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The goal of this dissertation is to describe and discuss the first steps

taken by the Magneto Bernoulli eXperiment (MBX) to create magnetofluid

states in the laboratory using a rotating plasma in an external mirror magnetic

field. The terminology magnetofluid has been introduced to characterize a

plasma model, based on 2-fluid theory, that treats the flow and the magnetic

field in a symmetrical way. Many interesting astrophysical and laboratory

problems involve large flows and fall in this category.

Based on the set of parameters where MBX should run, we set up the

experiment, and added different probes to diagnose the rotating plasma. We

have also installed a data acquisition system, and set up an archive system (to

store the data) that can be accessed worldwide.

Experimental results demonstrate that supersonic flows can be gener-

ated with biasing electrodes at the throat of the mirror magnetic field. Alfvenic
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flows needed for a transition to magnetofluid states could not be reached be-

cause the initial plasma density was too low. At low bias (slow rotational

speed) the plasma has E × B/B2 drift rotation and the magnetic fields lines

are equipotentials. With a higher bias, we observed large potential drops along

the field lines. We also observed an asymmetry in the polarity of the bias which

leads to constraints in the control of the sheared plasma flow. We present a

model that captures many of these features.

In conjunction with experimental efforts we develop a theory for a ro-

tating plasma embedded in an external mirror magnetic field. An analytic

solution that involves rigid rotation of the plasma shows important differences

between a 2-fluid system and ideal MHD. We find high non equipotential mag-

netic lines and asymmetry to compare with the experimental results.
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Chapter 1

Introduction

This dissertation covers the first steps taken by the Magneto Bernoulli

eXperiment (MBX) to create magnetofluid states in the lab using a rotating

plasma in an external mirror magnetic field. The terminology magnetofluid

has been introduced to characterize a plasma model, based on 2-fluid theory,

that treats the flow and the magnetic field in a symmetrical way. The goal

of the dissertation is to show the experimental work done in the methodology

chosen to create such states in the lab and to contribute in the theoretical

understanding of the importance of 2-fluid effects applied to rotating plasmas

in connection with magnetofluid states.

The motivation to create magnetofluid states is based on a number of

interesting and unsolved problems in nature as well as in the laboratory envi-

ronment that involve large plasma flows. One of the best known astrophysical

examples is the heating of the solar corona, possibly mediated by the inter-

action of sub coronal flows with the coronal magnetic field [37]. The increase

in plasma confinement when a tokamak plasma makes a transition from a low

confinement mode to a high confinement mode (H-mode) is a particularly in-

teresting laboratory phenomena. At the transition to H-mode a highly sheared
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flow appears in the region of steep density gradients [45]. Other characteris-

tics that these unexplained problems have in common, apart from high plasma

flows, are: 1) good confinement, 2) no requirement of high symmetry, and 3)

existence of multiple intrinsic scale lengths. Despite considerably effort there

is not a general understanding of confinement and flows.

In order to study the structures in plasmas with high speed flows

strongly coupled to the magnetic field, the recent theory of magnetofluid states

(MFS) introduced by Mahajan and Yoshida [27] provides a new theoretical

framework. This theory has been applied both to the solar corona and to

the H-mode transitions. In the first case, magnetofluid equilibria allows, for

example, the existence of a smooth magnetic field with a highly varying veloc-

ity field; the later can enhance the viscous dissipation leading to heating and

sustainment of the solar corona [26]. When applied to the H-mode, the theory

predicts the possible emergence of a singular layer (after a self organization

process) on the ion skin depth scale length endowed with high shear flows and

a strong drop in pressure for high confinement [28].

A variety of interesting features of magnetofluid states have not been

observed in the lab, primarily because of difficulties in creating fast magne-

tized plasma flows (of the order of the Alfvén speed VA) in the laboratory

environment. The Magneto Bernoulli eXperiment (MBX) [4] was designed to

explore possible paths to magnetofluid states. The main idea is to create an

initial rotation by applying a radial electric field to a magnetized plasma [24]

that can relax to a magnetofluid state in which the final configuration depends

2



only on the initial values of the two conserved helicities. The proposed path to

obtain magnetofluids is the following. The initial confinement in the parallel

direction is obtained by embedding the plasma in an axisymmetric magnetic

mirror configuration (Fig. 1.1 - left hand side). Concentric rings located at

Front 

View
E

B

E∧∧∧∧B/B2

Rings

Central Rod

Figure 1.1: Initial plasma confinement in a magnetic mirror field (left hand
side) where concentric rings at the throat bias the plasma to create an az-
imuthal rotation (right hand side).

one throat of the mirror, biased with respect to a limiter and grounded walls,

set up a radial electric field E that, in combination with the magnetic field B,

creates an azimuthal electric drift VE = E × B/B2 (Fig. 1.1 - right hand

side) [1, 3, 24]. The rotational flow in combination with the mirror field, cre-

ates an inertial (centrifugal) force parallel to B that acts mostly on the ions

and pushes the plasma towards the equatorial plane providing significant axial

confinement (Fig. 1.2 - left hand side) [8, 9, 24]. This effect tends to reduce the

usual loss cone in mirror machines everywhere except on the axis of symme-

try; a spatial loss cone and consequently a toroidal plasma ring gets created
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Side 

View

Biasing 

Rings

Centrifugal

Force

Rings

E

B

E∧∧∧∧B/B2 Limiter

Figure 1.2: Centrifugal forces due to plasma rotation provide significant axial
confinement (left hand side). The absence of centrifugal force at the axis
creates an spatial loss cone and a plasma ring (right hand side).

(Fig. 1.2 - right hand side) [16]. The radial centrifugal force causes the ions

to have an extra drift resulting in a diamagnetic current Jd (and also a self

magnetic field) (Fig. 1.3 - left hand side) [9]. When the rotation is fast enough

the self magnetic field can strongly couple with the external one. The weakest

point in this configuration is at the inner equator where the total magnetic

field is weakest. We expect the plasma to evolve from this confinement by

using the free energy in the flow with a reconnection in the magnetic field to

form a toroid, and then relax through a turbulent process to a nearby axially

detached magnetofluid state (Fig. 1.3 - right hand side) [4]. The final state

will only depend on the initial values of the two helicity invariants set by the

initial flows and currents independent of the details of the turbulent process

of field line breaking and rejoining. We can also assist this formation inducing

poloidal seed currents.

4



Figure 1.3: The radial centrifugal force causes the ions to have an extra drift
creating a diamagnetic current Jd and a self magnetic field (left hand side)
where the plasma could probably relax to a nearby axially detached mag-
netofluid state (right hand side).

This work is divided in 6 chapters. The second chapter contains a

review of the theory of magnetofluids and its most important features. We

also add a theoretical study of rotating plasmas that compares the predictions

of a two fluid model with those of ideal magnetohydrodynamics (MHD). This

treatment is also relevant to the Maryland Centrifugal eXperiment (MCX) [8].

We retain dissipative terms that allow the understanding of the external inputs

such as currents, needed to drive the system in the present configuration and

the possible requirements for magnetofluid states.

The third chapter explains in detail the experimental set up that follows

the proposed path into magnetofluids. Details about the generation of the

5



external mirror field, the initial plasma creation as well as the plasma biasing

scheme used to achieve fast, supersonic rotation, are also given.

In Chapter four, are described the diagnostics used to measure different

plasma properties of the rotating plasma: the plasma density, temperature,

potential and rotational velocity. The set up for signal conditioning, data

acquisition and archiving is also presented.

In Chapter 5, the experimental progress towards creating magnetofluid

states is discussed. We find that supersonic low density plasmas can be

achieved using the present technique, but some details have to be taken into

consideration. To reach Alfvenic speeds and possible magnetofluid states the

density has to increase by two orders of magnitude from its present value.

Based on the experience gained from this investigation, we propose

in the sixth and final chapter possible directions to be taken in the quest of

magnetofluid states.

6



Chapter 2

Theory

The main purpose of the Magneto Bernoulli eXperiment is to achieve

magnetofluids states in the lab. MBX plans to reach these states in an exter-

nal mirror magnetic field. While we have not reached the conditions needed

for magnetofluid states to exist, we have made significant progress in under-

standing the conditions for creating them. In this chapter then, we review

the magnetofluid state formalism and some of the characteristics that make

them distinct. We also present some characteristics of the proposed path and

compare them to ideal MHD conditions where previous and present rotat-

ing plasma experiments have operated. Finally, we investigate the role that

dissipation plays in the present system, and compare the findings to the ex-

perimental results.

In order to reach a system of equations to study all the points mentioned

previously we analyze a two fluid system. We start with the first 2 moments

of the fluid equations including dissipative terms combined with Maxwell’s

equations. We write the system in dimensionless form to analyze the contri-

bution of each term so that simplifications can be made and to find a region

in parameter space where the dissipationless set is valid. Typical plasma pa-

7



rameters for MBX present and future conditions are shown and compared to

MCX. We then present the dissipationless system, both in connection with

magnetofluid states as well as with rotating plasmas in an external mirror

magnetic field. Finally we study the set of equations keeping the dissipative

terms in a simple cylindrical geometry to understand our present and future

external requirements.

2.1 Model

2.1.1 Basic Equations

The study starts by considering a plasma containing electrons (e), single

ionized atoms (i), and neutrals (n). To simplify the system we take only the

first two moments of the kinetic equations for the charged particles (s = e, i)

and combine them with Maxwell’s equations to obtain the following set of

equations [17]

∂ns

∂t
= −∇ · (nsVs) + Is0 (2.1)

msns
dVs

dt
= esns(E + Vs ×B)−∇ps −∇ ·Πs + Fsj −msIs0Vs (2.2)

∇×B = µ0J +
1

c2
∂E

∂t
(2.3)

∇ ·B = 0 (2.4)

∇× E = −∂B
∂t

(2.5)

∇ · E =
e(ni − ne)

ε0
(2.6)

J = e(niVi − neVe) (2.7)

8



The particle equation (2.1) contains the density ns, velocity Vs, and a

possible source function Is0 = is0 =
∫
Isd

3v. The momentum equation (2.2)

contains the inertia and Lorentz force, the pressure tensor p = psI + Πs,

frictional forces Fsj (with j = e, i, n), and a drag force from the possible

source term is1 = −Is0V +
∫

vIsd
3v = −Is0V assuming that Is is isotropic in

the velocity space. Is0 can be approximated as the particle density multiplied

by an ionization frequency Is0 ∼ nsνion,s.

Friction between electrons and ions or neutrals can be included. First

order expressions are given by

Fie = −Mniνie(Vi −Ve) = −Mniνie∆Vie = −Fei

Fsn = −msnsνsn(Vs −Vn) = −msnsνsn∆Vsn

where νsj is the collision frequency of specie s against specie j and M(m) is

the ion (electron) mass.

The viscosity tensor can be written as Πs = −µs ·Ws where µs is a

3 × 3 tensor and Wjk =
∂Vj

∂xk
+ ∂Vk

∂xj
− 2

3
δjk∇·V, [Ws] = Hz [5]. The kinematic

viscosity is defined as νk,s = µs/(msns).

2.1.2 Dimensionless Form

We normalize the previous set of equations keeping in mind that the

velocity of the fluid is one of the most important quantities in our experi-

ment. Table 2.1 contains the dimensions used or defined and the corresponding

9



substitutions where tilde represents typical parameters (Ṽ -velocity, L̃-length,

B̃-magnetic field, ñ-density, T̃ -temperature).

DIMENSIONS FREQUENCIES SUBSTITUTIONS

Ṽ , L̃, B̃, ñ, T̃ w̃ = Ṽ
L̃
, inertia ∇ → 1

L̃
∇

M = mi,m = me Ωs = qsB
ms

, cyclotron Vs → ṼVs

VA = B√
µ0niM

, Alfvén speed wt,s =
ṽth,s

L̃
, transit B→ B̃B

vth,s =
√

Ts

ms
, thermal speed νij, collisional (i → j) E→ Ṽ B̃E

cs, sound speed νion,s, ionization ps → ñT̃ ps

λs = c
ωp,s

=
√

M
ms

VA

Ωs
, skin depth ωp,s =

√
nse2

ε0ms
, plasma ns → ñns

σ = η−1
e = nee2

νeim
, conductivity J→ eñṼ J

µsWs → µ̃sw̃µsWs

Ss → ñν̃ion,snsνion,s

Table 2.1: Typical parameters, associated frequencies and corresponding sub-
stitutions to normalize the set of equations in Section 2.1.1.

Combining the different parameters in the system leads to the set of di-

mensionless quantities in Table 2.2. These quantities express the importance

between the different terms in the equations. After making all the corre-

sponding substitutions in Table 2.1 and using the dimensionless coefficient in

Table 2.2 the dimensionless form of the system of equations in Section 2.1.1

becomes

10



DIMENSIONLESS

MA =
(

Ṽ
VA

)
, Alfvén Mach Number

M =
(

Ṽ
cs

)
, Mach Number

Ms =
(

Ṽ
ṽth,s

)
CH,s =

(
Ω̃s

ν̃ss

)
, Hall Coefficient

β = ñT̃
B̃2/(2µ0)

= 2
(

ṽth,i

VA

)2

= 2
(

MA

Mi

)2

, Beta

εs =
(

w̃
Ω̃s

)
=
√

ms

M
λ̃s

L̃
Ṽ
VA

= 1
CH,sCD,ss

ε =
(

w̃
Ω̃i

)
= λ̃i

L̃
Ṽ
VA

= 1
CH,iCD,ii

CD,is =
(

ν̃is

w̃

)
, Drag Coefficient

Re,s =
(

L̃Ṽ
ν̃k,s

)
, Reynolds Number

Table 2.2: Dimensionless coefficients.

∂ns

∂t
= −∇ · (nsVs) +

ν̃ion,s

w̃
νion,sns

dVs

dt
=

(E + Vs ×B)

εs
− ∇ps/ns

M2
s

+

−νk,s∇ ·Ws

Re,s

− CD,sjνsj∆Vsj −
ν̃ion,s

w̃
νion,sVs

∇×B =
M2

A

ε
J +

(V0

c

)2∂E

∂t

∇ ·B = 0

∇× E = −∂B
∂t

(ni − ne) = δn =
(VA

c

)2

ε∇ · E

J = niVi − neVe
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All quantities are dimensionless including the frequencies that are nor-

malized to their average values. It can be seen that εs is the measure of the

mass-charge ratio. It appears when electromagnetic and inertial forces are

compared. Moreover, while ε is assumed to vanish in the ideal MHD closure,

it is of the order of unity when the interaction between velocity and magnetic

fields in magnetofluids is strongest. It is important to notice the choice made

for J. It is normalized to the plasma velocities, rather than the currents creat-

ing B̃ which could be external. Usually perpendicular currents that arise from

inertial effects (electric drift does not contribute) are of order ε so that the self

field generated is of order M2
A. This field will be comparable to the external

field when Alfvén speeds are reached, point where we expect a reconnection

process might take place.

2.1.3 Assumptions

A list of considerations convenient for simplifying the theory, apart

from the ones already made for the source and friction forces, follows:

1. Neglegible displacement current ∂E
∂t

because
(

c
VA

)2

� ε.

2. Quasineutrality: n = ni = ne + δn, with δn � n, since ε
(

VA

c

)2 � 1.

Sheath effects are treated separately, at the plasma-wall boundary.

3. The inertia of the electrons is neglected compared to the inertia of the

ions, εe = m
M
εi.

4. J ∼ n(Vi −Ve), and Vi ∼ V
(

m
M
� 1

)
so that Ve ∼ V − J/n.

12



5. Both pressure terms pe and pi are similar because εe

M2
e
∼ εi

M2
i
.

6. To close the system, we can choose a barotropic pressure, p(n), so that

∇p(n)
n

≡ ∇p̃(n). In particular, if the system is isothermal then p̃ = ln(n),

and if has constant density then p̃ = T . This assumption simplifies the

equations to solve.

7. The cross section of charged particles against neutrals is similar so that

νin

νen
∼ vth,i

vth,e
, then the friction force of the electrons with neutrals can be

neglected compared to the ions with neutrals,
εeCD,en

εiCD,in
∼
√

m
M

[5].

8. Since Ii = Ie or νion,i = νion,e = νion, the electron source momentum term

can be neglected compared to the ion momentum by a factor εe

εi
∼ m

M
.

9. Motionless neutrals, Vn ∼ 0, in the calculation of the drag force. In

MBX present conditions of a weakly ionized plasma the density of the

motionless neutral background is much higher than the density of charge

exchanged neutrals. In the future the mean free path of the neutrals has

to be longer than the size of the machine for this assumption to hold.

10. Electron viscosity is neglected compared to the ion viscosity since εe

Re,e
∼√

m
M

εi

Re,i
. Moreover, if Ωiτii � 1 only the first term in the viscosity tensor

is relevant so that µi ∼ µ0
i δij with µ0

i = .96niτiiTi [5].

11. When the collisional frequency among electrons and ions or between

ions themselves have the form νei/n = fe(Te, ln Λ), νii/n = fi(Ti, ln Λ)

respectively [5], ηe and µ0
i simplify becoming only functions of T and

13



ln Λ (Coulomb logarithm). We define f(T, ln Λ) = (ln Λ)/T 3/2, all di-

mensionless quantities.

2.1.4 Simplified Equations

These assumptions simplify the basic equations to

∂n

∂t
= −∇ · (nV) +

ν̃ion

w̃
νionn, for both e, i (2.8)

dV

dt
=

(E + V ×B)

ε
− 1

M2
i

∇pi

n
− CD,ief(T, ln Λ)J +

−νk,i
∇ ·Wi

Re,i

−
(
CD,inνin +

ν̃ion

w̃
νion

)
V (2.9)

0 = −(E + Ve ×B)

ε
− 1

M2
i

∇pe

n
+ CD,ief(T, ln Λ)J (2.10)

∂δn

∂t
= −∇ · J ∼ 0 (2.11)

dV

dt
= ε−1J×B

n
− 1

M2
i

∇p
n

+

−νk,i
∇ ·Wi

Re,i

−
(
CD,inνin +

ν̃ion

w̃
νion

)
V (2.12)

E + V ×B = − ε

M2
i

∇pe

n
+

J×B

n
+ f(T, ln Λ)

J

CH,e

(2.13)

∇×B =
M2

A

ε
J (2.14)

∇ ·B = 0 (2.15)

∇× E = −∂B
∂t

(2.16)

δn =
(VA,0

c

)2

ε∇ · E (2.17)

J = n(Vi −Ve) (2.18)
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where p = pe + pi is the total pressure and the terms in blue are used in the

dissipationless theory of magnetofluid states. The set of equations corresponds

to a compressible, resistive, viscous, Hall MHD.

2.1.5 Plasma Parameters

We use two different sets of plasma parameters. The first choice corre-

sponds to the present conditions in MBX where the plasma density is low and

the speed, even though supersonic, is sub-Alfvenic. The future corresponds

to higher densities where magnetofluid states can exist. Table 2.3 shows both

regimens as well as MCX parameters.

Presently in MBX the inertial effects are small but not neglegible

(ε = 0.025) while in the future we aim to have a strong coupling between

flows and the electromagnetic field (ε = 0.25). The Alfvén Mach number in

combination with ε yields a self magnetic field four orders of magnitude less

than the external field in the present conditions while we expect to be at par

(∼ 0.25) in the future so that a reconnection process becomes possible. The

low β presently implies that the pressure is much smaller than the magnetic

pressure but at par in future conditions. The Hall coefficient is large in all cases

so that the resistance arising from electron-ion collisions is small compared to

the Hall term. Also, the leading term in the viscosity is much larger than

the following orders as assumed in section 2.1.3. The neutral drag coefficient

is presently small and we expect to be smaller as highly ionized plasmas are

obtained in the future. The Reynolds number is on the order of unity which
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Parameter Units MBX MBX MCX
Present Future

B̃ T 0.04 0.02 0.2

L̃ m 0.25 0.25 0.25

Ṽ m/s 2.5 · 104 105 2.5 · 105

ñ particles/m3 1016 5 · 1018 5 · 1020

ñN particles/m3 2.5 · 1018 < 2.5 · 1018 < 2.5 · 1020

T̃e eV 5 10 15

T̃i eV 1 10 15
ṽth,i m/s 9.8 · 104 3.1 · 104 3.8 · 104

ṼA m/s 8.7 · 106 2 · 105 2.0 · 105

Ω̃i rad/s 3.8 · 106 1.9 · 106 1.9 · 107

w̃ Hz 1.0 · 105 4.0 · 105 1.0 · 106

w̃t Hz 3.9 · 104 1.2 · 105 1.5 · 105

ν̃ei Hz 3.6 · 104 5.6 · 106 2.6 · 108

ν̃cx Hz 2.5 · 104 < 5 · 104 < 5 · 106

λ̃i m 2.3 0.1 0.01

λ̃Debye m 1.7 · 10−4 1.1 · 10−5 1.3 · 10−6

β 1.5 · 10−5 0.1 0.15
CD,cx 0.25 < 0.13 < 5
CH,e 1.9 · 105 6.3 · 102 1.4 · 102

CH,i 5.7 · 102 2.1 · 101 4.5
ε 2.6 · 10−2 0.21 5.2 · 10−2

M 0.9 1.6 3.3
MA 2.9 · 10−3 0.51 1.3
Re,i 0.46 2.5 1.9 · 102

Table 2.3: Typical plasma parameters for the present and future conditions in
MBX as well as for MCX [7, 12].
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means that viscosity can affect the system, mostly if finer scales appear in the

plasma. In the future we aim to reach an ion skin depth (characteristic length

for magnetofluid states) slightly smaller than the size of the plasma as needed.

In the case of MCX, the inertia is small compared to the electromagnetic

forces but not neglegible (ε = 0.05). The self magnetic field should not be

neglected because is of the order of the external field.

In summary, in this section we have reached a simplified set of dimen-

sionless equations, after some assumptions, containing the terms used in the

dissipationless theory of magnetofluid states. Accordingly, we chose two sets

of parameters to use in the following sections. The first set corresponds to

present conditions in MBX where the plasma density is low and the speeds

are supersonic but sub-Alfvenic, and the second set for future conditions with

higher densities where magnetofluid states can exist.

2.2 Dissipationless Electron-Ion equations

In order to study either magnetofluid states or externally driven rotat-

ing plasma solutions and their difference with ideal MHD predictions we seek

a region in the parameter space where the dissipative terms in the electron and

ion equations can be neglected. We assume a barotropic relationship p = p(n)
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so that ∇p/n = ∇p̃(n). The ion, electron and momentum equations become

−∂tA +

[
(V − J

n
)×B

]
= −∇Pe, Pe =

εp̃e

M2
i

− φ (2.19)

∂t(A + εV) + [(B + ε∇×V)×V] = −∇Pi, Pi =
εp̃i

M2
i

+
εV 2

2
+ φ (2.20)

∂tV + (∇×V)×V − J×B

εn
= −∇PT , PT =

p̃

M2
i

+
V 2

2
(2.21)

where B = ∇ × A and the definition of PT = ε−1(Pe + Pi) in Eq. (2.21)

(p̃ = p̃i + p̃e) is made so that it becomes of order unity. At the same time it

shows that the perpendicular current to the magnetic field J⊥ is of the order

ε (and the self magnetic field becomes order M2
A) unless finer scales appear in

the plasma so that it becomes of order ε∇ or a higher order derivative. This is

a distinct feature of magnetofluid states, where configurations with ε ∼ 0 can

differ considerably from the ideal MHD predictions. On the other hand parallel

currents can be completely carried by electrons while ions remain motionless

so that they do not need to be of order ε.

Electron and ion equations (2.19)-(2.20) can be written in the ideal

induction forms as [27]

∂tÃj −Uj ×Ωj = ∇χj → ∂tΩj −∇× (Uj ×Ωj) = 0 (2.22)

Ãe = A, Ue = V − J/n, Ωe = B, χe = Pe

Ãi = A + εV, Ui = V, Ωi = B + ε∇×V, χi = −Pi

where U are the effective flows, and Ã,Ω the generalized flows and correspond-

ing vorticities respectively. The generalized vorticities are then ideally induced
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by the effective flows. It is important to note that the generalized vorticities

are not the vorticities of the effective flows but the generalized flows.

There are different possible choices to solve this coupled non linear

problem, we will work with two of them:

1. Magnetofluid states [27]: in stationary state the generalized vortici-

ties are aligned to the effective flows (Uj ‖ Ωj) so that the different

Ps’s are constant in space leading to magneto-Bernoulli confinement,

p̃/M2
i +V 2/2 = constant. While the Bernoulli equation appears in fluids

assuming an irrotational flow, in a magnetofluid the J × B term bal-

ances the vorticity term. Usually, in magnetofluids the fluid velocity is

normalized to the Alfvén speed while the pressure leads to the plasma

beta. In our case, the typical plasma speed Ṽ is the normalization factor

so that the Mach number Mi appears in the pressure term. This sys-

tem contains helicity due to the alignment of the generalized flows and

vorticities, Ã · Ω = (∇ ×−1 Ω) · Ω 6= 0. As previously said, we plan

to create magnetofluid states embedded in an external magnetic field

after a reconnection process. The core of this state would not have a

direct connection to the external world. That is, the magnetic field lines

connected to the external drive would reach only the boundary of the

magnetofluid state. The control of the profile is only indirect.

2. Externally driven rotating plasma states: under certain conditions the

effective and generalized flows can be aligned (Uj ‖ Aj) and completely
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perpendicular to the corresponding effective and generalized vorticities

so that the net result of the right hand sides of the Eqs. (2.19)-(2.20) are

gradient forces instead of zero as in magnetofluid states. These states

have been produced in rotating plasmas experiments without a recon-

nection process with small values of ε. In this case, the plasma core has

a direct connection to the external world. That is, the magnetic field

lines connected to the external drive reach the inner parts of the rotating

plasma creating a direct control of the plasma profile.

2.2.1 Validity Region

The simplifications that lead to the dissipationless set of equations are

only valid in one region of the parameter space. The terms dropped are the

viscosity, neutral and source drag and the friction between electrons and ions.

This region shrinks when a strong coupling between the velocity and magnetic

fields is required. MBX aims to operate under these conditions to reach mag-

netofluid states. Fig. 2.1 shows a region of strong coupling (ε > .5, MA > .5)

embedded in another with less coupling (ε > .1, MA > .1). The surfaces cor-

responds to the constrains imposed by ε and MA as well as by neglecting the

dissipative terms (Re,i > 1, CH,i > 1). The present conditions in MBX (red

dot) are far from the region mainly due to the low density. MCX present con-

ditions (magenta square) are away from the region due to the high magnetic

fields used.
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Figure 2.1: Region in parameter space where dissipationless equations apply
and strongly coupled magnetofluid states can exist. Units are in MKS.
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The future conditions where MBX plans to operate (black star) are at the edge

of the strong coupling region. Stronger coupling could be achieved lowering

the external magnetic field however the Larmor orbit of the particles would

become comparable to the size of the machine.

2.2.2 Magnetofluid States

Magnetofluid states solutions introduced by Mahajan and Yoshida [27]

appear in the two fluid treatment of the plasma dynamics as compared to the

flowless MHD force-free relaxed states introduced by Taylor [42]. Ideal MHD

allows solutions of the Beltrami form

µ0J = ∇×B = κ(x)B (2.23)

where κ(x) is a scalar function that satisfies B · ∇κ(x) = 0. These states

are force free fields since −∇p = J × B = 0, and can be derived minimizing

the magnetic energy E = 1
2

∫
B2d3x subject to the constraint that the local

magnetic helicity h1 = 1
2

∫
A ·Bd3x is a constant of motion [46]. Despite the

simple form of Beltrami equation (2.23), a solution is hard to find because

of the dependence of κ with the position, leading to a nonlinear system of

partial differential equations. Taylor assumed that dissipative processes would

destroy all local helicity constraints (”relaxation process”) leaving only the

global helicity conserved. This processes of self organization of the plasma

current (or magnetic field) leads to Taylor’s relaxed states that correspond to

constant-κ Beltrami fields [42]

µ0J = ∇×B = κB (2.24)
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The problem then reduces to find the eigenvalues of the curl operator. Re-

laxed states have served as a paradigm for plasma self organization and have

been invoked to understand the nature of both laboratory and astrophysical

plasmas. The equilibrium states of a reversed field pinch (RFP) are consid-

ered prime examples of such relaxation [43]. In RFP’s a toroidal current is

induced in a plasma embedded in a toroidal field to generate a poloidal mag-

netic field. In some particular cases that depend on the initial conditions and

after a turbulent phase the toroidal field can reverse direction at the plasma

edge.

Magnetofluid states extend the ideal MHD structures introduced by

Taylor including the self organization of the plasma under the combined influ-

ence of currents and flows in the context of a two fluid system. The simplest

equilibrium of the coupled electron-ion equations ideal induction forms (2.22)

is one where the generalized vorticities are aligned with the effective flows [26]

Ωe ‖ Ue → aeB = n

{
V − ε

M2
A

∇×B

n

}
Ωi ‖ Ui → B + ε∇×V = ainV

satisfying ∇ · (nV) = 0.

This transforms the original expressions into a system of linear equations for

the variable B,V. The density couples these equations to the solutions of

∇Pe = ∇Pi = 0 leading to a nonlinear problem. In order to find analytical

solutions and reveal the most distinct features of magnetofluids a constant

density is assumed, that in normalized units becomes n = 1. Solving for B (V
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yields the same form) leads to the double curl Beltrami equation

ε2∇×∇×B + εα∇×B + βB = 0 (2.25)

where α = aeM
2
A − ai and β = M2

A(1 − aiae). The solutions to this equation

cover a wider and richer range of equilibriums that can differ considerably from

Taylor’s states. Eq. (2.25) can be written as

(ε∇×−Λ+)(ε∇×−Λ−)B = D(r,Λ+)D(r,Λ−)B = 0

where D(r,Λ±) = (ε∇×−Λ±), and Λ± = 1
2

[
−α±

√
α2 − 4β

]
. The solutions

can be constructed as a linear combination, B = C+B+ + C−B−, of single

Beltrami solutions D(r,Λ±)B± = 0. When the problem is cast in this form

B± and its coefficients can be complex as long as the final solution is a real

physical quantity. As an example consider Eq. (2.25) with ε = 1, α = 0, β = 1

so that ∇×∇×B = −∇2B = −B. One type of solution is B = exp(x)(Cyŷ+

Czẑ), Cy & Cz ∈ R. However, the solutions D(r,Λ±)B± = 0 with Λ± = ±i

are of the form B± = exp(x)(±iŷ + ẑ). A linear combination of them yields

B = C+ exp(x)(iŷ + ẑ) +C− exp(x)(−iŷ + ẑ) that is the same as the final real

solution B taking C+ = C∗
− = 1

2
(Cz − iCy).

Originally, ae, ai ∈ R and B is real for being a physical quantity then

α, β ∈ R. Since Eq. (2.25) is linear in B and all its coefficients are real then

B̃ ∈ C/B = Re(B̃) is also a solution to the equation. It is possible then to work

with the solutions of D(r,Λ±)B± = 0 so that B̃ = C+B+ + C−B−, C± ∈ C

and take the real part at the end of the calculation to find B. In the example

given before the solution using this technique requires C+ = Cy, C− = iCx.
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The solutions to Eq. (2.25) using complex quantities and taking the

real part at the end of the calculation are given by

B = C+B+ + C−B−, ∇×B± =

(
Λ±
ε

)
B± (2.26)

Ve = aeB (2.27)

A = ε

(
C+

Λ+

B+ +
C−
Λ−

B−

)
(2.28)

M2
AJ = Λ+C+B+ + Λ−C−B− = ε∇×B (2.29)

V = aeB + J =

(
ae +

Λ+

M2
A

)
C+B+ +

(
ae +

Λ−
M2

A

)
C−B− (2.30)

∇×V = aiV −B =
1

M2
A

[(Λ+ − β)C+B+ + (Λ− − β)C−B−] (2.31)

Magnetofluid states have many important features that can be seen

from the previous formulation:

• The number of solutions from a combination of Beltrami fields increases

considerably the number of states found in single Beltrami-Taylor states,

that are a singular limit of Eq. (2.25) when the higher order derivative

is neglected [48].

• The equilibrium solutions lead to Bernoulli conditions ∇Pe = ∇Pi =

∇PT = 0. Electrons follow a Boltzmann distribution while the total

fluid follows the Bernoulli equation p̃
M2

i
+ V 2

2
= constant, showing that

the right shear flow can create a strong pressure gradient and a highly

confined plasma.
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• The solutions present two characteristics scale lengths (Λ±/ε)
−1 that

depend on the intrinsic ion skin depth (λi) contained in ε, compared to

the scaleless ideal MHD.

• The appropriate choice of constants C+, C− can lead to a system where

a smooth magnetic field coexists with a highly varying velocity field or

vice versa.

• While Taylor states are paramagnetic (∇×B = κB leads to∇2B+κ2B =

0 with κ2 > 0), magnetofluid states do not have the positivity require-

ment and α = 0, β = −γ2 in the double curl Beltrami equation (2.25)

leads to diamagnetic structures where ∇2B− γ2B = 0.

• Magnetofluids can be obtained minimizing the enstrophy of the system

F = 1
2

∫
|∇ × (V + A)|2d3x keeping the magnetic helicity h1 and the

helicity of the generalized vorticity h2 = 1
2

∫
(V + A) · (∇×V + B)d3x

constants [47]. Relaxation then leads to a state of minimum turbulence

instead of a minimum energy as in Taylor states.

• Electrons follow the magnetic lines while ions have their motion along

the lines modified by their inertia through the vorticity.

Many of the features listed previously can be seen using the simple

example of a one dimensional cylinder configuration [27]. The solutions to the

eigenvalue problem of the curl operator in cylindrical coordinates are given in
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terms of Bessel functions [6]

∇×H = aH ⇒ H = S + T (2.32)

T = a∇× (ψi) = a∇ψ × i, with i constant unit vector.

∇2ψ + a2ψ = 0 (Helmholtz’s eq.), the same for T and S.

S = a−1∇×T, T = a−1∇× S

For the cylindrical solution we chose a =
(

Λ
ε

)
, î = ẑ, H = u, S =

uT , T = uP , ψ = χ, where P ,T mean poloidal and toroidal vectors

u±(r;m, k) =

(
Λ±
ε

)
∇χ± × ẑ︸ ︷︷ ︸

uP±(r;m,k)

+∇× (∇χ± × ẑ)︸ ︷︷ ︸
uT±(r;m,k)

χ±(r;m, k) = Jm(µ±r) exp[i(mθ − kz)]

where Jm is the Bessel function of order m, and µ2
±(k) =

(
Λ±
ε

)2

− k2. For

axisymmetric (m = 0, ∂θ = 0) and homogeneous in z (k = 0, ∂z = 0),

cylindrical equilibria becomes

B±(r) =

(
Λ±
ε

)2

J0

(
Λ±
ε
r

)
ẑ︸ ︷︷ ︸

BT±

+ J1

(
Λ±
ε
r

)
θ̂︸ ︷︷ ︸

BP±

 , χ±(r) = J0

(
Λ±
ε
r

)

Typical solutions for the conditions B(0) = 1 and J(0) = 1 at the axis

are shown in Fig. 2.2. In one limiting case, where the singular double curl term

is negligible, the flowless reverse field pinch solutions can be obtained (Fig. 2.2

- left hand side). In other cases, the strong interaction between magnetic

and velocity fields leads to multiple scale structures, confined by the Bernoulli
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mechanism, fully diamagnetic, with a high β value of 0.2 (Fig. 2.2 - right hand

side).
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Figure 2.2: 1-D cylindrical solution for a double curl Beltrami system. In one
limiting case, where the singular double curl term is negligible, the flowless
reverse field pinch solutions can be obtained (left hand side). In other cases,
the strong interaction between magnetic and velocity fields in a magnetofluid
state leads to high confinement through Bernoulli mechanism (right hand side).

In MBX we start with a configuration that contains an external mag-

netic mirror field to obtain the velocities needed for magnetofluid states. Since

the set of linear equations found after using the magnetofluids assumption

(generalized vorticities aligned to effective flows) is non linear, the introduc-
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tion of an external magnetic field is not trivial and depends on the particular

case considered. One of the possible solutions to this problem is to find a mag-

netofluid state that when combined with an external field leads to forces that

are a gradient of a potential. In the previous case where a one dimensional

cylinder is considered, magnetofluid configurations can exist in the presence

of a constant magnetic field B0 = B0ẑ. In this case the electron and ion equa-

tions and the magnetofluid assumption (Ve = aeB
self ,Bself + ε∇×V = aiV)

lead to

aeB
self ×B0 = −∇Pe

B0 ×V = −∇Pi

where Bself is the magnetic field created by plasma currents. Since Bself ,V

are linear combinations of B± the only requirement to satisfy the equations is

that B0 × B± can be written as a gradient, so that ∇ × (B0 × B±) = 0. In

the cylindrical case

∇× (B0 ×B±) = B0(∇ ·B±︸ ︷︷ ︸
=0

)−B±(∇ ·B0︸ ︷︷ ︸
=0

) + (B0 · ∇︸ ︷︷ ︸
B0∂z

)B± − (B± · ∇)B0︸ ︷︷ ︸
B0(B±·∇)ẑ

= 0

The first two terms on the right hand side are zero because ∇ · B = 0. The

third term is zero because B±(r) is not a function of the z component, and

the last term is zero because the derivatives of ẑ are zero. This means that

the interactions must derive from a gradient that can be calculated as follows

B0 ×B± = B0

(
Λ±
ε

)2

ẑ× (∇χ± × ẑ) = ∇

[
B0

(
Λ±
ε

)2

χ±

]
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Then, the final state is found using the previous magnetofluid solution for

the one dimensional cylinder, adding the constant external field, and finally

finding the pressure using Bernoulli equation that now contains the coupling

between the external magnetic field and the plasma, B0

(
Λ±
ε

)2

χ±.

Not all configurations are suitable for the introduction of an external

magnetic field. In the case of the modeling of the H-mode layer [28] the

introduction of a toroidal magnetic field generated by the external coils requires

more conditions on the fields and layers so that external forces become gradient

forces. In the case of MBX the external field is a mirror and it is not constant

but has a dependence of the form cos(z). We have not reached a satisfactory

decoupling in this configuration due to the z dependence.

2.2.3 Externally Driven Rotating Plasma Solutions

Solutions for a rotating plasma immersed in an external mirror mag-

netic field can be created by decoupling A, V and their vorticities in completely

poloidal and toroidal fields as shown in Fig. 2.3. Let us assume a stationary

state (∂t = 0) and symmetry around the z axis (∂φ = 0). The fields can be

written as

V = Vφφ̂ → ∇×V = ∇× (Vφφ̂) =
∇(rVφ)× φ̂

r
(2.33)

A = Aφφ̂ → B = ∇× (Aφφ̂) =
∇(rAφ)× φ̂

r
=
∇Ψ× φ̂

r
(2.34)

J̃ =
∇×B

M2
A

= −∇
2A

M2
A

= − 1

M2
A

[
∇2Aφ −

Aφ

r2

]
φ̂ = −∆∗Ψ

M2
Ar
φ̂ = j̃φφ̂ (2.35)
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Figure 2.3: Decoupling of the fields representing a rotating plasma in a poloidal
magnetic field.

where ∇ ·A = ∂φAφ = 0, and ∇× (φ̂/r) = 0 were used, Ψ ≡ rAφ is propor-

tional to the total magnetic flux and ∆∗ ≡ r∂r(
∂r

r
)+ ∂2

z is the Grad-Shafranov

operator. This choice also satisfies the particle conservation equation (2.8)

with the assumption that sources are neglected. The choice of J = εJ̃ is based

on the fact that J⊥ is of order ε as explained at the beginning of Section 2.2 so

that J̃ is of order unity. Ψ = Ψext + Ψself where Ψext is the flux generated by

external currents to the plasma (such that ∆∗Ψext = 0 inside the plasma) that

lead to a mirror field in our case, while Ψself is created by plasma currents.
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Under these choices, Eqs. (2.19)-(2.21) transform into

(Vφ − εjφ/n)φ̂× ∇Ψ× φ̂

r
=

(Vφ − εjφ/n)

r
∇Ψ = −∇Pe (2.36)

∇(Ψ + εrVφ)× φ̂

r
× Vφφ̂ = − Vφ

r
∇(Ψ + εrVφ) = −∇Pi (2.37)

−Vφ

r
∇(rVφ)−

jφ/n

r
∇Ψ = −∇PT (2.38)

The electron and ion equations are of the form ±w∇g = −∇P , where

w is a rotational frequency (we = Vφ,e/r, wi = Vφ/r). The solutions to this

form can be found in the following way: assume ±w = ±w(g) = dW (g)
dg

, then

w∇g = dW (g)
dg
∇g = ∇W (g) = −∇P so that W (g) = ±

∫
w(g)dg = −P + C,

with C a constant. This method yields the same solutions as taking the curl

of the equation ∇× (w∇g) = ∇w ×∇g = 0. If w = w(g) then ∇w = dw
dg
∇g

and the equation is satisfied. This means that the torque of the forces such

as Coriolis and J×B balance each other leaving only gradient forces that are

balanced by Ps. Electrons rotate on the magnetic flux surfaces while ions try

to do the same but their motion is modified by the inertia and are not tight

to the magnetic surface.

Defining wj = jφ/(nr) the total momentum equation (2.38) and its

projection along the magnetic field lines are

rw2
i∇r + wj∇Ψ = ∇(p̃/M2

i )
·‖̂−→ rw2

i∇‖r = ∇‖(p̃/M
2
i ) (2.39)

which shows the basic concept of centrifugal confinement in a rotating mirror.

The centrifugal force increases the pressure along the magnetic field lines when

we move from the mirror throats to the equatorial plane as shown in Fig. 1.2.
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Once we(ge) and wi(gi) are known the solution for the pressure and

electric potential are:

φ =
1

2

[
(We −Wi) + ε

(
p̃e − p̃i

M2
i

−
V 2

φ

2

)]
+ Cφ (2.40)

p̃ = p̃e + p̃i = −M2
i

[
We +Wi

ε
+
V 2

φ

2

]
+ Cp (2.41)

with Cp and Cφ constants. The potential can be further simplified assuming

equal electron and ion pressures p̃e = p̃i = p̃/2.

In ideal MHD closure the velocity of the fluid to the lowest order is

V ∼ (E × B)/B2 that is the same as requiring ε ∼ 0. In this case the

electron and ion equations become the same containing the zero order motion

while the momentum equation accounts for the small perturbation given by

ε. The magnetic field lines become equipotentials (φ ∝ Ψ) as seen in the

electron equation while ions tend to isorotate (wi ∼ wi(ψ)) as electrons do.

The electrons and ions rotate together.

Taking the curl of the momentum equation (2.38), we get an equation

combining Ψ, we(Ψ), and wj

∇Ψ×∇wj = ∇wi ×∇(r2wi) =
1

2
∇w2

i ×∇r2 =

=
1

2
∇ (we(Ψ) + εwj)

2 ×∇r2 = r∂z(we(Ψ) + εwj)φ̂ (2.42)

that has to be combined with Maxwell’s equation Ψ = Ψ(wj) to yield the

complete solution. When ε � 1 and the gradients are not large the last
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equation becomes

∇Ψ×∇wj ∼ 1

2
∇(we(Ψ))2 ×∇r2 =

1

2

dw2
e

dΨ
∇Ψ×∇r2 =

=
1

2
∇Ψ×∇(r2dw

2
e

dΨ
)

Then ∇Ψ×∇
(
wj − r2

2
dw2

e

dΨ

)
∼ 0 yields solutions of the form [44]

wj ∼ r2we(Ψ)
dwe(Ψ)

dΨ
+ F (Ψ)

where F is an arbitrary function of the magnetic flux. Then Ψ can be replaced

by Ψext if the external field is much higher than the field generated by the

plasma and the current can be calculated without the need of the ion equation

that becomes the same as the electron equation when ε� 1.

The external magnetic field can be computed numerically as shown in

Section 3.3 or approximated with an analytical solution satisfying ∆∗Ψext = 0.

One solution is given by Ψext = rAext
φ = Bext r2

2
(1 − b I1(kr)

kr
cos(kz)) [29] that

for kr � 1 becomes Ψext ∼ Bext r2

2
(1 − b cos(kz)) that resembles a mirror

field with a mirror ratio R = b+1
b−1

. At the throat and equatorial plane where

the magnetic field lines are in the ẑ direction the flux appears as created

by a constant magnetic field of intensity Bext(1 ± b) = R, 1 respectively in

normalized units. In MBX the mirror ratio is R = 7 so that b = 0.75 and

Bext = 4B(0, 0) where B(0, 0) the magnetic field on the axis at the equatorial

plane. Since we use this field to normalize the equations then Bext = 4. For

MBX dimensions (plasma radius = 1 and distance between mirror throats = 4)

k = π/2.
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To find the solutions for the specific problem we(Ψ) and wi(Ψ + εr2wi)

have to be chosen so that boundary conditions at the throat are met. We

analyze the easiest case considering the rotational frequencies constants in

space leading to a rigid rotation of the plasma. Other choices of we, wi lead

to different shear profiles. There can be different solutions satisfying the same

potential applied at the throat [44]. Experimentally we found that under

certain conditions the system is bistable(for the same external conditions the

system can be found in two or more states) in both AC and DC bias [18]. The

bistability reacts nonlinearly with the control parameters of electron density

and external biasing.

Rigid rotation with current (ws = constant, no shear flow)

we(ge) =
(Vφ − εjφ/n)

r
= Ωe → Vφ,e = rΩe

wi(gi) =
Vφ

r
= Ωi → Vφ = rΩi

⇒ wj =
∆Ω

ε
= Ωj → j̃φ = nrΩj

where Ωi, Ωe, and ∆Ω = Ωi−Ωe are constants. With this choice, assuming p̃e =

p̃i = p̃/2, and defining the average angular frequency of rotation Ω ≡ Ωi+Ωe

2
,

the solutions for the electric potential and pressure (Eqs. (2.40)-(2.41)) become

we(ge) = Ωe → We = Ωege = ΩeΨ

wi(gi) = Ωi → Wi = −Ωigi = −Ωi(Ψ + εr2Ωi)

⇒ φ = ΩΨ + ε
(rΩi)

2

4
+ Cφ (2.43)

⇒ p̃ = M2
i

[
ΩjΨ +

(rΩi)
2

2

]
+ Cp (2.44)
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The solution for the potential and the pressure follows the flux function

but modified by the inertia of the ions (through Ωi). While for the potential

this modification is small if ε is small, for the pressure this two terms can have

the same weight depending on the boundary conditions.

A priori all the variables depend on the flux function that is not known

until Ampère’s law is solved

∆∗Ψ +M2
Arj̃φ = ∆∗Ψ +M2

Anr
2Ωj = 0 (2.45)

The equation for the flux (2.45) is not straight forward to solve because the

density n couples it with the pressure equation. There are two possibilities to

take, each with pros and cons. We can assume a constant density and reach

an exact solution. As a consequence we loose the possibility to increase the

current at the equatorial plane to generate self magnetic fields. The other

possibility is to assume low sub-Alfvénic flows (M2
A � 1) so that the self

field can be neglected compared to the external field to find a solution. This

possibility does not allow a transition to a possible reconnection process. In

this case a constant temperature can be assumed leading to an exponential

increase of the density along the magnetic lines due to centrifugal confinement

given by Eq. (2.39).

If the density is assumed constant (n = 1) the problem decouples and

any external field and vector potential satisfying ∆∗Ψext = 0 can be added

without modifying the result because it is solution to the homogeneous equa-

tion. Then, the term M2
Ar

2Ωj yields the particular solution and the equation
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becomes invariant under translation in z. Choosing Ψext = Ψext(r) the dif-

ferential equation reads ∆∗Ψext = ∂r

(
∂rΨext

r

)
+ ∂2

zΨ
ext = ∂r

(
∂rΨext(r)

r

)
=

−M2
Ar

2Ωj. The solution is found assuming Ψext(r) = Crl ⇒ l = 4 and

C = −M2
A

Ωj

8
. The Biot-Savart integral is also simplified due to the symmetry

around ẑ and arrives to the same result. Then, the final solution is any vacuum

field added to

Ψself = −M2
A

Ωj

8
r4,Aself = −M2

A

Ωj

8
r3φ̂ → Bself = −M2

A

Ωj

2
r2ẑ

J̃ = rΩjφ̂ → J = εrΩjφ̂

So far the system contains 2 independent variables that can be Ωi,Ωe

that we have no control over. Instead we have control at the throat with the

applied potential. An extra consideration is connected to the pressure that

is built by the combination of centrifugal forces and diverging magnetic field

lines. If we consider a linear machine instead of a mirror system there are two

options for the pressure. There can be rotation and centrifugal force that is

balanced by the current generated by the extra drift that the ions experience

due to the centrifugal force in a constant density system, Eq. (2.39),

rw2
i∇r + wj∇Ψ = 0

where no extra pressure is generated along the magnetic field lines. The other

option is similar to a θ-pinch where the pressure is balanced by an induced

current

wj∇Ψ = ∇(p̃/M2
i )
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The only difference between these two situations is the pressure at the bound-

ary. Either the density is constant or there is a density profile. For a mirror

system the situation is similar. If the system initially starts with zero biasing

and a constant pressure profile at the throat and then potential is applied, the

pressure at the boundary will remain constant as in the linear system while

inside the mirror it will increase due to centrifugal confinement along the lines

given by Eq. (2.39). This is the case that we are interested in. So, to find the

solutions for the rigid rotation case we will choose the rotational frequencies

so that the throat pressure is nearly constant that according to Eq. (2.44)

requires ΩjΨ(r, 2) ∼ −(rΩi)
2/2. Using the analytical approximation for the

external flux Ψext(r, 2) ∼ Bext(1 + b) · (r2/2) = R(r2/2) yields Ωj ∼ −Ω2
i /R.

The current has always a negative sign meaning that it is diamagnetic given

by the centrifugal force. The factor 1/R arises because at the boundary condi-

tion the magnetic field is higher compared to the field at the equatorial plane

that has been used to normalize the equations. Written in a different way

εV 2
θ /r +BJ = 0, Vθ = εΩi, J = εrΩj → Ωj = −Ω2

i

B
.

In the case of ideal MHD applied to the system the limit ε→ 0 makes

ions and electrons lock up in a rigid rotation without any current that is an

exact solution to ideal MHD closure. When ε is small current starts flowing,

the pressure term is not modified while the electric potential becomes φ ∼ ΩiΨ

that is different than the two fluid model. However, the pressure is indirectly

affected since the potential induces the rotational frequency that in turn affects

the pressure profile.
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After these considerations we will study a couple of scenarios with

present and future parameters in MBX to find the most important char-

acteristics of the different cases. We choose Cφ = 0 in Eq. (2.43) so that

φ = 0 on the axis. Similarly, we choose Cp = 1 in Eq. (2.44) so that p̃ = 1

on the axis. We define the difference in pressure compared to the axis as

∆p̃ = p̃ − 1 = M2
i

[
ΩjΨ + (rΩi)

2

2

]
. The electric field at the throat will have

both polarities while values for ε = 0.025, 0.25, 1 and MA = 3 · 10−3, 0.6, 1 are

considered.

The initial case is our present configuration in MBX, ε ∼ .025, φ0 ∼

250 V, E0 ∼ 103 V/m, Mi ∼ 1, so that V0 ∼ 2.5 · 104 m/s and MA ∼ 3 · 10−3.

The case for positive radial electric field Er at the throat is shown in Fig. 2.4.

The normalized difference in potential between the axis and r = 0.3 is set to

1 where this particular radius defines the outer magnetic surface at the throat

that corresponds to r = 0.93 at the equatorial plane of the external magnetic

field. At the throat the maximum ∆p̃ = 2 · 10−2 � 1 so that the pressure

is uniform there as required. Ωe = −2.5 and Ωi = −2.517 creating a small

current (0.017 maximum at the equatorial plane) and corresponding small self

magnetic field compared to the external field. The equipotentials follow mostly

the flux surfaces, so that the maximum drop in potential along a magnetic line

from the throat to the equatorial plane is about ∼ 0.03 that corresponds to

∼ 7.5 V. The isobars, on the contrary, are far from the magnetic fluxes and

show centrifugal confinement. The pressure increases towards the equatorial

plane reaching ∆p̃ = 2.45 which for the case of constant density being analyzed
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would be a change of the same factor in the plasma temperature. Considering

that the self magnetic field is small we could assume constant temperature

which would lead to an exponential increase of the density along the lines

with a maximum density of 11.6. On the axis there is no centrifugal force

acting so that the pressure and electric potential remain constants.

Figure 2.4: Rigid rotation solution for Er > 0 at the mirror throat and present
conditions in MBX: ε ∼ 0.025, φ0 ∼ 250 V, E0 ∼ 103 V/m, Mi ∼ 1, so that
V0 ∼ 2.5 · 104 m/s and MA ∼ 3 · 10−3. At the top the electric potential
and pressure at the throat and equatorial plane as function of radius. At
the bottom electric potential and pressure as function of (r, z) combined with
magnetic lines (white) and equipotential contours (black).
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The case with negative radial electric field is shown in Fig. 2.5. The

results are similar to the positive Er case, with Ωe = 2.58 and Ωi = 2.561 to

match the boundary conditions. The main qualitative difference appears as an

asymmetry in the displacement of the equipotential lines. While the equipo-

Figure 2.5: Rigid rotation solution for Er < 0 at the mirror throat and present
conditions in MBX: ε ∼ 0.025, φ0 ∼ 250 V, E0 ∼ 103 V/m, Mi ∼ 1, so that
V0 ∼ 2.5 · 104 m/s and MA ∼ 3 · 10−3. At the top the electric potential
and pressure at the throat and equatorial plane as function of radius. At
the bottom electric potential and pressure as function of (r, z) combined with
magnetic lines (white) and equipotential contours (black).

tential starting at some magnetic line at the throat displaces radially outward
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from the magnetic flux in the bulk of the plasma, with a maximum at the outer

surface on the equatorial plane, the opposite is true for the positive electric

field case. This can be understood considering the electron equation along the

magnetic lines. The pressure is balanced by the electric potential leading to

a Boltzmann distribution. The centrifugal force increases the pressure as we

move towards the equatorial plane that in turn increases the electric potential

along the magnetic lines.

The asymmetry is schetched in Fig 2.6. When a positive electric field

11

0
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|∆V|=.5

-1 -1

0

.5

|∆V|=1

|∆V|=1.5
B B

.5

0

.5

0

Figure 2.6: Asymmetry in the penetration of the electric potential from the
throat to the equatorial plane. The equipotentials displace radially outward
(inward) when Er at the throat is positive (negative).

is present at the throat (left hand side) and the potential remains the same

on the axis due to lack of centrifugal confinement the outer magnetic field
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line increases its potential when going from the throat to the equatorial plane.

Consequently, the potential between this line and the axis at the equatorial

plane is less than at the throat. The equipotentials get further apart compared

to the magnetic flux. When the electric field is negative (right hand side) the

potential at the outer magnetic surface increases and so does the difference in

potential at the equatorial plane. This asymmetry is only seen when a 2 fluid

model is used to find the solutions.

In the future stage expected in MBX the parameters will be ε ∼ 0.25,

φ0 ∼ 2500 V, E0 ∼ 104 V/m, Mi ∼ 3, so that V0 ∼ 2.5 · 105 m/s and MA ∼ .6.

The case for positive electric field is shown in Fig. 2.7. The solutions to the

boundary conditions for the electric potential and a maximum ∆p̃ = 2 · 10−2

at the throat are Ωe = −2.5 and Ωi = −2.71. The current created (maximum

of 0.21) is not neglegible in this case with 20% of the flow leading to a change

in the magnetic flux compared to the external field. The magnetic lines are

pushed down by the diamagnetic current a maximum distance d ∼ 0.03 that

corresponds to 0.75 cm. The magnetic lines are far from equipotentials with

0.28 in difference from the throat to the equatorial plane that corresponds

to 700 V. This is an important difference compared to ideal MHD solution.

The difference in pressure is ∆p̃ = 25. The results are similar when a negative

electric field is applied, with Ωe = 2.55 and Ωi = 2.39 solution to the boundary

conditions. The slight asymmetry in the potential mentioned in the case of

ε = 0.025 is greatly amplified in this case.

Finally lets consider the case where ε ∼ 1, MA ∼ 1 that could be
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reached lowering the external magnetic field by ∼ 3. The solutions are shown

in Fig. 2.8. For a negative electric field, Ωe = 2.5 and Ωi = 2.03 satisfy the

boundary conditions. The effects of non equipotential lines and magnetic flux

change due to diamagnetic currents are amplified even more. he difference in

Figure 2.7: Rigid rotation solution for Er > 0 at the mirror throat and future
conditions in MBX: ε ∼ 0.25, φ0 ∼ 2500 V, E0 ∼ 104 V/m, Mi ∼ 3, so
that V0 ∼ 2.5 · 105 m/s and MA ∼ .6. At the top the electric potential
and pressure at the throat and equatorial plane as function of radius. At
the bottom electric potential and pressure as function of (r, z) combined with
magnetic lines (white) and equipotential contours (black).

potential along the lines reaches a maximum of 0.89, ∆p̃ = 14 and the flux
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is pushed down by a distance d ∼ 0.05. However, for positive electric field

there is no solution that can match the boundary condition of zero pressure

at the throat. This can be understood considering that the interaction of

the ion velocity and the magnetic field in the Lorentz force is not enough to

balance the electric and centrifugal forces. That is, for ions at the throat

Figure 2.8: Rigid rotation solution for Er > 0 and ε ∼ 1, MA ∼ 1. At the
top the electric potential and pressure at the throat and equatorial plane as
function of radius. At the bottom electric potential and pressure as function of
(r, z) combined with magnetic lines (white) and equipotential contours (black).

assuming constant pressure, the equation of motion in the radial direction and
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its corresponding solution are

εΩ2
i +BΩ + Er/r = 0 → Ωi =

B

2ε

(
−1 +

√
1− 4ε

r
VE

)
, VE =

Er

B

where VE is the usual electric drift. In this case the ion drift is affected by

the centrifugal force and does not have solutions if VE > r/(4ε) that can only

occur for Er > 0. For Er < 0 the Lorentz force is enough to balance the

centrifugal force.

This cut off has being investigated and successfully achieved in a linear

machine by the Archimedes Technology Group1 to use as a method to clean

nuclear waste. The cut off depends on the parameter ε that is proportional

to the ion mass. For the cut off mass and heavier ions the lack of a solution

represents expulsion of the particles in the radial direction where they are

collected while the lighter ions remain confined to the magnetic field rotating

while collected at the throats. This effect in the rotating mirror helps in getting

rid of impurities so that a clean plasma is expected.

In summary, we found a region in parameter space where the dissipa-

tionless equations are valid and there is a strong coupling between flows and

magnetic fields. In this space we located the present conditions of MBX and

MCX (away from the strong coupling region) and the future conditions where

MBX plans to run (at the edge of the strong coupling region). We reviewed

the theory of magnetfluid states and the consequences of using an external

magnetic field. In a cylindrical configuration embedded in a constant axial

1http://www.archimedestechnology.com
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magnetic field the solution is simple. However, when there is a z dependence,

like in our mirror field, we have not reached a solution. We also analyzed

externally driven mirror plasmas and found solutions that differ from MHD

predictions due to the finite ε. The solutions show a high increase in the

plasma potential from the throat of the mirror to the equatorial plane that

creates asymmetry in the system response with respect to the polarity of the

externally biasing potential. There is also high centrifugal confinement and

the rotational speeds differ from the electric drift VE. These features become

stronger as the plasma speed increases. For positive electric field there is a

velocity cut off because the magnetic force is not strong enough to balance the

electric and centrifugal force.

2.3 Dissipation equations

Since the plasma configuration achieved in MBX is not dissipationless,

there are certain requirements needed from external sources to sustain the

rotation in the system. One of the most important inputs is the external

current injected when the plasma is biased. The torque created in the plasma

by the combination of this current and the poloidal magnetic field balances

the neutral drag for a steady state operation.

In order to gain insight of the consequences of some of the dissipative

terms and compare their effects with experimental data we simplify the mo-

mentum and induction equations (2.12)-(2.13). This will lead to an approxima-

tion for the perpendicular resistivity ρ⊥ of the system that in a dissipationless
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system would be infinite but dissipative terms make it finite.

In order to simplify we consider a steady state (∂t = 0), symmetric

about ẑ (∂θ = 0), and homogeneous in the z direction (∂z = 0) so that the

mirror transforms in a straight cylinder with constant magnetic field in the

ẑ direction. We also consider no viscosity, the perpendicular velocity of the

fluid much less than the toroidal (Vr � Vθ) and the pressure term is dropped.

These last two approximations lead to equations that do not have variation in

the r direction forming an algebraic system. Eqs. (2.12)-(2.13) in the r and θ

direction become

−V
2
θ

r
= ε−1JθB

n
− αVr (2.46)

0 = ε−1JrB

n
+ αVθ (2.47)

Er + VθB =
JθB

n
+ ζJr − δVr (2.48)

VrB =
JrB

n
− ζJθ + δVθ (2.49)

where α = CD,in, γ = C−1
H,e, δ ∼ εα

√
m/M , and ξ = γ + δ, all less than

unity quantities. The first equation shows the balance between the toroidal

current force to hold the centrifugal force exerted by the rotation plus any

possible friction due to radial motion. The second equation shows that the

perpendicular currents sustain the rotation against the neutral drag on the

fluid. This current is driven by the external power supplies that we measure.

The fourth equation states that if the dissipative terms on the electrons are

small, then the radial current is carried entirely by the ions while the electrons

stay tied to the magnetic field lines.
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For a defined position r the last set of equations yields a quadratic form

for the toroidal velocity

ε
V 2

θ

r
+ bBVθ + cEr = 0 (2.50)

where c = 1+ξαεn/B2

1+δξ/B2 and b = c
(
1 + ξαεn+δ(δ−αε)

B2

)
+ εα(εα−δ)

B2 . In the case where

dissipative terms are much less than unity then c ∼ 1 and b ∼ 1 so that the

equation simplifies to the usual electric drift VE = E/B modified by the inertia

term that has a weight of ε. The magnetic field squared accompanies all the

dissipative terms, so that the larger the magnetic field the less the dissipation

modifies the toroidal motion.

The solutions to the quadratic equation are of the form

Vθ =
−bB ±

√
(bB)2 − 4crEr/ε

2ε/r
(2.51)

where we choose the positive branch solution that corresponds to lower rota-

tions (the negative branch leads to cyclotron motion).

Fig. 2.9 shows the solutions for the present conditions in MBX (see

Table 2.1): ε = 0.025, L0 = 0.25 m, E0 = 103 V/m, B0 = 0.04 T, so that

V0 = 2.5 · 104 m/s. The dissipative coefficients are: α < 1, γ ∼ 5 · 10−6,

δ ∼ 10−4 so that ξ < 10−4. The neutral drag coefficient α varies linearly from

1 (red) to 0.01 (blue). The solutions for the toroidal motion correspond closely

to dissipationless results, εV 2
θ /r+BVθ+Er ∼ 0 and Jθ ∼ −εV 2

θ /r. The current

is always negative, diamagnetic, because it balances the centrifugal force that

points in r̂ independent of the direction of the rotation. The perpendicular

current is carried mostly by ions so that Vr ∼ Jr ∼ −αεVθ.
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Figure 2.9: Cylindrical solution for a rotating plasma with dissipation in MBX
present conditions: ε = 0.025, L0 = 0.25 m, E0 = 103 V/m, so that V0 =
2.5 · 104 m/s and MA = 3 · 10−3.
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The external requirements are proportional to the neutral drag that

appears as the main mechanism of dissipation. At the same time Vr turns out

to be an order of magnitude less than unity in agreement with our initial as-

sumption. Since the perpendicular current is linear with α, the perpendicular

resistivity ρ⊥ is inversely proportional α, that is, the more neutral drag, the

more drift in the perpendicular direction and a less resistive plasma. Typi-

cal values obtained are ρ⊥ ∼ 2.5 kΩm. This value will be compared to the

experimental results.

Fig. 2.10 shows the solutions for the future conditions in MBX (see

Table 2.1): ε = 0.1, L0 = 0.25 m, E0 = 4 · 103 V/m, B0 = 0.04 T, so

that V0 = 105 m/s. The dissipative coefficients are: α < 1, γ ∼ 7.5 · 10−4,

δ ∼ 7.5 · 10−4 so that ξ < 10−3. The behavior of the solutions in dimensionless

form are close to present parameters in MBX (Fig. 2.9) with one exception.

The velocity is cut off when the electric field is positive and in this case Er = 1

in dimensionless quantities that corresponds to 4 ·103 V/m. This cut off is the

same as the one appearing in Section 2.2.3 for the rigid rotation case. Negative

electric fields do not present the cutoff and the velocity differs by 25 % from

the electric drift VE when Er = −2. The perpendicular resistivity decreases

by a factor of 103 due to the increase in the plasma density, considering the

same neutral density as in the present conditions.

In summary, after simplifying the magnetic field geometry to a con-

stant axial field we found the perpendicular resistivity of the rotating plasma.

This resistivity appears mainly due to the neutral drag force in the azimuthal
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direction so that an I × B force is required to balance it. The current I is

the external requirement to rotate the system. The perpendicular resistivity

for the present conditions will be compared to the experimental data in Sec-

tion 5.6. For future conditions, an estimate of the perpendicular resistivity is

given, however we expect the pressure gradient to be too large (Section 2.2.3)

to be dropped as we did in this section to find an analytical solution.
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Figure 2.10: Cylindrical solution for a rotating plasma with dissipation in
MBX future conditions: ε = 0.1, L0 = 0.25 m, E0 = 4 · 103 V/m, so that
V0 = 1 · 105 m/s and MA = .25.
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Chapter 3

Experimental Setup

The goal of the experiment is to create a plasma that can be driven to

high speeds so that there is the possibility of creating a magnetofluid state.

Typical magnetofluid parameters are densities such that the ion skin depth λi

is of the order of the size of the machine L, and velocities higher than 10 %

of the Alfvén speed VA. The steps that we follow to achieve a fast, supersonic

rotating plasma are shown in Fig. 3.1.

Chamber

Pump

Gas

Magnetic Field

Microwaves

Electric Field

High Vacuum

(P ~ 10^-7 Torr)

Confined Gas

(P ~ 2 mTorr)

Magnetically Confined Plasma

(n ~ 10^16 particles/m^3)

Rotating

Plasma

(V ~ 3*10^4 m/s)

Figure 3.1: Steps followed to create a high speed, supersonic rotating plasma.
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Since MBX is a low-budget device, some of the choices in the creation of

such a rotating plasma state are based on existent material such as a vacuum

chamber, microwaves, that have been inherited from older experiments in the

laboratory.

A turbomolecular pump is connected to a stainless steel vacuum cham-

ber to achieve a high vacuum inside of it ∼ 10−7 Torr. Hydrogen is added to

the chamber at a pressure ∼ 10−4 Torr and will become the main component

of the plasma. Magnetic coils external to the vessel run continuously to create

an axisymmetric mirror magnetic field ∼ .04 T at the equatorial plane of the

chamber. Electromagnetic waves at a frequency f = 2.54 GHz are injected

into the vacuum chamber through a glass window and, in combination with

the gas and the magnetic field, create a magnetically confined plasma. Elec-

trodes inside the chamber are biased at high potential, ∼ 1 kV, to set up an

electric field E that in conjunction with the mirror magnetic field creates a

fast, supersonic rotating plasma.

A detailed explanation of each of these steps follows in the next sections.

3.1 Vacuum Chamber

The vacuum chamber is one of the main components of the experiment

because it allows the generation of a high vacuum environment with base pres-

sures ∼ 10−7 Torr and low impurity levels, where the plasma can be created

and rotated. It was originally designed for the TEXMEX project in the ma-

chine shop of the Physics Department, University of Texas at Austin in 1997.
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The chamber is made out of 304 stainless steel. It is cylindrical in shape,

and contains 36 ports of different sizes, from 1.5 in. to 20 in. diameter, for

the different plasma diagnostics. The volume of the chamber is approximately

0.46 m3 and its dimensions are shown in Fig. 3.2.
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0

0.1

0.2

0.3

0.4

0.5

0.6
Vacuum Chamber Dimensions

z (m)

r 
(m

)

Seals
13/64" thick 

Tube
5" O.D., 1/8" thick , 13 3/16 long 

End Plate
21 1/2" O.D., 5" I.D., 3/4" thick 

Central  Section
21 1/2" O.D., 17.8048" I.D., 3/4" thick 

Central  Section
17.8048" I.D., 5/16" thick, 25 19/32" long 

Flanges
6" O.D., 1.05" thick 

Tube Insertion
.55" deep 

27 3/4" long 
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Figure 3.2: Vacuum chamber dimensions, symmetric around the z axis.

The chamber consists of a central section 0.9 m inner diameter, 0.65 m

long and 7.5 mm thick sealed by O-rings to a 21.5 in. outer diameter and

3/4 in. thick circular plates on each side. Each disk is welded at its inner

diameter to one end of a 5 in. diameter, 0.335 m long and 1/8 in. thick stainless

steel tube. The other end of the tube is sealed using 12 in. Huntington flanges.

Around these two identical tube sections is where the magnetic coils are located

generating the throats of the mirror magnetic field (Section 3.3). The ports

are located around the main section and on the faces of the plates.

The vacuum chamber is connected to a turbo molecular pump Leybold-

56



Heralus Turbovac 360 (360 liters/s) at the bottom port through an air operated

gate valve, shown in Fig. 3.3.

Figure 3.3: Vacuum pump system diagram.

The valve is connected with a copper gasket to the chamber while

an O-ring creates the seal between the pump and the valve. An insulator

electrically isolates the pump from the vessel. This pump requires neither

oil for lubrication nor water for cooling thanks to its ceramic bearings and is

able to achieve a base pressure of 10−7 Torr inside the chamber. This is a

high vacuum considering the small size of the pump and the large size of the

chamber, which suggests a small leak and out gassing rate. In order to operate

the turbo molecular pump, its exit port must be at a pressure < 100 mTorr.
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Then, a mechanical pump is connected with speed clamps to the exit of the

turbo pump through a roughing line made out of plastic. This pump requires

oil and creates a pressure of 40 mTorr in the roughing line when the turbo

molecular pump is not operating.

3.2 Gas

The gas used in the vacuum chamber to generate the plasma is primarily

hydrogen. Sometimes, argon is injected at low pressures, as an impurity, for

spectroscopic purposes. The choice of hydrogen is based on the following

advantages:

• The ion Larmor radius is much smaller than the size of the machine so

that the plasma can have a fluid description, in which magnetofluids are

based.

• The ion skin depth λi is the size of the machine and is the characteristic

length that appears in magnetofluid states.

However one important disadvantage is that since the hydrogen ion is

just a proton, there are no transition lines in the visible that can be observed

with an spectrometer to infer the speed of the plasma using their Doppler shift.

Doppler measurements can only be done with transition lines from impurities

or hydrogen atoms after going through a charge exchange process.

The injection of hydrogen in the vacuum chamber is shown in Fig. 3.4.

The gas is introduced into the vacuum chamber using a feedthrough at the
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side of the central section of the chamber and a needle valve regulates the flow

into it. An extra valve follows the line to completely block the gas flow when

the machine is not operating. This valve is connected to the gas tank through

another piece of line. A similar system is available to introduce other gases as

impurities.

DRAWING NOT TO SCALE

Figure 3.4: Schematic of the gas injection system.

The neutral pressure inside the vacuum chamber is measured with an

ion and a thermocouple gauge that are connected through a long L-shaped

tube to the chamber to avoid the plasma from reaching it and affecting the

measurements. The range of pressures measured by the Granville-Phillips Se-

ries 270 using a nude Bayart-Alpert ion gauge is (10−3 to 10−8) Torr, while

using a Huntington thermocouple 6000 is (1 to 10−3) Torr. Another thermo-
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couple gauge measures the pressure in the roughing line located between the

turbo molecular and the mechanical pump (Fig. 3.3). It is used to find out

when the line reaches a pressure of 40 mTorr with only the mechanical pump

operating so that the turbo molecular pump can be turned on. The maximum

pressure that can be achieved with the turbo pump operating without the use

of a variable gate valve between the chamber and the pump is 1 mTorr. The

ionization gauge is originally calibrated for N2, then the pressure of the work-

ing gas is obtained after multiplying the read out pressure by a factor K that

depends on the gas. In the case of hydrogen KH2 = .46, helium KHe = .18

and argon KAr = 1.29 [11].

3.3 Magnetic Field

The main magnetic field is created by external coils to the vacuum

chamber and has the configuration of an axisymmetric mirror bottle. The

purpose of the field is to generate a natural magnetic confinement of the plasma

in the radial direction as well as in the axial direction through the conservation

of the magnetic moment of the particles. It also allows relatively easy biasing

of the magnetic surfaces with electrodes for plasma rotation and enhancement

of axial confinement through centrifugal forces [24].

The magnetic field is generated by 6 water cooled coils connected in

series to a DC power supply so that the current, measured by a shunt, is the

same in all of them. The maximum current delivered to the coils before they

dangerously heat up is ∼ 1200 A for about 30 s generating a field strength
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∼ 0.1 T on the axis at the throat. The coils can run continuously with currents

smaller than 700 A. The position and orientation of the coils are physically

aligned respect to the chamber to create a mirror ratio R = Bthroat

Bcenter
= 7.4,

that is maximized to achieve the strongest confinement in the axial direction.

They lay on the axis of symmetry of the vacuum chamber with their planes

perpendicular to it, 3 coils on each side. Each coil has 2 sets of spiraling copper

stripe, separated along the axis of symmetry by 0.05 in. Each spiraling copper

stripe consist of 32 concentric turns separated radially by 0.003175 in., with

the innermost (outermost) turn having a radius of curvature equal to 0.15

(0.27) m. The resulting axisymmetric magnetic field lines, magnetic intensity

surfaces, and the position and radii of the coils turns are shown in Fig. 3.5

after some approximations explained in the next paragraph are made.

The magnetic field B and its vector potential A are calculated with a

code developed by the author in Matlab language1. We use the assumption

that the coil can be modeled as a set of concentric loops because the thickness

of the copper strip is much smaller than the turn radius. At the same time, the

current generating the magnetic field can be considered only in the azimuthal

direction θ neglecting the small drift of the current in the r direction to go

from the inner to the outer winding. Under these assumptions the fields are

calculated adding the magnetic field generated by each individual circular loop

1http://www.mathworks.com
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Figure 3.5: Mirror magnetic field configuration symmetric about the z axis.
Magnetic field lines (green), B(G)/I(A) (blue), and position and radii of coils
windings (red).

as expressed by Eqs. (3.1)-(3.2).

A(r) =
∑

i=loops

Ai(r, ai, r0,i, Ii) (3.1)

B(r) =
∑

i=loops

Bi(r, ai, r0,i, Ii) (3.2)

where r is the position vector, ai, r0,i, and Ii are the radius, center position

and current of the coil i respectively.

The potential A and magnetic field B for a circular loop can be written
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in terms of elliptic integrals. Their expressions at a position r from the center

of a circular loop of radius a and current I is given by Eqs. (3.3)-(3.5) [39]

Aθ =
µ0I

π

1

k

√
a

r

[(
1− k2

2

)
K(k2)− E(k2)

]
(3.3)

Br =
µ0I

2πa

(z
r

)√
b
[
−K(k2) + cE(k2)

]
(3.4)

Bz =
µ0I

2πa

√
b
[
K(k2) + dE(k2)

]
(3.5)

where K and E are complete elliptic integrals of the first and second kind,

k2 = 4b
(

r
a

)
, b = 1q

(1+ r
a)

2
+( z

a)
2 , c =

1+( r
a)

2
+( z

a)
2

(1− r
a)

2
+( z

a)
2 , and d =

1−( r
a)

2
−( z

a)
2

(1− r
a)

2
+( z

a)
2

An important simplification occurs when we consider the mirror bottle

configuration. All the coils, and so the individual loops, have their center

on the axis of symmetry ẑ. The enclosed surfaces lay on the r-θ plane as

seen in Fig. 3.5. In this case, even though the center of the circular loops that

constitute the coils are displaced in the z axis, each with a different z0,i, and the

radii ai are different, their magnetic fields have only r̂ and ẑ components and

depend only on (r, z). The vector potential is in the θ̂ direction and depends

on (r, z). This simplification leads from Eqs. (3.1)-(3.2) to Eqs. (3.6)-(3.7).

A(r, z) =
∑

i=loops

Aθ,i(r, z − z0,i, ai, Ii)θ̂ (3.6)

B(r, z) =
∑

i=loops

[Br,i(r, z − z0,i, ai, Ii)r̂ + Bz,i(r, z − z0,i, ai, Ii)ẑ] (3.7)

Since all the coils have the same current I and B is linear with it, a field

G(r, z) = B(r, z, I)/I can be constructed that depends only on the position

and radius of the coils but is independent of the current. The relevance of
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this field, specially G contours shown in Fig. 3.5, relies in the fact that the

plasma is generated where the cyclotron motion of the electrons resonate with

the circularly polarized microwaves (Section 3.4). That is, when the electron

cyclotron frequency Ωe = 2π · 2.45 GHz rad, which corresponds to a magnetic

field strength B = 0.0875 T and G = 875/I (I in amperes).

Another simplification allowed by the axisymmetry is the calculation

of the magnetic lines or surfaces shown in Fig. 3.5. Due to ∇·B = 0, following

the magnetic lines keeps the enclosed magnetic flux Ψ =
∫∫

B ·dA =
∮

A ·ds

constant. From (3.6) A = Aθθ̂ due to axisymmetry, then Ψ = 2πrAθ, so that

the magnetic field surfaces can be easily calculated from the contour surfaces

of rAθ.

3.4 Microwaves

Electromagnetic waves have been chosen as the mechanism to generate

the target plasma with densities of the order of 1016 particles/m3. An increase

of this density to decrease the Alvén speeds VA and ion skin depth λi to achieve

magnetofluids conditions is expected from ionization due to rotation when the

plasma kinetic energy reaches the ionization potential of the gas being used [2],

6 · 104 m/s for hydrogen (Section 5.8). Some advantages in using microwaves

respect to other techniques used to generate a plasma, in particular a rotating

one, are the following:

• In our case the source of microwaves was already available, inherited
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from a previous experiment.

• The plasma density can be controlled by the amount of power injected.

• Microwaves propagating along the magnetic lines do not have a cutoff

density limit.

• There is no need for high potential (5 kV) and Paschen [30] restrictions in

the neutral density, usually a concern in rotating plasma experiments [8].

The main disadvantages of using microwaves are the following:

• A magnetic field of 0.0875 T is needed for the waves to resonate with

the electrons and ionize the filling gas.

• The impedance of the plasma depends on the density so that tuning

to achieve low reflection of the microwaves is constantly needed. Even

rotation can generate a large mismatch of impedance and detuning as

shown in Fig. 3.6.

• Expensive equipment is needed to achieve high densities, ∼ 20000 dollars

for 6 kW of power to create∼ 3·1016 particles/m3 in the present machine.

• The output power is very sensitive to the high voltage applied to the

source of microwaves. A ripple in the voltage of 1 % can generate fluc-

tuations in the plasma current of 30 % as shown in Fig. 3.6.
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Figure 3.6: On the left hand side, fluctuations in the electrode current between
t0 = 0.03 s and 0.18 s due to 120 Hz ripple in the microwave power injected.
On the right hand side, detuning of the microwaves, as seen in the reflected
power (black), when the plasma is biased and rotating.

The microwave system was built by previous researchers at the Fusion

Research Center at The University of Texas at Austin. A schematic of the

microwave power system is shown in Fig. 3.7.

A ∼ 4 kV DC power supply with a ripple of 1 % is connected to a

magnetron National Electronics NL-25552 to deliver a continous power in the

range of (0 to 1) kW. The low ripple appears because of the diode-like response

of the magnetron head current and power to the applied voltage. Small ripple

in the output voltage of the supply is amplified to generate a higher ripple in

the power output of the microwaves and for example in the plasma current

as shown in Fig. 3.6. The magnetron head generates 2.45 GHz microwaves

that are piped through a 340W rectangular waveguide where only the TE10

mode (cutoff frequency fc,10 = 1.735 GHz) with a wavelength λ = 0.174 m

2http://www.rell.com
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Figure 3.7: Schematic of the microwave power system.

can propagate [22, 31]. The next mode has twice the cutoff frequency of the

first one and well above the magnetron frequency. The waves pass through a

circulator, a piece of hardware that allows the power to flow in one direction

but redirects the other direction to a water load, so that reflected waves are

dissipated instead of going back to the magnetron head damaging it. It is

important to notice that the water must be flowing all the time, otherwise

evaporation of a small amount of water changes the inpedance of the load
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allowing reflected power to reach the magnetron head. The circulator contains

three directional couplers. They allow the measurement of the microwave

power flux in a particular direction. In our case, there is a coupler measuring

the power leaving the circulator towards the plasma, another looking at the

reflected power from the plasma reaching the circulator, and a third coupler

measuring the power going back to the magnetron. This last one checks the

efficiency of the water load in dissipating the reflected power and the possibility

of damage of the magnetron head.

After the waves pass the circulator, they are converted to a TEM mode

and travel through a semirigid coaxial cable to be converted back to TE10.

The coaxial cable allows the launching of the waves through different ports

in the vacuum chamber without the need of moving the heavy DC power

supply and circulator and allowing different mechanisms of absorption by the

plasma. After the transition the microwaves reach a 4 stub tuner with the

purpose of minimzing waves travelling back to the circulator and maximizing

the power flowing to the plasma. In simple words, the impedance of the tuner is

changed varying the length of the stubs so that combined with the impedance

of following stage, vacuum window and plasma, generates an impedance as

close as possible to that of the 340W rectangular waveguide preceding it,

535 Ω [31]. If there is no impedance mismatch at this transition, there is

no reflected power at it. After the tuner the waves pass through an air cooled

vacuum window made out of glass, mostly transparent to microwaves. The use

of high temperature rubber seals allowed heating up of the window without
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cracks, something that happened with standard models. The linearly polarized

waves enter in the vacuum chamber parallel to the magnetic field. They can

be decomposed in left and right handed circularly polarized waves with a

dispersion relation for cold plasma given by [40]

n2 =

(
kc

ω

)2

= 1−
ω2

pe

ω2

ω

ω ∓ |Ωe|
−
ω2

pi

ω2

ω

ω ± Ωi

(3.8)

where the upper and lower signs correspond to the right and left circularly

polarized waves respectively. The right hand polarized waves can travel along

the field lines until they resonate with the electrons at the electron cyclotron

frequency Ωe that for a frequency f = 2.45 GHz corresponds to a magnetic

field B = 0.0875 T (Fig. 3.5). The left hand polarized mode is lost or absorbed

through a different mechanism.

3.5 Electric Field

To achieve high rotation of the plasma contained in the magnetic mir-

ror bottle an electric field E perpendicular to the magnetic field surfaces is

generated. To the lowest order, an azimuthal drift of the plasma with a ve-

locity VE = E×B
B2 is created by these two fields as shown in Fig. 3.8. This

method has been successfully used in many experiments in the past [24] and

present [8] with certain limitations and relays in the way the electric field is

generated either by biasing the plasma at the ends, mirror throats in our case,

or at the axis of symmetry.

The approach that we use to create the perpendicular electric field is
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Figure 3.8: Schematic of the E×B
B2 mechanism to rotate plasma.

to assume that the conductivity of each magnetic surface is much higher than

the one between them due to the high mobility of electrons along the field

lines. Then, biasing different magnetic surfaces at different potentials would

create the desire field. Fast rotation, about 2.5 · 104 m/s, can be achieved in a

0.04 T magnetic field with an electric field E = 103 V/m.

In order to bias the magnetic surfaces, electrodes at one throat of the

mirror are biased against the chamber and limiter as shown in Fig. 3.9. Even

though the magnetic lines could behave as equipotentials, they do not acquire

70



the electrodes potential due to the thin sheath formed around them. This

sheath can play an important role in the penetration of the potentials into the

plasma and in the overall rotational velocity (Section 5.3).
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Figure 3.9: Schematic of one type of electrode configuration showing the elec-
trodes (red), insulator (green), chamber and limiter (gray-black).

Insulators at the throats avoid the contact of the plasma with the elec-

trically conducting end walls and the consequently shorting of the magnetic

lines to the grounded chamber. Originally the material used was Teflon, but

its performance was far from acceptable in our configuration, because it would
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melt under some operating conditions. Also Teflon made a dirt plasma. We

solved the problem using boron nitride grade AX05 from Saint-Gobain Ce-

ramics3 with a cost of 800 dollars per disk.

High voltage (20 kV) and high current (150 A) feedthroughs ISI4 con-

nect the electrodes inside the vacuum chamber to the power supplies outside.

Different electrodes configurations have been used as well as different

materials. Electrodes made out of aluminum tend to heat up and deform after

many shots with currents of 5 A for 0.4 s as shown in Fig. 3.10 - left hand

side. Electrodes made out of 304 stainless steel under the same conditions

do not present this problem, no damage has been seen after a thousand shots

(Fig. 3.10 - right hand side).

Different configurations of electrodes used in this experiment are shown

in Fig. 3.11. Initially bolts were used to bias different magnetic surfaces

(Fig. 3.11 - top left hand side) without satisfactory results because the ap-

plied potential would not penetrate into the plasma. A center rod [8] that

reached the equatorial plane was used next with similar results (Fig. 3.11 -

top right hand side). The area of the electrodes perpendicular to the magnetic

field turned out to be an important factor in the current drawn and the speed

of the plasma achieved (Section 5.3). A third configuration was used with a

center electrode and concentric rings [1] with better results due to the big-

ger collecting area (Fig. 3.11 - bottom left hand side). In this case there was

3http://www.bn.saint-gobain.com/
4http://www.insulatorseal.com
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Figure 3.10: Deformation of aluminum electrodes after many shots with cur-
rents of 5 A for 0.4 s (left hand side) and no deformation of 304 stainless steel
electrodes under the same conditions (right hand side).

a partial control of the potential profile. A last configuration using a single

plate was used to maximize the collecting area (Fig. 3.11 - bottom right hand

side) with satisfactory results but loosing the possibility to directly control the

potential profile.

Originally low voltage (< 200 V) power supplies were used with currents

∼ 4 A. The fact that the potential did not penetrate as much as it was desired

led to the modification of the original electrodes to achieve more current to

drive the plasma. These requirements led to the use of a 1 kV-80 mF capacitor

bank with an energy of 32 kJ. 60 Hz Variacs have also been used with voltages

of 330 V peak to peak and 10 A of current for multiple electrode biasing.
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Figure 3.11: Different electrode configurations used in MBX. Bolts (top left
hand side), center rod (top right hand side), center rod and rings (bottom left
hand side) and single plate (bottom right hand side).
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Chapter 4

Plasma Measurements

Once the rotating plasma has been created (Chapter 3) measurement

of the plasma such as density, potential, velocity, are needed to characterize

its state. These properties are measured directly using different diagnostics

or indirectly using theoretical models based on experimental data. The steps

followed to characterize the state of the plasma are shown in Fig. 4.1.

Diagnostics

Signal 

Conditioning

Data 

Acquisition

Data 

Archive

Figure 4.1: Steps followed to characterize the state of the plasma.
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Different diagnostics such as floating, current, Langmuir probes are

used to interact physically with the plasma while others such as spectrom-

eter and photodiodes are non intrusive. Generally, the signals generated by

the diagnostics are in the form of voltages. They are passed through condi-

tioning devices that filter, amplify, and/or isolate them, to finally reach data

acquisition boards located in a generic computer. Labview software run by

the user tells the boards when to acquire signals and how to digitize them so

that they can be stored in a hard drive. The digitized data is then transferred

and saved in a computer that acts as an archive where it can be accessed by

users worldwide. Finally, the data is analyzed to calculate the properties that

characterize the state of plasma such as density, potential, rotational velocity,

and so forth.

A detailed explanation of each of the diagnostics used in the present

experiment as well as the different steps to condition the signals, acquire, store

and process the data follows in the next sections.

4.1 Diagnostics

4.1.1 Langmuir/Mach Probe

The Langmuir/Mach movable probe is actually two different types of

invasive probes arranged together. The Langmuir probe is designed to measure

the density n, electron temperature Te, and plasma potential Vp [21]. The Mach

probe, very similar in design to the Langmuir probe, measures the plasma

velocity V for speeds less than the sound speed cs after which the theory is
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not as clear [13].

The probe is located at the equatorial plane and is able to scan the

whole radial extension of the plasma. Each radial position measurement cor-

responds to a different shot and since the probe does not perturb the plasma

appreciably as inferred from measurements of other quantities, a full radial

profile can be obtained for the same plasma conditions.

In a typical Langmuir probe the plasma particle flux is collected biasing

a metal tip inserted in the plasma. The measurement is local which means

that an understanding of how the probe perturbs the plasma around it is

necessary to calculate the plasma quantities away from the probe, typically

tenths of Debye lengths. Different external potentials V0 applied to the probe

generate different currents I collected by it. Many theories have been derived

with different degrees of complexity to explain their dependence. Specifically

for our case, the characteristic curve for a cylindrical probe inserted in a low

density plasma where the presheath is collisionless and the ions are cold is

given by Eqs. (4.1)-(4.4) [21]

I = Ii,sat
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e
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Ii,sat is usually referred as ion saturation current, e is the electron charge, mi
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(me) the ion (electron) mass, a is the probe radius, Ap the probe area, As

the effective probe area due to the increase in the sheath thickness xs, n∞

the electron density in the bulk of the plasma and λD the Debye length. The

first term in the right hand side of Eq. (4.1) corresponds to the collection

of the electrons consisting of a Maxwellian distribution with temperature Te

while the second term corresponds to cold ions. Usually the increase in sheath

thickness is neglegible respect to the probe radius. In that case As ∼ Ap and

the ion current saturates to the value Ii,sat.

The usual procedure to characterize the plasma from the characteristic

curve is to first find the floating potential Vf , the potential applied to the probe

such that the current is zero (I(V0 = Vf ) = 0). Differentiation of Eq. (4.1)

considering the expansion of the sheath neglegible gives

dI

dV0

=
e

Te

(I − Ii,sat) (4.5)

The slope of the linear fit of Eq. (4.5) yields Te. Once Ii,sat is calculated from

the saturation of the current n∞ is obtained from Eq. (4.2) and the plasma

potential for a hydrogen plasma turns out to be

Vp ∼ Vf + 3.34 · Te (4.6)

However, in plasmas like ours the situation is more difficult since satu-

ration does not occur and for a cylindrical probe the expansion of the area is

given by Eq. (4.3). A typical I − V0 characteristic curve in non rotating MBX

plasma is shown in Fig. 4.2. The floating potential can still be calculated,
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Figure 4.2: Typical Langmuir probe I−V0 characteristic curve for non rotating
MBX plasma. The raw data collected is shown on the left hand side while the
boxcar average is on the right hand side. The expansion of the probe area can
be seen from the increase in Ii,sat.

as well as Te around Vf where the sheath has not expanded much. To find

n∞ a full fit of the equations is necessary and the agreement is not always

satisfactory.

A typical Mach probe consists of two Langmuir probes separated by

a tab that blocks the flux of particles arriving from each hemisphere. In

this way each tip collects the flux coming from its own hemisphere. Due to

plasma rotation a larger particle flux arrives from upstream (up) than from

downstream (down). Measurement of the ion saturation currents collected by

the two tips gives an indication of the plasma speed. A widely used theory

that relates the ratio in ion saturation currents to the plasma flow in units of
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the Mach number M is given by (4.7) [20]:

Ii,sat−up

Ii,sat−down

= exp(KM), where M =
Vθ

cs
(4.7)

where K is the Mach probe calibration factor that depends on the theory

considered and the plasma characteristics. Values for K are between 1 and 4.

cs is the sound speed considering cold ions.

A typical Mach probe measurement in rotating MBX plasma is shown

in Fig. 4.3. There is a clear difference in the ion saturation currents collected

by both probes. The velocity in this case corresponds to .45 Mach.

Figure 4.3: Typical Mach probe I − V0 characteristic curve for rotating MBX
plasma. Green and blue correspond to the probe facing upstream and down-
stream respectively. Superimposed is the boxcar average of the signals. The
velocity corresponds to .45 Mach.
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There are at least two issues involved in the formulas used for the

Langmuir and Mach probes:

1. Langmuir probe theory works fine for a non flowing plasma, in our case

the base plasma. But when the plasma is rotated, as it is mentioned

for a Mach probe, the ion saturation current changes. The decoupling

of rotation and increase in density out of the ion saturation current is

the difficult task. There are theories that include the effect of a flowing

plasma in the Langmuir probe characteristic curve [20]. Then, theoreti-

cally, one could measure with the Mach probe the velocity and with this

value and the ion saturation current calculate the plasma density.

2. The Mach probe theory works well for subsonic speed but it is not that

effective when the flow is supersonic. A presheath is not formed in the

upstream tip and no clear theory is available [13].

3. Some cases with high fluctuations in the plasma potential when the

plasma is rotating fast create a distorted characteristic curve that is

difficult to analyze

The system to bias the Langmuir/Mach probe and measure the current

flowing is shown in Fig. 4.4. It consists mainly of three parts: the probe itself,

a resistor to measure the current I flowing through the probe and a power

supply to bias the probe at V0.

The probe consists of 4 Molybdenum tips 1.5 mm diameter and 4 mm

long arranged in a diamond pattern held in position by a boron nitride holder

81



Figure 4.4: Schematic of the system used to bias the Langmuir/Mach probe
and measure the collected current.

as shown in Fig. 4.5. The 2 tips along the magnetic field lines act as a Langmuir

probe measuring the flux from either hemisphere. The possible difference in

ion saturation currents is due to the position of the plasma source (Section 3.4).

The two tips perpendicular to the field lines act as a Mach probe. They are

meant to measure velocity drifts in the θ̂ direction.

The current I is inferred by the potential measured across the resistor

R. There is one resistor for each tip in the probe. Since the Mach probe

measures only ion saturation current while the Langmuir probe also collects

also electron current to measure Te, the resistors used for the Mach probe

tips is ten times bigger than the Langmuir probe ones. Since the tips are bi-
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Figure 4.5: Langmuir/Mach probe head.

ased around the floating potential of the plasma to measure the characteristic

curve, both ends of the resistor R can be at hundreds of volts. Then, isolation

amplifiers are needed, because the data acquisition boards only handle a max-

imum of 10 V. The isolation amplifiers are specifically designed to extract the

small signal across the resistor ∼ 1 V from the high common signal ∼ 200 V

(Section 4.2).

The potential V0 is applied with an AC in series with a DC power supply

respect to the vacuum chamber (ground). The AC scans the characteristic

curve while the DC allows the tips to be scanned around the floating potential

of the plasma. There is a timing circuit that controls that the bias is applied

once the shot has been fired and the plasma is at high potential. A voltage

divider reduces the bias voltage in the range that the acquisition boards can

measure.

Radial scans of the plasma can be performed fast and accurate using
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a probe drive. A TTL signal is sent by the computer activating the indexer

Compumotor1 model 172 that sends a series of square pulses (steps) to the

motor controller AH-drive 7464. This in turn drives the stepper motor AX-

106-120 and moves the probe up or down by a finite amount, usually 2 cm.

Figure 4.6: Hysteresis in the Langmuir probe measurements as the sweeping
frequency is increased.

There are two important issues to consider when biasing the Lang-

muir/Mach probe:

• The plasma presents hysteresis when AC biased and the effect is worse

as the frequency increases as shown in Fig. 4.6. The hysteresis creates a

1http://www.compumotor.com
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constraint in the maximum frequency that the plasma can be probed in

addition to the limit the minimum frequency that can be used limited

by the duration of the shot = 0.4 s.

• The rejection of the sweeping voltage that the isolation amplifier has

with frequency degrades as if a stray capacitance was present. The more

the frequency or the measuring resistor value the less the rejection. The

end result is that there is an upper limit in the frequency used to sweep

above which the parasitic current becomes comparable to the current

driven by the probe and a hysteresis like curve appears even without

plasma.

For the current conditions a 200 Hz sweeping is more than adequate

to avoid plasma hysteresis while the parasitic currents are a tenth of the ion

saturation currents at the plasma axis. This factor increases when we move

away of the axis due to lower densities and ion saturation currents.

A way to measure the density of the plasma and its fluctuations is

to negative bias the probes with a DC power supply (instead of sweeping)

to collect only Ii,sat and from there calculate n∞ using Eq. (4.2), assuming

or already knowing an estimate of Te. This is not possible in the present

conditions where MBX operates. The reasons are that, apart from the increase

in Ii,sat due to rotation, there is a large expansion of the sheath due to the high

plasma potential that makes the current collected far from Ii,sat in Eq. (4.1).
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4.1.2 Floating Probes

The floating probes are designed to measure the floating potential of

the plasma Vf that and the assumption of constant electron temperature.

The measurement of this property has many advantages in this particular

experiment such as:

• Calculate how much of the external potential applied at the electrodes

penetrates the plasma (or drops at their sheaths) which is tightly con-

nected to the speed of rotation.

• Check whether the magnetic field lines are equipotential, a statement

often used in the literature due to the high mobility of electrons to claim

isorotation of the plasma [24].

• Calculate an approximate value of the electric field E using the difference

in the plasma potential at different locations.

• Compare at subsonic speeds the velocity calculated using the Mach probe

to the electric drift VE = (E × B)/B2 that is a first approximation to

the plasma rotational velocity.

• Calculate low supersonic speeds that are not fast enough to be measured

by a spectrometer assuming V ∼ VE.

• Compare at fast supersonic speeds VE with the velocity measured with a

spectrometer. The difference should give an indication of the centrifugal
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force drift [9], relevant quantity for the centrifugal confinement achieved

in the mirror due to rotation.

• Study fluctuations in Vf allows the investigation of possible instabilities

or flow turbulence.

• High time resolution of the order of the sampling frequency of the acqui-

sition boards compared to the low resolution in time of the Mach probe

that is of the order of sweeping frequency.

• One shot captures the potential in the equatorial plane at four places

while it would take four shots with the Langmuir/Mach probe.

There are two set of fixed floating probes as shown in Fig. 4.7. The

first set of three probes is located near the throat of the mirror field, at a

r-θ plane 0.1 m away from the biasing electrodes. The probes are separated

by 120◦ to measure any possible perturbation in the azimuthal direction with

correlation lengths longer than 0.2 m. The second set of four probes is located

in the equatorial plane of the machine 120◦ away from the Langmuir/Mach

probe. Three of the probes are connected by the same magnetic surface in

vacuum to the probes at the throat to check whether the magnetic lines are

equipotentials. The forth probe is used to increase the resolution in the radial

direction.

Probe tips similar in physical characteristics to the ones in the Lang-

muir/Mach probe are used to measure the floating potential. The tips are
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Figure 4.7: Positions of the floating probes. One set is located near the throat
of the magnetic mirror and the other at the equatorial plane of the machine.

isolated from the vacuum chamber through a high input impedance ∼ 2 MΩ,

limiting the current drawn from the plasma to avoid loading effects. This ef-

fect occurs when the current collected by the probe becomes the ion saturation

current Ii,sat defined in Eq. (4.2) or its increased value due to sheath expansion

(Section 4.1.1). In Fig. 4.8 a typical I−V0 characteristic curve is displaced by

a floating potential Vf ∼ 675 V and has a Ii,sat ∼ 1 mA that increases due to

sheath expansion. Three different input impedances R are tested. The 100 kΩ

impedance intersects the characteristic curve at V ∗
0 ∼ 300 V, that is the value

one would read for Vf , causing a ∼ 100 % error in the measurement. A 1 MΩ

88



0 100 200 300 400 500 600 700
−4

−2

0

2

4

6

8

x 10
−3

Voltage (V)

C
ur

re
nt

 (
m

A
)

I−V
0
 characteristic curve

I−V
0
 interpolation

I−V
0
 extrapolation

R = .1 MΩ
R = 1 MΩ
R = 10 MΩ

(I*,V
0
*) 

0

Figure 4.8: Loading effect of the plasma due to different input impedances
used at the floating probes. The intersection between the plasma I − V0 char-
acteristic and the resistor curves determines the working point.

intersects at ∼ 650 V, with an error of ∼ 5 % in the measurement. Finally,

the 10 MΩ yields the correct value with an error less than 1 %. It is then

a good procedure to use different input impedances in order to check what

the minimum value is at which the floating potential measurement begins to

change, implying loading of the plasma. The use of a small resistor to measure

the saturation current and the minimum input impedance for not loading the

plasma is not a correct procedure because of the increase in the current with

the expansion of the sheath. Only Ii,sat is a good reference to determine when

the plasma is being loaded. It is important to point out that once the input

impedance has been calculated for a positive biased plasma, it can also be used
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for a negative biased shot because in this case electrons are collected which

have a saturation current much larger than Ii,sat.

We use voltage dividers to attenuate the floating potential that reaches

about 100 times the maximum limit that the data acquisition boards can

safely read. They are made with the high input impedance explained in the

last paragraph facing the plasma in series with a low resistance, ∼ 2 kΩ,

connected to ground. It is important to realize that this output impedance in

combination with the long cables used to transfer the signals create a low pass

filter with a bandwidth of 10 kHz. If this value is not appropriate a buffer

can be used to drive the lines to the data acquisition boards to increase the

bandwidth.

4.1.3 Camera

A CCD video camera has been mounted to take pictures of the plasma

along the r-z plane. The importance of this diagnostic relays in the qualitative

understanding of features such as electron cyclotron resonant layer position,

biased layers, magnetic lines visualization, etc. some of them shown in Fig. 4.9.

The superposition of the theoretical model increases further the understanding.

The CCD camera is a small generic color NTSC video one that acquires 30

frames per second. Its signal travels through a BNC cable to a National

Instruments video acquisition board IMAQ PCI-1411 that is triggered so that

only when the plasma is biased and rotating the picture is taken, digitized and

archived. The resolution achieved is 640 × 480 pixels.
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Figure 4.9: Qualitative features captured with the mounted camera. Electron
cyclotron resonance is shown on the left hand side and biased magnetic lines on
the right hand side. A superposition of the theoretical model is also included.

4.1.4 Biasing Electrodes

The electric field and rotation of the plasma is achieved biasing differ-

ent electrodes at the throat of the mirror magnetic field (Section 3.5). The

potential sets how fast the plasma spins and the current is a consequence of

the torque needed to sustain the rotation. The high potential is reduced with

voltage dividers similar to the ones used in the floating probes (Section 4.1.2),

but with a lower input impedance. This allows for lower output impedance

of the voltage divider and higher bandwidth of the signal. The currents are

measured using EMPRO2 shunts with resolutions of 100 mV per 1 A or 10 A.

2http://www.emproshunts.com
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4.2 Signal Conditioning

Once the signals leave their corresponding diagnostics, they travel to

signal conditioning devices. Their role is to act as isolation for high common

floating voltage, amplifiers for small signals, or the removal of possible ground

loops. Also, filters are used to remove high frequency noise or limit the band-

width so that aliasing3 does not happen when the data acquisition boards

digitize the signals at a sampling frequency fs [19].

Tektronix A6902A isolation amplifiers are the preferred ones for the

Langmuir/Mach probe because they have 2 kV of common mode voltage iso-

lation and a bandwidth of 10 MHz. Burr Brown 3650 isolation amplifiers can

handle 2 kV common mode voltages with a rejection of 140 dB but their band-

width is limited to 15 kHz. Filters are mainly designed for low pass frequency

using RC circuits with cut off frequencies of 20 kHz.

4.3 Data Acquisition

After the conditioning stage the signals travel to a computer as shown

in Fig. 4.1 where National Instruments4 data acquisition boards digitize them.

The boards used in the experiment are the E-Series and their main character-

istics are shown in Table 4.1.

3Aliasing is an effect by which a signal with a frequency higher than fs/2 appears as a
signal with a frequency lower than fs/2. For example, a sinusoidal signal with the same
frequency as the sampling fs would appear as DC signal.

4http://www.ni.com
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Acquisition # Differential Maximum Sampling Resolution
Board Channels Frequency

PCI-MIO-16E-1 8 1.25 MSamples/s 12-bit
AT-MIO-64E-3 32 0.5 MSamples/s 12-bit

Table 4.1: Main characteristics of the National Instruments acquisition boards
used to digitize the signals collected with the diagnostics.

The maximum sampling frequency of these particular boards is shared

by all the channels being acquired. If the maximum sampling frequency of

the AT-MIO-64E-3 is 500 kSamples/s and the total number of channels being

sampled is 20 then the maximum sampling rate per channel is 25 kSamples/s.

The cut off frequency of the low pass filters is bellow the sampling frequency per

channel so that aliasing does not occur. The acquisition boards are controlled

by the Labview software running under Windows operating system.

A code has been written in Labview by the author to acquire the data

and transfer it to an archive. A screenshot of the control panel that is the

interface between the code and the user is shown in Fig. 4.10. You can see a

shot button to fire the biasing voltage for rotation, a move probe button to scan

the Langmuir/Mach probe across the plasma, and the raw data collected in

real time on the screen. A typical “wire code“ that runs behind the interfaces

is shown in Fig. (4.11).

The sequence followed by the code is shown in Fig. 4.12. It starts by

pressing the run button in the Labview window. The code initializes different

digital lines such as the one to control the Langmuir/Mach probe motor drive,
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Figure 4.10: Screenshot of part of the control panel written in Labview that is
the interface between the user and the data acquisition and archiving codes.

and variables such as analog input AI that contains all the channels and their

data, sampling rate, offsets, etc. Then the code enters in the offset phase. Off-

sets appear due to the diagnostics design or the conditioning used. Amplifiers,

for example, need about 5 minutes to warm up for the offset not to drift in

time.

The National Instruments boards used do not show any offset when the

inputs are shorted, that is, the voltage read is zero. If offsets are required by the

user then the code runs another code, offset.vi, that checks the channels needed

to be digitized and gets a sample using getdata.vi. The data is 10 Hz digitally
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Figure 4.11: “Wire code“ that runs behind Labview interfaces. This frame
corresponds to the part of the sequence where the characteristics of the next
shot pass to the acquire.vi for data acquisition.

low pass filtered to extract the DC component, save it in the variable AI, and

display it. The code has also the opportunity to reset all the offsets to zero if

required. After the offset phase the code enters in the acquisition phase. There,

the program checks if the machine is ready (microwaves, capacitor bank, etc.

are ON) which is manually controlled by the user. The program also checks if a

shot has been required. Considering these two options the code runs getdata.vi

and samples the channels at different speeds, the fastest corresponding to the
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machine ready and a shot requested. If a shot is not needed the code still

samples at lower speeds so that the operator can see the status of the different

variables. The digitized data is saved in the AI variable and displayed on

screen. After the acquisition section the code goes into the file phase. If the

data is requested to be stored the code interfaces with the MDSplus application

locally using MS-DOS. A shot is created, comments are added as well as data.

Figure 4.12: Sequence used by the code written in Labview to control the
experiment, acquire data and transfer it to an archive server.
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Then the shot is transferred securely to the archive computer through the

network using SCP protocol. Once the file phase finishes the code starts over

unless the user stops it. The whole loop, including acquisition and archiving

lasts about 5 seconds, where at least 4 of them are spent transferring data.

The Labview code has the advantage of being controlled remotely using any

web browser which allows different users to run the experiment from their own

computer while doing other activities such as calibrating a diagnostic in situ.

4.4 Data Archiving

The Labview application transfers the files containing the shots with

data and comments to an archive computer running an MDSplus5 server. The

choice of MDSplus as the archive system is due to the many advantages it

offers such as:

• The client/server connection allows users to access the data worldwide

without the need of file transfers.

• All the data is saved in a single hierarchical structure like the one shown

in Fig. 4.13.

• The data can be accessed relatively easy by different applications such

as Labview, Matlab, IDL.

5http://www.mdsplus.org
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• The application is available in different operating systems such as Linux,

Windows, Mac.

• It is widely used in the fusion comunity.

In the present experiment the server runs under Linux operating system

and allows people in the MBX group to access the data. The whole hierarchical

structure can be seen with the Traverser application and a typical tree is shown

in Fig. 4.13.

Figure 4.13: MDSplus tree showing its hierarchical structure.
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Once the data resides in the server, it is access locally or remotely by

codes written in Matlab for processing or Scope for viewing data as is shown

in Fig. 4.14. Processed data can also be stored in the same shot where the

raw data resides.

Figure 4.14: Scope application to easily view the data stored in an MDSplus
shot locally or remotely.
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Chapter 5

Experimental Results

In this chapter we present the measurements obtained using the diag-

nostics described in Chapter 4 to characterize the different plasma states. The

results will let us understand how to improve the system to achieve faster ro-

tation and profile control. The measurements will be compared to the theory

developed in Chapter 2. Initially the target plasma is analyzed, where target

refers to the state created by the microwaves under the external magnetic field

but not electrically biased. Later in the chapter, biased electrodes rotate the

target plasma as described in Section 3.5 and its response is diagnosed and

analyzed.

5.1 Target Plasma

A combination of 5 ’knobs’ controls the creation of the different target

plasmas. These knobs are: microwave power flowing into and out of the vac-

uum chamber (referred as forward and reflected power), neutral gas pressure

and external magnetic field intensity and geometry. The applied voltage on the

magnetron controls the power flowing into the system (0 to 1) kW while the

tuner controls the amount of reflected power. A minimum reflection is always
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desired but not always possible. A needle valve regulates the neutral pressure

(10−7 to 10−3) Torr. The currents flowing through the external coils control

the intensity of the magnetic field, with a maximum of 1200 A due to coil

heating and a minimum of 500 A due to the microwave source limitation. The

geometry of the magnetic field is a knob that has been fixed to maximize the

mirror ratio R, reaching the largest mirror as well as centrifugal confinement.

In most of the cases a greater forward power in the microwaves results

in a denser plasma for different neutral pressures or magnetic fields. Even

though the tuner is varied so that less than 5 % of the total power is reflected,

there are some plasma conditions that cannot be tuned and 20 % reflected

powers occur. In any case a denser plasma is obtained when a higher forward

power is used even if the net power is the same. Something to notice is that

a second resonant layer, not as intense in brightness as the first one, is seen

at the other side of the equatorial plane (Fig. 4.9). This could be due to the

right circularly polarized wave not completely absorbed by the first resonance

or due to the left polarization being reflected off the walls and converted to

right circularly polarization.

Considering that a maximum in forward power maximizes the plasma

density in all cases, we have performed radial scans using the Langmuir probe

at the equatorial plane with different magnetic field intensities and neutral

pressures. Fig 5.1 shows the change in plasma density under the different

conditions. The overall plasma density decreases as the neutral density in-

creases. Even if more neutral targets increase the ionization frequency in the
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resonant layer, more collisions of the plasma bulk with neutrals decreases the

particle confinement time resulting in a lower density plasma. An increase in
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Figure 5.1: Density radial scan at the midplane using maximum microwave
power for different magnetic field intensities and neutral pressures. The density
increases when the neutral density or the magnetic field intensity decreases.

the magnetic field decreases the plasma density and this effect is mostly no-

ticed for neutral densities higher than 2 · 10−4 Torr where the profile changes
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from a plasma with a center core at low magnetic field intensities to a hollow

plasma at higher fields. Even if a bigger magnetic field intensity reduces the

perpendicular losses due to diffusion by a factor (Ωcyclotronτcollisional)
−2, it does

not affect the loss cone losses in the parallel direction. The intensity of the

magnetic field mostly affects the source function of the plasma which changes

position as shown in Section 3.4.

The figure also shows that the density does not drop to zero at the lim-

iter boundary as is the case in experiments where a scrap off layer is produced.

On the contrary the density stays high due to the source function created by

the microwaves that operates well outside the limiter position. A solution for

this problem would be to extend the microwave waveguide inside the vacuum

vessel until the ceramic insulator where the vacuum window would be placed

so that waves spread out less before reaching the resonance. At the same

time the resonance can be brought close to the ceramic disk working at lower

magnetic fields, that is not possible presently because ionization would occur

behind the current window position. The waveguide could be tapered and

filled with some higher dielectric constant ε material like boron nitride (ε = 4)

so that the waves can still propagate and the emission area is smaller.

As mentioned in Section 3.4 the method of launching the waves parallel

to the magnetic field lines avoids the cutoff usually imposed by ωpe in other

methods. In our case the densities achieved are about 7 times less than this

limit. A 6 kW microwave source was borrowed from Prof. Kenneth Gentle

reaching about 3 times the previous densities still without reaching this limit.
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At higher powers the tuning for zero reflected power became almost impossible

and reflections of 25 % were typical.

For the same conditions present in the density measurements the tem-

perature profile is presented in Fig. 5.2. It shows a fairly isothermal plasma

with values of (4 ± 1) eV for all the different magnetic fields intensities and

neutral pressures.

Measurements carried out with the Langmuir probe facing the mi-

crowave source show higher values of temperatures and densities compared

to the measurements in the side facing the rings (Fig. 5.3). This difference is

evidence of the losses in the mirror bottle. The stronger the magnetic field

intensity the higher the difference in the two sides of the probe reaching ratios

as high as 1.4.

In summary, we use the maximum power available in the microwaves

to achieve the highest plasma density that according to the measurements

decreases as the neutral pressure or the magnetic field increases. The temper-

atures are ∼ 4 eV. Density measurements show that the limiter is not effective

in controlling the radial extent of the plasma due to the location of the plasma

source function.
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Figure 5.2: Temperature radial scan at the midplane using maximum mi-
crowave power for different magnetic field intensities and neutral pressures.
The electron temperature is ∼ (4± 1) eV.
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Figure 5.3: Difference in density profiles measured by the Langmuir probe
facing the plasma source (LangA) and the electrode region (LangB), evidence
of losses in the mirror magnetic bottle.
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5.2 Plasma Speed and Electric Drift

The rotational velocity should agree with the electric drift VE in the

case of velocities high enough compared to the diamagnetic drift, but subsonic

so that the centrifugal drift does not contribute considerably. The velocity

profile is measured with the Mach probe at the equatorial plane as described

in Section 4.1.1 while VE = E/B is calculated measuring the plasma potential

at the equatorial plane, taking its gradient to get the electric field and divid-

ing by the magnetic field given by the model in Section 3.3. Fig. 5.4 shows a

typical scan for a biased plasma with a center rod, two rings and the limiter

(in gray from left to right) and compared to an unbiased plasma [36]. The

electrode positions are extrapolated to the midplane following the magnetic

lines. The neutral density is 0.1 mTorr and the coil current is 600 A. The

unbiased plasma presents a roughly constant floating potential with a conse-

quent low or zero electric field and so negligible rotational velocity. The outer

(inner) ring is biased at ±50 V (±100 V) while the center rod is at ±150 V

with respect to the limiter and chamber. The positive biased plasma shows

a good correlation between the Mach probe measurement and VE (where the

temperature is roughly constant so that the gradient in plasma potential is

the same as the gradient in floating potential).

As mentioned in Section 4.1.1, while most of the theories regarding

Mach probes agree that there is a logarithmic dependence between velocity and

ratio of probe currents, the actual calibration factorK is still in dispute. In our

case K = 3.7 is obtained that is in close agreement with typical values [20].
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The maximum velocity is obtained between the two biased rings. For radii

less that 0.1 m the plasma seems to rotate rigidly, that is V ∼ rΩ, with

Ω = 9 · 104 rad/sec. This case was analyzed in Section 2.2.3. Between 0.1 m
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Figure 5.4: Velocity measured with the Mach probe compared to the elec-
tric drift VE calculated from the plasma potential measured by the Langmuir
probe. In green the plasma is unbiased while in blue (red) is positively (nega-
tively) biased with respect to the limiter and chamber. The electrode positions
extrapolated to the midplane following the magnetic lines are shown in gray.
The plasma speed agrees with VE.

and 0.15 m there is a transition region where the velocity decays. For larger

108



radii the speed remains roughly constant so that Ω ∼ r−1 with a consequently

constant electric field. For a negative biased plasma the velocity of rotation

is much smaller compared with the positive biased case but still enough to be

measured (asymmetry with respect to the polarity). The rotation measured

with the Mach probe agrees with VE using the calibration factor calculated

previously.

As mentioned in Section 4.1.1 the same effect that causes the Mach

probe to measure different currents depending of the velocity, acts on the

Langmuir probe so that a decoupling of velocity and density is difficult to do.

This effect is shown in Fig. 5.5 where a peak in density is observed at the same

position as the maximum in speed occurs. The density drops to its non biased

state values for small radii where the velocity drops to zero. The decrease in

density observed at r = 0.14 m corresponds to the same position as one of the

biased electrodes. This effect is attributed to the positive biased electrode,

collecting current along the field lines and decreasing the electron density [38].

The small rotation achieved when the plasma is negative biased is not enough

to affect the density measurements that show same values as the non rotating

case.

In summary, the rotational speeds measured with the Mach probe agree

with the electric drift VE measured by the Langmuir probe for low applied

voltages (< 200 V). The rotation presents asymmetry with respect to the

polarity of the external bias, positive (negative) potentials yields high (low)

rotational speeds. Langmuir probe data shows how high speeds obtained with
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Figure 5.5: Non rotating plasma density profile affected by the rotation. In
green the plasma is unbiased while in blue (red) is positively (negatively) biased
with respect to the limiter and chamber. The electrode positions extrapolated
to the midplane following the magnetic lines are shown in gray.

positive bias affect the density measurements.

5.3 Electrode Configurations

Different electrode configurations have been used as time went by with

an increase in performance as shown in Section 3.5. The objective has been

to achieve maximum potential penetration of the biasing voltage inside the
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plasma and consequently a maximum rotational speed. The reason for the non

perfect penetration or transfer from the biasing electrodes to the plasma bulk is

the combined behavior of the electrodes sheaths and plasma dynamics. At the

same time, it is desirable to control the shear profile for stability purposes [14].

Originally, without knowing the possible response of the plasma to the applied

potentials, 1/2 in. stainless steel bolts were used as shown in Fig. 3.11 top left

hand side. The purpose was to have the maximum flexibility to bias the

plasma, radially as well as azimuthally in case it was needed or just as probes

to measure plasma potential and density. The potentials measured at the

equatorial plane with the Langmuir-Mach probe were small compared to the

applied potentials (±50 V) so that most of the drop happened at the electrode

sheaths [4]. The currents were ∼ 0.1 A (0.02 A) when the bolts were positive

(negative) biased. The plasma potential was not affected much by the bolts

which then behaved mostly as Langmuir probes.

In order to affect the plasma in a higher degree we used a hollow 1/2 in.

stainless steel center rod instead as shown in Fig. 3.11 top right hand side.

This type of configuration was successfully used in past experiments [9] and

presently in the MCX experiment [8]. There is a big advantage of simplicity

and at the same time a big disadvantage of non being able to control the po-

tential in the radial direction inside the plasma and consequently the shear

flow in the system. This is a fundamental point in MCX where the aim is to

study centrifugal confinement for fusion conditions working under the appro-

priate shear flow to suppress undesired instabilities at high Mach numbers [15].
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In the present scheme, the shear is controlled by the plasma dynamics rather

than externally. In our case since we use microwaves launched on one side of

the mirror to generate the plasma the center rod extended only to the equa-

torial plane rather than all the way through. In this way the perturbation

to the microwaves is minimized. The electrode area has been increased 200

times compared to the bolts used in the previous configurations. The poten-

tial measured at the equatorial plane for a rod biased at ±60 V against the

grounded limiter and chamber is shown in Fig. 5.6 [32]. Similar to the bolts a
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Figure 5.6: Potential measured at the equatorial plane using the center rod. In
green the plasma is unbiased while in blue (red) it is positively (negatively) bi-
ased with respect to the limiter and chamber. The penetration of the potential
is low.
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large fraction of the biasing voltage drops at the electrode sheath so that the

plasma is mostly non rotating. The current amplitudes are not much different

than the bolt electrodes which suggests that the current is mostly function of

the projection of the electrode surface onto the insulator. That is, the cur-

rent that crosses the magnetic field surface that is connected to the base of

the center rod (where the insulator is located) will be collected with the rod

or with a bolt of the same area. The only difference is that in the first case

the sheath is nearly parallel to the magnetic field and in the second case the

sheath forms normal to the incident magnetic field. The plasma potential is

slightly modified in this configuration and this type of electrode still behaves

as a probe without affecting the plasma structure. The currents collected scale

with the projection of the electrode area at the throat where the insulator is

located.

Using the experience acquired with the previous electrode configura-

tions we built a combination of center rod and rings as shown in Fig. 3.11

bottom left hand side with an increase in the collecting area by a factor of 15

per ring. The ring configuration has being used in other experiments [1, 38].

Typical potentials at the equatorial plane for total biased voltages of ±150 V

with respect to the limiter and chamber were shown in Fig. 5.4 [36]. Note that

approximately 50 % of the applied potential has penetrated to the equatorial

plane for positive bias, an improvement mostly due to the larger electrode

areas. The bias on the rod penetrates slightly. The negative bias does not

penetrate creating an asymmetry that will be discussed in Section 5.4. The
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role of the limiter and chamber is more than important because they act as

the return path for the electrode currents. To show this point explicitly we can

bias both rings with respect to each other while completely disconnected from

the limiter and chamber [35]. The potential at the equatorial plane is shown

in Fig. 5.7 as red or green for each polarity. For comparison the potential

achieved with the limiter used as the return path is shown in blue. There is
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Figure 5.7: Comparison of the penetration of the potential when the electrode
(red or green) or the limiter (blue) are used as return paths. The electrode
positions extrapolated to the midplane following the magnetic lines are shown
in gray. There is no penetration of the potential when an electrode is used as
the current return path instead of the limiter.
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no penetration of the potential with any polarity on the rings and at the same

time the circulating currents drop from ∼ 1 A using the limiter as the return

path to ∼ 0.04 A using only the electrodes. That is, the penetration decreases

because the area collected decreases also.

The ability to control the potential profile is shown in Fig. 5.8. In blue
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Figure 5.8: Ability to control the potential profile. In green the outer ring is
non biased while in blue is biased. The overall potential shifts at the equatorial
plane due to the addition of potential to the outer ring.

the outer ring, inner ring and center rod are bias with respect to the limiter

at 50 V, 100 V and 150 V respectively while in green the outer ring is not
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biased. The overall potential shifts at the equatorial plane due to the addition

of potential to the outer ring. The control of the profile shape and shear flow

will be discussed in Section 5.5.

In order to study the maximum penetration of the potential so that

the highest rotational speeds can be obtained with a possible ionization pro-

cess [2] we designed a fourth type of electrode. It is a simple plate as shown in

Fig. 3.11 bottom right hand side that biases most of the magnetic field lines

at the same potential. This does not necessarily mean that the plasma bulk

will be equipotential because the penetration is not perfect as described in

Section 5.5. A typical profile is shown in Fig. 5.9, where the neutral density is

4 · 10−5 Torr, the magnetic field ∼ 0.06 T on the axis at the equatorial plane

and the biasing is ±400 V. Under the same conditions and for comparison, we

show the potential created by the inner ring electrode biased with respect to

the limiter. The total biasing area has increased by a factor of 6 compared to

a single ring. The penetration of the potential for negative bias improves by

a factor of 2 reaching rotational speeds of 104 m/s together with an increase

of ions collected. For positive bias the current increases compared to the ring

electrodes but not more than a factor of 2. The penetration of the potential is

only slightly improved. The limiting area when the plate is positive biased is

the limiter and chamber as discussed later in Section 5.6. Overall this is the

best configuration to reach high potential and rotational speeds in the plasma

bulk, unfortunately loosing control of the shear profile.

Summarizing, the bigger the biasing electrode area, the better potential
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Figure 5.9: Potential measured at the equatorial plane for the plate (inner
ring) electrode biased at ±400 V shown in red (blue). The plate (inner ring)
position extrapolated to the midplane following the magnetic lines is shown
in light (dark) gray. The plate allows better penetration of the potential
compared to the ring.

penetration and the faster rotational speeds are achieved. A ring type configu-

ration is desired to achieve shear profile control. Then, the best configuration

would be one where the whole insulator is mostly covered with concentric rings

for maximum surface and shear control.

117



5.4 Current Asymmetry

The velocity profiles shown in Section 5.2 present asymmetry in the

system with the applied external biasing voltage. The same behavior has been

observed with all the different electrode configurations used (Section 5.3). In

all the cases the rotation is clearly proportional not only to the polarity of

the external voltage applied but also to the amount of current driven through

the system. High rotational plasma speeds appear when the electrodes are

positively biased with respect to the limiter and chamber as shown in Fig. 5.4.

Electrode currents are ∼ 3 A. In contrast, when the electrodes are negatively

biased the rotation in the bulk of the plasma is minimal or absent. The

electrode currents in this case are smaller when compared to the positive biased

case and of the order of ∼ 0.1 A. The current asymmetry with the potential

applied is seen better when the voltage applied to the plasma is swept. Fig. 5.10

shows a typical behavior of the current for the inner biased ring with a neutral

pressure of 0.1 mTorr and 800 A through the coils. The response resembles

the I − V characteristic curve of a Langmuir probe as shown in Fig. 4.2. As

the electrode is negatively biased with respect to the limiter and chamber

ions start being collected and a futher increase in negative potential reaches a

point where no extra ions are collected and a saturation of the current occurs

(ion saturation current Isat,i). When the electrode is positively biased ions

are rejected while electrons are collected. As the potential increases so does

the current that reaches a saturation (electron saturation Isat,e) after which

no more electrons can be collected. Even if the curve resembles an I − V
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Figure 5.10: Asymmetry in the inner ring electrode current as function of the
potential applied to it.

probe characteristic curve, there are three important differences. First, the

area of the electrodes is much bigger than the area of typical probes. While

Langmuir probe theory is designed for small perturbations to the plasma, the

electrodes have an area comparable to the size of the machine so we do not

expect the same results. Second, the change in potential to make the transition

from ion saturation to electron saturation in a typical probe is a few Te while

it takes about 300 V ∼ 70 Te(V) when the electrodes are biased as seen in

Fig. 5.10. Third, the saturation does not always occur as shown in Fig. 5.11

for a different set of plasma parameters, however the asymmetry in collected

current is always present. The asymmetry could also be connected to the
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Figure 5.11: Asymmetry but no saturation of the current.

bulk of the plasma that responds differently to either bias polarity as seen in

Section 2.2.3 when rotating plasma solutions were discussed.

The effect of asymmetry shown with one electrode ring can be extended

to a two electrode system considering the polarity in the biasing voltage with

respect to the plasma potential near the corresponding electrode instead of

ground. A typical two electrode biased system is shown in Fig. 5.12 [33]. The

outer ring (labeled as 1) is AC biased (± 330 V) at 60 Hz with respect to

the limiter and chamber while the inner ring (labeled as 2) is DC scanned

at voltages ranging from −500 V to 500 V. When the absolute value of the

biased potentials are above 100 V the currents saturate for both electrodes.
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For voltages less than this value there is an interplay between the electrodes.

That is, the transition from ion to electron saturation is shifted by the different

electrodes. This asymmetry happens for neutral pressures in the range of

4 · 10−5 Torr to 8 · 10−4 Torr and magnetic fields in the range 0.04 T to 0.06 T

at the equatorial plane.

Figure 5.12: Asymmetry in the current C collected by two biased rings at
potentials V . The subscript 1 (2) corresponds to the outer (inner) ring.
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In summary, for the given range of neutral densities and magnetic fields

there is an asymmetry in the response of the plasma with respect to the bi-

asing voltage. The current asymmetry in the plasma resembles the I − V

characteristic curve of a Langmuir probe but with modifications.

5.5 Throat Potential Asymmetry

As seen previously in Sections 5.2-5.4 there is asymmetry in the re-

sponse of the system to the applied external potential. The electrode currents

resembles an I−V Langmuir characteristic curve, while the rotational speeds,

connected to the plasma potential, show an important difference depending on

the polarity of the applied bias. In order to measure the amount of external

potential that penetrates into the plasma, three floating probes are located

0.05 m away from the electrodes along the same magnetic field line as de-

scribed in Section 4.1.2. Knowing the electrode potential, the drop at the

electrode sheath can be calculated.

For the current asymmetry described in Fig. 5.10 with a inner ring

electrode we show in Fig. 5.13 the potential measured at the probe facing the

biased electrode following the magnetic lines. The potential follows the same

trend as the asymmetry in the current. That is, for negative bias, low currents

flow through the system and there is a large potential drop at the sheath.

This leads to a small potential and electric field inside the plasma and a small

rotation (through VE). As the bias potential increases for positive polarities

the plasma potential at the equatorial plane and the current also increase.
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Figure 5.13: Asymmetry in the plasma potential facing the biased inner ring
electrode as a function of its potential.

Thus, there is only a small potential drop in the sheath. This increases the

rotational speed of the plasma. As the electrode reaches electron saturation

current the potential in the plasma and the rotational speed saturate also.

For higher applied voltages the current remains fairly constant, as well as

the potential inside the plasma. That is, all the extra voltage applied to the

electrode is dropped at the sheath and lost.

The physics becomes more interesting when two rings are biased in or-

der to shape the rotational speed and shear flow. The asymmetry in the current

is shown in Fig. 5.12. The measured floating potential at the two probes facing
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the electrodes along the magnetic field lines is shown in Fig. 5.14. The plasma

potential and electrode currents show similar behavior. The saturation regions

appear as flat with different levels. The region where both electrodes are posi-

tive biased collecting electrons yields the highest penetration of the potential.

There are steep transitions and lowering in the plasma potential when one of

the electrodes is negative biased collecting ions. In this case, the electrode col-

lecting electrons dominates the plasma potential. The inner ring affects more

the plasma potential compared to the outer ring due to its higher currents.

Finally, when both electrodes are negative biased collecting ions only slight

penetration occurs. A particular potential profile and consequently shear flow

can be obtained varying the electrode potentials however the control is not

complete because there are ranges of potentials that cannot be selected.

In summary, the potential penetration are proportional to the electrode

currents. Both current and potential profiles are similar. When the electrodes

collect ions, the penetration of the potential is small while when the electrodes

collect electrons at higher currents the penetration improves considerably. The

control of a shear flow is partial and possible only when at least one electrode

collects electrons. If an electrode collects ions the electrode collecting electrons

dominates the plasma potential.
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Figure 5.14: Asymmetry in the measured floating potential at the two probes
facing the two biased ring electrodes. The top (bottom) corresponds to the
plasma potential facing the outer (inner) ring that are labeled 1 (2) respec-
tively.
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5.6 Asymmetry Model

A simplified model for the asymmetry present in the plasma [34] is

to consider the electrode, limiter and plasma as is shown in Fig. 5.15. The

B surface @ φp,0 Φ0 = 0 VLimiter 
sheath

B surface @ φp,1 φ1
Electrode 

sheath

I

I

I

Figure 5.15: Diagram to model the plasma bulk, sheaths and electrodes.

electrode potential φ1 is connected to the plasma potential φp,1 through a

sheath drop. The same assumption holds for the grounded limiter (φ0 = 0

volts) and the bulk plasma facing it (φp,0). The equation governing both the

plasma and the electrode sheath is [21]

I =

{
Ie,sat · e

φ−φp
Te − Ii,sat φ ≤ φp

(Ie,sat − Ii,sat) + (φ− φp)/α φ > φp

(5.1)

where Ie,sat and Ii,sat are the electron and ion saturation currents, Te the

electron temperature, and α is a resistance that accounts for non perfect satu-

ration. The saturation currents are proportional to the area of the electrodes
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being considered. The magnetic field lines in the bulk of the plasma are con-

sidered equipotentials while the plasma is assumed to have a perpendicular

resistance R⊥ given in Section 2.3. Then, the current carried across the mag-

netic surfaces is related to the corresponding voltages by

φp,1 − φp,0 = R⊥I (5.2)

This system results in 3 equations (2 sheaths and 1 plasma bulk) and 3 un-

knowns (I, φp,1, φp,0) provided φ1 is the given applied potential and Te is taken

from experimental measurements.

Typical electrode parameters taken from the data used in Figs. 5.10 and

5.13 are Ie,sat = 3.2 A and Ii,sat = 0.1 A. The grounded limiter and chamber

are assumed to collect higher currents due to their much bigger area. The

perpendicular resistance that fits the experimental data is R⊥ ∼ 100 Ω. This

value is in close agreement with the average resistance obtained from charge

exchange drag, Rcx
⊥ = ρcx

⊥ l/A ∼ 170 Ω where ρcx
⊥ is the perpendicular resistivity,

l is the thickness of the plasma between the electrode and the limiter, l ∼ 0.1 m,

and A is the area of the magnetic surface, A ∼ 1 m2, all average quantities.

The perpendicular resistivity is calculated in Section 2.3 and to the lowest

order is ρcx
⊥ ∼ B2/(Mnνcx

i,n). This expression is derived from the balance

between J×B and the neutral drag Mnνcx
i,nVE θ̂ where M is the ion mass and

νcx
i,n ∼ 6 · 104 Hz is the charge exchange collisional frequency for a plasma with

ion temperature Ti = 2 eV and neutral density n0 = 3 · 10−18 m−3 [23]. The

solutions for the floating potentials and the current as function of the applied

potential to the electrode are shown in Fig. 5.16.
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Figure 5.16: Asymmetry in current and floating potentials vs. applied elec-
trode voltage described by the model.

We can solve the system of equations over the regions of experimental

space. The solutions can be represented as operating points in both elec-

trode/limiter sheath equation curves, and the bulk equation curve as shown

in Fig. 5.17. As the electrode is positive biased with respect to ground (green

circles), electrons are collected, the current rises, and a potential difference

develops inside the bulk of the plasma due to R⊥I in Eq. (5.2). The potential

drop at both sheaths is a couple of Te, more as the current increases. The

potential in the plasma follows the external bias as seen in Fig. 5.16. This
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process can continue (yellow circle) until the current through the electrode

reaches saturation Isat,e freezing the potential drop inside the plasma (orange

circle), φp,1−φp,0 = R⊥Isat,e. Any extra applied potential (red circles) drops at

the electrode sheath, φ1−φp,1, with no extra penetration inside the plasma as

shown in Fig. 5.16. A similar situation occurs as the electrode is negative bi-

ased (turquoise circles), however the maximum current is limited by Isat,i that

is much smaller than Isat,e. Then, the maximum potential difference inside the

bulk of the plasma becomes φp,1 − φp,0 = R⊥Isat,i (blue circles), reproducing

the asymmetry seen in the data. Regarding the close correlation between the

current and the plasma potential seen in Figs. 5.10 and 5.13 we can see that the

current flowing through the system never reaches Isat,e,i on the limiter. Then

its sheath potential drop is only a couple of Te. That makes φp,0 much smaller

than the potentials applied and through Eq. (5.2), φp,1 ∼ R⊥I as observed in

the experimental data.
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Figure 5.17: Operating points for different applied potentials to the electrode.
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5.7 Potential at the Equatorial Plane and Centrifugal
Confinement

In Section 5.5 we studied the penetration of the potential into the

plasma near the magnetic field throat and consequently the electrode sheath

potential drop. In this section we study the variation of the potential along

the magnetic field lines from the throat into the equatorial plane. This can

lead to clues if centrifugal confinement is achieved as predicted in Eq. (2.39)

and 2-fluid effects are present as seen in Section 2.2.3. In order to study this

effect, we compare the measurements obtained from the throat and equatorial

floating probes described in Section 4.1.2.

Fig. 5.18 shows profiles for low voltages (< 200 V) and positive polarity

applied to the ring (top) and plate (bottom) electrodes with neutral density

.2 mTorr and a magnetic field at the center of the chamber of 0.065 T. The

potentials measured with the throat floating probes are extrapolated to the

equatorial plane following the magnetic field lines. The divergence of the lines

as we move towards the equatorial plane is the reason for the increase in

the extrapolated radial size of the throat probes and electrodes. The applied

voltage penetrates into the plasma and from there into the bulk of the plasma

at the equatorial plane.

Regardless of the potential sheath drop, at low voltages the magnetic

field lines are equipotentials with an error of ±10 V ∼ ±2 Te(V). The overall

speeds measured at the equatorial plane and throat are subsonic ≤ 2 ·104 m/s.

At these speeds small centrifugal confining potential ∼ 7 V are expected.
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Figure 5.18: Floating potential for low biasing voltages (< 200 V) and positive
polarity applied to the ring (top) and plate (bottom) electrode. The positions
of the biased electrodes (gray), and the throat probes (red) are extrapolated
to the midplane following the magnetic lines. For low voltages the biased
magnetic lines are roughly equipotentials.
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This situation changes when higher biasing potentials create faster ro-

tational speeds. Fig. 5.19 shows typical profiles for high voltages (> 500 V)

and positive polarity applied to the ring (top) and plate (bottom) electrodes.

High penetration of the potential occurs with supersonic rotational speeds at

the throat ∼ 4 · 104 m/s. The non biased magnetic lines behave as equipo-

tentials with no centrifugal confinement seen within the errors. However, the

biased magnetic lines present a potential drop from the throat to the equa-

torial plane of 400 V to 600 V. This drop is not associated with centrifugal

confinement. As explained in Section 2.2.3 centrifugal confinement increases

when moving from the throat to the equatorial plane (∼ 60 V for the current

conditions) which is opposite to what is observed. The potential drop along

the lines limits the potential at the equatorial plane to 175 V and the overall

speed of the plasma. This limitation of potential at the equatorial plane has

been observed in most cases where those potentials are exceeded at the throat

either using the ring or plate.

For negative bias voltages the sheath drop is large as shown in Sec-

tion 5.5 and in the best case we find voltages of 100 V at the throat and

equatorial plane with speeds of 104 m/s. The magnetic field lines behave as

equipotentials within the experimental error as shown in Fig. 5.20.
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Figure 5.19: Floating potential for low biasing voltages (> 500 V) and positive
polarity applied to the ring (top) and plate (bottom) electrode. The positions
of the biased electrodes (gray), and the throat probes (red) are extrapolated
to the midplane following the magnetic lines. For high voltages the biased
magnetic lines are highly non equipotentials.
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Figure 5.20: Floating potential for negative biasing voltages applied to the
plate electrode. The position of the biased electrode (gray), and the throat
probes (red) are extrapolated to the midplane following the magnetic lines.
The biased magnetic lines are roughly equipotentials.

In summary, for potentials at the throat less than 200 V (including

negative polarity) the magnetic field lines behave as equipotentials within the

experimental error when connecting the throat and the equatorial plane in

agreement with the small difference that would be obtained by centrifugal con-

finement. For higher biasing potentials the non biased magnetic lines remain

equipotentials however the biased lines present a maximum in the potential
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at the equatorial plane of ∼ 200 V. Consequently when the penetration of the

electrode potential into the throat is high, the biased magnetic lines present a

drop in potential from the throat to the equatorial plane, ∼ 100 Te(V), that is

opposite to what is expected in centrifugal confinement. This effect severely

limits the rotation and shear flow obtained at the throat.

Different hypothesis have been considered to account for the drop in

potential along the magnetic lines from the throat to the equatorial plane but

non of them seem satisfactory.

• Instabilities: The plasma does not seem to present major instabilities

that breaks the connection along the magnetic lines for frequencies lower

that 25 kHz.

• High parallel resistivity: In order to have voltage drops of 500 V along

the magnetic lines with currents on the order of 2 A, the parallel resis-

tance of the magnetic shell should be at least 250 Ω (corresponding to

currents flowing along the lines and only flowing across at the equato-

rial plane). The electrode area is 20 cm2 and the distance between the

equatorial plane and the electrode is 50 cm. The parallel resistivity is

ρ ∼ 1 Ωm. Then, the collisional frequency for the electrons should be

νcol = ρe2n/me = 3 · 108 Hz that is 4 orders of magnitude higher than

than the collisional frequency with neutrals or ions.

• Velocity cutoff: There could be enhancement of the perpendicular con-

ductivity if the rotational speeds reached the velocity cutoff described
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in Section 2.3. However, we have not measured these high speed values.

It would be desirable to achieve higher rotational speeds with negative

bias to rule out this hypothesis because the cutoff is not present in this

polarity.

• Ionization: Speeds cannot exceed 5.5 · 104 m/s for hydrogen until full

ionization of the plasma occurs (Section 5.8) [2]. This limit in speed

would imply a limit in the potential at the equatorial plane. However,

no increase in density has been observed.

• Sheath expansion: The high penetration at the throat could be due to

sheath expansion. It would require an expansion of 0.1 m ∼ 600 λD

to cover the distance from the electrodes to the throat probes. This is

longer than predicted by usual theories [21, 25].

• Electron cyclotron resonance layer: The microwaves create a second res-

onance layer between the throat and the equatorial plane as described

in Section 5.1. However, we do not have an explanation why the layer

would affect the magnetic line connection only above 300 V.

In conclusion, the effect of non equipotential magnetic lines when they are

biased has not been explained yet.

5.8 Ionization

Initially we generate the target plasma using microwaves. As shown in

Section 5.1 the densities acquired are ∼ 1016 particles/m3 that causes the

137



system to be far away from magnetofluid states in parameter space (Sec-

tion 2.2.1). As said in Section 3.4 it would be costly and difficult to achieve

5 · 1018 particles/m3 using extra microwave power. Ionization using high volt-

age breakdown as in MCX has inconveniences. Our goal has been to increase

the density using the rotation as the main ionizing mechanism. This method

was discovered in early experiments [10] and analyzed [2]. Essentially, if a

small degree ionized plasma is rotated and accelerated, the speed will increase

with no ionization until it reaches the critical velocity where the energy of

the ions is the same as the ionization potential of the neutral particles. A

further increase in the input translates in more electrode currents that leads

to an increase in ionization. Higher speeds can only occur after the plasma

is fully ionized. In our experiment we believe we have reached this condition.

Fig. 5.21 shows the floating potential profile (top) and the corresponding elec-

tric drift VE (bottom) at the throat and equatorial plane for four different

plate electrode potentials (500 V, 600 V, 700 V, 800 V) for a neutral pressure

= 0.5 mTorr and coil current = 600A. The floating potentials and rotational

velocities are extrapolated to the equatorial plane following the magnetic field

lines. Fig. 2.9 shows that the speed is higher than VE for a positive biased

plasma due to the extra centrifugal force drift (Eq. (2.51)). In all the cases the

maximum electric drifts at the throat (and at the equatorial plane for 700 V

and 800 V) are above 5.5 ·104 m/s, however a large increase in density has not

been observed and electrode currents remain low.

A different mechanism of ionization has to be considered to generate
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higher densities. One choice considered is to add small plasma guns to the

electrodes to generate a dense plasma in a small volume that will expand and

fill up the chamber to be biased afterwards. Initial results for a single gun in

a volume 0.005 m3 show densities of 5 · 1019 particles/m3 [41]. Four of these

guns would be necessary to reach the desired density in the chamber. This

method will also allow shaping of the initial density profile.
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Figure 5.21: Floating potential profile (top) and the corresponding electric
drift VE (bottom) for four different plate electrode potentials (500 V, 600 V,
700 V, 800 V). The floating potentials, rotational velocities at the throat and
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Chapter 6

Summary

The goal of this dissertation has been twofold: 1) to generate super-

sonic rotating plasmas in order to take the first steps in the proposed path to

create magnetofluid states in the lab, and 2) to contribute to the theoretical

understanding of 2-fluid effects in rotating plasmas in connection with mag-

netofluid states. After constructing the basic experiment (a rotating plasma

in a mirror magnetic field), we added different probes to diagnose the rotating

plasma, installed a data acquisition system based on Labview software and set

up an MDSplus archive system that can be accessed worldwide. The main

results of this investigation are:

• We generated a low density supersonic rotating plasma after optimiz-

ing the electrode design required to maximize current collection area

to achieve high penetration of the external applied potential. Alfvenic

flows needed for a transition to magnetofluid states could not be reached

because the initial plasma density was too low.

• Asymmetry in the current and the potential penetration with the po-

larity of the external bias follows an I − V characteristic curve of a

Langmuir probe but with modifications. This effect leads to constraints
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in the rotational speed with the polarity as well as a partial control of

the potential profile and shear flow. We presented a model to account

for this asymmetry.

• At low bias low rotational speeds agree with the expected E×B/B2 while

magnetic field lines behave as equipotential lines within the experimental

error in agreement with the expected small centrifugal effects. For biased

magnetic lines and supersonic speeds there are potential drops along the

lines as high as 100 times the electron temperature; such large drops

are opposite to the predictions of the theoretical model and centrifugal

confinement. This effect limits considerably the plasma speed at the

equatorial plane and it is still under investigation.

• Under certain conditions the plasma is bistable (for the same external

conditions the system can be found in two or more states) in both AC

and DC bias. The bistability reacts nonlinearly with control parameters

of electron density and biasing.

• The collected data suggests that critical speeds for extra ionization were

reached at the throat of the mirror magnetic fiel. However, no increase in

density was observed. An alternative method is presented to increase the

density in order to move to future conditions suitable for magnetofluid

states.

• We found a region in parameter space where 2-fluid effects are important

and magnetofluid states can exist. This led to the selection of a set of
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parameters where MBX should run.

• We presented an analytic solution (rigid rotation) to a 2-fluid system for

a rotating plasma embedded in an external magnetic field. This solu-

tion differs appreciably, due to the finite ε, from ideal MHD predictions.

The new features involve a high increase in the plasma potential from

the throats of the mirror magnetic field to the equatorial plane (of the

order of the biasing potential applied externally to the system). This

effect creates high asymmetry with respect to the polarity of the poten-

tial, high centrifugal confinement, and rotational speeds that differ from

the usual electric drift. As the rotation reaches Alfvenic speeds the cur-

rents generated in the system create a self magnetic field that becomes

comparable to the external magnetic field that can ultimately lead to a

reconnection process and possibly the magnetofluid states.

• The inclusion of dissipative terms allowed us to compare the present

experimental requirements for driving the system with the theory; it

also helped us to calculate the requirements for the future conditions

where MBX will operate.

The results in this dissertation show that supersonic low density plasma

can be achieved which is the first step towards the quest of magnetofluid

states. The next step is to reach the conditions for magnetofluid states to

exist that implies an increase in density of ∼ 500 compared to our present

conditions. Considering that the density did not increase with plasma rotation
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we propose the use of small plasma guns to generate the desired densities.

Initial results show that 5 of these devices would be enough. This increase in

density, according to our results, will increase the electrode currents and the

potential penetration of the negative biasing potential. This polarity is desired

at higher speeds because there is no velocity cutoff. Installation of magnetic

and Rogowski probes could provide information on diamagnetic currents and

reconnection. An interferometer would help to study centrifugal confinement

measuring the densities at the throat and equatorial plane.
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