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Abstract 

 

Construction of Hybrid Nuclear Thermal Energy Storage Systems  

Under Electricity Market Uncertainty 

 

William Neal Mann, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor: Sheldon Landsberger 

 

The objective of this thesis is to simulate the construction of thermal energy storage sys-

tems for nuclear power plants in the ERCOT grid. Steam accumulators were selected as 

the thermal energy storage technology. A thermo-economic model was used to estimate the 

operating and cost parameters for sixteen different steam accumulator designs. A new ca-

pacity expansion model of the ERCOT grid was built on top of an existing production cost 

model for wholesale electricity market simulations. Sixteen permutations of four scenario 

pairs were simulated to illustrate the uncertainty of future market conditions. It was optimal 

to build steam accumulators in three of the permutations. Scenarios common to these per-

mutations were high future natural gas prices (three permutations), aggressive capital cost 

declines for solar PV and wind generators (three), high load growth (two), and a carbon tax 

(two). This suggests that large-scale thermal energy storage systems may be most success-

ful in future markets under these conditions. 
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Introduction 

Human demand for energy, especially in the electric power and transportation sec-

tors, is releasing unsustainable quantities of greenhouse gases into the atmosphere. If 

greenhouse gas emissions are not sharply curtailed in the coming decades, there will likely 

be catastrophic environmental damage from coastal flooding, food shortages, and ocean 

acidification, among others [1]. We must develop compelling alternatives that minimize 

point-of-use and lifecycle greenhouse gas emissions while energy demand grows world-

wide. 

Nuclear power has a unique advantage amongst thermal generating technologies: it 

does not emit greenhouse gases during operation and has very low lifecycle emissions. 

However, nuclear power plants are very expensive to build and maintain. Bringing together 

nuclear power, solar, wind, hydroelectric, geothermal, and other forms of greenhouse-gas-

free power could create much cleaner electric grids. The complexity arises when we con-

sider where, when, and in what combination these technologies can be built in a particular 

region. For example, there may not be enough ramping capability from these generators to 

constantly match supply and demand with the reliability we have come to expect. Energy 

storage technologies could help fill these gaps by acting as controllable load and genera-

tion, depending on the situation. 

Energy storage is simply stockpiling potential energy until it is needed in the future. 

Fossil hydrocarbons can be considered an extremely long-term store of ancient solar en-

ergy. But energy storage is most commonly thought of as storing an intermediate form of 

energy: energy available after harvesting or conversion from a fuel, but before final use. 

Potential energy can take many forms: heat, pressure, momentum, gravitational potential, 
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electrochemical potential, and electromagnetic potential. The energy-to-power ratio be-

tween storage ranges over several orders of magnitude greater and less than one. Thus, 

some energy storage could act like a thermal power plant with stockpiles of fuel, while 

others could supply extremely large bursts of power for a fraction of a second.  

Many governments around the world have moved to deregulate electricity markets. 

Their aim is to create incentives to build the lowest-cost facilities needed to sustain an 

electric grid. In the last ten years in the United States, low natural gas prices and federal 

tax incentives for solar and wind generators have driven down wholesale electricity market 

prices. Baseload power plants, primarily coal and nuclear, have been under increasing rev-

enue pressure, and many have been prematurely closed. At the same time, nuclear power 

plants produced nearly 60% of the carbon-free electricity in the United States in 2016 [2].  

While most nuclear and coal plants can change their power output with load, they 

seek to generate at maximum power as much as possible to maximize revenue. However, 

the stochastic nature of the weather means that the net load on many electric grids (gross 

demand minus intermittent generation) has become more erratic as solar photovoltaic (PV) 

and wind generators have been added to these systems. This creates opportunities for gen-

erators that can ramp up and down quickly. Energy storage systems—including electro-

chemical batteries, pumped hydroelectric, and compressed air—can capitalize on these 

ramping events, but so far they have been burdened by high capital costs and low electricity 

prices. One often-overlooked type of energy storage can be coupled with a nuclear reactor 

steam supply system: thermal energy storage (TES). TES systems for hybrid nuclear ap-

plications include steam accumulators, refractory bricks, molten salts, metal hydrides, and 

artificial geothermal. Steam accumulator and molten salt storage systems have been built 

at utility-scale solar thermal plants. 
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This work focuses on hybrid nuclear thermal energy storage (TES) systems that 

will work in tandem with other low- and zero-carbon technologies to mitigate climate 

change risk. Using a market-driven engineering design approach, the most robust TES sys-

tems will be found for the Texas electric grid (ERCOT) under market uncertainty. The 

market uncertainty will be explored through a series of scenarios expected to have the 

greatest effects on market conditions including natural gas prices, total demand and peak 

load forecasts, capital cost declines for solar PV and wind, and a carbon tax. Steam accu-

mulator systems will be considered as retrofits to existing nuclear power plants. A set of 

steam accumulator candidates will be based on varying the power, energy capacity, and 

ramp rate. These will be accompanied by estimates for major costs including capital costs 

(power and energy capacity), fixed and variable operating and maintenance, and start costs. 

The robustness of a steam accumulator candidate will be based on one or more criteria 

within and across scenarios. Ultimately, this will result in design parameter ranges that 

could be used for preliminary hybrid nuclear TES designs. 
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Literature Review 

ENERGY STORAGE 

Energy storage systems can provide useful services to electric grids, although ex-

pected revenues may not be enough to cover long-term costs. The various energy storage 

technologies have different roles to play in electricity grids and markets, from a large 

pumped hydroelectric generator supplying bulk power to an uninterruptable power supply 

at a hospital. Energy storage systems can be classified by how quickly they can discharge 

their stored energy (energy-to-power ratio) and by the types of market roles they can serve 

(generation/capacity, transmission and distribution, or demand). Typically, very fast dis-

charge energy storage systems, like batteries and flywheels, are limited in total energy ca-

pacity. They can provide services like frequency regulation and voltage support. Systems 

with intermediate discharge times (seconds to hours) could provide load following, re-

serves, and backup power roles. Hourly and longer discharge systems could provide black 

start, long-term capacity, peak shifting, and capital investment deferral, among others [3].  

Some services are not compensated in electricity markets (e.g., governor and iner-

tial response), but in some cases, private entities may find that energy storage systems can 

replace or augment existing services at lower cost (e.g., as an alternative to a new trans-

mission line). Bulk energy storage systems (those that provide megawatts of power) are 

often thought of time-shifting devices: buy or store energy when prices are low, and then 

sell it when prices are high [3]. However, this generation time-shifting or peak shaving 

behavior requires a certain spread between low and high prices to be economically viable. 

Instead of relying on a single revenue stream, many energy storage projects now combine 

several revenue streams (or cost-saving streams) together, sometimes called benefit stack-

ing [4]. 
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Of the many types of energy storage systems proposed for the electric power sector, 

only four are in widespread use today: pumped hydroelectric [4], lead acid batteries [4, 5], 

chilled water [6], and underground thermal storage [6]. Among these, chilled water and 

underground thermal are primarily used in demand-side management, leaving pumped hy-

droelectric and lead acid batteries as the two widely available bulk energy storage options.  

Today, lead acid batteries are primarily deployed for distribution support or for un-

interruptible or backup power at the site level. Lithium ion and sodium sulfur batteries are 

becoming more commercially available, and flow batteries are under development [4, 5, 

6], although the use cases for all of technologies are very similar. Flywheels [4, 5, 6] are 

sometimes used in lieu of batteries, and extremely fast response supercapacitors [4, 5, 6] 

and superconducting magnets [5, 6] are being developed as well. For demand-side man-

agement, in addition to chilled water and underground thermal storage, ice storage is be-

coming more widespread [6].  

On the bulk transmission side, there are a few compressed air energy storage 

(CAES) projects globally [4, 6], and several others have been proposed, primarily using 

underground salt caverns or aquifers. Alternative CAES technologies in development in-

clude aboveground tank-based storage and adiabatic underground storage with a secondary 

thermal energy storage system to eliminate the need for natural gas combustion in the ex-

pansion train [4, 5]. Liquefied air is also being studied as a denser alternative to compressed 

air [4]. 

Energy storage and electricity storage are not synonymous. Although many energy 

storage systems for electrical grids do use grid electricity to store energy, there is another 

set of storage systems that store energy in an intermediate form between primary fuel (if 

any) and electricity. Such systems have been recently classified as generation-integrated 
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thermal energy storage [7]. Natural hydroelectric systems fall into this category—with nat-

ural inflows “charging” the reservoir—as do direct mechanical storage of wind power into 

compressed air, thermal energy storage for heat-based power plants, and plant-level hydro-

gen production (if the hydrogen itself is stored and later used to generate power). Thermal 

energy storage systems can also be used for power plant cooling. Storing ice overnight has 

been proposed for cooling nuclear power plants [8] and gas turbines [9]. 

THERMAL ENERGY STORAGE FOR POWER GENERATION 

The largest thermal energy storage systems for electric power installed to date have 

been for concentrating solar power (CSP) plants. In CSP using parabolic troughs or Fresnel 

reflectors, solar radiation is used to heat a working fluid in a pipe, typically mineral oil or 

water. In some designs, steam is generated directly in the pipe and used to drive a steam 

turbine. These systems are well-suited for heat storage via steam accumulators [10, 11]. 

Steam accumulators are primarily holding tanks for large quantities of hot water and steam 

that can release steam on demand. Sensible and latent heat materials can be added around 

a steam accumulator to decrease losses [12]. In the latter case of latent heat phase-change 

materials (PCM), a reheater may be necessary during discharge if the phase transition tem-

perature is too far below the charging steam temperature [13, 11]. The 11 MW PS10 plant 

near Sevilla, Spain includes a 20 MWh steam accumulator system [14]. Other solar TES 

projects have utilized tank-based thermoclines, mineral oil, molten salts (typically kept 

liquid except as a PCM), solid media such as concrete, and chemical reactors [14, 15]. 

For large nuclear power plants with high capital costs, high fixed operating and 

maintenance (O&M) costs, and low variable operating costs, electricity markets must yield 

average prices above long-term costs to break even and be economically viable. In com-

petitive markets, having low operating costs means that the plant can be dispatched most 
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hours of the year, earning a rent via the higher marginal price of the market. Thus, over the 

last several decades, nuclear power plants in the United States have sought to maximum 

their capacity factors, in some cases exceeding 90%. Two factors have threatened this busi-

ness model in the last ten years: the dramatic fall in natural gas prices due to shale gas and 

hydraulic fracturing, and the construction of significant amounts of wind and solar PV. 

Because wind and solar resources are driven by weather and the Earth’s rotation, wind and 

solar generator output can be mismatched with demand. They also have near-zero variable 

costs, so they tend to drive down the average price of electricity. 

 Thermal energy storage (TES) coupled with nuclear power plants has been pro-

posed to deal with greater uncertainty in net load due to wind and solar integration [16, 17, 

18]. TES power plant system designs include steam accumulators, artificial geothermal 

[19], molten nitrate salts, silica or alumina firebricks, and metal hydrides (for high-temper-

ature reactors). A generic thermal energy storage system design was found to be a feasible 

retrofit for a subcritical steam oil-fired power plant [20]. Because energy storage systems 

can act as dispatchable generation and controllable load (or negative generation), they may 

be helpful in managing net load swings and could enable additional wind and solar capacity 

to come online [21]. 

ELECTRICITY MARKET MODELS 

A variety of energy and electricity market models are used in the electricity market 

modeling literature. They range in scope from electricity-only models to global equilibrium 

energy models. Some were developed by government researchers, others by private com-

panies or individuals. Most use a higher-level modeling language to create linear or mixed 

integer-linear programs that are passed to an optimization solver. 
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The U.S. Environmental Protection Agency (EPA) uses ICF’s Integrated Planning 

Model (IPM) to model the impacts of emissions policies on electricity markets [22, 23]. It 

covers both U.S. and Canadian power markets divided into 75 regions. The EPA uses sig-

nificant detail for airborne emissions, including scrubber types, efficiencies, and permissi-

ble rates for each generator. Units are aggregated into larger plants by grouping similar 

parameters such as technology type, region, heat rate, and emissions rates. For energy stor-

age, only pumped hydroelectric storage is included. Reserve margin constraints are in-

cluded, but no operating reserves are modeled. Capacity expansion uses a load duration 

curve (LDC) algorithm. Unlike most other models, the EPA model includes several differ-

ent retrofit options for thermal power plants including emissions controls and fuel switch-

ing. 

The National Renewable Energy Laboratory (NREL) developed the Regional En-

ergy Deployment System (ReEDS) model for electricity system planning in the 48 contig-

uous states of the U.S. [24]. It divides this area into various regions: major interconnections 

(3), grid balancing areas (134), and solar and wind resource areas (356). Load is balanced 

during 17 yearly time-slices, which is a relatively coarse temporal resolution (0.2% of an 

hourly chronology). Mercury, sulfur dioxide, and nitrogen oxide emissions are included. 

Individual generators are aggregated by technology at the balancing area level, and energy 

storage candidates include pumped hydroelectric, batteries, compressed air, and building-

level thermal storage (chilled water or ice). Capacity and operating reserves are modeled, 

with the latter including frequency response, contingency reserves, and wind and solar 

forecast error. Retirements are based on assumed technical lifetimes rather than economics 

for non-renewables, while renewables are assumed to be immediately replaced at end-of-

life. 
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The Balmorel model was originally developed by a consortium of research groups 

around the Baltic Sea to model markets in that region, but it has been expanded into an 

open source project and applied in studies of other parts of Europe and elsewhere [25]. It 

includes combined heat and power (CHP) and heat market functionality in addition to elec-

tricity market clearing. Individual generators can be specified, and several energy storage 

classes are available: hydroelectric, short-term electric, and short-term heat. However, stor-

age cannot be used as an expansion candidate. Neither operating nor long-term capacity 

reserves are included. Demand is met by using a demand elasticity function during each 

time step. Retrofits and retirements are not modeled. 

The SWITCH model was initially developed by Matthias Fripp at the University of 

California, Berkeley to assess the value of new solar and wind generation in California to 

minimize carbon dioxide emissions [26, 27]. It has since expanded into an open source 

project with analyses conducted on power grids in several countries [28]. Generators can 

be defined as individual units or aggregated; however, unit commitment is done in blocks 

by technology. Energy storage systems include batteries, compressed air, pumped hydroe-

lectric, and solar thermal with heat storage. Operating reserves cover contingency and wind 

and solar forecast errors, but do not include frequency regulation; long-term reserves are 

specified with a reserve margin. Dispatch is calculated from user-defined demand curves 

that may vary between simulation steps. Retirements occur based on assumed technical 

lives only, and retrofits are not available. 

PLEXOS is a commercial energy market modeling software package that has been 

used in grid operations and capacity planning studies worldwide [29]. In addition to the 

core electricity market module, it can also simultaneously model natural gas, water, and 

heat markets. Pre-built models of North American, South American, European, African, 

Asian, and Australian power markets are available. Units can be defined individually, 
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grouped into power plants, or aggregated into larger groups. Two classes of energy storage 

are available: the Battery class, and the Storage class. Either can be used to define most 

energy storage devices, including losses and efficiencies. The Storage class also includes 

hydro-specific parameters like natural inflow rates. Operating reserves can include fre-

quency response, spinning reserves, and non-spinning reserves, while reserve margins can 

be defined for long-term capacity. The Long-Term Plan algorithm can use load duration 

curves, reduced-resolution time series, or full-resolution samples to calculate dispatch. 

Both retirements and retrofit candidates can be included in the capacity expansion problem. 

LONG-TERM CAPACITY EXPANSION  

The market potential for energy storage systems can be evaluated based on tech-

nical characteristics (highest technical performance) as well as the market value (market 

estimates and detailed market simulations) [3]. Many capacity expansion models do not 

include energy storage candidates, and of those that do, many only consider one technology 

or a have a very limited treatment of storage. 

The International Energy Agency (IEA) Technology Roadmap 2014 evaluated sev-

eral non-thermal energy storage technologies and calculated their levelized costs in three 

scenarios. The report also included competition from demand response technologies, but 

no nuclear hybrid technologies were included. The NREL Renewable Electricity Futures 

Study evaluated capacity expansion scenarios for the continental U.S. with 30–90% of gen-

eration coming from renewable sources (biofuels, hydroelectric, wind, solar, et c.) [30]. 

The study used the ReEDS model, and thus it only included batteries, pumped hydroelec-

tric, and compressed air energy storage candidates. Zakeri, Rinne, and Syri modeled sev-

eral feasibility scenarios for combinations of nuclear, solar PV, and wind in Finland [18]. 

They also included some demand-side management technologies, batteries, and building 



 8 

thermal energy storage, but no options for nuclear thermal energy storage. Denholm et al. 

evaluated combinations of nuclear with thermal energy storage, wind, and solar to meet 

demand in a fully decarbonized ERCOT grid [21]. Their method varied the proportions of 

renewable and nuclear with TES generation over two historical years rather than modeling 

generator builds and retirements over time. Finally, Mann and Schneider ran a capacity 

expansion model without energy storage candidates first, and then they added individual 

candidates into separate production cost model runs for a single future year. By varying the 

energy storage candidate parameters (power, energy capacity, and ramp rate), they explored 

the design space and their effects on market outcomes [31]. 
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Methodology 

OVERVIEW 

In order to find the most robust TES system, a set of candidates will be simulated 

in sixteen different scenario permutations to capture some of the major market and policy 

uncertainties. To accomplish this, three different models will be used together to overcome 

the limitations of each. First, a techno-economic model of large-scale steam accumulators 

is used to calculate the capital and operating costs of various steam accumulator systems 

given inputs for power and energy. Next, the desired steam accumulator candidates are 

used as inputs to a capacity expansion model of the ERCOT wholesale electricity market. 

This model minimizes the total system cost over a time horizon of 20 years (2011–2030). 

It incorporates scenario-based uncertainty to cover a range of future market conditions. 

Finally, the capacity expansion solutions are input into a production cost model of ERCOT 

to simulate generator revenues and other parameters at a finer resolution. The construction 

frequency of the built steam accumulator candidates will then be compared to determine 

the most robust candidate. 

This approach attempts to capture uncertainties in steam accumulator designs and 

costs, while at the same time incorporating market uncertainties due to fuel prices and load, 

among other risks. This market-driven engineering approach can be used to down-select 

the most promising steam accumulator candidates at an early stage of research and devel-

opment. This screening could reduce the risk of investing in technologies that may ulti-

mately perform poorly in future markets. 
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FINANCIAL ASSUMPTIONS 

General Assumptions 

All costs and prices have been converted into 2011 U.S. dollars (USD) unless oth-

erwise noted. The Consumer Price Index for All Urban Consumers (CPI-U) conversion 

factors were used in all cases (see Appendix A). For long-term capacity expansion, the 

discount rate was set to 8%. For depreciation benefits for new projects, the declining bal-

ance method was used with a 35% tax rate. Because the tax effects of depreciation are on 

a nominal basis, an inflation rate of 2.5% was assumed for those annuities. 

Production Tax Credit 

The Production Tax Credit (PTC) is a federal tax credit available to developers of 

certain types of power plants. It was first established with the Energy Policy Act of 1992 

for wind, solar PV, solar thermal, biomass, hydroelectric, geothermal, landfill gas, munic-

ipal solid waste, and ocean power (thermal, tidal, and wave) [32] [33]. Starting in 2017, 

only new wind projects are eligible to claim the PTC. The wind power industry has greatly 

expanded under PTC support, but new construction has relied heavily on extensions of the 

original law. 

The PTC was set up as a post-tax credit of 1.5¢/kWh produced ($15/MWh in 1993 

USD) for the first 10 years of operation, adjusted for inflation each year. It was modeled 

on a pre-tax basis as a credit to the variable O&M cost [34]. The credit is gradually reduced 

to zero by 2020 consistent with current legislation (see Appendix B for the full schedule). 

Because the eligible credit amount changes each year starting in 2017, separate wind can-

didates were created for each tax year1. 

                                                 
1 See New Resource Candidates below for more details. 
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Investment Tax Credit 

The Business Energy Investment Tax Credit (ITC) is similar in scope and intent to 

the PTC, but the details differ somewhat. Unlike the PTC, the ITC is a tax credit on the 

construction cost of certain power plants, so the total value is the same regardless of elec-

tricity production. Before 2017, many different transmission-scale power plants were eli-

gible to claim the ITC, including solar PV, solarthermal, wind, CHP, fuel cells, and geo-

thermal. Since the beginning of 2017, CHP and fuel cells have been removed, and credits 

for wind are being phased out (by 2020) and curtailed for solar (by 2022). The ITC was set 

up as a credit to fixed O&M costs over the lifetime of the plant. The ITC for 2011–2019 

was set to 30%, and then it was modeled to decline to 10% by 2022 (see Appendix C for 

the full schedule). 

Although wind plants can elect to take the ITC in lieu of the PTC, the large majority 

have chosen the PTC, while the ITC has been heavily used by solar developers due to the 

differences in generation profiles. Both the PTC and ITC were modeled as amended 

through fiscal year 2016 (ended Sept. 30, 2016) [35]. 

STEAM ACCUMULATOR MODEL 

There are a variety of thermal energy storage technologies that could be considered 

for coupling with nuclear power plants2. For this study, steam accumulator systems were 

selected that could be retrofit to existing PWR plants. There are several ways to integrate 

steam accumulators into nuclear power plants. The general design chosen here adds a di-

version valve to the secondary steam loop (Figure 1). This allows the steam to flow to the 

                                                 
2 For example, steam could be stored and then used to heat feedwater in a regenerative cycle [72], although 

this would probably be better suited to a new plant design. 
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existing turbine generator, to the steam accumulator, or possibly both. The steam accumu-

lator is modeled as a bank of pipes held in an insulated building. Stored steam can then be 

released to a separate steam turbine generator to sell into the market.  

This steam accumulator design with a separate turbine generator has been modeled 

using MATLAB [36, 37]. The MATLAB model includes both thermodynamic and eco-

nomic components. The thermodynamic sub-model simulates charging, storage, and dis-

charging of steam using a discrete, non-equilibrium approach [38]. The economic sub-

model calculates the net revenue using a fixed sinusoidal price model3 as well as capital 

and O&M costs. Capital costs include both power-related costs (steam turbine, generator) 

and energy-related costs (steam storage pipe, building, insulation, pumps). Annual fixed 

O&M costs are calculated as a percentage of capital costs. This model was used to estimate 

capital and fixed operating costs for sixteen different steam accumulator systems. These 

were used as inputs to the capacity expansion model (see Retrofit Candidates below). 

                                                 
3 The revenue calculations from the MATLAB model will be ignored in lieu of the more detailed market 

clearing model in PLEXOS. 

Figure 1. Schematic of a PWR nuclear power plant with a steam accumulator system utilizing separate 

steam turbines (reprinted from [36]). 
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ERCOT MARKET MODEL 

ERCOT is the independent grid operator for the electric grid operated entirely 

within the state of Texas. It serves about 75% of the state’s land area and 90% of its elec-

tricity demand [39]. It operates day-ahead markets for energy and ancillary services (pri-

marily operating reserves) and a real-time market for energy. It also conducts longer-term 

auctions for congestion revenue rights. Day-ahead markets are settled at one-hour intervals, 

while the real-time energy markets are settled every fifteen minutes at settlement points 

and every five minutes for locational marginal price points. There are over 8,000 nodes 

where locational marginal prices are calculated, and each is assigned to a hub. These are 

then averaged together into hub prices. Unlike most other competitive wholesale markets, 

ERCOT does not operate a forward market for generation capacity. The North American 

Electric Reliability Corporation (NERC) recommends a reserve margin of 13.75% for the 

ERCOT region [40], and there have not been any major capacity shortfalls since the com-

petitive market was introduced. 

Beyond the operations of the wholesale markets, there are other issues that should 

be considered when modeling generator dispatch and behavior, especially when perform-

ing optimizations over small time steps (minutes to hours). Although interrelated, unit com-

mitment and economic dispatch may occur over different timescales. For instance, the min-

imum down time constraint of a nuclear power plant may span longer than the optimization 

step interval of the day-ahead or real time markets. In this case, a model needs to optimize 

over a longer time horizon to fully incorporate the longer-term constraint. In some cases, 

uneconomic generators may need to stay online for reliability reasons. Constraints over 

weeks or months may govern hydroelectric generator availability as well as maintenance 

outages. Generally, power plants avoid outages during months of peak demand to take ad-

vantage of higher prices and to ensure grid stability. Finally, the addition and retirement of 
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generation capacity may consider revenues and costs over months to years. Thus, a variety 

of timescales from minutes to years must be considered depending on the modeling objec-

tives. 

PLEXOS [29], a commercial energy market modeling software package, was used 

to model both long-term capacity expansion and the day-ahead energy and reserves mar-

kets. All simulations used PLEXOS version 7.400 R01 x64 with the solver Xpress-MP 

28.01.13 [41]. 

ERCOT Capacity Expansion Model 

Capacity Expansion Modeling Goals 

The goal of this work is to simulate the construction and retirement of generation 

assets across several scenarios while including steam accumulator retrofits for existing nu-

clear power plants. This can be accomplished with a capacity expansion model that simu-

lates the turnover of assets over a future period. Ideally, this would involve simulating 

market clearing for all settlement intervals over a 20-year horizon or longer, finding the 

least-cost mix of generation and storage that would meet load, incorporating all operating 

reserve requirements and generator constraints, and including policy incentives and con-

straints. Simulating all of these together at the finest resolution is too computationally ex-

pensive, so the tradeoffs of several simplifying assumptions were examined. 

Time Horizon 

The capacity expansion plans will cover the period from 2011–2030. This period 

was selected because it incorporates several years of historical fuel price data (2011–2016); 

there are reputable forecasts for fuel prices, load, and capital costs for wind and solar PV 

through 2030; it incorporates the current rules for the PTC (through 2019) and ITC; and, it 

covers the period for development of TES projects for nuclear power plants by the U.S. 



 15 

Department of Energy (DOE) [42]. While running simulations over a longer horizon is 

feasible, there are benefits to stopping in 2030. For ERCOT, the buildout of wind genera-

tion began in earnest around 2005, and typical design lifetimes of wind turbines are 20 

years [43]. Therefore, wind generators built in the early years would need to be considered 

for retirement or retrofitting beyond 2030. Other long-term effects beyond 2030 could in-

clude capacity loss for wind and solar PV. 

Long-Term Plan Settings 

The Long-Term Plan module (LT Plan) in PLEXOS seeks to find the combination 

of retirements and new construction that will minimize the net present value of total system 

costs. The most accurate capacity expansion simulation would include hourly (or sub-

hourly) market clearing, but this is typically too computationally burdensome for an opti-

mization problem of this size. Hourly market clearing over 20 years would result in ap-

proximately 175,320 hours, but the primary problem concerns long-term constraints. An 

optimization problem needs to cover all short- and long-term constraints to give an accurate 

answer. In this case, build limits each year and project lead times mean that the optimization 

should span several years at once to enforce these constraints. Thus, rather than optimizing 

a single 24-hour period, it is likely than an optimization step of 43,830 hours (5 years) or 

longer is required. Thus, without separate logic to enforce long-term constraints, the reso-

lution of the simulation must be reduced to be computationally tractable. 

There are three primary options for simulating chronological market clearing in 

PLEXOS: load duration curve (LDC), curve fitting/reduced resolution, and sampling. The 

LDC method is very common in capacity expansion models of electricity markets. It reor-

ders the load for a specific block of time from highest to lowest, destroying the inter-

temporal nature of the load in the process. This means that constraints can only be enforced 
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between LDC time blocks, not within them. The LDC method implemented in PLEXOS 

also does not model generator startup or shutdown, so minimum up and down time con-

straints cannot be enforced. The fitted/reduced resolution method preserves the chronology 

of the load, and it uses a weighted least-squares function to fit a lower-resolution curve to 

it. However, it typically needs more time blocks than the LDC to achieve a similar result. 

The sampling method runs a full-resolution dispatch for some number of days, weeks, or 

months of the year and then extrapolates the results for the remaining parts of the year. The 

LDC method was chosen because of its speed and the relative insensitivity to lower reso-

lutions (see Complexity Reduction below). 

Because unit commitment, build, and retirement decisions are made for individual 

generators (since units come in integer increments), a mixed integer program (MIP) is pre-

ferred over a linear program (LP), even though it incurs a higher computational cost. How-

ever, in certain circumstances, a MIP was found to be infeasible, but its corresponding LP 

was feasible. In these cases, the LP fallback solution was used. These integer infeasibilities 

were common when attempting to find the optimal energy storage candidate in the last five 

years of the time horizon. 

The step size is the time horizon of each optimization sub-problem. It can span the 

entire planning horizon from 2011–2030 (ideal), or it can be shorter depending on the 

length of constraints. Larger step sizes yield more optimal results, but the tradeoffs include 

the problem of perfect foresight as well as computational complexity. For capacity expan-

sion, the years from 2011–2025 were relatively quick to solve because storage was not 

available, but the final 5 years took substantially longer. Because no single constraint cov-

ered more than three years, a five-year step size was chosen. Thus, the optimization sub-

problems covered the 4 periods 2011–2015, 2016–2020, 2021–2025, and 2026–2030. 
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Generator market bids can be set to include no-load costs (average) or ignore them 

(marginal). However, in this model, only constant average heat rates are used, so the no-

load costs are zero. Average pricing was chosen, but they were equivalent in this case. 

Although generator startup and shutdown is not modeled with the LDC method, there is an 

option to amortize start costs over a certain number of hours to approximate these costs. A 

24-hour amortization period was used to prevent high-start-cost generators from being 

over-penalized. Longer-term costs were modeled using a discount rate and declining bal-

ance depreciation (see Financial Assumptions above). 

Fuel Prices 

Historical and forecast prices were used for the various fuels in the model. Histor-

ical prices were typically quoted in nominal USD, while different forecasts used either 

nominal or constant USD for a certain year. Because of these disparities, all fuel prices 

were converted to 2011 USD4. Historical fuel prices were used for biomass [44], lignite 

coal [45], subbituminous coal [45], landfill gas (LFG) [46], natural gas [44], and uranium 

[47]. Forecasts for future prices for all fuels except LFG and natural gas were created with 

linear regressions of historical data. Future LFG prices were assumed to be constant. Nat-

ural gas price forecasts for two scenarios were taken from the U.S. Energy Information 

Administration’s (EIA) Annual Energy Outlook 2015 [48]. For full details and data on fuel 

prices, see Appendix D. 

Load Profile 

The hourly load profile shape was taken from the 2011 ERCOT hourly average. 

This yearly base profile was scaled by peak and total energy for future years in two load 

growth scenarios (see Market and Policy Scenarios below). As part of the nodal market 

                                                 
4 See Financial Assumptions for more details. 
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implementation, ERCOT introduced a system-wide offer cap (SWOC) in 2011. The SWOC 

is designed to provide scarcity price signals in the absence of a forward capacity market, 

and it prevents scarcity prices from rising to excessive levels. The SWOC was set to 

$3,000/MWh in 2011 and was incrementally increased to $9,000/MWh in 2015. The 

SWOC is modeled in PLEXOS as the Value of Lost Load (VoLL). Setting the VoLL creates 

a soft constraint for unserved energy, helps prevent infeasibilities, and emulates a basic 

scarcity price signal for long-term capacity. 

Wind and Solar Profiles 

The hourly wind profile was based on ERCOT wind production for 2011, while the 

solar PV profile was based on ERCOT solar production for 2014. The solar PV profile year 

was different because only three units were operating in 2011 (41.6 MW). By 2014, there 

were 13 units (190.7 MW). For capacity expansion, using a single profile for a class of 

geographically-dispersed generators fixes the geographic distribution of that class for fu-

ture years. For example, if five generators were spread amongst two counties in the base 

year, then all future construction would assume that more generation was built in the same 

counties with the same proportions. It would be more accurate to allow several different 

candidates to be constructed in different areas to allow the aggregate output to change over 

time. Wind and solar PV generators are pre-committed in the model, so they are always 

dispatched. In reality, curtailment sometimes occurs for reliability reasons, but this effect 

is minor for long-term expansion and is ignored. Finally, the generation from wind and 

solar PV resources was subtracted from load during LDC slicing in PLEXOS to create a 

more accurate net LDC. 
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Reserve Margin 

The capacity reserve margin is the percentage of capacity available above the sea-

sonal peak load. This is an important reliability metric that includes the probabilities of 

unexpected generation loss and excess load. All generators except wind and solar were 

assumed to be available at 100% capacity. Following ERCOT’s current guidelines, firm 

solar PV capacity was rated at 80%, and firm wind capacity was rated at 12% [40]. Some 

regions have mandatory reserve margins, but ERCOT’s energy-only market does not re-

quire a reserve margin. The North American Electric Reliability Corporation (NERC) rec-

ommends reserve margins between 10–15% depending on the percentage of hydroelectric 

capacity. Their recommended reserve margin for ERCOT is 13.75% [40]. This 13.75% 

reserve margin was enforced as a constraint in PLEXOS to prevent undersupply problems 

and to keep reliability at expected levels. To investigate the impact of this assumption, the 

reserve margin constraint was removed in a separate sensitivity study (see Sensitivit be-

low). 

New Resource Candidates 

Ten different capacity expansion candidates were modeled based primarily on pa-

rameters for candidates in the EIA’s Annual Energy Outlook 2015 [49]. These included 

biomass (steam turbine), coal (IGCC, steam turbine), natural gas (combined cycle, com-

bustion turbine), nuclear, solar PV (single-axis tracking), and wind (inland). Capital costs 

for wind and solar PV were modeled in more detail. Historical values for wind and solar 

PV (2011–2016) were taken from Lazard [50], while cost declines used in the Aggressive 

Capital Cost Declines scenario were taken from International Renewable Energy Agency 

(IRENA) estimates [51].  

Modeled short-term technical parameters included heat rate, net capacity, minimum 

stable level, maximum ramp rate, minimum down time, minimum up time, planned outage 
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rate, and forced outage rate. Operating reserves participation was inferred from existing 

generators of the same type of prime mover5. Long-term technical parameters included 

firm capacity (for solar PV and wind reserve margin), lead time, maximum units built per 

year, and project start date (for solar PV and wind with declining tax credit values). Short-

term operating costs included fuel cost, variable O&M cost, and emissions cost (in the 

Carbon Tax scenario). Long-term costs included build cost (overnight capital cost), eco-

nomic life, fixed O&M cost, and start cost. All build costs were assumed constant over the 

planning horizon except for wind and solar PV. A complete list of parameters can be found 

in Appendix G. 

Other resource candidates were modeled in the Annual Energy Outlook 2015 but 

were excluded here. These included any carbon capture technology (CCS), fuel cells, mu-

nicipal solid waste (MSW) combustion, natural gas internal combustion engines, greenfield 

hydroelectric, geothermal, nuclear small modular reactors, storage (batteries, CAES, 

pumped hydroelectric), solar thermal, and offshore wind. Most of these were excluded be-

cause they had direct competitors that were less expensive (e.g., land-based wind vs. off-

shore wind). In some cases, the uncertainties around siting and resource availability (CCS, 

MSW, hydroelectric, geothermal) were beyond the scope of this work. Although simulating 

multiple storage technologies was desirable, integer infeasibilities only allowed one stor-

age type to be simulated at a time. 

Units Built and Under Construction 2011–2017 

Although historical data on units built and retired from 2011–2016 is available, it 

was excluded from the model so that the simulations could be compared to the actual 

                                                 
5 Prime movers are mechanical devices that convert initial forms of energy into rotational energy to spin 

generators. Prime movers include combustion turbines, steam turbines, internal combustion engines, hydro-

electric turbines, and wind turbines, among others. 
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changes. These are compared in Historical vs. Simulated Capacity Expansion, 2011–2016 

(below). Additionally, units under construction and in the ERCOT interconnection queue 

were ignored. 

Retirements and Age-Based Degradation 

All existing thermal generators were allowed to retire except for large industrial 

combined heat and power (CHP) units. These CHP units are installed primarily for indus-

trial process heat applications, so it is unlikely that electricity market conditions alone 

would force their retirement. Only economic retirements were considered. Some models 

implement technical life constraints that force retirements after a certain number of years. 

However, this excludes the possibility of overhauls and retrofits to keep a plant running. 

As plants age, their heat rates (for thermal plants) and O&M costs typically increase, while 

net capacity may decrease. These effects would become more pronounced over a longer 

time horizon. 

Wind turbines and solar PV panels have design lifetimes of 20–25 years, but at least 

for wind turbines, they may be candidates for repowering projects at the end of the warranty 

period. Both wind and solar PV projects are subject to net capacity degradation over time, 

some due to individual unit failure [52, 53]. 

Retrofit Candidates 

Retrofit candidates for this work were limited to steam accumulators for nuclear 

power plants6. Sixteen different candidates were created from three sets of parameters: net 

capacity from the secondary turbine generator (500 or 1,000 MW), energy storage capacity 

(5, 10, 20, 40 hours at max output), and turbine ramp rate (0.54%/min., 1.67%/min.). Any 

                                                 
6 Additional retrofits appropriate for longer time horizons or more detailed models are discussed in Future 

Work. 
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of the sixteen candidates could be built at any of the four reactors in ERCOT: Comanche 

Peak 1&2, or South Texas 1&2. Only one candidate was allowed per reactor, so ultimately 

up to four steam accumulators could be built. Due to expected research and development 

time estimated by DOE [42], candidates were not eligible for construction until 2026. A 

complete list of parameters for the steam accumulator candidates can be found in Appendix 

H. 

ERCOT Production Cost Model 

Production cost models are designed to simulate the hourly or sub-hourly market 

clearing of a market in fine-enough detail to closely match historical market prices. In this 

work, the output from the capacity expansion model is input into the production cost model 

to simulate more accurate market clearing and calculate annual net revenues. This produc-

tion cost model was originally developed for compressed-air energy storage integration 

studies in ERCOT [54], and it has been extended for hybrid nuclear TES system [55, 56]. 

Time Horizon Settings and Resolution 

Typically, the day-ahead energy and ancillary services markets are simulated with 

an hourly resolution. However, due to the long time horizon involved, the interval length 

was increased to reduce computational complexity with minimal impact to results. More 

details are given in Complexity Reduction below. Unlike the capacity expansion module, 

the full chronology of the load is retained, and full unit commitment and economic dispatch 

is performed. The optimization step size was set to 2 days so that multi-day market oppor-

tunities for the 40-hour steam accumulator candidates could be seen if they were built. 

Day-Ahead Markets 

ERCOT coordinates day-ahead markets for energy and ancillary services (primarily 

reserves) as well as a real-time market for energy. Day-ahead markets can help reduce the 
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risk of unexpected outages by having generators bid in advance. It also gives the grid op-

erator a chance to run predictive reliability unit commitment analyses to ensure grid stabil-

ity. Bids into the energy market are not binding, and the unexpected loss of a generator or 

transmission line will lead to corrections in the real-time market. The day-ahead market 

was modeled because of the potential revenue from ancillary services that is not captured 

by running a purely real-time market. Although it is possible to run day-ahead and real-

time market simulations sequentially for each day, it is assumed that the price spread is 

minor compared to the additional computational complexity.  

Like the capacity expansion model, the production cost model uses a combination 

of linear programming and mixed integer programming to solve the unit commitment and 

economic dispatch problems. It co-optimizes energy and ancillary services procurement. 

Four types of ancillary services are included as defined by ERCOT: frequency regulation 

up (RegUp), frequency regulation down (RegDn), responsive reserve service (RRS, known 

as spinning reserves in other grids), and non-spinning reserve service (NSRS) 

Generator Modeling 

Most of the parameters used by Garrison in the base model [54] were taken from a 

database developed by an ERCOT Long-Term Study Task Force [57]. Technical parame-

ters included the number of units, fuel used7, prime mover, heat rate, net capacity, firm 

capacity (for reserve margin), minimum stable level, max ramp rate, minimum down time, 

minimum up time, planned outage (maintenance) rate, forced outage rate, emissions rates 

(CO2, NOx, SO2), repair times (coal, nuclear), and operating reserves participation. Short-

                                                 
7 Although some generators can use multiple types of fuels for primary operation, it was assumed that only 

one fuel was used per generator. Secondary fuels used for auxiliary start-up were also ignored. 
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term operating costs included fuel costs and variable O&M costs, while long-term costs 

included fixed O&M costs and start costs.  

Settings Common to Both Models 

In general, it is desirable to find unit commitment solutions where supply exactly 

matches demand, at least cost, over an entire period. However, sometimes problem infea-

sibilities cause a significant increase in computation time. Therefore, unserved energy and 

dump energy (overgeneration) were disallowed from simulations unless infeasibilities pre-

vented solutions from being found. 

Complexity Reduction 

Given a finite amount of computational time and resources, it is important to con-

sider how the parameters and structure of a model will affect the results. Some parameters 

will strongly affect the results and come at a high computational cost, while others may 

have only a modest effect on results and have a disproportionate computational cost. Thus, 

careful complexity reduction should result in improved accuracy for a given computational 

time or similar accuracy with a shorter computational time. There are several areas of the 

model where complexity reduction is justified. 

Optimization Tradeoffs 

In the modeling of physical systems and markets, there are often tradeoffs between 

accuracy and computational complexity. For instance, decreasing the dispatch interval 

from 1 hour to 15 minutes may yield a slightly lower-cost solution, but the number of 

dispatch decisions for a given period goes up by a factor of 4. Or, grouping several similar 

generators into a single, larger generator may have a minimal impact on dispatch and 

prices, but it reduces the computation time. This has important implication for how the 

model is physically and temporally divided. 
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One of the main tradeoffs is between temporal resolution and the number of divi-

sions of the time horizon (time step). For the capacity expansion problem, a finer temporal 

resolution means more accurate dispatch and pricing, and the most optimal solution covers 

the entire time horizon in a single problem. However, the amount of memory available to 

run the simulation limits the values of these parameters. Thus, a simulation could be run 

with a coarser temporal resolution but cover the entire time horizon (e.g., 20 years), or it 

could be run with a finer temporal resolution and smaller time steps of only a few years. 

These tradeoffs will be explored in the Results section. 

ERCOT Grid 

The transmission system of the ERCOT grid is complex, with over 8,000 nodes and 

46,000 miles of transmission lines [39]. The nodal market structure was introduced to re-

veal more precisely where transmission constraints were binding, and this in turn should 

spur generation or transmission construction in those areas. However, especially after the 

CREZ transmission line projects were built, the difference in price amongst all nodes 

throughout a year is small. Therefore, the current practice of socializing transmission con-

struction was assumed to continue, and thus transmission constraints were ignored. This 

will significantly reduce the computational complexity, especially compared to a DC opti-

mal power flow solution for the full-resolution grid. With only a single node to connect to, 

all load is lumped together rather than being assigned into different load zones. For similar 

reasons, one wind profile and one solar profile are used for the ERCOT region. However, 

as noted before, this fixes the geographic dispersion of assets for capacity expansion. While 

the geographic diversity of wind is not expected to increase significantly, the same cannot 

be said for solar. Thus, solar construction may respond more to transmission access and 
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costs than to resource availability. The limited deployment of solar up to this point may not 

reflect the future geographic diversity. 

Capacity Expansion Algorithm 

The load duration curve (LDC) method is used to calculate capacity expansion. One 

disadvantage of this approach for energy storage is that storage constraints are only bal-

anced between LDC time blocks, not within them. Thus, if the LDC step size is signifi-

cantly larger than the storage energy capacity (e.g., one LDC per month), then the oppor-

tunities for storage to participate in the markets will be significantly reduced or eliminated. 

The same is true of reducing the resolution of chronological algorithms as well. This could 

be an advantage of a higher-resolution sampling algorithm that runs hourly dispatch over 

multiple daily or weekly samples. 

Unit Commitment and Dispatch 

Generators are dispatched into the market based on their offer price. In some cases, 

offer prices are consistently low enough that they are nearly always dispatched except dur-

ing contingencies. These generators can be pre-committed and thus removed from the unit 

commitment formulation, reducing computation time. Four classes of generators were cho-

sen for pre-commitment: biomass, nuclear, solar PV, and wind. In the case of solar PV and 

wind, production is sometimes curtailed for grid reliability reasons, but they generally bid 

near zero into the markets. In certain circumstances, they may bid negative costs due to 

their tax credits. Coal and hydroelectric generators were also considered for pre-commit-

ment. Coal-fired power plants may compete with some cheaper combined-cycle natural 

gas plants in the merit order stack, especially if natural gas prices are low relative to coal 

prices. Thus, pre-committing them could distort the dispatch in favor of coal in some cases. 
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There are certain seasons (summer) and times of day (10 A.M.–10 P.M.) where pre-com-

mitment could be used, but this is problematic for capacity expansion models where the 

assumptions at the beginning of the time horizon might not apply by the end. For hydroe-

lectric, although their operating costs are near zero, they are constrained by water manage-

ment issues, and they usually do not behave like baseload generators in ERCOT. 

Another method of reducing dispatch is to aggregate multiple generators into larger 

individual units. This acts to reduce the total number of units for the unit commitment 

problem. Five different plant types were aggregated into larger units: biomass (11 into 2), 

natural gas combined cycle (75 into 56), natural gas combustion turbines (77 into 30), nat-

ural gas internal combustion engines (27 into 2), and natural gas steam turbines (50 into 

23). Thus, the number of units for commitment was reduced by 127 units. The units were 

aggregated by power plant (e.g., the six turbines at Greens Bayou were aggregated into 

one), and parameters that are relative to capacity were scaled accordingly (e.g., net capac-

ity, minimum stable level, maximum ramp rate, start cost). Hydroelectric, solar PV, and 

wind generators were already aggregated in the base model. Nuclear plants were not ag-

gregated so that steam accumulator candidates could be built in appropriate sizes, and coal 

plants were also excluded to prevent dispatch distortions. Additional details are presented 

in the Results section below. 

An additional optimization-based method of complexity reduction comes in the for-

mulation of the unit commitment problem itself. Unit commitment can be solved as an 

integer program (most accurate) or a linear program, with tradeoffs in computational cost 

and accuracy. For the production cost model, the gains from using an LP were modest, 

while dispatch accuracy suffered noticeably. Thus, integer unit commitment was used 

throughout. 
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MARKET AND POLICY SCENARIOS 

Future market conditions are subject to a wide range of forces that lead to uncer-

tainty. However, some parameters are expected to have large impacts on market dynamics 

based on market history and technical fundamentals. For instance, the offer price of the last 

unit of load establishes the marginal price, so examining the marginal unit history can give 

some clues to the most influential technologies. If fuel costs are a large proportion of the 

operating costs of the most common marginal units, then one fuel cost may be highly cor-

related with electricity prices. In fact, this is the case with natural gas and electricity prices 

in ERCOT (Figure 2). Note that low supply in electricity (low reserve margin) as is found 

in July and August does not translate into low supply in natural gas, but the converse is 

likely true. 

To address future market uncertainty, four trends were identified that each have a 

significant impact on market outcomes: natural gas prices, peak load and total demand, 
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Figure 2. ERCOT Weighted-Average Price vs. Henry Hub Spot Price, 2014–2016.  

Data from [73, 74] 
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capital cost declines for wind and solar PV, and the application of a carbon tax. All four of 

these are important both for capacity expansion planning and production cost modeling. 

Two different natural gas price forecast scenarios were chosen from the Annual 

Energy Outlook 2015: High Oil Price, and High Oil and Gas Resource [48]. These cover 

the years 2012–2040, but only years 2017–2030 were used. Prices were for natural gas 

delivered to the electric power sector rather than Henry Hub spot prices. These are more 

appropriate and were typically 5–20% higher than Henry Hub. See Appendix D for more 

details. 

Peak load and total energy demand for future years was modeled in two load growth 

scenarios: one from AEO 2015 (Low Economic Growth scenario) [48], and one forecast 

based on ERCOT historical data [58]. The Low Economic Growth scenario assumes annual 

growth for summer peak and total energy to be 0.6%/year. An exponential regression was 

used to estimate the average annual growth rates from ERCOT historical data from 2007–

2016: 1.4%/year for summer peak and 1.54%/year for total energy. Additional details are 

given in Appendix F. 

In the base scenario, costs for new wind and solar PV projects are constant starting 

in 2016. In the alternative Aggressive Capital Cost Declines scenario, capital costs for wind 

and solar PV drop from 2017–2025. Average annual growth rates were taken from an 

IRENA study [51]. For solar PV, the average annual growth rate is -8.8%/year, and for 

wind it is -1.3%/year. To accommodate additional construction demand, the maximum al-

lowed capacity built per year was doubled for both technologies starting in 2017. A table 

comparing the capital cost declines can be found in Appendix G. 

Carbon taxes have been proposed as one method of including the environmental 

and economic costs of carbon dioxide emissions into energy markets. The social cost of 

carbon (SCC) is a metric that attempts to capture many of these external costs. In economic 
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terms, it represents the marginal change in discounted economic welfare from each addi-

tional unit of carbon dioxide emitted into the atmosphere. To model an aggressive climate 

change mitigation scenario, carbon prices were chosen from the latest version of the DICE 

model [59] that kept global atmospheric temperatures below 2.5 °C above pre-industrial 

levels, on average, over 100 years. This corresponds to a global SCC of $106.70/tonne CO2 

(2010 USD) for 2015 with an annual escalation of 4.77%. For the United States, a regional 

SCC equal to 15% of the global SCC was assumed starting in 2015. Additional details are 

provided in Appendix E. 

STEAM ACCUMULATOR CANDIDATES 

Several different steam accumulator candidates were created to outline the design 

space. Generator power was either 500 MW or 1,000 MW; energy capacity was either 5, 

10, 20, or 40 hours at full power; and generator ramp rate was either 0.54%/min. or 

1.67%/min. These combinations created sixteen different candidates. Only one of the six-

teen candidates could be built at a given reactor, but different candidates could be built at 

different reactor sites. Up to four steam accumulator systems could be built in total. 

Modeling steam accumulators connected to nuclear power plants presents some 

unique challenges. Unlike most bulk energy storage technologies, grid electricity is not 

used to run pumps (pumped hydro, compressed air) or charge batteries. Instead, heat from 

the reactor is stored directly as steam, and a separate steam turbine generator is used for 

power conversion. Thus, the whole system is like a combined heat and power plant with 

heat storage and a second generator. 

PLEXOS has two different classes of energy storage: Battery and Storage. The two 

classes function similarly and have nearly identical parameters. The Storage class can be 

used to represent pumped hydro and CAES systems, so it is also an appropriate choice for 
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steam accumulators with some careful considerations. It would be ideal to model the sys-

tem as CHP with heat storage since this most closely approximates the actual energy flows 

and conversions of the system. CHP in PLEXOS is set up to capture waste heat from the 

prime mover, but a steam accumulator captures heat before conversion, so this method is 

inappropriate. It is, however, a good way to model waste heat for a heat recovery steam 

generator in a combined cycle plant. If heat from the reactor could be diverted directly, 

heat storage works correctly in PLEXOS, but there is no way to use that waste heat as an 

input to a steam turbine. Instead, heat storage is designed for an external heat market like 

residential district heating. 

Instead of storing heat directly, the Storage class was used to model a steam accu-

mulator system as a pumped storage device. Normally, a pumped storage system uses grid 

electricity to pump water up into an upper head reservoir (charging). Later, water can flow 

down into a lower tail reservoir via a hydroelectric turbine to generate electricity (discharg-

ing). In the modeled steam accumulator systems, reactor heat is always used to run the 

main turbine and generate electricity when operational. An electric pump acts as a proxy 

for a steam diversion valve, and the efficiency of the pump is calculated from the MATLAB 

model’s expected heat loss during charging and discharging (3–16% loss). Thus, part of 

the optimization is deciding how much energy to store, via the electric pump, and how 

much to sell to the grid. The proxy pump’s load8 was set to the difference between the 

primary turbine’s maximum power and its minimum stable level. This mimics the steam 

portion that would have been diverted from the primary turbine. The proxy pump also acts 

as generator during discharging, and its discharging power is set separately (500 MW or 

1,000 MW).  

                                                 
8 Pump load is the load during the pumping or charging phase. 
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The proxy pump moves energy from a tail reservoir into a head reservoir with a 

defined maximum capacity. All head storages have a loss rate of 0.258%/hour based on 

simulations from the MATLAB model. Although the loss rate is modest here, it is important 

to include the loss during storage to avoid overstating the available capacity. Finally, the 

optimization decides when it is appropriate to sell the stored energy via a secondary gen-

erator, which is just the proxy pump run in reverse. The reduction in steam quality during 

storage may be an important loss to consider in future work. The secondary steam turbine 

generator is allowed to have a lower minimum stable level than the primary turbine so that 

it can behave more like a non-nuclear boiler’s steam turbine (e.g., biomass or natural gas-

fired boiler). 

To mimic the behavior of an actual steam accumulator coupled to the secondary 

loop of a PWR, storage is only allowed when the main steam turbine is at or above its 

minimum stable level. This was set with a constraint on the pump load and generation from 

the main turbine (Equation 1). This constraint means that the proxy pump can operate at 

maximum only when the main generator is operating at maximum, and it must decrease 

linearly to zero when main generation reaches the minimum stable level. 

 

 
𝑀𝑎𝑖𝑛𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑢𝑚𝑝𝐿𝑜𝑎𝑑 ≥ 𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝐿𝑒𝑣𝑒𝑙 ( 1 ) 

It is also important to prevent grid electricity from powering the proxy pump. In 

this model, it should only charge with electricity from the main turbine (analogous to stor-

ing steam). This is accomplished by creating a separate transmission node for the primary 

(reactor) generator and the secondary (steam accumulator) generator. The two generators 

are allowed to send electricity outward to the grid, but electricity cannot flow from the grid 

back to the proxy pump. 
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ROBUSTNESS CRITERIA 

Several different metrics could be used to assess the robustness of a steam accumu-

lator candidate to uncertainty. From an operations perspective, the total hours of generation 

and total generation (MWh) showcase a plant’s effectiveness, while the net income shows 

a plant’s financial health. The construction of a candidate amongst the scenario permuta-

tions will be used to evaluate robustness to emphasize the long-term results. If a steam 

accumulator candidate is not built in any scenario, there are several possible causes: an-

other candidate had a lower discounted cost; no candidate was viable for new construction 

under those market conditions; or, the structure of the model itself prevented all the poten-

tial revenues from being captured. This last point implies that a low temporal resolution 

will disadvantage large-scale technologies that can take advantage of sub-weekly or sub-

daily imbalances. 
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Results 

COMPLEXITY REDUCTION 

Long-Term Capacity Expansion 

Although increasing the temporal resolution should improve the accuracy of unit 

dispatch, the effect on the long-term capacity expansion results is insignificant beyond a 

certain point (Figure 3). The baseline resolution of 1 load block per month (0.14%) was 

increased to 1 per week (0.6%), 1 per day (4%), 2 per day (8%), and 3 per day (13%). The 

difference in the number of units built per category beyond 0.6% resolution was typically 

less than 3 units. In the 4% resolution case, the step size was also decreased from 2 years 

to 1 year. The effect of this was much greater wind and solar PV construction and more 

natural gas steam turbine retirements. Thus, using a larger optimization step size should 

lead to lower overall construction costs with the caveat of longer foresight. 
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Short-Term Production Cost—Resolution 

The goal of production cost modeling is to accurately simulate the hourly or sub-

hourly dispatch and prices, so the choice of temporal resolution has a greater effect on the 

results than in the capacity expansion model (Figures 4–12). As the resolution is decreased 

from 6 intervals per day (25%) to 1 interval per day (4%), the dispatch and generation 

changes somewhat. For biomass, the effects are largest in the later years of the horizon, 

where higher resolutions tended to increase dispatch, but lower resolutions had little im-

pact. Coal generation tended to increase with lower resolutions but followed the same trend 

over time. Hydroelectric and natural gas steam turbine generation tended to decrease with 

lower resolutions. The trends were mixed for natural gas combined cycle, combustion tur-

bine, and internal combustion engine, but all tended to follow the same shape over time. 

Nuclear and wind generation were essentially unchanged with decreasing resolution. 
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natural gas combined cycle. 
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natural gas steam turbine. 
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Short-Term Production Cost—Aggregating Generators 

Two different methods of aggregating generators were compared against the base-

line (all individual units): aggregating biomass, natural gas combined cycle, natural gas 

combustion turbines, natural gas internal combustion engines, and natural gas steam tur-

bines; and aggregating all of those technologies plus coal (Figures 13–21). The first set of 

aggregations without coal had a very minor effect on the generation breakdown overall. 

The largest relative changes in generation were +34% for natural gas internal combustion 

engines, +20% for natural gas combustion turbines, +14% for biomass, and -4% for natural 

gas steam turbines. The small relative decrease in coal generation was almost entirely re-

placed by natural gas combined cycle and natural gas combustion turbine generation. Over-

all, the effects of these aggregations were small compared to the computational boost. 

Aggregating coal plants with the others caused significant distortions in generation. 

Biomass generation increased by 14%, hydroelectric by 3%, natural gas combined cycle 

by 46%, natural gas combustion turbines by 28%, natural gas internal combustion engines 

by 58%, and natural gas steam turbines by 262% (3.6×). These increases came at the ex-

pense of coal generation, which dropped 53% (Figure 14). Nuclear and wind generation 

stayed the same. These effects are likely due to the larger size of the coal plants relative to 

the other generator types. Another consequence of this aggregation is that retirements for 

these types would happen in larger chunks than otherwise. However, this may be more 

appropriate since it is likely that an entire power plant would retire rather than an individual 

unit at a plant. 
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Figure 16. Effects of aggregating generators on short-term dispatch—

natural gas combined cycle. 
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Figure 17. Effects of aggregating generators on short-term dispatch—

natural gas combustion turbine. 
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Figure 19. Effects of aggregating generators on short-term dispatch—

natural gas steam turbine. 
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Figure 20. Effects of aggregating generators on short-term dispatch—

nuclear. 
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Model Runtimes 

The model runtimes for a select number of simulations are shown in Figures 22 and 

23. In both cases, the total runtime tended to increase at least linearly as the number of non-

zero integers increased. This illustrates the value of minimizing the optimization step size. 
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HISTORICAL VS. SIMULATED CAPACITY EXPANSION, 2011–2016 

The long-term capacity expansion model simulated new construction and retire-

ment for the period from 2011–2030 across sixteen scenarios. The scenarios were set up as 

permutations of four different parameters, each with two possible values. For brevity, these 

were assigned a position in a sequence of four characters, with values of either A or B 

(Table 1). For example, permutation AAAA corresponds to the High Oil Price natural gas 

price forecast, the Low Economic Growth load growth forecast, the baseline capital cost 

declines for wind and solar PV, and no carbon tax.  

 

Table 1. Scenario permutation nomenclature. 

 

Natural 

Gas Price 

Load 

Growth 

Capital 

Cost  

Declines 

Carbon 

Tax 

A High Oil 

Price 

Low  

Economic 

Growth 

Base None 

B High Oil 

and Gas  

Resource 

ERCOT  

Historical 

Aggressive Social 

Cost of 

Carbon 

 

The permutation BBAA is most similar to the historical trends, so it can be com-

pared against the builds and retirements in ERCOT from 2011–2016 (Figures 24–26). For 

this analysis, retirements include permanent shutdowns, mothballed plants, and plants that 

otherwise disconnected from the ERCOT grid. Over this period, there was one new bio-

mass plant built in ERCOT and one retirement; the simulation did not build any new bio-

mass, but it did retire a similar amount. Two new coal plants came online, while two retired; 

the simulation did not build or retire any coal. The construction lead time for new coal 

plants means that new build decisions were made several years before 2011. Likewise, 
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actual coal retirements may have been partially due to expected emissions compliance costs 

rather than simple economics. There was a significant amount of new natural gas genera-

tion built, including over 3,200 MW of combined cycle, 1,100 MW of combustion turbine, 

and 600 MW of internal combustion engines; retirements were primarily steam turbines 

(almost 1,700 MW), with one combined cycle plant retired and another switching to a dif-

ferent grid (750 MW). The simulation did not build any new combined cycle or internal 

combustion engines, but it did build some new combustion turbines (nearly 1,500 MW); 

retirements included some combined cycle and combustion turbines, but were primarily 

steam turbines (3,800 MW). Historical solar additions were over 500 MW, while the sim-

ulation did not build any. For wind, historical new construction was over 8,500 MW, while 

the simulation built 4,500 MW.  

The largest discrepancies between historical and simulated new construction were 

for wind, natural gas combined cycle, and wind. If historical coal retirements are included, 

the net change in coal is nearly zero, which essentially matches the simulation. It is likely 

that combined cycle generation was overbuilt based on optimistic projections of wholesale 

prices. Indeed, one nearly-new combined cycle plant in ERCOT recently filed for Chapter 

11 bankruptcy protection [60]. Both wind and solar had lead time constraints built in, so 

new generators already planned or under construction before 2011 were not included. If 

the yearly wind construction in the simulation was extrapolated to 2011, new construction 

would have been nearly 7,500 MW for the period. The difference in retirements is signifi-

cant for natural gas steam turbines, with more than twice the capacity retired in the simu-

lation as in reality. It is possible that operating costs or heat rates for these plants are over-

estimated. Finally, the objective function of the capacity expansion model is to minimize 

total system costs, while power producers in ERCOT are free to build new plants if financ-

ing can be secured, so there may be excess capacity at times. 
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CAPACITY EXPANSION 

Construction and retirement results from the capacity expansion runs are presented 

in Figure 27. In general, the higher natural gas prices in the High Oil Price scenario (per-

mutations beginning with Axxx) tended to support the construction of more wind and solar 

PV than the High Oil and Gas Resource scenario. These permutations also tended to build 

less new natural gas plants and retire more existing natural gas plants. Only one or two coal 
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Figure 27. Long-term capacity expansion results for sixteen permutations. 
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plants were retired in any of the eight High Oil Price permutations. The lower peak and 

total demand growth of the Low Economic Growth scenario tended to support less new 

construction but more existing retirements than the ERCOT Historical scenario of higher 

growth. The Aggressive Capital Cost Declines scenario tended to enhance the construction 

of solar PV and wind compared to the baseline capital cost scenario, and in most cases this 

led to the retirement of more existing resources. The same trend was generally true for the 

carbon tax, but acting together, these two scenarios produced the largest amount of coal 

retirements in two permutations (BABB and BBBB). Coal retirements were very limited 

otherwise. 

 Steam accumulator candidates were built in three permutations: AABB, ABBA, 

and ABBB. These were permutations where the natural gas prices were relatively high and 

the largest amounts of wind and solar PV were built. The same type of steam accumulator 

was chosen in all three: a 500 MW generator, 2.5 GWh of energy capacity, and a faster 

ramp rate of 1.67%/min. This system did not have the lowest capital or fixed O&M costs; 

the comparable 1,000 MW system had lower fixed costs. However, the annuitized cost for 

the smaller system was less due to lower capital requirements. These results for steam ac-

cumulators are likely sensitive to financing assumptions, especially the cost of capital and 

tax rates.  

SENSITIVITY STUDIES 

Increasing the temporal resolution of the simulation may improve the accuracy of 

dispatch, among other things, but it comes at a computational cost. To see the effects of 

increasing resolution on the long-term capacity expansion problem, the LDC step size was 

changed from 1 block per week (0.6%) to 1 block per day (4%). Because the LDC algo-

rithm only balances storage reservoirs between LDCs, the simulation was expected to build 
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storage. However, the significant increase in problem size manifested as an integer infea-

sibility, so a linear optimization was used instead. The difference in total additions was 

about +5%, with retirements increasing +15% (Figure 28). The composition of the addi-

tions was slightly different, with less solar being built and much more natural gas combined 

cycle and combustion turbine capacity in the higher resolution case. Wind additions were 

identical. The additional retirements in the 4% resolution case were natural gas combustion 

turbines and steam turbine units. Although the higher-resolution scenario resulted in steam 

accumulator additions at all four reactors, the total additions were only 53 MW, which is 

much smaller than one single project. Thus, it can be difficult to interpret linear-optimal 

expansion results in terms of sub-unit capacities. This will be an area of further exploration 

to determine if the integer infeasibilities can be addressed. 

In defining the steam accumulator candidates, the fixed O&M costs were assumed 

to be 5% of the overnight capital costs per year. For a sensitivity study, the fixed O&M 
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costs were reduced to 2% to investigate the number and variety of steam accumulator can-

didates that would be built. The results were almost identical to the original 5% fixed O&M 

cost scenario except that a steam accumulator was built in the AAAA permutation where 

none was built before. This came at the expense of some solar PV capacity. 

In ERCOT’s market design, market participants must secure financing to build new 

generation based on economics alone. This energy-only market model is contrasted with 

other competitive wholesale markets that have forward capacity auctions (e.g., PJM) and 

traditional wholesale and capacity markets that are wholly regulated. One of the potential 

downsides of an energy-only market is that price signals may not support enough genera-

tion to ensure a certain level of reliability. In the primary simulations, a reserve margin of 

13.75% was set as recommended by NERC. This constraint was removed to see the effect 

on capacity reserves and average wholesale price. In the case with no reserve margin, the 

available capacity drops to near-zero by 2016 (Figure 29). However, the effect on average 
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price is negligible. The same permutations that supported building steam accumulator can-

didates in the main study (AABB, ABBA, AABB) also built storage in the no reserve mar-

gin cases. 
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Conclusions 

In this work, the construction of steam accumulator retrofits was successfully sim-

ulated for nuclear power plants in the ERCOT grid. Sixteen different permutations of four 

scenarios pairs were used to outline the uncertainty of future market conditions. Steam 

accumulator retrofits were added in three of the permutations that had high future natural 

gas prices and aggressive capital cost declines, which led to significant construction of 

solar PV and wind generators. Two of the permutations saw higher total demand and peak 

load growth, and two had a carbon tax. This suggests that large-scale thermal energy stor-

age systems may be most successful in future markets with these three conditions. 
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Future Work 

Although the models used in these studies contain many parameters and constraints, 

there are many other details that were omitted. Some of these are especially important in 

the context of energy storage and decarbonized electricity objectives. The tradeoffs be-

tween more accurate models and increased computation time are ever present, but the areas 

discussed below could add significant value in future studies. 

The design of the optimization problem can have a large effect on the runtime and 

results. For example, multi-year constraints like mutually-exclusive projects generally re-

quire that the step size cover the entire constraint horizon. In this case, if one type of steam 

accumulator is built, no other types should be built later. The increase in step size signifi-

cantly increases the solution time without much change in results. It would be beneficial to 

pre-solve very long-term constraints outside of the main model so that step sizes could be 

minimized. There are also some sub-yearly, medium-term constraints that could be more 

accurately modeled, including hydroelectric generator releases, planned maintenance out-

ages (especially related to reserve margins), and large thermal generator unit commitment 

(e.g., minimum down times for coal and nuclear plants). 

For the capacity expansion model, increasing the resolution between LDCs had a 

small effect on construction and retirement results, but it is unclear if there was an impact 

on storage because a linear solution had to be used. Thus, finding a way around the integer 

infeasibilities would allow long-term expansion to be run at finer resolutions. This would 

show if the increased complexity is warranted. This may only be useful if the capacity 

expansion formulation includes estimated revenues in the build decisions. In addition to 

this, the performance of the LDC algorithm could be compared to a fitted chronology or 

high-resolution sampling algorithm. 
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There are several improvements that could be made to the existing generator data-

base. CHP generators were modeled with deratings based on their average historical elec-

trical output, but an industrial CHP operator might want to self-dispatch when the value of 

electricity is higher than the value of the industrial heat. If heat values could be obtained, 

this would improve the dispatch accuracy. Currently, combined cycle natural gas plants are 

set up as single units with lower heat rates than combustion turbines in the ERCOT market 

models. PLEXOS allows waste heat from combustion turbines to be ported to a heat re-

covery steam generator to model combined cycles more realistically. For longer-term anal-

yses, the effects of age on plant components should be modeled. For instance, the heat rates 

of thermal power plants typically decline with age [61], as does wind farm capacity [52]. 

At some point, the plant would need to make major investments in maintenance or retrofits 

to continue operating. In ERCOT, this will be important for wind farm operation beyond 

2030. Besides component wear, other types of retrofits could be considered including car-

bon capture for combustion-based generators and emissions scrubbers for older coal plants 

to comply with air quality standards. Nuclear plant license extensions could also be fac-

tored into long-term fixed costs [62]. 

For long-term capacity expansion, at least three major areas of the model could be 

enhanced: new generator candidates, transmission, and distribution-level resources. The 

generator candidates used in this work were a subset of those available in the Annual En-

ergy Outlook. Additional candidates could be added, including coal and natural gas gener-

ators with CCS, fuel cells, smaller nuclear reactors, concentrating solar thermal, and off-

shore wind. However, without financial incentives or subsidies, many of these technologies 

will be less profitable than their counterparts (e.g., CSP vs. PV). Other technologies, like 

new hydroelectric, municipal solid waste, and geothermal, are constrained by site resource 

requirements, which would require separate research. Additional thermal energy storage 
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options for nuclear power plants could be modeled, including molten salt and silica/alu-

mina materials. It would be advantageous to include other types of energy storage as com-

petitors in the model, especially various types of batteries, compressed air, and pumped 

hydroelectric (assuming site availability).  

Large amounts of wind and solar PV generation were built in many permutations 

of this study. If a certain degree of reliability is desired, the types and amounts of operating 

reserves may need to be adjusted to accommodate large swings in net load. It is also clear 

that more transmission capacity would need to be built to accompany increased wind and 

solar production without curtailment. Including a reduced-order transmission network 

would help pinpoint congestion, and including transmission expansion in the problem for-

mulation would show the additional infrastructure costs of wind and solar buildout. How-

ever, this would increase the computational complexity of the model, especially if a de-

tailed network was used. Although distribution networks are usually beyond the scope of 

region-wide long-term planning, the falling costs of residential solar PV and introduction 

of large residential battery systems mean that distribution-level resources could become 

non-trivial players in future electricity markets [63]. In addition to solar PV and batteries, 

building management technologies that reduce or shift peak loads are becoming more prev-

alent, especially for heating and cooling loads. Incorporating demand response technolo-

gies as an alternative to peak capacity could produce interesting results. 

The scenario-based implementation of uncertainty could be improved in several 

ways. Generally, adding one or more intermediate cases (e.g., low, medium, high natural 

gas prices) would cover more of the option space, but it is unclear if the intermediate results 

would give additional insight into the underlying uncertainty. Fuel price forecasts could be 

improved with finer temporal resolution (e.g., monthly prices), coupling delivered subbi-

tuminous coal prices to oil prices (due to diesel costs driving rail delivery prices), and 
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including demand curves. The load forecasts only covered growing demand and peak load, 

so including flat and declining forecasts could be helpful, at least as sensitivity studies. The 

Aggressive Capital Cost Declines scenario only covered wind and solar PV, but cost de-

clines are also happening for many battery technologies. The social cost of carbon metric 

employed was one amongst many, and it only included the U.S. contribution to the global 

social cost. Various other carbon taxes could be explored, including more and less aggres-

sive mitigation cases. Finally, other types of market and policy uncertainty could be ex-

plored. For instance, the financing assumptions could bias the model towards building 

more capital-intensive projects than if the cost of capital were higher. Different policies 

that cover generator subsidies, environmental standards, market design, and grid reliability 

could be simulated as well.  



 57 

Appendices 

APPENDIX A—U.S. CONSUMER PRICE INDEX: HISTORICAL VALUES AND FORECAST 

The U.S. Department of Labor, Bureau of Labor Statistics publishes several indices 

for inflation in the United States. The Consumer Price Index for All Urban Consumers 

(CPI-U) was used with the baseline value of 100 for 1982–1984 (CUUR0000SA0) [64]. 

This series covers 2007–2016. A simple linear regression was calculated to forecast the 

CPI-U from 2017–2030. For the forecast years, the annual inflation rate ranges from 

2.4%/yr in 2017 (first forecast year), 1.5%/yr in 2018, and 1.3%/yr by 2030. 

 

Table 2. U.S. Consumer Price Index—historical (2007–2016) [64] and forecast. 

Year 

CPI-U  

Annual Relative to 2011 

2007 207.342 0.922 

2008 215.303 0.957 

2009 214.537 0.954 

2010 218.056 0.969 

2011 224.939 1.000 

2012 229.594 1.021 

2013 232.957 1.036 

2014 236.736 1.052 

2015 237.017 1.054 

2016 240.007 1.067 

2017 245.860 1.093 

2018 249.535 1.109 

Year 

CPI-U  

Annual Relative to 2011 

2019 253.210 1.126 

2020 256.884 1.142 

2021 260.559 1.158 

2022 264.234 1.175 

2023 267.907 1.191 

2024 271.583 1.207 

2025 275.258 1.224 

2026 278.933 1.240 

2027 282.608 1.256 

2028 286.282 1.273 

2029 289.957 1.289 

2030 293.632 1.305 
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Figure 30. Inflation relative to 2011, historical and forecast. 
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APPENDIX B—PRODUCTION TAX CREDIT FOR WIND PROJECTS 

The baseline year for the PTC is 1993 when the PTC was set at 1.5¢/kWh 

($15/MWh). The IRS publishes a new inflation adjustment factor each year to hold the 

credit value steady in real terms. To calculate the pre-tax value of the PTC, the post-tax 

value is divided by one minus the corporate tax rate (assumed to be 35%).  

 

 
𝑃𝑇𝐶𝑝𝑟𝑒 =

𝑃𝑇𝐶𝑝𝑜𝑠𝑡

1 − 𝑇𝑎𝑥𝑅𝑎𝑡𝑒
 ( 2 ) 

 

Thus, the post-tax PTC in 2011 was $21.69/MWh, while the pre-tax PTC was 

$33.37/MWh. 

 

Table 3. PTC Schedule and PTC-Adjusted VO&M. 

Year 

IRS Inflation 

Adjustment  

Factor 

 PTC 

[$/MWh]  

 PTC-Adjusted 

VO&M [2011 

$/MWh]  

2011 1.4459 (33.37) (33.37) 

2012 1.4799 (34.15) (33.37) 

2013 1.5063 (34.76) (33.37) 

2014 1.5088 (34.82) (33.37) 

2015 1.5336 (35.39) (33.37) 

2016 1.5556 (35.90) (33.37) 

2017 1.5762 (29.10) (26.69) 

2018 1.5966 (22.11) (20.02) 

2019 1.6169 (14.93) (13.35) 

2020 - 0.00 0.00 
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APPENDIX C—INVESTMENT TAX CREDIT FOR SOLAR PROJECTS 

Because the overnight capital cost for solar PV projects declines over time in the 

Baseline and Aggressive Capital Cost Declines scenarios, the value of the ITC in absolute 

terms also changes over time. Thus, there is a different ITC schedule for each scenario. The 

fixed O&M cost for solar PV in both scenarios was $24.69/kW-yr (2011 USD). 

 

Table 4. ITC for the Baseline Scenario. 

Year 

PV Capital 

Cost  

[2011 $/kW]  

ITC 

[%] 

ITC  

[2011 $/kW] 

FO&M Subtractor 

[2011 $/kW-yr,  

20 yr] 

ITC-Adjusted 

FO&M [2011 

$/kW-yr] 

2011 2,500.00  30% 750.00  (37.50) (12.81) 

2012 1,959.45  30% 587.84  (29.39) (4.70) 

2013 1,689.77  30% 506.93  (25.35) (0.66) 

2014 1,425.25  30% 427.58  (21.38) 3.31  

2015 1,376.11  30% 412.83  (20.64) 4.05  

2016 1,218.38  30% 365.52  (18.28) 6.41  

2017 1,218.38  30% 365.52  (18.28) 6.41  

2018 1,218.38  30% 365.52  (18.28) 6.41  

2019 1,218.38  30% 365.52  (18.28) 6.41  

2020 1,218.38  26% 316.78  (15.84) 8.85  

2021 1,218.38  22% 268.04  (13.40) 11.29  

2022 1,218.38  10% 121.84  (6.09) 18.60  
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Table 5. ITC for the Aggressive Capital Cost Declines Scenario. 

Year 

PV Capital 

Cost  

[2011 $/kW]  

ITC 

[%] 

ITC  

[2011 $/kW] 

FO&M Subtractor 

[2011 $/kW-yr,  

20 yr] 

ITC-Adjusted 

FO&M [2011 

$/kW-yr] 

2011 2,500.00  30% 750.00  (37.50) (12.81) 

2012 1,959.45  30% 587.84  (29.39) (4.70) 

2013 1,689.77  30% 506.93  (25.35) (0.66) 

2014 1,425.25  30% 427.58  (21.38) 3.31  

2015 1,376.11  30% 412.83  (20.64) 4.05  

2016 1,218.38  30% 365.52  (18.28) 6.41  

2017 1,111.17  30% 333.35  (16.67) 8.02  

2018 1,013.38  30% 304.02  (15.20) 9.49  

2019 924.21  30% 277.26  (13.86) 10.83  

2020 842.88  26% 219.15  (10.96) 13.73  

2021 768.70  22% 169.11  (8.46) 16.23  

2022 701.06 10% 70.11 (3.51) 21.18 
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APPENDIX D—FUEL PRICES: HISTORICAL VALUES AND FORECASTS 

Biomass 

Historical biomass prices for Texas were taken from the U.S. EIA State Energy Data 

System, “Table ET7. Electric Power Sector Price and Expenditure Estimates, 1970–2014, 

Texas” [44]. This excludes landfill gas generators (see Landfill Gas below). 

 

Table 6. Biomass prices—historical (2008–2014) [44] and forecast (2015–2030). 

Year 

Biomass 

[$/MMBtu] 

Biomass 

[2011$/MMBtu] 

2008 2.66 2.78 

2009 2.20 2.31 

2010 2.40 2.48 

2011 2.43 2.43 

2012 2.22 2.17 

2013 2.25 2.17 

2014 2.70 2.57 

2015 
 

2.24 

2016 
 

2.20 

2017 
 

2.16 

2018 
 

2.11 

2019 
 

2.07 

2020 
 

2.03 

2021 
 

1.98 

2022 
 

1.94 

2023 
 

1.90 

2024 
 

1.85 

2025 
 

1.81 

2026 
 

1.77 

2027 
 

1.72 

2028 
 

1.68 

2029 
 

1.64 

2030 
 

1.59 
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Coal, Lignite 

Historical lignite prices for Texas were taken from the U.S. EIA Coal Data Browser 

[45], with the primary source from EIA Form 923. 

 

Table 7. Lignite coal prices—historical (2008–2015) [45] and forecast (2016–2030). 

Year 

Lignite  

[$/short ton] 

Lignite  

[2011$/short ton] 

Heat Content  

[Btu/lb.] 

Lignite  

[2011$/MMBtu] 

2008 20.11 21.01 6514 1.61 

2009 23.52 24.66 6434 1.92 

2010 22.84 23.56 6521 1.81 

2011 22.02 22.02 6566 1.68 

2012 23.80 23.32 6541 1.78 

2013 23.09 22.30 6584 1.69 

2014 23.42 22.25 6598 1.69 

2015 25.07 23.79 6536 1.82 

2016 
   

1.75 

2017 
   

1.75 

2018 
   

1.75 

2019 
   

1.76 

2020 
   

1.76 

2021 
   

1.76 

2022 
   

1.76 

2023 
   

1.76 

2024 
   

1.76 

2025 
   

1.76 

2026 
   

1.76 

2027 
   

1.76 

2028 
   

1.76 

2029 
   

1.76 

2030 
   

1.76 

Coal, Subbituminous 

Historical subbituminous prices for Texas were taken from the U.S. EIA Coal Data 

Browser [45], with the primary source from EIA Form 923. 
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Table 8. Subbituminous coal prices—historical (2008–2015) [45] and forecast (2016–2030). 

Year 

Subbit.  

[$/short ton] 

Subbit.  

[2011$/short ton] 

Heat Content  

[Btu/lb.] 

Subbit.  

[2011$/MMBtu] 

2008 28.12 29.38 8485 1.73 

2009 27.68 29.02 8516 1.70 

2010 32.10 33.11 8486 1.95 

2011 33.64 33.64 8472 1.99 

2012 32.77 32.11 8531 1.88 

2013 35.95 34.71 8552 2.03 

2014 36.14 34.34 8514 2.02 

2015 34.11 32.37 8524 1.90 

2016 
   

2.05 

2017 
   

2.09 

2018 
   

2.12 

2019 
   

2.16 

2020 
   

2.19 

2021 
   

2.22 

2022 
   

2.26 

2023 
   

2.29 

2024 
   

2.33 

2025 
   

2.36 

2026 
   

2.39 

2027 
   

2.43 

2028 
   

2.46 

2029 
   

2.50 

2030 
   

2.53 

 

Landfill Gas 

EIA estimates for biomass fuel costs currently exclude landfill gas. Although the 

gas itself flows freely from a landfill, it is only 50–60% methane, with the remainder as 

carbon dioxide and some trace gases [65]. Thus, it must be processed to a higher quality 

for use in a heat engine, typically a gas turbine or reciprocating internal combustion engine. 

Waste Management estimated in 2013 that LFG processing costs for power production 

were between $4–6/MMBtu [46]. Therefore, a fixed price of $5/MMBtu was used across 

the entire planning horizon (2011–2030). 
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Natural Gas 

Historical natural gas prices (2011–2016) were found in [44], Table ET7 for the 

United States. These are quoted in nominal USD and were converted to 2011 USD. All 

prices in the AEO 2015 scenarios were in 2013 USD and were also converted to 2011 USD. 

The assumed conversion factor was 1.027 million Btu per thousand cubic feet of gas 

(1.027 𝑀𝑀𝐵𝑡𝑢/𝑀𝑐𝑓). 

 

Table 9. Natural gas prices—historical (2011–2016) [44] and  

AEO 2015 forecast scenarios (2017–2030) [48]. 

 High Oil and Gas Resource  High Oil Price 

Year $/Mcf 2011$/MMBtu  $/Mcf 2011$/MMBtu 

2011 4.89 4.76  4.89 4.76 

2012 3.54 3.38  3.54 3.38 

2013 4.49 4.24  4.49 4.24 

2014 5.19 4.80  5.19 4.80 

2015 3.37 3.12  3.37 3.12 

2016 2.99 2.74  2.99 2.74 

2017 4.13 3.90  4.37 4.13 

2018 3.84 3.63  4.47 4.22 

2019 3.81 3.60  4.83 4.56 

2020 3.77 3.56  5.25 4.96 

2021 3.84 3.63  5.76 5.44 

2022 3.88 3.67  6.22 5.88 

2023 4.00 3.78  6.94 6.55 

2024 4.03 3.80  7.40 6.99 

2025 4.10 3.87  7.69 7.27 

2026 4.15 3.92  7.84 7.41 

2027 4.19 3.96  7.87 7.44 

2028 4.25 4.01  7.79 7.36 

2029 4.24 4.01  7.91 7.47 

2030 4.25 4.01  8.10 7.65 
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Uranium 

Unlike other fuels which have fixed heating values, the energy content of uranium-

based fuel is a function of reactor burnup, defined as the amount of thermal energy ex-

tracted from fuel per unit mass of initial heavy metal, usually in units of megawatt-days 

per tonne of initial heavy metal (MWd/MTIHM) or gigajoules per kilogram of initial heavy 

metal (GJ/kgIHM). The burnup in a reactor is a function of fuel enrichment, core geometry, 

fuel shuffling patterns, and operational history, among other factors. In this analysis, a 

burnup of 3,888 GJ/kgIHM (45,000 MWd/MTIHM) was assumed, a typical value for U.S. 

reactors in the 2000s [66]. 

There are several steps in the uranium fuel fabrication process, from mining to final 

assembly, and each step has an associated cost that may be only slightly correlated with 

other steps. Historical prices for milled U3O8 were taken from the 2015 Uranium Marketing 

Annual Report, Table S1b [47]. For the final fuel assembly, a typical value of 8.9 kg of 

U3O8 per kg of assembly was used; most of the mined and milled uranium ends up as 

depleted uranium tails during enrichment. Enrichment costs were taken from Table S2 [47] 

in $/kg SWU9. Fuel fabrication costs were assumed to be a constant $300/kg. Total fuel 

assembly costs were calculated as follows: 

 

 
𝑃𝑟𝑖𝑐𝑒𝐹𝑢𝑒𝑙𝐴𝑠𝑠𝑦 = (𝑃𝑟𝑖𝑐𝑒𝑈3𝑂8

×
8.9 𝑘𝑔 𝑈3𝑂8

𝑘𝑔 𝑓𝑢𝑒𝑙 𝑎𝑠𝑠𝑦
)

+ (𝑃𝑟𝑖𝑐𝑒𝑆𝑊𝑈×
7.3 𝑘𝑔 𝑆𝑊𝑈

𝑘𝑔 𝑓𝑢𝑒𝑙 𝑎𝑠𝑠𝑦
) +

$300 𝑓𝑢𝑒𝑙 𝑓𝑎𝑏

𝑘𝑔 𝑓𝑢𝑒𝑙 𝑎𝑠𝑠𝑦
 

( 3 ) 

 

 

  

                                                 
9 SWU stands for separative work unit, the amount of effort and energy to enrich a feedstock to a specified 

enrichment of 235U. 
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Given a burnup of 3,888 GJ/kgIHM, the heat price of uranium is 

 

 
𝑃𝑟𝑖𝑐𝑒𝑈𝑟𝑎𝑛𝑖𝑢𝑚𝐻𝑒𝑎𝑡 =

𝑃𝑟𝑖𝑐𝑒𝐹𝑢𝑒𝑙𝐴𝑠𝑠𝑦

3,888
𝐺𝐽

𝑘𝑔𝐼𝐻𝑀

×
1.055 𝐺𝐽

𝑀𝑀𝐵𝑡𝑢
 

( 4 ) 

Although there have been major price spikes in the U3O8 markets since 2004, the long-

term trend over the last ten years has been relatively flat.
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Table 10. Uranium prices—historical (2008–2015) [47] and forecast (2016–2030). 

Year 

U3O8 

[$/kg] 

kg U3O8/ 

kg Fuel 

Assy 

SWU  

[$/kg 

SWU] 

kg SWU/ 

kg Fuel 

Assy 

Fuel 

Fab. 

[$/kg] 

Fuel Assy 

[$/kg] 

Burnup 

[GJ/kg] 

Uranium 

[$/MMBtu] 

Uranium 

[2011$/MMBtu] 

2008 101.17 8.9 121.33 7.3 287.15  2,073.23   3,888  0.56 0.59 

2009 101.12 8.9 130.78 7.3 286.13  2,140.80   3,888  0.58 0.61 

2010 108.68 8.9 136.14 7.3 290.82  2,251.93    3,888  0.61 0.63 

2011 122.69 8.9 136.12 7.3 300.00  2,385.58    3,888  0.65 0.65 

2012 121.25 8.9 141.36 7.3 306.21  2,417.29    3,888  0.66 0.64 

2013 114.64 8.9 142.22 7.3 310.69  2,369.18    3,888  0.64 0.62 

2014 101.78 8.9 140.75 7.3 315.73  2,249.08    3,888  0.61 0.58 

2015 97.31 8.9 136.88 7.3 316.11  2,181.36    3,888  0.59 0.56 

2016 108.19 8.9 145.46 7.3 320.10  2,344.82    3,888  0.64 0.60 

2017 108.10 8.9 147.63 7.3 327.90  2,367.69    3,888  0.64 0.59 

2018 108.02 8.9 149.79 7.3 332.80  2,387.65    3,888  0.65 0.58 

2019 107.93 8.9 151.96 7.3 337.70  2,407.62    3,888  0.65 0.58 

2020 107.84 8.9 154.13 7.3 342.61  2,427.58    3,888  0.66 0.58 

2021 107.76 8.9 156.30 7.3 347.51  2,447.54    3,888  0.66 0.57 

2022 107.67 8.9 158.47 7.3 352.41  2,467.50    3,888  0.67 0.57 

2023 107.58 8.9 160.64 7.3 357.31  2,487.46    3,888  0.67 0.57 

2024 107.50 8.9 162.81 7.3 362.21  2,507.43    3,888  0.68 0.56 

2025 107.41 8.9 164.98 7.3 367.11  2,527.39    3,888  0.69 0.56 

2026 107.32 8.9 167.15 7.3 372.01  2,547.35    3,888  0.69 0.56 

2027 107.24 8.9 169.31 7.3 376.91  2,567.31    3,888  0.70 0.55 

2028 107.15 8.9 171.48 7.3 381.81  2,587.28    3,888  0.70 0.55 

2029 107.06 8.9 173.65 7.3 386.71  2,607.24    3,888  0.71 0.55 

2030 106.98 8.9 175.82 7.3 391.62  2,627.20    3,888  0.71 0.55 
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APPENDIX E—CARBON TAX 

The carbon tax was set up in PLEXOS as a shadow price on emissions rather than 

a direct price. This allows carbon emissions to be included in the objective function during 

the optimization. Only coal and natural gas fuels were counted in the carbon accounting. 

Production rates used were published by EIA [67], although the rates do vary somewhat 

depending on the source. Biomass and landfill gas were excluded because they are usually 

considered carbon neutral. Hydroelectric and nuclear units were excluded as well. 

 

Table 11. Carbon tax rates based on a social cost of carbon metric [59]. 

Year 2011$/tonne CO2  2011$/tonne C  2011$/lb. CO2  

2011 - - - 

2012 - - - 

2013 - - - 

2014 - - - 

2015 16.49 60.46 0.0075 

2016 17.27 63.34 0.0078 

2017 18.10 66.36 0.0082 

2018 18.96 69.53 0.0086 

2019 19.86 72.85 0.0090 

2020 20.81 76.32 0.0094 

2021 21.80 79.96 0.0099 

2022 22.84 83.78 0.0104 

2023 23.93 87.77 0.0109 

2024 25.07 91.96 0.0114 

2025 26.27 96.35 0.0119 

2026 27.52 100.94 0.0125 

2027 28.84 105.76 0.0131 

2028 30.21 110.80 0.0137 

2029 31.65 116.09 0.0144 

2030 33.16 121.62 0.0150 
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Table 12. Carbon emissions rates for select fuels [67]. 

Fuel 

Production Rate  

[g C/MJth] 

Production Rate  

[lbs. CO2/MMBtu] 

Coal, lignite 25.25 215.4 

Coal, sub. 25.12 214.3 

Natural gas 13.72 117.0 
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APPENDIX F—LOAD GROWTH FORECASTS AND VALUE OF LOST LOAD 

Table 13. Load growth forecasts. 

 

AEO 2015, Low  

Economic Growth [48]  ERCOT Historical [58] 

Year Peak [MW] Energy [GWh]  Peak [MW] Energy [GWh] 

2007  62,115   307,000    62,115   307,000  

2008  62,103   311,000    62,103   311,000  

2009  63,407   307,000    63,407   307,000  

2010  65,713   318,000    65,713   318,000  

2011  67,557   331,960    67,557   331,960  

2012  66,558   325,000    66,558   325,000  

2013  67,253   332,000    67,253   332,000  

2014  66,464   340,000    66,464   340,000  

2015  69,620   347,000    69,620   347,000  

2016  71,093   349,000    71,093   349,000  

2017  71,520   351,094    72,088   354,375  

2018  71,949   353,201    73,098   359,832  

2019  72,380   355,320    74,121   365,373  

2020  72,815   357,452    75,159   371,000  

2021  73,252   359,596    76,211   376,714  

2022  73,691   361,754    77,278   382,515  

2023  74,133   363,924    78,360   388,406  

2024  74,578   366,108    79,457   394,387  

2025  75,025   368,305    80,569   400,461  

2026  75,476   370,515    81,697   406,628  

2027  75,928   372,738    82,841   412,890  

2028  76,384   374,974    84,001   419,248  

2029  76,842   377,224    85,177   425,705  

2030  77,303   379,487    86,369   432,261  

The system-wide offer cap (SWOC) is used as a proxy for the value of lost load 

(VoLL) in the PLEXOS model. Historical values for the SWOC were found in [68, 69]. 

The SWOC was assumed to be in 2011 USD for all years rather than adjusting for inflation. 

 
  



 72 

Table 14. ERCOT system-wide offer cap 2001–2015 [68, 69]. 

SWOC (VoLL) 

 [$/MWh] Start Date End Date 

$1,000 2001-07-31 2007-02-28 

$2,000 2007-03-01 2008-02-29 

$2,500 2008-03-01 2009-02-28 

$3,000 2009-03-01 2012-07-31 

$4,500  2012-08-01 2013-05-31 

$5,000 2013-06-01 2014-05-31 

$7,000  2014-06-01 2015-05-31 

$9,000 2015-06-01  
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APPENDIX G—CAPACITY EXPANSION CANDIDATES 

Table 15. New generation candidates—construction and cost parameters. 

Technology 

Overnight 

Capital 

Cost [2011 

$/kW] 

Project 

Start 

Date 

Lead 

Time 

[yrs] 

Max 

Units 

Built in 

Year 

Economic 

Life [yrs] 

WACC 

[%] 

FO&M 

[2011 

$/kW-yr] 

VO&M 

[2011 

$/MWh] 

Start Cost 

[$/MW-

start] 

Scrubbed 

Coal 

2,925 2011 4 2 20 8% 31.18 4.47 42 

IGCC 3,771 2011 4 2 20 8% 51.39 7.22 42 

NGCC Conv 915 2011 3 6 20 8% 13.17 3.6 35 

NGCC Adv 1,021 2011 3 6 20 8% 15.37 3.27 35 

NGCT Conv 971 2011 2 12 20 8% 7.34 15.45 25 

NGCT Adv 673 2011 2 6 20 8% 7.04 10.37 25 

Nuclear Adv 5,501 2011 6 1 20 8% 93.28 2.14 100 

Biomass 3,919 2011 4 2 20 8% 105.64 5.26 20 

Wind, On-

shore 

2,205 Staggered 3 15 20 8% 39.55 0 0 

Solar PV 3,564 Staggered 2 10 20 8% 24.69 0 0 

Data Source [49, 50]  [49]   [49] [49] [49] [54] 
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Table 16. New generation candidates—technical parameters. 

Technology Fuel 

Prime 

Mover 

Capac-

ity 

[MW] 

Firm  

Capacity 

[%] 

Heat Rate 

[Btu/kWh] 

Min Stable 

Level [%] 

Max Ramp 

Rate 

[%/min] 

Min Down 

Time [hrs] 

Min Up 

Time [hrs] 

Scrubbed 

Coal Coal-Sub. ST 1300 100% 8,740 50% 0.25% 12 24 

IGCC Coal-Sub. CCGT 1200 100% 7,450 50% 0.40% 12 24 

NGCC Conv NG CCGT 620 100% 6,800 25% 0.40% 6 14 

NGCC Adv NG CCGT 400 100% 6,333 25% 0.40% 6 14 

NGCT Conv NG OCGT 85 100% 10,450 25% 20% 1 1 

NGCT Adv NG OCGT 210 100% 8,550 25% 20% 1 1 

Nuclear Adv Uranium ST 2234 100% 10,464 50% 0.25% 24 168 

Biomass Biomass ST 50 100% 13,500 50% 0.25% 6 8 

Wind, On-

shore Wind WT 100 12% - 0% - 0 0 

Solar PV Solar PV 150 80% - 0% - 0 0 

Data Source   [49] [70] [49] [54] [54] [54] [54] 
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Table 17. New generation candidates—outage rates and reserves. 

Technology 

Planned  

Outage Rate 

[%] 

Forced  

Outage Rate 

[%] Reserves 

Scrubbed Coal 10 6 RegDn, RRS, NSRS 

IGCC 12 8 RegDn, RRS, NSRS 

NGCC Conv 6 4 

RegDn, RegUp, RRS, 

NSRS 

NGCC Adv 6 4 

RegDn, RegUp, RRS, 

NSRS 

NGCT Conv 5 3 

RegDn, RegUp, RRS, 

NSRS 

NGCT Adv 5 3 

RegDn, RegUp, RRS, 

NSRS 

Nuclear Adv 6 4 None 

Biomass 7.6 9 

RegDn, RegUp, RRS, 

NSRS 

Wind, Onshore 0.6 5 None 

Solar PV 2 0 None 

Data Source [71] [71] [54] 
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Table 18. Capital cost scenarios for new solar PV and wind projects, 2011–2030.  

 Utility Solar PV [$/kW]  Onshore Wind [$/kW] 

Year Base 

-8.8%/yr 

(2017–2025)  Base  

-1.3%/yr 

(2017–2025) 

2011 2500.00 2500.00  1300.00 1300.00 

2012 1959.45 1959.45  1469.59 1469.59 

2013 1689.77 1689.77  1448.37 1448.37 

2014 1425.25 1425.25  1330.24 1330.24 

2015 1376.11 1376.11  1186.30 1186.30 

2016 1218.38 1218.38  1171.52 1171.52 

2017 1218.38 1111.17  1171.52 1156.29 

2018 1218.38 1013.38  1171.52 1141.26 

2019 1218.38 924.21  1171.52 1126.43 

2020 1218.38 842.88  1171.52 1111.78 

2021 1218.38 768.70  1171.52 1097.33 

2022 1218.38 701.06  1171.52 1083.06 

2023 1218.38 639.36  1171.52 1068.98 

2024 1218.38 583.10  1171.52 1055.09 

2025 1218.38 531.79  1171.52 1041.37 

2026 1218.38 531.79  1171.52 1041.37 

2027 1218.38 531.79  1171.52 1041.37 

2028 1218.38 531.79  1171.52 1041.37 

2029 1218.38 531.79  1171.52 1041.37 

2030 1218.38 531.79  1171.52 1041.37 
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APPENDIX H—STEAM ACCUMULATOR CANDIDATES 

Table 19. Steam accumulator parameter assumptions. 

Power 

[MW] 

Energy [hrs 

@ max 

power] 

Turbine Ramp 

Rate [%/min.] 

Min. Stable 

Level [% of 

max. power] 

Scheduled 

Outage Rate 

[%] 

Forced 

Outage 

Rate [%] 

Var. O&M 

Cost 

[$/MWh]  

 Start Cost 

[$/MW-

start]  

500 5 0.54% 25% 6% 3% 8.00 11.00 

500 10 0.54% 25% 6% 3% 8.00 11.00 

500 20 0.54% 25% 6% 3% 8.00 11.00 

500 40 0.54% 25% 6% 3% 8.00 11.00 

1000 5 0.54% 25% 6% 3% 8.00 11.00 

1000 10 0.54% 25% 6% 3% 8.00 11.00 

1000 20 0.54% 25% 6% 3% 8.00 11.00 

1000 40 0.54% 25% 6% 3% 8.00 11.00 

500 5 1.67% 25% 6% 3% 8.00 11.00 

500 10 1.67% 25% 6% 3% 8.00 11.00 

500 20 1.67% 25% 6% 3% 8.00 11.00 

500 40 1.67% 25% 6% 3% 8.00 11.00 

1000 5 1.67% 25% 6% 3% 8.00 11.00 

1000 10 1.67% 25% 6% 3% 8.00 11.00 

1000 20 1.67% 25% 6% 3% 8.00 11.00 

1000 40 1.67% 25% 6% 3% 8.00 11.00 
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Table 20. Steam accumulator parameters calculated from the MATLAB thermodynamic model. 

Power 

[MW] 

Energy [hrs @ 

max power] 

Turbine Ramp 

Rate [%/min.] 

Heat Loss Rate  

during Storage 

[%/min.] 

Pump  

Efficiency 

[%] 

 Fixed O&M 

Cost [$/kW-yr]  

Overnight  

Capital Cost 

[$/kW]  

500 5 0.54% 0.258% 96.5% 64.31 1286.00 

500 10 0.54% 0.258% 94.7% 68.40 1368.00 

500 20 0.54% 0.258% 90.9% 77.90 1558.40 

500 40 0.54% 0.258% 83.2% 98.30 1966.80 

1000 5 0.54% 0.258% 96.7% 56.87 1137.50 

1000 10 0.54% 0.258% 94.8% 61.30 1226.00 

1000 20 0.54% 0.258% 90.9% 71.16 1423.00 

1000 40 0.54% 0.258% 83.8% 88.86 1777.00 

500 5 1.67% 0.258% 97.5% 62.95 1259.00 

500 10 1.67% 0.258% 95.7% 67.03 1354.66 

500 20 1.67% 0.258% 92.1% 75.88 1517.60 

500 40 1.67% 0.258% 84.5% 95.60 1912.34 

1000 5 1.67% 0.258% 97.6% 55.85 1117.00 

1000 10 1.67% 0.258% 95.7% 60.28 1206.00 

1000 20 1.67% 0.258% 91.9% 69.80 1396.00 

1000 40 1.67% 0.258% 84.8% 87.50 1750.00 
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Glossary 

Acronym Description 

Btu British thermal unit 

CAES Compressed air energy storage 

CCGT Combined-cycle gas turbine 

CCS Carbon capture and sequestration 

CHP Combined heat and power plant 

CSP Concentrating solar power 

DOE U.S. Department of Energy 

EIA U.S. Energy Information Administration 

EPA U.S. Environmental Protection Agency 

ERCOT Electric Reliability Council of Texas 

IEA International Energy Agency 

IRENA International Renewable Energy Agency 

ITC Business Energy Investment Tax Credit 

LDC Load duration curve 

LFG Landfill gas 

LP Linear programming 

MIP Mixed integer programming 

MSW Municipal solid waste 

NSRS Non-Spinning Reserve Service 

NERC North American Electric Reliability Corporation 

NREL National Renewable Energy Laboratory 

O&M Operations and maintenance 

OCGT Open-cycle gas turbine 

PCM Phase-change materials 
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Acronym Description 

PTC Production Tax Credit 

PV Solar photovoltaic 

PWR Pressurized water reactor 

RM Reserve margin 

RRS Responsive Reserve Service 

SCC Social cost of carbon 

ST Steam turbine 

SWOC System-wide offer cap 

SWU Separative work unit 

TES Thermal energy storage 

USD United States dollars 

VoLL Value of lost load 

WT Wind turbine 
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