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Abstract 

 

Design and Assembly of Metal Oxide Nanocrystal Gels via Depletion 

Attractions 

 

Camila A. Saez Cabezas, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisors:  Delia J. Milliron and Thomas M. Truskett 

 

Achieving and implementing macroscopic materials capable of displaying the 

unique properties inherent to inorganic nanocrystals requires bridging the nanoscale and 

the length scales of larger orders of magnitude in a systematic, controllable, and scalable 

way. Over the last 15 years, nanocrystal gels have been developed and investigated as 

potential materials to tackle this need. However, available gelation methods rely on 

chemical reactions and interactions specific to the stabilizing molecules on the nanocrystal 

surface, and are therefore not readily adaptable across broad types of materials. 

Specifically, most studies have focused on gelation methods for metal chalcogenides and 

noble metals, whereas progress on metal oxide nanocrystal gels has lagged behind.  

This dissertation investigates and demonstrates an alternative gelation method 

based on entropic depletion attractions that are not dependent on specific surface 

chemistries and have not been explored in nanoscale colloidal gels. In the first study, a 

proof of concept system is developed, where depletion attractions induce the gelation of 

tin-doped indium oxide nanocrystals in the presence of a polymer depletant and achieve a 

macroscopic material with optical properties reflective of both the microstructure and the 



 xi 

nanostructured building blocks. The mechanism of gelation is assessed by comparing the 

observed phase behavior to theoretical predictions and the microstructure is characterized 

by small-angle X-ray scattering (SAXS). Next, the universal applicability of depletion 

attractions is demonstrated by varying the composition and shape of the building blocks 

while fixing size and nanocrystal volume fraction. The gelation of spherical nanocrystals 

occurs at the same depletant concentration and this phase transition threshold does not 

depend on the specific composition of the metal oxide nanocrystal. Consistent with 

theoretical phase boundary calculations, cubic nanocrystals form gels at a lower depletant 

concentration than spherical nanocrystals due to the ability to pack face-to-face and 

therefore increase the overlap excluded volume during assembly. Finally, a method to 

polymer-wrap tin-doped indium oxide nanocrystals in a controllable way while 

maintaining colloidal stability is investigated in an effort to tune the physicochemical 

properties of the metal oxide building blocks available for gelation. 
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Chapter 1: Introduction 

TECHNOLOGICAL MOTIVATION 

Over the last few decades, advances in colloidal synthesis methods and ligand 

chemistries have produced a diverse library of complex inorganic nanoparticle dispersions 

with tunable emergent properties.1-4 Yet, without structure, the ability to create new 

functional materials and engineer their performance using nanoscale building blocks is 

significantly restricted. Fundamentally, integrating nanotechnology into bulk materials, 

devices, and application components requires compatibility with scalable manufacturing 

and the development of assembly methods to bridge the different relevant length scales.5-7 

Strategies to fabricate multiscale structures rely on combining assembly techniques of 

complementary length scales: top-down patterning spanning the µm-cm length scale (e.g., 

lithography, surface patterning, layer-by-layer, and 3D printing) and solution-based 

bottom-up assemblies spanning the nm-µm length scale (e.g., self-assembly and 

microfluidics).8,9 In particular, precise control over the material microstructure at the 

individual nanoparticle level is key to design and tune functionality because nanoscale 

properties are responsive to the spatial arrangement, orientation, and surface chemistry of 

neighboring nanoparticles. In fact, the dependence of collective properties on the local 

structure of nanoparticles has been demonstrated for different optoelectronic applications 

such as localized surface plasmon resonance,10-12 photoluminescence,13-15 photocatalysis, 

and charge transport16-19 to name a few. 

Although the development and characterization of assembly methods have 

progressed significantly and have been positioned at the forefront of nanomaterials 

research,6,20 the fabrication of macroscopic materials using nanoparticles remains 

challenging. Specifically, achieving free standing, uniform (e.g., defect-free, crack-free, no 

signs of delamination), optical quality, and mechanically robust bulk materials is 

difficult.7,9 The direct assembly of nanoparticles into self-supported gels has circumvented 

some of these limitations since this approach can produce open and low-density 
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macroscopic objects, from a colloidal dispersion in a single self-assembly step, able to 

retain the nanostructure of the individual building blocks, and therefore preserve properties 

unique to the nanoscale.21-23 Notably, these characteristics have motivated the design of 

different gelation methods applicable to broad classes of inorganic nanomaterials (noble 

metals, metal chalcogenides, and metal oxides). Because these inorganic materials emerged 

relatively recently, compared to other self-assembly approaches6 and colloidal gels of soft 

materials,24,25 gelation principles for inorganic nanoparticles and their influence on 

structure and thereby properties remain to be established and explored. In particular, 

accessing control over the microstructure and long-range order of the assembly relies on 

tuning interparticle interactions, which are in turn encoded by the thermodynamics and 

kinetics of the system.5,23 Likewise, these parameters are intrinsically linked to the 

physicochemical interactions between nanoparticles and are therefore also dependent on 

specific surface chemistries.  

Ultimately, the significance and impact of self-assembly research efforts, especially 

for emerging assemblies such as nanocrystal gelation, are centered around harnessing the 

power to discover and implement new technologies and material solutions. To this end, 

Glotzer, Solomon, and Kotov discussed in a perspective article that the following questions 

need to be answered: “How can we organize nanoparticles and colloids into more complex 

structures? What kind of structures do we need, and why? What new properties 

characterize these structures?”5 Considering the depth and breadth of these endeavors, 

nanocrystal gels offer a particularly interesting framework for experimental and theoretical 

collaborations. 

SELF-ASSEMBLY 

 Self-assembly is a multidisciplinary and ubiquitous nanoscale process that reflects 

physical and chemical interactions between colloids in solution. It is an elegant, yet 

conceptually simple, mechanism responsible for connecting, shaping, and elevating 

nanomaterials. Although the term “self” implies a lack of external human intervention, 
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fundamental studies and mastery of self-assembly, especially in experiments, unlocks an 

exceptional tool to engineer and innovate in the field of nanotechnology. 

 Broadly, self-assembly is the process by which building blocks (nanoparticles or 

nanocrystals) spontaneously and autonomously adopt a designated spatial arrangement to 

form a structure.5,6,26 More detailed and nuanced definitions have been proposed to capture 

the role of directed or encoded assemblies (via chemical linkers, hydrogen bonding, 

hydrophobicity, patchiness, etc)6,27 and the promise of programmability triggered by 

responses to specific stimuli (heat, light, pH, humidity, mechanical shear, etc).28 In any 

case, the random and spontaneous diffusion of nanoscale building blocks in a fluid is driven 

by Brownian (thermal) motion and their assembly is primarily controlled by manipulating 

the interaction forces acting between them.5 For self-assembly specifically, these 

interaction forces are typically non-covalent in nature and relatively weak including van 

der Waals attractions, depletion attractions, steric repulsions, electrostatic repulsions, 

among others. They can lead to static assemblies that adopt the thermodynamic equilibrium 

state or dynamic assemblies trapped by a kinetic process in a metastable state sensitive to 

perturbations.29 

COLLOIDAL STABILITY 
The predictive and controlled assembly of structures, irrespective of length scale, 

begins with colloidally stable building blocks. The theory developed by Derjaguin, Landau, 

Verwey, and Overbeek (DLVO) describes colloidal stability as the balance between the 

attractive (van der Waals) and repulsive (electrostatics and/or sterics provided by an 

adsorbed molecule) forces acting on the particles. The total interaction pair potential, which 

is the sum of the relevant attraction and repulsion potentials, predicts whether an energetic 

barrier that prevents the irreversible aggregation of particles as they approach each other 

exists (Figure 1.1).23,25,30 
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Figure 1.1: Representative plots of pair interaction potentials. 
a) Influence of van der Waals attractions and electrostatic repulsions and b) influence of 
van der Waals attractions and steric repulsions. Adapted from reference 23. 

 

Applying the Derjaguin approximation for curved surfaces, the van der Waals 

attraction (Wvdw), electrostatic repulsion (WER), and steric repulsion (WSR) potentials 

between two spherical particles are written as: 

𝑊"#$(ℎ) = −
𝐴
6 [

2𝑅/

ℎ/ + 4𝑅ℎ +
2𝑅/

ℎ/ + 4𝑅ℎ + 𝑅/ + ln 4
ℎ/ + 4𝑅ℎ

ℎ/ + 4𝑅ℎ + 𝑅/5] 

Where, A is the Hamacker constant, R is the radius of the sphere, and h is the separation 

distance between the surface of the spheres (not the center-to-center distance).25 The 

Hamacker constant depends on the composition of the particles and dielectric constant and 

refractive index of the solvent. 

𝑊78(ℎ) =
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Where, k is Boltzmann’s constant, T is temperature, R is the radius of the sphere, h is the 

separation distance between the surface of the spheres, Z is the charge of the ions, e is the 

elementary charge, Y0 is the surface charge, ns is the bulk ionic concentration, e is the 

dielectric constant of the solvent, and e0 is the vacuum permittivity. g is derived from the 

Gouy-Chapman theory and 𝜆#BO is the Debye screening length.25 

 

𝑊P8(ℎ) = Q𝑊R=S
(ℎ)																									𝑙 < ℎ < 2𝑙

𝑊R=S(ℎ) +𝑊VWX=(ℎ)				0 < ℎ < 𝑙  

𝑊R=S(ℎ) =
Z[8\]^_

`
(O
/
− 𝜒) b

c𝑙 − F
/
d
/
																									𝑙 < ℎ < 2𝑙

e𝑙/ cF
/W
− O

Z
− ln cF

W
ddf 			0 < ℎ < 𝑙

 

 
 

𝑊VWX=(ℎ) =
2𝜋𝑅𝑘𝑇𝑙/𝜌𝜙

𝑀𝑊 j
ℎ
𝑙 lnk

ℎ
𝑙 l
3 − ℎ𝑙
2 n

/

o − 6 lnl
3 − ℎ𝑙
2 n + 3 p1 −

ℎ
𝑙rs	 

 
Where, R is the radius of the sphere, l is the length of the stabilizing layer, h is separation 

distance between the surface of the spheres, k is Boltzmann’s constant, 𝜙	is the volume 

fraction of the adsorbed molecule (short hydrocarbon chain, polymer, DNA, etc) assuming 

a uniform profile, 𝜐 is the molar volume of the solvent, 𝜒 is the Flory-Huggins parameter, 

𝜌 is the density of the adsorbed molecule, and MW is the molecular weight of the adsorbed 

molecule.31 Wosm is the potential energy associated to the increase in osmotic pressure as 

two surfaces coated with soft and swollen molecules approach each other while Welas 

captures the energy of elastic compression/deformation when the stabilizing molecule 

chains collide and overlap according to the theories developed by Napper32 and de 

Gennes.33 

 According to these equations, the conditions that determine the strength of 

repulsions and therefore colloidal stability can be classified in two categories: i) the solvent 

(4) 

(5) 

(6) 

(7) 
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environment (temperature, ionic strength, and dielectric constant for electrostatics as 

shown in Figure 1.2a-c and molar volume for sterics) and ii) surface chemistry (surface 

charge for electrostatics as shown in Figure 1.2d and the coverage, length, density, 

molecular weight, and solvent compatibility of the adsorbed molecules for sterics). At the 

nanoparticle level, sought-after surface chemistry characteristics can be targeted directly 

during synthesis, while additional features or more complex functionalizations can be 

achieved post-synthetically using ligand exchange methods. Finally, the dependence on the 

solvent environment allows to tune these interactions in a reversible way and using external 

stimuli, irrespective of the nature of the nanoparticles, thus offering an additional level of 

control and versatility. 

 

Figure 1.2: Effect of solvent environment and particle surface chemistry on 
electrostatic repulsion potential. 

a) Temperature, b) ionic strength, c) dielectric constant of the solution, and d) surface 
charge. Adapted from reference 23. 

DEPLETION ATTRACTIONS 
 
 In this work, the primary interparticle interaction that is studied and tuned is 

depletion attractions between nanocrystals. Consider a binary mixture of a primary colloid 

stabilized by electrostatic and/or steric repulsions and a smaller non-adsorbing co-solute 

(depletant). Above a critical depletant concentration, an imbalance in the osmotic pressure 

in solution triggers short-range physical attractions between the primary colloids in an 

effort to increase the configurational entropy of the depletants. Pushing the primary 
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colloids closer together leads to the overlap of the excluded volumes, which are not 

accessible to the depletants, and therefore an effective increase in the volume occupied by 

the depletants (Figure 1.3). A unique characteristic of depletion attractions is the ability to 

simply and independently tune the strength and range of attraction by changing the relative 

sizes of the primary colloid and the smaller cosolute (depletant) and the depletant 

concentration (equations 8 and 9).25,34 

 

Experimental observations of depletion attractions (aggregation of latex particles, 

emulsion droplets, red blood cells, and viruses to name a few) can be traced back to as 

early as the 1930s, but it would take 2 more decades to rationalize this interparticle 

interaction and formulate a theory. The Asakura-Oosawa depletion potential is written as: 

𝑊#Vu(ℎ) = v
∞																																																														ℎ < 0									
−ΠR=S𝑉R"(ℎ)																																					0 ≤ ℎ ≤ 𝜎			
0																																																																	ℎ > 𝜎

				 

 

Where ΠR=S = 𝑛}𝑘𝑇 is the osmotic pressure, nb is the depletant number density 

(concentration), k is Boltzmann’s constant, T is temperature, Vov is the overlap excluded 

volume, h is the separation distance between the surface of the spheres, and 𝜎/2 is the 

thickness of the depletion layer, which is typically equal to the size of the depletant (e.g. 

the radius of gyration). For spheres,  

𝑉R"(ℎ) =
𝜋
6 (𝜎 − ℎ)

/ p3𝑅 + 𝜎 +
ℎ
2r 

Because the excluded volume depends on the geometry of the particles, the strength of 

depletion attractions will vary as a function of shape and will be greater for particle shapes 

that maximize the overlap of the excluded volume (i.e., faceted particles). 

(8) 

(9) 
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Figure 1.3: Schematic of two spherical colloids experiencing depletion attractions. 
The excluded volume is represented by the dashed blue circles with a depletion layer of 
thickness equal to Rg (s/2 using the equation notation) and the overlap excluded volume is 
represented by the hatched region. Depletants are penetrable hard spheres that cannot 
access the interparticle gap of with h. Adapted from reference 35. 
 

For specific depletant-to-colloid size ratio and colloid volume fraction ranges, 

exceeding a depletant concentration may induce phase transitions (e.g., fluid-fluid or fluid-

solid). To predict the phase behavior, we use analytical expressions of the free energy 

derived from free volume theory and scaled particle theory. Details of these calculations 

are found in Appendix 1 and 2.35,36 

COLLOIDAL GELS 
Broadly, a colloidal gel is a disordered network composed of particles in a 

continuous liquid phase that exhibits solid-like elastic properties due to its non-flowing and 

arrested state. In this case, gelation involves creating irreversible covalent bonds or 

reversible and long-lived physical bonds between colloidally stable particles in solution. 

These attractive interactions drive a fluid to solid phase transition through a 

thermodynamic unstable region, where colloid-rich and colloid-poor phases coexist.37,38 

Unlike in crosslinked polymer gels, where a network of entangled chains traps the solvent, 
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formation of a gel phase occurs when the growth of aggregates is kinetically arrested, 

therefore suppressing complete phase separation into a dense solid or glass (Figure 1.4).37,38 

 

Figure 1.4: Schematic phase diagram for colloids dispersed in solution interacting 
by short-range attractions.  

Reproduced from reference 38. 
 

This transition is detected by tracking changes in the rheological, scattering, and 

morphological signatures of the material.20,39-41 Regarding structure specifically, colloidal 

gels typically yield mass fractals, which means that the assembled object exhibits self-

similarity since its mass scales as a power law irrespective of the characteristic length scale 

of the aggregate as shown in equation 10: 

𝑀 ∝ p
𝑅�
𝑅 r

@�
 

Where M is the mass, Rg is the radius of gyration of the aggregate, R is the radius of the 

primary particle, and Df is the fractal dimension with values ranging from 1 to 3 (1 

corresponding to a linear aggregate and 3 to a fully space filling three-dimensional 

aggregate, respectively). Theoretical and experimental studies have shown that the Df 

(10) 
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characteristic of the topology of the gel network is determined by the total pair interaction 

potential, which is in turn dependent on the physicochemical properties of the colloids. 

Two primary aggregation regimes have been established: Diffusion-Limited Cluster 

Aggregation (DLCA) and Reaction-Limited Cluster Aggregation (RLCA).42-44 DLCA 

arises when repulsions are negligible, leading to chain-like open structures with low Df 

(1.7-1.8) due to fast aggregation kinetics, whereas RLCA assembles denser and globular-

like structures with higher Df (2.0-2.2) because repulsions strongly compete with 

attractions and slow down the kinetics of aggregations. Furthermore, fractality has been 

shown to emerge universally across different classes of colloidal assemblies and gels,45 

thus providing an already established framework of underlying physics to study the 

interplay between interparticle interactions and structure in emergent semiconductor metal 

oxide nanocrystal gels. 

The inception of inorganic nanoparticle gels, which can be traced back to the early 

and mid 2000s, drew inspiration from molecular sol-gel chemistries to covalently attach 

nanoparticles through the oxidative removal of the stabilizing ligands on the surface using 

hydrogen peroxide.46-48 Compared to molecular sol-gel, where nanoparticles are formed 

from molecular precursors or salts in solution and subsequently crosslinked, the main 

advantages of crosslinking preformed nanoparticles are improved control over the size, 

shape, and uniformity of the building blocks, direct assembly of nanocrystals (molecular 

sol-gels yield amorphous networks that need an annealing step to crystallize the material), 

higher porosity and surface area-to-volume ratios, and compatibility with multicomponent 

assemblies.21,23 This gelation method has been successfully applied to broad classes of 

inorganic materials such as metal chalcogenides, noble metals, and metal oxides.21-23 

Remarkably, this approach has achieved macroscopic materials with strong 

photoluminescence reflective of the unique optical properties of metal chalcogenide 

quantum dots or enhanced catalytic activity in the case of noble metal nanoparticle gels.21,22 

However, preserving the inherent nanoscale optical properties has required protecting 

quantum dots with a sacrificial metal chalcogenide shell or has not been possible for 

plasmonic noble metals because the nanoparticles are prone to sintering,47,49,50 therefore 
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losing their distinctive nanostructure. Moreover, precise micro and macrostructural control 

of the gel network is impeded by controlled ligand stabilization since fast aggregation 

kinetics typically lead to compact, sedimented, opaque, and cracked materials. 

To circumvent these challenges, an alternative gelation method based on forming 

chemical bridges between surface-bound ligands to aggregate nanoparticles was 

developed.50-52 In this case, the extent and kinetics of aggregation and even the phase 

behavior can be gradually tuned depending on the amount of bonds formed by chemical 

bridges.53,54 When charged inorganic species mediate the assembly via ionic coordination, 

all-inorganic networks that facilitate charge transport pathways between neighboring 

semiconductor nanocrystals are achieved. Moreover, chemical bridges can also be 

designed to be reversible, specific, and responsive, which offers the potential for dynamic 

and programmable nanocrystal gelation.28,55 However, chemical gelation, whether covalent 

or ionic in nature, is limited to specific surface chemistries that are not easily adaptable 

across noble metals, metal chalcogenides, and metal oxides unless suitable ligand 

exchanges56 are developed or new coordination chemistries are designed. 

Recently, efforts to assemble versatile and multicomponent nanocrystal gels have 

shifted towards employing non-specific physical interactions, mostly by leveraging 

electrostatics.57,58 In spite of the significant and fast-paced progress on various aspects of 

nanocrystal gelation including assembly, processing, characterization, and applications 

over the last decade, rich opportunities to fundamentally engineer interparticle interactions 

towards the rational design of structures, properties, and novel functionality in these 

materials remain to be investigated and merit to be uncovered. This dissertation aimed to 

contribute to these possibilities by introducing depletion attractions, a physical and entropic 

interaction extensively studied in soft matter colloidal gels, to the realm of inorganic 

nanocrystal gels.  

DISSERTATION OVERVIEW 

 This dissertation sought to demonstrate, characterize, and engineer the assembly of 

metal oxide nanocrystal gels via polymer-mediated depletion attractions. Since these 
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interactions have been traditionally and extensively studied with polymer microparticles 

rather than inorganic nanoparticles, gelation principles at the nanoscale needed to be 

established by experimentally discovering appropriate self-assembly conditions (building 

blocks, solvents, colloidal stability, surface chemistry, and volume fractions) and 

theoretically validating the observed phase behavior and proposed self-assembly 

mechanism. Given the significance of integrating nanoscale properties into bulk materials 

and their sensitivity to the spatial arrangement of nanocrystals, conditions leading to 

optically active assemblies were identified and their morphology and structure were 

characterized in an effort to understand the collective emergent properties. 

 The study in Chapter 2, describes how polyethylene glycol depletants mediate 

depletion attractions between charge-stabilized tin-doped indium oxide nanocrystals to 

form gels. This system serves as a proof of concept to investigate phase transitions as a 

function of depletant concentration, probe the structure of depletion gels with electron 

microscopy and X-ray scattering and diffraction techniques, compare experimental 

observations to theoretical predictions, and achieve an optically active gel with a strong 

infrared absorption reflective of both the discrete nanocrystals and the microstructure of 

the network. Because polyethylene glycol adsorbs on the surface of tin-doped indium 

oxide, a bridging gel and reentrancy into a fluid regime were observed at intermediate 

depletant concentration below the depletion gel threshold. 

 Chapter 3 builds on the aforementioned progress and expands on the assembly 

capabilities of depletion attractions, notably the physical and non-specific origin of the 

interactions and the dependence of attraction strength on the shape of the primary colloid. 

The universality of the gelation approach is demonstrated by applying depletion attractions 

to three types of metal oxide nanocrystals: iron oxide spheres, tin-doped indium oxide 

spheres, and fluorine, tin-codoped indium oxide cubes. Because the nanocrystals are of 

similar and uniform size, the same depletant can be used to induce attractions with an 

approximately equal range relative to the size of the nanocrystal, which allow us to 

compare quantitatively the gelation thresholds of each system by fixing the nanocrystal 

volume fraction. Specifically, spherical nanocrystals form gels at the same depletant 
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concentration, irrespective of their composition, and cubic nanocrystals form gels at a 

lower depletant concentration relative to spherical nanocrystals due to face-to-face packing 

during assembly. Once more, the experimental phase behavior is validated with theoretical 

predictions to assess our proposed assembly mechanism and rationalize the influence of 

nanocrystal shape. X-ray scattering characterization of the dispersions and gels reveals that 

excellent initial colloidal stability results in gels that scatter as mass fractals with a single 

characteristic length scale, unlike in the system reported in Chapter 2. In addition, the 

nanocrystals are not as susceptible to bridging attractions since only minimal clustering is 

observed and bridging gelation is not detected in the timescale of depletion gelation. 

 In an effort to simultaneously improve colloidal stability, diversify the solvent 

compatibility, grant additional properties to the nanocrystals, and protect the surface from 

bridging attractions during self-assembly, a method to functionalize tin-doped indium 

oxide nanocrystals with a polymer is developed in Chapter 4. A hydrophilic and 

biocompatible copolymer of polyacrylic acid grafted with polyethylene oxide appendages 

is adsorbed on the nanocrystal surface to produce aqueous dispersions. The solvent 

conditions (pH and chemical species present in solution) conducive to appropriate polymer 

wrapping and thus good colloidal stability were explored using a combination of electron 

microscopy, dynamic light scattering, infrared spectroscopy, and thermogravimetric 

analysis. The influence of the extent of polymer wrapping on the spectroelectrochemical 

properties inherent to tin-doped indium oxide nanocrystals was investigated in thin film 

composites. Although the gelation of polymer-wrapped nanocrystals was not 

demonstrated, this study establishes guidelines to achieve colloidally stable dispersions of 

tunable steric repulsions and emergent properties in the composite as a function of polymer 

coverage, thus motivating the applicability of these dispersions as potential building blocks 

for nanocrystal gels. 

Finally, Chapter 5 motivates and discusses potential future extensions of this 

dissertation work with an outlook towards accessing the full potential of depletion 

attraction in nanocrystal systems, understanding the influence of the nano- and 
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microstructure of the network on the properties of macroscopic gels, and ways to 

engineering complex, stimuli-responsive, and self-healing functional nanocrystal gels. 
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Chapter 2: Gelation of Plasmonic Metal Oxide Nanocrystals by 
Polymer-Induced Depletion-Attractions* 

 
Gelation of colloidal nanocrystals emerged as a strategy to preserve inherent 

nanoscale properties in multiscale architectures. However, available gelation methods to 

directly form self-supported nanocrystal networks struggle to reliably control nanoscale 

optical phenomena such as photoluminescence and localized surface plasmon resonance 

(LSPR) across nanocrystal systems due to processing variabilities. Here, we report on an 

alternative gelation method based on physical internanocrystal interactions: short-range 

depletion attractions balanced by long-range electrostatic repulsions. The latter are 

established by removing the native organic ligands that passivate tin-doped indium oxide 

(ITO) nanocrystals while the former are introduced by mixing with small polyethylene 

glycol (PEG) chains. As we incorporate increasing concentrations of PEG, we observe a 

reentrant phase behavior featuring two favorable gelation windows; the first arises from 

bridging effects while the second is attributed to depletion attractions according to phase 

behavior predicted by our unified theoretical model. Our assembled nanocrystals remain 

discrete within the gel network, based on X-ray scattering and high-resolution transmission 

electron microscopy. The infrared optical response of the gels is reflective of both the 

nanocrystal building blocks and the network architecture, being characteristic of ITO 

nanocrystals’ LSPR with coupling interactions between neighboring nanocrystals.       

INTRODUCTION 

Nanocrystals, owing to their unique and highly tunable optical properties,1,59-62 hold 

promise as key constituents in next-generation optoelectronic materials and 

devices.11,14,59,63-65 Rich opportunities to enhance and diversify materials functionality 

 
* This chapter has been adapted with permission from reference 143, copyright Ó 2018, Proceedings of the 
National Academy of Sciences of the United States of America. Written in collaboration with Gary K. Ong, 
Ryan B. Jadrich, Beth A. Lindquist, Ankit Agrawal, Thomas M. Truskett, and Delia J. Milliron. C.A.S.C. 
wrote the manuscript, conceived experiments, prepared ITO dispersions and gels, conducted electron 
microscopy, DLS, zeta potential, FTIR, ICP, SAXS, and spectroscopy characterization, and analyzed the 
data. 
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motivate the development of multiscale nanocrystal architectures via bottom-up 

approaches6 because the collective properties of nanocrystals in assemblies depend on their 

organization. Nanoscale optical phenomena such as photoluminescence and localized 

surface plasmon resonance (LSPR) are especially responsive to electronic and 

electromagnetic coupling arising between nanocrystals in close proximity. This effect is 

reflected in the optical properties of extended and dense nanocrystal assemblies with a high 

degree of internanocrystal connectivity (e.g., superlattices66,67 and films68), which deviate 

from those of their isolated components. Nanocrystal gels, where nanocrystal building 

blocks are directly assembled into solid-like networks (i.e., a scaffold is not needed to form 

a stable gel), provide a unique framework to explore such structure-property relationships 

by allowing control over nanocrystal volume fraction, nanocrystal valence,53,69,70 and 

network topology (shape,71 size,71,72 and density73 of aggregates) in ways not typical of 

higher density and ordered assemblies. Nanocrystal gels’ potential to exhibit properties 

both dependent on their self-assembled architecture and reflective of their nano-sized 

building blocks has been realized for semiconductor quantum dot gels and aerogels,21 

which exhibit excitonic photoluminescence red-shifted from the luminescence of isolated 

quantum dots due to energy migration through the gel network. However, plasmonic metal 

nanoparticles such as gold or silver fuse into wire-like networks when assembled into self-

supported nanoparticle gels, obliterating the LSPR optical response characteristic of the 

isolated nanoparticles.50,74 We sought a new strategy for gelation using physical bonding 

interactions, which we hypothesized could maintain the discrete morphology of LSPR-

active metal oxides intact, to target LSPR-active nanocrystal gels. Our approach is not 

specific to the chemistry of the nanocrystals employed and could potentially enable a broad 

class of gels assembled from diverse nanoscale components capable of reflecting their 

individual properties. 

Gelation of colloidally stable nanocrystal dispersions is achieved by balancing 

attractions and repulsions. In previously published examples, these interactions are 

simultaneously tuned by progressive oxidative ligand removal or controlled chemical 
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bridging between surface bound species and linking agents (e.g., ions or molecules). The 

former has been adapted across noble metal,49,74-77 metal chalcogenide,46,47,73,78,79 and metal 

oxide80-84 systems, but this method is prone to fuse nanocrystals (i.e., eliminate interparticle 

spacing) as their exposed surfaces come in contact due to a lack of stabilization, which 

consequently limits the realization of size- and shape-dependent optical properties (i.e., 

photoluminescence and LSPR) within nanocrystal gels. While gelation via chemical 

bridging is a viable strategy to mitigate nanocrystal fusing, translating this approach across 

nanocrystal materials requires customizing surface functional groups for specific 

nanocrystal compositions, so far limited to metal chalcogenide nanocrystals52,56 and gold 

nanoparticles.50 However, even this approach did not prevent fusing of gold nanoparticles 

into nanowires with a concomitant loss of LSPR response. Among the sparse reports on 

metal oxide nanocrystal gels, gelation has been most often achieved by fusion upon ligand 

removal82-84 or by triggering the entanglement of concentrated anisotropic nanoparticles: 

titania chains generated by oriented attachment of destabilized nanocrystals81,85-87 form 

gels upon heating, while tungsten oxide nanowires88 and yttria nanosheets89 form gels upon 

centrifugation. Once more, this approach offers limited control over gel structure and 

thereby the associated properties, and it cannot be easily generalized to assemble discrete 

isotropic metal oxide nanocrystals.  

In light of these limitations, we were motivated to develop an alternative route for 

nanocrystal gelation based upon nonspecific physical interactions by combining depletion 

attractions and electrostatic repulsions. Previous studies have demonstrated that this 

combination can help drive the gelation of polymer colloids40,90,91 and the assembly of 

proteins (into gels,92 clusters,93 and crystals94,95), and hence it holds potential for tunable 

gelation of nanocrystals. Conceptual understanding of the strength and the range of 

depletion attractions requires consideration of only a few parameters: the concentrations of 

the primary colloid and the depletant (smaller, weakly interacting cosolute) and their 

relative dimensions. The addition of long-range repulsions to depletion interactions can 

favor “open” gel structures as opposed to dense colloidal phases.69,71,96 Therefore, a method 
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to controllably introduce repulsive forces, here electrostatics, is needed to realize 

nanocrystal gelation via physical depletion attractions.  

In this study, we demonstrate PEG-mediated gelation of ITO nanocrystals stripped 

of their native ligand shell. The ligand removal procedure employed here prevents ITO 

fusion into wire-like morphologies, in part by promoting electrostatic stabilization of 

nanocrystals as a colloid. Accordingly, bare ITO nanocrystal surfaces enable long-range 

repulsions, while introducing short-chain PEG triggers depletion attractions. We 

investigate the influence of PEG concentration ([PEG]) on competing internanocrystal 

interactions for a fixed nanocrystal volume fraction, and we observe two gelation 

thresholds at distinct [PEG], each preceded by a fluid regime (i.e., flowing dispersion) of 

discrete nanocrystal clusters. Since PEG is known to adsorb onto acidic metal oxide 

surfaces, we attribute the emergence of a first gelation window at low [PEG] to bridging 

of neighboring ITO nanocrystals by PEG chains, while the higher [PEG] gelation window 

is attributed to depletion attractions. To support our assertion and assess the gelation 

mechanism, we compare our experimental results to thermodynamic phase behavior 

predictions from a unified theory formulated to capture polymer-mediated bridging and 

depletion-attractions. Our gelation approach effectively achieves optically active and 

transparent gels with LSPR similar to that of discrete ITO nanocrystals, but shifted and 

broadened by internanocrystal coupling. To explore the influence of network topology on 

optical properties, we perform far-field and near-field electromagnetic simulations based 

on structural information extracted from small-angle X-ray scattering (SAXS). Our 

simulation results predict near-field enhancement manifested as “hot spots” within the gel 

network that may be leveraged in future studies for energetic coupling between LSPR and 

molecular vibrational modes,10 or other optical transitions.97 
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EXPERIMENTAL METHODS 

ITO Nanocrystal Synthesis and Ligand Stripping 

ITO nanocrystals were synthesized in an air-free environment using a standard 

Schlenk line technique following a procedure adapted from previous literature reports.98,99 

Briefly, 2.5 g (8.6 mmol) of indium acetate and 0.225 g (0.95 mmol) of tin acetate were 

mixed with 10 mL of oleylamine, degassed under vacuum for 1 hour at 120 °C, and then 

heated to 230 °C under inert nitrogen atmosphere for 1 hour to nucleate and grow the 

nanocrystals. After the reaction, the mixture was diluted with 5 mL of hexane and 1 mL of 

oleic acid and transferred to a centrifuge tube. The resulting nanocrystals were recovered 

and purified by performing five cycles of precipitation with reagent alcohol, centrifugation, 

and re-dispersion in hexane.  

To remove the hydrophobic ligands bound to the nanocrystal surface, 60 mg of 

nitrosonium tetrafluoroborate were added to a two-phase mixture containing equal volumes 

of dimethylformamide (2 mL) and nanocrystal dispersion in hexane (50 mg/ml, 2 mL) 

following a procedure reported previously.100 The mixture was sonicated for 1 hour to 

promote the transfer of bare nanocrystals to the polar aprotic dimethylformamide layer, a 

process visible to the naked eye since the hexane layer turns clear and the 

dimethylformamide layer adopts a blue/green color. After discarding the hexane layer, the 

ligand-stripped nanocrystals were purified by performing seven cycles of precipitation with 

toluene, centrifugation, and redispersion in dimethylformamide. Chemically removing the 

native oleate/oleylamine ligands on the metal oxide surface results in charge-stabilized 

nanocrystals with strongly positive zeta potentials in both acetonitrile and 

dimethylformamide. 

Nanocrystal hydrodynamic diameter and zeta potential before and after ligand 

stripping were measured with a Malvern Zetasizer Nano ZS. Samples were prepared by 

diluting the nanocrystal dispersions to ~1 mg/ml and filtering them through a 

polytetrafluoroethylene membrane. Dynamic light scattering samples were placed in a 

disposable plastic micro cuvette (ZEN0040, Malvern) while zeta potential samples were 
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placed in a glass cuvette and measured with a dip cell (ZEN1002, Malvern). The isoelectric 

point of ligand-stripped nanocrystals was determined by measuring zeta potential as a 

function of pH using Malvern’s MPT-2 autotitrator. Ligand-stripped ITO nanocrystals 

were dispersed in 1 mM hydrochloric acid aqueous solution and titrated with a 0.1 M 

sodium hydroxide solution followed by a titration with a 0.1 M hydrochloric acid solution 

in a folded capillary zeta cell (DTS1070, Malvern). Fourier-transform infrared spectra of 

nanocrystals before and after ligands stripping were recorded with a Burker-Vertex 70/70v 

spectrometer. The films were dropcasted from dilute dispersions (~ 1 mg/ml) on calcium 

fluoride infrared-transparent windows.  

ITO-PEG Assemblies 

Purified ligand-stripped ITO nanocrystals were dispersed in 8.00 mM (based on 

Mn=1100 g/mol) PEG in acetonitrile solution (final concentration 4.00 vol. % by 

inductively coupled plasma-atomic emission spectroscopy). The dispersion was stirred at 

600 rpm for 48 hours to ensure colloidal stability and homogeneity. This mixture was used 

as a stock dispersion to obtain the higher [PEG] assemblies. Varying amounts of PEG were 

added to 300 µL aliquots of the ITO-PEG stock dispersion to form flowing dispersions or 

gels: 12.48 mg (final [PEG]= 46.0 mM), 25.62 mg (final [PEG]= 85.8 mM), 86.69 mg 

(final [PEG]= 271 mM), 173.43 mg (final [PEG]= 534 mM). After the final amount of PEG 

was added, each mixture was sonicated for one minute to dissolve the PEG. The dispersions 

were kept in sealed vials and remained unperturbed during the self-assembly process. 

Electron Microscopy 

Samples were prepared by dropcasting 5 µL of dilute nanocrystals dispersed in 

hexane and acetonitrile for ligand-capped and ligand-stripped ITO nanocrystals, 

respectively, onto a copper grid (Pelco® ultrathin carbon-A 400 mesh, Ted Pella). The 

ITO-PEG gel ([PEG]= 534 mM) was freeze-dried (immersion in liquid nitrogen for 1 min 
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followed by vacuum drying for 15 min) and diluted with ethanol before dropcasting onto 

a copper grid. Transmission electron microscopy images were captured on a JEOL 2010F 

instrument with a Schottky Field Emission source operated at 200 kV. 

Small-angle X-ray Scattering Measurements and Analysis 
SAXS measurements were performed at the Lawrence Berkeley National 

Laboratory Advance Light Source beamline 7.3.3 at 3.8 m sample-detector distance. A 

silver behenate standard101 was used to calibrate the scattering spectra. All ITO-PEG 

samples were enclosed in flame sealed glass capillaries (Charles-Supper Company, Boron 

Rich, 1.5 mm diameter, 0.01 mm wall thickness) and measured in transmission 

configuration. Capillaries containing neat acetonitrile were used for background 

subtraction. The Igor Pro-based Nika software102 for two-dimensional (2D) data reduction 

was used for instrument calibration and to convert 2D detector data into 1D data by circular 

averaging. Before fitting, each pattern was background subtracted following a procedure 

described in a previous publication51 using the Irena tool suite for modeling and analysis 

in Igor Pro.103 The high-q nanocrystal scattering contribution in each ITO-PEG pattern was 

individually fitted to a spheroid form factor using the Modelling II tool in Irena. The 

scattering contrast (Δ𝜌)2 for 9.65 at. % tin-doped ITO nanocrystals in acetonitrile was 

calculated and set to 2119⋅1020 cm-4. The structure factor S(q) was approximated as 

I(q)/P(q), where I(q) is the total scattering intensity and P(q) is the form factor, assuming a 

decoupling approximation (nanocrystal size and shape are not correlated with position) and 

a local monodisperse approximation.20 

X-ray Diffraction 

Diffraction patterns were collected on a Rigaku R-Axis Spider using Cu K𝛼	

radiation. The ligand-stripped nanocrystals and ITO-PEG gel ([PEG]= 534 mM, identical 

sample measured by SAXS) were enclosed in glass capillaries and were measured in 

transmission configuration. Crystallite sizes were determined by Scherrer analysis and a 
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lanthanum hexaboride (LaB6) reference provided by the National Institute of Standards and 

Technology was used to correct for instrumental broadening. 

Spectroscopy 

Absorption spectra were collected on an Agilent-Cary 5000 UV-Vis-NIR 

spectrophotometer and a Burker-Vertex 70/70v Fourier-transform infrared spectrometer. 

Nanocrystal dispersions in acetonitrile and the ITO-PEG gels were measured in an 

infrared-transparent liquid cell with calcium fluoride windows of 0.5 and 0.02 mm path 

length, respectively. Extinction cross sections were calculated using the Beer-Lamberts law 

and volume fractions determined from inductively coupled plasma-atomic emission 

spectroscopy measurements (ICP-AES). Details on ICP-AES analysis and COMSOL 

simulations are described in Appendix 1. 
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RESULTS AND DISCUSSION 

 

Figure 2.1: Surface chemistry of as-synthesized and ligand-stripped ITO.  
a) Transmission electron microscopy image of as-synthesized nanocrystals, b) transmission 
electron microscopy image of ligand-stripped nanocrystals. No signs of etching or 
morphology change are observed after ligand removal, c) Fourier-transform infrared 
spectroscopy comparison of as-synthesized (blue) and ligand-stripped (green) 
nanocrystals. Effective ligand removal from the metal oxide surface is confirmed by the 
absence of characteristic oleic acid and oleylamine bands corresponding to -CH2 (2922 and 
2851 cm-1) and =CH (3005 cm-1) vibrational modes104 in the spectrum of ligand-stripped 
nanocrystals. The sloping profile in the spectra corresponds to absorption due to LSPR, 
and d) zeta potential comparison of as-synthesized nanocrystals dispersed in hexane (blue) 
and ligand-stripped nanocrystals dispersed in acetonitrile (green). Unlike ligand-capped 
nanocrystals dispersed in non-polar solvents, the ligand-stripped nanocrystals exhibit 
strongly positive zeta potentials in both acetonitrile and dimethylformamide while 
retaining colloidal stability. This change in nanocrystal surface charge has been previously 
attributed to uncoordinated metal cations exposed upon removal of anionic ligands.100,105 

 

Our nanocrystal gelation strategy leverages physical bonds formed by balancing 

long-range electrostatic repulsions due to surface charge and short-range attractions 
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induced by depletants, aiming to create stable open, arrested, and percolated networks. 

Charge-stabilized nanocrystals in acetonitrile with an average radius RITO of 2.83 ± 0.36 

nm were selected as the primary colloid and the source of electrostatic repulsions (Figure 

2.1). Short PEG polymer chains (Mn= 1100 g/mol) were selected as depletants based on 

the following criteria: the need for a co-solute with a radius of gyration, Rg PEG, smaller 

than RITO, PEG’s ability to raise the osmotic pressure in solutions,64 and PEG’s 

compatibility with polar aprotic solvents. We estimated Rg PEG of these PEG chains in 

acetonitrile to be 0.98 nm from SAXS sizing analysis (Appendix 1), which is in good 

agreement with the expected Rg PEG from literature,106 to ensure that the depletant size 

criterion would be fulfilled. More details on the characterization of ITO dispersions are 

included in Appendix 1. Previous studies on polymer-induced depletion-attractions have 

shown that the strength of the attraction is tunably increased as a function of depletant 

concentration, which in turn dictates the extent of the network’s connectivity,40,71 affecting 

gel structure and any properties dependent on the local environment and valence of 

nanocrystals in the network. Since colloidal nanocrystal depletion gels have not been 

previously reported, the conditions to induce gelation were discovered by varying the 

amount of PEG in a charge-stabilized nanocrystal dispersions of fixed volume fraction. 

Experimentally, as we progressively increase the PEG concentration at a fixed nanocrystal 

volume fraction (4.00 vol. %), we observe a fluid (i.e., flowing dispersion) up to a first 

threshold for gelation at [PEG]= 46.0 mM, then reentrant behavior back to a flowing 

dispersion, followed by a second occurrence of a gel at [PEG]= 534 mM (Figure 2.3, 

insets). 

 



 25 

 

Figure 2.2: SAXS scattering intensity and form factor fitting.  
a) ITO-PEG dispersion with [PEG]= 8.00 mM, b) ITO-PEG bridging gel with [PEG]= 46.0 
mM, c) ITO-PEG dispersion with [PEG]= 85.8 mM, and d) ITO-PEG depletion gel with 
[PEG]= 534 mM. Experimental data is shown as a solid line while fits using the spheroid 
form factor model are shown as black dashed lines. 
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Figure 2.3: SAXS characterization of the ITO-PEG flowing dispersions and gels.  
a) Structure factor S(q) of flowing dispersion with [PEG]= 8.00 mM, b) S(q) of gel with 
[PEG]= 46.0 mM, c) S(q) of flowing dispersion with [PEG]= 85.8 mM, and d) S(q) of gel 
with [PEG]= 534 mM. S(q) plots are accompanied with photograph insets of the 
corresponding ITO-PEG mixture. 
 

To investigate the conditions that enabled gelation and to characterize the fluid 

regime, the ITO-PEG mixtures formed at different [PEG] were probed with SAXS. 

Specifically, we examine the structure factor S(q) as a function of [PEG] by removing the 

form factor contribution to the SAXS data (Figure 2.2) to gain insight into the physical 

origins of the self-assembly. As a result, we identify two distinct interaction regimes 

(Figure 2.3). First, we note a prominent S(q) peak (q~0.023 Å-1) for the ITO-PEG flowing 

dispersion of lowest [PEG] emerging at a lower q than that indicative of correlations 

between directly adjacent nanocrystals, thus characteristic of intermediate range order in 

colloidal assemblies.96,107,108 Considering the intermediate range order behavior of this 
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ITO-PEG mixture ([PEG]= 8.00 mM), we establish that competing short-range attractions 

and long-range repulsions frustrate large scale aggregation and lead to the formation of 

discrete nanocrystal clusters (~270 Å length scale). In addition, we observe similar 

intermediate range order behavior for the flowing dispersions in the reentrant regime 

(Figure 2.3c). Although the S(q) peaks near q~0.02 Å-1 are less pronounced and broadened, 

likely due to an increase in attraction strength and cluster polydispersity, the presence of 

dispersed discrete clusters is still apparent in the reentrant regime. Second, in all cases, we 

observe that S(q) diverges as q approaches zero suggesting systems dominated by 

attractions and thermodynamic compressibility.96,107 In particular, the S(q) intensity at the 

lowest resolvable q is approximately an order of magnitude higher when gelation occurs 

compared to the S(q) intensity of all flowing cluster dispersions (Figure 2.3b and d). Prior 

colloidal assembly studies69,109-111 have reported a comparable S(q) intensity increase (of 

an order of magnitude or larger) when a colloidal system transitions from a fluid state to a 

gel through spinodal decomposition.  

Further inspection of S(q) for both low and high [PEG] gels by employing 

Beaucage’s unified function112-114 approach for complex structures provides insight into 

the structural hierarchy of the gels and their respective fractal dimension (Df). First, the 

number of apparent structural length scales along with their respective limits are 

determined from a derivative analysis (Figure 2.4). Following this method, we identify two 

distinct structural length scales in the S(q) of the high [PEG] gel whereas the S(q) of the 

low [PEG] gel only exhibits one. Thereafter, our derivative analysis results guide the S(q) 

unified fitting of both gels (Figure 2.5 and Table 2.1). While the S(q) of the [PEG] = 46.0 

mM gel scatters as a mass fractal of Df = 2.2, the S(q) of the [PEG]= 534 mM gel is 

composed of a mid-q (0.04 Å-1 < q < 0.058 Å-1) scattering contribution from nanocrystal 

clusters plus a low-q (0.01 Å-1 < q < 0.02 Å-1) scattering contribution attributed to the 

presence of a percolated fractal gel network (Df  = 2.09). For both low and high [PEG], we 

associate gelation with slow bonding kinetics since the fitted Df values fall within the 

expected range (2.0-2.2) for reaction-limited cluster aggregation systems.43,115,116 
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Figure 2.4: Identification of Porod regimes by derivative analysis. 
Plots were obtained by taking the derivative of the scattering data presented in Figure 2.2. 
For scattering length scales larger than the nanocrystal form factor, a structural level is 
defined by a size, manifested as an exponential decay in the scattering intensity (Guinier’s 
law), and a mass scaling regime in the form of a power-law relation (Porod’s law).113 
Therefore, a Porod region is identified as a horizontal line when plotting the derivative of 
log [I(q)] with respect to log [q] as a function of q. a) ITO-PEG dispersion with [PEG]= 
8.00 mM exhibits a narrow Porod regime around q~ 0.045 Å-1, b) the Porod regime of the 
ITO-PEG gel with [PEG]= 46.0 mM is delimited by 0.016 Å-1 < q <0.028 Å-1, c) the Porod 
regime of the ITO-PEG dispersion with [PEG]= 85.8 mM is convoluted in the high and 
low q Guinier regimes, d) ITO-PEG dispersion with [PEG]= 271 mM exhibits a narrow 
Porod regime between 0.04 Å-1 < q <0.045 Å-1, e) ITO-PEG gel with [PEG]= 534 mM 
exhibits two Porod regimes: a mid-q Porod regime delimited by 0.04 Å-1 < q <0.058 Å-1 
and a low q Porod regime delimited by 0.01 Å-1 < q <0.02 Å-1, f) derivative of the SAXS 
data for the ITO-PEG gel with [PEG]= 534 mM aged five month to further confirm the 
presence of a low q Porod regime. 
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Figure 2.5: Unified fitting of ITO-PEG gels S(q).  
a) Guinier and Porod unified fit of ITO-PEG gel ([PEG]= 46.0 mM) and b) two-level 
Guinier and Porod unified fit of ITO-PEG gel ([PEG]= 534 mM). 
 

Table 2.1: Summary of SAXS unified fit results.  
Parameters correspond to the fits shown in Figure 2.5. G and B are scaling coefficients in 
the unified function, Rg is the radius of gyration, and P is the Porod exponent. The 
parameters are defined and described in more detail in work by Beaucage.112,114,117 
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In the SAXS data of all [PEG], we observe the form factor of the discrete 

nanocrystal spheres, with fitting results yielding constituent particles with a radius of 2.95, 

2.89, and 2.82 nm in the case of the lowest [PEG] dispersion, low [PEG] gel, and high 

[PEG] gel, respectively. This consistency suggests that the nanocrystals remain discrete 

under all PEG-induced assembly conditions. The persistence of the nanocrystals’ 

morphology is further supported by high-resolution transmission electron microscopy 

imaging of a dried and diluted gel with [PEG] = 534 mM (Figure 2.6), where individual 

nanocrystals are discerned without apparent crystallographic continuity (i.e., oriented 

attachment) between them. Detecting a prevalent crystallographic orientation continuous 

between neighboring nanocrystals would suggest inter-nanocrystal fusion since metal 

oxides are known to fuse into extended nanostructures by oriented attachment.118,119 

Scherrer analysis of X-ray diffraction complements our observations by high-resolution 

transmission electron microscopy, where the crystallite size of discrete ligand-stripped 

nanocrystals (6.19 nm for the (222) peak) is found to be comparable to the nanocrystal size 

in the gel with [PEG]= 534 mM (5.89 nm for the (222) peak, Figure 2.7 and Table 2.2), 

both of which are in turn consistent with diameters measured by electron microscopy, 

SAXS, and dynamic light scattering. Preventing nanocrystal fusion throughout the 

assembly process is particularly advantageous for depletion gelation since the attraction 

strength can be weakened by reducing the depletant concentration relative to the primary 

particle and, in principle, reverse gelation. We achieved the disassembly of the ITO-PEG 

gel ([PEG]= 534 mM) by adding 600 µL of ITO-PEG flowing dispersion ([PEG]= 8.00 

mM) to dilute [PEG] in the mixture by a factor of three at a fixed nanocrystal vol. %). A 

stable flowing dispersion is recovered by gentle manual agitation without using sonication 

or vortexing.  
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Figure 2.6: Transmission electron microscopy images of freeze-dried and diluted 
ITO-PEG gel ([PEG]= 534 mM).  

a) Low magnification transmission electron microscopy image showing chains composed 
of discrete nanocrystals that do not exhibit a wire-like morphology characteristic of 
physical fusion during gelation. The nanocrystals exhibit various diffraction contrasts, 
meaning that bonding does not occur by oriented attachment, which is the preferred fusion 
mechanism in metal oxide networks and b) high resolution transmission electron 
microscopy image of the same area showing a curved chain of at least 10 discrete ITO 
nanocrystals exhibiting different crystal orientations without apparent crystallographic 
continuity between adjacent nanocrystals. 
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Figure 2.7: X-ray diffraction patterns of nanocrystals and gel.  
Ligand-stripped nanocrystals (green) and nanocrystal gel ([PEG]= 534 mM, light blue). 
Indium oxide (In2O3) bixbyite reference pattern (PDF # 00-006-0416) is included at the 
bottom. 

Table 2.2: Summary of Scherrer analysis results for the four most intense In2O3 
diffraction peaks. 

Crystallite sizes were calculated using the Scherrer equation τ = �
����	(�)

 , where 𝜏	is the 
crystallite size,	 λ is the X-ray wavelength (0.154 nm), β is the full-width at half-max 
(FWHM) of the diffraction peak in radians, and θ is the Bragg angle of the diffraction peak. 

β is corrected for instrumental broadening using 𝛽 = �𝐵V�u/ − 𝐵�X��/  , where Bexp is the 

measured FWHM of the diffraction peak and BLaB6 is the FWHM of the lanthanum 
hexaboride standard. 
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Considering the [PEG]-dependent phase progression including a reentrant regime, 

we hypothesized that gelation might be influenced by inter-nanocrystal attractions other 

than depletion-attractions. Specifically, we propose that, in addition to its depletant role, 

PEG can bridge adjacent ITO nanocrystals. Because PEG chains are known to 

preferentially adsorb on acidic oxide surfaces (the isoelectric point of the nanocrystals used 

in this work is between 4 and 5) via hydrogen bonding and subsequently aggregate oxide 

particles,120-122 we deduce that low PEG concentrations (e.g., [PEG]= 46.0 mM) can favor 

bridging gelation. It is worth noting that PEG adsorption on the metal oxide surface does 

not hinder the internanocrystal long-range electrostatic repulsion necessary to form open 

depletion gels since dispersed ITO-PEG clusters still exhibit a strong positive zeta 

potential. In this light, prior work by Luo, Zhao, and co-workers40,123 described an 

analogous experimental phase progression in a polystyrene microsphere system where 

bridging and depletant effects are both operative. They showed the emergence of the 

following phase transition sequence as the concentration of the smaller adsorbing species 

(poly(N-isopropylacrylamide)) in the system increases: bridging-induced aggregation à 

stabilization of discrete microspheres à depletion-induced aggregation. Moreover, they 

determined that since depletion-attraction interactions are only favored once the adsorbing 

molecules have saturated the colloidal surface and bridging attractions are hindered, the 

assembly mechanism (i.e., bridging or depletion) is highly sensitive to changes in the 

colloid-to-adsorbing molecule concentration ratios.  

To assess our proposed mechanism for reentrant gelation in ITO-PEG dispersions, 

we devised a theoretical model that is unique in possessing a unified description of bridging 

and depletion effects. The free-energy theory synergistically combines a well-accepted 

theoretical treatment for the Asakura Oosawa model (depletion) with the accurate 

Wertheim theory for strong association (bridging). As detailed microstructural prediction 

is not our goal, simplification comes from approximating the stabilizing repulsions with 

hard-core interactions for the purposes of bulk thermodynamic calculations.124,125 Various 

physical parameters enter the theory: the nanocrystal-to-polymer diameter ratio (dNC/dP), 
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the number of polymers that can adsorb onto the nanocrystal surface before saturation 

(nads), the number of nanocrystals that a single polymer chain can bridge (nbind), and the 

polymer-nanocrystal thermal adsorption volume (v), which encapsulates the combined 

effects of adsorption energy, temperature and the spatial range of the attraction (more 

details are included in Appendix 1). To specifically model our nanocrystal gels, for dNC/dP 

we use the experimental value of ~ 3, and for nbind we use the physically reasonable value 

of 2 based on the short PEG chains employed and nanocrystal size. For v and nads we 

explored various possibilities and the associated phase behavior, one example of which is 

shown in Figure 2.8 for nads=30 and v= 0.181 yielding a reentrant 

(liquidàgelàliquidàgel) phase diagram that is almost quantitatively in accord with the 

experimental results. Given our choices above for nads and nbind, zero-temperature mean-

field theoretical calculations53 indicate that the bridging regime should not exceed a 

polymer-to-colloid ratio of 435 at any volume fraction or value of v. Therefore, the first 

spinodally unstable regime with increasing depletant is driven by nanocrystal-polymer 

bridging (which saturates upon surface coating) and the second by depletion. Importantly, 

the phase diagram is always qualitatively the same for physically reasonable values of nbind: 

bridging gels form when the ratio of the number of polymers per nanocrystal is of order 

10-100 and whereas of order 1000 is required for depletion—as seen in the experiments.  
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Figure 2.8: Comparison of theoretical model to experimental observations. 
Theoretical phase diagram overlaid with experimental data points. Np/NNC denotes the ratio 
of number of polymers per nanocrystal. Open circles represent experimental flowing 
dispersions and closed circles represent experimental observation of gels. Regions where 
bridging and depletion gelation are predicted to occur are delimited by light and dark blue 
areas, respectively.   
   

Our nanocrystal gels assembled via bridging and depletion interactions are optically 

active and exhibit an extinction spectrum reminiscent of that of the discrete nanocrystal 

building blocks. As shown in Figure 2.9, the LSPR peak of both the bridging ([PEG]= 46.0 

mM) and depletion ([PEG]= 534 mM) gels is red-shifted (by 212 and 101 cm-1 for the 

bridging and depletion gel, respectively) from that of dispersed nanocrystals in acetonitrile. 

We attribute the similarity between these spectra to our successful preservation of the 

nanocrystal morphology as they are integrated in the gel network, avoiding ITO 

nanocrystal fusion by oriented attachment. The modest red-shift of both gel LSPRs, their 

reduced peak intensity, and significant broadening towards lower energies compared to the 

spectrum of isolated nanocrystals are all characteristic of LSPR coupling between nearest 

neighbors, as previously studied in extended assemblies, such as films, of colloidal metal 
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nanoparticles126-128 and metal oxide nanocrystals.10,129,130 Moreover, considering our gel 

structure analysis from SAXS, we hypothesized that the difference in LSPR peak 

broadening and shifting between the bridging and depletion gels is correlated to their 

structural differences. Since the depletion gel network is composed of discrete nanocrystal 

clusters, not detected in the bridging gel network, we expect the gel LSPR to be affected 

by variations in the nearest neighbor environment of nanocrystals.  

 

 

Figure 2.9: Experimental and simulated optical properties of ITO-PEG gels. 
a) Experimental extinction spectra of depletion gel ([PEG]= 534 mM, red), bridging gel 
([PEG]= 46.0 mM, blue), and ligand-stripped nanocrystal dispersion (grey), b) simulated 
extinction spectra of nanocrystal gel and ligand-stripped nanocrystal dispersion, c) 
simulated near-field (NF) maps of nanocrystal gel and ligand-stripped nanocrystal 
dispersion, and d) photograph of highly transparent nanocrystal depletion gel under natural 
lighting against the University of Texas Tower. 
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To investigate the influence of nanocrystal clustering on the gel’s far-field optical 

properties and to anticipate near-field optical properties, we simulated the optical response 

of an extended network composed of PEG-coated ITO octahedral clusters (10 nm in radius) 

with a nanocrystal volume fraction of 3.88 vol. %, similar to that of the depletion gel 

studied experimentally (see Appendix 1 for more details). Although an idealized structural 

representation was used to ensure computational tractability, the simulated network was 

designed to approximate the experimentally measured nanocrystal volume fraction in the 

gel and the structural hierarchy ascertained from analysis of the SAXS data described 

earlier. As shown in Figure 2.9b, the simulated depletion gel LSPR does not precisely 

capture the features of the experimental depletion gel LSPR due to simulation limitations, 

mainly the size of the simulated box. Nonetheless, the simulated spectrum qualitatively 

reflects the LSPR characteristics of the bridging and depletion configurations, thus 

highlighting the optical sensitivity to LSPR-LSPR coupling facilitated by arranging ITO 

nanocrystal building blocks in close proximity in the gel network. Based on the 

simulations, we anticipated that such coupling effects should give rise to intense “hot 

spots” of greatly enhanced electric field intensity confined between nanocrystals in gel 

assemblies where the electromagnetic near-fields of neighboring constituents overlap. 

Simulated near-field maps shown in Figure 2.9c demonstrate the near-field enhancement 

under resonant optical excitation of the ITO nanocrystal gel network. Altogether, these 

findings support nanocrystal gel assemblies’ potential to achieve highly tunable and 

complex plasmonic materials by leveraging the dependence of optical properties on the 

mesoscale arrangement of discrete nanocrystal building blocks. In addition, assembling 

closely spaced nanocrystals into a gel network allows generation of localized “hot spots”, 

thereby providing coupling opportunities to other optical transitions relevant to surface 

enhanced infrared absorption spectroscopy and sensing applications10,11,131 otherwise 

inaccessible in networks built from crystallographic junctions of fused nanocrystals. 
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CONCLUSIONS AND OUTLOOK 
The strategy described here demonstrates the potential for tunable gels based on 

reversible physical bonds, and with responsive optical properties. A basic requirement for 

optical materials is that scattering does not interfere with the absorption, reflection, and 

luminescence properties of interest. Our depletion attraction strategy produces a highly 

transparent ITO nanocrystal gel that remains stable for over 1 year without developing haze 

noticeable to the eye (Figure 2.9d). Obtaining transparent self-supported nanocrystal gels 

has remained a challenge in the field since most established gelation methods give rise to 

fast-growing networks of large aggregates (scatterers) that ultimately form opaque gels. 

Instead, as alluded to earlier for our system, competing electrostatic repulsions and 

attractions (via bridging or depletion) favor slow bonding kinetics and thereby facilitate 

the formation of fractal aggregates with characteristic length scales smaller than the 

wavelength of visible light (Rg = 13.6 and 53.0 nm for bridging and depletion gel, 

respectively, Table 2.1). Our results are consistent with a previous study by Korala and 

Brock72 on the aggregation kinetics of CdSe in which it was determined that simultaneously 

accessing the reaction-limited clustering aggregation regime and suppressing large scale 

aggregation are necessary conditions to induce transparency in a nanocrystal gel. 

Accordingly, gaining insight into the interplay between interparticle interactions, structure, 

and aggregation kinetics is key to rationalize and exploit the nanocrystal gel properties 

stemming from nanoscale building blocks.  

More generally, we showed how the combination of depletion attractions and 

electrostatic repulsions can realize the assembly of nanocrystal gels. While the addition of 

PEG mediates attractions between dispersed nanocrystals, competing long-range 

electrostatic repulsions resulting from ligand stripping encourage the formation of a self-

supported gel rather than a dense and collapsed material. We observed the emergence of 

two gelation windows interspaced with flowing dispersion states of discrete nanocrystal 

clusters. Transitioning from a flowing to a solid-like gel state was accompanied by a strong 

S(q) divergence and intensity increase at the lowest resolvable q, a characteristic of 

colloidal aggregation through spinodal decomposition reported in prior literature. In this 
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regard, our theoretical phase behavior predictions, based on a unified bridging and 

depletion attraction description that captured PEG’s affinity for oxide surfaces and ability 

to bridge adjacent ITO nanocrystals, supported our experimental results and identified two 

spinodally unstable regions favoring bridging and depletion gelation at low and high 

[PEG], respectively. Moreover, we structurally differentiated the dominant assembly 

mechanism in each gel since we recognized two scattering length scales (nanocrystal < 

fractal gel) in the bridging gel as opposed to the three scattering length scales (nanocrystal 

< cluster < fractal gel) apparent in the depletion gel likely due to depletion attractions acting 

on pre-assembled clusters instead of discrete nanocrystals.  

Our ITO nanocrystal model system was selected to investigate the gelation of 

charge-stabilized nanocrystals driven by depletion attractions, to experimentally 

demonstrate its feasibility, and to develop an adaptable gelation strategy that should in 

principle be broadly applicable across nanocrystal systems. For instance, other nanocrystal 

compositions with size and zeta potential similar to our nanocrystals are already available 

by established colloidal syntheses and represent the most immediate candidates to extend 

this work. Based on our analysis, depletant molecular weight may be varied to achieve 

similar assembly results with nanocrystals of different sizes. Also, as long as 

internanocrystal electrostatic repulsions are sufficient for colloidal stabilization, similar 

phase behavior is expected. Since bridging attractions between nanocrystals and depletants 

depend on surface chemical interactions, nanocrystal and depletant compositions can be 

strategically paired to tune bridging gelation or even suppress its emergence. 

From an application perspective, we demonstrated optically active nanocrystal gels 

featuring LSPR representative of the nanocrystal building blocks by retaining their discrete 

morphology in the network, which has not been achieved with previously reported self-

supported gel processing methods for plasmonic nanoparticles. By limiting the extent of 

aggregation, our gelation approach favored the formation of transparent gels, showing no 

signs of visible haze or scattering. In addition, we compared our optical spectra from 

experiments to electromagnetic simulations to highlight near-field enhancement 

opportunities generated by nearest-neighbor coupling effects in the gel network, a 
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promising feature that encourages further exploring nanocrystal gels as an alternative 

material for coupling applications. Finally, we envision that, extending our gelation 

approach to other nanocrystal systems could motivate further studies to improve our insight 

on structure-property relationships in assemblies to thus achieve systematic design of 

nanocrystal gel properties. We believe that our framework could also contribute to the 

development and diversification of multicomponent nanocrystal gels as a means to unlock 

even more complex nanocrystal gel functionality.  
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Chapter 3: Universal Gelation of Metal Oxide Nanocrystals via 
Depletion Attractions*  

 
Nanocrystal gelation provides a powerful framework to translate nanoscale 

properties into bulk materials and to engineer emergent properties through the gel’s 

assembled microstructure. However, many established gelation strategies rely on chemical 

reactions and specific interactions, e.g., stabilizing ligands or ions on the nanocrystals’ 

surfaces, and are therefore not easily transferrable. Here, we report a general gelation 

strategy via non-specific and purely entropic depletion attractions applied to three types of 

metal oxide nanocrystals. The gelation thresholds of two compositionally distinct spherical 

nanocrystals agree quantitatively, demonstrating the adaptability of the approach for 

different chemistries. Consistent with theoretical phase behavior predictions, nanocrystal 

cubes form gels at a lower polymer concentration than nanocrystal spheres, allowing shape 

to serve as a handle to control gelation. These results suggest that the nature of depletion-

driven assembly, traditionally associated with colloidal length and time scales, is 

unchanged at the nanoscale.  

INTRODUCTION 

Colloidal nanocrystals are functional building blocks that exhibit remarkable 

properties inherent to the nanoscale1-4,59 and can be used to self-assemble structures over 

multiple length scales.6 Considering the influence of the spatial arrangement of 

neighboring nanocrystals on nanoscale optoelectronic properties (e.g., localized surface 

plasmon resonance,1,10-12 photoluminescence,13-15 and photocatalysis16-19), self-assembly 

methods have become powerful tools to diversify and even enhance properties in 

 
* This chapter has been adapted with permission from a manuscript in revision and submitted to arXiv 
preprint (arXiv:2003.11633), copyright Ó 2020. Written in collaboration with Zachary M. Sherman, 
Michael P. Howard, Manuel N. Dominguez, Shin Hum Cho, Gary K. Ong, Allison Green, Thomas M. 
Truskett, and Delia J. Milliron. C.A.S.C wrote the manuscript, conceived experiments, prepared 
nanocrystal dispersions and gel samples, and conducted electron microscopy, DLS, zeta potential, FTIR, 
and SAXS, characterization, and analyzed the data. 
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macroscopic materials and devices.6 Among these methods, nanocrystal gelation 

assembles self-supported, open, and percolated networks and has gained significant interest 

in the past decade owing to its exceptional ability to translate and retain nanoscale 

properties in a bulk material compared to denser assemblies.21-23 Nanocrystal gelation also 

offers structural control over multiple length scales. Both the local structure around an 

individual nanocrystal (e.g. volume fraction, valence, and interparticle distance) and the 

global topology of the network may be tuned by changing the physicochemical interactions 

of the building blocks.53,54,72 Therefore, this framework presents opportunities for 

elucidating and designing structure-property relationships. 

Nanocrystal gelation involves the controlled aggregation of colloidal dispersions 

and has been conventionally achieved by either removing the stabilizing ligands from the 

colloid surfaces or creating chemical bridges between the surface-bound ligands.21,23,47,51,52 

Although controlled ligand removal has been adapted for gelation of different types of 

nanocrystals and ligand combinations, precise structural control is frustrated by fast 

aggregation kinetics that typically lead to sedimented gels or sintering into continuous 

wire-like networks. Inducing controlled gelation using chemical linking is a viable strategy 

to circumvent these challenges, but this approach is limited to specific surface chemistries 

that are not easily adaptable across noble metals, metal chalcogenides, and metal oxides 

unless a suitable ligand exchange is found, or a new ligand-linker combination is designed. 

Recen efforts to generalize nanocrystal gelation leverage electrostatic interactions to 

mediate the assembly of different single-component and composite gels.57,58 However, 

non-specific physical interactions remain largely unexplored in nanocrystal gel systems 

despite their potential to facilitate assembly of different nanocrystal sizes, complex shapes, 

hybrid nanocrystals, and combinations thereof.  

Depletion attractions are physical and purely entropic forces that offer a general 

tunable strategy to assemble colloidal gels that does not depend on the composition and 

surface chemistry of the building blocks. In principle, the strength and range of attraction 

can be easily and independently controlled by changing the relative sizes of the primary 

colloid and the smaller cosolute (depletant) and/or the depletant concentration. 
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Experimental soft material systems such as polymer microspheres109,132-135 and surfactant-

stabilized emulsions136 have leveraged the intrinsic versatility of depletion attractions to 

form gels with different colloids in the presence of the same depletant and vice versa, but 

this capability has not been demonstrated with inorganic materials, especially 

nanostructured ones. Moreover, the strategic selection of particle shape, which dictates the 

geometry of densest packing and therefore determines the magnitude of the overlap 

excluded volume, allows further control of the strength of attractions and imparts 

directionality to the interaction.137-139 In particular, this shape-dependence has been used to 

selectively aggregate faceted particles in mixed dispersions and separate them from 

spherical particles.137,138 While depletion-mediated superlattice assembly of microcubes,140 

nanoprisms,141 and nanopolyhedra142 has been studied, to our knowledge, gelation with 

faceted particles has not been reported before.  

In this work, we demonstrate a universal approach to nanocrystal gelation using 

depletion attractions. We expand on a protocol that we developed previously143 based on 

the combination of long-range electrostatic repulsions and polymer-mediated short-range 

depletion attractions. As a model system, we use metal oxide nanocrystals of similar size, 

but different compositions and shapes: iron oxide (FeOx) spheres, tin-doped indium oxide 

(Sn:In2O3) spheres, and fluorine,tin-codoped indium oxide (F,Sn:In2O3) cubes. FeOx, 

Sn:In2O3, and F,Sn:In2O3 gels were assembled by adding the same polyethylene glycol 

(PEG) depletant to charge-stabilized nanocrystal dispersions in acetonitrile. We assess our 

proposed gelation mechanism via PEG-induced depletion attractions and rationalize the 

phase behavior observed in all three systems with theoretical predictions of the phase 

behavior of the nanocrystal-depletant mixture. The gelation thresholds for Sn:In2O3 and 

FeOx spheres are in quantitative agreement and do not depend on the nanocrystal 

composition. Consistent with calculated spinodal boundaries for spherical and cubic 

colloids, F,Sn:In2O3 nanocubes form a gel at a lower PEG concentration than Sn:In2O3 

nanospheres. Small-angle X-ray scattering (SAXS) confirms that the gels form percolated 

networks that scatter as mass fractals. Samples prepared with lower PEG concentrations 
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remain flowing dispersions and appear by SAXS as dispersed nanocrystals with minimal 

clustering, as predicted theoretically 

EXPERIMENTAL METHODS 

Synthesis of Iron Oxide (FeOx) Nanocrystals 

FeOx nanocrystals were synthesized in an inert environment using a standard 

Schlenk line technique by following an established colloidal method previously published 

in the literature.144  Briefly, 1.325 g (15 mmol) of iron (III) oxide, 16.95 g (60 mmol) of 

oleic acid, and 37.5 g of octadecene were mixed in a round bottom flask and degassed for 

one hour at 120 °C. Then, the mixture was heated to 320 °C to reflux under nitrogen and 

left to react for one hour. Once the reaction flask was cooled to 70 °C, 20 mL of toluene 

were added to dilute the solution. To recover and purify the nanocrystals, the solution was 

transferred to centrifuge tube and centrifuged at 2000 rpm for five minutes. The dark 

precipitate was discarded while the supernatant was further purified by flocculating the 

nanocrystals with reagent alcohol (antisolvent), centrifuging at 7500 rpm for five minutes, 

and redispersing the resulting precipitate in hexane. This washing procedure was repeated 

two more times. 

Synthesis of Tin-Doped Indium Oxide (Sn:In2O3) Nanocrystals 

Sn:In2O3 nanocrystals were synthesized in an inert environment using a standard 

Schlenk line technique by following a continuous slow injection colloidal method 

previously published in the literature.145  Briefly, 1.612 g (5.52 mmol) of indium (III) 

acetate, 170.34 mg (0.48 mmol) of tin (IV) acetate, and 7.5 mL of oleic acid were mixed 

in a round bottom flask and degassed at 100 °C under constant stirring for 20 min. Then, 

this precursor mixture was heated to 150 °C under nitrogen for two hours. During this step, 

the solution turned orange, which indicates the formation of indium oleate. In a separate 

round bottom flask, 13 mL of oleyl alcohol were degassed at 100 °C for two hours and 

subsequently ramped to 290 °C under nitrogen. 2.75 mL of indium oleate precursor were 
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then injected into the heated oleyl alcohol held at 290 °C at a rate of 0.2 

mL/min.   Nanocrystal growth was terminated by removing the heating mantle and cooling 

the reaction mixture by blowing air on the flask. To recover and purify the nanocrystals, 

the solution was precipitated with isopropyl alcohol (antisolvent) and centrifuged at 7500 

rpm for five minutes. The supernatant was discarded and the resulting blue pellet was 

redispersed in hexane. This step was repeated four more times. 

Synthesis of Fluorine, Tin-Codoped Indium Oxide (F,Sn:In2O3) Nanocrystals 

F,Sn:In2O3 nanocrystals were synthesized in an inert environment using a standard 

Schlenk line technique by following a continuous slow injection colloidal method 

previously published in the literature.146 Briefly, 1.387 g (4.75 mmol) of indium (III) 

acetate, 48.68 mg (5%, 0.25 mmol) of tin (IV) fluoride, and 10 mL of oleic acid were mixed 

in a round bottom flask in a nitrogen-filled glovebox. Next, the reaction flask was 

transferred to the Schlenk line and degassed at 120 °C for 15 min under constant stirring. 

5 ml of this precursor solution were injected at a rate of 0.2 mL/min into another flask 

containing 13 mL of oleyl alcohol maintained at 290 °C, vented with a 19-gauge needle 

under constant nitrogen flow. Nanocrystal growth was terminated by removing the heating 

mantle and cooling the reaction mixture by blowing air on the flask. To recover and purify 

the nanocrystals, the solution was precipitated with isopropyl alcohol (antisolvent) and 

centrifuged at 7500 rpm for 10 minutes. The supernatant was discarded and the resulting 

pellet was redispersed in hexane. This step was repeated two more times. Then, the 

nanocrystal dispersion was centrifuged at 2000 rpm for three min to remove non-

dispersible aggregates and the supernatant was collected as the final sample.  

Ligand Stripping of FeOx Nanocrystals 

The native hydrophobic ligands bound to the surface of FeOx were chemically 

removed by following a procedure reported previously.100,108 Briefly, 60 mg of nitrosonium 

tetrafluoroborate were added to a two-phase mixture containing equal volumes of 

dimethylformamide (10 mL) and FeOx nanocrystals dispersed in hexane (10 mg/ml, 10 
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mL) in a 20 mL vial. The mixture was swirled to allow nitrosonium tetrafluoroborate to 

react with the surface of FeOx and then sonicated for 30 min. The process is complete when 

the dimethylformamide layer adopts a dark brown color and the hexane layer becomes pale 

orange, visibly indicating that the FeOx nanocrystals have been transferred from the non-

polar to the polar solvent. Next, the hexane layer was removed and replaced with 10 mL of 

neat hexane to further promote the removal of the ligands and wash the bare FeOx 

nanocrystals. The mixture was sonicated for an additional 15 minutes. After discarding the 

hexane layer once more, the ligand-stripped FeOx nanocrystals were purified by 

precipitating them with toluene (antisolvent), centrifuging at 7500 rpm for five minutes, 

and redispersing them in neat dimethylformamide. This step was repeated six more times. 

To disperse ligand-stripped FeOx in acetonitrile, the colloid was precipitated and 

centrifuged once more and redispersed in neat acetonitrile or PEG in acetonitrile solution 

instead of dimethylformamide. 

Ligand Stripping of Sn:In2O3 Nanocrystals 

The native hydrophobic ligands bound to the surface of Sn:In2O3 were chemically 

removed by following a procedure reported previously.100,143 Briefly, 60 mg of nitrosonium 

tetrafluoroborate were added to a two-phase mixture containing equal volumes of 

dimethylformamide (2 mL) and Sn:In2O3 nanocrystals dispersed in hexane (50 mg/ml, 2 

mL) in a 20 mL vial. The mixture was swirled to allow nitrosonium tetrafluoroborate to 

react with the surface of Sn:In2O3 and then sonicated for 30 min. After adding 2 mL of neat 

hexane to further promote the removal of the ligands, the mixture was sonicated for an 

additional 15 minutes. The process is complete when the dimethylformamide layer adopts 

a transparent blue color and the hexane layer becomes clear, visibly indicating that the 

Sn:In2O3 nanocrystals have been transferred from the non-polar to the polar solvent. After 

discarding the hexane layer, the ligand-stripped Sn:In2O3 nanocrystals were purified by 

precipitating them with toluene (antisolvent), centrifuging at 7500 rpm for five minutes, 

and redispersing them in neat dimethylformamide. This step was repeated six more times. 

To disperse ligand-stripped Sn:In2O3 in acetonitrile, the colloid was precipitated and 
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centrifuged once more and redispersed in neat acetonitrile or PEG in acetonitrile solution 

instead of dimethylformamide.  

Ligand Stripping of F,Sn:In2O3 Nanocrystals 

The native hydrophobic ligands bound to the surface of F,Sn:In2O3 were chemically 

removed by following a procedure reported previously.105,147 Briefly, F,Sn:In2O3 dispersed 

in toluene (20 mg/mL, 2 mL) were mixed with a triethyloxonium tetrafluoroborate 

(Meerwein’s salt, 100 mg/mL, 2 mL) in anhydrous acetonitrile solution in a nitrogen 

glovebox. Upon adding the Meerwein’s salt solution, the initially transparent F,Sn:In2O3 

dispersion becomes a white and opaque solution. This mixture is stirred for 2 hours. Next, 

the white and opaque solution was transferred into a centrifuge tube and then centrifuged 

at 4500 rpm for five minutes. After discarding the supernatant, the nanocrystal pellet was 

dispersed in anhydrous dimethylformamide in the glovebox. Ligand-stripped F,Sn:In2O3 

nanocrystals were further washed by precipitating with toluene, centrifuging at 7500 rpm 

for five minutes, and redispersing in anhydrous dimethylformamide. This process was 

repeated two more times and the nanocrystals were redispersed in anhydrous acetonitrile 

or PEG acetonitrile solution after the last centrifugation step. Ligand-stripping F,Sn:In2O3 

with nitrosonium tetrafluoroborate resulted in nanocrystals that were partially dispersible 

at low concentrations and aggregated in dimethylformamide and not dispersible in 

acetonitrile. 

Nanocrystal Gel Assembly 

The assembly of FeOx, Sn:In2O3, and F,Sn:In2O3 nanocrystal gels and flowing 

dispersions with PEG was adapted from a procedure that we developed recently.143 Ligand-

stripped nanocrystals (286 mg/mL for Sn:In2O3 and F,Sn:In2O3 and 200 mg/mL for FeOx) 

were dispersed in a 2.26 mg/mL PEG in acetonitrile solution and stirred overnight. This 

nanocrystal-PEG dispersion is referred to as the stock solution. It is recommended to 

disperse the nanocrystals in neat acetonitrile or PEG in acetonitrile solution on the same 

day or the day after ligand-stripping since the nanocrystals won’t be dispersible in 
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acetonitrile after being stored in dimethylformamide for a few days. To prepare samples of 

fixed ɸc and varying [PEG], different PEG amounts were added to 300 µL of the stock 

solution (Table 3.1). Once PEG was fully dissolved, small aliquots were injected into 

capillaries for SAXS measurements. Gels were formed after leaving the samples 

undisturbed for 48 hours (FeOx and F,Sn:In2O3) and 7 days (Sn:In2O3).  

The nanocrystal volume fraction of ɸc = 0.04 was estimated as 𝜙� =
[��]
���

	, where 

[NC] is the nanocrystal concentration and 𝜌NC is the bulk density of the metal oxide  (𝜌	= 

7.14 g/mL for Sn:In2O3 and F,Sn:In2O3 and 5.07 g/mL for FeOx). The depletant 

concentration [PEG], in mass per volume, is normalized by the polymer overlap 

concentration [𝑃𝐸𝐺]∗ = 3𝑀�/(4𝜋𝑅��𝑁 )	, where 𝑀� = 1100	g/mol is the polymer 

molecular weight, 𝑅� = 0.98	nm 106,143is the polymer radius of gyration, and 𝑁  is 

Avogadro’s number. 

Table 3.1. Summary of different quantities used to prepare nanocrystal-PEG 
mixtures 

Nanocrystal mPEG 
(mg) 

[PEG] 
(mg/mL) [PEG]/[PEG]* State 

FeOx or 
Sn:In2O3 

290 967 2.09 Gel 
105 351 0.758 Flowing dispersion 
26.4 87.9 0.190 Flowing dispersion 
0.68 2.26 0.005 Flowing dispersion 

F,Sn:In2O3 
105 351 0.758 Gel 
0.68 2.26 0.005 Flowing dispersion 

Small-angle X-ray Scattering 

SAXS measurements were performed in transmission configuration with a sample-

to-detector distance of 1.085 m on a SAXSLAB Ganesha instrument using Cu K𝛼 

radiation. Dilute nanocrystal dispersions, nanocrystal-PEG flowing dispersions, and 

nanocrystal-PEG gels were enclosed in flame-sealed glass capillaries (Charles-Supper 

Company, Boron Rich, 1.5 mm diameter, 0.01 mm wall thickness). A capillary containing 

neat acetonitrile was used for background subtraction. Scattering patterns were calibrated 

using a silver behenate standard101 and were converted into 1D data by circular averaging 
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using the Igor Pro-based Nika102 software for two-dimensional data reduction. The Irena103 

tool suite for modeling and analysis in Igor Pro was used for background subtraction and 

for fitting the nanocrystal form factor following a procedure described in a previous 

publication.51  More details on SAXS data analysis are reported in Appendix 2. 

Electron Microscopy 

Electron microscopy was performed on a Hitachi S5500 SEM/STEM instrument. 

Nanocrystals were imaged in bright-field scanning transmission electron (STEM) mode at 

a 30 kV accelerating voltage. Samples were drop-cast on Type-A ultrathin carbon copper 

TEM grids (Ted Pella, 01822, 400 mesh) from dilute nanocrystal dispersions in hexane. 

Fourier Transform Infrared Spectroscopy 

FTIR spectroscopy was carried out in transmission geometry with a 4 cm-1 

resolution and an average of 120 scans on a Bruker Vertex 70 spectrometer. Dilute 

dispersions (∼ 1 mg/mL) of as-synthesized and ligand-stripped FeOx, Sn:In2O3, and F, 

Sn:In2O3 nanocrystals were dropcast onto undoped, double side polished silicon substrates 

(Virginia Semiconductor). Ligand-stripped nanocrystal films were annealed at 200 ℃ 

under inert atmosphere for at least 12 hours to remove any residual dimethylformamide 

from the sample. A neat silicon substrate was used for background subtraction. The 

substrates were cleaned by sonicating them in chloroform, acetone, and finally isopropanol 

for at least 30 minutes prior to dropcasting the nanocrystal films. 

Zeta Potential 

Zeta potential measurements were conducted in a Malvern Zetasizer Nano ZS. 

Dilute dispersions (∼ 1 mg/mL) of ligand-stripped FeOx, Sn:In2O3, and F, Sn:In2O3 

nanocrystals were filtered through a polytetrafluoroethylene membrane (0.45 µm pore size, 

PALL) and transferred to a glass cuvette. Zeta potential values were collected by 

electrophoresis using an immersed dip cell (ZEN1002, Malvern).  
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RESULTS AND DISCUSSION 

FeOx, Sn:In2O3, and F,Sn:In2O3 nanocrystals of uniform size and shape (Figure 

3.1a-c) were synthesized using established colloidal methods. The native, hydrophobic 

oleate ligands on the surface of the metal oxides were chemically removed using 

tetrafluoroborate salts100,105 to produce charge-stabilized nanocrystal dispersions in polar 

solvents. Fourier transform infrared spectroscopy of the resulting nanocrystal dispersions 

shows the disappearance of the characteristic -CH2 stretches from oleate, which is 

indicative of effective ligand removal (Figure 3.2). Zeta potential measurements confirm 

that long-range electrostatic repulsions originating from the metal oxide surface stabilize 

the nanocrystals (z = +38, +41, and +42 mV for FeOx, Sn:In2O3, and F,Sn:In2O3, 

respectively, Figure 3.3). We use SAXS to probe the colloidal stability of these dispersions 

and find that they scatter as dilute and stable individual spheres and cubes (Figure 3.1d-f). 

We attribute the slight deviations in the low q scattering, relative to the simulated form 

factors, to weak interparticle interactions.148 Suppressing aggregation in the initial 

dispersion, before adding depletion attractions, is crucial to avoid introducing uncontrolled 

structures that would ultimately be convoluted with longer length scale structures formed 

by depletion-induced assembly. In addition, the average nanocrystal size and size 

distribution were estimated by fitting the SAXS of the dispersions: the radii of FeOx and 

Sn:In2O3 spheres are  4.63 ± 0.16 nm and 5.34 ± 0.48 nm, respectively, while the half edge 

length of F,Sn:In2O3 cubes is 4.36 ± 0.45 nm. Because the nanocrystals are of similar and 

uniform size, the same depletant can be used to induce attractions with an approximately 

equal range relative to the size of the nanocrystal.  
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Figure 3.1: Morphology, size, and colloidal stability of nanocrystals. 
Scanning transmission electron microscopy (STEM) image of as-synthesized a) FeOx, b) 
Sn:In2O3, c) and F,Sn:In2O3 nanocrystals. Scale bar = 20 nm. SAXS of dilute (∼1 mg/mL) 
charge-stabilized nanocrystal dispersions in acetonitrile: d) FeOx and spheroid model fit (R 
= 4.63 ± 0.16 nm), e) Sn:In2O3 and spheroid model fit (R = 5.34 ± 0.48 nm), and f) 
F,Sn:In2O3 and cuboid model fit (L = 4.36 ± 0.45 nm). R is the radius of a sphere and L is 
half the edge length of a cube.  
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Figure 3.2: FTIR of nanocrystal before and after ligand-stripping. 
a) Ligand-capped (orange) and ligand-stripped (yellow) FeOx nanocrystals, b) ligand-
capped (dark blue) and ligand-stripped (light blue) Sn:In2O3 nanocrystals, and c) ligand-
capped (dark green) and ligand-stripped (light green) F,Sn:In2O3 nanocrystals. 
Disappearance of -CH2 stretches (2925 and 2854 cm-1) from oleic acid104 in the ligand-
stripped spectra indicate effective ligand removal. The sloping profile in the Sn:In2O3 
nanocrystal spectra and intense peak at ~ 2700 cm-1 in the F,Sn:In2O3 nanocrystal spectra 
correspond to the localized surface plasmon resonance. 

 

 

Figure 3.3: Zeta potential of ligand-stripped nanocrystal dispersions. 

Zeta potential of ligand-stripped FeOx (z = +38 mV, orange), Sn:In2O3 (z = +41 mV, blue), 
and F,Sn:In2O3 (z = +42 mV, green) nanocrystal dispersions. 
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Depletion gels were formed by adding PEG depletant (1 kDa number average 

molecular weight Mn, radius of gyration Rg = 0.98 nm106,143) to dispersions in acetonitrile 

at a fixed nanocrystal volume fraction (ɸc = 0.04). We recently showed that PEG having 

this Mn effectively drives the gelation of Sn:In2O3 nanocrystal spheres (R = 2.83 nm, ɸc = 

0.04) dispersed in acetonitrile at a PEG concentration ([PEG]) of 587 mg/mL. In this sutyd, 

the size ratio of depletant to nanocrystal is smaller by nearly a factor of 2, which shortens 

the effective length scale and lowers the strength of the depletion attractions. Therefore, 

gelation occurs at higher [PEG]: 967 mg/mL for FeOx and Sn:In2O3, respectively (insets in 

Figure 3.4). F,Sn:In2O3 cubes gel at a lower [PEG] (351 mg/mL), which we attribute to 

their ability to pack face-to-face, leading to larger overlap excluded volumes and therefore 

stronger depletion attractions compared to the spheres. Mixing the nanocrystals with lower 

[PEG] resulted in stable flowing dispersions (Table 3.1). Likewise, a solution of pure PEG 

in acetonitrile at the equivalent concentration used to induce gelation remained transparent 

and did not show signs of precipitation (Appendix 2), suggesting that gelation arises due 

to PEG-mediated attractions between nanocrystals.  

 

 

Figure 3.4: Structure factor of depletion gels. 
S(q) of nanocrystal gels with photographs of the corresponding vials (insets) for a) FeOx, 
b) Sn:In2O3, and c) F,Sn:In2O3 nanocrystals. 

The gel structure was probed with SAXS to confirm the assembly of fully 

percolated networks (Figure 3.4). In particular, we isolate the structure factors S(q) of the 
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gels by dividing the total scattering intensity by the form factors of the corresponding 

nanocrystals (Appendix 2). S(q) diverges as q approaches zero for all samples and seems 

to follow a power law scaling characteristic of scattering from a mass fractal object.41,113 

To validate this observation and determine the number of structural length scales in the 

networks, we performed a derivative analysis (Figure 3.5). We find that each of the three 

gels scatters as a mass fractal with a single characteristic length scale. This single length 

scale suggests that the gel networks are formed as a result of depletion attractions between 

discrete nanocrystals, rather than depletion attractions between clusters of bridged 

nanocrystals as found previously for smaller Sn:In2O3 nanocrystals.143 The fractal 

dimensions of the networks can be extracted from power law fits to S(q) in the region q < 

0.03 Å-1 (Figure 3.6). We obtained fractal dimensions of 2.0 for a FeOx nanocrystal gel and 

1.7 for Sn:In2O3 and F,Sn:In2O3 nanocrystal gels, all of which fall within the range of 

fractal dimensions reported in the literature for percolated colloidal gels.73,143,149,150 We also 

notice oscillatory features in S(q) at high q reminiscent of those that originate from hard 

sphere or sticky hard sphere interactions.20,151,152 The primary peak appears at q = 0.078, 

0.074, and 0.062 Å-1, for FeOx, Sn:In2O3, and F,Sn:In2O3 gels, respectively. These q values 

approximately correspond to the center-to-center distance of two adjacent nanocrystals (d= 

8.05, 8.45, and 10.1 nm, respectively), which is consistent with the characteristic length 

scale for locally dense packing between nanocrystals in the gel. 

 
 
 
 
 



 55 

 

Figure 3.5: Identification of Porod regions by derivative analysis. 
Analysis of gels composed of a) FeOx, b) Sn:In2O3, and c) F,Sn:In2O3 nanocrystals. In the 
Porod region, the total scattering intensity I(q) ∝ q-P, where P is the Porod exponent and 
reflects the dimensionality of the scattering object or assembly. Therefore, when 
dlog[I(q)]/dlog[q] is plotted with respect to q, the Porod region appears as a line of zero 
slope that intersects the y axis at a value equal to -P. The I(q) data corresponding to FeOx, 
Sn:In2O3, and F,Sn:In2O3 nanocrystal gels shown in Appendix 2 were used for this analysis. 
The derivative plots reveal that the scattering pattern of each of the three gels is composed 
of a single Porod region (i.e., only one characteristic length scale). The onset of the Porod 
region approximately occurs q < 0.03 Å-1. 
 

 

Figure 3.6: Power law fits of Porod region. 
S(q) of gels composed of a) FeOx (Df = 2.0), b) Sn:In2O3 (Df = 1.7), and c) F,Sn:In2O3 (Df 
= 1.7) nanocrystals. For a mass fractal composed of a single structural level, S(q) ∝ q-P, 
where Df = -P is the fractal dimension. The upper and lower q limits for the fits were 
selected based on the derivative analysis (Figure 3.5). 
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To assess our proposed mechanism of depletion-driven gelation and better 

understand the influence of nanocrystal shape on the gelation threshold, we compare 

theoretical predictions for the phase behavior of the nanocrystal-depletant mixture to our 

experimental observations. Phase diagrams incorporating depletion attractions for both 

spherical35 and cubic153 nanocrystals can be computed using free volume theory and scaled 

particle theory to determine the spinodal boundaries. Details of these calculations are found 

in Appendix 2. At [PEG] above the spinodal curve, a homogeneous dispersed phase of 

nanocrystals is mechanically unstable with respect to fluctuations in nanocrystal 

concentration, and the dispersion undergoes phase separation via spinodal decomposition.  

Because of the strong interparticle depletion forces, the nanocrystals typically arrest in 

percolated networks,109 so the spinodal boundary is the relevant one to compare with 

gelation in the experiments.143 For both the sphere and the cube systems, we see good 

agreement between the predicted and experimental phase boundaries as a function of 

nanocrystal volume fraction (ɸc) and [PEG] normalized by the polymer overlap 

concentration [PEG]* (Figure 3.7, Appendix 2 for wider ɸc and [PEG] ranges, and Figure 

3.8 for the FeOx nanocrystal spheres). Specifically, the nanocrystal gels lie at [PEG] above 

the spinodal, where gelation is expected, while the nanocrystal dispersions that remain 

flowing lie below the spinodal. Moreover, the phase diagrams clearly show that the gelation 

threshold is expected to occur at significantly lower [PEG] for the cubes compared to the 

spheres at all ɸc due to stronger depletion forces between flat surfaces compared to curved 

surfaces. This is confirmed in the experiments, where the Sn:In2O3 nanospheres remain 

flowing at [PEG]/[PEG]*= 0.758 while the F,Sn:In2O3 nanocubes gel.  
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Figure 3.7: Comparison of predicted phase behavior and experiments.  
Theoretical spinodal boundaries (lines) and experimental observations (points) for a) 
Sn:In2O3 nanocrystal spheres and b) F,Sn:In2O3 nanocrystal cubes. The nanocrystal volume 
fraction is denoted by ɸC, and the free polymer mass concentration [PEG] is normalized by 
the overlap concentration [𝑃𝐸𝐺]∗ = 3𝑀�/(4𝜋𝑅��𝑁 ), where 𝑀� is the polymer molecular 
weight, 𝑅� is the polymer radius of gyration, and 𝑁  is Avogadro’s number. Open circles 
represent flowing dispersion samples while filled circles represent gel samples. 
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Figure 3.8: Theoretical spinodal boundary (line) and experimental observations 
(points) for FeOx nanocrystal spheres. 

Open circles represent flowing dispersion samples while filled circles represent gel 
samples. 

Depletion attractions were sufficient to account for the observed phase behavior of 

the nanocrystal dispersions, distinct from our previous work, where bridging of 

nanocrystals by PEG was observed to induce gelation at low [PEG]. For the nanocrystals 

studied here, monitoring the time evolution of S(q) for low [PEG] samples revealed only 

limited aggregation and no evidence for extended network formation, and the dispersions 

remained readily flowing even after several weeks (Figure 3.9 and Appendix 2). Although 

PEG adsorption on the metal oxides persists, PEG-mediated bridging attractions are 

significantly weaker, likely due to size constraints and smaller nanocrystal surface-to-

volume ratios. In fact, we detect minimal clustering in all flowing dispersions. Aggregate 

sizes are only on the order of two adjacent nanocrystals (d = 19, 23, and 22 nm for FeOx, 

Sn:In2O3, and F,Sn:In2O3, respectively) and do not grow significantly until after four weeks 

(Appendix 2). We note that S(q) of the gels appears unchanged indicating the gel structures 

are not significantly changed by aging on this time scale.  
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Figure 3.9: Evolution of structure factor S(q) of Sn:In2O3 nanocrystal-PEG 
mixtures over 4 weeks. 

a) Flowing dispersion ([PEG]= 2.26 mg/mL, [PEG]/[PEG]*= 0.005), b) flowing dispersion 
([PEG]= 87.9 mg/mL, [PEG]/[PEG]*= 0.190), c) flowing dispersion ([PEG]= 351 mg/mL, 
[PEG]/[PEG]*= 0.758), and d) gel ([PEG]= 967 mg/mL, [PEG]/[PEG]*= 2.09). The broad 
peaks around q < 0.03 Å-1 in the flowing dispersions indicate the presence of small 
aggregates. The sharp peak at q ∼ 0.08 Å-1 (d = 7.8 nm) is likely due to Sn:In2O3 
nanocrystals attaching to each other before PEG adsorbs on their surface since ligand-
stripped nanocrystals are more prone to aggregate at such high concentration (ɸc = 0.04 or 
[Sn:In2O3] = 286 mg/mL). The fact that this peak is present at all [PEG] and does not evolve 
over time further supports this assertion. 
 

CONCLUSIONS AND OUTLOOK 

In conclusion, we have demonstrated a gelation strategy broadly applicable to metal 

oxide nanocrystals. Nanocrystals of similar sizes, but different compositions and shapes, 

were assembled using the same PEG depletant and solvent combination. As expected, FeOx 

and Sn:In2O3 nanocrystal spheres formed gels at the same [PEG] while F,Sn:In2O3 

nanocrystal cubes formed gels at a lower [PEG] due to the influence of shape on the 

strength of depletion attractions. Gel structure was characterized with SAXS, and our 
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experimental observations were found to be consistent with depletion-driven gelation by 

comparison to theoretically predicted phase behavior. We also showed evidence supporting 

the assembly of discrete nanocrystals rather than assembly of clusters of nanocrystals due 

to the excellent colloidal stability of our initial dispersions and the suppression of 

competing bridging attractions during the timeframe of gelation. Limiting nanocrystal 

aggregation, prior to the onset of depletion attractions, allows systematic control over the 

characteristic length scales of the microstructure in the gel. Finally, our findings motivate 

using depletion attractions to explore the connection between the gelation mechanism, the 

gel microstructure, and emergent properties. This work demonstrates the tunability and 

versatility of depletion attractions for nanocrystal assembly and provides a guide to expand 

the range of building blocks that can be used to incorporate targeted optical, electronic, or 

catalytic functionality in nanocrystal gels. Although varying nanocrystal composition and 

shape was our primary focus, within the paradigm described here, gels could be developed 

that utilize customized depletants among a wide variety of candidates (molecules, 

polymers, nanocrystals, etc), including ones that are stimuli responsive.  
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Chapter 4: Aqueous Processing and Spray Deposition of Polymer-
Wrapped Tin-Doped Indium Oxide Nanocrystals as Electrochromic 

Thin Films* 

 
Plasmonic metal oxide nanocrystals are interesting electrochromic materials 

because they display high modulation of infrared light, fast switching kinetics, and 

durability. Nanocrystals facilitate solution-based and high-throughput deposition, but 

typically require handling hazardous non-aqueous solvents and further processing of the 

as-deposited film with energy-intensive or chemical treatments. We report on a method to 

produce aqueous dispersions of tin-doped indium oxide (ITO) by re-functionalizing the 

nanocrystal surface, previously stripped of its native hydrophobic ligands, with a 

hydrophilic polymer (PAA-mPEO4). To determine conditions favoring the adsorption of 

polymer on ITO, we varied the pH and chemical species present in the exchange solution. 

The extent of polymer wrapping on the nanocrystal surface can be tuned as a function of 

the pH to prevent aggregation in solution and deposit uniform, smooth, and optical quality 

spray coated thin films. We demonstrate the utility of polymer-wrapped ITO nanocrystal 

thin films as an electrochromic material and achieve fast, stable, and reversible near-

infrared modulation without the need to remove the polymer after deposition provided that 

a wrapping density of at most 22 % relative mass is not exceeded.  

INTRODUCTION 
 Among transparent conducting oxides, tin-doped indium oxide (ITO) nanocrystals 

have attracted considerable interest over the last decade as a dynamic electrochromic 

material for next-generation smart windows.63,65,154-159 Owing to their localized surface 

plasmon resonance (LSPR) and low carrier concentration (~1020-1021 cm-3), ITO 

nanocrystals strongly absorb near-infrared (NIR) wavelengths of light between 1500 and 

 
* This chapter has been adapted with permission from a manuscript in preparation written in collaboration 
with Anthony Maho, Kendall A. Meyertons, Lauren C. Reimnitz, Brett Helms, and Delia J. Milliron. 
C.A.S.C. wrote the manuscript, conceived experiments, prepared polymer-wrapped ITO dispersions, and 
conducted SEM, DLS, FTIR, TGA, and profilometer characterizations, and analyzed the data. 
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2000 nm. This optical response can be significantly tuned as a function of the nanostructure 

of the material. Colloidal synthesis methods allow to customize the strength and range of 

NIR modulation as a function of size, shape, and concentration and distribution of tin 

dopants,1,99,145,146 while reversible electrochemical doping by subjecting ITO nanocrystals 

to an external bias achieves greater shifts in absorption intensity and frequency.63,155,159,160 

Moreover, the capacitive nature of electrochemical charging in ITO, as opposed to 

intercalative charging, leads to exceptional NIR electrochromic performance including fast 

switching kinetics, high coloration efficiency, and extended cycling stability compared to 

conventional bulk metal oxides.63,65,155 

Nanocrystal dispersions are suitable for lower cost, high throughput, and more 

energy efficient solution processing methods for thin films. Additional advantages of wet 

depositions63,65,161 that do not rely on high temperatures and ultra-high vacuum include 

compatibility with diverse substrates, especially flexible ones, and the fabrication of 

homogeneous composites with precise compositional control of the different elements. 

However, the deposition of nanocrystal thin films is typically achieved from non-aqueous, 

hazardous, and flammable solvents. Specifically, as-synthesized nanocrystals are stabilized 

by hydrophobic organic ligands and are therefore deposited from polar solvents (e.g., 

toluene, hexane, octane, etc).98,99,145 Because these insulating organic ligands obstruct 

electronic conductivity across the thin film and intimate contact with the electrolyte in 

devices, either harsh thermal or chemical post-deposition treatments162 (high temperature 

annealing and/or soaking in acidic/alkaline solutions), or the removal of ligands in solution 

before deposition using tetrafluoroborate salts,100,105 are needed. The latter yields 

nanocrystals dispersions in polar solvents such as various formamides, dimethyl sulfoxide, 

and acetonitrile, but this procedure is not suitable for directly dispersing ITO in aqueous 

media or mixtures of water and alcohol. Within this context, there is a clear need to 

diversify the solvent compatibility of inorganic nanocrystals and develop methods to 

handle ITO and other metal oxides in water and solvents of low toxicity in general. This is 

particularly relevant to deposition techniques that involve large quantities of vapor 

effluents such as spray coating,159,163 which is one of the leading candidates for the 



 63 

economically scalable and high throughput fabrication of optical quality nanocrystal thin 

films.  

So far, the primary strategy to disperse nanocrystals in aqueous solvent is to 

functionalize their surface with hydrophilic molecules. To this end, two approaches have 

mostly been explored: ligand exchange with inorganic oxoanions and polyoxometalates, 
164,165 and with polymers and other organic molecules.166-169 First, stabilizing 

semiconductor nanocrystals with inorganic ligands grants conductive pathways to the film 

along with circumventing post-deposition ligand removal and conferring additional 

properties to the composite. In particular, aqueous dispersions of ITO nanocrystals 

functionalized with polyoxoniobates enabled the direct deposition of homogeneous and 

tunable NbOx glass-ITO composites that displayed selective and dual-band (visible and 

infrared) electrochromic modulation.170,171 Nevertheless, this precursor dispersion is 

strongly alkaline, which is not necessarily suitable for all applications and composite 

assemblies, and converting the polyoxoniobate matrix into NbOx requires additional 

treatment such as high temperature annealing or dipping the composite in an acidic 

solution. On the other hand, polymer-wrapping metal oxide nanocrystals and dispersing 

them in aqueous solutions remains largely unexplored, possibility due to challenges related 

to finding a polymer that adsorbs on the metal oxide surface without restricting the electron 

transport. Notably, Mendelsberg and coworkers167 demonstrated that ligand-stripped ITO 

nanocrystals wrapped with the diblock copolymer poly(ethylene oxide)-b-poly(N,N-

dimethylacrylamide) (PEO-b-PDMA) can be dispersed in water and undergo redox 

reactions with chemical species in solution. The polymer was designed to adsorb on the 

bare ITO surface (PDMA block) and provide steric stabilization and water solubility (PEO 

block). Likewise, metal oxides can also be functionalized with a random copolymer of 

poly(acrylic acid) grafted with methoxy-terminated poly(ethylene oxide) (PAA-mPEO4), 
166 but to the best of our knowledge this polymer has not been used to functionalize ITO. 

Beyond their hydrophilic and biocompatible properties, PEO-functionalized ITO 

nanocrystals could potentially be integrated into electrochromic devices, without the need 

for additional processing steps to remove the organic layer, due to the Li+ transport 
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properties of the PEO moieties.172-174 However, more rigorous studies on how the 

morphology and properties of these thin films are influenced by the surface chemistry of 

metal oxides and polymers and the extent of polymer wrapping are needed towards the 

systematical engineering of these materials. 

In this work, we functionalize ITO nanocrystals with PAA-mPEO4 to achieve 

colloidally stable aqueous “inks” suitable for the spray coating of optical quality 

electrochromic thin films in a more energy efficient and less toxic way. We expand on the 

polymer wrapping method developed previously by Duong and coworkers166 to explore 

conditions favorable for PAA-mPEO4 adsorption on ITO and control the wrapping density 

of the polymer layer by varying the pH and species present in the exchange solution (borate 

buffer, hydroxides, or pure Milli-Q water). First, we identify a pH dependence on the extent 

of PAA-mPEO4 adsorption and thus colloid stability using a combination of transmission 

electron microscopy, dynamic light scattering, zeta potential, Fourier-transform infrared 

spectroscopy, and thermogravimetric analysis. Then, we compare the morphology and 

electrochromic behavior of thin films obtained from ITO of varying PAA-mPEO4 

wrapping densities. We find a trade-off between maximizing PAA-mPEO4 coverage and 

key electrochromic parameters including optical contrast, reversibility, and coloration 

efficiency. In spite of this, we show that wrapping densities between 10 and 22% by mass 

lead to uniform optical quality composites with an electrochromic performance comparable 

to conventional ITO films.   

EXPERIMENTAL METHODS 

ITO Nanocrystal Synthesis and Ligand Stripping 

Tin-doped indium oxide (ITO) nanocrystals were synthesized using a standard 

Schlenk line technique and under inert conditions. The synthesis was adapted from 

previously established colloidal methods.98,99 Briefly, 2.5 g (8.6 mmol) In(ac)3 and 0.225 

g (0.95 mmol) Sn(ac)2 were mixed with 10 mL of oleylamine and degassed under vacuum 

for 1 hour at 120°C. The solution was then heated to 230°C under nitrogen and was reacted 
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for 1 hour. After cooling to 60°C, 5 mL of toluene and 1 mL of oleic acid were added to 

the solution. The ITO nanocrystals were purified and recovered by adding reagent alcohol, 

centrifuging, and re-dispersing in toluene. After adding 100 µL of oleic acid to the ITO 

dispersion in toluene, four more washing cycles were performed (precipitation with reagent 

alcohol, centrifugation, re-dispersion in toluene). 

The hydrophobic ligands bound to the ITO surface were chemically removed using 

nitrosonium tetraborofluorate (NOBF4) following a procedure reported previously.100 

Briefly, NOBF4 is added to a mixture containing equal volumes of as-synthesized ITO in 

toluene and N, N-dimethylformamide (DMF) based on a 1.7:1 ITO-to-NOBF4 mass ratio. 

Ligand removal is then promoted by sonication, which leads to the transfer of bare ITO 

from toluene to DMF. The ITO is then recovered by precipitating with toluene, 

centrifuging, and re-dispersing in DMF and purified by repeating this washing cycle seven 

times.  

Polymer Wrapping Procedure 

PAA-mPEO4 random copolymer was synthesized by the Helms group as described 

in their previous publication.175 Bare ITO was polymer-wrapped by adapting methods 

previously developed for other nanocrystal and polymer compositions by Helms, Milliron, 

and co-workers.166,167 Briefly, 10 mg of PAA-mPEO4 were dissolved in 700 µL of DMF 

under gentle stirring. Once the polymer was completely dissolved, 300 µL of 90 mg/ml 

ligand-stripped ITO in DMF were added dropwise to the polymer solution (final volume 1 

mL, 10 mg of PAA-mPEO4 and 27 mg of ITO). The mixture was stirred at 400 rpm for 24 

hours and subsequently added dropwise under constant stirring to an aqueous solution (19 

mL) of either pure Milli-Q water (pH= 6.5) or 50 mM borate buffer (pH= 7.9, 8.5, or 9.1), 

which is henceforth referred to as the exchange solution. After stirring at 600 rpm for 48 

hours, the exchange solution containing PAA-mPEO4-wrapped ITO was purified with 

Milli-Q water by spin dialysis using 50 kDa Millipore Amicon Ultra centrifugal tubes. The 

final dispersion in Milli-Q water was filtered through a 0.45 µm PVDF membrane 

(Acrodisc, Pall).   
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Spray Coating 

Film of PAA-mPEO4-wrapped ITO were deposited onto 1.5 x 2.0 x 0.4 cm 

conductive FTO glass or 2.0 x 2.0 cm silicon substrates from ~8 mg/mL aqueous 

dispersions using an ExactaCoat® (Sono-Tek®) spray coater. Deposition is achieved at 

room temperature using a 0.05 mL/min flow rate, a nozzle-substrate distance of 8.5 cm, a 

carrier gas (N2) pressure of 0.90 kPa, and a nozzle moving speed of 8 mm/s following a S-

shaped motion with a spacing of 4 mm between each arc. This raster pattern is applied 10 

consecutive times, resulting in coatings with an average thickness of ~130 nm (values are 

determined on a Vecco Dektak 150+ Profiler instrument). Samples are finally dried on a 

hot plate at 120 °C for 10 min to drive water evaporation. 

Electron Microscopy 

Transmission Electron Microscopy (TEM) micrographs of the PAA-mPEO4-

wrapped ITO dispersions were captured JEOL 2010F instrument with a Schottky Field 

Emission source operated at 200 kV. Samples were prepared by dropcasting the aqueous 

dispersions on TEM grids (Pelco® ultrathin carbon-A 400 mesh grid, Ted Pella), allowing 

them to fully evaporate under ambient conditions, and subsequently wicking them with 

acetonitrile to mitigate the degradation of hydrocarbons during exposure to the electron 

beam. Scanning electron microscopy (SEM) images of the resulting PAA-mPEO4-wrapped 

ITO thin films sprayed onto silicon were captured on a Hitachi S5500 at a 15 kV 

accelerating voltage. 

Fourier-transform Infrared Spectroscopy 

FTIR spectra of polymer-wrapped ITO films sprayed onto undoped, double side 

polished silicon were recorded in transmission geometry with a Burker Vertex 70 

spectrometer. Peak intensities from PAA-mPEO4 vibrational mode reflect the relative 

polymer content across samples since dispersions of equivalent ITO concentration were 

spray coated to obtain films of similar ITO volume fraction.  



 67 

Dynamic Light Scattering and Zeta Potential 

Hydrodynamic diameter and zeta potential measurements were conducted on a 

Malvern Zetasizer Nano ZS. ITO nanocrystal dispersions were enclosed in disposable 

plastic micro cuvettes (ZEN0040, Malvern) for size measurements and in glass cuvettes to 

record zeta potentials with a dip cell (ZEN 1002, Malvern).  

Thermogravimetric Analysis 

The amount of PAA-mPEO4 coating the nanocrystal surface was determined by 

TGA (Mettler Toledo TGA 2). In a typical experiment, 100 µL of polymer-wrapped ITO 

dispersion was added to a disposable aluminum crucible and the water evaporated under 

vacuum at room temperature over 24 hours. Samples were run in air from 30 ºC to 600 ºC 

at 5 ºC/min ramp rate.  

Electrochemical Modulation 

A custom-built spectroelectrochemical cell connected to a potentiostat (Bio-logic 

VMP3) and spectrometer (ASD Quality Spec Pro) was used for electrochemical and in-

situ optical measurements in an Ar glovebox. The electrochromic performance of the spray 

coated ITO films was measured in a three-electrode and half-cell configuration, in which 

the ITO film deposited on FTO-coated glass (working electrode) and Li foil (both counter 

and reference electrode) are immersed in an electrolyte (1 M LiTFSI in tetraglyme). Optical 

modulation is induced by switching the applied potential between +4.0 (transparent state) 

and +1.5 V vs. Li/Li+ (dark state). Each potential is held for 1 min. To measure coloration 

efficiency, samples were first fully bleached by applying a +4.0 V potential bias for 10 

min, then subjected to amperostatic coulometry at -15 µA (corresponding to 10 times the 

value of the leakage current) during which consecutive absorbance spectra were recorded 

at a specific time interval of 5 s until the electrode reached a +1.5 V potential value 

corresponding to a fully darkened state.  
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RESULTS AND DISCUSSION 

As-synthesized ITO nanocrystals, stabilized with hydrophobic ligands, were 

transferred into aqueous media after performing a two-step ligand-exchange procedure: 

ligand removal with NOBF4 to produce stable ITO dispersions in DMF followed by 

polymer wrapping with PAA-mPEO4 in water. Polymer wrapping was performed in 

aqueous solutions of varying pH (Milli-Q water at pH= 6.5 and borate buffers at pH= 7.9, 

8.5, and 9.1) to explore conditions favorable for both the colloidal stability of ITO and 

electrochromic modulation when further processed into thin films. To produce the final 

colloid (Figure 4.1, insets), each exchange solution containing PAA-mPEO4-wrapped ITO 

was purified via spin-dialysis with Milli-Q water. Characterization of the ITO morphology 

after each surface modification steps confirmed that our ligand exchange procedure is not 

destructive. TEM images of the final dispersions (Figure 4.1) show that, in all four cases, 

the original morphology of the ITO (Figure 4.2) is conserved without signs of etching. The 

only noticeable difference between these TEMs is the presence of aggregates in the 

dispersion obtained from the exchange solution at pH= 9.1 (Figure 4.1a), likely due to poor 

PAA-mPEO4 coverage.  
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Figure 4.1: TEM of ITO aqueous dispersions after PAA-mPEO4 wrapping. 
a) pH= 9.1 borate buffer, b) pH= 8.5 borate buffer, c) pH= 7.9 borate buffer, and d) pH= 
6.5 Milli-Q water. Scale bars = 20 nm. Inset: photograph of the corresponding vial. 

 

 

Figure 4.2: TEM images comparing the morphology of ITO nanocrystals before and 
after ligand removal. 

a) As-synthesized ligand-capped and b) ligand-stripped. Scale bar = 25 nm. 
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To investigate the influence of pH on the colloidal stability of PAA-mPEO4-

wrapped ITO, we measured the hydrodynamic diameter and zeta potential of the four final 

dispersions described above. As shown in Figure 4.3a, transferring PAA-mPEO4-wrapped 

ITO into pure Milli-Q water and mildly alkaline borate buffers (pH= 7.9 and 8.5) yields a 

hydrodynamic diameter of 10 nm while raising the pH to 9.1 leads to a larger hydrodynamic 

diameter (28 nm) with a broader distribution. Considering that the hydrodynamic diameter 

of both ligand-capped and ligand-stripped ITO nanocrystals is ~7 nm (see Chapter 2 or 

Appendix 3), we determined that aqueous exchange solutions at pH= 6.5, 7.9, and 8.5 

stabilize discrete ITO nanocrystals whereas the exchange solution at pH= 9.1 favors the 

formation of ITO aggregates. Zeta potential measurements further support this result, since 

the magnitude of the zeta potential of the dispersion obtained from the exchange solution 

at pH= 9.1 is lower than 20 mV and thus indicative of poor colloidal stability, unlike the 

magnitude of the other three dispersions (Figure 4.3b). In addition, a negative zeta potential 

value for all four PAA-mPEO4-wrapped ITO dispersions provides evidence of polymer 

coordination to the ITO surface, since the anionic carboxylate groups on the PAA backbone 

can coordinate to the positive charges on the ligand-stripped ITO surface (see Chapter 2 or 

Appendix 3). However, introducing other anionic species in the aqueous exchange solution 

(e.g., borate or hydroxide) could hinder the stabilization of ITO by PAA-mPEO4 wrapping 

if they competitively adsorbed onto the surface. 
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Figure 4.3: Colloidal stability of ITO aqueous dispersions after PAA-mPEO4 
wrapping in exchange solutions of different pH. 

a) Hydrodynamic diameter comparison and b) zeta potential comparison. 
 

To further understand the exchange solution conditions that mediate the interaction 

between PAA-mPEO4 and the ITO surface, we tracked and quantified polymer adsorption 

by FTIR and TGA. We detect PAA-mPEO4 adsorption on the ITO surface and find that as 

the pH of the exchange solution increases, the amount of PAA-mPEO4 wrapping decreases. 

First, examining the 2400-4000 cm-1 spectral region by FTIR reveals a gradual decrease in 

the intensity of CH2 stretches (2900 cm-1) from both PAA and PEO moieties176,177 as pH 

increases (Figure 4.4a). In the 1400-1750 cm-1 spectral region, C=O stretches are 

significantly weaker compared to pure PAA-mPEO4 (Appendix 3), suggesting that most of 

the carboxylic acid groups in PAA are deprotonated (Figure 4.4b).178,179 In fact, the bands 

characteristic of asymmetric and symmetric carboxylate stretches appear at 1574 and 1452 

cm-1, respectively, and indicate carboxylate-metal bridging coordination on the ITO 

surface given a separation of Δν= 122 cm-1.179 Moreover, as pH increases, we note the 

gradual weakening of C-O-C stretches from PEO176 (1140 cm-1) accompanied by the 

emergence of borate bands: B-OH stretches from tetrahedral B(OH)4- around 1030 cm-1 
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(the broadness of the peak is likely due to additional contributions from In-OH and Sn-OH 

vibrational modes180) and B-O stretches from trigonal (BOH)3 around 1412-1354 cm-1 (see 

Appendix 3 for borate FTIR reference).181-183 These borate peaks are particularly 

predominant in the spectrum of the ITO dispersion processed from the exchange solution 

at pH= 9.1. Based on these FTIR results, we infer that borate anions compete with PAA-

mPEO4 for adsorption sites on the ITO surface and significantly prevent polymer 

adsorption when the buffer pH is around 9.1. Since the pKa of boric acid is close to 9.1,184 

we hypothesized that the concentration of borate anions at pH < 9.1 would decrease, thus 

improving the likelihood of PAA-mPEO4 adsorption relative to borate. Although borate 

adsorption is favored at pH > 9.1, it is important to note that borate alone does not provide 

sufficient electrostatic stabilization since ITO dispersions prepared in the absence of 

polymer exhibit significant aggregation and precipitate out of solution in a matter of hours 

(Appendix 3). Therefore, the extent of electrostatic plus steric repulsion that PAA-mPEO4 

wrapping provides is key to ensure the colloidal stability of ITO aqueous dispersions over 

extended periods of time and even months. Quantifying polymer wrapping in these four 

dispersions by TGA further supports our claim, since the weight loss associated with the 

thermal decomposition of PAA-mPEO4 decreases as pH increases: 28 % weight loss for 

pH= 6.5, 22 % weight loss for pH= 7.9, 18 % weight loss for pH= 8.5, and 10 % weight 

loss for pH= 9.1 (Figure 4.4c). 
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Figure 4.4: PAA-mPEO4 adsorption on ITO is influenced by the pH of the exchange 
solution. 

a) FTIR spectra showing a decrease in CH2 stretch intensity with increasing pH. The 
sloping profile in the spectra is caused by absorption due to localized surface plasmon 
resonance, b) FTIR spectra showing a decrease in C-O-C stretch intensity and the 
emergence of borate vibrational modes with increasing pH, and c) TGA confirming a 
decrease in weight loss due to PAA-mPEO4 decomposition with increasing pH. FTIR 
spectra were arbitrarily offset for clarity. Relative peak intensities are representative of 
PAA-mPEO4 content since samples were prepared from dispersions having the same ITO 
concentration and resulted in films of similar thickness. 

To deconvolute the influence of pH from the presence of borate anions on PAA-

mPEO4 adsorption, we performed the wrapping procedure in exchange solutions 

containing potassium hydroxide at two different pHs (8.3 and 12.4). The exchange solution 

at pH= 8.3 produces an ITO dispersion with a PAA-mPEO4 wrapping density comparable 

to the wrapping density of the dispersion processed in Milli-Q water at pH= 6.5 (30 % 

weight loss by TGA, Figure 4.5), rather than the one obtained for pH= 8.5 with borate (18 

% weight loss by TGA). The FTIR spectra of the samples obtained from aqueous solution 

pH= 6.5 and 8.3 are also in agreement (Figure 4.5). It is important to note that PAA-mPEO4 

wrapping of ITO in a phosphate buffer exchange solution at pH= 6.5 led to the irreversible 

aggregation of ITO and precipitation, which is why we were not able to control for the 

presence of additional anions at this pH. Nonetheless, the exchange solution at pH= 12.4 
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resulted in an ITO dispersion with a PAA-mPEO4 wrapping density (8 % weight loss by 

TGA) comparable to the pH= 9.1 borate buffer case with FTIR bands characteristic of 

indium-hydroxyl coordination at 1100 cm-1 and O-H around 1630-1620 cm-1 instead of 

PAA-mPEO4.180 Therefore, as observed with borate buffer exchange solutions, hydroxide 

anions in solution compete with PAA-mPEO4 for coordination sites on the ITO surface and 

significantly inhibit polymer adsorption above a threshold pH. The ability to tune PAA-

mPEO4 absorption on the ITO surface is thus not unique to borate anions; however, using 

borate buffer instead of hydroxide exchange solutions is preferred to avoid etching the ITO.  

 

Figure 4.5: PAA-mPEO4 adsorption on the ITO surface is inhibited by raising the 
pH of a potassium hydroxide exchange solution. 

a) FTIR comparison of ITO functionalized in pH= 8.3 and 12.4 solutions highlights a 
decrease in CH2 stretch intensity – the sloping profile in the spectra is caused by absorption 
due to localized surface plasmon resonance, b) FTIR comparison of ITO functionalized in 
pH= 8.3 and 12.4 exchange solutions highlights a decrease in C-O-C and carboxylate 
stretch intensity, and c) TGA confirms a significant decrease in PAA-mPEO4 adsorption 
when ITO is functionalized in pH= 12.4 solution (8 % relative mass) compared to when 
ITO is functionalized in pH= 8.3 solution (30 % relative mass). FTIR spectra were 
arbitrarily offset for clarity. Relative peak intensities are representative of PAA-mPEO4 
content since samples were prepared from dispersions having the same ITO concentration 
and resulted in films of similar thickness. 

PAA-mPEO4-wrapped ITO dispersions (~8 mg/mL) were used as aqueous “inks” 

to produce uniform films (~130 nm) on 1.5 x 2.0 cm substrates through ultrasonic spray 



 75 

deposition under ambient conditions (room temperature and atmospheric pressure) by 

applying a specific spray pattern at nozzle-substrate distance of 8.5 cm. SEM top-view 

images of ITO films show a complete coverage of the substrates (Figure 4.6). Film 

morphology is directly affected by the colloidal stability of the sprayed “inks”: aggregated 

colloids (obtained from exchange solution at pH= 9.1) produce rough layers with obvious 

porosity (Figure 4.6a) while stable dispersions of discrete ITO nanocrystals (obtained from 

exchange solutions at lower pH) lead to smooth and uniform optical quality films (Figure 

4.6b-d). Atomic force microscopy measurements further confirm the decrease of mean 

roughness Ra values for colloidally stable precursor inks (Appendix 3). 

 
 

Figure 4.6: SEM of ITO films spray coated onto silicon substrates from aqueous 
dispersion after PAA-mPEO4 wrapping. 

a) pH= 9.1 borate buffer, b) pH= 8.5 borate buffer, c) pH= 7.9 borate buffer, and d) pH= 
6.5 Milli-Q water. Scale bar = 100 nm. 
 

The electrochromic behavior of ITO films, with varying PAA-mPEO4 wrapping 

densities, spray coated onto FTO glass was investigated. Spectroelectrochemical 
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measurements (Figure 4.7) were conducted in a half cell configuration with the PAA-

mPEO4-ITO film (working electrode) and lithium foil (counter and reference electrodes) 

immersed in 1 M LiTFSI in tetraglyme electrolyte solution. First, the ITO films are 

bleached from their open circuit voltage state (black curve) to a fully transparent state (solid 

blue curve) by applying +4.0 V vs. Li/Li+ and then darkened in the NIR by charging at 

+1.5 V (solid red curve). We observe that the amplitude of NIR modulation, measured at 

λ= 1900 nm, for the first electrochemical charging/discharging cycle (solid lines in Figure 

4.7) is directly correlated to the PAA-mPEO4 content in the ITO films. Optical contrast 

decreases as the relative polymer-to-ITO content in the film, directly related to the 

wrapping density on the dispersed ITO and the exchange solution conditions, increases: 39 

% (∆T= 75-36, Figure 4.7a) for the PAA-mPEO4-ITO dispersion obtained from exchange 

solution pH= 9.1, 34 % (∆T= 72-38, Figure 4.7b) from exchange solution pH= 8.5, 31 % 

(∆T= 70-39, Figure 4.7c) from exchange solution pH= 7.9, and only 17 % (∆T= 59-42, 

Figure 4.7d) from exchange solution pH= 6.5. After the second potentiostatic cycle, the 

effect of polymer wrapping density on optical modulation becomes more significant 

(dotted lines in Figure 4.7). While the film with the highest PAA-mPEO4 wrapping density 

cannot be bleached back to its initial fully transparent state (2 % contrast or ∆T= 45-43, 

Figure 4.7d), ITO films with lower wrapping density exhibit large and stable contrasts (39 

% or ∆T= 75-36 in Figure 4.7a, 33 % or ∆T= 72-39 in Figure 4.7b, and 27 % or ∆T= 68-

41 in Figure 4.7c). These results suggest that exceeding a PAA-mPEO4 wrapping density 

threshold on the ITO (of at least 28 % by relative mass) hinders the electrochromic 

reversibility of the composite film. To distinguish between the impact of PAA-mPEO4 

adsorption and the persistence of borate anions on the optical modulation, we recorded the 

spectroelectrochemical behavior of films deposited from PAA-mPEO4-wrapped ITO 

processed in potassium hydroxide exchange solutions (Figure 4.8). Films of ITO 

dispersions processed in the absence of borate with a wrapping density of 30 % relative 

mass exhibit narrow and irreversible optical contrast (10 % or ∆T= 55-45). Conversely, 

films of ITO dispersions processed in the absence of borate with a wrapping density of 8 

% relative mass achieve large and stable optical contrast (43 % or ∆T= 73-30).  



 77 

 

Figure 4.7: Electrochromic modulation of ITO films spray coated onto FTO glass 
from ITO aqueous dispersion after PAA-mPEO4 wrapping.  

a) pH= 9.1 borate buffer, b) pH= 8.5 borate buffer, c) pH= 7.9 borate buffer, and d) pH= 
6.5 Milli-Q water. Transmittance spectra were recorded after applying 4.0 V (“bleached” 
state, blue curves) and 1.5 V (“darkened” state, red curves), referenced to a Li/Li+ electrode 
in 1.0 M LiTFSI in tetraglyme, from the initial as-deposited state (black curves) at open 
circuit voltage. Solid lines correspond to the first potentiostatic “darkened-bleached” 
modulation cycle, and dotted lines correspond to the second cycle. 
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Figure 4.8: Electrochromic modulation of ITO films spray coated onto FTO glass 
from ITO aqueous dispersion after PAA-mPEO4wrapping in potassium 
hydroxide exchange solution. 

a) pH= 12.4 and b) pH= 8.3. Transmittance spectra were recorded after applying 4.0 V 
(“bleached” state, blue curves) and 1.5 V (“darkened” state, red curves), referenced to a 
Li/Li+ electrode in 1.0 M LiTFSI in tetraglyme, from the initial as-deposited state (black 
curves) at open circuit voltage. Solid lines correspond to the first potentiostatic “darkened-
bleached” modulation cycle and dotted lines correspond to the second cycle. 
 

Coloration efficiency (CE), a measure of the change in optical density ∆OD per 

inserted charge density ∆Q, was obtained by fitting the linear region of the ∆OD vs. ∆Q 

curve (Figure 4.9). PAA-mPEO4 wrapping on the ITO surface does not qualitatively 

diminish the electrochromic performance expected for capacitive charging of plasmonic 

metal oxides nanocrystals.61,63,65  The four films deposited from ITO dispersions exposed 

to Milli-Q water and borate buffers exhibit CE values of similar order of magnitude as the 

values previously reported for bare ITO nanocrystal films: 535, 587, 673 and 802 cm²/C in 

order of decreasing PAA-mPEO4 wrapping density (or increasing exchange solution 

pH).185,186 In addition, we observe that PAA-mPEO4 wrapping density on ITO is inversely 

correlated to the CE of the resulting films. For instance, tracking the evolution of ∆OD 

over time (Appendix 3) shows that reaching a PAA-mPEO4 wrapping density of 28 % 

relative mass leads to slower rate of coloration (∆OD= 0.14 is reached after 600 s) relative 

to the other three films (∆OD= 0.24, 0.28, and 0.32, in order of decreasing polymer 

wrapping density, is reached after 300 s) for the same amount of inserted charge (~1.4 
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mC/cm2). Quantitative comparison of the CE values in this study to other reported values 

is not our goal, since CE could be strongly affected by film processing variabilities and the 

electrolyte composition. 

 

Figure 4.9: Coloration efficiency curves.  
ITO films spray coated onto glass substrates from aqueous dispersion after PAA-mPEO4 
wrapping in different exchange solutions. 

Table 4.1: Influence of PAA-mPEO4 wrapping conditions on colloidal stability of 
ITO dispersions and electrochromic modulation of composite films. 

Optical contrast and CE are measured at λ= 1900 nm. 

 
Exchange solution  Zeta 

potential 
(mV) 

Polymer 
density 

(%) 

∆T (%)  CE 
(cm²/C) 

Reversible 
electrochromism? 1st 

cycle 
2nd 

cycle 
pH= 9.1 (borate) -10 10 39  39  802 Yes 
pH= 8.5 (borate) -27 18 34  33  673 Yes 
pH= 7.9 (borate) -22 22 31  27  587 Yes 
pH= 6.5 (Milli-Q) -28 28 17  2  535 No 

 
In view of the results summarized in Table 4.1, considering the extent of PAA-

mPEO4 wrapping on the ITO surface is crucial to achieve a compromise between colloidal 

stability and optimal electrochromic performance. In this system, an ITO dispersion with 

PAA-mPEO4 wrapping of 18 % relative mass promotes colloidal stability without 

significantly inhibiting the optical modulation, coloration efficiency, and 
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charging/discharging kinetics of the resulting film compared to the best performing film 

obtained from an aggregated ITO dispersion (10 % relative mass). Furthermore, cyclic 

voltammetry (Appendix 3) reveals that the ITO film with the highest PAA-mPEO4 

wrapping density (28 % relative mass) exhibits a notably lower current density than the 

other three cases (10, 18, and 22 % relative mass). Given that PAA- and PEO-based 

polymers are widely used as solid electrolytes to enhance Li+ transport,172 we suspect that 

excessive wrapping with electronically insulating PAA-mPEO4, could result in poor 

contact between ITO neighbors in the film and restrict electron conduction even more 

severely. Although beyond the scope of this work, further investigations would help 

elucidate the charge transport limitations of incorporating PAA-mPEO4 into plasmonic 

nanocrystal films for electrochromic windows and other electrochemical devices. We 

envision that such studies could even motivate the design and implementation of other co-

polymers to circumvent the current disadvantages of our system.  

CONCLUSIONS AND OUTLOOK 

We developed a method to produce colloidally stable dispersions of PAA-mPEO4-

wrapped ITO nanocrystals in water and demonstrated an environmentally conscious 

(“green”) processing alternative for electrochromic thin films via ultrasonic spray 

deposition. We investigated the influence of the exchange solution conditions (pH and 

anionic species) on the extent of PAA-mPEO4 wrapping on the ITO surface, which directly 

impacts the colloidal stability in water and thereby the morphology of the sprayed films. 

Although the as-deposited thin films modulate NIR light without the need to remove the 

polymer through post-deposition thermal or chemical treatments, we found that exceeding 

a polymer-wrapping density threshold results in irreversibly darkened films. Despite this 

limitation, we demonstrated the utility of PAA-mPEO4-wrapped ITO, with polymer 

densities ranging from 10 to 22 % relative mass, as electrochromic films of comparable 

performance to conventional ligand-free plasmonic ITO films.155,159,185 In particular, we 

identified a processing condition (borate buffer exchange solution at pH= 8.5, 18 % PAA-
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mPEO4 by mass relative to ITO) that favors colloidal stability while enabling reversible 

and fast optical modulation.   

More generally, we have shown that the interaction between the polymer and the 

ligand exchange environment (e.g., pH and additional species in the aqueous solution) 

affects the extent of polymer wrapping and therefore colloidal stability. Control over these 

parameters allows the reliable deposition of optical quality films and optimization of the 

properties in composites. Beyond thin film deposition, designing and identifying 

processing conditions that promote colloidal stability is crucial to achieve multiscale 

assemblies (e.g., superlattices, gels, micelle-like structures, etc) of polymer-wrapped 

nanocrystals with controllable structures and unique properties. Furthermore, we envision 

that our functionalization method with PAA-mPEO4 could broaden the applicability of ITO 

nanocrystals to areas where plasmonic metal oxides are less employed and explored such 

as hydrogels,187-189 bioassays,190,191 therapeutics,61 toxicology studies,192-195 and other 

biological applications. 
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Chapter 5: Future Directions for Depletion-Induced Nanocrystal 
Gelation 

 

This dissertation sought to expand the assembly toolkit of metal oxide nanocrystals 

by inducing the gelation of these building blocks via polymer-mediated depletion 

attractions (Chapters 2 and 3) and achieving stable dispersions of polymer-wrapped tin-

doped indium oxide nanocrystals (Chapter 4). Herein, we explored conditions to induce 

the gelation of charge-stabilized nanocrystals by varying the depletion attraction strength 

as a function of polymer (depletant) concentration. We demonstrated that the gelation 

threshold does not depend on the composition of the metal oxide, but is affected by the 

nanocrystal shape and the possibility of face-to-face packing. Furthermore, we found that 

bridging attractions can cause the formation of nanocrystal gels at low polymer 

concentration and complicate the phase behavior of the system. However, the composition 

(i.e. specific surface chemistry) and size of the nanocrystals seems to affect the extent of 

aggregation due to polymer adsorption, which we hypothesized would be suppressed by 

functionalizing the nanocrystal surface with a polymer that would not interact with the 

depletant. A combination of structure analysis using SAXS and theoretical phase behavior 

predictions of the nanocrystal-polymer mixtures (both dispersions and gels) allowed us to 

rationalize and support these findings. Finally, our gelation approach enabled the assembly 

of optically active macroscopic materials with a strong infrared light absorption reflective 

of both the nanoscale properties inherent to the building blocks and the gel structure.  

Having developed these first steps towards establishing guidelines for depletion-

based nanocrystal gelation, this framework offers rich opportunities to further control the 

gel microstructure by tuning internanocrystal interactions in dispersions and thereby 

explore structure-property relationships in gel assemblies. A few viable and interesting 

extensions of this work include i) investigating the influence of the nature and strength of 

repulsions on the gel microstructure and local packing of nanocrystals in the network, ii) 

comparing the mechanical and self-healing properties of nanocrystal gels induced via 
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depletion attractions and bridging attractions, and iii) the use of stimuli-responsive 

depletants to realize reconfigurable and switchable nanocrystals gels.  

Regarding the first study, given that the range of parameters that affect the strength 

of repulsions such as the type of interaction (electrostatic, steric, or both), the colloid (size, 

surface charge, and characteristics of the stabilizing molecule) and the solvent conditions 

(dielectric constant, ionic strength, and mixing affinity with stabilizing molecule), tuning 

repulsions could provide multiple ways to broaden the variety of self-assembled gel 

microstructures, rather than solely tuning the strength of attractions. To this end, 

nanocrystal surface functionalization such as polymer-wrapping (Chapter 4) and 

coordinating charged species to the metal oxide surface164,165 is a particularly useful 

strategy to tune repulsions while maintaining colloidal stability and diversify the solvent 

compatibility of the colloid. Accessing different microstructures with detailed nanoscale 

control is essential for developing a fundamental understanding of structure-property 

relationships in gel assemblies. 

Related to the mechanical properties of nanocrystal gels assembled with different 

types of short-range attractions, preliminary rheology experiments using the bridging and 

depletion gels described in Chapter 2 show that both types of gel recover their elasticity 

after being subjected to complete deformation under high strain (Figure 5.1 and 5.2). We 

also note that the kinetics of network reformation are slower for the bridging gel compared 

to the depletion gel, which recovers instantaneously. However, issues related to solvent 

evaporation limit the number of low (0.1%) and high (100%) strain cycles that can be 

applied to the sample and therefore identify more trends, while the presence of small 

clusters of bridged nanocrystals in the depletion gel complicate the exhaustive 

interpretation of these results. Nonetheless, these experiments motivate further 

investigating the mechanical properties to understand the interplay between the type of 

interparticle interaction, the microstructure, and mechanical properties of the macroscopic 

material.  Assembling these gels in aqueous solutions, given PEG’s affinity for water 

(attempts to assemble nanocrystal gels in dimethylformamide and dimethylsulfoxide, 

which are organic solvents with higher boiling points than acetonitrile, resulted in PEG 
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precipitation), would be a promising way to circumvent solvent evaporation during the 

experiment. In addition, probing depletion gels composed of a network of discrete 

nanocrystals (Chapter 3), as opposed to a network of clusters of bridged nanocrystals, 

would allow to deduce more robust conclusions from rheology experiments. 

 

 

Figure 5.1: Evolution of the elastic and loss modulus of a tin-doped indium oxide 
nanocrystal depletion gel over time at a fixed frequency (5 rad/s). 

Plot courtesy of Jennifer Imbrogno. Experiment designed in collaboration with Jennifer 
Imbrogno and Michael P. Howard. The analyzed sample corresponds to the depletion gel 
described in Chapter 2 (4 vol% nanocrystal, [PEG]= 534 mM or 587 mg/mL). 
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Figure 5.2: Evolution of the elastic and loss modulus of a tin-doped indium oxide 
nanocrystal bridging gel over time at a fixed frequency (5 rad/s). 

Plot courtesy of Jennifer Imbrogno. Experiment designed in collaboration with Jennifer 
Imbrogno and Michael P. Howard. The analyzed sample corresponds to the bridging gel 
described in Chapter 2 (4 vol% nanocrystal, [PEG]= 46.0 mM or 50.6 mg/mL). 
 
 Although the universality of depletion attractions in the context of nanocrystal 

gelation was demonstrated in this dissertation by assembling metal oxide nanocrystals of 

different compositions and shapes, this versatile attribute was not explored for different 

depletants. The motivation to pursue this proposed study is two-fold: i) adapt the 

nanocrystal gelation via depletion attraction to diverse materials and solvent combinations, 

thereby addressing the surface chemistry limitations inherent to the nature of the building 

blocks, in an effort to maximize the generality of the approach and impact as many 

nanotechnologies as possible  and ii) grant additional functionality to the composite and 

design complex nanocrystal gels with switchable and programmable responses to external 

stimuli. In the case of the latter, strategically selecting nanocrystal-depletant pairs to use 

these building blocks as each other’s stimulus and target could lead to powerful 

macroscopic gels of nanomachine networks. Instances of coupled stimuli responses that 

mediate clustering in solution have been investigated with gold nanoparticle/poly(N-

isopropylacrylamide) or PNIPAM and silver nanoparticle/PNIPAM system.28,189 
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Appendices 

APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 2 

Experimental Supporting Figures 

 

Figure A1.1: Sizing of as-synthesized tin-doped indium oxide (ITO) nanocrystals. 
a) Scanning transmission electron microscopy image of nanocrystals sized using the 
ellipsoid tool in ImageJ, b) histogram of the manually measured major axis size for 200 
nanocrystals, and c) histogram of the manually measured minor axis size for 200 
nanocrystals. For both histograms, mean and standard deviation and results from a 
Gaussian fit are reported.    
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Figure A1.2: Colloidal stability of ligand-stripped nanocrystals in polar solvents. 
a) Dynamic light scattering of ligand-stripped ITO nanocrystals dispersed in acetonitrile 
(ACN, dashed green) and dimethylformamide (DMF, purple). In both cases, the maximum 
number distribution corresponds to a hydrodynamic diameter Dh= 6.5 nm, close to the 
diameter measured by electron microscopy (Figure A1.1), thus confirming the integrity of 
the nanocrystal cores and b) zeta potential of ligand-stripped ITO nanocrystals dispersed 
in dimethylformamide (𝜁= +36.5 mV). 
 

 

Figure A1.3: Comparison of the solubility of polyethylene glycol (PEG, Mn= 1100 
g/mol) in acetonitrile (left vial) and dimethylformamide (right vial) at a 
concentration of 664 mg/mL. 

Although PEG dissolves in both dimethylformamide and acetonitrile, the latter has a 
Hildebrandt solubility parameter closer to the one of PEG196,197 and was therefore chosen 
as the solvent matrix for our ITO-PEG gels. In fact, the PEG in acetonitrile solution shows 
no signs of precipitation for over a year while the PEG in dimethylformamide remains 
cloudy during the same timeframe. 
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Figure A1.4: PEG (Mn= 1100 g/mol) in acetonitrile sizing by small angle X-ray 
scattering. 

Unified fit (red) and component curves of the unified function (Guinier: dashed blue and 
Porod: dashed green) based on Beaucage’s unified exponential-power law analysis. Fits 
were performed with Irena’s Unified Fit tool in Igor Pro. 
 

Table A1.1: Extracted unified fit parameters from PEG sizing by small-angle X-ray 
scattering. 

G and B are scaling coefficients in the unified function, Rg is the radius of gyration, and P 
is the Porod exponent. The parameters are defined and described in more detail in work by 
Beaucage.113,117 
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Table A1.2: Summary of nanocrystal volume fractions measured by inductively 
coupled plasma-atomic emission spectroscopy. 

The overall tin dopant concentration of as-synthesized ITO nanocrystals and the volume 
fractions of ligand-stripped ITO dispersed in pure acetonitrile and ITO gel ([PEG]= 534 
mM) were measured on a Varian 720-ES ICP Optical Emission Spectrometer. The samples 
were digested in 70 wt. % nitric acid for 36 hours. Calibration standards and samples were 
diluted to 2 vol. % nitric acid in ultrapure Milli-Q water. ITO nanocrystal mass was 
calculated assuming a In2-xSnxO3 stoichiometry and nanocrystal volume was calculated 
using the theoretical density of ITO198 (ρ= 7.12 g/cm3, 10 wt. % doped). The overall tin 
dopant concentration is 9.65 at. % (9.94 wt. %). The ligand-stripped ITO dilution series 
was used to determine extinction cross sections. 
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Figure A1.5: Small-angle X-ray scattering analysis of ITO-PEG dispersion with 
[PEG]= 271 mg/mL. 

a) Total scattering intensity and form factor fit using the spheroid model and b) structure 
factor S(q) (inset: photograph of dispersion in a vial). 
 

 

Figure A1.6: Full range of the structure factor S(q) of the ITO-PEG dispersion with 
[PEG]= 8.00 mM.  

The broad and weak peak at q~ 0.1 Å-1 can be attributed to adjacent nanocrystal interactions 
since the form factor fitting assumes a dilute system of negligible structure factor. 
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Figure A1.7: Isoelectric point measurement of ligand-stripped ITO nanocrystals. 
Zeta potential values were collected as a function of pH using Malvern’s MPT-2 
autotitrator. Ligand-stripped nanocrystaks were dispersed in 1 mM hydrochloric acid (HCl) 
aqueous solution and titrated with a 0.1 M sodium hydroxide (NaOH) solution followed by 
a titration with a 0.1 M HCl solution in a folded capillary zeta cell (DTS1070, Malvern). 
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Figure A1.8: Zeta Potential of ITO-PEG dispersions.  

a) Zeta potential (𝜁= +33 mV) of an ITO-PEG mixture in acetonitrile with [PEG]= 3.6 mM 
and b) zeta potential (𝜁= +31 mV) of an ITO-PEG mixture in acetonitrile with [PEG]= 91 
mM. 

Theoretical Model for Bridging and Depletion Gelation 
 

At its core, the theory exploits a well-established free energy model for polymer 

depletion. Effects of strong polymer adsorption are then accounted for by Wertheim’s first 

order association theory. To maintain consistency with the theoretical literature, below we 

use the generic terms colloid and polymer for the ITO nanocrystal and PEG, respectively.  

As the foundation, we employ an accurate free energy model for the well-known 

Asakura Oosawa mixture. The Asakura Oosawa model treats the colloids as hard spheres 

of diameter 𝑑�  and the polymers as particles that interact with colloids as though they have 

a hard sphere diameter 𝑑ª = 2𝑅«  (𝑅«  is the radius of gyration); however, the polymers are 

mutually non-interacting. Specifically, we model the Helmholtz free energy (𝐴 ¬) per 

volume (𝑉) and unit of thermal energy (𝑘�𝑇) 

 
𝑎 ¬ =

 ®¯
°\±]

       (1) 
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using the theory of Lekkerkerker et al.,36 which decomposes the free energy into colloid 

(C) and polymer (P) contributions 

 
𝑎 ¬ ≅ 𝑎³ + 𝑎´

(µ¶) + 𝑎·
(µ¶)      (2) 

 
The ideal contribution, 𝑎³, is  
 

𝑎³ ≡ 𝜌�𝑙𝑛𝜌� + 𝜌ª𝑙𝑛𝜌ª − 𝜌� − 𝜌ª    (3) 
 
where 𝜌� ≡ 𝑁�/𝑉 and 𝜌ª ≡ 𝑁ª/𝑉 are the colloid and polymer number densities, 

respectively, and 𝑁�  and 𝑁ª are the corresponding number of colloids and polymers. The 

excess colloidal free energy, 𝑎´
(µ¶), is approximated by the accurate Carnahan-Starling 

result for hard spheres  

 
𝑎´
(µ¶) ≡ 𝜌� e

O
(OB¹�)_

+ /
(OB¹�)

− 3f    (4) 
 
where 𝜂� ≡ 𝜌�𝜋𝑑��/6 is the colloid volume fraction. The excess polymer contribution, 

𝑎·
(µ¶), is based on free volume arguments yielding 

 
𝑎·
(µ¶) = 𝜌�[𝐴𝛾 + 𝐵𝛾/ + 𝐶𝛾� − ln(1 − 𝜂�)]    (5) 

 
𝐴 ≡ 3𝜆 + 3𝜆/ + 𝜆� 

 
𝐵 ≡ 9𝜆//2 + 3𝜆� 

 
𝐶 ≡ 3𝜆� 

 
𝜆 ≡ 𝑑ª/𝑑�  

  
To account for strong polymer-colloid association we non-perturbatively add in attractions 

via Wertheim theory. The theory assumes that there is some fixed number of association 

sites available on the surface of the polymer (𝑛ª) and the colloid (𝑛�). While in our context 

there are not literal adsorption sites, the colloid does have a limited surface area that can 

only harbor a finite number of adsorbed polymers. Moreover, the polymer can only bridge 
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some finite number of colloids due to geometric constraints. In the main text, we refer to 

𝑛ª as 𝑛¼½¾¿ and 𝑛�  as 𝑛À¿�. With the fictive binding sites, the additional excess free energy 

contribution due to binding199,200 is 

 
𝑎Á
(µ¶) = ∑ 𝜌Ã e𝑛Ã𝑙𝑛𝑋Ã −

�ÅÆÅ
/
+ �Å

/
fÃÇ�,ª    (6) 

 
where 𝑋�  and 𝑋ª are the fraction of the colloid and polymer site that are un-bonded and 

are determined by solving the following two coupled “reaction” equations 

 
𝑋Ã = È1 + 𝑛É𝜌É𝑋É∆ª,�Ë

BO, 𝑖 ≠ 𝑗    (7) 
 

∆ª,�~𝑔ª,�𝑣ª,�  
 

where 𝑣ª,�  is the thermal bond volume that incorporates the attraction strength (relative to 

the thermal energy/temperature) and range between polymer and colloid, and 𝑔ª,�  is the 

contact value of the radial distribution function at contact in a reference system where the 

polymer-colloid attractions are not present. 𝑣ª,�  can be regarded as a constant in the 

experiments; the value of 0.181 has been used in the figure of the main text to achieve 

rough agreement between experiment and theory. On the other hand, 𝑔ª,�  has a non-trivial 

dependence on the density and composition of the system. Specifically, we have used the 

approximation of Santos et al.201  

 
𝑔ª,� ≅

O
OB¹�

+ /#Ò/#�
OÓ#Ò/#�

eOB¹�//
(OB¹�)Ô

− O
OB¹�

f    (8) 
 

 
Combined, the total theoretical free energy is 
 

𝑎 ≡ 𝑎 ¬ + 𝑎Á
(µ¶)      (9) 

 
which through thermodynamic stability calculations provides predictions for spinodally 

unstable regions possessing a strong tendency for gelation. Spinodally unstable points are 

identified by satisfaction of the following condition 
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Õ ≤ 0     (10) 

 
where |𝐴| is the determinant of matrix 𝐴. Equation 10 essentially states the system is no 

longer stable against fluctuations in the composition, at least to second order.  

LSPR Simulation and COMSOL Methods 
The nanocrystal gel structure was designed using the design module in COMSOL. 

An idealized gel structure was designed with the purpose of understanding the impact of 

complex multi-scale optical coupling phenomenon originating from the fractal gel 

structure. The simulated structure was assembled as a periodic structure of a unit cell 

forming a 2D chain composed of clusters of PEG-coated ITO nanocrystals. These 

structures were then surrounded by the surrounding medium (i.e., acetonitrile (n=1.344), 

which was used for all experimental measurements) (Figure A1.9). To simulate the 

localized surface plasmon resonance (LSPR) – LSPR coupling in periodic arrays of the 

unit cell, the Maxwell equations were solved in full field mode. The maximum and 

minimum mesh size in the nanocrystal was set to 10 nm and 0.1 nm, respectively (Figure 

A1.10). This ensures fine meshing, yielding typically 2 million degrees of freedom, which 

corresponds to 3 – 15 GB of RAM when using the direct PARDISO or MUMPS solver.  

 

The dielectric function of ITO is described by a frequency dependent dielectric 

function, which was expressed using the Extended Drude model. 

 
 

                 (11) 
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To obtain the dielectric function of ITO, spectra of ITO nanocrystal dispersions were fitted 

using Mie theory. The dielectric function used for ITO is tabulated in the table below (Table 

A1.3). 

Table A1.3: Dielectric parameter for ITO. 
 Plasma 

frequency, ωp, 
cm-1 

Low frequency 
damping, 𝛾�, 

cm-1 

High 
frequency 
damping, 
𝛾Ø, cm-1 

Crossover 
frequency, 𝛾Æ, 

cm-1 

Crossover 
width, 𝛾Ù, 

cm-1 

ITO 13272 4694 170 5319 936 
 
 

 

Figure A1.9: Simulated Structure Geometry. 
A 2D chain of PEG-coated nanocrystal clusters was designed using the Design module in 
COMSOL. 
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Figure A1.10: Meshing. 
A 2D chain of PEG-coated nanocrystal clusters (right) in 2D periodic lattice (left). 
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APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 3 

Experimental Supporting Figures 
 

 

Figure A2.1: Photograph of PEG solution in acetonitrile.  

The solution ([PEG] = 995 mg/mL) is transparent and does not show signs of precipitation. 

 

 

Figure A2.2: Structure factor S(q) deconvolution. 
Total intensity, form factor and S(q) for gels composed of a) FeOx, b) Sn:In2O3, and c) 
F,Sn:In2O3 nanocrystals. Form factor curves were obtained by fitting the experimental form 
factors as shown in Chapter 3 Figure 3.1. Structure factors were deconvoluted by dividing 
the total scattering intensity by the fitted form factor, assuming a decoupling approximation 
(nanocrystal size and shape are not correlated with position) and a local monodisperse 
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approximation.20 The intensity of the fitted form factor was adjusted such that S(q) ∼ 1 at 
the highest resolvable q. 
 

 

Figure A2.3: Theoretical spinodal boundaries for spherical Sn:In2O3 and cubic 
F,Sn:In2O3 nanocrystals. 

The nanocrystal volume fraction is denoted by ɸC, and the free polymer mass concentration 
[𝑃𝐸𝐺] is normalized by the overlap concentration [𝑃𝐸𝐺]∗ = 3𝑀�/4𝜋𝑅��𝑁 , where 𝑀� is 
the polymer molecular weight, 𝑅� is the polymer radius of gyration, and 𝑁  is Avogadro’s 
number. 
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Figure A2.4: Evolution of structure factor S(q) of FeOx nanocrystal-PEG mixtures 
over 4 weeks. 

a) Flowing dispersion ([PEG]= 2.26 mg/mL, [PEG]/[PEG]*= 0.005), b) flowing dispersion 
([PEG]= 87.9 mg/mL[PEG]/[PEG]*= 0.190), c) flowing dispersion ([PEG]= 351 mg/mL, 
[PEG]/[PEG]*= 0.758), and d) gel ([PEG]= 967 mg/mL, [PEG]/[PEG]*= 2.09). The broad 
peaks around q < 0.03 Å-1 in the flowing dispersions indicate the presence of small 
aggregates. 
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Figure A2.5: Evolution of structure factor S(q) of FeOx nanocrystal-PEG and 
Sn:In2O3 nanocrystal-PEG mixtures between 4 and 8 weeks. 

a) FeOx nanocrystal flowing dispersion ([PEG]= 2.26 mg/mL, [PEG]/[PEG]*= 0.005), b) 
FeOx nanocrystal flowing dispersion ([PEG]= 87.9 mg/mL, [PEG]/[PEG]*= 0.190), c) 
FeOx nanocrystal flowing dispersion ([PEG]= 351 mg/mL, [PEG]/[PEG]*= 0.758), d) FeOx 
nanocrystal gel ([PEG]= 967 mg/mL, ɸPEG= 2.09), e) Sn:In2O3 nanocrystal flowing 
dispersion ([PEG]= 2.26 mg/mL, [PEG]/[PEG]*= 0.005), f) Sn:In2O3 nanocrystal flowing 
dispersion ([PEG]= 87.9 mg/mL, [PEG]/[PEG]*= 0.190), g) Sn:In2O3 nanocrystal flowing 
dispersion ([PEG]= 351 mg/mL, [PEG]/[PEG]*= 0.758), and h) Sn:In2O3 nanocrystal gel 
([PEG]= 967 mg/mL, [PEG]/[PEG]*= 2.09). 
 

We note that Sn:In2O3 nanocrystal-PEG dispersions are more stable than FeOx 

nanocrystal-PEG dispersions. The only difference between the systems is the surface 

chemistry of the metal oxide, which is known to affect the extent of PEG adsorption 

depending on the pH. The isoelectric point of FeOx is typically around 6.5-7.5202,203 while 

the isoelectric point of Sn:In2O3 is lower and closer to 5.143  Since it has been shown that 

the basic ether groups in PEG preferentially interact with stronger acid sites on the metal 

oxide surface, 120,204,205 we expect that the extent of PEG adsorption on Sn:In2O3 is greater 

than on FeOx, which in turn promotes the stability of the small clusters. Furthermore, as 

[PEG] increases in the Sn:In2O3 nanocrystal dispersions, the scattering intensity and 

sharpness of the peak around q ∼0.025 Å-1 decreases. This suggests that at [PEG]= 351 
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mg/mL the Sn:In2O3 surface is not saturated with PEG yet, unlike in the FeOx nanocrystal-

PEG system. 

 

 

Figure A2.6: Evolution of structure factor S(q) of F,Sn:In2O3 nanocrystal-PEG 
mixtures over 3 weeks. 
(a) Flowing dispersion ([PEG]= 2.26 mg/mL, [PEG]/[PEG]*= 0.005). The broad peaks 
around q ~ 0.03 Å-1 indicates the presence of small aggregates and (b) gel ([PEG]= 351 
mg/mL, [PEG]/[PEG]*= 0.758). 
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Theoretical Methods 
Using free volume theory and scaled particle theory, the equation of state for a nanocrystal 
dispersion having depletion attractions induced by noninteracting, penetrable depletant 
spheres can be written as 
 

𝑃Ú(𝜙�, 𝜙ª7«8 ) = 𝑃ÚM(𝜙�) + 𝜙ª7«8 	𝑓(𝜙�) 
 
where 
 

𝑓(𝜙�) =
1
𝛿� p𝛼(𝜙�) − 𝜙�

𝑑𝛼
𝑑𝜙�

r 

 
Here, 𝑃Ú = 𝑃𝑣�/𝑘�𝑇 is the dimensionless pressure and 𝑃ÚM = 𝑃M𝑣�/𝑘�𝑇 is the dimensionless 
hard particle pressure in the absence of depletant), 𝑘� is Boltzmann’s constant, 𝑇 is 
temperature, 𝑣� is the volume of a single nanocrystal, 𝛿 = 𝑅�/𝑅 is the ratio of depletant 
size 𝑅� to 𝑅, the nanocrystal radius (for spheres) or half-width (for cubes), and 𝜙ª7«8  is the 
volume fraction of PEG depletant in a hypothetical reservoir in equilibrium with the 
dispersion.  For dilute nanocrystal volume fractions, the reservoir volume fraction is 
approximately equal to the bulk depletant volume fraction in the dispersion 𝜙ª7« , though 
the depletant can partition differently between different phases if phase separation occurs. 
The PEG volume fraction 𝜙ª7« ≡ [𝑃𝐸𝐺]/[𝑃𝐸𝐺]∗ is written in terms of the PEG 
concentration relative to the overlap concentration [𝑃𝐸𝐺]∗ ≡ 3𝑀�/4𝜋𝑅��𝑁  , where 𝑀� =
1100	g/mol is the polymer molecular weight, 𝑅� = 0.98	nm is the polymer radius of 
gyration, and 𝑁  is Avogadro’s number. For nanocrystal spheres, the hard particle 
equations of state is well-approximated by the Carnahan-Starling206  expression, 

	
𝑃ÚM(𝜙�) =

^ÝÓ^Ý_Ó^ÝÔB^ÝÞ

(OB^Ý)Ô
, 

 
and 𝛼 is given by an expression from Lekkerkerker and Tuinier,35 
 

𝛼(𝜙�) = (1 − 𝜙�) exp e−
�â(OÓâ)^Ý

OB^Ý
− ãâ_^Ý_

/(OB^Ý)_
− 𝛿�𝑃ÚM	f. 

 
For nanocrystal cubes, the hard particle equations of state is given by an expression from 
Boublík,207 
 

𝑃ÚM(𝜙�) =
^ÝÓä^Ý_//ÓO�^ÝÔ/ZB�^ÝÞ

(OB^Ý)Ô
, 

 
and 𝛼 is given by an expression from García, Opdam, and Tuinier,153 
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𝛼(𝜙�) = (1 − 𝜙�) exp å−
3𝛿(2 + 𝜋𝛿)𝜙�

1 − 𝜙�
−

18𝛿/𝜙�/

(1 − 𝜙�)/
−
𝜋𝛿�𝑃ÚM
6 	æ . 

 
The spinodal curve 𝜙ª7«8 (𝜙�) is computed by solving 
 

𝑑𝑃Ú	
𝑑𝜙�

= 0 

 
for 𝜙ª7«8  in terms of 𝜙�.   
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APPENDIX 3: SUPPORTING INFORMATION FOR CHAPTER 4 

Experimental Supporting Figures 

 

 

Figure A3.1: Comparison of ligand-capped (LC) and ligand-stripped (LS) ITO 
dispersions.  

a) Hydrodynamic diameter, b) zeta potential, c) and localized surface plasmon resonance 
(LSPR). UV-vis-NIR measurements were collected on an Agilent-Cary 5000 
spectrophotometer using a near-infrared quartz cuvette (1 mm path length, Spectrocell). 
The shift in LSPR peak position is caused by the change in dielectric environment (hexane 
for LC ITO and dimethylformamide for LS ITO). 
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Figure A3.2: FTIR reference for PAA-mPEO4 and sodium tetrafluoroborate. 
a) Neat PAA-mPEO4: the peaks at 2870, 1730, 1456, and 1100 cm-1 are assigned to CH2, 
C=O, C-O, and C-O-C stretches, respectively176,177 and (b) neat sodium tetraborate: the 
peaks at 3344, 1385, and 1100 cm-1 are assigned to OH and B-O stretches from (BOH)3, 
and (BOH)4-, respectively, while the peak at 1655 cm-1 is assigned to H-O-H bends.181-183 
FTIR spectra of PAA-mPEO4 and sodium tetraborate references were recorded in 
transmission geometry with a Burker Vertex 70 spectrometer. Samples were dropcasted 
from dilute solutions (~ 1 mg/ml) onto CaF2 windows and left to dry under ambient 
conditions. 
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Figure A3.3: ITO dispersion after exposure to ligand exchange at pH= 9.1 
containing borate only (no PAA-mPEO4). 

a) Aggregation and precipitation of ITO is observed after a few hours and b) dynamic light 
scattering measurement confirms presence of ITO aggregates with a ~350 nm average 
hydrodynamic diameter. 

 
 
 
 
 
 



 108 

Table A3.1: Summary of roughness measurements by profilometry and atomic force 
microscopy. 

Atomic force microscopy measurements were carried out on a Digital Instrument 
Nanoscope III microscope (Veeco) in tapping mode with a “Super Sharp Improved Super 
Cone” probe of 5 nm tip diameter (TeamNanotec). Reported values are averages and ± 
indicates standard deviation.  
 

Exchange Solution Roughness (Ra, nm) 
pH= 9.1 borate buffer 2.77 ± 0.03 
pH= 8.5 borate buffer 1.28 ± 0.04 
pH= 7.9 borate buffer 0.82 ± 0.05 
pH= 6.5 Milli-Q water 0.65 ± 0.11 

 

 

Figure A3.4: Evolution of differential optical density (ΔOD) and inserted charge 
density (ΔQ) as a function of time for PAA-mPEO4-wrapped ITO films. 

Film obtained from dispersion processed in: a) pH= 9.1 borate buffer, b) pH= 8.5 borate 
buffer, c) pH= 7.9 borate buffer, and d) pH= 6.5 Milli-Q water.  
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Figure A3.5: Cyclic voltammetry for PAA-mPEO4-wrapped ITO films. 
Cyclic voltammetry measurements were conducted in an Ar glovebox. PAA-mPEO4-
wrapped ITO films deposited on FTO glass (working electrode) and Li foil (counter and 
reference electrode) were immersed in 1 M LiTFSI in tetraglyme electrolyte in a quartz 
cuvette. Starting from open circuit potential, the applied bias (Bio-logic VMP3) was cycled 
between 4.0 and 1.5 V vs. Li/Li+ at a scan rate of 20 mV/s. 
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