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The recent proliferation of personal wireless devices has led to the

emergence of disruption-tolerant networks (DTNs), which are characterized

by intermittent connectivity among some or all participating nodes and a con-

sequent lack of contemporaneous end-to-end paths between the source and

consumer of information. However, the success of DTNs as a communication

paradigm is critically dependent on the following challenges being addressed:

(1) How to enable popular but demanding applications, such as video-on-

demand, to operate in such constrained network settings, and (2) How to

incentivize individual devices to cooperate when network operation is only

possible under, or greatly benefits from cooperation.

In this dissertation, we present a novel set of protocols and develop real

systems that effectively meet the above challenges. We make the following

contributions:
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First, we design and implement a novel system for enabling high band-

width content distribution in vehicular DTNs by leveraging infrastructure ac-

cess points (APs). We predict which APs will soon be visited by a vehicular

node and then proactively push content-of-interest to those APs. Our replica-

tion schemes optimize content delivery by exploiting Internet connectivity, lo-

cal wireless connectivity, node relay connectivity and mesh connectivity among

APs. We demonstrate the effectiveness of our system through trace-driven

simulation and Emulab emulation using real taxi and bus traces. We further

deploy our system in two vehicular networks: a fourteen AP 802.11b network

and a four AP 802.11n network with smartphones and laptops as clients.

Second, we propose an incentive-aware routing protocol for DTNs. In

DTNs, routing takes place in a store-and-forward fashion with the help of relay

nodes. If the nodes in a DTN are controlled by rational entities, such as people

or organizations, the nodes can be expected to behave selfishly by attempt-

ing to maximize their utilities and conserve their resources. Since routing is

inherently a cooperative activity, system operation will be critically impaired

unless cooperation is incentivized. We propose the use of pair-wise tit-for-tat

(TFT) as a simple, robust and practical incentive mechanism for DTNs. We

then develop an incentive-aware routing protocol that allows selfish nodes to

maximize their own performance while conforming to TFT constraints.
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Chapter 1

Introduction

Personal mobile computing devices such as laptops and smartphones

have over the past decade replaced the traditional desktop as the premier

communication and entertainment device for a majority of users. The trend

towards miniaturization and mobility continues with an estimated 1.2 billion

internet-capable mobile handsets in use by the end of 2010, and smartphone

sales surpassing those of all other categories of computing devices [32]. These

mobile devices enable on-the-move communication in ways that were hitherto

uncommon.

Disruption-tolerant networks (DTNs) are a communication paradigm

that attempt to leverage intermittent communication opportunities available

to such mobile devices to provide users with a richer network experience. DTNs

are distinguished from other types of networks by the lack of contemporane-

ous end-to-end path between the source and consumer of information. This

characteristic forces communication to take place in a store-and-forward fash-

ion, with intermediate nodes forwarding data opportunistically over fleeting

contacts until it reaches the destination.

For DTNs to be successfully adopted as the communication paradigm
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for personal mobile devices, two significant challenges, among others, must

be addressed. First, users expect similar communication and entertainment

experience to be available on mobile devices as the one they are familiar with

on the desktop. This requires the resource-challenged network to be able to

support demanding applications such as video-on-demand and TV. Second,

mobile devices are owned by rational individuals, who must be incentivized to

cooperate so that the networks delivers its full potential.

In this dissertation, we build real systems based on a novel set of pro-

tocols to address the above challenges. In doing so, we make the following

contributions:

1. We design and implement a novel system for high-bandwidth content

distribution in DTNs, aimed particularly at vehicular DTNs. To do

so, we leverage infrastructure access points (APs) that a vehicular node

opportunistically contacts to download content of interest. Given the

transient nature of the contact imposed by vehicular speeds, we first

predict which APs will soon be visited by a node and then proactively

push content-of-interest to those APs. Our replication schemes optimize

content delivery by exploiting Internet connectivity, local wireless con-

nectivity, node relay connectivity and mesh connectivity among APs. We

demonstrate the effectiveness of our system through trace-driven simula-

tion and Emulab-based emulation using real taxi and bus mobility traces.

Further, we deploy our system in two campus-based vehicular networks:
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a fourteen AP 802.11b network and a four AP 802.11n network with

Windows smartphones and laptops acting as clients.

2. We propose an incentive-aware routing protocol for DTNs. Routing in

DTNs takes place in a store-and-forward fashion with the help of relay

nodes. If the nodes in a DTN are controlled by rational entities, such as

people or organizations, the nodes can be expected to behave selfishly

by attempting to maximize their utilities and conserve their resources.

Since routing is an inherently cooperative activity, system operation will

be critically impaired unless cooperation is somehow incentivized. We

propose the use of pair-wise tit-for-tat (TFT) as a simple, robust and

practical incentive mechanism for DTNs. We then develop an incentive-

aware routing protocol that allows selfish nodes to maximize their own

performance while conforming to TFT constraints.

1.1 Challenges

Disruption-tolerant networks of mobile devices create both new research

challenges and opportunities:

• Intermittent connectivity. Contacts between nodes in a DTN are

transient. For example, in a vehicular DTN, 70% of contact opportuni-

ties between devices and APs were found to be less than 10 seconds [18].

If meaningful communication is to happen during this time, the contact

must be anticipated and the contact time maximally utilized.
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• Limited Internet bandwidth. While devices communicate wirelessly

with each other and with the APs, the connection between the Inter-

net and the APs is through a wireline technology (e.g. cable or DSL).

Wireless capacity available through WiFi is often an order of magni-

tude higher than typical Internet connectivity. Hence, it is the Internet

connection that becomes the bottleneck during transient contacts.

• Difficult-to-predict contacts. Since contacts among various entities

in a DTN are dictated by human or vehicular mobility, they are diffi-

cult to predict. However, network operation can greatly benefit from

prediction of contacts. Mobility history and various constraints on mo-

bility (e.g. road structure in case of vehicular DTNs) can be exploited

to develop better prediction algorithms.

• Rational behavior. Since each mobile device is potentially owned

by a different individual, nodes can be expected to behave rationally

when participating in system activities such as routing. The protocols

devised must hence be incentive-aware if the system is to achieve its

communication potential.

• Limited visibility of actions. In a DTN, nodes meet and then poten-

tially move out of communication range before they meet other nodes.

This means that no node or group of nodes has enough visibility of the

network to be able to directly verify a device’s claim to have performed

an action. The incentive mechanism for DTNs must take this limited

4



visibility into consideration.

• WiFi versus 3G. While cellular technologies such as 3G offer always-

on connectivity to the Internet, they have limited bandwidth and incur

high cost. While the wireless bandwidth advertised is high, it is the

Internet backhaul of the cellular carrier that is usually a bottleneck. In

addition, most cellular service providers in US, like AT&T, T-mobile,

Sprint, Verizon, charge $60/month for 5GB data transfer and $0.2/MB

afterwards. 5GB data transfer can only support 0.1 Mbps for 111 hours

(< 5 days)! The cellular service price in many other countries are similar

or even higher [74]. Moreover, many mobile broadband providers restrict

or limit large data exchanges, including streaming audio, video, P2P file

sharing, JPEG uploads, VoIP and automated feeds [50]. According to

the international poll of 2700 Devicescape customers, 81% smartphone

users prefer WiFi over 3G cellular for data services [57]. Therefore there

is strong need for supporting high-bandwidth applications in vehicular

networks using WiFi alone, which is widely deployed and typically free.

1.2 Approach

We overcome the above challenges and exploit the unique opportunities

offered by DTNs in the following ways:
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1.2.1 Enabling high-bandwidth content distribution

We design and implement VCD, a novel system for enabling high-

bandwidth content distribution in vehicular DTNs. We assume infrastructure

in the form of road-side access points (APs) some of which are connected to

the Internet. To fully take advantage of the transient contact between APs

and devices, we proactively push content to APs that the vehicles will likely

visit in the near future. In this way, vehicles can enjoy the full wireless capac-

ity instead of being bottlenecked by the Internet connectivity, which is either

slow or not even available.

To realize this vision, we first develop a new algorithm for predicting

the APs that will soon be visited by the vehicles with high accuracy. Given

the high driving speeds, diverse and unpredictable road conditions, infrequent

location updates, and irregular update intervals, accurately predicting mobility

is challenging in vehicular networks. We develop a new mobility prediction

algorithm based on the idea of voting among K nearest trajectories (KNT). We

also implement several state-of-the-art mobility prediction algorithms based on

Markov mobility models [65, 52]. Our evaluation shows that KNT achieves

better prediction accuracy on our dataset.

We then develop wireline and wireless replication techniques to lever-

age the synergy among (i) Internet connectivity (which is persistent but has

limited coverage and low bandwidth), (ii) local wireless connectivity (which

has high bandwidth but short contact duration), (iii) vehicular relay connec-

tivity (which has high bandwidth but high delay), and (iv) mesh connectivity
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among APs, which is persistent and has high bandwidth but low coverage.

We conduct extensive trace-driven simulations to evaluate the perfor-

mance of VCD using real mobility traces of 500 taxis in the San Francisco

Bay Area over the course of 30 days and of 1200 city buses in Seattle over a

week. Our results show that VCD is capable of downloading 3-6X as much

content as no replication and 2-4X as much content as wireline or wireless

replication alone; mesh replication further helps to improve throughput by up

to 22%. The benefit of VCD further increases as the ratio between wireless

and wireline capacity increases and AP deployment becomes denser.

Encouraged by our simulation results, we developed a full-fledged pro-

totype VCD system that supports real video streaming applications running

on smartphones. We deploy our system on two campus-based testbeds: one

consisting of fourteen 802.11b APs and another of four 802.11n APs with three

smartphones and two laptops acting as clients. Live road tests suggest that

our system is capable of providing video streaming to smartphone clients at

vehicular speeds. To further evaluate the performance of VCD at scale, we run

the same AP and controller code as in the testbed together with emulated ve-

hicles in the Emulab [29] testbed. Our experiments show that Emulab results

closely follow the simulator results and that our implementation is efficient

and light-weight.
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1.2.2 Incentive-aware routing in DTNs

We design an incentive-aware routing protocol for DTNs that provides

a basis for devices to reconcile rational behavior with cooperative routing with

other devices.

We first study the impact of selfish behavior on DTN operation. A

selfish user may drop others’ messages and excessively replicate its own mes-

sages to increase its own delivery rate while significantly degrading other users’

performance or even causing starvation. Using simulation based on both syn-

thetic and real mobility traces, we show that the presence of selfish users can

degrade total delivered traffic to less than 20% as what can be delivered un-

der full cooperation. Since DTNs have limited connectivity, simply removing

selfish nodes results in serious performance penalty.

In the absence of an incentive mechanism, it is rational for nodes to

behave selfishly. Hence, an incentive mechanism is needed to provide a basis

for cooperation among devices. We note that given the limited visibility of a

node’s actions to any other node in the system, we cannot reliably detect if a

node misbehaved and did not forward traffic for another node. This implies

that we cannot use the detect-and-punish approach [45], successfully applied

for MANETs, in DTNs.

Instead, we propose the use of pairwise tit-for-tat (TFT) as a sim-

ple, robust, and practical incentive mechanism for DTNs. TFT gracefully

deals with limited visibility by not attempting to detect bad behavior, but
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instead, by rewarding only good behavior i.e. correct forwarding. However,

existing TFT mechanisms often face bootstrapping problems or suffer from

exploitation. We propose a TFT mechanism that incorporates generosity and

contrition to address these issues.

We then develop an incentive-aware routing protocol that allows self-

ish nodes to maximize their individual utilities while conforming to TFT con-

straints. We also address the practical challenges involved in implementing the

TFT mechanism. We evaluate the effectiveness of our incentive-aware routing

scheme using both synthetic and real DTN traces. Our results show that with

TFT as a basis of cooperation among selfish nodes, the total delivered traffic

increases to 60% or higher as under full cooperation.

Adoption of the disruption tolerant paradigm: The disruption-tolerant

communication paradigm has been proposed for use in a variety of contexts:

to build tactical military networks [27, 28], to quickly reestablish connectivity

after natural disasters [31], to provide basic connectivity in underdeveloped

regions [63], for wildlife tracking [39] and as a viable paradigm for under-

water [54] and inter-planetary communication [12]. Common to all of these

scenarios is the absence or unreliability of ubiquitous connectivity that modern

cellular 3G and 4G networks provide in urban areas of developed countries.

However, as our VCD system demonstrates, DTNs built with infrastructure

WiFi support can be used to provide high-bandwidth content transfers, and

can hence act as a viable alternative or supplement to the cellular networks.

This is particularly germane today as limited spectrum, backhaul limitations
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and dramatic increase in bandwidth usage has lead to poor performance for

many cellular networks. The industry has already taken the first steps to-

wards standardizing the mechanisms to intelligently offload content transfers

to WiFi [59]. Further real world adoption of DTNs depends on how security

and incentive issues are addressed, and whether certain applications that need

or can work with DTNs become popular.

The remainder of the dissertation is organized as follows. We present

our work on enabling high-bandwidth content distribution in Chapter 2. Chap-

ter 3 discusses incentive-aware routing in DTNs. Finally, we conclude and

discuss future research avenues in Chapter 4.
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Chapter 2

High-bandwidth Vehicular Content

Distribution

Vehicular networks have emerged from the strong desire to communi-

cate on the move [6, 7, 30, 71]. Car manufacturers all over the world are

developing industry standards and prototypes for vehicular networks (e.g., [9,

17, 68]). Existing works on vehicular networks often focus on low-bandwidth

applications, such as credit card payment, traffic condition monitoring [18],

Web browsing [6, 7], and VoIP [7]. We explore the potential of supporting

high-bandwidth applications (e.g., video streaming) in vehicular networks.

Challenges and opportunities:

A natural way for vehicular clients to download content from contacts

with roadside APs, is to request and download data from the Internet via

the WiFi connection, as and when the contact happens [7, 30]. However, it

is challenging to meet high bandwidth requirement since vehicles often move

at a high speed and thus the contact time between vehicles and APs tends

to be short (e.g., [18] reported that 70% of connection opportunities are less

than 10 seconds). In addition, it is often expensive to provide dense high-

speed WiFi-based Internet coverage at a large scale. As a result, if vehicles
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fetch desired content on-demand from the Internet during their contact with

an AP, the amount of data fetched may be insufficient to sustain the data rate

required by applications such as video streaming when vehicles are outside the

communication range of any APs.

With recent advances in wireless technology, WiFi capacity has grown

rapidly and can be an order of magnitude higher than typical Internet access

link connectivity. For validation, we performed a measurement experiment

using a laptop equipped with NetGear WNDA3100 on a vehicle communicat-

ing with a NetGear WNDR3300 AP deployed near the road. We obtained

4.6Mbps using 802.11b, 22.2Mbps using 802.11g, and 39.7Mbps using 802.11n

on 2.4GHz frequency, and 56.1Mbps using 802.11n on 5GHz. In comparison,

DSL throughput ranges between 768Kbps to 6Mbps [3], which is an order

of magnitude slower. The gap between the wireline and wireless capacity is

likely to increase further (e.g., due to the availability of new spectrum, such as

whitespace, and advances in antenna and signal processing technology). Such

large gap suggests that in order to enjoy high wireless capacity, we should

proactively replicate content beforehand to the APs that a vehicle is likely

to visit. While the idea of replication is natural, how to replicate the content

given the limited wireline and wireless resources and uncertainty in vehicular

trajectory is an open research question that we aim to address.

Approach and contributions: We develop a replication strategy that ef-

fectively exploits the synergy among (i) Internet connectivity, which is persis-

tent but has limited coverage and relatively low bandwidth, (ii) local wireless
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connectivity, which has high bandwidth but short contact duration, (iii) ve-

hicle relay connectivity, which has high bandwidth but high delay, and (iv)

mesh connectivity among APs, which is persistent and has high bandwidth

but low coverage. In particular, we optimize replication through wireline net-

work and wireless mesh networks based on predicted mobility and traffic de-

mands. Moreover, we opportunistically exploit the mobility of the vehicles

to extend the coverage of the Internet and mesh connectivity. Even if only

a small fraction of APs have Internet and mesh connectivity, by having the

vehicles themselves relay content, one can potentially replicate content to a

much larger number of APs. In essence, vehicle mobility has the potential to

significantly increase the network capacity [34] and reduce future content ac-

cess delay. Note that many mobile devices, such as smartphones, support the

use of cheap external storage cards, which can help mitigate potential storage

concerns regarding carrying traffic for other users in the system [67].

To this end, we develop a novel Vehicular Content Distribution (VCD)

system for enabling high-bandwidth content distribution in vehicular networks.

As illustrated in Figure 2.1, VCD consists of vehicles, APs with and without

Internet access (some of which may form a mesh network), content server on

the Internet (e.g., Web servers), and a controller. Vehicles submit location up-

dates and content requests to the controller via cellular links. The controller

optimizes the replication strategy based on predicted mobility and traffic de-

mands, and instructs the APs to carry out the replication strategy. To enhance

reliability and scalability, the controller can be replicated on multiple nodes.
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Figure 2.1: VCD architecture

APs are deployed along road sides (e.g., at gas stations and/or coffee shops)

to allow vehicles on the road to opportunistically communicate with them.

The APs prefetch content as instructed by the controller. Whenever a vehicle

encounters an AP, the AP tries to send the requested content from its local

storage if the content is available locally. Otherwise, the AP tries to fetch

the content from an AP in the same mesh network if one is available. If no

such AP is found, it fetches content from the Internet when it has Internet

connectivity. In addition to sending the content that the vehicle itself needs,

the AP may also send the vehicle content that can then be relayed to other

APs, or fetch from the vehicle content that can be served to other passing

vehicles later.
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VCD systems are easy to deploy in practical settings. For example,

a vehicular service provider (VSP) can install its own APs and/or subscribe

to existing wireless hotspot services. Since it is easy to place a stand-alone

AP than hooking it up with Internet connection, VCD is designed to explicitly

take advantage of APs with and without Internet connectivity. An AP without

Internet connectivity is still useful since it can serve as a static cache, which

vehicles can upload content that can be served to other passing vehicles in the

future.

VSPs can offer content distribution service to taxis, buses, subways,

and personal vehicles. We focus on taxis and buses that offer high-bandwidth

content distribution as a value added service to their passengers. These ve-

hicles have low-cost mobile devices on board for playing downloaded content.

Such mobile devices can be installed by either the taxi/bus companies or VSPs.

Since the mobile devices can be powered by the vehicles, power consumption

is not an issue. The mobile devices interact with APs and the VCD controller

to report required information (e.g., location update and predicted traffic de-

mands) and follow their instructions.

The key contributions of VCD include:

1. Optimized wireline and mesh replication. To fully take advantage of short

contact time between APs and vehicles, we replicate content in advance

to the APs that will soon be visited by the vehicle. A distinctive feature

of our replication scheme is that it is based on optimization. Specifically,
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we explicitly formulate a linear program (LP) to optimize the amount of

data that can be delivered before the deadline under the predicted mo-

bility pattern and traffic demands subject to given resource constraints

(e.g., short contact time and limited link capacity). In contrast, previous

works either focus exclusively on protocol-level optimization of one-hop

communication between vehicles and APs (e.g., [18, 7, 16, 51]), or rely

on heuristics to guide data replication [20], or completely ignore the re-

source constraints [26], which are crucial in vehicular networks. Our

formulation is highly flexible and can be adapted to support both wire-

line replication (Section 2.1.2) and mesh replication (Section 2.1.3). The

formulation can be efficiently solved using standard LP solvers such as

lp solve [44] and cplex [24], owing to modern interior-point linear pro-

gramming methods.

2. Opportunistic vehicular replication. To further extend the coverage of the

Internet and wireless mesh networks, we develop vehicular replication to

opportunistically take advantage of local wireless connectivity and vehic-

ular relay connectivity (Section 2.1.4). Our scheme explicitly leverages

the APs as the rendezvous points for replicating data among vehicles.

Such an approach is more effective than the traditional approach of di-

rect vehicle-to-vehicle replication according to the theoretical analysis of

[8].

3. A new algorithm for mobility prediction. For our replication optimization

algorithms to be effective, it is critical to predict the set of APs a vehicle
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will visit in a future interval with high accuracy. Given the high driving

speeds, diverse and unpredictable road conditions, infrequent location

updates, and irregular update intervals, accurately predicting mobility

is challenging in vehicular networks. We develop a new mobility predic-

tion algorithm based on the idea of voting among K nearest trajectories

(KNT) (Section 2.2). We also implement several state-of-the-art mo-

bility prediction algorithms based on Markov mobility models [65, 52].

Our evaluation in Section 2.4 shows that KNT achieves better prediction

accuracy on our dataset.

4. Thorough evaluation through simulation, emulation, and testbed experi-

ments. We conduct trace-driven simulations to evaluate the performance

of VCD using San Francisco taxi [15] and Seattle bus traces [61] (Sec-

tion 2.5). Our results show that VCD is capable of downloading 3-6X

as much content as no replication, and 2-4X as much content as wireline

or vehicular replication alone; mesh replication further helps to improve

throughput by up to 22%. The benefit of VCD further increases as the

gap between wireless and wireline capacity enlarges and the AP den-

sity increases. In addition, we have developed a full-fledged prototype

VCD system that supports real video streaming applications running on

smartphones and laptops (Section 2.3, 2.6 and 2.7). We deploy our sys-

tem in two wireless testbeds using 802.11b and 802.11n. Live road tests

suggest that our system is capable of providing video streaming to smart-

phone and laptop clients at a vehicular speed. To further evaluate the
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performance of VCD at scale, we run the same AP and controller code

as in the testbed together with emulated vehicles in the Emulab [29].

Our experiments show that Emulab results closely follow the simulator

results and our implementation is efficient.

Paper organization: The remainder of this chapter is organized as follows.

We present our replication optimization techniques in Section 2.1 and our

mobility prediction algorithm in Section 2.2. We specify our system design

and implementation in Section 2.3. We evaluate the accuracy of mobility

prediction in Section 2.4. We evaluate the performance of VCD through trace-

driven simulation in Section 2.5, trace-driven emulation in Section 2.6, and

testbed experiments in Section 2.7. We survey related work in Section 2.8.

2.1 Optimizing Replication

In this section, we first present an overview of our system, and then

develop wireline, mesh, and vehicular replication.

2.1.1 Overview

At the beginning of every interval, the controller collects the inputs re-

quired for computing replication strategy. The controller computes the repli-

cation strategy during the current interval so that it can maximize user sat-

isfaction during the next interval (Section 2.1.2). We use user satisfaction in

the next interval as the objective since replication in the current interval is
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often too late to satisfy the traffic demands in the same interval. The con-

troller then informs the APs of the replication strategy through the Internet or

cellular network (in case the APs do not have Internet connectivity). We use

cellular networks to send control messages as they are small. When a vehicle

contacts an AP, the AP transfers the content according to the optimization

results (step 1). When this finishes, the vehicle may still have demand that

has not yet been satisfied (e.g., due to inaccurate prediction or insufficient ca-

pacity to replicate all the interesting content). The vehicle will first download

all the content that the vehicle is interested in and also available locally at the

AP (step 2). Then it downloads the remaining content that it is interested in

from the AP’s mesh network or the wireline network when the AP has wireline

connectivity (step 3). Parallel to the Internet download (step 4), the vehicle

can take advantage of wireless capacity by opportunistically transferring files

to and from APs (Section 2.1.4).

2.1.2 Optimized Wireline Replication

Problem formulation: Our goal is to find a replication strategy that max-

imizes user satisfaction subject to the available network capacity. Specifically,

we want to determine how to replicate files to APs during the current interval

to maximize the amount of useful content that can be downloaded by vehicles

when vehicles meet the APs in the next interval. To support delay sensi-

tive applications, only content that are downloaded before the deadline counts

and the other content that already misses the deadline will be excluded from
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consideration for replication. This replication problem involves answering the

following questions: (i) in what form to replicate the content, and (i) how

much to replicate for each file.

Applying network coding: To answer the first question, we note that

directly replicating original content introduces two major problems. First,

it is inefficient for serving multiple vehicles. Suppose multiple vehicles are

interested in the same file and have downloaded different portions of the files

before their contacts with an AP. If they visit the same AP, in order to satisfy

all vehicles we need to replicate the union of the packets they need, which is

inefficient. For example, vehicles 1 and 2 are both interested in file 1. Vehicle

1 has downloaded the first half and vehicle 2 has downloaded the second half

before they encounter the AP. We need to replicate the complete file to satisfy

both vehicles. Second, replicating original files is also unreliable. Consider a

vehicle is expected to visit three APs but in fact it only visits two of the three

APs, which is quite common due to prediction errors. If we just split the file

into three and transfer one part to each AP, then the vehicle will not get the

complete file. However, if we split the files into two and transfer one part to

each AP, the vehicle still may not get the complete file since it may get two

redundant pieces (e.g., when it visits the two APs that both have the first half

of the file).

We apply network coding to solve both problems. Specifically, we di-

vide the original content into one or multiple files, each containing multiple

packets. We use random linear coding to generate random linear combinations
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of packets within a file. With a sufficiently large finite field, the likelihood of

generating linearly independent packets is very high [36]. For a file with n

packets, a vehicle can decode it as long as it receives n linearly independent

packets for it.

Network coding solves redundancy problems in multi-vehicle case since

each linearly independent packet adds value. In the above example of two

vehicles, we only need to replicate one half worth of file content to satisfy both

users, reducing bandwidth consumption by half. It solves reliability issue in the

single vehicle case by incorporating redundancy. In the above example, we can

split the file of interest into 2 and randomly generate 3 linear combinations of

these 2 pieces and replicate one to each AP. Since any two pieces are linearly

independent with a high probability, the vehicle can decode the file once it

gets any two pieces. To avoid redundancy in wireline, mesh and vehicular

replication, network coding is performed at content servers, APs, and vehicles.

In Section 2.3.2, we describe network coding cost and optimization.

Optimizing replication traffic: Using network coding, we transform the

original problem of determining which packets to replicate into the problem of

determining how much to replicate for each file. To solve the latter problem, we

formulate a linear program, as shown in Figure 2.2. A few explanations follow.

The first term in the objective function,
∑

v

∑

f

∑

a∈AP (v) Q(v, f)D(v, f, a),

quantifies user satisfaction, which is essentially the total traffic downloaded by

a vehicle, denoted as D(v, f, a), weighted by the probability for vehicle v to

be interested in file f , denoted by Q(v, f). The second term in the objective
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⊲ Input : Intv,WCap, InCap,OutCap,CT,AP, size, has,Q

⊲ Output : x(f, i, a) and D(v, f, a)

Maximize:
∑

v

∑

f

∑

a∈AP (v)

Q(v, f)D(v, f, a) − γ
∑

i∈I

∑

a∈A

∑

f

x(f, i, a)

Subject to:

[C1]
∑

f

D(v, f, a) ≤ WCap(a)× CT (a, v) ∀v, a ∈ AP (v)

[C2]
∑

a∈AP (v)

D(v, f, a) ≤ size(f) − has(v, f) ∀v, f

[C3]D(v, f, a) ≤ has(a, f) +
∑

s∈I x(f, i, a) ∀v, f, a ∈ AP (v)
[C4]

∑

i∈I x(f, i, a) ≤ size(f) − has(a, f) ∀f, a ∈ A

[C5]
∑

i∈I

∑

f x(f, i, a) ≤ InCap(a) × Intv ∀a ∈ A

[C6]
∑

a∈A

∑

f x(f, i, a) ≤ OutCap(i) × Intv ∀i ∈ I

Figure 2.2: Optimizing wireline replication, where v is a vehicle, f is a file, a is an
AP, i is a node with wireline connectivity (which may or may not be an AP, e.g.,
a Web server), Intv is an interval duration, A is the set of all the APs, I is the set
of all the nodes with wireline connectivity, AP (v) is the set of APs that vehicle v
will visit, Q(v, f) is the probability that v is interested in file f , D(v, f, a) is the
amount of traffic in file f vehicle v should download from AP a during a contact
in the next interval, x(f, n1, n2) is the amount of traffic in file f to replicate from
node n1 to node n2 during the current interval, CT (a, v) is average contact time of
vehicle v at AP a, WCap is wireless capacity, InCap is incoming wireline access
link capacity, OutCap is outgoing wireline access link capacity, has(n, f) is amount
of file f a node n has, and size(f) is the size of file f .

represents the total amount of wireline replication traffic. We include both

terms to reflect the goals to (i) maximize user satisfaction, and (ii) prefer the

replication that uses less traffic among the replication strategies that support

the same amount of traffic demands. Since the first objective is more impor-

tant, we use a small weighting factor γ for the second term. Our evaluation

uses γ = 0.001.

Constraint C1 in Figure 2.2 enforces that the total amount of traffic

downloaded from an AP during a contact is bounded by the product of AP’s

22



wireless capacity and average contact duration. Constraint C2 ensures that the

total content downloaded for each file does not exceed the total file size minus

the amount of file the vehicle already has before the download. Constraint

C3 encodes the fact that the amount of file the vehicle can download from an

AP cannot exceed what AP already has plus what will be replicated to the

APs through the wireline network during the current interval. Constraint C4

indicates that the total replication traffic in file f towards an AP is bounded

by the file size minus the amount that the AP already has. Constraints C5 and

C6 reflect the total replication traffic through the wireline network does not

exceed the access link capacity. The formulation can support APs with and

without wireline access by setting wireline capacity to zeros for APs without

wireline access.

Obtaining input: As shown in Figure 2.2, we need Intv, WCap, InCap,

OutCap, CT , AP , size, has, and Q. The Intv is a control parameter that

determines how frequently the optimization is performed. In our evaluation,

we set Intv to be 3 minutes, which gives a good balance between achieving

accurate mobility prediction and limiting the optimization overhead. The

next three inputs on link capacity—WCap, InCap, and OutCap—are known

in advance and change infrequently. CT is estimated using historical data and

only needs to be updated infrequently. For ease of estimation, in our evaluation

we set CT (a, v) to be the average duration of all contacts from the trace. AP

can be obtained by either letting a vehicle run a mobility prediction algorithm

locally or have it send several of its recent GPS coordinates to the controller,
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which will perform mobility prediction. size, has, and Q are reported by

the vehicles either through a WiFi link during a contact with an AP or via

a cellular link during other time. A vehicle predicts what future content to

request based on the previous and current requests. For streaming content, it

is relatively easy to predict as most users will request the subsequent frames.

Demand prediction in general has been a well-researched problem in many

domains [53, 6] and we can leverage existing solutions. Note that all the

control information is small and can be easily compressed by sending delta

from the previous update.

Using optimization results: To enhance robustness against errors in esti-

mating the inputs, we use x(f, i, a) and D(v, f, a) to control the relative repli-

cation and download rates across different files. For example, file 1 should be

downloaded twice as fast as file 2. In this way, we can still fully utilize network

resources even if contact time, wireline and wireless capacity have significant

estimation errors.

2.1.3 Optimized Mesh Replication

If some APs along the road are close together, they can form a mesh

network. The mesh connectivity indicates that (i) we can now replicate content

to the APs using mesh connectivity in addition to wireline connectivity, and

(ii) if a vehicle meeting AP1 requests a file that AP1 does not have, it is

more efficient to fetch from its mesh network (if there is an AP having the

file) than fetching via the slow wireline access link. A neighboring AP in
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the mesh network can have the file either due to explicit mesh replication or

opportunistically caching from earlier interactions.

To support (i), we make the following modifications to the replication

formulation in Figure 2.2. Let MCap denote the capacity of a wireless link

in the mesh network, which can be different from the capacity of wireless

links between vehicles and APs (WCap). Let z(f, a′, a) denote the amount

of content to replicate from AP a′ to a for file f through the mesh network.

Let ETX(a′, a) denote the average number of transmissions required to send a

packet from a′ to a through the mesh and can be easily estimated by measuring

link loss rate [23]. Our modifications include:

1. adding −γ
∑

f

∑

(a′,a)∈mesh z(f, a′, a) to the objective function to prefer

the replication that uses less mesh traffic among the ones that support

the same traffic demands,

2. adding +
∑

(a′,a)∈ mesh z(f, a′, a) to the right handside of [C3] to indicate

a node can download from AP a any content already available at a or

replicated to a through either the wireline or mesh network,

3. adding two new constraints: z(f, a′, a) ≤ has(a′, f) and
∑

f,(a′,a)∈ mesh ETX(a′, a)z(f, a′, a)/MCap ≤ 1.

The former constraint ensures AP a′ cannot replicate more content than it

has. The latter is interference constraint, which enforces that total active

time of all mesh nodes cannot exceed 100% assuming all nodes in the mesh
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network interfere with each other. Note that its left-handside computes ac-

tivity time by multiplying the replicated content by the number of expected

transmissions normalized by the wireless capacity. To support (3), when AP

a receiving a request for a file that it does not have locally, it first tries to get

from AP a′ in the same mesh if the end-to-end throughput (approximated as

MCap/ETX(a′, a)) is higher than wireline access link; only when no such AP

is found, does it fetch using the wireline access link.

2.1.4 Opportunistic Vehicular Replication

In addition to wireline and mesh replication, content can also be repli-

cated using vehicles – a vehicle can carry content from one AP to another

as it moves. This new form of replication is more effective than traditional

vehicle-to-vehicle (V2V) replication, because according to [8] V2V is effective

only under a very large number of vehicles whereas a small number of APs can

significantly enhance the performance. One way to support this new vehicular

replication is to augment the LP formulation in Figure 2.2 with vehicular repli-

cation terms, which can produce wireline, mesh and vehicular replication as the

final output. However, due to unpredictability in vehicular relay opportunity,

we find the effectiveness of such optimization is rather limited. Interestingly,

we find the following simple vehicular replication strategy is effective.

Since the wireline fetch is bottlenecked by the slow access link, the

wireless link is not fully utilized. Therefore, as mentioned in Section 2.1.1,

parallel to the wireline fetch, a vehicle can take advantage of local wireless
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connectivity to exchange content with the AP. Such exchange has two ben-

efits: (i) the vehicle can upload content to the AP, which can serve other

vehicles later, and (ii) the vehicle can download files, which may serve the

user’s demand in the future or the vehicle can relay the content to other APs

for future service. To enhance effectiveness, we order the files to upload based

on the expected future demand for the file at the AP, which is estimated as
∑

v: v visits a Q(v, f)demand(v, f), where demand(v, f) is the expected size of

file f vehicle v is interested in. While this vehicular replication is simple, our

evaluation shows that it is highly effective.

2.2 Predicting Mobility

If we can predict the AP that a vehicle will visit, we can start replicating

the required content to the AP well before the vehicle arrives so that the vehicle

can enjoy high wireless bandwidth during its download. Predicting mobility

for vehicles is challenging because (i) vehicles often move at high speed, (ii) the

GPS updates often have relatively low frequency (e.g., once per minute) and

tend to arrive at irregular intervals, and (iii) the road and traffic conditions are

highly dynamic and difficult to predict. To address the challenge, we develop

a novel mobility prediction algorithm for vehicular networks: K Nearest Tra-

jectories (KNT). We also implement two existing algorithms based on Markov

mobility models [65, 52]. In Section 2.4, we show that KNT achieves better

accuracy on our dataset.

Algorithm: We observe that the mobility of vehicles exhibits unique struc-
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ture – a vehicle follows the roads and only makes turns at the street corners or

highway exits. This suggests that a good predictor should take into account

the speed and direction in the previous interval as well as the underlying road

structure. Our KNT algorithm is able to account for such information without

requiring explicit knowledge about the detailed road map. Given a vehicle v0

and current time t0, the algorithm predicts the set of APs visited by v0 in a

future interval [t0 + ∆1, t0 + ∆2] (∆2 ≥ ∆1 ≥ 0) in two steps:

1. Finding K nearest trajectories. Our algorithm first finds K existing

mobility trajectories in a GPS location database that best match the

recent mobility history of the given vehicle. Specifically, we maintain a

database of past GPS coordinate updates: D = {(v, t, c)}, where v is a

vehicle, t is the time for the update, and c is the GPS coordinate. For

any vehicle v and current time t, we define its mobility history MH as

the set of GPS coordinates reported by v in the past δ seconds: MH t
v =

{c|(v, s, c) ∈ D∧s ∈ [t−δ, t]}. We also define a distance function between

two trajectories: f(MH t0
t0 , MH t

v) =
∑

c∈MH
t0
t0

mind∈MHt
v
‖c − d‖2, where

‖c−d‖2 is the Euclidean distance between the two locations specified by

GPS coordinates c and d. Essentially, this distance function reflects the

total distance from each point on MH t0
t0 to the closest point on MH t

v.

We then find K pairs of (v, t) that minimizes f(MH t0
v0

, MH t
v), i.e., the

K nearest neighbors of (v0, t0).

2. Voting. For each (v, t) among the K nearest neighbors of (v0, t0), we use
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linear interpolation (i.e., using a line to connect two adjacent points) to

obtain its mobility trajectory in its future interval [t + ∆1, t + ∆2]. We

can then obtain the set of APs visited by v during this interval. We

then report all those APs that are visited by at least T out of K nearest

trajectories as the predicted set of APs that will be visited by v0 during

future interval [t0 + ∆1, t0 + ∆2].

In step 1 above, to avoid computing f(MH t0
v0

, MH t
v) for all pairs of

trajectories (which is expensive), we only compute for the trajectory pairs

that are nearby. To quickly identify the trajectories that are close to the

current one, we create an efficient index structure by (i) discretizing the GPS

latitude-longitude coordinate space into 0.0001◦ × 0.0001◦ grid squares, and

(ii) storing all the (v, t) inside each grid square. Given (v0, t0), we start from

its grid square and use expanded ring search to find C candidate points (v, t)

residing in the same or nearby grid squares. We then find K nearest neighbors

among these C candidate points.

Parameter setting: Our algorithm has four control parameters: the num-

ber of nearest trajectories K, the number of candidate points C, the voting

threshold T , and the mobility history duration H . In our evaluation, we keep

C = 32, vary T = 1, 2, vary K from 2 to 12, and vary H from 60 to 180 sec-

onds. Our results show that (K = 4, T = 2, C = 32, H = 60) consistently give

the best performance. We thus only report the results under this parameter

setting.
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2.3 VCD Implementation

We implement VCD in both Emulab [29] and our real testbed with

smartphone and laptop clients. VCD consists of a controller, APs, content

servers, and clients in vehicles. Emulab and testbed use the same controller,

AP, and content server implementation, all of which are implemented as multi-

threaded C++/Linux programs. They differ in client implementation. In

Emulab, we implement a virtual vehicle program, which can emulate multiple

vehicles, allowing us to conduct a trace driven emulation of all the cars in our

trace using a few virtual vehicles. The client in the real testbed is implemented

on both smartphones and laptops, which is described in Section 2.3.2.

2.3.1 System Overview

Communication between APs and controller: The APs and controller

communicate with each other using TCP. As noted in Section 2.1.1, at the

beginning of every interval the controller collects inputs, computes the repli-

cation strategy, and instructs content servers or APs to perform wireline and

mesh replication at the desirable rates.

Communication between AP and vehicle: The communication between

APs and vehicles uses UDP. When a vehicle contacts an AP, it sends a HELLO

message that includes (i) a list of ids and sizes of the files it already has, (ii) the

files it is interested in during the current and next intervals. Upon receiving

the first HELLO message from the vehicle, the AP initiates data download to

the vehicle according to the four steps described in Section 2.1.1. Due to the
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use of soft state, our protocol works fine when the communication terminates

at any time during these steps as the contact is over. Meanwhile, the vehicle

also sends buffered GPS updates (generated every 20 seconds in the testbed

and every 1 minute in Emulab). Parallel to step 4, the AP determines a list

of files for the vehicle to upload sorted in increasing utility as described in

Section 2.1.4. The AP sends this list in a REQ message. Upon receiving the

first REQ message, the vehicle initiates data upload to the AP. Both HELLO

and REQ messages are soft state control messages sent periodically once every

control interval (100ms in testbed and 1s in Emulab). These messages also

serve as heartbeats to the other party. To achieve efficiency and reliability for

data traffic, an AP applies network coding before delivering the data it receives.

In addition, to further enhance scalability, we use multiple content servers and

leverage a central dispatcher to distribute requests to an appropriate content

server for load balancing.

2.3.2 Client Implementation

We implemented client on both Windows XP laptops and smartphones.

We use HP Ipaq 910 Business Manager smartphones with Windows Mobile 6.1

Professional operating system, Marvell PXA270 416 MHz Processor, 128MB

RAM, Marvell SDIO8661 802.11 b/g WiFi card, and the .Net Compact Frame-

work. Our implementation on smartphones uses OpenNet API, and that on

Windows uses Managed WiFi API. Implementing on smartphones introduces

several challenges: (i) limited APIs and often inconsistent implementations,
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(ii) expensive I/O, (iii) limited system resources, and (iv) many existing wire-

less optimizations cannot be implemented due to lack of low level access, which

we will address.

Handling expensive I/O: Since I/O on smartphones is around an order

of magnitude slower than desktops, packets cannot be stored on the disk and

read back on-demand for vehicular replication. For simplicity, we use an in-

memory packet buffer with FIFO replacement policy. We further limit disk

access during the contact with APs and push data to the disk only after the

contact is over so that we can fully utilize the short contact time for data

transfer.

Handling network coding cost: Due to the slow processor, thread schedul-

ing and dynamic assignment of priorities are important. For example, network

coding incurs much higher cost on the smartphone than on the desktop as

shown in Table 2.1. We use packet size of 1230 bytes (i.e., the packet pay-

load in our testbed implementation to ensure the maximum packet size is still

within 1500 bytes (Ethernet MTU)). Our evaluation uses file sizes of 35, 70,

110 packets, which correspond to minimum, median and maximum file sizes

used in our experiments. To minimize the impact of coding cost, we schedule

decoding thread at a low priority during a contact and increase the priority

when the contact is over.

Connection setup: The ability to quickly establish connection to an AP

is crucial. [14, 35] examine this problem in greater detail. In the context of
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Batch size 110 packets 70 packets 35 packets
Device Phone Desktop Phone Desktop Phone Desktop

Encoding 12.19s 0.0228s 4.79s 0.0088s 1.18s 0.0021s
Decoding 8.22s 0.017s 3.27s 0.0067s 0.809s 0.0012s

Table 2.1: Network coding benchmarks

smartphones, the problem becomes even harder since NDIS does not provide

access to many low level parameters to implement the association optimiza-

tions proposed in the literature. Windows Mobile provides two ways to initiate

connection to a WiFi network programmatically, either through the wireless

zero config (WZC) interface or by setting the appropriate NDIS OIDs. The

association times using the WZC interfaces were around 3.0 sec, which is un-

acceptable in the vehicular network context. We therefore disable WZC and

implement NDIS based association, which yields significantly lower association

times. We also implement our own DHCP client and use the DHCP caching

mechanism described in [14].

Our connection setup procedure is as follows. The smartphone scans

for APs every 100 ms. When an AP is discovered, the smartphone waits for 3

RSSI readings greater than -91dB before trying to associate. We do not asso-

ciate immediately because an association failure is expensive. The association

procedure is retried up to 7 times with a short delay of 50ms between consec-

utive attempts. The various threshold values used in the scheme were chosen

empirically. We report the association time and failures in Section 2.7.1.
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(a) Taxi locations (on highways) (b) Taxi locations (inside city)

(c) AP locations (on highways) (d) AP locations (inside city)

Figure 2.3: Illustration of traces for mobility prediction.

2.4 Mobility Prediction Accuracy

Mobility traces: We obtain real vehicular mobility traces from Cabspotting

[15] and Seattle [61]. The former contain over 10 million GPS longitude and

latitude coordinates for approximately 500 taxis in the San Francisco Bay Area

over the course of 30 days (December 13, 2008 – January 13, 2009). The latter

contains several week-long traces of city buses in Seattle during 2001. The bus

system consisted of over 1200 vehicles covering a 5100 square kilometer area.
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The GPS coordinates are updated approximately once per minute for both

Cabspotting and Seattle traces. Figure 2.3 (a) and (b) illustrate the vehicle

locations along the highway and inside San Francisco. One can clearly observe

the underlying street structure from taxis’ GPS. Similar pattern was observed

in Seattle traces.

San Francisco Seattle
median mean min max median mean min max

Gas 433 589 0.6 7215.1 218 474 1.0 3938.1
Coffee 157 345 1.5 9516.1 181 357 1.0 4507.9

Gas + Coffee 162 341 1.5 9516.1 113 247 1.0 3938.1

Table 2.2: Distance between two closest APs in the traces (m).

AP locations: We consider two sets of locations for placing APs: (i) gas

stations and (ii) coffee shops. We use Yahoo’s Local Search API (version 3)

[75] to obtain the longitude and latitude coordinates of 1120 gas stations and

1620 coffee shops in San Francisco Bay Area, as well as 618 gas stations and

738 coffee shops in Seattle. As seen in Table 2.2, the average distance between

two closest APs in the traces ranges between 345 − 589 m and the median

distance is 157 − 433 m. There are quite a few APs whose distance exceeds

3500 m in all the four traces. The communication range between an AP and

a vehicle is set to either 100 or 200 meters. We use these values because

they approximate the communication ranges we measured from our vehicular

testbeds using 802.11b and 802.11g, respectively. To determine the contact

period between a vehicle and an AP, we use linear interpolation to obtain

the vehicle’s mobility trajectory between two adjacent GPS location updates.
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Figure 2.3 (c) and (d) illustrate the locations for the gas stations and coffee

shops in San Francisco.
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Figure 2.4: CDF of speed, contact time, and total contact time of 1-day trace

Trace statistics: We compute speed of vehicles based on the GPS coordi-

nates and the time stamps. Figure 2.4(a) plots CDF of speed of vehicles in

one day. It shows that 23% – 40% of time the vehicles were parked or moving

within 1 miles/hour, 70% of time moving within 11 – 15 miles/hour, and 90%

of time moving within 25 – 27 miles/hour. Since most of the cabs are in the
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downtown area, they are bounded by the speed limits of the downtown area.

Figure 2.4(b) plots CDF of contact duration when APs are placed at either gas

stations or coffee shops and the wireless communication range is either 100 or

200 meters. and Figure 2.4(c) further plots CDF of those contact ranging from

0.1 second to 100 seconds. We make the following observations. First, Vehicles

in San Francisco have longer contact time with APs at coffee shops than those

at gas stations due to more densely populated coffee shops, while the contact

time with coffee shops and gas stations is similar in Seattle. Moreover, in all

the traces vehicles have short contact time with an AP. In particular, 70% of

the contacts between a vehicle and an APs last within 39-51 seconds when

wireless range is 100 meters. Figure 2.4(d) further shows percentage of time a

vehicle is in contact with an AP for the day. It shows that with communica-

tion range of 100 meters, 70% of vehicles spends less than 1.5%-11.5% of time

within range of an AP during the day, corresponding to 21–165 minute contact

time per day. The short contacts highlight the importance of replicating data

in advance.

Baseline algorithms: For baseline comparison, we implement a variant of

the mobility prediction algorithm in [52]. The algorithm is based on a second-

order Markov mobility model. Each state has two sets of coordinates: the

vehicle’s location time τ ago, and its current location. In our evaluation, τ

is either 1 or 2 or 3 minutes. We deal with irregular GPS update intervals

through linear interpolation. To avoid state space explosion, the algorithm

discretizes the longitude and latitude coordinates into 0.001◦ × 0.001◦ grid
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squares. The algorithm uses past mobility traces to learn the probability for

a vehicle to transition into any new grid square given its last and current grid

squares. Based on the transition probabilities, the algorithm identifies the

grid square that the vehicle is most likely to visit next, and uses the center of

this grid square as the predicted new location for vehicle after time τ . This

procedure is repeated to make predictions further into the future. Based on

the predicted locations, the algorithm applies linear interpolation to obtain

the entire mobility trajectory and then computes the set of APs the vehicle is

predicted to visit during a future interval. As in [65, 52], the algorithm falls

back to a first-order Markov model when the second-order Markov model fails

to make a prediction. Finally, we also implement the first-order Markov model

as another baseline algorithm.

Metrics: We quantify the prediction accuracy using two metrics: (i) pre-

cision, i.e., the fraction of APs predicted by our algorithms that are indeed

visited by the vehicles in a future interval, and (ii) recall, i.e., the fraction of

APs visited by the vehicles in a future interval that are correctly predicted by

our algorithms. To simplify the comparison of different prediction algorithms,

we integrate precision and recall into a single metric called F-score [73], which

is the harmonic mean of precision and recall: F-score = 2
1/precision+1/recall

.

Evaluation results: We consider the following prediction scenario as re-

quired by our replication optimization algorithm: per-interval prediction, which

divides time into fixed intervals and the goal is to predict the set of APs that

will be visited by a vehicle in the next interval. The prediction interval is set
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Figure 2.5: Accuracy comparison of different mobility prediction algorithms.
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to 3 minutes, which matches the interval for periodic replication optimization.

For each prediction algorithm we evaluate, we consider multiple parameter

configurations and choose the configuration that yields the best F-score. The

results from Cabspotting traces use seven days of training data to predict the

mobility on the eighth day, and results from Seattle bus traces use 5 days of

training data to predict the sixth day as these traces have shorter duration.

Figure 2.5 shows the prediction accuracy when APs are placed at either

gas stations or coffee shops and the communication range is either 100m or

200m. For the San Francisco taxi mobility trace (Figure 2.5 (a)–(d)), our al-

gorithm (KNT) yields F-scores that outperform the first-order Markov model

(Markov1) and second-order Markov model (Markov2) by 25-85%. For the

Seattle bus mobility trace (Figure 2.5 (e)–(h)), KNT yields F-scores that out-

perform Markov1 and Markov2 by 25–94%. In general, the absolute prediction

accuracy for all three algorithms is higher for the bus mobility trace, because

buses tend to follow fixed routes and are thus more predictable.

Finally, it is worth noting that in contrast to findings in [65, 52],

Markov2 does not significantly outperform Markov1 in our evaluation. This

suggests that with higher speed and less frequent GPS location updates, mobil-

ity prediction is more challenging in vehicular networks. As a result, solutions

that perform better in less mobile environment do not necessarily perform

better in vehicular networks.

Summary: The above results clearly show that our KNT mobility prediction

algorithm consistently achieves good accuracy in vehicular networks. Later in
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Section 2.5, we further show that optimization based on our prediction results

yields good performance in practice.

2.5 Trace-Driven Simulation

2.5.1 Simulation Methodology

We develop a trace-driven simulator for evaluation as follows. We first

generate the contact traces based on the mobility traces, AP locations, and

wireless communication range. When multiple vehicles are within the range of

an AP at the same time, we divide the original contacts into non-overlapping

contacts, each of which has only one vehicle in contact with an AP. Such

contact partitions can be easily realized in practice by letting the AP serve

the new vehicle only after it finishes serving the previous one. Similarly, when

a vehicle is within the communication range of multiple APs, we also partition

the contact into multiple non-overlapping intervals, each of which involves one

AP. Another way to partition a contact between multiple vehicles and an AP

or multiple APs and a vehicle is to equally divide the contact time among

multiple vehicles or multiple APs that are involved in the contact to mimic

round-robin scheduling. The performance of these two types of partitions is

similar, and we use the first partition in our evaluation.

We then feed the actual contact traces (after the above post process-

ing), predicted contacts, and traffic demands to the simulator. The simulator

updates the content at APs and vehicles based on the actual contacts, traf-

fic demands, replication schemes, and wireless and wireline capacity at APs.
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We implement network coding for all data transfer to ensure only innovative

packets (i.e., whose coding coefficients are linearly independent) are exchanged

between APs and vehicles or among APs. We have a content server on the

Internet, which has all the content, whereas all APs and vehicles are initialized

with no content.

We compare (i) no replication, (ii) wireline replication alone, (iii) vehic-

ular replication alone, (iv) both wireline and vehicular replication, (v) wireline,

vehicular, and mesh replication (VCD). In all the schemes, a vehicle downloads

content remotely from the Internet whenever the AP has Internet connectivity

and the content is not available locally at the AP or mesh network.

To study the impact of traffic demands, we generate traffic demands

following either uniform or Zipf-like distribution. In both cases, for every

interval, a vehicle randomly selects a specified number of files to request. In the

uniform distribution, a file is uniformly drawn from the pool of the files that the

vehicle has not requested previously. In Zipf-like distribution, the probability

of requesting the ith file is proportional to 1
iα

, where i is the popularity ranking

of the file and i = 1 indicates the most popular file. We set α = 0.4 so

that we can generate similar traffic load using both Zipf-like and uniform

distributions and the performance difference is solely due to the difference in

the distribution.

For delay sensitive applications, such as video, their performance de-

pends on the amount of data received before the deadline. Therefore, we use

average throughput per vehicle as our performance metric, which denotes the
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total demand that is satisfied before the deadline divided by the product of the

number of vehicles and the entire trace duration (including the time without

contacts with APs). The deadline is set to the end of the interval in which the

demand is generated.

Our evaluation uses 2-hour trace, which exhibits similar contact char-

acteristics as in the 1-day trace, shown in Section 2.4. Other default settings

used in our evaluation include: 100-meter communication range between APs

and vehicles, 500-meter communication range among APs (well within reach

by many mesh routers [4, 48]), Zipf-like traffic demands, placing APs at coffee

shops, all APs having 22 Mbps wireless link, half of the APs having Internet

links with 2Mbps while the other half have no Internet connection. The con-

tent server has a 1 Gbps Internet link and zero wireless capacity to indicate

that it is not directly reachable by vehicles. There are 1200 files in total. Each

user requests 20 files every 3-minute interval, each file has 2K packets, which

contains 1000 bytes. Every file represents either a video clip or one chunk in

a larger video file (e.g., We divide a large video file into smaller chunks and

generate random linear combinations of packets within each chunk for efficient

replication). We further evaluate the effects of changing these parameters.

2.5.2 Simulation Results

Varying wireless bandwidth: In Figure 2.6, we plot the total downloaded

content as we vary wireless bandwidth from 5, 11, 22, 54, 120, and 150 Mbps.

We make the following observations. First, in all cases VCD significantly
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Figure 2.6: Average throughput of 50 cars under varying wireless capacity
and Zipf-like traffic demands. The difference from the base configuration is in
bold.

out-performs the other schemes and its benefit increases rapidly with wire-

less capacity. Second, as we would expect, no replication performs the worst.

Interestingly, its performance remains the same as we increase wireless capac-

ity. This is because without replication APs often do not have content locally

and the wireless download is bottlenecked by slow Internet access capacity.

This further demonstrates the need of replication. Third, the performance of
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both wireline and vehicular replication alone initially improves with increas-

ing wireless capacity and then tapers off. This is because limited Internet

capacity prevents fully taking advantage of large wireless capacity. In com-

parison, harnessing both wireline and vehicular replication opportunities can

effectively utilize the large wireless capacity when available. Adding mesh

replication further increases throughput. It improves average throughput by

14-20% under high AP density (Figure 2.6(c)), and by 3-13% in low AP den-

sity. Overall, at 22Mbps WiFi capacity, VCD achieves 70 – 300 Kbps average

throughput per car depending on the AP density, which can support video

streaming applications.

Varying fraction of APs with Internet connectivity: Next we vary

the fraction of APs with Internet connectivity. Figure 2.7(a) and (b) plot the

average downloaded traffic in San Francisco and Seattle traces, respectively.

As we can see, VCD continues to significantly out-perform the other schemes.

In addition, the benefits of all types of replication increase with the fraction

of APs that have Internet connectivity. The rate of such increase is faster for

the replication schemes that involve wireline replication, since they explicitly

take advantage of the new wireline capacity to push data.

Varying number of cars: To further evaluate the impact of degree of

deployment, we vary the number of cars used from the traces. Figure 2.8

summarizes the performance results. We make the following observations.

First, VCD continues to perform the best in all cases. Second, increasing

the number of cars initially improves the average throughput because more
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Figure 2.7: Average throughput under varying fraction of APs with Internet
(Zipf-like traffic, APs at coffee shops, range=100, 50 cars).

content are available locally at APs due to previous requests coming from

other users. In addition, increasing the number of vehicles also creates more

wireless relay opportunities. However, a further increase degrades performance

due to increased contention for limited wireline and wireless resources. Third,

the benefit of mesh replication increases with the number of vehicles. When

we use all the vehicles in the two-hour traces, we find that the mesh replication

helps to increase throughput by 17-22%. This is because increasing the number

of vehicles increases vehicular relay opportunities and makes it more likely to

have content available at nearby mesh nodes.

Varying traffic demands: Figure 2.9 shows the performance for uniformly

and Zipf-like distributed traffic demand, respectively. As before, VCD per-

forms the best in all cases. The performance of uniform and Zipf-like dis-

tributed traffic receives similar performance. Moreover, decreasing the total

number of files tends to improve performance as demands are more concen-
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Figure 2.8: Average throughput under a varying number of cars (San Fran-
cisco, Zipf-like traffic, range = 100m).

trated and less replication is required to satisfy them. Finally, the replication

benefit tends to increase with an increasing number of files requested by each

user. This is because when a user is interested in more content, it is more

likely to have some locally available content that satisfies the user.

2.6 Trace-Driven Emulation

The goal of our Emulab implementation is twofold: (1) validate sim-

ulation results, and (2) evaluate the performance of VCD at scale, which is

hard to do in testbed experiments.

2.6.1 Validation

To validate the simulation results, we compare them against those ob-

tained from Emulab under identical settings. We consider the 30 most inter-

active APs from the trace contacting 100 vehicles. The radio range is 200m.
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Figure 2.9: Average throughput under varying traffic demands (San Francisco,
car=50, range=100m, coffee shops).

Given limited machine availability on Emulab, we emulate multiple APs and

vehicles on each machine. This limits the link capacity we can select per AP

or per vehicle. Hence, our evaluation uses 1Mbps and 6Mbps as the Internet

and wireless link capacities, respectively.

Figure 2.10 shows the average throughput for each interval in Emulab

and simulator. In Figure 2.10(a), we consider that all APs have Internet

connectivity and compare the simulation and emulation performance under no
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Figure 2.10: Cross validation: comparing performance in Emulab and simula-
tion

replication and wireline replication alone. As it shows, the simulation results

closely follow that of Emulab and the discrepancy between them is below

10%. Next we consider that only 10% of the APs have Internet connectivity

and compare the performance for vehicular replication alone and VCD in both

simulator and Emulab. In this case, since most APs are not connected to

the Internet and there is no mesh connectivity, most content is replicated via

vehicles. As shown in Figure 2.10 (b), the simulation results match well with

Emulab results, within 10% difference for both vehicular replication and VCD.

2.6.2 Micro-benchmarks

The following micro-benchmark results show that our implementation

is efficient and light-weight even when operating at scale. We emulate the 120

most interactive APs and 317 vehicles from the trace.

Control message overhead: Table 2.3 shows the per-interval control mes-
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Packet type Avg KB % of total traffic

Controller to APs 192 0.006
APs to controller 1483 0.048
Content server to AP data 3078200 99.946

Vehicles to APs 49122 1.599
APs to vehicles data 3023100 98.401

Table 2.3: Average control message overhead per interval.

Average Latency (ms)

Pre-processing for LP 1307
LP Computation 6512
LP Result Processing 32
Total 7851

Table 2.4: Average controller processing delay per interval

sage overhead imposed by our system. We observe that control messages

constitute only 0.054% of the total wireline traffic exchanged amongst APs

and between APs and the controller, and constitute only 1.6% of the total

wireless traffic between APs and vehicles.

Controller efficiency: We need to ensure that the centralized controller

does not become the performance bottleneck. On a 2.133GHz Xeon machine

with 3GB RAM, average CPU and memory utilization for the controller is

2% and 38 MB respectively. The average total latency at the controller is

7.8s, which is a small fraction of the 3-minute interval. Table 2.4 further

shows the breakdown of the processing latency at the controller. The pre-

processing stage involves predicting which APs will be visited and preparing

input file for lp solve. The LP computation, which is performed on Emulab
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Figure 2.11: CDF of average CPU and memory usage at all APs.

using lp solve [44] due to licensing issues with cplex [24], can be further reduced

if cplex is used instead.

AP load: Our AP implementation needs to be light-weight and run com-

fortably on the modest CPU and memory resources available on commercial

AP devices. We ran 120 instances of the AP on 2.133GHz Xeon machines

with 3GB RAM. Figure 2.11 shows the CDFs of average CPU and memory

utilization per AP instance. We find that all APs have roughly the same usage

and, on average each AP instance consumes only 0.03% CPU load and 33 MB

of memory and hence is light-weight.

2.7 Testbed Experiments

We evaluate our approach using two testbeds. The first testbed consists

of 14 APs deployed in office buildings near the road. Due to construction

activity, only 9 of these APs could be actively used for experiments. The APs

51



are Linux desktops equipped with 802.11b radios, which are set to a fixed

data rate of 11Mbps. The second testbed consists of 4 APs deployed outdoor

equipped with 802.11n radios that use auto-rate. 802.11n radios use 2.4GHz

frequency with a 20MHz band. In both testbeds, the APs have 1Mbps wireline

access link connecting to the back-end content server. In the 802.11b testbed,

3 out of the 9 APs are connected by a mesh network, whereas all 4 APs in

the 802.11n testbed belongs to one mesh network. In both testbeds, mesh

communication takes place using additional 802.11b radios. We implement

clients on both Windows Mobile Smartphones and Windows XP Laptops.

Smartphone clients are used in 802.11b experiments and laptop clients are used

in 802.11n experiments. Both clients ran a video streaming application during

the car ride. The cars travelled around the testbed at 15 mph (speed limit).

We expect that the driving speed does not significantly affect the performance,

because increasing speed reduces both on-time (i.e., contact time) and off-time

(i.e., the time gap between two consecutive contacts) and these effects should

cancel out.

2.7.1 Connection Setup

802.11b: Due to deployment constraints, our AP placement is not ideal:

4 of our APs were placed on the 3rd floor of buildings, limiting their range;

and 3 APs were placed in high AP density areas, with 50-70 APs within their

range, causing heavy interference. This deployment stress-tests our system. In

our experiments during car rides, we were able to associate successfully during
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65.2% of all attempts. Most of the failures came from the 3 APs deployed in the

high AP density area: association success percentage was only 33.3% for these

APs. In fact, even the Windows Mobile WiFi manager utility experienced

problems such as very long connection time and adapter freezing near these

APs even without any movement. The other access points can successfully

associate 85.7% of the time. The association time in our experiments has

minimum, median and maximum of 36ms, 844ms, and 14867ms, respectively.

70% of the associations finish within 2 seconds. We retry association up to 7

times and the median retry count is 1.

802.11n: In our 802.11n outdoor testbed, association success rate was 89.58%

out of 48 attempts. The minimum, median and maximum association times

were 48 ms, 162 ms, and 4086 ms, respectively. 80% of the associations finish

within 246 ms and the median retry count was 1. The better results for 802.11n

testbed were because we used laptops as clients and placed the APs outdoor

(closer to vehicles).

2.7.2 Wireline and Mesh Replication

We implemented a video streaming application that can play H.264

videos encoded at 64Kbps, downloaded from APs. We divide every video into

multiple files and use network coding to generate random linear combination

of packets within a file. Once enough packets are received for the file, the file

is decoded and passed to the video player on the smartphone/laptop to play

in proper order using the Windows Mobile media player plugin.
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Download (kB) Play time (sec)

No replication 29297 3662
Wireline 71930 8991
Wireline + Mesh 79440 9930
Full replication 92493 11562

Table 2.5: Throughput of wireline and mesh replication in the 802.11b testbed

Download (kB) Play time (sec)

No replication 16857 2107
Wireline 123175 15387
Wireline + Mesh 130827 16353
Full replication 136479 17060

Table 2.6: Throughput of wireline and mesh replication in the 802.11n testbed

Tables 2.5 and 2.6 compare the performance of our optimized wireline

and mesh replication with no replication and full replication at all the APs in

802.11b and 802.11n testbeds, respectively. We report the averages over 3 runs.

The full replication assumes every AP has all the files and serves as an upper

bound. In both experiments, we follow the planned trajectory, which was fed

as input to the controller. In 802.11b testbed, wireline replication alone and

wireline plus mesh replication performs 2.45x and 2.7x that of no replication,

respectively. In 802.11n testbed, the throughput of wireline and wireline plus

mesh replication is 7.3x and 7.8x that of no replication, respectively. This

demonstrates the effectiveness of replication. Moreover, the benefit increases

with wireless capacity. There is a gap between the performance of VCD and

full replication, since the Internet bottleneck prevents complete replication of

all the required files.
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No replication Wireless replication
Car 1 Car 2 Car 1 Car 2

AP1 0 0 Upload 780 pkts Download 780 pkts,20 files
AP2 0 0 Download 1159 pkts, 20 files Upload 1159 pkts

Table 2.7: Comparison between performance with and without vehicular repli-
cation.

2.7.3 Vehicular Replication

To show the benefit of vehicular replication, we use the following setup.

Car 1 follows the route AP1−AP2, and Car 2 follows the route AP2−AP1.

Car 1 possesses files 1-20 and is interested in files 21-40, while car 2 has files 21-

40 and is interested in files 1-20. Both AP1 and AP2 lack Internet and mesh

connectivity. Therefore, without vehicular replication, neither car can get the

content it is interested in and the total throughput is 0 under no replication,

wireline replication alone, and mesh replication alone.

In comparison, VCD exploits the vehicular replication opportunity.

When car 1 meets AP1, VCD finds that files 1-20 have highest utility because

it predicts car 2 will visit AP1 soon and need these files. So AP1 instructs

the car to upload them first. Similarly, car 2 uploads file 21-40 at AP2. When

car 1 reaches AP2 it can download these files. Similarly, car 2 can download

files 1-20 from AP1, leading to much higher throughput. Table 2.7 shows that

both cars download their interested files in the actual road experiments.
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2.8 Related Work

We classify related works into three areas: (i) vehicular networks, (ii)

disruption tolerant networks (DTNs), and (iii) mobility and demand predic-

tion.

Vehicular networks: A variety of novel techniques have been proposed to

optimize various aspects of communications in vehicular networks. One class

of works focuses on techniques for optimizing one-hop communication between

a vehicle and nearby APs. For example, CarTel project [18] proposes archi-

tectures for vehicular sensor networks, and develops a series of techniques to

optimize association, scanning, data transport protocols, and rate selection.

ViFi [7] proposes to take advantage of multiple nearby APs to improve com-

munication with passing vehicles. [16] conducts in-depth study of various rate

adaptation schemes in vehicular networks and proposes to select data rate

based on a combination of RSSI and channel coherence time. [51] uses di-

rectional antennas to maximize the transfer opportunity between the vehicle

and the AP. These works are complementary to our work, which focuses on

end-to-end performance of content distribution. We can potentially leverage

these approaches to improve the performance of the last hop. With these

enhancements, the gap between Internet and wireless capacity will further

increase and make replication even more important. Another class of works

consider changes to applications to support vehicular networks. For example,

Thedu [6] transforms interactive Web search into one-shot request/response

process to reduce access delay. While Thedu still requires connecting with
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the remote server, we replicate content to APs to eliminate the Internet bot-

tleneck. The third class of work studies protocol issues. [26] proposes fast

connection establishment, scripted handoffs, and prefetching at APs using

HTTP range requests. Finally, there are a few works on vehicle-to-vehicle

communication. For example, SPAWN [25] uses gossip for file transfer and

CarTorrent [40] extends SPAWN and implements it in a testbed. [20] treats

vehicular networks as a special type of DTNs and focuses on leveraging vehicle

to vehicle (V2V) communication to deliver content. As mentioned earlier, due

to the limited V2V contacts [8], we focus on optimizing resource allocation for

infrastructure-to-vehicle and vehicle-to-infrastructure communication, which

has not been studied earlier.

Disruption tolerant networks: Vehicular networks can also be consid-

ered as a special type of disruption tolerant networks (DTNs) and benefit

from advances in this area. Different from traditional DTNs, which focuses on

communicating with a specific node, we focus on content delivery. Epidemic

routing [69] was proposed for DTNs – whenever two nodes meet, they exchange

all messages that the other does not have. Recently, utility-based replication

was proposed, where nodes replicate data over the best contacts according to

some utility (e.g., mobility history [39] or delay [5]). For example, RAPID [5]

explicitly tries to optimize system-wide metrics such as average delay while in-

corporating resource constraints. We leverage both utility based optimization

for wireline replication and target wireless replication to achieve efficiency and

robustness.
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Mobility and demand prediction: There is a large body of literature

on mobility prediction, ranging from coarse-grained prediction in cellular net-

works (e.g., [1, 2, 42, 43, 55]) to more fine-grained prediction in WiFi networks

(e.g., [52, 64]). In particular, [65] compares various predictors in literature and

suggests that 2nd order Markov with a simple fallback mechanism (when there

is no prediction) performs well. [33] builds mobility profiles for users and sta-

tistically predicts the next social hub the user will visit. [52] builds the user’s

customized mobility models on the devices themselves, and uses a second or-

der Markov model to predict the connection opportunity and its quality of

the device with an AP. [47] uses the past history to identify opportunities

for media sharing in ad hoc DTNs. These works focus on low speed (e.g.,

personal mobility). Vehicles travel much faster and make mobility prediction

more challenging.

Demand prediction has been a well-researched problem in many areas,

especially, web content delivery over the Internet [53], and recently over ve-

hicular networks [6]. These works are complementary to our work and we can

leverage them to enhance the effectiveness of VCD.
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Chapter 3

Incentive-aware Routing in DTNs

We propose an incentive-aware routing protocol for DTNs. When nodes

in a DTN are controlled by rational entities, such as people or organizations [5,

11, 19], they can behave selfishly and attempt to maximize their own utility

without considering the system-wide criteria. A selfish user may drop others’

messages and excessively replicate its own messages to increase its own delivery

rate while significantly degrading performance for other users or even causing

starvation. Since DTNs have limited connectivity, if any, simply removing

selfish nodes results in serious performance penalty. Therefore it is necessary

to design incentive-aware routing for DTNs in order to fully take advantage of

temporary connections.

While there has been considerable work on studying selfish behavior

and designing incentive-aware routing schemes (e.g., [38, 45, 46, 49, 58, 66]),

to our knowledge, our work is the first one that studies these issues in DTNs.

The lack of contemporaneous path, high variation in network conditions, diffi-

culty to predict mobility patterns, and long feedback delay make the problem

very different from the traditional networks like Internet and mobile ad hoc

networks. Therefore the existing solutions do not directly apply.
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In this chapter, we first study the impact of selfish behavior in DTNs.

Using simulation based on both synthetic and real mobility traces, we show

that the presence of selfish users can degrade total delivered traffic to less than

20% as what can be delivered under full cooperation.

Motivated by the significant damage caused by selfish users, we propose

the use of pairwise tit-for-tat (TFT) as a simple, robust, and practical incen-

tive mechanism for DTNs. Existing TFT mechanisms often face bootstrapping

problems or suffer from exploitation. We propose a TFT mechanism that in-

corporates generosity and contrition to address these issues. We then develop

an incentive-aware routing protocol that allows selfish nodes to attempt to

maximize their individual utilities while conforming to TFT constraints. We

also address the practical challenges involved in implementing the TFT mech-

anism. We evaluate the effectiveness of our incentive-aware routing scheme

using both synthetic and real DTN traces. Our results show that with TFT as

a basis of cooperation among selfish nodes, the total delivered traffic increases

to 60% or higher as under full cooperation.

Our main contributions can be summarized as follows:

• We study the impact of selfish behavior in DTNs and show that it results

in serious performance degradation.

• We develop a practical incentive-aware routing scheme based on the TFT

mechanism for selfish users to attempt to optimize their own performance

without significant degradation of system-wide performance.
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• We demonstrate the effectiveness of our incentive-aware routing scheme

using trace-driven simulation.

In this chapter, we first describe related work. We then motivate the

need for an incentive mechanism in DTNs in Section 3.2. We study cooperative

routing in Section 3.3. Our incentive-aware routing protocol is presented in

Section 3.4. Section 3.5 discusses our evaluation methodology. Finally, we

present results in Section 3.6.

3.1 Related Work

DTN routing. Routing decisions in DTNs must be made in the absence

of end-to-end contemporaneous paths and with limited and possibly stale in-

formation about the network. There is a large body of work on routing in

DTNs. Most existing schemes are incidental in nature [5]: they do not explic-

itly optimize a specific performance metric, but opportunistically routes data

when temporary connection becomes available. For instance, in epidemic rout-

ing [69], whenever two nodes meet, they exchange all messages that the other

does not have. Since epidemic routing is essentially flooding, its overhead is

high. To reduce the overhead, utility-based replication has been proposed,

where nodes replicate data over the best contacts according to some utility

(e.g., based on previous mobility [39]). However the effect of how utility re-

lates to the desired performance metrics is unclear. In contrast, RAPID [5]

explicitly tries to optimize system-wide metrics such as average delay while

incorporating resource constraints, and is shown to be highly effective. Mo-
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tivated by RAPID, our routing protocol also explicitly optimizes user per-

formance based on the network conditions. However, in contrast to RAPID,

which considers only mean link delays, our protocol considers both the mean

and variance of link delays and as a result, is robust against high variability

in link characteristics. In addition, RAPID only considers global performance

objective, whereas our work explores the effects of selfish users in the system.

Incentive mechanisms. Cooperation in the presence of selfish agents has

been extensively studied in the Internet, mobile ad-hoc networks, wireless

mesh networks, and peer-to-peer applications. Most existing work falls into

one of the following three categories. The first category attempts to identify

misbehaving nodes and isolate them from the network [45]. These protocols

usually assume a set of trusted nodes that can detect and verify misbehavior

that results in the selfish node being denied participation in the network.

The fear of detection and punishment motivates nodes to cooperate. The

second category is based on credits, where nodes earn credits by forwarding

packets. These credits can then be used to obtain forwarding service from any

node in the system. However, existing credit-based protocols require either

secure hardware [13] or trusted centralized banks [77]. In the third category

of solutions, nodes reciprocate good or bad behavior on part of the peer in

a tit-for-tat fashion [49, 38, 66]. A node autonomously lowers service to a

neighbor if it detects that the neighbor is misbehaving, and fully cooperates

with the neighbor if no misbehavior is detected. This leads to partial and

probably temporary isolation of misbehaving nodes.
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We choose tit-for-tat (TFT) as the incentive mechanism for DTN rout-

ing. In TFT, every node forwards as much traffic for a neighbor as the neighbor

forwards for it. In this way, rather than attempting to detect misbehavior, our

approach focuses on detecting good behavior. In our solution, packet acknowl-

edgement acts as the proof of work done by a next-hop. This positive feedback

allows a node to engage in balanced exchange with its neighbors—rewarding

good behavior with equal reciprocal service and ignoring “misbehavior”. In

case of the punishment-based approaches, the strong reaction to misbehavior

(isolation of the node by peers) is justified only if we have high confidence

that the mechanism has very low false positives, so that innocents are not

punished, and very low false negatives, so that miscreants cannot get away by

flying under the radar. In case of DTNs, there are no reliable ways to detect

misbehavior. The existing watchdog mechanism [46] designed for ad hoc net-

works cannot work in DTNs since it assumes that the sender can listen for

the next hop’s transmissions to detect if the next hop properly forward the

traffic and this assumption fails to hold in DTNs since these two nodes are of-

ten disconnected. In addition, due to large variability in mobility patterns and

network condition, a node may not be able to deliver a packet within its target

deadline in spite of its best intentions. Therefore, the potentially high false

positive and false negative in detecting selfish nodes render punishment-based

scheme unsuitable for DTNs. In addition, the TFT-based incentive mecha-

nism does not require trusted nodes or special hardware, which fits well with

decentralized and low-cost DTNs we envision.
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Previous papers (e.g., [38, 49, 66]) have laid the game-theoretic foun-

dation for the use of TFT in wireless networks. The existing TFT mechanisms

face bootstrapping problems or suffer from exploitation. We propose a TFT

mechanism with generosity and contrition to address these issues. Further-

more, our protocol tolerates significantly large feedback delay in DTNs and

supports multi-hop paths (as opposed to single-hop paths in [66]).

TFT has been particularly successful in combating free-riding behavior

in P2P file sharing systems. TFT is used to ensure that only agents who

actively contribute are allowed to download files from others. Bit-torrent [22]

employs a variant of TFT, where k top-performing neighbors in an interval

are given equal download rates in the next interval. Analyzing this strategy

and improving upon it have been the focus of several recent papers( [56, 41]).

TFT based file sharing is different from TFT-based routing in DTN in the

following ways. First, file sharing is a purely bilateral transaction between two

nodes, while routing typically involves interactions among multiple relaying

nodes, thus complicating analysis. Second, DTN has large feedback delay

and high uncertainty, which makes it critical to address bootstrapping and

exploitation. Third, the bilateral nature of file sharing also implies that a

neighbor’s performance can be evaluated directly, while we must rely on end-

to-end acknowledgements to do the same in case of DTN routing. Due to these

important differences, we cannot directly apply the TFT mechanism for file

sharing to DTN routing.
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(c) ZebraNet trace

Figure 3.1: Comparison of fully cooperative DTN against non-cooperative
DTN, where the y-axis shows the ratio between delivery rate under a selfish
DTN and that under a cooperative DTN.

3.2 Motivation

In this section, we motivate the need for incentive mechanisms by

demonstrating that network performance incurs serious degradation without

an incentive mechanism. We then identify several important research questions

on incentive-aware routing in the DTN context.

The need for incentive mechanism. We compare the performance of

fully cooperative DTNs with DTNs consisting of only selfish nodes. Results
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for the fully cooperative network are obtained by formulating the DTN routing

problem as an Linear Program, which is solved using the CPLEX solver [24]. In

the absence of any incentive mechanism to facilitate cooperation, the rational

strategy is to free-ride if possible and not relay traffic for anyone else, since

there is nothing to be gained by doing so and no notion of penalty in not

relaying. If all the nodes in the network follow this strategy, everyone drops

relay requests from others implying that packet delivery is only possible when

the source directly meets the destination.

We use the fraction of packets delivered within deadline as the perfor-

mance metric. As shown in Figure 3.1 the delivery rate reduces to only 20% of

what is achieved under full cooperation in the synthetic trace, to only 70% in

the Haggle trace [60], and to only 60% in the ZebraNet trace [70]. The higher

delivery rate in Haggle is due to its higher network connectivity.

These results further confirms our intuition and shows that unless coop-

eration is somehow incentivized, system operation will be critically impaired.

A network of selfish entities needs an incentive mechanism that can act as a

basis for such cooperation. As justified in Section 3.1, we choose TFT as the

incentive mechanism because it fits well to the unique characteristics of DTNs,

such as lack of contemporaneous path, large feedback delay, high variation in

network conditions, and unpredictable mobility.

Research questions. In the rest of this chapter, we focus on understanding

the following two “prices” in the context of incentive-aware DTN routing.
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• The price of anarchy (PoA) — Under the given incentive mechanism,

what is the performance that can be achieved when all DTN nodes are

selfish relative to the optimal performance that can be achieved when all

DTN nodes are cooperative?

• The price of incentive mechanism (PoI) — Assuming that all users

are cooperative, what is the performance penalty that can be achieved

under a given incentive mechanism relative to the optimal performance

without the incentive mechanism?

PoA and PoI are complementary with each other: PoA quantifies the

effectiveness of an incentive mechanism in limiting the damage of selfish nodes,

whereas PoI quantifies the performance loss of cooperative nodes due to the

presence of the incentive mechanism. In this chapter, we show that with our

design, TFT can achieve both low PoA and low PoI for DTN routing.

3.3 Cooperative DTN Routing

We first study the following two cooperative DTN routing schemes. The

first scheme optimizes the global objective when everyone is cooperative. This

is an interesting baseline since it provides an upper-bound of the performance

under TFT constraints. The second scheme optimizes the global objective

under TFT constraints. By comparing the performance of these two schemes,

we can estimate the PoI of TFT. In the next section, we consider DTN routing

under TFT constraints when nodes are selfish.
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Routing objective. Throughout this chapter, we consider maximizing total

delivered traffic within a given deadline. This is a natural and useful opti-

mization objective. While DTN applications tend to be much more tolerant

to delays, it is often useful to be able to impose some application-specific dead-

line (as opposed to waiting for the delivery for ever). When the deadline is

equal to infinity, the objective translates to maximizing the total delivered

traffic. Finally, although we only present results for this optimization objec-

tive, our algorithms can directly support other optimization objectives, such

as minimizing total delay.

3.3.1 Global Optimal

We consider the delivery ratio within a given deadline as the perfor-

mance metric. The problem of maximizing total delivery ratio within a given

deadline over all flows can be solved in the following four steps.

Candidate path generation. First, we generate a set of candidate paths

for each given flow by enumerating all possible paths between its source and

destination that have at most 3 hops (similar to RAPID [5]). By limiting

the length of candidate paths, the number of candidate paths for each flow is

bounded by O(n2), where n is the total number of nodes.

Path performance computation. Next, for each path of a flow, we com-

pute the delivery ratio within a given deadline if the flow is routed through

this path. Since the inter-contact time may not follow any well-known distri-

bution, for generality we compute a lower bound of the delivery ratio using
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Chebyshev’s Inequality [72], which holds for any distribution.

Specifically, we first compute the mean and variance of the waiting time

on each link as follows. Given a link between two nodes, we break time into

ON periods (in which the two nodes are in contact) and OFF periods (in which

the two nodes are not in contact). We assume that if a packet arrives during

an ON period, it can be delivered immediately (i.e., the waiting time is 0); if

a packet arrives during an OFF period, it can be delivered at the beginning of

the next ON period (i.e., the waiting time is equal to the residual time in the

current OFF period). For simplicity, we ignore the propagation delay during

ON periods because it is typically much smaller than the duration of OFF

periods. Assuming that the packet arrival time is uniformly distributed, we

can then compute the mean and variance of the waiting time on this link.

We can then approximate the delivery ratio (within a given deadline)

for an end-to-end path as follows. For any given path, let random variable X

denote the total waiting time. Let µ and σ2 denote the mean and variance of

X. µ and σ2 can be computed by summing up the mean and variance of the

waiting times on different links on this path (under the assumption that these

waiting times are independent). Let D denote the desired deadline. Then

according to Chebyshev’s Inequality, the delivery ratio within the deadline D
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can be bounded as follows:

Pr(X ≤ D) =1 − Pr(X ≥ D)

=1 − Pr(X − µ ≥ D − µ)

≥1 −

(

σ

D − µ

)2

(3.1)

Route optimization. Then we maximize the total delivery ratio within the

deadline for all flows by formulating the problem as the linear program (LP)

shown in Figure 3.2. Here Xf,i is the traffic allocation of flow f on path i;

Pf,i is the lower bound of the delivery ratio when traffic of flow f is routed

through path i given by Inequality (3.1); Capi denotes the smallest capacity

of all links on path i. Constraint C1 specifies the capacity constraint, i.e., the

total amount of traffic routed through path i should not exceed the capacity

of path i. Constraint C2 mandates that the total traffic assignment for flow

f does not exceed the demand of flow f by a factor of RepFactor, where

the replication factor RepFactor is a control parameter that can be tuned to

improve the total delivery ratio at the cost of more replication traffic. In our

evaluation, we keep RepFactor constant at 3.

Online optimization. Finally, to deal with fluctuations in traffic demands

and network connectivity, we break time into segments and perform route opti-

mization at the beginning of each segment based on predicted traffic demands

and path performance. Specifically, we use the exponentially weighted moving

average (EWMA) of past values to predict the traffic demands and the mean

and variance of path waiting time for the current segment. We then use these
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Input : Flows,Demand(f), Pf,i, Capi

Output : Xf,i

max:
∑

f∈F lows

∑

i

Xf,iPf,i

Subject to:

[C1]
∑

f∈F lows

Xf,i ≤ Capi ∀i

[C2]
∑

i

Xf,i ≤ RepFactor ∗ Demand(f) ∀f

Figure 3.2: LP formulation to maximize delivered traffic within a given dead-
line.

predicted values in the above LP formulation to optimize the routes for the

current segment. The routes remain unchanged until the beginning of the next

segment.

3.3.2 Global Optimal with TFT Constraints

Next we incorporate the TFT mechanism when maximizing total de-

livered traffic. This can be achieved by adding the following TFT constraints

into the LP shown in Figure 3.2. The TFT constraints simply state that the

total amount of traffic through link A → B is equal to the total amount of

traffic in the opposite direction (i.e., through link B → A).

∑

f

∑

i:AB∈Pathi

Xf,i =
∑

f

∑

j:BA∈Pathj

Xf,j ∀nodes A, B (3.2)

TFT constraints with generosity: The basic TFT constraints (as de-
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scribed above) have problems with bootstrapping. When two nodes meet for

the first time, since no packets have ever been successfully relayed by the other

node, the basic TFT prevent any relaying. To address this issue, generous TFT

enables initial cooperation of up to ǫ, which allows a node to send ǫ number of

packets more than it has earned the right to send by relaying in the previous

interval. Generous TFT is also useful for handling asymmetric traffic demands

by absorbing traffic imbalance up to ǫ amount. The ǫ value is important. A

larger value loosens TFT constraints and yields better performance and faster

bootstrapping when everyone is cooperative. On the other hand, it also means

that a selfish node is less cooperative since this generosity can be exploited

by the node. We model exploitation as follows. Every selfish node checks if

it has performed enough work in the previous interval to be able to satisfy its

predicted demand for the upcoming interval without requiring any generosity

from the neighbor. If not, it has incentive to provide generosity in order to

get increased service in the next interval. Otherwise (i.e., if its predicted ser-

vice rate is no less than its predicted demand), it has no incentive to provide

any generosity to that neighbor. In addition, it assumes that the neighbor

will provide it generosity. As a result, it does ǫ less work and can get away

with it if the other node indeed does provide ǫ generosity. In Section 3.6, we

empirically study the impact of generosity.

TFT constraints with generosity and contrition: Generosity alone is

still insufficient. While it can absorb transient asymmetry in delivery of up

to ǫ, any imbalance exceeding ǫ could lead to lengthy retaliation between two
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Figure 3.3: Effect of Generosity, Contrition and Generosity + Contrition. (ǫ
= 1)

neighbors. This is illustrated in the following example.

Consider a toy topology of four nodes with two flows A → B → C

and B → A → D, each with a demand of 10 packets/interval. When network

connectivity is stable, generosity allows relays A and B to gradually increase

their cooperation until their demands are satisfied after which both will at-

tempt to exploit the other. However, generous TFT can cause protracted

vendetta between neighbors if one of them delivers less packets than expected

for the other, possibly due to variation in mobility. This is demonstrated in
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Figure 3.3 (a), where outage on link B → C in interval 19 causes zero packets

to be delivered for A’s flow in that interval. Since this drop in delivery ex-

ceeded ǫ, A retaliates in the next interval by delivering correspondingly less.

In interval 21, generous TFT constraints require B to retaliate back, which

sets off a long-lasting vendetta.

Contrition solves this problem by refraining from reacting to a valid

retaliation to its own mistake. With contrite TFT, B realizes that A’s reaction

in interval 20 was due to its own actions in interval 19, and so does not lower

traffic in interval 21. This way cooperation is restored from interval 21. In

addition, since contrition does not always provide leeway like generous TFT,

it cannot be exploited. However, contrition cannot work by itself either in case

of DTN routing. Contrition only provides a way to return to stability after

perturbation, but provides no way to reach that stability, i.e., as Figure 3.3 (a)

shows, it does not provide any way for cooperation to bootstrap like generosity

does.

Hence, we propose a novel variant of TFT by combining generosity

and contrition. The generosity component enables bootstrapping and absorbs

transient asymmetries, while contrition prevents mistakes from causing endless

retaliation. Figure 3.3 (b) shows that by interval 21, contrition and generosity

working together allow total delivery to recover from the outage in interval 19.

In Figure 3.3 (c), we show that the above argument remains valid even

for a larger topology of twenty nodes. We compare the number of packets de-

livered for different values of generosity and different packet deadlines. Packet
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delivery increases with increasing generosity as TFT conditions are loosened

to accommodate asymmetric demand. More importantly, TFT with both gen-

erosity and contrition prevents unnecessary retaliation and outperforms TFT

with generosity alone by up to 30% in some cases.

3.4 Selfish DTN Routing

The previous section describes methods for optimizing routes when

all nodes in a DTN are cooperative. In this section, we present a practi-

cal distributed protocol that allows selfish users to optimize their individual

performance while conforming to TFT constraints.

Our routing protocol consists of the following three components: (i)

every node periodically exchanges link state, (ii) each source computes the

forwarding paths based on link state and uses source routing to send its traffic,

(iii) upon receiving data, each destination sends ACK via flooding and the

source uses it to update its TFT constraints for the next interval.

Link state dissemination: Every node keeps track of the mean and variance

of the waiting time on links between the node itself and other nodes. It

also computes the link capacity using the duration of the meeting and the

bandwidth available during that time. At the end of every interval, every

node floods these three link metrics so that all nodes have the information

about all links in the network. This is similar to many link state protocols,

such as OSPF. We assume that link state is disseminated faithfully—we focus

on making the data-plane incentive compatible and leave securing the control
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plane to future work.

Route computation: We use source routing to send traffic. This gives

a source complete routing control so that it can directly optimize its own

performance metric. Moreover, if different senders are interested in optimizing

different performance metrics (e.g., some want to minimize delay and others

want to maximize delivery rate), this can be easily supported using source

routing. In order to prevent the source route from being tampered in transit,

it is digitally signed by the sender (e.g., using Hierarchical Identity Based

Cryptography (HIBC) [62], which is shown to be practical for DTNs [63]).

Based on the link state, a source maximizes its total delivered traffic as

follow. For each data packet, a source generates RepFactor number of packets

and specifies complete source route for each generated packet. The routing

strategy is computed at the beginning of every interval. Given average delay,

variance, and link capacity of each link (which is disseminated throughout the

network), a source first computes the delivery ratio within a given deadline

for each path using Equation 3.1. The end-to-end ACKs (as described below)

indicate how many packets are successfully delivered on each path for each flow

during the previous interval. Then it can compute the total background traffic

along each path in the previous interval, and estimate the background traffic

volume information in the new interval using ACK packets of data delivery.

Next it updates its routing strategy in the new interval by moving traffic

from the worst path to the best path in terms of delivery ratio. The move

continues until either link capacity constraint or TFT constraint is violated.
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Then it starts to move traffic to the second best path and so on until all the

paths with better delivery rate have reached their raw link capacity or TFT

constraints. Figure 3.4 outlines the algorithm.

1 src: node ID of flow f ’s source
2 Xprev

f,i
: amount of traffic from flow f is allocated on path i in the previous interval

3 Xcurr
f,i

: amount of traffic from flow f is allocated on path i in the current interval

4 Bprev
f,i

: amount of background traffic on path i in the previous interval

5 compute the lower-bound of the delivery ratio along each path using Equation 3.1
6 sort paths in the order of increasing delivery ratio
7 worst = 1; best = totalPaths
8 while P (worst) < P (best)
9 // compute maximum amount of flow f ’s traffic that can be sent on path i

10 TFTCap(best) = infinity;
11 for each relay link k on path best
12 TFTCap(best) = min(TFTCap(best), forwarded(k));
13 end
14 cap = min(TFTCap(best), Cap(best)) − Bprev

f,i
;

15 // we can move up to moveTotal traffic from the worst to best path
16 moveTotal = min(Xprev

f,worst
, cap);

17 Xcurr
f,worst

− = moveTotal;
18 Xcurr

f,best
+ = moveTotal;

19 if Xcurr
f,best

== cap
20 best = best − 1;
21 end
22 if Xcurr

f,worst
== 0

23 worst = worst + 1;
24 end
25 end

Figure 3.4: Route computation at selfish nodes.

Note that TFTCap in Figure 3.4 is based on the total traffic others have

forwarded in the previous interval, denoted as forwarded(k, src). However,

as all TFT-based schemes, the actual TFT constraints should be based on the

total traffic sent during the current interval. Moreover the background traffic

along each path may also change over different time intervals. Therefore the

route derived above may not satisfy the actual TFT constraints. To address

the issue, we apply the following dropping strategy. Let Ti,j and Tj,i denote

the total traffic node i relays for j and the total traffic node j relays for i in
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the current interval. If Ti,j > Tj,i + ǫ, node i ensures TFT by dropping traffic

from j that exceeds Tj,i + ǫ packets.

ACK dissemination: Upon receiving a packet, the destination floods an

ACK so that we can use it to derive the TFT constraints for the next interval.

In our protocol, acknowledgements serve the following three purposes.

• First, packet acknowledgements generated by the destination act as proofs

of successful relay by intermediate nodes. Once the packet reaches its

destination, the destination node extracts the source route and the ac-

companying signature and attaches them to the acknowledgement packet.

The ACK packet is then flooded through the network. The size of ACK

is much smaller than the size of data traffic, so the ACK overhead should

be small. To further improve efficiency, we can combine multiple ACK

packets into a single ACK during the flooding.

• Second, acknowledgements can provide useful feedback required by TFT.

Specifically, every node receiving the ACK first verifies the integrity of

the attached source route and then checks if its identifier is present in

the relay list. If it is, then the node increments its local TFT counters

to indicate that the next node in the list successfully relayed a packet

for it. Credit is only given to relay nodes on the forwarding path.

• Third, flooded acknowledgements disseminate key information about the

network operation to every node. Each node uses information provided in

the ACK to compute how many packets were sent between every source
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and destination pair and along which paths. Since the ACK contains

the entire source route, a node can also calculate the number of packets

traversing every link in both directions.

3.5 Evaluation Methodology

We implement the routing protocol described in Section 3.4 in dtnsim

from [37]. For comparison purpose, we also evaluate the routing computed

by solving LP as described in Section 3.3 using CPLEX [24]. We compare

different routing schemes by varying mobility traces and traffic demands. In

all evaluation, we set link capacity to 10 packets/second.

Mobility traces: We use synthetic mobility traces to gain insights to the

routing schemes under controlled scenarios, and use real traces to assess their

performance under realistic scenarios. We generate synthetic traces as follows.

We have 20 nodes and randomly create 114 links among them. We then

generate the ON/OFF time for each link, where the ON time is kept constant

at 1, and the OFF time follows a Gaussian distribution whose mean and

variance are 10 and 0.5, respectively. In addition to the synthetic traces,

we also use the Haggle trace [60] which involves 41 iMotes carried by IEEE

INFOCOM attendees and the ZebraNet trace consisting of the movement of

20 male zebras in a 6km-by-6km field each carrying a radio with a range of

500m, generated using the same methodology as [70].

Traffic demands: To study the impact of traffic demands on the routing
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performance, we generate traffic demands as follows. We first randomly gener-

ate 5 flows originating from each node. We then set the total traffic demands

from all nodes to be either all equal or following a Zipfian distribution. In Zip-

fian distribution, the top i-th demand from a node is proportional to 1/i. We

use Zipfian distribution, because a number of studies show that realistic user

demands often exhibit Zipf-like distributions [10, 21]. Finally, we partition the

total traffic demand at a node to all its flows either equally or using Gravity

model [76]. In Gravity model, the total traffic from A to B is proportional to

the total outgoing traffic from A and the total incoming traffic to B. In this

way, we have four spatial distributions: (i) equal/equal, (ii) equal/gravity, (iii)

Zipf/equal, and (iv) Zipf/gravity.

3.6 Evaluation Results

We evaluate the performance of our routing scheme by varying the

mobility, traffic demands, and deadlines.

Impact of different traces: First, we focus on one time segment in each

trace and assume that we know the mean and variance of ON/OFF time

of links between every pair of nodes during the time segment. In the later

evaluation, we will consider the effects of prediction errors.

Figure 3.5(a), (c), and (e) plot the total number of delivered packets

within the deadline over time for the synthetic, Haggle, and ZebraNet traces,

respectively. We set the deadline to be 70 seconds for the synthetic trace,

7000 seconds for Haggle trace, and 1350 seconds for ZebraNet trace. As we
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(c) Sampled Haggle traces over time
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Figure 3.5: Impact of different traces.

81



would expect, cooperation without TFT achieves the highest delivery rate,

since there is neither PoA nor PoI. Cooperation with TFT performs the second

best and its difference from that without TFT is within 7-20% for all traces,

which suggests that the TFT incentive mechanism imposes low cost in the

presence of cooperation and therefore has low PoI: PoI of 20% for synthetic,

10.5% for Haggle, and 7% for ZebraNet trace. The performance of selfish users

with TFT also achieves low PoA compared to cooperative counterpart: PoA

of 25%, 6%, and 15% respectively. Finally, we observe selfish users without

TFT performs the worst, because without an incentive mechanism delivery

is only possible when source and destination directly meet. We note that in

Figure 3.5(e) Selfish with TFT performs worse than selfish without TFT in the

first interval. This is because the latter delivers only packets destined for the

node in contact, while the former also spends bandwidth forwarding multi-hop

packets over a contact. This causes fewer packets to be actually delivered to

their destinations in the first interval but helps set stage for TFT cooperation

in later intervals leading to higher delivery.

We demonstrate the effect of deadlines in Figure 3.5(b), (d), and (f),

which plot the average number of packets delivered within the deadline. The

results are the average over all intervals after the bootstrap phase is over, so

Figure 3.5(b), (d), and (f) are the average of 15, 7, and 8 runs, respectively.

As we would expect, packet delivery increases with the deadlines since packets

have more time to reach the destination. Moreover, TFT performs well for

a wide range of deadline values. The only exception is using 1000 second

82



deadline in Haggle trace, where all routing schemes perform similarly. This

occurs because the deadline is too small to allow multi-hop delivery and the

only possible delivery even under full cooperation is through direct contact.

From the above comparison of traces, we found that the performance

gap among different cooperation schemes varies according to the nature of

the traces. The rank of the schemes, however, remains the same regardless of

the difference in the mobility of the traces, indicating that the TFT incentive

mechanism is beneficial for various networks.
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Figure 3.6: Comparison of inter-meeting prediction versus oracle under tem-
poral variation in mobility. EWMA parameters: α = 0.8, EWMA interval =
trace interval

Impact of temporal variation in mobility: We now study the impact of

temporal variation in mobility by using the entire raw Haggle and ZebraNet

traces. Since the Haggle trace captures the mobility of participants at a com-

puter science conference, it consists of periods of high interactivity (presum-

ably indicating lunch or break times), interspersed with low activity periods
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(presumably indicating conference sessions). In case of the ZebraNet trace,

animal movements dictate how and when communication can take place. In

the presence of such variation in mobility, we need to estimate the mean, vari-

ance of delay and the bandwidth for every link in order to compute the source

routes.

We compare two estimation schemes. First, we propose a prediction

scheme that uses EWMA values of link characteristics as estimate for the next

interval. Second, we use values provided by an oracle that has knowledge of

the true values for the next interval. The oracle represents the best possible

estimation.

Figure 3.6 compares the two estimation methods. For the Haggle trace

(Figure 3.6(a)), we observe that the prediction scheme performs within 10%

of the oracle which is reasonably accurate given the high variation in the

mobility for the three days of conference. While the ZebraNet trace results

(Figure 3.6(b)) do not show any discernible diurnal pattern, it also has high

variability in the node’s movements over time. Moreover, the EWMA interval

size and the total volume of the packets are order of magnitude less than those

of Haggle traces, making EWMA predictor to follow the oracle’s line with 21%

error.

Comparing the oracle and prediction results, we can observe that with

EWMA-based prediction, the results are reasonably close to perfect prediction.

However, we note that predicting link properties is an interesting and open

problem for DTNs.

84



 0

 200

 400

 600

 800

 1000

 1200

Eql/Eql Eql/Grvt Zipf/Eql Zipf/Grvt

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Coop. without TFT
Coop. with TFT

Self. with TFT
Self. without TFT

Figure 3.7: Comparison of algorithms under spatial demand difference.

Impact of spatial variation in traffic demands: Next we study the im-

pact of spatial variation in traffic demands using the synthetic trace. Figure 3.7

shows the total delivery rates for different spatial distributions: equal/equal,

equal/gravity, Zipf/equal, and Zipf/gravity, which are described in Section 3.5.

Here the number of packets delivered within deadline represents an average of

15 runs. We observe that the relative performance across the different routing

schemes remains the same. Moreover, the PoI under a cooperative DTN is

around 5%. In addition, without the incentive mechanism, the delivery rate

in a selfish DTN is only around 200 packets/second. In comparison, with

the incentive mechanism, the delivery rate increases to 500 packets/second for

Zipf-distributed demands, and 600 packets/second for equal demands. These

results demonstrate the effectiveness of our incentive-aware routing scheme.

Impact of temporal variation in traffic demands: Finally we compare

routing schemes by varying the traffic demands over time using the synthetic
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(b) Decreasing and then stabilized de-
mands
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(c) Continuously increasing demands
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Figure 3.8: Comparison of algorithms under different temporal variations.
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trace. The goal is to understand the responsiveness of different routing schemes

to demand changes, i.e., whether the algorithm converges after disruption in

demand traffic, and if so, how long it takes for the delivery ratio to stabilize.

We consider the following six traffic variation scenarios: (a) increasing

and then stabilized demands, (b) decreasing and then stabilized demands,

(c) continuously increasing demands, (d) oscillating demands, (e) spike at an

interval and going back to the previous demand level, and (f) dip at an interval

and going back to the previous demand level. In all the cases, every flow has

the same demand (i.e., their spatial distribution follows equal/equal).

As shown in Figure 3.8, the relative performance of different routing

schemes are consistent across different temporal demand variations. The price

of incentive mechanism is small, and the incentive mechanism significantly

improves delivery rate in a selfish DTN. In addition, the delivery rate adapts

quickly with the change in traffic demands in all cases.
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Chapter 4

Conclusion

In this dissertation, we address performance and incentive issues in

disruption-tolerant networks.

First, we present the VCD system that provides high-bandwidth con-

tent access in vehicular DTNs by utilizing opportunistic connections to WiFi

access points along the road. VCD predicts which APs a vehicle will encounter

in the future and proactively pushes content to these APs by leveraging both

wireline and wireless connectivity. Using trace-driven simulation and Emulab-

based emulation, we show that VCD is capable of downloading 3-6X as much

content as no replication and 2-4X as much content as wireline or vehicu-

lar replication alone. The gap further increases as the ratio between wireless

and wireline capacity increases. We further develop a full-fledged prototype of

VCD using two testbeds: a 14-AP 802.11b testbed and a 4-AP 802.11n testbed

with smartphone and laptop clients. Our experience suggests that VCD is an

effective approach for vehicular content distribution.

Second, we study the impact of selfish behavior in DTNs and show

that it results in serious degradation in routing performance. We then pro-

pose the use of tit-for-tat (TFT) as a simple, robust and practical incentive
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mechanism for DTNs. Making TFT practical for DTNs is challenging due

to the lack of contemporaneous end-to-end paths, high variation in network

conditions, difficult to predict mobility patterns, and long feedback delay in

DTNs. Existing TFT mechanisms often face bootstrapping problems or suffer

from exploitation in such environment. We therefore propose a TFT mecha-

nism that incorporates generosity and contrition to address these issues. We

then develop a an incentive-aware routing protocol that allows selfish users to

adaptively optimize their individual performance subject to TFT constraints.

We also address the practical challenges involved in implementing the TFT

mechanism. Using both synthetic and real DTN traces, we show that our

incentive-aware routing protocol is effective in fostering cooperation among

selfish nodes and can significantly improve the routing performance.

Future work:

• Cost-conscious combination of 3G and Wifi. Smartphones today

are equipped with both 3G and WiFi interfaces. While WiFi provides

intermittent high-bandwidth connectivity, 3G allows always-on but lower-

bandwidth and high-cost path to the Internet. This complementarity be-

tween the two technologies can be exploited to design a cost-conscious

hybrid replication strategy.

• General currency system as a incentive mechanism. While TFT

provides a basis for rational nodes to engage in routing, the performance

under TFT is limited since TFT credits acquired with a neighbor can only
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be used to send packets through that neighbor. A general currency systems,

where credit earned can be used to buy service from any other neighbor, can

potentially provide better performance. However, implementing a currency

system in a DTN in the absence of an always-available central bank or use

of trusted hardware is an interesting open problem.
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