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Executive Summary

Arboviruses are a major public health concern in Texas. Two viruses that have not yet estab-
lished local transmission but may pose a threat are chikungunya virus and dengue virus. Chikun-
gunya is a disease that has for decades been endemic in Asia and Africa, but recently has caused
large outbreaks in Central America and the Caribbean. Dengue is a concern in tropical and sub-
tropical regions of the world, infecting millions of people every year. Both of these viruses are
consistently imported into Texas. Increases in travel and virus outbreaks around the world have
lead to an increase in the number of imported cases over the past few years. Although there are
significant biological and epidemiological differences between chikungunya and dengue, both viruses
share the same primary mosquito vectors, Aedes aegypti and Aedes albopictus.

In this project, we seek to answer two important problems for chikungunya and dengue surveil-
lance, control, and prevention in Texas:

e Where do the mosquito vectors live in Texas?
e Where are the geographic risk zones in Texas?

To assist the Department of State Health Services in its mission, and to answer these questions,
this project builds vector habitat suitability maps, import risk maps, and sustained transmission
risk maps for Texas. In addition, the project produced a website, arbovirusrisk.org, that can be
used to integrate the risk results in the Texas education and surveillance effort for arbovirus. The
website offers visualizations of chikungunya and risk, Ae. spp. suitability maps, and the ability for
DSHS officers to upload and visualize timely state-wide data. The website automates and improves
arbovirus surveillance reporting efforts, generating PDF reports and online visualizations specific
to the state as a whole, each Health Service Region, as well as each Texas county.

The figures below show just a few example outputs from the project. The first image is a vali-
dated predictive model for importing new disease cases, mapped over Texas counties. The second
image is a relative risk map for sustained transmission through an Aedes aegypti vector. The third
image shows the arbovirusrisk.org website. The box on the right of the website user interface allows
users to navigate thorough risk maps, high resolution suitability maps, high resolution environmen-
tal maps, socio-economic maps, historical import data, and custom DSHS data uploaded by DSHS
officers. A user can search for a Health Service Region or a county in the box above, or click on a
county, to focus on a new geographic region. A PDF report button on the top left allows users to
download an arbovirus surveillance report for their region of interest, along with visualizations of
the most recent case reports.
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The species habitat models and disease risk models are created using the best available historical
disease and vector occurrence data, gathered from multiple sources both within Texas and outside
the state. Each model is constructed using state-of-the-art modeling and validation techniques. The
model results provide insight into the key geographic areas and counties at risk for arbovirus import,
and sustained transmission after import. DSHS officers can use these insights to communicate with
primary healthcare providers and patients, to ensure timely response to imports and prevent these
diseases from establishing themselves in Texas.

Vector Species Distribution. Based on the environmental characteristics of vector species
occurrence for both Ae. aegypti and Ae. albopictus, we produce maps of the suitable locations for
these species across Texas. The output is an estimate of the relative occurrence of the vector species,
allowing comparisons of the occurrence of mosquitoes in different counties. Highly suitable areas
for these vector species include highly populated areas, specially Houston, Austin, San Antonio,
and in the case of Ae. aegypti, El Paso. A second tier of risk level is in the counties along the gulf
coast. High-resolution maps of vector habitat, accessible from the website, may be useful for future
surveillance planning of mosquito trap locations.

Risk Distribution. We construct two key risk maps: an import risk map and a sustained
transmission map. Together these maps highlight areas in Texas that are at elevated levels of risk
for seeing an imported case and areas that, once a case is imported, could experience secondary
local transmission. Most of the risk maps available prior to this project were incidence maps that
document the number of cases in each region.

Import Risk Map. We base our import risk map for both chikungunya and dengue on
historical dengue import data starting from 2002. Chikungunya has only been imported into
Texas in large numbers recently. Model includes 76 potential risk factors in categories of travel,
environment, socio-economic and demographic data, as well as vector species distributions. Using a
mathematical procedure to validate and compare models, we select the best risk model from the 276
possible models. The predictive ability of the resulting import risk model significantly outperforms
an empirical incidence map and other intuitive risk models.

Sustained Transmission Risk Map. There is a risk that chikungunya and dengue may
become endemic in some areas of Texas. That risk depends on the pretense of a sufficient mosquito
and human population to maintain a transmission cycle after an initial import. Using the output
of the vector species distributions, we calculate a sustained transmission risk metric proportional to
the reproductive number of the disease in each county. In other words, the metric is proportional
to the expected number of secondary cases a single imported generates, for each county. The
sustained transmission risk map indicates that counties of high risk are those with a high mosquito
population to human population ratio. These are not necessarily the same counties as those with
high human populations.

Tools to Facilitate DSHS Mission. The arbovirusrisk.org website provides an effective and
direct visualization tool for arbovirus surveillance throughout the state. Users can navigate several
categories of data. Each category presents several variables, and each variable can be displayed
on a state level, an HSR level, or a county level. Some data, such as vector species distributions
and environmental variables can be displayed in high resolution. Other data, such as incidence
counts, can be displayed in a time-specific manner using time-selections sliders. More importantly,
the website provides tools for DSHS to actively update and edit the data displays, resulting in a
valuable tool for future arbovirus surveillance, communication, and control efforts.
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1 Introduction

Arboviruses are a major public health concern in Texas, with emerging viruses such as chikungunya
virus (CHIKV), historically imported viruses such as dengue virus (DENV), and viruses endemic to
the United States such as west Nile virus (WNV), St. Louis encephalitis (SLEV), and eastern equine
encephalitis virus (EEEV). Collectively, these viruses cause hundreds of cases in both humans and
domestic animals through the course of the year, leading to a significant economic and health
burden. Of special concern are viruses that have the potential to become endemic in Texas.

CHIKYV is a re-emerging mosquito-borne infectious disease that has caused large outbreaks
around the world, including in non-endemic places such as Italy in 2007 (Thiboutot et al., 2010)
and most recently Puerto Rico (Fischer et al., 2014). The United States has had imported cases in
almost every state, and there have been an increasing number of locally-acquired cases in Florida
and Texas. Within Texas, CHIKV cases have been reported since 2007 when two cases were first
imported, originating from India. There was a drastic increase to 114 imported cases in 2014,
tracing to travelers coming from countries in the Americas (Florin and Robinson, 2015). The
changing origin of imported CHIKV cases in Texas is an indication of the global spread of this
disease.

In addition to CHIKV, DENV is another important arbovirus of great concern in tropical and
subtropical regions, infecting millions of people every year. Dengue has been present in Texas since
2002, with 33 cases reported in 2014. Although there are important biological and epidemiological
differences between CHIKV and DENV, both viruses share the same primary mosquito vectors,
Aedes aegypti and Aedes albopictus. As a result of increased human travel, both of these vectors
have spread to new geographic regions and have been documented in Texas for several decades. Ae.
aegypti has historically been in the gulf region (Micks and Moon, 1980) and Ae. albopictus was first
documented in Harris County in 1987 (Sprenger and Wuithiranyagool, 1986). Until recently, Ae.
aegypti was the traditionally associated primary vector for CHIKV, but a mutation documented by
Dubrulle et al. (2009) has led to a new strain that is efficiently transmitted by Ae. albopictus. The
presence of both of these mosquito vectors and the repeated introduction of imported cases call
attention to CHIKV and DENYV as growing threats in Texas and highlights the need for local and
state level preparedness through increased understanding of the ecology and risk factors of these
viruses.

1.1 CHIKYV and DENYV Surveillance

In the face of a growing threat of CHIKV and DENV, optimizing mosquito and arbovirus surveil-
lance within individual counties and throughout the state of Texas would increase the chances of
early detection of circulating virus. Targeted surveillance allows for a cost effective allocation of
resources before and during an outbreak. Effective surveillance also enables early detection and
allows public health officials to control secondary infections. One must define the question that
the surveillance activity addresses in order to make it effective. Two potential questions that
surveillance may address include:

(a) Where do the vectors live in Texas?
(b) Where are the risk zones in Texas for imported or sustained transmission of CHIK or DENV?

There are ongoing efforts to answer these two questions within Texas. Regarding the first,
arbovirus surveillance is routinely conducted throughout Texas in an effort to detect the presence
of pathogens in mosquitoes before the development of human cases. Specific surveillance activities
include:



monitoring mosquito populations

identification of mosquito species

laboratory testing of mosquito samples for circulating viruses
e recording human infections
e educating and training the community on matters related to arbovirus control

Out of these activities, trapping and mosquito population monitoring is largely coordinated at
the county level, while laboratory testing may occur within individual county mosquito control
divisions or samples may be sent to the Department of State Health Services (DSHS). Because of
the county-based mosquito surveillance programs, data on presence and abundance of the different
Ae. is irregular and scattered throughout disparate resources in the state. The lack of a centralized
database of data poses a significant challenge towards gaining an acute situational awareness of risk
throughout the state. Nevertheless, understanding which geographic areas are at risk for CHIKV
and DENYV is a key goal for the surveillance system.

Risk maps can be developed to address the second question of identifying risk zones for imported
and sustained transmission of arbovirus. Risk maps show different areas of high and low risk and
can be important tools for making decisions about how to best allocate resources and conduct
surveillance. Current risk maps used by authorities for arbovirus disease surveillance are often
incidence maps that document the number of cases that have occurred in a given area within a
specific time period. Although this type of risk map can indicate the risk level to some extent, it
may be possible to construct more effective and accurate risk maps that predict potential for new
cases in Texas.

In this project we aim to improve upon existing arbovirus surveillance practices by producing
three measures of risk for arboviruses transmitted by Ae. aegypti and Ae. albopictus, specifically for
CHIKYV and DENYV. First, we model the vector distribution of each mosquito species throughout
Texas, producing a 1-km grid of relative abundances of mosquitoes. While this output is used
as input for risk models, it can be considered a measure of ecological risk on its own. Second,
we develop a data-driven risk map of import risk, highlighting counties where we are likely to
see the next imported case based on historical data. Third, we use the output of the vector
species distribution to help quantify sustained transmission risk, identifying counties where once
an importation has occurred, one is likely to see a sustained chain of secondary cases.

As a result of the project, the risk maps and vector distribution maps are integrated into a
larger web app tool, the Texas Arbovirus Risk Map, that can be used to easily visualize historical
data, compare relative levels of importation and sustained transmission risk among counties, and
generate important educational and arbovirus activity reports. The web app also allows DSHS to
visualize novel data fields that epidemiologists believe may be relevant to arbovirus risk, further
contributing to surveillance practices.



2 Vector Species Distribution

One type of risk modeling previously used for arbovirus surveillance is species distribution modeling
(SDM). SDM’s goal is to identify geographic areas where vector species live. This is a key aspect
of arbovirus risk because local transmission can only occur in the presence the vector. Moreover,
the likelihood of local transmission can be linked to the relative abundance of the vector in a given
geographic location.

SDM estimates the relationship between known presence sites of a species and the environmental
characteristics of those sites. SDM is a key tool in assessing the impact of the environment on
species distributions. For infectious diseases, SDM has been used for risk mapping of DENV in
Colombia (Arboleda et al., 2009) and Mexico (Machado-Machado, 2012), and in Texas to assess
risk of Chagas, another arthopod transmitted disease, based on areas of suitable habitat for its
triatomine vector species (Sarkar et al., 2010). Strengths of SDM in describing geographic vector
distribution include:

e ability to incorporate data at a high resolution spatial scale

e ability to extrapolate from sparse data sets

e ability to identify important predictors

e ability to output habitat suitability maps over the geographic area of interest.

SDM’s output maps can be especially useful for understanding potential transmission areas, and
areas with relatively high vector presence.

The best vector distributions prior to this project are provided by the AgriLife Extension Ser-
vice Project as seen in the Ae. aegypti and Ae. albopictus figures found on the Agricultural and
Environmental Safety, Texas A&M Agrilife Extension webpage ((Johnsen) http://agrilife.
org/aes/public-health-vector-and-mosquito-control/mosquitoes-of-texas/). The distri-
butions are generated based on literature and mosquito trapping conducted by the Agricultural and
Environmental Safety Unit personnel. These maps provide a baseline knowledge of where vector
species have historically been found. The maps present presence and absence data on a county
level.

SDM contributes to this mapping effort by producing higher-fidelity maps that provide relative
abundance counts at a finer geographic resolution. Relative abundances are useful to derive relative
risks of sustained transmission in different counties. Furthermore, finer geographic resolution may
identify that a mosquito population is contained within one focal population within the county,
and not uniformly spread throughout. Finally, SDM contributes to our understanding of what
environmental factors about these counties make them suitable for Ae. aegypti and Ae. albopictus.

We use a popular SDM software package, MaxEnt( (Phillips et al., 2006) https://www.cs.
princeton.edu/~schapire/maxent/), version 3.3.3k, to separately model habitat suitability for
Ae. aegypti and Ae. albopictus across locations in Texas. MaxEnt is a common method for SDM
because of its predictive performance and ability to work with sparse presence-only data sets (Elith
et al., 2011).

MaxEnt uses maximum entropy methods to estimate relationships between environmental vari-
ables and the habitat suitability using species presence-only data. The output is distribution of
vector occurrence over a specified geographic space (Phillips et al., 2006). Intuitively, maximum
entropy chooses the distribution that is closest to a uniform across the geographic space, while
fulfilling environmental constraints specified by the presence-only records. The constraints enforce
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environmental characteristics, such as the mean temperature, over the predicted species distribu-
tion to match the empirical characteristics derived from the input presence-only data. The output
of MaxEnt can be interpreted as a relative species occurrence rate across the region of interest.

2.1 Data

The two inputs of MaxEnt are environmental variables and occurrence data. Environmental vari-
ables are the key constraints placed on the species distribution. For our study, the input environ-
mental variables consist of bioclimatic, topographic, and socioeconomic data at a resolution of 30
arc-seconds and are listed in Table 1. These consist of a standard set of 19 bioclimatic variables
derived from the WorldClim database (last accessed 3-April-2015). The data layers for aspect and
slope are derived from the elevation layer using the SDMTools package in R Statistical Software.
Three additional data layers are also included based on the disease ecology of the vector species. Ae.
spp. are urban dwelling mosquitoes that breed in artificial containers and feed almost exclusively
on humans (Harrington et al., 2001): population count from the Socioeconomic Data and Applica-
tions Center (http://sedac.ciesin.columbia.edu/data/set/grump-vi-population-density),
maximum vegetation index from the USGS Land Cover Institute (http://landcover.usgs.gov/
green_veg.php), and measurement of artificial surface from the FAO GeoNetwork (http://sedac.
ciesin.columbia.edu/data/set/grump-vi-population-density) as variables that relate to the
food source, and therefore predict survival.

Occurrence data refers to geo-referenced species presence-only locations found within the geo-
graphic study area. In order to find enough occurrence points for of both Ae. spp. for MaxEnt to
reliably estimate each vector species’ distribution, the geographic study area includes the states of
Arizona, New Mexico, and Oklahoma, as well as the country of Mexico. Documented observations
of Ae. aegypti and Ae. albopictus were collected from a thorough literature search and mosquito
control units in the city of Lubbock and El Paso. A presence location is collected if the observation
is accompanied by a geo-referenced latitude and longitude coordinate. Geo-referencing errors are
calculated using the MaNIS geo-referencing protocol (Wieczorek, 2012). To remain consistent with
the spatial resolution of the environmental layers, presence points with estimated errors of greater
than 30 arc-seconds are removed from the analysis. The final set of data points used to run the
models contained 188 presence locations for Ae. aegypti and 76 locations Ae. albopictus. References
for these points can be found in Table 2 and Table 3.

Temperature Precipitation Topographic Urban

Annual Mean Temperature Annual Precipitation Slope Population Count

Mean Diurnal Range Precipitation of Wettest Month Aspect Artificial Surface Cover
Isothermality Precipitation of Driest Month Elevation ~ Maximum Green Vegetation Cover
Temperature Seasonality Precipitation Seasonality
Max Temperature of Warmest Month Precipitation of Wettest Quarter
Min Temperature of Coldest Month Precipitation of Driest Quarter
Temperature Annual Range Precipitation of Warmest Quarter

Mean Temperature of Wettest Quarter  Precipitation of Coldest Quarter
Mean Temperature of Driest Quarter

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter

Table 1: Complete Set of Environmental Predictors
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Country State Num. of Points reference

United States Texas 42 (Soto, May 4, 2015)

United States Arizona 37 (Merrill et al., 2005)

United States Texas 31 (Barney, 2008)

United States Texas 16 (Merrill et al., 2005)

United States Texas 4 (Vitek et al., 2014)

United States Texas 2 (Kavanaugh, 2008)

United States Texas 2 (Cano et al., 2015)

United States Texas 1 (McPhatter et al., 2012)
Mexico 36 (Gorrochotegui-Escalante et al., 2002)
Mexico Chihuhua 3 (de la Mora-Covarrubias et al., 2010)
Mexico Nuevo Leon 1 (Moffett et al., 2009)

Table 2: Presence Points Used for MaxEnt Input, Ae. aegypti

Country State Num. of Points reference
United States Texas 10 (White, 2008)
United States Texas 6 (Segura, May 1,2015)
United States Texas 5 (McPhatter et al., 2012)
United States Texas 3 (PHCR-West, 2002)
United States Texas 3 (Kavanaugh, 2008)
United States Texas 2 (Soto, May 4, 2015)
United States New Mexico 1 (Powers et al., 2006)
Mexico 8 (Reyes-Villanueva et al., 2013)
Mexico Nuevo Leon 6 (Pesina et al., 2001)
Mexico 2 (Marina et al., 2011)
Mexico Coahuila 2 (Ibdnez Bernal and Martinez-Campos, 1994)
Mexico Coahuila 1 (Sanchez-Rodriguez et al., 2014)

Table 3: Presence Points Used for MaxEnt Input, Ae. albopictus

2.2 Model Construction

The model construction process includes determining which environmental variables to include
and how the variables interact with each other. From the twenty-five variables, we test numerous
combinations to identify the combination that is most predictive of species occurrence. For each
combination tested, 70% of the occurrence points are used as input training data and 30% of the
occurrence points are withheld to be used as independent test data.

Each combination of environmental variables is tested 100 times, using a different randomization
of training and test set each time. With the exception of reducing complexity, discussed further
in Section 3.2.4, and sub-sampling the data into test and training sets, all MaxEnt parameters
are left on default settings. Although there is the possibility to further customize models when
estimating the distribution of a single species, Phillips et al. (2006) suggests the default parameters
when there is the possibility of bias in the presence points, and especially with a small number of
input presence points.



2.3 Assessment of Model of Performance

The MaxEnt software package uses the standard interpretative metric of area under the receiver
operating characteristic curve (AUC) measure model performance. The AUC is a comparison of the
model’s specificity and sensitivity, with an optimal model having an AUC close to 1 and a model
that predicts species occurrences at random having an AUC closer to 0.5. A natural statistical
interpretation of this metric is model’s ability to correctly identify presence and absence locations
over a geographic space.

We use the average test AUC over the 100 runs for evaluating model performance. We choose
to use the test AUC instead of the train AUC because the train AUC may favor models that over
fit (Warren and Seifert, 2011). While the AUC may appear to be an intuitive metric for assessing,
its implementation in MaxEnt must be taken with caution. In order to calculate true negative
and false positive rates, MaxEnt generates a set of pseudo-absences from the background points
that are not indicated as presence locations in the input. However, these pseudo-absences are not
necessary true absences of the species in that location.

Presence of a species may not be detected in an area for a number of reasons. One important
reason is bias sampling, where some areas receive higher sampling effort than others. To qualify a
location as absent of a species requires persistent sampling over time. Despite these uncertainties
in the MaxEnt implementation, and the tendency to have an unjustified level of confidence in the
AUC, we use the test AUC as a measure of relative model performance because of its intuitive
meaning, its ease of implementation in the MaxEnt software package, and its previous use in SDM
literature.

2.4 Model Selection

From the twenty-five environmental variables used to model Ae. aegypti and Ae. albopictus species
distribution, we select ten and nine variables, respectively, for the final models. Four environmen-
tal variables (mean temperature of coldest quarter, mean temperature of the driest quarter, mean
temperature of the warmest quarter, and mean temperature of the wettest quarter) have disconti-
nuities where the data was not interpolated correctly at the 30 arc-second resolution, and therefore
can be eliminated. With the remaining twenty-one variables, an analysis of the importance of each
variable allows us to down-select to the most important environmental predictors.

The goal of down-selection is to generate a simple yet robust model, in order to avoid over-fitting
and construct interpretable results. Starting with the twenty-one variables, each run eliminates the
environmental variable that contributes the least to the model. This backwards elimination process
continues until we reach a model with the fewest number of environmental variables that can predict
presence and pseudo-absence locations as well as the model with all twenty-one environmental
variables.

We determine the stopping point for backwards elimination using a two-sample t-test of the
test AUC from the 100 runs of each model combination. We further check for functional changes
in the map to see if fewer environmental variables led to significantly different suitability maps.
As seen in Figure 1, only including the top five most predictive environmental variables produces
a different suitability map for Ae. aegypti than the model with the top ten variables. However,
the suitability map produced by the model with the top ten predictive variables and that from all
twenty-one are functionally as well as statistically the same.

Based on the top models, Table 4 lists the environmental variables in their order of importance.
For both vector species, the most influential variables are those associated with urban environ-
ments, such as population count and artificial surfaces. variables in the other three categories of
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Figure 1: Comparison of suitability maps produced by models with 5, 10, and 21 environmental
variables.1la AUC: 0.937 (0.020), 1b AUC: 0.951 (0.015), 1c AUC: 0.958(0.013). The scaling of the
figures is logarithmic to highlight differences in smaller values of relative occurrence rate. The raw
format has only a small number of sites with relatively large values and is not visually informative.
Throughout the rest of the report, all visuals will be displayed on a logarithmic scale, but all
analysis was completed using the raw output.
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temperature, precipitation, and topography are also included in the best models for both vector
species. The environmental predictors chosen and their order is not identical between the two Ae.
spp. The model for Ae. aegypti includes all three urban focused variables whereas Ae. albopictus
only includes artificial surfaces.

In addition to testing the combination of environmental variables to include, we also explore the
effects of limiting the complexity of the nonlinear response curves MaxEnt can build into model.
MaxEnt offers five feature classes for environmental variables: the raw environmental variables
(linear), features derived from squares of the variable that constrain the variance (quadratic),
features of the product of pairs of environmental variables (products), binary features based on
environmental threshold for the variable, and hinge features. By default MaxEnt uses the number
of presence locations to determine which feature classes to explore. MaxEnt explores all features if
the number of input presence locations is greater than 80.

As Ae. albopictus had fewer than 80 points, we limit models for Ae. albopictus to only linear,
product, and quadratic feature classes. We tested the effects of incorporating higher or lower levels
of complexity for Ae. aegypti. Through those tests, it is clear that the more feature classes the
model includes, the more constrained the model becomes, with a smaller geographic spread of the
species distribution. This is a sign of over-fitting. For Ae. aegypti, we choose to also restrict the
possible feature classes to linear, quadratic, and product functions. We choose to stay with models
that include product and quadratic features in addition to linear features because their AUC was
significantly better than the model with only linear features.

2.5 Habitat Suitability of Vector Ae. spp. in Texas

Figure 2 presents high resolution maps for the final habitat suitability models for both vector
species. The locations that have a high relative occurrence of each vector species are consistent
with the Texas A&M Agrilife Extension distributions, further validating the final models. The
sum over all 30 arc-second cells within a county generates a county-level relative suitability index,
presented in Figure 3. The top counties are listed in Table 5.

Comparing the results of Figures 2 and 3, it is clear that the high resolution map contains more
information on suitable locations. Areas, particularly along the coast, have regions of high relative
occurrence rates in the high resolution map, but in the county map the entire county shows up as
being at a higher ecological risk for habitat suitability. These fine resolution geographic differences

Ae. aegypti Ae. albopictus
population count artificial surfaces
artificial surfaces isothermality
elevation temperature seasonality
temperature seasonality mean diurnal range
annual mean temperature elevation
maximum green vegetation fraction minimum temperature of coldest month
precipitation of driest quarter precipitation of coldest quarter
precipitation seasonality precipitation seasonality
minimum temperature of coldest month precipitation of warmest quarter

mean diurnal range

Table 4: Environmental predictors in order of importance. The importance of the variables is
determined by its percent contribution to the gain of the model.
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(a) Ae. aegypti, High Resolution (b) Ae. albopictus, High Resolution

Figure 2: High Resolution relative habitat suitability distributions of Ae. aegypti and Ae. albopictus
in Texas. Scores indicate relative occurrence rates of the vector species, with the the location of
the highest relative occurrence rate receiving a score of 1. The Ae. aegypti model had an average
AUC of 0.965 with a standard deviation of 0.013. The Ae. albopictus model has an average AUC
0.939 with a standard deviation of 0.022. Both highlight urban areas as having higher relative
occurrence rates, although Ae. albopictus estimates the relative occurrence to be slightly more
uniform throughout eastern and central Texas. Ae. aegypti has a high relative occurrence in the
area around El Paso, which in contrast is low for Ae. albopictus

(a) Ae. aegypti, County Level (b) Ae. albopictus, County Level

Figure 3: County level relative habitat suitability distribution of Ae. aegypti and Ae. albopictus in
Texas. The relative occurrence rates of each 30 arc-second location was aggregated over the county
to produce the relative occurrence rates for each county. The suitability of both vector species have
higher ecological habitat suitability in counties along the eastern gulf and in the eastern interior of
the state. High population counties such as El Paso have a high suitability score for Ae. aegypti
but not for Ae. albopictus.
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Ae. aegqypti  Ae. albopictus

Harris Harris
Hidalgo Cameron
Bexar Hidalgo
Montgomery Bexar
El Paso Nueces
Cameron Webb
Travis Dallas
Brazoria Tarrant
Dallas Galveston
Fort Bend Brazoria

Table 5: Top ten counties for habitat suitability for Ae. aegypti and Ae. albopictus.

may be important in targeting communication and surveillance efforts.
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(a) Ae. aegypti: bioclimatic data layers (b) Ae. aegypti: bioclimatic and urban data lay-
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Figure 4: Comparison of suitability maps produced by models excluding (4a) and including (4b) ur-
ban focused data layers. The relative occurrence of the vector species is more uniformly distributed
across Texas when based only on the precipitation and temperature environmental variables in 4a.
When urban focused data layers are added, the relative occurrence becomes more constricted to
areas of high population. The AUC for 4a is 0.921 (0.017) and for 4b is 0.958(0.013), indicating a
better predictive performance when the data layers of population, artificial surface coverage, and
maximum green vegetation fraction are included.

High-suitability locations occur in urban areas. This concurs with the biological understanding
of the vector species, specifically container breeding and primarily feeding on humans. Figure 4
compares models that only include bioclimatic variables (temperature, precipitation, and topo-
graphic) and those models that also included the urban data layers. Models with urban layers
have significantly better predictive performance. Bioclimatic-data-only models estimate more uni-
form rates of occurrence over a broader geographic region. Consistent trapping data could be an
independent evaluation of relative occurrence rates and will be discussed further in the report.
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3 Geographic Risk Distribution

It is possible to define three types of risk for a non-endemic disease: the risk of importing a case,
the risk of an imported case subsequently leading to a chain of autochthonous transmission, and
risk for endemic establishment. In this project, we consider how to assess risk based on the first
and second categories, which we refer to as ”Import Risk” and ”Sustained Transmission Risk.” The
following sections detail models of import risk and sustained transmission risk for IKV and DENV
in Texas.

In other countries, risk maps for DENV and CHIKV have used a wide variety of modeling ap-
proaches and predictor variables. Effective predictor variables include demographic, socio-economic,
environmental, and historical case data. However, depending on the location, different categories
of predictor variables may be more important than others. Most of the risk maps have been
descriptive and based on the historical data. Analysis approaches in these modeling approaches
include logistic regression models, multinomial models, generalized linear models, general addi-
tive models,generalized linear mixed models, environmental niche, maximum entropy approach of
species distribution modeling, Kernel estimations, geographically weighted regression, kriging and
co-kriging, Knox test concept and etc. (Louis, 2014).

3.1 Import Risk Map

DENV has been imported into Texas regularly since 2002, while CHIKV was first reported only
recently. The lack of direct CHIKV data limits the creation of a data-driven CHIKV model directly.
However, both DENV and CHIKV are transmitted by the same Ae. mosquitoes. As such, we use
DENYV import cases as a proxy for CHIKV risk. In other words, we construct a data driven DENV
import risk map that serves as a proxy to indicate CHIKV import risk level. We use a Maximum
entropy approach, as again as have presence-only DENV data and the historical DENV data is
sparse.

3.1.1 Data

Human DENV occurrence data from 2002 to 2012 is available to DSHS for modeling. DENV is
not endemic in Texas and only sparse DENV occurrence data is available for each county over the
past ten years. We use the historic DENV imports to construct the import risk model. In addition
to this import data, the model also takes as input environmental, socio-economic and demographic
data. The model output is the probability that the next imported case happens in each county.
The input variables to the model include environmental, socio-economic, and demographic data.
Environmental data, such as temperature, is known to be important in adult vector survival, viral
replication, and infection periods (Murray NEA, 2013). As the proliferation of Ae. mosquitoes
depends on climate, temperature, humidity, and precipitation we include related variables as po-
tential influential factors for DENV risk map construction. Socio-economic and demographic data,
such as age, gender, education, and level of income are commonly used demographic and socioe-
conomic variables (Louis, 2014), and are also included as input variables. We include additional
socio-economic and demographic data such as county population size, employment status, popula-
tion below poverty, ways of communicating to work, and health insurance coverage. In addition, we
include travel data for each county, adding an additional variable in comparison to published risk
model studies. Counties with more travelers or to DENV and CHIKV endemic countries should
exhibit higher import risk. While direct travel data to endemic areas would be ideal, such data was
not available. The best available travel data described the size of tourism industry for each county.
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Since DENV and CHIKV are primarily transmitted by Ae. aegypti and Ae. albopictus, the results
from our vector species distribution were also included. Our full data set contained 76 factors from
four categories which are shown in Table 6.

Environmental Socio-economic Demographic, Travel and Vector Suitability

Annual Mean Temperature
Annual Precipitation
Slope
Population Count
Isothermality
Precipitation of Driest Month
Elevation
Maximum Green Vegetation Cover
Temperature Seasonality
Precipitation Seasonality
Max Temperature of Warmest Month
Precipitation of Wettest Quarter
Min Temperature of Coldest Month
Precipitation of Driest Quarter

Employed Population
Unemployed Population
Employed Population in Percentage
Unemployed Population in Percentage

Population below Poverty Level in Percentage
Families below Poverty Level in Percentage

Population with Health Insurance
Percentage with Health Insurance
Population without Health Insurance
Percentage without Health Insurance
Mean Travel Time to Work(Minutes)
Population Walk to Work
Population Walk to Work in Percentage
Percentage Commuting to Work with Taxi

Male Population
Female Population
Male Population in Percentage
Female Population in Percentage
Local(dollars)
State(dollars)

Total Direct Spending(dollars)
Visitor Spending
Earnings(dollars)

Travel Employment
Albopictus Abundance(Total)
Albopictus Abundance(Average)
Average MGV (percentage per km)
Total Approximate MGV Cover (km)

Aegypti Abundance (Total)
Aegypti Abundance(average per km)

Temperature Annual Range
Precipitation of Warmest Quarter
Mean Temperature of Wettest Quarter

Commuting to Work with Taxi
Percentage Commuting to Work with Public Transportation
Commuting to Work with Public Transportation
Precipitation of Coldest Quarter Commuting to Work with Car, Truck or Van (Carpooled)
Mean Temperature of Driest Quarter Commuting to Work with Car, Truck or Van(Alone)
Mean Temperature of Warmest Quarter Percentage Commuting to Work with Car, Truck or Van(Carpooled)
Mean Temperature of Coldest Quarter Percentage Commuting to Work with Car, Truck or Van(Alone)
Mean Diurnal Range Commuting to Work with Other Means
Precipitation of Wettest Month Percentage Commuting to Work with Other Means
Aspect Education Attainment below 9th grade
Artificial Surface Cover(Percentage) Education Attainment below 9th grade in Percentage
Total Artificial Surface Cover (km) Education Attainment between 9th and 12th grade
Percentage Education Attainment between 9th and 12th grade
High School Graduates
High School Graduates in Percentage
College without diploma
College without diploma in Percentage
Associates degree
Associates degree in Percentage
Bachelor’s degree
Bachelor’s degree in Percentage
Graduate or professional degree
Graduate or professional degree in Percentage

Table 6: Complete Set of Variables for Import Risk Map Modeling

3.1.2 Modeling Approach

To model the import risk, we use the maximum entropy method introduced in Section 2 to estimate
the relative probability for the next DENV importation case to happen in each Texas county.
The input historical DENV cases represent an empirical distribution of import. That empirical
distribution produces estimated expectations on each of the input variables, for example expected
travel industry size, or expected poverty level. The maximum entropy method produces an output
probability distribution that agrees with those empirical, observed expectations. From all the
distributions that agree with those observed expectations, the method selects the distribution with
maximum entropy—in other words, the one closest to uniform.

We use an out-of-sample likelihood calculation to evaluate potential models. Specifically, ten
years DENV import data from 2002 to 2012 is divided into two data sets, train years and test
years. The test years consist of three years of DENV imports. The train years and a combination of
input variables generate a probability distribution over Texas counties using the maximum entropy
method. To evaluate the resulting model, we compute the likelihood of observing the test years’
data under the model’s output distribution. This allows us to compare different models, with better
models producing higher out-of-sample likelihoods. Practically, we compare log-likelihoods instead
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|FuII set of 76 variables|

Select representative variables

|Subset of 38 variables without replicates|

Backward selection base on
maximum likelihood measure

|Final selected 10 variables

(a) Flow Chart of Variable Selection Procedure

Figure 5: We start with full set of 76 variables. After removing variables based on our replicated
variables elimination procedure we have 38 variables remaining. We sub-setting these remaining
38 variables through our backward selection process backward selection. In each step, we drop the
variable that contributes the least to the model performance. Backward selection continues until all
the variables are eliminated. In each step, model performance is measured using the out-of-sample
log-likelihood measure.

of likelihoods.

This out-of-sample log-likelihood comparison allows us to select the best model out of combi-
natorially many competing models. Each combination of the 76 factors yields a potential import
risk model, for a total of at least 276 ~ 10?® models. In addition, other models can be created, such
as simple empirical models. In the following sections we describe methods to select the best model
out of this combinatorially large set of possibilities.

3.1.3 Variable Selection

Selecting the best model consists of several steps, depicted in Figure 5. As an overview, the first
step is to reduce the 76 available variables to a smaller set of 38 representative variables. This step
removes variables that introduce duplicate information. The second step is to perform backward
selection on the 38 representative variables to reduce the model size to about 10 input variables.
We describe each of these steps in turn.

The first step in selecting a model is to remove duplicate variables—variables that essentially
bring the same information to the model. We call this step selecting representative variables.
Selecting representative variables has nothing to do with the DENV import data, and only has to
do with the information contained in the input variables. As an example, Figure 6 depicts county
population without health insurance is total county total population. These two input variables are
essentially constant multiples of each other. As such, they provide essentially the same constraints
in the maximum entropy model, and only one of them is necessary regardless of the DENV import
data.

Selecting the representative variables done with a variant of the facility location problem. The
£—o0 norm of the difference between two unit-norm variables is assigned as the distance between
the two variables. This distance measure is derived from the maximum difference in expectations
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Figure 6: County population without health insurance and county population are essentially con-
stant multiples of each other. As such, they provide essentially the same constraints in the maximum
entropy model, and only one of them is necessary regardless of the DENV import data.

that the two variables can produce, under any probability distribution. The facility location model
allows us to select the k variables that best represent others, subject to the computed distances.
The objective function for selecting representative variables is to minimize the distance between
the k representative variables and the remaining variables. Each variable is represented by exactly
one of the k representatives. As more representative variables are selected, k is closer to 76, the
objective value decreases since more variables represent themselves. Figure 7a below shows the
objective function as the number of representatives k changes. Based on this output, we select 38
representative variables.

The second step of selecting a good import risk model is backward selection. The backward
selection procedure starts with all 38 variables of interest. In each step, the variable that contributes
the least to the model performance is dropped. Backward selection continues until all the variables
are eliminated. In each step, model performance is measured using the out-of-sample log-likelihood
measure.

Selecting representative variables should be done prior to backward selection, as we have done,
to avoid spurious results. With duplicate variables, backward selection can eliminate the first
duplicate arbitrarily as contributing nothing to the model. If we re-run backward selection, it may
eliminate the second duplicate. In the presence of duplicates, backward selection cannot robustly
identify which input variables contribute most to model performance.

To ensure a robust backward selection procedure on the 38 representative variables, we imple-
mented cross-validation to evaluate out-of-sample log-likelihoods. Specifically, we do not measure
out-of-sample log-likelihood on just one set of 3 years. Instead, we sample 7 combinations of test
and train years, and the model is fit 7 times. The mean of the out-of-sample log-likelihoods for
these 7 runs of the model is used as the selection measure. Figure 7b depicts the change in mean
out-of-sample log-likelihood as variables are eliminated during backward selection. Model perfor-
mance increases at first, as some of the 38 variables are removed, but decreases after reaching the
maximum at 29 variables. The figure also shows that the drop in model performance is negligible
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Figure 7: (a) The error of using 38 variables as representatives is small, below 5% of the error of
using just 1 representative variable. (b) The maximum log-likelihood model contains 29 variables,
but a model with just 10 performs comparably well.

until less than 10 variables remain.

3.1.4 Results Analysis

To summarize, half of the variables (38 out of 76 variables) are selected as representative variables.
Figure 7a shows that the error of using these 38 variables as representatives is small, below 5% of
the error of using just 1 representative variable. Through backward selection, we produce a model
with just 10 input variables. Figure 7b shows that the maximum log-likelihood model contains 29
variables, but a model with just 10 performs about as well. The 10 variables selected in the final
model are shown in Table 7.

The maximum entropy method uses the 10 input variables as constraints for generating the
output probability distribution. As such, maximum entropy does not naturally compute correlations
between the output variable and input variables. To gain intuitive understanding between these
variables and the probability of import, in Table 7 we compute correlation coefficients at the end of
model generation. Intuitively, as imported DENV cases are brought by the travelers from DENV
endemic areas and countries, variables which indicate international travel should play an important
role in generating the import risk probabilities. Even though the suitability of the mosquitoes
plays an important role in sustained transmission risk, the suitability of the Ae. spp. should not
be considered important for import risk. Our model selection procedures confirm this intuition as
none of the variables indicating the suitability of the Ae. spp. are selected. The majority of the
variables selected have to do with education, and indicators of being in a city.

We compare our model with three intuitive models: an empirical distribution often used for plot-
ting an incidence map and a maximum entropy model with 10 and 5 intuitively selected variables,
with variables shown in Table 8 and Table 9. The empirical probability for each county is calculated
by dividing the cases occurring in the train years in that county with the total cases occurring in
Texas in the same period. To compare the models, we employ a cross-validation procedure. Every
combination of three years from 2002 to 2012 is treated as test years, and the remaining seven
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Variables in Order of Importance Correlation Coefficient
Educational Attainment with Bachelor’s degree 0.8267
Minimum Temperature of Coldest Month 0.2265
Percentage of Using Public Transportation to Work 0.7766
Educational Attainment in some college with no degree 0.7909
Walked to Work 0.8155
Commuting to Work with Other Means 0.8387
Educational Attainment less than 9th degree 0.7856
Percentage of Educational Attainment with Graduate or professional degree 0.3833
Percentage of Walked to Work -0.0907
Average Artificial Surface (Percentage) 0.8271

Table 7: Top 10 variables after the variable and backward selection procedures. Correlation coeffi-
cients between variables and relative probability distribution reveal more direct relationships.

years are treated as train years. The average out-of-sample log-likelihood over all combinations is
calculated as the model performance for each model. Table 10 shows that the model resulting from
our method produces significantly better performance than any of the intuitive models.

10 Variables in Intuitive Model

Total Population Percentage of people under poverty level
Earnings(dollars) Local(dollars)
Travel Employment Percentage of people being unemployed
Number of people without health insurance Average Artificial Surface (percentage)

Number of people with Bachelor’s degree  Percentage of people with graduate or professional degree

Table 8: 10 Variables Selected for Intuitive model.

5 Variables in Intuitive Model
Travel Employment Percentage of people being unemployed
Number of people without health insurance Average Artificial Surface (percentage)
Number of people with Bachelor’s degree

Table 9: 5 Variables selected for Intuitive model.

Two types of risk maps are generated based on the import probabilities, shown in Figure 8a
and Figure 8b The first depicts the probability that the next import occurs in the specified county,
and the second depicts the logarithm of the import probability. Harris county, Travis county and
Cameron county are the counties in highest import risk for the next DENV importation case to
occur. Dallas county is one level lower than above three counties but still in a much higher risk
range than the remaining counties. Bexar county and Tarrant county are in the same risk level and
Denton county and Collin county are in a one level lower risk range. All the counties in white color
are in a much lower risk level than the others. The logarithm plot provides easier visualization of
the relative risk levels of neighboring counties.
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Models Ranked in Order of Goodness Mean out-of-sample log-likelihood

Our Model (10 variables) -146.3940
Intuitive Model (10 variables) -158.1337
FEmpirical Distribution -176.8625
Intuitive Model (5 variables) -179.4058

Table 10: Model comparison: Cross-validation with all combinations of a three-year test period is
used for model evaluation. Mean out-of-sample log-likelihoods across all combinations function as
model performance measures. An empirical probability model is calculated by dividing the cases
occurring in the train years in each county with the total cases occurring in Texas in the same years.
Relative probabilities among counties from our model are calculated by fitting 10 selected variables
from variable selection and backward selection procedures into the maximum entropy model. The
intuitive models are generated by employing maximum entropy with 10 and 5 intuitively selected
variables, described in Tables 8 and 9. The model resulting from our method performs significantly
better than the competing intuitive models.

0.000019 -10.89

0.13 -2.03

(a) Risk map based on probability of next import. (b) Risk map based on log-probability of next import.

Figure 8: Two types of risk maps are generated based on the import probabilities. Figure (a)
depicts the probability that the next import occurs in the specified county, and figure (b) depicts
the logarithm of the import probability.



21

3.2 Sustained Transmission Risk

Once an infection is imported into the state, there is a risk that the infection will spread further
through the local mosquito population. An imported human case of CHIKV or DENV can cause a
chain of secondary cases if a susceptible Ae. mosquito bites the infected human and subsequently
bites and infects another humans in quick succession. A basic model of the spread of infection

among humans via the vectored transmission of mosquitoes can be is described in Keeling and
Rohani (2008):

dil(TH =vn —rTpmYu Xy — puXmw,

%%i:rﬂ”ﬂMXH—ugﬁq—wﬂ%,
%%%:UM—Tﬂwﬂ%XM_MMXMv
% =rTynYaXy — ppmYar-

From the above set of equations, we can derive a reproductive number Ry for the infection.
The reproductive number is defined as the average number of secondary cases produced by an
infectious individual in a totally susceptible population. In vectored transmission, this definition
encompasses two components. Starting with an infectious individual, the number of secondary
human cases depends on 1) the expected number of mosquitoes the infectious individual transmits
the virus to and 2) the number of infected humans from an infected mosquito. The Ry is then given
by the product of the average number of mosquitoes infected by one infectious human,

b Ny
(var + pm) N
and the number of humans infected from the primary mosquito,

by m

2378
The Ry is:

Ry = Ty TNy ' (1)
prt (e + pa)Ne

Symbol Parameter

birth rate of species ¢
per capita death rate for host species 4
rate at which humans are bitten
recovery rate for humans
transmission probability following a bite to species i to species j
number of individuals of species ¢ that are susceptible
number of individuals of species i that are infectious

RS2 sEF &

Table 11: Parameters in the transmission differential equation model



22

o I — 34930

| - 9025
.. JTulsa Fayettevile

OKLAHOMA '
Oklahoma City S 5 ol 7
oL - 1 e
1% ~g561  Albuguerque ]
for e :

S
Ouachita Nat

Tulsa
)

OKLAHOMA Vi _
Oklahoéna City. ¥ sott

I

for —184
S
Ouachit:

d —83.99

¥
i

NEW MEXICO
¥ %

~1487
—27.36

—1.312
3412

Colle'w" < a1 on

Louis

Beaunont

'i-“!‘ Louls
. ,

© Chihuahua < : Chlhuahua i

Del\clas

Dellclas

,}

\,0 ')us CHRisti

-\ Laredo

~
Monterrey

Monterrey AL

(a) Ae. aegypti (b) Ae. albopictus

Figure 9: Relative sustained transmission risk based on the MaxEnt output of Figure 2 and the
population of each county. Red indicates areas of higher risk and lighter areas indicate lower areas
of sustained transmission risk.

To generate a sustained transmission risk map, we compare the relative values of Ry between the
counties. Because we are computing relative Ry values, as opposed to exact values as in Equation
1, we can eliminate all parameters in the equation that are the same between counties. Parameters
such as the mosquito biting rate b, the probability of transmission of the infection from mosquito
to human and vice-versa Thsy and Tirps, the recovery infection time for humans ~g, and the
death rates for both humans and mosquitoes gy and pys can be assumed to be the same between
counties. Removing these parameters, the key comparison for relative values of Ry reduce to the
ratio of mosquitoes to humans.

The output from MaxEnt SDM produces relative occurrence rates of the mosquitoes. Although
this is not a measure of absolute abundance, it gives the relative occurrences of the mosquitoes
between the counties. We can take the ratio of the MaxEnt output to the number of humans in
each county to give us relative Ry comparison, a comparison of sustained transmission risk between
counties,

Ro o ]]\\?‘Ij )

Sustained transmission risk yields significantly different maps, presented in Figure 9, than the
habitat suitability maps in Figure 2. The main population centers have lower sustained transmission
risk, Ry, relative to other areas in the state whereas they have higher vector suitabilities. Looking
at relative Ry formula we see that Ry increase proportionally with the number of mosquitoes but
decrease with the number of humans. This is because if the number of mosquitoes per human is low,
than the initially infected human may not be bitten by any mosquitoes before recovering. Therefore,
the sustained transmission risk map highlights areas in Texas that have a ratio of mosquitoes to
humans is large, producing a higher risk for having an arbovirus successfully spread and invade
once an initial import is present.
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Ae. aegypti  Ae. albopictus

Loving Kenedy
Kenedy Loving
Hudspeth Martin
Culberson Edwards
Terrell Terrell
King King
McMullen Borden
Jeff Davis Kinney
Presidio Kent

Table 12: Top ten counties for highest risk of sustained transmission

Many of the counties that are indicated as having the highest risk of sustained transmission also
have the lowest human population sizes. There is the possibility that these small human populations
could not sustain a sufficient mosquito population for transmission to occur by not providing
sufficient breeding container opportunities or food source. Omne of the properties of maximum
entropy is that it chooses the species distribution that is closest to uniform across geographic space
while satisfying the environmental constraints. In this sense, counties that may not actually have
any mosquito populations will still be assigned some small level of relative occurrence. For counties
with small population sizes, in the Ry calculation, the relative occurrence N is high enough that
when divided by a small population Ny, the Ry is large.

We consider how sustained transmission risk would change across the state by choosing a thresh-
old of relative occurrence rate under which counties are re-assigned as 0 Ae. occurrence. The thresh-
old is visually determined by progressively increasing the threshold until known areas of trapped
Ae. mosquitoes are below the threshold. Figure 10 depicts sustained transmission risk maps based
on these thresholds. The counties with the highest sustained transmission risk change, with many
of the rural areas in west Texas that had a higher sustained transmission risk in Figure 9 now at
lower risk. This map of sustained transmission risk has a greater intuitive agreement with the habi-
tat suitability maps. Areas along the coast and high population density areas of Dallas, Houston,
Austin, San Antonio, and El Paso in the case of Ae. aegypti are at high sustained transmission risk.

Ae. aegypti  Ae. albopictus

Harris Kenedy
Cameron Refugio
Dallas Dimmit
Hidalgo Kinney
Tarrant Goliad
Bexar Brooks
Jefferson Jackson
Montgomery Lampasas
Galveston Zavala,
Brazoria Calhoun

Table 13: Top ten counties for highest risk of sustained transmission when thresholds of 0.1 and
0.20 are applied to the MaxEnt ouput
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Figure 10: Sustained Transmission Risk Maps with thresholds applied to the MaxEnt output. The
values of risk were calculated from the high resolution relative occurrence rate (Figure 2) and the
high resolution population data according to equation (2). For each county the proportional Ry
was calculated as the sum of all 30 arc-second cells.

4 Tools to Help DSHS Mission

A state-of-the-art website was developed to facilitate DSHS in arbovirus surveillance, control and
prevention. We aimed to integrate our results in the Texas education and surveillance effort for
arbovirus with visualized dengue and chikungunya risk maps and Ae. spp. suitability maps.

Screenshots of the website are shown in Figures 11 through 14. After landing on the Texas
Arbovirus Risk Map home, Figure 11, a user can navigate several categories of data. Each category
presents several variables, and each variable can be displayed on a state level, an HSR level, or a
county level. Some data, such as the environmental variables used for for constructing Ae. spp.
suitability maps, can be displayed in high resolution. For example, as in Figure 12a, users can
view the high resolution data of annual mean temperature by clicking the high resolution selector.
Similarly, a user can view time-specific incidence counts of arbovirus disease through a time-selection
slider. For example, historical dengue cases from year 2009 to 2012 are shown in Figure 12b.

Users can choose to view specific county data by clicking the county in the map or typing the
county name in the search box as shown in Figure 13a. Users can also view a specific Health Service
Region (HSR) by typing the HSR name in the search box. Whether at a county, HSR, or state
zoom level, a user can click the PDF report button on the top left to generate an arbovirus report
for their geographic region of interest.

A user can select variables of interest by navigating the categories of variables on the right. When
selecting a variable of interest, a legend on the bottom left of the website describes the connection
between visualization color and variable value. For example, in Figure 13b, the population of
Travis county shown under the socio-economic category. The legend also shows the minimum and
maximum value for the variable across all counties in Texas.

The import risk map, logarithm import risk map and sustained transmission risk map discussed
in Section 3 are available under the risk model category. The Ae. spp. suitability maps are avail-
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Figure 11: Homepage of the Texas Arbovirus Risk Map. A user can use the website to visualize
risk maps, and important indicator variables. In addition, the website can be used to visualize
timely arbovirus incidence data and generate weekly arbovirus risk reports. After landing on the
website, a user can use the right-hand-side search box to search for an Health Service Region or
a County. In addition, a user can select a variable of interest by navigating the categories on the
right. A report is generated for the geographic region of interest by clicking the PDF report button
on the top left.

able under the suitability category. All the environmental data, socio-economic data, travel data,
historical reported dengue cases and historical mosquito trap data we used are also available.

The website also allows DSHS to add custom fields for display on the website, and to upload the
most recent Arbovirus surveillance data through an administrative interface, displayed in Figure 14.
Through this interface, DSHS officers can upload data for arbovirus surveillance reports, download
the auto-generated reports, and download all website data in a zip file. DSHS can update the data
displayed on the website by first editing appropriate spreadsheets in Google Drive, then clicking
the load data button on the administrative interface.

This website provides an effective and direct visualization tool for the centralized surveillance
repository in state level. In addition, each county and HSR can focus on its specific data. The
website, as a publicly accessible and user friendly tool, can help authorities communicate arbovirus
risk and help coordinate privatization the limited resource in arbovirus surveillance. In addition,
the tools provided for DSHS to actively update and edit the website data, should make it a valuable
tool for future arbovirus control efforts.
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Figure 12: The Texas Arbovirus Risk Map can visualize several types of data. In addition to county-
level data, the map can visualize high resolution data as in Figure 12a. The website can also be
used to visualize time-sensitive incidence data through a time-selection slider as in Figure 12b.
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Figure 13: A user can select a geographic area and variable of interest. The geographic area of
interest can be either the entire state, an HSR, or a county. The user can either click on a county,
or type a county name or HSR name in the search box to zoom to that region. Using the categories
on the right, the user can select a variable of interest. A legend on the bottom left connects the
visualization color to the variable value.
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Figure 14: DSHS administrative interface or the Texas Arbovirus Risk Map. Through this interface,
DSHS can upload the latest arbovirus surveillance data, download auto-generated reports, update
DSHS custom fields, and backup all website data.

5 Conclusions and Discussions

Through a careful assessment of the ecological and socioeconomic factors that influence the feasibil-
ity of transmission of DENV and CHKIV, we have highlighted areas of Texas that are at relatively
higher risk.

For CHIKV and DENV, our models predict higher suitable habitat and a higher relative prob-
ability for the imported cases in urban areas in the eastern half of Texas and along the gulf coast.
These results are consistent with known distributions of both vector species and where historical
imported cases have occurred. The species distributions are an improvement on past mapping
efforts because they provide higher resolution on areas that are more highly suitable. In general
the pattern of relative occurrence rate results are consistent with the ecology of both vector species
in that the higher rates are concentrated in the urban areas. The majority of these major urban
areas are in the eastern half of the state, but Ae. aegypti has high levels of relative occurrence also
in the western corner of El Paso.

In constructing the importation model, originally, there were millions of models to choose.
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We developed an innovative way to eliminate duplicate variables. Half of the variables could be
well represented by the rest. We use backward selection to effectively select the most significant
variables. The resulting model, based on just 10 variables, performs significantly better than
competing models. The population with Bachelor’s degree was the most important variable and
had a correlation coefficient of 0.83 with the relative probability for the next DENV cases to occur.
An explanation was that the people with Bachelor’s degree are more likely to have a job, such as
consulting, which requires more international travel.

The import risk model indicates Harris county, Travis county and Cameron county as the
counties in highest risks for the next dengue importation case to occur, with a relative probability
of at least as 20 times that of most other counties. Dallas county is one level lower but still in a
much higher risk range than other counties. If we draw the risk map with the logarithm of relative
probability for next DENV case to occur, counties in southeast areas suffered a higher risk than
the counties in northwest areas.

The sustained transmission risk map offers a useful insight: it is not necessarily the counties
that have the highest relative abundance for Ae. that are at risk for establishing these arboviruses,
but those counties that have a lower human population. Counties will smaller urban areas may
still provide adequate habitat opportunities for Ae. spp. and with fewer persons available to bite.
Such counties have a higher probability that an infected individual would be bitten and spread the
infection. Both geographic risk distribution maps demonstrate that there is a legitimate extent of
risk of DENV and CHIKYV in Texas, but that across and within counties that are great differences
in the risk.

Maximum entropy was an appropriate method to use in this analysis because of the scarcity
of historical data. However there are limitations with maximum entropy method and the MaxEnt
software that should be acknowledged when interpreting the results:

e In constructing the suitability maps, two caveats are the lack of data points within Texas and
the uncertainty associated with the sampling effort across the states. Although MaxEnt has
reportedly had good performance with interpolating across geographic region, more Texas
specific data points would allow for the model to be fit just for Texas.

e Without knowing the effort level put into surveying other areas of the state it is not possible
to know for certain where these species are currently absent.

e The modeling method produces a static output. With the available data, the suitability
models cannot be more temporally resolute. Mosquito abundances and therefore arboviruses
have a seasonal component in Texas, historically seen with West Nile Activity. If time-
stamped data points were available it would be possible to generate seasonal maps. This
could be especially useful if different areas of the state experienced different peak seasons in
mosquito abundances.

e Maximum entropy outputs are as close as possible to a uniform distribution. The results
then suggest that each county has some level of occurrence. When the model outputs a level
of occurrence close to zero, the reality may be that vectors are not at all present in that
geographic region.

e The analysis does not consider vector population dynamics in modeling relative occurrence
rates. In more temporally resolute models that predict abundance and the course of an out-
break, vector population dynamics can be important in the increase and decrease in number
of cases.
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e Even though we included the travel data into our model, in contrast to previous studies, the
availability of a more detailed country-to-Texas-county travel data could facilitate our ability
to produce a more accurate import risk model.

e Availability of the data resources, quality of the data, and feasibility of the data acquisition
always plays an important role in the accuracy and prediction ability of the risk maps. Ab-
sence of the CHIV data also brought limitations for the import risk maps. We use probability
of DENV import, based on historical DENV data, as a proxy for CHIKV import in the ab-
sence of the CHIKV data. The practicability of cross disease risk representation was based
on the same transmission vectors for both diseases. However, the import arbovirus disease
was brought by the travelers from arbovirus endemic countries and areas. And the DENV
endemic countries are not exactly the same as the CHIKV endemic countries and areas. This
is especially true with the recent high levels of CHIKV activity in Central America and the
Caribbean.

6 Future Work

We put forth several contributions in this paper. First, we include the travel data in risk model
construction. Second, we construct an innovative way of eliminating the replicated variables in
model construction. Third, we use the maximum likelihood method in model valuation and selection
instead of the original methods used in MaxFnt software. The vectors suitability model, import risk
model, and sustained transmission risk map offer useful insights that the relative abundance for Ae.
doesn’t contribute much in the relative probability for the importation and sustained transmission
risks compare to some socio-economic and demographic factors. Based on the results of the risk
maps, we have potential avenues of future work to improve mosquito surveillance in counties across
Texas:

e In order to test the vector species distribution hypothesis put forward by the maps and to
gain a quantitative absolute risk assessment, time series data on vector abundances from traps
need to be collected. Time-series would not only confirm the relative occurrence rates gener-
ated from the MaxEnt output, it would also allow real-time modeling of actual abundances
and more temporal fluctuations in population sizes. Similar forecasting of Ae. mosquito pop-
ulations has been investigated in Florida. Validation and forecasting in this form may best be
first approached on a county by county basis, as to complete this evaluation on a state-wide
level would require a highly coordinated data intensive effort and mosquito surveillance is
presently set up by county.

e In addition to collecting detailed trap data for individual counties, future work could include
optimizing the locations of the traps in order to improve early detection and situational
awareness of arbovirus outbreaks. Based on an evaluation of how well the current trap
locations contribute to timeliness, accuracy, and spatio-temporal representativeness of the
arbovirus surveillance system, maximally informative locations and monitoring schedule could
be determined. Optimization processes could be completed for surveillance of other important
arboviruses such as West Nile Virus in addition to DENV and CHIKV. Key counties in Texas,
including Harris and Travis Counties have approached the UT team for further discussion of
optimization possibilities.

e A more detailed county-to-county travel data collection is considered as an important future
work to reflect the actual population mobility to improve the prediction ability and early
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warning ability of the importation and sustained transmission models.

e Lastly, future work could include developing methods for integrating the two types of risk,
into a “spark and fire” risk model. This type of risk would evaluate the probability that there
will be an imported case and that the imported case will lead to secondary cases. This risk
quantification takes into account both stages of transmission, as opposed to the sustained
transmission model which considers the possibility of secondary cases, given that there is an
imported case.
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