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A simulation was conducted to evaluate the ability of nonmetric MDS to 

recover the true structure of the data under conditions of proportion of missing 

pairs of dissimilarities, method of selection of missing pairs, and data with and 

without error. The percent of pairs missing in the matrix of observations had an 

effect on the ability of nonmetric ALSCAL to recover the true structure of the 

data. The results showed that with .10 missing pairs and with .20 missing pairs the 

recovery was excellent. With .30 missing pairs, recovery was good. With .40 

missing pairs, and .50 missing pairs recovery was poor, and solutions had 
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degenerate configurations with .80 missing pairs and .90 missing pairs. Method of 

missing and amount of error did not have an effect on either of two measures of 

recovery used: Correlations between recovered and true coordinates (CC) and the 

index of metric determinacy (M). Values of STRESS and values of RSQ obtained 

from the algorithm run in nonmetric ALSCAL SPSS did not represent the true 

recovery of the underlying structure. Ninety percent of STRESS values were good 

or excellent and one hundred percent of RSQ values were strong and significant 

even in the case of degenerate solutions. The true measures of recovery correlated 

poorly with the apparent measures of recovery.  

Therefore, it appears that values of STRESS and RSQ while informative 

with low levels of missing, are misleading when percent of missing pairs reach 

.30 or more. Conversely, scatter plots of monotonic transformation were excellent 

predictors of the quality of the solution at all levels of missing pairs. Researchers 

should view the apparent measures of fit obtained in the SPSS nonmetric MDS 

output with reservation and examine the plots of monotonic transformation to 

evaluate the quality of the nonmetric MDS solution. 
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CHAPTER I 

Introduction 

A picture is worth a thousand numbers (Young, 1985) 

 

Multidimensional scaling (MDS) is a data reduction method used to 

analyze complex phenomena and graphically display them based on an 

understandable and parsimonious model. In a typical study subjects are presented 

with stimuli and asked to make preference choices that are treated as distance like 

data and referred to as proximities. In the solution, the stimuli are represented by 

points in a multidimensional space and are arranged so that there are greater 

distances among the pairs of stimuli that are most dissimilar (Young & Harris, 

1997). The placement of the stimuli in space can lead to hypotheses about 

dimensionality and it may result in insight about the hidden structure of the 

underlying constructs in an objective way (Berven & Scofield, 1982). The 

structure is presented visually and it can be used to test theory or to suggest areas 

of research (Shepard, 1974). 

MDS has a practical advantage for theory building in that it reduces a 

large set of variables to a smaller number of underlying dimensions by examining 

the degree of similarity among the variables. When the construct being studied is 
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of a psychological nature -- and often not directly observable -- assumptions of 

normality about the data may not be realistic. MDS allows the researcher to treat 

responses to comparisons between elements made by observers as ordinal 

measures of the similarity of variables to obtain a set of coordinates that can be 

used to guide, clarify, and interpret a construct (Gnanadesikan, 1977). 

Conversely, psychological attributes are not necessarily limited to subjective 

evaluation; they can be observed and recorded as well.  Objective measures can 

also be used in MDS as long as they represent the amount of difference between 

objects or events. For example, the events could represent the amount of time that 

people interact with each other in a group or the recorded percentage of time 

members of the different parties vote for an issue in congress (Young & Harris, 

1997). 

A pervasive problem with MDS occurs when the number of input stimuli 

presented is large.  Individuals may become tired, confused, or frustrated when 

approaching the task.  If the participants perceive the task as tedious, the resulting 

fatigue or boredom may lead to faulty data (Coxon, 1982). Also, ranking may 

become more difficult because of the cognitive complexity created by the 

increasing number of objects. Respondent guessing or error may compromise the 

quality of the data, while lack of response leads to incomplete rank orders 

(DeSarbo, Young, & Rangaswamy, 1997). Researchers have conducted Monte 

Carlo studies (i.e., Spence & Domoney, 1974) to test various designs that can be 
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used to reduce the number of stimuli presented to participants in a MDS task.  

Some of the suggestions made by these researchers involve complex schemes to 

control the proportion of items. 

Even with these limitations, MDS permits the researcher to expose 

unknown properties of a set of stimuli making it a valuable alternative to null 

hypothesis testing when the goal may be to discover psychological dimensions 

underlying the data (Gnanadesikan, 1977; Weinberg, 1991). 

Many disciplines have used MDS to analyze information and generate 

theory.  Psychologists have used it in a variety of contexts such as in the study of 

mental organization of people with schizophrenia (Catalano, 1999; Padula, 

Conoley, & Garbin, 1998), to examine theories of emotions (Shalif, 1988), or 

visual processing information in non-human subjects (Blough, 1997). Cognitive 

psychologists have used MDS to map structural representations of knowledge 

(Gonzalvo, Cañas, & Bajo, 1994), and school psychologists have used it to 

examine perceptions of cultural differences (Frisby, 1996).  Psycholinguistic 

similarity data has also been used to analyze semantic structure in speech 

perception (Shepard, 1988). 

In education, MDS is used to produce representations of students’ 

structural knowledge. The representation of the structure that the students use to 

organize knowledge, ideas, or principles is called a cognitive map. 
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Cognitive maps can be used to evaluate structural knowledge. They can 

also be used by instructors to teach the relationships between the elements of 

complex ideas and to enhance students’ comprehension. After defining the 

knowledge domain, a teacher selects a sample of principles, ideas, or key terms to 

be used as stimuli. All possible pairs between the selected ideas are then 

constructed. Each pair is given a rating to represent how well they relate to each 

other thus converting the judgments into proximity measures. The matrix of 

proximities is analyzed using MDS. The MDS analysis produces a map with 

highly related concepts placed close together and unrelated concepts placed 

further apart. This visual array of points in space represents a cognitive map of the 

conceptual domain (Diekhoff & Wigginton, 1982). 

Cognitive maps can be used for class discussions. For example Diekhoff 

and Diekhoff (1982) conducted an experiment in a general psychology class with 

69 students. Test scores of students that were taught using cognitive maps showed 

gains in understanding over students in a class that had not used cognitive 

mapping.  They concluded that use of the cognitive maps forced students to think 

at the structural level and therefore it was useful tool (Diekhoff & Diekhoff, 

1982). 

Concept maps based on MDS are used to examine student progress and 

task mastery. Kealy (2001) compared the maps of five groups of students 

periodically to study the effect of collaborative learning during a six-week 
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graduate course. Streveler, Miller, and Boyd (2001) used MDS to analyze the 

cognitive representations that students had formed about chemical engineering 

design. They presented students in a capstone course with 32 terms central to their 

discipline. Their responses were analyzed using SAS programming. The resulting 

map was evaluated by the design instructor who determined the areas of 

knowledge that appeared to be mastered by students (i.e., economic analysis) and 

areas that were not conceptually understood by them (i.e., operating heuristics). 

These results led the instructors to develop instructional changes such as new 

modules to be added to the curriculum and new exercises to be practiced in 

current modules. The researchers recommended the use of MDS as a technique 

for classroom assessment in such way that results can be used as feedback to 

modify instruction in order to correct areas of deficiency. 

In the field of psychometrics, MDS is used not just as a tool for scale 

development, but also to investigate the validity of existing scales; for example, 

Johnston (1995) examined the underlying structure of the Rokeach Value Survey 

(RVS) and uncovered two dimensions; in doing so he also found that perceptual 

differences did not appear to exist for gender, but instead the differences appeared 

to be linked to developmental level.  

In rehabilitation research similarity data has been used to explore and 

generate hypothesis using MDS (Berven & Scofield, 1982), and to examine 

assumptions of the characteristics, skills, and support services that foster parents 
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believe are needed in order to be successful (Brown & Calder, 2000). Rhodes and 

Stern (1995) used MDS to categorize sexual harassment behaviors – publicness 

and traditionality – that appear to be perceived differently by individuals. 

In the field of marketing research survey data have been analyzed with 

MDS to reveal market structure (Carroll & Green, 1997), consumer preferences 

(Green, Carmone, & Smith, 1989), and product positioning (DeSarbo, Young, & 

Rangaswamy, 1997). MDS graphic capabilities have been widely used to present 

the results of product research, to map brand preferences (Cooper, 1983), and as a 

tool for planning and evaluation (Hare, 1999; Trochim, 1989).  

Presidential campaigns have been analyzed to identify voter’s attitudes, as 

well as to discover what events influenced their decisions (Barnett, 1981; Shikiar, 

1976). Archeologists have successfully utilized frequency data to map ancient 

sites in the absence of geographical data (Myers, 1998). 

The problems of large data sets have been acknowledged and the practical 

usefulness of MDS can be seen in the previous examples of research in 

psychology, business, marketing, and other sciences. Advances in the speed, 

capacity, and availability of computers have contributed to areas of research that 

allow the simulation of data sets (i.e., Monte Carlo methods) and resampling 

techniques that do not require assumptions of distribution of the data (i.e., 

bootstrapping). However, simulation studies in MDS, also heavily dependent on 

computers, have not received the same level of attention.  
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This study was designed to investigate the effect of incomplete designs on 

the ability of MDS to recover the true structure of the data matrix. Figure 1 shows 

the first 18 cities in the US served by contract airmail (CAM) that were selected 

to create a matrix of points with known structure (Wells, 1994)  
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Figure 1.  

Map of first cities served by contract airmail (Adapted from Wells, 1994). 

 

The distances “as the crow flies” were obtained using an online service 

(http://www.indo.com/distance/) that uses US Census data and a Xerox Map 

Server that provides mapping capabilities to plot two places in the US. This set of 

real data points with known proximities and coordinates served as the source for 

7 



the sampling designs using a resampling technique. A list of the cities is presented 

in appendix A. 

Data may be missing at random because a participant lacks the required 

knowledge about one or more of the stimuli. On the other hand, a researcher may 

choose a limited subset of pairs to make the task more manageable. Both cases 

will be simulated to determine the proportion of pairs that can be missing without 

losing the ability of the algorithm to recover the true underlying structure of the 

data matrix. 

This study will focus on two issues that have practical application in the 

use of MDS. First, participants may not have knowledge about one or more of the 

stimuli. They could guess or could choose a no-answer. Guessing only adds error 

to the data set. Allowing no-responses appears to be a better choice. However, the 

researcher has no prior knowledge or control over of the number of times an item 

is missing.  The repeated sampling simulation will be designed to randomly select 

pairs missing without limitations of equal proportion of items represented. 

Second, the quality of the data may also be compromised when 

respondents become tired or bored when the number of pairs is large. An often 

used solution is to limit the number of pairs presented to the participants. The 

second design will simulate the presentation of pre-selected number of pairs. 
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CHAPTER 2 

Literature Review 

Historical Background of Multidimensional Scaling 

The development of methods to study internal processes in experimental 

psychology was spearheaded by an interest to apply physical measurement to 

psychological phenomena. It was this goal that led to the beginning of 

experimental psychology by Wundt in 1874 at the University of Leipzig.  In an 

effort to make psychology more like physiology, he and others like Fetchner 

introduced techniques to measure the internal perceptual world by observing 

external events that included asking subjects to judge differences between stimuli 

(Boring, 1950). Psychophysical methods were defined as techniques used to 

measure physical attributes of the world in terms of their psychological values. 

These techniques involved measurements that lie along the physical dimension -- 

i.e., physical weight -- or the psychophysical dimension -- i.e., judgment of 

heaviness. In the physical world, there is a correspondence between what we are 

measuring and the numbers that are assigned, while in psychophysics the link 

between the physical stimuli and human judgments of magnitude is perception. 
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Fetchner formalized the method of paired comparisons in 1876 

(Kantowitz, Roediguer, & Elmes, 1995). He wanted to model the relationship 

between brain activity and sensation when an individual was exposed to external 

stimuli. He recognized that some concepts, happiness for example, did not have a 

physical dimension; therefore, it could not be verified by direct measurement. In 

his method all that was required was that one stimulus could be ranked in relation 

to the other member of the pair. He theorized that even if human beings may not 

be capable of accurately detecting absolute magnitudes of the stimuli they are able 

to perceive that there are differences among pairs (Bock & Jones, 1968). The 

concept of the "just noticeable difference" or jnd came from the desire to identify 

the smallest difference that individuals can perceive between pairs of stimuli 

(Kantowitz, Roediguer, & Elmes, 1995). 

In the late 1920s and early 1930s L. L. Thurstone contributed to the fields 

of psychophysics and psychological scaling as he became interested in examining 

social psychological issues. For example, he studied the effects that moving and 

talking pictures had on the attitudes of people and, in doing so he proposed 

mathematical models for comparative and categorical judgments of stimuli. 

Psychophysical measures were not appropriate to measure the underlying 

psychological construct, hence he developed scales to measure a single trait that 

assumed a unidimensional continuum. In his representation of the data, the stimuli 

were mapped as points along a psychological scale. In Thurstone scaling, data 
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were collected by comparing pairs of stimuli and estimating their distances 

relative to each other. Also, Thurstone made the assumption that the distribution 

of differences between stimuli i and j taken on different presentations was normal 

(Bock & Jones, 1968). 

Richardson (1938) proposed that subjective judgments of similarity 

resulted in a psychological measure that was analogous to a geometric model in 

an underlying metric space. If it is assumed that dissimilarities vary directly with 

distances, then coordinates for the points can be estimated based on the measures 

of dissimilarity between the stimuli. This was called the “estimation problem.” 

Young and Householder (1938) continued this idea and proposed three theorems 

to obtain a map of the data using distances between the points instead of the 

coordinates. A centroid for all the points was obtained by way of double centering 

-- setting the mean of elements in each row and column equal to zero and 

subtracting the grand mean from the row and column means. Principal 

components was then used to obtain coordinate estimates for the stimuli. Finally, 

an additive constant was used to convert the dissimilarities to a scale with a zero 

origin (Gregson, 1975). 

It was not until 1958 that the term “multidimensional scaling” was 

introduced by Torgerson. Among other things he analyzed the perceptions of 

customers to a new line of silverware patterns in the late 1950s and in doing so he 

may have been the first to use MDS in marketing research (Carrolll & Green, 
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1997). He made the assumption that judges were responding to more than one 

dimension of the stimuli that was presented to them. He suggested a Euclidean 

model, based on the Young and Householder theorems, which assumed equal 

interval data and no measurement error. This model, known as Classical MDS 

(CMDS), required a complete symmetric matrix with no missing values and 

quantitative measures that represented dissimilarities (Young, 1985). This method 

is no longer used because these restrictions have been shown to be unnecessary by 

Attneave and others (Baird & Noma, 1978).  

Attneave (1950) relaxed the CMDS approach and proposed a non-

Euclidean model. In a series of experiments he questioned the correctness of the 

additive constant and arrived at a metric model with interval data known as “City 

block” or  "Manhattan Metric.” The term Manhattan metric makes reference to 

cities that are laid out in a rectilinear grid plan -- “one walks a total of ten blocks 

to get from 33rd Street and 7th Avenue to 42nd Street and 8th Avenue -- 9 blocks 

north and 1 block west." (Attneave, 1950, p. 549). 

The additive constant is used to transform values measured on a ratio scale 

to an interval scale by adding the smallest possible constant integer that will not 

permit negative distances.  Messick & Abelson (1956) have proposed methods for 

solving what had been labeled as the “additive constant problem.” Computer 

programs use an iterative process to arrive at the smallest additive constant that 

will produce a scale that conforms to a Euclidean space. 

12 



Nishisato (1978) identified two breakthroughs in the history of MDS. The 

first was Shepard’s non-metric MDS procedure. The second breakthrough came 

when Takane, Young, and DeLeeuw (1977) proposed a non-metric approach that 

only required the assumption that dissimilarities be monotonically related to the 

distances. In Forrest Young’s view, the first major step was the development of 

metric MDS. Shepard contributed to the next advancement when he proposed a 

more intuitive method. Then, in 1964 Kruskal developed an algorithm to judge 

the degree of conformity to monotonicity. 

The algorithm developed by Kruskal generalized Shepard’s model beyond 

Euclidean spaces, making his model nonmetric, more general, and less restrictive 

than metric MDS. In nonmetric MDS responses only need to be on an ordinal 

scale, but the solution is transformed to an equal interval scale. In his paper 

Kruskal (1964) acknowledged that it is not always possible or even desirable to 

observe all the dissimilarities and he accommodated missing data in the 

computational method without “loss of elegance” (p.116). He also defined a 

measure of how closely the distances fit the monotonic transformed 

dissimilarities. This measure, known as STRESS formula one, is actually an index 

of “badness of fit.” 

It took about one hundred years to move from systematic, paired 

observations of expert’s perceptions of judgment to models of MDS that required 

only rank order information to obtain a dimensional space without making the 
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assumption that variability follows a normal distribution. With the improvements 

in accessibility and speed of computers applications of MDS have become more 

commonplace and research more promising (Carrol & Green, 1997). 

Data Sets Used in Multidimensional Scaling Simulations 

A variety of data sets have been used in simulation studies where the 

underlying dimensions are known and the goal is to verify the ability of MDS to 

recover the true structure. The first nonmetric multidimensional scaling study 

using paired comparisons was conducted in 1957 at Bell Lab by Ernest Rothkopf. 

He analyzed the errors that people make when using Morse code symbols. 

Rothkopf presented 598 subjects with pairs of 36 Morse codes signals -- letters 

and numbers -- as stimuli. Participants were presented with one symbol in one ear 

while they heard a symbol in the other ear. Their task was to judge if the stimuli 

were the same or different. The entries in the 36 x 36 data matrix consisted of the 

percentage of time that the participants made an error. He considered the 

percentage of time that stimuli was confused as a measure of similarity between 

pairs. MDS analysis revealed two dimensions: the number of components -- total 

numbers of dots and dashes -- was ordered in a vertical arrangement, and the 

symbol composition -- ratio of dots to number of dashes -- was ordered on a 

horizontal arrangement. The point configuration can be seen in Kruskal and Wish 

(1978, p.16). 
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Shepard (1962) utilized data that Ekman collected in 1954 to factor 

analyze the color wheel. For the original factor analysis 31 participants were 

asked to rate the similarity of 14 colors on a 5-point scale. The factor analysis 

generated 5 factors -- violet, blue, green, yellow, and red. Shepard hypothesized 

that a two dimensional solution was more intuitively representative of the color 

wheel. Using the same correlation matrix he applied MDS techniques and 

obtained a solution in which the position of the colors corresponded to a circle 

with hues arranged in consonance with the color wheel (Gnanadesikan, 1977). 

Geographical maps have been used frequently in demonstrations of MDS 

because the “true” structure is known and objective, we know what to expect and 

therefore can judge how well the algorithm can recover that structure (i.e., 

Schiffman, Reynolds, & Young, 1981). If cities are the stimuli, then the mileage 

between them are the dissimilarities -- the higher the mileage the more 

dissimilarity. Young demonstrated that if the scale properties of ratio distances 

between cities are ignored by converting them to ordered data the nonmetric 

solution by ALSCAL is practically identical for both cases (See Appendix B). 

MDS Missing Data Research 

In a study of incomplete designs for nonmetric MDS, Spence and 

Domoney (1974) proposed that large sets of stimuli escalate into an undesirable 

number of judgment pairs to be presented in a multidimensional task. Subject 

fatigue and boredom may result in disinterest and error, and some of the 
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information may be redundant. They reviewed the effect that different proportions 

and different patterns of missing data have on the ability of MDS to recover the 

true structure of the data.  

In the two part study they used Monte Carlo techniques to generate 

incomplete data. A single incomplete matrix representing one subject was used to 

avoid multiple subjects judging subsets of the data that can then be combined to 

generate a complete set. A constraint was imposed that each point had to be 

compared to at least another (connectedness). Another constrain was that all 

points were paired the same number of times (balance). The dependent variable 

was r (d, di); the correlation between the true distances generated for the study and 

the distances recovered using TORSCA-9. 

Both studies used three configurations. In the first configuration the points 

were generated randomly inside a sphere with radius equal to 1.0. In the second 

configuration the points were generated randomly inside the unit sphere, but 

points closer than 0.9 to the center were not used, thus creating a spheroid 

configuration. Finally, four clusters of equal numbers of points were randomly 

generated so that the overall size was similar to the other two configurations.  In 

addition, three levels of error were introduced: zero (� = 0.0), low (� = 0.15) and 

high (� = 0.30). 

In study one, three matrices of distances among 32 points were generated 

using the previously described spherical, spheroid, and cluster configurations. 
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Dissimilarities were deleted using one of two proportions -- 1/3 and 2/3 -- and one 

of four methods -- random, overlapping cliques, cyclic I, and cyclic II. In the 

random design the desired proportion was deleted using a random number 

generator. The overlapping cliques method was based on a design suggested by 

Torgerson in 1958. The method resulted in two matrices with 19 stimuli and a 6x6 

overlap in the 1/3 missing condition; there were seven matrices with eight stimuli 

and a 4 x 4 overlap in the 2/3 missing condition. The other two methods also used 

submatrices that were connected and that satisfied the requirement that each 

stimulus appeared the same number of times. They used three replication in part 

one. 

Results from study one showed that error and method of deletion had an 

effect on the ability of TORSCA-9 to recover the original structure of the data 

matrices. However, when holding either error or percent deleted constant, the 

choice of design did not appear to be important. The random design performed 

just as well as any of the other designs, with the overlapping cliques being the 

worst. Recovery with 1/3 deleted was good, but with 2/3 deletion recovery was 

not good unless error was very low. 

In part two configurations and error levels were the same as in part one, 

this time using 40 and 48 points. Only the random design was used since it 

appeared to be the most efficient after the previous study. Levels of proportion 

deleted ranged from 0% to 80% in nine intervals of 10%. Only one replication 
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was used for each of the 162 combinations. Recovery was better with the higher 

number of stimuli and also with lower error rates. 

Overall, Spence and Domoney (1974) recommended the use of random 

designs and assumed that with a large number of stimuli there was a high 

probability that the designs would be connected. It was also suggested that this 

results might not apply to smaller data sets. 

MacCallum (1978) conducted a simulation with 30 stimuli and three 

dimensions. He considered the case of replicated MDS. If different subjects 

receive a different set of random stimuli pairs, then it would become highly 

probable that there would be complete information about all possible pairs 

available for analysis. However, if all persons are missing the same matrix 

elements, then some pairs may never be available for analysis. This became the 

same (S) versus different (D) condition. In addition he manipulated the number of 

replications (10 and 20) and the proportion missing (.20, .40, and .60).  As 

expected, he found that as proportion missing increases the recovery indexes 

deteriorate. Number of replications did not have an effect. However, when size of 

sample was small and the proportion of missing pairs large the D condition had 

better recovery indexes. He used three measures suggested by earlier research 

(MacCallum & Cornelius, 1977) to evaluate the accuracy of the recovered 

structure.  
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In the MacCallum and Cornelious (1977) research the focus was on 

recovery of true dissimilarities from the observed data under conditions of varied 

amounts of stimuli, respondents, dimensions, and random error. They considered 

measures of recovery obtained from respondents’ dissimilarity pairs as indexes of 

apparent fit, and measures of recovery derived from the true data as indexes of 

true fit. Measure of apparent fit was evaluated using SSTRESS obtained from an 

early version of ALSCAL. The formula they used was 
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in which  is the monotonic transformation for respondent i; OO
it ijk is the 

observed measurement for respondent i on pair jk; and  is the recovered 

distance between stimulus i and j for respondent i.. This is not the same formula 

for SSTRESS used in the ALSCAL algorithm in SPSS. 

ijkd
^

Index of metric determinacy 

Measure of fit to the true distances was evaluated using the “index of 

metric determinacy” (McCallum & Cornelius, 1977, p. 409) developed by Young 

in 1970. This index, labeled M, is simply the squared correlation between the 
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distances recovered by the ALSCAL algorithm and the true distances for all pair 

of stimulus. This correlation is then squared. The formula for this index is as 

follows: 
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In this formula djk is the true distance between stimuli j and k; d  is the 

mean of the true distances across all paired comparisons;  is the recovered 

distance between stimulus j and stimulus k; and  is the mean of the recovered 

distances across all pairs 

jkd
^

jkd
_
^

 A second measure of true fit used by McCallum and Cornelius 

(1977) was the root of the sum of the differences between the true and the 

recovered projections of the coordinates.  
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In this formula, b  is the recovered coordinate projection to the X and Y 

axis for stimulus j and dimension t, and b  is the true coordinate projection to the 

X and Y axis for stimulus j and dimension t. If the recovered coordinates fitted the 

true coordinates perfectly the sum of the differences would equal zero. Since the 

ALSCAL solution is scaled to have a mean of zero and a sum of squares equal to 

p, all the solutions are on the same scale. 

jt

^

jt

Their results showed that error had a significant and strong effect on the 

all the measures, but number of respondents did not. The researchers also 

correlated all of the dependent variables. The correlation between the index of the 

differences in distances between pairs of stimuli (M) and the index of differences 

in the coordinate projections was .77. The correlation between M and SSTRESS 

was -.62, however, the correlation between SSTRESS and the coordinate 

projection differences was only .36. They concluded that these measures may 

address different aspects of the recovery, but also that SSTRESS may not be a 

good indicator of goodness of fit. 
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Problems and Limitations of Multidimensional Scaling 

Some of the limitations of MDS that make its use less appealing to 

researchers are the lack of significance tests, the large number of pairs of stimuli 

that is presented to subjects, and the effects of order of presentation of stimuli. 

Lack of significance tests 

Since the information required to obtain the dimensional space is of only 

rank order, nonmetric MDS techniques do not require assumptions that variability 

follows a normal distribution. Therefore, there are no statistical significance tests 

available. There are some measures of fit, like STRESS, but they are only 

descriptive of how well the recovered data fits the input matrix. 

Number of stimuli 

A serious problem with MDS is that as the stimuli become large the 

number of paired comparisons that are presented to the participants increases 

dramatically.  According to Spence (1983), when the number of stimuli reaches 

60 it is unrealistic to present a person with all of the possible paired comparisons  

(n = 1770); MacCallum, (1978) considers as few as 20 stimuli large enough        

(n = 190) to suggest the need for incomplete designs. 

The formula for calculating the number of comparisons is .  For 

nine stimuli the number of pairs is 36 and it increases rapidly to 153 for 18 

stimuli. 

1)/2I(I �
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Approaches to presenting subsets of the data such as overlapping cliques 

and cyclic designs have been reviewed. Results from Monte Carlo studies indicate 

that random selection is almost as effective as more complex designs used in the 

recovery of the true structure of the data (Spence, 1983; Spence & Domoney, 

1974; Spector & Rivizzigno, 1983).  However, one problem with these studies has 

been that the number of simulations was limited to one to five simulations.  

Order of Presentation 

Another problem with MDS, which has been noted by researchers, is that 

rating of pairwise data is prone to response set (Cronbach, 1946; Rorer, 1965). 

Robert Ross (1939) developed a method for ordering pairs that is widely used. 

The Ross Matrix. To avoid problems of primacy and recency effects in 

paired-comparison data collection, researchers have used a technique proposed by 

Ross (1939) to systematically arrange all possible paired comparisons. A matrix is 

created where all the possible pairs are arranged so that each stimulus is preceded 

and followed by each other stimulus the same number of times. The number of 

rows and columns in the matrix are calculated according to the following 

formulas: If there is an odd number of stimuli, the number of rows is (n + 1)/2, 

and the number of columns is � �1n � .  For an even number (i.e., n = 18) the table 

is developed for  stimuli to get the ordering, and then all pairs that include 

 are deleted. In this paper this number will be referred as n

� 1n � �

�� 1n � R.  
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Therefore, for 18 stimuli with  the Ross matrix has 10 rows and 18 

columns. After the pairs are formed according to the Ross table, pairs in        

even-numbered columns that have the same stimulus number are deleted, and for 

pairs in odd-columns that have the same stimulus number the variable number is 

replaced by the number 1 (See Appendix C). A list of pairs is created by going 

down each column. Appendix C also presents the arrangement for 18 stimuli. It 

should be noted that each stimulus is represented at least once for any consecutive 

 possible pairs. 

19nR �

� � 2/1nR �

Types of data used in MDS  

The measure obtained from the comparisons between pairs of stimuli is 

called a proximity. Input data for MDS analysis may consist of one or more 

proximity matrices. Each element in the matrix represents the amount of 

similarity or dissimilarity between each pair. If dissimilarities are used, large 

numbers will represent large dissimilarity and small numbers will mean not much 

dissimilarity. That is, the more dissimilar a pair of items is judged to be, the 

greater the distance between the points that represent them (Coxon, 1982; 

Gnanadesikan, 1977). A variety of techniques can be used to obtain proximity 

measures that indicate the degree of relationship between every pair of variables 

within the set. Information about pairs can be collected in many ways including 
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judgments of similarities, correlations, and frequency of co-occurrence (Berven & 

Scofield, 1982; Weinberg, 1991). 

Judgments of similarities. 

Paired comparisons are used in metric and non-metric MDS. However, 

metric MDS requires the assumption that the input data are at least interval, while 

nonmetric MDS only requires that the data be ranked. In direct similarity 

judgments participants may be presented with a pair of objects and asked to state 

the similarity among them using a rating scale such as 

 

Highly  Highly 
   similar   dissimilar 

 

1            2           3           4           5 

 

 These direct measures can be objective (i.e., number of accidents) or 

subjective (i.e., emotional distress) depending on how the task is presented to the 

respondents (Diekhoff, 1992).  

Correlations 

In another technique profile similarity measures are used, such as 

correlation coefficients. Higher correlations indicate more similarity, and lower 

correlations indicate less similarity between pairs of stimuli (Sneath & Sokal, 
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1973). Correlations have values that range from –1.00 to + 1.00.  Negative 

correlations are indicative of less similarity between the points and positive 

correlations are indicative of more similarity (Hanneman, 1998). Pearson 

correlations are useful because they provide information about the strength of the 

perceptions of proximity. They also can be presented as objective or subjective 

measures (Diekhoff, 1992). 

Frequency of co-occurrence or confusion 

Finally, data may represent the probability that two stimuli arise together. 

Measures can be obtained by asking the subject to sort the stimuli. The number of 

times that two stimuli appear in the same category is counted. Then the frequency 

of co-occurrence is converted into proportions (Rosenberg, 1982). The 

proportions are entered in the matrix that is submitted to the ALSCAL algoritm. 

Data Functions 

Assumptions about measurement models are rarely met in real data sets 

(Coxon, 1982). In nonmetric MDS all that is necessary to represent the data is the 

rank order of the entries in the matrix that is used to arrive at a solution. Ordering 

the stimuli re-scales the data into a set of values that can be represented in 

Euclidean space. Therefore, knowing the rank order is sufficient to give a 

solution. As stated earlier, even if the data are only ordinal, the MDS solution is 

metric. By definition, a measure is a metric if it satisfies the following properties 
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for all points I and J:  positivity, reflexive minimality, symmetry, and triangle 

inequality (Coxon, 1982). 

Positivity 

The distance between two stimuli is greater than zero. There are no 

negative distances. Therefore  

 

� � 0d �ji , xx ; 

 

the distance from i to j is equal to or larger than zero for all points i and j. 

Reflexive minimality 

The distance between i and j is zero if and only if the two points coincide  

 

0 ) , xd(x ji �      ... ffi ji ; �

 

Symmetry 

The distance from i to j is the same as the distance from i to j for all points 

i and j 

 

� � � �ijji xxdxxd ,, �   
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Triangle inequality 

The sum of two sides of the triangle is more than the third side. It can only 

be equal if point l lies on the line ij 

 

� � � � � �jlliji , xxd, xxd, xxd ��  for all points i, j, l 

 

If l lies off line ij, then 

 

� � � � � �jlliji , xxd, xxd, xxd �� ; 

 

                                                         l 

 

                     i        j 
 

If C lies on line AB, then  

 

� � � � � �jlliji ,xxd,xxd, xxd ��  

�  -------------- � ------------- � 
i                    l                   j 

 
If a distance does not fulfill this properties it is not a metric. 
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Distance Functions 

The metric that is used depends on the purpose of the measurement.  The 

general formula for the distance function is called the Minkowski metric, 
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If c = 1, then the Minkowski metric reduces to the city block or Manhattan metric;  
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if c = 2, it reduces to the Euclidean metric.   
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As c approaches infinity, it becomes the supremum metric (Coxon, 1982). 

 

jaiaaij xxd �� max  
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As stated earlier the term Manhattan metric makes reference to distances 

measured between two points in cities that are laid out in a rectilinear grid plan 

(Attneave, 1950) as opposed to going from point I to point J as the crow flies. 

According to Gregson (1975) “homogeneous stimuli are compared by an 

Euclidian rule, whereas a city block model better represents simple stimuli that 

vary on perceptually distinct dimensions” (p. 109). In the city block metric 

psychological dimensions are in an additive space (Attneave 1950). 

Incomplete Data in MDS 

There is a variety of ways in which researchers may encounter incomplete 

data in MDS. Data may be missing by chance or by choice. Coxon (1982) posed 

reservations about how much missing data can be tolerated before a solution 

becomes unstable, and he questioned which is more dangerous: random or 

systematic loss of information about one or several points. Either all the stimuli 

are familiar to all subjects or the number of stimuli should be reduced. Another 

possibility is that researchers may simply choose to reduce the number of 

judgments by not rating all possible pairs. 

A formula has been suggested for estimating the minimum number of 

subjects that are needed to evaluate each pair when not all pairs are presented to 

each subject (McCullum, 1979; Spence & Domoney, 1974). 
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where M = number of times pair is presented, K = number of dimensions, 

and I = number of stimuli. 

Types of MDS 

In psychology, researchers often study variables that are latent or 

subjectively defined. Measurement of these variables cannot be observed directly 

because they only exist in people's minds (Young & Hamer, 1987). Measurements 

can be obtained by eliciting the dissimilarities between pairs of stimuli and then 

analyzed using MDS to represent each geometrically as points in space. 

MDS models can be summarized as follows 

 

 
 

 

 

 

 

 

MDS Models

One Matrix Several Matrices 

Euclidean Model INDSCAL Replicated MDS
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The algorithm that is used to locate the points in Euclidean space and 

uncover the structure of the underlying constructs depends on the type of data and 

the number of matrices being analyzed. For example, in classical nonmetric MDS 

there is only one matrix of proximities to be analyzed using a Euclidean model 

(Young, 1985) while weighted MDS makes the assumption that each individual 

places a different weight on each of the dimensions; therefore, several matrices 

are analyzed and the solution maps both the stimuli and the individuals. Weighted 

MDS, also known as INSDCAL, is a Euclidean model that assumes variation in 

the way that subjects weight each of the dimensions. It analyzes several matrices 

that contain either ordinal (non-metric) or interval (metric) data. 

The Metric MDS Model. 

In metric MDS at least an interval scale is used for the distances between 

points. The distances are fitted to the dissimilarities using a least squares method. 

In the equation 

 

� � EDSl ��
2  

 

S is the “linear transformation of the dissimilarities” (Young & Harris, 

1997, p. 126), In the linear transformation the intercept will be zero if the data is 

at a ratio level, but it can be nonzero is the data is measured on an interval scale. 
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The slope is positive because the data represents dissimilarities. D represents the 

distances, which are a function of the coordinates, and E is a matrix of residual 

errors. The goal of metric MDS is to calculate the coordinates so as to minimize 

the sum of the squares of E. 

The nonmetric MDS model. 

In nonmetric MDS the data only need to be ordinal. The goal of the 

nonmetric model of MDS is to maintain a one to one correspondence between the 

rank order of the dissimilarities and the rank order of the distances among the 

stimuli. 

In the Kruskal (1964) model � is a matrix of dissimilarities, D is a matrix 

of distances, and D~ is a matrix of disparities. Disparities refer to the 

monotonically transformed data. 
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The responses of participants to the pair dissimilarity task are entered in a 

symmetric matrix of proximities (
nn
� ).  
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The next step involves creating a starting configuration matrix of 

coordinates for the given number of dimensions. A principal components analysis 

generates rational starting values; but the computer program can be superseded if 

there is a desired order.  
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Euclidian distances are then calculated from the coordinate information 

for all pairs to generate a matrix of distances corresponding to the rank. 
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Distances are calculated using a Euclidean model 
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where is the coordinate of stimulus i on dimension r, is the 

coordinate of stimulus j on dimension r. 

irx jrx

The distances must be monotonically related to the original rank of the 

dissimilarities. A new set of values, called disparities, are calculated so that their 

rank order will be as close as possible to the rank order of the distances.  In the 

monotonic transformation the only information that is preserved is rank order. 

Disparities are estimated to satisfy the constraint that for all points  

 

ilijilij dd ~~
	
	 ��  

 

In SPSS ALSCAL the disparity matrix is compared to the distance matrix 

using the squared stress (SSTRESS) formula one developed by Takane, Young, 

and deLeeuw (SPSS, 1997), where  = Euclidian distance, disparities. 

The formula used by the ALSCAL algorithm is (SPSS, 1997) 
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*
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Steps are repeated using the values from the preceding set of coordinates. 

The new value of SSTRESS is compared with the value from the previous 

iteration. This process is repeated until the value of SSTRESS does not change 

significantly. The following chart shows the nonmetric ALSCAL algorithm model 

 
Determine Initial 

Matrix of Coordinates

Calculate 
Distances 

 

 

 

 

 

 

 

 

 

 

Calculate 
Disparities

Calculate 
SSTRESS Terminate

Update 
Coordinates 

Convergence 
> .001 

Convergence 
< .001 
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Measures of fit 

In non-metric MDS, measures that evaluate how well the stimulus 

coordinates account for the proximity data are descriptive. Two measures are used 

to assess how well the solution fits the original matrix: STRESS and RSQ. The 

goal is to minimize the former and maximize the latter. 

STRESS 

STRESS is the square root of the sum of the squared deviations, between 

the distances and the disparities; it is a measure of conformity to monotonicity. 

STRESS is thought of as a measure of badness-of-fit since higher values indicate 

worse fit (Gnanadesikan, 1977).  

The formula is referred to as Kruskal formula 1. It is different from the 

SSTRESS formula used during the iterations in ALSCAL SPSS. 
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where  are the distances, and  are the disparities. ijd ijd
~

Since stress has no known distribution it is an index rather than a statistic. 

The goal is to minimize its value, but a perfect fit value of zero will be obtained 
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only if the number of dimensions equals one less than the number of objects or in 

the case of degenerate solutions. Stress will approach 1.0 as the data are less 

accounted for by the solution (Davison, 1992). Kruskal (1964) proposed rules of 

thumb for evaluating STRESS given that the following conditions exist: (1) 

ordinal scaling, (2) half matrix data without diagonal, (3) no ties in the data, and 

(4) a single matrix. STRESS of .11 to .20 suggests poor fit, .06 to .10 fair fit, .03 

to .05 good fit, and .025 or less excellent fit. The number of dimensions can also 

be evaluated by examining the “elbow” in a plot of STRESS versus number of 

dimensions similarly to what is done in factor analysis. 

Two other guidelines to evaluate STRESS were derived through empirical 

research by MacCallum (1978) and by Sturrock and Rocha (2000). MacCallum 

developed a formula for calculating the values of STRESS that would be obtained 

when the data is random. Given that D is the number of dimensions, N is the 

number of variables, and the coefficients are a0 = -524.25, a1 = 33.80, a2 = -2.54, 

a3 = -307.26, and a4 = 588.35 the expected value of stress for random data is  

 

284.0ln*4ln*3*2*10)( ������ NaDaNaDaaSTRESSE  

 

That is, for 18 stimuli in two dimensions the expected value of Stress is 

0.284. Values higher than this represent data sets of points that have a random 

relationship. 
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Sturrock and Rocha (2000) conducted a computer simulation that 

generated 587,200 random matrices to arrive to a table of stress values for one to 

ten dimensions and four to one hundred objects. According to their table, for 18 

objects and 2 dimensions, values of STRESS below 0.263 represent a matrix with 

objects that are structurally related (p<. 01).  

R-Squared 

R-squared (RSQ) is the squared simple correlation between the 

corresponding distances in the solution space and the monotonically scaled 

disparities. 

2
,

RSQ
dd

r�  

R-squared can be evaluated for statistical significance. Small values of 

STRESS suggest a good fit of the output measures to the original data, while 

small values of R-square show a poor relationship between the distances and the 

disparities. Its value equals one if the coordinates account for the data perfectly 

and decreases toward zero for lesser fit. For 153 pairs generated from 18 stimuli 

the critical value at p<. 01 for r is .208 (r2 = .043). 

Computer programs 

A variety of self-standing programs have been written over time to 

evaluate proximity measures. Alternating Least Squares Scaling (ALSCAL) was 

originally written at the L. L. Thurstone Psychometric Laboratory by Forrest 
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Young and colleagues as a self-standing FORTRAN program to perform MDS 

analysis. It is now incorporated with PROC MDS in SAS, and is used as a data 

reduction procedure in SPSS (Young &Lewyckyj, 1979).  

Other programs are also available. KYST, MDPREF, PREFMAP, and 

INDSCAL are available from Bell Laboratories and can be accessed through 

NETLIB (http://www.netlib.org/) and other Internet sites.  
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CHAPTER 3 

Method 

The purpose of this study was to evaluate the effect of missing values on 

the ability of nonmetric ALSCAL to recover the true underlying structure of a set 

of data. A 18 x 18 matrix of city distances was used as the true dissimilarities 

(TD). A second 18 x 18 matrix of dissimilarities (DE) was created by adding 

random error to the original data set to represent a respondent overestimating or 

underestimating pairs of dissimilarities. Using a repeated sampling technique 

missing values were selected either systematically (S) or randomly (R). In the first 

condition (S) the number of missing pairs was increased using multiples of 

(nR+1)/2 = 10. In this condition each stimulus appeared the same number of times. 

In the second condition (R) missing pairs were selected randomly in proportions 

that corresponded to number missing in the first condition. The number of stimuli 

(18) and the number of dimensions (2) were set constant. Table 1 summarizes the 

2 x 2 x 8 conditions. Each condition was simulated 100 times. 

Source of Data 

Cities have been used often in MDS research because they have a known 

two-dimensional structure and both the mileage between them and the point 
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coordinates are easy to determine using objective measures. The source of data 

for this study was the first contract airmail (CAM) routes across the United States 

(Wells, 1993). The distances as the crow flies among the 18 cities were obtained 

from an Internet service that employs U. S. Census Bureau data and Xerox PARC 

mapping to generate mileage as well latitude and longitude coordinates 

(http://www.indo.com/distance/). The mean distance for the 153 pairs was 

1199.84 miles with a standard deviation of 678.92. The minimum distance was 96 

and the maximum distance was 2708. A map of the true location of the cities 

generated by SPSS ALSCAL using the complete matrix is shown in appendix B. 

A second data set was created by adding random error to the city distances 

to represent overestimates or underestimates of dissimilarities. A random value 

was generated from a normal distribution with a mean of zero and standard 

deviation of 100 and added to each of 153 pairs. The added random error ranged 

from –248 to +296. The resulting added error had a mean of  -0.16 and a standard 

deviation of 100.01.  

Design 

The easy accessibility to computers has allowed development of methods 

and procedures that make use of iterations to obtain a solution. It has also 

spearheaded the use of data simulations to observe how a particular procedure 

performs by generating random samples and empirically assessing if the solution 

fits the expected results (Nunnally & Bernstein, 1994). Bootstrapping was 
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developed as a resampling technique that did not require distributional 

assumptions. In this technique an observation is removed from the original data 

repeatedly with replacement to generate the chosen number of new samples of the 

same size (Weinberg, Carroll, & Cohen, 1984). 

SPSS syntax was used to design a program that randomly selected a 

proportion of entries in the original matrix and set them to missing. A macro 

routine was included to repeat the process 100 times (see appendix C). In a 

separate program a random starting point was selected and followed by a selected 

number of consecutive entries from the Ross table. It was also included in a 

macro routine to repeat it 100 times. Each of the matrices generated was analyzed 

using nonmetric ALSCAL. Model conditions are shown in appendix F. 

Variables 

The number of stimuli was 18, which yielded 153 paired comparisons. 

Two dimensions and 100 replications were used in each condition. The 

independent variables were the source of data – without error (TD) and with error 

added (DE) – the method of selection of missing pairs – random (R) and 

systematic (S) – and the proportion of missing pairs (eight levels). The dependent 

variables were obtained from SPSS output, from subjective evaluation of 

geometrical plots, from comparisons between the original and the recovered 

coordinates, and from comparisons between the original and the recovered 

distances. 
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Independent variables 

 Two data sets were used 1) matrix of true dissimilarities (TD) and 

2) matrix of dissimilarities with random error added (DE). For each data set the 

second independent variable had two conditions 1) randomly missing pairs (R), 

and 2) systematically missing pairs (S). The third independent variable was the 

proportion of pairs missing in the data matrix.  

The number of pairs missing was increased by multiples of (nR + 1)/2 for 

the systematic missing design (8 conditions). When using the list of all possible 

comparisons generated by the Ross matrix each pair appeared at least once in any 

(nR + 1)/2 pairs sequence. Using multiples determined the number of times that 

each stimulus appeared equally in the sequence. The least number of times that 

each stimulus was selected to appear was once. Selecting 10 pairs resulted in 93 

percent or 143 pairs missing. The most number of times a stimulus was selected 

to appear was fourteen, which represented nine percent or 13 pairs missing.  

For the random case eight levels of proportions were selected – from .10 

to .90 – to approximate the number missing at each level already selected in the 

systematic condition. Table 1 shows the design with the 2 x 2 x 8 conditions. 

Each was replicated 100 times and the results analyzed using nonmetric ALSCAL 

in SPSS. 
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Dependent variables 

The dependent variables used to evaluate how well nonmetric ALSCAL 

recovered the original matrix of proximities were STRESS (Kruskal formula 1), 

RSQ, the correlation between the original coordinates and the recovered 

coordinates (CC), and the squared correlation between the original distances and 

the recovered distances which is referred to as index of metric determinacy or M 

(McCallum & Cornelius, 1977).  

Kruskal STRESS and RSQ were obtained from SPSS output. The product 

moment coefficient of correlation between the recovered coordinates and the 

original coordinates was calculated for each replication and labeled CC. Finally 

the square correlation between the true and the recovered distances were 

calculated using the formula employed by McCallum and Cornelius (1977) and 

presented as formula 1 earlier in this paper. 

Data Analysis 

 Results from the nonmetric ALSCAL simulations were analyzed 

using univariate analysis of variance (ANOVA) to assess the effects of error, 

method of deletion, amount missing, and interaction. Plots of STRESS against 

percent missing were used to identify at which point the values deteriorated 

rapidly. The correlations between the original and the recovered coordinates and 

the squared correlation between the actual distances and the recovered distances 
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were evaluated for statistical significance. Finally, as suggested by McCallum and 

Cornelius (1977), the correlations between all of the dependent variables were 

reviewed to ascertain the performance of each of the measures. It should be noted 

that STRESS and RSQ are indexes that measure apparent fit, while CC and M 

measure true fit. 
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CHAPTER 4 

Results 

Two sets of data – true dissimilarities (TD) and dissimilarities plus 

random error (DE) – were used to evaluate the ability of non-metric MDS to 

recover the true underlying structure of the stimuli under conditions of random 

missing pairs of stimuli (R) and systematic missing pairs of stimuli (S). Eight 

levels of missing data were simulated 100 times for each condition. Table 1 shows 

the percent of missing and actual number missing for the 153 pairs of stimuli on 

each of the 2 x 2 x 8 conditions.  

Evaluation of MDS solutions is traditionally conducted by inspecting the 

plot of stimuli in geometrical space and the values for STRESS and RSQ. 

Additionally Shepard diagrams are examined to see how well the recovered 

solution fits the model. These measures assess how well the solution fits the data 

that was entered in the model; however, the true structure may remain unknown. 

To measure the accuracy of the position of points in the two dimensional space 

the true coordinates were correlated with the corresponding recovered coordinates 

(CC) for each of the 18 stimuli. The index of metric determinacy (M) was 

calculated to measure how well each of the 153 dissimilarities correlate with the 

corresponding recovered dissimilarities. 
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Results are presented for each of the dependent variables on each data set 

and each method of selecting missing pairs. Maps and scatter plots for the 

complete data set and for a representative solution on each of the levels of missing 

pairs will be shown in the figures section. Descriptive statistics and analysis of 

variance will be executed for STRESS, RSQ, coordinate correlations (CC), and 

index of determinacy (M). 

Plots of Stimuli in Two Dimensional Space 

The tenth simulation in each level of missing data was selected to 

represent the geometrical solution for that level. Plots of the points in the 

geometrical space generated by nonmetric ALSCAL for both data sets and both 

methods of missing data are presented in the figures section. 

The two-dimensional plots for each of the complete data sets are shown in 

figure 2. Although the points are not arranged in the exact position for each of the 

two data sets (zero error and random error added), the stimuli formed comparable 

configuration groupings in the geometrical space. 

Data Set Without Error and Random Selection of Missing 

Plots from the true dissimilarities data set (TD) with random selection of 

missing (R) are presented in figure 3. Examination of the plots for TD and R 

revealed that as the percent missing increased, points overlapped and tended to 

spread in a more circular arrangement indicative of degeneracy. This arrangement 
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started to appear with .40 (L4) missing and it was most noticeable for the .80 (L7) 

and .90 (L8) missing. Also it can be seen that categorization of stimuli in the 

wrong dimension appeared at .40 (L4) missing and increased with percent of pairs 

missing. 

Data Set With Added Error and Random Selection of Missing Pairs 

Plots of the points in the geometrical space generated by nonmetric 

ALSCAL for the dissimilarities plus random error data set (DE) with random 

selection (R) of missing pairs are presented in figure 4. Displacement of stimuli 

appeared in all the levels of missing pairs except for .10 (L1) and .30 (L3). Point 

overlap appeared with the .60 (L6) level and grew worse as the percent of missing 

pairs increased. 

Data Set Without Error and Systematic Selection of Missing Pairs 

Missing pairs at level 1, level 2, level 3, and level 4 produced geometrical 

plots that had very small deviations from the plot without missing data. 

Misplacement of points increasingly leading to degenerate solutions were present 

at level 5, level 6, level 7, and level 8 (see figure 5).  
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Data Set With Added Error and Systematic Selection of Missing Pairs 

Figure 6 shows that when missing pairs were selected systematically and 

there was random error in the data set, plots generated with missing pairs of 

stimuli at level 1, level 2, and level 3 showed minor deviations from the data set 

without missing data. A small amount of movement towards the wrong dimension 

appeared with level 4. The solution degenerated rapidly with increases in missing 

pairs at level 5, level 6, level 7, and level 8. 

Summary of Plots of Stimuli in Two Dimensional Space 

Deviations from the placement of points in the two dimensional space 

generated from the complete data set appeared earlier for the data with error and 

random selection of missing (L2). With systematic missing and dissimilarities 

without error, movement of points did not appear until missing level 5. Overall, 

data recovery appeared to perform better when each stimulus was compared to 

other stimuli the same number of times as opposed to randomly selecting pairs, 

and also when the data did not contain error. 

Best recovery was for systematic (S) selection with dissimilarities without 

error (TD), followed by systematic (S) selection with dissimilarities with added 

random error (DE), random (R) selection with dissimilarities without error (TD), 

and finally random (R) selection with dissimilarities with added random error 

(DE). 
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Scatter Plots 

Scatter plots of monotonic transformation, also known as Shepard 

diagrams, for both data sets and both methods of missing are presented in the 

figures section. The tenth simulation for each level of missing was selected to 

represent the solution for that level. The points are plotted with the raw data on 

the horizontal axis versus the disparities on the vertical axis (Norusis, 1997). A 

negative distance in the horizontal axis represents unknown information because 

of missing data. Disparities for the missing pairs of stimuli are stacked vertically 

on the negative value. A smooth line signifies a non-degenerate solution while a 

series of steps may suggest a degenerate transformation. 

The plots of monotonic transformation for the complete data sets for both 

data without and with added random error are displayed in figure 7. It can be seen 

that the monotonic transformation for the data set with random error added was 

not as smooth as the plot for the data without error. The small steps in the plot of 

monotonic transformation characterize the perceptual errors that had been 

incorporated in the complete data set. 

Data Set Without Error and Random Selection of Missing 

Plots of linear fit for the data set without error (TD) and random selection 

of missing pairs of stimuli (R) can be seen in figure 8. The transformation plots 

were fairly smooth for L1, L2, L3, and L4 missing. Horizontal steps, suggesting 
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possible degenerate transformations, appeared with the L5 of missing pairs and 

increased at each level to the L8 missing pairs. 

Data Set With Added Error and Random Selection of Missing 

Plots of linear fit for the dissimilarities with random error added data set 

(DE) and random selection of missing stimuli (R) are shown in figure 9. There 

were small steps apparent in the scatter plot for the complete data set and in level 

1 of missing pairs. The small series of steps continued to increase for level 2, and 

level 3 of missing pairs. Deviations from the linear fit were more severe for L5, 

L6, L7, and L8 missing pairs.  

Data Set Without Error and Systematic Selection of Missing 

The plots for the transformations of the data set without error and 

systematic selection of pairs were very smooth for L1, L2, L3, and L4 (see figure 

10). More severe steps appeared at level 5. Plots for levels 6, 7, and 8 strongly 

suggested degenerate solutions. 

Data Set With Added Error and Systematic Selection of Missing 

The plots for the transformations of the data set with random error added 

using systematic selection of missing pairs are shown in figure 11. Plots for levels 

1 and 2 of missing pairs showed small steps in the line. Steps became marked at 

L3 and very obvious at L6, L7, and L8. 
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Summary of Plots of Monotonic Transformation. 

Data without error produced the best plots of monotonic transformation. 

The line was very smooth for L1, L2, and L3 with systematic selection of missing 

pairs and L1 and L2 with random selection of missing pairs. With random error 

added the best transformations were for the systematic selection at L1 and L2.  

STRESS 

Table 2 shows the evaluation suggestions proposed by Kruskall (1964), by 

McCallum (1978), and by Sturrock and Rocha (2000). Interaction plots of mean 

STRESS values generated by non-metric ALSCAL for each condition are shown 

in the figures section. For the complete data set without error (TD), the value of 

STRESS was .004, which represents excellent fit. The complete data set of 

dissimilarities with random error added (DE) had a STRESS value of .05567, 

which is considered good. Both values are suggestive of structurally related data 

under guidelines proposed by McCallum (1978) and Sturrock and Rocha (2000). 

Table 3 shows a summary of the percent of cases that achieved excellent, good, 

fair, or poor STRESS values for each of the 2 x 2 x 8 conditions (also see figure 

13). Only one value of STRESS suggested poor fit – level 8 on the systematic 

data condition of missing pairs for dissimilarities with random error added. 

Overall, approximately 35 percent of the values of STRESS were excellent, 
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approximately 55 percent of the values of STRESS were good, and approximately 

10 percent of the values of STRESS were fair. 

Table 4 shows the mean values of STRESS for the 100 replications on 

each cell, and Figure 13 shows the plot of mean values by level of missing pairs. 

Univariate analysis of variance showed significant differences for level of missing 

pairs (F = 254.94, p < .001), data set (F = 3337.38, p< .001), level by data           

(F = 284.86, p< .001), and level by method (F = 27.45, p< .001), but not for 

method (F = 3.384, p < .066), data by method (F = 1.366, p < .243), or level by 

data by method (F = 1.46, p< .177). Table 5 summarizes the between subjects 

effects for each condition and table 6 shows the overall post hoc Tukey HSD.  

Data Set Without Error and Random Selection of Missing 

 The range of values for STRESS was from .00448 to .0418. The 

value for .10 (L1) missing was .00448, for .20 (L2) missing it was .00549, for .30 

(L3) missing it was .00866, and then it increased rapidly for .40 (L4) missing 

(.0211). All of those values of STRESS can be considered as excellent even under 

the rules of thumb that Kruskall (1964) proposed to judge badness of fit. The 

values deteriorated rapidly to .0383 for .50 (L5) missing, and to .0418 for .60 (L6) 

missing and then it appeared to improve at .80 (L7) missing (.0296) and .90 (L8) 

missing (.0254). The last group of STRESS values are considered good under 

Kruskall rules of thumb, and all of the them would represent data that is 
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structurally related according to the research conducted by MacCallum (1978) and 

Sturrock and Rocha (2000). 

Univariate ANOVA results showed a significant difference between the 

mean values of STRESS at different levels of percent missing (F = 185.7099, p < 

.001) with a large effect size (η2 = .621). Post hoc analysis using the Tukey HSD 

procedure (see table 7) showed no differences between percentages of missing 

pairs at .10 (L1), .20 (L2), and .30 (L3); no difference between .40 (L4) and .90 

(L8); no difference between .50 (L5) and .60 (L6); and no difference between .80 

(L7) and .90 (L8). Elbows in the plot of mean S-STRESS against percent missing 

in figure 13 illustrate that the worst levels of stress were for .50 (L5) and .60 (L6) 

missing, followed by .80 (L7) and .90 (L8) missing, .40 (L4) missing, and the best 

STRESS values were for .10 (L1), .20 (L2), and .30 (L3) missing. The worst 

levels are considered good values for stress (Kruskall, 1964) while all the others 

are considered to be excellent values of stress. 

Histograms of the STRESS values for the TD and R condition on each of 

the 100 simulations are presented in figure 14. No remarkable results were 

apparent other than, as missing increased, the distribution became either skewed 

or nearly uniformly spread. Values for the .10 missing had a distribution that 

appeared to be close to normal. 
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Data Set With Added Error and Random Selection of Missing 

The mean values of STRESS on each of the missing conditions were 

slightly lower than the corresponding values of stress for the complete data set 

and all of them are considered good. For .10 missing (L1) the mean STRESS was 

.05131, it decreased to .04782 for .20 (L2), .04635 for .30 (L3), and .04625 for 

.40 (L4). It increased to .05086 for .50 (L5) and then, as missing increased, it 

improved to .483 for .60 (L6), .03045 for .80 (L7), and .02537 for .90 (L8).  

The univariate ANOVA for mean STRESS values showed that there was a 

strong (η2 = .466) significant difference (F = 98.793, p < .001) between the levels 

of percent missing. Post-hoc Tukey HSD (see table 8) showed that the mean 

STRESS value for .90 (L8) was significantly lower than at any of the other levels 

of missing followed by .80 (L7). The highest mean STRESS values were for .10 

(L1), and .50 (L5) missing; those values were not statistically different from each 

other. 

Histograms of the STRESS values for the DE and R conditions on each of 

the 100 simulations are presented in figure 15. No systematic trends were 

observed for this condition. 

Data Set Without Error and Systematic Selection of Missing Pairs 

The mean stress values using systematic selection of dissimilarities from 

the true data set ranged from .00409 to .0435. The values for levels 1 to 4 are 
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considered excellent and the values for levels 5 to 8 are considered good. The 

mean stress values were .00409, .00462, .00628, .0139, .0406,  .0435, .0288, and 

.0351 for L1, L2, L3, L4, L5, L6, L7, and L8 respectively (see table 4).  

Results of univariate ANOVA produced a strong (η2 = .65) significant 

difference for level of missing as a factor, F = 210.032, (7, 792), p < .001. Post 

hoc Tukey HSD (see table 9) showed that there were no differences between 

levels 1, 2, and 3 or between levels 5 and 6. It can be seen in figure 12 that 

missing pairs in levels from L1 to L3 produced the best stress values while L5 and 

L6 had the worst stress values. 

Histograms for each of the levels of missing pairs are shown in Figure 16. 

No systematic trends were observed for this condition other than the lower levels 

of missing pairs appeared to have a negative skew. 

Data Set With Added Error and Systematic Selection of Missing 

The range of STRESS values was from .0325 to .0561. The means for 

levels 1 to 8 were .0519, .0459, .0397, .0393, .0561, .0520, .0325, and .0386 

respectively (see table 4). All the values of mean stress are considered good 

except for level 5, which is considered fair by Kruskall rules of thumb.  

ANOVA showed significant effect for levels of missing pairs (F = 58.256, 

p < .001) with η2 = .340. It can be seen from figure 12 and Post Hoc Tukey HSD 

(see table 11) that the stress value for level 7 was significantly lower than all the 
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others and levels 1, 5, and 6 were no different from each other but also had the 

highest mean values of stress. 

Summary of Analysis of Stress Results 

Each of the conditions showed significant differences in the values of 

mean STRESS for level of missing pairs.  The lower levels performed differently 

for each data set. The differences decreased at the higher levels of missing data. 

Results were similar for method used to select the missing pairs. For all the 

conditions levels 5 and 6 had the highest values of stress and then it decreased 

when the number of missing pairs increased (levels 7 and 8). 

With true dissimilarities, there were no differences in the lowest three 

levels of missing. The line formed an elbow at level 3 and rapidly increased up to 

level 6, and then it changed to lower values of stress. With the data set with 

random error added to the dissimilarities, the behavior of the stress values was 

more irregular. The differences for mean STRESS values between data sets were 

larger at the lower levels and disappeared at the higher levels of missing (see 

figure 13). 

R-Square 

Values of RSQ for the complete data set were .99993 for the true 

dissimilarities data matrix (TD) and .98646 for the dissimilarities plus random 
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error (DE) data matrix. Both of those values are significant and suggest that the 

two dimensional model fit the respective data sets. Summary of descriptive 

statistics for each of eight levels of missing, two data sets and two methods of 

selection of missing are reported in table 11. Analysis of variance showed 

significant effects for level of missing pairs, data set, level by data, level by 

method, and level by data by method but not for method or for interaction of data 

by method. Summary for tests of between-subjects effects are presented in table 

12. Plot of mean RSQ by level of missing pairs is shown in figure 18. 

Data Set Without Error and Random Selection of Missing 

Values of RSQ ranged from .991313 in the .60 (L6) missing to .9999122 

in the .10 (L1) missing condition. All of the RSQ were significant (p < .01). 

Significant differences between the mean values of RSQ for the different 

levels of missing resulted from the univariate ANOVA (F = 102.008, p < .01) 

with η2  = .474 (large effect). Post hoc analysis of the results using Tukey HSD 

showed that the values of RSQ for.60 (L6) and .50 (L5) were not different from 

each other, but were significantly lower than all the other levels; the mean RSQ 

values increased for .80 (L7) missing, then for .90 (L8) and .40 (L4), and finally 

the highest mean RSQ values were for .30 (L3), .20 (L2), and .10 (L1) missing. 

These three levels were not different from each other (see table 14 and figure 18). 
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Histograms of the 100 samples generated by the simulation for TD and R 

are shown in figure 19. There are no remarkable results other than an increase in 

skewness up to .40 missing and then the distribution looks more evenly spread. 

Data Set With Added Error and Random Selection of Missing 

Range of RSQ mean values was from .987787 for .50 missing to .9970827 

for .90 missing. All RSQ were significant (p < .01). Univariate ANOVA showed a 

significant difference (F = 72.505, p < .001) with a large effect (η2 = .391) for 

levels of missing. Post hoc Tukey HSD identified five homogeneous subsets (see 

table 15). The subset with the highest mean RSQ was for .90 (L8) missing pairs, 

followed by .80 (L7) missing pairs. The lowest mean values were in the subset 

that included .50 (L5), .60 (L6), and .10 (L1) missing (see figure 18). 

Histograms for the mean RSQ samples generated by the simulation using 

DE and R are in figure 20. Inspection of the distributions for each level of missing 

data did not reveal any consistencies or trends. 

Data Set Without Error and Systematic Selection of Missing Pairs 

The highest value of RSQ was .9999288 for L1; the lowest was .9912089 

for L5. All RSQ values in this condition were significant.  

Univariate ANOVA showed a strong (η2 = .545) and significant                  

(F = 135.756, p < .00) effect for levels of missing and post hoc Tukey HSD 
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identified 5 homogeneous subsets that were significantly different of each other. 

The best RSQ values were for L1, L2, and L3; the worst RSQ values were for L6 

and L5 (See table 15 and figure 18). Histograms for the RSQ values under TD and 

S conditions for the 100 repetitions generated in the simulation are presented in 

figure 20.  

Data Set With Added Error and Systematic Selection of Missing Pairs 

The highest and lowest mean values of RSQ were .99538 for L8 and 

.98557 for L5 (see table 11). Every one of the values for RSQ in this condition 

were significant (p < .01). Univariate ANOVA showed a significant effect for 

level of missing pairs, with F = 65.620 p < .001 and η2 = .367. Post hoc Tukey 

HSD showed that the lowest average values of RSQ were for L5 and L6; the 

highest were for L7 and L8 (see table 16 and figure 18). 

Histograms of RSQ values at each level of missing pairs for 100 

replications are shown in figure 22. It can be seen that the values of RSQ for L4 

and L8 have more positively skewed distributions than the other levels.  

Summary of Analysis of RSQ Results 

One hundred percent of values of RSQ were significant (p < .01). The 

estimates for the dissimilarities without error produced better values of RSQ at the 

lower levels of missing pairs. Effects for method of deletion followed the same 
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trend for the data of true dissimilarities, but it behaved more erratically with the 

dissimilarities with error added. Differences in RSQ were larger at the lower 

levels of missing pairs and became very close at higher levels of missing pairs. 

Values of RSQ dropped at L5 and L6, and then increased at L7 and L8. 

Fit Between True and Recovered Coordinates 

Summary of descriptive statistics for each level of missing pairs on two 

data sets and two methods of missing pairs is presented in table 18. The range of 

values for the mean correlations between coordinates was from .1332998 (L8, 

ED, S) to .9998565 (L1, TD, S). Only levels 6, 7, and 8 had mean correlation 

values that were not significant (see Figure 24). A summary of the number of 

significant correlations for one hundred replications in each condition is presented 

in table 19. 

ANOVA results showed that there was no effect for either method or error 

(see table 20). There was a large effect for level of missing (η2 = .522) and a small 

effect for level by method (η2 = .02). Post hoc Tukey HSD results are shown in 

table 21. 

Data Set Without Error and Random Selection of Missing Pairs 

Correlation values were highest at level 1 (.10) and dropped continually 

with each increase in missing pairs to level 8 (.90).   One hundred percent of the 
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replications measuring the correlation between the true and the recovered 

coordinates for levels 1 to 3 (.10 to .40) were significant at p < .01. At level 4 

(.40) 99 percent were significant at p < .01, at level 5 (.50) three percent were 

significant at p < .01, and 91 percent were significant (p < .01) at level 6 (.60). 

Table 18 illustrates that levels 7 (.80) and 8 (.90) of missing data did not have 

significant results 40 and 49 percent of the time respectively (see figure 19).  

ANOVA results showed a large effect (η2 = .529) for level of missing 

pairs (F = 127.159, p < .001). Tukey HSD post hoc results are summarized in 

table 12. Levels 1 to 4 (.10 to .40) were not significantly different from each 

other, there was some overlap with the subset for levels 4 and 5 (.40 and .50), 

correlations dropped significantly again for level 6 (.60) and for subset for levels 

7 (.80) and 8 (.90).  

Data Set With Added Error and Random Selection of Missing Pairs 

Mean correlations between true and recovered coordinates were from .992 

for .10 missing pairs (L1) to .137 for .90 percent missing pairs (L8). One hundred 

percent of the replications for levels 1 to 4 and 97 percent at level 5, had 

significant correlation values at p < .01. Levels 7 (.80), and 8 (.90) had 66 percent 

and 35 percent respectively at p < .01, and 28 percent and 53 percent respectively 

with no significant correlations (see table 18 and figure 22).  
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ANOVA results showed significant effects (η2 = .522) for level of missing 

data (F = 130.75, p < .001). Post hoc Tukey HSD results are summarized in table 

13. Levels 1 to 4 (.10 to .40) were not significantly different; the correlations 

between true and recovered coordinates were high. Mean correlation values 

dropped significantly for each successive level from 5 (.50) to 8 (.90). 

Data Set Without Error and Systematic Selection of Missing Pairs 

Levels 1 thru 6 had significant (p < .01) mean correlations between true 

and recovered coordinates (see table 9 and figure 24). Values ranged from .1401 

(L8) to .9999 (L1). Correlations for 100 percent of the replications in levels 1 thru 

4 were significant at p < .01, and at level 5 one percent of the results were not 

significant. 

ANOVA results of correlations between true and recovered coordinates 

showed a significant effect (η2 = .532) for level of missing (F = 128.385, p < 

.001). Summary of post hoc Tukey HSD results are shown in table 14. It can be 

seen that there were no differences between levels 1 thru 5; there was a drop in 

the value of the correlations for subset grouping levels 6 and 7, and again a 

significant drop for level 8. 
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Data Set with Added Error and Systematic Selection of Missing Pairs 

The average correlations between the original and the recovered 

dissimilarities were high for levels 1 thru 4, and dropped significantly for each 

succeeding level. Mean correlation was not significant for level 8.  One hundred 

percent of the mean correlation values for levels 1 thru 4 and 99 percent in level 5 

were significant at p < .01.  

ANOVA results showed a large effect (η2 = .527) for level of missing        

(F = 125.926, p < .001). Tukey HSD post hoc analysis (see table 15) showed that 

levels 1 thru 4 were not different from each other and had significant higher 

correlations than the other levels. Level 8 had the lowest mean correlation. 

Summary of Analysis of Correlations between Coordinates 

Correlations between the true and recovered coordinates showed that 

levels 1, 2, 3, and 4 had the highest values and were not significantly different 

from each other. Values deteriorated significantly for each successive level of 

missing (see figure 24). The true data set with systematic selection tolerated a 

larger percent missing. 

Index of Metric Determinacy 

The fit between true and recovered distances was evaluated by calculating 

the index of metric determinacy used by Young (1970) and labeled as M. 
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Summary of descriptive statistics for two levels of error, two modes of selection 

and 8 levels of missing pairs is presented in table 20. Analysis of variance shows 

that there was a significant and strong effect for percent missing and a significant 

but small effect for error. There was no significant effect for method. There were 

significant but small effects for level by error and for level by method (see table 

21). Plot of mean values of M at each level of missing by error and method is 

shown in Figure 24. In all conditions mean values of M decreased as level of 

missing pairs increased. 

Data Set Without Error and Random Selection of Missing Pairs 

The mean squared correlation between actual and recovered dissimilarities 

ranged from .9996 for level 1 to .0905 at level 8. Analysis of variance between 

levels was significant (F = 1831.78, p < .001) with a strong effect (η2 = .942). 

Post hoc Tukey HSD (see table 22) revealed no differences between levels 1 to 3 

and overlap with level 4. Values of M became statistically lower at each 

successive level from 5 to 8. 

Data Set With Added Error and Random Selection of Missing Pairs 

Mean values of M in this condition ranged from .0844 in level 8 to .9844 

in level 1. Analysis of variance in this condition showed a significant                  

(F = 1831.78, p < .00) and strong effect (η2 = .942) for level of missing. Post hoc 
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Tukey HSD showed that there was no significant difference between levels 1, 2, 

and 3, and no difference between levels 3 and 4. Mean values of M dropped 

significantly for each successive increment in missing (see table 23). 

Data Set Without Error and Systematic Selection of Missing Pairs 

Range of mean values of M was from .0544 at level 8 to .9997 at level 1. 

Analysis of variance resulted in a strong effect (η2 = .958) with F = 2560.57, p < 

.00 Post hoc Tukey HSD showed that in this condition there were no differences 

between levels 1, 2, 3, and 4. Each successive level of missing data had 

significantly lower indexes of determinacy (see table 24). 

Data Set With Added Error and Systematic Selection of Missing Pairs 

Mean values of M ranged from .026 at level 8 to .9846 at level 1. Analysis 

of variance showed a significant (F = 4104.17, p < .00) and strong effect            

(η2 = .973) for level of missing. Post hoc Tukey HSD identified five subsets (see 

table 25). M values for levels 1, 2, 3, and 4 were not different. At every 

consecutive level of missing pairs, M values dropped significantly. 

Summary of Analysis of Index of Metric Determinacy 

There were no statistical differences in the values of the squared 

correlation between the actual and the apparent dissimilarities for levels 1, 2, 3 

and 4 in all conditions. For both data sets using systematic selection of missing 
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level 4 had squared correlations as high as the first three levels. The interaction 

plot of M mean values against level of missing (figure 24) displayed a noticeable 

change in slope at level 4 and again at level 6. 

Correlations Between Dependent Variables 

The correlations between the dependent variables used in this study are in 

summarized in Table 33. Since high values of STRESS indicate poor fit, it would 

be expected that the correlations with other measures of fit would be negative. 

STRESS and RSQ measure how well the recovered dissimilarities fit the entered 

matrix. CC and M measure how well the recovered configuration fits the true 

structure. 

As expected there was a strong negative correlation between overall 

values of STRESS and RSQ (r = -.940). The correlations maintained high values 

at all levels of missing with a small reduction at level 8 (r = .820) where 

approximately 90 percent of the cells in the dissimilarities matrix are set to 

missing.  

The overall correlation between CC and STRESS was significant but 

small (r = -.102, p < .01). When broken down by level of missing the values 

ranged from +. 001 to -.958. At level 1 the correlation was strong (r = -.958); it 

dropped markedly for levels 2 (r =-.330) to 5 (r = -.178) and it practically 

disappeared for levels 6 (r = -.099) to 9 (r =  .001).  
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The correlations between CC and RSQ behaved similarly, but the overall 

correlation was not statistically significant suggesting the placement of the points 

in space was more unpredictable than the distances between them. The 

correlations ranged from +. 957 (L1) to +. 012 (L8). The value was high for level 

1 with only 10 percent missing, dropped for levels 2 (r = .370) and 3 (r = .419), 

became small at levels 4 (r = .179) and 5 (r = .184) and practically disappeared for 

levels 7 (r = .068) and 8 (r = -.012). 

The overall correlation between M and STRESS was significant but small. 

Levels 1 and 2 had strong correlations (r = -.969; r = -.928). The correlations were 

not as strong for level 3 (r = -.696) and level 5 (r = -.533), dropped to r = -.320 

and r = -.205 for levels 4 and 6 respectively, and practically disappeared for level 

7 (r = -.092) and level 8 (r = -.084).  

The correlations between M and RSQ also followed a similar pattern. 

Very high correlations for levels 1 (r = .968) and 2 (r = .939), strong correlations 

for levels 3 (r = .757) and 5 (r = .537), smaller values for levels 4 (r = .368), 6           

(r = .190), and 7 (r = .103), and a small and not significant correlation at level 8   

(r = .037). 

The correlations between the two measures of relationship between the 

true and the perceived structure varied as a function of missing. The overall 

correlation between M and CC was .709. At level 1 the correlation was very 

strong (r = .992). For levels 2 to 5 the correlations ranged from .267 to .603, but 
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not in a consistent manner. Levels 6 (r = .162), 7 (r = .149), and 8 (r = .108) had 

significant but small correlations. 
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CHAPTER 5 

Summary and Discussion 

The number of pairs presented in a typical multidimensional scaling task 

increases rapidly with the number of stimuli that is being mapped. The large 

number of dissimilarity judgments presented to individuals in a MDS task is a 

drawback to the widespread use of this technique. As individuals form judgments 

about an increasing number of dissimilarity pairs they may become tired, they 

may perceive the task as boring, they may encounter unfamiliar information, or 

they may find the task overwhelmingly complex (Spence & Domoney, 1974; 

McCallum, 1978). Reducing the amount of information that is presented to 

participants or allowing respondents to select only the information that is known 

to them would help to improve the practicability of the task.   

Forced answers may add error to the data (DeSarbo, Young, & 

Rangaswamy, 1997); therefore, allowing a participant to omit pairs may produce 

more accurate information matrices. On the other hand a point cannot be located 

in space if information about it does not appear in the comparison task. Some 

researchers have suggested that pairs should appear the same number of times 

(Spence & Domoney, 1974). 

71 



This study arose from the desire to investigate what proportion of the 

dissimilarity judgments can be missing before the algorithm fails to return an 

accurate solution. A data set with known structure and without error was selected. 

A second data matrix was created by adding random error to the dissimilarity 

measures. This second data set may better represent an individual’s performance 

when making dissimilarity judgments about pairs of stimuli. Pairs were deleted 

from the matrices using one of two methods. Systematic selection represented a 

researcher selecting a number pairs from the complete set. The design involved 

the use of the Ross matrix. In any sequence of (nR - 1) / 2 pairs each stimulus 

appears once. Multiples of the sequence were used to select equally appearing 

numbers of stimuli. The numbers were transformed to percentages and rounded. 

The same percentages were then used to generate random missing pairs within the 

data matrix. Eight levels of missing pairs were generated in this study (see      

table 1). 

Measures of fit used by researchers to evaluate how well the structure 

recovered by nonmetric ALSCAL fits the data are STRESS and RSQ. STRESS is 

a measure of correlation between the squared distances and the squared disparities 

(Davison, 1992), while RSQ is the squared correlation between the raw data and 

the distances (Norusis, 1997). These two measures are obtained from the data 

entered in the model. Because there is no assumption that the truth is known, they 

can be considered as apparent measures of fit (Sherman, 1972). Additionally, 
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SPSS displays plots of the points in geometrical space and scatter plots of 

monotonic transformations. 

Conversely, the correlations between the true and the recovered 

coordinates (CC) and the squared correlation between the true and recovered 

distances (M) are measures of how much the data entered in the model deviates 

from the truth. The CC is a measure of displacement of the points in the 

dimensional space, while M is a measure of the distortion of dissimilarities 

between the stimuli. These last two measures cannot be obtained in absence of 

knowledge of the true properties of the construct being considered. Therefore they 

are actual measures of recovery (Sherman, 1972).  

Comparisons of the two dimensional maps of the points in space using 

data generated under the various conditions in the simulation with the maps 

generated from the true and complete set of points showed that there were less 

amount of point displacement with data that did not contain error and when the 

method of selection was systematic (see figures 2 to 6). With true data and 

systematic missing of paired stimuli plot recovery was good with as much as 50 

percent of the pairs missing. But errors in placement appeared as early as with 20 

percent missing when the data contained error and selection of missing pairs was 

random. With error and systematic missing of dissimilarity pairs, recovery was 

good with as much as 30 percent of the pairs missing. Overall small 

misconfigurations emerged when 30 percent of the comparisons were missing; 
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errors were more obvious when 40 percent of the pairs were missing, and became 

severe after 60 percent of the pairs were missing. 

 The behavior of the positioning of points in the two dimensional maps was 

clearly reflected in the plots of monotonic transformations (see figures 8 to 11). 

The data set without error produced smoother lines for both methods of selection 

of missing pairs. Even for the complete data sets, the line in the scatter plot was 

closer to a straight line for the data without error (see figure 7). For data without 

error, strong steps were evident with 50 percent of the pairs missing. Steps in the 

scatter plots closely followed the displacement of points observed in the two 

dimensional maps. 

 Values of STRESS were obtained from the nonmetric MDS SPSS output. 

High values reflect poor fit, values closer to zero reflect good fit between the 

observed data and the recovered solution. Researchers are warned about very low 

values of STRESS that may result from degenerate solutions. This effect was 

observed in this simulation. Only one value out of the 3,200 replications was 

considered poor. Ninety percent of the values were good or excellent.  

STRESS had the best values when the data set had no error. The largest 

values came from the data set with error added. In both cases, the method used to 

select the missing pairs did not have an effect on the quality of structure recovery. 

The differences disappeared when the level of missing was very high. A very 

unusual pattern was observed (see figure 13). STRESS values started to 
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deteriorate at 40 percent of pairs missing, increased for 50 percent and 60 percent 

missing, but then they improved when 80 percent and 90 percent of the 

dissimilarities were not entered in the model. Those results can be attributed to the 

degenerate solutions that occurred at high levels of missing. 

At the lower levels of missing pairs STRESS had better values when the 

data set had no error and selection of missing pairs was systematic. Values of 

STRESS became closer when the number of missing pairs reached 50 percent. 

This apparent improvement denotes the importance of examining the plots in 

geometrical space as well as the Shepard diagrams to look for evidence of 

degenerativity in the solution. 

Spence and Domoney (1974) investigated the effect of missing pairs on 

the STRESS index. The present study agrees with their results. They found that 

recovery was good when they deleted 1/3 of the data and not as good when they 

deleted 2/3 of the data. However, they did not simulate conditions at the highest 

levels of missing. 

The plot of mean scores of RSQ was similar to the plots of mean STRESS 

values (see figure 18). RSQ decreased noticeably for 50 percent and 60 percent of 

missing pairs and then it improved at 80 percent and 90 percent of missing data. 

The values of RSQ were strong and significant (p <. 01) for each of the 100 

replications in each condition. RSQ was lower for the data with random error 

added but the method of selection did not have an effect. With a lower percentage 
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of missing pairs, values of RSQ were better with the true data set, but it was 

practically the same at 80 percent and 90 percent of missing pairs. 

The strong values of STRESS and RSQ obtained on each of the conditions 

attested to the robustness of the algorithm used to analyze the data. But it also 

pointed out to the dangers of interpreting these measures of fit without 

examination of the maps and the scatter plots also easily available in SPSS. It was 

observed that point arrangement that suggested degenerate solutions started to 

appear on the two dimensional plots for increases in percent missing over .40, and 

was obvious at .80 and .90 missing. Review of plots of monotonic transformation 

was highly indicative of poor solutions that were obtained at higher levels of 

missing.  

As stated earlier STRESS and RSQ are only descriptive measures of how 

well the recovered data fits the observed data. They do not provide information 

about the true configuration of the points used as stimuli. True recovery can be 

better estimated from measures that allow comparisons between the recovered 

data and the true data.  

The correlations between the coordinates in the true and the recovered 

configurations (CC) revealed that neither the method of selection nor the presence 

of error made a difference in the ability of nonmetric ALSCAL to recover the true 

configuration of the data (see figure 23). The correlations were high for up to 40 
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percent missing, declined for 50 percent and 60 percent of missing pairs, and 

dropped noticeably for 80 percent and 90 percent of missing pairs.  

Spence and Domoney (1974) also used a measure of coordinate recovery. 

It revealed that amount of error and method of deletion had an overall effect, but 

when they controlled for method they found that random selection performed just 

as well. The present study does not replicate a similar effect. 

The index of metric determinacy (M) followed the same pattern as CC 

(see figure 24). True recovery of the data configuration was good with as much as 

40 percent of the dissimilarities missing it dropped for 50 percent and 60 percent 

of missing pairs, and deteriorated noticeably for 80 percent and 90 percent of 

missing pairs. Error in the dissimilarity measures or method of selection of the 

missing pairs did not affect the measures of true recovery of the distances 

between points in the underlying configuration.  

MacCallum (1978) used M and a measure of recovery of the true 

coordinates for their simulation of replicated MDS. Although number of 

replications had no effect, the proportion of missing data resulted in increases of 

deterioration of STRESS values. That was not the case in the present study. 

However, they only used .20, .40, and .60 as levels of missing pairs. 

Their results on the effect of proportion of missing appear to be supported 

by this simulation. What has not been observed in previous studies is the 
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surprising behavior of the measures of fit generated by nonmetric ALSCAL when 

the proportion of missing rises to excessive levels.  

The mean values on each dependent variable obtained from the 100 

replications in each condition is summarized in table 34. In the apparent measures 

of recovery small values of STRESS and high values of RSQ represent good fit. 

For the actual measures of recovery high values of CC as well as high values of M 

are indicative of good recovery. 

All the dependent variables used in this simulation were correlated to 

compare the performance of the apparent and the true measures of fit. Since high 

values of CC and M are indicative of good recovery while the opposite is true of 

STRESS values, negative correlations with STRESS were anticipated. Compared 

to the results obtained by MacCallum and Cornelious (1977) only the relationship 

between M and CC was similar; the relationships of M and CC with STRESS 

were much lower in the present simulation. 

The relationship between STRESS and RSQ behaved as expected in a 

nonmetric MDS analysis. The correlation was strong and negative (r = -.940). The 

relationships of apparent measures of fit with measures of true recovery were not 

as strong. However, it was also observed that at the lower levels of missing the 

correlations between apparent and true fit measures were stronger, suggesting that 

indexes of fit calculated by the algorithm in SPSS can be valuable under 
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appropriate conditions. That is, no more than 20 percent missing if perceptual 

error is present. 

The worst relationship was between M and STRESS. The correlation was 

-.06, much lower than -.62 in the MacCallum and Cornelius simulation. The 

relationship between CC and STRESS also was poor (-.102) in the present study; 

however, it was much better that the positive correlation (.36) which was obtained 

in the previously mentioned study.  

The correlations between the true measures of recovery, CC and M, 

although good were not very high. The value was .709 in the present study, close 

to .77 in the McCallum and Cornelius simulation. 

It would be unreasonable to expect that respondents in a multidimensional 

task would not commit perceptual errors that would generate either over 

estimations or under estimations of the differences between pairs of stimuli. 

Therefore, it appears from the results of this simulation that the data matrix should 

not miss more than 20 percent of the dissimilarities to produce a very good 

representation of the true structure of the data. Some small amount of point 

misconfiguration is to be expected when the number of paired comparisons 

missing reaches 30 percent. Recovery deteriorates rapidly when 40 percent or 

more of the dissimilarity measures are missing from the observations matrix 
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Limitations and Recommendations for Further Research 

This study used one matrix of true dissimilarities and one matrix of 

dissimilarities with random error added. Random selection of missing pairs has 

been utilized by others researchers, but use of the Ross matrix as a means of 

systematic selection of paired stimuli to be presented to participants in an MDS 

task has not been investigated before. Although missing 80 percent or 90 percent 

of the data may appear unreasonable in a real comparison MDS task it revealed 

some surprising results in this simulation. Other conditions can be varied in future 

research such as levels of error, number of dimensions, or type of MDS algorithm 

used to analyze the data. Some of the limitations apparent in this research and 

recommendations for future research are as follow: 

This study investigated nonmetric ALSCAL with a single matrix. The case 

of replicated MDS should be investigated under similar conditions. The 

number of replications should be varied and systematic bias should be 

included. 

��

��

��

Only one level of random error was introduced in this study. Performance 

under varied levels of random as well as systematic error should be 

investigated at all levels of missing. Additionally, introduction of 

proportional rather than additive error should be investigated. 

The number of stimuli was set to 18 in the present simulation. It would be 

informative to vary the number of points in the dimensional space. It 
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would also be of interest to discover if a different selection of cities would 

produce similar results.  

Although this study did not investigate the stress values proposed by 

McCallum (1978), and by Sturrock and Rocha (2000) it appears that they 

are too high. Their research related to data that is structurally connected. 

That condition may not be violated when data is missing and error is 

added to the dissimilarity judgments. In the present study, it appears that 

the data retained the underlying structure even when most of the paired 

comparisons were not observed in the model. 

��

Conclusions 

The quality of the recovered structure was affected by the percent of 

paired comparisons missing, but not as much by perceptual error or method of 

selection. It appears safe to tolerate as much as 20 percent of the observations to 

be missing in the dissimilarities matrix even when random error is apparent since 

all the measures of recovery displayed excellent results. Small errors can be 

expected with as much as 30 percent missing. The solution becomes more 

unreliable when proportion of pairs missing reaches 40 percent.  

Presentation of stimuli pairs by systematic selection appeared to produce 

better STRESS and RSQ values. But the measures of true fit discounted those 

results. In this study values of STRESS and RSQ did not reflect the quality of 

recovery observed in the two dimensional maps and it appears that the visual 
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inspection of the plots of monotonic transformations are an indispensable tool in 

evaluating the results of nonmetric MDS. 

One of the most remarkable outcomes of this study was the ability of 

nonmetric ALSCAL to return a solution even under extreme conditions of 

missing pairs in the observations matrix submitted for analysis. However, values 

of STRESS and RSQ were not reflective of the quality of the recovered structure 

as displayed in the two dimensional configuration. Finally, It was observed that 

the use of the Ross matrix could be a practical and efficient method that can be 

used by practitioners to select a desired number of paired comparisons thus 

reducing the need to expose an individual to all possible pairs generated in the 

task. 
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Table 1 

Levels of Simulation by Condition 

 
 
Level 

 
Number of times 
each stimulus is 

compared 
(nR + 1)/2 

 
 

Percent 
missing 

 
 

Number 
missing 

  
 

p-value in 
Bernoulli
function 

 
 

Percent 
missing 

 
 

Median 
Number 
missing 

  
True Dissimilarities (TD) 

  
Systematic (S) 

  
Random (R) 

      
     1 

 
14 

 
.09 

 
13 

  
.90 

 
.10 

 
15 

2 12 .22 33  .80 .20 32 

3 10 .34 53  .70 .30 47 

4 9 .41 63  .60 .40 62 

5 8 .48 73  .50 .50 76 

6 6 .60 93  .40 .65 92 

7 3 .80 123  .20 .80 122.5 

8 1 .93 143  .10 .90 138 
 
 

 
Dissimilarities plus Random Error (DE) 

  
Systematic (S) 

  
Random (R) 

 
1 

 
14 

 
.09 

 
13 

  
.90 

 
.10 

 
15 

2 12 .22 33  .80 .20 32 

3 10 .34 53  .70 .30 47 

4 9 .41 63  .60 .40 62 

5 8 .48 73  .50 .50 76 

6 6 .60 93  .40 .65 92 

7 3 .80 123  .20 .80 122.5 

8 1 .93 143  .10 .90 138 
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Table 2  

Values of STRESS that suggest fit 

  
STRESS 

 
Kruskall  
 

 

Excellent < .025 

Good .03  to .05 

Fair .06  to .10 

Poor .11  to .20 

McCallum < .284 

Sturrock & Rocha < .263 
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Table 3 

Number of Cases in Each Kruskall Category of Badness of Fit in 100 Replications 

   
          TD  

  
DE 

 
Level 

 
Badness of Fit 

 
R 

 
S 

 
R 

  
S 

 
1 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

100

0

0

0

100

0

0

0

0

93

7

0

0

87

13

0
 
2 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

100

0

0

0

100

0

0

0

0

97

3

0

0

100

0

0
 
3 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

96

4

0

0

100

0

0

0

0

89

11

0

0

100

0

0
 
4 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

70

26

4

0

90

0

10

0

0

80

20

0

0
 

94
 

6

0
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Table 3 (continued) 
 

   
TD 

  
DE 

 
Level 

 
Badness of Fit 

 
      R  

 
      S 

 
      R 

 
      S 

 
5 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

23

62

15

0

36

30

34

0

1

61

38

0

0

44

56

0
 
6 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

5

87

8

0

6

84

10

0

1

73

26

0

0

64

36

0
 
7 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

37

61

2

0

40

60

0

0

38

59

3

0

27

72

1

0
 
8 

 
Excellent 
 
Good 
 
Fair 
 
Poor 

52

48

0

0

26

68

6

0

53

47

0

0

17

73

9

1
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Table 4 

Descriptive Statistics for 100 Replications of STRESS for Two levels of Error, 

Two Methods of Selection and Eight Levels of Missing 

  
True Dissimilarities 

  
Dissimilarities Plus Error 

  
Random 

 
Systematic 

  
Random 

 
Systematic 

 
Level 

 
Mean 

 
SD 

 
Mean 

 
SD 

  
Mean 

 
SD 

 
Mean 

 
SD 

 
1 .00448 .00108 .00409 .00066 .0513 .00286 .0519 .0024

2 .00549 .00134 .00462 .00116 .0478 .00459 .0459 .0029

3 .00866 .00715 .00628 .00139 .0464 .00831 .0397 .0026

4 .02110 .01560 .01390 .01580 .0463 .01050 .0393 .0097

5 .03830 .01540 .04060 .02080 .0509 .01220 .0561 .0153

6 .04180 .01010 .04350 .00920 .0483 .01100 .0520 .0104

7 .02960 .01050 .02880 .00854 .0304 .01120 .0325 .0099

8 .02540 .01280 .03510 .01500 .0254 .01320 .0386 .0195
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Table 5 

Analysis of Variance for STRESS with Two Levels of Error, Two Methods of 

Selection, and Eight Levels of Missing 

 
Source 

 
                 F 

 
η2

 
       p

 
Model 
 

31 236.231 .698 .000

Level 7 254.943 .360 .000
 
Data 1 3337.381 .513 .000
 
Method 1 3.384 .001 .066
 
Level by Data 7 284.863 .386 .000
 
Level by Method 7  27.451 .057 .000
 
Data by Method 1      1.366 .243 .243
 
Level by Data by Method 7 1.460 .003 .177
Note: Bold face indicates significance at p < .01 
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Table 6 

Post Hoc Tukey HSD Results for STRESS with Two Levels of Error, Two 

Methods of Selection, and Eight Levels of Missing  

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
1 (.10) 

 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.001014 
-.004184 
-.016670 
-.033840 
-.037290 
-.025150 

   -.020880 

1.000
  .162
  .000
  .000
  .000
  .000
  .000

 
2 (.20) 

 
1 (.10) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
 .001014 
-.003170 
-.015650 
-.032830 
-.036280 
-.024140 
-.019870 

1.000
1.000
 .000
 .000
 .000
 .000
 .000

 
3 (.30) 

 
1 (.10) 
2 (.20) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

  
 .001840 

  .003170 
-.012480 
-.029660 
-.033110 
-.020970 
-.016700 

 
 .162

1.000
 .000
 .000
 .000
 .000
 .000

 
4 (.40) 

 
1 (.10) 
2 (.20) 
3 (.30) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.016670 
.015650 
.012480 

-.017170 
-.020630 
-.008482 
-.004212 

.000

.000

.000

.000

.000

.000

.153
 
 
 

90 



Table 6 (continued) 
 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
5 (.50) 

 
1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.033840 
.032830 
.029660 
.017170 

-.003454 
.008690 
.012960 

.000

.000

.000

.000

.632 

.000

.000
 

6 (.60) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
7 (.80) 
8 (.90) 

 
.003729 
.036280 
.033110 
.020630 
.003454 
.012140 
.016410 

.000

.000

.000

.000

.632

.000

.000
 

7 (.80) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
8 (.90) 

 
.025150 
.024140 
.020970 
.008482 

-.008690 
-.012140 
.004270 

.000

.000

.000

.000

.000

.000 

.136
 

8 (.90) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 

 
.020880 
.019870 
.016700 
.004212 

-.012960 
-.016410 
-.004270 

.000

.000

.000

.153

.000

.000 

.036
Note: Bold face indicates significance at p < .01 
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Table 7 

STRESS Means for Groups in Tukey HSD Homogeneity Subtests for TD and R 

   
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
1 

2 

3 

4 

5 

6 

7 

8 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

.0045

.0055

.0087

.0211

.0254 .0254

.0296

 
 
 
 
 
 
 
 
 
 
 
 
 

.0383 
 

.0418 
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Table 8 

STRESS Means for Groups in Tukey HSD Homogeneity Subtests for DE and R 

 
Subset 

 
 
 
Level 

 
 
 
N 

 
1 

 
2 

 
3 

 
4 

 
8 
 
7 
 
4 
 
3 
 
2 
 
6 
 
5 
 
1 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

.0254

.0304

.0463

.0464

.0478

.0483

 
 
 
 
 
 
 
 
 

.0478 
 

.0483 
 

.0509 
 

.0513 
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Table 9 

 
  

 
 
Level 

 
 
 

N 

STRESS Means for Groups in Tukey HSD Homogeneity Subtests for TD and S 

Subset 
    

4 1 2 3 
 
5 

 
1 
 
2 
 
3 
 
4 
 
7 
 
8 

5 
 

 

6 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

.00409

.00462

.00628

.0288

 
 
 
 
 
 
 
 
 
 
 

.0351 

.0406

.0435

.0139
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Table 10 

STRESS Means for Groups in Tukey HSD Homogeneity Subtests for DE and S 

 
Subset 

 
 
 
Level 

 
 
 

N 
 
1 

 
2 

 
3 

 
4 

 
7 
 
8 
 
4 
 
3 
 
2 
 
1 
 
6 
 
5 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

 
100 

.0325

.0386

.0393

.0397

 
 
 
 
 
 
 
 
 

.0459 

.0519

.0520

.0561
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Table 11 

Descriptive Statistics for 100 Replications of RSQ for Two levels of Error, Two 

Methods of Selection and Eight Levels of Missing 

  
True Dissimilarities 

  
Dissimilarities Plus Random Error

  
Random 

 
Systematic 

  
Random 

 
Systematic 

 
Level 

 
Mean 

 
SD 

 
Mean 

 
SD 

  
Mean 

 
SD 

 
Mean 

 
SD 

 
1 .99991 .00004 .99993 .00002 .98850 .00126 .98819 .00108

2 .99987 .00007 .99990 .00006 .99001 .00191 .99074 .00167

3 .99948 .00150 .99983 .00008 .99049 .00348 .99311 .00086

4 .99713 .00422 .99829 .00411 .99028 .00458 .99291 .00420

5 .99258 .00537 .99168 .00614 .98779 .00544 .98557 .00689

6 .99131 .00422 .99121 .00310 .98835 .00539 .98700 .00480

7 .99494 .00363 .99508 .00277 .99463 .00400 .99390 .00330

8 .99696 .00256 .99653 .00215 .99708 .00242 .99538 .00725
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Table 12 

Analysis of Variance for RSQ with Two Levels of Error, Two Methods of 

Selection, and Eight Levels of Missing 

 
Source 

 
df 

 
F 

 
η2 

 
p 

 
Model 31 139.309

 
.577 .000

LEVEL 7 218.840 1.000 .000

DATA 1 1883.084 .326 .000

METHOD 1  .001 .000 .976

LEVEL by DATA 7 114.943 .203 .000

LEVEL by METHOD 7 10.594 .023 .000

DATA by METHOD 1   .088 .000 .767

LEVEL by DATA by METHOD 7 3.538 .001 .001
Note: Bold face indicates significance at p < .01 
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Table 13 

Post Hoc Tukey HSD Results for RSQ with Two Levels of Error, Two Methods 

of Selection, and Eight Levels of Missing 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
1 (.10) 

 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.000999 
-.001593 
-.000519 
 .004729 
.004666 

-.000505 
   -.002354 

.003
  .000
  .491
  .000
  .000
  .528
  .000

 
2 (.20) 

 
1 (.10) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
 .000999 
-.000593 
-.000481 
-.005729 
-.005667 
-.000495 
-.001354 

.003

.310

.591
 .000
 .000
 .555
 .000

 
3 (.30) 

 
1 (.10) 
2 (.20) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

  
 .001593 

  .000593 
-.001074 
-.006322 
-.006259 

-1.088000 
-.000761 

 
 .000
.310
 .001
 .000
 .000
 .000
 .000

 
4 (.40) 

 
1 (.10) 
2 (.20) 
3 (.30) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.000519 
.000481 
.001074 

-.005247 
-.005185 
-.000014 
-.001835 

.491

.591

.001

.000

.000
1.000

.000
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Table 13 (continued) 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
5 (.50) 

 
1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.004729 
.005729 
.006322 
.005247 

-.000063 
.005234 
.007083 

.000

.000

.000

.000
1.000 

.000

.000
 

6 (.60) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
7 (.80) 
8 (.90) 

 
.004667 
.005666 
.006259 
.005185 
.000064 
.005171 
.007020 

.000

.000

.000

.000
1.000
.000
.000

 
7 (.80) 

 
1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
8 (.90) 

 
.000051 

-.000495 
-.001088 
-.000014 
.005234 
.005171 

-.001849 

.528

.555

.001
1.000

.000

.000 

.000
 

8 (.90) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 

 
.002354 
.001354 
.000076 
.001835 
.007083 
.007020 
.001849 

.000

.000

.070

.000

.000

.000 

.000
Note: Bold face indicates significance at p < .01 
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Table 14 

RSQ Means for Groups in Tukey HSD Homogeneity Subtests for TD and R 

 
                               Subset 

 
 
 
Level 

 
 
 
N 

 
1 

 
2 

 
3 

 
4 

 
6 
 
5 
 
7 
 
8 
 
4 
 
3 
 
2 
 
1 

 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 

.99131

.99258

.99494

.99696

.99713

 
 
 
 
 
 
 
 
 
 
 

.99948 
 

.99987 
 

.99991 
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Table 15 

RSQ Means for Groups in Tukey HSD Homogeneity Subtests for DE and R 

 
Subset 

 
 
 
Level 

 
 

 
N 

 
1 

 
2 

 
3 

 
4 

 
5 

 
5 
 
6 
 
1 
 
2 
 
4 
 
3 
 
7 
 
8 

 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 

 
.98779 

 
.98884 

 
.98885 .98850

.99001 .99001

.99028

.99049

.99463

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.99708 
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Table 16 

RSQ Means for Groups in Tukey HSD Homogeneity Subtests for TD and S 

  
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
100 

 
.99121 

 

 
5 

 
100 

 
.99168 

 

 
7 

 
100 

 
.99508

 

 
8 

 
100 

 
.99653

 

 
4 

 
100 

 
.99829

 

 
3 

 
100 

  
.99983 

 
2 

 
100 

  
.99991 

 
1 

 
100 

  
.99993 
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Table 17 

RSQ Means for Groups in Tukey HSD Homogeneity Subtests for DE and S 

 
Subset 

 
 
 
Level 

 
 
 

N 
 
1 

 
2 

 
3 

 
4 

 
5 

 
5 
 
6 
 
1 
 
2 
 
4 
 
3 
 
7 
 
8 

 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 
 
100 

 
.98557 

 
.98700 .986700

.98819

.99074

.99291

.99311

.99390

 
 
 
 
 
 
 
 
 
 
 
 
 

.99390 
 

.99538 
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Table 18 

Descriptive Statistics for Correlations Between True Coordinates and Recovered 

Coordinates of 100 Replications  

  
True Dissimilarities 

  
Dissimilarities Plus Error 

  
Random 

 
Systematic 

  
Random 

 
Systematic 

 
Level 

 
Mean 

 
SD 

 
Mean 

 
SD 

  
Mean 

 
SD 

 
Mean 

 
SD 

 
1 .999791 .00017 .999857 .00013 .992315 .00171 .992258 .00154

2  .999427 .00038 .999536 .00029 .979002 .04998 .990744 .00307
 
3 .993631 .02629 .998755 .00066 .962529 .06530 .985363 .02424
 
4 .939208 .20759 .987008 .03287 .926557 .08429 .962196 .06122
 
5 .840147 .31683 .870883 .19212 .804210 .30971 .849871 .18427
 
6 .667308 .48099 .444739 .69297 .671348 .42064 .440220 .68456
 
7 .206287 .52729 .351735 .40601 .335457 .45898 .352692 .43321
 
8 .154768 .40913 .140123 .31667 .136666 .38666 .133299 .27768

Note: Bold face indicates significance at p < .01 
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Table 19 

Number of Correlations Between True and Recovered Coordinates That Are 

Significant in 100 Replications 

  
     TD 

 
            DE 

 
Level 

 
Significance 

 
R 

 
S 

 
R 

 
S 

 
1 

 
.01 
.05 
Not Significant 

100
0
0

100
0
0

 
100 

0 
0 

100
0
0

 
2 

 
.01 
.05 
Not Significant 

100
0
0

100
0
0

 
100 

0 
0 

100
0
0

 
3 

 
.01 
.05 
Not Significant 

100
0
0

100
0
0

 
100 

0 
0 

100
0
0

 
4 

 
.01 
.05 
Not Significant 

99
0
1

100
0
0

 
100 

0 
0 

100
0
0

 
5 

 
.01 
.05 
Not Significant 

97
0
3

99
0
1

 
97 
0 
3 

99
0
1

 
6 

 
.01 
.05 
Not Significant 

91
0
9

76
0

24

 
93 
0 
7 

76
0

24
 
7 

 
.01 
.05 
Not Significant 

55
5

40

67
3

30

 
66 
6 

28 

68
5

27
 
8 

 
.01 
.05 
Not Significant 

39
12
49

12
26
62

 
35 
12 
53 

9
19
72
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Table 20 

Analysis of Variance for Correlations Between True and Recovered Coordinates 

on Two Levels of Error, Two Methods of Selection, and Eight Levels of Missing 

 
Source 

 
df 

 
F 

 
η2 

 
p 

 

Model 31 113.785

 

.527 .000

LEVEL   7   492.971 .521 .000

DATA   1       .102 .000 .750

METHOD   1       .497 .000 .521

LEVEL by ERROR   7       .917 .002 .491

LEVEL by METHOD   7      9.269 .020 .000

ERROR by METHOD    1         .450 .000 .503

LEVEL by ERROR by METHOD    7         .759 .001 .759

Note: Bold face indicates significance at p < .01 
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Table 21 

Post Hoc Tukey HSD Results for Coordinate Correlations with Two Levels of 

Error, Two Methods of Selection, and Eight Levels of Missing 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
1 (.10) 

 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.003878 
.010990 
.042310 
 .154777 
.440151 
.684512 

   .854841 

1.000
 1.000
  .518
  .000
  .000
  .000
  .000

 
2 (.20) 

 
1 (.10) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
 -.003878 

.007117 

.038430 

.150899 

.436273 

.680634 

.850963 

1.000
1.000
.641
 .000
 .000
 .000
 .000

 
3 (.30) 

 
1 (.10) 
2 (.20) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

  
 -.010990 

  -.007117 
.031131 
.143783 
.429156 
.673517 
.843846 

 
1.000
1.000
 .838
 .000
 .000
 .000
 .000

 
4 (.40) 

 
1 (.10) 
2 (.20) 
3 (.30) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.042310 
-.038430 
-.031310 
.112468 
.397842 
.642203 
.812532 

.518

.641

.838

.000

.000

.000

.000
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Table 21 (continued) 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
5 (.50) 

 
1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.154777 
-.150899 
-.143783 
-.112469 
.285374 
.529735 
.700064 

.000

.000

.000

.000

.000 

.000

.000
 

6 (.60) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
7 (.80) 
8 (.90) 

 
-.440151 
-.436273 
-.429156 
-.397843 
-.285374 
.244361 
.414690 

.000

.000

.000

.000

.000

.000

.000
 

7 (.80) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
8 (.90) 

 
-.684512 
-.680634 
-.673517 
-.642203 
-.529735 
-.244361 
.170329 

.000

.000

.000

.000

.000

.000 

.000
 

8 (.90) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 

 
-.854841 
-.850963 
-.843846 
-.812532 
-.700064 
-.414690 
-.170329 

.000

.000

.000

.000

.000

.000 

.000
Note: Bold face indicates significance at p < .01 
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Table 22 

Coordinates Correlation Means for Groups in Tukey HSD Homogeneity Subtests 

for TD and R 

   
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
8 

 
100 .154768

 

 
7 

 
100 .206287

 

 
6 

 
100 .667308

 

 
5 

 
100 

 
0840147 

 
4 

 
100 

 
.939208 .939208

 
3 

 
100 

 
.993631

 
2 

 
100 

 
.999427

 
1 

 
100 

 
.999791
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Table 23 

Coordinates Correlation Means for Groups in Tukey HSD Homogeneity Subtests 

for DE and R 

   
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
5 

 
8 

 
100 .154768

 

 
7 

 
100 

.335457  

 
6 

 
100 

.671348  

 
5 

 
100 

.804210 

 
4 

 
100 

.926573 .926573

 
3 

 
100 

 .962529

 
2 

 
100 

 .979002

 
1 

 
100 

 .992315
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Table 24 

Coordinates Correlation Means for Groups in Tukey HSD Homogeneity Subtests 

for TD and S 

   
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
8 

 
100 .140123

 

 
7 

 
100 .351735

 

 
6 

 
100 .444739

 

 
5 

 
100 

 
.870883 

 
4 

 
100 

 
.987008 

 
3 

 
100 

 
.998755 

 
2 

 
100 

 
.999535 

 
1 

 
100 

 
.999857 
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Table 25 

Coordinates Correlation Means for Groups in Tukey HSD Homogeneity Subtests 

for DE and S 

  
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
8 

 
100 .133299

 

 
7 

 
100 

 
.352692

 

 
6 

 
100 .440220

 

 
5 

 
100 

 
.849871 

 
4 

 
100 

 
.962196 .962196

 
3 

 
100 

 
.985326

 
2 

 
100 

 
.990744

 
1 

 
100 

 
.992258
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Table 26 

Descriptive Statistics for M 

  
True Dissimilarities 

  
Dissimilarities Plus Random Error

  
Random 

 
Systematic 

  
Random 

 
Systematic 

 
Level 

 
Mean 

 
SD 

 
Mean 

 
SD 

  
Mean 

 
SD 

 
Mean 

 
SD 

 
1 .99955 .00030 .99968 .00025 .98442 .00279 .98460 .00270

2 .99879 .00069 .99910 .00052 .98060 .00695 .98073 .00481

3 .99374 .01802 .99734 .00139 .96631 .02727 .97420 .00610

4 .96451 .05747 .98333 .03105 .93731 .05845 .96044 .02573

5 .87741 .08075 .88489 .07777 .85179 .07814 .69581 .07390

6 .74650 .08542 .76915 .06916 .72190 .10065 .74496 .06595

7 .27156 .16761 .28976 .12844 .27642 .15574 .29903 .12200

8 .09050 .08538 .05440 .11957 .08440 .09536 .02600 .03656
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Table 27 

Analysis of Variance for M with Two Levels of Error, Two Methods of Selection, 

and Eight Levels of Missing 

     
η2 pSource f F  

 

Model 31 2157.923 .955 .000

Level   7 9537.204 .955 .000

Data   1 48.106 .015 .000

Method   1  2.353 .001 .125

Level by Data   8 2.238 .029

Level by Method   7  9.478 .021 .000

Data by Method   1    .020 .000 .888

Level by Data by Method   7 .383 .001 .913

.005

Note: Bold face indicates significance at p <  .01 
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Table 28 

Post Hoc Tukey HSD Results for M with Two Levels of Error, Two Methods of 

Selection, and Eight Levels of Missing 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
1 (.10) 

 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
.002258 
.009166 
.031417 
 .123642 
.246438 
.707860 

   .928257 

1.000
 .654

  .000
  .000
  .000
  .000
  .000

 
2 (.20) 

 
1 (.10) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
 -.002258 

.006907 

.029159 

.121384 

.244179 

.705602 

.925999 

1.000
.892
.000
 .000
 .000
 .000
 .000

 
3 (.30) 

 
1 (.10) 
2 (.20) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

  
 -.009166 

  -.006907 
.022252 
.114476 
.237272 
.698695 
.919092 

 
.654
.892
 .001
 .000
 .000
 .000
 .000

 
4 (.40) 

 
1 (.10) 
2 (.20) 
3 (.30) 
5 (.50) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.031417 
-.029159 
-.022516 
.092225 
.215021 
.676443 
.896840 

.000

.000

.001

.000

.000

.000

.000
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Table 28 (continued) 

 
Level  (Percent Missing) 

 
(I) 

 
Level (Percent Missing) 

 
(J) 

 
Mean Difference 

 
(I-J) 

 
p 

 
5 (.50) 

 
1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
6 (.60) 
7 (.80) 
8 (.90) 

 
-.123642 
-.121384 
-.114476 
-.092225 
.122796 
.584218 
.804616 

.000

.000

.000

.000

.000 

.000

.000
 

6 (.60) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
7 (.80) 
8 (.90) 

 
-.246438 
-.244179 
-.237272 
-.215021 
-.122796 
.461422 
.681820 

.000

.000

.000

.000

.000

.000

.000
 

7 (.80) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
8 (.90) 

 
-.707860 
-.705602 
-.698695 
-.676443 
-.584218 
-.461422 
.220397 

.000

.000

.000

.000

.000

.000 

.000
 

8 (.90) 
 

1 (.10) 
2 (.20) 
3 (.30) 
4 (.40) 
5 (.50) 
6 (.60) 
7 (.80) 

 
-.928257 
-.925999 
-.919092 
-.896840 
-.804616 
-.681820 
-.220397 

.000

.000

.000

.000

.000

.000 

.000
Note: Bold face indicates significance at p < .01 
 

 

 

116 



Table 29 

M Means for Groups in Tukey HSD Homogeneity Subtests for TD and R 

  
Subset 

 
Level 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
8 

 
.09050 
 

     

7  .27160     

6   .74650    

5    .87741   

4     .96451  

3     .99375 .99375 

2     .99875 .99879 

1      .99955 
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Table 30 

M Means for Groups in Tukey HSD Homogeneity Subtests for DE and R 

  
Subset 

 
Level 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

8 .0844  

7  .2764  

6  .7219  

5  .8519  

4  .9343  

3  .9663 .9663 

2  .9806 

1  .9844 
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Table 31 

M Means for Groups in Tukey HSD Homogeneity Subtests for TD and S 

  
Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
5 

 
8 

 
100 

 
.054400 

    

 
7 

 
100 

  
.289763 

   

 
6 

 
100 

   
.769150 

  

 
5 

 
100 

    
.884894 

 

 
4 

 
100 

     
.983326 

 
3 

 
100 

     
.997338 

 
2 

 
100 

     
.999102 

 
1 

 
100 

     
.999685 
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Table 32 

M Means for Groups in Tukey HSD Homogeneity Subtests for DE and S 

  
                                             Subset 

 
Level 

 
N 

 
1 

 
2 

 
3 

 
4 

 
5 

 
8 

 
100 

 
.026000 

    

 
7 

 
100 

  
.299032 

   

 
6 

 
100 

   
.744957 

  

 
5 

 
100 

    
.859505 

 

 
4 

 
100 

     
.960441 

 
3 

 
100 

     
.974200 

 
2 

 
100 

     
.980734 

 
1 

 
100 

     
.984600 
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Table 33 

Correlations Between Dependent Variables  

  
STRESS RSQ CC

 
RSQ 
 

-.940**

 L1 
L2 
L3 
L4 
L5 
L6 
L7 
L8 

-.998**
-.994**
-.978**
-.961**
-.972**
-.969**
-.972**
-.820**

 

 
CC 
 

-.102** .018**

 L1 
L2 
L3 
L4 
L5 
L6 
L7 
L8 

-.958**
-.330**
-.365**
-.144**
-.178**
-.099**
.072**
.001**

.957**

.370**

.419**

.179**

.184**

.087**

.068**
-.012**

 
M 
 

-.062** -.067** .709**

 L1 
L2 
L3 
L4 
L5 
L6 
L7 
L8 

-.969**
-.928**
-.696**
-.320**
-.533**
-.205**
-.092**
-.084**

.968**

.939**

.757**

.368**

.537**

.190**

.103**

.037**

.992**

.443**

.603**

.318**

.267**

.162**

.149**

.108**
** Correlation is significant at the .01 level 
 *  Correlation is significant at the .05 level 
 

121 



Table 34. 

Summary of Mean Values on Each Dependent Variable by Level of Missing Pairs 

  
Apparent Measures of Recovery 

  
STRESS 

 
RSQ 

  
TD 

 
DE 

 
TD 

 
DE 

  
R 

 
S 

 
R 

 
S 

 
R 

 
S 

 
R 

 
S 

 
L1 

 
.005 

 
.004 

 
.051 

 
.051 

 
.999 

 
.999 

 
.989 

 
.988 
 

L2 .006 .005 .048 .048 .999 .999 .990 .990 
 

L3 .009 .006 .009 .040 .999 .999 .990 .993 
 

L4 .021 .014 .021 .039 .997 .998 .990 .992 
 

L5 .038 .041 .038 .056 .993 .991 .988 .986 
 

L6 .042 .044 .042 .052 .991 .991 .988 .987 
 

L7 .030 .029 .030 .033 .995 .995 .995 .994 
 

.039 .997 .997 .997 .995 L8 .025 .035 .025 
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Table 34 (continued) 
 

  
Actual Measures of Recovery 

CC M 
  

TD 
 

DE DE 
 

TD 
 

  
R 

    
S 

 
R S 

 
R S R 

 
S 

 
L1 

 
.9997 

 
.9998 .9923 .9922 .9995 

    
.9996 

 
.9844 

 
.9846 
 

L2 .9994 .9995 .9790 .9907 .9987 .9991 

.9742 

.9265 .9373 .9604 

.8708 .8042 .8498 .8848 

.6673 .7465 .7691 

L7 .3526 .2897 

L8 .1547 .1366 .1332 .0544 .0844 .0260 

.9806 .9807 

L3 .9936 .9987 .9625 .9853 .9937 .9973 .9663 

L4 .9392 .9870 .9621 .9645 .9833 

L5 .8401 .8774 .8517 .6958 

L6 .4447 .6713 .4402 .7219 .7449 

.2062 .3517 .3354 .2715 .2764 .2990 

.1401 .0905 
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Figure 2. Plots of stimuli from true dissimilarities (TD) and dissimilarities with 

random error added (DE) without missing pairs. 
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Figure 3. Plots of stimuli from true dissimilarities (TD) with random selection (R) 

of stimuli for eight levels of missing. 
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Figure 3 (continued). 
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Figure 4. Pots of stimuli from dissimilarities plus error (DE) with random (R) 

selection for eight levels of missing. 
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Figure 4 (continued).  
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Figure 5. Plots of stimuli from true data set (TD) with systematic (S) selection for 

eight levels of missing. 
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Figure 5 (continued).  
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Figure 6. Plots of stimuli from data set of dissimilarities with added error  (TD) 

and systematic (S) selection of eight levels of missing. 
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Figure 6 (continued).  
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Figure 7. Plots of monotonic transformation with true data (TD) and data with 

error added (DE) with no missing. 
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Figure 8. Plots of monotonic transformation with true data (TD) and random (R) 

selection for 8 levels of missing. 
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Figure 8 (continued). 
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Figure 9. Plots of monotonic transformation with data plus error (DE) and random 

(R) missing. 
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Figure 9 (continued).  
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Figure 10. Plots of monotonic transformation with true data (TD) and systematic 

(S) selection of eight levels of missing. 
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Figure 10 (continued). 
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Figure 11. Plots of monotonic transformation with data set of dissimilarities with 

added error (DE) and systematic (S) selection for each of eight levels of missing. 
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Figure 11 (continued).  
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Figure 12. Number of excellent to poor cases of STRESS on each level of 

missing. 
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Figure 13. Mean STRESS against level of missing. 
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Figure 14. Histograms of Stress values from 100 simulations from true data (TD) 

and random missing (R) under different percent missing. 
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Figure 14 (continued). 
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Figure 15. Histograms of Stress values from 100 simulations from data with error 

(DE) and random missing (R) under different percent missing. 
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Figure 15 (continued).  
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Figure 16. Histograms of Stress values from 100 simulations from true 

dissimilarities (TD) and systematic missing (S) for different number of missing. 
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Figure 16 (continued) 
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Figure 17. Histograms of STRESS values for data plus error (DE) and systematic 

missing (S) 
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Figure 17 (continued). 
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Figure 18. Mean RSQ Against Level of Missing 
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Figure 19. Histograms of SRQ values from 100 simulations from true data (TD) 

and random missing (R) under different percent missing. 
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Figure 19 (continued). 
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Figure 20. Histograms of RSQ values from 100 simulations from dissimilarities 

plus error (DE) and random selection (R) under different percent missing. 
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Figure 20 (continued). 
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Figure 21. Histogram of RSQ values for 100 replications of eight levels of 

missing for Dissimilarities with added error and Systematic selection of missing. 
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Figure 21 (continued) 
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Figure 22. Percent of significant correlations between true and recovered 

coordinates for 100 replications. 
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Appendix A 

List of Cities 

164 



List of cities used as stimuli to generate dissimilarities for the simulation 

1. Atlanta Seattle 

Boston 

 

 

Cleveland  

 

Minneapolis  

 

Pueblo   

16.  

17. 

18. St Louis 

Cheyenne  

Chicago  

 

Dallas   

Detroit  

Elko   

Jacksonville   

Los Angeles   

 

New York  

Pasco   

Pittsburgh   

San Francisco  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10.

11.

12.

13.

14.

15.
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Appendix B 

Plots of Stimulus Configurations 
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Comparison of stimulus configuration from the same proximity data matrix 

using metric and non metric ALSCAL 
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Output from SPSS with distances treated as ordinal data 
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Appendix  C 

Ross Matrix 

168 



 

Ross Matrix for 18 Stimuli 

Column 
Row 

I II III IV V VI 

1 1-2 2-3 1-3 3-4 1-4 4-5 

2 3-n n-4 4-2 2-5 5-3 3-6 

3 4-(n-1) (n-1)-5 5-n n-6 6-2 2-7 

4 5-(n-2) (n-2)-6 6-(n-1) (n-1)-7 7-n n-8 

5 6-(n-3) (n-3)-7 7-(n-2) (n-2)-8 8-(n-1) (n-1)-9 

6 7-(n-4) (n-4)-8 8-(n-3) (n-3)-9 9-(n-2) (n-2)-10 

7 8-(n-5) (n-5)-9 9-(n--4) (n-4)-10 10-(n-3) (n-3)-11 

8 9-(n-6) (n-6)-10 10-(n-5) (n-5)-11 11-(n-4) (n-4)-12 

9 10-(n-7) (n-7)-11 11-(n-6) (n-6)-12 12-(n-5) (n-5)-13 

10 11-(n-8) (n-8)-12 12-(n-7) (n-7)-13 13-(n-6) (n-6)-14 
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Ross Matrix for 18 Stimuli (continued) 

 
Column 
Row 

VII VIII IX X XI XII 

1 1-5 1-6 1-7 7-8 5-6 6-7 

2 6-4 4-7 7-5 5-8 8-6 6-9 

7-3 3-8 8-4 4-9 9-5 5-10 

4 8-2 2-9 9-3 3-10 10-4 4-11 

5 9-n n-10 10-2 2-11 11-3 3-12 

6 10-(n-1) (n-1)-11 11-n n-12 12-2 2-13 

7 11-(n-2) (n-2)-12 12- (n-1) (n-1)-13 13-n n-14 

8 12-(n-3) (n-3)-13 13-(n-2) (n-2)-14 14-(n-1) (n-1)-15 

9 13-n-4) (n-4)-14 14-(n-3) (n-3)-15 15-(n-2) (n-2)-16 

10 14-(n-5) (n-5)-15 15-(n-4) (n-4)-16 16-(n-3) (n-3)-17 

3 
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Ross Matrix for 18 Stimuli (continued) 

Column 
Row 

XIII XIV XV XVI XVII XVIII 

1 1-8 8-9 1-9 9-10 1-10 10-11 

2 9-7 7-10 10-8 8-11 11-9 9-12 

3 10-6 6-11 11-7 7-12 12-8 8-13 

4 11-5 5-12 12-6 6-13 13-7 7-14 

5 12-4 4-13 13-5 5-14 14-6 6-15 

13-3 3-14 14-4 4-15 15-5 

7 14-2 2-15 15-3 3-16 4-17 16-4 

15-n n-16 16-2 2-17 17-3 3-18 

9 16-(n-1) (n-1)-17 17-n n-18 18-2 2-19 

10 17-(n-2) (n-2)-18 18-(n-1) (n-1)-19 19-n n-20 

6 5-16 

8 
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List of ordered pairs of 18 cities 

 

1.  1 – 2 

 

3.   37.  

 21.  7 – 17 38.  8 – 18 

5.   

40.  

 24.  10 – 14 41.  

27.  3 – 4 44.  

 

30.  47.  

33.  50.  

 1 - 3  1 – 4 

4 – 18 4 – 2  5 – 3 

5 – 17  6 – 18 6 – 2 

 

7 – 15  

8 – 14   10 – 16 

9 – 13  11 – 15 

10 – 12  11 – 13  12 – 14 

11 - 1   13 - 1 

2 – 3   4 – 5 

18 – 5  2 – 5 3 – 6 

17 – 6   2 – 7 

16 – 7  17 – 8  18 – 9 

15 – 8  16 – 9  17 – 10 

14 – 9  15 – 10  16 – 11 

13 – 10  14 – 11  15 – 12 

12-11  13 – 12  14 – 13 

18.  35.  

2.  19.  36.  

20.  

4.  6 – 16 

22.  8 – 16 39.  9 - 17 

6.  23.  9 – 15 

7.  

8.  25.  42.  

9.  26.  12 - 1 43.  

10.  

11.  28.  45.  

12.  29.  18 – 7 46.  

13.  

14.  31.  48.  

15.  32.  49.  

16.  

17.  34.  51.  
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List of ordered pairs of 18 cities (continued) 

 

52.  1 – 5  7 – 5  9 – 5 

53.  6 – 4  71.   89.  

72.   

73.   

 

 

95.  

 

 

98.  

 

 2 – 13 

101.  

103.  

68.  15 – 14  9 – 7 

 

8 – 4 10 – 4 

7 – 3  9 – 3 

8 – 2  10 – 2 

10 – 18  12 – 18  14 – 18 

11 – 17  13 - 17 15 - 17 

12 – 16  14 – 16 16 - 1 

13 - 15  15 – 1  7 – 8 

14 – 1  6 – 7 6 – 9 

5 – 6  5 – 8 

4 – 7  4 - 9  4 – 11 

3 – 8  3 – 10 3 – 12 

2 – 9  

18 – 11  18 – 13  18 – 15 

17 – 12  17 - 14  17 – 16 

16 – 13   1 – 8 

1 – 7  

1 – 6  10 – 6 

70.  88.  

54.  90.  11 – 3 

55.  91.  12 – 2 

56.  74.  92.  

57.  75.  93.  

58.  76.  94.  

59.  77.  

60.  78.  96.  

61.  79.  97.  5 – 10 

62.  80.  

63.  81.  99.  

64.  82.  2 – 11 100.  

65.  83.  

66.  84.  102.  

67.  85.  16 – 15 

86.  104.  

69.  87.  8 – 6 105.  
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List of ordered pairs (continued) 

106.  11 – 5 124.  13 – 5 

14 – 4 

13 – 3 17 –3 

109.   16 – 2 

16 – 18 128.  18 - 1  

111.   9 – 10  147.  9 – 12 

8 – 9 130.  8 – 11  148.  8 – 13 

131.  7 – 12 149.  

6 – 11  6 – 13 150.  6 – 15 

115.   5 – 16 

116.   4 – 15 4 – 17 

117.   3 – 16 

118.   2 – 17  

 

11 – 9 

 

  15 – 5 

12 – 4   16 – 4 

 15 – 3  

14 – 2  18 – 2 

 10 – 11 

17 - 1 

 

7 – 10   7 – 14 

 

5 – 12  5 – 14 

4 – 13  

3 – 14  3 – 18 

2 - 15   

18 – 17  1 - 10   

1 – 9     

10 – 8  12 – 8    

11 – 7 13 – 7    

12 – 6  14 – 6    

142.  

107.  125.  143.  

108.  126.  144.  

127.  145.  

110.  146.  

129.  

112.  

113.  

114.  132.  

133.  151.  

134.  152.  

135.  153.  

136.  

119.  137.  

120.  138.  

121.  139.  

122.  140.  

123.  141.  
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Appendix D 

SPSS Syntax 
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Sample SPSS Syntax to generate random stimuli 

 

 

. compute y = x*RV.BERNOULLI(!arg3). 

 /SHAPE=SYMETRIC 

GET 
FILE='C:\My Documents\DISSERTATION\SPSS\SQUARE MATRIX.sav'. 
EXECUTE. 
 
DEFINE loopme(arg1 = !TOKENS(1)/arg2 = !TOKENS(1)/arg3 = !TOKENS(1)) 

!DO !i= !arg1 !to !arg2 
 
do repeat  x=c1 to c18 / 
  y = r1 to r18. 

end repeat. 
execute. 
 
ALSCAL 
 VARIABLES=R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 
R15 R16 R17 R18 

 /LEVEL=ORDINAL (UNTIE) 
 /CONDITION=MATRIX 
 /MODEL=EUCLID 
 /CRITERIA=CONVERGE(.001) STRESSMIN(.005) ITER(30) 
 CUTOFF(0.1) DIMENS(2,2). 
 
!DOEND 
!ENDDEFINE. 
 
loopme arg1 = 1 arg2 = 100 arg3 = .50. 
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Sample syntax for systematic missing 

DEFINE loopme(arg1 = !TOKENS(1) / arg2 = !TOKENS(1) / arg3=!TOKEN(1) 
/ arg4 = !TOKENS(1) / arg5 = !TOKENS(1) / arg6 = !TOKENS(1)). 
 
!DO !i= !arg1 !to !arg2. 
 
!let !n=!LENGTH(!CONCAT(!BLANK(!arg3),!BLANK(!arg4))).  
!let !m=!LENGTH(!CONCAT(!BLANK(!arg5),!BLANK(!arg6))).  
 
 

 

 

 

end repeat. 

ALSCAL 

 

RECODE r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18  (!arg3 thru 
!n =1) (!arg5 thru !m = 1) (ELSE = 0)   INTO  mr1  mr2 mr3 mr4 mr5 mr6 mr7 
mr8 mr9 mr10 mr11 mr12 mr13 mr14 mr15 mr16 mr17 mr18. 

EXECUTE . 

 do repeat x=c1 to c18 / 
  y = mr1 to mr18/ 
  z = cm1 to cm18. 

. compute z = x*y. 

execute. 
 

  VARIABLES= cm1 cm2 cm3 cm4 cm5 cm6 cm7 cm8 cm9 cm10 cm11 cm12 
cm13 cm14 cm15 cm16 cm17 cm18 
  /SHAPE=SYMMETRIC 
  /LEVEL=ORDINAL (UNTIE) 
  /CONDITION=MATRIX 
  /MODEL=EUCLID 
  /CRITERIA=CONVERGE(.001) STRESSMIN(.005) ITER(30) CUTOFF(0.1) 
DIMENS(2,2) . 
 
!DOEND 
!ENDDEFINE. 

loopme arg1 = 1 arg2 =1  arg3=102 arg4= 90 
   arg5 = 1 arg6 = 37. 
EXECUTE . 
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Appendix E 

SPSS ALSCAL Model 
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ALSCAL Model  

 

Conditionality .  .  .  .  .  .  .  .     Matrix 
Data Cutoff at .  .  .  .  .  .  .  .      .000000 
 
 
Model Options- 
 
Model .  .  .  .  .  .  .  .  .  .  .     Euclid 
Maximum Dimensionality  .  .  .  .  .     2 
Minimum Dimensionality  .  .  .  .  .     2 
Negative Weights  .  .  .  .  .  .  .     Not Permitted 
 
 
Output Options- 
 
Job Option Header .  .  .  .  .  .  .     Printed 
Data Matrices  .  .  .  .  .  .  .  .     Printed 
Configurations and Transformations  .     Plotted 
Output Dataset .  .  .  .  .  .  .  .     Not Created 
Initial Stimulus Coordinates  .  .  .     Computed 
 

Minimum S-stress  .  .  .  .  .  .  .      .00500 

 
Algorithmic Options- 
 
Maximum Iterations   .  .  .  .  .  .        30 
Convergence Criterion   .  .  .  .  .     .00100 

Missing Data Estimated by  .  .  .  .    Ulbounds 
Tiestore .  .  .  .  .  .  .  .  .  .   153 
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