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Abstract

Background: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates
as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in
a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-
exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant
adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter
(Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to
afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector.

Methodology/Principal Findings: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates
from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved
through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-
CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP
significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally,
Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required
for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge.

Conclusions/Significance: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure
protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the
induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the
previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of
adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.
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Introduction

Ebola virus (EBOV) is a member of the Filoviridae family causing

a viral hemorrhagic fever with a lethality that can reach beyond

90% [1,2]. While the precise mode of natural viral transmission to

humans and nonhuman primates remains elusive, there are

indications that bats may act as a primary source of infection [3].

EBOV causes hemorrhagic fever following virus entry in

susceptible organisms where the virus appears to initially infect

monocytes, macrophages, and dendritic cells leading to deregu-

lated activation of innate immunity and a systemic inflammatory

response syndrome. This results in massive destruction of critical

organs, vascular damage and haemorrhage within 5–7 days post-

exposure [4,5]. Outbreaks of EBOV have primarily been localized

to Central Africa with relatively low impact on human health

worldwide, despite inflicting devastating consequences on affected

communities. EBOV has however drawn increasing interest in the

past years due to an increased number of natural human outbreaks

and its potential use in biological warfare [6].

Human adenovirus serotype 5 (Ad) was initially developed as a

delivery vehicle for therapeutic transgenes in a wide variety of

animal models of genetic disease [7]. However, an inherent

characteristic of recombinant Ad for gene therapy applications is

the ability of the virus to elicit a strong immune response even in

immunocompetent hosts, making Ad-based vectors attractive

vaccine carriers [8]. Vaccination with Ad expressing the Zaire

ebolavirus (ZEBOV) envelope glycoprotein (Ad-ZGP) has been

shown to protect mice, guinea pigs and nonhuman primates from
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lethal ZEBOV challenges [9–11]. It is also currently being studied

in a phase I clinical trial recently initiated in normal adults with

the objective of evaluating safety and immune responses to the

vaccine (http://clinicaltrials.gov/show/NCT00374309).

The use of attenuated vesicular stomatitis virus (VSV) vaccine

platforms expressing the Ebola virus surface glycoprotein has also

been useful for the treatment and protection of three animal

models post-exposure [1,12]. Administration of the VSV-based

vaccine as late as 24 hours after lethal Ebola virus infection,

resulted in 50% and 100% survival, in guinea pigs and mice

respectively while 50% of rhesus macaques tested were protected

when treated 20 to 30 minutes after exposure to Ebola [12]. While

VSV appears to be one effective treatment strategy for Ebola

infections, adenovirus-based vaccine may offer further useful

characteristics such as the rapidity to produce large amounts of

transgene which can promote a robust immune response soon

after vaccination [1].

Viral regulatory elements such as the human cytomegalovirus

immediate early gene (CMV) promoter induce high-level consti-

tutive expression in vitro in a variety of mammalian cell lines and

thus were largely used to generate many of the early gene transfer

vectors [13]. Other technologies were developed in order to

enhance gene expression notably for DNA vaccine platforms. In

this context, codon optimization for translation in mammalian

cells along with the hybrid CAG promoter which combines the

human cytomegalovirus immediate early gene enhancer and a

modified chicken beta-actin promoter were shown to improve

protective immune responses after vaccination [14,15]. Targeting

of dendritic cells and high expression profiles are two major

characteristics making recombinant adenovirus such a robust

vaccine vector.

In this report, we modified the common recombinant

adenovirus serotype 5-based Ebola vaccine expressing the wild-

type ZEBOV glycoprotein sequence from a CMV promoter (Ad-

CMVZGP) to enhance expression of the envelope antigen. The

immune response elicited by this improved expression cassette

vector (Ad-CAGoptZGP) and its ability to afford protection

against lethal ZEBOV challenge in mice was compared on a dose-

to-dose basis to that of the standard Ad-CMVZGP vector.

Results

Increased Ebola GP expression from an improved
expression cassette adenovirus vector

The antigenic expression cassette of an E1/E3 deleted

adenovirus serotype 5 vector was improved to provide enhanced

expression of the Ebola GP. Improvements included codon

optimization for translation in mammalian cells, inclusion of a

consensus Kozak sequence and identification of a more efficient

configuration of a CAG promoter. Portions of the 59 untranslated

region (UTR) of pCAGGS-MCS downstream of the CAG

promoter were progressively truncated using endogenous restric-

tion enzyme sites within the UTR sequence. The initial objective

of systematically deleting portions of the 59 UTR was to identify

the minimal promoter region, capable of accommodating larger

inserts for different applications. The CAGD829 deletion of the 59

UTR resulted in a statistically significant substantial increase

(p,0.001) in expression of an enhanced green fluorescent protein

(EGFP) reporter gene compared to the full promoter containing

EGFP (pCAGGS-EGFP) in transfected HEK 293T cells as

determined by flow activated cell sorting (FACS) (Figure 1). The

plasmid pCAGD829-EGFP repeatedly showed the highest inten-

sity of EGFP and the regulatory element from the enhancer to the

multiple cloning sites (MCS; named CAGa) was selected to drive

the expression of the codon optimized Ebola GP in the adenovirus

vector. The codon optimized ZGP was inserted downstream of the

CAGa promoter in the adenovirus vector and Ebola GP

expression was evaluated by western blot analysis following

infection of HEK 293 cells at a multiplicity of infection (M.O.I.)

of 5. An adenovirus encoding a CMV driven wild-type Ebola GP

(Ad-CMVZGP) was used in parallel at the same M.O.I. for

comparative analysis. Cell free extracts were recovered at 24, 48

and 72 hours post-infection and each separated by SDS-PAGE

electrophoresis. Western blot analysis using a ZGP monoclonal

antibody showed a single band corresponding to the predicted

molecular weight of glycosylated ZGP at substantially higher levels

in cell lysates infected with the Ad-CAGoptZGP than with the Ad-

CMVZGP vector at each time point (Figure 2). Densitometry

evaluation of the bands corresponding to ZGP revealed an average

band density of 2.8 from the Ad-CMVZGP and of 18.0 from the

Ad-CAGoptZGP vector at 48 hours post-infection. A marked

increase of 3 to 7-fold was observed between 24 and 72 hours post-

infection in samples infected with the Ad-CAGoptZGP vector

when compared to Ad-CMVZGP. Similar ratios were observed

from infected Vero E6 or MDCK cells with Ad-CAGoptZGP

consistently expressing higher levels of ZGP than Ad-CMVZGP

(data not shown).

Enhanced T and B cell immune responses with low dose
of Ad-CAGoptZGP

Stimulation of CD8+ T cells expressing IFN-c was monitored

following vaccination with Ad-CMVZGP or Ad-CAGoptZGP in

mice. B10.BR mice were vaccinated I.M. with either Ad-

CMVZGP at a concentration of 16105, 16106 or 16107

infectious forming units (IFU)/mouse or Ad-CAGoptZGP at a

concentration of 16104, 16105 or 16106 IFU/mouse. The Ad-

CAGoptZGP was administered over a lower spectrum of doses

because of the higher expression profile of the ZGP antigen. The

mice were sacrificed eight days post-immunization and the

percentage of interferon-c (IFN-c)-CD8+ T cells was determined

by FACS. Ad-CAGoptZGP at a dose of 16105 IFU/mouse

elicited a frequency of 1.360.3% positive IFN-c producing CD8+
T cells compared to 0.360.16% induced by Ad-CMVZGP at the

same dose (Figure 3A). The frequency of positive IFN-c producing

CD8+ T cells increased to 2.260.7% for Ad-CAGoptZGP at

16106 IFU/mouse compared to 1.160.4% with the same dose of

Ad-CMVZGP (Figure 3A). The frequency of IFN-c+CD8 T cells

with Ad-CMVZGP at 16107 IFU/mouse was at 1.660.4% in

average (Figure 3A). Overall, the average frequency of positive

IFN-c producing CD8+ T cells was higher with 16106 IFU/

mouse of Ad-CAGoptZGP than with 16107 IFU/mouse of Ad-

CMVZGP although with a low statistical significance (p = 0.0454).

Neutralizing antibody was used to evaluate the B cell response

in the serum of vaccinated animals. Sera from B10.BR mice were

collected 25 days after immunization and assayed for the presence

of neutralizing antibodies against ZEBOV expressing the en-

hanced green fluorescent protein reporter gene (ZEBOV-EGFP)

[16]. Neutralizing antibodies were detected in sera obtained from

Ad-CAGoptZGP immunized mice at all vaccine doses of 16104,

16105 and 16106 IFU/mouse with reciprocal dilutions ranging

from 40610 to 200620 (Figure 3B). Mice immunized with Ad-

CMVZGP had an average neutralizing antibody level of 50620

reciprocal dilutions starting at the dose of 16107 IFU/mouse.

Mice administered Ad-CAGoptZGP at 16104 IFU/mouse

demonstrated neutralizing antibody levels similar to levels

obtained from mice vaccinated with Ad-CMVZGP at 16107

IFU/mouse (p = 0.1).

Ad-Based Ebola Vaccine
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Immunization of mice with Ad-CAGoptZGP is protective
at low doses against mouse-adapted ZEBOV

To determine the protective efficacy of Ad-CMVZGP versus

Ad-CAGoptZGP vaccine vector, groups of 10 B10.BR mice were

immunized with different doses of adenovirus vector and

challenged 28 days later with a lethal dose (LD50 = 1000) of

mouse-adapted ZEBOV [17]. All control mice vaccinated with

phosphate buffered saline (PBS) died by day 9 post-challenge

whereas all mice vaccinated with doses of 16104, 16105 and

16106 IFU/mouse of Ad-CAGoptZGP were fully protected with

no weight loss or other clinical signs of disease (Table 1).

Protection was complete in mice vaccinated with Ad-CMVZGP

at 16106 and 16107 IFU/mouse but was only partially protective

at 16105 IFU/mouse (Table 1). Mice vaccinated with the lower

dose of 16105 IFU/mouse had 60% mortality and up to 17%

weight loss in surviving animals (Table 1).

Infected mice survive a lethal challenge with mouse-
adapted ZEBOV when vaccinated soon after exposure

The substantial improvement in protection and enhanced

immune responses observed with low dose of the Ad-CAGoptZGP

vaccine raised the question whether this vaccine vector could

afford post-exposure protection against ZEBOV in mice. To

answer this question, B10.BR mice were challenged with

10006LD50 of mouse-adapted ZEBOV and vaccinated I.M.

30 minutes later with either Ad-CAGoptZGP or Ad-CMVZGP at

a concentration of 56107 IFU/mouse. The challenge was

uniformly lethal in PBS control mice and 22% of mice treated

with Ad-CMVZGP survived although weight loss was observed

(Figure 4A and B). In contrast, 100% of the mice administered Ad-

CAGoptZGP survived the challenge however weight loss of up to

14% was also observed (Figure 4A and B).

One of the possible mechanisms contributing to post-exposure

protection is the induction of an immune response reaching

protective levels before Ebola virus can kill the host. Immune

responses were monitored at day 6 after vaccination with each

vector to assess the levels of activated T cells and neutralizing

antibody detectable just before mice are expected to succumb to a

mouse-adapted Ebola challenge of 10006LD50 (between 7 to 10

days post-challenge). Stimulation of CD8+ T cells expressing IFN-

c, TNF-a and/or IL-2 following Ad-CMVZGP or Ad-CA-

GoptZGP was evaluated after I.M. vaccination with 16108

IFU/mouse. Immunized mice were sacrificed 6 days post-

immunization and the percentage of IFN-c, TNF-a and/or IL-2

CD8+ T cells were determined by FACS. Ad-CAGoptZGP

vaccinated mice had a frequency of 5.260.604%, 4.260.379% or

1.260.121% positive IFN-c, TNF-a or IL-2 producing CD8+ T

cells respectively. In comparison, Ad-CMVZGP had a frequency

of 360.521%, 1.960.340% or 0.2560.118% positive IFN-c,

TNF-a or IL-2 producing CD8+ T cells respectively (Figure 5).

Triple positive CD8+ T cells expressing IFN-c, TNF-a and IL-2

were detected in 0.8560.154% of the total from Ad-CAGoptZGP

vaccinated mice compared to 0.260.055% in total CD8+ T cells

Figure 1. Expression intensity of EGFP reporter gene in transfected HEK 293T cells as determined by FACS. Portions of the 59
untranslated region of pCAGGS downstream of the CAG promoter were systematically removed generating pCAGGSD764-EGFP, pCAGGSD829-EGFP
and pCAGGSD947-EGFP. Assays were preformed in triplicate and repeated twice, the data shown is from one experiment. Error bars represent the
standard deviation of the data. * p,0.001.
doi:10.1371/journal.pone.0005308.g001

Figure 2. Western blot expression analysis of Ad-CMVZGP or
Ad-CAGoptZGP. Proteins isolated from infected HEK 293 cells were
separated by a 10% SDS PAGE then transferred to PVDF membrane. A
mouse monoclonal anti-ZGP was used as the primary antibody and a
goat anti-mouse horseradish peroxidase (HRP) conjugated antibody as
the secondary antibody. 24, 48 and 72 hours indicate the time of total
protein harvest post-infection. Band density corresponding to each lane
is shown as determined by densitometry of the bands. The control
represents untreated HEK 293 cells. An M.O.I. of 5 was used to infect the
cells with either Ad-CMVZGP or Ad-CAGoptZGP for each time point. The
preparation of Ad-CAGoptZGP or Ad-CMVZGP used had a non-
infectious to infectious ratio of 73:1or 19:1 respectively.
doi:10.1371/journal.pone.0005308.g002

Ad-Based Ebola Vaccine
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Figure 3. T and B cell responses following immunization. B10.BR mice were vaccinated I.M. with Ad-CMVZGP (16105, 16106 and 16107 IFU/
mouse) or Ad-CAGoptZGP (16104, 16105 and 16106 IFU/mouse) and splenocytes were harvested 8 days later for A. IFN-c CD8+ T cells frequency
analysis or B. Neutralizing antibody (NAB) titers. Four to five mice were analyzed per group and the experiment was repeated twice. Levels of NAB to
ZEBOV-EGFP were evaluated 25 days post-vaccination. Error bars represent the standard deviation of the data. n.d. refers to assays that were not
done for Ad-CAGoptZGP at that IFU/mouse. * p = 0.0454; ** p = 0.1.
doi:10.1371/journal.pone.0005308.g003

Table 1. Survival and weight loss of mice challenged with ZEBOV 28 days post-vaccination.

Vaccine Concentration (IFU/Mouse) Survival (Percentage) Weight Loss (Percentage)

Ad-CMVZGP 16107 100 0

Ad-CMVZGP 16106 100 0

Ad-CMVZGP 16105 40 17

Ad-CAGoptZGP 16106 100 0

Ad-CAGoptZGP 16105 100 0

Ad-CAGoptZGP 16104 100 0

Control na1 0 .25

Eight to nine B10.BR mice were used in each group.
1not applicable.
doi:10.1371/journal.pone.0005308.t001

Ad-Based Ebola Vaccine
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isolated from Ad-CMVZGP immunized mice (Figure 5). The

frequencies of IFN-c, TNF-a or IL-2 producing CD8+ T cells

individually or combined (triple positive) were increased with

statistical significance from mice immunized with Ad-CA-

GoptZGP compared to Ad-CMVZGP (p,0.001, p,0.001,

p,0.01, p,0.01 respectively). Neutralizing antibody assay

performed on B10.BR mice sera collected 6 days after immuni-

zation revealed levels of 16+/29 reciprocal dilution following

vaccination with Ad-CAGoptZGP whereas no neutralizing

antibodies were detected in sera of Ad-CMVZGP immunized

mice (data not shown).

Discussion

Vaccine vectors derived from adenoviruses have been shown to

be efficacious in a number of animal species showing susceptibility

to different infectious agents [18,19]. However, acute toxicity has

also been reported with the administration of high doses of this

virus [20]. The present study systematically analyzed the effect of

increasing antigenic expression from an adenovirus-based vaccine

on immune responses and protective efficacy in mice against

mouse-adapted ZEBOV. Technologies mainly evaluated and

adopted by the DNA vaccine community including gene

optimization was used to develop the described vector for use

against ZEBOV. The improved Ad-CAGoptZGP vaccine vector

was evaluated side-by-side with the commonly used CMV driven

wild-type Ebola GP-encoding adenovirus which has shown

protective efficacy in nonhuman primates against ZEBOV [21].

The human cytomegalovirus immediate early gene (CMV)

promoter induces high-level constitutive expression of encoded

genes in vitro and in vivo in a variety of cell types [13,22,23] and

therefore has been incorporated into many recombinant adeno-

virus-based vaccines. The present study indicates that an

optimized antigenic expression cassette including the modified

CAG promoter and codon optimization can substantially improve

immune responses and protection generated by an adenovirus-

based vaccine. The optimized Ad-CAGoptZGP vaccine strength-

ened immune responses at a doses 10 to 100-fold lower than those

commonly used for the Ad-CMV driven Ebola GP vaccine. The

optimized vaccine also fully protected mice against a lethal

challenge with mouse-adapted ZEBOV at a dose 100 times lower

than the minimal dose required to achieve full protection with the

first generation adenovirus vaccine. Understanding the relative

contribution of each molecular determinant (i.e. promoter, Kozak

sequence, codon optimization etc.) individually may help design

future optimized adenovirus-based as well as other sub-unit

vaccines. These experiments are currently underway.

Overall, the substantial improvement in vaccine efficacy can be

useful for many applications. The same protective efficacy can be

achieved with lower doses of adenovirus vector allowing for a

more extended use of each preparation and importantly

minimizing toxicity from the vaccine vector. Alternatively,

protection can be achieved with doses equivalent or even lower

than for example the lowest dose of 16109 virus particles currently

evaluated in clinical trials [http://www.clinicaltrials.gov/ct/

show/NCT00374309?order = 1].

Figure 4. Protective efficacy following intramuscular (I.M.) immunization 30 minutes post-challenge. Groups of nine to eleven B10.BR
mice were challenged with 10006LD50 of mouse-adapted ZEBOV and vaccinated I.M. 30 minutes later with a single dose of 56107 IFU of Ad-
CAGoptZGP or Ad-CMVZGP per mouse. Preparations of Ad-CAGoptZGP or Ad-CMVZGP had non-infectious to infectious ratio of 73:1 or 19:1
respectively. Error bars represent the standard deviation of the data. Data represent A. percent survival and B. percent body weight loss over time.
Control mice were PBS-treated 30 minutes after challenge. This experiment was repeated once with B10.BR mice and once with BALB/c mice and
generated similar results.
doi:10.1371/journal.pone.0005308.g004

Ad-Based Ebola Vaccine
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Despite the fact that weight loss was noted, complete survival of

mice infected with mouse-adapted ZEBOV was observed following

administration of a relatively low dose (56107 IFU/mouse) of the

improved vaccine 30 minutes after challenge, supporting the

concept of post-exposure induced protection. Although, the precise

mechanism remains to be fully elucidated, a higher number of IFN-

c, TNF-a and IL-2 positive CD8 T cells were detected from

splenocytes of Ad-CAGoptZGP immunized mice 6 days post-

vaccination when compared to Ad-CMVZGP immunized mice.

Levels of NAB were also detected at day 6, but only from mice

vaccinated with the improved Ad-CAGoptZGP vector. This

suggests that in addition to the T cell response, B cells may also

play a role in increasing survivability in mice. However, antibodies

alone may not be sufficient as a small percentage of mice vaccinated

with Ad-CMVZGP survived despite the lack of detectable NAB.

These observations would be in agreement with the concept that the

improved adenovirus vaccine could stimulate a more rapid immune

response which reaches protective levels before ZEBOV could cause

irreversible damage to the host. Although similar post-exposure

protection against different filoviruses has been reported using the

VSV vaccine platform [12,24] extending this important character-

istic of post-exposure efficacy from a replication competent filovirus

vaccine to a replication defective vaccine vector such as those

currently being evaluated in several clinical trials and newer

optimized versions such as these should be valuable. Overall, these

results support further evaluation of the improved Ad-CAGoptZGP

vaccine in other animal models of ZEBOV infection such as guinea

pigs and nonhuman primates.

Materials and Methods

Construction of the optimized expression cassette
A minimal CAG (chicken-b-actin promoter and cytomegalovi-

rus enhancer) sequence was identified from plasmid pCAGGS-

MCS following the sequential deletion of the 59 non-translated

region in pCAGGS-EGFP expressing the enhanced green

fluorescent protein (EGFP). Three truncated versions of

pCAGGS-EGFP were generated using the restriction enzymes

PspOMI/XbaI (D764 base pairs), Eco47III/XbaI (D829 base pairs)

or Eco47111/Acc65I (D947 base pairs) that cut within the UTR

sequence. The digested DNA was filled in with Klenow fragments

(NEB Inc., Ipswich, MA) then ligated with T4 DNA ligase

generating pCAGGSD764-EGFP, pCAGGSD829-EGFP and

pCAGGSD947-EGFP or pCAGb, pCAGa, and pCAGc, respec-

tively. Transfection of wild-type pCAGGS-EGFP, pCAGa,

pCAGb or pCAGc into human embryonic kidney cell line

(HEK 293T) was performed with the lipid-based Effectene

transfection system according to the manufacturer recommenda-

tions (Qiagen, Mississauga, Ontario).

Gene synthesis of human codon-optimized Ebola GP
The ZEBOV GP sequence (Genbank/NCBI; Mayinga strain

76 accession number AF086833 protein accession number

Q05320) used contains an additional adenosine in the editing site

for the production of full length GP which is subject to post-

translational modifications (cleavage, glycosylation; N-linked and

O-linked carbohydrates) [25]. The GP sequence was codon-

optimized for translation in mammalian cells generating optZGP

for increased antigenic expression from the adenovirus-based

vaccine. Based on NCBI human codon usage databases, the wild-

type ZEBOV GP sequence uses 36% of codons most frequently

found in mammalian cells. OptZGP was further codon optimized

to 70% by choosing the most abundant and/or second most

abundant codons. The optZGP was synthesized from 40-mer

oligonucleotides and then inserted into the pCAGa expression

vector. Briefly, 121 oligonucleotide primers (Operon Biotechnol-

ogies, Inc., Huntsville, Alabama) each 40 nucleotides in length

with an overlap of 20 nucleotides were generated to encode the full

length codon-optimized optZGP open reading frame (ORF). The

oligonucleotides were then combined in a three cycle PCR

protocol to produce a complete double stranded optZGP using a

method previously described [26]. A consensus Kozak sequence

was also introduced into the forward primer of the optZGP to

facilitate optZGP expression. The final amplification of the codon-

optimized optZGP was accomplished by PCR using iProof High

Fidelity Polymerase (BioRad) and the construct was confirmed by

sequencing. The full length opt ZGP was then cloned downstream

of pCAGa.

Figure 5. T cell frequency analysis at day 6 post-immunization. Groups of 4 B10.BR mice were vaccinated I.M. with 16108 IFU/mouse of Ad-
CMVZGP or Ad-CAGoptZGP and splenocytes were harvested 6 days later, re-stimulated with the peptide TELRTFSI, and production of IFN-c, TNF-a,
and Il-2 from CD8+ T cells was monitored by FACS. Error bars represent the standard deviation of the data. The experiment was repeated once and
showed similar results. * p,0.001; ** p,0.001; *** p,0.01; **** p,0.01.
doi:10.1371/journal.pone.0005308.g005

Ad-Based Ebola Vaccine
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Construction and production of adenoviral vectors
The molecular clone of E1/E3-deleted adenovirus vector

expressing the optimized pCAGa-optZGP expression cassette

was inserted into pShuttle using the restriction enzymes SpeI and

NheI and then cloned directly into the E1 region of human

adenovirus serotype 5 (BD Adeno-X expression system I, BD

Biosciences, Palo Alto, CA). The CMV driven wild-type sequence

of ZGP in the same adenovirus vector was used for comparison.

The authenticity of each vector was confirmed by sequencing and

the recombinant virus was rescued by transfecting the linearized

DNA into HEK 293 cells maintained in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 1% penicillin, 1%

streptomycin, 1% L-glutamate, 1% sodium pyruvate, and 10%

fetal bovine serum. Large-scale infections (56108 cells) were

initiated from positive transfectants and purified by cesium

chloride as previously described [10]. Genome structures of

vectors were analyzed by restriction digestions of viral DNA and

compared with those of the molecular clones as previously

described [10]. Particle number and infectivity of vectors were

determined by standard optical density and immunodetection of

the hexon protein, respectively, following infection of HEK 293

cells with limiting dilutions of each vector preparation according to

the recommendations by the manufacturer (Adeno-X rapid titer

kit, Clontech, Mountain View, CA). Several Ad-CAGoptZGP and

Ad-CMVZGP preparations were generated and quantified for

both infectious particle and total particle number. Preparations

with a ratio below 1:200 infectious to total particle were used in

this study.

Expression of Ebola ZGP and optimized ZGP
HEK 293 cells were cultured in 6-well plates to approximately

80% confluence. The cells were infected with recombinant

adenoviral vectors Ad-CMVZGP or Ad-CAGoptZGP at a

M.O.I. of 5. The M.O.I. used for Ad-CMVZGP or Ad-

CAGoptZGP on HEK 293 cells was based total infectious

particles per ml as determined by immunocytochemistry against

the hexon protein (Adeno-X rapid titration kit, Clonetech,

Mountain View, CA). Preparations of Ad-CAGoptZGP or Ad-

CMVZGP used for expression analysis had a non-infectious to

infectious ratio of 73:1 or 19:1 respectively. The analysis was

repeated with a preparation of Ad-CAGoptZGP with non-

infectious to infectious ratio of 90:1 or Ad-CMVZGP with ratio

of 128:1 (not shown). At 24 hours, 48 hours, and 72 hours after

infection cell supernatants were removed from the tissue culture

well and 50 mL of 26 radioimmunoprecipitation (RIPA) buffer

(10 mL Triton X-100; 10 g lauryl sulfate; 5 mL 10% SDS; 30 mL

5 M NaCl; 20 mL 1 M Tris pH 7.7; 20 mL 0.5 M EDTA

pH 8.0) was added per 1 cm2 surface area of tissue culture well.

Cell lysates were then collected, normalized by total protein

content and analyzed under reducing conditions with 56SDS-gel

loading buffer (50 mM Tris-HCl pH 6.8; 100 mM dithiothreitol;

2% (w/v) electrophoresis grade SDS; 0.1% bromophenol blue;

10% (v/v) glycerol on a 10% SDS-PAGE. Following electropho-

resis, proteins were transferred by electroblotting to a PVDF

membrane (Bio-Rad) and revealed with a mouse immune serum to

Ebola ZGP at a 1:1500 dilution as the primary antibody followed

by a horseradish peroxidase-conjugated goat anti-mouse second-

ary antibody diluted 1:7500. Immunodetection (Amersham ECL

system, Piscataway, NJ) was performed according to the

manufacturer. To determine band density proteins were trans-

ferred by electroblotting to Immobilon PVDF membrane (Milli-

pore). The membrane was blocked overnight in 100% Sea-Block

(Fisher) and then washed with PBS-Tween (0.01%). A mouse anti

Ebola-GP monoclonal antibody was used as the primary antibody

with a 1:1500 dilution and incubated for one hour. Antibody

against b-actin was used as a control at a dilution of 1:7500. The

membrane was then washed with PBS-Tween (0.01%) followed by

the addition of Cy5 secondary antibody (Cedarlane) at a dilution

of 1:100 for one hour. Scanning was accomplished using the

Typhoon 9410 and quantification using ImageQuant TL v2002.1.

Animal models, vaccination and challenge
B10.BR mice ((MHC H-2K), The Jackson Laboratory, ME), a

strain in which a dominant CD8 epitope for ZGP has been

identified [27], were used to evaluate protection as well as B and T

cell immune responses against ZGP. The T cell response was

analyzed by evaluating the frequency of CD8+ T cells positive for

IFN-c production or cell division upon peptide stimulation by

FACS as previously described [10]. Groups of 8 to 11 B10.BR

mice were immunized with adenovirus vectors at a dose ranging

from 16104 to 16107 IFU per animal 28 days before challenge.

Mice were also vaccinated with Ad-CAGoptZGP at 56107 IFU/

mouse 30 minutes post-challenge. All protective and post-

exposure vaccines used in this study were derived from one of

two preparations of either Ad-CAGoptZGP or Ad-CMVZGP.

Preparations of Ad-CAGoptZGP had non-infectious to infectious

ratio of 73:1 and 90:1. Ad-CMVZGP preparations had ratio of

19:1 and 128:1. Vaccination was performed intramuscularly (I.M.)

with 50 ml of recombinant adenoviral vector diluted in PBS in

each posterior hind limb. Mice were challenged by intraperitoneal

injection with 10006LD50 in 200 ml of mouse-adapted ZEBOV

[17]. After challenge, the animals were weighed every day for 12

to 16 days and monitored for clinical signs using an approved

scoring sheet. All procedures and the scoring sheet were approved

by the Institutional Animal Care Committee at the National

Microbiology Laboratory (NML) of the Public Health Agency of

Canada (PHAC) according to the guidelines of the Canadian

Council on Animal Care. All infectious work was performed in the

‘Biosafety Level 4’ (BSL4) facility at NML, PHAC.

Neutralization assay
Sera collected from immunized mice were inactivated at 56uC

for 45 minutes and serial dilutions of each sample (1:10, 1:20,

1:40, etc, in 50 ml of DMEM) was mixed with equal volume of

ZEBOV expressing the EGFP reporter gene (ZEBOV-EGFP) [12]

(100 transducing units/well, according to EGFP expression) and

incubated at 37uC for 90 minutes. The mixture was then

transferred onto subconfluent VeroE6 cells in 96-well flat-

bottomed plates and incubated for 5–10 minutes at room

temperature. Control wells were infected with equal amounts of

ZEBOV-EGFP without addition of serum or with non-immune

serum. 100 ml of DMEM supplemented with 20% FBS was then

added to each well and plates were incubated at 37uC in 5% CO2

for 48 hours. Cells were subsequently fixed with 10% buffered

formalin for 24 hours and examined under a fluorescent

microscope. The total number of EGFP positive cells were

counted in each well and sample dilutions which showed .50%

reduction in the number of green cells compared to controls

scored positive for neutralizing antibody. All infectious in vitro work

was performed in the BSL4 laboratory of NML, PHAC.

Frequency of IFN-c, TNF-a and IL-2 positive CD8+ cells
Splenocytes or mononuclear cells were isolated by grinding

spleen tissues in L-15 medium and purifying cells through filtration

followed by 3 washes with PBS and resuspension in RPMI 1640.

Isolated splenocytes were pooled from 4 B10.BR mice per

experimental group 6 and 8 days post-immunization and added

to microwells along with the TELRTFSI [28] peptide which

Ad-Based Ebola Vaccine

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5308



carries the ZGP immunodominant MHC class I epitope for mice

of the H-2k haplotype (B10.BR). Control cells were incubated

either without peptide or with the nonspecific stimulator, SEB

(200 ng/ml). For the evaluation of IFN-c, TNF-a or IL-2 positive

CD8+ T cells, splenocytes (16106/sample) were cultured for

5 hours at 37uC in 96-well round bottom microtiter plate wells in

DMEM supplemented with 10% FBS, 1026 M 2-ME and

GolgiStop (BD PharMingen, San Diego, CA) at 1 ml/ml as

described previously [10]. Briefly, stimulated cells were stained

with a FITC-anti mouse CD8a (BD PharMingen) at 1:300 dilution

followed by a PE-anti mouse IFN-c antibody (BD PharMingen)

diluted 1:150 or PECY7-anti mouse TNF-a antibody (BD

PharMingen) diluted at 1:100 or APC-anti mouse IL-2 antibody

(BD PharMingen) diluted at 1:100. Stained cells were run through

a LSRII flow cytometer, acquiring at least 300,000 events per

sample. Final data analyses were performed using the software

Flowjo (Ashland, OR). A response was considered positive when

the frequency from stimulated samples was over twice that of non-

stimulated cells or those stimulated with unrelated peptides.

Samples for the ELISPOT assay and the evaluation of IFN-c
positive CD8+ T cells were tested in duplicate and each

experiment repeated twice.

Statistical analysis
Data were analyzed for statistical difference by performing one-

way analysis of variance (ANOVA, Tukey-Kramer multiple

comparisons test) or repeated measure ANOVA when appropri-

ate. The differences in the mean or raw values among treatment

groups were considered significant when p,0.05.
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