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Light-Based Nonverbal Signaling with Passive Demonstrations

for Mobile Service Robots

by

Rolando Fernandez Jr., MSCompSci

The University of Texas at Austin, 2018

Supervisor: Peter Stone

With emerging applications in robotics that have the potential to bring them

into our daily lives, it is expected for them to not only operate in close proxim-

ity to humans but also interact with them as well. When operating in crowded,

human-populated environments there are many communication challenges faced

by robots due to variable levels of interactions (e.g. asking for help, giving infor-

mation, or navigating near humans). A crucial factor for success in these inter-

actions is a robot’s ability to express information about their intent, actions, and

knowledge to co-located humans. Many of the robot platforms developed for ser-

vice roles have non-anthropomorphic form factors in order to simplify and tailor

them to their jobs. Due to a lack of anthropomorphic features, these types of robots

primarily communicate using an on-screen display and/or spoken language. To

overcome the limitation of not communicating as people do, we explore the vi-

ability of nonverbal light-based signals as a communication modality for mobile

service robots. These types of signals have many benefits over existing modalities

which they can either complement or replace when appropriate, such as having
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long-range visibility and persisting over time. We present a novel light-based sig-

nal control architecture implemented as a custom Robot Operating System (ROS)

software package generalized to allow for various signal implementations. We im-

plement our framework on a BWIBot, an autonomous mobile service robot created

as part of the Building-Wide Intelligence Project, and evaluate its validity through

a real-world user study on the scenario where a robot and human are traversing a

shared corridor from opposite ends, and the potential conflict created when their

paths meet. Our results demonstrate that exposing users to the robot’s use of an

animated light signal only once prior to when it is information critical for the user

is sufficient to disambiguate its meaning, and thus greatly enhances its utility in-

situ, with no direct instruction or training to the user. These findings suggest a

paradigm of passive demonstration of light-based signals in future applications.
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1

Introduction

One vision for mobile service robots is that they will be able to assist hu-

mans in a variety of scenarios and environments by performing a complex as-

sortment of tasks to support day-to-day work, domestic, and care activities. Ser-

vice robots are expected to provide assistance in domains including the home

(6, 13, 32, 36), space exploration (31), schools, and workplaces (6, 20, 29, 32, 36, 41).

These robots are often constructed in form factors and appearances that are spe-

cialized to the tasks which they perform. Many have a functional, non-humanoid

appearance with few to no anthropomorphic features. Gracefully interacting with

the people who use these devices will involve studying interaction paradigms

that differ from the more well-studied areas of human-robot interaction that are

based on humanoid or android machines (5). Communicating a variety of unique

and recognizable signals in situations where humans cannot be trained or where

the robot is not directly interacting with any specific person remains challenging

(3, 4, 12). Common communication modalities available to service robots, such as

spoken language and on-screen displays, are limited by proximal constraints and

can be ineffective when the human is too far to see the display or hear the robot’s

voice (3).

The Building-Wide Intelligence (BWI) project at The University of Texas at

Austin seeks to develop mobile service robots, called BWIBots (Figure 1.1), that

can provide assistance to the occupants and visitors of the Computer Science De-

partment (29). This complex environment presents many obstacles to a robot freely
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navigating its hallways, which can be overcome through coordination or collabo-

ration with its human occupants (33, 41). One such challenge our BWIBots face

while autonomously navigating the corridors of the department throughout the

workday is the frequent undesirable occurrence of a robot and human blocking

each other’s path. When conflicts arise in our lab area, we often find them hu-

morous, as these robots are research prototypes. If these robots were deployed

in mission-critical applications such as hospitals or even less critical applications

such as delivering room service in hotels, the problem of creating such a blocked

passage would escalate from being a humorous chance event to being a critical

design flaw. To develop solutions to this problem, we have constructed a test hall-

way (Figure 1.2) in a large laboratory space where we study various navigational

scenarios in which humans and robots must negotiate shared space. The work

presented in this paper considers the scenario of a robot and a human navigating

a corridor from opposite ends in opposing directions, and the potential conflict

created when their paths meet. Throughout this work, we will focus our analysis

on a custom-built autonomous mobile service robot, the BWIBot, which performs

different types of tasks in a office like environment. The experiments presented in

this work are designed such that the findings are applicable to a variety of robot

platforms, tasks, and applications.

This work explores two concepts in non-anthropomorphic Human-Robot

Interaction (HRI). The light-based signal system, as designed, uses a pair of light

emitting diode (LED) light strips mounted to the robot’s chassis to indicate the

robot’s intended motion trajectory in a fashion similar to the turn signals on a car.

The robot’s navigation algorithm treats the corridor as being divided into three

traffic lanes through which it may navigate. When “changing lanes,” the robot

2



Figure 1.1: The BWIBot family of robots. Left: V2 with Arm, Center: V3 (the robot
used in this study), Right: V2.

Figure 1.2: Constructed hallway environment with robot and participant in the
early stage of hallway traversal.
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signals this “lane-changing” behavior by blinking the LED light strip on the side

of its chassis matching that of the direction of the lane that it intends to shift into.

The robot can change lanes in order to avoid navigating into a path which conflicts

with that of the person, however, the hallway is narrow enough that the person

must also change into the opposing lane, in order to provide sufficient space for

conflict-free passage. The first concept we explore in this study is the naturalness

and efficacy of this signal in indicating the robot’s intention.

The second concept is that of passively demonstrating the signal by having

the robot use it in a context where the person can witness its usage, but prior to an

interaction that necessitates understanding the signal’s intent. This paradigm of

establishing the meaning of the signal in advance of its necessity enables the per-

son to be passively introduced to the signal’s intention without requiring explicit,

up-front training. The idea to introduce a passive demonstration to our interaction

comes from a pilot study in which 13 participants (9 male, 4 female) reacted am-

biguously to the LED signal; attempting to change lanes, but with some interpret-

ing it as an instruction regarding which lane to shift into and others interpreting it

as indicating the robot’s intended path. In the study presented in this paper, the

robot and the human traverse a 17.5 meter long corridor from opposite directions,

passing each other along the way. To demonstrate its lane-changing behavior, the

robot performs a lane-change in front of the user at the start of its path during this

interaction.

These concepts are evaluated in a 2 × 2 user study, the conditions of which

are described in Table 1.1. On the first axis, the robot either does or does not em-

ploy the LEDs to signal its lane-change behavior. On the second axis, the robot

either does or does not perform a passive demonstration to the user prior to com-
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Study Conditions
Passive Demonstration

No Demonstration Demonstration

LED
Signal

No LED No Demonstration,
No LED

Demonstration,
No LED

LED No Demonstration,
LED

Demonstration,
LED

Table 1.1: Study Conditions

ing close enough to the user to force the robot to change lanes in order to avoid a

conflict. The results of this study demonstrate only a modest improvement in re-

ducing the number of navigational conflicts in the case of using the LED signal in

the lane-changing behavior, though it becomes a very large improvement when the

passive demonstration is introduced. Our findings suggests that user understand-

ing of nonverbal robotic signals can be significantly enhanced simply by allowing

users to witness them being used in their context.

1.1 Motivation

The research presented in this thesis is inspired by a two practical goals.

Goals:

1. Implement a system that enables a mobile service robot to use light-based

nonverbal signals as a communication modality.

2. Evaluate whether light-based signals are a viable modality for conveying in-

formation to co-located humans.
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1.2 Contributions

The primary contributions from this work are:

1. A light-based signal control architecture implemented in ROS, which controls

addressable light strip arrays.

2. A real-world user study investigating the viability of light-based signals as

communication modality for a mobile service robot.

3. The proposal of a paradigm of passive demonstration of light-based signals for

future applications on robots.
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2

Related Work

This thesis will be focusing on the use of light-based signals as a communi-

cation modality for mobile service robots. In this chapter, we hence first introduce

a short overview of the general uses of lights in different applications and how

they have previously been used as a communication modality. We then focus our

review on the use of lights on robots for communication which will be the subject

of Chapter 4.

2.1 Uses of Lights

Light signals have long been used to communicate information across long

distances and in limited visibility environments. Though light-based communica-

tion is simple and only able to communicate very little information content when

compared to other visual modalities, such as on-screen displays, it can be easily

perceived and vary in levels of intensity (9, 11, 26). This allows for light-based sig-

nals to be used as a communication modality across different levels of notification

and criticality (5).

Examples of light communication can be seen in aviation and maritime nav-

igation (21). Historically, the light signals used in these applications were usually

very complex and required prior training to be understood, with one well-known

example being Morse code (27). Lights produced though bioluminescence also

play part in the communication of some animals species (e.g., jellyfish, phyto-

plankton, fireflies, and pyrophorus) for purposes such as passive defense, baiting
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prey, or finding a mate (25).

A commonly-recognizable use of light signals in society is in the domain

of automotive navigation. Light signals are used to alert drivers to the actions of

others on the road in the form of brake lights and turn signals, in traffic lights to

control the flow of traffic, and to alert drivers to emergencies. Additionally, they

are commonly used to convey emergency information in buildings, such as with

fire alarms.

2.2 Lights as a Communication Modality

Dynamic visual cues created with lighting displays have been shown to

have the ability to convey complex properties, such as animacy and intent, even in

simple animations (7). Further work with lighting displays has revealed that light

can even be used elicit complex social responses to include emotion (8). Since mo-

bile service robots tend to have more functional appearances, configurable multi-

color light arrays are a natural choice of signaling mechanism.

Addressable RGB LED strips on which we focus on in this thesis, allow for

fine control of multiple LEDs with the ability to change the color and intensity

of each individually. Each LED on the strip is a combination of an LED and a

micro-controller that allows for the control of color intensity as a function of time.

Through the propagation of serial communication packets across an LED strip,

variety of dynamic light animations can be created using a one-wire interface.1

1https://github.com/pololu/pololu-led-strip-arduino
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2.3 Light-Based Robot Communication

Despite their abundance in society, research on the use of lights on robots

for communication is still in its early stages by comparison to research involving

humanoid robots and human-like behaviors (5). Some current applications con-

centrate on expressing information such as subtle expressions (19) or simulated

emotions (18) rather than directly communicating instructions or important state

information. Others serve very basic functions which descend from consumer elec-

tronics, such as reporting the robot’s battery status and or powered on state (1, 5).

Other research has explored how lights can be used to communicate a robot’s

internal state and functional intent (5). Lights have been used to represent which

actor is currently attempting to speak in a Human-Robot Interaction (HRI) dia-

logue task (9). Animated lights have also been used to give aerial drone robots the

ability to communicate navigational intent (38). Autonomous motor vehicle appli-

cations for animated lights have also been explored to communicate the direction

of turning and when it is safe to cross in front of the vehicle (37).

Most relevant to our work, Baraka et al. (1, 2) developed a framework for

using animated lights for navigation tasks such as going from one location to an-

other, as well as for human interaction tasks such as asking for human help. For

navigation tasks, they used LEDs to indicate information such as percent done for

an escort task, being blocked by an obstacle, or whether the robot is turning left or

right. However, a limitation of their experiments is that participants were asked if

they could interpret the meaning of the lights in a video of their robot performing

various tasks. In contrast, we examine how people interpret LED signals on robots

in the context of a natural and common human-robot interaction scenario, that of

passing a robot going in the opposite direction in a hallway.
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3

Design and Implementation of Light-Based Signaling System

In this chapter, we provide a ROS implementation of a system which allows

for light-based signals to be used as a communication modality on mobile service

robots. This system will facilitate the process of communicating with a LED-based

signal mechanism to convey information about a robot to co-located humans. We

begin by describing the BWIBot platform which we use for this thesis. We then

present the design of the LED-based signal mechanism and the software that fa-

cilitates communication with this mechanism. Our implementation can be easily

extended to other LED arrays and animations besides those discussed.

3.1 Building-Wide Intelligence Project

Our light-based signal control architecture is implemented on the BWIBots

of the BWI project, which has the overarching goal of developing fully-autonomous

mobile service robots that are able to exist as permanent entities in the Computer

Science department of The University of Texas at Austin (29). The BWIBot robot

platform is a custom robot platform that has been in development for over five

years. Currently, our lab has four robots in operation and one in development.

Three of the current robots are based on our second generation platform, using

older hardware and software (Figure 3.1a). One of our second generation robots

is also equipped with a Kinova Mico Arm1 (Figure 3.1b). The fourth robot is our

1The Kinova arm depicted has 6 degrees of freedom, a reach of 700 mm, and a mid-range pay-
load capacity of 2.1 kg
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(a) Version 2 (b) Version 2 with Arm (c) Version 3

Figure 3.1: The three current BWI robotic platforms

only robot based on the third generation platform design (Figure 3.1c). The fifth

and latest robot is a the development platform for our fourth generation platform,

it is quite similar to the third generation but has a updated base and no center

LiDAR.

Leveraging the BWIBot platform our lab has published extensive work in

the field of Artificial Intelligence and Robotics. One of the our key areas of research

is planning, particularly hierarchical motion planning for navigating to different

locations (16, 42) and multirobot symbolic planning that allows for a team of our

robots to achieve their individual goals while minimizing the overall cost of the

plan (34). Using the multiple BWIBots our lab has researched multi-robot guidance

that would allow our robots to work in concert to guide humans to their desired

destinations (15, 17, 28). We have also developed a novel framework for evalu-

ating the capabilities of intelligent mobile robots called "Robot Scavenger Hunt"
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(44). With the addition of the Kinova arm we conducted research grounded lan-

guage learning, such as by playing a game of "I Spy" (40), through human-robot

dialog (39), and active learning (14). The Kinova arm also allowed for our lab to

develop a novel framework for object exploration and ordering using haptic ex-

ploratory behaviors (35). "Virtour" a telepresence system allowing remote tours of

our lab in the Computer Science department through the BWIBots has also been

implemented (22).

Our light-based signal control architecture is able to support all three gen-

erations, only needing to have the LED segment parameters adjusted for each spe-

cific platform due to variation in height. However, at this time we have only in-

stalled LED strips on our third generation platform, thus we will only describe the

hardware for this platform generation in detail.

3.1.1 Hardware

All of the robots in the BWI project are built upon the Segway Robotics Mo-

bility Platform (RMP) created by Stanley Innovation.2 Our third generation robot

is built upon a custom prototype version of the newer RMP 210 model,3 which

comes with two integrated lithium-ion batteries, can navigate at speeds up to 8

m/s, and carry up to 45 kg of payload. The frame of the robot was designed in

our lab and is capable of supporting a large array of sensors and devices. For nav-

igation, localization, and obstacle avoidance, we utilize a Velodyne VLP-16 Puck

LIDAR.4 For video data, we use an ASUS Xtion PRO Live RGB-D Camera,5 which
2http://stanleyinnovation.com/products-services/robotics/robotic-mobility-platforms/
3http://stanleyinnovation.com/products-services/robotics/robotic-mobility-platforms/

passive-stability/
4http://velodynelidar.com/vlp-16.html
5https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
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also provides point cloud data (3D voxel maps). The third generation robots also

have an Hokuyo URG-04LX laser range finder6 to compensate for the Velodyne’s

near-field blind spots. The core computer system is a custom-built compact fanless

computer7 which runs Ubuntu 16.04 64-bit. The computer and all other devices on

the robot are powered by the RMP 210’s dual lithium batteries, eliminating the

need for an external lithium battery (which is utilized in our second generation

robots). The battery life of the third generation robot is approximately 6 hours

when actively running and 10 when stationary.

3.1.2 Software

The software architecture for our BWIBot platform is implemented ROS

(30). ROS provides the infrastructure for running a distributed node robot system,

as well as the messaging framework required to communicate between the differ-

ent nodes. Furthermore, as open source software ROS allows for robot users to

concentrate on their core research interests by providing access to many packages

and tools, such as device drivers, navigational systems, and planning systems.

The navigational system in our robot platform utilizes a hierarchical task-

planning architecture for navigation planning (43). When a navigational action

is requested it begins at the logical planner, which uses the Answer Set Program-

ming (ASP) language to describe the operational environment (24) – such as which

rooms are on which floors, and which doors belong to each room – and then pro-

cesses the ASP logic using the ASP solver Clingo to generate all the possible plans

6https://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
73.9Ghz i7 processor, 16GB DDR3 RAM, Gigabyte GA-Q87TN motherboard, HDPLEX H1.S

heatsink case, Acer FT200 monitor, and a Logitech K400 Plus Wireless Touch Keyboard with Built-
in Trackpad

13
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(10) that satisfy the navigational request. It then randomly chooses one of the

shortest plans and proceeds to the logical navigator which uses current and previ-

ous sensor readings (in the form of occupancy maps) and it’s current knowledge

of the environment to create a navigational path plan. Lastly, the local planner uti-

lizes the immediate sensor readings while communicating movement commands

to the segway base contoller while actively avoiding any obstacles that are encoun-

tered.

A large portion of the software for BWIBots comes from open source ROS

packages (e.g. for navigation we use the move base ROS package). Furthermore,

all of the code that is written by our BWI lab is open source as well and available

to the public on github8. Some of our software repositories are released as ROS

packages to the community and are available for install as binaries9.

3.2 LED Control Server

We now provide a detailed description of the LED-based signal control sys-

tem implemented for this thesis. We cover both the hardware of the physical LED-

based signal mechanism and the software that facilitates communication with this

mechanism.

3.2.1 Hardware

To be able to use LED animations on our BWIBots, a mechanism which

could be mounted to the current frame of the robot platform with minor modifi-

cations was designed and prototyped. The mechanism consists of an array of 120

8https://github.com/utexas-bwi
9http://wiki.ros.org/bwi, http://wiki.ros.org/bwi_common, and http://wiki.ros.org/segbot
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individually-controllable, multi-color LEDs constructed from (2) Pololu Address-

able RGB 60-LED Strip, 5V, 2m (WS2812B)10 (Figure 3.2c) in combination to provide

coverage of both the front and rear of the robot. The LED strip enables the manip-

ulation of three variables: LED color (RGB [Red, Green, Blue]), intensity [0,255],

and position [0,119]. To control the LED array, an Adafruit Metro Mini 328 - 5V

16MHz11 (Figure 3.2a) micro-controller with the capability of communicating over

serial using a Universal Serial Bus (USB) connection was added to the robot. Fur-

thermore, to power and interface the LED strips with the micro-controller a com-

pact printed circuit board (PCB), which allows for the LED strips power and com-

munication connections to be centrally connected, was created. The PCB, UTexas

BWI LED Power Board12 (Figure 3.2b), was designed using the Fritzing13 software

and printed through the company OSH Park14.

(a) Adafuit Metro Mini
Source: Adafruit.com

(b) LED Power Board PCB
Source: oshpark.com

(c) Pololu LED Strip
Source: pololu.com

Figure 3.2: LED Hardware

10https://www.pololu.com/product/2547
11https://www.adafruit.com/product/2590
12https://oshpark.com/shared_projects/z0UBER8B
13http://fritzing.org/home/
14https://oshpark.com/
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3.2.2 Software

To govern the LED strips with the micro-controller we implemented a serial

communication program to flash on the metro mini. The program follows a simple

design and handles four commands, a flush command which writes colors to the

LED strip, a set command which sets the colors to be written to the LED strip, a

clear command which clears the whole LED strip, and a command which sets the

number of LEDs we have to control (Default: 60). This program is executed at the

power up of the metro mini micro-controller.

To handle the communications between our BWIBot system and the micro-

controller program we created an interface library, which provides six functions

that can be used to control the LED strips by communicating with the micro-

controller over USB serial. The six functions provided are as follows: connect,

setLEDCount, clear, flush, setRGB, and setHSV. The setLEDCount and connect

functions are used to initialize a serial connection with the micro-controller and

to specify the number of LEDs we are controlling. The setRGB and setHSV func-

tions both allow for the colors we desire to be set for write using RGB and HSV

(Hue, Saturation, Value) formats respectively. The setHSV functions takes colors

specified in HSV format and converts them to the RGB format expected by the

LED strip. The flush function is used to write the set colors to the LED strip and

the clear function is used to clear all colors on the LED strip.

The main control software that communicates with the rest of our software

stack is written in the ROS framework.15 The software provides some service call

functions for the configuration of the LED strip parameters and testing the function

15All the code for the led control server is hosted in the segbot_led package under the BWI Segbot
repositoryhttps://github.com/utexas-bwi/segbot/tree/master/segbot_led
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of the LED strip (Figure 3.3). It also implements an action server for executing our

predefined LED animations. The robot state information that we are interested in

representing is related to the robot’s navigational state, as such we defined seven

prototype LED animations to represent important navigational states the robot can

enter. These six states are as follows: left turn, right turn, blocked path, taking the

elevator up, taking the elevator down, and requiring human assistance to progress

in a task (Figure 3.4). In this work we used only the left and right turn animations

and test the LEDs ability to communicate the robot’s navigational intent.

The turn signal animations represent the state of turning using a set yellow

LEDs, which cover a full beam and blink at a rate of 2 Hz (on 0.4 secs, off 0.1 secs)

on the side the robot is planning to turn towards (Figure 3.4a and Figure 3.4b).

The blocked animation represents the state of having the path blocked using a

high intensity red pulsing animation utilizing all available LEDs simultaneously

(Figure 3.4c). The elevator directional animations represent the state of wanting to

take the elevator using four sets of three blue LEDs, which travel along the portions

of the LED strips on each pillar of our robot simultaneously in the direction the

robot is planning to go in the elevator (Figure 3.4d and Figure 3.4e). The assist

animation represents the state of requiring human assistance using a low intensity

blue pulsing animation similar to the blocked animation (Figure 3.4f).
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Figure 3.3: Overview of the LED Control Server structure and hierarchy of com-
munication between the different components
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(a) Left Turn Animation (b) Right Turn Animation (c) Blocked Animation

(d) Up Elevator Animation
(e) Down Elevator Anima-
tion (f) Assist Animation

Figure 3.4: LED Animations
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4

Evaluation of Light-Based Signaling System

In this chapter, we focus on evaluating the viability of lights for conveying

information about a mobile service robot to co-located humans. We begin by de-

scribing the setup of the experimental system and user study where we use the

LED-signal to communicate intent. We then present a detailed analysis of the re-

sults of the user study. We conclude the chapter with a follow-up study on an

additional condition where we use the LED-signal to communicate an instruction

rather than intent.

4.1 Experimental Setup

The design of this system is based on two basic behaviors: a navigational

behavior and a signaling behavior. The navigational behavior is intended to shift

lanes, much as a car might in a roadway, in order to navigate around any person

that it encounters who is also navigating the corridor. The signaling behavior is

designed to signal the robot’s intention to shift lanes to co-located humans, allow-

ing them to adjust their own behavior in order to minimize conflict. In addition to

these two behaviors, the robot may perform a brief, passive demonstration of its

lane-changing behavior. This demonstration is accomplished by having the robot

change lanes early in the interaction, from left to center at the opposite end of the

corridor, at a distance sufficiently far away from the person that the demonstration

concludes entirely before the human is close enough for the robot to begin either

its signaling or lane-changing behaviors.
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To perform our experiment, a corridor was constructed from cubicle furni-

ture in a large lab space, shown in Figure 1.2. A human study participant stands at

one end of the corridor, with the robot positioned at the other end. The human and

robot are both instructed to traverse the hallway to the opposite end. The corridor

is 17.5 meters long and 1.85 meters wide, with cameras mounted at both ends, fac-

ing down the corridor, and a third camera mounted halfway down the corridor,

facing the side that the study participant begins on. The width of a hallway is

based on that of the hallways in our building and its length is constrained by that

of our lab space. This setup is used in a 2× 2 study, where two behaviors are var-

ied. The robot either uses its LEDs when it turns or does not and either provides a

brief passive demonstration of this behavior before coming into a range in which

it may come into conflict with the human or does not.

4.1.1 Navigation

For the navigational behavior, the robot splits the hallway into three lanes,

as one might divide a roadway. This formulation is diagrammed in Figure 4.1. The

hallway itself is 17.5 meters long and 1.85 meters wide. Each lane is 0.65 meters

wide, thus there is an overlap between the lanes. If the robot detects itself to be

within 1 meter of a person who is also navigating the hallway, it will stop entirely

in order to allow the person to safely pass. Thus, with the width of the hallway

being 1.85 meters, it is necessary for the robot and the person to be in opposite

lanes, outside of the middle lane, in order to pass each other without conflict.

Three distances are defined in our model of this problem, as can be seen in

Figure 4.1. Distance dsignal, which is at 7 meters from the person, is the distance

at which the robot will signal its intention to change lanes, and is based on the
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Figure 4.1: A diagram of the corridor, its lanes, and the distance thresholds at
which the robot will signal its intention to change lanes, execute a lane change, and
conflict with a person in its path. The distances are fixed and maintain an origin
based on the position, pr, of the robot. The respective action for each distance is
executed as the position, ph, of the person crosses the thresholds.

distance at which the robot can accurately detect a person in the hallway with its

on-board sensors. The signal occurs on the side of the robot coinciding with the

lane it intends to move into (Figure 3.4a and 3.4b). Distance dexecute is the distance

at which the robot will execute its turn, at 2.75 meters from the person, chosen

through testing as the last possible distance to execute a turn; where choosing the

same lane will ensure that a conflict will occur and choosing opposite lanes will

prevent a conflict. Distance dconflict is the distance at which the robot determines

its motion to be in conflict with that of the person and comes to a complete stop,

at 1 meter from the person; chosen empirically as the minimum possible distance

required to stop safely.

Because this study tests both the LEDs as a signal and the method of the

passive demonstration for disambiguating this signal to the user, dexecute is cho-

sen to be the last possible distance that a person could choose to turn without

coming into conflict with the robot. Naturally, dexecute relies on a number of vari-

ables including the walking speed and reaction time of the person. This distance

was chosen empirically - through testing the system with our lab members - but
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very effectively. The results demonstrate that when the robot does not signal its

intention to turn, only turning when it arrives at this distance, that it comes into

conflict with the person 100% of the time, as can be seen in Figure 4.2.

The navigational software is implemented as a custom ROS (30) navigation

stack which attempts to minimize the distance of a point 1 meter in front of the

robot to the center of the desired lane while maintaining a constant linear velocity

of 0.75 m/sec. Detecting the position of the person in the corridor with respect

to the robot is accomplished with a classifier that detects the person’s legs in the

LiDAR scan data (23). The system implements obstacle avoidance as a safeguard

against possible navigational issues that could lead to a collision with a wall or the

person during the course of the study, with distance ranges of 0 − 0.65 meters for

the wall and 0− 1 meters for the person, respectively.

4.1.2 Study Design

The study is set up as a 2× 2 between-participants design with 4 conditions

as in Table 1.1. Participants interacted with a robot which passively demonstrated

a light change or did not, on one axis of this table; and which used an LED signal

or did not, on the other1. The study lasted for approximately ten to fifteen min-

utes and consisted of four phases: (1) introduction, (2) interaction, (3) survey, (4)

conclusion.

First, the experimenter explained the participant’s role, obtained informed

consent, and walked the participant to their starting position. Participants were

instructed simply to walk to the opposite end of the corridor. No other instructions

1A video displaying examples of each of these conditions can be found at https://youtu.be/
T4CZcP8LKRM
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were given to the participants.

In phases 2 and 3, the participants traversed the corridor, and the robot did

as well, creating the potential for a conflict as their paths crossed. After cross-

ing the hallway once in this scenario, participants were administered a brief post-

interaction survey comprising 35 8-point Likert and cognitive-differences scale

questions describing the robot and the interaction.

In the final phase, the experimenter debriefed the participants and thanked

them for their time. At this point the participants were allowed to ask any ques-

tions they might have about the study. The participants were instructed to not

discuss the study with anyone as they could be potential participants for our study.

4.1.3 Participants

We recruited a total of 47 participants from The University of Texas at Austin

community, 39 male, 8 female, ranging in age from 18 to 38 years. The data from 7

participants were discarded: 4 for failure to properly participate in the study (these

participants stopped in front of the robot and attempted to test its capabilities or

elicit responses from it), 3 due to software failures. The final pool of participants

has 10 participants in each study condition.

4.2 Results

As a behavioral metric, we measure how often the robot and human study

participant crossing each other’s paths results in a conflict. Conflicts are defined

as either the robot and the human coming to a complete stop because they come

too close to one another without making a decision; the robot and the study par-
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ticipant entering into the same lane, forcing them to come to a stop; or scenarios

in which the participant makes a rapid correction to attempt to avoid the robot,

such as entering into the same lane as the robot and then changing lanes to the

opposite lane, regardless of whether this causes either party to come to a stop. In

the analysis of this study, conflicts were annotated based on video recorded during

the interaction.

Prior to this study we conducted a pilot study of 13 participants (9 male,

4 female). It revealed a bias for participants to enter into the right lane (left lane

from the perspective of the robot) in order to deconflict their path from that of

the robot. Because the primary behavioral metric of this study is based on com-

parison of conflict scenarios, the study is designed to maximize the occurrence of

these conflicts. As such, the robot always shifts into the left lane; where the par-

ticipant is most likely to go by default. In addition to always going left, the robot

makes its lane-change decision at the last possible moment, based on its distance

from the person (2.75 meters, empirically tuned by the authors interacting with the

robot). As a result, if the person has already chosen the same lane as the robot, it

will almost surely result in a conflict. The purpose of this design is to maximize

the impact of the intervention of introducing both the LED signal and the passive

demonstration.

Results regarding the number of conflicting paths between the study par-

ticipant and the robot are shown in Figure 4.2. A one-way ANOVA showed a sig-

nificant main effect based on the the conditions of the study (F (3, 36) = 9.913, p <

0.001). All pairwise post-hoc tests are based on Least Squares Difference (LSD),

and are summarized in Table 4.1.

Results indicate almost no value to the use of the LED alone to signal the
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Figure 4.2: Mean Conflict Across Study Conditions.

No Demo, No LED No Demo, LED MD = 0.1, p > 0.5

No Demo, No LED Demo, No LED MD = 0.3, p = 0.07

No Demo, No LED Demo, LED MD = 0.8, p < 0.01

No Demo, LED Demo, No LED MD = 0.2, p = 0.22

No Demo, LED Demo, LED MD = 0.7, p < 0.01

Demo, No LED Demo, LED MD = 0.5, p < 0.01

Table 4.1: Pairwise Comparison with LSD Post-Hoc Test.

robot’s turning behavior. Post-hoc tests showed no significant difference between

showing the LED with no passive demonstration (the No Demonstration, LED

condition) and simply not using the LED (No Demonstration, No LED), with only

a modest mean difference (MD = 0.1, p > 0.5). However, the story changes

once the passive demonstration technique is introduced. Passively demonstrat-

ing the robot’s lane-shifting behavior - having the robot perform a lane-shift in

front of the participant further down the hallway, prior to their immediately prox-

imal interaction with potential for conflict - is sufficient to reduce conflicts to a

nearly-significant level (No Demonstration, No LED vs Demonstration, No LED:
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MD = 0.3, p = 0.07). Moreover, when combined with the LED and despite the

ineffectiveness of the LED signal on its own, this effect is compounded to a large

margin at a significant level (No Demonstration, No LED vs Demonstration, LED:

MD = 0.8, p < 0.01). It can be seen that the compound effect of demonstrating the

signal, rather than simply demonstrating the lane-shift, is what makes this effect so

powerful (Demonstration, No LED vs Demonstration, LED: MD = 0.5, p < 0.01).

The strength of the passive demonstration with the LED signal is further

reflected in the results of the post-interaction survey, shown in Figure 4.3. None

of the questions asked had a significant main effect, though here we present the

responses for a few interesting questions. Participants appeared to interpret the

robot’s LED signal as an attempt to communicate (Figure 4.3a) and indicated that

communication was most clear when the robot performed a passive demonstration

alongside the LED signal (4.3b). The survey responses support the idea that the

LED signal is not very useful on its own, while further reinforcing the value of the

demonstration. Furthermore, a passive demonstration in the absence of a signal

appears to have harmed performance on this metric, which may be reflective of

participants noting a lack of communicative signaling during lane-shifting after

witnessing the behavior twice with no communicative signal; despite the reduction

in conflict in both passive demonstration conditions.

It is unsurprising that the interaction was found to be most comfortable in

the presence of the passive training and the LED, Figure 4.3c, though the difference

between “No Demonstration, No LED” and “Demonstration, LED” is only quite

small, with the worst performing conditions being “No Demonstration, LED” and

“Demonstration, No LED.” This result could either indicate that a larger sample

size is necessary to clarify this response, or potentially that the LED or demonstra-
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(a) “The robot was trying to communicate.”

(b) “The robot communicated its intentions clearly.”

(c) “The interaction was comfortable.”

Figure 4.3: Responses to Likert-scale questions from the post-interaction survey.
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tion on their own are simply confusing to participants. This also points toward a

potentially-confounding variable and limitation in the design of this study, which

is that the overall path of the robot in the conditions in which it provides a passive

demonstration is curvier, as it must make two lane-changes instead of one in order

to provide the demonstration. Eliminating this issue will require observing this

behavior in additional scenarios so as to determine the magnitude of the overall

effect of the curviness of the path. This may, indeed, be reflected in our survey

results for the questions, “The robot communicated its intentions clearly” (Figure

4.3b) and “The interaction was comfortable” (Figure 4.3c).

4.3 Follow-up Study

In our pilot study, participants indicated roughly half of the time that they

thought that the LED signal was an instruction regarding which lane they should

go into, rather than an indication of the robot’s intended heading. To address

these responses an additional LED signal condition was evaluated, where the sig-

nal communicated an instruction to the participant instead of the robot’s intent

without the passive demonstration. The results of this condition demonstrated a

similar modest improvement in reducing the number of navigational conflicts as

in the case of using the LED signal for communicating intent without the passive

demonstration.

4.3.1 Participants

We recruited an additional of 11 participants from The University of Texas

at Austin community, 8 male, 3 female, ranging in age from 19 to 31 years. The
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data of 1 participant was discarded due to software failures. The final pool of

participants has a total 10 participants in for the additional condition.

4.3.2 Measures and Analysis

For these additional results we use the same measures as those introduced

in Section 4.2.

The results of using the signal for communicating and instruction without

the passive demonstration demonstrated a similar modest improvement in reduc-

ing the number of navigational conflicts as in the case of using the LED signal for

communicating intent without the passive demonstration. Using the signal for

instruction resulted in conflict 8 of 10 times, where the using the signal for com-

municating intent resulted in conflict 9 out of 10 times (Figure 4.4). A one-way

ANOVA showed a significant main effect based on all the conditions of the study

(F (4, 45) = 7.040, p < 0.001). All pairwise post-hoc tests are based on Least Squares

Difference (LSD), and are summarized in Table 4.2.

Figure 4.4: Mean Conflict Across Study Conditions with Additional LED Instruc-
tion Condition
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No Demo, LED Instruction No Demo, No LED MD = 0.2, p = 0.235

No Demo, LED Instruction No Demo, LED MD = 0.1, p > 0.5

No Demo, LED Instruction Demo, No LED MD = 0.1, p > 0.5

No Demo, LED Instruction Demo, LED MD = 0.6, p < 0.01

No Demo, No LED No Demo, LED MD = 0.1, p > 0.5

No Demo, No LED Demo, No LED MD = 0.3, p = 0.07

No Demo, No LED Demo, LED MD = 0.8, p < 0.01

No Demo, LED Demo, No LED MD = 0.2, p = 0.22

No Demo, LED Demo, LED MD = 0.7, p < 0.01

Demo, No LED Demo, LED MD = 0.5, p < 0.01

Table 4.2: Pairwise Comparison with LSD Post-Hoc Test for LED Instruction Con-
dition.

Results still indicate almost no value to the use of the LED alone even when

they are communicating an instruction instead of intent. Post-hoc tests showed no

significant difference between communicating intent using the LED with no pas-

sive demonstration (the No Demonstration, LED condition) and communicating

an instruction using the LED ( the No Demonstration, LED Instruction condition),

with only a modest mean difference (MD = 0.1, p > 0.5). This is further reflected

in the results of the post-interaction survey, shown in Figure 4.5. None of the ques-

tions asked had any significant difference between these two conditions, though

here we present the responses for the same few interesting questions as those in

Section 4.2. Participants appeared to interpret the robot’s LED Signal Instruction

condition as an attempt to communicate (MD = 0.5, p > 0.5) (Figure 4.5a), though

indicated that communication was less clear when the robot was using this con-

dition (MD = 0.7, p = .472) (4.5b). The survey responses still support the idea

that the LED signal is still not very useful on its own even with this additional

condition.

It was expected that the responses for the additional condition “No Demon-
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stration, LED Instruction” and the previous condition “No Demonstration, LED”

would be quite similar as not much changed besides the type of information be-

ing communicated. Between this additional condition and simply not using the

LED (the No Demonstration, No LED condition) there was a slightly lower p-

value (MD = 0.2, p = 0.235), where previously we had (MD = 0.1, p > 0.5) when

communicating intent. Though the p-value is lower it still does not provide any

significant effect overall. This result could either indicate that a larger sample size

is necessary to clarify this response, or potentially that the LEDs on their own are

simply confusing to participants regardless of whether an instruction or intent is

being communicated.
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(a) “The robot was trying to communicate.”

(b) “The robot communicated its intentions clearly.”

(c) “The interaction was comfortable.”

Figure 4.5: Responses to Likert-scale questions from the post-interaction survey
with the LED Instruction Condition.
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5

Conclusion

In this thesis, we present an LED-based signal control system implemented

in ROS that allows for various animations to be executed on an array of LEDs. This

system is implemented on our BWIBots allowing them to communicate informa-

tion to co-located humans using LED signals. The LED signals allow the robots

to continually communicate information in a modality that is less intrusive then

repetitive speech communication of the same message and more engaging than

text messages on an on-screen display.

This thesis demonstrated that a familiar signal, the turn signal, was difficult

to understand when divorced from the context of driving. However, when passive

demonstrations were introduced, the meaning became clear. Our initial assump-

tion on crafting the pilot study was that users would find turn signals on a robot

to be entirely intuitive, and that the experience that they had gained from driving -

which involves navigating a space shared with other cars - would directly transfer

to the task of navigating a space shared with a robot. This was not the case. In-

stead, our study revealed that simple passive demonstrations of the signal to study

participants were sufficient to disambiguate the intention of this signal to them.

These findings leave open, the question as to whether this method would

easily extend to other novel signals. Is it that the robot’s demonstration, com-

bined with the familiarity of turn signals, gives rise to our result; or that this tech-

nique would extend to entirely novel signals that are not encountered in day-to-

day life? Probing this question will require the design of studies which use non-
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anthropomorphic signals in scenarios that are not commonly encountered outside

of interactions with robots, such as collaborative manipulation tasks. We hope to

further explore this question in experiments with newer versions of the BWIBot

which incorporate robotic arms.

This result will inform the design of future versions of our BWIBot’s naviga-

tion stack, whereby we intend to add turn signals to the robot, but also to program

the robot to perform a few quick lane-shift and turning maneuvers in front of un-

familiar faces; thus enabling new users to acclimate to the behavior of the system.

Once complete, we will perform studies of the system involving larger crowds and

longitudinal studies of the deployed system on the BWIBot platform. These stud-

ies are currently in the planning phases. Our result demonstrates a scenario in

which passive demonstrations are able to provide the context required to interpret

the robot’s LED signal to users, and opens the study of such passive demonstra-

tions an interesting new direction for further research.
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