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Abstract 

 

Characterization of Fly Ash for Evaluating the Alkali-Silica Reaction 

Resistance of Concrete 

 

Andres Jose Jasso M.S.E. 

The University of Texas at Austin, 2012 

 

Co-Supervisors:  Kevin J. Folliard & Raissa Ferron 

 

 Fly ash has been used extensively to control deleterious alkali-silica reaction in 

concrete.  The majority of fly ashes can be used to control ASR induced expansion.  Fly 

ashes with high CaO contents are less effective at reducing expansion and fly ashes with 

high alkali contents can be counter active. Class C fly ashes are less effective at reducing 

the pH of the pore solution because they are less pozzolanic.  The pozzolanic reaction in 

Class F fly ashes enhances the ability for the hydration products to bind alkalis.  This 

prevents the availability of these alkalis for ASR.  This project aims to characterize fly 

ash in a way that best predicts how it will perform in concrete with an emphasis on ASR.  

Fly ashes with a variety of chemical compositions were evaluated using a range of 

analytical and characterization techniques.  Research data from several universities were 

used to correlate their long term data with this project’s accelerated tests.  This research 

aimed at evaluating the mineralogical, chemical, and physical characteristics that most 

affect the ability of a given fly ash to prevent ASR-induced expansion and cracking. 
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Chapter 1: Introduction 

1.1 INTRODUCTION 

 Alkali-silica reaction (ASR) is the general name given to a series of chemical 

reactions involving the interaction of reactive silica, alkalis, and water that results in 

premature distress and loss in serviceability of concrete structures.  The first case of ASR 

was discovered by Thomas Stanton in the 1930s in southern California (Stanton 1940). 

Although ASR still remains a problem today, its reaction is better understood and there 

are now several preventive measures that one can take to limit ASR from occurring 

and/or mitigating its effects once ASR has occurred.  One preventive measure is the 

replacement of cement with fly ash, a supplementary cementing material (SCM). 

Today, the use of SCMs such as fly ash is one of the most popular ways to 

prevent ASR induced expansion.  Fly ash is a by-product from the combustion of 

pulverized coal in power station furnaces; however not all fly ashes are the same when it 

comes to ASR.  Rather, there are several factors, including the mineralogical, chemical, 

and physical composition of the fly ash that plays a role in the effectiveness of fly ash to 

controlling ASR.  

1.2 SCOPE AND OBJECTIVE 

Incorporating fly ash into concrete is one of the most economical and simplest 

ways the concrete industry has to prevent ASR. However, the properties of fly ash vary 

from source to source, and the  chemical, mineralogical and physical properties of an ash 

taken today from a power plant can be considerably different from the ash obtained from 

the same power plant just a few years ago. Furthermore, environmental regulations on the 

coal combustion industry continue to evolve and this can affect the quality of ash that is 

produced.  Because of this, it is becoming important to be able to characterize fly ash in 
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order to predict its performance and behavior in concrete.  The objective of the research 

in this thesis is to characterize fly ash and relate these findings to fresh, hardened, and 

durability properties of concrete with respect to ASR.  The results of this project will   

provide a way to relate short-term characterization techniques to long-term data.  With 

these results, fly ash will be able to be characterized with simple and accurate short-term 

techniques.   
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Chapter 2: Literature Review 

Since ASR was first discovered in the 1930s, there have been many studies 

focusing on ASR.  Within this literature there are hundreds of research papers concerning 

the use of fly ash as a means to mitigate ASR.  This chapter surveys a portion of the 

literature regarding ASR, focusing in on articles dealing with what is important for this 

project.  Topics such as ASR, fly ash, pore solution chemistry, and testing methods will 

be discussed.   

2.1 ALKALI – AGGREGATE REACTION 

Alkali-aggregate reaction (AAR) is a chemical reaction that occurs in concrete 

that induce stress.  The pores within concrete are filled with highly basic solutions that 

consist of many dissolved ions, mostly K+, Na+, and OH-.  Other ions include Ca2+, and 

SO4
-2 but these are not as important to AAR as the ions mentions before.  There are a 

variety of fine and coarse aggregates that contain chemically unstable mineral phases that 

can react deleteriously in the high pH environment in concrete.  This then can cause 

internal expansion, cracking, and loss of serviceability which can lead to failure of the 

concrete element (Fournier, Berube, 2000).  There are two types of AAR, alkali-

carbonate reaction (ACR) and alkali-silica reaction (ASR), which will be discussed in the 

following two sections.   

2.1.1 Alkali – Carbonate Reaction 

ACR is similar to ASR but requires a different set of aggregate for reaction.  ACR 

has been observed to occur with certain dolomitic rocks and the reaction with the high pH 

solution in the pores of the concrete.  The first case of ACR was reported in the late 

1950s in Canada and since then has been greatly studied (Swenson, 1957), (Farbriarz, 

Carrasquillo, 1986), (Fournier, Berube, 2000).   
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The alkali hydroxides in the concrete pore solution attack the dolomite crystals of 

the aggregate and begin the process of dedolomitization. It is believed that this process, 

the breakdown of dolomite, is responsible with expansion.  Equation 1 shows the 

breakdown of dolomite with the alkali hydroxides to form brucite, calcite, and alkali 

carbonates.   

 
Equation 1 

The ACR mechanism occurs in the two steps in Equations 1 and 2. In Equation 2, the 

alkali carbonates and portlandite react to form brucite and additional alkalis, which in 

turn will increase or maintain a high pH and cause more reaction.  This can mean that 

ACR could continue to proceed almost indefinitely if a source of reactive aggregate is 

present.  It is this recycling of alkalis that makes it very difficult, if not impossible, to 

prevent ACR-susceptible aggregates from reacting in concrete, even at very low alkali 

loadings.   

 
Equation 2 

  

ACR is far less common than ASR because the type of aggregate needed for ACR is 

quite rare, and because of this, occurrences of ACR in concrete structures are very limited 

around the world.   

2.1.2 Alkali – Silica Reaction 

ASR is more much more common than ACR because of the abundance of reactive 

siliceous aggregates worldwide.  It is a reaction that occurs between the high pH pore 
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solution in concrete and certain types of aggregates with poorly crystalline silica.  The 

reaction causes the formation of a gel and that expands when it absorbs water.   

The mechanism of ASR and the chemistry behind it was studied greatly by 

Glasser and Katakoka (1981).  Glasser and Katakoka stated that when poorly-crystalline 

hydrous silica is exposed to a strong alkaline solution, there is an acid-base reaction.  

This reaction can be described in Equation 3.   As shown in the equation, the first step is 

the silica being attacked by the hydroxyl ion.  This results in the negatively charged 

oxygen terminal that is shown on the right hand side of the equation being balanced by 

alkali cations (Na+ and K+) from the solution.   

 
Equation 3 

 

If a strong alkaline solution continues to be present, then further hydroxide 

reaction with reactive silica particles can occur and the siloxane linkages can also be 

attacked.  Equation 4 depicts the reaction between the hydroxyl ions and siloxane 

linkages.  If there are still sufficient amounts of alkali hydroxides available, then the 

process continues to produce an alkaline silicate solution.   

 
Equation 4 

 

 Thomas (2011) states that the extent or rate of dissolution is controlled by the 

alkalinity of the solution, the structure of the silica, and the influence of the pH increase 

on the solubility of the poorly crystalline/amorphous silica.  The dissolution of silica from 

reactive particles caused by hydroxide ions in solution forms the alkali-silicate gel which 

is accompanied by an increase of volume (Glasser, Kataoka 1981) 
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There have been various studies performed to determine the minimum hydroxide 

concentration in pore solution for ASR to occur in concrete, and concentrations within 

the range of 0.20 M to 0.30M are believed to be the minimum threshold.  Research by 

Diamond et al., (1981), Kollek et al., (1986), and Thomas, Shehata, (2006) have 

generated data with values within this range.  One reason why the concentration range 

varies by 0.10 M could be because of the different types of reactive aggregates used by 

the different researchers.  However, it is important to realize that the minimum hydroxide 

concentration ranges are just estimates, and that it may be possible for a more reactive 

aggregate to react at a threshold lower than 0.20M or an aggregate that is not too reactive 

to have a minimum threshold closer to 0.30M.   

Monteiro et al (1997) conducted studies on ASR gel chemical composition on 30 

day old mortar bars.  Mortar bars were cast, soaked 1M NaOH, and then the expansion 

was measured in accordance to ASTM C 1260 Standard Test Method for Potential Alkali 

Reactivity of Aggregates (Mortar-Bar Method).  The mortar bars were mixed with 

different SCMs and cements.  After 30 days, the mortar bars were examined with an 

SEM with BEI and EDS analysis.  More specifically the chemical composition of the 

ASR gel found within the mortar bars was determined.  Table 1 shows the results from 

this analysis.   
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Table 1: Chemical Composition for ASR Gel Formed (Monteiro et al, 1997) 

 

The Ca/Si within the ASR gel plays a role in expansion.  The highest ratio was 

0.79 and is associated with the least amount of expansion of 0.032%.  Although the mix 

with the lowest ratio did not have the high expansion measurement, generally speaking, 

mixes with lower Ca/Si ratios displayed higher expansion.  Monteiro et al. (1997) 

concluded that not all alkali silica gels are equally expansive, and the alkali and calcium 

contents in ASR gel factor the expansion mechanism.  Additionally, the higher the 

CaO/Na2Oe ratio in the ASR gel, the less expansive the gel.   

The amount of ASR-induced expansion is dependent on several parameters.  

According to Thomas (2011), they include the availability of alkalis in the system, the 

nature and amount of reactive silica in the aggregate, exposure conditions (temperature 

and moisture availability) and the degree of internal and external restraint to movement 

(e.g. amount and distribution of reinforcing steel).  Fly ash is only involved in one 

parameter, the availability of alkalis in the system, although fly ash also reduces 

permeability, which can keep water from entering concrete.   

2.2 FLY ASH 

Fly ash is a by-product of the process of coal combustion in power generating 

stations.  Coal is a complex and heterogeneous material used around the world as an 

energy source.  When this coal in burnt to generate electrical power, large quantities of 
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fly ash is produced and can be collected.  Fly ash and bottom ash are produced but it is 

the finely-graded fly ash that is important especially in the concrete industry.   

 Fly ashes are divided into two categories in the United States, Class C and Class 

F.  Class F fly ash is produced from burning anthracite or bituminous coal and has 

pozzolanic properties.  Class C fly ash is produced from burning lignite or sub-

bituminous coal and can have both pozzolanic and cementitious properties.   

The glass content, silica content, alkali content, and particle size all assist in 

determining which fly ash is efficient for preventing ASR.  ASR is mainly fueled by 

alkalis from the cement but fly ash can also contribute alkalis in some instances.  Some 

fly ashes with higher alkali contents require higher replacement levels but some have 

excessive amounts of alkali that they are totally ineffective.   

Currently, there is no standardized test that can correctly predict the amount of 

alkalis released from fly ash into the concrete pore solution.  Some of the alkalis in fly 

ashes can be trapped in crystalline phases and are not available for reaction.  Both classes 

of fly ashes can lower the amount of alkalis released, but Class C fly ashes generally 

release more alkalis than Class F fly ashes.  In other words, Class F fly ashes are more 

efficient at reducing ASR expansion.  This project used accelerated tests with 

characterization techniques to correlate with long-term expansion results.   

2.2.1 Background 

Fly ash is a solid, fine-grained material collected from the combustion of coal in 

power plants.  The physical and chemical properties of fly ash can vary significantly and 

largely depend of the composition of the coal and the burning conditions in the furnace.  

Fly ashes that react with Ca(OH)2 at room temperature can be classified as a pozzolan.  

These fly ashes act as pozzolan because of the higher amounts of SiO2 and Al2O3 in their 
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amorphous form.  Fly ashes can are divided into two groups by the American Standard 

for Testing and Materials (ASTM) (ASTM C 618).  Table 2 displays the classes and their 

chemical requirements.  Class F fly ashes are normally produced from burning anthracite 

or bituminous coal and are required to have the sum of the silicon, aluminum, and iron 

oxides percentage greater than or equal to 70% as shown in Table 2.  Also, Class F fly 

ashes generally have pozzolanic properties.  Class C ashes are normally produced from 

lignite or sub-bituminous coal and have both pozzolanic and cementitous properties.  The 

composition of the coal is largely dependent on the original location of the coal (Wesche, 

1991).  The chemical requirement for the Class C fly ash is their oxide percentage must 

sum up to or greater than 50%.  These classifications are covered in ASTM C 618-08 

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use 

in Concrete.   

 

Table 2: Fly Ash Classification 

Class Description Chemical Requirements 

F 
Fly ash normally produced from burning anthracite or bituminous 
coal that meets the applicable requirements for this class as given 
herein. This class of fly ash has pozzolanic properties. 

SiO2 + Al2O3 + Fe2O3 ≥ 70% 

C 

Fly ash normally produced from lignite or sub-bituminous coal that 
meets the applicable requirements for this class as given herein. This 
class of fly ash, in addition to having pozzolanic properties, also has 
some cementitious properties.  

SiO2 + Al2O3 + Fe2O3 ≥ 50% 

The mineralogical composition of fly ash depends characteristics and composition 

of the coal burned at the power plant.  Because fly ash is rapidly cooled, it mostly 

consists of glassy particles (50-90%).  A small amount of the fly ash is crystalline and 

also a small amount of unburned carbon can remain.  The most important minerals found 

in fly ashes from bituminous coal are magnetite, hematite, quartz, mullite, and free 

calcium oxide.  Other minerals found in sub-bituminous coal are anhydrite, melilite, 
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merwinite, periclase, and tricalcium aluminate.  There are several more minerals in fly 

ash but are usually found in trace amounts.  These minerals can be detected using X-ray 

diffraction because they are in fly ash in crystalline phases.   

2.2.2 Effects on Concrete 

The proper use of fly ash improves several properties of concrete.  It exhibits 

pozzolanic properties that react with the Ca(OH)2  produced during the hydration of 

Portland cement.  Calcium-silicate-hydrate (C-S-H) and calcium aluminate silicate 

hydrates (C-A-S-H) hydrations products are formed from this pozzolanic reaction.  Fly 

ashes with high CaO contents also show hydraulic properties as well as pozzolanic 

properties.   

The use of fly ash is known to reduce the expansion caused by ASR.  This 

reduction is caused by the fact the hydration products tend to bind alkalis.  The 

pozzolanic reaction when using fly ash produces C-S-H that contains a lower Ca/Si ratio 

than that of just Portland cement hydration.  C-S-H with a low Ca/Si ratio has the 

potential to bind alkalis thus removing them from the pore solution.  Hong, Glasser 

(1999) claimed that the lower the Ca/Si ratio, the surface charge becomes more negative 

(or less positive) and attracts the positive alkali cations from the pore solution.   

 

Table 3 shows the results of several studies of the chemical composition of C-S-H 

using a variety of SCM’s in their mixtures.  High CaO fly ash is less effective in reducing 

the Ca/Si ratio within C-S-H when compared to Class F fly ash.  Also, notice how the 

alkali cation (K+, Na+) contents of C-S-H increase as the Ca/Si ratio decreases.  The 

lower ratio has a higher capacity to bind these alkalis.   
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Table 3: C-S-H Composition 

 

2.3 EFFECTS OF FLY ASH ON ALKALI – SILICA REACTION 

The use of fly ash and other SCMs is one of the most popular solutions to 

suppress ASR induced expansion.  Some fly ashes behave differently than others and can 

be very effective against ASR while others can actually contribute to the problem.  There 

are several reasons mentioned in articles proposing various mechanisms to explain fly 

ashes effectiveness against ASR. 

2.3.1 Fly ash effectiveness  

Duchesne and Berube (1994) listed four of the most common mechanisms to 

explain the effectiveness of fly ash against ASR: 
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• Lower permeability and consequent lower ion mobility 

• Strength improvement and higher resistance to the expansive stress developed by 

ASR 

• Alkali dilution resulting from cement replacement, (at least for fly ashes with a 

lower available alkali content),  

• Pozzolanic reaction producing secondary (pozzolanic) hydrates which entrap 

alkali ions and deplete portlandite in the cement paste, thus reducing the alkali 

ions and the pH in the pore solution. 

Duchesne, Berube (1994) performed concrete prism expansion tests similar to ASTM C 

1293 Standard Test Method for Determination of Length Change of Concrete Due to 

Alkali-Silica Reaction that included the use of different fly ashes.  Their studies included 

the use of three fly ashes (two Class F and one Class C with high alkali content).  They 

found 40% replacement with the high alkali fly ash did reduce expansion over a 2-year 

period with respect to the control but 20% performed worse than the control.  Twenty 

percent of the other two fly ashes were found to be enough to control expansion.  These 

results showed that fly ash with higher alkali content require higher replacement dosages 

and excessive alkali contents can possibly render the fly ash ineffective.   

 Thomas (2011) proposed that alkalis in the binder are released in one of three 

ways: dissolved within the pore solution, bound by the hydration products, or 

incorporated in ASR gel.  If there is no reactive aggregate, then the pore solution and 

hydration products will reach some sort of equilibrium and the amounts are dependent on 

the composition of the binder.  Many researchers have found that the incorporation of fly 

ash leads to a reduction of the alkali concentration inside of the concrete pore solution 

and with higher dosages the concentrations decreases.  Figure 1 shows how higher 

replacement levels of SCM’s results in lower OH- concentrations in the pore solution.  



 13 

There were three fly ashes tested (Class C, Class F, and high alkali).  Notice how the high 

alkali fly ash had the highest concentration at all levels, followed by the Class C, and then 

followed by the Class F.  The Class F performed the best and high the lowest OH- 

concentrations.  Also, notice how at higher replacements, the OH- concentration 

continues to decrease.   

 

 

Figure 1: Effect of SCM and Replacement Level on the Pore Solution [OH-] (Thomas, 
2011) 

Also, Thomas (2011) shows how not only does the OH- concentration decrease at 

higher replacement level but so does ASR induced expansion.  Figure 2 displays similar 

results from Figure 1.  Performance increases as fly ash replacement level increases.  

Expansion can drastically be reduced with the higher replacement levels especially with a 

low-CaO fly ash.  Notice how even the higher replacement levels with high CaO and high 

alkali contents performed better.   
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Figure 2: Effect of SCM Replacement on ASR Expansion (Thomas, 2011) 

The dosage of fly ash needed to control ASR induced expansion is believed to be 

dependent on several variables including the alkali content of cement and possible 

aggregate, the alkali content of fly ash, the CaO/SiO2 of fly ash, and the reactivity of the 

aggregate.  If any or all of these variables increase so does the need for higher fly ash 

dosages.  Thomas has developed a relationship between the chemical composition of the 

binder, and pore solution concentration and ASR expansion.  This index 

[(Na2Oe)0.33xCaO]/(SiO2)2 clearly shows which three chemical parameters affect ASR the 

most.  The alkalis of the binder of course contribute to ASR and so does the CaO/SiO2 

like many other researchers state.  It is a combination of all three that influence ASR 

expansion the most.  This relationship will be used in the later sections will the research 

of this thesis to determine if trends can be discovered.   

2.3.2 Available Alkalis 

The term “available alkalis” means the amount alkalis released by a fly ash into 

concrete pore solution that enables it to react with a reactive aggregate if available.  Fly 
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ash contains a percentage of alkalis just as cement but not all of it is available.  Some of 

the alkalis are trapped in non-reactive crystalline phases while others are separated 

between hydration products and pore solution liquid (Thomas, Shehata, 2006).   

In Section 3.2.4, the ASTM C 311 method and procedure for determining the 

amount of available alkalis in fly ashes is described.  This procedure is thought by many 

to be inaccurate in determining the amount of alkalis that are available for reaction with 

reactive aggregate.  Thomas and Shehata (2006) states that the problem with this 

procedure is that the leaching medium is of neutral pH.  The use of distilled water and not 

something similar to the high pH of concrete pore solution will not correctly represent 

available alkalis.  Many researchers have shown that most of the alkalis will be released 

under these conditions especially if the curing period is extended past the 28 days 

required.   

Duchesne and Berube (1994) suggested that almost all alkalis in fly ash are 

released over a long period of time and will remain in the concrete pore solution at least 

for a short period of time.  It states that once the alkalis are in solution, they are either 

entrapped in cement hydration or pozzolanic reactions, or remain available in solution for 

ASR.  All fly ash alkalis are released into solution at some point but only a certain 

amount remains available.   

Work by Lee et al. (1985) states that ASTM C 311 underestimates the amount of 

available alkalis especially with only 28 days of curing.  They tested not only at 28 days 

but at regular increments from 2 days to 6 months.  They tested six different fly ashes and 

only one (a strong Class F) at 28 days had a good long term indication.  The other fly 

ashes continued to release noticeable amounts of alkalis as time increased.  Figure 3 

shows a typical plot from their results.  Notice  how both curves continue to increase 

beyond the 28 days of curing.  There is a significant increase beyond the normal curing 
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amount and under ASTM C 311, these alkalis after 28 days would not be considered 

available because they would not have been detected.  This test is not indicative of the 

total amount of alkalis released into pore solution in the long-term.   

 

 

Figure 3: Long-Term Available Alkalis (Lee et al., 1985) 

The experiments by Lee et al. (1985) also showed that the amount of available 

alkalis were about 50% of total equivalent alkalis for Class F fly ashes and 90% for Class 

C fly ashes after 5-6 months of curing.  Although the percentages may be over or 

underestimated because of the test method, a relative relationship can be noticed.  Class C 

fly ashes will have plenty of more of their alkalis available for reaction than Class F fly 

ashes.  The numbers may not be around 90% and 50 %, respectively, but in general Class 

C fly ashes have more available alkalis.  Also, (Lee et al., 1985) states that the test 

method may not be valid for high calcium fly ashes because its calcium may be reactive 

and interfere with the assigned fly ash to calcium hydroxide ratio (2.5:1) from ASTM C 
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311.  Also their testing at higher temperatures to try and expedite the process resulted in 

the opposite, lower amounts of available alkalis.   

Thomas, Shehata (2006) developed a method to determine the amounts of 

available alkalis from blended cements.  The procedure involved mixing paste samples 

with different fly ashes and cements and allowing them to cure for certain period for the 

pore solution to reach equilibrium.  Then the paste samples were crushed and a certain 

amount was placed in different concentrations of OH- with the same Na2O to K2O ratios 

of its binder.  They were allowed to rest in solution for a certain period of time and the 

concentrations before and after were taken.  This method allowed for the determination of 

alkalis either released or bound by the paste when place into simulated pore solutions of 

different concentrations.  This procedure was replicated during the research of this thesis 

and is discussed further in Sections 3.2.7 and 4.3.2.  Thomas and Shehata (2006) found 

that the amount of available alkalis increases as the calcium and alkali contents of the 

blends increase and the silica content decreases.  High-CaO fly ashes had more available 

alkalis and confirm why these fly ashes perform worse at controlling ASR.  Also, they 

stated that fly ashes with higher amount of alkalis also contributed more alkalis into the 

simulated pore solution.  In Figure 4, one can notice how the replacement of more fly ash 

in the binder decreases the amount of available alkalis for reaction with reactive 

aggregate.  Three different fly ashes of different chemistries showed that certain fly ashes 

are more efficient at higher replacement dosages in terms of ASR.   
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Figure 4: Effect of Fly Ash on Available Alkalis (Thomas, Shehata, 2006) 

2.3.3 Pore Solution Chemistry 

In hydrating cement paste, the concentration of the alkalis in the pore solution 

continuously changes.  Many factors play a role in pore solution composition such as the 

cement, SCM, hydration products, aggregate, and potential ASR gel.  Different levels and 

types of cement and SCM’s can affect the composition as well.  Figure 5 illustrates the 

possible sources of alkalis in the pore solution.  It also shows how alkalis can be bound 

by hydrations products and consumed by ASR gel.   
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Figure 5: Sources of Alkalis in Pore Solution (Shehata, 2001) 

Fly ash contains appreciable contents of potassium and sodium and a certain 

amount of them are available as described in the previous section.  The concentration of 

alkalis in concrete pore solution is of importance when concerned about ASR.  Certain 

fly ashes can reduce the alkali concentration by binding alkalis within hydration products.  

Other fly ashes have no effect or can increase the alkali concentration in the pore 

solution.   

Class F fly ashes have been shown to reduce the concentration of alkali ions in the 

pore solution.  The effectiveness of this depends on the nature of the fly ash (e.g. 

fineness, glass content, and alkali availability), the level of replacement, the alkali content 

of the Portland cement, and age (Shehata et al, 1999).   

Diamond (1981) was one of the first to study the effects of fly ash on the alkali 

contents of pore solution.  He studied the influence of two Danish fly ashes on alkali 

content of cement paste pore solutions.  The paste samples had up to 30% replacement 

and were allowed to hydrate for up to six months.  Both fly ashes were low in CaO 
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content and had moderate amount of alkalis (2.4 – 3.3% Na2Oe).  Figure 6 displays the 

pore solution concentrations at several time increments.  Notice how the curves usually 

have a maximum concentration around 10 days and after 30 days the plot sort of evens 

off.  The left figure has potassium ion concentrations and the right has sodium ion 

concentrations.  In both cases, the pore solution concentrations were drastically reduced 

with the use of both fly ashes.   

 

 

Figure 6: Pore Solution Concentrations (Diamond, 1981) 

Diamond (1981) studies concluded that both fly ashes acted in an inert manner 

with respect to alkali concentrations.  They did not contribute or remove alkalis from 

solution but because it replaced 30% of the cement, the alkalis were reduced by the 

dilution effect.  The second fly ash had a slightly higher alkali content but slightly lower 

CaO content and showed the effect of some removal of alkalis between 10 and 30 days.   
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Duchesne and Berube (1994) analyzed the pore solution chemistry of several 

cement pastes that contained a variety of SCM’s at different time periods.  Three of the 

SCM’s were fly ashes (A, B, C) with different CaO and alkali contents.  The CaO and 

alkali contents increased from A to C with C having significant higher values at 20.7 and 

8.55 respectively.   

 

 

Figure 7: Alkalis in Pore Solution (Duchesne, Berube, 1994) 

Figure 7 illustrates the effectiveness of certain fly ashes in reducing alkalis in the 

pore solution.  Fly ash A and B would be classified as Class F fly ashes with moderate 

amounts of alkalis (≈3%).  Fly ash C is a Class C fly ash with 8% alkali content and 

performed worse than the control.  This shows how not all fly ashes even at high dosages 

can be effective at reducing alkalis.  The Class F ashes performed better than the control 

and even better at replacement levels.   
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Hooton et al (2009) yielded similar results while they tested several fly ashes of 

different chemistry compositions.  Figure 8 shows similar and more extensive results than 

Figure 7.  At higher fly ash replacement levels, the OH- concentration in the pore 

solution decreases.  The figure illustrates that this is true for both Class C and F ashes 

with low alkali contents.  Even though the left plot contains an ash with a very high CaO 

content, all levels of replacement perform better than the control.  Also, notice how the 

fly ash curves on the right plot are generally lower than the curves on the left plot.  This 

shows that lower CaO fly ashes are more efficient at reducing alkalis in pore solution.   

 

 

Figure 8: Effect of % Fly ash on Pore Solution (Hooton et al, 2009) 

Figure 9 shows the effects of 25% fly ash with different chemistry compositions.  

Four fly ashes were used with low to high CaO contents and similar alkali contents.  The 

results clearly show the efficiency of lower CaO fly ashes; as CaO decreases, so does the 
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OH- concentration in the pore solution.  As in Figure 8, even the high CaO fly ash was 

more efficient than the control.   

 

 

Figure 9: Effect of 25% Fly Ash on Pore Solution (Hooton et al, 2009) 

2.4 TESTING OF EXPANSION DUE TO ALKALI – SILICA REACTION 

Many different expansion tests have been used to evaluate the efficiency of the 

addition of fly ash in suppressing ASR induced expansion.  The two most common 

ASTM C 1260 & 1293 that test mortar bars and concrete prisms respectively.  Other 

methods, such as outdoor concrete block exposure sites have also been implemented to 

provide more realistic results.  The three methods have their advantages and 

disadvantages, and will be discussed in the following section.   
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2.4.1 ASTM C 1260, 1567 

ASTM C 1260 is the accelerated ASR mortar bar test that measure expansion up 

16 days while placed in an 80°C 1M NaOH solution.  The procedure and other matters 

are discussed in detail in Section 3.2.6.  This test is for mortar only, so if a coarse 

aggregate must be tested, then it must be crushed and sieved to the appropriate size 

distribution.  This can create different results from would be in realistic field conditions.  

Expansion measurements less than 0.10% at 16 days is considered indicative of 

innocuous behavior and expansions greater than 0.20% is indicative of potentially 

deleterious expansion.  Expansion between 0.10% and 0.20% indicate that the aggregate 

ay exhibit either innocuous or deleterious performance in the field (ASTM C 1260, 

2007).  Similarly ASTM C 1567 states combinations of cements and SCM’s that provide 

expansion less than 0.1% at 16 days are acceptable and anything greater indicative of 

potential deleterious expansion.   

2.4.2 ASTM C 1293 

In this test, concrete prisms are cast with square cross sections of 3.00 ± 0.03 in 

and are 11.25 in. long. Stainless steel gauge studs are cast in both ends of each prism to 

give an effective gauge length of 10.00 ± 0.10 in.  An ASTM C150/C150M Type I 

cement with a 0.9 ± 0.1% Na2Oeq is specified for this test method. A sodium hydroxide 

solution is added to the mixing water to raise the alkali content to 1.25 Na2Oeq. Prisms 

are demolded after 23.5 ± 0.5 hours and are measured for an initial reading. Prisms are 

then stored at 38.0°C ± 2.0°C for 1 year for concrete containing no SCMs. At the 

University of Texas at Austin measurements are usually taken up to two years regardless 

if SCMs are used or not.  Prior to any length change measurements, prisms are brought to 

23°C ± 2.0°C for 16 ± 4 hours. Length change measurements are performed at 1, 4, 8, 

and at 3, 6, 9, and 12 months.  The optional additional readings are taken at 18 and 24 
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months for mixtures containing SCMs. An expansion of 0.04% at one year is considered 

potentially deleterious and the same for two year measurements when involving SCMs 

(ASTM C 1293, 2008).   

ASTM C 1293 is considered to be more reliable than ASTM C 1260 because 

1293 uses an actual concrete mix, it uses larger specimens, and is not immersed into a 

harsh alkali environment.   

2.4.3 Outdoor Exposure Blocks 

At the University of Texas at Austin, there is an outdoor exposure site with 

concrete block specimens created to provide realistic ASR expansion results to real world 

cases.  The blocks measure 28 x 15 x 15 in nominally, are mixed with the same ASTM C 

1293 proportions, and are wet cured for 7 days prior to outdoor exposure.  Measurements 

are taken with two different length digital comparators at the top and all sides of the 

concrete block.  There is no formal failure expansion measurement but cracking is 

noticed at 0.04% (Ideker et al, 2012).  

This test method is thought be better than both ASTM C 1260 and 1293 because 

neither of the other two methods account for effects of outdoor exposure.  Outdoor 

exposure provides variations in temperature, moisture availability and loading.  (Ideker et 

al, 2012) stated that the ideal test method does not exist.  ASTM C 1260 is an aggressive 

test that can fail specimens while they would not fail in ASTM C 1293.  Also, it has been 

noticed that the opposite can occur; specimens can pass 1260 but show deleterious 

expansion in the field.  ASTM C 1293 is more reliable but if SCMs are used then the test 

is extended to two years while 1260 is only a 16 day test.  ASTM C 1293 correlates better 

to field conditions but two years is a long period of time to access ASR.  The same can be 
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said for the outdoor exposure blocks, where expansions may not be observed for several 

years, and significant resources and space are required for a site. 
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Chapter 3: Materials and Testing Methods 

This chapter will discuss the materials and testing methods used throughout the 

duration of the project.  The majority of the materials used were already in possession by 

the University of Texas at Austin and some had to be procured from other locations.  The 

testing methods were mostly performed at the CMRG laboratory, but some testing was 

performed at the TxDOT materials laboratory.   

3.1 MATERIALS 

The fly ashes selected covered a wide range of chemical and mineralogical 

compositions.  Also, many of the fly ashes selected have been used before in different 

projects at the University of Texas at Austin, allowing for a comparison between the 

short-term testing performed under this project and the long-term testing performed under 

previous projects.  Because this project was sponsored by the TxDOT, most of the fly 

ashes are from Texas sources.  Eleven of the original fourteen fly ashes are from Texas 

while three are from outside but were brought in to extend the ranges of chemical 

properties.  In addition to these fourteen, TxDOT provided the research team with four 

more fly ashes during the project.   

Table 4 has the original fourteen fly ashes that were described in the proposal.  

This table also lists which experiments had been previously conducted on the fly ashes.  

The chemical compositions of these fly ashes are also located on the table but may differ 

from the values used for calculations because these values may be from older or different 

samples.  Because four fly additional fly ashes were added to the project, it was decided 

to have the order of the fly ash identification numbers increase with increasing calcium 

oxide content; as such, the proposal ID and this thesis ID vary, as shown in Table 6.  

Please note that this thesis will have the number system located on the left column of this 
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table.  Table 5 shows the two cements used during this project and because this thesis 

focuses mainly on ASR, only cement 1 was used because of its high alkali content.   
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Table 4: Original Proposal Fly Ashes 

Fly Ash Chemical Composition Physical 
Property ASR  External Sulfate 

 Attack Test Methods DEF AEA* 
demand 

ID CaO Al2O3 SiO2 Fe2O3 MgO Na2Oeq LOI ASTM  
1567 

ASTM 
1293 

Exposure 
Block 

ASTM  
1012 

Exposure site 
Kelham/ 

Fu 

 

UT W. 
Texas 

FA-1 1.1 30.6 55.8 5.1 0.7 1.78 1.99 X X X X    X 
FA-2 9.9 20.4 56.2 6.8 2.6 1.2 0.19        X 
FA-3 12.8 23.7 52.1 4.6 2.0 0.84 0.95 X X X X X X X X 
FA-4 14.4 18.9 51.0 7.9 2.91 1.19 0.46    X    X 
FA-5 14.6 22.8 47.2 4.6 3.5 2.2 0.51  X X X    X 

  FA-6 15.8 21.2 40.7 4.5 3.5 8.46 0.53 X X X      
FA-7 18.9 19 32.7 5.8 4.3 8.7 1.2 X X X      
FA-8 21.6 19.3 41.3 6.5 4.4 1.94 0.16    X     
FA-9 23.5 18.8 38.6 6.7 4.8 2.1 0.28    X X X   

FA-10 25.3 21.4 36.5 5.2 4.5 1.78 0.15  X X      
FA-11 25.4 21.2 34.6 5.7 4.6 2.1 0.55 X X X X    X 
FA-12 25.8 20.6 37.2 6.1 4.3 1.93 0.13  X X X     
FA-13 27.5 18.1 33.1 6.6 5.5 2.1 0.4 X X X X   X X 
FA-14 28.9 17.8 30.7 5.9 6.6 2.35 0.44  X X X  X   

 

Table 5: Cement ID 

Cement ID SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 Mn2O3 P2O5 Cl ZnO Cr2O3 LOI CO2 C3S C2S C3A C4AF 

C-1 18.95 5.35 2.57 63.87 1.14 3.27 0.113 0.9 0.23 0.049 0.34 0.007 0.0108 0.0122 2.99 1.806 58 11 10 8 

C-2 20.04 4.49 3.63 63.8 0.72 3.02 0.037 0.62 0.21 0.096 0.305 0.0063 0.007 0.0149 2.75 1.759 54 16 6 11 
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Table 6: Thesis ID and Proposal ID 

Thesis ID Proposal ID 
FA-1 1 
FA-2   
FA-3 2 
FA-4 3 
FA-5 7 
FA-6 4 
FA-7 5 
FA-8 6 
FA-9 8 

FA-10 10 
FA-11 9 
FA-12   
FA-13 13 
FA-14 12 
FA-15 11 
FA-16   
FA-17   
FA-18 14 

3.2 TESTING METHODS 

This chapter will contain the different experiments conducted on the fly ashes as 

well as their procedures.  Many of the procedures were followed in accordance to ASTM 

and others followed procedures from previous work done by researchers.   

3.2.1 X-Ray Fluorescence 

All the eighteen fly ashes and the two cements were sent to the TxDOT materials 

laboratory to be analyzed using their XRF instrument, as the CMRG laboratory does not 

have an XRF instrument.   

 The use of XRF helped to determine the chemical compositions of the samples.  

XRF analysis involved an x-ray beam to be aimed at the sample while some of these 
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beams cause more to form in the sample and escape.  An x-ray detector collects the x-

rays and measures the different amount of energy sent off.  The energies are a function of 

the atomic number of the atom so we then can determine the element it was from (Wirth, 

Barth 2012).   

The samples were analyzed on a 1kW Wavelength Dispersive S4 Explorer 

manufactured by Bruker-AXS.  The samples were prepared for XRF analysis using fused 

bead method.  This method consisted of heating a mixture of the sample with a flux and 

heating to 800°C to 1200°C.  The flux then melts and sample dissolves creating a 

homogeneous glass.  Figure 10 shows the apparatus used for the XRF sample 

preparation.  This image was taken after the heating process and during the pouring 

process when the homogeneous sample is allowed to cool to become a glass.    

 

 

Figure 10: XRF Sample Preparation 

The XRF procedure and analysis was conducted in accordance to ASTM C 114, 

The Chemical Analysis of Hydraulic Cement.   
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3.2.2 Particle Size Distribution 

This section discusses the two methods used to analyze the particle size 

distribution of the samples.  The particle size distributions of the samples were analyzed 

with the wet No. 325 sieve technique and laser diffraction technique.  

3.2.2.1 ASTM C 430 Residue Retained on No. 325 Sieve 

This method measures the percentage of fly ash coarser than the No. 325 sieve as 

it is generally believed that fly ash particles larger than this will not react in concrete.  

The standard calls for 1.000 g sample to placed on a clean and dry No. 325 sieve.  Then, 

the sample is wet with a gentle stream of water for one minute until it is saturated.  Next, 

the sample is rinsed with 50 ml of deionized water, dried in an oven, allowed to cool, and 

then weighed.  Equation 5 explains how the fineness of the sample is determined.  F is 

fineness of the sample expressed as percentage passing the No. 325 sieve, Rc is the 

corrected residue, Rs is the residue retained on sieve, and C is a correction factor for the 

sieve used (ASTM C 430). 

 
Equation 5 

 

3.2.2.2 Laser Diffraction  

Laser diffraction involves a light from a laser passed into a group of particles 

suspended in air.  The particles scatter the light while different size particles scatter the 

light at different angles.  The instrument has several photo detectors at different angles to 

measure the light.  The light patterns can then be converted to particle size using 

scattering theory (Malvern 2012).  
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The laser diffraction machine used for this project was a Spraytec by Malvern 

Instruments, Inc. with Spraytec software.  The material refractive index was 2.5 with an 

imaginary index of 0.1 and the instrument used isopropyl alcohol as the dispersive agent.  

The instrument calculated the diameter of 10%, 50%, and 90% numerically and produced 

a particle size distribution plot.  

3.2.3 Total Alkalis (Acid-Soluble) 

The total alkalis of our samples were determined using the XRF method.  The 

total alkali percentage was also measured in accordance to ASTM C 114/311.  This 

standard has a section that covers the determination of sodium oxide and potassium oxide 

of our samples.   

The procedure requires that 1.000 g of sample be placed in a 150-mL beaker and 

dispersed with 20 mL of water while swirling.  Then 5.0 mL of concentrated HCl is 

added and then diluted to 50 mL.  Next, the sample is digested and stirred on a hot plate 

for 15 minutes and filter into a 100-mL volumetric flask.  The sample is then allowed to 

cool and then diluted to the 100-mL line with water (ASTM C114).  The concentrations 

of sodium oxide and potassium oxide are then determined using the flame photometry 

method discussed in section 3.2.8. 

3.2.4 Available Alkalis 

The available alkali experiment followed the procedure from ASTM C 311.  This 

experiment was conducted on all eighteen fly ashes as well as C-1.   

ASTM C 311 states to weigh 5.0 g of the sample along with 2.0 g of hydrated 

lime and mix with 10 mL of water in a 25-mL vial.  The sample is then shaken, sealed 

and stored in an oven at 35°C for 28 days.  Then, the vial is opened and the sample is 

ground with a small amount of water.  The total volume is raised to 200 mL and then let 
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to stand at room temperature for one hour.  The sample is then filtered into a 500-mL 

volumetric flask and neutralized with dilute HCl while using phenolphthalein as the pH 

indicator.  The remaining volume is then diluted with water and the alkali concentrations 

are then measured using the flame photometer. 

3.2.5 Pore Solution Extraction 

This experiment involves the extraction of pore solution from a cement paste.  

The procedure followed is one conducted by students and researchers at the University of 

Texas at Austin.  In this method, the steel apparatus is placed in a compression machine 

to extract pore solution from concrete, mortar, and paste.  Figure 11 shows a diagram 

with two views of the pore press apparatus.  

 

 

Figure 11: Pore Press Apparatus 

The following procedure was used for this experiment for the use of cement paste.  

The procedure varies slightly for mortar and concrete.  First, the sample is placed in a 

heavy duty plastic bag and crushed with a hammer roughly to fragments of less than 
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0.375 inches.  Approximately 250 g of material is placed on a Teflon disc in a 200-mL 

beaker and the mass is recorded.  Then, the steel apparatus must be assembled as in 

Figure 11 and placed inside of the compression machine.  A plastic vial is place inside of 

the base part to collect the pore solution.  The sample is placed in 3 layers and compacted 

inside of part A.  The Teflon disc is place above the sample and the piston above that.  

Next, load is applied at a rate of about 35,000 lbs/min to a maximum of 500,000 lbs 

depending on the sample size.  These sample sizes were small that only a maximum load 

of roughly 250,000 lbs was used because the piston would become almost flush with part 

A.  The sample was then removed, along with the Teflon disc and weighed out.  Then, 

the sample was placed in an oven for 24 hours and weighed again.  The plastic vial within 

the base contains pore solution from the sample, and its alkali concentration is measured 

using the flame photometer.   

3.2.6 ASTM C 1260, 1567 

ASTM C 1260 and 1567 permit the detection of the potential alkali-silica 

reactivity of aggregate and combinations of cementitious materials.  The goal using these 

experiments was to not test the reactivity of an aggregate but the usefulness of fly ash 

additions.  Because of this, one of our most reactive fine aggregate was used for all the 

mixes. 

The first step of this procedure is to batch the materials and place at room 

temperature for 24 hours prior to mixing.  The standard calls for batching material for 

three prisms but four prisms were batched because of the possibility of one breaking 

during demolding.  586.7 g of cementitious material and 1320 g of graded fine aggregate 

were used with a w/cm of 0.47.  Next, the materials are mixed in accordance to ASTM C 

305 for mortar mixes and place in assembled prism molds.  The prisms are demolded 



 36 

after 24 hours, initial comparator readings are taken, and placed back in containers filled 

with water in the 80°C oven.  The following day, length measurements are taken again 

and then placed in an 80°C 1 M NaOH solution.  The standard then calls for at least three 

intermediate measurements before 14 days.   Measurements were taken at 3, 7, 10, 14, 21 

and 28 days.  Expansion beyond 0.1% at 14 days is considered a failure (ASTM C 1260).  

3.2.7 Leaching Test 

This leaching experiment was conducted to determine the amount of available 

alkalis in a cementitious binder.  Similar experiments have been performed by many 

researchers but the procedure developed by Dr. M. Thomas of the University of New 

Brunswick was used.   

This test involved the use of the fourteen original fly ashes proposed and C-1 

yielding 15 samples.  A 25% cement replacement was used for all mixes except the 

control at a w/cm .  Paste samples were created using a high shear mixer at 40 RPM with 

a mix sequence of 1 min mixing and a 1 min rest period repeated twice for three total 

minutes mixing.  Each sample was placed in a polyethylene cylinder.  The samples were 

rotated for the first 24 hours to prevent segregation. Next, the samples were placed in an 

enclosed bucket over water in a 100°F oven for 90 days.  The samples were removed and 

crushed.  Large samples were saved for pore solution and others to determine evaporable 

and non-evaporable water contents.  The remainder was ground and sieved between a 

No.16 and No. 80 sieve (.180mm-1.18mm).   

In some cases, before removing the samples from the oven, simulated pore 

solutions were created using NaOH and KOH.  The pore solutions were created to have 

the same Na2O to K2O ratios as the cementing materials used in each sample.  This was 

done at OH- concentrations of 0.0, 0.1, 0.2, 0.3, 0.6 mol/L.  1.5 g of the sieved paste 
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sample was place into 15 mL of its corresponding simulated pore solution in a 20-mL 

vial, sealed with silicone and weighed.  Fifteen paste samples were used at five different 

concentrations yielding a total of 75 samples but it was done twice in this project to yield 

150 samples.  The samples were allowed to rest in solution for 90 days and then weighed 

again.  This was done to check for any evaporation that might factor into concentration 

calculations.  The samples were vacuumed filtered and alkali concentrations were 

produced using the flame photometer.  It was thus possible to know the difference in 

alkali concentrations before and after the paste was place in the simulated pore solutions 

to determine how much was bound or released by the paste.   

3.2.8 Flame Photometer 

The flame photometer test was not an experiment on its own but rather assisted 

with other experiments such as total alkali, available alkali, pore solution extraction, and 

leaching.  The flame photometer apparatus allowed us to determine the concentrations of 

sodium and potassium ions in solution.   

The flame photometer used for our experiments was the Cole Parmer Dual-

Channel Flame Photometer, Figure 12, which allowed us to obtain Na+ and K+ results 

simultaneously.  Figure 13 describes the process involved during flame photometry.  A 

solution is aspirated into a low temperature flame where the water evaporates leaving 

solid residue of evaporation.  The solid breaks down to form atomic species where the 

atoms are excited by the flame and its electrons move to a higher energy state.  The 

electrons eventually return to ground state and the loss of energy creates a discrete 

wavelength of light.  The amount of light is proportional to the number of atoms in the 

flame and the concentration in the original solution.  This light is measured by a photo 

detector and the concentrations are displayed in a digital readout (Parmer 2008). 



 38 

 

Figure 12: Dual Flame Photometer (Cole Parmer) 

 

Figure 13: The Process Involved in Flame Photometry (Sherwood Scientific) 
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Chapter 4: Results and Analysis 

4.1 RAW MATERIALS 

This section describes the results and analysis of the experiments conducted on 

the raw materials.  These tests only involved the different fly ashes and cements and did 

not involve their hydration into paste, mortar, or concrete.   

4.1.1 Particle Size Distribution 

Fineness of fly ash is thought to be one important characteristic that determines its 

efficiency in preventing ASR.  Finer pozzolans are more efficient in reducing ASR 

expansion because fineness affects the pozzolanic activity.  It has been shown that the use 

of ultra fine fly ash (UFFA), even with a CaO of 11.8% is very effective in terms of ASR 

(Malver, Lenke, 2006).  Particle size distribution was evaluated using the wet No. 325 

sieve method and the laser diffraction methods.  

4.1.1.1 Wet No. 325 Sieve 

This test was conducted with accordance to ASTM C 430 Residue Retained on 

No. 325 Sieve.  ASTM C 618 requires all fly ashes to have a maximum of 34% retained 

when wet-sieved on a No. 325 sieve.  Figure 14 illustrates the results from this testing.  

The entire group of fly ashes was well above 34% retained or 66% passing mark.  The fly 

ashes were arranged throughout the x-axis from low to high CaO contents.  A general 

trend is noticeable, as CaO content increases so does the percent passing the #325 sieve, 

except for FA-5 and FA-8.  These two fly ashes are distinct from the group because of 

their extremely high alkali content (Na2Oe>8%).   
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Figure 14: Percent Passing No. 325 Sieve 

One can notice that the higher CaO fly ashes are finer in size and might conclude 

that they would be more effective for reducing ASR expansion.  This is not the case for 

several reasons.  The lower CaO fly ashes are already more pozzolanic because of their 

chemistry,  not their particle size.  When interpreting the results from particle size and 

relating them to ASR, only fly ashes with similar chemical compositions and different 

particle sizes should be compared.  For example, when comparing two fly ashes with 

similar CaO and Na2Oe contents and different particle sizes, the one with finer particles 

would be expecting to perform better.   

4.1.1.2 Laser Diffraction 

Figure 15 shows the particle size distribution for all 18 fly ashes.  The curves 

show a relatively even distribution of all sizes without any gaps.  Figure 15 is divided 

into two groups, between Figure 16 and Figure 17, because of the large number of 
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samples.  In order to more accurately understand the results the figures were divided by 

CaO content. 

 

 

Figure 15: Fly Ash Particle Size Distribution 
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particle sizes than low calcium fly ashes.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

Pe
rc

en
t P

as
se

d,
 1

00
%

Particle Size, μm



 42 

 

Figure 16: Particle Size Distribution (CaO<20%) 

 

Figure 17: Particle Size Distribution (CaO>20%) 
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Figure 18 shows the D50 values (size below which 50 percent of the particles 

passed) for each of the fly ashes.  In general, the higher CaO fly ashes appear to be finer 

than lower CaO fly ashes.  The average D50 values for the Class C fly ash and Class F fly 

ash were, 11.5 µm  and 15.5µm, respectively.  

 

 

Figure 18: Average Particle Diameter by Mass 
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of 25.5 to 24.7 and higher Na2Oe of 1.4 to 1.3.  Results from two-year concrete prism 

testing show that F-15 expanded 0.009%, whereas F-13 expanded by 0.033%, 

approaching the 0.04 percent threshold for ASTM C 1293.  It is quite possible that the 

increased fineness of F-15 was responsible for its superior performance with regard to 

suppressing ASR.  

4.1.2 X-Ray Fluorescence 

Table 7 and Table 8 show the XRF results for all fly ashes and cements, based on 

testing performed by TxDOT.  The fly ashes were labeled and organized according to 

their CaO percentage.  As one can see, the fly ashes are organized in an ascending manor 

with respect to the CaO percentage.  Figure 19 shows the large ranges of CaO contents of 

the fly ashes chosen for this research along with the Na2Oe percentages.  The CaO 

contents range from 1 to almost 30%; while most of the Na2Oe percentages are similar, 

there are two much higher at around 8%.   
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Figure 19: CaO and Na2Oe Percentages 
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The Canadian Standards Association (CSA) classifies fly ashes into three categories 

solely dependent on CaO content.  Type F has CaO < 8%, Type CI has CaO 8-20%, and 
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Table 7: Fly Ash XRF Results 

 

 

Table 8: Cement XRF 

 

Fly Ash

ID SiO2 Al2O3 Fe2O3
Sum of 
Oxides CaO MgO SO3 Na2O K20 Na2Oe LOI

FA-1 53.8 29.5 4.6 87.9 1.1 0.7 0.1 0.4 2.2 1.9 1.8
FA-2 51.4 20.7 7.1 79.2 10.2 3.0 0.3 0.4 1.3 1.3
FA-3 55.3 17.8 7.6 80.7 10.6 2.3 0.4 0.3 1.1 1.0 0.2
FA-4 51.6 22.8 3.8 78.2 11.9 2.0 0.5 0.2 0.8 0.7 1.1
FA-5 42.9 21.6 4.3 68.8 13.6 2.5 0.9 8.1 0.4 8.4 0.4
FA-6 49.9 18.1 7.8 75.8 14.5 2.8 0.7 0.3 0.9 0.9 0.4
FA-7 45.7 21.0 5.1 71.9 15.3 3.6 0.5 0.8 0.8 1.3 0.5
FA-8 34.9 19.2 5.5 59.6 17.2 3.5 2.8 8.4 0.4 8.6 0.7
FA-9 37.4 18.9 6.5 62.9 21.0 4.3 1.1 1.2 0.4 1.4 0.1
FA-10 33.9 19.3 6.4 59.5 22.9 4.6 0.8 1.2 0.3 1.4 0.2
FA-11 34.4 18.4 6.6 59.4 23.1 4.6 1.3 1.2 0.4 1.4 0.3
FA-12 33.5 19.4 6.0 58.9 24.3 5.4 1.1 1.2 0.3 1.4
FA-13 31.8 18.6 6.4 56.8 24.7 4.4 2.4 1.1 0.3 1.3 0.3
FA-14 32.5 19.3 6.0 57.7 25.4 4.4 1.2 1.1 0.2 1.2 0.5
FA-15 30.8 19.5 5.6 56.0 25.5 4.5 1.4 1.2 0.3 1.4 0.3
FA-16 32.0 17.2 5.8 55.0 25.8 6.1 1.9 1.3 0.3 1.4
FA-17 30.9 17.3 5.8 53.9 26.6 7.8 2.3 1.4 0.2 1.5
FA-18 27.1 17.1 5.8 50.0 29.2 6.2 3.5 1.1 0.2 1.2 0.6

Chemical Composition

Cement ID C-1 C-2

SiO2 18.95 20.04

Al2O3 5.35 4.49

Fe2O3 2.57 3.63

CaO 63.87 63.8
MgO 1.14 0.72
SO3 3.27 3.02

Na2O 0.113 0.037

K2O 0.9 0.62

TiO2 0.23 0.21

Mn2O3 0.049 0.096

P2O5 0.34 0.305

Cl 0.007 0.0063
ZnO 0.0108 0.007

Cr2O3 0.0122 0.0149

LOI 2.99 2.75
CO2 1.806 1.759

C3S 58 54

C2S 11 16

C3A 10 6
C4AF 8 11
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Figure 20 shows the sum of oxides percentage on the left axis and the CaO 

percentage on the right axis.  According to ASTM, there were a total of eight Class C fly 

ashes and 10 Class F fly ashes.  According to CSA, there were FA 1-4 and FA 6-7 are  

Class F fly ashes and FA-5 and FA 8-18 are Class C fly ashes.  According to CSA, there 

were a total of one Type F, seven Type CI, and 10 Type CH fly ashes. 

 

Figure 20: Sum of Oxides, CaO Percentages 
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have a lower C/S ratio and bind alkalis within thus removing them from availability for 

reaction.   

4.1.3 Total Alkalis (Acid-Soluble) 

This section presents the results and analysis of the Total Alkali test method from 

ASTM C 311 and ASTM C 114.  The procedure is described in detail in Section 3.2.3.  

The standard states that this test method does not determine total alkalis of materials with 

large amount of acid-insoluble materials.  In other words, this test method will only 

determine the acid-soluble alkalis in fly ash.   

This procedure was implemented on 14 of the fly ashes.  Figure 22, Figure 23, 

and Figure 25 display the results of the acid-soluble experiment.  Figure 21 displays the 

results of the 14 fly ashes on a column chart with the Na2Oe percentage by mass on the y-

axis.  Because the fly ashes are numbered from low to high calcium, from this figure it is 

already noticeable that the lower calcium fly ashes had considerably less acid-soluble 

alkalis.  FA-5 and FA-8 are the high alkali fly ashes and as one can see they had more 

acid-soluble alkalis than others of similar calcium content.  FA18 had the highest amount 

of acid-soluble alkalis, even higher than FA-5 and FA-8.  In fact the majority of Class C 

fly ashes had higher amounts of acid-soluble alkalis than the fly ashes with high alkali 

contents.   
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Figure 21: Acid-Soluble Results 

Figure 22 has the same acid-soluble alkali results but plotted as CaO content 

increases.  There is a general trend showing that as CaO content increases in the fly ash 

so does the amount of acid-soluble alkalis.  The data points seem to be separated into 

groups and it is distinct which the Class C and Class F fly ashes are.  The lower group of 

data points are Class F fly ashes and the higher group are the Class C fly ashes.  There is 

a group of points in the middle of the chart, two of them are the high alkali fly ashes and 

the other is FA-7.  FA-7 is Class F fly ash but has a rather high calcium content of 15.3%. 
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Figure 22: Acid-Soluble Alkalis (CaO) 

Figure 23 displays the acid-soluble alkalis as a percentage of the amount of total 

amount of alkalis present in the fly ash.  This again is plotted as CaO content increases.  

The trend line again fits the set data well and the r-squared value is higher than before at 

0.763.  What is noticeable here is that the two high alkali fly ashes only had a very small 

percentage of their alkalis acid-soluble.  The only fly ash with a lower percentage was 

FA-1, the fly ash with the by far the lowest calcium content.  From this figure, the two 

classes of fly ashes are again separated into two groups.  The two groups are separated by 

the 60% line off of the y-axis.  All of the Class C fly ashes have more than 60% of their 

alkalis acid-soluble and all the Class F fly ashes have less than 60%.  The only exception 

was FA-7.   
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Figure 23: Acid-Soluble/Total Alkalis (CaO) 

 

Figure 24: Acid-Soluble Alkalis (Na2Oe) 
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Figure 24 shows the acid-soluble alkalis plotted with the total Na2Oe on the x-

axis.  One would think that the amount of acid-soluble alkalis would relate to the amount 

of total alkalis.  In fact, it seems that the CaO content of the fly ash has more effect on the 

amount of acid-soluble alkalis.  Appendix C has more figures relating acid-soluble alkalis 

to the SiO2 content and other parameters.  The SiO2 content of the fly ash appears to play 

a big role in acid-soluble alkalis, with the trend line having a r-squared value of 0.90.  

Figure 24 shows that there is a trend relating total alkalis to acid-soluble alkalis but the 

two high alkali fly ashes do not correspond greatly with the rest of the group.  Also, a 

trend line was put on this set of data points but even with the exclusion of FA-5 and FA-8 

the r-squared value was low.   

Figure 25 plots the set of data against a compositional parameter that Professor M. 

Thomas of the University of New Brunswick has published on several of his papers.  The 

x-axis is based off the chemical composition of the fly ashes [(Na2Oe)0.33xCaO]/SiO2
2 is 

what Dr. Thomas used to relate the chemical composition of a concrete binder to ASR 

induced expansion (Thomas, 2011).  He has also concluded similar relationships with the 

OH- concentration in pore solutions.   
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Figure 25: Acid-Soluble Compositional Parameter 

[(Na2Oe)0.33xCaO]/SiO2
2 can also be used to relate the acid-soluble alkalis of fly 

ash.  Figure 25 shows as the chemical ratio increases so does the amount of acid-soluble 

alkalis.  This chemical index shows that acid-soluble alkalis are not just function of the 

amounts of Na2Oe, CaO, or SiO2 individually but a function of the three combined.  All 

three factor into the amounts of acid-soluble alkalis that fly ash have.  

4.2 ASTM C 1260, 1567 

ASTM C 1260 is the accelerated mortar bar test for reactive aggregates and 

ASTM C 1567 is the experiment for testing the effectiveness of pozzolans on preventing 

deleterious ASR expansion.  As previously mentioned, expansion above 0.10% at 14 day 

measurements are indicative of potentially deleterious expansion.  Expansions below 

0.10% are likely to produce acceptable expansions when tested in concrete.   
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Six of fly ashes were chosen to be tested under ASTM C 1567 and the expansion 

results are located in Appendix A.  These six fly ashes were tested because the project 

database did not contain ASTM C 1567 data on these six.  The same reactive aggregate 

was used for all mixes.  For the fly ashes chosen, testing was conducted at cement 

replacements of fly ash of 20, 30, and 40%.  Further testing was conducted on FA-8 

because of its failure to mitigate expansion and will be discussed later. 

 

 

Figure 26: ASTM 1260 14 Day Similar Chemical Compositions 

Figure 26 displays the 14 day expansion measurements for FA-5, 7, 8 and 9 for 

20, 30, and 40% replacement levels.  The black column is the control using C-1, the high 

alkali cement, and the black line coming across 0.1% expansion is the failure 

requirement.  These four fly ashes were chosen because FA-5 and FA-8 have high alkali 

contents and the other two have similar chemical compositions to these two.  One would 
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want to determine if the high alkali contents of the fly ashes affected the testing even 

though these mortar bars are exposed to essentially an infinity supply of alkalis from the 

1 M NaOH host solution.  By studying the results of FA-8, it appears the alkalis in the fly 

ash do play a role in the expansion.  From Figure 30 it can be seen that expansion 

increases as the CaO of the mortar binder increases.  Knowing this one would expect FA-

9 to have higher expansions than FA-8 but the alkalis within the FA-8 affected the 

expansion of the mortar bars.  In addition, FA-5 has slightly higher expansions than FA-7 

with higher CaO content.  Also, notice how all the fly ash samples performed better than 

the control using C-1.  The control had a 14 day expansion greater than 0.30%, which is 

three times the limit for deleterious expansion.  In this case, the replacement of high 

alkali cement with high alkali fly ash was an improvement and continued to improve as 

fly ash dosages increased.  The same conclusions can be reached with Figure 27, the 28 

day results.  Also, from Figure 27, one can conclude that the rate of expansion after 14 

days of FA-8 continued to increase.    
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Figure 27: ASTM C 1260 28 Day Similar Chemical Compositions 

Further testing was conducted on FA-8 because of its behavior.  Even at 40% 

replacement, the expansion percentage was still way above the limit.  Expansions close to 

0.1% at 14 days and 0.2% at 28 days for 40% were noticed.  Because of this, additional 

testing was conducted with higher replacement dosages.  Results are located on Figure 

28.  From here we can see that increased dosages had adverse affects to some level.  

Expansions increase at dosages of 45 and 50%.  The expansions at 45 and 50% are 

greater than those of 40%.  Samples of replacement levels of 40, 45, and 50% were tested 

twice because of this behavior. The expansion began to decrease once again at a 
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Figure 28: ASTM 14 Day FA-8 

Figure 29 shows the results of FA-2, 8, 17 at 14 days using different replacement 

levels.  FA-2 performed far better than FA-17, and even FA-8 performed better than FA-

17.  A replacement level of 20% percent of FA-2 was enough to keep expansions below 

0.1% and 40% showed very small expansion.  FA-17 is the fly ash with the second 

highest calcium content and showed very deleterious expansions at all replacement 

levels.  It even performed worse than the high-alkali fly ash.  The expansion with 40% 

replacement was still 0.20% at 14 days, not even slightly close to the limit.  A mixture 

would require very large replacement levels to have the possibility of having acceptable 

expansions.  FA-17 did however improve the performance over the control especially at 

40% replacement.   
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Figure 29: ASTM C 1260 14 Day Expansion - Wide Range of CaO 

Figure 30 through Figure 33 contain the entire set of 1260 14 day expansion 

measurements conducted for this thesis.  It contains readings from FA-2 to FA-17 with 

several in between and including the control.  The exact fly ashes used can be seen on the 

plots in Appendix A.   

As the acid-soluble alkalis were related to the chemical composition of the fly 

ash, the expansion results to the chemical composition of the mortar binder will now 

related.  For example, the CaO content of the binder for the 20% FA-2 mix would be 

20%xCaOFA-2+ 80%xCaOC-1.  Figure 30 shows us the CaO content of the binder 

increases so generally does ASR induced expansion.   
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Figure 30: ASTM 1260 14 Day Expansion - CaO Relationship 

Figure 31 relates expansion to the alkali content of the binder.  The set of point far 
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Figure 31: ASTM 1260 14 Day Expansion - Na2Oe Relationship 

 

Figure 32: ASTM 1260 14 Day Expansion - SiO2 Relationship 
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Figure 32 illustrates the relationship between expansion and SiO2 content of the 

binder.  What is interesting about this set of data is that it follows the curve of a second 

order polynomial.  It appears that as the SiO2 content of the binder increase the expansion 

decreases linearly to about roughly 28% SiO2.  After this point, there is hardly any 

expansion at all.  

In Figure 33, the expansion data is related to the same chemical index used 

before.  One can see that there is a trend, but it is not as strong as with the CaO and the 

SiO2.  Despite this we can still notice that all three chemical parameters of the binder are 

affecting the expansion during the ASTM C 1260 experiment.   

 

 

Figure 33: ASTM 1260 14 Day Expansion - Chemical Index 
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The same correlations from Figure 30 through Figure 33 were performed for 28 

day expansion result and the plot are located in Appendix A.  They again show strong 

trends relating the chemical parameters of the binder to the expansion results.   

4.3 PASTE 

This following section discusses the results and analysis for the experiments 

involving paste samples.  The pore solution extraction, available alkalis, and leaching 

experiments involved testing on paste samples with fly ash.   

4.3.1 Pore Solution Extraction 

The pore solution chemistry study was conducted on 15 mixes that were also used 

for the leaching experiment in the following section.  The procedure for this experiment 

is described in section 3.2.5.  15 paste samples were created with 25% fly ashes 

replacement and a w/cm = 0.5.  These sealed samples were allowed to cure over water at 

100°F for 90 days.   

Figure 34 displays the sum of the alkali concentrations in the pore solution after 

90 days of curing.  Hydroxide concentrations were not tested because of the small 

amount of pore solution extracted.  Paste samples were only large enough to extract 

enough solution for alkali readings in the flame photometer.  [Na++K+] should be very 

close to [OH-] except if there are large amounts of other anions such as sulfate.    
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Figure 34: Pore Solution Alkali Concentrations 
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binding alkalis like the Class F fly ashes.  More of their alkalis were available and went 

into solution. 

Figure 35 through Figure 40 relate the chemical composition of the paste binder 

to the alkali concentration in the pore solution.  All but three samples followed the same 

trend, the high alkali fly ashes (HA and FA) and control (C-1).  Figure 35 illustrates that 

as the CaO content of the binder increases so does the alkali concentration of the pore 

solution.  Figure 36 shows that as the SiO2 content of the binder increases the pore 

solution concentration decreases.  The trend lines fit the data very well with r-squared 

values of 0.839 and 0.958.  Figure 37 shows the relationship with the amount of alkalis in 

the binder to the alkali pore solution concentration.  There is noticeable but weak trend 

showing that as the alkali content in the binder increases so does the alkali pore solution 

concentration.  The trend is not as strong here because many of the Class F and C fly 

ashes have similar alkali contents but it is clear that lower calcium fly ashes have more 

impact on reducing alkali pore solution concentrations. 
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Figure 35: Pore Solution Concentration (CaO) 

 

Figure 36: Pore Solution Concentration (SiO2) 
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Figure 37: Pore Solution Concentration (Na2Oe) 
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Figure 38: Pore Solution Concentration  (CaO/SiO2) 

 

Figure 39: Pore Solution Concentration (Na2OexCaO/SiO2) 
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Figure 40: Pore Solution Concentration (Chemical Index) 
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Figure 41 displays the results of the leaching experiment at 0 M OH- with the 

available alkalis expressed on the y-axis.  The term available alkalis refers to the amount 

of alkalis that were released from the paste into the simulated pore solutions.  They are 

expressed as Na2Oe% of the mass of the binder of the cementing materials.  The mass of 

the cementing materials was corrected for evaporable and bound water with a correction 

for LOI.  The concentrations of the alkalis were also corrected for the small amounts of 

pore fluid contributed by the paste when soaked into the solution.   

Figure 41 illustrates that the higher calcium and higher alkali fly ashes released 

more alkalis into solution than the low calcium fly ashes.  Similar relationships can be 

noticed on the figures at different OH- concentrations in Appendix C.  The two classes of 

fly ashes appear to be separated by the 1% available Na2Oe line off of the y-axis.   

 

 

Figure 41: Leaching at 0 M OH- 
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Figure 42 through Figure 45 show how the chemical compositions of the paste 

binder factor into the amount of available alkalis when placed in distilled water.  Again 

here one notices a positive correlation as CaO increases and a negative correlation as 

SiO2 increases.  The two high alkali fly ashes and C-1 do not fit the trend that the others 

follow.  Figure 44 illustrates that the amount of alkalis present in the binder does not 

affect the amount of available alkalis as much as CaO and SiO2 do.  The trend for this set 

of data is not as strong.   

 

 

Figure 42: Leaching at 0 M OH- (CaO) 
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Figure 43: Leaching at 0 M OH- (SiO2) 

 

Figure 44: Leaching at 0 M OH- (Na2Oe) 
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Figure 45 through Figure 49 show the chemical index being linked to the 

available alkalis when the paste was place in solutions of different alkalinity.  Notice in 

Figure 45 how the majority of the data set is between 1.5% and 1.0% alkalis except for 

FA-5 and FA-8.  Now, in Figure 46 one can see this same group migrated between 

roughly 1.5% and 0.5%.  This figure is displaying the results for a simulated pore 

solution of 0.1 M OH-.  Figure 47 displays the results of concentrations at 0.2 M OH-.  

The same thing occurs as the concentration increased.  The data set moved the available 

alkali range of 1.0 to 0%.  In this figure one can see a data point in the negative region.  

This means that the paste did not release any alkalis but it instead absorbed or bound 

alkalis.   

 

 

Figure 45: Leaching at 0 M OH- (Chemical Index) 

R² = 0.672

0

0.5

1

1.5

2

2.5

3

3.5

0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140

A
va

ila
bl

e 
A

lk
al

i, 
N

a2
0e

 (%
 B

in
de

r)

(Na2Oe).33*CaO)/SiO22



 73 

 

Figure 46: Leaching at 0.1 M OH- (Chemical Index) 

 

Figure 47: Leaching at 0.2 M OH - (Chemical Index) 
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This trend discontinues in Figure 48 as the concentration is increased to 0.3 M 

OH-.  The set of data is spread out linearly between 0.5 and 2.5%.  The slope of the trend 

line is greater it also fits the data set well.  In this figure one can make the distinction 

between the two fly ashes as the upper right group are Class C  and the lower left group 

are Class F.  This figure however did not accommodate the results for the high alkali fly 

ashes as the previous figures did.   

 

 

Figure 48: Leaching at 0.3 M OH- (Chemical Index) 
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Figure 49: Leaching at 0.6 M OH- (Chemical Index) 
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Figure 50: Overall Data Set for Leaching Experiment 
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Figure 51: Available Alkalis 

Figure 51 shows the results for this experiment performed on all 18 fly ashes.  
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Figure 52: Available Alkalis (SiO2) 

Figure 52 relates the available alkalis to the SiO2 content of the fly ash.  As SiO2 

increases, the amount of available alkalis decreases.  The high alkali fly ashes and cement 

again did not fit the trend but the rest of the group had a r-squared value of 0.847.  Here 

one can also see the distinction between both classes of fly ash with Class F being cluster 

on the right and Class C being the group on the left.   
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some error but what can still be noticed here is that the higher SiO2 fly ashes had 

significantly less percentages of their alkalis available.   
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Figure 53: Available Alkalis/Total (SiO2) 
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Figure 54: Available Alkalis (Na2Oe) 
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Chapter 5: Discussion 

The experiments conducted in this project were aimed at generating data that 

would hopefully by itself, or in combination with other tests, act as a reasonable predictor 

of the efficacy of a given fly ash to suppress ASR. In this section, some of the key data 

will be compared with long-term data from previous ASR studies.   

The following three figures contain expansion results from ASTM C 1260 & 

1293, and outdoor exposure blocks.  Figure 55 has 2-year expansion data from ASTM C 

1293 concrete prisms with 35% fly ash replacement.  The x-axis has the corresponding 

results from the paste pore solution study with 25% fly ash replacement.  There had not 

been any 1293 testing performed with 25 % fly ash replacement so the data for 35% was 

used.  Despite this fact, there appears to be a linear relationship between the paste pore 

solution alkali concentration and concrete expansion.  As the pore solution increases, the 

ASR expansion percentage increases.  This figure illustrates how the pozzolanic activity 

of fly ash reduces pore solution alkalis thus reducing ASR induced expansion.  Notice the 

differences between FA-7 and FA-10.  This is the fly ash that changed from a Class F to 

Class C fly ash due to a change in the source of coal used at the power plant.  This 

difference in the chemical composition resulted in these differences on the plot.  FA-10 

had an increase 0.1 M in the pore solution and this also resulted in an increase of 

expansion by more than 0.025%.  The highest data point on the plot is FA-18.  This fly 

ash had the highest calcium content, the highest pore solution concentration, and this 

highest concrete expansion.   
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Figure 55: ASTM C 1293 35% Fly Ash Expansion with Pore Solution Study 

Figure 56 illustrates similar relationships but with ASTM 1260 results with 30% 
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Figure 56: ASTM C 1260 Expansion with Pore Solution Study 
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control mix.  Notice the large difference between 30% replacement and its control mix.  

The difference is large even with the use of a high calcium fly ash.  The PL mixes had 

Class F fly ashes used and notice how almost the entire located on the bottom left corner 

of the chart.  The only data point on the right side is the control.  These mixes have 

replacement levels between 20 and 30% while the Class C mixes had higher replacement 

levels and did not perform as well.  Lower replacement levels of Class F fly ash 

outperformed the higher replacement levels of Class C mixes.   

 

 

Figure 57: Exposure Block Data with Chemical Index 
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index relates the change in chemical composition to the change in pore solution alkali 

content.  The alkali content did not change very much but the CaO and SiO2 did and this 

result in the fly ash not being as effective in lowering pore solution alkalis.   

Table 9: Chemical Composition of FA-7 & 10 

 

 

 

Figure 58: Pore Solution Study with Chemical Composition Change of Fly Ash
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Figure 59: Comparison of ASTM C 1293 Pore Solution 
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 The chemical index will not work completely in predicting pore solution alkali 

concentration because the pore solution is dependent on many parameters other than the 

chemical composition of the binder.  Aggregates and fineness of the fly ash can also 

effect pore solution concentrations.  The chemical index can however be used to roughly 

estimate what the pore solution can be.  The equation from the trend line from the pore 

solution data using the chemical index was used on ASTM C 1293 specimens.  Figure 59 

used the equation y = 5.698x + 0.115 to estimate the pore solution concentration of 

concrete prisms with four different fly ashes with different alkali dosages.  This plot 

shows how the Class F fly ash is predicted to have a lower pore solution than the Class C 

fly ashes according to the chemical index.   
  



 88 

Chapter 6: Conclusion 

6.1 SUMMARY 

Fly ash is used very often in concrete because of its many technical benefits 

including improved ASR resistance.  Some fly ashes provide better resistance to ASR 

than others.  There are several factors, including the mineralogical, chemical, and 

physical composition of the fly ash that plays a role in the effectiveness of fly ash to 

controlling ASR.  This project aimed at the characterization of fly ash while relating 

these findings to fresh, hardened, and durability properties of concrete with respect to 

ASR. 

6.2 CONCLUSIONS 

For the materials and testing investigated during this research, the following 

conclusions are drawn: 

• From the data collected from the laser diffraction testing, it was shown that finer 

fly ashes performed better than coarser fly ashes.  Fly ashes with similar chemical 

compositions but smaller particle sizes showed lower percentage ASR expansion.  

• The acid-soluble results did not correspond with the actual total alkalis in the fly 

ash but did show other trends.  Class F fly ashes showed lower percentages of 

acid-soluble alkalis when compared to Class C fly ashes despite the fact that some 

Class F fly ashes had the same or larger percentages of alkalis present.  Also, the 

chemical index, [(Na2Oe)0.33xCaO]/SiO2
2 relates the chemical composition to the 

acid-soluble alkalis; as the chemical index increases the amount of acid-soluble 

alkalis increase as well. 

• ASTM C 1260 data showed how low CaO fly ashes performed better than fly 

ashes with high CaO and alkali contents. Also, the performances improved as fly 
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ash replacement levels increased.  This was true for all fly ashes except the high 

alkali ashes.  The chemical index also related the chemical composition of the 

mortar binder to the 14-day expansion results. 

• Pore solution studies demonstrated that Class F fly ashes removed alkalis from the 

paste pore solution.  These fly ashes had lower pore solutions concentrations than 

what a paste mix with an inert diluent used instead of fly ash.  The hydration 

products of Class F fly ashes bind alkalis preventing from reaction.  Class C fly 

ashes provided more alkalis to the system instead of binding them.  Furthermore, 

the chemical index related the chemical composition of the paste binder to pore 

solution concentrations.  

• The leaching experiment showed how available alkalis increase as the simulated 

pore solution OH- concentration increased up to a certain point.  Higher CaO fly 

ashes had more available alkalis according to this study.  The trend with chemical 

index was also followed with this data.  As the chemical index of the paste binder 

increased so did the percent of available alkalis.  The trend was followed by all 

mixes including the control except for the two high alkali fly ashes. 

• The available alkalis test illustrated that Class C fly ashes have a greater 

percentage of their alkalis available.  Also, the majority of fly ashes with 

percentages great than 1.0% available alkalis were Class C fly ashes.  This 1.0% 

appeared to be a distinction between Class C and F fly ashes. 

• When relating the pore solution data to ASTM C 1293 expansion data, it was 

shown that as pore solution alkalinity increased so did the percent expansion.  

This was also the case for the ASTM C 1260 testing.   
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• Data collected from outdoor exposure block demonstrated that its expansion can 

be related to the chemical index.  The trends created depend greatly on the source 

of reactive aggregate used.   

• The testing conducted during this project showed that pore solution alkalis and 

ASR are greatly related to chemical composition of the fly ash and the binder of 

the mix.  The CaO, SiO2, and the Na2Oe percentages of the fly ashes all 

contribute to its ASR resistance. It appears the chemical index 

[(Na2Oe)0.33xCaO]/SiO2
2 can create good quality trends with the data from several 

of the testing conducted during this project.  

6.3 RECOMMENDATIONS FOR FURTHER STUDY 

 The following work is recommended to further increase the knowledge on fly ash 

behavior in ASR resistance: 

• Use more fly ashes with high alkali content especially with low and high CaO 

content.  This would create a large data base with more variety. It would be 

interesting to see how low CaO fly ashes with high alkali contents would perform 

in ASR. 

• Create ASTM C 1293 concrete prisms with 25% replacement levels to run pore 

solution extraction with and compare leaching results. 

• Create exposure outdoor exposure blocks with 25% replacement levels to run 

pore solution extraction and compare leaching results. 

• Perform ASTM C 1260 on the entire set of fly ashes with a variety of replacement 

levels to gain better knowledge in the how performance differs with fly ash and 

dosages. 



 91 

• Create more paste samples with a variety of replacement levels to determine how 

the pore solution concentration is effected with fly ash dosage. 

• Run the leaching experiment with intermediate simulated pore solutions between 

0.20 M and 0.30 M to further understand the increase of available alkalis in this 

range.  Also, samples should be created to run at 0.40 M and 0.50 M. 

• Investigate the hydration products of the fly ash paste samples with SEM to 

determine if changes in the hydration composition is related to the fly ash 

composition.  This will investigate whether the pore solution alkalinity can be 

explained with the amount of alkalis bound by the hydration products.  
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Appendix A: ASTM C 1260 Testing Results 

 

Figure A - 1: C-1 (Control) 

 

Figure A - 2: FA-8 (1) 
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Figure A - 3: FA-8 (2) 

 

Figure A - 4: FA-5 
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Figure A - 5: FA-9 

 

Figure A - 6: FA-7 
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Figure A - 7: FA-17 

 

Figure A - 8: FA-12 
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Figure A - 9: FA-2 

 

Figure A - 10: FA-16 
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Figure A - 11: FA-11 

 

Figure A - 12: FA-6 
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Figure A - 13: FA-3 

 

Figure A - 14: ASTM C 1260 28 Day (CaO) 
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Figure A - 15: ASTM C 1260 28 Day (SiO2) 

 

Figure A - 16: ASTM C 1260 28 Day (Na2Oe) 
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Figure A - 17: ASTM C 1260 28 Day Chemical Index 

 
  

R² = 0.754

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

28
-D

ay
 E

xp
an

si
on

, 
%

[Na2Oe
0.33xCaO]/SiO2

2



 101 

Appendix B: XRF Trends 

 

Figure B - 1: CaO vs. SiO2 

 

Figure B - 2: CaO vs. Al2O3 
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Figure B - 3: CaO vs. MgO 

 

Figure B - 4: CaO vs. Fe2O3 
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Figure B - 5: CaO vs. Na2Oe 
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Appendix C: Trends for Total Alkalis, Available Alkalis, Pore Solution, 
and Leaching 

 

Figure C -  1: Acid-Soluble Alkalis (SiO2) 

 

Figure C -  2: Acid-Soluble/Total Alkalis (SiO2) 
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Figure C -  3: Acid-Soluble/Total Alkalis (Chemical Index) 

 

Figure C -  4: Acid-Soluble/Total Alkalis (Na2Oe) 
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Figure C -  5: Leaching at 0.1 M OH- 

 

Figure C -  6: Leaching at 0.2 M OH- 
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Figure C -  7: Leaching at 0.3 M OH- 

 

Figure C -  8: Leaching at 0.6 M OH- 
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