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great work and had good stories to tell about Germany.

Shoupu Wan, Charlotte Sanders, Melissa Jerkins, Ioannis Keramidas,

and Geneva White were members of the group with abbreviated tenures.

Though our time together was short, they all contributed positively to the

lab atmosphere.

As Isaac Newton once reminded us, progress comes only by building

on the work of others. With that in mind, I am grateful to previous genera-

tions of students and postdocs in the lab who designed and built equipment,

wrote code, and set up the infrastructure which helped to facilitate much of

this research. There are too many to list completely, but in particular, Jay

Hanssen, Todd Meyrath, and Florian Schreck were instrumental in setting up

the rubidium BEC apparatus that would be converted into the apparatus used

for this dissertation.

Jack Clifford, the student shop supervisor, has always been very friendly

and helpful whenever I needed to machine something. I would also like to thank

vii



our administrative staff. Olga Vera, Elena Simmons, and Marybeth Casias do a

great job of keeping the lab running smoothly, whether it’s through purchases,

travel arrangements, or tamale lunches.

None of this would have been possible without the love and support of

my parents. They are terrific people, and I am extremely thankful for their

generosity and encouragement. Friday morning tea with them has kept me

sane over the past five years and reminded me that there is more in this world

than just lasers and basements.

Finally, I would like to thank the National Science Foundation for three

years of financial support through the Graduate Research Fellowship Program.

S.T.B.

Austin, Texas

May 2011

viii



Cooling Atomic Ensembles with Maxwell’s Demon

Publication No.

Stephen Travis Bannerman, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Mark G. Raizen

This dissertation details the development and implementation of novel

experimental techniques for cooling neutral atoms. Based on a method first

proposed by Maxwell in a nineteenth century thought experiment, these tech-

niques reduce the entropy of an ensemble by allowing unidirectional trans-

mission through a barrier and thus compressing the ensemble without doing

work or increasing its temperature. Because of their general nature, these

techniques are much more broadly applicable than traditional laser and evap-

orative cooling methods, with the potential to cool the vast majority of the

periodic table and even molecules.

An implementation that cools in one dimension is demonstrated for

an ensemble of magnetically trapped rubidium atoms which are irreversibly

transferred to a gravito-optical trap. Analysis of the experimental results

confirms that phase-space is completely compressed in one dimension. The

results also indicate that the overall cooling performance is limited only by
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the dynamics of atoms in the magnetic trap and may be improved with a

more ergodic system.

Three-dimensional cooling may be accomplished with a modified tech-

nique which substitutes a radio-frequency-dressed magnetic trap for the gravito-

optical trap. Application of this technique to atomic hydrogen and progress

toward building an experimental apparatus are discussed.
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Chapter 1

Entropy and Demons

...the notion of dissipated energy could not occur to a being who

could not turn any of the energies of nature to his own account,

or to one who could trace the motion of every molecule and seize

it at the right moment. It is only to a being in the intermediate

stage, who can lay hold of some forms of energy while others elude

his grasp, that energy appears to be passing inevitably from the

available to the dissipated state.

-James Clerk Maxwell, 1878 [1]
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1.1 The Second Law of Thermodynamics

In the mid-nineteenth century, Clausius, building off the work of Carnot,

proposed the notion that, for any heat engine, there is a fundamental limit

to how much heat can be converted into work and how much must be re-

leased into a cold reservoir [2]. Clausius made his theory more explicit over

the years by defining a thermodynamic state variable whose variation, in any

quasi-static process transforming a system from state A to state B, goes as

∆S = SB − SA =

∫ B

A

δQ

T
, (1.1)

where δQ is the inexact differential of the heat Q and T is the temperature

of the system. For certain processes, termed reversible, this variation was

zero, but for all the others it was positive. He designated the state variable

S entropy. It is a straightforward exercise to show that in any cyclic process

which produces work (such as that of a heat engine),

∆S =

∮
δQ

T
≥ 0. (1.2)

This is the venerable Second Law of Thermodynamics–that entropy never

decreases–and it has been regarded by many as holding “the supreme position

among the laws of nature.” [3]

With the advent of the atomistic picture of matter and the develop-

ment of the theory of statistical mechanics in the 1870s, a more precise and

simultaneously more curious definition of entropy was derived by Boltzmann

[4]. It related the entropy of a gas to the number of possible configurations

2



A B

I

A B

II

Figure 1.1: With the hole in the barrier between A and B open, System I
can evolve to System II after enough time. However, if the hole is closed in
II, then ΩII ⊂ ΩI, the entropy SII < SI, and a macroscopic violation of the
Second Law has occurred.

that gas could be in, and it can be written succinctly:

S = kB lnΩ, (1.3)

where kB is Boltzmann’s constant and Ω is the number of microstates accessible

to the system.

In light of the fundamental postulate of statistical mechanics–that a

system in thermal equilibrium is equally likely to occupy any one of Ω mi-

crostates consistent with its macrostate [5]–it became apparent that the Sec-

ond Law could only hold statistically. Indeed, the observation of Brownian

motion of pollen grains suspended in water soon demonstrated that transi-

tory violations of the Second Law were possible [6]. However, violations on a

macroscopic scale are ruled extremely improbable.

To see this, consider the vessel shown schematically in Figure 1.1. It
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is divided into two identical chambers, A and B, by a barrier with a hole in

the center. Imagine two scenarios: System I where an ideal gas of N atoms

is evenly distributed between the two chambers, and System II where the

same gas occupies only Chamber A. It should be immediately obvious that

the number of microstates accessible to System I is twice that of System II. It

follows then, from Equation 1.3, that S1 − S2 = NkB ln 2 > 0. This could be

shown alternatively using the Sackur-Tetrode equation, which gives an explicit

expression for the entropy of a monatomic ideal gas:

S = NkB

[
ln

(
V

N

(
4πmU

3Nh2

)3/2
)

+
5

2

]
, (1.4)

where V is the volume occupied by the gas, m is the atomic mass, U is the

internal energy of the gas, and h is Planck’s constant.

If the hole in the center of the barrier is left open, then I and II are mi-

crostates of the same macrostate, and so SI = SII. Thus there is some non-zero

probability that System I will spontaneously compress entirely into Chamber

A. By simply closing the hole at this point, entropy is reduced. But a simple

calculation [7] shows that, for one mole of hydrogen atoms at room tempera-

ture in a box with 1 meter sides, it would take on the order of 106×1022 times the

age of the universe before such a compression would spontaneously occur. It

would be an understatement to say that the Second Law of Thermodynamics

is effectively safe from this type of macroscopic violation.
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1.2 Maxwell’s Demon

Contemplating the statistical nature of the Second Law, Maxwell penned

a letter to his colleague Tait in 1867. In the letter, he proposed a thought ex-

periment with a “very observant and neat-fingered being” that could lower the

entropy of a gas in a simple way [8]. Later christened ‘demons’ by William

Thomson [9], these creatures and their interpretation have been a source of

agitation and debate for over a century.

1.2.1 The Demon

Although Maxwell’s first conception of the demon was of an intelli-

gent being that could sort gas molecules according to their velocities, he sub-

sequently described a less intelligent being that lowered entropy simply by

functioning as one-way valve. Figure 1.2 illustrates this demon.

As in the scenario illustrated in Figure 1.1, a gas of atoms (or molecules)

is contained in a two-chambered vessel. Here, a hole in the barrier dividing

this box may be opened and closed with a massless gate. The demon observes

the atoms and operates the gate and allows atoms to pass from B to A but

not from A to B. No work is performed operating the door, yet the gas is

compressed to half its volume. The upshot is a reduction of entropy, evident

from Equations 1.3 and 1.4, in clear violation of the Second Law.

5



A B A B

Figure 1.2: Maxwell’s pressure demon lowers the entropy of a gas by allowing
atoms to pass unidirectionally through a gate. Though no work is done in
operating the gate, the gas occupies a smaller volume with reduced entropy
after some time has elapsed.

1.2.2 Exorcisms

Ever since the introduction of the demon, physicists have fought to

save the Second Law from it through various ‘exorcisms.’ The most common

approach has been to naturalize the demon, assume the Second Law holds,

and locate the missing entropy. In many respects, this tradition began in 1929

with Szilard’s one molecule heat engine [10], his own incarnation of Maxwell’s

demon. Szilard emphasized that, in order to operate, the demon must make

a measurement and glean information from the molecule. This measurement,

he claimed, was invariably accompanied by an entropy increase that would

compensate for the decrease in the entropy of the molecule.

Building off of Szilard’s work, Brillouin [11, 12] and Gabor [13] ana-

lyzed in detail the entropy costs associated with using light as a measurement

6



device. Later, Bennett would show that certain measurements can be made

isentropically [14]. A physical demon, however, must store the results of this

measurement in a finite memory. At some point, the memory must be erased,

and there is an unavoidable entropy cost associated with this erasure [15].

All of these exorcisms imply an intrinsic link between information and

thermodynamic entropy. This interpretation seems natural today in light of

the theory of information developed by Shannon [16] and Jaynes [17]. Even

Lewis stated in 1930 that “gain in entropy always means loss of information,

and nothing more” [18]. Yet many have contended that the arguments invoking

information theory to exorcise the demon are circular and unnecessary, merely

a reframing of the Second Law using the formalism of information theory

[19–21]. Indeed, if one assumes from the outset that the demon is governed

by the laws of thermodynamics, then there is no need to make any further

suppositions to save the Second Law.

To this day, there is considerable controversy and debate as to whether

the demon has been satisfactorily exorcised, largely due to the disparity of

proposed demons and disagreement over various assumptions fundamental to

their operation and interpretation. While it is surely a worthwhile pursuit

to resolve the controversy for a deeper understanding of thermodynamics and

information, proxies for the demon (i.e., experiments which operate in close

resemblance to the original demon but do work, dissipate energy, or fail to vi-

olate any laws) have been realized that stochastically cool particles circulating

in accelerator rings [22, 23], create Brownian ratchets [24], and cool gases of

7



neutral atoms [25]. The last example is the subject of this dissertation.

1.3 The Atomic One-Way Valve

Proposals for physical implementations of atomic one-way valves began

in 2005 with a conceptual paper by Raizen et al. [26]. A related concept for

the rectification of atomic currents was independently developed and proposed

soon after this paper was submitted for publication [27]. The proposals were

advanced and studied in a series of papers [28–31], and in 2008 the first one-

way valve was demonstrated experimentally by the Raizen Group [32]. An

alternate implementation of the valve was demonstrated shortly thereafter by

a separate research group [33]. Subsequently, the compression limit of the valve

has been analyzed and reached [34], and its application toward molecules has

been discussed [35].

1.3.1 Implementation

The asymmetric nature of the one-way valve necessitates a non-Hermitian

Hamiltonian due to the reversibility of microscopic laws. This may be accom-

plished by the irreversible dissipation of energy into an external reservoir, ide-

ally one which has negligible interaction with the system under consideration.

All implementations of the one-way valve cited herein meet this requirement

through the irreversible and spontaneous scattering of a single photon to the

environment. This photon effects a change in the atom’s internal state, result-

ing in a different potential landscape that prohibits reverse motion. A precise

8



(a) (b) (c)

ti
m
e

Figure 1.3: Maximizing entropy reduction with Maxwell’s pressure demon in
a gradient confining potential. (a) Maxwell’s original pressure demon allows
unidirectional passage through a barrier. (b) A gradient potential with a
moving demon. (c) A collapsing gradient potential with a stationary demon.

description of this process will be given in Chapters 4 and 5.

Although the one-way valve is of interest from the standpoint of Maxwell’s

demon, a promising application is for its use as a cooling technique. Toward

this end, several slight modifications can be made, with respect to Maxwell’s

original thought experiment, to maximize the entropy reduction. Using Equa-

tion 1.4, one can write the entropy reduction between two arbitrary states of

9



an ideal gas:

|∆S| = |Sf − Si| = NkB ln

[
ViU

3/2
i

VfU
3/2
f

]
, (1.5)

where the subscripts f and i refer to the final and initial states, respectively.

The entropy reduction can thus be maximized by minimizing both the final

volume Vf and the final internal energy Uf . The method by which both of

these quantities are minimized is illustrated in Figure 1.3.

With Maxwell’s original demon, the valve is located at the center of

a flat potential. The internal energy is unchanged while the volume is com-

pressed by a factor of two, resulting in |∆S| = NkB ln 2. However, by intro-

ducing a gradient potential and positioning the valve just beyond the classical

turning points of the most energetic atoms, two beneficial effects can occur:

First, by slowly translating the demon (Figure 1.3b) or collapsing the potential

(Figure 1.3c), atoms transit the valve only when they are near their classical

turning points. In fact, by extending the translation or collapse time, the ratio

Uf/Ui may be made arbitrarily small1. Second, the final volume of the gas

is now dependent only on the residual internal energy. To the extent that

Uf/Ui can be made arbitrarily small, so too can Vf/Vi. The result is a nearly

complete reduction of entropy.

1Because each atom must scatter a photon as it transits the valve, this is not strictly
true. The photon imparts a small momentum kick on the atom, resulting in a minimum
achievable residual energy. This energy is typically negligible in the experiments described
in this dissertation, but it will be cited when relevant.
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1.3.2 A Single Scattered Photon

It is worthwhile to make a few remarks on the role played by the scat-

tered photon in this implementation of Maxwell’s demon. Indeed, when com-

pared to other laser cooling techniques, the fact that only a single photon per

atom is required to accomplish significant cooling presents a huge advantage in

regard to generality and applicability. Appropriately, the technique has been

called single-photon cooling to emphasize its distinction.

The irreversibility of single-photon cooling is dependent on the non-

degeneracy of the initial and final atomic states. In this way, it is the scat-

tered photon which either carries away the liberated kinetic energy of the gas

or stores that energy in the atom’s internal structure, thereby satisfying con-

servation of energy. But what of the Second Law? A suitable analogy is the

spontaneous crystallization of a super-cooled melt [36]. The configurational

entropy of the atoms in the melt is lowered by forming a lattice structure,

necessitating the transfer of an equal amount of entropy to another reservoir.

This occurs through the disordered excitation of crystal vibrational modes by

the liberated latent heat. With single-photon cooling, the one-way valve low-

ers the configurational entropy of the gas by compressing it, and this entropy

decrease is compensated by an increase in the disorder of the radiation field.

In the context of the informational interpretation of Maxwell’s demon,

single-photon cooling can be thought of as informational cooling. Each scat-

tered photon represents a measurement of an atom’s position at a particular

time, and thus it contains information that specifies the atom’s position in
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phase-space. In principle, the scattered photons could be collected and stored,

yielding complete information on the ensemble’s energy distribution. The orig-

inal ensemble could then be reversibly reconstructed. In practice, the scattered

photons are immediately discarded. Unlike the demons considered in the tra-

dition of Szilard and Bennett [37], the information contained in the photons

need not be stored or processed. The operation of the valve is automatic; it is

as if the demon makes a measurement and immediately erases its memory.

It is also interesting to look at the efficiency of single-photon cooling’s

information use. Whereas other informational cooling techniques, such as

stochastic cooling, radiate an enormous amount of information compared to

the amount collected and used for cooling, single-photon cooling is maximally

efficient in this sense. The reduction of atomic entropy is exactly balanced by

the information entropy of the scattered photon [30].

12



Chapter 2

Cold Atomic Gases

“A physicist is just an atom’s way of looking at itself.”

-Niels Bohr

2.1 Overview

The proposition that matter is composed of indivisible particles can

be traced back to the Greek philosopher Democritus, circa 400 BCE [38].
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Nevertheless, it took more than two millennia before the scientific commu-

nity accepted the atomic hypothesis, due in no small part to the considerable

technical challenges concomitant with isolating and probing matter on such a

minute scale. In the first half of the twentieth century, physicists made great

strides in understanding the atomic structure, but few experimental tools were

available for comprehensive control over atoms in the laboratory.

With the advent of the laser in 1960 [39, 40], the field of atomic physics

was radically transformed. Physicists had been aware of the mechanical effects

of radiation on matter since the days of Kepler [41], but the laser gave exper-

imentalists unprecedented control over the radiation field. It was proposed

that this control could in turn be harnessed to dissipate energy in the exter-

nal degrees of freedom of atoms, cooling a gaseous ensemble with precisely

tuned laser radiation [42, 43]. Cooling schemes relying upon atomic doppler

shifts were quickly realized with trapped ions [44, 45], and neutral atoms soon

followed suit [46, 47].

Since this time, laser-cooled atomic gases at sub-millikelvin tempera-

tures have proven to be a rich and diverse testbed for fundamental physics as

well as for a variety of applications. Investigations into long-standing ques-

tions of thermodynamics, one of which is the focus of this dissertation, have

been made possible with cold atoms. They have enabled the study of novel

thermodynamical systems such as Bose-Einstein condensation [48, 49] and de-

generate Fermi gases [50]. Furthermore, precision measurements of electric

dipole transitions in cold atoms have provided tests of quantum electrody-
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namics to extreme levels of accuracy.

Cold atoms are also the basis for a variety of promising applications.

Interferometers exploiting the thermal de Broglie wavelength of atoms are po-

tentially the most sensitive gyroscopes today [51]. Optical frequency standards

accurate to a part in 1016 have been demonstrated by interrogating narrow elec-

tronic transitions in clouds of cold calcium and strontium [52]. Additionally,

the field of quantum information has the potential to revolutionize modern

computation and communication by exploiting the quantum mechanical na-

ture of cold atoms [53].

2.2 Entropy and Cooling

To the extent that the term ‘cooling’ refers simply to reducing the

temperature of a gas, it is a fairly uninteresting concept in atomic physics.

By reversibly expanding a trapped gas, its temperature decreases at the cost

of a decrease in density. This process is isentropic and essentially trivial.

Therefore ‘cooling’ is typically used colloquially among atomic physicists to

refer to a reduction of entropy. This encompasses processes that decrease

temperature at a constant density, increase density at a constant temperature,

or simultaneously decrease the temperature and increase the density.

A figure of merit customarily used in the context of cold atoms and

cooling experiments is phase-space density, rather than entropy. Phase-space

density is defined as the product of the atomic density and the cube of the
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System n (cm−3) T (K) ρ

Atmospheric nitrogen 1022 300 10−7

Liquid nitrogen 1025 77 10−5

Laser cooled atoms 1011 10−5 10−6

Bose-Einstein condensation 1015 10−7 1

Table 2.1: Estimates of phase-space density for various systems.

thermal de Broglie wavelength:

ρ ≡ nΛ3
dB =

N

V

(
h2

2πmkBT

)3/2

. (2.1)

It is easy to see that this quantity is closely (though inversely) related to

entropy by noting that U = 3
2
NkBT in Equation 1.4. Thus the following

statements may be taken as equivalent, at least for the purposes of this dis-

sertation:

1. The atomic ensemble has been cooled.

2. The entropy of the ensemble has decreased.

3. The phase-space density of the ensemble has increased.

To get a sense of how phase-space density scales, Table 2.1 gives approximate

values for several systems.

Evolution of the phase-space density in Hamiltonian systems is gov-

erned by Liouville’s theorem [54], which states that dρ/dt = 0. A conservative

system flows through phase-space with constant density. Even with time de-

pendent terms in the Hamiltonian, phase-space density cannot increase [55],
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although schemes relying on collisional interactions may allow local increases

[56].

The bottom line is that real cooling, or an overall increase in phase-

space density, is nontrivial and impossible without some sort of irreversible

dissipation. Historically, it has been a grand challenge to devise experimentally

viable schemes of this nature.

2.3 Interactions Between Atoms and External Fields

The development of the quantum mechanical theory of matter in the

early twentieth century, along with progress in the understanding of the in-

ternal structure of atoms, have resulted in a detailed understanding of the

interactions between atoms and external electromagnetic fields. Experimen-

talists have, for some time now, used these interactions to manipulate both

the internal states as well as the external degrees of freedom of atomic ensem-

bles. This section will detail the main interactions that are relevant to this

dissertation.

2.3.1 Resonant light

The most common tool used by experimentalists for manipulating the

internal states of atoms is resonant light. Because photons carry momentum,

a scattering force also arises from resonant absorption and emission.

The optical Bloch equations describe the interaction between a classical

monochromatic optical field and an ensemble of quantum two-level atoms. An
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ω

Figure 2.1: Monochromatic radiation field incident on an ensemble of two-level
atoms.

excellent derivation and discussion of these equations is given in References

[57–59]. Here only the main results that are relevant for the present work are

highlighted.

Consider an ensemble of two-level atoms, with ground state |1⟩ and

excited state |2⟩. When irradiated by a monochromatic field of frequency ω,

which is close to the ensemble’s resonant frequency ω12, the atoms may make

a transition to state |2⟩ by the stimulated absorption of a photon. From the

excited state, they will decay back to |1⟩ either by spontaneous or stimulated

emission of another photon. The net spontaneous scattering rate for each atom

may be written

R =
Γ

2

I/Is
1 + I/Is + (2δ/Γ)2

, (2.2)

where Γ is the natural linewidth (decay rate) of the excited state, I is the

intensity of the driving field, Is is referred to as the saturation intensity, and

δ = ω − ω12 is the detuning of the field from the atomic resonance. The
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Figure 2.2: Scattering rate as a function of detuning and saturation parameter
I/Is. As the intensity increases, the effective linewidth becomes broader, and
transitions can be driven away from resonance.

saturation intensity Is is given by

Is =
ϵ0cΓ

2~2

4|ê · µ|2
, (2.3)

where ê is the polarization vector of the electric field and µ = −er is the

microscopic polarization operator. Is is significant in that it corresponds to

the intensity at which the Rabi frequency is comparable to the decay rate of

the excited state and the excited state population is half its maximum. For

the D2 (F = 2 → F ′ = 3) transition of rubidium 87, Is = 3.58mW/cm2

for isotropic light polarization [60]. A comparable parameter has been be

derived for the 1S → 2S two-photon transition of hydrogen, and its value is

0.89W/cm2 [61].

Figure 2.2 is a plot of Equation 2.2 for a range of detunings δ and

saturation parameters I/Is. The scattering rate is a Lorentzian centered about
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the atomic resonance, with a width that increases with increasing saturation

parameter. The full width at half-maximum (FWHM) of this Lorentzian is

given by [62]

∆ωFWHM = Γ

(
1 +

I

Is

)1/2

. (2.4)

This phenomenon is known as power broadening. Experimentally, it may be

utilized to drive atomic transitions effectively using off-resonant light.

2.3.1.1 Optical Molasses

Because a photon carries with it a certain amount of momentum (p =

~k, where k is the wavevector of the light), each absorbed and scattered photon

imparts a momentum kick to the atom. For a large number of scattering

events, the momentum kicks from photons emitted spontaneously in random

directions average out to zero. The result is a net scattering force, due to the

absorbed photons, in the direction of the light propagation

Fsc = R~k, (2.5)

where R is the scattering rate of Equation 2.2.

For a light source such as a laser, the direction of this force can be

precisely controlled. Furthermore, the frequency dependence of this force can

be exploited in conjunction with the Doppler effect to form the basis of nearly

all laser cooling schemes. In its simplest form, it is known as ‘optical molasses.’

Consider a two-level atom at rest in a field comprising two counter-

propagating laser beams (Figure 2.3a). The lasers are red-detuned from the
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Figure 2.3: Optical molasses incident on (a) an atom at rest and (b) an atom
with positive velocity. The moving atom scatters more photons from the left-
propagating beam, resulting in a viscous damping force.

atomic resonance by an amount δ = ω − ω12. The detuning is said to be red

(blue) when δ is negative (positive). The net force on the atom is given by

Fnet = F+
sc + F−

sc

= ~k
Γ

2

I

Is

[
1

1 + I/Is + (2δ+/Γ)2
− 1

1 + I/Is + (2δ−/Γ)2

]
x̂, (2.6)

where the first (second) term on the right hand side of the equation corresponds

to the force generated by the right-propagating (left-propagating) laser beam.

Because the scattering force (2.2) is in the direction of the laser prop-

agation, it is clear that the forces from the two beams on an atom at rest

will cancel each other out, provided they have equal intensities and detun-

ings. However, in the case that the atom has a finite velocity v (Figure 2.3b),

the atom sees two different effective laser detunings due to the Doppler shift

k · v = ∓kv:

δ± = δ ∓ kv. (2.7)
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This asymmetry induces a non-zero net force. Indeed, an atom with non-

zero velocity sees one beam blue-shifted (toward resonance) and the other

red-shifted (further away from resonance). It scatters more photons out of the

blue-shifted beam, resulting in a net force that acts against the atomic motion.

This can be shown more explicitly by Taylor-expanding Equation 2.6

in the small velocity limit (v ≪ δ/k). The result to first order is

F(v) =
4~k(I/Is)(2δ/Γ)

(1 + I/Is + (2δ/Γ)2)2
kv. (2.8)

Given a red-detuned laser, δ < 0 and Equation 2.8 can be rewritten

F(v) = −βv. (2.9)

It is immediately clear that this is a damping force similar to that of a particle

in a viscous fluid. Hence the name, optical molasses.

This scheme may be trivially scaled up to three dimensions. With the

inclusion of particular magnetic fields and beam polarizations, a magneto-

optical trap (MOT) can be created that both cools and trap the atoms [63].

MOTs have become one of the workhorses of the cold-atom community, and

little else will be said about them here except to note Reference [57] and

mention that they are used in preparing the rubidium atoms for the cooling

experiments.

2.3.1.2 Branching Ratios

Thus far, the discussion has assumed that each atom has only two

accessible quantum states. Needless to say, this is an idealization often far
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Figure 2.4: Branching ratios for a rubidium 87 transition.

from the truth. It is often the case that an excited atom spontaneously decays

not to its original state, but, for example, to a different hyperfine state. This

process has been the bane of traditional laser cooling, but it will be shown to

be essential for the success of single-photon cooling.

Electric dipole selection rules limit the possible decay channels of any

particular excited state, but one can predict with greater certainty the relative

probabilities of allowable spontaneous transitions. These decay probabilities

are known as branching ratios. Consider the spontaneous decay of a photon

from a rubidium 87 atom in the excited 52P3/2 |F ′ = 1,m′
F = 1⟩ state (Figure

2.4). The relevant selection rules for this transition, ∆F = 0,±1 and ∆mF =

0,±1, yield five possible final states.
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To determine the relative strengths of each of these transitions, the

Wigner-Eckhart theorem may be employed to produce the relation [64, 65]

⟨F,mF |µq|F ′,m′
F ⟩ = ⟨F∥µ∥F ′⟩(−1)F

′−1+mF
√
2F + 1

(
F ′ 1 F
m′

F q −mF

)
,

(2.10)

where |F,mF ⟩ (|F ′,m′
F ⟩) are the ground state (excited state) hyperfine quan-

tum numbers, µq is the q component of the spherical electric dipole operator,

and the quantity in parentheses is a Wigner 3-j symbol. Applying the Wigner-

Eckhart theorem again allows one to rewrite this equation with the F and F ′

dependence factored into a Wigner 6-j symbol:

⟨F∥µ∥F ′⟩ = ⟨J∥µ∥J ′⟩(−1)F
′+J+1+I

√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
.

(2.11)

The matrix element ⟨J∥µ∥J ′⟩ can be determined using the relation

1

τ
=

ω3
12

3πϵ0~c3
2J + 1

2J ′ + 1
|⟨J∥µ∥J ′⟩|2, (2.12)

where τ is the lifetime of the excited state.

Using these relations, the normalized branching ratios are calculated

and shown in Figure 2.4 next to each red arrow representing possible decay

channels.

2.3.2 Light Shifts

When an atom interacts with light that is detuned far from resonance,

the scattering rate becomes negligible, and the dominant effect is a shift in the
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atom’s internal energy. This shift may be exploited by applying gradient fields,

such as that of a Gaussian laser beam, which result in nearly-conservative

forces and potentials. First proposed for neutral atoms in 1962 by Askar’yan

[66] and demonstrated in 1986 by Chu et al. [67], trapping potentials based on

light shifts (so-called optical dipole traps) are now commonplace in the cold

atom community due to their simplicity and flexibility.

A detailed discussion of light shifts and the optical dipole force is given

in [68]. To understand the interaction between far-detuned light and an atom,

consider the atomic dipole moment (p(r, t) = êp̃(r) exp(−iωt) + c.c.) induced

by the electric field of the light (E(r, t) = êẼ(r) exp(−iωt) + c.c.). The dipole

moment and field amplitudes are related by the complex polarizability α as

follows:

p̃ = αẼ. (2.13)

The interaction potential for this system is

Udip = −1

2
⟨p · E⟩ = − 1

2ϵ0c
Re(α)I, (2.14)

where I = 1
2
ϵ0c|Ẽ|2 is the intensity of the field. It is straightforward to calculate

the dipole force:

Fdip(r) = −∇Udip(r) =
1

2ϵ0c
Re(α)∇I. (2.15)

The complex polarizability α may now be calculated by integrating the

equation of motion for the classical damped, driven harmonic oscillator

ẍ+ Γωẋ+ ω2
0x =

−eE(t)

me

(2.16)
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and inserting Larmor’s formula for the power radiated by an accelerating

charge [69]:

Γω =
e2ω2

6πϵ0mec3
. (2.17)

Solving for the polarizability gives

α = 6πϵ0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
, (2.18)

where Γ ≡ Γω0 . This expression is valid for the case of negligible saturation and

large detuning. General equations for the dipole potential and the scattering

rate may now be written:

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (2.19)

and

Rdip(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (2.20)

Typically, the second term in parentheses of Equations 2.19 and 2.20

can be neglected (the rotating wave approximation), and the equations may

be simplified to

Udip(r) =
3πc2

2ω3
0

Γ

δ
I(r) (2.21)

and

Rdip(r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(r), (2.22)

where, as before, δ = ω − ω0 is the detuning from resonance.

There are two features of Equations 2.21 and 2.22 that merit closer ex-

amination. The first is that the potential Udip scales as I/δ while the scattering
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rate Rdip scales as I/δ
2. This means that strong potentials with negligible scat-

tering can be formed by fields with large detunings and high intensities. The

second is that the sign of the potential depends solely on the sign of the de-

tuning δ. Thus, for red detuning, an atom will experience an attractive force.

Conversely, for blue detuning, an atom will experience a repulsive force. In

this way, atoms may be trapped at red-detuned field maxima or blue-detuned

field minima.

2.3.3 Zeeman effect

Just as the internal energy of an atom with an (induced) electric dipole

moment is raised or lowered by an external electric field, an atom with a mag-

netic dipole moment experiences energy shifts in the presence of an external

magnetic field. This effect, first explored by Zeeman [70], is routinely used to

trap neutral atoms at local magnetic field minima [71].

The total magnetic moment of an atom is given by the sum of its

electronic and nuclear moments

µ = −µB(gJJ+ gII), (2.23)

where µB = e~/2me
∼= h · 1.4MHz/G is the Bohr magneton, J and I are the

electronic angular momentum and nuclear spin, respectively, and gJ (gI) is the

electronic (nuclear) Landé g-factor. Here J = L + S is the vector sum of the

electronic orbital angular momentum L and spin S.

The Hamiltonian for the Zeeman interaction HZ = −µ · B may be
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Figure 2.5: Vector model of hyperfine coupling. The vector sum of the elec-
tronic orbital angular momentum, electronic spin, and nuclear spin precesses
about the axis aligned with the magnetic field.

diagonalized in the so-called hyperfine basis {|F,mF ⟩}, where F = J+ I. This

coupling is shown pictorially in Figure 2.5. The hyperfine basis vectors are

eigenvectors of the operators F 2 and Fz, with the latter being the angular

momentum operator projected along the axis of the local magnetic field.

For a given hyperfine manifold with total angular momentum F , there

are 2F + 1 projections labeled by mF . The energy shift of each sublevel, in

the low-field regime, can be written

UZ = µBgFmF |B|. (2.24)

Figure 2.6 depicts the Zeeman effect for rubidium atoms in the 52S1/2 ground

state.

By removing the vector dependence of Equation 2.24, it is assumed

that the magnetic dipole moment is aligned with and precessing about the

direction of the magnetic field. Experimentally, an atom’s magnetic moment

28



|B|

UZ

F=2

F=1

m  F

2

1

0

-1

-2

-1

0

1

Figure 2.6: Low-field Zeeman shifts for F=1 and F=2 hyperfine manifolds of
87Rb.

will adiabatically follow an inhomogeneous or time-dependent field as long as

the following condition holds: ωL ≫ |Ḃ/B|, where ωL = UZ/~ is the Larmor

precession frequency and Ḃ, for a static magnetic field, arises from the atomic

motion across a spatially inhomogeneous field. When this condition is violated,

Majorana spin flips can occur.

It can be seen from Equation 2.24 that there are three classes of mag-

netic states. Those for which the product gFmF > 0 are referred to as low-field

seekers. The energy of atoms in these states increases with increasing mag-

netic field strength. Given a magnetic field gradient, these atoms will be

forced toward regions of lower field strength. Conversely, the states for which
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the product gFmF < 0 are referred to as high-field seekers. Atoms in these

states will be forced toward regions of high field strength. Finally, there is a

magnetically decoupled state mF = 0 which experiences no energy shifts and

therefore feels no forces from a magnetic gradient.

In principle, a magnetic confining potential could be created to trap

either low-field or high-field seekers at field extrema. However, Maxwell’s

equations forbid the presence of local magnetic field maxima in free space [72].

Thus it is the low-field seekers, those for which the product gFmF > 0, that

are magnetically trappable.
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Chapter 3

The Rubidium Apparatus

“It doesn’t matter how beautiful your theory is, it doesn’t matter

how smart you are. If it doesn’t agree with experiment, it’s wrong.”

-Richard Feynman
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It is the privilege of experimentalists to query Nature with progressively

refined and conglomerated theories, which often require increasingly elaborate

experimental apparatuses. Indeed, the modern tabletop cold atom experi-

ment can be an intricate and dauntingly vast amalgam of optics, electronics,

vacuums, and graduate students. Each of these elements is both complicated

and necessary, and each must work in concert to yield meaningful results. This

chapter overviews the apparatus used to perform the experiments on rubidium

as well as the methods employed for preparation and detection of the atomic

ensembles. Exhaustive detail on the construction of the vacuum, magnetic,

and laser systems can be found in [73–76]; this chapter will serve primarily as

an overview.

3.1 Vacuum System

Due to the immense difference in temperature scales between the lab-

oratory environment and the ensembles (typically greater than six orders of

magnitude), cold atom experiments require absolute thermodynamic separa-

tion between the two. This is accomplished using a steel and glass vacuum

chamber, a photograph of which is shown in Figure 3.1.

The vacuum chamber operates in the double MOT configuration [77].

The motivation for this design is to maintain a low background pressure in

the science chamber (where the experiments are performed) without sacri-

ficing the ability to accumulate rubidium atoms quickly. These goals seem

diametrically opposed because, while the background gas is the source of ru-
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Figure 3.1: The vacuum chamber. Photo courtesy of Todd Meyrath [74].
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bidium atoms for the experiment, collision with background gas atoms result

in losses once the experiment has begun. An elegant solution to this problem

is the use of two chambers, operated at different pressures and interconnected

by a differential pumping tube that maintains the pressure gradient. Atoms

are accumulated initially in the high-pressure chamber and then transferred

through the differential pumping tube to the low-pressure chamber where the

experiment occurs.

3.1.1 Upper Chamber

The upper chamber is a 4′′× 1 1/4′′× 1 1/4′′ rectangular Pyrex cell which

is attached via a graded glass-to-metal seal to a 2 3/4′′ conflat steel flange. A

passageway for atoms to the lower chamber (consisting of the science chamber

and pumping region) is provided by a 6 3/4′′ type-304 stainless steel tube with a

∼ 1/8′′ tapered hole through the center. The tube conductance is approximately

0.05 L/s, allowing for a pressure differential of greater than three orders of

magnitude. A schematic of the chamber is shown in Figure 3.2.

Roughly 200 mg of 3N5 purity solid rubidium is located in a reservoir

attached to this chamber, leading to a background gas pressure of approxi-

mately 10−7 torr [78], the room temperature vapor pressure of rubidium. Only

28% of this is the desired isotope (87Rb), but the isotopic shift makes 85Rb

transparent to the near-resonant lasers, and so it can be effectively ignored.

A MOT is created in this chamber, capturing atoms from the low-

velocity tail of the Maxwell-Boltzmann thermal distribution. The MOT com-
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Figure 3.2: Schematic of the upper vacuum chamber, courtesy of Todd
Meyrath [74].

prises three pairs of counter-propagating beams (one pair not shown in Figure

3.2) as well as a pair of anti-Helmholtz electromagnetic coils (also not shown).

Cold atoms are accumulated in the center of the chamber, and, utilizing the

scattering force of Equation 2.5, they are funneled downward through the dif-

ferential pumping tube to the lower chamber with a resonant ‘push beam.’

3.1.2 Lower Chamber

There are two regions of the lower chamber. The pumping region con-

sists of two vacuum pumps which maintain a pressure below 10−10 torr in the

entire lower chamber. The second region is the science chamber, where atoms

are recaptured out of the push beam and experiments are performed.
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3.1.2.1 Pumping Region

The heart of the pumping region is a modified six-way steel cross with

4 1/2′′ and 2 3/4′′ CF flanges. Two pumps are attached to this cross. The

primary pump, which runs continuously, is an ion pump (Varian 919-0103)

with nominal pumping speed of 75 L/s. An auxiliary titanium sublimation

(Ti:sub) pump is also attached. The Ti:sub has a pumping speed around 300

L/s and is fired on occasion.

In addition to the two pumps, a nude Bayard-Alpert ion gauge is at-

tached to the pumping region. The hot-cathode gauge has limited usefulness

at pressures below 10−10 torr, and thus it is rarely operated. A more sensitive

and valuable measure of the background pressure is given by the lifetime of

atoms in the magnetic trap. The losses in the trap are dominated by collisions

with background gas atoms, and so shorter lifetimes indicate higher pressures.

The lifetime for this apparatus is typically around 20 s, which, though not

ideal, is adequate for the cooling experiments.

The remainder of the flanges are sealed with flats and an all-metal valve

used for attaching the chamber to a roughing pump station during the initial

evacuation of the chamber.

3.1.2.2 Science Chamber

The construction and attachment of the science chamber was a remark-

able feat of engineering, described in detail in the references given above. A

photograph of the chamber is shown in Figure 3.3. It is a rectangular glass
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Figure 3.3: The science chamber before attachment to the pumping region.

cell with outer dimensions 30mm× 30mm× 115mm attached to a cylindrical

disc. The type of glass is Spectrosil (Heraeus Quarzglas GmbH), a proprietary

UV-grade synthetic fused silica. The walls are 5 mm thick and were optically

contacted and fused by Hellma Cells, Inc. A vacuum seal was made between

the cylindrical piece and the steel chamber with a Helicoflex seal (Garlock

Helicoflex H-307330 REV NC).

3.2 Magnetic System

Magnetic fields in the experiment are provided by current-flowing coils,

and they serve two purposes. The first is to create quadrupole fields for the

MOTs and magnetic trap. The second is to provide offset fields that both
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counter the earth’s magnetic field and shift the center of the quadrupole fields.

3.2.1 Anti-Helmholtz Coils

The Anti-Helmholtz configuration is one of the simplest and most ubiq-

uitous coil configurations, and it can be used to produce magnetic fields for

both MOTs and pure magnetic traps. It comprises two concentric circular coils

separated by a distance equal to their radius, with current flowing through the

coils in opposite directions. This creates a quadrupole field near the midpoint

of the coils.

To see this, consider a single circular loop carrying electric current I. In

cylindrical coordinates, with the origin at the center of the loop, the resulting

magnetic field may be written [79]

Bz =
µI

2π

1√
(R + ρ)2 + z2

[
K(ξ2) +

R2 − ρ2 − z2

(R− ρ)2 + z2
E(ξ2)

]
(3.1a)

Bρ =
µI

2πρ

z√
(R + ρ)2 + z2

[
−K(ξ2) +

R2 + ρ2 − z2

(R− ρ)2 + z2
E(ξ2)

]
, (3.1b)

where µ is the permeability, R is the loop radius, K(ξ2) and E(ξ2) are the

complete elliptic integrals of the first and second kind, respectively, and the

argument ξ2 = (4Rρ)/[(R + ρ)2 + z2].

With the addition of a second loop, concentric with the first but cen-

tered at z = R and carrying current −I, the resulting is shown in Figure 3.4.

At the midpoint of the coils, there is a local field minimum where atoms in a

low-field seeking state may be trapped. In this experiment, atoms are confined
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Figure 3.4: Axial and transverse field magnitude for anti-Helmholtz pair.
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close enough to the center that the field gradients may be approximated as

constant. The first terms in the Taylor expansions of the field magnitudes are

Bz = 2B′z (3.2a)

Bρ = B′ρ (3.2b)

where the field gradient B′ is given by

B′ =
3

2
µI

(d/2)R2

[(d/2)2 +R2]5/2
. (3.3)

3.2.1.1 Upper MOT Coils

A pair of circular coils, alluded to in Section 3.1.1, sandwich the glass

cell of the upper vacuum chamber. The coils have a radius of 4 cm and

are spaced by 6 cm. Around 2.5 A flow through 91 windings of 20 gauge

wire, producing a nearly anti-Helmholtz quadrupole field for the upper MOT

with a gradient of about 15 G/cm. The current in each coil is independently

regulated by home-built current controllers [74], allowing the location of the

field minimum (MOT center) to be adjusted. The coils are mounted to water-

cooled copper blocks for heat dissipation.

3.2.1.2 Magnetic Trap Coils

Another pair of circular coils is located around the science chamber.

These multipurpose coils create a weak-gradient field for the lower MOT when

operated at low current as well as a strong-gradient field for the quadrupole
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Figure 3.5: Photograph of the science chamber and quadrupole magnetic trap
coils.

magnetic trap when operated at high current. They are pictured in Figure

3.5.

Each coil consists of 176 turns of 14 gauge magnetic wire in three layers,

with an inner diameter of 34 mm, an outer diameter of 69 mm, and a width of

42 mm. From center to center, the coils are separated by 75 mm. The wire is

encased by a PVC enclosure, and chilled water continuously flows through the

enclosures to dissipate resistive heat. Figure 3.6 is a horizontal cross-section

of the geometry and location of the magnetic trap coils.

The calculated field gradients near the midpoint, which agree well with

the measured values, are Bz = 9.7 G/(cm A) and Bρ = 4.8 (G/cm A) where

z is the axial coordinate and ρ =
√

x2 + y2 is the radial coordinate.
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Figure 3.6: Schematic of the magnetic trap quadrupole coils.

Current flows in series through the coils and is generated by three

power supplies (Lambda GEN80-19) wired in parallel. The current is regulated

with seven power op-amps (OPA549) controlled by a home-built proportional-

integral-derivative (PID) control circuit.

3.2.2 Auxiliary Coils

In addition to the two pairs of anti-Helmholtz coils, several more coils

are positioned around the science chamber, serving various functions.

First, a Helmholtz pair is aligned on axis with the quadrupole coils.

These coils each consist of 30 turns of 16 gauge wire, resulting in a near-

uniform field at the trap center of about 2.6 G/A. The purpose of these coils

is both to shift the center of the MOT/magnetic trap and to provide the

reference field during optical pumping (Section 3.6).

Another auxiliary coil is located just above the science chamber and
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Figure 3.7: Adding a uniform field to the quadrupole field shifts its minimum.
Here the center of a magnetically trapped ensemble is plotted against the
current flowing through the vertical auxiliary coil.

oriented vertically. The coil consists of 150 turns of 20 gauge wire and produces

a field near the trap center of roughly 1 G/A.

Naively, one might expect that superimposing a uniform field on a

quadrupole field would do nothing but increase the magnitude of the field

everywhere. However, the quadrupole magnetic field is vectorial and points in

opposite directions on either side of its minimum. Therefore adding a uniform

field translates the minimum (zero) in space rather than simply increasing it.

This effect can be seen clearly in Figure 3.7, where the observed center of the

magnetic trap shifts in proportion to the current through the vertical auxiliary

coil.
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3.3 Laser System

An intricate system of lasers and optics is used to manipulate and probe

the atomic ensembles. The lasers can be grouped into two classes: lasers

operating near the 87Rb D2 transition at wavelength λ ≈ 780 nm, and lasers

far detuned from this wavelength.

3.3.1 Near-Resonance Lasers

A diagram of the near-resonance frequencies used in the experiment is

shown in Figure 3.8. A total of six different frequencies are used, though not

all simultaneously. All frequencies are resonant or located within 50 MHz of

a D2 (5 2S1/2 → 5 2P3/2) transition.

The fundamental light for the experiment is generated by two external-

cavity diode lasers (ECDLs) in the Littrow configuration [80]: the MOTmaster

laser and the repump laser. The frequency of each is locked to individual ru-

bidium lines using saturated absorption spectroscopy methods. To generate

adequate optical power for the experiment, the light from the MOT master

laser is amplified by seeding it into three injection-locked ‘slave’ lasers. The

frequencies of all five diode lasers are shifted using acousto-optic modulators

(AOMs), many of which serve additionally as fast shutters. Because the ex-

periment is extremely sensitive to stray light and the AOMs do not completely

extinguish the diffracted orders, slower mechanical shutters are located at var-

ious points along the beam paths to provide full occlusion.
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Figure 3.8: Near-resonance laser frequencies used in the experiment.
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Figure 3.9: The MOT master laser.

3.3.1.1 MOT Master Laser

The MOT master laser, pictured in Figure 3.9, is a robust Littrow-

configured ECDL designed and built originally for a prior experiment [81].

The heart of the laser is an edge-emitting diode (Intelite MLD-780-100S5P)

with nominal wavelength of 780 nm and output power of 100 mW at injection

current of 120 mA. The diode is mounted in a tube (Thorlabs LT230P-B) which

houses a broadband anti-reflection (AR) coated aspheric lens (f = 4.5mm).

The exiting light is collimated and directed at a gold-coated, blazed diffraction

grating with 1200 grooves/mm. This grating serves as the laser output coupler

as well as frequency selector. The zeroth-order specular reflection is used as

the output beam, while the first-order diffracted beam is retroreflected into

the diode, forming the external laser cavity. By adjusting the grating angle
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Figure 3.10: Distribution of the MOT master laser output.

with a piezo stack, the output wavelength can be finely tuned. The linewidth

of the laser has an upper bound of 1.5 MHz, as measured with a Fabry-Perot

cavity.

For maximum stability, all parts are mounted on a bronze baseplate

which is actively temperature stabilized with a thermo-electric cooler (TEC)

and PID circuit. A plexiglass cover thermally isolates the laser and rejects air

currents and acoustic vibrations.

The asymmetry in the spatial mode of the laser is removed with an

anamorphic prism pair, and the beam is sent through an optical isolator

(Conoptics 712B). The isolator, which utilizes the Faraday effect, prevent

back-reflections from reaching the master diode and causing lasing instabil-

ities. Subsequent to the isolator, the beam is distributed into three paths, as

shown in Figure 3.10.
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Most of the laser power passes straight through a 103 MHz AOM. This

zeroth-order diffracted beam reflects off a polarizing beamsplitter cube (PBSC)

and double-passes an 80 MHz AOM with a 40 MHz bandwidth. Because

the first-order diffracted beam double-passes a quarter waveplate (λ/4), its

polarization rotates by π/2, and it travels straight though the PBSC on second

incidence. It is then distributed to the slave lasers for injection locking (see

Section 3.3.1.3). As a result of the double-pass, the injection beam, and hence

the slave lasers, are tunable between 80 and 160 MHz red of the F = 2 →

F ′ = 3 transition. The slave lasers are each followed by their own 80 MHz

AOMs, allowing for final frequencies between resonance and 80 MHz red of

the F = 2 → F ′ = 3 transition.

A small amount of light is undiffracted by the 80 MHz AOM and is

coupled into a Fabry-Perot cavity. This cavity serves as a useful diagnostic for

ensuring single-mode operation of the MOT master laser.

Finally, a few milliwatts is diffracted into the first-order of the 103 MHz

AOM. This light is sent to a saturated absorption spectrometer which actively

stabilizes the fundamental laser frequency to a rubidium transition. A layout

of the setup is depicted in Figure 3.11.

A thorough review of saturation absorption spectroscopy may be found

in [82]. There are many ways to produce a dispersive error signal for stabilizing

a laser to an atomic transition. The error signal for the MOT master laser is

produced in a fairly straightforward fashion.
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Figure 3.12: Error signal for the MOT master laser. The labeled real and
crossover transitions are (a) F = 2 → F ′ = 1 (b) F = 2 → F ′ = 1/2 (c)
F = 2 → F ′ = 2 (d) F = 2 → F ′ = 1/3 (e) F = 2 → F ′ = 2/3 (f)
F = 2 → F ′ = 3.

The beam is split into a strong pump beam and a weak probe beam

with an uncoated glass plate. The pump beam double-passes an AOM that is

driven by a frequency modulated (FM) 44 MHz signal with modulation depth

4 MHz and frequency 7 kHz. It then passes through a room-temperature

rubidium vapor cell. The probe beam counter-propagates with the pump beam

in the vapor cell and is focused onto a photodiode. The resulting signal is

mixed with the FM frequency by a commercial lock-in amplifier (SRS SR510).

When the MOT master laser frequency is scanned across the F = 2 → F ′ =

1, 2, 3 transitions, a dispersive error signal is produced by the lock-in amplifier

(Figure 3.12).

Because it is the most prominent, the F = 2 → F ′ = 2/3 crossover
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transition is used for locking. The error signal is fed into a PID circuit, the

output of which is amplified (Trek 601B-2) and input to the piezo stack which

controls the diffraction grating angle. This closes the feedback loop and locks

the frequency of the MOT master laser 280 MHz red of the F = 2 → F ′ = 3

transition.

3.3.1.2 Repump Laser

During the experiment, atoms will decay on occasion to the |F = 1⟩

ground state. This can be problematic because the MOT master laser and

its slaves are tuned to transitions from the |F = 2⟩ ground state, meaning

these atoms are in a dark state which scatters no photons. To remedy this,

a repump laser tuned to the F = 1 → F ′ = 2 transition is introduced. This

laser is used during the MOT, molasses, optical pumping, and detection stages

of the experiment to cycle atoms from |F = 1⟩ → |F = 2⟩.

The repump laser is constructed identically to the MOT master laser.

The distribution of its output power is shown in Figure 3.13. Because the

output power of the repump laser is sufficient for the experiment (∼ 30 mW),

the laser is directed straight to the upper and lower chambers rather than to

slave lasers.

A small amount of power is picked off after the optical isolator with a

PBSC. This light goes to another saturated absorption spectrometer, depicted

in Figure 3.14. The setup is slightly different from that of the MOT master

laser (Figure 3.11). Here, two weak probe beams are created by a glass plate
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Figure 3.13: Distribution of the repump laser output.

beamsplitter, and the strong pump beam overlaps only one of them in the

rubidium vapor cell. The probe beams are then subtracted by a differential

photodetector. The purpose of this configuration is to subtract the doppler-

broadened background absorption from the spectroscopy signal.

Another difference with this setup is that the frequency modulation is

applied to the laser not by an FM AOM, but rather by directly dithering the

piezo stack of the laser. This introduces some frequency noise to the laser, but

it has a negligible operational effect.

Figure 3.15 is the dispersive error signal produced by the repump sat-

urated absorption spectrometer. The laser is locked to the F = 1 → F ′ = 1/2

transition which is 78.5 MHz red of the desired F = 1 → F ′ = 2 transition. As

shown in Figure 3.13, the frequency is upshifted by an 80 MHz AOM, putting
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Figure 3.14: The saturated absorption spectrometer and locking setup for the
repump laser.

Repump Laser Frequency

E
rr

o
r 

S
ig

n
a

l

a b c d e f

Figure 3.15: Error signal for the repump laser. The real and crossover tran-
sitions are labeled (a) F = 1 → F ′ = 0 (b) F = 1 → F ′ = 0/1 (c)
F = 1 → F ′ = 1 (d) F = 1 → F ′ = 0/2 (e) F = 1 → F ′ = 1/2 (f)
F = 1 → F ′ = 2.
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it within 1.5 MHz of resonance. Because the linewidth of this transition is

about 6 MHz, the offset can be ignored.

3.3.1.3 Upper MOT Horizontal Slave Laser

The upper MOT horizontal slave laser is the first of three injection-

locked lasers which amplify the MOT master laser. A photograph of the

construction is shown in Figure 3.16. The slave lasers are built around an

inexpensive diode (Sharp GH0781JA2C) with a nominal wavelength of 784

nm and power of 120 mW at 140 mA injection current. The diode is housed

in a collimation tube (Thorlabs LT230P-B) which is mounted in a bronze

block. This block is temperature-controlled to bring the diode’s free-running

wavelength closer to the rubidium resonance. The laser is enclosed by an

aluminum housing, and the light escapes through a glass Brewster window.

An injection-locked diode laser can be considered as a regenerative am-

plifier [83]. The goal is to seed the gain medium with enough external laser

light such that the free-running laser oscillation dies out and the gain is sat-

urated entirely by the injected seed light. In practice, ∼ 2 mW is enough

injection power for this to occur. Figure 3.17 shows the injection technique. A

portion of the MOT master injection beam is picked off using a half waveplate

(λ/2) and a PBSC. This beam is aligned into the output rejection port of an

optical isolator (Conoptics 712B), so that it is collinear with and the same

polarization as the free-running slave laser output. With careful alignment,

the slave laser produces ∼ 60 mW of power with the spectral characteristics
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Figure 3.17: Method used for injection-locking the slave lasers.

of the seed laser.

As should be apparent from its name, the upper MOT horizontal slave

laser’s primary function is to provide light for the horizontal beams of the

upper MOT. It provides light for several other purposes as well. Figure 3.18

shows the distribution of the laser beam. After the optical isolator, the beam

passes through an 80 MHz AOM. The first-order diffracted beam goes to the
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upper MOT. Part of this beam is picked off by a 424 MHz AOM. The minus-

first-order beam is near resonance with the F = 2 → F ′ = 1 transition, and it

serves as the demon beam (see Section 3.4.3).

Part of the original beam passes through the first 80 MHz AOM un-

diffracted. A small portion is picked off by a beamsplitter and sent to a

Fabry-Perot cavity used to check for proper injection locking. The remainder

is upshifted by an 80 MHz AOM to become the push beam, or it double-passes

a tunable AOM centered at 56 MHz to become the vertical absorptive imaging

beam. The role of the latter beam is described in Section 3.4.3.

3.3.1.4 Upper MOT Diagonal Slave Laser

The upper MOT diagonal laser, in addition to providing light for the

diagonal beams of the upper MOT, supplies laser power for the optical pump-

ing and horizontal absorptive imaging beams. Figure 3.19 shows the beam

distribution. Following the optical isolator, the first-order diffracted beam

from an 80 MHz AOM goes to the upper MOT.

The zeroth-order beam is then directed toward a series a double-pass

AOMs, arranged such that the retroreflected beams from both AOMs are

collinear and follow the same path to the vacuum chamber. The minus-first-

order diffracted beam double-passed through the 80 MHz AOM serves as the

optical pumping beam (see Section 3.6 for details). The frequency of this beam

has been lowered by 160 MHz, making it resonant with the F = 2 → F ′ = 2

optical pumping transition, assuming an appropriate injection beam detuning.
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Figure 3.18: Distribution of the upper MOT horizontal slave laser.
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Figure 3.19: Distribution of the upper MOT diagonal slave laser.

The beam created by double-passing the tunable 56 MHz AOM serves as the

horizontal absorptive imaging beam. More detail on this beam is given in

Section 3.4.3.

Finally, the undiffracted beam from the 56 MHz AOM is sent to a

Fabry-Perot cavity for diagnostics.
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Figure 3.20: Distribution of the lower MOT slave laser.

3.3.1.5 Lower MOT Slave Laser

Nearly all of the power from the lower MOT slave laser is used for the

lower MOT. A small portion is undiffracted by an 80 MHz AOM and is sent

to the diagnostic Fabry-Perot cavity. The layout is shown in Figure 3.20.

3.3.2 Far-Detuned Laser

A laser detuned far from resonance (λ = 532 nm) is used in the ex-

periment to create an optical dipole trap. This laser is a frequency-doubled

Nd:Vanadate (Coherent Verdi V10) which provides 10 W of power in the

TEM00 spatial mode. It is also single-mode longintudinally with a linewidth

less than 5 MHz.

Because its frequency is blue of the rubidium transition, the laser cre-

ates a repulsive potential for ground state atoms in accordance with Equation

2.21. Thus a trap may be created by surrounding atoms with laser fields on all

sides (a “closed” trap) or allowing a force such as gravity to hold atoms on one
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side and surrounding it with laser fields on the others (an “open” trap). The

optical trap used for the rubidium experiment discussed in this dissertation is

an open trap, and, due to its shape, it is referred to as the optical trough.

As shown in Figure 3.21, the optical trough comprises four elliptical

Gaussian laser beams which have been elongated in one dimension with cylin-

drical lenses. Two of these beams propagate along x̂ and cross to form a “V”

shape. These V beams, along with gravity which is aligned along ẑ, confine

atoms in the ŷ and ẑ direction. Another pair of beams (“end caps”), whose

elongated axes are parallel, propagate along ŷ and confine atoms in the x̂ di-

rection. Each beam has a 1/e2 waist of 10µm× 100µm and roughly 700 mW

of optical power, resulting in a three-dimensional trap depth of ∼ 10µK. A
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Figure 3.22: Potential of the gravito-optical trap in the (ŷ, ẑ) plane.

plot of the optical potential along with gravity in the (ŷ, ẑ) plane is shown in

Figure 3.22.

A schematic of the beam layout for the far-detuned laser is shown in

Figure 3.23. The beam is split into three paths (enumerated on the schematic)

by a combination of half-waveplates and thin-film polarizing beamsplitters

(PBS). Beams 1 and 2 constitute the V beams. Two cylindrical lenses, oriented

at right angles to each other, make the beams astigmatic. The beams are then

recombined with a PBSC and focused into the science chamber with a 63.5

mm lens.

The end caps are derived from Beam 3. These are created with an AOM

which is driven at two distinct frequencies, creating two first-order diffracted

61



beams. The difference in the driving frequencies determines the difference in

diffraction angle, which, in turn, yields the spacing between the beams at their

focus. In practice, driving an AOM with multiple frequencies creates a large

number of diffracted beams, both at harmonics of the driving frequencies as

well as the difference frequency. The undesired diffracted orders are occluded

by a one-dimensional spatial filter (essentially a pair of knife-edges) at the

focus of a telescope which follows the AOM. Subsequent to this, a 300 mm

cylindrical lens makes the pair astigmatic. The pair is then combined with a

near-resonant beam path by a dichroic mirror (transparent to 780 nm) and

focused into the science chamber with a 50 mm lens.

3.4 Imaging and Measurement

At the end of the experimental sequence, it is necessary to measure

certain properties of the ensembles such as spatial distribution and atom num-

ber. This is accomplished with two distinct imaging techniques: absorption

imaging and fluorescence imaging. Both techniques have advantages and dis-

advantages, but they complement each other well in the regime in which the

experiment is operated. They are essentially two-dimensional techniques, and

so two imaging systems, oriented along orthogonal axes, are employed to fa-

cilitate measurements in all three dimensions.
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63



3.4.1 Absorption Imaging

Absorption imaging is a technique which extracts information from the

shadow cast by a cloud of atoms in the profile of a resonant or near-resonant

probe beam. As the probe beam passes through the cloud, the atoms scatter

photons out of the beam at the rate R given by Equation 2.2. The scattering

cross-section may be written

σ =
R~ω
I

=
σ0

1 + (I/Is) + (2δ/Γ)2
, (3.4)

where σ0 ≡ ~ωΓ/2Is is the low-saturation resonant cross-section. The quantity

σI represents the power each atoms scatters out of a probe beam of intensity

I, and thus the attenuation of a probe beam propagating along z and passing

through a cloud with atomic density n(x, y, z) is given by Beer’s law:

dI

dz
= −σn(x, y, z)I. (3.5)

The solution to this differential equation is the transverse intensity profile of

the probe beam:

I(x, y) = I0(x, y)e
−σ

∫
n(x,y,z)dz. (3.6)

Here the exponential factor on the right hand side is the shadow cast by the

cloud of atoms. If the unattenuated intensity profile I0(x, y) is known (i.e. the

profile with no atoms present), then the optical density is straightforward to

calculate. It is given by

Dopt(x, y) = − ln

(
I(x, y)

I0(x, y)

)
= σ

∫
n(x, y, z)dz. (3.7)
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(a) (b) (c)

Figure 3.24: Absorption imaging method. (a) Probe beam displaying I(x, y)
(b) Unattenuated intensity profile I0(x, y) (c) Optical density Dopt calculated
from (a) and (b). The total number of atoms here, given by the integration of
(c) is N = 1.7× 108.

This quantity, which is proportional to the integrated column density of the

cloud, can be used to calculate the total number N of atoms, given by

N =

∫∫∫
n(x, y, z)dxdydz =

1

σ

∫∫
Dopt(x, y)dxdy. (3.8)

Figure 3.24 is an example of this sort of calculation for a cloud of atoms from

a MOT.

While atom number and spatial distribution may be determined from

a single image, accurate temperature measurements are made using a series

of images. The time-of-flight method [84, 85] images a freely expanding cloud

at different expansion times as the momentum distribution is converted into

a spatial distribution. In the absence of collisions, the atoms follow ballistic

trajectories upon release from the trap, and the spatial distribution measured

after time t is a convolution of the initial density and momentum distributions.

Assuming that the initial distributions are both Gaussian, the measured spatial
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distribution is given by

n(x, t) =
1

(2πσ2
t )

3/2
e−x2/2σ2

t , (3.9)

where σ0 is the 1/
√
e width of initial density distribution and

σ2
t = σ2

0 +
σ2
p

m2
t2. (3.10)

Here σp is the 1/
√
e width of the momentum distribution and is related to

the temperature by T = σ2
p/mkB. Substituting for σp, Equation 3.10 can be

rewritten:

σ2
t = σ2

0 +
kBT

m
t2. (3.11)

By imaging the cloud at multiple expansion times, the measured Gaussian

widths may be fitted to the above equation to yield a value for the temperature.

It is important to note that Equation 3.11 describes a single dimension.

For a system in thermal equilibrium, the temperatures in all degrees of freedom

are equal, and hence the system may be described by a single value for the

temperature. However, it is sometimes the case with experiments described

herein that the system under consideration is not fully in equilibrium. In this

situation, multiple temperature values are used to represent the momentum

distributions in separate dimensions.

3.4.2 Fluorescence Imaging

In addition to absorption imaging, the experiment employs fluorescence

imaging. Unlike absorption imaging, fluorescence imaging is sensitive to small
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(a) (b)

Figure 3.25: Comparison of fluorescence and absorption images. (a) The fluo-
rescence image is large and has no distinct features. (b) The absorption image
shows details of atoms confined in a hard-walled box.

numbers of atoms. In fact, the technique has been used to detect just a single

atom [86]. However, the advantage of sensitivity to small atom numbers is

accompanied by an inherent loss of spatial detail. Thus fluorescence imaging

is useful for atom counting and not particularly for density or temperature

measurements. A comparison of absorption and fluorescence images is shown

in Figure 3.25.

Fluorescence imaging is very much the inverse of absorption imaging.

Rather than image the shadow cast by atoms scattering photons, the scattered

photons themselves are collected and imaged. Also, instead of using a single

beam for excitation, the atoms are illuminated by six optical molasses beams.

In this way, they are actively cooled as they fluoresce. The total atom number

N is proportional to the total number of photons collected Np and may be

estimated by [60]

N =
8π[1 + 6I/Is + (2δ/Γ)2]

6Γ(I/Is)tfηdΩ
Np, (3.12)
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where tf is the fluorescence time, η is the fraction of collected photons which

are actually registered by the detector, and dΩ is the solid angle of photon

collection.

3.4.3 Horizontal and Vertical Imaging System

The horizontal probe beam is derived from the upper MOT diagonal

laser as shown in Figure 3.19. It is typically operated on resonance with

the F = 2 → F ′ = 3 transition. The beam is combined with the path of

one horizontal lower MOT beam using a PBSC. After passing through the

chamber, it is picked off by another PBSC, relayed by a pair of 120 mm lenses,

and imaged onto a charge-coupled device (CCD) camera (Apogee AP9e) with

a 4x objective lens.

Horizontal fluorescence images can also be taken by triggering a motor-

ized flipper mirror in front of the objective lens. A high solid angle collection

lens [87] collects fluorescence in a direction perpendicular to the probe beam

and directs it toward the flipper mirror.

The vertical probe beam is derived from the upper MOT horizontal

laser, as shown in Figure 3.18. It is typically operated resonantly like its

counterpart. The probe beam is combined with the push beam by a PBSC,

and it is focused through the chamber with a 175 mm lens. The beam is

collected with a 50 mm lens and is imaged onto a CCD camera (Apogee Alta

U47+) with a net magnification 4.33x.

Because there are no vertical molasses beams, the vertical fluorescence
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is imaged along the same path as the vertical probe beam.

3.5 Experimental Control and Data Acquisition

Execution of the experimental sequence requires precise timing of digi-

tal and analog outputs, as well as communication with external hardware such

as frequency generators, lasers, and CCD cameras. These tasks are carried

out by three networked desktop PCs running customizable software originally

written by former group members [88].

The experiment is controlled by a PC which houses several PCI boards

manufactured by National Instruments (NI): two digital input/output boards

(PCI-6533) and three analog output boards (PCI-6733). These boards are

operated as a digital output bus for a home-built hardware system capable of

80 digital outputs and 64 analog outputs with 625 kHz temporal resolution.

The hardware is described in detail in [74]. A general purpose interface bus

board (PCI-GPIB), also made by NI, allows the computer to communicate

with a number of frequency generators and the Nd:Vanadate laser.

This PC runs the software Control, which was written by a former

postdoctoral scholar Florian Schreck. Control is a powerful C++ program

that writes a waveform to the NI cards, controlling the analog and digital

outputs. It may be modified easily for new experimental routines.

A second PC performs data acquisition with the software Vision which

was also written by Florian Schreck. Vision communicates with the CCD
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cameras through a third PC, the sole purpose of which is to relay information

between the cameras and Vision. After a measurement is performed, Vision

processes the images and performs a number of analytical functions.

3.6 Preparation of the Ensemble

The starting point for single-photon cooling is a magnetically trapped

ensemble. It is produced using routine methods. Atoms are first captured

in the upper MOT from the room-temperature rubidium vapor at a rate of

roughly 2 × 109 atoms/s. The push beam funnels these atoms to the lower

MOT, which recaptures them. The lower MOT is typically operated for 1− 2

seconds with a field gradient B′ ≈ 8 G/cm and laser detuning 15 MHz red

of the F = 2 → F ′ = 3 cycling transition. Approximately 108 atoms are

produced in the lower MOT at a temperature around 150 µK.

Following the loading of the lower MOT, the atoms undergo polariza-

tion gradient cooling [89]. The upper MOT, push beam, and magnetic fields

are all turned off, and the lower MOT beams are detuned 50 MHz red of the

cycling transition. The atoms are cooled to approximately 15−20µK in 5 ms.

At this point, the atoms are distributed among the magnetic sublevels

of the F = 2 manifold. To maximize the transfer efficiency into the magnetic

trap, they are optically pumped to the |F = 2,mF = 2⟩ stretched state.

A weak, uniform magnetic field (≈ 1 G) is created by the Helmholtz coils

described in Section 3.2.2. This defines a quantization axis for the magnetic

dipoles of the atoms. The optical pumping beam is turned on for 100 µs
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and propagates along the quantization axis. Because it is σ+ polarized and

resonant with the F = 2 → F ′ = 2 transition, the atoms are driven to the

|F = 2,mF = 2⟩ dark state after several excitation cycles. The net result

is modest heating (≈ 5µK) with a tremendous increase in transfer efficiency.

Typically ∼ 73% of the atoms end up in the |F = 2,mF = 2⟩ state, with the

remaining in the |F = 2,mF = 1⟩ state.

Subsequent to optical pumping, all optical fields are shuttered, and the

current in the quadrupole coils is switched on to ∼ 10 A in less than 5 ms.

The dipoles align with the local quadrupole field and are trapped magneti-

cally. The amount of current in the coils is chosen such that the resultant

field gradient optimally mode-matches the cloud with the magnetic trap and

minimizes heating.

Though the atoms are now in a magnetic trap, they are not necessarily

in thermal equilibrium. By waiting for some time, the cloud could equilibrate

through collisions. However, the collision rate at this point is low (< 1Hz)

and so the equilibration time would be long. To speed up the process, the

quadrupole current is linearly ramped to 20 A in 200 ms. This compresses

and heats the cloud, resulting in an increased collision rate. After 5 s the

cloud has equilibrated, and the current is ramped down to 15 A. The end

result is an ensemble of ∼ 107 rubidium atoms at a temperature of ∼ 50µK.

One of the key parameters of the ensemble which is experimentally

useful to control is its temperature. The majority of the ensemble’s energy

is gained when it is transferred to the magnetic trap, and this is a result of

71



-23 -22 -21 -20 -19

30

35

40

45

50

55

60

 

 

E
ns

em
bl

e 
Te

m
pe

ra
tu

re
 (

K
)

MOT Detuning (MHz)

Figure 3.26: Ensemble temperature as a function of MOT laser detuning

its spatial extent. Because a MOT is density limited to ∼ 1011/ cm3 [57], the

number of atoms in the lower MOT, and hence its size, will be directly tied

to the ensemble’s final temperature. Therefore the ensemble temperature may

be controlled by changing the loading rate of the lower MOT. This is achieved

in the experiment by varying the MOT laser detuning. The effect is shown in

Figure 3.26.
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Chapter 4

Single-Photon Cooling of Rubidium

“The strongest arguments prove nothing so long as the conclusions

are not verified by experience. Experimental science is the queen

of sciences and the goal of all speculation.”

-Roger Bacon

The first demonstration of single-photon cooling was achieved in 2008

in a proof-of-principle experiment [32]. Approximately 1.5 × 105 rubidium

atoms were irreversibly transferred from a large volume, magnetically trapped

ensemble to a small volume optical trap. This number was 23 times higher

than the largest number of atoms that could be directly transferred to the

optical trap (i.e. without cooling), and thus it was a clear signature that the

entropy had been reduced.

This chapter details the second implementation of single-photon cool-

ing, for which several key improvements were made. The most significant

change was the conversion of the optical trap to a gravito-optical trap, al-

ready described in Section 3.3.2. The modified trap geometry was simpler

and introduced fewer artifacts into the dynamics of the cooling process, mak-

ing the fundamental mechanics of the technique more apparent and easier to
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study. Additionally, the gravito-optical trap was effectively deeper, allowing

for an order of magnitude more atoms to be captured. This increased both

the accuracy and scope of the measurements made on the system.

4.1 Cooling Sequence

The starting point for the cooling experiment is a 87Rb ensemble in a

magnetic trap, prepared as described in Section 3.6. Typically, the magnetic

trap starts with a radial field gradient B′
ρ ≈ 62G/cm. The size of the ensemble

is dependent solely on its temperature (neglecting, for the moment, repulsive

interactions), and a linear regression of measured data yields

σρ = 8.46 + 6.19T, (4.1)

where σρ is the 1/
√
e Gaussian radius of the ensemble in µm and T is its

temperature in µK.

The optical trough (Section 3.3.2) is positioned just beneath the mag-

netically trapped ensemble where the initial atomic density is negligible. A

linearly polarized beam detuned slightly below the F = 2 → F ′ = 1 transi-

tion is focused to a 1/e2 waist of 8 µm inside the trough. This beam plays

the role of the demon in the cooling experiment. Figure 4.1 illustrates this

configuration.

When atoms encounter the demon beam, they undergo a spontaneous

Raman transition. The beam excites the atoms to the |F ′ = 1,mF ′ = 1⟩ state,

in accordance with the electric-dipole selection rules (∆mF = ±1, 0). From

74



demon beam

h

Figure 4.1: The demon beam is tightly focused inside the trough at a height
h above the vertex. It drives an spontaneous Raman transition, transferring
atoms irreversibly out of the magnetic trap and into the optical trough.

the branching ratios calculated in Section 2.3.1.2, it is predicted that 84% of

the atoms decay from this state to the F = 1 ground state manifold. The

remaining 16% are cycled back to the F = 2 manifold and re-excited.

A diagram of the experimental scheme and relevant energy levels is

shown in Figure 4.2. Here |i⟩ = |F = 2,mF = 2⟩ is the initial state of

the ensemble (neglecting the minority population with projection mF = 1).

The potential drawn for this state, as a function of the vertical coordinate z,

represents the magnetic potential from the quadrupole field, the light shift from

the optical trough, and the gravitational potential. The most energetic atoms

of the ensemble have classical turning points at the location of the demon

beam, which transfers them via the excited state |e⟩ = |F ′ = 1,mF ′ = 1⟩

75



to the state |f⟩ = |F = 1,mF = 0⟩ or |F = 1,mF = 1⟩. The potential

for the former final state is due solely to the light shift of the trough and

gravity, while the potential for the latter final state (a high-field seeker) also

includes the magnetic interaction and thus should have a steeper gradient than

is drawn. Both, however, are trapped states in the trough.

It should be noted that this is effectively an irreversible process. Atoms

in state |i⟩ readily scatter photons from the demon beam, but in state |f⟩

they see a detuning of 6.8 GHz, the 87Rb ground state hyperfine splitting.

For the intensities relevant to this experiment (typically a few orders over

the saturation intensity), state |f⟩ is effectively a dark state which undergoes

negligible scattering.

The experiment proceeds by adiabatically ramping off the current in

the quadrupole coils in time tramp ∼ 1 s. This collapses the magnetic potential,

and, as in Figure 1.3, pushes each atom toward the demon so that it is excited

with little kinetic energy remaining. To ensure this, the adiabaticity condition

⟨τB⟩ ≪ tramp must be satisfied, where ⟨τB⟩ ≈ 20ms is the average oscillation

period in the magnetic trap. Figure 4.3 shows the measured incremental atom

accumulation in the trough as a function of the quadrupole ramp-off. It should

be noted that, because the trough by itself is a conservative trap, any positive

slope on this plot indicates irreversible transfer and hence a functioning demon.

In the first implementation of single-photon cooling (Reference [32]),

the quadrupole trap was adiabatically translated toward the optical trap. In

principle, this achieves the same effect as collapsing the magnetic potential
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(a) (b)

Figure 4.2: Single-photon cooling as Maxwell’s demon. (a) Maxwell’s demon
operates a gate between two chambers, A and B. By functioning as a valve and
allowing only one-way passage from B toA, the atoms are compressed without
expenditure of work. (b) Schematic of single-photon cooling in a three-level
system. Magnetically trapped atoms in state |i⟩ occupy B. A spontaneous
Raman transition is driven by the demon near each atom’s classical turning
point, transferring the atoms to state |f⟩. These gravito-optically trapped
atoms occupy A.
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Figure 4.3: Incremental accumulation of atoms in the optical trough as a
function of quadrupole current. Below 2.5 A, magnetically trapped atoms are
no longer levitated by the quadrupole field gradient, and the cooling sequence
is complete.

(see Figure 1.3). However, the latter method was found to be advantageous

because the ensemble temperature is reduced as it expands. Thus collisions

between optically trapped and magnetically trapped atoms occur at lower

energies, resulting in less trap loss.

At this point, the cooling sequence is complete and the atoms are im-

aged, yielding information on atom number, spatial distribution, and temper-

ature.
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4.2 Analogs of the Demon

Though it is apparent from Figure 4.3 that, in general, a one-way valve

is acting on the ensemble, there are several specific attributes of the demon

which manifest themselves experimentally and merit closer examination. With

the goal of the demon being to maximize entropy reduction, it is in fact crucial

to account for these factors and tailor the experiment accordingly.

4.2.1 The Size of Chamber A

In a gradient confining potential, there is a one-to-one relationship be-

tween the spatial extent of an ideal gas and its temperature. For the mag-

netically trapped ensemble (chamber B), the temperature is controlled exper-

imentally as described in Section 3.6. This, in turn, determines the size of

B.

Following the same line of reasoning, one can see that the size of cham-

ber A is determined predominantly by the distance h between the vertex of

the optical trough and the demon beam (see Figure 4.4). After atoms have

decayed to the F = 1 manifold by scattering a photon, they experience grav-

itational free fall or magnetic acceleration (mF = 1 atoms) to the bottom

of the trough. This acquired energy sets a limit on the minimum achievable

temperature and hence the size of A.

Since the reduction of entropy scales inversely with the size of A, it

is desirable to minimize the value of h. One might expect that the optimal

strategy would be to largely overlap the demon beam and the trough beams
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h

h

demon beam

trough

V beams

Figure 4.4: The size of Maxwell’s chamber A corresponds to the height h of
the demon beam above the optical trough vertex.

but allow the demon beam to leak out slightly above the vertex. Figure 4.5

shows that this is not the case. As the beams begin to overlap for small values

of h, atoms climb the repulsive potential of the trough before the Raman

transition occurs. The effect is the same as that of free fall: acquired energy

and a larger chamber A.

4.2.2 The Size of the Gate

In Maxwell’s thought experiment, the demon functions as a one-way

valve by opening and closing a mechanical gate. This operation must be

synchronized with the incidence of an atom, and it must be performed quickly

to prevent reverse flow. In other words, if the gate size is large or it is operated
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Figure 4.5: Relationship between demon beam height and temperature.

slowly, atoms will have a higher probability of retransiting the gate. There is

a density threshold at which the valve can no longer act unidirectionally.

A direct analog to this density limit can be seen in the case of single-

photon cooling, even though the gate is optical rather than mechanical. Irre-

versible transfer is ensured by the loss of the decay photon to the environment.

Should this photon be reabsorbed before it is lost, as is increasingly likely with

higher densities, atoms may escape from the optical trough through an addi-

tional decay cycle. One approach for mitigating this effect is to exploit the

phenomenon of power broadening (see Figure 2.2). A high intensity optical

field detuned from resonance can drive transitions at the same rate as a low

intensity field on resonance. Due to energy conservation, the decay photons
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Figure 4.6: Plot of Equation 4.2 as a function of laser detuning in linewidths.
The ratio of beneficial to detrimental scattering increases with greater detun-
ing. In practice, a detuning of ∼ 6Γ is used.

are also detuned. These individual photons, however, produce a very small

field and therefore, for large detunings, a negligible reabsorption rate. In the

experiment, the demon beam is typically operated with a detuning of −35

MHz and a maximum intensity I ∼ 100Is.

This effect is difficult to measure directly because it is partially masked

by an artifact of the experimental apparatus, which, fortuitously, is mitigated

in the same fashion. Because the experiment takes place in the science cham-

ber, which is an uncoated glass cell, approximately 4% of the power from the

demon beam is reflected at each surface. These reflections are divergent, and

it is inevitable that some of the light is incident on the magnetic trap. This
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leads to depopulation of the ensemble and a decrease in transfer to the optical

trough. To see how detuning mitigates the problem, consider the scattering

rate given by Equation 2.2. For a given saturation parameter of the demon

beam sd = I/Is, the saturation parameter of the partially reflected beams in

the magnetic trap will be proportional but smaller: srefl = αsd where α < 1.

Then the ratio

Rd

Rrefl

=
1

α

1 + αsd + (2δ/Γ)2

1 + sd + (2δ/Γ)2
(4.2)

compares beneficial scattering in the optical trough to detrimental scattering

in the magnetic trap as a function of laser detuning. A plot of Equation 4.2

for a fixed saturation parameter is shown in Figure 4.6. As the detuning of

the laser is increased, the effect of the partially reflected power is minimized.

Of course, the intensity of the beam must also be increased with detuning to

maintain a sufficient scattering rate in the trough.

Both of the above-described effects can be seen in Figure 4.7, which is a

plot of the number of atoms transferred to the trough as a function of detuning,

for several beam powers. The traces corresponding to 1.5 nW (green) and 15

nW (red) display a reabsorption-limited density near resonance. At 150 nW

(black trace), partial reflections depopulate the magnetic trap and result in an

even lower final density. Detuning is advantageous at all three powers, and the

optimal amount is determined by balancing the excitation rate in the trough

with the losses due to reabsorption and magnetic trap depopulation.
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Figure 4.7: Final atom number as a function of demon beam detuning in
linewidths. A resonant beam induces two loss mechanisms, both of which are
mitigated by detuning the frequency and increasing the intensity.
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4.2.3 Multiple Chambers

Because the irreversibility of the transfer mechanism in single-photon

cooling relies on spontaneous decay, it is in general not possible to force all of

the atoms into one final state–one must instead rely on favorable branching

ratios to produce a desirable distribution of final states. The atoms transferred

into the optical trough end up in a distribution of F = 1 sublevels, and, with

respect to Maxwell’s thought experiment, these sublevel populations should

be considered as occupying separate chambers. The demon is, in this sense,

inefficient; though it acts as a one-way valve, the valve has multiple output

ports.

At the location of the optical trough–directly beneath the magnetic

trap–the magnetic field lines are orthogonal to the propagation direction of

the linearly polarized demon beam. Excitation of the magnetically trapped

|F = 2,mF = 2⟩ atoms with linear polarization is impossible for the F = 2 →

F ′ = 1 transition, so they are excited by the σ− component of this field to the

|F ′ = 1,mF ′ = 1⟩ state. Atoms which begin in the |F = 2,mF = 1⟩ state are

excited to the same state by absorption of a linearly polarized photon. From

the excited state, 84% decay in equal proportion to the mF = 0 and mF = 1

sublevels in the F = 1 manifold, while approximately 15% are cycled back to

the original states and a negligible remainder is lost to the |F = 2,mF = 0⟩

state.

The final distribution of states is measured by applying a strong mag-

netic field gradient after the cooling sequence has concluded. The gradient
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ejects all magnetically coupled states from the trap, leaving only atoms in

the mF = 0 sublevel. As expected, the measurements show that these atoms

constitute approximately 50% of the transferred population.

4.3 Analysis

Single-photon cooling, as implemented with the scheme discussed in

this chapter and shown in Figure 4.2, is essentially a one-dimensional cooling

technique. For an ideal gas in a magnetic quadrupole trap, energy distribu-

tions along orthogonal axes are uncorrelated. Therefore one would expect to

achieve phase-space compression of the ensemble only along the vertical ẑ axis,

with the transverse dimensions retaining their phase-space densities. This is

apparent in Figure 4.5, where the lowest temperature measured (4.64 µK) is

significantly higher than the fundamental limit of the technique, the recoil

temperature Trecoil = 362 nK.

Although there is an unmistakable increase in phase-space density in

the optical trap as compared to the magnetic trap, the measured temperature

is dominated not by the cooling technique but by the nature of the optical

trap. Because it has a finite depth and size, both of which are smaller than

that of the magnetic trap, the optical trough truncates the transverse phase-

space distributions of the ensemble, resulting in a reduced temperature and

size through the loss of atoms. This truncation can be controlled, as in Figure

4.8, by controlling the depth of the trap (through the power in the trough

beams) or the size of the trap (through the spacing of the end caps).
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Figure 4.8: Effect of finite optical trap (a) depth and (b) size on the truncation
of the ensemble. For deeper and larger traps, fewer atoms are lost.

As a consequence of this effect, measuring the temperature and size of

the ensemble in the optical trough gives incomplete information on the cooling

achieved by the technique. Rather, a more relevant metric for analyzing the

vertical phase-space compression is the transfer efficiency–that is, the fraction

of atoms transferred from the magnetic trap to the optical trap. To appreciate

the value of this quantity, it is helpful to first develop an analytical model

which describes the entire transfer process.

4.3.1 A Simple Model

To simplify the mathematics of the model tremendously, the spatial

distribution of the ensemble is approximated as Gaussian, and it is assumed

to have a Maxwell-Boltzmann velocity distribution. Strictly speaking, the
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optical and magnetic traps are not harmonic potentials, and thus modeling

the spatial distributions as Gaussian will introduce a small error. However,

the utility of the model is not in its absolute precision but rather in its ability

to expose the underlying physics of single-photon cooling.

In a single dimension denoted by the subscript i, the spatial distribution

may be written as

n1D(xi) =
N√
2πσ2

i

e−x2
i /2σ

2
i , (4.3)

and the velocity distribution may be written as

f1D(vi) =

√
m

2πkBTi

e−mv2i /2kBTi . (4.4)

For a given number of atoms N , these distributions are each characterized

by single parameters: σi and Ti. The one-dimensional phase-space density

ρ1D ∝ N/σi

√
Ti (cf. Equation 2.1) is, at best, constant for a non-dissipative

process, even if there are abrupt changes in the trap potential. This may be

written explicitly as ρ1D = ρ′1D or equivalently

N

σi

√
Ti

=
N ′

σ′
i

√
T ′
i

, (4.5)

where the primed variables refer to the transformed system. The transforma-

tion to be considered here is the result of the sudden switching of the trap

potential from a large volume magnetic trap to a small, shallow optical trap

with depth T ′
i and width σ′

i. This necessarily induces a loss of atoms, and

Equation 4.5 can be rearranged to define a maximum transfer efficiency:

ηi ≡
N ′

N
=

σ′
i

σi

√
T ′
i

Ti

. (4.6)
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The assumptions of this equation are that σ′
i ≤ σi and T ′

i ≤ Ti. In the

limit that these parameters are equal, the transfer efficiency is unity as should

be expected. Equation 4.6 can be trivially extended to three dimensions in

Cartesian coordinates as follows:

η =
∏
i

ηi =
∏
i

σ′
i

σi

√
T ′
i

Ti

, (4.7)

where i ∈ {x, y, z}. This equation could be written more concisely for the case

of thermalized ensembles (Ti = Tj) or isotropic traps (σi = σj), but it is left

in long form for the sake of generality.

It is now straightforward to write an expression for the maximum ex-

pected transfer efficiency of single-photon cooling. Neglecting a photon recoil,

the demon compresses the vertical dimension (ẑ) of the ensemble completely

in both position and momentum space. All that must be accounted for are

the phase-space-conserving transfer efficiencies in the transverse dimensions.

Noting that the ensemble is initially in thermal equilibrium (Tx = Ty ≡ T )

and anisotropic (σx = 2σy ≡ σ), the upper bound for the transfer efficiency of

single-photon cooling can be written as

ηspc =
∏

i∈{x,y,z}

σ′
i

σi

√
T ′
i

Ti

=
(σ′

x

√
T ′
x)(σ

′
y

√
T ′
y)

1
2
σ2T

. (4.8)

Any transfer efficiencies measured below this bound would indicate additional

losses introduced by incomplete phase-space compression along ẑ or by heating.

All factors in the numerator of Equation 4.8 are constants which are

set by the optical trough geometry and depth, so ηspc follows directly from
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Figure 4.9: Measured transfer efficiency of single-photon cooling as a function
of the initial magnetic trap temperature T . The red line is a plot of Equation
4.8.

the initial distributions of the magnetically trapped ensemble. Additionally,

because σ ∝ T (see Equation 4.1), ηspc can be plotted as a function of the

initial magnetic trap temperature T alone1. Figure 4.9 plots Equation 4.8

against measured data points.

The relevant optical trough parameters in this plot are (T ′
x, σ′

x) =

(8.6µm, 39.9µK) and (T ′
y, σ

′
y) = (2 × 5.1µm, 40.4µK). There are two main

points to make about these values. First, atoms do not have time to equi-

1One might point out that the adiabatic expansion of the magnetic trap during the
experiment lowers the ensemble’s temperature, and so it may seem a bit peculiar to insert
only the initial value of the temperature into Equation 4.8. However, the term that appears
in the denominator is σ

√
T , and this product is conserved during the adiabatic expansion.

90



0 10 20 30 40 50 60 70 80

20

30

40

50

60

70

 

 

 without demon
 with demon

M
ag

ne
tic

 T
ra

p 
Te

m
pe

ra
tu

re
 (

K
)

Percent of Expansion Completed

Figure 4.10: Magnetic trap temperatures at different stages of the cooling se-
quence. With the demon beam on (black squares), the ensemble’s temperature
is reduced by a greater amount than is caused by adiabatic expansion alone
(red circles). The lower temperature is the result of evaporative cooling.

librate inside the trough. Thus the temperatures measured are unequal and

correspond to the strength of the confining potential in either direction. The

second point concerns the factor of 2 appearing in the value for T ′
y, which is

an artifact of the trough geometry. Because the trough beams propagating

along x̂ are angled at 45◦, half of the energy along ŷ is shifted to ẑ after atoms

are transferred into the trough. Therefore the measured temperature, 5.1 µK,

represents only half of the effective capture depth along ŷ.

The data in Figure 4.9 show fairly close agreement with the model,

but it seems that the cooling outperforms the model at higher magnetic trap
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Figure 4.11: The collision rate in the magnetic trap increases monotonically
as a function of temperature. This explains the increased transfer efficiency
(with respect to the model) for higher initial temperatures.

temperatures. This is due to an effect predicted to occur in [28]. Single-photon

cooling has, thus far, been presumed to be a nonequilibrium process, operating

on an ideal gas which cannot rethermalize once its distribution is truncated

by the demon. As an experimental technique, the fact that cooling can occur

out of equilibrium can be quite advantageous, as discussed in Section 4.4.

However, a physical gas can equilibrate through collisions after truncation.

If the truncated atoms represent the high-energy tail of the distribution, the

gas will rethermalize at a lower temperature. This is the basis of evaporative

cooling. Figure 4.10 shows evidence that rethermalization occurs during the

expansion of the magnetic trap.
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Continuous thermal equilibration of the magnetically trapped ensem-

ble, even if incomplete, provides an additional source of phase-space compres-

sion. This, in turn, can lead to better performance than predicted by Equation

4.8. To explain the correlation between performance and temperature in Fig-

ure 4.9, note that the rate of equilibration is governed by the single-particle

collision rate, which is given by

Γc =
1

N

∫
n(r)2σs⟨vr⟩dr, (4.9)

where n(r) is the atomic density, σs is the s-wave scattering cross section, and

⟨vr⟩ =
√

16kBT/πm is the mean relative speed in a three-dimensional Boltz-

mann distribution. This rate is plotted in Figure 4.11 for the same ensembles

as in Figure 4.9. The collision rate increases monotonically with temperature

for these data points, implying that more equilibration occurs in these en-

sembles during the cooling experiment. Hence a greater transfer efficiency is

expected, in agreement with the measured data.

4.3.2 Phase-Space Compression

It is clear from Equation 4.8 that the transfer efficiency may be in-

creased by modifying the transverse phase-space overlap of the two traps (i.e.,

by decreasing the size and temperature of the magnetic trap or increasing the

size and depth of the optical trap). However, phase-space compression is typ-

ically the important figure of merit for cooling experiments, as discussed in

Section 2.2. One can use the analytical model to derive a simple expression
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for the phase-space compression of a non-interacting ensemble:

ρ′

ρ
=

σ

σ′
z

√
T

T ′
z

, (4.10)

For a fixed optical trough geometry and depth, the phase-space compression

increases with the magnetic trap temperature in spite of a corresponding de-

crease in transfer efficiency.

This equation underestimates the phase-space compression if elastic

collisions occur in the ensemble, which is the case for high initial temperatures.

The greatest observed compression started with an ensemble of 1.2×108 atoms

with T = 53µK and σ = 515µm. Noting that 73% were in the |F = 2,mF =

2⟩ state, this corresponds to a peak phase-space density ρ = 1.4× 10−6. Out

of this ensemble, 0.3% (3.3×105 atoms) were transferred to the optical trough

at a final temperature of 4.3 µK, amounting to a peak phase-space density

ρ′ = 4.9 × 10−4. This value is for atoms in the |F = 1,mF = 0⟩ state, which

account for 50% of the final population. The net compression of phase-space

density is by a factor of 360.

4.4 Discussion

In addition to being interesting in the context of Maxwell’s thought

experiment, single-photon cooling is appealing because of its potential as a

useful and effective cooling technique. This stems largely from its generality,

especially in light of the restrictive nature of the commonly used techniques

in the cold atom community. For single-photon cooling to work, only two re-
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(a) (b)

Figure 4.12: (a) Traditional laser cooling techniques require an atom to scatter
thousands of photons, and so a closed cycling transition is crucial. (b) If the
excited state can decay to a different ground state, the atom leaves the cooling
cycle, and laser cooling fails.

quirements must be met: First, the atom to be cooled must possess a magnetic

moment in the ground state (or a metastable excited state). Nearly the entire

periodic table meets this condition. Second, there must be a laser-accessible

transition to an excited state that can decay to a dark state.

Traditional laser cooling techniques, such as optical molasses (Section

2.3.1.1), work only on two-level atoms (Figure 4.12a). These techniques rely on

momentum transfer between atoms and photons, and, because of the minuscule

amount of momentum a photon carries, many thousands of photons must be

scattered by each atom to obtain significant cooling. If an atom decays even

once to a different ground state which is no longer resonant with the laser,

it is effectively lost (Figure 4.12b). As is the case with the alkaline earth

metals, additional lasers can sometimes be introduced to pump these lost

atoms back into the cooling cycle. However, doing so exponentially increases

the complexity of the experiment and is not feasible for most atoms, ergo only
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a handful of atoms in the periodic table are amenable to laser cooling. In

contrast, single-photon cooling is prohibited for two-level atoms. Because it

doesn’t rely on momentum transfer but instead reduces entropy directly, only

one photon is required to achieve substantial cooling.

Another cooling technique commonly used to bring atoms to degeneracy

is evaporative cooling. Though it might seem to be a universal technique, one

could argue that it is just as restrictive as laser cooling. The technique relies on

a large interatomic scattering cross section as well as a high initial density to

provide an appreciable collision rate. Furthermore, collisions must be elastic;

inelastic collisions will eject atoms from the magnetic trap. Because it is an

inherently lossy technique, one must also start with a large number of atoms.

Although single-photon cooling is aided by collisions, they are not required.

Continuous equilibration is also not required, so single-photon cooling can

proceed at a much faster rate than evaporation.

As an example of its generality, single-photon cooling can even be ap-

plied to molecules [35], which have seen extremely limited progress in re-

gard to laser cooling. Consider, for example, the scheme presented in Fig-

ure 4.13. An ensemble of NH radicals is magnetically trapped in the 3Σ−

|ν = 0, J = 1, N = 2,mJ = −1⟩ state, where ν, J, N , and mJ are the vibra-

tion, total rotation, nuclear rotation, and total angular momentum projection

quantum numbers, respectively. A 336 nm photon from the demon laser excites

each molecule at its classical turning point to the 3Π1 manifold, irreversibly

transferring∼ 35% of the population (defined by the Hönl-London and Franck-
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Figure 4.13: Single-photon cooling of an NH radical. (a) Level structure and
relevant transitions. (b) Potential diagram for initial state. (c) Potential
diagram for final, optically trapped state. [35]

Condon factors) to the nonmagnetic 3Σ− |ν = 0, J = 1, N = 0,mJ = −1⟩

ground state through the spontaneous decay of a photon.

As opposed to the repulsive optical trap in which rubidium atoms were

accumulated, the NH radicals are transferred into an red-detuned, attractive

optical trap. The relevant potentials are shown in Figures 4.13b and 4.13c.

While the optical potential is eclipsed by the magnetic coupling for the initial

state, the final nonmagnetic state encounters an unambiguous trapping po-

tential. The cooling sequence then proceeds by adiabatically translating the

magnetic trap toward the optical trap, which can be carried out as demon-

strated in Figure 3.7.

Single-photon cooling is a particularly promising technique in light of

recent progress with supersonic beams, much of which has been pioneered
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in the Raizen Group. Experiments have demonstrated complete deceleration

of pulsed supersonic beams of atoms [90, 91] and molecules [92–95]. These

techniques are completely general, and they lead to trapped samples of any

paramagnetic species at temperatures in the tens of millikelvins. Because of

its unrestrictive nature, single-photon cooling is a prime candidate to further

cool these ensembles.
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Chapter 5

RF-Dressed Single-Photon Cooling

Single-photon cooling, as implemented in Chapter 4, is a versatile and

effective technique, yet, in a practical sense, it suffers from one principal limi-

tation: the ensemble is cooled in only one dimension due to the relative geome-

tries of the initial (magnetic) and final (optical) traps. This not only limits the

final temperature, but it also results in a loss of atoms for a final trap which

is shallower than the initial ensemble temperature.

Cooling in three dimensions is possible with a final trap which forms
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a surface surrounding the initial trap. Though it is not apparent how this

could be implemented with an optical potential, it is relatively straightforward

to create such a trap using a combination of static and radio-frequency (RF)

magnetic fields. This chapter introduces so-called RF-dressed states and shows

how single-photon cooling can be implemented using them. Atomic hydrogen

is discussed as an example, and the apparatus being built toward the goal of

cooling hydrogen and its isotopes is described.

5.1 RF-Dressed States

An atom in an external electromagnetic field can be described in the

dressed state picture, where the atom is “dressed” with an external photon

which couples two internal states and shifts their energies [96]. When the

internal states are hyperfine levels of the electronic ground state, spontaneous

relaxation of the states is negligible, and a resonant RF or microwave field in

combination with a static magnetic field can create a conservative potential.

RF-dressed potentials were first proposed for trapping neutral atoms in 2001

[97] and subsequently demonstrated in 2004 [98]. Since then, the versatility

of RF-dressing has enabled numerous interesting applications, including the

creation of novel trap geometries [99–101] and atomic beamsplitters [102].

5.1.1 Derivation

Consider the coupling of atoms in a magnetic trap to an RF magnetic

field. This interaction has been analyzed in detail in [70, 103–105]. Only a
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brief description will be given here. The Zeeman Hamiltonian for this system

is given by

H = gFµBF · B(r, t) = gFµBF · [BT(r) +BRF(r, t)], (5.1)

where F is the total atomic angular momentum operator and BT(r) is the

static field of the trap. Let the RF field be written as

BRF(r, t) = Ba
RF(r) cos(ωRFt) +Bb

RF(r) cos(ωRFt+ δ). (5.2)

The Hamiltonian may be diagonalized by making two transformations. The

first transformation rotates the static field of the trap so that the trap interac-

tion is diagonal: [RTBT(r)]F = |BT(r)|Fz. The second transformation rotates

the frame about the direction of the local trap field at angular velocity ωRF.

Resulting terms oscillating at frequency 2ωRF are discarded (the rotating wave

approximation), and the final Hamiltonian can be expressed as

H =

[
gFµB|BT(r)| −

gF
|gF |

~ωRF

]
Fz +

gFµB

2

(
Bx

By

)T(
Fx

Fy

)
, (5.3)

where the transformed RF field B is given by

B = RTB
a
RF(r) + RγRTB

b
RF(r). (5.4)

Here Rγ is a rotation matrix about the direction of the local magnetic field by

angle γ = − gF
|gF |δ.

For an F = 1 system, the eigenstates of this Hamiltonian can be ex-

pressed in terms of the un-dressed (or bare) states as a function of a single
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parameter θ:

|m̃ = 1⟩ = 1

2

[
(1 + cos θ)|mF = 1⟩+

√
2 sin θ|mF = 0⟩

+
sin2 θ

1 + cos θ
|mF = −1⟩

]
(5.5a)

|m̃ = 0⟩ = 1

2

[
−
√
2 sin θ|mF = 1⟩+ 2 cos θ|mF = 0⟩

+
√
2 sin θ|mF = −1⟩

]
(5.5b)

|m̃ = −1⟩ = 1

2

[
(1− cos θ)|mF = 1⟩ −

√
2 sin θ|mF = 0⟩

+
sin2 θ

1− cos θ
|mF = −1⟩

]
, (5.5c)

where m̃ is the dressed state quantum number. The mixing angle θ is defined

by the relation tan θ =
√
2Ω/∆, where

Ω = −1

2
⟨mF = ±1|µ ·BRF|mF = 0⟩ = gFµB

2~

√
B

2

x +B
2

y (5.6)

is the Rabi frequency and ∆ = ωRF − ωL. Here ωL = µBT/~ is the Larmor

precession frequency. The eigenstate decompositions are plotted in Figure 5.1.

5.1.2 The Ioffe-Pritchard Magnetic Trap

Adiabatic rotation of the atomic angular momentum depends on a non-

vanishing Rabi frequency. It can be seen from Equation 5.6 that this is only

the case when there is a component of the RF field which is orthogonal to the

trap field. When the two fields are parallel, Ω = 0 and an atom will remain in

its bare state. With a magnetic quadrupole trap, there are always points at

which the fields are parallel for linear RF polarization. Circular polarization,
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Figure 5.1: Decomposition of the RF-dressed states for a spin-1 atom. The
atom’s spin is adiabatically rotated as it passes through the region where
ωL ≈ ωRF. The coordinate θ = tan−1

[√
2Ω/(ωL − ωRF)

]
, so the resonance

condition occurs at θ = π/2.
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Figure 5.2: The Ioffe-Pritchard magnetic trap. Current through four straight
bars creates a radial quadrupole field, while two pinch coils provide axial con-
finement. The arrows indicate the direction of the current.

on the other hand, would have opposite handedness on either side of the field

minimum, leading to non-adiabatic rotation. These properties prevent the

creation of perfectly adiabatic RF-dressed potentials [100]. To avoid this,

traps with offset fields are typically used in RF-dressing experiments. The

RF polarization is set to be orthogonal to the offset field, and the result is a

non-vanishing Rabi frequency at all points.

A commonly used trap with an offset field is the Ioffe-Pritchard mag-

netic trap [58, 106], a schematic of which is depicted in Figure 5.2. Near the

center of the trap, the field is given, in cylindrical coordinates (ρ̂, ϕ̂, ẑ), by

BIP = B0

 0
0
1

+B′ρ

 cos(2ϕ)
− sin(2ϕ)

0

+
B′′

2

 −zρ
0

z2 − ρ2/2

 . (5.7)

Here the first term is the homogeneous offset field from the Helmholtz pair,

the second term is a radial quadrupole field created by the bars, and the third

term is a quadratic field generated by the Helmholtz pair. The magnitude
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of the quadratic term, which provides axial confinement, is dependent on the

geometry of Helmholtz coils as follows:

B′′ = 6B0
4D2 −R2

(D2 +R2)2
, (5.8)

where 2D is the separation of the coils and R is the radius.

5.1.3 Adiabatic Potentials

The adiabatic dressed-state potentials corresponding to the Hamilto-

nian of Equation 5.3 are given by

U = m̃
√

(|gFµBBT| − ~ωRF)2 + (~Ω(r))2. (5.9)

For a circularly polarized RF field in the (ρ̂, ϕ̂) plane, the Rabi frequency Ω(r)

may be approximated as independent of r. The potentials for the bare states

as well as the dressed states are shown in Figure 5.3 for ωRF > ω0, where

ω0 = µB0/~ is the Larmor frequency at the trap minimum.

At this point, the attraction of the RF-dressed potentials for single-

photon cooling should be clear. With a suitable demon, atoms initially in

state |m̃ = −1⟩ can be irreversibly transferred into state |m̃ = 1⟩ at their

classical turning points, compressing and cooling the ensemble in all three

dimensions.

5.2 The Dressed State Demon

To be effective, the demon in single-photon cooling must operate at

a well-defined position. Spatial selectivity is crucial to maximizing entropy
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Figure 5.3: RF-dressed potentials in the Ioffe-Pritchard trap. (a) Bare state
potentials as a function of radial coordinate. (b) RF-dressed potentials as
a function of radial coordinate. (c) and (d) Two-dimensional plots of RF-
dressed potentials show that a shell-like potential (m̃ = 1) surrounds an inner
trap potential (m̃ = −1).
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Figure 5.4: RF-dressed energy levels and the demon for atomic hydrogen.
Atoms are transferred from the |m̃ = −1⟩ dressed state (chamber B) to the
|m̃ = 1⟩ dressed state (chamber A) with the combination of a 1.4 GHz mi-
crowave transition and a two-photon optical transition, followed by a sponta-
neous decay.

reduction (see Section 4.2.1). When transferring atoms into an optical trap,

spatial selectivity is easily achieved by tightly focusing the resonant beam

inside the trap. However, it is, in general, not possible to do this over an ex-

tended surface such as the trap minimum of the |m̃ = 1⟩ state. The additional

hyperfine structure of the ground state can be exploited to circumvent this

problem.

Figure 5.4 depicts such a demon for the energy levels of atomic hydrogen

initially in the 12S1/2 electronic configuration. Spatial selectivity is achieved

by a microwave transition that couples the |F = 1, m̃F = −1⟩ state to the

F = 0 manifold at the avoided crossings of the RF-dressed states. A 243
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nm laser, which need not be focused at this location, drives a resonant two-

photon transition to an excited state that decays to the |m̃F = 1⟩ state.

This completes the irreversible transfer step. For hydrogen, the excited state

configuration 22S1/2 is metastable (τ ≈ 122ms) [107], but a modest electric

field mixes it with the 22P1/2, 3/2 states which quickly decay via emission of a

Lyman-α photon.

A few words should be said on the irreversibility of this transfer step. In

Chapter 4, irreversibility was ensured because the final state was in a different

hyperfine manifold than the initial state. Thus the demon beam was detuned

by the hyperfine splitting, leading to a negligible excitation rate. Conversely,

with the scheme presented here, the final and initial states are in the same

manifold. However, the degeneracy of the states is lifted by the vectorial cou-

pling to the RF magnetic field. The Rabi splitting separates the dressed states

and allows the microwave transition (which has a negligibly small linewidth)

to occur only for the |m̃ = −1⟩ state.

Unlike the scheme described in Chapter 4, the cooling process cannot

work by ramping off the magnetic potential. Doing so would not only ramp

off the final trapping potential, but because the position of the avoided cross-

ing is dependent on the magnetic field strength, the position of the demon

would expand just as the ensemble would. Rather, cooling must proceed by

translating the demon, as in Figure 1.3b. To do this, the RF frequency is

swept downward, collapsing the outer dressed state radially (Figure 5.5). The

picture is reminiscent of evaporative cooling, where atoms would be discarded
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Figure 5.5: Sweep of the RF frequency. The outer shell potential collapses
radially and finally resembles the initial low-field seeking state.

as they pass the avoided crossing of the |m̃ = −1⟩ state. With single-photon

cooling, these atoms are instead saved by transferring them to |m̃ = 1⟩.

It should be noted that the outer dressed state potential forms an essen-

tially lossless trap. Non-adiabatic Landau-Zener tunneling may occur through

the avoided crossings with probability [100, 108]

pLZ = 1−
[
1− exp

(
−π

2

Ω2

αv

)]2F
(5.10)

where α = gFµBb
′/~, b′ is the gradient of the magnetic field, and v is the

atomic velocity. Increasing the Rabi frequency decreases the loss probability

exponentially.

In this geometry, single-photon cooling is effectively a three-dimensional

cooling technique. Thus the transfer efficiency (Equation 4.8) could, in prin-

ciple, be unity. The only unavoidable loss mechanism is the branching ratio.
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5.3 The Hydrogen Experiment

Although atomic hydrogen possesses a cycling transition and could, in

principle, be laser cooled, lasers at the required wavelength (121 nm) do not

exist with sufficient power to achieve appreciable cooling [109]. With great

effort, hydrogen has been trapped and cooled [110] and even Bose-condensed

[111] using a dilution refrigerator and evaporative cooling. The complexity of

these experiments, however, was immense, and the lack of full optical access

to the atoms greatly limited the scope of the investigations that could be

performed.

In conjunction with the recently developed methods for decelerating

supersonic pulses, single-photon cooling is a prime candidate for producing

ultra-cold samples of atomic hydrogen and its isotopes in a simple apparatus

with ample optical access [25]. Such a capability would be paramount for en-

abling a number of extraordinary investigations, including precision measure-

ment of the 1S−2S transition frequency for all hydrogenic isotopes [112], tests

of CPT by comparison with anti-hydrogen [113, 114], and even measurement

of the neutrino mass [115]. With these goals in mind, this section describes

progress toward building such an apparatus.

5.3.1 Slowing and Trapping

It has historically been a great challenge to produce trapped samples

of gases which do not possess accessible cycling transitions. A general ap-

proach that has been picking up momentum in the scientific community is the
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Figure 5.6: Fundamental principle of the atomic coilgun. Atoms lose kinetic
energy as they climb the magnetic potential. The field is switched off when
the atoms are near the peak, leading to a net reduction in kinetic energy.

deceleration of supersonic pulses. These pulses are created by nozzles which

separate chambers of high pressure and vacuum. As the gas transits the noz-

zle, it adiabatically expands and cools to a temperature around 100 mK in

the co-moving frame. However, the enthalpy is converted into kinetic energy,

resulting in a pulse velocity typically greater than 500 m/s in the lab frame.

The collective kinetic energy of these pulses can be removed using a

series of electromagnetic coils, the operation of which is analogous to a coilgun

acting in reverse. Figure 5.6 shows the operating principle at the heart of the

so-called ‘atomic coilgun.’ An atom (or molecule) in a low-field seeking state

propagates with kinetic energy Eki along the axis of an electromagnetic coil.
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Figure 5.7: The hydrogen chamber.

Current through this coil generates an axial field as drawn. Once the atom

has climbed the magnetic potential, the field is quickly extinguished, leaving

the atom with a final kinetic energy Ek < Eki . This process is repeated as

the pulse propagates through a series of coils until all the collective kinetic

energy has been removed, at which point the pulse may be trapped in a static

magnetic field.

A photograph of the vacuum chamber under construction for the hy-

drogen experiment is shown in Figure 5.7. Molecular hydrogen is seeded in a

helium carrier gas on the high pressure side of a supersonic valve. As the gas

transits the nozzle, a DC discharge dissociates the hydrogen molecules. The

atoms that are produced pass through a skimmer and enter the coilgun.

The coilgun comprises 18 electromagnetic coils with inner diameter 1

cm. Around 825 A of current flows through 24 windings (4 layers× 6 windings)
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of 17 gauge copper, producing a peak field of 1.9 T. The coils each are spaced

by 1.2 cm, giving the coilgun a total length of about 30 cm. At the end of

the coilgun are two large coils which create a quadrupole trap for the pulse

once it has been stopped. With a static current of 500 A, the trap depth is

approximately 100 mK and has an axial radius of roughly 4 mm. As discussed

in Section 5.1.2, a quadrupole trap is unsuitable for RF-dressed single-photon

cooling. In the future, this trap will be converted to a Ioffe-Pritchard trap. The

immediate experimental goal, however, is just to trap and detect hydrogen,

and so a quadrupole trap will suffice.

It is interesting to note the similarities and differences between the coil-

gun and single-photon cooling. Both techniques reduce the ensemble’s kinetic

energy by converting it into magnetic potential energy and then discarding it.

However, the coilgun doesn’t lower the entropy of the ensemble, and thus no

dissipative step is required, as is the case with single-photon cooling. This can

be understood through the informational interpretation of entropy. The dense

pulse released from the supersonic valve is just one particular microstate of

a system which, assuming ergodicity, is most likely to be found in a diffuse

microstate occupying the entire vacuum chamber with entropy Sdiffuse. The

final state of the system after deceleration is a cold, trapped ensemble with

entropy Strapped < Sdiffuse. This inequality is justified because the final state

occupies a smaller volume in both configuration and velocity space. Naively,

it may seem that entropy has been reduced, but it must be noted that infor-

mation on the pulse’s position and velocity is required to operate the coilgun.
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This information is known a priori, and so the initial entropy of the pulse

Sinitial = Sdiffuse = Strapped + Sinfo, where Sinfo is the information entropy asso-

ciated with the a priori knowledge. Thus the expression Strapped < Sinitial does

not imply a reduction of physical entropy.

5.3.2 Two-Photon Excitation

The 1S−2S transition of atomic hydrogen will be used for both detec-

tion and cooling. Because there is no change in orbital angular momentum,

parity conservation prohibits this transition for a single photon. Nonetheless,

the transition can be driven with two photons at 243 nm, the first of which

excites a virtual P state which includes contributions from all nP states plus

the continuum, and the second of which transfers the atom to the 2S state.

This process has been analyzed in detail [116, 117]; the main results are given

here.

Consider two counter-propagating laser beams with wavevectors k1 =

k2. Doppler-sensitive excitation may occur by the absorption of two photons

from one beam. For resonant excitation, the laser frequency must satisfy

2~ωlaser = E2S,pf
− E1S,pi

= ~ω1S−2S − 2~k · pi

m
+

2~2k2

m
, (5.11)

where pi (pf ) is the initial (final) atomic momentum. The k·pi term is referred

to as the Doppler shift, and the term quadratic in k is the recoil shift. The

Doppler shift leads to a broad excitation spectrum and thus a relatively small

excitation rate.
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Conversely, an atom may absorb one photon from both laser beams.

In this case, k1 · pi = −k2 · pi and so the Doppler shifts cancel each other.

Additionally, there is no net recoil because the absorbed photons were counter-

propagating. This is referred to as Doppler-insensitive excitation, and the laser

frequency required for resonant excitation satisfies

2~ωlaser = E2S,pf
− E1S,pi

= ~ω1S−2S. (5.12)

For linearly polarized laser beams with equal intensities I1 = I1 = I and

frequencies ωlaser = ω1S−2S/2, the Rabi frequency for Doppler-insensitive exci-

tation is given by

Ω0(r) = 2M12
2S,1S

(
α

2R∞

)3
1

3π2~c
√

I1(r)I2(r) = 9.264 I(r) s−1 cm2 W−1,

(5.13)

where M12
2S,1S = 11.78 is the sum over two-photon dipole matrix elements [118],

α is the fine structure constant, and R∞ is the Rydberg constant. For weak

resonant excitation, the transition rate is

R =
Ω0(r)

2

Γ
=

85.8

Γ
I(r)2 s−1 cm2W−1, (5.14)

where Γ is the homogeneous linewidth. With no external sources of broadening

present, the linewidth is determined by the lifetime of the 2S state: Γ = Γ2S =

8.2 s−1. Setting R = Γ then gives an effective resonant saturation intensity of

0.89W/cm2 [61].

The first thing to notice in Equation 5.14 is that the rate scales with

the square of the intensity, as opposed to the single-photon excitation rate
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(Equation 2.2) which scales linearly with intensity. The two-photon rate is

thus much more sensitive to intensity, and much higher powers are typically

required to drive two-photon transitions efficiently.

Furthermore, the transition rate is inversely proportional to the effec-

tive linewidth. In the present experiment, this linewidth is not given by the

natural linewidth of hydrogen, but by two other sources: the excitation laser

linewidth and transit time broadening. The former is a function of laser design

and stability, and it is discussed in Section 5.3.3. The latter is simply a man-

ifestation of the energy-time uncertainty relation ∆E∆t ≈ ~. As an atom’s

trajectory passes though the laser beams, the atom sees a time-dependent in-

tensity and hence a time-dependent excitation rate. The resulting spectral

width is related to the inverse of the time the atom spends in the laser beams.

Assuming that the excitation amplitudes from multiple passes through the

beams add incoherently, there are no Ramsey fringes and the 1/e half-width

due to transit time broadening is given by

Γtt =
1

w0

√
2kBT

m
, (5.15)

where w0 is the laser beam waist corresponding to the Gaussian intensity

profile

I(x, y) =
2P

πw2
0

exp

[
−2(x2 + y2)

w2
0

]
, (5.16)

where P is the total power in the beam.

Ideally, for both detection and RF-dressed single-photon cooling, one

would like to illuminate the entire volume of the magnetic trap with counter-
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Figure 5.8: Monte Carlo simulation of two-photon excitation in the magnetic
trap. The fraction of excited atoms in the magnetic trap is plotted as a function
of interrogation time. For 300 mW of counter-propagating power focused to a
waist of 50 µm with a laser linewidth of 40 kHz, about 14% of the atoms in
the magnetic trap are excited after 100 ms interrogation time. Plot courtesy
of Robert Clark.

propagating beams. For a given intensity, this would minimize transit time

broadening and maximize the transition rate. However, due to the limited

power currently achievable in a 243 nm laser, one must balance a decrease

in transit time broadening with a concomitant decrease in intensity. From

Equations 5.15 and 5.16, it can be seen that the transition rate R ∼ w−3
0 .

Experimentally, one strategy is to match the transit time broadening

with the laser linewidth by setting the beam waist. The transition rate can

then be increased with the use of a Fabry-Perot cavity [119, 120], which creates

a counter-propagating standing wave with high intensity. Robert Clark has

performed Monte Carlo simulations which integrate the optical Bloch equa-
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tions [57] for atomic trajectories in the quadrupole trap. A plot of the excita-

tion fraction as a function of interrogation time is shown in Figure 5.8.

After excitation, hydrogen atoms can be detected either by launching

them into a micro-channel plate (MCP), or by quenching them and detecting

the emitted Lyman-α photons with a photo-multiplier tube (PMT).

5.3.3 Laser System

Ultraviolet (UV) radiation at 243 nm is generated by an amplified and

frequency-quadrupled semiconductor laser. This section describes each com-

ponent used to produce a stable and tunable source for driving the hydrogen

1S − 2S transition. A schematic of the beam distribution and components is

shown in Figure 5.9.

Master Laser

The master laser is an infrared ECDL which lases at 972 nm. The

diode (Eagleyard Photonics RWE-0980-08020-1500-SOT02) is a single-mode

ridge waveguide GaAs laser which is AR coated to extend its bandwidth. The

nominal lasing wavelength is 980 nm, but the gain profile extends from 900-

1000 nm. The diode is mounted in a temperature-controlled bronze block,

which in turn is mounted on an Invar breadboard for additional thermal sta-

bility.

Because phase noise is multiplied during each wavelength conversion

process and the hydrogen resonance is at the eighth harmonic of the funda-
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Figure 5.9: Beam distribution for the 243 nm laser.

diode

di raction

grating

piezo

TEC

Figure 5.10: The 972 nm master laser.
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mental infrared frequency, it is critical that phase noise be suppressed as much

as possible. To address this issue, the diffraction grating is mounted on the

Invar breadboard approximately 27 cm from the diode. A long cavity such

as this one acts as a flywheel for the laser radiation, which averages out the

high-frequency phase noise of the diode. The holographic diffraction grating

has 1200 lines/mm and retroreflects about 30% of the incident power back to

the diode.

A photograph of the master laser is shown in Figure 5.10. It typically

produces around 70 mW output power at an injection current of 120 mA.

The wavelength can be tuned with a piezo stack, which controls the angle of

the diffraction grating. A 700 kHz upper bound for the linewidth has been

measured using a reference Fabry-Perot cavity. Most likely, the linewidth is

closer to 20 kHz, as this value was measured for a similarly constructed laser

[121].

Master Oscillator Power Amplifier

Single-mode semiconductor diode lasers are limited in output power

due to nonradiative surface recombination and thermal damage resulting from

high optical power. One solution to this problem is the use of a semiconductor

amplifier with a tapered gain region [122]. A tapered amplifier (TA) can

produce high output power with good mode quality while retaining the spectral

characteristics of the master laser which is injected into its rear facet. Such

a configuration is referred to as a master oscillator power amplifier (MOPA)
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system.

After exiting the ECDL, the laser beam passes through two optical

isolators (Conoptics 713B, 714) which provide about 80 dB isolation while

transmitting around 85% of the power. One isolator alone was insufficient in

preventing light emitted from the rear facet of the TA from destabilizing the

frequency of the master laser. After the isolators, about 5 mW is picked off

with a PBSC and sent to a wavemeter and a Fabry-Perot cavity for frequency

diagnostics. The remainder (∼ 50mW) is spatially filtered with a telescope-

pinhole combination and mode-matched to the TA with a cylindrical telescope.

The TA was originally a home-built system using a 2 W amplifier chip

(m2k-laser GmbH TAL-0976-2000). Over a period of about six months, the

output mode quality and stability of the chip worsened drastically, and so it

was replaced by a commercial system (Toptica Photonics BoosTA-L-980). This

TA produces 1 W output power in a clean mode and has been extremely stable

since installation. The output of the tapered amplifier is highly astigmatic, so

it is collimated with a combination of an aspheric lens and a cylindrical lens,

and then it is circularized with a cylindrical telescope. After this, it passes

through an optical isolator (Conoptics 713B) which prevents potentially dam-

aging back-reflections from re-entering the TA. About 900 mW is transmitted

through the isolator.
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Figure 5.11: The second frequency doubler.

Frequency Doublers

Subsequent to the isolator, the beam is mode-matched for a commercial

frequency doubler (Coherent MBD-200). The doubler comprises a bow-tie

enhancement cavity with a lithium triborate (LBO) nonlinear crystal at the

focus. The cavity is locked to the master laser frequency using a Hänsch-

Couillaud lock [123]. About 110 mW of blue 486 nm light is produced in this

doubler.

The blue light exits the first doubler through a dichroic mirror which

is highly reflective at 972 nm. It is then mode-matched with three lenses to a

second frequency doubler. This unit is nearly identical to the first, but uses

an intracavity beta barium borate (BBO) crystal rather than LBO to create
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Figure 5.12: The molecular tellurium spectrometer. A glass plate beamsplitter
picks off 4% of the beam for the probe. The remainder (the pump beam) is
reflected by a PBSC and double-passes a 57 MHz AOM which is dithered at
25 kHz. The polarization is rotated twice by a quarter waveplate, so it passes
straight through the PBSC on its second encounter, and it counter-propagates
with the probe beam through the tellurium cell. The probe beam is reflected
by the PBSC after passing through the cell, and it is picked up by a fast
photodiode. The resulting signal is mixed with the dither frequency and sent
to a PID controller which feeds back to the master laser piezo stack.

a few milliwatts of 243 nm light. A photograph of this doubler with labeled

components is shown in Figure 5.11.

Tellurium Spectrometer

In between the two frequency doublers, about 10 mW of blue light is

picked off by a PBSC and sent to a saturated absorption setup, as depicted

in Figure 5.12. Molecular tellurium serves as a frequency reference, as its
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excitation lines near 486 nm are known to better than 1 MHz [124–126]. For

a Te2 cell at a temperature around 510◦C, the i2 line (near line 1284 in [127])

has been found to be approximately 57 MHz above the 1/4 harmonic of the

hydrogen 1S − 2S transition frequency. This displacement is compensated

by the 57 MHz double-pass AOM in the path of the pump beam. The error

signal from the spectrometer is fed back to the piezo stack of the master laser,

closing the feedback loop and locking the laser on the harmonic of the hydrogen

resonance.

5.3.4 Future Directions

The next step for the experiment is to actually slow, trap, and detect

hydrogen. There are also several improvements to the laser system which can

be made in order to increase the excitation fraction in the magnetic trap. First,

more UV power will increase the excitation rate. In principle, the frequency

doublers can operate more efficiently, and an increase by a factor of 10 in UV

power is not unforeseeable. The UV intensity can also be increased by us-

ing higher reflectivity mirrors in Fabry-Perot cavity. Additionally, narrowing

the linewidth of the laser could help to increase the excitation rate. A com-

mon practice is to stabilize the laser frequency with the aid of an ultra-stable

reference cavity [128].

After this, the experiment will be upgraded for single-photon cooling.

The quadrupole trap must be replaced with a Ioffe-Pritchard trap, and anten-

nas will be installed to provide the necessary RF and microwave fields.
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Contributions

The work presented in this dissertation was almost entirely the result of

collaborative efforts by myself, fellow graduate students, postdoctoral scholars,

and my advisor. Unless otherwise cited, I have discussed only work in which

I played a central role in producing. It is a difficult, if not impossible, task to

completely isolate the contributions of individual researchers to the final results

of the cooling experiments. Nonetheless, I will attempt in this appendix to

provide a rough sketch of each group member’s involvement.

Rubidium

The original idea for the rubidium experiment was conceived by my

advisor, Mark Raizen, and the particular implementation for the first gen-

eration of the experiment was developed jointly by Mark and Gabriel Price.

Though the first demonstration was not discussed in this dissertation, I worked

on it closely alongside Gabriel, and Kirsten Viering joined the team after a

semester. Our postdoc Ed Narevicius was available for many discussions and

made helpful suggestions along the way.

We had the good fortune of starting with an experimental infrastructure

left over from a previous rubidium BEC experiment. Gabriel, Kirsten, and I

worked together to adapt the apparatus (vacuum chamber, magnetic system,
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MOT lasers, and computer control system) for single-photon cooling. We

rerouted lasers, installed optical components, designed and built a new optical

trap, and set up new imaging systems. I wrote the bulk of the new computer

code that was necessary to run the cooling sequence in Control and interface a

new CCD camera with Vision. I also wrote code for a Monte Carlo simulation

which was later taken up and improved by Kirsten.

There was a great amount of maintenance which the three of us con-

tributed to on a daily basis to keep the apparatus working. A short list of the

main tasks included debugging general malfunctions, tweaking PID circuits,

repairing electronics, realigning lasers, and replacing failed laser diodes.

The cooling experiment with rubidium discussed in this dissertation fol-

lowed our first demonstration. I played a central role in the development and

implementation of the major modifications to the previous technique. These

included designing a new optical trap and repositioning it beneath the mag-

netic trap, adiabatically expanding the ensemble during the cooling sequence

rather than translating it, and detuning the demon beam from resonance.

Though the acquisition and analysis of data overall was a collaborative effort,

I led the development and interpretation of the analytical model that clarified

our results and defined the limits of the cooling technique.

For a few months, I worked, with the assistance of Gabriel, on imple-

menting RF-dressed single-photon cooling with rubidium. We did not observe

phase-space compression, likely due to constraints imposed by the apparatus,

and so the results were not published. However, we did observe irreversible
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transfer between dressed state potentials.

Hydrogen

Progress toward building the hydrogen experiment has been achieved

on two fronts: trapping and cooling. The former has involved construction of

the vacuum chamber, coilgun, and magnetic trap. Adam Libson, Tom Mazur,

Isaac Chavez, and Rob Clark have all worked on this aspect of the experiment.

My efforts have been focused on cooling. Along with Mark and Ed, I

devised the technique for cooling in three dimensions using RF-dressed states.

With the assistance of Rob, I led the design, construction, and characterization

of the 243 nm laser system for excitation of hydrogen, including the ECDL,

first generation TA, and tellurium spectrometer. We have also installed and

characterized the commercial TA and frequency doubling units.
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