FORECAST OF TRUCKLOAD FREIGHT OF CLASS I MOTOR CARRIERS OF PROPERTY IN THE SOUTHWESTERN REGION TO 1990

MARY LEE GORSE

Research Report 23

MARCH 1975

DEPARTMENT OF TRANSPORTATION OFFICE OF UNIVERSITY RESEARCH WASHINGTON, D. C. 20590

RESEARCH REPORTS PUBLISHED BY THE COUNCIL FOR ADVANCED TRANSPORTATION STUDIES

1 An Integrated Methodology for Estimating Demand for Essential Services with an Application to Hospital Care. Ronald Briggs, Wayne T. Enders, James Fitzsimmons, and Paul Jensen, April 1974 (DOT-TST-75-81).

2 Transportation Impact Studies: A Review with Emphasis on Rural Areas. Lidvard Skorpa, Richard Dodge, C. Michael Walton, and John Huddleston, October 1974 (DOT-TST-75-59).

3 Land Value Modeling in Rural Communities. Lidvard Skorpa, Richard Dodge, and C. Michael Walton, June 1974 (Draft Report).

4 Inventory of Freight Transportation in the Southwest/Part I: Major Users of Transportation in the Dallas-Fort Worth Area. Eugene Robinson, December 1973 (DOT-TST-75-29).

5 Inventory of Freight Transportation in the Southwest/Part II: Motor Common Carrier Service in the Dallas-Fort Worth Area. J. Bryan Adair and James S. Wilson, December 1973 (DOT-TST-75-30).

6 Inventory of Freight Transportation in the Southwest/Part III: Air Freight Service in the Dallas-Fort Worth Area. J. Bryan Adair, June 1974 (DOT-TST-75-31).

7 Political Decision Processes, Transportation Investment and Changes in Urban Land Use: A Selective Bibliography with Particular Reference to Airports and Highways. William D. Chipman, Harry P. Wolfe, and Pat Burnett, March 1974 (DOT-TST-75-28).

8 A Preliminary Analysis of the Effects of the Dallas-Fort Worth Regional Airport on Surface Transportation and Land Use. Harry P. Wolfe, April 1974 (Draft Report).

9 Dissemination of Information to Increase Use of Austin Mass Transit: A Preliminary Study. Gene Burd, October 1973.

10 The University of Texas at Austin: A Campus Transportation Survey. Sandra Rosenbloom, Jane Sentilles Greig, and Lawrence Sullivan Ross, August 1973.

11 Carpool and Bus Matching Programs for The University of Texas at Austin. Sandra Rosenbloom and Nancy Shelton Bauer, September 1974.

12 A Pavement Design and Management System for Forest Service Roads: A Conceptual Study. W. R. Hudson and Thomas G. McGarragh, July 1974.

13 Measurement of Roadway Roughness and Motion Spectra for the Automobile Highway System. Randall Bolding, Anthony Healey, and Ronald Stearman, December 1974 (Draft Report).

14 Dynamic Modelling for Automobile Acceleration Response and Ride Quality Over Rough Roadways. Anthony Healey, Craig C. Smith, Ronald Stearman, and Edward Nathman, December 1974 (Draft Report).

15 Survey of Ground Transportation Patterns at the Dallas-Fort Worth Regional Airport. William J. Dunlay, Jr., Thomas G. Caffery, Lyndon Henry, and Douglas Wiersig, August 1975 (Draft Report).

16 Subjective Rating of Automobile Riding Quality. Anthony Healey and Robert Young (Draft Report forthcoming in January 1976).

17 The Transportation Problems of the Mentally Retarded. Shane Davies and John W. Carley, December 1974.

18 Transportation-Related Constructs of Activity Spaces of Small Town Residents. Pat Burnett, John Betak, David Chang, Wayne Enders and Jose Montemayor, December 1974 (DOT-TST-75-135).

19 Marketing of Public Transportation: Method and Application. Mark I. Alpert and Shane Davies, January 1975 (Draft Report).

20 The Problems of Implementing a 911 Emergency Telephone Number System in a Rural Region. Ronald T. Matthews, February 1975.

21 A Consideration of the Impact of Motor Common Carrier Service on the Development of Rural Central Texas. James Wilson, February 1975 (Draft Report).

22 Modal Choice and the Value of Passenger Travel Time Literature: A Selective Bibliography. Shane Davies and Mark I. Alpert, March 1975 (Draft Report).

23 Forecast of Truckload Freight of Class I Motor Carriers of Property. Mary Lee Gorse, March 1975 (DOT-TST-75-138).

FORECAST OF TRUCKLOAD FREIGHT OF CLASS I MOTOR CARRIERS OF PROPERTY IN THE SOUTHWESTERN REGION TO 1990

Mary Lee Gorse

MARCH 1975

RESEARCH REPORT

Document is available to the public through the National Technical Information Service Springfield, Virginia 22151

Prepared for

Council for Advanced Transportation Studies The University of Texas at Austin Austin, Texas 78712

In cooperation with

Department of Transportation Office of University Research Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation, Office of University Research, in the interest of information exchange. The United States Government and The University of Texas at Austin assume no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Access	sion No.	3. Recipion	nt's Catalog N	Ö.
DOT-TST-75-138					
1. Title and Subtitle			5. Report D	Date	
FORECAST OF TRUCKLOAD	FREIGHT OF CLA	ASS I MOTOR	March	1975	
CARRIERS OF PROPERTY I	IN THE SOUTHWES	STERN REGION	6. Perform	ing Organizatio	an Code
ТО 1990					N
7. Author(s)			8. Performi	ing Organizatio	n Keport No.
Mary Lee Gorse			RR 23	3	
9. Performing Organization Name and Add	res3		10. Werk U	Init No. (TRAIS	5)
Council for Advanced I	Pransportation	Studies	00 36	555 8	
The University of Texa	as at Austin		11. Contra	ict or Gront No.	
Austin, Texas 78712			DOT-	-05-30093	3
12 Second and Address			13. lype a	if Report and Po	eriod Covered
12. Sponsoring Agency House and Addition			Rese	arch Rer	ort
Department of Transpor	tation			we out they	
UIFICE OF University F	kesearch		14. Sponso	oring Agency Co	ode
wasnington, D.C. 2059	<i>i</i> u				
Truckload revenue f of property operating i been forecast to 1990 Data were gathered	reight of Clas n intercity se using multipl on the depende	ss I common a ervice in the le regression ent variable	nd cont Southw analys (truckl	eract mot Vestern F sis. oad frei	cor carrier Region has Lght) and on
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat	reight of Class in intercity set o using multipl on the depende ables (economic 7 to 1971. Mi fitting techn analyses were lent variable a on the interre analyses, pred form or mixed i ions were chos	ss I common a ervice in the le regression ent variable indicators ssing values iques to the e used to mea and a set of elationships lictor regres inclusion lev sen for furth	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal	cract mot vestern F sis. oad frei Southwes the time data poi he linear dent var the indep quations call ind ysis. T	cor carrier Region has (ght) and or stern Region series dat (nts. relation- ciables, bendent were formu- lependent The indepen-
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators.	reight of Class in intercity se o using multipl on the depended ables (economic 7 to 1971. Mi e fitting techn analyses were lent variable a on the interre analyses, pred form or mixed i ions were choss elected equati t the known da hree predictor on, and the cl along with al	as I common a ervice in the le regression ent variable indicators ssing values iques to the e used to mea and a set of elationships lictor regres inclusion lev sen for furth ons were for ta points of regression cosest fittin l the statis ecast, which i	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set	cract mot vestern F sis. oad frei Southwes the time data poi he linear dent var the indep quations all ind cysis. To vextrap variable. ons, a De polation evidence t of four	cor carrier Region has light) and on stern Region series data nts. relation- riables, bendent were formu- lependent the indepen- bolation from epartment of h of the available, reconomic
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators.	reight of Class in intercity set o using multipl on the depende ables (economic 7 to 1971. Mi fitting techn analyses were ent variable a on the interre analyses, pred form or mixed i ions were choss elected equati t the known da hree predictor on, and the cl along with al a "best" fore	ss I common a ervice in the ervice in the ervice in the ervice in the ent variable c indicators ssing values indicators ssing values to the e used to mea and a set of elationships lictor regres inclusion lev sen for furth ons were for ta points of c regression osest fittin l the statis ecast, which i	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set	cract mot vestern F sis. oad frei Southwes the time data poi ne linear ident var the indep quations all ind ysis. To y extrap variable. ons, a De polation to four	cor carrier Region has light) and o stern Region series dat ints. relation- riables, bendent were formu lependent the indepen- polation from epartment on of the available, reconomic
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators. To Key Words Forecasting, Truck Frei	reight of Class n intercity se o using multipl on the depende ables (economic 7 to 1971. Mi fitting techn analyses were ent variable a on the interre analyses, pred form or mixed i ions were choss elected equati t the known da hree predictor on, and the cl along with al a "best" fore	ss I common a ervice in the e regression ent variable c indicators ssing values iques to the e used to mea and a set of elationships dictor regres inclusion lev sen for furth ons were for a points of c regression osest fittin l the statis ecast, which i	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set	cract mot vestern F sis. oad frei Southwes the time data poi he linear ident var the indep quations call ind ysis. T oy extrap variable. ons, a De polation evidence t of four	cor carrier Region has aght) and of stern Region series dat ints. relation- riables, bendent were formu dependent the indepen- polation from epartment of n of the available, reconomic
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators. 7. Key Words Forecasting, Truck Frei Regression, Trend Analy	reight of Class in intercity set o using multipl on the depended ables (economic 7 to 1971. Min a fitting techn analyses were lent variable a on the interred analyses, pred form or mixed i ions were choss the known da hree predictor on, and the cl along with al a "best" fore ght, Multiple sis, Curve	ss I common a ervice in the e regression ent variable indicators ssing values iques to the e used to mea and a set of elationships lictor regres inclusion lev sen for furth ons were for ta points of regression osest fittin l the statis ecast, which i	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set availa Nation	cract mot vestern F sis. coad frei Southwes the time data poi he linear dent var the indep quations call ind ysis. T ov extrap variable. ons, a De polation vidence cof four	cor carrier Region has aght) and o stern Regio series dat ints. relation- riables, bendent were formu dependent the indepen polation fr epartment o n of the available, reconomic
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators. 17. Key Words Forecasting, Truck Frei Regression, Trend Analy Fitting, Economic Indic	reight of Class in intercity set o using multipl on the depended ables (economic 7 to 1971. Min analyses were lent variable a on the interred analyses, pred form or mixed i ions were choss elected equation t the known da hree predictor on, and the cl along with al a "best" fore ght, Multiple sis, Curve ators	ss I common a ervice in the e regression ent variable indicators issing values iques to the e used to mea and a set of elationships lictor regres inclusion lev sen for furth ons were for ta points of regression osest fittin l the statis ecast, which i Document is through the mation Serv	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set availa Nation ice, Sp	cract mot vestern F sis. oad frei Southwes the time data poi he linear dent var the indep quations all ind ysis. T by extrap variable. ons, a De polation evidence t of four all Techn pringfiel	cor carrier Region has light) and of stern Regio series dat ints. relation- ciables, bendent were formu lependent the indepen- bolation from epartment of the available, reconomic che public nical Infor
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators. 17. Key Words Forecasting, Truck Frei Regression, Trend Analy Fitting, Economic Indic	reight of Class n intercity se o using multipl on the depende ables (economic 7 to 1971. Mi fitting techn analyses were ent variable a on the interre analyses, pred form or mixed i ions were choss elected equati t the known da hree predictor on, and the cl along with al a "best" fore ght, Multiple sis, Curve ators	ss I common a ervice in the le regression ent variable indicators ssing values iques to the used to mea and a set of elationships lictor regres inclusion lev sen for furth ons were for ta points of regression osest fittin 1 the statis ecast, which i 10. Distribution State Document is through the mation Serv Virginia 2	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set availa Nation ice, Sp 2151	cract mot vestern F is. oad frei Southwes the time data poi he linear ident var the indep quations all ind ysis. T by extrap variable. ons, a De polation to four the to the polat to the pringfiel	cor carrier Region has light) and or stern Region series data ints. relation- riables, bendent were formu- lependent the indepen- bolation from available, reconomic the public nical Infor- d,
Truckload revenue f of property operating i been forecast to 1990 Data were gathered thirty independent vari for the base period 195 were estimated by curve Multiple regression ship between the depend taking into considerati variables. From these lated using either unif variables. Three equat dent variables in the s the curve which best fi Comparison of the t Transportation projecti truckload freight data, led to the selection of indicators. 17. Key Words Forecasting, Truck Frei Regression, Trend Analy Fitting, Economic Indic	reight of Class in intercity set o using multipl on the depended ables (economic of to 1971. Mi fitting techn analyses were ent variable a on the interred analyses, pred form or mixed i ions were choss elected equati t the known da hree predictor on, and the cl along with al a "best" fore ght, Multiple sis, Curve ators 20. Security Class	ss I common a ervice in the e regression ent variable c indicators ssing values iques to the e used to mea and a set of elationships dictor regres inclusion lev sen for furth ons were for a points of c regression osest fittin l the statis ecast, which i 10. Distribution State Document is through the mation Serv Virginia 2	nd cont Southw analys (truckl of the from t known sure th indepen among t sion eq els for er anal ecast b each v equatio g extra tical e s a set availa Nation ice, Sp 2151	vestern F sis. oad frei Southwes the time data poi he linear ident var the indep quations all ind yesis. T by extrap variable. ons, a De polation evidence t of four	cor carrier Region has aght) and or stern Region series data ints. relation- riables, bendent were formu- lependent the indepen- polation from available, reconomic the public nical Infor- id,

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

EXECUTIVE SUMMARY

INTRODUCTION

This forecast of truckload freight in the Southwestern Region is the second of five reports which provide forecasts of future demand for various modes of freight transportation. It is part of a larger research effort designed to improve the existing freight transportation system. A forecast of air cargo originations in Texas has already been published and other reports in this series soon to be published are forecasts of revenue freight tons carried by rail in Texas; air cargo originations in Arkansas, Louisiana, and Oklahoma; and pipeline movements in Texas.

PROBLEM STUDIED

Truck freight transportation is an important segment of the overall freight transportation system. Trucks haul 51 percent of manufacturers' intercity tons of freight and 31 percent of manufacturers' intercity tonmiles of freight. This report forecasts total truckload revenue freight of Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region (hereafter referred to as truckload freight) to 1990, using multiple regression analysis and trend analysis.

RESULTS ACHIEVED

Data were gathered on the dependent variable (truckload freight) and on thirty independent variables (economic indicators for the Southwestern Region) for the base period 1957 to 1971. Any missing values for a time series were estimated by use of the OMNITAB computer program POLYFIT. The data were then analyzed using the computer program SPSS (Statistical Package for the Social Sciences) subprogram REGRESSION, using the stepwise mode.

Multiple regression analysis was used to measure the linear relationship between the dependent variable (truckload freight) and a set of independent variables (the economic indicators), taking into consideration the interrelationships between the independent variables. The objective of multiple regression analysis was to formulate a predictor equation that was a linear combination of independent variables and had the highest correlation with the dependent variable. The predictor regression equation took the form of

$$Y_{c} = A + B_{1}X_{1} + B_{2}X_{2} + B_{3}X_{3} + \dots + B_{n}X_{n}$$

where the X's were the independent variables, the B's were the regression coefficients, A was a constant, and Y_c was the predicted value for the dependent variable, such that Y_c - the actual value = E, the error (or residual) term.

The SPSS subprogram REGRESSION, using the stepwise mode and a uniform inclusion level for all independent variables, made available a series of thirteen regression equations. The equations from step three and step five were selected as having the optimal combination of the following four factors: 1) the highest R^2 (the coefficient of determination); 2) the lowest α level for the significance of the coefficients; 3) the lowest coefficient of variability; and 4) the lowest α level for the significance of the regression equation.

The variables included in the three-step and five-step equations were run on the STATPAK computer program TREN and the OMNITAB program POLYFIT to fit the base period data to a first degree polynomial, an exponential curve, and a Gompertz curve (if possible). The coefficient of variability was computed for each curve and the curve with the lowest coefficient of variability was chosen to forecast that variable. Forecasts for each variable for the years 1975, 1980, 1985, and 1990 were computed by extrapolating the chosen curve.

These forecast values for each variable for each year were substituted into the two regression equations to produce a forecast for truckload freight for the years 1975, 1980, 1985, and 1990. The three-step and fivestep forecasts are presented in Figure 2 (page 20 of the text). Inspection of these forecasts revealed a large divergence, so another regression equation was developed to corroborate the results of either the three-step or the fivestep equation.

A third forecast, the four-step equation, was formulated by the method previously described, except for the use of mixed inclusion levels for the independent variables. In addition a 1972 Department of Transportation projection of the U.S. annual percentage increase in "Truck for Hire--Intercity" was applied to the Southwestern Region truckload data, starting with 1971, to produce a projection to 1990, and a trend analysis of the base period freight data was performed, indicating that the Gompertz curve was the best fit.

Comparison of the three predictor regression equations, the projection derived from Department of Transportation national percentage increases, and the Gompertz curve (presented in Figure 5, page 35 of the text), along with all the statistical evidence available, led to the selection of the four-step equation. The four-step predictor regression equation is:

TRUKLOAD = 4,985.45897 CHEMICAL + 2,323.73557 POPULATN - 24,439.82163 LUMBER + 8,593.57920 METALS - 28,796,494.49892

with $R^2 = 0.99403$, $\alpha_{c} < 0.005$, $V_{\overline{x}} = 0.0235709$, and $\alpha_{eg} < 0.001$.

The forecasts for total truckload revenue freight of Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region were computed to be:

Year	Tons
1975	37,793,827
1980	46,753,424
1985	57,535,753
1990	71,062,453

Although multicollinearity was considered to be a problem since the multiple regression model used time series data, the analysis presented was believed to be reliable for predictive purposes. This belief was based on the fact that the variables selected for use in the two regression equations were not subject to extreme observations and that the pattern of intercorrelations among the variables had been sustained for a sufficiently long period of time to indicate that it would be likely to continue in the future.

UTILIZATION OF RESULTS

The results will be of interest to the following: transportation planners for the Southwestern Region, forecasters of traffic in all transportation modes, and individuals needing a large body of information concerning economic indicators in the Southwestern Region.

CONCLUSION

In this study, total truckload revenue freight of Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region has been forecast to 1990 by multiple regression analysis and trend analysis. A four-step predictor regression equation was selected as the "best" forecast. The four independent variables of this equation explained approximately 99.4 percent of the variation in the dependent variable (truckload freight). Truckload freight is predicted to be 71,062,453 tons in 1990.

ъ

PREFACE

The Council for Advanced Transportation Studies of The University of Texas at Austin has a contract with the U.S. Department of Transportation (DOT-OS-30093) to do a research project entitled, "Transportation to Fulfill Human Needs in the Rural/Urban Environment." This project is divided into five topics: I. Access to Essential Services; II. Influence on the Rural Environment of Interurban Transportation Systems; III. Transportation Development in the Southwest with Emphasis on Intermodal Freight and the Dallas-Fort Worth Airport; IV. Ride Quality Evaluation in Multimodal Systems; and V. Human Response in the Evaluation of Modal Choice Decisions. Topic III has two major parts: A. Improvement of Intermodal Freight Transportation in the Southwest; and B. Monitoring the Effects of the Dallas-Fort Worth Regional Airport. This report deals with a portion of the work being done on Topic III-A.

Facilities and research materials of the Bureau of Business Research of The University of Texas at Austin, under the direction of Dr. Stanley A. Arbingast, Professor of Resources, were used in the preparation of this report. The research was supervised by Dr. Charles T. Clark, Professor of Business Statistics, with helpful discussions and suggestions from Edward N. Kasparik, Research Associate, and Charles P. Zlatkovich, Research Associate and Transportation Specialist. Florence Escott, Associate Director of the Bureau of Business Research, cooperated in many details of publication; Dianne Y. Priddy, Research Associate, assisted in data collection and reviewed the drafts, making constructive comments; Dr. Lois R. Glenn, Research Associate, edited the final draft; Jewell Patton and Geraldine Edwards typed the drafts; and offset printing was the work of Robert Dorsett and Daniel Rosas, assisted by Robert Jenkins and Salvador Macias.

Mary Gorse

March 1975

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

TABLE OF CONTENTS

Chapt	ter I	Page
I.	INTRODUCTION	1
	Background Information	1
	Current Situation	1
		- -
		2
II.	DATA	5
	Dependent Variable	5
	Independent Variables	5
III.	ANALYSIS	10
	Estimation of Missing Values	10
	Multiple Degraggion Applugic	10
		10
	Independent variables Forecast	11
	Dependent Variable Forecast	11
IV.	RESULTS	12
	Three-Step Equation	12
	Five-Step Equation	10
	Forecast of the Independent Variables	10
	Foregot of the Dependent Variable	18
	Configuration of the Dependent Variable	T8
	Confirmation of the Dependent variable Forecast	18
	Four-Step Equation	22
v.	DISCUSSION	27
	Multicollinearity	27
	Truckload Freight Extrapolations	27
	U.S. Department of Transportation Projection	33
VI.	CONCLUSION	36
	TTYEC	20
MT I DN		27
Α.	Tables Presenting the Base Period Data for the Independent Variables	39
в.	Figures Representing the Base Period Data for Selected Independent Variables	71
BIBLT	OGRAPHY	79

LIST OF TABLES

Table		Page
I.	Composition of Freight Transported By Class I Common and Contract Motor Carriers of Property Operating in Intercity Service in the South-	
II.	western Region for the Year Ended December 31, 1971 Total Truckload Freight of Class I Common and Contract Motor Carriers of Property Operating	3
	in Intercity Service in the Southwestern Region	7
III. IV.	Complete Titles and Computer Titles of the Variables Summary of Output from the Stepwise Mode of the SPSS Multiple Regression Program (Uniform	8
v.	Inclusion Level)	13
VI.	Program (Uniform Inclusion Level)	14
VII.	Level)	15
VIII.	Program (Uniform Inclusion Level)	16
IX.	Level)	17
х.	Regression Equations (Uniform Inclusion Level)	19
XI.	Level)	19
XII.	Levels)	21
XIII.	Program (Mixed Inclusion Levels)	23
xīv.	Multiple Regression Program (Mixed Inclusion Levels) Forecasts for the Independent Variables in the	24
	Regression Equation (Mixed Inclusion Levels)	25
XV.	Truckload Freight Forecast (Mixed Inclusion Levels)	25
XVI.	Correlation Coefficients	28
XVII.	Truckload Freight Extrapolations	31
XVIII.	Projection for the Southwestern Region Derived from U.S. Department of Transportation National	с <i>и</i>
	Percentage Increase Estimates	34

LIST OF FIGURES

Figure

1.	Total Truckload Freight of Class I Common and Contract Motor Carriers of Property Operating	C
	in intercity service in the southwestern Region	ю
2.	Truckload Freight Forecasts (Uniform Inclusion	
	Level)	20
3.	Comparison of Truckload Freight Forecasts	26
4.	Truckload Freight Extrapolations	32
5.	Comparison of Truckload Freight Extrapolation,	
	Projection, and Forecasts	35

APPENDIXES

A-T.	Apparel and Related Products*	40
A-TT.	Automobile Registrations	40
A-TTT	Bus Registrations	47
$\Delta - TV$	Cash Recipts from Farm Marketings	42
	Chamical and Allied Products*	43
A-VT	Crude Oil and Products Dipeline Mileage	44
A-VII. A-VII	Crude Patroleum Production	45
	Flootrical Machinery*	46
A-VIII.	Employees on Nonagricultural Paurolle	47
A-1A.	Employees on Monayricultural Payroris	48
A-A.	Employment in Manufacturing industries	49
A-XI.		50
A-XII.	Food and Kindred Products*	51
A-XIII.	Lumber and wood Products*	52
A-XIV.	Motor Venicle Registrations	53
A-XV.	Natural Gas Liquids Production	54
A-XVI.	Natural Gas Production	55
A-XVII.	Nonelectric Machinery*	56
A-XVIII.	Paper and Allied Products*	57
A-XIX.	Petroleum and Coal Products*	58
A-XX.	Primary Metals*	59
A-XXI.	Resident Population Estimates	60
A-XXII.	Sand and Gravel Production	61
A-XXIII.	Stone, Clay, and Glass Products*	62
A-XXIV.	Total Gasoline Consumption	63
A-XXV.	Total Personal Income	64
A-XXVI.	Total Value Added By Manufacture	65
A-XXVII.	Tractor-Truck Registrations	66
A-XXVIII.	Transportation Equipment*	67
A-XXIX.	Truck Registrations	68
A-XXX.	Value of Mineral Production	69

F:	ig	u	r	e
----	----	---	---	---

Table

Page

Page

B-1.	Apparel and Related Products* .		•	•	•	•	٠		•				•		72
В-2.	Chemical and Allied Products* .	,	•	٠	•		•			•	•		•		73
в-3.	Lumber and Wood Products*	,	•	•	•	•	•	•			•	•			74
B-4.	Motor Vehicle Registrations			•		•		•	•	•	•	•	•		75
в-5.	Primary Metals*		•	•	•	•		•	•	•		•	•	•	76
B-6.	Resident Population Estimates .		•	•	٠	•	•	•	•	•	•		•		77
B-7.	Total Gasoline Consumption		•	•	•		•	•	•		•	•	•	•	78

*Value Added By Manufacture

CHAPTER I

INTRODUCTION

Twenty million trucks of various kinds, including more than one million for-hire carriers, operate over a U.S. highway system of 3.5 million miles of roadway and streets, two-thirds of which are surfaced. These publicly owned rights-of-way are used by the trucking industry, whose various phases directly employ seven million people.¹

Background Information

The for-hire carriers consists of common carriers and contract carriers. A third type of motor carrier, the not-for-hire (or private) carrier, consists of individuals or businesses that transport their own freight. Common carriers transport "public" property either as regular-route carriers or as irregularroute carriers. Some common carriers transport general freight and others limit their carriage to a particular kind of traffic, such as livestock or household goods. The contract carriers transport property for a limited number of customers under special contract. They can adapt themselves more readily to the needs of their clientele than the common carriers.

The Interstate Commerce Commission is the regulatory agency for interstate motor carriers. It classifies common and contract motor carriers of property operating in the intercity service according to their annual operating revenues. This report is concerned only with Class I carriers. A Class I motor carrier of property is one with average annual operating revenues of \$1,000,000, or more, from property motor carrier operations. It should be noted that there is a sizable amount of truck carriage (probably two-thirds) not subject to regulation.²

Current Situation

The composition of freight transported by Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region for the year ended December 31, 1971, is presented in Table I, with the commodities listed in the order of their tonnage.

"Although there is some trucking for very long distances, there is evidence that comparatively short hauls predominate in motor-truck

¹Roy J. Sampson and Martin T. Farris, <u>Domestic Transportation</u>: <u>Practice</u>, <u>Theory</u>, <u>and Policy</u>, 3rd ed. (Boston: Houghton Mifflin Company, 1975), pp. 61-62. ²Ibid., pp. 62-63.

transportation."³ The average length of freight haul in U.S. domestic commerce for Class I common carriers was 277 miles in 1971, as compared to scheduled air carriers at 1023 miles and railroads at 505 miles.⁴

The trucking industry's use of publicly owned rights-of-way, coupled with its comparatively small investment in terminal facilities and vehicles, results in a high proportion of variable or direct costs to fixed or indirect costs. Each revenue dollar consists of approximately: 50 percent wages and fringe benefits; 13 percent terminal expenses; 13 percent administrative, general, tax, and license expenses; 15 percent depreciation and equipment expenses; and 9 percent traffic solicitation, insurance and safety, and profits. "It is generally considered that a well-managed trucking firm can operate profitably with an operating ratio (percentage of operating expenses) of ninety-three."⁵

Future Outlook

"The trucking industry basically is made up of a large number of comparatively small firms, although there are notable exceptions."⁶ Currently, however, there is a dramatic trend toward consolidation in the common carrier trucking business.^{7,8} Although mergers and acquisitions of for-hire carriers are most frequently sought to obtain the ICC certificate for the operating rights to a specific route held by another carrier, this acquisition and merger movement has been received with mixed reaction in the motor carrier industry. Proponents have argued that new and larger operations are able to avoid duplication in areas such as management, computer services, and accounting and legal departments. In fact a higher caliber of management expertise can be afforded, existing terminal facilities can be put to better use, and larger chunks of money can be put together for capital improvements, research and development, computers, and so forth. Opponents of mergers argue that bigness is not necessarily an asset in the labor-intensive trucking industry as compared with other capital-intensive businesses. They believe that the key to a healthy trucking industry is service to the customer and that larger companies would tend to cut out less profitable parts of their service.

³D. Philip Locklin, <u>Economics</u> of <u>Transportation</u>, 7th ed. (Homewood, Illinois: Richard D. Irwin, Inc., 1972), p. 643.

⁴Transportation Association of America, <u>Transportation Facts and Trends</u>, 10th ed. (Washington: Transportation Association of America, 1973), p. 14.

pp. 93-97.

⁵Sampson, <u>op</u>. <u>cit</u>., p. 63.

⁶Ibid., p. 62.

⁷Stu Byczynski, "Mergermania," <u>Fleet Owner</u> (January 1975), pp. 59-68. ⁸"Smith's Transfer Grows, Merger by Merger," <u>Business Week</u> (June 8, 1974),

TABLE I. COMPOSITION OF FREIGHT TRANSPORTED BY CLASS I COMMON AND CONTRACT MOTOR CARRIERS OF PROPERTY OPERATING IN INTERCITY SERVICE IN THE SOUTHWESTERN REGION FOR THE YEAR ENDED DECEMBER 31, 1971*

Commodity

Total Freight Traffic Tons (including duplications)

....

Potroleum and coal products	12 761 972
Chemicals and allied products	4,884,192
Food and kindred products	2,888,627
Transportation equipment	1,968 157
Stone clay and glass products	1,887,528
Puln paper and allied products	1 173 044
Primary metal products	747 002
Tumber and wood products except furniture	738 117
Miscellaneous products of manufacturing	732 032
Nonmetallic minerals except fuels	705,208
Crude petroloum peturel des and peturel desoline	624 226
Erra products	542 043
Pubber and missellaneous plastic products	117 220
Missellancous freight shipments	447,329
Mashinory except electrical	272 074
Rectrical machinery, equipment, and supplies	212,914
Electrical machinery, equipment, and supprises	204,373
Fabricated metal products, excluding ordnance, machinery,	
and transportation	256,564
Ordnance and accessories	191,661
Printed matter	111,894
Basic textiles	94,420
Metallic ores	67,042
Miscellaneous mixed shipments, excluding forwarder	
and shipper association	52,398
Apparel and other finished textile products,	
including knit	31,346
Furniture and fixtures	25,490
Waste and scrap materials	25,086
Tobacco products	23,210
Instruments, photo and optical goods, watches	
and clocks	22,601
Forest products	21,758
Leather and leather products	16,783
Containers, shipping, returned empty	14,473
Freight forwarder traffic	6,936
Fresh fish and other marine products	4,909
Coal	653
Shipper association or similar traffic	306

^{*}U.S. Interstate Commerce Commission, Bureau of Accounts, Freight Commodity Statistics, Motor Carriers of Property, Year Ended December 31, 1971 (Washington: Interstate Commerce Commission, 1972), pp. 74-81.

A major deterrent to the trucking industry's development is the uncertain availability of fuel in the future. Currently fuel supplies are good and are forecasted to remain that way throughout 1975: "The Federal Energy Administration is optimistic. So are the American Petroleum Institute, the National Association of Truck Stop Operators, and American Trucking Association. Common carriers and private fleets alike are fairly satisfied with current supplies, although the price of diesel fuel has jumped sharply in the past year."⁹ The long term fuel supply is very ill defined: "The U.S. energy crisis took time to come into full bloom; it will take time to cure. Something like 20 years, former energy czar John A. Love told the American Petroleum Institute recently.... The oil shortage segment of the over-all energy crisis can be partially overcome say industry spokesmen, in three to five years, more fully overcome perhaps within a decade."¹⁰

⁹Stu Byczynski, "Fuel Forecast '75: Diesel Fuel Stocks Are Up--Prices Too," <u>Fleet Owner</u> (January 1975), p. 64.

¹⁰Cornelius Brodersen, "New Fuel Sources for the 1980's and Beyond," Fleet Owner (February 1974), p. 61.

CHAPTER II

DATA

Statistics on the amount of freight shipped by truck are compiled by the Interstate Commerce Commission (ICC). The ICC classifies motor carriers in three groups (Class I, Class II, and Class III) according to the amount of average annual operating revenues. Class I motor carriers of property are designated as motor carriers with average annual operating revenues of at least \$200,000 from 1950 to 1956; at least \$1,000,000 from 1957 to 1972; and at least \$3,000,000 beginning in 1974. These changes for Class I made it impossible to find comparable data for the desired base period, 1950 to 1972. Comparable data were available for the years 1957 to 1971 (data for 1972 had not yet been published), so that was chosen as the base period. The Southwestern Region (Texas, Oklahoma, Louisiana, and Arkansas) was chosen as the forecast area since the data were not available for individual states.

Dependent Variable

The data for total truckload revenue freight of Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region (hereafter referred to as truckload freight) were found in a series of three publications: <u>Motor Carrier Freight Commodity Statistics</u>, <u>Class I Common and Contract Carriers of Property</u>, by the U.S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, for the years 1957 to 1963; <u>Freight Commodity Statistics</u>, <u>Class I Motor Carriers of</u> <u>Property Operating in Intercity Service--Common and Contract, in the United States</u>, by the U.S. Interstate Commerce Commission, Bureau of Accounts, for the years 1966 to 1967; and <u>Freight Commodity Statistics</u>, <u>Motor Carriers of</u> <u>Property</u>, by the U.S. Interstate Commerce Commission, Bureau of Accounts, for the years 1968 to 1971. Data were not available for the years 1964 and 1965, so these years were estimated by the method described in the analysis section for the estimation of missing values. The truckload freight data are presented in Figure 1 and Table II.

Independent Variables

Data were gathered on thirty other variables. Their complete titles and computer titles are listed in Table III. The variables will be referred to in this report by their computer titles.

The variables APPAREL, CHEMICAL, ELECMACH, FABMETAL, FOOD, LUMBER, METALS, NONELECM, PAPER, PETRCOAL, STCLGLAS, TOTALVAM, and TRANSEQP were all found in two publications: <u>Annual Survey of Manufactures</u>, by the U.S. Department of Commerce, Bureau of the Census, for the years 1957, 1959 to 1962, 1964

FIGURE 1. TOTAL TRUCKLOAD FREIGHT OF CLASS I COMMON AND CONTRACT MOTOR CARRIERS OF PROPERTY OPERATING IN INTERCITY SERVICE IN THE SOUTHWESTERN REGION

Year	Tons of Air Cargo
1957	13 9/3 7/8
1958	15,545,740
1959	16 737 910
1960	17, 329, 816
1961	18,750,130
1962	19.384.891
1963	20.024.847
1964*	22,665,720
1965*	23,960,476
1966	27,371,017
1967	25.627.877
1968	27,403,649
1969	28,576,420
1970	31,055,937
1971	32,053,344

TABLE II. TOTAL TRUCKLOAD FREIGHT OF CLASS I COMMON AND CONTRACT MOTOR CARRIERS OF PROPERTY OPERATING IN INTERCITY SERVICE IN THE SOUTHWESTERN REGION

*OMNITAB first degree equation estimate.

Sources: U.S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics, Motor Carrier Freight Commodity Statistics, Class I Common and Contract Carriers of Property (Washington: Government Printing Office, 1957-63 editions).

> U.S. Interstate Commerce Commission, Bureau of Accounts, Freight <u>Commodity Statistics, Class I Motor Carriers of Property Operating</u> <u>in Intercity Service-Common and Contract, in the United States</u> (Washington: Government Printing Office, 1966-67 editions).

U.S. Interstate Commerce Commission, Bureau of Accounts, <u>Freight</u> <u>Commodity Statistics</u>, <u>Motor Carriers of Property</u> (Washington: Government Printing Office, 1968-71 editions).

TABLE III. COMPLETE TITLES AND COMPUTER TITLES OF THE VARIABLES

Complete Titles	Computer Titles
Dependent variable:	
Truckload freight	TRUKLOAD
Independent variables:	
Apparel and related products*	APPAREL
Automobile registrations	AUTOREG
Bus registrations	BUSREG
Cash receipts from farm marketings	FARMREC
Chemical and allied products*	CHEMICAL
Crude oil and products pipeline mileage	PIPELINE
Crude petroleum production	CRUDEPET
Electrical machinery*	ELECMACH
Employees on nonagricultural payrolls	NONAGEMP
Employment in manufacturing industries	MFGEMP
Fabricated metal products*	FABMETAL
Food and kindred products*	FOOD
Lumber and wood products*	LUMBER
Motor vehicle registrations	VEHICLES
Natural gas liquids production	NATGASLQ
Natural gas production	NATGAS
Nonelectrical machinery*	NONELECM
Paper and allied products*	PAPER
Petroleum and coal products*	PETRCOAL
Primary metals*	METALS
Resident population estimates	POPULATN
Sand and gravel production	SANDGRAV
Stone, clay, and glass products*	STCLGLAS
Total gasoline consumption	GASOLINE
Total personal income	INCOME
Total value added by manufacture	TOTALVAM
Tractor-truck registrations	TRATKREG
Transportation equipment*	TRANSEQP
Truck registrations	TRUCKREG
Value of mineral production	MINERAL

*Value added by manufacture

to 1966, and 1968 to 1971; and the <u>Census of Manufactures</u>, <u>volume III</u>, <u>Area</u> <u>Statistics</u>, by the U.S. Department of Commerce, Bureau of the Census, for the years 1958, 1963, and 1967.

The variables CRUDEPET, MINERAL, NATGAS, NATGASLQ, and SANDGRAV were all found in the <u>Minerals Yearbook</u>, volume <u>III</u>, <u>Area Reports</u>, by the U.S. Department of the Interior, Bureau of Mines, for the years 1957 to 1971.

The variables AUTOREG, BUSREG, TRATKREG, TRUCKREG, and VEHICLES were all found in <u>Highway Statistics</u>, <u>Summary to 1965</u>, by the U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, for the years 1957 to 1965. Data for the years 1966 to 1971 were found in <u>Highway Statistics</u>, by the U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads.

Each of the remaining variables came from a different source. The variable GASOLINE was found in Petroleum Facts and Figures, by the American Petroleum Institute, Division of Statistics, for all years. The variable INCOME was taken from the Survey of Current Business, by the U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of Economic Analysis, for all years. The variable POPULATN was found in Current Population Reports, Series P-25, by the U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of the Census, for all years. The variable MFGEMP was taken from an unpublished "Report of Employment," submitted to the U.S. Department of Labor, Bureau of Labor Statistics, Division of Manpower and Employment Statistics, for all years. The variable NONAGEMP was found in Employment and Earnings, States and Areas 1939-1972, Bulletin 1370-10, by the U.S. Department of Labor, Bureau of Labor Statistics, for all years. The variable FARMREC was taken from Farm Income Situation Supplement, Farm Income, State Estimates, by the U.S. Department of Agriculture, Economic Research Service, for all years. The variable PIPELINE was found in Transport Statistics in the United States, Part 6--Oil Pipe Lines, by the U.S. Interstate Commerce Commission, Bureau of Accounts, for all years.

Appendix A contains a table for each independent variable to present the data gathered for the Southwestern Region for the years 1957 to 1971.

CHAPTER III

ANALYSIS

Estimation of Missing Values

Every effort was made to assure the completeness of the 1957 to 1971 series of data for each variable; however, it was not always feasible. When a series was incomplete, the OMNITAB computer program POLYFIT was run on the data available for polynomials of degree n, with n = 1, 2, and 3. The missing value or values for the variable were then estimated by using the polynomial which had the lowest residual standard deviation not predicting a negative number for the missing value or values.

Multiple Regression Analysis

The data were analyzed with the aid of the computer program SPSS (Statistical Package for the Social Sciences), subprogram REGRESSION, using the stepwise mode. Multiple regression analysis (subprogram REGRESSION) allows one to study the linear relationship between a dependent variable (truckload freight) and a set of independent variables (all other variables), taking into consideration the interrelationships among the independent variables. The objective of multiple regression analysis is to formulate a predictor equation that is a linear combination of independent variables and has the highest correlation with the dependent variable. The predictor regression equation takes the form of

$$Y_{c} = A + B_{1}X_{1} + B_{2}X_{2} + B_{3}X_{3} + \dots + B_{n}X_{n}$$

where the X's are the independent variables, the B's are the regression coefficients, A is a constant, Y is the predicted value for the dependent variable, such that Y_c - the actual value = E, the error (or residual) term.

Multiple regression is based on several assumptions: 1) the dependent variable is a normally distributed random variable; 2) the independent variables are mathematical (fixed) and not random; 3) the variance of the estimation of the dependent variable is homoscedastic; 4) the coefficients of the predictor regression equation are maximum likelihood estimators of their respective parameters; and 5) the error (or residual) term is normally distributed and its expected value is zero.¹¹

¹¹Charles T. Clark and Laurence L. Schkade, <u>Statistical Methods for</u> <u>Business Decisions</u> (Cincinnati: South-Western Publishing Company, 1969), pp. 624-625.

The stepwise mode on the SPSS multiple regression program first picks the independent variable that best correlates with the dependent variable and then proceeds to pick variables one at a time that provide the best prediction in conjunction with the variables already in the equation. The selection process uses a combination of the normalized regression coefficient value that the prospective variable would have if it were brought into the equation on the next step, as measured by the F statistic, and the tolerance of the prospective variable.

The SPSS stepwise multiple regression program made available a series of regression equations, one for each step in which the program was able to enter another variable before it reached certain preset cutoff values. The equation which had the highest R^2 (the coefficient of determination), the lowest α level for the significance of the coefficients, the lowest coefficient of variability, and the lowest α level for the significance of the significance of the regression equation, or the optimal combination of these factors was picked as the predictor regression equation.

Independent Variables Forecast

The variables which were included in the chosen equation were run on the STATPAK computer program TREN and the OMNITAB computer program POLYFIT to fit the base period data, 1957 to 1971, to a first degree polynomial, an exponential curve, and a Gompertz curve (if possible). It should be noted that a second degree polynomial fit and a third degree polynomial fit were not used in the analysis because the time span of 1957 to 1971 was believed to be too short for the results to be meaningful. Extrapolations of the base period data for each curve for each variable were computed for the years 1972 to 1990.

The standard error of estimate was computed for the fit of the two or three curves on the base period data for each of the variables. The standard error of estimate for each curve was divided by the mean of the data for the variable to give the coefficient of variability. The curve which had the smallest coefficient of variability was chosen as the best fit and the extrapolations for that curve were chosen as the forecasts for the variable to be used in the regression equation.

Dependent Variable Forecast

The forecast values for each variable for the year 1975 were substituted into the regression equation to give a forecast for truckload freight for 1975. The same procedure was followed for the years 1980, 1985, and 1990.

CHAPTER IV

RESULTS

The SPSS stepwise multiple regression program, with all variables having the same inclusion level, admitted thirteen steps, the maximum number which could be included given the 15 year time span. Table IV gives the values of R^2 , the lowest α level that can be met by all variables for the significance of the coefficients, the coefficient of variability, and the lowest α level for the significance of the regression equation, for each step. The optimal combination of these factors appeared to be step three and step five.

Three-Step Equation

The predictor regression equation from step three (see Tables V and VI) is:

TRUKLOAD = 2.68892 VEHICLES - 23,168.56286 LUMBER + 4,678.01239 CHEMICAL - 5,103,804.67546

with $R^2 = 0.98979$, $\alpha_c < 0.025$, $V_{\bar{x}} = 0.0293995$ and $\alpha_c < 0.001$.

Five-Step Equation

The predictor regression equation from step five (see Tables VII and VIII) is:

TRUKLOAD = 1.78646 VEHICLES - 19,661.33152 LUMBER + 6,059.13026 CHEMICAL - 14,189.69835 APPAREL + 1.82612 GASOLINE - 11,809,529.80136

with $R^2 = 0.99565$, $\alpha < 0.025$, $V_- = 0.0212060$ and $\alpha < 0.001$.

Step	R ²	a c	V _x	a eq	
l	0.98100	<0.001	0.0368978	<0.001	
2	0.98414	<0.500	0.0350901	<0.001	
3	0.98979	<0.025	0.0293995	<0.001	
4	0.99277	<0.050	0.0259574	<0.001	
5	0.99565	<0.025	0.0212060	<0.001	
6	0.99719	>0.500	0.0181003	<0.001	
7	0.99891	>0.500	0.0120578	<0.001	
8	0.99941	>0.500	0.0095674	<0.001	
9	0.99961	>0.500	0.0085531	<0.001	
10	0.99991	>0.500	0.0045820	<0.001	
11	0.99996	>0.500	0.0036898	<0.001	
12	0.99999	>0.500	0.0023067	<0.001	
13	1.00000	>0.500	0.0002984	<0.001	

TABLE IV.	SUMMARY OF OUTPUT	FROM THE	STEPWISE	MODE OF THE	SPSS
	MULTIPLE REGRESSI	ON PROGRAM	(Uniform	inclusion	level)

$$\begin{split} {\tt R}^2 &= {\tt the \ coefficient \ of \ determination} \\ {\tt \alpha_c} &= {\tt the \ lowest \ \alpha \ level \ that \ can \ be \ met \ by \ all \ variables \ for \ the \ significance \ of \ the \ coefficients \ V_{\overline{\bf x}} &= {\tt the \ coefficient \ of \ variability} \\ {\tt v_{\overline{\bf x}}} &= {\tt the \ lowest \ \alpha \ level \ for \ the \ significance \ of \ the \ regression \ equation \ equati$$

TABLE V. STEP THREE OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Uniform inclusion level)

DEPENDENT VARIABLE, TRUKLOAD TRUCKLOAD REVENUE FREIGHT TONS

VARIABLE(S) ENTERED ON STEP NUMBER 3. CHEMICAL CHEMICAL - ALLIED PROD. VALUE ADDED MFG.

MULTIPLE R	.99488	ANALYSIS OF VARIANCE	DF	SUM OF SQUARES	HEAN SQUARE	
R SQUARE	,98979	REGRESSION	3+6	07321984548,00000×869	107328182,00008	355,53090
STD DEVIATION	666361,58618	RESIDUAL	1148	84414226196 84375 444	837656918,73437	-

NEAN RESPONSE22665727.20000 Coefficient of Variability 2,93995 percent

	VARIABLES	IN THE	EQUATION	
--	-----------	--------	----------	--

----- VARIABLES NOT IN THE EQUATION -------

19648

51848

٠

40155

SANDGRAV

FARIABLE		BETA	STD ERROR B	•	VARIABLE	PARTIAL	TOLERANCE	۲
VEHICLES	2,68892	73395	44228	8,14320	GASOLINE	,23473	. 82888	58313
	23168,56286	•,42823	8769,45026	6,97447	PDPULATN	,23922	.01887	. 68781
CHEMICAL	4678,01239	67255	1894,84782	6,09500	PIPELINE	-,38787	41633	1,77882
(CONSTANT) #51	83884,67546				NONAGEMP	03686	.02238	101302
	-				AUTÓREG	28741	00053	
					BUSREG	+.52315	15141	3.76889
					TRUCKREG	26240	.00297	73944
					TRATKREG	.16766		28923
					FARMREC	13196	.08626	17722
					MINERAL	- 49884	83836	3,29865
					NATGAS	•.12140	01365	14959
					CRUDEPET	*,35319	.05949	1,42525
					MEGEHP	01596	.05164	88255
					APPAREL	- 53974	.03366	4,11080
					NATGASLO	- 25479	.85**3	69423
					INCOME	- 38488	.02997	1,01825
					FOOD	- 38853	. 82942	1.69324
					TOTALVAM	+ 15689	01558	25237
					PETRCOAL	- 08936	89795	00088
					PAPER	- 20002	62489	41673
					TRANSEOP	28184	19585	86285
					STCLGLAS	14052	.84986	20144
					HETALS	31007	.05164	1,06368
					FABMETAL	.37625	. 90467	1,64911 .
					ELECMACH	40107	01358	1 91690
					NONELECH	•,37952	.04506	1,59130

4

TABLE VI. SUMMARY TABLE FOR STEP THREE OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Uniform inclusion level)

DEPENDENT VARIABLE., TRUKLOAD TRUCKLOAD REVENUE PREIGHT TONS

SUMMARY TABLE

VARIABLE		MULTIPLE R	R SQUARE	REQ CHANGE	SIMPLE R	8	BETA
VEHICLES LUMBER CHEMICAL (CONSTANT)	MOTOR VEHICLE REGISTRATIONS LUMBER - WOOD PRODUCTS VALUE ADDED MFG. CHEMICAL - ALLIED PROD, VALUE ADDED MFG	99845 99284 99488	.98100 .98414 .98979	,98100 ,06314 ,00566	99845 95735 98980	2,68892 =23168,56286 4678,81239 =5183884,67546	,733+5 -,42823 ,67255

FINAL ANALYSIS OF VARIANCE

DUE TO	DF SUM OF SQUARES MEAN SQUARE	F
REGRESSION	3+607321984548,00000+869107328182,00000	355,53090
RESIDUAL	114884414226186,89375 444837656918,73437	

STANDARD DEVIATION OF RESIDUALS 666361,50618

TABLE VII. STEP FIVE OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Uniform inclusion level)

DEPENDENT VARIABLE., TRUKLOAD TRUCKLOAD REVENUE FREIGHT TONS

VARIABLE(S) ENTERED ON STEP NUMBER 5. GASOLINE TOTAL GASOLINE CONSUMPTION

MULTIPLE R	,99782	ANALYSIS OF VARIANCE	DF	SUM OF SQUARES	MEAN BOUARE	F
R SQUARE	,99565	REGRESSION	5#4	12519462798,00008+2825	803892559,50000	412,43537
STD DEVIATION	489649,64693	RESIDUAL	929	79216747857,54687 231	24883895,28223	

MEAN RESPONSE22665727.20000 COEFFICIENT OF VARIABILITY 2,12060 PERCENT

*-*****	VARIAB	LES IN THE E	QUATION			VARIABLES NO	T IN THE EQUATIO	N
VARIABLE	8	BETA	STD ERROR 8	F	VARIABLE	PARTIAL	TOLERANCE	F
VEHICLES	1,78646	48762	,79886	5,00082	POPULATN	. 38479	.01261	81929
LUMBER FLABTICITY	-19661,33152	*,35662	6975,94757	7,94364	PIPELINE	* 17769	.19949	26981
CHEMICAL	6059,13026	87111	1432,56108	17.88934	NONAGEMP	.91472	.01053	.88173
APPAREL FLASTICITY	=14189,69835 =,24348	-,44356	4282,73825	10,97750	AUTOREG	- , 94453	. 08086	.81589
GASOLINE ELASTICITY	1,82612	.42484	74656	5,98316	BUSREG	-,19838	,04482	32775
(CONSTANT) =11889529,8013	1809529,88136				TRUCKREG Tratkreg Farmrec Mineral	07476 59364 ,29534 -,23303	,01033 ,05255 ,07930 ,01545	84497 4,35348 ,76449 ,45938
					NATGAS CRUDEPET MEGEMP	41798	.00782 .02626 .03449	1,69273,07544
					NATGABLQ INCOME FOOD	14263	03410 ,07387	16613
				TOTALVAM Petrcual	09988 02102	00465 09358	,08062 ,00354	
				TRANSEQP Stelglas	.17626 .33046	.86541 ,88657 ,83816	25651	
					METALS FABMETAL FLECMACH	,08103 = 28234 - 03567	84366 87388 87427	05287
					NONELEC ^M Sandgrav	- 15847	,01895 ,48263	29689

.

TABLE VIII. SUMMARY TABLE FOR STEP FIVE OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Uniform inclusion level)

BUNNARY TABLE

VARIABLE		MULTIPLE R	R SQUARE	RSG CHANGE	SIMPLE R	B	BETA
VEHICLES	MOTOR VEHICLE REGISTRATIONS	99045	.98180	98180	99045	1,78646	,48762
LUMBER	LUMRER = WOOD PRODUCTS VALUE ADDED MFG.	99204	.98414	08314	995735	=19661,33152	-,35662
CHEMICAL	CHEMICAL = ALLIED PROD. VALUE ADDED MFG.	99488	.98979	88566	998469	6859,13826	,87111
APPAREL	APPAREL=RELATED PRODUCTS VALUE ADDED MFG	99638	.99277	88297	995469	=14189,69835	-,44356
GASOLINE	TOTAL GASOLINE CONSUMPTION	99782	.99565	88289	97924	1,82612	,42484

7

FINAL ANALYSIS OF VARIANCE

DUE TO	DF SUM OF SQUARES	HEAN SQUARE	F
REGRESSION	5+412519462798,00000+282	503892559,50000	412,43537
RESIDUAL	92079216747857.54687 231	924083095,28223	

STANDARD DEVIATION OF RESIDUALS 489649,64693

Forecast of the Independent Variables

The five variables from the predictor regression equation were run on the STATPAK program TREN and the OMNITAB program POLYFIT to fit a first degree polynomial, an exponential curve, and a Gompertz curve (if possible). The computer was only able to fit a Gompertz curve to the data from variables VEHICLES and CHEMICAL. Extrapolations of the two or three curves for each of the five chosen variables were computed. The coefficient of variability was computed for each curve and the extrapolation for the curve which had the smallest coefficient of variability was chosen as the forecast for that variable. Table IX contains the forecast values for the five variables for the years 1975, 1980, 1985, and 1990.

Forecast of the Dependent Variable

These forecast values for each variable for each year were substituted into the two regression equations to produce a forecast for truckload freight for the years 1975, 1980, 1985, and 1990. Table X presents the truckload freight forecast values and Figure 2 presents a graph of the forecasts along with the base period data.

Confirmation of the Dependent Variable Forecast

Inspection of the forecasts revealed a large divergence so it seemed desirable to formulate another regression equation to corroborate the results of either the three-step or the five-step equation.

VEHICLES, total vehicle registrations, is a composite variable including AUTOREG (auto registrations), BUSREG (bus registrations), and TRUCKREG (truck registrations). The variable VEHICLES was observed to have lost its significance in the regression equations (the α_c level became greater than 0.500) after the fifth step, when all variables had the same inclusion level. The SPSS stepwise multiple regression program was therefore run with all variables having an inclusion level of 3, except AUTOREG, BUSREG, TRUCKREG, and VEHICLES, which were given an inclusion level of 1. (It should be noted that higher inclusion level variables will be included in the regression equation before lower inclusion level variables.) The analysis followed for this set of variables parallels the first analysis.

The SPSS stepwise multiple regression program again included thirteen steps. Table XI gives the values for R^2 , the lowest α level that can be met by all variables for the significance of the coefficients, the coefficient of variability, and the lowest α level for the significance of the regression equation, for each step. Step four appeared to have the optimal combination of these factors.

		Tons				
Independent Variable	Year 1975	Year 1980	Year 1985	Year 1990	Type of Curve	
VEHICLES	13,351,600.0	15,516,100.0	17,734,300.0	19,972,100.0	Gompertz	
LUMBER	789.9	1,143.7	1,655.9	2,397.6	Exponential	
CHEMICAL	5,504.2	8,046.9	11,764.3	17,199.0	Exponential	
APPAREL	1,087.7	1,814.6	3,027.2	5,050.3	Exponential	
GASOLINE	12,513,600.0	14,927,500.0	17,806,900.0	21,241,800.0	Exponential	

TABLE IX.	FORECASTS	FOR THE	INDEPENDENT	VARIABLES	IN	THE	REGRESSION	
	EQUATIONS	(Uniform	n inclusion	level)				

TABLE X. TRUCKLOAD FREIGHT FORECASTS (Uniform inclusion level)

	Tons	
Year	Three-step Equation	Five-step Equation
1975	38,245,448	37,279,949
1980	47,663,359	43,690,692
1985	59,251,027	48,158,796
1990	73,507,763	48,068,643

FIGURE 2. TRUCKLOAD FREIGHT FORECASTS (Uniform inclusion level)
Step	R ²	ac	V _x	α eq
1	0.97812	<0.001	0.0395888	<0.001
2	0.98562	<0.025	0.0334137	<0.001
3	0.98936	<0,050	0.0300208	<0.001
4	0.99403	<0.005	0.0235709	<0.001
5	0.99665	<0.500	0.0186167	<0.001
6	0.99817	<0.500	0.0145898	<0.001
7	0.99839	>0.500	0.0146143	<0.001
8	0.99880	<0,500	0.0136335	<0.001
9	0.99939	>0.500	0.0106254	<0.001
10	0.99976	>0.500	0.0074159	<0.001
11	1.00000	<0.050	0.0007935	<0.001
12	1.00000	<0.500	0.0001441	<0.001
13	1.00000	<0.500	0.0000383	<0.001

TABLE XI. SUMMARY OF OUTPUT FROM THE STEPWISE MODE OF THE SPSS MULTIPLE REGRESSION PROGRAM (Mixed inclusion levels)

r ²	Ŧ	the	coefficient	of	determination
----------------	---	-----	-------------	----	---------------

 $\alpha_{\rm C}~$ = the lowest α level that can be met by all variables for the significance of the coefficients

 $V_{\overline{x}}$ = the coefficient of variability

 α_{eq}^{α} = the lowest α level for the significance of the regression equation

Four-Step Equation

The predictor regression equation from step four (see Tables XII and XIII) is:

TRUKLOAD	=	4,985.45897	CHEMICAL
	+	2,323.73557	POPULATN
	-	24,439.82163	LUMBER
	+	8,593.57920	METALS
	-	28,796,494.49	9892

with $R^2 = 0.99403$, $\alpha_c < 0.005$, $V_{\overline{x}} = 0.0235709$, and $\alpha_{eq} < 0.001$.

The forecasts for the four independent variables for the years 1975, 1980, 1985, and 1990 are presented in Table XIV. Table XV contains the truckload freight forecast and Figure 3 presents a graph comparing this forecast with the two original forecasts.

TABLE XII. STEP FOUR OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Mixed inclusion levels)

DEPENDENT VARIABLE... TRUKLDAD TRUCKLOAD REVENUE FREIGHT TONS

VARIABLE(S) ENTERED ON STEP NUMBER 4... METALS

MULTIPLE R	.99781	ANALYSIS OF VARIANCE	DF	SUM OF SQUARES	MEAN BOUARE	F
R SQUARE	99483	REGRESSION	4 = 6	37498583178,088888+989	374645794,50000	416,68643
STD DEVIATION	534250,65536	RESIDUAL	1059	54237627476,06250 285	423762747.68547	

MEAN RESPONSE22665727,20000 COEFFICIENT OF VARIABILITY 2,35709 PERCENT

*-*********	VARIAB	LES IN THE E	GUATION	**********		VARIABLES NOT	IN THE EQUATION	
VARIABLE	9	BETA	STD ERROR B	F	VARIABLE	PARTIAL	TOLERANCE	
CHEMICAL	4985,45897	.71675	1271,63589	15,37040	GASOLINE	,36172	02216	1,35486
	2323,73557	. 42709	585,44961	15,75413	PIPELINE	-,23148	35884	58954
LUMBER	-24439,82163	-,44329	7358,66371	11,05460	NONAGEMP	*.11997	.B1433	12944
METALS	8593,57920	. 38899	3868,48686	7,84373	AUTOREG	-,24845	, 88246	.82919
(CONSTANT) =2	8796494,49892				BUSREG	- 15073	.09137	,28922
					VEHICLES	- 22875	00010	49693
					TRATKREG Farmrec	29306 43147	,03760 ,05875	2,05877
					MINERAL NATGAB	-,30740 -,01586	.03757 .81470	,93920 ,00226
					CRUDEPET MFGEMP	36296 11477	, #5#38 , #2843	1,36553
					APPAREL Natgaslq	= 26425 = 46785	03145	67565 2,52283
					INCOME	- AU299	.02902	01667

94299

- PA646

- 13164

-,66224

. 28986

,31441

49942

- N8759

- 19418

- 22339

31531

F000

PAPER

TOTALVAM

PETRCOAL

TRANSEOP

STELGLAS

FABHETAL

ELECHACH

NONELECM

SANDGRAV

50020

.02822

.01386

,84891

102301

.05683

,82723

,03936 A1470

,03746 ,50374

01667 06778

,15871 7,03042

07326 98731

2 99869 86958

35265

47231

N
ŝ

TABLE XIII. SUMMARY TABLE FOR STEP FOUR OF THE SPSS STEPWISE MULTIPLE REGRESSION PROGRAM (Mixed inclusion levels)

DEPENDENT VARIABLE. TRUKLOAD TRUCKLOAD REVENUE FREIGHT TONS

SUMMARY TABLE

VARIABLE		MULTIPLE R	R SQUARE	RSU CHANGE	SIMPLE R	B	BETA
CHEMICAL POPULATN LUMBER METALS (CONSTANT)	CHEMICAL - ALLIED PROD, VALUE ADDED MFG, RESIDENT POPULATION ESTIMATES LUMBER - HOOD PRODUCTS VALUE ADDED MFG, PRIMARY HETALS VALUE ADDED MFG,	,98900 ,99278 ,99466 ,99701	97812 98562 98936 99403	,97812 80749 800374 808468	98900 98204 95735 96394	4985,45897 2323,73557 -24439,82163 8593,57920 -28796494,49892	.71675 .42709 -,44329 .30099

-

FINAL ANALYSIS OF VARIANCE

DUE TO	DE SUM OF SQUARES	MEAN SQUARE	F
REGRESSION	4±637498583178,0000±909	374645794 50000	416,69643
RESIDUAL	192854237627476.06259 285	423762747 60547	•

STANDARD DEVIATION OF RESIDUALS 534250,65536

		To	ns		
Independent	Year	Year	Year	Year	Type of
Variable	1975	1980	1985	1990	Curve
CHEMICAL	5,504.2	8,046.9	11,764.3	17,199.0	Exponential
POPULATN	20,631.0	21,845.0	23,059.0	24,274.0	First degree
LUMBER	789.9	1,143.7	1,655.9	2,397.6	Exponential
METALS	1,223.4	1,468.8	1,695.3	1,897.3	Gompertz

TABLE XIV. FORECASTS FOR THE INDEPENDENT VARIABLES IN THE REGRESSION EQUATION (Mixed inclusion levels)

TABLE XV. TRUCKLOAD FREIGHT FORECAST (Mixed inclusion levels)

	Tons
Year	Four-step Equation
 1975	37.793.827
1980	46,753,424
1985	57,535,753
1990	71,062,453

FIGURE 3. COMPARISON OF TRUCKLOAD FREIGHT FORECASTS

CHAPTER V

DISCUSSION

Results of the four-step equation (mixed inclusion levels) are a very close approximation of the results of the three-step equation (uniform inclusion level). However, before determining the best predictor regression equation, it is important to discuss the multicollinearity problem, the truckload freight extrapolations, and the 1972 U.S. Department of Transportation projections.

Multicollinearity

The data gathered for each variable form a time series, and in this type of data, the variables are often highly correlated with time and, hence, with each other. This results in little independent variation among the variables, which makes the determination of the separate effects of each variable difficult.¹² This problem of multicollinearity is indicated by the values on the matrix of correlation coefficients, Table XVI, and by the extremely high value of R^2 for the predictor regression equations, with the first variable entered into the equation alone explaining approximately 98 percent of the variation in the dependent variable.

When the problem of multicollinearity exists multiple regression analysis can be used for predictive purposes if the independent variables chosen for the regression equation are not subject to extreme observations and if the pattern of intercorrelations that produced the base period data continues in the future.¹³

The data for the seven independent variables chosen for the three regression equations are presented in Appendix B. An examination of these graphs indicates that there were no extreme observations and that the pattern of intercorrelations has been sustained for a sufficiently long time to indicate that it is likely to continue in the future.

Truckload Freight Extrapolations

The base period (1957 to 1971) data were fit to a first degree polynomial, an exponential curve, and a Gompertz curve. The coefficient of variability for each curve was computed, indicating that the Gompertz curve provided the best fit ($V_{-x} = 0.039$). Table XVII and Figure 4 present the truckload freight extrapolations.

¹²Mahlon R. Straszheim, <u>The International Airline Industry</u> (Washington: Brookings Institution, 1969), p. 125.

¹³Ibid., p. 274.

TABLE XVI. CORRELATION COEFFICIENTS

A VALUE OF 99,00000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED,

	TRUKLOAD	GABOLINE	POPULATN	PIPELINE	NONAGEMP	AUTOREG	BUSREG	TRUCKREG	VEHICLES	TRATKREG	FARMREC
TRUKLOAD	1.00008	97924	48284	71934	97187	99828	87673	98766	.99845	95585	94877
GASOLINE	97924	1.00860	96285	78745	99270	98501	. 89543		98828	91192	94263
POPULATN	98284	.96285	1.00068	67423	95136	98955	.85947	97911	98746	97847	
PTPPLINE	71934	.78745	.67423	1.00000	86685	72503	86185	77568	74074	61987	72751
NONAGEMP	97187		.95136	80685	1.00000	98182			65524		97455
AUTORES	99928		98955	72501	98182	1.00000	87466	69543		05141	01712
RUSREG	87473	.89543	85947	86185	84055	87466	1.60606		48552	A\$728	
TRUCKREG	98744	.99186	.97911	77565	99858		98756	1		94492	
VEHICLES	99845	98628	98746	74074			88552	99771		02140	04251
TRATKREG	QESAS	91192	97847	41057	64020	65141		0/463		1	
FARMREC	94877	94263	94870	72751	92455	93712	.02100	98284	00351		1 00000
MINERAL	95852	98184	94480	85441	98419	94077	04545				
NATGAS	98193	98791	97834	7985A	98643	08012	01347	08484	40334	94871	44257
CRUDEPET	95026	97584	92468	86226	98912	96426	89774	97738	04898	87941	89741
HEREMP	94644	97798	92467	. 80515		96215		07142	94541	86240	
APPAREI	95469	08229	94265	43565	94563	97885	91512	05444		01154	04354
NATGASLO	93436	05707	.93818	78187	97015	QAGAS	84743	94185	94384	87198	A7081
TNCOME	94592		95008		98829	97315	91409	GORAS	07920	01151	- SAGA
#00b	96937	98513	95882	A3280	GALAL	97581	94891	00114	08.15	93784	94114
TOTALVAN	97284		95783	A0072	09471	08444	.40541		08814	01146	
CHEMTCAL		98496	97263	75771	08248	00011	09611	90407	08344		
PETRONI	ROSAL	02409	89432	71017		92835	71609	01873	02484	88257	79212
LINACOAL	96736		95227	73446	94184		84184	08124	07418		******
PAPER	96682	GRAAG	94821	82468	98927	97127	92385	06954	07897	91844	05154
TRANSFOR	91560	. 94618		71969	96162	02811	74015	91340	01#11	82474	83647
ETCI GLAS	0.781	97348	96416	72455	QKA7K	07215	08587	07943	07544	05030	87195
METALS	0420/	0735A	91011	74560	04620	94843		04011	04056	ATLES	##0µ0
FARMETAL	95415	98138	01167	85004	08171	9 9 9 9 9 9 9	0/1888	,7073J	67001	AGETI	
F RUPE FAL	98084	08781	07686	70745	1 0113	08422	01000	00430	177001	407331	9 9 9 9 6 8 6
NONELEAN	98674	67701	02667	85787	04012	1 700000	973VC1 00810	1770E7	8 7 7 1 00	1 7466J	91744
RUNELEL ^H	4 5 T G 3	70703	17C231	12640	+ #010	170033 Lachi	1 THO 34	, 7/70 0	18617	41826	48530
3 A " U G " A V	104245	* / ** / ME	104491	.45,2010	* 0 0 7 1 Y	*00240	133145	101320	*00231	101052	100004

.

٠.

TABLE XVI. (Continued)

	MINERAL	NATGAS	CRUDEPET	MFGEMP	APPAREL	NATGASLQ	INCOME	F000	TOTALVAM	CHEMICAL
TRUKLOAD	: 95950	98193	95926	94644	95469	QTATA		04977	·	
GASOLINE	98184	98793	.97584	97798	98229	95797	98855	08811	90370	, 40400
POPULATN	94688	97834	88959	92467	94265	QUATA	05004	05883	94763	
PTPFLINE	85661	79058	.86226	80515	83565	78187	173000	413002	10103	14/503
NONAGEMP	98418	98663	98912	09150	OAEAT	07015	00010	103604	,007/2	./3//1
AUTORFO	94877	98912	96426	96215	07085	04.005	07715	. 40141	44073	,90248
BUSREG	OARAN	91347	89774	ALYON	01613	84741	+7/313	. 4/203	, 48446	44833
TRUCKRES	03408	99656	97728	97142	98464	94195	, 73007	14041	,04283	48931
VENTELFS		99226	96898	96561	07690	0429#	107030	, 44110		199491
TRATKRES	, 77301	94571		86248	01154	87100	01181	170133	, 10018	• 44 200
FARMDEC	, 70 4 4	96237	89761	ROIRA	94354		11223	, 72/00	,71103	, 43864
MYMPELI	+94354	08407	08714	04573	174234	,0/433	193040	, 90334	,43366	.95388
MATOAR	1,00000	1 80000	07104	,70333	144340	, 43/00	44041	1 4 4 9 2 9	,98925	,98012
PRIMEDET	, 98883	97194	1 00000	4 900/2	90704	. 40050	44593	44796	.99148	,98967
MEREND	, 48736	04873	1,00000	, 40327	140304	, 40430	, 40203	, 47724	, 48843	,98541
	, 96533	100/E	.95321	1,00000	40403	, 46/44	97150	, 95917	,98899	,95812
APPAREL	,99548	,98704	.90304	,96965	1,96969	,95746	,99556	.99441	,99134	,97957
MATSASLO	95786	40858	,96938	.96749	,95746	1,00000	,95333	,95164	,96914	,94093
INCOME	99691	44593	.98283	e97150	,99556	,95333	1,00000	,99778	,99282	.98380
700D	99658	99380	.97724	,95917	* 4 4 4 1	,95164	,99778	1,00000	,98800	.98464
TOTALVAM	,98925	,99148	,98843	,98899	99134	,96914	99282	98898	1,00000	98658
CHEMICAL	98012	98967	,96541	95812	,97957	94893	98380	98464	98650	1,28800
PETREDAL	90711	91208	,94452	.95868	98665	96668	90188	89258	93916	,89613
LUMBER	96618	97688	,95545	,96858	97656	,93833	97354	96738	98498	.98868
PAPER	99143	99212	97953	97563	99498	94723	99715	.99386	99383	98492
TRANSEOP	91158	92629	94435	98176	92289	92209	.92663	.90795	95516	91972
STELGLAS	96223	98265	93125	.93333	97827	92793	97342	97780	96799	97626
MFTALS	94980	95663	96792	98224	95189	95685	95398	94382	97961	96874
FABHETAL	99394	98294	.97773	96324	99411	95211	99615	99436	98669	07789
ELECHACH	99154	99653	97424	95928	98957	95717	99250	99665	98986	.00181
NONELECH	94911	97941	98942	98295	98910	94634	99071	08260	00108	67320
SANDERAV	61914	67827	64184	68857	67854	69410	66381	64047	48508	17494

-

TABLE XVI. (Continued)

	PETRCOAL	LUMBER	PAPER	TRANSEQP	STCLGLAS	METALS	FABHETAL	ELECMACH	NONELECM	SANDGRAV
TRUKLOAD	89584	95735	96682	91580	.96791	.96394	.95635	98084	194676	.68392
GABOLINE	92489	97874	98669	94618	97348	97258	98328	98783	97791	.70702
POPULATN	.89622	95227	.94821	88256	.96616	93011	.93357	97585	92557	64401
PTPELINE	73937	73446	82648	73969	.72655	74569	.85006	.79765	.85787	.42560
NONAGENP	94656	98186	98927	96362	.95875	98529	98173	98303	98932	68919
AUTORES	.92535	97589	97327	92811	97235	96863	.96389	98822	96053	.68546
BUBREG	73689	86186	92385	76015	90587	81608	94888	93021	98434	.99742
TRUCKREE	91873	98126	98954	93360	.97962	.96933	.98329	. 99629		
VENICLES	92486	97830	97897	93031	.97546		.97881	99168	96684	44537
TRATKRES	86257	. 2887	91894	82474	95828	87455	49831	94223		41825
FARMREC	79212	92435	95154	\$3647	97395			94244	91744	44519
HTNERAL	98711	94618	99143	91158	.96223	.94988			98911	63934
NATRAS	91288	97688	99213	92629	.98245	95663	98294	00451	97941	.67827
CRUDEPET	94452	95545	97981	94435	93125	96792	97773	97424	08042	
NFREMP	95868	96858	97543	98176	. 93333	98224	96324	95920	GADGE	
APPAREL	98682	97454	99498	92289	97027	95189	09/11	98857	GAGIR	7854
MATRASLO	94448	01411	94723	92209	92793	95685	95211	95717	94634	69410
TNCOME	98184	07354	00718	92663	.97342	95398	99615	99259	.99073	.66381
F000	A928A	96718	GOTAL	98795	97780	94382	99436	99665	98260	.66887
TOTALVAN	01014	ORAGA	20181	95516	96799	97963	98669	98985	99188	.68598
CHENTCAL	. 49613	98868	98492	91972	97626	96874	97789	99181	.97220	.67496
PETROAL	1 00000	91562	901.08	92859	.85728	95354	.88959	98565	91585	61231
LUMBER	91562	1.00000	97976	93955	97174	96694	96304	97262	97272	68594
PAPER	90106	97976	1.98888	93938	97488	.95808	99135	98955	99221	67636
TRANSFOR	92859	01955	ATOTA	1,00000	89221	96469	91534	.90826	95051	69158
STEL GLAS	A5728	97174	97488	89221	1.00000	92708	96846	98858	94775	74471
METALR	95154	96694	QUARA	96469	92708	1.00000	94872	95265	96074	70150
FARMETAL		06184	99115	91534	96846	94872	1.00000	98699	98414	.69849
FLECHACH	GREAR	97262	GROKE	90826	.98058	95265	98699	1.00000	97540	.67153
NONEL FOR	91585	97272	00221	95851	.94775	96074	98414	97540	1.00000	63654
SANDGRAV	61231	68594	. 67636	69158	.74471	78150	. 69849	.67153	63654	1.00000

.

		Tons				
Type of	Year	ear Year		Year	Coefficient of Variability	
Curve	1975 1980		1985	1990		
First degree	36,908,000	43,381,800	49,855,600	56,329,400	0.041	
Exponential	41,911,700	56,240,000	75,466,700	101,266,000	0.042	
Gompertz	36,122,200	41,490,700	46,149,000	50,078,500	0.039	

TABLE XVII. TRUCKLOAD FREIGHT EXTRAPOLATIONS

FIGURE 4. TRUCKLOAD FREIGHT EXTRAPOLATIONS

U.S. Department of Transportation Projection

In 1972 the U.S. Department of Transportation projected that the U.S. annual growth rate for "Trucks for Hire--Intercity" would be 5.5 percent from 1970 to 1980 and 3.5 percent from 1980 to 1990.¹⁴ Beginning with the most recent data (1971), these percentages were applied to calculate projections for 1975, 1980, 1985, and 1990, which are presented in Table XVIII. An interesting comparison among the truckload freight forecasts, extrapolation, and projection is presented in Figure 5.

¹⁴U.S. Department of Transportation, <u>1972 National Transportation Report</u>: <u>Present Status--Future Alternatives</u> (Washington: Government Printing Office, 1972), p. 97.

TABLE XVIII. PROJECTION FOR THE SOUTHWESTERN REGION DERIVED FROM U.S. DEPARTMENT OF TRANSPORTATION NATIONAL PERCENTAGE INCREASE ESTIMATES*

Year	Tons	
 1075	20 700 473	
1975	39,708,473	
1980	51,897,386	
1985	61,637,814	
1990	73,206,388	

*Calculated for the Southwestern Region using 1971 as the base year and the U.S. Department of Transportation U.S. projections for "Trucks for Hire--Intercity": 1970-1980, 5.5 percent increase; 1980-1990, 3.5 percent increase.

FIGURE 5. COMPARISON OF TRUCKLOAD FREIGHT EXTRAPOLATION, PROJECTION, AND FORECASTS

CHAPTER VI

CONCLUSION

The four-step equation (mixed inclusion levels) was formulated to corroborate either the three-step equation (uniform inclusion level) or the five-step equation (uniform inclusion level). The four-step equation prediction of 71 million tons of truckload freight closely approximates the prediction of 73.5 million tons for the three-step equation as compared with the wide variation indicated by the 48 million tons predicted by the five-step equation. The U.S. Department of Transportation projection further substantiates the three-step equation. The best extrapolation, the Gompertz curve, was not considered as support for the five-step equation because its coefficient of variability was greater than that of the other three: $V_{\overline{x}} = 0.039$ as compared with $V_{\overline{x}} = 0.021$ to 0.029.

The model assumes that there will be no national policy changes regarding the allocation of fuel; no constraints were put on the trend of fuel consumption. If at some time in the near future this assumption does not hold true, then a prediction on the order of the five-step equation might be appropriate. A further assumption is that there will be no drastic shift to private carriage or to other modes.

The independent variables of the three-step predictor regression equation (uniform inclusion level) will explain 98.98 percent of the variation in the dependent variable, truckload freight, at a significance level of α <0.025 for the coefficients and α <0.001 for the regression equation, with a coefficient of variability of 0.0293995.

The independent variables of the four-step predictor regression equation (mixed inclusion levels) will explain 99.4 percent of the variation in the dependent variable, truckload freight, at a significance level of α <0.005 for the coefficients and α <0.001 for the regression equation with a coefficient of variability of 0.0235709.

The four-step equation (mixed inclusion levels) was chosen as the best predictor regression equation because of its lower significance level for the coefficients, its lower coefficient of variability, and its higher value of R^2 . The chosen predictor regression equation is:

TRUKLOAD	=	4,985.45897	CHEMICAL
	+	2,323.73557	POPULATN
	-	24,439.82163	LUMBER
	+	8,593.57920	METALS
	-	28,796,494.49	892

with $R^2 = 0.99403$, $\alpha_c < 0.005$, $V_x = 0.0235709$, and $\alpha_{eq} < 0.001$.

The forecasts for total truckload revenue freight of Class I common and contract motor carriers of property operating in intercity service in the Southwestern Region are:

Year	Tons
1975	37,793,827
1980	46,753,424
1985	57,535,753
1990	71,062,453

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX A

Year	Millions of Dollars
1053	200.0
1957	200.0
1958	203.4
1959	222,6
1960	229.8
1961	221.5
1962	248.3
1963	325.7
1964	346.4
1965	359.7
1966	410.5
1967	501.7
1968	543.7
1969	607.5
1970	665.0
1971	747.9

TABLE A-I. APPAREL AND RELATED PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

-		
Year	Automobiles	
1957	5,359,115	
1958	5,430,071	
1959	5,691,119	
1960	5,859,212	
1961	5,984,381	
1962	6,330,002	
1963	6,626,457	
1964	6,915,793	
1965	7,252,734	
1966	7,458,399	
1967	7,698,782	
1968	7,981,369	
1969	8,238,055	
1970	8,438,410	
1971	8,787,145	

TABLE A-II. AUTOMOBILE REGISTRATIONS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u>, <u>Summary to 1965</u> (Washington: Government Printing Office, 1967).

> U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u> (Washington: Government Printing Office, 1966-71 editions).

Year	Buses	
1057	27 420	
1957	27,439	
1958	27,787	
1959	27,403	
1960	27,885	
1961	28,967	
1962	29,390	
1963	29,713	
1964	30,486	
1965	31,041	
1966	31,802	
1967	33,362	
1968	33,989	
1969	34,365	
1970	42,178	
1971	46,056	

TABLE A-III. BUS REGISTRATIONS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u>, <u>Summary to 1965</u> (Washington: Government Printing Office, 1967).

> U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u> (Washington: Government Printing Office, 1966-71 editions).

Year	Millions of Dollars
1957	3.052.4
1958	3 907 2
1950	4 025 1
1960	3,966.7
1961	4,272 0
1962	4,276,6
1963	4.565.8
1964	4,312,2
1965	4.643.8
1966	5,056,3
1967	4,771,8
1968	5,085,3
1969	5,687.5
1970	6,174,8
1970	6.472.2
1971	0,1,2,2
1966 1967 1968 1969 1970 1971	5,056.3 4,771.8 5,085.3 5,687.5 6,174.8 6,472.2

TABLE A-IV. CASH RECEIPTS FROM FARM MARKETINGS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Agriculture, Economic Research Service, <u>Farm</u> <u>Income Situation</u>, <u>Supplement</u>, <u>Farm Income</u>, <u>State Estimates</u> (Washington: U.S. Department of Agriculture, 1949-64 and 1959-72 editions).

> U.S. Department of Agriculture, Economic Research Service, <u>Farm</u> <u>Income Situation</u> (Washington: U.S. Department of Agriculture, July 1974).

Year	Millions of Dollars
1957	1.460.8
1059	1 430 2
1958	1 732 4
1959	1,752.4
1960	1,800.6
1961	1,804.3
1962	1,931.5
1963	2,169.8
1964	2,419.9
1965	2,706.5
1966	2,975.1
1967	2,872.2
1968	3,126,1
1969	3,515,3
1905	3 667 2
1970	J,007.2
1971	4,0/3.2

TABLE A-V. CHEMICAL AND ALLIED PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey of</u> <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Miles	
1957	73,391	
1958	71,081	
1959	71, 901	
1960	72,079	
1961	72,026	
1962	71,734	
1963	71,274	
1964	71,186	
1965	71,245	
1966	72,488	
1967	73,951	
1968	74.752	
1969	73,821	
1970	76 903	
1910	70,903	
1971	76,203	

TABLE A-VI.	CRUDE OIL AND	PRODUCTS	PIPELINE	MILEAGE	IN	THE	SOUTHWESTERN
	REGION						

Source: U.S. Interstate Commerce Commission, Bureau of Accounts, <u>Transport</u> Statistics in the United States, Part 6--Oil Pipe Lines (Washington: Government Printing Office, 1957-71 editions).

Year		Thousands of 42-gallon Barrels		
аладан өнүн колтон тараатар майландага улундаган колтон колтон калан калан калан калан калан калан калан калан	1957	1.649.471		
	1958	1,483,456		
	1959	1,559,063		
	1960	1,551,341		
	1961	1,586,480		
	1962	1,650,862		
	1963	1,722,260		
	1964	1,768,484		
	1965	1,824,973		
	1966	1,980,687		
	1967	2,146,313		
	1968	2,193,893		
	1969	2,239,156		
	1970	2,398,213		
	1971	2,389,745		

TABLE A-VII. CRUDE PETROLEUM PRODUCTION IN THE SOUTHWESTERN REGION

Source: U.S. Department of the Interior, Bureau of Mines, <u>Minerals</u> <u>Yearbook</u>, <u>volume III</u>, <u>Area Reports</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars
1957	118.7
1958	143.5
1959	209.5
1960	272.1
1961	313.9
1962	364.1
1963	478.9
1964	485.6
1965	571.6
1966	681.0
1967	763.2
1968	867.6
1969	935.8
1970	1,091.3
1971	1,239.6

TABLE A-VIII. ELECTRICAL MACHINERY VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey of</u> <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Thousand of Persons
1957	4,154.7
1958	4,125.2
1959	4,234.7
1960	4,270.3
1961	4,287.4
1962	4,418.3
1963	4,543.5
1964	4,710.5
1965	4,934.0
1966	5,234,2
1967	5,460,9
1968	5-687.5
1969	5,926,1
1970	5 981 7
1970	6 082 5
19/1	0,002.5

TABLE A-IX. EMPLOYEES ON NONAGRICULTURAL PAYROLLS IN THE SOUTHWESTERN REGION

Source: U.S. Department of Labor, Bureau of Labor Statistics, <u>Employment</u> and <u>Earnings</u>, <u>States</u> and <u>Areas</u> 1939-1972, Bulletin 1370-10 (Washington: Government Printing Office, 1974).

Year	Persons	
1957	803,800	
1958	794,800	
1959	812,100	
1960	815,700	
1961	813,500	
1962	834,200	
1963	864,600	
1964	900,000	
1965	945,800	
1966	1,005,200	
1967	1,083,300	
1968	1,130,100	
1969	1,191,900	
1970	1,181,900	
1971	1,152,300	

TABLE A-X.	EMPLOYMENT	IN	MANUFACTURING	INDUSTRIES	IN	THE	SOUTHWESTERN
	REGION						

Source: U.S. Department of Labor, Bureau of Labor Statistics, Division of Manpower and Employment Statistics, "Report of Employment" (unpublished, 1957-71 Reports).

Year	Millions of Dollars		
1957	314.9		
1958	383.3		
1959	407.8		
1960	408.0		
1961	424.6		
1962	440.7		
1963	504.4		
1964	571.1		
1965	695.1		
1966	773.2		
1967	930.0		
1968	1,005.7		
1969	1,083.1		
1970	1,286.3		
1971	1,430.6		

TABLE A-XI. FABRICATED METAL PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars
1957	1,170.5
1958	1,220.3
1959	1,279.8
1960	1,342.2
1961	1,416.7
1962	1,475.3
1963	1,601.5
1964	1,657.9
1965	1,741.8
1966	1,911.8
1967	2,066.5
1968	2,229.7
1969	2,360.5
1970	2,661.6
1971	2,849.2

TABLE A-XII. FOOD AND KINDRED PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual</u> <u>Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

228.1
233.6
268.6
260.9
257.9
277.1
315.9
351.2
366.0
380.4
403.6
461.6
527.9
465.9
546.2

TABLE A-XIII. LUMBER AND WOOD PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Vehicles	
1957	6,867,079	
1958	6,973,992	
1959	7,318,074	
1960	7,524,273	
1961	7,705,428	
1962	8,150,144	
1963	8,543,685	
1964	8,943,559	
1965	9,404,800	
1966	9,717,629	
1967	10,052,227	
1968	10,474,201	
1969	10,854,258	
1970	11,191,489	
1071	11 691 410	
19/1	11,001,410	

TABLE A-XIV. MOTOR VEHICLE REGISTRATIONS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u>, <u>Summary to 1965</u> (Washington: Government Printing Office, 1967).

> U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u> (Washington: Government Printing Office, 1966-71 editions).

Year	Thousands of 42-gallon Barrels
1957	214,949
1958	215,257
1959	232,152
1960	243,827
1961	263,304
1962	275,745
1963	295,323
1964	313,350
1965	331,292
1966	355,738
1967	498,600
1968	434,920
1969	460,555
1970	483,289
1971	494,705

TABLE A-XV. NATURAL GAS LIQUIDS PRODUCTION IN THE SOUTHWESTERN REGION

Source: U.S. Department of the Interior, Bureau of Mines, <u>Minerals Year-book</u>, <u>volume III</u>, <u>Area Reports</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Cubic Feet
1957	7,986,237
1958	8,359,054
1959	9,241,446
1960	9,760,835
1961	10,187,706
1962	10,732,596
1963	11,443,445
1964	12,034,887
1965	12,507,167
1966	13,491,624
1967	14,435,231
1968	15,458,940
1969	16,773,997
1970	17,922,286
1971	18,489,026

TABLE A-XVI. NATURAL GAS PRODUCTION IN THE SOUTHWESTERN REGION

Source: U.S. Department of the Interior, Bureau of Mines, <u>Minerals</u> <u>Yearbook</u>, <u>volume III</u>, <u>Area Reports</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars		
1957	625.3		
1958	493.0		
1959	588.8		
1960	580.3		
1961	582.9		
1962	635.0		
1963	700.9		
1964	799.5		
1965	876.2		
1966	959.4		
1967	1,079.6		
1968	1,257.4		
1969	1,409.5		
1970	1,503.1		
1971	1,522.0		

TABLE A-XVII. NONELECTRIC MACHINERY VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual</u> <u>Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).
Year	Millions of Dollars
1957	357 5
1958	374 0
1959	404.2
1960	418.5
1961	413.7
1962	422.0
1963	484.8
1964	524.9
1965	540.7
1966	606.1
1967	638.7
1968	725.9
1969	798.7
1970	855.3
1971	889.1

TABLE A-XVIII. PAPER AND ALLIED PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars
 1957	1,215,7
1958	921.8
1959	1.007.0
1960	1,148.1
1961	1,297.4
1962	1,273.8
1963	1,418.1
1964	1,433.8
1965	1,541.0
1966	1,788.8
1967	2,328.8
1968	2,265.9
1969	2,324.1
1970	2,073.9
1971	2,122.1

TABLE A-XIX. PETROLEUM AND COAL PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey of</u> <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars
1957	480.5
1958	441.8
1959	512.6
1960	496.7
1961	507.6
1962	501.4
1963	549.6
1964	642.1
1965	730.9
1966	847.7
1967	872.1
1968	896.9
1969	978.1
1970	926.0
1971	973.9

TABLE A-XX. PRIMARY METALS VALUE ADDED BY MANUFACTURE IN THE SOUTH-WESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual</u> <u>Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Thousands of Persons
1957	16,200
1958	16,400
1959	16,658
1960	17,009
1961	17,293
1962	17,678
1963	17,850
1964	18,059
1965	18,208
1966	18,395
1967	18,570
1968	18,827
1969	19,112
1970	19,322
1971	19,672

TABLE A-XXI. RESIDENT POPULATION ESTIMATES FOR THE SOUTHWESTERN REGION

Source: U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of the Census, <u>Current Population Reports</u>, Series P-25, "Population Estimates and Projections" (Washington: Government Printing Office, number 304 -- April 1965, number 460 --June 1971, and number 488 -- September 1972).

Year	Thousands of Short Tons
 1957	49,824
1958	63,808
1959	69,045
1960	58,779
1961	54,139
1962	57,399
1963	63,275
1964	61,223
1965	64,971
1966	66,534
1967	70,489
1968	70,292
1969	66,039
1970	68,569
1971	69,359

TABLE A-XXII. SAND AND GRAVEL PRODUCTION IN THE SOUTHWESTERN REGION

Source: U.S. Department of the Interior, Bureau of Mines, <u>Minerals Yearbook</u>, <u>volume III</u>, <u>Area Reports</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Millions of Dollars
1957	300.8
1958	404.7
1959	469.2
1960	427.5
1961	450.4
1962	474.3
1963	519.2
1964	555.4
1965	565.7
1966	583.0
1967	618.2
1968	683.8
1969	731.5
1970	760.4
1971	845.5

TABLE A-XXIII. STONE, CLAY, AND GLASS PRODUCTS VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual</u> <u>Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, <u>1957-71</u> editions).

Year	Thousands of Gallons
1957	6,809,876
1958	7,223,077
1959	7,241,404
1960	7,239,645
1961	7,465,131
1962	7,791,595
1963	7,812,456
1964	8,208,238
1965	8,614,973
1966	9,161,289
1967	9,342,878
1968	10,148,191
1969	10,153,864
1970	10,427,302
1971	10,919,899

TABLE A-XXIV. TOTAL GASOLINE CONSUMPTION IN THE SOUTHWESTERN REGION

Source: American Petroleum Institute, Division of Statistics, <u>Petroleum</u> <u>Facts and Figures</u> (Washington: American Petroleum Institute, 1958-72 editions).

Year	Millions of Dollars
 1957	27 401
1957	28,486
1959	30,050
1960	30,939
1961	32,542
1962	34,218
1963	36,082
1964	38,680
· 1965	41,767
1966	46,163
1967	50,305
1968	55,380
1969	60,322
1970	66,054
1971	70,164

TABLE A-XXV. TOTAL PERSONAL INCOME IN THE SOUTHWESTERN REGION

Source: U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of Economic Analysis, <u>Survey of Current</u> <u>Business</u> 52, 53 (Washington: Government Printing Office, August, 1972; August, 1973).

7,933.1 7,791.5 8,672.8 8,952.2 9.219.3
7,933.1 7,791.5 8,672.8 8,952.2 9.219.3
7,791.5 8,672.8 8,952.2 9.219.3
8,672.8 8,952.2 9.219.3
8,952.2
9,219,3
2122210
9,729.0
10,974.8
12,133.0
13,273.4
14,907.7
16,616.5
18,297.0
19,794.4
20,373.5
21,552.8

TABLE A-XXVI. TOTAL VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Tractor-Trucks	
1057	75 261	
1050	75,201	
1956	70,008	
1959	82,803	
1960	83,515	
1961	84,460	
1962	89,238	
1963	93,228	
1964	99,763	
1965	93,790	
1966	97,968	
1967	95,129	
1968	96,626	
1969	103,324	
1970	107,293	
1971	111,229	

TABLE A-XXVII, TRACTOR-TRUCK REGISTRATIONS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u>, <u>Summary to 1965</u> (Washington: Government Printing Office, 1967).

> U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u> (Washington: Government Printing Office, 1966-71 editions).

Year	Millions of Dollars
 1957	654 0
1050	725 2
1928	707.0
1959	707.8
1960	658.0
1961	615.1
1962	681.1
1963	775.2
1964	1,174.0
1965	1,274.4
1966	1,442.2
1967	1,596.4
1968	1,964.7
1969	2,163.5
1970	2.078.6
1971	1,689,6

TABLE A-XXVIII. TRANSPORTATION EQUIPMENT VALUE ADDED BY MANUFACTURE IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Commerce, Bureau of the Census, <u>Annual Survey</u> of <u>Manufactures</u> (Washington: Government Printing Office, 1957-71 editions).

Year	Trucks
1057	1 490 525
1957	1,480,525
1958	1,516,134
1959	1,599,552
1960	1,637,176
1961	1,692,080
1962	1,790,752
1963	1,887,515
1964	1,997,280
1965	2,121,025
1966	2,227,428
1967	2,320,083
1968	2,458,843
1969	2,581,838
1970	2,710,901
1971	2,848,209

TABLE A-XXIX. TRUCK REGISTRATIONS IN THE SOUTHWESTERN REGION

Sources: U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u>, <u>Summary to 1965</u> (Washington: Government Printing Office, 1967).

> U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, <u>Highway Statistics</u> (Washington: Government Printing Office, 1966-71 editions).

Year	Thousands of Dollars
1957	6.953.749
1957	6 451 137
1950	6,892,059
1960	7,036,708
1961	7,346,681
1962	7.759.425
1963	8,110,681
1964	8,374,144
1965	8,795,453
1966	9,639,699
1967	10,579,700
1968	11,042,396
1969	11,754,231
1970	12.868.217
1971	13,803,699

TABLE XXX. VALUE OF MINERAL PRODUCTION IN THE SOUTHWESTERN REGION

Source: U.S. Department of the Interior, Bureau of Mines, <u>Minerals Year-book</u>, <u>volume III</u>, <u>Area Reports</u> (Washington: Government Printing Office, 1957-71 editions).

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX B

•

FIGURE B-2. CHEMICAL AND ALLIED PRODUCTS VALUE ADDED BY MANUFACTURE

FIGURE B-3. LUMBER AND WOOD PRODUCTS VALUE ADDED BY MANUFACTURE

FIGURE B-4. MOTOR VEHICLE REGISTRATIONS

FIGURE B-5. PRIMARY METALS VALUE ADDED BY MANUFACTURE

FIGURE B-6. RESIDENT POPULATION ESTIMATES

FIGURE B-7. TOTAL GASOLINE CONSUMPTION

BIBLIOGRAPHY

- American Petroleum Institute, Division of Statistics. <u>Petroleum Facts and</u> <u>Figures</u>. 1958-72 eds. Washington: American Petroleum Institute, 1958-72.
- Brodersen, Cornelius. "New Fuel Sources for the 1980's and Beyond." Fleet Owner (February 1974), 61-62.
- Byczynski, Stu. "Fuel Forecast '75: Diesel Fuel Stocks Are Up--Prices Too." Fleet Owner (January 1975), 64-68.
- Byczynski, Stu. "Mergermania." Fleet Owner (January 1975), 59-68.
- Clark, Charles T. and Laurence L. Schkade. <u>Statistical Methods for Business</u> Decisions. Cincinnati: South-Western Publishing Company, 1969.
- Clark, Charles T. and A. W. Hunt. <u>STATPAK</u>. Austin, Texas: College of Business Administration Library Program, The University of Texas at Austin, 1972.
- Locklin, D. Philip. <u>Economics of Transportation</u>. 7th ed. Homewood, Illinois: Richard D. Irwin, Inc., 1972.
- Nie, Norman H., Dale H. Bent and C. Hadlai Hull. <u>SPSS</u>: <u>Statistical Package</u> for the Social Sciences. New York: McGraw-Hill Book Company, 1970.
- Sampson, Roy J. and Martin T. Farris. <u>Domestic Transportation</u>: <u>Practice</u>, Theory, and Policy. 3rd ed. Boston: Houghton Mifflin Company, 1975.
- "Smith's Transfer Grows, Merger By Merger." Business Week (June 8, 1974), 93-97.
- Straszheim, Mahlon R. <u>The International Airline Industry</u>. Washington: Brookings Institution, 1969.
- Transportation Association of America. <u>Transportation Facts and Trends</u>. 10th ed. Washington: Transportation Association of America, 1973.
- U.S. Department of Agriculture, Economic Research Service. Farm Income Situation, Supplement, Farm Income, State Estimates. 1949-64 and 1959-72 eds. Washington: U.S. Department of Agriculture, 1965 and 1974.
- U.S. Department of Agriculture, Economic Research Service. Farm Income Situation. Washington: U.S. Department of Agriculture, 1974.
- U.S. Department of Commerce, Bureau of the Census. <u>Annual Survey of</u> <u>Manufactures</u>. 1957-71 eds. Washington: Government Printing Office, 1959-73.

80

- U.S. Department of Commerce, Bureau of the Census. <u>Census of Manufactures</u>. <u>Volume III</u>, <u>Area Statistics</u>. 1958, 1963, and 1967 eds. Washington: Government Printing Office, 1961, 1966, and 1971.
- U.S. Department of Commerce, National Bureau of Standards. <u>NBS Technical</u> <u>Note 552</u>: <u>OMNITAB II</u>, <u>User's Reference Manual</u>. Washington: Government Printing Office, 1971.
- U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of the Census. <u>Current Population Reports</u>. Series P-25, nos. 304, 460, 488, and 508. Washington: Government Printing Office, 1965, 1971, 1972, and 1973.
- U.S. Department of Commerce, Social and Economic Statistics Administration, Bureau of Economic Analysis. <u>Survey of Current Business</u>, 52, no. 8, and 53, no. 8. Washington: Government Printing Office, 1972 and 1973.
- U.S. Department of the Interior, Bureau of Mines. <u>Minerals Yearbook</u>. <u>Volume III, Area Reports</u>. 1957-71 eds. Washington: Government Printing Office, 1959-73.
- U.S. Department of Labor, Bureau of Labor Statistics, Division of Manpower and Employment Statistics. "Report of Employment." 1957-71 unpublished reports.
- U.S. Department of Labor, Bureau of Labor Statistics. <u>Employment and</u> <u>Earnings, States and Areas 1939-1972</u>. Bulletin no. 1370-10. Washington: Government Printing Office, 1974.
- U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads. <u>Highway Statistics</u>, <u>Summary to 1965</u>. Washington: Government Printing Office, 1967.
- U.S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads. <u>Highway Statistics</u>. 1966-71 eds. Washington: Government Printing Office, 1968-73.
- U.S. Department of Transportation, <u>1972</u> National Transportation Report: <u>Present</u> Status--Future Alternatives. Washington: Government Printing Office, 1972.
- U.S. Interstate Commerce Commission, Bureau of Accounts. Freight Commodity Statistics, Class I Motor Carriers of Property Operating in Intercity Service--Common and Contract, in the United States. 1966-67 eds. Washington: Government Printing Office, 1968-69.

- U.S. Interstate Commerce Commission, Bureau of Accounts. <u>Freight Commodity</u> <u>Statistics, Motor Carriers of Property</u>, 1968-71 eds. Washington: Government Printing Office, 1970-73.
- U.S. Interstate Commerce Commission, Bureau of Accounts. <u>Transport Statistics</u> in the United States. Part 6--Oil Pipe Lines. 1957-71 eds. Washington: Government Printing Office, 1958-73.
- U.S. Interstate Commerce Commission, Bureau of Transport Economics and Statistics. Motor Carrier Freight Commodity Statistics, Class I Common and Contract Carriers of Property. 1957-63 eds. Washington: Government Printing Office, 1958-65.
- Vogelback Computer Center, Northwestern University. SPSS 6000: Update <u>Manual Version 5.0</u> and SPSS - 6000: Update <u>Manual Version 5.5</u>. Evanston, Illinois: Northwestern University, 1972 and 1973.

ABOUT THE AUTHOR

Mary Lee Gorse holds a Bachelor's degree in Mathematics from San Diego State University, and a California Standard Teaching credential from the University of California at Davis. In addition, she worked as a secretary and librarian in the Department of Chemistry at San Diego State University until 1968 when she taught Mathematics at Davis Senior High School in Davis, California through June 1972. Having graduated in December 1974 from The University of Texas at Austin with a Master's in Public Accounting, she plans to join Peat, Marwick and Mitchell in Chicago, Illinois.

RESEARCH MEMORANDA PUBLISHED BY THE COUNCIL FOR ADVANCED TRANSPORTATION STUDIES

1 Human Response in the Evaluation of Modal Choice Decisions. C. Shane Davies, Mark Alpert, and W. Ronald Hudson, April 1973.

2 Access to Essential Services. Ronald Briggs, Charlotte Clark, James Fitzsimmons, and Paul Jensen, April 1973.

3 Psychological and Physiological Responses to Stimulation. D. W. Wooldridge, A. J. Healey, and R. O. Stearman, August 1973.

4 An Intermodal Transportation System for the Southwest: A Preliminary Proposal. Charles P. Zlatkovich, September 1973.

5 Passenger Travel Patterns and Mode Selection. Shane Davies, Mark Alpert, Harry Wolfe, and Rebecca Gonzalez, October 1973.

6 Segmenting a Transportation Market by Determinant Attributes of Modal Choice. Shane Davies and Mark Alpert, October 1973.

7 The Interstate Rail System: A Proposal. Charles P. Zlatkovich, December 1973.

8 Literature Survey on Passenger and Seat Modeling for the Evaluation of Ride Quality. Bruce Shanahan, Ronald Stearman, and Anthony Healey, November, 1973.

9 The Definition of Essential Services and the Identification of Key Problem Areas. Ronald Briggs and James Fitzsimmons, January, 1974.

10 A Procedure for Calculating Great Circle Distances Between Geographic Locations. J. Bryan Adair, March 1974.

11 MAPRINT: A Computer Program for Analyzing Changing Locations of Non-Residential Activities. Graham Hunter, Richard Dodge, and C. Michael Walton, March 1974.

12 A Method for Assessing the Impact of the Energy Crisis on Highway Accidents in Texas. E. L. Frome and C. Michael Walton, February 1975.

13 State Regulation of Air Transportation in Texas. Robert C. Means and Barry Chasnoff, April 1974.

14 *Transportation Atlas of the Southwest*. Charles P. Zlatkovich, S. Michael Dildine, Eugene Robinson, James W. Wilson, and J. Bryan Adair, June 1974.

15 Local Government Decisions and Land-Use Change: An Introductory Bibliography. W. D. Chipman, May 1974.

16 An Analysis of the Truck Inventory and Use Survey Data for the West South Central States. Michael Dildine, July 1974.

17 Towards Estimating the Impact of the Dallas-Fort Worth Regional Airport on Ground Transportation. William J. Dunlay and Lyndon Henry, September 1974.

18 The Attainment of Riding Comfort for a Tracked Air-Cushion Vehicle Through the Use of an Active Aerodynamic Suspension. Bruce Shanahan, Ronald Stearman, and Anthony Healey, September 1974.

19 Legal Obstacles to the Use of Texas School Buses for Public Transportation. Robert Means, Ronald Briggs, John E. Nelson, and Alan J. Thiemann, January 1975.

20 Pupil Transportation: A Cost Analysis and Predictive Model. Ronald Briggs and David Venhuizen, April 1975.

21 Variables in Rural Plant Location: A Case Study of Sealy, Texas. Ronald Linehan, C. Michael Walton, and Richard Dodge, February 1975.

22 A Description of the Application of Factor Analysis to Land Use Change in Metropolitan Areas. John Sparks, Carl Gregory, and Jose Montemayor, December 1974.

23 A Forecast of Air Cargo Originations in Texas to 1990. Mary Lee Metzger Gorse, November 1974.

24 A Systems Analysis Procedure for Estimating the Capacity of an Airport: A Selected Bibliography. Chang-Ho Park, Edward V. Chambers III, and William J. Dunlay, Jr., August 1975.

25 System 2000-Data Management for Transportation Impact Studies. Gordon Derr, Richard Dodge and C. Michael Walton, September 1975.

26 Regional and Community Transportation Planning Issues—A Selected Bibliography. John Huddleston, Ronald Linehan, Abdulla Sayyari, Richard Dodge, C. Michael Walton, and Marsha Hamby, September 1975.

27 A Systems Analysis Procedure for Estimating the Capacity of an Airport: System Definition, Capacity Definition, and Review of Available Models. Edward V. Chambers III, Tommy Chmores, William J. Dunlay, Jr., Nicolau D. F. Gualda, B. F. McCullough, Chang-Ho Park, and John Zaniewski, October 1975.

28 The Application of Factor Analysis to Land Use Change in a Metropolitan Area. John Sparks and Jose Montemayor, November 1975.

Council for Advanced Transportation Studies THE UNIVERSITY OF TEXAS AT AUSTIN