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In this dissertation, we consider the category of schemes equipped with

a derivation and investigate a differential analogue of the fppf site on a differ-

ential scheme. We interpret the obstruction to the existence of integral points

in affine varieties given by certain differential equations introduced by Voloch

as the descent obstruction associated with torsors under a certain sheaf for our

differential fppf topology. We also consider a multiplicative analogue of those

differential descent obstructions and show that it is the only obstruction to the

existence of integral points in affine varieties over function fields. Finally, we

describe the obstruction set in the case of smooth projective isotrivial curves

of genus g ≥ 2 over a function field, extending a result of Voloch.
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Chapter 1

Introduction

1.1 Conventions

Let R be a (commutative) ring. By a derivation of R, we mean a

Z-linear map δ : R→ R satisfying the Leibniz rule

δ(ab) = δ(a)b+ aδ(b), a, b ∈ R.

We will write

Rδ = {r ∈ R : δ(r) = 0}

for the ring of differential constants of R. When R is a field, so is Rδ. Note

that, if R has characteristic p > 0, then

Rp = {rp : r ∈ R}

is a subset of R.

Given a field k, we fix a separable closure k of k. Any derivation of k

extends uniquely to a derivation of k, which will again be denoted by δ. When

k has characteristic zero, k is also an algebraic closure. However, in positive

characteristic, algebraic closures have no interesting differential properties: if

k is algebraically closed of characteristic p > 0, then any derivation δ : k → k
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must be identically zero. Indeed, every element of such k is a p-th power,

hence a differential constant.

Let K be a function field in one variable over a field k. Fix a separating

element t of K/k, that is, t ∈ K such that K is a finite and separable extension

of the rational function field k(t). We write δ for the derivation d/dt of k(t).

Since K is a separable extension of k(t), δ extends uniquely to a derivation of

K, which is again denoted by δ = d/dt.

Let v be a place of K. We write Kv for the completion of K with

respect to v and Ov for the ring of integers of Kv. Upon writing

R = {a ∈ K : v(a) ≥ 0},

m = {a ∈ K : v(a) > 0},

we have

Ov = lim←−
i

R/mi.

Therefore, δ extends to a canonical derivation of Ov (hence of Kv), which is

again denoted by δ.

Let S be a (finite) set of “bad” places of our function field K. We write

OK,S = {a ∈ K : v(a) ≥ 0, for all v /∈ S}

for the ring of S-integers of K and

AK,S =
∏
v/∈S

Ov ×
∏
v∈S

Kv

for the ring of S-adeles.
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Let X be a scheme. We write Γ(X,OX) for the ring of global sections of

X. Given an fppf sheaf G of abelian groups on X, we write H i(X,G) for the i-

th derived functor of the global sections functor Γ(·, G). For convenience, when

X is the spectrum of a ring R, we write H i(R,G) instead of H i(SpecR,G).

We will also omit Spec in the notation of fiber products. For instance, if X is

a scheme over a field K and L is a field containing K, we will write

X ×K L

for the base-change of X to L.

1.2 Local-global principle and descent obstructions

Given an algebraic variety X over a field K, a central problem in arith-

metic geometry is to decide whether the set X(K) of K-rational points of X

is non-empty. When K/k is a function field in one variable, then one may first

try to solve the “easier” problem of deciding whether X(Kv) 6= ∅, for each

place v of K. Note that, if X(Kv) = ∅, for some v, then X(K) = ∅.

One then naturally wonders whether X(Kv) 6= ∅, for every place v of

K, implies X(K) = ∅. If the answer is positive, then one says that X satisfies

the local-global principle. If the answer is negative, the next natural problem

is to understand why the local-global principle fails.

Let G be a (smooth) group scheme over X. The fppf cohomology

group H1(X,G) classifies (sheaves of) torsors over X under G. Given an

(isomorphism class of a) torsor [Y ] ∈ H1(X,G) and x ∈ X(K), we look at
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the fiber of Y → X above x, which is a torsor [Y ](x) ∈ H1(K,G) called the

evaluation of [Y ] at x. Similarly, for every place v of K and xv ∈ X(Kv), we

may evaluate [Y ] at xv yielding a torsor [Y ](xv) ∈ H1(Kv, G). Therefore, for

each torsor [Y ] ∈ H1(X,G) we have a commutative diagram

X(K) //

��

X(AK)

��
H1(K,G) //

∏
vH

1(Kv, G)

where the vertical maps are given by evaluation of [Y ] at rational points, and

the horizontal maps are the usual diagonal embeddings and

X(AK) :=
∏
v

X(Kv),

the product being over all places v of K.

Definition 1.2.1. We say that a point (xv) ∈ X(AK) is unobstructed by a

torsor Y → X under G if the evaluation ([Y ](xv)) ∈
∏

vH
1(Kv, G) is in the

image of H1(K,G) under the diagonal H1(K,G)→
∏

vH
1(Kv, G). We write

X(AK)ob = {(xv) ∈ X(AK) : (xv) is unobstructed by every [Y ] ∈ H1(X,G)}

and call it the G-descent obstruction (set) of X/K.

The name “obstruction set” is motivated by the fact that

X(K) ⊂ X(AK)ob ⊂ X(AK),
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and thus X(AK)ob = ∅ implies X(K) = ∅, explaining the failure of the local-

global principle for X. It is natural to ask how big X(AK)ob is compared to

X(K). We say that the G-descent obstruction is the only obstruction to the

existence of rational points in X if

X(AK)ob = X(K).

Fix a (finite) set S of places of K/k. Suppose X/K is the generic fiber

of a scheme X of finite type over OK,S. In this case, one can still use X-torsors

under G to study the set X(OK,S) of S-integral points of X inside the S-adelic

space

X(AK,S) :=
∏
v/∈S

X(Ov)×
∏
v∈S

X(Kv).

We say the G-descent obstruction is the only obstruction to the existence of

S-integral points in X if

X(AK,S)ob = X(OK,S).

1.3 Voloch’s differential obstructions

Let X be an affine scheme of finite type over OS with generic fiber X

over the function field K as in the previous section. In [18], Voloch charac-

terizes X(OS) as a certain descent obstruction set. In this section, we recall

Voloch’s construction.

For c ∈ K, one regards the equation δ(z) = c as defining a torsor

under the group Kδ of differential constants of K. By a result of Kolchin ([10,
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Corollary 1, page 193]), those torsors are classified by the group

H1(K, δ) := K/δ(K).

Explicitly, the class of c ∈ K in the above quotient corresponds to the torsor

given by δ(z) = c.

For each F in the coordinate ring K[X] of X, we may consider the

commutative diagram

X(K)

F

��

// X(AK,S)

F

��
H1(K, δ) //

∏
vH

1(Kv, δ)

where H1(Kv, δ) := Kv/δ(Kv), the horizontal arrows are the natural diagonal

embeddings and the vertical maps are evaluation of the regular function F at

a rational point. This is very similar to the commutative diagram that one

considers when studying the descent obstruction associated with a torsor over

X, as we discussed in the previous section.

In this case, one says that (xv) ∈ X(AK,S) is unobstructed by the torsor

YF : δ(z) = F

if (F (xv)+δ(Kv)) ∈
∏

vH
1(Kv, δ) is in the image ofH1(K, δ)→

∏
vH

1(Kv, δ).

Explicitly, (xv) is unobstructed by YF if there exist c ∈ K and zv ∈ Kv such

that

δ(zv) = F (xv) + c,
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for every place v of K. Voloch’s differential descent obstruction set is the set

of all adelic points that are unobstructed by the torsor YF : δ(z) = F , for

every F ∈ K[X].

The main results in [18] are:

Theorem 1.3.1. Let X be an affine scheme of finite type over OK,S with

generic fiber X over the function field K. If (xv) ∈ X(AK,S) is unobstructed

by all torsors

YF : δ(z) = F,

for F ∈ K[X], then (xv) ∈ X(OK,S).

Theorem 1.3.2. Let X be a smooth projective curve of genus g ≥ 2 over K.

Suppose that the derivation δ = d/dt does not extend to a derivation on X.

Then, X(K) is described by differential descent obstructions.

The proof of theorem 1.3.1 consists of reducing the problem to the case

X = A1
OK,S

and then applying Serre’s duality and the Riemann-Roch theorem.

The proof of theorem 1.3.2 consists of embedding X as a closed sub-

scheme of an affine scheme and then using theorem 1.3.1. This affine scheme

is the first jet scheme of X along δ, which we will discuss in section 1.5.

In section 3.1, we will show how to interpret Voloch’s differential ob-

struction as an obstruction associated with torsors under group schemes. To

do that, we will work in the category of differential schemes (section 1.4), then

consider a differential analogue of the fppf site on a scheme (section 2.1), and

7



understand the cohomology of sheaves for this differential fppf topology (sec-

tion 2.2). In addition, in section 3.2, we prove a multiplicative analogue of

theorem 1.3.1.

It is natural to wonder what happens if we remove some of the hy-

pothesis in theorem 1.3.2. In chapters 4 and 5, we show that when we allow

δ = d/dt to extend to a derivation on X, the differential descent obstruction

set of X is in general bigger than X(K), the additional non-global points being

“differential constants”.

1.4 Differential schemes

By a differential scheme (X,D) we mean a scheme X together with a

global vector fieldD ∈ Der(OX). A morphism (X ′, D′)→ (X,D) of differential

schemes is a morphism f : X ′ → X of schemes such that the diagram

OX

D
��

f] // f∗OX′

D′

��
OX

f]
// f∗OX′

commutes.

The category of differential schemes was studied by Buium, for exam-

ple, in [2]. Although results in [2] were obtained for differential schemes in

characteristic 0, the results we need remain true in positive characteristic. For

instance, fiber products exist in the category of differential schemes. Explic-

itly, if (X1, D1) and (X2, D2) are differential schemes over a scheme S, then
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we equip X1 ×S X2 with the derivation D given by

D(s1 ⊗ s2) = D1(s1)⊗ s2 + s1 ⊗D2(s2),

where s1 and s2 are local sections of OX1 and OX2 , respectively.

We now fix a differential scheme (S, δ). An (S, δ)-scheme is a differential

scheme (X,D) where X is an S-scheme whose structure map X → S induces

a morphism (X,D) → (S, δ) of differential schemes. We define morphisms of

(S, δ)-schemes in the natural way and write

DiffSch/(S, δ)

for the category of (S, δ)-differential schemes and their morphisms.

It is natural to wonder if we can equip an S-scheme X with a derivation

D turning (X,D) into an (S, δ)-scheme. We assume that the structure map

f : X → S is smooth. In this case, there exists an exact sequence

0 −→ f ∗ΩS −→ ΩX −→ ΩX/S −→ 0, (1.1)

where ΩS (resp. ΩX) denotes the cotangent sheaf of S (resp. X) over Spec Z.

It induces an exact sequence

Der(OX) −→ Der(OS, f∗OX)
ks−→ Ext(ΩX/S,OX) = H1(X,TX), (1.2)

where TX = HomOX (ΩX/S,OX) is the tangent bundle of X (over S). The

connecting homomorphism

ks : Der(OS, f∗OX) −→ H1(X,TX)
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will be referred to as the Kodaira-Spencer map associated with f : X → S.

For simplicity, when f is understood, we write ks(δ) instead of ks(f ]δ).

Proposition 1.4.1. There exists a derivation D ∈ Der(OX) turning (X,D)

into an (S, δ)-scheme if and only if ks(δ) = 0.

Proof. A derivation D ∈ Der(OX) extends δ via f if and only if D maps to f ]δ

under Der(OX) → Der(OS, f∗OX) in the exact sequence (1.2). By exactness,

this is equivalent to f ]δ being in the kernel of the Kodaira-Spencer map.

We also remark that:

Proposition 1.4.2. If f : X → S is étale, every derivation on S lifts to a

unique derivation on X.

Proof. For an étale S-schemeX, the cotangent sheaf ΩX/S vanishes. Therefore,

Der(OX)→ Der(OS, f∗OX)

is an isomorphism.

We can say more when X is a smooth projective curve and S is the

spectrum of a field K of characteristic p ≥ 0 equipped with a derivation δ. Let

Kδ = {a ∈ K : δ(a) = 0}
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be the field of differential constants of K. We say that X is (infinitesimally)

isotrivial if there exists an algebraic and separable field extension L/K and a

scheme X ′ defined over Lδ such that

X ×K L ∼= X ′ ×Lδ L.

Proposition 1.4.3. Let X be a smooth projective curve over a differential

field (K, δ). There exists D ∈ Der(OX) extending δ if and only if X is (in-

finitesimally) isotrivial.

Proof. Cf. [3] for p = 0 and [16] for p > 0.

Remark 1.4.1.

1. Let K be a function field in one variable over a perfect field k. Let t be

a separating element of K/k and consider δ = d/dt. Traditionally, one

says that X/K is isotrivial if there exists a finite extension L/k and a

scheme X ′ defined over k such that X ×K L ∼= X ′ ×k L. In character-

istic zero, this notion of isotriviality coincides with that of infinitesimal

isotriviality defined above. When the characteristic is p > 0, the two

notions will not coincide since Kδ = Kp. In this dissertation, we are

only interested in infinitesimal isotriviality. Thus we shall hereafter use

the term “isotrivial” to mean “infinitesimally isotrivial”.
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2. Every smooth projective curve X of genus 0 over (K, δ) is isotrivial.

Indeed, if L/K is a finite extension such that X(L) 6= ∅, then X is

isomorphic to the projective line P1 over L and P1 is defined over Kδ.

3. An elliptic curve over K is isotrivial if and only if its j-invariant is a

differential constant. For instance, if K has characteristic zero, then the

elliptic curve with Weierstrass equation

y2 = x3 + ax+ b, a, b ∈ K,

has j-invariant

j = 1728
4a3

4a3 + 27b2
,

and δ(j) = 0 if and only if

3a2b2δ(a)− 2a3bδ(b) = 0.

This happens if and only there exist differential constants λ1, λ2 ∈ K
δ

and c ∈ K such that

a = λ1c
2 and b = λ2c

3.

4. In chapter 5, we will obtain an explicit description of the equation defin-

ing a smooth isotrivial hyperelliptic curve similar to that of isotrivial

elliptic curves as above. In particular, we will have explicit examples of

isotrivial and non-isotrivial curves of every genus g ≥ 1.
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1.5 Prolongations

Let X be a scheme over a differential field (K, δ). By proposition 1.4.1,

δ extends to a derivation of OX if and only if the Kodaira-Spencer class ks(δ)

is trivial. However, even when δ extends to a derivation on X, some relevant

data on X may not be differential in nature. For instance, a rational point

SpecK → X may not define a morphism (SpecK, δ) → (X, δ) of differential

schemes. We can remedy this by embedding X as a closed subscheme in a

“best possible” scheme over K equipped with a derivation extending δ, and

this construction is possible even when ks(δ) 6= 0. In this section, we outline

the construction of such scheme and cite its key properties. The main reference

is [4].

Let π−1 : X → SpecK be the structure morphism. Set

X−1 = SpecK,

X0 = X,

and recursively define

Xn+1 = Spec(S(ΩXn)/In), n = 0, 1, . . . ,

where In is the ideal of the symmetric algebra S(ΩXn) generated by local

sections of the form

d(π∗n−1f)− δn−1(f), f ∈ OXn−1 ,

where πn−1 : Xn → Xn−1 is the canonical projection and

δn−1 : OXn−1 → πn−1∗OXn

13



is a derivation extending δ induced by the universal derivation d : OXn → ΩXn .

We then have a sequence

. . . −→ X2 −→ X1 −→ X

known as the prolongation sequence of X. Note that the collection (Xn)

forms a projective system whose transition maps πn are affine and we have

derivations δn : OXn → πn∗OXn+1 . Therefore, the inverse limit

X∞ := lim←−X
n

exists as a scheme. It is a smooth scheme defined over K, affine over X and it

comes equipped with a derivation extending δ, which will again be denoted by

δ. The scheme Xn will be called the n-th jet scheme (of X along δ) and the

differential scheme (X∞, δ) will be called the infinite jet scheme (of X along

δ).

Example 1.5.1. Let X be the affine variety in An
K given by polynomials

fi(x1, . . . , xn) = 0, i = 1, . . . ,m.

Then, X1 is an affine variety in A2n
K given by the additional equations

n∑
i=1

f ′i(x1, . . . , xn)x′i + f δ(x1, . . . , xn), i = 1, . . . ,m,

where f ′i denotes the usual the derivative of fi as a polynomial, f δi denotes the

14



polynomial obtained by applying δ to the coefficients of fi, and

x′1 = δ0(x1),

...

x′n = δ0(xn)

are coordinates of A2n
K in addition to the coordinates x1, . . . , xn of An

K .

Note that the equations defining X1 in the example above are very

similar to the equations

n∑
i=1

f ′i(x1, . . . , xn)dxi, i = 1, . . . ,m,

defining the tangent bundle TX of X. For instance, if the coefficients of

the equations defining the variety X are differential constants, then X1 is

isomorphic to the tangent bundle TX of X via an isomorphism over X given

by

dxi 7→ x′, i = 1, . . . ,m.

This is a special case of the following more general fact:

Proposition 1.5.1. X1 is an X-torsor under the tangent bundle TX. Its

isomorphism class in the fppf cohomology group H1(X,TX) is the Kodaira-

Spencer class ks(δ).

Proof. Cf. [1, Chapter 3, Proposition 2.5].
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As example 1.5.1 suggests, there exists a closed immersion

∇1 : X → X1,

which is a section of the canonical projection X1 → X (cf. [1, Chapter 3,

(3.8)]). Fixing local affine coordinates x1, . . . , xn around a point P ∈ X(K),

we have

∇1(P ) = (x1(P ), . . . , xn(P ), δ(x1(P )), . . . , δ(xn(P ))).

Therefore, a regular function on X1 in a sense defines a differential operator

on X of order at most 1 (see [1, Chapter 3, Proposition 1.15] for a more precise

statement). This same discussion applies to higher jet schemes. We will refer

to an element in the coordinate ring K[Xn] as a regular differential function

on X of order ≤ n. An element of

K{X} := K[X∞]

will be referred to simply as a regular differential function on X. Note that a

regular function on X, that is, an element of the coordinate ring K[X], is in

particular a regular differential function on X (of order 0).

Finally, we remark that “forming the infinite jet scheme along δ” defines

a functor

Sch/K −→ DiffSch/(K, δ)

from the category of schemes over K to the category of differential schemes

over (K, δ). This functor is right adjoint to the functor

DiffSch/(K, δ) −→ Sch/K

16



that forgets the derivation of a differential scheme, that is,

HomSch(S,X) ' HomDiffSch((S,D), (X∞, δ)), (1.3)

for every differential scheme (S,D) over (K, δ). In particular:

Proposition 1.5.2. Every K-rational point x : SpecK → X lifts to a unique

morphism (SpecK, δ)→ (X∞, δ) of differential schemes.
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Chapter 2

The differential fppf site

2.1 Differential fppf sheaves

We fix a differential scheme (S, δ) and consider a differential analogue

of the fppf site on S.

Definition 2.1.1. Let (X,D) be an (S, δ)-scheme. A differential fppf cover

of (X,D) is a family

{(Xi, Di)→ (X,D)}i∈I

of morphisms of (S, δ)-schemes such that the associated family {Xi → S} of

morphisms of S-schemes is an fppf cover of X.

The category of (S, δ)-schemes together with the class of all differential

fppf coverings defines a Grothendieck topology as in [12, Chapter II]. This

Grothendieck topology will be called the differential fppf topology. The big

differential fppf site on (S, δ) will be denoted by Sdfl.

Remark 2.1.1. We could also consider differential analogues of the Zariski and

étale sites. However, by proposition 1.3.2, the differential Zariski (resp. étale)

site on (S, δ) coincides with the usual Zariski (resp. étale) site on S.
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Let Sfl denote the (big) fppf site on S. Since a cover of (S, δ) with

respect to the differential fppf topology is, in particular, a cover of S with

respect to the (non-differential) fppf topology, there exists a morphism of sites

Sfl → Sdfl

induced by the identity and forgetting derivations. Every fppf sheaf G on S

thus restricts to a differential fppf sheaf on (S, δ), which will again be denoted

by G. For instance, the additive sheaf Ga and the multiplicative sheaf Gm

define differential fppf sheaves on (S, δ).

Let der : Ga → Ga be the morphism of differential fppf sheaves given

by

der(x) = D(x), x ∈ Γ(X,OX),

for (X,D) an (S, δ)-scheme. Its kernel is a differential fppf sheaf, denoted Gδ
a.

Theorem 2.1.1. The sequence

0 −→ Gδ
a −→ Ga

der−→ Ga −→ 0 (2.1)

of differential fppf sheaves is exact. Moreover, over an affine base (SpecR, δ),

Gδ
a is represented by the differential group scheme

(SpecR[t], ∂),

where ∂ is the unique derivation of the polynomial ring R[t] extending δ and

such that ∂(t) = 0.
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Proof. The only nontrivial fact about the exactness of (2.1) is the surjectivity

of der. Let (X,D) be a differential scheme and x ∈ Γ(X,OX). We need to

show that the equation der(z) = x has a solution in some differential fppf cover

of X. Consider the scheme

X ′ = SpecX(OX [t]),

where t is an indeterminant. For each open affine U ⊂ X, we endow the ring

OX(U)[t] with the unique derivation DU extending D ∈ Der(OU) and such that

DU(t) = x. Gluing the derivations DU for every U ⊂ X gives D′ ∈ Der(OX′)

satisfying D′(t) = x. Clearly, {(X ′, D′)→ (X,D)} is a differential fppf cover.

We now prove the representability of Gδ
a over an affine base (SpecR, δ).

By definition, Gδ
a is the contravariant functor that sends a differential scheme

(X,D) to the set

Γ(X,OX)D = {x ∈ Γ(X,OX) : D(x) = 0}

and a morphism (X,D)→ (X ′, D′) to the induced map

Γ(X ′,OX′)
D′ → Γ(X,OX)D.

A morphism f : (X,D)→ (SpecR[t], ∂) is uniquely determined by the image

of t under the associated map f ] : R[t]→ Γ(X,OX) and it must satisfy

D(f ](t)) = f ](∂(t)) = 0.

Therefore, the map that sends a morphism

f : (X,D)→ (SpecR[t], ∂)
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to

f ](t) ∈ Γ(X,OX)D

is a bijection, and the representability of Gδ
a follows.

Remark 2.1.2.

1. The surjectivity of der : Ga → Ga illustrates an important feature of

differential fppf covers: they introduce solutions to differential equations.

More precisely, let Λ be an order n differential operator, that is, Λ is a

map Ga → Ga over (S, δ) given by a polynomial P in the variables

δ0, δ, δ2, . . . , δn and with coefficients in OS. Suppose that the separant

of Λ, that is, the partial derivative SΛ = ∂Λ/∂δn, is invertible. Then,

the differential equation Λ(z) = x, x ∈ OS, has a solution over the

differential scheme

(SpecS OS[t0, . . . , tn, s]/I,D)

where t1, . . . , tn are variables, I is the ideal of OS[t1, . . . , tn, s] generated

by

{P (t0, . . . , tn)− x, sSΛ − 1},

and D is the unique derivation of OS[t0, . . . , tn, s] extending δ and such
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that

D(ti) = ti+1, i = 0, . . . , n− 1,

D(tn) = sδ(x)− s
n−1∑
i=0

ti+1Pi(t0, . . . , tn),

D(s) = −s2D(Sλ),

where Pi denotes the partial derivative of P with respect to the i-th

variable. Note that Λ(t0) = x and, clearly,

(SpecS OS[t0, . . . , tn, s]/I,D)→ (S, δ)

is a differential fppf covering.

2. For a concrete example of the above remark, consider the linear differ-

ential operator

Λ = a0δ
0 + a1δ + · · ·+ an−1δ

n−1 + anδ
n

with ai ∈ OS and an ∈ O×S . Its separant is ∂Λ/∂δn = an. The morphism

of sheaves Λ : Ga → Ga given by

Λ(x) = a0x+ a1D(x) + ...+ anD
n(x), x ∈ Γ(X,OX),

for (X,D) an (S, δ)-scheme, is surjective since the equation Λ(z) = x,

x ∈ OX , has a solution in

(SpecX OX [t0, t1, . . . , tn−1], D′),
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where D′ is the unique derivation extending D and such that D′(ti) =

ti+1, for i = 0, ..., n− 2, and

D′(tn−1) = a−1
n x− a−1

n (a0t0 + · · ·+ an−1tn−1).

Moreover, if we write GΛ
a for the kernel of Λ, we have an exact sequence

0 −→ GΛ
a −→ Ga

Λ−→ Ga −→ 0

generalizing (2.1).

3. Let F ∈ Γ(S,OS). The proof of the representability of Gδ
a can be adapted

to show that the sheaf F on (S, δ) given by

F(X) = {x ∈ Γ(X,OX) : D(x) = F},

for (X,D) an (S, δ)-scheme, is represented by the differential scheme

(A1
S, ∂F ),

where ∂F is the unique derivation on A1
S = SpecS OS[t] extending δ and

such that ∂F (t) = F . Note that (A1
S, ∂F ) is an (S, δ)-torsor under Gδ

a.

Now, let dlog : Gm → Ga be the morphism of differential fppf schemes

given by

dlog(x) = D(x)/x, x ∈ Γ(X,OX)×,

for (X,D) an (S, δ)-scheme. Its kernel is a differential fppf sheaf denoted by

Gδ
m. One should think of Gδ

m as a multiplicative analogue of Gδ
a.
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Theorem 2.1.2. The sequence

0 −→ Gδ
m −→ Gm

dlog−−→ Ga −→ 0 (2.2)

of differential fppf sheaves is exact. Moreover, over an affine base (SpecR, δ),

Gδ
m is represented by the differential group scheme

(SpecR[t, t−1], ∂),

where ∂ is the unique derivation of R[t, t−1] extending δ and such that ∂(t) = 0.

Proof. We proceed as in the proof of theorem 2.1.1. Let (X,D) be a differential

scheme and x ∈ Γ(X,OX). Consider the scheme

X ′ = SpecX(OX [t, t−1]),

where t is an indeterminant. For each open affine U ⊂ X, we endow the

ring OX(U)[t, t−1] with the unique derivation DU extending D ∈ Der(OU) and

such that DU(t) = xt. Gluing the derivations DU for every U ⊂ X gives

D′ ∈ Der(OX′) satisfying D′(t) = xt. In other words, dlog(t) = x. Since

{(X ′, D′) → (X,D)} is a differential fppf cover, we conclude that dlog is

surjective and the exactness of (2.2) is now clear.

To prove the representability of Gδ
m, notice that Gδ

m is the contravariant

functor that sends the differential scheme (X,D) to the set

Γ(X,O×X)D = {x ∈ Γ(X,O×X) : D(x) = 0}

and a morphism (X,D)→ (X ′, D′) to the induced map

Γ(X ′,O×X′)
D′ → Γ(X,O×X)D.
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A morphism f : (X,D) → (SpecR[t, t−1], ∂) is uniquely determined by the

image of t under f ] : R[t, t−1]→ Γ(X,OX), and

D(f ](t)) = f ](∂(t)) = 0.

Moreover, since t is invertible, its image f ](t) lies in Γ(X,O×X)D. Therefore,

the map that sends

f : (X,D)→ (SpecR[t, t−1], ∂)

to

f ](t) ∈ Γ(X,O×X)D

is a bijection and the representability of Gδ
m follows.

Remark 2.1.3.

1. As in remark 2.1.2, the surjectivity of dlog can be seen as a special

case of the more general fact that we can use differential fppf covers to

solve a differential equation Λ(z) = x as long as the separant of the

differential operator Λ can be made invertible. Note that the separant

of the differential operator dlog(z) = δ(z)/z is 1/z.

2. Let F ∈ Γ(S,OS). The proof of the representability of Gδ
m can be

adapted to show that the sheaf on (S, δ) given by

F(X) = {x ∈ Γ(X,O×X) : dlog(x) = F},
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for (X,D) an (S, δ)-scheme, is represented by

(A1
S − {0}, ∂F ),

where ∂F is the unique derivation on A1
S − {0} = SpecS OS[t, t−1] ex-

tending δ and such that ∂F (t) = Ft. The scheme (A1
S − {0}, ∂F ) is an

(S, δ)-torsor under Gδ
m.

If (X,D) is an (S, δ)-scheme, then D acts on

GLn(X) = GLn(Γ(X,OX))

componentwise. We set

GLδ
n(X) := {A ∈ GLn(X) : D(A) = 0},

defining the differential fppf sheaf GLδ
n.

In the non-differential setting, GLn is the automorphism group of the

free OS-module of rank n. The sheaf GLδ
n has an analogous description.

Definition 2.1.2. A differential OS-module is a pair (L,DL) consisting of an

OS-module L and DL ∈ Der(L) satisfying

DL(af) = δ(a)f + aDL(f),

for all local sections a ∈ OS and f ∈ L. A morphism (L,DL)→ (L′, DL′) is a

morphism ϕ : L→ L′ of OS-modules satisfying the differential condition

DL′(ϕ(f)) = ϕ(DL(f)),

for every f ∈ L.
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The free OS-module of rank n can be made differential as follows:

choose a basis {t1, . . . , tn} for On
S, choose A = [aij] in the sheaf Mn of n×n ma-

trices on S and defineDA as the unique derivation of On
S extending δ ∈ Der(OS)

and such that

DA(ti) = ai1t1 + . . . aintn,

for i = 1, . . . , n.

Proposition 2.1.3. Let (S, δ) be a differential scheme.

1. The automorphism group of (On
S, DA) is isomorphic to GLδ

n, for every

A;

2. (On
S, DA) and (On

S, DB) are isomorphic if and only if

A−B = dlog(M) := M−1δ(M),

for some M ∈ GLn.

Proof.

1. Let σ be a differential automorphism of (On
S, DA) and let T be the diag-

onal matrix diag(t1, . . . , tn). We write [sij] for the matrix representing σ

with respect to the basis {t1, . . . , tn}. The differential condition

DA(σ(T )) = σ(DA(T ))

can then be rewritten as DA([sij]T ) = [sij]AT . Since

DA([sij]T ) = [δ(sij)]T + [sij]AT,
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we conclude that

[δ(sij)]T = 0,

implying that σ ∈ GLδ
n.

2. Let σ : (On
S, DA) → (On

S, DB) be an isomorphism, let T be the diagonal

matrix diag(t1, . . . , tn) and write M for the matrix representing σ with

respect to the basis {t1, . . . , tn}. The differential condition

σ(DA(T )) = DB(σ(T ))

can then be rewritten as

MAT = DB(MT ) = δ(M)T +MBT,

implying that A−B = dlog(M).

Reversing the argument above shows that, if there exists M ∈ GLn such

that A−B = dlog(M), then the map σ : (On
S, DA)→ (On

S, DB) given by

σ(T ) = MT is a differential isomorphism.

In the non-differential setting, PGLn is the automorphism group of Mn

as an OS-algebra. We define PGLδ
n as the group of differential automorphisms

of (Mn, δ). Conjugation by an element of GLδ
n is a differential automorphism

of Mn yielding a morphism

GLδ
n −→ PGLδ

n

whose kernel is Gδ
m.
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Theorem 2.1.4 (Differential Skolem-Noether). Let (R, δ) be a differential

commutative local ring. If σ is a differential automorphism of the R-algebra

(Mn(R), δ), then there exists u ∈ GLδ
n(R) such that

σ(a) = uau−1,

for every a ∈Mn. In particular, the sequence

0 −→ Gδ
m −→ GLδ

n −→ PGLδ
n −→ 0 (2.3)

of differential fppf sheaves is exact.

Proof. Let σ be a differential automorphism of (Mn(R), δ). By the non-

differential Skolem-Noether theorem (cf. [12, Chapter IV, Corollary 2.4]),

there is u ∈ GLn(R) such that

σ(a) = uau−1,

for every a ∈Mn(R). By the differential hypothesis on σ,

uδ(a)u−1 = δ(uau−1),

for every a ∈Mn(R).

Since δ(uau−1) = δ(u)au−1 + uδ(a)u−1 − uau−2δ(u), we see that

δ(u)au−1 = uau−2δ(u),
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and thus

dlog(u)a = u−1uau−2δ(u)u

= au−1(u−1δ(u)u)

= au−1δ(u)

= a dlog(u),

for every a ∈Mn(R). It follows that there exists λ ∈ R such that

δ(u) = λu.

If δ(u) = 0, then u ∈ GLδ
n(R), and we are done. If δ(u) 6= 0, then the

equation δ(z) = λz has a solution r in R× and every solution of δ(z) = λz in

R is of the form cr for some c ∈ Rδ. Set ũ = r−1u ∈ GLδ
n(R) and notice that

ũaũ−1 = uau−1 = σ(a),

for every a ∈Mn(R).

Remark 2.1.4.

1. Proceeding as in the proof of the representability of Gδ
a or Gδ

m, one can

show that the differential fppf sheaves GLδ
n and PGLδ

n on (S, δ) are

represented by affine differential group schemes.
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2. GL1 = Gm, so one wonders to what extent the exact sequence (2.2)

generalizes for n > 1. Although, for n > 1, the cokernel of the inclusion

GLδ
n → GLn

does not exist, there exists an exact sequence

0 −→ GLδ
n −→ GLn

dlog−−→ gln −→ 0,

where dlog is regarded as a 1-cocycle for the conjugation action of GLn

on its Lie algebra gln.

2.2 Differential fppf cohomology

Let (S, δ) be a differential scheme and G a differential fppf sheaf of

abelian groups on (S, δ). We write H i(Sdfl, G) for the degree i differential fppf

sheaf cohomology group of Sdfl with coefficients in G. More precisely, H i(·, G)

is the i-th right derived functor of the global sections functor Γ(·, G).

We then have the usual Čech-to-derived spectral sequence

Ȟp(Sdfl, H
q(G)) =⇒ Hp+q(Sdfl, G),

and, by the same proof as in the non-differential setting, H1(Sdfl, G) is iso-

morphic to the Čech cohomology group Ȟ1(Sdfl, G) (cf. [12, Chapter III,

Propositions 2.7, 2.9 and Corollary 2.10]).

If F is a differential fppf sheaf of not necessarily abelian groups, then

it is convenient to define H1(Sdfl, G) as the degree 1 non-abelian Čech coho-

mology set of Sdfl with coefficients in G. This allows short exact sequences of
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differential fppf sheaves of not necessarily abelian groups to induce a (not so)

long exact sequence of cohomology sets:

Lemma 2.2.1. Every central extension

1 −→ G1 −→ G2 −→ G3 −→ 1

of differential fppf sheaves on (S, δ) induces a long exact sequence

1 // Γ(S,G1) // Γ(S,G2) // Γ(S,G3)

// H1(Sdfl, G1) // H1(Sdfl, G2) // H1(Sdfl, G3) // H2(Sdfl, G1).

of groups and pointed sets.

Proof. Cf. [8, Remarque 4.2.10].

Let Set and Sfl be the (small) étale site and the (big) fppf site on S,

respectively.

Theorem 2.2.2. Let G be a sheaf of abelian groups on Sfl (hence, on Sdfl and

on Set). If the canonical map H1(Set, G) → H1(Sfl, G) is an isomorphism,

then

H1(Sdfl, G) ∼= H1(Set, G).

Proof. We have continuous morphisms of sites

Sfl → Sdfl → Set
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induced by the identity. They induce injective homomorphisms

H1(Set, G)→ H1(Sdfl, G)→ H1(Sfl, G).

If H1(Set, G)→ H1(Sfl, G) is an isomorphism, then H1(Sdfl, G)→ H1(Sfl, G)

is surjective, hence an isomorphism. It follows that H1(Set, G)→ H1(Sdfl, G)

is an isomorphism.

Remark 2.2.1.

1. Étale and fppf cohomologies agree when G is a smooth, quasi-projective

group scheme (cf. [12, Chapter III, Lemma 3.9]]). In particular, theorem

2.2.2 holds when G = Ga, Gm, or an abelian variety.

2. When étale and fppf cohomologies don’t agree, H1(Sfl, G) could lie any-

where between H1(Set, G) and H1(Sfl, G) depending on the choice of δ.

For instance, when S = SpecK, K a field of characteristic p > 0, and

G = µp, then

H1
et(K,µp) = 0

H1
fl(K,µp) = K×/(K×)p,

H1
dfl(K,µp) = (K×)δ/(K×)p.

Note that the differential fppf cohomology and the (non-differential) fppf

cohomology agree when δ is the trivial derivation. Étale and differential

fppf cohomologies agree when (K×)δ = (K×)p (e.g. when K is a function
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field over a perfect field k and δ = d/dt, where t is a separating element

of K/k).

It is possible to generalize theorem 2.2.2 to higher degree cohomology

groups. However, we only need the following:

Proposition 2.2.3.

1. (Differential Serre’s theorem) If S is affine, then

Hq(Sdfl,Ga) = 0,

for every q ≥ 1.

2. (Cohomological Brauer group) H2(Sdfl,Gm) = H2(Set,Gm).

Proof. Consider the continuous morphism of sites Sfl → Sdfl induced by the

identity and forgetting derivations. Let G = Ga or Gm. The associated Leray

spectral sequence is

Hp(Sdfl, R
qi∗G) =⇒ Hp+q(Sfl, G), (2.4)

and thus Hq(Sdfl, G) ∼= Hq(Sfl, G) if Rqi∗G = 0. In our context, the vanishing

of the sheaf Rqi∗G can be phrased as follows: for every (S, δ)-scheme (X,D),

there exists a differential fppf covering

{(Xi, Di)→ (X,D)}

such that the image of Hq(Xfl, G) in Hq((Xi)fl, G) is zero.
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Given an (S, δ)-scheme (X,D), we choose an étale covering {Xi → X}

where Xi is the spectrum of a strictly Henselian ring Ai. By proposition 1.4.2,

{Xi → X} defines a differential fppf covering.

1. By Serre’s theorem, since each Xi is affine, Hq((Xi)fl,Ga) = 0. Hence,

the image of Hq(Xfl,Ga) in Hq((Xi)fl,Ga) is trivially zero, for every

q ≥ 1, showing thatRqi∗Ga = 0. Therefore, Hq(Sdfl,Ga) ∼= Hq(Sfl,Ga),

which implies that Serre’s theorem holds for the differential fppf topology.

2. Note that

H2((Xi)fl,Gm) = H2((Xi)et,Gm) = Br(Ai) = 0,

since each Ai is a strictly local ring (cf. [12, Chapter IV, Corollary 1.7]).

This shows that R2i∗Gm = 0, and the Leray spectral sequence (2.4) then

gives the desired isomorphism.

In what follows, unless otherwise stated, all cohomology groups are

with respect to the differential fppf topology and we write S instead of Sdfl.

Theorem 2.2.4. There exist exact sequences

0→ Γ(S,OS)/δ(Γ(S,OS))→ H1(S,Gδ
a)→ H1(S,Ga)

der−→ H1(S,Ga), (2.5)

0→ Γ(S,OS)/ dlog(Γ(S,O×S ))→ H1(S,Gδ
m)→ Pic(S)

dlog−−→ H1(S,Ga).
(2.6)
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Proof. The exact sequence (2.1) of differential fppf sheaves on (S, δ) yields the

long exact sequence

Γ(S,OS)
der−→ Γ(S,OS)→ H1(S,Gδ

a)→ H1(S,Ga)
der−→ H1(S,Ga)→ · · · ,

from which (2.5) follows.

Similarly, (2.2) induces the long exact sequence

Γ(S,O×S )
dlog−−→ Γ(S,OS)→ H1(S,Gδ

m)→ Pic(S)
dlog−−→ H1(S,Ga)→ · · · ,

from which (2.6) follows.

Remark 2.2.2.

1. Applying theorem 2.2.4 to the differential scheme (SpecK, δ) yields

H1(K,Gδ
a)
∼= K/δ(K)

and

H1(K,Gδ
m) ∼= K/ dlog(K×).

Those isomorphisms are consistent with Kolchin’s classification of princi-

pal homogeneous spaces under differential groups (cf. [10, Chapter VII,

Section 6, Corollaries 1 and 2]). Explicitly, let λ ∈ K. The K-torsor

Fa,λ under Gδ
a associated with the class of λ in K/δ(K) is given by

Fa,λ(X) = {x ∈ Γ(X,OX) : D(x) = λ},
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for (X,D) a (SpecK, δ)-scheme. TheK-torsor Fm,λ under Gδ
m associated

with the class of λ in K/ dlog(K×) is given by

Fm,λ(X) = {x ∈ Γ(X,OX)× : D(x) = λx},

for (X,D) a (SpecK, δ)-scheme. In both additive and multiplicative

cases, those sheaves of torsors are represented by differential schemes

(cf. remarks 2.1.2 and 2.1.3).

2. The differential fppf sheaf Gδ
a restricts to a sheaf on the étale site. One

might wonder if the differential fppf topology captures something the

étale topology can’t. The answer is that it does. In fact:

Lemma 2.2.5. Fix a separable closure K of K. The derivation δ of K then

extends to a unique derivation of K, which will be denoted by the same letter

δ. Given λ ∈ K, if

δ(z) = λ

has a solution in K, then it has a solution in K.

Proof. Let z ∈ K such that δ(z) = λ, and let

m(x) = xd + ad−1x
d−1 + · · ·+ a0

be the minimal polynomial of z over K. Applying δ to m(z) = 0 yields

0 =
d∑
i=1

(iaiλ+ δ(ai−1))zi−1,
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where, for convenience, we have set ad = 1. By the minimality of m, we must

have

iaiλ+ δ(ai−1) = 0, i = 1, . . . , d.

Since m is separable, there exists a greatest integer i ∈ {1, . . . , d} such that

the characteristic p ≥ 0 of K does not divide i and ai 6= 0. If i = d, then

δ(−ad−1)/d) = λ,

and we are done. If i < d, then the relation

(i+ 1)ai+1λ+ δ(ai) = 0

together with the definition of i implies that δ(ai) = 0,. The identity

iaiλ+ δ(ai−1) = 0

then yields

δ

(
−ai−1

iai

)
= λ.

Proposition 2.2.6. H1
et(K,G

δ
a) = 0.

Proof. By lemma 2.2.5, if the differential equation δ(z) = λ has a solution in

some étale cover of K, then it has a solution in K. Therefore, the differential

fppf K-torsor Fa,λ given by δ(z) = λ, λ ∈ K, is a K-torsor for the étale

topology if and only if it is trivial.
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Chapter 3

Cohomological differential descent

obstructions

3.1 Gδ
a-descent obstructions

In this section, we restate Voloch’s results (theorems 1.3.1 and 1.3.2)

using the language of differential schemes. First, we recall the basic setup. Let

K be a function field in one variable over an arbitrary field k of characteristic

p ≥ 0. We fix a separating element t ∈ K and consider the derivation δ := d/dt

of K. Given a scheme X over K the goal is to understand the set X(K) inside

the adelic space X(AK). Given a (finite) set S of places of K/k, when X is

the generic fiber of an affine scheme X of finite type over SpecOK,S, we are

also interested in understanding the set X(OK,S) inside

X(AK,S) =
∏
v/∈S

X(Ov)×
∏
v∈S

X(Kv).

Let G be a differential fppf sheaf of abelian groups. The derivation δ

of K does not have to extend to a derivation on X, so we cannot in general

talk about a differential fppf cohomology group H1(Xdfl, G). However, we

can embed X in the infinite jet scheme X∞ as discussed in section 1.5. The

derivation δ now extends to a derivation on X∞ and we may consider the dif-

ferential fppf cohomology group H1(X∞, G). Moreover, by proposition 1.5.2,
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each rational point x : SpecK → X lifts to a unique (differential) rational

point x : (SpecK, δ) → (X∞, δ), allowing us to consider, for each (class of a)

torsor [Y ] ∈ H1(X∞, G), the diagram

X(K) //

��

X(AK)

��
H1(K,G) //

∏
vH

1(Kv, G)

where all cohomology groups are with respect to the differential fppf topology,

the vertical maps are given by evaluation of [Y ] at (differential) rational points

of X∞, and the horizontal maps are the usual diagonal embeddings.

Voloch’s differential obstructions arise when we consider the additive

sheaf G = Gδ
a of differential constants. By theorem 2.2.4, the differential fppf

cohomology group H1(X∞,Gδ
a) classifying X∞-torsors under Gδ

a sits in the

exact sequence

0→ K{X}
δ(K{X})

→ H1(X∞,Gδ
a)→ H1(X∞,Ga)

δ → 0, (3.1)

whereH1(X∞,Ga)
δ = ker(H1(X∞,Ga)

der−→ H1(X∞,Ga)). Recall thatK{X}

denotes the coordinate ring of X∞, that is, the set of all differential regular

maps on X, and we view K[X] ⊂ K{X}.

By theorem 2.1.1, the sheaf Gδ
a is represented by an affine differential

group scheme. As in the non-differential setting, it follows that all (sheaves of)

torsors corresponding to elements in H1(X∞,Gδ
a) are represented by differen-

tial schemes (cf. [12, Chapter 3, Theorem 4.3]). Moreover, by theorem 2.2.2,
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we can compute the differential fppf cohomology group H1(X∞,Ga) using the

fppf or étale topologies, and the map

H1(X∞,Gδ
a)→ H1(X∞,Ga)

can be interpreted as “forgetting derivations”. In particular, the underlying

scheme of a torsor corresponding to a class in

K{X}
δ(K{X})

⊂ H1(X∞,Gδ
a)

is the trivial Ga-torsor A1
X∞ = SpecOX∞ [t]. A derivation on A1

X∞ compatible

with the action of Gδ
a must be given by ∂F : OX∞ [t]→ OX∞ [t], ∂F (t) = F , for

some F ∈ K{X}. Such Gδ
a-torsor (A1

X∞ , ∂F ) corresponds to the class of F in

K{X}
δ(K{X})

⊂ H1(X∞,Gδ
a).

The fiber of the torsor (A1
X∞ , ∂F ) → (X∞, δ) above x ∈ X(K) viewed

as a differential rational point x : (SpecK, δ)→ (X∞, δ) is

(A1
K , ∂F (x)),

which is the torsor over SpecK corresponding to the class of F (x) ∈ K in

K

δ(K)
∼= H1(K,Gδ

a).

Proposition 3.1.1. A point (xv) in the adelic space X(AS
K) is unobstructed

by (A1
X∞ , ∂F ) if and only if there exist (zv) ∈

∏
vKv and c ∈ K such that

δ(zv) = F (xv) + c. (3.2)
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Proof. Recall definition 1.2.1. We say that (xv) is unobstructed by (A1
X∞ , ∂F )

if there exists c ∈ K such that the evaluation (A1
Kv
, ∂F (xv)) is isomorphic to

the K-torsor (A1
K , ∂c), for every place v of K. By our discussion above, this

is equivalent to there existing c ∈ K whose class is mapped to the class of

(F (xv)) ∈
∏

vKv under the diagonal

K

δ(K)
→
∏
v

Kv

δ(Kv)
,

yielding the criterion in the statement.

Remark 3.1.1.

1. It is possible to verify directly that, for any differential field (L, δ) and

a, b ∈ L, the differential schemes (A1
L, ∂a) and (A1

L, ∂b) are isomorphic

as L-torsors under Gδ
a if and only if b − a ∈ δ(L) . First, one shows

that a Gδ
a-equivariant isomorphism σ : L[t] → L[t] must be given by

σ(t) = t+ λ, λ ∈ L. Then, one uses the differential condition σ(∂b(t)) =

∂a(σ(t)) to conclude that b− a = δ(λ).

2. Without the language of differential schemes, Voloch in [18] uses (3.2)

as the definition of a point being unobstructed by his differential descent

obstructions. Proposition 3.1.1 thus shows that, with the language of

differential schemes, Voloch’s differential descent obstructions are more

42



specifically the descent obstructions coming from (differential fppf) tor-

sors in

K[X] ↪→ K{X}
δ(K{X})

⊂ H1(X∞,Gδ
a).

A rational point (SpecK, δ) → (A1
X∞ , ∂F ) corresponds to a maximal

ideal of the polynomial ring OX [t] stable under the action of ∂F and whose

residue field isK. It is easy to check that such maximal ideal must be generated

by t−z, where z is a solution to δ(z) = F . Therefore, from now on, to simplify,

we will refer to the X-torsor (A1
X∞ , ∂F ) as the torsor given by δ(z) = F .

We are ready to restate theorems 1.3.1 and 1.3.2 using the language of

differential schemes and differential fppf descent.

Theorem 3.1.2. Let X be an affine OK,S-scheme of finite type with generic

fiber X. If (xv) ∈ {(AK,S) is unobstructed by all X-torsors corresponding to

elements in

K[X] ⊂ K{X}
δ(K{X})

⊂ H1(X∞,Gδ
a),

then (xv) ∈ X(OK,S).

Theorem 3.1.3. Let X be a smooth non-isotrivial curve of genus g > 1 over

K. If (xv) ∈
∏

vX(Kv) is unobstructed by all Gδ
a-torsors given by first order

regular differential maps on X, that is, corresponding to elements in

Γ(X1,OX1)→ K{X}
δ(K{X})

⊂ H1(X∞,Gδ
a),

then (xv) ∈ X(K).
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Proof. We sketch the proof from [18] since the statement of theorem 1.3.2 is

less specific. First, one considers the embedding

∇1 : X → X1,

where X1 is the first jet scheme of X along δ discussed in section 1.5. When X

is a smooth non-isotrivial curve of genus g > 1, the first jet scheme X1 is affine

(more specifically, an affine surface), as proven in [5] and [6]. The argument

in [18] then shows that

∇1(X(K)) ⊂ X1(AK,S),

for a suitable (finite) set S of places of K/k. Since X1 is affine, we can now

use theorem 3.1.2 to see that (xv) is global if and only if (xv) is unobstructed

by all X1-torsors corresponding to regular functions on X1. The result as in

the statement of theorem 3.1.2 then follows from interpreting a regular map

on X1 as an element in K{X}, more specifically an order 1 differential regular

function on X, and noticing that (X1)∞ ∼= X∞ (which implies that differential

torsors over X1 are differential torsors over X).

3.2 Gδ
m-descent obstructions

Let K, δ, X and X be as in the previous section. In this section,

we study the descent obstruction to integral points associated with X-torsors

under the affine differential scheme Gδ
m.
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By theorem 2.2.4, the differential fppf cohomology group H1(X∞,Gδ
m)

sits in the exact sequence

0→ K{X}
dlog(K{X}×)

→ H1(X∞,Gδ
m)→ Pic(X∞)δ → 0, (3.3)

where Pic(X∞)δ = ker(Pic(X∞)
dlog−−→ H1(X∞,Ga)).

As in the case of Gδ
a, every torsor under Gδ

m is represented by a dif-

ferential scheme. By theorem 2.2.2, we can compute the differential fppf co-

homology group H1(X∞,Gm) = Pic(X∞) using the étale topology, and the

map

H1(X∞,Gδ
m)→ Pic(X)

can thus be interpreted as “forgetting derivations”. In particular, the under-

lying scheme of a torsor corresponding to a class in

K{X}
dlog(K{X}×)

⊂ H1(X∞,Gδ
m)

is the trivial Gm-torsor

A1
X∞ − {0} = SpecOX∞ [t, t−1].

A derivation on A1
X∞ − {0} compatible with the action of Gδ

m must be given

by ∂F : OX∞ [t, t−1] → OX∞ [t, t−1], ∂F (t) = Ft, for some F ∈ K{X}. Such

Gδ
m-torsor (A1

X∞ − {0}, ∂F ) corresponds to the class of F in

K{X}
dlog(K{X}×)

⊂ H1(X∞,Gδ
m).

We will refer to the torsor (A1
X∞ − {0}, ∂F ) → (X∞, δ) as the torsor

given by dlog(z) = F . Its fiber above x ∈ X(K) viewed as a differential
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rational point x : (SpecK, δ) → (X∞, δ) is the K-torsor under Gδ
m given by

dlog(z) = F (x), that is, (A1
K , ∂F (x)). This K-torsor corresponds to the class

of F (x) ∈ K in

K

dlog(K×)
∼= H1(K,Gδ

m).

Proposition 3.2.1. A point (xv) in the adelic space X(AS
K) is unobstructed

by the torsor given by dlog(z) = F if and only if there exist (zv) ∈
∏

vK
×
v and

c ∈ K such that

dlog(zv) = F (xv) + c. (3.4)

Proof. Recall definition 1.2.1. We say that (xv) is unobstructed by the torsor

dlog(z) = F if there exists c ∈ K such that the fiber dlog(z) = F (xv) is

isomorphic to the torsor given by dlog(z) = c, for every place v of K. This

is equivalent to there existing c ∈ K whose class is mapped to the class of

(F (xv)) ∈
∏

vKv under the diagonal

K

dlog(K×)
→
∏
v

Kv

dlog(K×v )
,

yielding the criterion in the statement.

We now prove a multiplicative analogue of theorem 3.1.2.

Lemma 3.2.2. Let K be a function field in one variable over a finite field k

of characteristic p > 0 and let a ∈ K. If the Artin-Schreier polynomial

f(x) = xp − x+ b
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has a root in Kv, for every place v of K, then f has a root in K.

Proof. Fix an algebraic closureK ofK and an algebraic closure k of k insideK.

If f remains irreducible over the compositum Kk, then f remains irreducible

overKv, for some place v ofK (in fact, infinitely many places), by Chebotarev’s

density theorem. However, we assumed that f has a root in Kv, for all v.

So, f must be reducible over K ′ = KL, for some finite extension L/k.

Hasse-Weil’s bound for the number of places of degree n of K shows that, for

n large, there exist places v1 and v2 of K of degree n and n + 1. Therefore,

there exists a place v of degree coprime with [L : K]. This guarantees that v

is inert in the function field extension K ′/K (cf. [15, Theorem 3.6.3]). In this

case, the tensor product K ′ ⊗K Kv is a field (namely, the completion of K ′

with respect to v), implying that K ′/K and Kv/K don’t have K-isomorphic

finite subextensions. In particular, f cannot be irreducible over K. Since an

Artin-Schreier polynomial is reducible over K if and only if it contains a root

in K, we conclude that f has a root in K.

Theorem 3.2.3. Let X be an affine scheme of finite type over OK,S with

generic fiber X over K, where S is a finite set of places of K. If (xv) ∈

X(AK,S) is unobstructed by all X-torsors in

K{X}
dlog(K{X}×)

⊂ H1(X∞,Gδ
m),

then (xv) ∈ X(OK,S).
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Proof. Since we may embed X in the affine space An
OK,S

, for some positive

integer n, it suffices to consider the case X = A1
OK,S

.

Let x be a coordinate in A1 and f ∈ K. By proposition 3.2.1, (xv)

being unobstructed by the torsor dlog(z) = fx means that there exist c ∈ K

and zv ∈
∏

vK
×
v such that dlog(zv) = fxv + c, for every place v of K, or,

equivalently, in the language of 1-forms,

dzv
zv

= xvfdt+ cdt.

Taking residues yields

v(zv) deg(v) = Resv
dzv
zv

= Resv xvfdt+ Resv cdt,

where deg(v) is the degree of the place v. By the residue theorem, we have∑
v

Resv xvfdt =
∑
v

v(zv) deg(v),

which converges since the set S of “bad places” is finite and fdt has finitely

many poles. This being true for every f ∈ K implies that the residue map

〈(xv), ·〉 : ΩK/k → k

given by

〈(xv), ω〉 =
∑
v

Resv xvω

has image contained in Z/pZ, where p ≥ 0 is the characteristic of K. If k is

not the field with p elements, since 〈(xv), ·〉 is k-linear, we must have 〈(xv), ·〉

identically zero. By Serre’s duality and the Riemann-Roch theorem, it follows

that (xv) is global.
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We now consider the case p > 0 and k = Z/pZ. For each i = 0, . . . , p−1,

assume that (xv) is unobstructed by dlog(z) = tix. Then, there exist ci ∈ K

and ziv ∈
∏

vK
×
v such that dlog(ziv) = tixv + ci, for every place v of K.

Suppose dlog(ziv) 6= 0. Applying the Cartier operator to the 1-form dziv/ziv

(or by lemma 1.3 in [17]), it follows that

δp−1(tixv + ci) = −(tixv + ci)
p.

Note that, if dlog(ziv) = 0, the above equality is trivially true.

Therefore, when (xv) is unobstructed by dlog(z) = tix, for i = 0, . . . , p−

1, we have a system of p equations{
i∑

k=0

(
p− 1

k

)
i!

(i− k)!
ti−kδp−1−k(xv) = −δp−1(ci)− tipxpv − c

p
i : i = 0, . . . , p− 1

}
,

or, equivalently, a matrix equation

A


xv
δ(xv)
...

δp−1(xv)

 =


−δp−1(c0)− xpv − c

p
0

−δp−1(c1)− tpxpv − c
p
1

...
−δp−1(cp−1)− t(p−1)pxpv − c

p
p−1

 ,

where

A =


0 0 . . . 0

(
p−1

0

)
0 0 . . .

(
p−1

1

)
δ(t)

(
p−1

0

)
t

...
...

...
...(

p−1
p−1

)
(p− 1)!

(
p−1
p−2

)
δp−2(tp−1) . . .

(
p−1

1

)
δ(tp−1)

(
p−1

0

)
tp−1

 .

Since

detA = (−1)bn/2c
p−1∏
i=0

(
p− 1

i

)
i! 6= 0,
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we may consider the inverse of A and write
xv
δ(xv)
...

δp−1(xv)

 = A−1


−δp−1(c0)− xpv − c

p
0

−δp−1(c1)− tpxpv − c
p
1

...
−δp−1(cp−1)− t(p−1)pxpv − c

p
p−1

 . (3.5)

In order to solve for xv, we determine the first row of A−1 explicitly by

computing the cofactors Ci1 of the first column of A. It is easy to see that

Cp1 = − detA. In order to compute the other first column cofactors, write

A = (aijt
i+j−p−1) with aij ∈ Z/pZ and note that, for each j = 2, . . . , p,

p∑
i=1

aij =

p∑
i=p+1−j

aij

=

p∑
i=p+1−j

(
p− 1

p− j

)
(i− 1)!

(i+ j − p− 1)!

=

(
p− 1

p− j

) p∑
i=p+1−j

(
i− 1

p− j

)
(p− j)!

=

(
p− 1

p− j

)(
p

p− j + 1

)
(p− j)!

= 0.

In the computation of Ci1, for i = 1, ..., p − 1, we may thus perform the row

operations

Lp−1 −→ Lp−1 + Lpt
−1

Lp−2 −→ Lp−2 + Lp−1t
−1

...

Li −→ Li + Li+1t
−1
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to get

Ci1 = (−1)i+1 det



(
p−1

0

)
0!

0 . .
.(

p−1
i

)
i!

−
(
p−1
i−1

)
(i− 1)!t

. .
. *

−
(
p−1
p−2

)
(p− 2)!t



= −tp−i detA.

This shows that the first row of A−1 is

(
−tp−1 . . . −t −1

)
,

and, by (3.5), we see that xv satisfies

(tp−1 + t2(p−1) + · · ·+ tp(p−1))xpv − xv +

p−1∑
i=0

(δp−1(ci) + cpi )t
i = 0.

Let yv = (tp−1 − 1)xv. Then, (yv) satisfies

ypv − yv + a = 0,

for some a ∈ K. By lemma 3.2.2, it follows that yv ∈ K and thus xv ∈ K, for

every v.

Fix a place v0 of K and consider

x̃v := xv − xv0 ,
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for each place v of K. If (xv) is unobstructed by the torsor dlog(z) = fpx,

f ∈ K, then so is (x̃v), which means that there exist c ∈ K and (zv) ∈
∏

vK
×
v

such that

dlog(zv) =

{
fpx̃v + c, if v 6= v0

c, if v = v0.

Applying the Cartier operator to the 1-form dzv/zv (or by lemma 1.3 in [17]),

we conclude that

δp−1(c) = −cp

and

fpδp−1(x̃v) + δp−1(c) = −fp2x̃vp − cp,

implying that

δp−1(x̃v) = −fp2−px̃vp,

if f 6= 0. Letting f vary in K×, we conclude that x̃v = 0, hence xv = xv0 ∈ K,

for every place v of K, that is, (xv) is global.

We finish this section stating the multiplicative analogue of theorem

3.1.3. The proof is identical replacing Gδ
a with Gδ

m and using theorem 3.2.3

instead of theorem 3.1.2.

Theorem 3.2.4. Let X be a smooth non-isotrivial curve of genus g > 1 over

K. If (xv) ∈
∏

vX(Kv) is unobstructed by all Gδ
m-torsors given by first order

regular differential maps on X, that is, corresponding to elements in

Γ(X1,OX1)→ K{X}
dlog(K{X}×)

⊂ H1(X∞,Gδ
m),
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then (xv) ∈ X(K).

3.3 An example

We consider the same example from [18] but here we use Gδ
m-descent

obstructions:

Proposition 3.3.1. Let k = C and K = C(t). Write Kλ for the completion of

K = C(t) with respect to the place vλ corresponding to λ ∈ C∪{∞} and write

Oλ for the ring of integers of Kλ. If X is the affine scheme over OS = C[t]

given by

x2 + (t3 + t2)y2 = t+ 1,

then:

1. X(AK,S) 6= ∅;

2. if P∞ = (x∞, y∞) ∈ X(K∞), then v∞(y∞) = 1;

3. every adelic point

(Pλ) = ((xλ, yλ)) ∈ X(K∞)×
∏
λ∈C

X(Oλ)

is obstructed by the Gδ
m-torsor

dlog(z) = ay,

where a is half the reciprocal of the coefficient of t−1 in the expression of

y∞ (as a power series in t−1).
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In particular, X(C[t]) = ∅.

Proof.

1. When λ /∈ {−1,∞}, we have a local solution of the form Pλ = (xλ, 0)

with x2
λ = t + 1. When λ = −1, we have a local solution of the form

P−1 = (x−1, 1) with x2
−1 = (t + 1)2(1 − t). When λ = ∞, we have the

solution P∞ = (0, t−1).

2. By the equation defining X, since v∞((t3 + t2)y2
∞) and v∞(x2

∞) have

different parities, we must have v∞((t3+t2)y2
∞) = −1, and thus v∞(y∞) =

1.

3. By the previous item, we may write

y∞ =
a1

t
+
a2

t2
+ . . . ,

where ai ∈ C and a1 6= 0. Assume for a contradiction that (Pλ) is

unobstructed by dlog(z) = ay, where a = 1/(2a1) Then, there exist

(zλ) ∈
∏

vK
×
λ and c ∈ K such that

dlog(zλ) = ayλ + c

or, in terms of 1-forms,

dzλ
zλ

= ayλdt+ cdt,
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for every λ ∈ C∪{∞}. We take residues. For λ ∈ C, since yλ is integral,

we have

Resλ cdt = Resλ
dzλ
zλ
− Resλ ayλdt = v(zλ) ∈ Z.

Therefore, on one hand, for the place at infinity, we have

Res∞ cdt = −
∑
λ∈C

Resλ cdt ∈ Z

However, on the other hand, we have

Res∞ cdt = Res∞
dz∞
z∞
− Res∞ ay∞dt

= v∞(z∞)− Res∞
1

2a1

(a1

t
+
a2

t2
+ . . .

)
dt

= v∞(z∞)− 1

2
/∈ Z,

a contradiction.
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Chapter 4

Gδ
a-descent for isotrivial canonical curves

4.1 Background

Let K/k be our function field with the derivation δ = d/dt, where t

is a separating element, as in chapter 3. In this chapter and in the next, we

investigate what happens to theorem 3.1.3 when we drop the non-isotrivial

hypothesis.

Let C be a smooth isotrivial curve of genus g over K. By proposition

1.5.1, the first jet scheme C1 is a torsor under the tangent bundle

TC = SpecC S(ΩC/K)

of C corresponding to the Kodaira-Spencer class ks(δ) ∈ H1(C, TC). There-

fore, in the isotrivial case, C1 ∼= TC is not affine and the argument used in

the proof of theorem 3.1.3 has to be adapted.

Our adaptation will rely on whether C1 has enough non-constant global

sections, despite C1 not being affine. For instance, when g = 0, C1 ∼= TC has

no non-constant global section and we cannot hope to obtain a local-global

principle using Gδ
a (or Gδ

m) descent obstructions. However, when g > 0, the
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ring of global sections of the tangent bundle of C, i.e., the canonical ring⊕
n≥0

H0(C,Ωn
C/K),

has non-constant functions.

We will investigate the case when C is hyperelliptic in chapter 5. For the

rest of this chapter, we assume that C is a smooth non-hyperelliptic isotrivial

curve of genus g ≥ 3 over K. In this case, we have the canonical map

ϕ : C → ProjS(H0(X,ΩX/K)) = Pg−1

induced by the linear system associated with the (very ample) canonical divisor

on C. The canonical map is a closed immersion, and the canonical ring⊕
n≥0

H0(C,Ωn
C/K) ∼= Γ(C1,OC1)

identifies with the homogeneous coordinate ring of the canonical curve ϕ(C).

It is generated in degree 1 by Max Noether’s theorem.

We fix a basis {s1, . . . , sn} of H0(C,ΩC/K) so that

ϕ = (s1 : · · · : sg),

and we write ωi ∈ Γ(C1,OC1) for the first order regular differential function on

C corresponding to si ∈ H0(C,ΩC/K) under a fixed isomorphism C1 ∼= TC.

Given P ∈ C(K), note that, if ωi(P ) 6= 0, for some i ∈ {1, . . . , g}, we may

“dehomogenize” Pg−1
K = ProjS(H0(C,ΩC/K)) with respect to si to obtain the

expression

ϕ(P ) =

(
ω1(P )

ωi(P )
: · · · : ωi−1(P )

ωi(P )
: 1 :

ωi+1(P )

ωi(P )
: · · · : ωg(P )

ωi(P )

)
. (4.1)
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4.2 Main result

With the notations and conventions from section 4.1, set

Cδ(AK) := {(Pv) ∈
∏
v

C(Kv) : ωi(Pv) = 0 for all i and v}.

We refer to a point in Cδ(AK) as a differential constant.

Theorem 4.2.1. If (Pv) ∈
∏

v C(Kv) is unobstructed by the Gδ
a-torsor

δ(z) = fωi,

for every f ∈ K and ωi ∈ Γ(C1,OC1), i = 1, . . . , g, then

(Pv) ∈ C(K) ∪ Cδ(AK).

Proof. Suppose (Pv) is unobstructed by the Gδ
a-torsor δ(z) = fωi, for every

f ∈ K and i = 1, . . . , g. This means that there exist c ∈ K and (zv) ∈
∏

vKv

such that

δ(zv) = fωi(Pv) + c,

for every place v of K. In other words, the point (ωi(Pv)) ∈
∏

A1
K(Kv) is

unobstructed by the Gδ
a-torsor over A1

K given by

δ(z) = fx, x ∈ A1
K ,

for every f ∈ K. By theorem 3.1.2, ωi(Pv) is global, for every i = 1, . . . , g.

We embed C in Pg−1
K via the canonical map

ϕ : C → ProjS(H0(C,ΩC/K)).
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Suppose that ωi(Pv) 6= 0, for some i ∈ {1, . . . , g}. We can then use (4.1) to

express ϕ(Pv) in terms of ω1(Pv), . . . , ωg(Pv). Since (ωj(Pv)) is global for every

j = 1, . . . , g, we conclude that (ϕ(Pv)) is global. Since ϕ is a closed immersion,

it follows that (Pv) is global.

Remark 4.2.1.

The argument used in this proof is similar to the following construction from

[1]. For C a smooth isotrivial non-hyperelliptic curve of genus g ≥ 3, one

considers a sequence of maps

C ↪→ C1 → Spec Γ(C1,OC1) ∼= Spec Γ(TC,OTC)→ SpecS(H0(C,ΩC/K))

where, under the identification C1 ∼= TC, the map C1 → Spec Γ(C1,OC1) is

the contraction of the zero section, and

Spec Γ(TC,OTC) = Spec
⊕
n≥0

H0(C,Ωn
C/K)→ SpecS(H0(C,ΩX/K))

follows from Max Noether’s theorem that states that the canonical ring

⊕
n≥0

H0(C,Ωn
C/K)

is generated in degree 1. This map C → Ag is called the δ-Lagrangian map

in [1]. The δ-Lagrangian map is constant on Cδ and is an injective local

immersion on C\Cδ, the image of C being the affine cone over the canonical

curve ϕ(C) (cf. [1, Chapter 6, Theorem 2.4]).
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4.3 An example

Let K = C(t) with δ = d/dt and consider the smooth isotrivial projec-

tive curve C ⊂ P2
K given by

Y 4 + tX4 = Z4.

Since C is given by a nonsingular polynomial of degree d = 4, C has genus(
d−1

2

)
= 3. We consider the affine model of C given by

y4 + tx4 = 1,

where x = X/Z and y = Y/Z. When P ∈ C(K) is a point on this affine portion

of C, we write P = (x, y). We also use the suggestive symbols x, y, dx, dy

(resp. x, y, x′, y′) for the corresponding local system of affine coordinates on

the tangent bundle TC (resp. the first jet scheme C1). Explicitly, TC is given

by the additional equation

y3dy + tx3dx = 0,

whereas C1 is given by the additional equation

4y3y′ + 4tx3x′ + x4 = 0.

It is not hard to see that the equation defining C1 can be rewritten as

4y3y′ + 4tx3
(
x′ +

x

4t

)
= 0

providing an explicit isomorphism TC ∼= C1 over C, namely, the one given by

dx 7→ x′ +
x

4t

dy 7→ y′.
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The regular 1-forms

s1 =
dx

y3
, s2 = x

dx

y3
, s3 =

dx

y2

form a basis of H0(C,ΩC/K) over K. Under the isomorphism TC ∼= C1 above,

the 1-forms s1, s2, s3 correspond to first order regular differential maps on C

given by

ω1 =
4tδ(x) + x

4ty3
, ω2 = x

4tδ(x) + x

4ty3
, ω3 = y

4tδ(x) + x

4ty3
,

which generate Γ(C1,OC1) as a K-algebra. Since dx/y3 = −dy/(tx3), the

isomorphism TC ∼= C1 provides the alternative expressions

ω1 = −δ(y)

tx3
, ω2 = −xδ(y)

tx3
, ω3 = −yδ(y)

tx3
.

Proposition 4.3.1. Let C, K and ωi be as above. Write Kλ for the completion

of K = C(t) with respect to the place vλ corresponding to λ ∈ C∪{∞}. Then:

1. C(K) ∩ Cδ(K) = {(0,±1), (0,±i)};

2. there exists Pλ ∈ C(Kλ) such that ω1(Pλ) 6= 0, for every λ ∈ C ∪ {∞};

3. tkω1(Pλ) ∈ Oλ, for every positive integer k and λ 6=∞.

4. every adelic point

(Pλ) = ((xλ, yλ)) ∈
∏

λ∈C∪{∞}

C(Kλ)

not in Cδ(K) is obstructed by the Gδ
a-torsor

δ(z) = tnω1,

where n := v∞(x∞).
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In particular, C(K) = {(0,±1), (0,±i)}.

Proof. It is clear that the curve C has no K-rational point at infinity, so we

restrict ourselves to the affine portion of C given by y4 + tx4 = 1.

1. For each λ ∈ C ∪ {∞}, a K-rational point P = (x, y) is a differential

constant if and only if −4δ(x) = t−1x, that is,

x4 = ct−1,

for some differential constant c ∈ Kδ = C satisfying y4 = 1− c. This is

only possible when c = 0, in which case x = 0 and y4 = 1.

2. When λ /∈ {1,∞}, we have a local solution of the form Pλ = (1, yλ) with

y4
λ = 1− t, and

ω1(Pλ) = t−1y−3
λ /4 6= 0.

When λ = 1, we have a local solution of the form P1 = (2, y1) with

y4
1 = 1− 16t, and

ω1(P1) = t−1y−3
1 /2 6= 0.

When λ =∞, we have a local solution of the form P∞ = (t−1, y∞) with

y4
∞ = 1− t−3, and

ω1(P∞) = −3t−2y−3
∞ /4 6= 0.

3. By the equation y4 + tx4 = 1 defining C, we have

v0(y0) = 0 and v0(x0) = m,
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for some integer m ≥ 0. Writing x0 = u0t
m with u0 ∈ O×0 , we see that

ω1(P0) =
δ(u0)

y3
0

tm +
(4m+ 1)u0

4y3
0

tm−1

and thus tkω1(P0) is integral, for every positive integer k.

For λ 6= 0,∞, again by the equation definition C, we see that one of the

following must happen:

• vλ(xλ) = vλ(yλ) ≤ 0; or

• vλ(xλ) = 0 and vλ(yλ) ≥ 0; or

• vλ(yλ) = 0 and vλ(xλ) ≥ 0;

In all cases, using the expressions

4tδ(xλ) + x

4ty3
λ

= −δ(yλ)
tx3
λ

for ω1(Pλ), we conclude that tkω1(Pλ) is integral, for every integer k.

4. For λ =∞, the equation defining C tells us that v∞(y∞) = 0 and v∞(x∞)

is a positive integer. Set n := v∞(x∞), and assume for a contradiction

that P is unobstructed by δ(z) = tnω1. This means that there exist

c ∈ K and (zλ) ∈
∏

λKλ such that

δ(zv) = tnω1(Pλ) + c,

for every λ ∈ C ∪ {∞}. By what we just proved in the previous item,

tnω1(Pλ) is integral for every λ 6= ∞. It follows that the polar parts of
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c at the places corresponding to λ 6= ∞ are integrable. We may then

change zλ if necessary and assume that c is a polynomial.

Writing x∞ = u∞t
−n with u∞ ∈ O×∞, we see that

ω1(P∞) =
δ(u∞)

y3
∞

t−n − (4n− 1)u∞
4y3
∞

t−n−1.

Note that v∞(δ(u∞)) ≥ 2. Therefore, the coefficient of t−1 in

δ(zv) = tnω1(P∞) + c

is non-zero, a contradiction.
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Chapter 5

Gδ
a-descent for isotrivial hyperelliptic curves

5.1 Background

We now investigate the case when the smooth projective curve C is

hyperelliptic of genus g ≥ 2 over our function field K. In this case, the

canonical map

ϕ : C → ProjS(H0(C,ΩC/K)) = Pg−1

is no longer a closed immersion. It is instead a degree 2 morphism with ϕ(C)

a rational normal curve.

We first assume that the characteristic p of K is not 2 and, at the end

of this chapter, in section 5.5, we discuss the case p = 2. In what follows, let

x be an element in the function field K(C) of C such that the function field

of the canonical image ϕ(C) identifies with K(x) via ϕ.

Lemma 5.1.1. K(x) is the only rational subfield of K(C) with

[K(C) : K(x)] = 2.

There exist y ∈ K(C) and a separable polynomial f in one variable of degree

2g + 1 or 2g + 2 over K such that

y2 = f(x)
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and K(C) = K(x, y). Moreover, if C has a K-rational Weierstrass point, i.e.,

P ∈ C(K) such that

dimK H
0(C,OC(2P )) > 1,

then we may choose f monic and separable of degree 2g + 1. In this case, the

affine equation y2 = f(x) defining C is unique up to a change of coordinates

of the form

x = α2x̃+ β, y = α2g+1ỹ,

where α ∈ K× and β ∈ K.

Proof. Cf. [15, Chapter 6, section 3] and [11, Proposition 1.2].

Remark 5.1.1. Explicitly, C is the gluing of affine curves given by

y2 = f(x)

and

v2 = u2g+2f(1/u)

via

u =
1

x
and v =

y

xg+1
.

However, for our purposes, when C has a K-rational Weierstrass point P , it

will be more convenient to think of C as the union of the affine curve given by

y2 = f(x) and a single distinguished point at infinity corresponding to P .

66



For the rest of this chapter, we will assume that our field K is large

enough so that C has a K-rational Weierstrass point. By lemma 5.1.1, C is

then given by an equation

y = f(x) = x2g+1 + a2gx
2g + · · ·+ a0,

with ai ∈ K. We will assume that this equation is in reduced form, that is:

(?) if m ≥ 0 is the smallest integer such that the characteristic p ≥ 0 of K

does not divide 2g + 1−m and a2g+1−m 6= 0, then we assume

a2g−m = 0, if m 6≡ −1 (mod p)

and

δ(a2g−m) = 0, if m ≡ −1 (mod p).

Every isotrivial hyperelliptic curve is isomorphic to a hyperelliptic curve

given by an equation in reduced form (cf. remark 5.2.1). When p = 0, we

have m = 0, hence being in reduced form means that a2g = 0. When m ≡ −1

(mod p), we must have 2g + 1 divisible by p and thus p divides 2g −m.

5.2 Differential functions on a hyperelliptic curve

Recall that, by proposition 1.5.1, when C isotrivial, the first jet scheme

C1 identifies with the tangent bundle TC. Let ω1, . . . , ωg ∈ Γ(C1,OC1) be
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the first order regular differential functions on C corresponding to the regular

1-forms

si := xi−1dx

y
∈ H0(C,ΩC/K), i = 1, . . . , g,

under an isomorphism C1 ∼= TC over C. We will give explicit formulae for ωi.

If the coefficients a0, . . . , a2g of f(x) in the equation defining C are

differential constants, then the first jet scheme is trivially isomorphic to the

tangent bundle TC and we have the expression

ωi = xi−1 δ(x)

y
= xi−1 2δ(y)

f ′(x)
.

Note that, although we write ωi as a rational function in order to simplify

computations, ωi is really a polynomial in the variables x, y, δ(x) and δ(y).

Indeed, since f(x) is separable, there exist polynomials g and h in the variable

x such that

1 = gf + hf ′,

and thus

ωi = xi−1g(x)yδ(x) + 2xi−1h(x)δ(y).

If one of the coefficients a0, . . . , a2g is not a differential constant, then

an isomorphism C1 ∼= TC is no longer trivial and

δ(x)

y

need not be regular on C. For instance, let C be the isotrivial hyperelliptic

curve over Q(t) given by y2 = x2g+1 − t2g+1 and let δ = d/dt. Then, δ(x)/y is

not regular at the rational point (t, 0).
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Theorem 5.2.1. Let m be as in (?) and let n be the smallest positive integer

greater than m such that p does not divide n(2g + 1 − n) and a2g+1−n 6= 0,

where, for convenience, ak := 1, for k /∈ {0, . . . , 2g}. Then,

ωi = xi−1nδ(x)− dlog(a2g+1−n)x

ny
, i = 1, . . . , g,

defines a differential regular map on C.

Proof. Being isotrivial means that there exist a field extension F/K and a

hyperelliptic curve C ′ over Kδ such that C ×K F is isomorphic to C ′ ×Kδ F .

Note that C ′ need not have a Kδ-rational Weierstrass point but C ′×Kδ F has

an F -rational Weierstrass point. Since C ′ is defined over Kδ, such F -rational

Weierstrass point must be a differential constant. By lemma 5.1.1, C ′ ×Kδ F

is given by an equation

y2 = g(x),

where g is a monic and separable polynomial of degree 2g+ 1 with coefficients

in F δ. Moreover, once again by lemma 5.1.1, there exist α ∈ F×, β ∈ F such

that the coefficients of

g(x) =
f(α2x+ β)

α4g+2

are differential constants. Explicitly, if we set

A2g+1−i = a2g+1−iα
−2i,

z = βα−2,

then the coefficient λ2g+1−j ∈ F δ of x2g+1−j in g(x) is given by

λ2g+1−j =

j∑
i=0

(
2g + 1− i
2g + 1− j

)
A2g+1−iz

j−i, j = 0, . . . , 2g. (5.1)
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Let n be as in the statement of the theorem. We note some important

consequences of (5.1):

1. For 0 ≤ l < m, setting j = l in (5.1) yields

λ2g+1−l = A2g+1−l +
∑
i<l

(
2g + 1− i
2g + 1− l

)
A2g+1−iz

l−i.

By the definition of m, a summand in the sum over i < l is nonzero only

if both 2g+ 1− i and 2g+ 1− l are divisible by p, in which case, l− i is

divisible by p, and zl−i is a differential constant. Therefore, by the above

expression for λ2g+1−l together with induction on l, we see that A2g+1−l

is a differential constant, for 0 ≤ l < m.

2. Setting j = m in (5.1) yields

λ2g+1−m = A2g+1−m +
∑
l<m

(
2g + 1− l
2g + 1−m

)
A2g+1−lz

m−l. (5.2)

For l < m, by the definition of m, when p does not divide 2g + 1 − l,

we have a2g+1−l = 0. When p divides 2g + 1− l, the binomial coefficient(
2g+1−l

2g+1−m

)
is 0 modulo p. Therefore, (5.2) reduces to

λ2g+1−m = A2g+1−m,

showing that A2g+1−m is a differential constant.

3. Setting j = m+ 1 in (5.1) yields

λ2g−m = A2g−m +

(
2g + 1−m

2g −m

)
A2g+1−mz

+
∑
l<m

(
2g + 1− l

2g −m

)
A2g+1−lz

m−l+1.
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By the definition of m, a summand in the sum over l < m is nonzero

only if both 2g + 1 − l and 2g − m are divisible by p, in which case,

m−l+1 is divisible by p, and zm−l+1 is a differential constant. Moreover,

by the discussion in (1) and (2), A2g+1−l is a differential constant, for

every l ≤ m. Note that, by the definition of m, we have A2g+1−m 6= 0.

Applying δ to the expression for λ2g−m above then yields

(2g + 1−m)δ(z) = −A−1
2g+1−mδ(A2g−m).

We claim that

δ(z) = 0. (5.3)

When m 6≡ −1 (mod p), recall that we are assuming a2g−m = 0, which

immediately gives δ(z) = 0. When m ≡ −1 (mod p), we are assuming

δ(a2g−m) = 0. Moreover, in this case, α−2m−2 is a differential constant,

and thus

δ(z) = (2g + 1−m)δ(z) = −A−1
2g+1−mα

−2m−2δ(a2g−m) = 0.

4. Let r be the smallest positive integer greater than m such that p does

not divide 2g + 1 − r and a2g+1−r 6= 0. In general, m < r ≤ n. By the

same argument used to reduce (5.2), setting j = r in (5.1) yields

λ2g+1−r = A2g+1−r +

(
2g −m

2g + 1− r

)
A2g−mz

r−m−1

+

(
2g + 1−m
2g + 1− r

)
A2g+1−mz

r−m.
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Note that the term with A2g−m is always zero. Indeed, when r 6≡ −1

(mod p), we have A2g−m = 0, and, when m ≡ −1 (mod p), we have

2g−m divisible by p, in which case the corresponding binomial coefficient

vanishes modulo p. So,

λ2g+1−r = A2g+1−r +

(
2g + 1−m
2g + 1− r

)
A2g+1−mz

r−m.

By the discussion in (2) and (3), both A2g+1−m and z are differential

constants. It follows that A2g+1−r = a2g+1−rα
−2r is a differential constant

and thus

2r dlog(α) = dlog(a2g+1−r).

Notice that if r 6= n, that is, if p divides r, then a2g+1−r is a differential

constant. More generally, by induction, we have δ(a2g+1−l) = 0 for all

m < l < n such that p does not divide 2g + 1− l and a2g+1−l 6= 0.

5. If n ≥ 2g + 1, then (1), (2) and (4) show that C is given by an equation

with constant coefficients. In this case, ωi = xi−1δ(x)/y guaranteed in

the statement is the regular differential function on C corresponding to

si = xi−1dx/y under the trivial isomorphism TC ∼= C1 as we discussed

earlier in this section.

6. In what follows, suppose n ≤ 2g + 1. As in (4), setting j = n in (5.1)

yields

λ2g+1−n = A2g+1−n +

(
2g + 1−m
2g + 1− n

)
A2g+1−mz

n−m

+
∑

m<l<n

(
2g + 1− l
2g + 1− n

)
A2g+1−lz

n−l.
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By the discussion in (2), (3) and (4), we see that A2g+1−n = a2g+1−nα
−2n

is a differential constant and thus

2 dlog(α) =
1

n
dlog(a2g+1−n). (5.4)

We construct a regular differential function on C ×K F as the com-

position of the change of coordinates C ×K F → C ′ ×Kδ F with the regular

differential map δ(x)/y on C ′. Explicitly, this regular differential function on

C ×K F is given by

w1 =
δ(α−2x− βα−2)

α−2g−1y
.

By the discussion in (3) above, z = βα−2 is a differential constant. By (5.4),

it follows that

ω1 := α−2g+1w1

=
α2δ(α−2x)

y

=
δ(x)− 2 dlog(α)x

y

=
nδ(x)− dlog(a2g+1−n)x

ny
.

By construction, this differential function is regular on C and it is clearly

defined over K.

Finally, for i = 1, . . . , g, let wi be the composition of the change of co-

ordinates C×KF → C ′×Kδ F with the regular differential function xi−1δ(x)/y

on C ′. Note that

(x− β)i−1ω1 = α−2g+3−2iwi
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is regular on C ×K F . Induction on i then shows that

ωi := xi−1ω1 = (x− β)i−1ω1 −
i−1∑
j=0

(−1)i−1−j
(
i− 1

j

)
βi−1−jxjω1

is a regular differential map on C and it is defined over K.

Remark 5.2.1.

1. The hypothesis that y2 = f(x) is in reduced form was crucial to obtain

(5.3). However, we point out that this hypothesis was only introduced to

simplify our expression for ωi. Indeed, we can always change coordinates

(over K) to assume that an isotrivial hyperelliptic curve is given by an

equation in reduced form. More precisely, by the expression for λ2g−m

in the proof above, this can be done through the change of coordinates

x = x̃− a2g−m

(2g + 1−m)a2g+1−m
,

y = ỹ.

2. We revisit the example where C is given by y2 = x2g+1 − t2g+1 over

K = Q(t). By theorem 5.2.1,

ω1 =
tδ(x)− x

ty
=

2tδ(y)− (2g + 1)y

(2g + 1)tx2g

defines a regular differential map on C. We may now evaluate ω1 at the

rational point (t, 0). We have ω1(t, 0) = 0.
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3. As an example in positive characteristic, consider the isotrivial hyperel-

liptic curve given by y2 = x5 + t4x3 + t10 over K = F3(t). In this case,

m = 0, n = 5 and thus

ω1 =
tδ(x)− 2x

ty

defines a regular differential map on C. Perhaps, the reader will notice

that we could have used n = 2 to obtain the correct expression for ωi

despite 2g + 1 − n = 3 being divisible by p = 3. This is explained in

remark 5.2.2.2.

We can use theorem 5.2.1 to decide when an equation y2 = f(x) over

K defines an isotrivial hyperelliptic curve:

Corollary 5.2.2. Let K be a separable closure of K. The equation

y2 = x2g+1 + a2gx
2g + a2g−1x

2g−1 + · · ·+ a0

defines an isotrivial hyperelliptic curve in reduced form over K if and only if

there exist a ∈ K and differential constants λ1, . . . , λ2g−1 ∈ K such that

a2g+1−i = λia
i.

Proof. Let L be the splitting field of f(x) in K. Since L/K is separable, δ

extends to a unique derivation of L, which we again denote by δ. By theorem

5.2.1,

ω1 =
nδ(x)− dlog(a2g+1−n)x

ny
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is regular on C and thus on C ×K L. Therefore, for (α, 0) ∈ C(L), we must

have

nδ(α)− dlog(a2g+1−n)α = 0,

implying that

αn = λa2g+1−n,

for some differential constant λ ∈ K. If a is an n-th root of a2g+1−n in K, then

the zeros of f(x) are

c1a, . . . , c2g+1a,

where c1, . . . , c2g+1 ∈ K are differential constants, and the result follows.

Remark 5.2.2.

1. We have not used the hypothesis g ≥ 2 yet. So, theorem 5.2.1 and

corollary 5.2.2 are true for elliptic curves. In the elliptic case, one could

alternatively prove corollary 5.2.2 using the fact that an elliptic curve

is isotrivial if and only if its j-invariant is a differential constant (cf.

remark 1.4.1.3)

2. With a as in the statement of corollary 5.2.2, we have the formula

ωi = xi−1 δ(x)− dlog(a)x

y
,

which is independent of n and m.
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3. Corollary 5.2.2. also allows us to write

2y

(
δ(y)− 2g + 1

2
dlog(a)y

)
= f ′(x)(δ(x)− dlog(a)x)

providing an explicit isomorphism C1 ∼= TC over C and the alternative

formula

ωi = xi−1 2δ(y)− (2g + 1) dlog(a)y

f ′(x)
.

We point out that, as in the constant coefficient case discussed earlier

in this section, although we represent ωi as a rational function, ωi is

actually a polynomial in the variables x, y, δ(x) and δ(y). To write ωi

as a polynomial, let g and h be polynomials in the variable x such that

1 = gf + hf ′.

Then,

ωi = xi−1g(x)(δ(x)− dlog(a)x)y + xi−1h(x)(2δ(y)− (2g + 1) dlog(a)y).

Using the coordinates u = 1/x and v = y/xg+1, it is easy to check that

ω1(P ) = 0, where P is the point at infinity corresponding to (u, v) =

(0, 0).

5.3 Main result

As in chapter 4, we set

Cδ(K) = {(Pv) ∈
∏
v

C(K) : ω1(Pv) = · · · = ωg(Pv) = 0}.

We prove that:
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Theorem 5.3.1. If (Pv) ∈
∏

v C(Kv) is unobstructed by the Gδ
a-torsor given

by

δ(z) = aωi,

for every a ∈ K and i = 1, . . . , g, then

(Pv) ∈ C(K) ∪ Cδ(K).

Proof. Suppose (Pv) is unobstructed by the Gδ
a-torsor δ(z) = aωi, for every

a ∈ K and i = 1, . . . , g. Then, there exist c ∈ K and (zv) ∈
∏

vKv such that

δ(zv) = fωi(Pv) + c,

for every place v of K. In other words, the point (ωi(Pv)) ∈
∏

A1
K(Kv) is

unobstructed by the Gδ
a-torsor over A1

K given by

δ(z) = ax, x ∈ A1
K ,

for every a ∈ K. By theorem 3.1.2, it follows that ωi(Pv) is global, for every i.

Assume (Pv) /∈ Cδ(K), that is, ωi(Pv) 6= 0, for some i ∈ {1, . . . , g}.

Then, Pv is in the affine portion of C given by the equation y2 = f(x) and

we write Pv = (xv, yv). Since the field K(x) is generated by quotients of the

regular 1-forms on C and (ωi(Pv)) is global for every i, we conclude that (xv)

is global.

By theorem 5.2.1,

ω1(Pv) =
nδ(xv)− dlog(a2g+1−n)xv

nyv
.
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Since (ω1(Pv)) and (xv) are global, we have (yv) global, implying that (Pv) is

global.

Remark 5.3.1. The hypothesis g > 1 is important in this theorem. More

specifically, we used it when we said that K(x) is generated by quotients of

regular 1-forms. This is not true for genus one curves, since in this case a

quotient of two regular 1-forms is a constant function. In fact, in the elliptic

case, by the same argument used to show the invariance of the 1-form dx/y

under translations [14, Chapter III, Proposition 5.1], we have

ω1(P +Rv) = ω1(P ),

for every P ∈ C(K) and (Rv) ∈ Cδ(K). If ω1(P ) 6= 0, we then have many

non-constant non-global adelic points of C that are unobstructed by all Gδ
a-

torsors. For a concrete example, consider the function field K = C(s, t) with

s2 = t4 − 1, δ = d/dt, and let C be the elliptic curve over K given by

y2 = 4x3 + 6x2 + 4x+ 1.

Let

P =

(
1

t− 1
,

s

(t− 1)2

)
and Q =

(
− 1

t+ 1
,− s

(t+ 1)2

)
.

Fix a place v0 of K and set

Pv =

{
P, if v 6= v0

Q, if v = v0.
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Then,

ω1(Pv) = s−1 ∈ K×,

whence (Pv) is unobstructed by all torsors coming from K[ω1] = Γ(C1,OC1)

but clearly (Pv) /∈ C(K) ∪ Cδ(K). However, note that P − Q = (1/2, 0) is a

differential constant.

5.4 An example

We illustrate theorem 5.3.1 with an example:

Proposition 5.4.1. Let C be the smooth hyperelliptic curve given

y2 = x5 + t

over K = C(t). Let P be the distinguished point of C “at infinity”. Write Kλ

for the completion of K = C(t) with respect to the place vλ corresponding to

λ ∈ C ∪ {∞}. Then:

1. C(K) ∩ Cδ(K) = {P};

2. there exists Pλ ∈ C(Kλ) such that ω1(Pλ) 6= 0, for every λ ∈ C ∪ {∞};

3. tkω1(Pλ) ∈ Oλ, for every positive integer k and λ 6=∞.

4. every adelic point

(Pλ) = ((xλ, yλ)) ∈
∏

λ∈C∪{∞}

C(Kλ)

80



not in Cδ(K) is obstructed by the Gδ
a-torsor

δ(z) = t3nω1,

where n := v∞(x∞)/2.

In particular, C(K) = {P}.

Proof. By corollary 5.2.2, C is isotrivial with a = t1/5 (up to multiplication

by a differential constant). Theorem 5.2.1 then tells us that the differential

regular function ω1 is given by

ω1 =
5tδ(x)− x

5ty
=

2tδ(y)− y
10tx4

on the affine portion of C given by y2 = x5 + t, and by

ω1 = u
5tδ(u)− u

5tv
=

2tδ(v)u− 6tvδ(u)− vu
10t

,

on the affine portion of C given by v2 = tu6 +u, where x = 1/u and y = v/u3.

In particular, we have ω1(P ) = 0, where P = (u, v) = (0, 0) is the distinguished

point “at infinity”.

1. We have already seen that ω1(P ) = 0. A K-rational point P = (x, y) on

the affine portion of C given by y2 = x5 + t is a differential constant if

and only if 5δ(x) = t−1x, that is,

x5 = ct,

for some differential constant c ∈ Kδ = C satisfying y2 = (c+ 1)t. Note

that x5 = ct can only happen if c = 0. However, in this case, we would

need y2 = t, which is not possible over K = C(t).
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2. When λ /∈ {−1,∞}, we have a local solution of the form Pλ = (1, yλ)

with y2
λ = 1 + t, and

ω1(Pλ) = − 1

5tyλ
6= 0.

When λ = −1, we have a local solution of the form P1 = (2, y−1) with

y2
−1 = 32 + t, and

ω1(P−1) = − 2

5ty−1

6= 0.

When λ = ∞, we have a local solution of the form P∞ = (t2, t5b) with

b2 = 1 + t−9, and

ω1(P∞) =
9

5t4b
6= 0.

3. By the equation y2 = x5 + t defining C, we must have

2v0(y0) = 5v0(x0) ≤ 1

and thus there exists an integer m ≥ 0 such that v0(x0) = −2m and

v0(y0) = −5m. Writing x0 = u0t
−2m and y0 = w0t

−5m with u0, w0 ∈ O×0 ,

we see that

ω1(P0) =
δ(u0)

w0

t3m − (10m+ 1)u0

5w0

t3m−1.

Hence, tkω1(P0) is integral, for every positive integer k.

For λ 6= 0,∞, again by the equation definition C, we see that one of the

following must happen:

• 5vλ(xλ) = 2vλ(yλ) ≤ 0; or

• vλ(xλ) = 0 and vλ(yλ) ≥ 0; or
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• vλ(yλ) = 0 and vλ(xλ) ≥ 0;

In all cases, using the expressions

5tδ(xλ)− x
5tyλ

= −2tδ(yλ)− y
10tx4

λ

for ω1(Pλ), we conclude that tkω1(Pλ) is integral, for every integer k.

4. For λ =∞, the equation defining C tells us that

2v∞(y∞) = 5v∞(x∞) ≤ −1

and thus there exists a positive integer n such that v∞(x∞) = −2n and

v∞(y∞) = −5n. Assume for a contradiction that P is unobstructed by

δ(z) = t3nω1. This means that there exist c ∈ K and (zλ) ∈
∏

λKλ such

that

δ(zv) = t3nω1(Pλ) + c,

for every λ ∈ C∪ {∞}. Since t3nω1(Pλ) is integral for every λ 6=∞, the

polar parts of c at the places corresponding to λ 6=∞ can be integrated.

Changing zλ if necessary, we may thus assume that c is a polynomial.

Writing x∞ = u∞t
2n and y∞ = w∞t

5n with u∞, w∞ ∈ O×∞, we see that

ω1(P∞) =
δ(u∞)

w∞
t−3n +

(10n− 1)u∞
5w∞

t−3n−1.

Note that v∞(δ(u∞)) ≥ 2. Therefore, the coefficient of t−1 in

δ(zv) = t3nω1(P∞) + c

is non-zero, a contradiction.
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5.5 Isotrivial hyperelliptic curves in characteristic 2

So far, we have assumed p 6= 2. When p = 2, the conclusion in theorem

5.3.1 must be weakened:

Theorem 5.5.1. Let K be a function field in one variable over a finite field k

of characteristic 2. Fix a separating element t of K/k and let δ = d/dt. Let C

be an isotrivial hyperelliptic curve of genus g ≥ 2 over K given by an equation

y2 − h(x)y = f(x),

where h(x) is a polynomial of degree at most g over K and f(x) is a monic and

separable polynomial of degree 2g+ 1 over K. If (Pv) ∈
∏

v C(Kv)−Cδ(K) is

unobstructed by all Gδ
a-torsors coming from

Γ(C1,OC1)→ K{C}
δ(K{C})

↪→ H1(C∞,Gδ
a),

then, upon writing Pv = (xv, yv), we have (xv) global and yv ∈ K, for every

place v of K.

Proof. Suppose (Pv) is unobstructed by the Gδ
a-torsor δ(z) = aωi, for every

a ∈ K and i = 1, . . . , g. Then, there exist c ∈ K and (zv) ∈
∏

vKv such that

δ(zv) = aωi(Pv) + c,

for every place v of K. In other words, the point (ωi(Pv)) ∈
∏

A1
K(Kv) is

unobstructed by the Gδ
a-torsor over A1

K given by

δ(z) = ax, x ∈ A1
K ,
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for every a ∈ K. By theorem 3.1.2, it follows that ωi(Pv) is global, for every i.

Assume (Pv) /∈ Cδ(K), that is, ωi(Pv) 6= 0, for some i ∈ {1, . . . , g}.

Then, Pv is in the affine portion of C given by the equation y2−h(x)y = f(x)

and we write Pv = (xv, yv). Since the field K(x) is generated by quotients of

the regular 1-forms on C and (ωi(Pv)) is global for every i, we conclude that

(xv) is global.

This implies that yv is a root of the polynomial

y2 − ay + b

with a = h(xv) ∈ K and b = f(xv) ∈ K, for every place v of K. If a = 0, then

b is a square in every completion of K, implying that K is a square in K and

thus yv ∈ K. If a 6= 0, then the Artin-Schreier polynomial

z2 − z + ba−2

has a root in every completion of K, namely, zv = yva
−1. Lemma 3.2.2 then

guarantees that zv (hence, yv) is in K, for every place v.

Example 5.5.1. Consider the function field K = F2(t, s) with s2 + s = t5 + 1

and the isotrivial hyperelliptic curve C of genus 2 over K given by

y2 + y = x5 + 1.

Let v0 be a place of K and set

Pv =

{
(t, s), if v 6= v0

(t, s+ 1), if v = v0.
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Since C has constant coefficients, the regular differential maps on C corre-

sponding to the basis {dx, xdx} of H0(C,ΩC/K) are

ω1 = δ(x) and ω2 = xδ(x).

We have ω1(Pv) = 1 and ω2(Pv) = t, showing that (Pv) is unobstructed by all

torsors coming from Γ(C1,OC1) = K[ω1, ω2]. Clearly (Pv) /∈ C(K) ∪ Cδ(K),

but as theorem 5.5.1 guarantees, we have (xv) = (t) global and yv ∈ K, for

every place v of K.
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