphere of 5 % CO2 at 37 °C.  Cellular 

uptake tests were performed under serum free conditions to prevent fullerene coating 

with protein. When the cells were initially seeded, a cell culture medium with 10 % FBS 

was used, and after one day of incubation, the cell culture medium was changed to a 

medium without FBS. After two days of incubation, the cell culture medium was changed 

to 2 mL of fresh medium with 200 µL of a fullerene stock solution incubated with one of 
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several concentrations of humic acid. After 24 hrs of incubation, cells were washed three 

times with PBS buffer and detached from the plates with 400 µL of a trypsin-EDTA 

solution. The cells were lysed with 30 min of ultrasonication.  Then, fullerene was 

destabilized with 400 µL of 0.1 M Mg(ClO4)2 and 2.5 mL glacier acetic acid (GAA) and 

extracted with toluene. Fullerene concentrations were analyzed using a Waters 2690 

high-performance liquid chromatography system equipped with a Waters 996 photodiode 

array detector (Milford, MA, USA).  

 To evaluate the effect of FBS on cellular uptake of fullerene, fullerene 

suspensions were incubated in cell culture medium with and without FBS for 12-24 hrs. 

Then, 2 mL of a fullerene suspension containing 10
5
 cells/cm

2
 were placed in 6 

polycarbonate plates and incubated for two days. Other procedures (e.g., cell lysis, liquid 

extraction of fullerene, and fullerene concentration analysis) for performing the uptake 

experiments are as described above. 

6.3. RESULTS AND DISCUSSION 

 

Impact of humic acid and FBS on the fullerene particle characteristics. To 

investigate the effects of humic acid and FBS on the fullerene particle characteristics, 

particle size and zeta potential were measured after 24 hrs of incubation of fullerene with 

humic acid and FBS. Figure 6.1 highlights the significant changes in particle size and 

zeta potential of fullerene due to the addition of 10 – 50 mg/L humic acid. As shown in 

Figure 6.1(a), the presence of humic acid significantly decreased the particle size, 
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indicating that humic acid can adsorb onto fullerene and prevent fullerene particle 

aggregation.  This result is in agreement with Xie et al. (Xie et al. 2008) who concluded 

that the particle size distribution of fullerene shifted to smaller diameters when incubated 

with 20 mg/L humic acid. In addition, many previous studies (Bian et al. 2011, Ghosh et 

al. 2010, Zhang et al. 2009b) have reported that the presence of humic acid effectively 

prevents aggregation of other nanoparticles (e.g., ZnO, TiO2, SiO2, and Al2O3) over time, 

which implies increasing stability in natural aquatic environments.  Also, the addition of 

humic acid decreased the surface charge of the fullerene nanoparticles (Figure 6.1(b)). 

This result is also consistent with other studies (Bian et al. 2011, Ghosh et al. 2010, 

Zhang et al. 2009b) that suggested that nanoparticles incubated with humic acid become 

more negatively charged due to the carboxylic acid functional groups on the humic acid 

which are typically deprotonated at circumneutral pH. It was suggested that the presence 

of multiple functional groups on the relatively large humic acid molecules can lead to 

steric hinderance effects which can increase the stability of nanoparticles that are coated 

with humic acid.  As the humic acid concentration was increased in the experiments 

presented in Figure 6.1, differences in both size and zeta potential became negligible, 

indicating that 10 mg/L of humic acid was sufficient to saturate the fullerene surface (4.7 

mg/L). 

 Figure 6.2 shows the effect of FBS on the particle size distributions.  After 24 

hrs of incubation with 10 % FBS, the size distribution becomes narrower, and there is a 

shift in the distribution to slightly higher mean particle size. This shift can be explained 

by non-specific adsorption of FBS on the fullerene surface. Deguchi et al., (2007) also 
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have reported that protein coated fullerene exhibits a slightly higher particle size 

compared to bare fullerene. When fullerene nanoparticles are exposed to protein 

containing solutions, the formation of a protein coating can prevent the formation of large 

particle aggregates, which increases the stability of the nanoparticles. Indeed, it has been 

reported that stability of fullerene increases due to protein adsorption (Deguchi et al. 

2007). In addition, previous studies have indicated that the presence of protein makes 

carbon nanotubes (Casey et al. 2007, Zhu et al. 2009) and polystyrene particles 

(Ehrenberg et al. 2009) more stable in water. Studies (Ehrenberg et al. 2009, Guarnieri et 

al. 2011) have also demonstrated that the surface charge of negative polystyrene 

nanoparticles became less negative after adsorption of serum proteins. However, it was 

not possible to obtain zeta potential data for fullerene incubated with FBS (i.e., results did 

not meet quality criteria due to the increase number of sub-runs per measurement) 

possibly due to the fluid characteristics of the protein containing solution (e.g., color and 

viscosity).  
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Figure 6.1:  Effects of humic acid on (a) particle size and (b) zeta potential of fullerene 

nanoparticles (C0 = 4.7 mg/L). Insertions in Figure 6.1(a) and Figure 6.1(b) 

are size distribution and zeta potential distribution of fullerene nanoparticle, 

respectively. 
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Figure 6.2:  The effect of FBS on the fullerene particle distribution.  

 

Kinetics of lipid accumulation of lipids. Time dependent lipid accumulation 

studies for bare fullerene nanoparticles were performed to investigate the effects of lipid 

surface charge on the rates of partitioning of fullerene between lipid and water.  Results 

are shown in Figure 6.3. We chose three unsaturated lipids which have different head 

charges, but similar acyl chain length (C18), and fluid phase at room temperature. Lipid 

accumulation of fullerene with DOTAP lipid reached steady state very quickly (within 30 

min), and accumulation values with both DOPC and PG increased continuously reaching 

a plateau after approximately 24 hrs. At all times, fullerene accumulation values were 

highest for DOTAP, followed by DOPC, and then PG lipid. Due to the negative charge 

associated with the fullerene nanoparticle surface in water, a strong electrostatic 
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interaction between fullerene nanoparticles and DOTAP (positive) lipid would be 

expected compared to DOPC (zwitterion) and PG (negative) lipids.  Thus, it can be 

concluded that adsorption of charged nanoparticles onto oppositely charged lipid 

membranes plays a critical role for bioaccumulation of nanoparticles.. 

 To more fully understand the effects of lipid composition on the accumulation 

rates, we fit an empirical model to our experimental data and obtained rate parameters. 

This empirical model has been used in previous studies to describe cellular uptake 

kinetics of gold nanoparticles (Cho et al. 2009a) and oxide iron nanoparticles (Wilhelm et 

al. 2002). Also, this model was used by Hou et al. (Hou et al. 2012a) for describing the 

effect of gold nanoparticle size on lipid membrane accumulation. The model equation is : 

    ))e x p (1()/(
0,

tkCk
kCk

CCk
l i p i dkgmgC da

da

lipa

lip 


                    (6-2) 

where Clip (mg/kg-lipid) is the mass of fullerene that accumulated per unit mass of lipid 

as a function of time, t is time (hr), ka (L/mg/h) is association rate constant, kd (1/h) is a 

dissociation rate constant, C (mg/L) is the initial fullerene concentration, and Clip,0 (mg/L) 

is the maximum concentration that can be adsorbed onto a unit mass of lipid membrane. 

It is difficult to calculate the exact Clip,0 value because the size of the fullerene aggregates 

is not uniform. Here, we estimated Clip,0 using an assumption that there is a single 

adsorbed layer of nanoparticle aggregates which have a uniform size of 150 nm on lipid 

membranes based on the calculations in Hou et al., (Hou et al. 2012a). Although Clip,0 

used in this study might not be accurate, that does not affect the lipid membrane 

composition dependence of the rate parameters summarized in Table 6.1. In Table 6.1, K 
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(=ka/kd) the high affinity constant and high K value indicate a strong affinity between 

fullerene and the lipid membrane.  Characteristic time (τ) is defined as 1/(kaC+kd) and a 

smaller τ value means faster rates.  As shown in Table 6.1, the affinity constant is 

highest with DOTAP lipid and lowest with PG lipid. It is noteworthy that the affinity 

constant with the zwitterion lipid (DOPC) is slightly lower than with the positive lipid 

(DOTAP) but still much higher than with the negative lipid (PG), probably due to the 

electrostatic interaction between fullerene and positive portion of zwitterion lipid 

membrane (N
+
 terminus).   

 

Figure 6.3:  Rates of fullerene nanoparticle (C0 = 4.7 mg/L) accumulation in three 

different lipid membranes which have different head charges. Solid lines are 

fitted according to equation 6-2. 



 128 

Table 6.1:  Rate parameters obtained by fitting the data using equation 6-2 

 

Lipid 

membrane 

Fullerene coating 

materials 

Clip,0 
a
 

(mg/kg-lipid) 

ka 

(L/mg/h) 

kd 

(1/h) 

K 
b
 

(L/mg) 

τ 
c
 

(h) 

r
2 

 

DOTAP 

   Bare fullerene 3.93 × 10
8
 1.80 × 10

-4
 8.57 2.10 × 10

-5
 0.12 99.8 

Humic acid 3.14 × 10
8
 1.49 × 10

-6
 0.053 2.79 × 10

-5
 18.73 99.9 

FBS 3.93 × 10
8
 6.53 × 10

-5
 3.72 1.75 × 10

-5
 0.27 99.0 

DOPC 

Bare fullerene 3.93 × 10
8
 1.24 × 10

-6
 0.066 1.86 × 10

-5
 15.03 96.3 

Humic acid 3.14 × 10
8
 3.83 × 10

-7
 0.022 1.72 × 10

-5
 45.05 95.6 

FBS 3.93 × 10
8
 4.04 × 10

-7
 0.043 9.38 × 10

-6
 23.20 89.2 

PG 

Bare fullerene 3.93 × 10
8
 7.33 × 10

-7
 0.13 5.59 × 10

-6
 7.63 82.6 

Humic acid
d
 - - - - - - 

FBS 3.93 × 10
8
 5.16 × 10

-7
 0.058 8.95 × 10

-6
 17.33 61.8 

 
a  

Clip,0 for bare and FBS coated fullerene was estimated by assumption of single layer adsorption of 150 

nm nanoparticles onto lipid membranes. Because humic acid decreased the mean size of fullerene 

nanoparticles, we used 120 nm instead of 150 nm for estimating Clip,0 for humic acid coated fullerene.   

b 
K (=ka/kd) is the affinity constant and high value of K indicates a strong affinity between fullerene and 

lipid membranes. 

c 
Characteristic time (τ) is defined as 1/(kaC+kd) and smaller K indicates faster interaction. 

d
Rate parameters for interaction between PG lipid and humic acid coated fullerene are not available 

because regression did not converge. 

 

Effects of humic acid and protein on lipid accumulation. Figure 6.4 shows the 

impact of humic acid on fullerene accumulation in three lipid membranes. With DOTAP 

lipid (Figure 6.4(a)), initial lipid accumulation values in the presence of 20 mg/L of 

humic acid were much lower than without humic acid, increased slowly, then finally 

reached a plateau at 80 hrs that was equivalent to the accumulation without humic acid. 

The possible reason for the slower adsorption process in the presence of humic acid may 
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be due to competitive adsorption of fullerene with humic acid in the background solution. 

Because humic acid is negatively charged, adsorption between the negatively charged 

humic acid and positively charged lipid membranes is favorable. Indeed, as shown in 

Figure 6.5, more than 20 % of the humic acid rapidly adsorbed onto the DOTAP lipids, 

however, humic acid did not adsorb onto DOPC or PG lipids. In Figure 6.4(a), lipid 

accumulation values with 20 mg/L humic acid decreased slightly after 6 hr of incubation. 

At early incubation times, adsorbed fullerene may have been desorbed due to the stronger 

interaction between humic acid and the lipid membrane. 
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Figure 6.4:  Rates of fullerene nanoparticle (C0 = 4.7 mg/L) accumulation in (a) 

DOTAP (positive head), (b) DOPC (zwitterion head), and (c) PG (negative 

head) with and without humic acid (20 mg/L). Solid lines are fits to equation 

6-2. 
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Figure 6.5: Adsorption of humic acid on three different lipid membranes with different 

head charges. Humic acid concentrations were measured by UV/vis 

spectrometer at 310 nm 

 

To better understand the lipid accumulation of fullerene in the presence of humic 

acid, one additional test was performed. Two vials were prepared: a control vial 

containing only solid supported lipid membranes (SSLM) with DOTAP lipid in water, 

and another vial containing DOTAP lipid with 20 mg/L humic acid.  After 80 hrs of 

incubation, fullerene dispersions were added in the presence of the same concentration of 

humic acid in both vials and incubated for an additional 80 hrs. As demonstrated in 

Figure 6.6, fullerene nanoparticles rapidly adsorbed onto the lipid membranes in the 

control vial. On the other hand, after 80 hrs of pre-incubation of the DOTAP lipid with 

humic acid, fullerene accumulation values were much lower than observed in the control 

vial. This result suggests that humic acid can strongly adsorb on the DOTAP lipid heads 

due to the electrostatic interaction, and prevent fullerene adsorption.  
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Figure 6.6:  Rates of fullerene nanoparticles (C0 = 8.3 mg/L) accumulated in DOTAP 

lipid membranes. Open rectangular represents fullerene accumulations in 

DOTAP lipid membrane and circle indicates accumulations of fullerene in 

lipid membranes which interacted with humic acid for 80 hrs. 

 

 With DOPC lipid (Figure 6.4(b)), humic acid effectively decreased lipid 

accumulation of fullerene at all incubation times. The main driving force of fullerene 

interaction with zwitterion lipid membranes can be electrostatic interaction between a 

positive portion of lipid membranes and fullerene, and steric effects associated with 

humic acid coated fullerene can prevent the approach of fullerene to the lipid membranes. 

Moreover, negatively charged deprotonated functional groups on the humic acid decrease 

the surface charge of the particles. With PG lipid (Figure 6.4(c)), in the presence of 

humic acid, fullerene accumulation within the lipid was lower than without humic acid 
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which can be explained by the stronger electrostatic repulsion between humic acid coated 

fullerene and a negatively charged lipid membrane (see Figure 6.1(b)).  

 Initial experiments confirmed that adsorption of FBS to any of the three lipid 

membranes is negligible (Figure 6.7).  However, the presence of 10 % FBS significantly 

decreased the lipid accumulation of fullerene with both DOTAP (Figure 6.8(a)) and 

DOPC lipids (Figure 6.8(b)). When fullerene is exposed to the protein containing solution, 

fullerene was immediately coated with protein (Figure 6.2) which reduced its surface 

energy.  This decrease in surface energy contributes to the decrease in accumulation of 

fullerene with FBS. With PG lipid (Figure 6.8(c)), there is not a significant difference 

between lipid accumulation with and without FBS. This is because both bare fullerene 

and FBS coated fullerene have strong electrostatic repulsion with negative lipid 

membranes. 
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Figure 6.7:  Adsorption of FBS on three different lipid membranes which have different 

head charges. FBS concentrations were measured by UV/vis spectrometer at 

290 nm. 
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Figure 6.8:  Rates of fullerene nanoparticles (C0 = 4.7 mg/L) accumulated in (a) DOTAP 

(positive head), (b) DOPC (zwitterion head), and (c) PG (negative head) 

with and without 10 % FBS. Solid lines are fitted according to equation 6-2. 

(c) 
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 We also fit the model presented in equation (6-2) to the experimental data with 

humic acid and FBS and obtained rate parameters which are summarized in Table 6.1. To 

obtain a better fit, we ignored accumulation values at 6 hrs and 12 hrs in Figure 6.4(a) 

and Figure 6.8(a) (which decreased over time due to the significant release of attached 

fullerene nanoparticles at early incubation time).  Rate parameters for the interaction 

between PG lipids and humic acid coated fullerene could not be obtained because the 

regression did not converge, exceed maximum number of iteration. For estimating Clip,0 

in equation (6-2) for fullerene coated with humic acid, we used a 120 nm particle size 

instead of 150 nm because humic acid significantly decreases particle size of fullerne 

(Figure 6.1(a)); the Clip,0 value does not affect the dependence of humic acid and FBS on 

the rate parameters. With DOTAP lipids, humic coated fullerene and bare fullerene have 

similar affinity coefficients with the lipid due to the strong electrostatic interactions.  

With DOPC lipids, the presence of humic acid and FBS significantly decreases fullerene 

affinity with lipid membranes, and the affinity of FBS coated fullerene for lipid 

membranes is much lower than that of humic acid coated fullerene. This result suggests 

that FBS coating creates remarkably higher steric repulsion compared with the repulsion 

created by humic acid coating on nanoparticles.  In addition, humic acid and FBS coated 

fullerene interacts with all three lipid membranes more slowly, and except for the PG 

lipid, adsorption rates are slower with humic acid than FBS. Because both fullerene 

dispersions and humic acid are hydrophobic and exhibit a similarly negative surface 
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charge, competitive adsorption of fullerene and humic acid can occur on the lipid, which 

results in slower lipid accumulation of fullerene in the presence of humic acid. 

 

Effects of humic acid and protein on cellular uptake of fullerene. To 

investigate the effect of humic acid coating on the cellular uptake of fullerene, fullerene 

was incubated with humic acid (5, 10, 20 mg/L) for 12 hours prior to performing cellular 

uptake experiments. Results shown in Figure 6.9 demonstrate that humic acid coatings 

significantly decreased the overall mass of fullerene taken up by the cells for all humic 

acid concentrations. It is generally acknowledged that the net cell surface charge is 

negative and fullerene coated with humic acid has a lower surface charge compared to 

than bare fullerene and this was evident in Figure 6.1. Thus, electrostatic repulsion 

between humic acid coated fullerene and the cell surface can be higher than that of bare 

fullerene, resulting in less fullerene uptake by the cells in the presence of humic acid. 

This result is in agreement with a study of Chen et al. (Chen et al. 2014) that shows that 

humic acid addition decreased the uptake of fullerene by two aquatic organisms: Daphnia 

magna and zebrafish presumably due to more negatively charged surface of humic acid 

coated fullerene.  
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Figure 6.9:  The effect of humic acid on cellular uptake of fullerene 

 

The influence of FBS on cellular uptake of fullerene was also investigated (Figure 

6.10). Interestingly, when higher concentrations of fullerene (> 7 mg/L) were injected 

into the cells under serum free conditions, fullerene particles associated with the cells 

were easily observed in the microscope images (Figure 6.10(b)). On the other hand, in the 

presence of FBS, fullerene was rarely observed on the cell surfaces (Figure 6.10(a)), 

indicating that serum protein affectively hindered the fullerene adsorption on the cells. 

Indeed, the mass of fullerene taken up by the cells when FBS was present is much lower 

than that under serum free conditions (Figure 6.10(c)). This result supports previous 
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results in this study which show that serum protein effectively decreased lipid 

accumulation of fullerene due to steric hinderance and a possible decrease in surface 

energy of FBS coated fullerene (Ehrenberg et al. 2009, Guarnieri et al. 2011). The 

proposed reduction in surface energy resulting from adsorption of protein onto the 

fullerene surface likely decreased the interaction between particles and cell membranes, 

which consequently contributed to reduced cellular uptake. Many previous studies also 

have reported that serum proteins drastically reduced cellular uptake of nanoparticles 

including polystyrene nanoparticle (Guarnieri et al. 2011), silica nanoparticles (Lesniak et 

al. 2012), and carbon nanotubes (Zhu et al. 2009).  Thus, it can be concluded that humic 

acid and protein coated fullerene have different surface properties which lead to 

reductions in cellular uptake of fullerene. 

In previous chapter, we proposed that the main cellular uptake mechanism of 

fullerene nanoparticle is energy dependent active transport (e.g., endocytosis). In the 

endocytosis process, nanoparticles first bind to the cell surface, followed by 

internalization inside the cells. Thus, adsorption of nanoparticles on the cell surface is a 

critical step for the cellular uptake. Humic acid coated fullerene has more polar surface 

area and FBS coated fullerene has less surface energy than bare fullerene, indicating that 

both humic acid and FBS can reduce the approach of fullerene to the cell surface. Thus, 

results of this study imply that humic acid and FBS can significantly affect the active 

transport of fullerene nanoparticles. 
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Figure 6.10: The effect of FBS on the cellular uptake of fullerene. Figure 6.10 (a) and (b) 

are Caco-2 cell microscope images taken after 24 hrs of fullerene injection 

with and without FBS in cell culture medium, respectively. Figure 6.10(c) 

shows the mass of fullerene taken by cells with and without FBS in cell 

culture medium. The injected fullerene concentration was 12 mg/L. 
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6.4. ENVIRONMENTAL IMPLICATIONS 

 

Natural aquatic systems and biological systems are the most likely environments 

where the presence of fullerene nanoparticles will impart human and ecological effects. 

Humic acid and FBS, representative background organic species for each of these 

environments, were shown to alter the surface properties of fullerene nanoparticles and 

affect the interaction of this nanoparticle with living organisms. In this study, fullerene 

accumulation in lipids was significantly influenced by the presence of humic acid and 

FBS, but the impact of each depended on the composition of the lipid. With the positive 

lipid, DOTAP, fullerene coated with humic acid interacted more slowly with the lipid 

membrane but reached comparable accumulation levels relative to bare fullerene. For the  

zwitterion lipid (DOPC), both the rates and extent of partitioning was reduced in the 

presence of humic acid.  In contrast, the presence of the negatively charged lipid, PG, 

did not have significant impacts on partitioning; however, the extent of partitioning into 

the lipid was minimal.  In contrast to the humic acid coated fullerene, FBS coated 

fullerene did not yield the same extent of partitioning to the positive lipid, DOTAP, as 

bare fullerene, however, the accumulation level was higher than the accumulation of FBS 

coated fullerene and the other lipid membranes. Recent studies have shown that positive 

lipids can be used for gene therapy (Zhi et al. 2013). Thus, accumulation of fullerene in 

positive lipid membranes under environmentally and biologically relevant conditions has 

implications for biological applications of fullerene. With the zwitterion lipid (DOPC), 

both humic acid and FBS significantly reduced the amount of fullerene accumulated in 
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the lipid and both coatings affected the rates; however, the impact of FBS was greater. 

Considering the most prevalent lipid composition in living organism is zwitterion lipids, 

the results of this study can provide fundamental information to evaluate toxicity towards 

living organisms in real environments. 

 The effects of humic acid and FBS on cellular uptake of fullerene were also 

investigated. Results of this study have suggested that both humic acid and FBS 

decreased the quantitative mass of fullerene taken up by cells. The cellular uptake 

mechanism of nanoparticles into living cells is more complicated than the lipid 

accumulation mechanism: Using only lipid membrane components, we can envision 

passive adsorption and diffusion through lipid membranes, however, by evaluating 

cellular uptake using living cells, not only does passive diffusion impact rates of 

partitioning, but active transport (e.g., energy dependent endocytosis) is also likely. Thus, 

the results of this study indicate that humic acid and FBS affect fullerene transport 

through lipid membranes via active transport as well as passive diffusion. 

 To our knowledge, this is the first study to demonstrate how surface modification 

of fullerene in the presence of humic acid and FBS affects lipid accumulation as well as 

cellular uptake of this nanoparticle. In particular, the use of lipids of varying surface 

charge provides significant insight into the impact of natural organic matter (e.g., fulvic 

acid and polysaccharide) and biomacromolecules (e.g., lipids, other type of proteins) on 

bioavailability of fullerene nanoparticles. 
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Chapter 7: Conclusions and recommendations 

7.1. CONCLUSIONS 

 

Engineered nanomaterials (ENMs) have appeared as emerging contaminants in 

the environment because production of ENMs has rapidly increased and the presence of 

these materials in the environment may have significant consequences with respect to 

human and ecological health. However, the potential harmful effects of ENMs to 

ecosystems and humans are still under debate due to the significantly different 

physical/chemical properties of nanoparticles compared to molecular level chemicals. 

Carbon fullerene was chosen as a representative ENM to address one of the major 

concerns with respect to ENMs, namely, bioavailability. The primary objectives of this 

research were to evaluate the bioavailability of aqueous fullerene dispersions by 

developing a more complete understanding of 1) partitioning of fullerene in lipid/water 

systems and, 2) the cellular uptake of fullerene.  

To review, hypotheses tested in this dissertation were: 

 Hypothesis I: The lipid water partitioning coefficients (Klipw) of fullerene 

are affected by lipid composition. 

 Hypothesis II: The lipid water partitioning mechanism of fullerene is 

different from that of molecular level chemicals and these differences can 

be explained by partitioning thermodynamics. 

 Hypothesis III: Fullerene can be transported into the cell membrane via 

active transport. 
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 Hypothesis IV: Lipid accumulation and cellular uptake of fullerene are 

affected by the presence of natural organic matter and biological 

macromolecules under environmentally relevant conditions. 

Partitioning between water and lipid membranes has been successfully used for 

evaluating bio-accumulation of molecular level chemicals. Lipid-water partitioning 

coefficients (Klipw) of molecular level chemicals were measured by an equilibrium 

dialysis technique, however, this technique cannot be applied for measuring Klipw of 

nanoparticles due to the aggregation of those materials. In Chapter 3, we developed a new 

technique to measure Klipw of fullerene nanoparticles using solid supported lipid 

membranes (SSLMs) with different membrane composition. The major findings from 

Chapter 3 are listed below.   

 Solid supported lipid membranes (SSLMs) were successfully synthesized in 

our lab. We confirmed that silica microspheres were uniformly coated with 

lipid bilayers using confocal microscopy of fluorescently labeled lipids. 

 Log Klipw (L/kg) values of fullerene with three different zwitterion unsaturated 

lipids ranged from 3.1 to 5.3, which are generally consistent with reported 

bioconcentration factors (BCF) of fullerene in previous studies. 

 Klipw values of fullerene increased with increasing temperature regardless of 

lipid membrane composition. Increasing temperature causes thermal changes 

to the lipid membrane, which may result in increasing partitioning values. 

 Klipw values of fullerene were higher with zwitterion unsaturated lipids 

composed of longer acyl chains. Stronger hydrophobic interactions between 

fullerene and lipids with longer acyl chains can contribute to higher 

partitioning values. 
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 The relationship between reported octanol-water partition coefficient (Kow) 

and unsaturated lipid-water partitioning of hydrophobic molecular chemicals 

(Klipw) was not applicable to fullerene. This result implies that the partitioning 

mechanism of fullerene is different from that of molecular level chemicals. 

 

In Chapter 4, we used the in vitro method developed in Chapter 3 to investigate 

the effects of membrane composition on partitioning of fullerene as well as partitioning 

thermodynamics. In Chapter 4, three unsaturated lipids with different head charges were 

selected for investigating the effects of electrostatic forces between fullerene and lipids 

on the Klipw values. In addition, ternary lipid mixtures were used to mimic actual cell 

membrane composition. The major conclusions from Chapter 4 are as follows: 

 The Klipw value of fullerene with a positively charged lipid membrane was 

significantly higher than that with either the zwitterion or negatively charged 

lipid membranes. Due to the negative surface charge of the fullerene 

dispersions in water, strong electrostatic interactions between fullerene 

dispersions and positive lipid head groups yielded a higher Klipw value.  

 With ternary lipid membranes consisting of a saturated lipid, an unsaturated 

lipid, and cholesterol, higher Klipw values were obtained after phase 

separation. After phase separation, the surface area covered by the lipid 

molecules increased, which led to higher Klipw values.   

 Partitioning thermodynamics of fullerene between lipid and water were 

determined using the van’t Hoff equation. The partitioning of fullerene with 

unsaturated lipids was driven by entropy (△S > 0) and the process was 

endothermic (△H > 0).  
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 Partitioning thermodynamics of fullerene were significantly different from 

reported thermodynamics of molecular level chemicals, indicating that the 

partitioning mechanism of fullerene differs from that of molecular chemicals. 

Here, we suggested that a combination of adsorption and absorption can be a 

plausible partitioning process of fullerene into lipid membranes. 

 

In Chapters 3 and 4, we investigated fullerene interactions with synthetic lipid 

membranes, which can describe the passive adsorption and diffusion of fullerene into 

lipid membranes. However, active transport, which is an energy dependent process, can 

also be an important process for transport of nanoparticles through lipid membranes. In 

Chapter 5, we developed another in vitro method to perform experiments examining 

cellular uptake of fullerene nanoparticles. The main objective of Chapter 5 was to 

elucidate the main transport mechanism of fullerene through lipid membranes (passive vs. 

active transport) using Caco-2 cell lines. We reached the main conclusions listed below.  

 The cellular uptake of fullerene was temperature dependent; more fullerene 

nanoparticles were taken up by cells at 37 °C compared to the mass of 

fullerene taken up by cells at 4 °C. Higher molecular diffusivity, more 

fullerene adsorption on the cell surface, and energy dependent active transport 

at 37 °C can be responsible for this temperature dependence.  

 Lower cellular uptake was obtained at higher concentrations, and a plateau in 

cellular uptake was observed at relatively low concentrations. These results 

suggest that there are a limited number of binding sites on the cell surface, 

which suggests that a key  mechanism of fullerene uptake at low 

concentration is active transport. 
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 Metabolic inhibitors (e.g., sodium azide and 2,4 dinitophenol) partly reduced 

the cellular uptake of fullerene. This result indicates that both passive 

diffusion and active transport contribute to fullerene nanoparticle transport 

through lipid membranes.  

 A Microtubule inhibitor (e.g., nocodazole) also decreased the mass of 

fullerene taken up by cells. This result suggests that the microtubule transport, 

which is one of the active transport mechanisms, is also responsible for the 

cellular uptake of fullerene. We also demonstrated that the microtubule 

transport depends on surface characteristics of fullerene that may change over 

time possibly due to adsorption of OH
-
 on the fullerene surface. 

 

When fullerene nanoparticles are released into natural aquatic and biological 

environments, surface modification of fullerene can occur due to coating of fullerene 

with environmentally relevant matrices such as natural organic matter and macro 

biomolecules. In Chapter 3, bioavailability of fullerene under environmentally relevant 

conditions was investigated. In particular, in the presence of humic acid or fetal bovine 

serum (FBS), we performed lipid accumulation and cellular uptake experiments, using 

the in vitro methods developed in Chapter 3 and Chapter 5, respectively. The conclusions 

from these experiments are as follows: 

 Both humic acid and FBS significantly increased the stability of fullerene 

nanoparticles implying that fullerene nanoparticles can be coated with humic 

acid and FBS. Fullerene incubated with humic acid have more negatively 

charge than bare fullerene. 

 The effect of humic acid on bioaccumulation of fullerene depends on the head 

charges of the lipid membrane. For positive lipids, bioaccumulation of 
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fullerene coated with humic acid is not significantly different from that of bare 

fullerene. However, when zwitterion and negative lipids are employed on 

SSLMs, the presence of humic acid effectively decreased the bioaccumulation 

values of fullerene. 

 With zwitterion and negative lipid membranes, the presence of FBS also 

decreased fullerene affinity for the lipid membranes, and the affinity of FBS 

coated fullerene was much lower than that of humic acid coated fullerene due 

to the higher steric repulsion created by FBS coatings on fullerene. 

 Both humic acid and FBS significantly lowered the amount of fullerene taken 

up by Caco-203 cells. Fullerene exhibits greater steric hindrance and less 

surface energy when coated with humic acid and FBS. Thus, fewer fullerene 

particles are adsorbed onto the cell surface in the presence of humic acid and 

FBS, which results in reduced cellular uptake. 

 

7.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

This research has demonstrated that the lipid-water partitioning of fullerene is 

significantly different from that of traditional molecular level chemicals. In addition, we 

suggested that the main cellular uptake mechanism of fullerene is active transport, which 

is different from the main transport mechanism of molecular level chemicals (e.g., 

passive transport). We successfully developed in vitro methods to investigate lipid-water 

partitioning and the cellular uptake mechanism of fullerene. While partitioning 

thermodynamics indirectly inferred that the lipid water partitioning mechanism of 

fullerene is a combination of adsorption and absorption, we did not directly observe the 

absorption of fullerene into lipid bilayers. In addition, while cellular uptake tests provided 

the insights for the cellular uptake mechanism of fullerene, the in vitro method used in 
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this study cannot distinguish adsorbed fullerene onto the cell surface and fullerene 

internalized into the cell. Thus, the following recommendations for future research are 

related to the direct observation and refined experimental methods to elucidate the lipid 

membranes partitioning and transport mechanism of fullerene. 

1) Direct observation of fullerene located in the acyl chains of lipid membranes: 

In Chapter 4, we hypothesized that fullerene nanoparticles first adhere on the lipid head 

groups (i.e., adsorption), and then, they can be located into the lipid membranes (i.e. 

absorption). TEM images (Figure 4.3, Figure 4.4) clearly show that fullerene adsorbs on 

the lipid surface. However, it is impossible to take TEM images of fullerene located 

inside the lipid bilayer because the thickness of the lipid bilayer is very small (4~5 nm) 

compared to the size of silica microspheres (diameter: 5 µm) which are used as solid for 

solid supported lipid membranes (SSLMs). Therefore, it will be important to develop a 

method for direct visualization of fullerene that is located inside the lipid bilayer to 

confirm the absorption mechanism of fullerene through the lipid membranes. We can 

suggest two possible methods for that: 1) take images by cryo-TEM, and 2) take 

fluorescent images of fluorescently labeled fullerene derivatives. Cryo-TEM can be used 

to confirm the molecular level lipid bilayers. Indeed, lipid bilayer in SSLMs successfully 

confirmed by cryo-TEM in previous studies (Gopalakrishnan et al. 2009, Mornet et al. 

2005). Once cryo-TEM can focus on the lipid bilayer of SSLMs, fullerene which is 

located inside the lipid membranes can be easily seen. The other method is to obtain 

fluorescent images. In Chapter 3, we confirmed that in SSLMs, silica microspheres are 

uniformly coated with lipid bilayers with a help of fluorescently labeled lipid probe 

which color is red. If we can synthesize a fluorescently labeled fullerene derivative which 

has a different color, then fullerene imbedded inside the lipid membranes will be easily 
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seen using confocal microscopy. In this case, the physicochemical properties of 

fluorescently labeled fullerene derivatives should be similar to those of bare fullerene. 

2) Investigation of Caco-2 cell membrane permeation of fullerene: In Chapter 6, 

the cellular uptake mechanism of fullerene was proposed: First fullerene adsorbed on the 

cell surface followed by internalization into the cells by energy dependent endocytosis. 

However, we cannot differentiate the fullerene that adhered on the cell surface from that 

internalized into cells. Here, we suggest the method for estimating membrane permeation 

of fullerene through Caco-2 cell monolayer. For the permeation study, Caco-2 cells will 

be seeded into Transwell
TM  

microporous cell culture inserts and cultured for at least 21 

days at 37 °C in a 5 % CO2 to reach cell confluency. The integrity of the cell monolayer 

should be monitored by Trans Epithelial Electrical resistance (TEER). Figure 7.1 shows a 

diagram of Caco-2 monolayer on the Transwell
TM

 filters, which can be used for the 

transport study. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1:  Diagram of Caco-2 monolayer on the Transwell
TM

 filters 
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Fullerene aggregations in the cell culture medium are added to the donor chamber 

and cell culture medium without fullerenes is added to the acceptor chamber in Figure 

7.1.  

If fullerene can be detected in acceptor chambers, this can provide significant 

evidence that fullerene can transport through cell monolayer, not just adhere on the cell 

surface. In addition, this permeation study using Caco-2 cells has been widely used to 

investigate the cellular transport mechanism of various chemicals from molecular level 

chemicals (Hidalgo and Borchardt 1990, Pade and Stavchansky 1997) to nanoparticles 

(Lin et al. 2012). Thus, by using membrane permeation study, we can also confirm that 

the main cellular transport mechanism of fullerene is active transport. 
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Appendix A. Analytical method for fullerene  

HPLC PROTOCOL FOR MEASURING FULLERENE CONCENTRATION 

Fullerene concentrations in toluene were measured by a Waters 2690 high 

performance liquid chromatography (HPLC) equipped with a Waters 996 photodiode 

array detector (Milford, MA). Mixture of hexane (70 %) and isopropyl alcohol (30 %) 

was used as an eluent. YMC-ODS-A column (5 µm, 6.0 × 150 mm, 120 Å, Allentown, 

PA) was used. With 382.6 nm UV wavelength, retention time for the fullerene detection 

is 6.5~7 min. The concentrations are proportional to the area of the peaks. With fullerene 

concentration ranged from 0.1 µM (0.084 mg/L) to 23 µM (16.8 mg/L), the R
2
 of 

calibration curve was 0.9998 (Figure A-1).  

 

 

 

 

 

 

 

Figure A-1: Calibration curve for HPLCdetection of fullerene concentration (0.1 µM – 23 

µM)  

 

To determine the method detection limit (MDL), 7 samples at the low 

concentrations ranged from 0.1 µM (0.072 mg/L) to 2.3 µM (1.66 mg/L) were used 
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(Figure A-2). The standard deviation for these samples was 581.81 and slope for the 

calibration curve was 25302. The MDL for this method was calculated as 0.076 µM 

(0.054 mg/L) using equation (A-1).  

MDL = (standard deviation (STEYX)/slope) × 3.3            (A-1) 

The reported fullerene concentration in water environments are ranged from 0.002 

– 0.12 ng/L (Boxall et al. 2008, Gottschalk et al. 2009) , which are lower than MDL of 

this study. Thus, fullerene concentrations used in this study were higher than fullerene 

concentrations in the natural water environments. 

 

 

Figure A-2: Calibration curve for calculating method detection limit (MDL) 

METHOD FOR LIQUID EXTRACTION OF FULLERENE 

Fullerene concentrations in the water phase were extracted to a toluene phase 

using a liquid extraction method. 1 mL of fullerene suspensions in the water phase were 

first destabilized with 0.4 mL of 0.1 M Mg(ClO4)2, then 1 mL of toluene was added 

followed by vigorous mixing.  Mg(ClO4)2 has been prevalently used for the liquid 
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extraction of fullerene, and it was reported that extraction recovery reached 100 % by 

using this destabilized material (Hyung and Kim 2009b) . We confirmed that HPLC 

peaks of fullerene concentrations in toluene phase increased with increasing fullerene 

concentrations in water phase (Figure A-3), and R
2
 of this linear regression was 0.9965. 

For the liquid extraction of fullerene in solutions containing biomolecules and humic 

acid, 2.5 mL of glacier acetic acid (GAA) was additionally used to prevent emulsions. 

 

 

Figure A-3: Calibration curve for HPLC detection of fullerene in toluene phase after 

liquid extraction of fullerene in water phase. 

We confirmed that after liquid extraction, fullerene in the toluene phase exists as 

molecular fullerene, not fullerene aggregates by taking TEM images. As shown in Figure 

A-4(a), fullerene aggregates in the water phase were easily observed in TEM images. 

However, in the toluene phase, we could not find any fullerene aggregates (Figure A-

4(b)). This suggests that liquid extraction lead fullerene aggregates to break down and 

produce molecular fullerene in the toluene phase.  
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Figure A-4: TEM images of fullerene in (a) water phase before liquid extraction and (b) 

toluene phase after liquid extraction. Scales bar indicates 100 nm.  
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Appendix B. Pooled t test for investigating effects of inhibitors on 

cellular uptake of fullerene 

To investigate the effects of inhibitors on cellular uptake of fullerene, we utilized 

a hypothesis testing using pooled data from five separate experiments (two for 

simultaneous addition of the fullerene, cells and inhibitors; one for addition of the cells 

and inhibitors 7 days after the fullerene was added to distilled water; and two for 14 day 

fullerene/water incubation prior to addition of the cells and the inhibitors). For each test, 

we prepared triplicate samples. Thus, total number of samples is 15. The mass of 

fullerene taken by cells for each test with or without inhibitors are shown in Table A-1.  

The t-statistic was used to evaluate the hypothesis of equal means between control 

samples without inhibitors and samples with inhibitors.   

Table A-1: Mass of cellular uptake of fullerene in the presence of three different 

inhibitors for fullerene injections of 6 µg and 4 µg for test 1-3 and test 4-5, 

respectively. Results for tests1-3 are presented in Figure 5.6. 

mass (µg) Control sodium azide 2,4 dinitrophenol nocodazole 

test1 1.947 1.068 0.989 1.107 

 

1.243 1.971 1.112 1.220 

 

2.135 1.463 1.604 1.494 

test 2 1.998 1.520 0.819 0.583 

 

2.075 1.535 1.660 0.644 

 

1.797 1.528 1.012 0.548 

test 3 1.144 0.425 0.321 0.339 

 

0.512 0.661 0.358 0.332 

 

0.681 0.322 0.372 0.630 

test 4 2.512 1.104 2.201 1.749 

 

1.305 1.343 2.108 1.900 

 

2.891 1.735 1.556 1.095 

test 5 1.348 1.229 1.101 0.583 

 

1.966 1.540 1.474 1.531 

 

1.660 1.467 1.995 0.517 

average 1.681 1.261 1.246 0.951 
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 For applying the t-test, two assumptions were applied: (1) all distributions are 

normal, and (2) the population variances σcontrol and σinhibitors are equal. First we calculated 

a pooled estimator of the common variance s
2

pooled using equation (A-3). 
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 Where ix  values are the individual data for control cells, iy  values are the individual 

data for cells incubated with each inhibitor, x is the average of data for control cells, y  

is the average of data for samples with added inhibitor, and n1 and n2 are the number of 

control cells and samples with inhibitor, respectively (n1=n2=15). We used a value of 26 

for the degrees of freedom (=15+15-4). 

 The test statistic, t, was calculated using equation (A-4) for all three inhibitors.  
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t values for three inhibitors, sodium azide, 2,4 dinitro phenol, and nocodazole were 1.96, 

1.81, and 3.26, respectively. The value of t0.05 for 26 degree of freedom is 1.706. Thus, t > 

t0.05, indicates that the mean value of the data for the control samples is significantly 

different from that with an inhibitor. Therefore, this result suggests that inhibitors used in 

this study significantly lowered the fullerene uptake by cells, indicating that active 

transport contributes to cellular transport of fullerene. 
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