
Copyright

by

Anand Ramalingam

2007

The Dissertation Committee for Anand Ramalingam

certifies that this is the approved version of the following dissertation:

Analysis Techniques for Nanometer Digital Integrated

Circuits

Committee:

David Z. Pan, Supervisor

Anthony P. Ambler

David P. Morton

Sani R. Nassif

Michael Orshansky

Analysis Techniques for Nanometer Digital Integrated

Circuits

by

Anand Ramalingam, B.E.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2007

To Amma and Appa

Acknowledgments

I would first like to thank my Advisor Dr. David Z. Pan for his advice through-

out my doctoral studies. His unconditional support and unflappable temperament

reassured me throughout my doctoral work. I would like to thank my committee

members (in alphabetical order): Prof. Anthony P. Ambler, Prof. David P. Morton,

Dr. Sani R. Nassif, and Prof. Michael Orshansky for their precious time and helpful

comments.

I was very fortunate to have Dr. Sani R. Nassif as my mentor later in my

graduate studies and he is a father figure to me. Early in my doctoral studies, I was

lucky enough to work with Dr. Anirudh Devgan. I count myself extremely lucky to

collaborate with Dr. Giri Devarayanadurg, Sreekumar V. Kodakara, Dr. Frank Liu,

Dr. Gi-Joon Nam, Prof. Michael Orshansky, Ashish Kumar Singh, and Bin Zhang.

I would like to thank Ashish Kumar Singh who had a profound influence

on me during his stay at Austin. His insistence on treating every problem in a

formal and rigorous manner has hopefully made me a better researcher. I would like

to thank Sreekumar V. Kodakara for being such a good friend. We have discussed

many ideas and projects for over a decade but unfortunately have only one published

paper to show for our efforts. Hopefully this situation will improve in the coming

years.

My deep gratitude and appreciation to all my teachers who have made me

what I am, particularly: Mr. Ranganathan, Mr. Somasundaram, Mrs. Punitha-

v

vathy, Mr. Louis Paul Vincent, Mr. Dhandapani, Prof. S. Jayaraman, Prof. Mark

A. Horowitz, Prof. Brad Osgood, and Prof. Mendel Rosenblum.

I thank my childhood friends Arun Ananthapadmanabhan, S. Gurpreet Singh,

and Pravin Prabhu Venkatesan. Arun introduced me to electronics when we were

in our ninth grade and I have been hooked on to it ever since. I would like

to thank Ms. Claire Ravi for her hospitality during my initial stay in America.

I would like to thank my roommates and friends who were of tremendous help

and supported me in every way they could: M. D. Venkatesh, Sriram M. Se-

shadri, Saranyan V. Rajagopalan, Rangaprabhu Parthasarathy, Manoj Ananthapad-

manabhan, Visvanathan Subramanian, Kiran N. Rao, Rajesh Babu Narkedamilli,

Venkatesan Santhirahasan, Balaji Gururao, Linson Zacharia, Jagannath G. Krish-

nan, Rehan Hameed, Sharad Yadav, Jitendra Mohan, Raman Kumar Jha, Karthik

Veeravalli, Moinuddin Qureshi, Wajahat Qadeer, Sriram Rajagopal, Srihari Ya-

manoor, Venkata Anil Kiran Kottapalli, Rangaprasad Sampath, Perumal Karthik

Chidambaranathan, Praveen Pasupathy, Vasu Kudravalli, Murari Mani, Sriram

Sambamurthy, Sankaranarayanan Gurumurthy, Wei-Shen Wang, Bin Zhang, and

Peng Yu. A special thanks to Y. M. Chetana, who died at a very young age. Her

death shook me and helped me put my life into perspective. I am thankful for

every new day in my life. My cousin Shankar Chidambaram and his family were

a comforting presence in Austin for me. I would like to take this opportunity to

thank my fellow UTDA group members especially: Minsik Cho, Tao Luo, Haoxing

Ren, Ashutosh Chakraborty, Sean Xiaokang Shi and Kun Yuan. Prasad Hariharan

helped me proofread the first draft of this thesis and found a whole host of mistakes

and thus improving the readability of this dissertation. A big thanks to Chris Lilly,

Melanie Gulick, Debi Prather, Melissa Campos, Shirley Watson, and Andrew Ki-

eschnick who were prompt and helpful in administrative issues. They made my life

vi

much easier in graduate school. I am grateful to many people for their kindness and

I am sorry if I have missed acknowledging them here.

Finally, I thank my parents and my sister and her family for their unstinting

encouragement and support through all these years of study and research. My sister

with her quiet determination and enormous will power set standards for me from a

young age which this kid brother always aspired to reach and hopefully met. I can

say without losing any sense of objectivity that Amma has been my best teacher.

Appa’s discipline, a fraction of which filtered into me helped me immeasurably in

finishing my graduate studies. Looking at my nieces, I can only imagine how much

trouble I would have caused my parents. They put up with all my demands and

supported me through trying times as only parents can. This thesis is dedicated to

them.

Anand Ramalingam

The University of Texas at Austin

December 2007

vii

Analysis Techniques for Nanometer Digital Integrated

Circuits

Publication No.

Anand Ramalingam, Ph.D.

The University of Texas at Austin, 2007

Supervisor: David Z. Pan

As technology has scaled into nanometer regime, manufacturing variations have

emerged as a major limiter of performance (timing) in VLSI circuits. Issues related

to timing are addressed in the first part of the dissertation. Statistical Static Timing

Analysis (SSTA) has been proposed to perform full-chip analysis of timing under

uncertainty such as manufacturing variations. In this dissertation, we propose an

efficient sparse-matrix framework for a path-based SSTA. In addition to an efficient

framework for doing timing analysis, to improve the accuracy of the timing analysis

one needs to address the accuracy of: waveform modeling, and gate delay model-

ing. We propose a technique based on Singular Value Decomposition (SVD) that

accurately models the waveform in a timing analyzer. To improve the gate delay

viii

modeling, we propose a closed form expression based on the centroid of power dissi-

pation. This new metric is inspired by our key observation that the Sakurai-Newton

(SN) delay metric can be viewed as the centroid of current. In addition to accu-

rately analyzing the timing of a chip, improving timing is another major concern.

One way to improve timing is to scale down the threshold voltage (Vth). But scal-

ing down increases the subthreshold leakage current exponentially. Sleep transistors

have been proposed to reduce leakage current while maintaining performance. We

propose a path-based algorithm to size the sleep transistor to reduce leakage while

maintaining the required performance.

In the second part of dissertation we address power grid and thermal issues

that arise due to the scaling of integrated circuits. In the case of power grid sim-

ulation, we propose fast and efficient techniques to analyze the power grid with

accurate modeling of the transistor network. The transistor is modeled as a switch

in series with an RC and the switch itself is modeled behaviorally. This model allows

more accurate prediction of voltage drop compared to the current source model. In

the case of thermal simulation, we address the issue of ignoring the nonlinearity of

thermal conductivity in silicon. We found that ignoring the nonlinearity of thermal

conductivity may lead to a temperature profile that is off by 10◦ C.

ix

Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Overview of This Dissertation . 4

1.2 Key Contributions . 7

Chapter 2 An Accurate Sparse Matrix Based Framework for Statis-

tical Static Timing Analysis 9

2.1 A case for path based SSTA . 13

2.2 Parameterized Gate Delay Modeling 15

2.3 Sparse Matrix based SSTA without Slope Propagation 18

2.3.1 Sparse-Matrix Based Static Timing Analysis (STA) 18

2.3.2 Sparse Matrix based Statistical Static Timing Analysis (SSTA) 20

2.3.3 Example . 22

x

2.4 Sparse Matrix based SSTA with Slope Propagation 24

2.5 Experimental Results . 28

2.5.1 Speedup Techniques . 29

2.6 Comparative Studies . 33

2.6.1 Comparison with Path based Monte-Carlo method 33

2.6.2 Implementation Details . 35

2.6.3 Comparison with Block-based method 36

2.7 Summary . 36

Chapter 3 Waveform Modeling Using Singular Value Decomposition 42

3.1 Data Based Model for a Gate . 45

3.2 Analyzing Waveforms using SVD . 46

3.3 Example of Moments Calculation . 52

3.4 Example of SVD based Timing Model 53

3.5 Data Based Model for a Library . 56

3.6 Waveform Propagation Across Gates in STA 58

3.7 Path Delay Evaluation in STA . 60

3.8 Summary . 61

Chapter 4 Robust Analytical Gate Delay Modeling 62

4.1 Sakurai-Newton Delay Approximation 64

4.2 Centroid of Current Based Delay . 66

4.3 Centroid of Power Based Delay . 71

4.4 Experimental Results . 73

4.5 Summary . 77

xi

Chapter 5 Sleep Transistor Sizing 79

5.1 Sizing the sleep transistor . 82

5.2 Temporal Current Estimation . 84

5.3 Timing Criticality Based Sizing . 86

5.4 Results . 89

5.5 Summary . 91

Chapter 6 Power Grid Analysis using Behavioral Modeling of Tran-

sistors 92

6.1 Power Grid Preliminaries . 95

6.2 Transistor Network Modeling . 97

6.3 Behavioral Switch Modeling . 100

6.3.1 Ideal switch . 100

6.3.2 ADC for an approximate switch model 101

6.3.3 Current source based ADC for switch 102

6.3.4 Conductance matrix is a M-matrix 104

6.4 Speedup Techniques . 106

6.4.1 Local charge redistribution phase 107

6.4.2 Global recovery phase . 108

6.5 Overall Algorithm . 109

6.6 Experimental Results . 109

6.7 Summary . 110

Chapter 7 Thermal Analysis Considering Nonlinear Thermal Con-

ductivity 113

7.1 Thermal Modeling and Temperature Simulation 115

xii

7.2 A Fast Algorithm to solve A(x)x = b 117

7.2.1 Evaluating the reduced order Jacobian 119

7.3 Experimental Results . 123

7.4 Summary . 124

Chapter 8 Conclusion 125

8.1 Future Work . 127

Bibliography 128

Vita 145

xiii

List of Tables

2.1 Path-gate statistics of ISCAS89 benchmarks and runtime for 10, 000

simulations. 39

2.2 Runtime after logic depth based pruning for the three biggest bench-

marks in ISCAS89. All paths whose logic depth was less than 90% of

the maximum logic depth were pruned. The number of simulations

were set to 10, 000. 40

2.3 Runtime comparison for the proposed matrix method versus repeated

path tracing method. The number of simulations were set to 10, 000. 41

4.1 The correlation of HSPICE delay values with the delay metrics across

different technologies and gates. The HSPICE delay of a gate is

measured for its worst case input combination. 73

4.2 The percentage error between HSPICE delay values and the delay

metrics across various technologies and gates. A line was fitted to the

data points predicted by the delay metric. In this table the average

min, max estimation error percentage is shown. 74

5.1 Timing windows for 1-bit CLA (time unit is ps) 86

5.2 A worst case path in 1-bit CLA . 88

xiv

5.3 Comparison of Wsleep obtained using module and cluster based design

for 5% performance degradation. The unit is λ = 0.1µm. 90

5.4 Comparison of Wsleep obtained using proposed methods for 5% per-

formance degradation. The unit is λ = 0.1µm. 91

6.1 Runtime over 10 cycles for random circuits. The drop predicted

by both the proposed and the current source model are pessimistic.

(Cycle-time = 750ps) . 111

xv

List of Figures

1.1 As technology scales rapidly down to 45 nm the variation in process

parameters increases correspondingly. The variation in y-axis is il-

lustrated for one of the process parameters, threshold voltage (Vth).

Please note that the x-axis must be read right-to-left as the technol-

ogy scales down. 2

2.1 The number of paths versus the number of gates in ISCAS’89 bench-

marks. By linear regression we get the following relationship: paths ≈

0.04× gates1.8. 13

2.2 The number of paths versus the number of gates for one family of

10 industrial benchmarks. By linear regression we get the following

relationship: paths ≈ 0.12× gates1.42. 14

2.3 The number of paths versus the number of gates for another family

of 9 industrial benchmarks. By linear regression we get the following

relationship: paths ≈ 0.43× gates1.17. 15

xvi

2.4 Scatterplot of inverter delay and the values predicted by the linear

and our higher order model for various (L, Vth, CL, Sin) tuples. The

variation in delay is due to variations in process parameters (L, Vth)

as well as variations in operating conditions (CL, Sin). 16

2.5 Example circuit for illustrating the matrix formulation. The input

pins are distinguished by the labels a and b. 18

2.6 Example circuit for illustrating how Monte-Carlo simulation is done

in our framework. 22

2.7 Linear relationship between input slope and delay. 25

2.8 A simple circuit to illustrate SSTA with slope propagation. Here s0

denotes the slope at the primary input. The output slope at gate g1

in path 1 is denoted as s11 and in path 2 is denoted as s21. 26

2.9 Histogram was obtained after doing Monte-Carlo simulation for 10, 000

runs. Note that the logic depth of paths with maximum delay in Fig-

ure 2.9(b) is always either 59 or 60. 30

2.10 Histogram of logic depth of paths in s38417. Note that there is a

long tail and there are paths with logic depth of 47. Thus our pruning

strategy of eliminating paths with logic depth less than 0.9×47 leaves

us with just 280 critical paths. 32

2.11 Delay pdf of s38417 obtained after pruning paths plotted against the

one obtained without pruning paths. Note that both the pdf’s are

virtually indistinguishable. 33

xvii

2.12 Delay pdf of s27 obtained using block-based method [1] (denoted as

blk), path based method with linear delay models (denoted as pl) and

path based method with quadratic models (denoted as pq). Results

from path based method with linear models can be thought of how

much error is introduced by an analytical max() and using worst case

slope at the input of a gate. Results from path based method with

quadratic models can be thought of how much error is introduced

when we use linear delay models. Please note that the linear models

are not adequate enough to model the tails of the distribution. . . . 37

3.1 A waveform is discretized and time points are recorded when a signal

crosses a certain voltage threshold. Here time points are recorded

when the waveform crosses the threshold of 1
2 and 1. 46

3.2 Relative error in Frobenius norm when approximating using the first

k moments. Note that using the first 2 moments the approximation

is accurate within 1 % in Frobenius norm. The data is shown for an

inverter and the number of time points is n = 14. 50

3.3 Plot of the first 4 right singular vectors (rsv) obtained on applying

SVD to T in Eq. (3.1). The number of time points is n = 14. 51

3.4 Three stage inverter chain with a single capacitor modeling the load. 55

3.5 Gate characterization setup . 55

3.6 Waveform comparison at the output of an inverter. We use a 2 mo-

ment approximation in addition to arrival time and it is clear from

the figure that the waveforms are indistinguishable. 59

xviii

3.7 Test case for evaluating path delay. The units for resistance is Ohms

(Ω) and the capacitors is femtoFarads(fF). Both the capacitors in the

π-model have the same value. 60

3.8 Waveform at the output of the NAND gate in Figure 3.7. The pro-

posed SVD method and Spice output have a very close match. . . . 61

4.1 The RC model of an inverter. Note that R is a nonlinear resistor

modeling transistor and CL is the load capacitance seen by the inverter. 66

4.2 Inverter waveforms when the output is discharging. The input vGS

is a step input. The output vDS decreases linearly in the saturation

region (till tsat) and decays exponentially in the linear region (after

tsat). 68

4.3 RC model with discharging current as a controlled current source. . 69

4.4 HSPICE delay and the values predicted by the delay metrics for INV

in 65nm technology under nominal supply voltages. The solid line is

the HSPICE delay values and the dotted lines are the delays predicted

by the various metrics. The VDD was varied with load capacitance

CL = 20fF and threshold voltage VT0 = 0.22V . Note that all the

delay metrics track under nominal supply voltages. 74

4.5 HSPICE delay and the values predicted by the delay metrics for INV

in 65nm technology. The solid line is the HSPICE delay values and

the dotted lines are the delays predicted by the various metrics. The

VDD was varied with load capacitance CL = 20fF and threshold volt-

age VT0 = 0.22V . Note that only CPM can track the delay in the

lower voltages while TN can track to quite an extent, the other two

metrics SN and CP cannot track it. 75

xix

4.6 Scatter plot of different delay metrics with the HSPICE delay for INV

in 65nm technology. Since we have not multiplied by the constant of

proportionality, no units are provided for the y-axis. 78

5.1 Power gating . 80

5.2 Sleep transistor as a resistor . 80

5.3 1-bit CLA . 86

5.4 Iexp bounding the falling and rising timing windows of each gate (Ta-

ble 5.1) in a 1-bit CLA. Refer to Estimate-Switching-Current

line 5 . 87

5.5 The estimated current discharge I(t) of a 1-bit CLA got by sum-

ming up all the currents in Fig. 5.4. Refer to Estimate-Switching-

Current line 6. Also shown are the local maximum currents seen

by the gates X1 and X2. Refer to Eq. (5.5). Note that by using local

maximum instead of global maximum we reduce the size of the sleep

transistor . 88

6.1 The voltage drop at a node from SPICE simulation and the current

source based approach. There is a difference of 0.025V in the voltage

drop predicted. 94

6.2 Transistor is modeled a simple switch in series with a RC circuit.

Note that if a transistor gets switched on to the grid node, some of

the charge will come from transistors which are already on which is

not captured in previous models. 97

6.3 Network having an open switch. The topology due to an open switch

is different when compared to a closed switch in Figure 6.4. This

leads to the conductance matrix Gopen. 98

xx

6.4 Networks having a closed switch. The topology due to a closed switch

is different when compared to an open switch in Figure 6.3. This leads

to the conductance matrix Gclose. 99

6.5 Ideal switch. 100

6.6 Modeling a switch with a voltage source. By varying the value of

the voltage source, we can simulate the on or off behavior of the

switch. Since we are changing only the value of the voltage source,

the conductance matrix remains the same irrespective of the state of

the switch. 101

6.7 Associated Discrete Circuit (ADC) of an approximate switch model.

The superscript (n + 1) refers to the simulation step. 103

6.8 The figure is not drawn to scale. This is a stylistic depiction of the

2 phases that occur in power grid simulation. There are two phases,

the first phase (dotted) is local charge redistribution and the second

phase (dashed) is global recovery. 107

7.1 Electrical interpretation of the 3-d heat equation. Note that the ther-

mal conductivities kx, ky and kz are functions of temperature Ti,j,k 116

7.2 Newton-Raphson iteration. Note that the tangent is evaluated during

every iteration. This is equivalent to finding the inverse of a Jacobian

matrix (J ∈ R
m×m) for every iteration when solving the thermal

circuit. 118

7.3 Constant Jacobian with speedup. Please observe that x
(2)
roj is got by

fitting a line through the previous two iterations. Also note that

the x
(2)
roj is closer to the root than x

(2)
cj thus accelerating the constant

Jacobian. 121

xxi

7.4 The difference in temperature profile in a silicon layer between hav-

ing a constant thermal conductivity for silicon and incorporating

nonlinear thermal conductivity for silicon. The chip dimension is

8 mm× 8 mm and it dissipates 100 W uniformly. The constant ther-

mal conductivity evaluated at 27◦ C and used in the thermal simula-

tion underestimates the peak temperature by 12%. This is ≈ 12◦ C

in absolute value. 123

xxii

Chapter 1

Introduction

Moore’s Law is the name given to Gordon Moore’s prediction in 1965 that the

number of transistors in a digital integrated circuit would roughly double every

year [2]. The law was later revised to the number of transistors doubling every two

years and then every 18 months. The semiconductor industry has been keeping up

with Moore’s Law for more than forty years. This pace is expected to be kept up

for the next decade as well [3].

A major factor helping the semiconductor industry keep up with Moore’s

law is the ever decreasing minimum dimension of a transistor, also referred to as the

feature size. The feature size is usually called technology node in the literature. The

technology used in 2001 was 180 nm; since then it has scaled down to the present

65 nm (2007) [3].

This scaling of technology has been a simple way to improve the performance

of integrated circuits. What we mean by performance here is the circuit timing, or

in other words, the maximum delay of a signal traveling from input to output.

1

However, the scaling of technology into nanometer (sub-100 nm) regime has

introduced two profound challenges. First, manufacturing variations pose the biggest

challenge to scaling by being a major limiter of performance [4]. This is illustrated in

Figure 1.1 which shows that the variation in a process parameter namely, threshold

voltage (Vth) increases as the technology scales down to 45 nm [3]. Manufacturing

6

8

10

12

14

16

50 100 150 200 250

PSfrag replacements

σ
V
th

V
th

[%
]

technology [nm]

Figure 1.1: As technology scales rapidly down to 45 nm the variation in process
parameters increases correspondingly. The variation in y-axis is illustrated for one
of the process parameters, threshold voltage (Vth). Please note that the x-axis must
be read right-to-left as the technology scales down.

variations exhibit themselves as systematic, spatial, and random changes in the pa-

rameters of transistors. Due to the random nature of such variations, the timing of

a circuit is described by a probability density function (pdf). The challenge is to

obtain an accurate pdf as quickly as possible with few assumptions on the type of

probability distribution exhibited by the manufacturing variations.

Second, as technology has scaled aggressively, the rapid increase in transistor

density has led to a corresponding increase in the chip’s power density. Power

consists of two components: leakage and dynamic power. The leakage power is

2

directly proportional to the number of transistors on a chip. Limiting leakage power

while maintaining the timing of a circuit is a key challenge. The dynamic power

is directly proportional to the number of transistors switching at a given time.

As transistors switch they consume power from the power supply grid, leading to

fluctuation in supply voltage from its constant value. This voltage fluctuation, also

called a voltage transient, decreases a circuit’s performance, since lower the voltage,

worse is the performance. An important challenge is knowing how to estimate the

voltage transients in the power supply grid efficiently. This is a difficult problem

since analyzing power grid also involves analyzing the transistor network which is

coupled to it.

An increase in power consumption results in a rise in temperature. This

in turn reduces the mobility of electrons, thereby worsening the performance of

a circuit. Hence an accurate analysis of temperature of a chip is needed. But the

thermal conductivity of silicon1 is nonlinear. Hence there arises a need to solve a set

of nonlinear equations simultaneously to obtain the temperature profile of circuit.

An important challenge in thermal analysis is knowing how to efficiently solve this

set of simultaneous nonlinear equations.

The above challenges have made analysis of timing and of factors affecting

timing (such as temperature and power) among the most important problems for

digital integrated circuits. In this dissertation, we address the challenges outlined

above.

1As of 2007, a majority of digital integrated circuits are built using silicon.

3

1.1 Overview of This Dissertation

This dissertation studies six related research topics on timing, power and thermal

analysis in digital integrated circuits. The first part of the dissertation consists of

four topics and details techniques to analyze and improve timing of a circuit: (1)

A framework for performing timing analysis under uncertainty, (2) A technique to

model the shape of the waveforms accurately, (3) A closed form expression which

computes the delay of a gate accurately, and (4) A technique to size sleep transistors

in a way that reduces leakage power while maintaining the timing constraints of a

circuit. The second part of the dissertation consists of two topics which detail

techniques to analyze power and thermal profiles which directly affect the timing of

a circuit: (1) A fast method to analyze the power grid of a circuit using a simple yet

adequate model of a transistor, and (2) An algorithm to analyze a set of simultaneous

nonlinear equations which arise when analyzing the thermal profile of a circuit.

The rest of this dissertation is organized as follows. In Chapter 2, we propose

a sparse matrix framework for performing timing analysis under uncertainty in a

fast and efficient manner. The proposed framework does not impose any restrictions

on the probability density functions (pdf) of manufacturing variations. Apart from

restricting the input slope to be linear, no limitation is placed on the delay model of

gates in the circuit. Since it handles input slope accurately, the proposed framework

is both the most general and the most accurate of all the timing analysis methods

proposed so far in the literature.

Apart from providing an efficient framework for analyzing and improving the

accuracy of timing analysis, one needs to improve the accuracy of: (1) Waveform

modeling, and (2) Gate delay modeling.

4

Since the widely used ramp approximation of a waveform does not provide

the required accuracy [5], in Chapter 3 we develop a technique that models the

waveforms accurately. The technique is based on Singular Value Decomposition

(SVD), and it naturally leads to a more general gate delay model which can be

applied in any timing analysis engine with minor modifications. The proposed tech-

nique also allows a more flexible trade-off of accuracy versus computational and

representational cost.

To improve the accuracy of the gate delay, in Chapter 4, we propose a closed

form expression which has a high correlation with the delay observed in Spice,

consistent across all major process technologies (90 nm, 65 nm, 45 nm). The closed

form delay metric is based on the centroid of dissipated power. This new metric is

inspired by our key observation and theoretic proof that the Sakurai-Newton (SN)

delay metric [6] is indeed the Elmore delay, which can be viewed as the centroid of

dissipated current.

These three topics deal with analyzing the timing of a circuit. Improving the

timing of a circuit is another important concern. One way to improve timing is by

scaling down the threshold voltage (Vth). But scaling down the threshold voltage

(Vth) increases the subthreshold leakage current exponentially [4]. Leakage current

is also referred to as leakage power since the leakage power is equal to leakage

current multiplied by the supply voltage VDD, which is a constant. One of the

widely used techniques employed to reduce subthreshold power is power gating [7].

Power gating is a circuit technique in which the source nodes of the grounded gates

in the functional block are connected to the drain of the NMOS sleep transistor.

In the active mode, the sleep transistor is turned on to retain the functionality of

the circuit. In the sleep mode, the sleep transistor is turned off, and the source

5

nodes of the gates in the functional block float, thereby cutting off the leakage path.

However, sizing the sleep transistor is a major challenge since over sizing results in

silicon area being wasted, and under sizing results in the required performance not

being achieved. In this dissertation, we propose a method to size the sleep transistor

which reduces leakage power while maintaining the required performance. This is

discussed in detail in Chapter 5.

In the second part of the dissertation, we present techniques to analyze the

power and thermal profile of a circuit which directly affects the timing of a circuit.

A technique to reduce leakage power while maintaining the timing requirements of a

circuit was developed in Chapter 5. But in addition to the leakage component, the

power dissipated by a circuit has a dynamic component. In Chapter 6, we develop

an efficient technique to analyze the voltage transient drop in a power supply grid

resulting from dynamic power consumption. This is an important problem from a

timing perspective because a drop in the voltage supplied to a transistor leads to

an increase in the delay thereby degrading the performance of the circuit.

The solution techniques available currently for power grid analysis rely on a

model of representing the transistor as a current source. The advantage of such a

model is that it decouples the transistor network from the power grid network and

thus simplifies the analysis. The disadvantage, however, is that the drain capac-

itances of the PMOS transistors which are already on are not modeled correctly.

The drain capacitances of the PMOS transistors which are on, act much like decou-

pling capacitances in the power grid. If the drain capacitance is modeled incorrectly,

the voltage drop predicted turns out to be pessimistic. In our proposed model, we

model the transistor as a simple switch in series with an RC circuit. The presence of

switches leads to a non-constant conductance matrix during simulation. The switch

6

is modeled behaviorally to make the conductance matrix a constant in the presence

of switches, thus retaining the efficiency of the simulation.

The previous two chapters discussed techniques related to the power dissi-

pated by a circuit. Power dissipation leads to an increase in temperature, which

directly affects the timing of a circuit. This is because increase in temperature low-

ers the mobility of electrons thereby worsening the performance of the circuit. The

solution techniques available currently for analyzing thermal profile assume thermal

conductivity to be a constant in order to obtain a linear system of equations which

can be solved efficiently. But thermal conductivity in reality is a nonlinear function

of temperature and for silicon it varies by 22% over the range of 27 − 80◦ C [8]. If

the nonlinearity of thermal conductivity is ignored the thermal profile may be off

by 10◦ C. Thus to obtain an accurate thermal profile, it is necessary to consider the

nonlinear dependence of thermal conductivity on temperature. In this dissertation,

the nonlinear system of equations arising from nonlinear thermal conductivity is

solved efficiently using a variant of Newton-Raphson technique. This is discussed in

detail in Chapter 7.

1.2 Key Contributions

Specifically, this dissertation develops,

1. In the context of timing analysis:

• A sparse-matrix based framework for accurate path-based SSTA, which

places no restrictions on process parameter distributions. It embeds an

accurate polynomial-based delay model with takes into account slope

7

propagation naturally. It takes advantage of matrix sparsity and high

performance linear algebra for an efficient implementation.

• A technique that accurately models the waveforms in a timing analyzer.

The technique is based on Singular Value Decomposition (SVD) and it

naturally leads to a more general gate delay model which can be applied

to any timing analysis engine. This technique also allows a flexible trade-

off of accuracy versus computational and representational cost.

• A closed form expression which models the delay of a gate. The closed

form delay metric is based on the centroid of power dissipation. The

delay metric exhibits a high correlation with the delay observed in Spice

consistent across all major process technologies (90 nm, 65 nm, 45 nm).

• A methodology based on timing criticality and temporal currents to size

the sleep transistor which reduces leakage power while maintaining the

timing of the circuit. The timing criticality information and temporal

current estimation are obtained using a static timing analyzer.

2. In the context of power and thermal analysis:

• In the case of power grid simulation, we model the transistor as a simple

switch in series with a RC circuit. The switch is modeled behaviorally

to make the conductance matrix a constant in the presence of switches,

thus retaining the efficiency of the simulation.

• In the case of thermal simulation, we model thermal conductivity accu-

rately as a nonlinear function of temperature. We efficiently solve the

nonlinear system arising out of considering the thermal conductivity to

be nonlinear by using a variant of Newton-Raphson.

8

Chapter 2

An Accurate Sparse Matrix

Based Framework for Statistical

Static Timing Analysis

As technology has scaled, manufacturing variations have emerged as a major limiter

of performance [4]. These variations exhibit themselves as systematic, spatial and

random changes in the parameters of active (transistor) and passive (interconnect)

components. Furthermore, these variations increase with each new generation of

technology. Statistical Static Timing Analysis (SSTA) has been proposed to perform

full-chip analysis of timing under such types of uncertainty, and has been the subject

of intense research recently [1, 9–25].

Statistical Static Timing Analysis (SSTA) predicts the parametric yield at a

given target for a circuit design. It does so by finding the probability density function

(pdf) of the circuit delay. SSTA algorithms can be classified into two major groups:

9

1. Block-based [1, 9–13] approaches use a breadth-first traversal of the circuit to

compute circuit delay [9]. The delay pdf is propagated from the primary inputs

to the primary outputs. The major difficulty in block-based approaches is the

introduction of the max operator at each block, and the need to accurately

estimate the maximum of two random variables in the same form in which

those two variables are defined.

2. Path-based [14–18] approaches rely on enumeration of all or a large number of

the most critical paths in the circuit [14]. Considering the case where all paths

are enumerated, the max operator is deferred to the end of the analysis (i.e.

taking the maximum of all the paths) and therefore does not introduce any

inaccuracy in the computation. A major problem with path-based approaches

is the perception that typical circuits have an exponential number of paths,

making the computational requirement for such approaches impractical.

While there has been much work on algorithms for SSTA, there has been less work

on issues relating to accuracy. Some of the sources of inaccuracy in SSTA are:

• The basic assumptions underlying static timing analysis, such as treating a

gate as a node without considering the functionality which gives rise to false

paths,

• The delay models used for gates and wires, and

• The model for process variations and their spatial and/or temporal distribu-

tions.

The algorithmic error introduced by SSTA algorithms can be traced back

to the application of the max operator, an approximation to the behavior of true

10

circuits. The max operation is further approximated in block-based SSTA algo-

rithms [20–22]. While a direct assessment of that error is difficult, we propose that

eliminating the max operation on parameterized form will aid in reducing the error.

The algorithm we propose in this work applies max on a set of real numbers thus

incurring no error.

The model error has been widely acknowledged and a number of researchers

have made important contributions towards reducing the model error. The param-

eterized delay form expressed delays and arrival times as explicit linear functions of

the process parameters [1]. The linear delay models was later expanded to quadratic

delay models which improve the accuracy of delay estimates [19–22]. A related er-

ror, namely the modeling and handling of the slope of signals, has not received as

much attention. In fact, current published approaches typically make a worst-case

estimate of the slope or propagate the latest arriving slope [1] which can lead to

significant error [26]. The polynomial models we propose in this work allow high

accuracy by using higher order models, and naturally handle the slope and its prop-

agation.

The distribution error, i.e. the error caused by lack of generality in the

modeling of the statistical properties of process variations, has been the most difficult

to deal with, due to the lack of published realistic manufacturing variability data.

Earlier approaches assumed that process variables followed normal distributions [14],

but recent work has shown how more general distributions can be handled, and how

spatial and systematic correlation can be accommodated [25]. In this work, we make

no assumptions about the character or distribution of any process parameter.

This work proposes a new approach to parameterized path-based SSTA. The

proposed method starts with a preprocessing step of path enumeration and delay

11

computation of all the paths in a parameterized form, which we then efficiently

represent using a sparse matrix. We model the delay and slope of each component

in the circuit using a general parameterized polynomial form which can include the

influence of:

• Input waveforms and output loading,

• Manufacturing variations in parameters like threshold voltage and channel

length,

• Operating environment variations in parameters like power supply voltage and

temperature.

Next, the path delays in this same parameterized form are computed by a natural

extension to the gate delay formulation. Given a sample of values from the dis-

tribution of manufacturing variations, this computation is shown to be simply a

matrix/vector multiply that produces a vector of delays of each path in the circuit.

Finally, the maximum circuit delay is obtained by applying the max operator to the

path delays. The major attributes of this work are:

1. We show that the number of paths in practice is sub-quadratic in the number

of gates, by evaluating the number of paths in the ISCAS89 benchmarks, as

well as two different families of industrial circuits.

2. It can handle global, spatial and intra-die variations in one unified framework.

3. It can compute the delay based on an accurate propagation of slope along all

paths.

4. It minimizes the impact of the error caused by approximating the max function

commonly used in SSTA.

12

5. It is independent of the underlying distribution of the process parameters, and

is not restricted to the usual Gaussian distribution.

2.1 A case for path based SSTA

The upper bound on the number of paths in an arbitrary network is exponential

in the number of gates. A key observation in this work, however, is that, for the

vast majority of practical circuits, the number of actual paths is far less than this

theoretical upper bound, and is quite manageable. The theoretical upper bound

is typically achieved by highly structured networks such as multipliers. With the

easy availability of large amounts of memory in modern computers, storing and

manipulating million of paths is not a problem.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

10 100 1000 10000 100000

p
at

h
s

gates

Figure 2.1: The number of paths versus the number of gates in ISCAS’89 bench-
marks. By linear regression we get the following relationship: paths ≈ 0.04×gates1.8.

To test our conjecture, we enumerated all the latch to latch, primary input

to latch, and latch to primary output paths in the ISCAS sequential circuit bench-

marks [27] (see Figure 2.1), and found that the paths ≈ 0.04 × gates1.8. This is

hardly the kind of explosive growth that might cause one to completely discount

13

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1000 10000 100000 1e+06 1e+07

p
at

h
s

gates

Figure 2.2: The number of paths versus the number of gates for one family of
10 industrial benchmarks. By linear regression we get the following relationship:
paths ≈ 0.12× gates1.42.

a family of algorithms. But since the ISCAS benchmarks are small compared to

modern designs, we extended our analysis to two different families of industrial

benchmarks, one for large circuits (much larger than the ISCAS benchmarks), and

another for moderately sized circuits (comparable to the ISCAS benchmarks).

We enumerated all paths for the circuits in these two families. For the

first, larger family, shown in Figure 2.2, we observed that the number of paths ≈

0.12× gates1.42. For the second, and smaller family, shown in Figure 2.3, we found

paths ≈ 0.43× gates1.17.

While the above results do not suggest that a purely path-based SSTA algo-

rithm is appropriate for all cases, they do demonstrate that such an algorithm can

be practical for a significant number of cases. In practice, one can imagine pairing

path-based and block-based algorithms with one being applied when the enumera-

tion of paths results in a manageable number of paths, and the other being applied

to circuits in which the number of paths exceeds some suitable threshold.

14

100

1000

10000

100000

100 1000 10000

p
at

h
s

gates

Figure 2.3: The number of paths versus the number of gates for another family
of 9 industrial benchmarks. By linear regression we get the following relationship:
paths ≈ 0.43× gates1.17.

2.2 Parameterized Gate Delay Modeling

The advantage of path-based SSTA is that it can naturally handle accurate nonlinear

delay models. In this section, we present a parameterized gate delay model which

explicitly takes slope propagation into account. In current published approaches, a

worst-case estimate of the slope or the latest arriving slope is typically propagated [1]

which can lead to significant error [26]. By modeling the input slope in the gate

delay equation we avoid this modeling error.

It has been observed that a delay model linear in process variations has a large

amount of error; while a quadratic model fits the gate delay quite accurately [19–21].

The need for a higher order delay model is illustrated in Figure 2.4, where we model

delay as a function of gate length (L), threshold voltage (Vth), the output capacitance

CL and input slope Sin. The samples of L and Vth used to create Figure 2.4 were

generated uniformly in the range µ ± 3σ with 3σ = 0.2µ. The samples of Sin were

15

generated in the range of 10 to 100 ps and samples of CL were generated in the

range of 1 to 10 fF.

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

F
it

t[
p
s
]

HSPICE delay t[ps]

HSPICE
linear model

our model

Figure 2.4: Scatterplot of inverter delay and the values predicted by the linear and
our higher order model for various (L, Vth, CL, Sin) tuples. The variation in delay is
due to variations in process parameters (L, Vth) as well as variations in operating
conditions (CL, Sin).

The x-axis shows the HSPICE delay for various (L, Vth, CL, Sin) tuples.

The y-axis shows the values predicted by the two delay models. It is clear that

our model is a much better predictor of delay than the linear model. In order to

generate the cell delay model for every gate in the library, we first simulate each

gate by varying the process parameters, load capacitance CL and input slope Sin

uniformly as described above, and then fit to the delay equation given below:

D = ad
0 + ad

1L + ad
2L

2 + ad
3Vth + ad

4V
2
th+

CL

(

bd
1L + bd

2L
2 + bd

3Vth + bd
4V

2
th

)

+

αdCL + βdSin + γdSinCL (2.1)

16

Similarly, the output slope was also fit to the same canonical form as the delay and

is given below:

Sout = as
0 + as

1L + as
2L

2 + as
3Vth + as

4V
2
th+

CL

(
bs
1L + bs

2L
2 + bs

3Vth + bs
4V

2
th

)
+

αsCL + βsSin + γsSinCL (2.2)

Note that both the output delay equation Eq. (2.1) and the output slope equation

Eq. (2.2) are dependent explicitly on input slope Sin. The equations are valid only

for a certain range of the parameters involved such as L. The canonical forms

presented in Eq. (2.1) and Eq. (2.2) are equivalent to canonical forms presented in

literature in the form of the deviations from the nominal values. If we replace L

with

L = Lnominal + ∆L

and Vth with

Vth = Vth,nominal + ∆Vth

in Eq. (2.1) and Eq. (2.2) we can obtain the canonical forms presented in literature.

Note that the constants ad
0 in Eq. (2.1) and as

0 in Eq. (2.2) are intercepts obtained

from linear regression. They should not be confused with nominal value of delay or

output slope as they are usually denoted in literature [1, 28].

It should be noted that our formulation does not restrict the model order in

any way, and higher order models are possible with no change to our methodology.

17

2.3 Sparse Matrix based SSTA without Slope Propaga-

tion

In the current section and the next, we present the sparse-matrix based SSTA for-

mulation. First, we calculate the path delays without considering slope propagation

and in the next section we take the slope into account. Let the delay of gate j from

input a to the gate output be dja ∈ R. Later we will generalize the gate delay as a

function of parameters z, dja = f(z).

g1

g2

g3

a

b

a

b

a

b

Figure 2.5: Example circuit for illustrating the matrix formulation. The input pins
are distinguished by the labels a and b.

2.3.1 Sparse-Matrix Based Static Timing Analysis (STA)

Consider the circuit shown in Figure 2.5. This circuit has 4 paths and 3 gates. The

gates have two inputs which we distinguish by labeling them a and b. We define

an incidence matrix where each row represents a path, and each column represents

a gate input. The columns are sorted by gate topological order. The path-gate

18

incidence matrix for the example is given by:

A =

g1a g1b
g2a g2b

g3a g3b

p1 1 0 0 0 1 0

p2 0 0 1 0 0 1

p3 0 0 0 1 0 1

p4 0 1 0 0 1 0

(2.3)

Since each path consists only of a small number of gates, matrix A is a very

sparse. The delay of the gates can be written as gate delay vector:

dgate =

[

d1a d1b
d2a d2b

d3a d3b

]>

(2.4)

where d1b
is the delay from input pin b of gate 1 to its output. The delay of a

path is given by the addition of gate delays along that path. Thus multiplying the

path-gate incidence matrix with the gate delay vector gives the path delays:

dpath = Adgate (2.5)

The overall circuit delay is given by the max of all path delays:

dcircuit = max(dpath) (2.6)

Eq. (2.6) represents path based Static Timing Analysis (STA). We note that STA

in this form is essentially a sparse matrix-vector multiplication, and that it requires

only a single max operator to find the circuit delay. There are many data structures

19

and algorithms developed for efficient sparse matrix manipulation which we can

exploit [29]. We now turn our attention to the Statistical STA (SSTA).

2.3.2 Sparse Matrix based Statistical Static Timing Analysis (SSTA)

In this section, we drop the input specific delay for the sake of convenience. Let the

delay of gate j be a function of r parameters zj ∈ R
r. Thus dj = f(z) is a symbolic

function of parameters instead of a real number.

dj =
r∑

k=1

cjkzjk = c>j zj (2.7)

Note that z need not consist of only linear parameters. For example, a possible

second order gate delay model in channel length L and load CL might be:

zj =

[

1 L L2 CL CLL

]>

(2.8)

The same formulation can trivially handle a mixed model such as:

zj =

[

1
√

L L CL CLeL

]>

(2.9)

The gate delays of the circuit in Figure 2.5 can be written as,

d1

d2

d3

= diag(c>1 , c>2 , c>3)

z1

z2

z3

dgate = C>Z (2.10)

where diag() denotes the diagonal of a matrix.

20

The path delays are obtained by multiplying the path-gate incidence matrix

in Eq. (2.3) and the gate delay vector in Eq. (2.10)

dpath = Adgate

= AC>Z (2.11)

With Eq. (2.11) we have now extended the path delay calculation in Eq. (2.5)

to include the dependence of delay on process parameters. Assuming that these

process parameters are random variables with some well defined joint probability

density function from which we can sample, our goal is to show how we can generalize

this result to calculate the distribution of path delays, and by using the traditional

max function, the distribution of overall circuit delay.

If the kth random sample is given by Z(k) then the path delay vector corre-

sponding to the kth random sample is given by

d
(k)
path = AC>Z(k) (2.12)

Now if we take ` samples then Eq. (2.12) can be generalized as

[

d
(1)
path . . . d

(`)
path

]

= AC>

[

Z(1) . . . Z(`)

]

(2.13)

To get the circuit delay distribution, we apply Eq. (2.6) to Eq. (2.13)

[

d
(1)
circuit . . . d

(`)
circuit

]

=

[

max(d
(1)
path) . . . max(d

(`)
path)

]

(2.14)

This is essentially a Monte Carlo simulation expressed in matrix form. A histogram

of the circuit delay vector in Eq. (2.14) produces the circuit delay distribution. Thus

21

Eq. (2.14) represents path-based Statistical Static Timing Analysis (SSTA) ignoring

slope. In this form, SSTA is a natural extension of STA as written in Eq. (2.6) and

is in the form of a simple matrix-matrix multiplication. We make a few remarks

about the matrices. It is important to note that AC> matrix is a sparse matrix,

which allows for efficient storage as well as fast computation. The Z vector, though

dense, depends only on the number of gates and not on the number of paths.

2.3.3 Example

We will present an illustrative example to show how matrices are constructed and

how Monte-Carlo simulations are done in our framework.

g1

g2

g3

Figure 2.6: Example circuit for illustrating how Monte-Carlo simulation is done in
our framework.

There are two paths in the circuit shown in Figure 2.6. This can be captured

in the incidence matrix A of Eq. (2.11):

A =

g1 g2 g3

p1 1 1 0

p2 1 0 1

 (2.15)

22

For the sake of illustrative purposes, consider the delay to be function of just length

L. Let d1 = 70L1, d2 = 50L2 and d3 = 60L3. Then the coefficient matrix (C>) and

parameter matrix Z in Eq. (2.11) is given by:

C> =

70 0 0

0 50 0

0 0 60

(2.16)

Z =

L1

L2

L3

(2.17)

We get the path delays using Eq. (2.11):

dpath = AC>Z

=

1 1 0

1 0 1

70 0 0

0 50 0

0 0 60

L1

L2

L3

=

70 50 0

70 0 60

L1

L2

L3

=

70L1 + 50L2

70L1 + 60L3

 (2.18)

The Monte-Carlo simulation is done by sampling L1, L2 and L3 from their respective

distributions. For example, after sampling it turns out that L1 = 1.6, L2 = 1.4 and

L3 = 1.5. Then substituting these values in Eq. (2.18) leads to path delays for this

23

instance:

dpath =

182

202

 ps (2.19)

This corresponds to one Monte-Carlo simulation as in Eq. (2.12). Repeating this

` times allows one to obtain a distribution for path delays and circuit delay. The

number of samples ` depends on the confidence interval we seek in the variance of

the distribution and it is usually set to ` = 10, 000 in the literature. We note that

the extension to waveform (approximated by a ramp) propagation is straightforward

and presented in more detail in Singh’s dissertation [30]. Here we present a sketch

of incorporating slope propagation in our SSTA framework.

2.4 Sparse Matrix based SSTA with Slope Propagation

We now extend our delay model to include slope propagation. It is important to

note that the output slope of gate j cannot be specified unless we know which path

it belongs to. For example, in Figure 2.5, gate g3 at input pin a will have two

different slopes namely:

1. Due to path 1 (g1a → g3a), and

2. Due to path 4 (g1b
→ g3a).

We use the same canonical form to express both delay and slope, but we restrict the

dependence of delay and output slope on the input slope to be linear. This linearity

is required in order to preserve the canonical form as delays are accumulated along

a path. We also observed a linear relationship between delay and input slope for

the cells in our library and we illustrate it in Figure 2.7 for one of the cells in the

24

library. We use the superscripts d and s to distinguish among them. We delineate

the input slope to a gate by the subscript in. The gate delay dij and the output

70

80

90

100

110

120

130

20 30 40 50 60 70 80 90 100

ou
tp

u
t

d
el

ay
t[
p
s
]

input slope t[ps]

Figure 2.7: Linear relationship between input slope and delay.

slope sij of gate j in path i is given by:

dij = λd
jsin + (cd

j)
>zj (2.20)

sij = λs
jsin + (cs

j)
>zj (2.21)

From Eq. (2.20), one can see that the input slope at all the gates is required to

calculate the gate and path delays. One way to solve for the input slope is to look

at each path p separately and obtain the slope of each gate in an individual path.

This method is illustrated using the Figure 2.8, and this simple circuit consists of

inverters which allows us to conveniently drop the input-pin specific subscripts.

Let sp be the column vector in which the values of slopes along path p are

listed. Assume that the values are listed in the topological order of the gates along

path p.

25

g1

g2

g3

s0

s11 s12

s21 s23

Figure 2.8: A simple circuit to illustrate SSTA with slope propagation. Here s0

denotes the slope at the primary input. The output slope at gate g1 in path 1 is
denoted as s11 and in path 2 is denoted as s21.

To illustrate, consider the path p = 1, through gates g1 and g2 in Figure 2.8.

The column vector s1 is given by

s1 =

s0

s11

s12

(2.22)

and related by Eq.(2.21) as

s0

s11

s12

=

0 0 0

λs
1 0 0

0 λs
2 0

s0

s11

s12

+

(cs
0)

>z0

(cs
1)

>z1

(cs
2)

>z2

s1 = Λs
1s1 + diag((cs

0)
>, (cs

1)
>, (cs

2)
>)Z1

= Λs
1s1 + (Cs

1)
>Z1 (2.23)

In general Eq. (2.23) is valid for any arbitrary path containing t gates. Thus,

s1 ∈ R
t+1, Λs

1 ∈ R
(t+1)×(t+1) is lower diagonal, and (Cs

1)
>Z1 ∈ R

t+1. If the circuit

has p paths, then the Eq. (2.23) for all the p paths can be succinctly captured into

26

one single equation shown below:

s1

. . .

sp

= diag(Λs
1, . . . ,Λ

s
p)

s1

. . .

sp

+

(Cs
1)

>Z1

. . .

(Cs
p)

>Zp

s = Λss + diag((Cs
1)

>, . . . , (Cs
p)

>)Z

= Λss + (Cs)> Z (2.24)

From Eq. (2.24) we can solve for the slope s in the circuit

s = (I−Λs)−1(Cs)> (2.25)

The equation for path delays is similar to Eq. (2.24) and can be calculated

as,

dpath = Λds + (Cd)>Z

= Λd(I−Λs)−1(Cs)>Z + (Cd)>Z (using Eq. (2.25))

= Λd(I−Λs)−1(Cs)>Z + (Cd)>Z

=
(

Λd(I−Λs)−1(Cs)> + (Cd)>
)

Z (2.26)

= D>Z

Since path delays are a function of process parameters, by taking a sample of all

process parameters one can generate delay for all paths in the circuit as captured

in the following equation:

d
(k)
path = D>Z(k) (2.27)

27

The circuit delay is given by the max of all path delays. Now if we take ` samples

then we get ` samples of circuit delay captured in the following equation:

[

d
(1)
circuit . . . d

(`)
circuit

]

=

[

max(d
(1)
path) . . . max(d

(`)
path)

]

(2.28)

A histogram on these ` samples gives us the circuit delay distribution. Thus SSTA

can be performed considering the slope and process variations.

2.5 Experimental Results

We implemented our algorithm using a combination of awk/perl scripts and C++.

We report the results of experiments run on the ISCAS89 benchmarks using a 64-

bit Linux machine with 16 GB RAM and running at 3.4 GHz. The delay models

were generated using the 90 nm Berkeley Predictive Technology Model [31]. In the

experiments only latch-to-latch paths were considered for timing. Thus in Table 2.1

only the latch-to-latch paths and the number of gates between the latches are listed.

We modeled the effect of variations in channel length and threshold voltage, and

assumed that the variance of these parameters was such that 3σ = 0.2µ. We modeled

the impact of spatial correlation on parameter variations, and therefore required

placement information for the circuits, which we obtained by placing the circuits

using Dragon [32]. To properly account for random die-to-die (global) and within-die

(intra) variations along with the spatial component mentioned above, we modeled

each process parameter zg,i as:

zg,i =
√

0.5 z
global
g,i +

√
0.25 zintra

g,i +
√

0.25 z
spatial
g,i (2.29)

28

where zintra
g,i models the random variation and z

spatial
g,i models the spatial variation

by introducing new grid random variables [12].

We performed 10, 000 Monte Carlo simulations for each of the ISCAS bench-

mark circuits. The number of simulations performed in our experiment was set high

in order to establish an accurate result. But a run with one tenth (1, 000) the num-

ber of samples would normally be sufficient to calculate the delay distribution to

engineering accuracy. The results are summarized in Table 2.1. The table contains

the number of gates and paths along with the runtime taken by the algorithm to

compute the delay statistics of the circuit. Also shown is the breakdown of effort

among

(a) Path enumeration (implemented in awk),

(b) Sparse matrix generation (implemented in perl), and

(c) Matrix multiplication (implemented in C++).

In Table 2.1, we have presented results for smaller benchmarks in ISCAS89. For

the bigger benchmarks we implemented speedup techniques and they are discussed

next.

2.5.1 Speedup Techniques

In this section, we describe techniques to speedup the Monte-Carlo simulation. The

speedup technique is based on removing the non-critical paths to reduce the matrix

size.

If we are concerned only about the circuit delay, the maximum of all path

delays, then we can prune out non-critical paths based on their logic depth. To

29

0

1

2

3

0 10 20 30 40 50 60
PSfrag replacements

P
er

ce
n
t

of
p
at

h
s

Logic depth [d]

(a) Histogram of logic depth of paths in s1423

0

20

40

60

80

100

0 10 20 30 40 50 60
PSfrag replacements

P
er

ce
n
t

of
p
at

h
s

Logic depth [d]

(b) Histogram of logic depth of paths with the maximum
delay in s1423

Figure 2.9: Histogram was obtained after doing Monte-Carlo simulation for 10, 000
runs. Note that the logic depth of paths with maximum delay in Figure 2.9(b) is
always either 59 or 60.

ensure fairness, complex gate like XOR can be assigned an equivalent logic depth of

2 instead of being treated the same as a NAND gate.

The idea behind the pruning technique is illustrated using s1423. The his-

togram of logic depth of paths in s1423 is shown in Figure 2.9(a). In Figure 2.9(b),

the histogram of the logic depth of the path with the maximum delay in a Monte-

Carlo simulation is plotted. The histogram was obtained after doing Monte-Carlo

simulation for 10, 000 runs. s1423 is representative of the ISCAS89 benchmarks and

it is clear that the paths with higher logic depths tend to be ones which have maxi-

30

mum path delay. So we employ the strategy of eliminating paths with smaller logic

depth when we are computing the circuit delay, the maximum of all path delays.

We have applied this pruning technique to the biggest benchmarks in the

ISCAS89 benchmark suite. Our pruning strategy is to eliminate paths whose logic

depth is less than 90% of the maximum logic depth of the circuit1. For example,

if the circuit’s maximum logic depth is 60 then all paths whose logic depth is less

than 0.9× 60 = 54 are eliminated.

An interesting question is what happens when the maximum logic depth is

around 10 which is a typical number for a pipeline in a modern processor. The

answer is, if the number of paths between the pipeline stages is around 100, 000

then there is no need for pruning. Otherwise an adaptive strategy to prune can be

adopted. Here after every 100 Monte-Carlo runs one can prune out the paths which

always end up in the bottom of decreasing sort of path delays in every Monte-Carlo

run.

In Table 2.2, benchmark s38417 seems a little anomalous. This is because

there is a long tail in the logic depth of s38417 as shown in Figure 2.10. This

means that after pruning we are left with just 280 paths to analyze. To validate our

approach we compare the pdf obtained from golden simulation (where no paths are

eliminated) to the pdf obtained after pruning paths in Figure 2.11. Note that both

the pdf’s: one obtained after pruning paths, and the other obtained by considering

all the paths, labeled exact, are nearly identical. The mean obtained from both

methods were the same, while was the standard deviation obtained after pruning

paths differed by less than 0.9% from the exact method.

1We found that retaining paths whose logic depth was greater than 90% of the maximum logic
depth of the circuit provided the best tradeoff between accuracy and speed for our synthesized
ISCAS89 benchmarks.

31

0

10

20

30

10 20 30 40 50
PSfrag replacements

P
er

ce
n
t

of
p
at

h
s

Logic depth [d]

Figure 2.10: Histogram of logic depth of paths in s38417. Note that there is a
long tail and there are paths with logic depth of 47. Thus our pruning strategy of
eliminating paths with logic depth less than 0.9× 47 leaves us with just 280 critical
paths.

Note that the delay distribution of s38417 deviates from normality by having

long tails in Figure 2.11. The deviation from normality is because of two reasons:

1. max operation;

2. The quadratic terms in delay equation in Eq. (2.1). Even if the parameters

follow normal distribution, the quadratic terms make the distribution non-

normal.

The results from the other two benchmarks s13207 and s38584 are similar to the

results from s38417.

32

0

500

1000

1500

2000

2000 2200 2400 2600 2800 3000 3200 3400 3600

F
re

q
u
en

cy

delay [ps]

Pruned
Exact

Figure 2.11: Delay pdf of s38417 obtained after pruning paths plotted against the
one obtained without pruning paths. Note that both the pdf’s are virtually indis-
tinguishable.

2.6 Comparative Studies

In this section we compare our proposed method with a graph based Monte-Carlo

method and a block-based method [1].

2.6.1 Comparison with Path based Monte-Carlo method

In this section, we compare the runtimes of the proposed method with a path-based

Monte-Carlo (MC) since a block based MC cannot handle slope propagation accu-

rately. By path-based MC simulation we mean evaluation of path delays without

resorting to sparse matrix method. To understand the difference between the pro-

posed sparse matrix method and the graph based MC method let us compare the

algorithms used to implement them.

First we summarize the steps involved in a sparse-matrix based method as a

pseudocode in Algorithm 1. Next we summarize the steps involved in a path-based

MC as a pseudocode in Algorithm 2.

33

Algorithm 1 Sparse-Matrix-Based-SSTA

Input: Circuit description after it has been mapped to a library
Output: Timing distribution of the circuit
1: Enumerate all latch to latch paths in the circuit using Depth First Search

(DFS) [33].
2: Calculate the parameterized delay for each of the paths and store it in sparse

matrix. This process is captured in Eq. (2.26).
3: for i = 1 to ` do
4: Generate a sample of process parameters, pre-multiply it by the sparse matrix

to get a vector of path delays. This is captured in Eq. (2.27). Apply the
max operator to get the circuit delay. This constitutes a single Monte Carlo
simulation.

5: end for
6: The above for loop results in a vector of circuit delays of length `. This is

captured in Eq. (2.28). From this one can generate circuit delay statistics and
estimate the timing yield of the circuit.

Algorithm 2 Graph-Based-SSTA

Input: Circuit description after it has been mapped to a library
Output: Timing distribution of the circuit
1: Enumerate all latch to latch paths in the circuit using Depth First Search

(DFS) [33].
2: for i = 1 to ` do
3: Generate a sample of process parameters for every gate in the circuit.
4: for p = 1 to npaths do
5: Get the output slope and delay for every gate in the path based on the

process parameters and input slope. Add the delays of all the gates in the
path to get the path delay.

6: end for
7: Apply the max operator over all path delays to get the circuit delay. This

constitutes a single Monte Carlo simulation.
8: end for
9: The outer for loop results in a vector of circuit delays of length `. From this one

can generate circuit delay statistics and estimate the timing yield of the circuit.

34

The algorithms presented in Algorithm 1 and Algorithm 2 look deceptively

similar. The major difference between the two lies in Step 2 of the Sparse matrix

based method (Algorithm 1). We generate path delays in a parameterized form and

store it as a sparse matrix. 2. In the path based method, the delay model evaluation

is done inside the for() loop as shown in Step 5 (Algorithm 2). Thus we need to

do sample L and Vth for each simulation and then evaluate all the gates for their

delays and output slope. Then gate delays along a path are added up to get the path

delay. Our sparse matrix approach calculates delay and slope in a parameterized

(symbolic) form and avoids this delay evaluation inside a for() loop. This is the

reason behind the efficiency of our approach compared to a path-based Monte-Carlo

method.

The runtimes for the two approaches are compared for smaller benchmarks

in Table 2.3. From the table one can observe that the proposed approach has a

runtime which is orders of magnitude faster than the path based method.

2.6.2 Implementation Details

We presented the construction of sparse matrix (D) in Eq. (2.27) as a series of

operations on matrices as shown in Eq. (2.26). This was done to present our analysis

in a mathematically rigorous as well as an elegant fashion. It should be noted that

one can construct the sparse matrix (D) using graph traversal method. In fact the

sparse matrix construction in our implementation was done using graph traversal

method.

The sparse matrix can be thought of as an efficient data structure to hold the

parameterized path delays. An alternative data structure such as array of hashes to

2It should be noted that there is no restriction on the gate delay model except the need to have
input slope appear linearly. The linearity restriction helps us to preserve the canonical form of the
delay and slope models.

35

hold parameterized path delays lead to slower runtimes. In array of hashes one can

visualize array consisting of all possible paths; each element in the array points to a

hash which consists of all the gates in that path. The runtime comparison is shown

in Table 2.3. It is clear that having sparse matrix as a data structure is superior

since it is results in a regular access from caches leading to a faster runtime.

2.6.3 Comparison with Block-based method

A comparison of the proposed method with a block based method [1] is shown in

Figure 2.12 for s27, clearly showing the proposed method’s accuracy when compared

with block-based method. The tails in the distribution are not captured by the

block-based method since its delay model is linear. The block based method is

also restricted to function only with Normal distributions. We note that the biggest

benchmarks in ISCAS89 ran in a few seconds using the block-based method showing

the runtime superiority of the block-based method.

2.7 Summary

This work demonstrates that it is possible and practical to perform path based

statistical static timing analysis, and that such an analysis can be written compactly

in matrix notation, allowing the use of standard highly optimized linear algebra

techniques. The major advantage of this formulation is that it places no restrictions

on process parameter distributions. It embeds accurate polynomial-based delay

model which takes into account slope propagation naturally.

Data was presented to show that many practical circuits have a bounded

number of paths, making such an analysis possible. It should be noted that this

36

200 250 300 350 400

0.
00

0
0.

01
0

0.
02

0

p
d
f

PSfrag replacements

blk

pl

pq

delay [ps]

(a) Density plot of circuit delay of s27

20
0

30
0

40
0

PSfrag replacements

blk pl pq

d
el

ay
[p

s]

pdf

(b) Boxplot of circuit delay of s27

Figure 2.12: Delay pdf of s27 obtained using block-based method [1] (denoted as
blk), path based method with linear delay models (denoted as pl) and path based
method with quadratic models (denoted as pq). Results from path based method
with linear models can be thought of how much error is introduced by an analytical
max() and using worst case slope at the input of a gate. Results from path based
method with quadratic models can be thought of how much error is introduced when
we use linear delay models. Please note that the linear models are not adequate
enough to model the tails of the distribution.

37

demonstration should not be taken as sufficient license to propose a purely path-

based SSTA algorithm.

38

Table 2.1: Path-gate statistics of ISCAS89 benchmarks and runtime
for 10, 000 simulations.

circuit gates paths spss[%] runtime [s]
generatingap matrixc total

paths matrix multiply

s27 8 9 46.13 0.02 0.02 0.07 0.11

s1196 73 43 11.61 0.15 0.07 0.60 0.82

s1238 73 43 11.61 0.12 0.04 0.39 0.55

s208 50 72 10.48 0.07 0.04 0.49 0.60

s386 92 86 8.56 0.08 0.07 0.57 0.72

s820 187 207 3.42 0.15 0.13 1.14 1.42

s298 98 212 4.97 0.10 0.11 1.04 1.25

s832 188 219 3.41 0.15 0.12 1.07 1.34

s510 162 230 4.02 0.15 0.19 1.39 1.73

s641 237 238 12.82 0.41 2.14 4.80 7.35

s344 154 323 6.21 0.17 0.43 2.33 2.93

s349 155 333 6.11 0.21 0.40 1.70 2.31

s382 133 353 4.21 0.16 0.17 1.18 1.51

s1488 307 366 3.36 0.31 0.51 3.33 4.15

s1494 306 375 3.37 0.36 0.52 3.33 4.21

s526n 172 377 2.66 0.15 0.20 1.75 2.10

s526 171 379 2.67 0.15 0.12 1.76 2.03

s444 160 482 4.18 0.21 0.27 1.60 2.08

s953 328 723 2.54 0.40 0.76 3.93 5.09

s713 250 2650 17.54 5.13 36.47 50.42 92.02

s5378 1938 6858 0.66 4.44 9.62 20.28 34.34

s sps denotes sparsity, the percentage of nonzeros in the sparse matrix
ap We wrote awk/perl scripts to generate paths and build the sparse

matrix
c We wrote C++ program to do matrix multiplication

39

Table 2.2: Runtime after logic depth based pruning for the
three biggest benchmarks in ISCAS89. All paths whose
logic depth was less than 90% of the maximum logic depth
were pruned. The number of simulations were set to
10, 000.

circuit pruned pruned runtime [s]
pathsp generating matrix total

paths matrix multiply

s1423 334 22.20 4.83 19.31 46.34

s9234 33536 227.89 477.36 1691.61 2396.86

s35932 39168 91.70 150.53 1012.51 1254.74

s38584 35904 530.90 471.37 1732.91 2735.18

s13207 78082 715.66 1138.58 3946.16 5800.40

s38417 280 541.31 3.75 12.47 557.53

p This column shows the number of paths left after logic
depth based pruning.

40

Table 2.3: Runtime comparison for the proposed matrix
method versus repeated path tracing method. The num-
ber of simulations were set to 10, 000.

Circuit Path MCp[s] Sparse Matrixm[s] Alt DSd[s]

s27 220.03 0.11 1.12

s208 380.05 0.60 10.76

s1196 460.16 0.82 12.10

s298 880.09 1.25 29.68

s382 1360.13 1.51 56.00

s344 3060.17 2.93 81.05

p This column shows the runtime of a path based MC
whose pseudo code was presented in Algorithm 2.
Monte-Carlo simulation uses path-based approach
since slope can not be accurately propagated in a
block-based method.

m This column shows the runtime of the proposed sparse
matrix method presented in Algorithm 1.

d This column shows the runtime of the proposed
method with an alternative data structure, array of
hashes. The algorithm is the same as the one pre-
sented in Algorithm 1 but the data structure changes
from Sparse Matrix to Array of Hashes.

41

Chapter 3

Waveform Modeling Using

Singular Value Decomposition

In the previous chapter, we proposed a path-based sparse matrix SSTA with wave-

form propagation. The waveform was approximated as a ramp propagated along

the gates in a path. As technology scales into the nanometer regime, however, a

ramp approximation is no longer sufficient [5]. Several studies in the literature have

improved upon ramp approximation [34–40].

Current approaches can be broadly classified into one of the following three

approaches:

• Improved heuristic model in which authors have proposed models other than

ramp, e.g. Equivalent waveform model [34], Weibull distribution [36,37]

• Data based approaches in which authors have proposed statistical techniques

such as Principal Components Analysis (PCA) [35] or a heuristic approach [38].

42

• Change of basis models in which authors have proposed modeling current

rather than voltage, e.g. CSM [39–42].

At the input side, an equivalent waveform modeling has been proposed which em-

ploys a weighted least squares fit [34]. The heuristic equivalent waveform consists

of a ramp followed by an exponential. A heuristic for weight is given by ∂vout
∂vin

which weighs the part of input waveform that affects the output waveform. This

is an improvement over the ramp model, because the proposed equivalent wave-

form can model the non-linearity of real waveforms to some extent. An analytical

technique for modeling the waveforms is to approximate the waveform with a cu-

mulative probability distribution function (CDF). The Weibull distribution, a two

parameter model, is used to model the waveforms [36]. The slope and shape of the

waveform are approximately modeled, in contrast to a simple ramp model where

there is only one parameter, slope. Since it also models the shape of the waveform,

the Weibull model yields better results. The Weibull model has been extended to

include crosstalk noise waveforms [37].

An alternative to the analytical approach is the data-based approach, which

requires a set of all possible waveforms that would be encountered as a starting

point. Such a set of input waveforms is generated by aggregating the waveforms at

the output of different interconnect structures. The set of possible output waveforms

is generated by collecting waveforms at the output of all gates in the library under

process variations and different environmental conditions [38]. Generating and ag-

gregating all possible waveforms is thus a time-consuming pre-processing step, but

the process gets amortized over many runs of the timer. After all possible waveforms

have been generated, a set of basis waveforms can be extracted which approximate

all possible waveforms using an affine transformation [38]. The selection of basis

43

waveforms from the set of all possible waveforms is done efficiently using unate

covering heuristic. It has been shown that a few basis waveforms are sufficient for

accurate waveform modeling.

Current source-models (CSM) based on transistor physics have been pro-

posed to model waveforms [39, 40]. In CSM, the most important feature is the

introduction of a current source to model the output drive. Thus it can capture the

non-linearity of the driver accurately.

Another data-based approach is the Principal Components Analysis (PCA)

based waveform modeling [35]. PCA based waveform modeling is a data-based ap-

proach in the sense that one generates all possible waveforms that one will encounter.

The waveforms are discretized at n equal voltage intervals and recording the time

at which certain voltage thresholds are crossed. If the crossing times are treated

as random variables then if they are highly correlated, a dimension reduction tech-

nique like PCA can be applied to represent a waveform accurately in a reduced

r < n uncorrelated space [35].

Our approach builds on the PCA based waveform modeling [35]. The PCA

method was described for a single gate and we generalize the method to a library

of gates. We use Singular Value Decomposition (SVD) instead of PCA in this

work. The reason is that we are interested in finding the orthogonal basis vectors

of the waveforms and SVD provides a simple and direct way to do so. Each of

these orthogonal basis vectors provide a linear combination of the n time points.

Interestingly, as we will see later on, the first two of these orthogonal basis vectors

(linear combinations) can be interpreted as 50% point and slope of the waveform

respectively. This allows us to link this approach to current methodologies, and to

have it gracefully degrade to a simple ramp approximation when needed.

44

Our goal in this work is to show that n time points are not needed to model

the waveform since only a few orthogonal basis vectors (linear combinations) of these

time points are sufficient to model the waveform accurately.

The contributions of this work are:

• We provide a rigorous mathematical analysis of waveforms using SVD leading

to a generalized gate delay model.

• We link the proposed approach to ramp-based models and show it is a logical

extension to current modeling and simulation methods.

• We show how the approach can provide a systematic method for trading off

complexity vs. accuracy in the waveform models.

• We generalize and extend PCA approach [35] to a library of gates.

3.1 Data Based Model for a Gate

In this section we illustrate how to generate a SVD based timing model for a single

gate. Later on, we extend our approach to the entire library. Since proposed timing

model is based on data, assume that we have a diverse set of waveforms to work with

to obtain our timing model. The method for generating a diverse set of waveforms

is described later in Section 3.5.

A waveform is discretized by recording the time points tk, when the voltages

cross k−1
n−1 , 1 ≤ k ≤ n as shown in Figure 3.1. In the case of falling waveforms the

notation changes; the time points tk denote the voltages crossing
(

1− k−1
n−1

)

, 1 ≤

k ≤ n. We also assume that the voltages are normalized (VDD = 1).

The collection of output waveforms is discretized and the times at which

the voltage thresholds are crossed are recorded. The discretized input and output

45

t

v(t)

0 t1 tj

1
2

tn

1

Figure 3.1: A waveform is discretized and time points are recorded when a signal
crosses a certain voltage threshold. Here time points are recorded when the waveform
crosses the threshold of 1

2 and 1.

waveforms can be collected in one single matrix T:

T =

t1,1 t1,2 . . . t1,n

.

tm,1 tm,2 . . . tm,n

(3.1)

Note that each row in the matrix T contains one discretized waveform. This is

similar to current procedures except that instead of taking each waveform and ap-

proximating it as a ramp, we take all the waveforms and develop a new model via

the SVD process, which we outline next.

3.2 Analyzing Waveforms using SVD

The Singular Value Decomposition (SVD) is a fundamental theorem of Linear Al-

gebra [43]. SVD is defined as [44]:

46

Definition 3.2.1 (Singular Value Decomposition). Let m, n ∈ N be arbitrary;

we do not require m ≥ n. Given T ∈ R
m×n, not necessarily of full rank, a singular

value decomposition (SVD) of T is a factorization

T = UΣV> (3.2)

where U ∈ R
m×m is orthonormal, V ∈ R

n×n is orthonormal, and Σ ∈ R
m×n is

diagonal. In addition, Σ is assumed to have its diagonal entries σj nonnegative and

in nonincreasing order; that is, σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 where p = min(m, n).

It can be proved that for any matrix SVD exists [44]. The matrix U is

called the left singular matrix and its columns provide the orthogonal basis for the

columns of T. The matrix V is called the right singular matrix and its columns

provide the orthogonal basis for the rows of T. The diagonal elements of Σ are

called the singular values.

As noted above, the columns of V provide the orthogonal basis for the rows

of T and since each row contains a discretized waveform, the columns of V turn out

to be the orthogonal basis vectors for the waveforms in matrix T.

Now Eq. (3.2) can be rewritten by post-multiplying both sides by V. Since

V is orthonormal (V>V = I) we get TV = UΣ. We denote the resultant product

matrix as M called the moments matrix because this is another way to represent

time points just like an equivalent representation of any function by its moments:

M = TV = UΣ (3.3)

47

The moments matrix defined here is a linear combination of time points weighed by

the right singular vectors (rsv) V.j :

mij = Ti.V.j =
n∑

k=1

tikvkj (3.4)

The right singular vectors transform a waveform from time domain t = (t1,

t2, . . ., tn) to moments domain m = (m1, m2, . . ., mn) through m = tV and

vice-versa through t = mV>

This equivalent representation leads to an interesting possibility in the con-

text of timing analysis. If a waveform can be represented accurately using a few

moments, then by propagating these moments one can do an accurate waveform

analysis instead of propagating all of the n time points. Suppose we represent a

waveform by r moments, where r < n then the last n− r moments are set to zero.

The process of setting the last n−r moments to zero is equivalent to setting the last

n− r singular values to zero since zeroing a singular value will force the correspond-

ing moment to zero. But zeroing out singular values is equivalent to approximating

a matrix T with another matrix T̃ having a smaller rank and this is proved in The-

orem 2. The Frobenius norm is used to measure the goodness of approximation.

This norm measures the goodness of fit using a root mean squares difference.

The above discussion can be summarized by noting the equivalence of the

following statements:

• Approximating a waveform Ti. using the first r moments.

• Approximating a matrix considering the first r-singular values of matrix T

• A rank-r approximation of matrix T in Frobenius norm.

48

Definition 3.2.2 (Frobenius Norm). Given T ∈ R
m×n, the Frobenius norm of

T is defined as

‖T‖F =

√
√
√
√
√

m∑

i=1

n∑

j=1

t2ij

 (3.5)

There is an equivalent way to compute the Frobenius norm of a matrix by using the

singular values of a matrix which is stated next.

Theorem 1. Given T ∈ R
m×n, and its singular values after SVD is given by

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 where p = min(m, n). Then the Frobenius norm of T can

be computed by

‖T‖F =

√
√
√
√

(
p
∑

i=1

σ2
i

)

(3.6)

Now we are ready to state what the best approximation to a matrix in the

context of Frobenius norm is.

Theorem 2. Given T ∈ R
m×n, with a singular value decomposition T = UΣV>,

the best approximation in Frobenius norm to T by a matrix of rank k ≤ min(m, n)

is given by

T̃k = Udiag(σ1, . . . , σk, 0, . . . , 0)V
>

Thus the idea of having r singular values is equivalent to approximating a

matrix T with another matrix T̃ having rank r. As stated earlier, having r singular

values is equivalent to having only the first r moments to represent the waveform

while discarding the remaining n − r moments. Thus we can define a metric in

Frobenius norm to see how well r moments approximate a waveform.

49

Now define fr as relative error incurred in Frobenius norm by approximating

matrix T ∈ R
m×n by rank-r matrix T̃r ∈ R

m×r.

fr =
‖T− T̃r‖
‖T‖ =

√(∑p
i=k+1 σ2

i

)

√
(∑p

i=1 σ2
i

) (3.7)

where p = min(m, n). We plot the relative error in Frobenius norm fr in Figure 3.2.

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14

f
r

index [r]

Figure 3.2: Relative error in Frobenius norm when approximating using the first k

moments. Note that using the first 2 moments the approximation is accurate within
1 % in Frobenius norm. The data is shown for an inverter and the number of time
points is n = 14.

In the figure, one can observe that the error measured by Frobenius norm quickly

reduces to a very small quantity when we approximate using the first few moments.

A more interesting comparison would be in terms of the absolute values involved.

The error in approximating by r moments is given by:

∆Tr = T− T̃r (3.8)

The entry ∆trij
, represents the error in approximating jth time point in the ith

waveform with r moments. For a rank-3 approximation, we found that nearly 90%

50

of the entries in ∆Tr had an absolute error which was less than 1 ps. Thus we need

only a few moments to represent a waveform with a high degree of accuracy.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2 4 6 8 10 12 14

w
ei

gh
t

index [r]

rsv1

rsv2

rsv3

rsv4

Figure 3.3: Plot of the first 4 right singular vectors (rsv) obtained on applying SVD
to T in Eq. (3.1). The number of time points is n = 14.

Next we interpret what the moments mean. We will see that the moments

are related to the more familiar notions of 50% time point and slope. Recall from

Eq. (3.4) that moments of a waveform are obtained by the right singular vectors

(V.j) weighting the linear combination of time points of a waveform.

The first right singular vector V.1 (rsv1), weights the time points t nearly

equally to produce the first moment m1:

m1 =
n∑

k=1

tkvk1 ≈
1

n

n∑

k=1

tk

The first moment m1 can be interpreted as the average of all the sample time points,

and in that sense represents the 50% time point of the waveform.

The second right singular vector V.2 (rsv2), weighs the time points t nearly

linearly to produce the second moment m2. This can be interpreted as a quantity

proportional to the average slope of a linear ramp approximation to the waveform.

51

Note that the first and second moments are only interpreted to be the 50% time

point and slope respectively and they are not the same in terms of numerical value.

The third right singular vector weighs the time points quadratically to produce m3;

the fourth right singular vector weighs the time points cubically to produce m4.

3.3 Example of Moments Calculation

We illustrate the calculation of moments by means of an example. After sampling

a waveform at n = 14 time points, we get a time vector wt1 and its corresponding

voltage vector wv:

wt1

> =
[599 632 656 673 690 705 716

728 740 752 764 776 788 802]ps
(3.9)

wv
> =

[

0 1
13

2
13 . . . 11

13
12
13 1

]

V (3.10)

Now collect m such waveforms, (wti
, i = 1, . . . , m) in a matrix T. On applying

SVD Eq. (3.2) to T, we obtain the right singular vectors V. Note that once the

SVD analysis is done, the right singular vectors are fixed. For example, the second

right singular vector V.2 after the SVD analysis:

V.2 =

[−0.52 −0.41 −0.32 −0.25 −0.18

−0.12 −0.06 −0.01 0.05 0.12

0.18 0.24 0.31 0.39]>

(3.11)

52

The second moment (m2) is given by the dot product of the waveform (wt1) and

the second right singular vector (V.2):

m2 = wt1

>V.2 = −202.31 (3.12)

The second moment (m2) was interpreted as quantity whose absolute value approx-

imates the slope. If we define slope as the difference in time at which voltage crosses

0 V and 1 V then the slope of wt1 in Eq. (3.9) turns out to be 203 ps which is

approximately the same value as |m2| = 202.31 ps.

It is important to note that the right singular vectors are constant vectors,

for example Eq. (3.11) shows the second right singular vector. The right singular

vectors just weight the linear combination of time points or in other words transform

waveform from time domain to moments domain. Thus only the moments vary

depending on the waveform time points and this is shown in Eq. (3.12), where

depending on wti
we get different values of moments.

3.4 Example of SVD based Timing Model

To illustrate the proposed timing model we calculate the delay of the simple inverter

chain in Figure 3.4 and compare it with the Weibull-based timing model [36]. The

Weibull model has two parameters: slope, and shape. The waveforms are fitted to

the Weibull model after their arrival time is normalized to 0. The arrival time of

waveform is propagated across the gates separately from propagation of the Weibull

parameters.

In our characterization, we follow the same strategy as proposed in the

Weibull model. We normalize the arrival time of all input waveforms to 0 during

53

characterization and keep the arrival time information separate from the waveform

information. In other words, instead of doing SVD on (t1, t2, . . ., tn) we do it on

(t2 − t1, . . ., tn − t1), where t1 is the arrival time. Due to this normalization we

are now left with n− 1 time points. This translates to the fact that we have n− 1

moments for a given waveform instead of n moments. We found that the new first

moment m̃1 is equivalent to the old m2 described in Eq. (3.12).

Another way to think about it is that we have forced the first moment to be

the arrival time instead of the t50% time point while keeping the rest of the moments.

To ensure fairness in comparison, we use two moments in our proposed model in

addition to the arrival time.

Now we intuitively introduce the idea of using moments to model the wave-

form propagation across the gates. In Section 3.2, we saw that the few moments are

sufficient to characterize a waveform. The first and second moments are interpreted

as quantities very similar to 50% time point and slope. Thus if we use only the first

two moments, then the gate delay modeling is equivalent to the ramp based delay

modeling. A simple ramp based delay equation is given by:

delay = a0 + a1Sin + b1SinCout + c1Cout (3.13)

The moments-based equation can be thought of as an generalization of Eq. (3.13):

tarrival = a0 +
2∑

i=1

aim̃
in
i +

2∑

i=1

bim̃
in
i Cout + c0Cout (3.14)

m̃out
j = a0j +

2∑

i=1

aijm̃
in
i +

2∑

i=1

bijm̃
in
i Cout + c0Cout (3.15)

54

where j = 1, 2. Note that we have not modeled the non-linear capacitance of the

fanout gates. The equations were fitted using linear regression [45]. A more detailed

discussion regarding moment modeling with complex load modeling and the error

involved in fitting is described in Section 3.6.

C1 C2 C3

Figure 3.4: Three stage inverter chain with a single capacitor modeling the load.

Pass through arbitrary
gate (g) in library to
get realistic waveform

Sin

Sample waveform
(tin1 , . . . , tinn)

CL

DUT

Sample waveform
(tout

1 , . . . , tout
n)

C1

Rπ

C2

α

Figure 3.5: Gate characterization setup

We calculated delay for 1000 different values of the (C1, C2, C3) tuple, where

Ci, i = 1, 2, 3 was randomly sampled from 100 fF to 200 fF. The minimum error in

delay using SVD model was 1.2% and the maximum error was 8.7% when compared

to Spice. The corresponding statistics for the Weibull based model were 1.6% and

9.7%. and for a simple slope based model was 4.9% and 17.6%. It is clear that both

Weibull and SVD based timing models are superior to the simple slope model, thus

demonstrating the need for more complex delay modeling.

55

In the next section, we extend our SVD-based timing model to the entire

library.

3.5 Data Based Model for a Library

In a timing analyzer we generally represent the circuit by a directed graph consisting

of gates and the wires that connect them. In forming this representation, we make

use of two main abstractions of a waveform:

• An abstraction of the switching waveform at the input and output of each gate

in the circuit, and

• An abstraction for the model describing how these waveforms are changed

when they go through gates or wires.

In current methodologies, the first abstraction is the ramp waveform model, and the

second is the delay model for gates and wires. Since the waveform for a ramp model

is represented by a tuple of delay and slope, we can represent a typical delay model

as:

(Dout, Sout) = f((Din, Sin), Cload, . . .) (3.16)

Note that while f is different for each gate and wire, the representation of

the waveform is the same for all.

Thus the first step we must perform is the generation of a new uniform

waveform model that would be valid for all components in a circuit. We do this by

taking all the gates, which are collected in a gate library, and generating a large

number of diverse waveforms from them. Mathematically this means that the matrix

56

T in Eq. (3.1) contains waveforms of all gates in the library instead of a single gate

as described in Section 3.1. Both falling and rising waveforms are considered.

The SVD analysis described in Section 3.2 is now performed on the waveforms

generated from all gates in the library. By building the model on all gates in the

library, we insure that the representation of the waveform produced will be valid for

all gates in the library, and thus can be used in an equation similar to Eq. (3.16).

An important thing to note is the right singular vectors V. The right singular

vectors V obtained after SVD analysis of all the waveforms obtained from the library

are the same for every gate in the library. Consider for the sake of argument that V.2

in Eq. (3.11) was obtained after doing SVD analysis on all the waveforms generated

from the library. Then irrespective of whether the waveform is generated by an INV

(inverter) or NAND, we use V.2 to generate the second moment for that waveform.

This helps ensure a uniform model for all gates in the library.

In our delay models, we use a more complex load model, namely the π-model.

Note that this load modeling is completely orthogonal to the waveform modeling

which is the primary focus of the work. When the π-model is used to model the

load in timing analysis, the accuracy of the simulation improves [46, 47]. Also, we

model the non-linear capacitance of the driven gate marked as α in Figure 3.5.

The experimental setup to generate these waveforms for one gate is shown

in Figure 3.5. By varying Sin, and CL we vary the input waveform to the gate,

and by varying C1, Rπ, C2 and α we vary the loading on the gate. While it may

appear that having a complex π-model will drastically increase the characterization

time, we balance this addition by the use of experiment planning techniques such as

Latin Hypercube Sampling (LHS) [48] in order to reduce the number of simulations

required.

57

3.6 Waveform Propagation Across Gates in STA

In this section, we present the equations for propagating waveform through a gate

with π-model load. The SVD-based timing model is a straightforward extension of

Eq. (3.14) and Eq. (3.15):

m̃out
j = a0 +

r∑

i=1

aim̃
in
i +

2∑

j=1

bjCj +

r∑

i=1

2∑

j=1

cijm̃
in
i Cj

+
2∑

j=1

djRπCj + e0Rπ + f0α, j = 1, . . . , r (3.17)

where

• r is the number of moments used for characterization, usually set to 2 or 3.

• C1, Rπ, C2 are the parameters of π-model interconnect. The interconnect val-

ues are assumed to be deterministic in this work.

• α is the width of the gate load being driven as shown in Figure 3.5.

• m̃in
i are the moments of the waveform whose arrival time has been normalized

to 0 as described in Section 3.4.

The equations for characterizing arrival time tarrival have the same form as in

Eq. (3.17).

In the context of STA, the independent variables in Eq. (3.17) namely,

min
1 , . . . , min

r , C1, Rπ, C2, α are just numbers. Thus the Eq. (3.17), could have been

any arbitrary function of the independent variables. But we have opted for a function

which is linear in input moments (m̃in
i). The linearity restriction becomes crucial in

the context of Statistical STA (SSTA) [49].

58

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

V
ol

ta
ge

[V
]

t [ps]

Spice
Moment Approx

Figure 3.6: Waveform comparison at the output of an inverter. We use a 2 moment
approximation in addition to arrival time and it is clear from the figure that the
waveforms are indistinguishable.

The linearity restriction does not affect the accuracy of our modeling. To

illustrate, consider Figure 3.6, where we plot the waveform obtained at the output

of an inverter. An input waveform is fed to an inverter and simulated in Spice and

the output is plotted with the legend ‘Spice’. In the case of the legend ‘Moment

Approx’ the output waveform was obtained as follows. The input waveform is

transformed from timepoint representation to moment representation using m̃ =

tV. We keep the first two moments alongside the arrival time and then using the

fitting equations in Eq. (3.17), to find the moments of the output waveform. Then

using the transformation from moments to time points t = m̃V> we obtain the time

points of the output waveform which is plotted with the legend ‘Moment Approx’.

It is clear from the figure that the waveforms are indistinguishable thus illustrating

the accuracy of the moments-based model.

Another way of comparing the output waveforms was to find the maximum

relative difference between the time points predicted by the SVD-based model and

Spice. In the case of INV, fitting over 1000 waveforms produced a maximum error

59

of around 5%. The other gates in the library NOR and NAND had similar error

statistics in the predicted output waveform.

We can now generalize and propagate moments across a path and recover

the waveform at the end of the path.

3.7 Path Delay Evaluation in STA

In this section we demonstrate waveform propagation along a path by considering

a simple stage consisting of an INV, NOR and NAND gate. with π-model for load

as shown in Figure 3.7. The gate delay models are generated using 90 nm Berkeley

100

300

100

300

100

300

Figure 3.7: Test case for evaluating path delay. The units for resistance is Ohms
(Ω) and the capacitors is femtoFarads(fF). Both the capacitors in the π-model have
the same value.

Predictive Technology Model [31] and the interconnect parameters are obtained from

ITRS roadmap [3]. We assume single-input switching while propagating waveform.

We used the first r = 2 moments along with arrival time to propagate wave-

form. We compare our results with Spice and the waveforms at the output of NAND

gate in Figure 3.7 is shown in Figure 3.8. The waveform predicted by the proposed

method closely matches with the Spice result and the error in delay was less than

1%. The maximum error at any given time point was around 8%. and it is around

the point at which the output waveform begins to rise (t ≈ 1600 ps) in Figure 3.8.

60

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

V
ol

ta
ge

[V
]

t [ps]

output - Spice
output - SVD

Figure 3.8: Waveform at the output of the NAND gate in Figure 3.7. The proposed
SVD method and Spice output have a very close match.

3.8 Summary

This work presented a rigorous mathematical analysis of waveforms which led to

a logical extension of current waveform modeling methods such as saturated-ramp

model. The waveform models described in the work would find application in any

situation where having a more detailed description of digital switching waveforms is

useful. We demonstrated the application of waveform modeling to path-based STA

demonstrating near Spice-like accuracy.

61

Chapter 4

Robust Analytical Gate Delay

Modeling

In this chapter, we present an accurate closed form expression for gate delay. Apart

from timing analysis, delay modeling is important to guide design optimization, such

as transistor and gate sizing, interconnect optimization, placement, and routing.

Closed form delay equations with sufficiently high accuracy are desirable since they

are efficient and easy to implement. The alternative to closed form delay metrics

are lookup tables. Though highly accurate, lookup tables less attractive since they

are computationally expensive to use within an optimization loop [50]. The delay

modeling consists of two distinct components, the gate and the interconnect delay

modeling.

In the literature, significant attention has been devoted to interconnect delay

characterization. The interconnects are often modeled as RC trees. The widely used

Elmore delay is the first moment of the impulse response of the RC tree [51]. To

improve the accuracy of the Elmore delay, models based on the higher order moment

62

matching AWE [52] have been proposed. But AWE is expensive to use in optimiza-

tion since it lacks closed-form expression. To improve the accuracy of Elmore delay

and retain its simplicity, several works have proposed delay models that are functions

of the higher moments of the impulse response of the RC tree [50, 53, 54]. Another

fast approach is the matching of moments of the impulse response to a Probability

Density Function (PDF) [55–58]. In the literature, the gate delay characterization

has received less attention compared to interconnect delay characterization. The

Sakurai-Newton (SN) delay approximation [6] is a widely used closed-form delay

metric for the CMOS gates because of its simplicity and accuracy when gates op-

erate in nominal voltages. The SN metric lacks accuracy when the CMOS gates

operate at low supply voltages [59]. For the nanometer System-on-Chip (SoC) de-

signs, due to the presence of multiple supply voltages the delay model needs to be

robust across a wide range of operating scenarios.

In this paper, we propose a new, robust closed form gate delay metric based

on the centroid of power dissipation. This new model is inspired by our key ob-

servation and theoretic proof that the SN metric can be viewed as the centroid of

current dissipated by the gate. The proposed metric has a very high correlation

coefficient (≥ 0.98) when correlated with the actual delays got from the HSPICE

simulations. Such high correlation is consistent across all major process technolo-

gies. In comparison, the SN metric has a correlation coefficient between (0.70, 0.90)

depending upon the technology and the CMOS gate, and it is less accurate for lower

supply voltages. Since our proposed metric has high fidelity across a wide range of

supply voltages while retaining a simple closed form, it will be very useful to guide

low voltage and low power designs.

To summarize, we make the following contributions:

63

• We show that the Elmore delay can be expressed as the centroid of dissipated

current.

• We prove that the SN delay approximation is the exact Elmore delay of a

CMOS gate.

• We propose a high fidelity closed form metric for the delay of a CMOS gate

based on the centroid of the power dissipated by the gate.

4.1 Sakurai-Newton Delay Approximation

The Shockley model for MOSFET [60] fails in the short-channel region because it

neglects velocity saturation effects. Sakurai and Newton proposed a model that

takes into account the short-channel behavior while retaining the simplicity of the

Shockley model [6,61]. They modified the quadratic dependence of the drain current

on driving voltage to a α-power dependence, where 1 ≤ α ≤ 2 is the called the

velocity saturation index.

The drain current iD according to [6] is,

iD =

k
2 (vGS − VT)α saturation,

k
2 (vGS − VT)α vDS

VDSSAT

linear,

0 cutoff

(4.1)

where

• k =
(

W
L

)
µnCox, where µn is the mobility of electrons and Cox is the oxide

capacitance.

64

• VDSSAT
determines the boundary between linear and saturation regions when

vGS = VDD.

For the delay approximation of the CMOS inverter, we assume a step input to the

inverter. This enables us to extract the inherent delay of the gate ignoring the finite

rise time of the input. The delay due to finite rise time can be incorporated into

inherent delay due to step input using techniques such as PERI [62].

Since a step input is assumed, the drain current equation in (4.1) simplifies

to,

iD =

k
2 (VDD − VT)α VDD − VT < vDS ≤ VDD,

k
2 (VDD − VT)α vDS

VDD−VT
vDS ≤ VDD − VT

(4.2)

where (VDD−VT) is the boundary between linear and saturation regions under step

input.

The main assumption in the delay approximation is that a constant satura-

tion current ID0 discharges the output voltage from vDS = VDD to VDD

2 .

tsn =

∆Q|“
vDS=VDD→

VDD
2

”

ID0
=

CL
VDD

2
k
2 (VDD − VT)α

Thus the Sakurai-Newton (SN) delay metric is [6],

tsn ≈
CLVDD

k(VDD − VT)α
(4.3)

Note that this metric is an approximation to the delay since the transistor is assumed

to be in saturation from vDS = VDD to VDD

2 . The assumption is weak, since under the

step input the transistor is in saturation region only from vDS = VDD to (VDD−VT).

From vDS = (VDD − VT) to 0, the transistor is in linear region. In this paper,

65

vGS

R

CL vDS

I(t)

Figure 4.1: The RC model of an inverter. Note that R is a nonlinear resistor
modeling transistor and CL is the load capacitance seen by the inverter.

we model the transistor operating in saturation and linear regions as a nonlinear

resistor R [59]. Thus the inverter can be modeled as an RC circuit [63] as shown

in Figure 4.1. For an RC tree, the Elmore delay is an upper bound on the actual

delay for any input waveform [64]. The theory behind the Elmore delay is discussed

in the next section.

4.2 Centroid of Current Based Delay

In this section, we first show that the Elmore delay of a CMOS gate is the centroid

of the current dissipated by it. Then we prove that the SN metric is the exact

Elmore delay of the CMOS gate. This key observation will inspire us to propose a

new delay metric in Section 4.3.

Lemma 1. The Elmore delay of a CMOS gate is the centroid of the current dissi-

pated by it when it is switching.

Proof. The Elmore delay is defined as the centroid of the impulse response h(t) of

the system [65]. The centroid xc of the function f(x) is defined as,

xc =

∫

x
x f(x) dx
∫

x
f(x) dx

66

Thus the Elmore delay is given by,

telmore =

∫∞

0 t h(t) dt
∫∞

0 h(t) dt
(4.4)

since
∫∞

0 h(t)dt = 1 for RC circuits with monotonic response [65] we can write (4.4)

as,

telmore =

∫ ∞

0
t h(t) dt (4.5)

Let H(s) denote the Laplace transform of h(t). The transfer function H(s) is

defined as the ratio of output to input voltages [66]. Since we assume a step input,

the transfer function reduces to,

H(s) =
VDS(s)

VGS(s)
=

VDS(s)
1
s

= sVDS(s)

We apply the Inverse Laplace transform to get the impulse response, h(t) = dvDS

dt
.

We know that the current discharged through the capacitor,

I(t) = CL
dvDS

dt

= CLh(t)

Hence under the RC model with the assumption of step input,

I(t) ∝ h(t) (4.6)

telmore =

∫∞

0 t I(t) dt
∫∞

0 I(t) dt
(4.7)

67

Thus the Elmore delay is shown as the centroid of the area under the current dis-

charged through the load capacitor.

We can now show the following result.

Theorem 3. The Sakurai-Newton delay approximation is the exact Elmore delay

of the CMOS gate under the following conditions:

(i) A step input is applied;

(ii) The CMOS gate is modeled as an RC circuit.

Proof. We provide proof for the case when the gate is discharging. The proof for

the case when the gate is charging is similar.

tsat

VDD

VDD − VT

0
t

vGS , vDS

vGS

vDS

s© l©

Figure 4.2: Inverter waveforms when the output is discharging. The input vGS is
a step input. The output vDS decreases linearly in the saturation region (till tsat)
and decays exponentially in the linear region (after tsat).

The input and output voltage waveforms associated with the discharging

inverter are shown in Figure 4.2. When a rising step input (vGS = VDD u(t)) is

applied to the inverter, the NMOS is on while the PMOS is off. The NMOS operates

in the saturation region when the output discharges from vDS = VDD to (VDD−VT)

68

and it operates in the linear region when the output discharges from vDS = (VDD−

VT) to 0. The time taken by the output vDS to reach (VDD−VT) is denoted as tsat,

the time at which the NMOS transistor switches from saturation to linear region of

operation.

The Elmore delay integral in (4.7) can be written as,

telmore =

∫ tsat

0 t iDSAT
dt +

∫∞

tsat
t iDLIN

dt
∫ tsat

0 iDSAT
dt +

∫∞

tsat
iDLIN

dt
(4.8)

To evaluate (4.8), we need closed form expressions for iDSAT
, iDLIN

, and tsat.

When the NMOS is saturated, the output voltage vDS decreases linearly from

VDD to (VDD − VT), shown as s© in Figure 4.2. The decrease is linear because the

current is a constant during that period which is given by,

iDSAT
=

k

2
(VDD − VT)α (4.9)

iD

R

CL vDS

I(t)

Figure 4.3: RC model with discharging current as a controlled current source.

When the output voltage vDS goes below (VDD −VT), the NMOS enters the

linear region of operation, shown as l© in Figure 4.2. The current in the linear

region can be written as,

iDLIN
= k(VDD − VT)α vDS

VDD − VT

=
vDS

R

69

where 1
R

= k(VDD − VT)α−1 is the resistance through which we discharge the load

capacitor CL as shown in Figure 4.3. We need an closed form expression for vDS to

evaluate iDLIN
. The output voltage vDS in the linear region is simply the voltage

seen at the capacitor of a first order RC circuit under the step input. Thus the

output voltage vDS in the linear region can be written as,

vDS = (VDD − VT)e
−(t−tsat)

RCL u(t− tsat)

Thus the current during the linear region of operation can be written as,

iDLIN
= k(VDD − VT)αe

−(t−tsat)
RCL u(t− tsat) (4.10)

Finally we need tsat, the time at which the NMOS switches from saturation

to the linear region. Applying Kirchhoff current law to the output in Figure 4.3,

−CL
dvDS

dt
=

k

2
(VDD − VT)α

−
∫ VDD−VT

VDD

dvDS =
k
2 (VDD − VT)α

CL

∫ tsat

0
dt

On integrating and simplifying we get,

tsat =
2CLVT

k(VDD − VT)α
(4.11)

Substituting the unknowns in (4.8), and evaluating the integrals we get,

telmore =

C2
LV 2

T

k(VDD−VT)α +
C2

L(V 2
DD−V 2

T)

k(VDD−VT)α

CLVT + CL(VDD − VT)

70

telmore =
CLVDD

k(VDD − VT)α
(4.12)

which is the same as (4.3). Thus the SN delay approximation is the exact Elmore

delay of the CMOS gate.

In the nanometer technologies, the velocity saturation constant α ≈ 1. Thus

(4.12) can be rewritten as,

telmore =
CL

k
(

1− VT

VDD

) (4.13)

The SN metric (4.13) fails to track the delay when the supply voltages are low [59].

Taur and Ning [59] presented a simple curve fitting metric that works across a wide

range of voltages. The Taur-Ning (TN) delay metric is given by,

ttn ∝
CL

(

0.7− VT

VDD

) (4.14)

where 0.7 is a numerical fitting parameter. The TN metric suffers from the drawback

of having higher absolute errors compared to the actual HSPICE delays. This is

further discussed in Section 4.4. Another drawback is that it is applicable only when

VT

VDD
≤ 0.5 [59]. This means it may not be applied to very low VDD designs.

4.3 Centroid of Power Based Delay

In this section, we derive a new metric based on the centroid of power (CP) which

overcomes the drawbacks of the SN and TN delay metrics.

The SN metric can roughly be thought of as a charge-based delay since we

integrate over current. The centroid of power can be thought of as an energy-based

71

delay since we integrate over power. The delay obtained by taking the centroid of

the power at the output can be written as,

tcp =

∫∞

0 t vDS iD dt
∫∞

0 vDS iD dt
(4.15)

Since the NMOS transistor is operating in two different regions, namely saturation

and linear regions, (4.15) can be written as,

tcp =

∫ tsat

0 t vDSSAT
iDSAT

dt +
∫∞

tsat
t vDSLIN

iDLIN
dt

∫ tsat

0 vDS iD dt +
∫∞

tsat
vDS iD dt

=

C2
L(3VDD−2VT)V 2

T

3k(VDD−VT)α +
C2

L(VDD+3VT)(VDD−VT)2

4k(VDD−VT)α

1
2CL(2VDD − VT)VT + 1

2CL(VDD − VT)2

which can be simplified to,

tcp =
CL(3V 3

DD + 3V 2
DDVT − 3VDDV 2

T + V 3
T)

6kV 2
DD(VDD − VT)α

(4.16)

The correlation between the centroid of power (CP) delay metric and the

HSPICE delay values is better than the correlation between the SN delay metric

and the HSPICE delay values. The correlation attains near perfection with a mod-

ification in the Taur-Ning spirit [59].

We found out empirically that 1
(VDD−VT)2

tracks the delay better than 1
V 2

DD

.

Substituting (VDD−VT)2 for V 2
DD in the denominator of (4.16), we get the modified

centroid of power (CPM) metric,

tcpm ∝
CL(3V 3

DD + 3V 2
DDVT − 3VDDV 2

T + V 3
T)

(VDD − VT)2(VDD − VT)α
(4.17)

72

The correlation between the CPM delay metric and the HSPICE delay values is

almost perfect. Also, the absolute error between the CPM metric and the HSPICE

delay values is significantly lower when compared with the other metrics discussed

in this paper. A possible reason for this near perfect tracking of delay is that the

gate overdrive is proportional to (VDD − VT) and not to VDD. An alternative way

to reason about this is the fact that 1
(VDD−VT)2

has a faster rate of change compared

with 1
V 2

DD

when VDD varies.

4.4 Experimental Results

We used the Berkeley Predictive Technology Model [31] for our simulations. The

simulations were run on the INV, NAND2, NOR2, XOR2 gates for their worst case

input. The load capacitance CL was varied from 20fF to 50fF. The supply voltage

VDD was varied from 2 × VT0 to 6 × VT0. The threshold voltage VT0 was varied

within ±10% of its original value. The simulations were run on 45nm, 65nm, and

90nm technologies. Thus nearly 200 simulations were run on each gate for a given

technology under its worst case input.

Table 4.1: The correlation of HSPICE delay values with the delay metrics across
different technologies and gates. The HSPICE delay of a gate is measured for its
worst case input combination.

Gate 45nm 65nm 90nm
SN TN CP CPM SN TN CP CPM SN TN CP CPM

INV 0.76 0.97 0.81 0.99 0.76 0.95 0.82 0.99 0.90 0.99 0.94 0.98
NAND2 0.72 0.95 0.76 0.99 0.73 0.91 0.77 0.99 0.83 0.96 0.87 1.00
NOR2 0.73 0.96 0.78 0.99 0.75 0.92 0.80 0.99 0.90 0.99 0.93 0.99
XOR2 0.71 0.95 0.76 0.99 0.71 0.90 0.76 0.98 0.90 0.97 0.93 1.00

73

145

150

155

160

165

170

175

180

185

190

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

t[
p
s
]

VDD[V]

spice
tsn

ttn
tcp

tcpm

Figure 4.4: HSPICE delay and the values predicted by the delay metrics for INV in
65nm technology under nominal supply voltages. The solid line is the HSPICE delay
values and the dotted lines are the delays predicted by the various metrics. The VDD

was varied with load capacitance CL = 20fF and threshold voltage VT0 = 0.22V .
Note that all the delay metrics track under nominal supply voltages.

The delay values predicted by the metrics were scaled by a constant value c.

The constant c is obtained using linear regression. Suppose di is the delay obtained

from HSPICE during the i th simulation and xi is the delay predicted by the metric,

c is obtained on minimizing
∑

i(di − cxi)
2. Note that c changes as we take more

samples of the parameters across a wider range. Thus a metric might be able to

track the delay across small variations of supply voltage but it may not be able

Table 4.2: The percentage error between HSPICE delay values and the delay metrics
across various technologies and gates. A line was fitted to the data points predicted
by the delay metric. In this table the average min, max estimation error percentage
is shown.

Gate 45nm (%) 65nm (%)
SN TN CP CPM SN TN CP CPM

INV −161, 97 −41, 26 −139, 76 −14, 10 −94, 68 −37, 27 −78, 54 −9, 7
NAND2 −275, 137 −82, 45 −240, 112 −32, 14 −153, 91 −69, 43 −130, 76 −22, 11
NOR2 −209, 111 −59, 35 −181, 92 −19, 11 −112, 73 −50, 34 −96, 61 −13, 8
XOR2 −271, 141 −80, 47 −236, 115 −31, 15 −151, 94 −68, 45 −129, 79 −22, 13

74

100

200

300

400

500

600

700

800

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

t[
p
s
]

VDD[V]

spice
tsn

ttn
tcp

tcpm

Figure 4.5: HSPICE delay and the values predicted by the delay metrics for INV in
65nm technology. The solid line is the HSPICE delay values and the dotted lines
are the delays predicted by the various metrics. The VDD was varied with load
capacitance CL = 20fF and threshold voltage VT0 = 0.22V . Note that only CPM
can track the delay in the lower voltages while TN can track to quite an extent, the
other two metrics SN and CP cannot track it.

to track delay under large variations of supply voltage. This is illustrated in the

Figures 4.4 and 4.5.

In Figure 4.4, the CMOS gates operate under nominal supply voltages,

VDD = 4 × VT0 to 6 × VT0 all the delay metrics correlate to HSPICE reasonably

well. However, when the supply voltage drops below VDD = 4×VT0, only the CPM

metric is able to track the delay well shown in Figure 4.5. The data is taken for

an inverter in 65nm technology by varying the supply voltage VDD from 2× VT0 to

6× VT0 and fixing the other circuit parameters.

The data obtained from other gates across various technologies and circuit

parameters such VDD and VT yield similar results to Figure 4.5. There are two

things to note in this figure:

75

1. The correlation measures the relative error. Intuitively, the relative error gives

an estimate of how close the shape of the predicted delay curve is to the actual

delay obtained from HSPICE simulations.

2. The estimation error gives the absolute difference between the predicted delay

and the actual delay obtained from HSPICE simulations.

To visualize the performance of delay metrics with respect to the above two

characteristics, we use a scatter plot. The scatter plot of different delay metrics

versus the actual delay values for INV in 65nm technology is shown in Figure 4.6.

The data points are obtained by varying different circuit parameters. We

fitted a line through the data points to obtain the constant of proportionality in the

delay metrics. We then obtained the estimation error between the fitted line and

the HSPICE delay values. The correlation is shown as corrcoef and the estimation

error is shown as ‘Average error’ in the scatter plot. From the scatter plot it is clear

that the CPM delay metric has the highest correlation and the lowest estimation

error among all the delay metrics.

Table 4.1 summarizes the correlation coefficient of different delay metrics

for various gates across the technologies. The correlation was taken between the

actual HSPICE delays and the delay metric. From the table, we observe that the

correlation coefficient of the CPM metric is consistently greater than 0.98, which is

not exhibited by the other delay metrics. The estimation errors are tabulated in

Table 4.2.

76

4.5 Summary

In this work, we proposed a new closed form delay metric based on the modified

centroid of dissipated power. This new metric is inspired by our key observation

that the SN delay can be viewed as the centroid of current. We also provide a

theoretic proof that the SN delay is the Elmore delay of a CMOS gate when a

gate is modeled as an RC circuit. The proposed metric has a very high correlation

coefficient (≥ 0.98) when correlated with the actual delays got from the HSPICE

simulations. Such high correlation is consistent across all major process technologies.

77

0
2e-14
4e-14
6e-14
8e-14
1e-13

1.2e-13
1.4e-13
1.6e-13
1.8e-13

2e-13

0 5e-10 1e-09 1.5e-09 2e-09 2.5e-09

t s
n

HSPICE delay t[s]

corrcoef = 0.76
Average error = [−94%, 68%]

(a) Sakurai-Newton

0

5e-14

1e-13

1.5e-13

2e-13

2.5e-13

3e-13

3.5e-13

4e-13

0 5e-10 1e-09 1.5e-09 2e-09 2.5e-09

t t
n

HSPICE delay t[s]

corrcoef = 0.95

Average error = [−37%, 27%]

(b) Taur-Ning

0

1e-13

2e-13

3e-13

4e-13

5e-13

6e-13

7e-13

8e-13

0 5e-10 1e-09 1.5e-09 2e-09 2.5e-09

t c
p

HSPICE delay t[s]

corrcoef = 0.82

Average error = [−78%, 54%]

(c) Centroid of Power

0
2e-13
4e-13
6e-13
8e-13
1e-12

1.2e-12
1.4e-12
1.6e-12
1.8e-12

2e-12
2.2e-12

0 5e-10 1e-09 1.5e-09 2e-09 2.5e-09

t c
p
m

HSPICE delay t[s]

corrcoef = 0.99
Average error = [−9%, 7%]

(d) Modified Centroid of Power

Figure 4.6: Scatter plot of different delay metrics with the HSPICE delay for INV in
65nm technology. Since we have not multiplied by the constant of proportionality,
no units are provided for the y-axis.

78

Chapter 5

Sleep Transistor Sizing

Till now we have focused on improving the accuracy in analyzing digital integrated

circuits, with special emphasis on analyzing the timing of chip. Apart from accu-

rately analyzing the timing of a chip, another major concern is improving its timing.

One way to improve timing is to scale down the threshold voltage (Vth). But scaling

down the threshold voltage (Vth) exponentially increases the subthreshold leakage

current [4]. One of the techniques to reduce subthreshold leakage is power gat-

ing [7]. Power gating is a circuit technique in which the source nodes of the gates in

the functional block which were grounded are connected to the drain of the NMOS

sleep transistor. In the active mode, the sleep transistor is turned on to retain the

functionality of the circuit. In the sleep mode, the sleep transistor is turned off,

and the source nodes of the gates in the functional block float, thus cutting off the

leakage path. Sleep transistor sizing is one of the major challenges in power gated

circuits. If we overestimate the size we end up wasting silicon area and increasing

the switching energy. If we underestimate the size, the required performance may

not be achieved due to the increased resistance to the ground [7].

79

sleep

Vsleep

Functional
block

VDD

Figure 5.1: Power gating

Functional
block

VDD

Vsleep

I(t)
Rsleep

Figure 5.2: Sleep transistor as a resistor

In the literature, various methods have been proposed to size the sleep tran-

sistor. In [67], module based design was proposed where a single sleep transistor is

used for the entire circuit. In [68], the circuit is partitioned into clusters to mini-

mize the maximum simultaneous switching current. Each cluster has an individual

sleep transistor. In [69], all the individual sleep transistors are wired together and

the resulting mesh is called the distributed sleep transistor network (DSTN). The

discharging current is shared by the sleep transistor network which reduces the size

80

of the sleep transistor. The sizing in all the above methodologies is based on the

maximum worst case switching current Ipeak [69].

It was shown that the sleep transistor can be approximated by a linear re-

sistor [7] that creates a finite voltage drop Vsleep ≈ RsleepI(t), where I(t) is the

switching current through the sleep transistor as shown in Fig. 5.2. It is important

to notice that different gates in a given path will see switching currents of different

magnitudes through the sleep transistor. The delay of a gate is inversely propor-

tional to the gate drive VGS = VDD−Vsleep = VDD−RsleepI(t) [6]. To the first order,

we can state that the penalty experienced by each gate due to the sleep transistor is

proportional to the current I(t) flowing through the sleep transistor when the gate

is switching. Hence if we are able to estimate I(t) efficiently, we can use I(t) to

size the sleep transistor instead of Ipeak which penalizes different gates in a path

uniformly.

In this work, we make the following contributions:

• An efficient method to estimate the temporal switching current I(t) of the

circuit.

• Sleep transistor sizing making use of timing criticality and temporal switching

current I(t) of the circuit, and

The results obtained indicate that our proposed technique results in area reduction

of sleep transistors by 80% and 49% compared to module-based design and cluster-

based design respectively.

81

5.1 Sizing the sleep transistor

The delay of a gate (τd) can be expressed as [6]:

τd ∝
CLVDD

(VDD − VthL
)α

(5.1)

where CL is the load capacitance at the gate output, VthL
is the low threshold which

is 0.7V , VDD = 3.3V , and the velocity saturation index α ≈ 1 for 0.18µm CMOS

technology.

The delay of a gate with the sleep transistor can be expressed as,

τ
sleep
d ∝ CLVDD

((VDD − Vsleep)− VthL
)α

(5.2)

where Vsleep is the potential of the virtual ground as shown in Fig. 5.1. Let τ
sleep
d =

(1 + ∆)τd, where ∆τd is the penalty due to the sleep transistor. Applying Taylor

series to the denominator and approximating the sleep transistor as a linear resistor

Rsleep [7], the penalty can be written as,

∆τd ∝
Vsleep

VDD − VthL

τd =
RsleepI(t)

VDD − VthL

τd (5.3)

where I(t) is the switching current through the sleep transistor.

A path in a circuit consists of various gates and these gates experience dis-

charging currents of different magnitudes. From Eq. (5.3), we find that the penalty

for a gate due to the sleep transistor is proportional to I(t). The delay penalty for

a path (τpath
penalty) consisting of various gates can be written as,

τ
path
penalty =

(
Rsleep

VDD − VthL

)
∑

gate∈path

Ilocal,maxτd (5.4)

82

where τd is the delay of the gate without the sleep transistor and Ilocal,max is defined

as,

Ilocal,max = max
[t1,t2]

I(t) (5.5)

where [t1, t2] is the time interval over which the gate switches. Notice that the

Ilocal,max is the maximum local temporal current over the discharging timing window

of the gate. We differ from the previous methodologies in this respect since they

use maximum global current Ipeak. Rearranging Eq. (5.4),

Rsleep =
(VDD − VthL

) τ
path
penalty

∑

gate∈path Ilocal,maxτd

(5.6)

The current through the linearly-operating sleep transistor can be approximated

as [68],

Isleep ≈ µnCox

(
W

L

)

sleep

(VDD − VthL
)Vsleep

where µn is the mobility of electrons and Cox is the oxide capacitance. Since the

sleep transistor is operating in the linear region, then Rsleep ≈ Vsleep

Isleep
. Then, the size

of the sleep transistor can be written as,

(
W

L

)

sleep

=
1

µnCox(VDD − VthL
)Rsleep

(5.7)

Thus if Rsleep is known, the Wsleep can be determined directly. To determine Rsleep,

we need an estimate of the temporal current flowing through the sleep transistor.

The temporal current estimation technique is described next.

83

5.2 Temporal Current Estimation

We present a technique to estimate the worst case current discharged by a circuit.

The current estimation technique requires timing windows of each gate, and the

current expected to be discharged by each gate. The timing windows are obtained

using PrimeTime [70]. The expected discharge current (Iexp) of a gate is adapted

from [68] and the pseudocode is shown below:

Find-Expected-Current(gate)

1 Find Ipeak for each gate in the library using HSPICE

2 Iexp = αs × Ipeak ¤ αs is the switching factor

3 return Iexp

The switching factor αs is defined as the probability of the output (Y) switching.

Thus αs for falling output is,

αs = P{Y = 1→ 0|Y = 1} × P{Y = 1}

We illustrate Iexp calculation using OR2. The switching factor αs = 1
4 × 3

4 = 3
16 .

From HSPICE simulations, we find that the Ipeak = 0.72ma. Thus the expected

current for an OR2 gate in our library is, Iexp = αs×Ipeak = 3
16×0.72ma = 0.12ma.

After calculating Iexp for all the gates in our library we can use it for esti-

mating switching current of a circuit. The pseudocode is presented below:

84

Estimate-Switching-Current(circuit)

1 Run PrimeTime on the circuit to get timing windows

2 I(t)← 0

3 for every gate in the circuit

4 do Iexp ← Get-Expected-Current(gate)

¤ Illustrated in Fig. 5.4

5 Igate(t)← timing windows bounded by Iexp

6 I(t)← I(t) + Igate(t) ¤ Illustrated in Fig. 5.5

7 return I(t)

We bound both falling and rising timing windows by the falling Iexp. The assumption

is safe, since for any gate, the worst case falling current through ground is always

bigger than the short circuit current when the output rises. The switching factor

αs is the same for both falling and rising transitions.

To illustrate the current estimation procedure, consider the 1-bit carry looka-

head adder (CLA) shown in Fig. 5.3. The timing analyzer PrimeTime is run on

this circuit to obtain the timing windows shown in Table 5.1. Fig. 5.4 shows the

currents associated with each timing window. To illustrate reading Fig. 5.4, con-

sider the OR2 gate O1 in Fig. 5.3. The falling window for O1 from Table 5.1 is

[73.92, 260.11]ps. The Iexp of O1 is 0.12ma. Thus we have bounding rectangle of

current 0.12ma over [73.92, 260.11]ps as shown in Fig. 5.4. Finally, the currents

across all the timing windows are summed up to find the total discharging current

of 1-bit CLA shown in Fig. 5.5. Once the temporal switching current I(t) has been

estimated we can use that current to size the sleep transistor.

85

an

bn

carryn−1

sumn

carryn

X1

A1

X2

A2

O1

Figure 5.3: 1-bit CLA

Table 5.1: Timing windows for 1-bit CLA (time unit is ps)

Gate risemin risemax fallmin fallmax

X1 98.90 107.52 104.24 183.28

A1 51.52 56.33 42.82 43.01

X2 83.22 290.10 132.75 277.42

A2 58.31 168.80 46.43 232.62

O1 123.60 234.09 73.92 260.11

5.3 Timing Criticality Based Sizing

When a sleep transistor is inserted in a circuit, the performance of the circuit is

penalized by the reduction in driving voltage as evident in the Eq. (5.2). At a

macroscopic level, this penalizes the paths. Thus if we can guarantee that the worst

case path in the circuit, with sleep transistor switched on, satisfies the performance

constraints, then we can guarantee the performance of all the paths in the circuit.

There are two potential problems in sizing the sleep transistor based on

paths. First, the number of paths in a circuit is exponential in size. Second, the

worst case path for CMOS need not be the worst case path in MTCMOS [67]. To

overcome the above two problems, we use a heuristic from static timing analysis

(STA). The path based STA uses the top K worst paths to generate the circuit

delay, the maximum of all path delays [70]. This idea is adapted to sleep transistor

sizing, and the pseudocode is shown below.

86

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350

Iexp

(ma)

t(ps)

Iexp(O1) = 0.12ma over [73.92, 260.11]ps

?

Figure 5.4: Iexp bounding the falling and rising timing windows of each gate (Ta-
ble 5.1) in a 1-bit CLA. Refer to Estimate-Switching-Current line 5

Size-Sleep-Transistor(circuit , K)

1 Run PrimeTime on the circuit to get critical paths

2 Rsleep ←∞

3 for path ← 1 to K ¤ Size using top K critical paths

4 do Rpath ← Size using Eq. (5.6)

5 Rsleep ←Min(Rsleep, Rpath)

6
(

W
L

)

sleep
← Size using Rsleep in Eq. (5.7)

7 return
(

W
L

)

sleep

To illustrate the sizing procedure, consider one of the worst case paths in the 1-

bit CLA as shown in Table 5.2. τd in Table 5.2 is the delay experienced by each

gate without the sleep transistor. Ilocal,max in Eq. (5.6) differs for each gate in the

path and it is obtained by looking up I(t). For example, Ilocal,max for X2 is the

maximum current discharged in the range [183.28, 277.42]ps. As shown in Fig. 5.5,

the maximum current that flows in the above range is Ilocal,max(X2) = 0.92ma.

87

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350

I(t)

(ma)

t(ps)

Ilocal,max(X1) = 1.3ma

Ilocal,max(X2)
= 0.92ma

I(t)
Ilocal,max

Figure 5.5: The estimated current discharge I(t) of a 1-bit CLA got by summing
up all the currents in Fig. 5.4. Refer to Estimate-Switching-Current line 6.
Also shown are the local maximum currents seen by the gates X1 and X2. Refer to
Eq. (5.5). Note that by using local maximum instead of global maximum we reduce
the size of the sleep transistor

Note that we are using a local maximum to bound the current instead of the global

maximum that is used in previous methodologies. The above procedure is repeated

for all gates in the path. Fig. 5.5 shows the local maximum currents seen by the

gates X1 and X2 of the 1-bit CLA in Fig. 5.3.

Table 5.2: A worst case path in 1-bit CLA

Gate τd(ps) τ
path
d (ps) fall/rise

X1 183.28 183.28 fall

X2 94.13 277.42 fall

tarrival 277.42

88

To illustrate the calculation of Rpath, consider the path through X1 and X2.

Let the penalty be 5% of the delay (0.05× tarrival).

Rpath =
(3.3− 0.7) (0.05× 277.42ps)

183.28ps× 1.3ma + 94.13ps× 0.92ma
= 111Ω

To illustrate the calculation of Wsleep we will assume the above Rpath as the

minimum resistance Rsleep obtained.

(
W

L

)

sleep

=
1

1.25× 10−4(3.3− 0.7)111
= 27.77λ

Let Lsleep = 2λ and we get Wsleep = 55.55λ ≈ 56λ, where λ = 0.1µm.

An important observation is that only the falling inverting gates are affected

by the NMOS sleep transistor. Thus we penalize only the falling inverting gates in

a path. Since the non-inverting gates in our library are a series combination of the

inverting gate and the inverter, only the rising non-inverting gates are penalized.

5.4 Results

The proposed sleep transistor sizing methodology has been implemented and its

results are presented for various benchmark circuits. We use 0.18µm CMOS tech-

nology with VDD = 3.3V , VTL
= 0.7V , and VTH

= 0.9V . Lsleep is set to 0.2µm. The

number of paths used to size the sleep transistor is set to K = 100 since K > 100

did not make any significant difference to the sizing.

In Table 5.3 under Module column, we compare our proposed module based

sizing with module based sizing [67]. We obtain a sleep transistor area improve-

ment of 80% on an average over [67], since the proposed methodology has a global

objective of satisfying performance for every path of the circuit while module based

89

Table 5.3: Comparison of Wsleep obtained using module and cluster based design for
5% performance degradation. The unit is λ = 0.1µm.

Circuit Module (λ) Cluster (λ)
[67] Proposed [68] Proposed

CLA4 825 125 204 127

Parity checker 960 235 369 284

Wallace tree 1365 427 1201 698

c432 3438 475 1272 385

c499 3840 1171 2094 1351

methodology has a restrictive local objective of satisfying performance for every gate.

This coupled with the usage of I(t) instead of Ipeak leads to vast improvements in

sizing.

In Table 5.3 under Cluster column, we compare our proposed cluster based

sizing with cluster based sizing [68]. We cluster such that the critical path is entirely

within a single cluster. To discuss the results for clustering, we need to define

slack. The slack in cluster cj (Scj
) for 5% performance penalty is defined as, Scj

=

1.05×CPcircuit −CPcj
, where CPcircuit is the critical path in the entire circuit and

CPcj
is the critical path in cluster cj . Suppose the entire circuit is divided into

two clusters c1 and c2. Let c2 contain the critical path which implies c1 has more

slack. This slack can be exploited to size the sleep transistor even smaller in c1.

Since we also size based on I(t) instead of Ipeak we obtain an sleep transistor area

improvement of of 49% on an average over [68].

In Table 5.4, we compare the sizes obtained using the proposed module and

proposed cluster method. The circuits in Table 5.4 have gate counts numbering a

few thousand, and have unbalanced paths. The presence of unbalanced paths is

90

Table 5.4: Comparison of Wsleep obtained using proposed methods for 5% perfor-
mance degradation. The unit is λ = 0.1µm.

Circuit Proposed (λ)
Module Cluster

c880 638 509

c1908 479 457

c3540 1979 1933

c7552 12955 8325

ideal for clustering as discussed earlier with regard to slack. The results validate

our intuition that clustering is better for bigger circuits.

The results were verified with HSPICE simulations using random input vec-

tors and also using input vectors that exercise top K critical paths.

5.5 Summary

We have introduced a new path based methodology to size sleep transistors using

temporal currents and timing windows. We have also proposed an efficient method

to estimate the temporal switching current I(t) of the circuit. The results obtained

indicate that our proposed technique results in area reduction of sleep transistors

by 80% and 49% compared to module based design and cluster based design respec-

tively.

91

Chapter 6

Power Grid Analysis using

Behavioral Modeling of

Transistors

As technology is scaled aggressively the increase in transistor density leads to an

increase in power density in a chip. Power consists of two components: leakage

power and dynamic power. The dynamic power is directly proportional to the num-

ber of transistors switching at a given time. As transistors switch they consume

power from the power supply grid, leading to fluctuation in supply voltage from its

constant value. This voltage fluctuation, also called a voltage transient, decreases

a circuit’s performance, since lower the voltage, worse is the performance. An im-

portant challenge is knowing how to estimate the voltage transients in the power

supply grid efficiently. In this chapter, we focus on analyzing these voltage tran-

sients and this is called the power grid analysis. The solution techniques currently

available for power grid analysis rely on a model of representing the transistor net-

92

work as a current source [71]. This simplification enables decoupling the transistor

network from the power grid. The most significant advantage of this simplification

is that the power grid problem mathematically reduces to solving a linear system of

equations. Thus we can apply techniques from numerical linear algebra to solve the

linear system of equations arising from the power grid [72–79]. Hierarchical analysis

has also been used to analyze power grid [80,81]. In hierarchical analysis, the power

grid is partitioned and a macromodel is created for each partition. The macromodel

makes the problem of analyzing large power grids tractable. Since the determin-

istic techniques mentioned above solve the entire system, they are not suitable for

incremental analysis. The need for incremental analysis gave rise to stochastic tech-

niques such as random walk [82–84]. Stochastic techniques have also been applied to

study the effect of process variations on the power grid [85–88]. When a transistor

switches on and connects to the grid, the charge that is supplied to the transistor

comes from the capacitors nearby. This locality effect has been exploited to design

fast algorithms [89,90]. Methods have also been proposed for power grid analysis in

the context of floorplanning [91,92].

In the literature reviewed so far, the nonlinear transistor network is modeled

as a current source which results in a linear system of equations. But this modeling

might lead to pessimism in the voltage drop prediction. In Figure 6.1, we illustrate

a voltage drop at a node in a power grid. In the current source model, we replace

the transistor network with time-varying current sources which model the switching

current drawn from the grid. The current source model does not accurately model

the decoupling capacitances provided by the PMOS transistors which are already on

and currently not switching. This leads to pessimism in the voltage drop predicted.

93

There is a difference of 0.025V in the voltage drop predicted in one of our benchmark

circuits.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3 0.4 0.5

v
(t

)

t[ns]

SPICE
Current Source Model

Figure 6.1: The voltage drop at a node from SPICE simulation and the current
source based approach. There is a difference of 0.025V in the voltage drop predicted.

We summarize the disadvantages in modeling the transistor network as a

current source:

1. When a PMOS transistor switches and connects to the power grid, some of

the charge is supplied by the PMOS transistors that are already on. These

PMOS transistors which are already on, act much like a “decoupling capaci-

tance” in the power grid. By ignoring or incorrectly modeling this local charge

sharing effect, the designer is likely to overestimate the amount of decoupling

capacitance needed. This leads to wastage of power and silicon area. The local

charge sharing effect is not correctly captured in the current source model.

2. The number of transistors that get switched on differs from cycle to cycle. This

implies that the amount of capacitance seen by the power grid also varies from

cycle of cycle. The time-varying capacitance is not captured in the current

source model.

94

The modeling of transistor network with respect to the power grid has re-

ceived little attention. In this work, we focus on the modeling aspect of the transistor

network which results in an accurate power grid analysis.

The contributions of this work are summarized below:

• We analyze the power grid by modeling the transistor network accurately

instead of replacing the transistor network with a time-varying current source.

• The transistor is modeled as a simple switch in series with a RC circuit.

The switch is modeled behaviorally as a Norton current source model. The

behavioral modeling of the switch is the key element in making the proposed

simulation efficient. Note that modeling the switch as a PWL resistor leads

to convergence problems associated with abrupt non-linearities [93].

• The proposed model offers the middle ground between the accuracy of SPICE

simulation and the speed of the current source model.

It should be noted that we have adapted techniques from the literature but

the overall flow is original.

6.1 Power Grid Preliminaries

We adapt the power grid modeling described in [71] where the power grid is modeled

as a passive Linear Time Invariant (LTI) network consisting of resistors, inductors,

and capacitors. Since the ground grid is symmetrical we restrict our analysis to the

power grid alone [94]. The power grid can be described using the Modified Nodal

Analysis (MNA) formulation [95]:

GV (t) + C
dV (t)

dt
= I(t) (6.1)

95

where

• G ∈ R
m×m is the conductance matrix which depends on the topology of the

circuit. Also, m denotes the number of nodes in the power grid and the

transistor network.

• C ∈ R
m×m is the admittance matrix resulting from capacitive and inductive

elements.

• V (t) ∈ R
m is a time-varying vector of voltages at the nodes.

• I(t) ∈ R
m has two kinds of rows [74]:

1. Rows with positive VDD value corresponding to the nodes connected to

voltage sources;

2. Rows with 0, correspond to all other nodes.

Since we restrict our attention to the voltages, we ignore the KCL equations around

the voltage sources. If all the voltage sources are grounded, this results in the

conductance matrix G which is positive definite and it can be shown to be a M-

matrix [74]. This gives rise to efficient methods for solving the linear system [29,96].

The ordinary differential equation in Eq. (6.1) can be solved in time domain

using Backward Euler technique [95]. We use the Norton current source as the

associated discrete circuit (ADC) model for both capacitor and inductor. This is

because Thevenin’s voltage source is not suited for MNA [95] since for every voltage

source we need an extra row in the conductance matrix.

On applying ADC to the energy-storage elements, we get:

(

G +
C

h

)

V (t + h) = I(t + h) +
C

h
V (t) (6.2)

96

where h is the time-step taken in the transient simulation.

If we fix the time-step h to be a constant, then the matrix
(
G + C

h

)
turns

out to be a constant for the entire duration of simulation. This leads to greater

efficiency in the transient solve since we need just one LU factorization of
(
G + C

h

)

for the entire transient simulation and the cost can be amortized over many runs of

the transient simulation. The nodal voltages at each time point in the transient is

got by a Forward-Backward Solve (FBS) which is O(m2) compared to O(m3) for a

direct solve [33].

6.2 Transistor Network Modeling

In this section, we describe our transistor network modeling. We differ from the

literature by modeling the transistor not as time-varying current source but as a

simple RC circuit [97]. The transistor is connected to the power grid through a

switch as shown in Figure 6.2.

RPMOS1

CL1

RPMOSn

CLn

Figure 6.2: Transistor is modeled a simple switch in series with a RC circuit. Note
that if a transistor gets switched on to the grid node, some of the charge will come
from transistors which are already on which is not captured in previous models.

97

The advantage of this modeling is that it can accurately capture the self-

loading effects of the transistor and the charge-sharing among the switching tran-

sistors. But the major disadvantage of this modeling is that based on whether the

switch is on or off, the topology changes, leading to a different
(
G + C

h

)
matrix

during every switching instant. This makes the conductance matrix non-constant

and it will make the transient simulation inefficient. To make the matters worse,

if we have k transistors modeled as switches then potentially we have 2k different

topologies [98]. This fact is illustrated by building conductance matrices for the

circuits in Figure 6.3 and Figure 6.4 which differ only in the state of the switch.

−
+VDD

1 Rx 2

Ry

Figure 6.3: Network having an open switch. The topology due to an open switch
is different when compared to a closed switch in Figure 6.4. This leads to the
conductance matrix Gopen.

The MNA matrix equations corresponding to the circuit in Figure 6.3 con-

taining an open switch is given by

1 2

1 1 0

2 0 1
Ry

V1

V2

 =

VDD

0

GopenV = I (6.3)

98

−
+VDD

1 Rx 2

Ry

Figure 6.4: Networks having a closed switch. The topology due to a closed switch
is different when compared to an open switch in Figure 6.3. This leads to the
conductance matrix Gclose.

The MNA matrix equations corresponding to the circuit in Figure 6.4 con-

taining a closed switch are given by

1 2

1 1 0

2 − 1
Rx

1
Rx

+ 1
Ry

V1

V2

 =

VDD

0

GcloseV = I (6.4)

Note that we drop the KCL equations around the voltage node 1 since we are

interested only in the voltage at any given node. It is clear from Eq. (6.3) and

Eq. (6.4), depending on whether the switch is closed or open we get a different

conductance matrix G.

In the next section, we describe a technique to keep the conductance matrix
(
G + C

h

)
in the MNA formulation in Eq. (6.2) a constant, irrespective of the state

of the switches and thus get back the efficiency achieved by having a constant

conductance matrix.

99

6.3 Behavioral Switch Modeling

In this section, we describe a discrete-time approximation to the ideal switch which

models the switch behaviorally. This renders the conductance matrix
(
G + C

h

)
in

the MNA formulation in Eq. (6.2) a constant, irrespective of the state of the switches.

6.3.1 Ideal switch

The ideal switch shown in Figure 6.5 has zero resistance when on and infinite re-

sistance when off. Also the ideal switch can move from one to state to another

instantaneously. This change in resistance causes a change in topology and hence

we get different conductance matrices.

+
is

−
vs

Figure 6.5: Ideal switch.

But from the view of simulation, the behavior of the ideal switch (s) can be

captured by the following equations:

s = open⇔ is = 0 (6.5)

s = short⇔ vs = 0 (6.6)

This behavioral modeling of switch is a key in achieving efficiency in power grid

simulation.

100

6.3.2 ADC for an approximate switch model

The industry standard circuit simulators like SPICE use a two-valued resistor for

modeling the transistor switch. But this leads to convergence problems and long

execution times for stiff networks [99]. For an efficient simulation with switches, we

just need to model the behavior of the switch as captured in Eq. (6.5) and Eq. (6.6).

We now describe Approximate Discrete Circuit (ADC) for an approximate

model of switch. This was independently developed by Hui and Morrall [100], and

by Pejović and Maksimović [101] in 1994, motivated by the switching power system

simulations.

Before describing the ADC formally, it will be instructive to understand what

makes the conductance matrix a constant irrespective of the state of the switches.

To illustrate, consider the circuits in Figure 6.3 and Figure 6.4. We would like to

have the same conductance matrix for both the circuits since they differ only in the

state of the switch.

Let the switch be modeled by a voltage source (vs) in series with a finite

resistance (rs) as shown in Figure 6.6.

−
+VDD

1 −+

vs
is 2 rs 3 Rx 4

RySwitch Model

Figure 6.6: Modeling a switch with a voltage source. By varying the value of the
voltage source, we can simulate the on or off behavior of the switch. Since we are
changing only the value of the voltage source, the conductance matrix remains the
same irrespective of the state of the switch.

101

Applying KVL to the circuit in Figure 6.6, we get,

−VDD − vs + is(rs + Rx + Ry) = 0 (6.7)

To simulate the switch being open (s = 0) we need is = 0 as in Eq. (6.5).

This can be easily achieved by setting vs = −VDD. Similarly, to simulate the switch

being short (s = 1), we set vs = 0. Thus by changing the value of the voltage

source we can simulate the behavior of a switch without changing the topology of

the circuit. This is the intuition behind the switch modeling.

The above intuition is formalized by writing out the MNA equations for the

circuit in Figure 6.6.

1 2 3 4

1 1 0 0 0

2 −1 1 0 0

3 0 − 1
rs

1
rs

+ 1
Rx

− 1
Rx

4 0 0 − 1
Rx

1
Rx

+ 1
Ry

V1

V2

V3

V4

=

VDD

vs

0

0

(6.8)

By setting vs to 0 or −VDD in the RHS of Eq. (6.8) we can simulate the switch?s

being on or off. Note that the conductance matrix on LHS remains a constant

irrespective of the state of the switches.

6.3.3 Current source based ADC for switch

Since MNA lends itself more naturally to a current source compared to a voltage

source [95], we use a current source instead of a voltage source to simulate the state

of a switch. The ADC for an approximate switch model is shown in Figure 6.7. The

102

ADC of an approximate switch can be thought of as a linearized, discrete equivalent

circuit of a nonlinear resistor [101].

+
i
(n+1)
s

rs j
(n+1)
s

−
v

(n+1)
s

Figure 6.7: Associated Discrete Circuit (ADC) of an approximate switch model.
The superscript (n + 1) refers to the simulation step.

The state of the switch is captured by changing the value of the current

source j
(n+1)
s . This is similar to changing the value of voltage captured in Eq. (6.7).

In our simulations, we modeled the switch as a current source as shown in Figure 6.7.

The behavioral model of the switch is given by [101]:

j(n+1)
s =

−i
(n)
s if s(n+1) = 0,

v
(n)
s

rs
if s(n+1) = 1.

(6.9)

Note that we use v
(n)
s

rs
when s(n+1) = 1 instead of 0 as we had discussed in the

example above. But when the switch is closed there is almost no voltage drop

across the switch. Hence v
(n)
s ≈ 0 and thus consistent with our intuition. We

adopt this notation to ensure consistency with the power electronics literature. The

efficiency of our proposed algorithm compared to SPICE depends on this behavioral

modeling of the switch. We show that the algorithms previously presented in the

literature can be applied to our new model without significant change. This is done

by proving that the resultant conductance matrix G is a M-matrix.

103

6.3.4 Conductance matrix is a M-matrix

Definition 6.3.1 (M-matrix). A matrix A ∈ R
m×m is an M-matrix if it sat-

isfies the following conditions: (1) aii > 0 ∀i; (2) aij ≤ 0 ∀i 6= j; (3) aii ≥
∑

j 6=i |aij | ∀i; (4) aii >
∑

j 6=i |aij | for at least one i;

Theorem 4. The conductance matrix A = (G + C

h
) obtained by modeling switch

by its ADC is an M-matrix.

Proof. We need to demonstrate that the conductance matrix A satisfies all the four

conditions in Definition 6.3.1.

The first condition is aii > 0 ∀i. This is satisfied due to the MNA stamp-

ing [95]. The diagonal entries of A is given by

aii =
∑

j∈nodes

gij +
ci

h
(6.10)

By definition, a node is a junction of at least two elements. This implies the RHS of

Eq. (6.10) has at least two distinct entries. Since the conductances and capacitances

are positive values, we can conclude that the first condition aii > 0 ∀i holds for

our conductance matrix A.

The second condition is aij ≤ 0 ∀i 6= j. This is again satisfied due to the

MNA stamping?in other words, it is correct by construction. The only exception

comes when there is a voltage source connected to the node. KCL needs to account

for the current through the voltage source (ivs). In MNA stamping, it turns out

that the coefficient of ivs is +1 causing the second condition to fail. Since we are

interested only in the voltages at a given node, this situation is avoided by ignoring

the KCL around the node connected to the voltage source.

104

The third condition is aii ≥
∑

j 6=i |aij | ∀i. This follows from Eq. (6.10).

aii =
∑

j∈nodes

gij +
ci

h

=
∑

j∈nodes

|gij |+
ci

h
(Since gij is positive, gij = |gij |)

≥
∑

j∈nodes

|gij | ≥
∑

j 6=i

|gij |

=
∑

j 6=i

|aij | (Since aij = gij ∀i 6= j) (6.11)

The fourth condition is aii >
∑

j 6=i |aij | for at least one i. We need at least

one voltage source for our power grid. In our MNA construction, the KCL equations

around the voltage source nodes are dropped. We can state the MNA construction

corresponding to the voltage source mathematically as follows. If there is a voltage

source at node i then aii = 1, aij = 0 ∀i 6= j. The RHS corresponding to this row

is set to VDD. Thus the fourth condition directly follows from this construction.

It should be noted that it is straightforward to make A a symmetric matrix.

The matrix is not symmetric due to the fact that we drop the KCL around the

voltage source node. The technique to make A symmetric is illustrated by an

example [74]. Consider the circuit shown in Figure 6.4. The MNA matrix equations

corresponding to the circuit in Figure 6.4 are reproduced below for convenience.

1 2

1 1 0

2 − 1
Rx

1
Rx

+ 1
Ry

V1

V2

 =

VDD

0

105

Since V1 = VDD, we can rewrite our system of equations as:

1 2

1 1 0

2 0 1
Rx

+ 1
Ry

V1

V2

 =

VDD

VDD
Rx

Now, the conductance matrix turns out to be a symmetric matrix. Note that the

conductance matrix is still anM-matrix even after its transformation to a symmetric

matrix.

6.4 Speedup Techniques

In this section, we discuss speedup techniques to improve the runtime of the proposed

modeling. To get an intuition behind these techniques, it is instructive to look into

the phases that occur in power grid simulation. There are two phases which occur

in power grid simulation and they are shown in Figure 6.8 which depicts the phases

stylistically. Please note that the graph is not drawn to scale.

1. Local charge redistribution. This happens when the PMOS transistor gets

switched on to the power grid. Most of the charge is supplied by the local

capacitors.

2. Global recovery phase. This happens when the power supply starts supplying

charge to the capacitors. It brings back all the capacitors to their original

state of being fully charged.

106

t

v(t)

0

VDD

Local charge
redistribution

Global
recovery

Figure 6.8: The figure is not drawn to scale. This is a stylistic depiction of the 2
phases that occur in power grid simulation. There are two phases, the first phase
(dotted) is local charge redistribution and the second phase (dashed) is global re-
covery.

6.4.1 Local charge redistribution phase

The major drawback of this proposed modeling is that the time-step (h) in Eq. (6.2)

is decided by the fast transients during the switching of transistors which cause a

voltage drop in the grid almost instantaneously (local charge redistribution). Since

we need to track these transients accurately, the time-step (h) is set to tens of

picoseconds. When the power grid recovers after this fast transient voltage drop, we

can track the voltages well with a time-step in the range of hundreds of picoseconds.

Thus if we can calculate this voltage drop using a fast approximation without doing a

detailed simulation then we can use a bigger time-step for the rest of the simulation.

This implies a faster runtime for the proposed power grid modeling.

The researchers in the power electronics community have addressed this issue

of charge redistribution [93]. But they assume instantaneous charge redistribution

107

by ignoring the resistances. This is not a good approximation in the power grid

problem. We need an approximation which also takes into account the resistances

of the power grid.

The idea behind the approximate method to calculate the voltage drop is that

when a transistor switches on at a grid, most of the charge comes from the capacitors

nearby (local charge redistribution). The recovery of the capacitors nearby to their

original fully charged state is due to charge being supplied from the nearby voltage

sources (global recovery phase).

The voltage drop is due to local charge redistribution. The idea of locality

is exploited to devise a fast method to calculate the drop. It has been shown

that using the first two shortest paths (in terms of impedance) from the node to

the voltage source to calculate the drop gives an approximation within 10% of the

SPICE results [102]. Increasing the number of shortest paths will lead to a better

approximation of the voltage drop.

But the drawback of this method is that it works only if the switching events

are isolated. Though we do not define isolated switching event formally in this work,

it can be stated informally as follows. A switching event is said to be isolated if

there are no switching events in its locality. Since our proposed modeling results

in a non-linear system, we cannot use superposition when switching events occur

simultaneously in nearby power grid nodes. We defer the voltage drop calculation

during simultaneous switching to future work.

6.4.2 Global recovery phase

A simplifying assumption in scheduling gate switching helps speedup the global

recovery phase. We assume that all gates that can switch in a given cycle, switch

108

during the positive edge of the cycle. For example, consider an inverter chain (inv1−

inv4− inv16) hooked to the same power grid node. If inv1 is switched on during a

cycle, inv16 also gets switched on but after some finite delay. But in our model, we

switch on both inv1 and inv16 at the same time. This makes our voltage drop to

be near the positive edge of the clock. Since our goal is to observe the dynamics at

power grid nodes over several cycles, we are not concerned about the exact time at

which the voltage drop occurs.

Thus in global recovery phase, observe that once grid recovers back to the

supply voltage in a given cycle it is going to stay at the supply voltage. This is

because all the gates that were scheduled to be switched during a given cycle get

switched during the start of the cycle. Thus the power grid simulation can be fast-

forwarded to the start of the next cycle once all the nodes recover back to the supply

voltage.

6.5 Overall Algorithm

The proposed power grid simulation with the behavioral modeling of transistor is

given in Algorithm 3.

6.6 Experimental Results

We implemented our model and algorithm using a combination of Awk/Perl/Matlab

scripts since demonstrating the concept is our primary intent. If implemented in

C/C++ with well tuned data structures and code, the speedup obtained compared

to SPICE will be much greater than the current implementation. We report the

results of experiments run on random benchmarks [103]. The experiments were done

109

using a 32-bit Linux machine with 4 GB RAM and running at 3.4 GHz. The delay

models were generated using the 90nm Berkeley Predictive Technology Model [31].

The results are presented in Table 6.1. The error in our proposed model

is very small compared to the current source based model. Note that the error

in voltage drop predicted by current source model for ckt9 compared to ckt1 is

bigger. This is because in ckt9, there are more transistors hooked to the power grid

node compared to ckt1. Hence the decoupling capacitance provided by the PMOS

transistors which are on, is much bigger in ckt9 compared to ckt1. Since the current

source model does not properly model the drain capacitance provided by the PMOS

transistors which are on, there is a higher error in voltage drop predicted for ckt9

compared to ckt1.

While solving Ax = b we employed simple LU factorizations rather than

the specialized algorithms for solving M-matrix presented in the literature. Thus

an implementation using compiled language and specialized algorithms for solving

Ax = b, would lead to a greater speedup.

The speedup technique discussed in Section 6.4.2 was also implemented. This

technique improved runtime by nearly an order of magnitude. If the switching is

isolated, then we can use the speedup technique discussed in Section 6.4.1 which

will improve the runtime.

6.7 Summary

We have proposed a new model for power grid simulation while retaining the features

that make power grid simulation amenable to linear algebraic methods presented in

the literature. The proposed model can be seamlessly integrated into the existing

power grid models. It is more accurate compared to the current source model and

110

Table 6.1: Runtime over 10 cycles for random circuits.
The drop predicted by both the proposed and the current
source model are pessimistic. (Cycle-time = 750ps)

ckt Nodes Runtime [s] Speedup Errore[%]
Propp SPICE CSc Propp

1 3658 4.86 153.41 31.57× 8.5 2.2

2 3958 5.70 165.19 28.98× 8.6 0.5

3 4258 6.00 179.26 29.88× 9.7 1.1

4 4558 6.56 188.70 28.77× 10.9 0.55

5 4858 7.13 199.07 27.92× 13.1 1.2

6 5158 7.80 205.73 26.38× 12.4 0.2

7 5458 8.37 215.99 25.81× 13.6 0.15

8 5758 8.95 234.18 26.17× 14.8 0.25

9 6058 9.57 252.39 26.37× 15.4 1.1

e Error [%] is given by
Vpredicted−VSPICE

VSPICE
× 100

p Proposed Model
c Current Source Model

it also retains the efficiency of the current source model by employing a constant

conductance matrix. The proposed model offers the middle ground between the

accuracy of SPICE simulation and the speed of the current source model.

111

Algorithm 3 Power-Grid-Simulation

Input: Transistor representation of the blocks
Input: Input switching patterns at the primary inputs of the block
Input: RC representation of the power grid
Input: h = time-step, set by the fastest transient in local charge redistribution
Output: Power grid voltage at various user specified points on the power grid
1: // (Section 6.2)
2: Model transistor as a switch connected to a RC circuit.
3: // (Section 6.3)
4: Model switch by its ADC in Eq. (6.9).
5: Generate the conductance matrix for the power grid model as in Eq. (6.2).
6: while time < time-stop do
7: if positive edge of clock then
8: // Conductance matrix in LHS of Eq. (6.2) is
9: // constant irrespective of the state of switches

10: Update RHS in Eq. (6.2) based on the state of switches. Please note that
the state of switch denotes whether the PMOS transistor is on or off.

11: // Speedup technique for local charge redistribution
12: // (Section 6.4.1)
13: if switching events are isolated then
14: Use approximate methods to calculate the voltage drop due to the local

charge redistribution.
15: Update time.
16: end if
17: end if
18: // use any efficient M-matrix solver
19: Solve for unknown voltages in Eq. (6.2).
20: Update ADC of energy-storage elements.
21: time = time + h.
22: // Speedup technique for global recovery phase
23: // (Section 6.4.2)
24: if all the nodes have recovered to supply voltage then
25: Fast forward time to the start of next cycle.
26: end if
27: end while

112

Chapter 7

Thermal Analysis Considering

Nonlinear Thermal

Conductivity

In this chapter we focus on analyzing the temperature profile of a chip accurately.

The motivation comes from the fact that as technology is scaled aggressively the

packing density as well as power density in a chip increases. The increase in power

density leads to increase in temperature on the chip. The increase in temperature

in turn creates many challenges,

1. At higher temperatures electron mobility decreases due to the phonon scat-

tering effect. The decrease in electron mobility leads to increased gate delay

and hence a lower clock frequency.

113

2. Reliability of transistors is exponentially dependent on the operating temper-

ature of the junction. A difference of 10 − 15◦ C can result in nearly 2×

difference in the lifespan of the devices [104].

3. The leakage has super-linear dependency on the temperature. A difference of

30◦ C will affect the leakage by 30% [105].

Thus the temperature directly affects performance, reliability, and power. Hence

it is important to accurately simulate the thermal profile of a chip. Although the

electrothermal simulation for analog circuits [106] is a well studied problem, the

techniques are not applicable for simulating the thermal profile of a VLSI chip.

This is because these electrothermal analyses are done in a SPICE-like manner, and

hence do not scale well making them unsuitable for the thermal simulation of a VLSI

chip. Therefore, new methods have been proposed in the literature for the thermal

analysis of VLSI circuits.

The simulation of the thermal profile essentially involves solving the heat

equation. The heat equation is a partial differential equation (PDE) with boundary

conditions which on discretization leads to a system of equations. The system of

equations is linear if the thermal conductivity of the chip layers is assumed to be

a constant. The early thermal simulators for VLSI chips solved the linear system

directly [107]. With the increase in packing density, the number of variables to solve

in the linear system has increased. Model order reduction was used to reduce the

system of equations to solve and thereby increase computational efficiency [108]. To

increase the efficiency of the transient solve, the ADI method was used [109]. The

linear system resulting from discretizing the heat equation is a symmetric positive

definite matrix, called the M -matrix. Multigrid techniques can be used to accelerate

solving the M -matrix and have been used for efficient full-chip thermal analysis [110].

114

Thermal simulators have provided the technology that spawned many ther-

mal based applications. Applications have been proposed in the areas of leakage

analysis [105], reliability [111] among many others.

The efficiency of the solutions proposed in literature depends on the as-

sumption that thermal conductivity is a constant, which leads to a linear system of

equations. But thermal conductivity is a nonlinear function of temperature, and for

silicon it varies by 22% over the range 27−80◦ C [8]. Thus, ignoring the nonlinearity

of the thermal conductivity might lead to a difference of temperature by 10◦ C as

shown in Section 7.3. To get an accurate thermal profile, it is therefore important

to consider the nonlinear dependence of the thermal conductivity on temperature.

This work addresses the challenge of solving the nonlinear system of equations ef-

ficiently. A fast algorithm which is a variant of the Newton-Raphson technique is

proposed to solve the nonlinear system of equations.

7.1 Thermal Modeling and Temperature Simulation

A general 3D thermal analysis involves solving the heat conduction equation which

is discussed in detail in [105]. On discretizing the heat condition equation using

finite differences and assuming steady-state conditions, the heat equation can be

written as

κx(Ti,j,k)
∆y∆z

∆x
(2Ti,j,k − Ti−1,j,k − Ti+1,j,k)

+ κy(Ti,j,k)
∆z∆x

∆y
(2Ti,j,k − Ti,j−1,k − Ti,j+1,k)

+ κz(Ti,j,k)
∆x∆y

∆z
(2Ti,j,k − Ti,j,k−1 − Ti,j,k+1)

= ∆x∆y∆z × g(x, y, z) (7.1)

115

where κx(Ti,j,k)
∆y∆z
∆x

is interpreted as the thermal conductance in the x direction.

The electrical interpretation of Eq. (7.1) is shown in Figure 7.1.

(i, j, k)

κy
∆z∆x

∆y

(i, j + 1, k)

κx
∆y∆z
∆x

(i + 1, j, k)

κz
∆x∆y

∆z

(i, j, k + 1)

κy
∆z∆x

∆y

(i, j − 1, k)

κx
∆y∆z
∆x

(i− 1, j, k)

κz
∆x∆y

∆z

(i, j, k − 1)

g′

g′ = ∆x∆y∆z × g(x, y, z)

Figure 7.1: Electrical interpretation of the 3-d heat equation. Note that the thermal
conductivities kx, ky and kz are functions of temperature Ti,j,k

Generalizing Eq. (7.1) leads to a matrix formulation

K(T)T = g (7.2)

similar to the circuit relation GV = i, thus capturing the analogy of voltage with

temperature and current with heat sources. The challenge lies in solving this non-

linear system of equations efficiently. A fast algorithm to solve this nonlinear system

is proposed in the next section.

116

7.2 A Fast Algorithm to solve A(x)x = b

The nonlinear system of equations, A(x)x = b, needs to be solved efficiently to

make the problem of nonlinear thermal conductivity practical.

The widely used iterative solver for the nonlinear system of equations is the

Newton-Raphson method. The Newton-Raphson iteration can be expressed as

x(k) = x(k−1) − [J(x(k−1))]−1f(x(k−1)) (7.3)

where

J(x) =
∂(A(x)x− b)

∂x

f(x) = Ai.(x)x− b

and Ai.(x) denotes the row i of the matrix A.

In each iteration of the Newton-Raphson in Eq. (7.3), the Jacobian needs to

be inverted. In Figure 7.2, note that the tangent is evaluated during every iteration.

This tangent evaluation is equivalent to finding the inverse of a Jacobian matrix

(J ∈ R
m×m) in each iteration when solving the thermal circuit.

Evaluating a matrix inverse has an asymptotic complexity O(n3). Consid-

ering that the sizes of matrices in thermal simulation are in the order of tens of

thousands, this is a time consuming operation. This motivates the need for a vari-

ant of the Newton-Raphson algorithm. Since the evaluation of the Jacobian inverse

is the bottleneck in Newton-Raphson, the Jacobian inverse is evaluated once during

the first iteration and it is used in every iteration thereof. The Newton-Raphson

117

0
x

f(x)

x
(0)
nrx

(1)
nrx

(2)
nr

Figure 7.2: Newton-Raphson iteration. Note that the tangent is evaluated during
every iteration. This is equivalent to finding the inverse of a Jacobian matrix (J ∈
R

m×m) for every iteration when solving the thermal circuit.

iteration with a constant Jacobian inverse can be expressed as

x(k) = x(k−1) − [J(x(0))]−1f(x(k−1)) (7.4)

where J(x(0)) is the Jacobian evaluated during the initial guess. The iteration in

Eq. (7.4) is called the constant Jacobian. This will work if the initial guess is

close to the final solution. If the initial guess is random, the solver may output

nonphysical temperatures, or worse, it may not converge. Since the temperatures

on the chip cannot go lower than the room temperature and are usually in the range

[300, 400] K, the initial guess is set to the room temperature 300 K. In constant

Jacobian, the slope of the tangent is the same for every iteration which leads to

slower convergence. To accelerate the constant Jacobian, an approximation to the

Jacobian named reduced order Jacobian is proposed and its algorithmic details are

described next.

118

7.2.1 Evaluating the reduced order Jacobian

Let x(0), . . . , x(k−1) be the first k iterations when solving the equation A(x)x = b.

Then x(k) can be approximately calculated by fitting a plane through the vectors

x(0), . . . , x(k−1). The plane fitting is described next.

Let the vector x(j) be divided into p partitions x
(j)
i , i = 0, . . . , p − 1, where

k = p + 1. This procedure is repeated for all the vectors x(j), j = 0, . . . , k − 1. Let

the norm error be defined as ε = ‖Ax− b‖. The error ε
(j)
i can be thought of error in

the partition i during the iteration j. The idea is to fit a plane through the vectors

x(0), . . . , x(k−1), such that the error in the k + 1 iteration ε(k) goes to 0. Thus the

following system of linear equations needs to be solved

ε
(0)
0 · · · ε

(k−1)
0

.

ε
(0)
p−1 · · · ε

(k−1)
p−1

α(0)

.

α(k−1)

=

0

.

0

(7.5)

At first, this looks like a trivial solution. But

k−1∑

j=0

α(j) = 1 (7.6)

This implies that the RHS is non-zero and a non-trivial solution exists. Once α(j)

are determined, the x(k) can be found using

x(k) = α(0)x(0) + . . . + α(k−1)x(k−1) (7.7)

119

The above equation can be thought of as a reduced order Jacobian and can

be rewritten as a recursion

x(k) = x(k−1)−

x(k−1) − x(0)

· · ·

x(k−1) − x(k−2)

>

ε
(k−1)
0 − ε

(0)
0 · · · ε

(k−1)
0 − ε

(k−2)
0

. .

ε
(k−1)
p−1 − ε

(0)
p−1 · · · ε

(k−1)
p−1 − ε

(k−2)
p−1

−1

︸ ︷︷ ︸

reduced order Jacobian

×

ε
(k−1)
0

.

ε
(k−1)
p−1

(7.8)

The intuition for the reduced order Jacobian can be got by considering the

number of partitions, p = 1. Thus at least k = p + 1 = 2 iterations are needed

before reduced order Jacobian algorithm can be applied. Recall that the norm error

for iteration j is defined as ε(j) = ‖Ax(j)−b‖. The system of equations in Eq. (7.5)

reduces to

α(0)ε
(0)
0 + α(1)ε

(1)
0 = 0

α(0)ε
(0)
0 + (1− α(0))ε

(1)
0 = 0 using Eq. (7.6)

α(0) =
−ε

(1)
0

ε
(0)
0 − ε

(1)
0

120

Thus x(2) can be predicted as,

x(2) = α(0)x(0) + α(1)x(1)

= α(0)x(0) + (1− α(0))x(1)

The graphical illustration of the algorithm is shown next by considering a 1-dimensional

(m = 1) root finding. Since the number of equations to be solved is one, the number

of partitions is trivially one (p = 1).

0
x

f(x)

x
(0)
cjx

(1)
cjx

(2)
cj

x
(2)
roj

Figure 7.3: Constant Jacobian with speedup. Please observe that x
(2)
roj is got by

fitting a line through the previous two iterations. Also note that the x
(2)
roj is closer

to the root than x
(2)
cj thus accelerating the constant Jacobian.

The speedup of the constant Jacobian is illustrated in Figure 7.3. Note that

x
(2)
roj is got by fitting a line through the previous two iterations. Also note that the

x
(2)
roj is closer to the root than x

(2)
cj thus accelerating the constant Jacobian.

The reduced order Jacobian is applied every q iterations to accelerate the con-

stant Jacobian and q is an integer usually between 2 to 5. The complete pseudocode

is shown in Algorithm 4.

121

Algorithm 4 Accelerated-Constant-Jacobian

Input: A system F(x) , A(x)x− b consisting of m nonlinear equations in m un-
knowns:

fi(x0, x1, . . . , xm−1) = 0, i = 0, 1, . . . , m− 1

Input: An initial guess x(0) = (x
(0)
0 , x

(0)
1 , . . ., x

(0)
m−1) of the solution.

Input: p, the number of partitions A(x) is divided into.
Output: x∗ = (x∗

0, . . ., x∗
m−1) solving m nonlinear equations simultaneously.

1: k ← 0
2: repeat
3: // Accelerate using reduced Jacobian
4: // by using it every qth iteration
5: // after the first k = p + 1 iterations
6: if ((k > p) and !(k%q)) then
7: Find x(k+1) from the last k(= p + 1) iterations using Eq. (7.8)
8: else
9: // do constant Jacobian

10: x(k+1) = x(k) − [J(x(0))]−1f(x(k))
11: end if
12: k ← k + 1
13: until (‖x(k) − x(k−1)‖ ≤ ε and ‖F(x(k))‖ ≤ ε)

122

7.3 Experimental Results

The effect of nonlinear thermal conductivity was tested by considering the silicon

layer of the chip. The simplified version has the silicon layer’s boundaries at the

room temperature of 27◦ C. The dimension of the chip is 8 mm×8 mm. For simplicity

assume that the entire silicon layer dissipates 100 W uniformly. For comparison,

the difference in temperatures obtained by assuming constant thermal conductivity

and nonlinear thermal conductivity is studied.

0
1

2
3

4
5

6
7 1

2
3

4
5

6
7

8-12
-10
-8
-6
-4
-2
0

∆T [C]

x[mm] y[mm]

∆T [C]

Figure 7.4: The difference in temperature profile in a silicon layer between having
a constant thermal conductivity for silicon and incorporating nonlinear thermal
conductivity for silicon. The chip dimension is 8 mm × 8 mm and it dissipates 100
W uniformly. The constant thermal conductivity evaluated at 27◦ C and used in
the thermal simulation underestimates the peak temperature by 12%. This is ≈ 12◦

C in absolute value.

In Figure 7.4, the constant thermal conductivity evaluated at 27◦ C, underes-

timates the peak temperature by 12% when compared to the thermal profile obtained

by considering the nonlinear thermal conductivity. Similarly, if the constant ther-

mal conductivity is evaluated at 127◦ C, the peak temperature is overestimated by

13%. This inaccuracy in the thermal profile demonstrates the need for considering

the nonlinearity of the thermal conductivity while doing the thermal simulation.

123

7.4 Summary

In this work, we studied the effects of ignoring the nonlinearity of thermal con-

ductivity. We have shown that ignoring the thermal conductivity may result in a

temperature profile that is off by 10◦ C and can cause inaccurate results in reliability

analysis.

124

Chapter 8

Conclusion

This dissertation explored techniques in analyzing timing, temperature and power

grid issues which arise due to scaling in digital integrated circuits. In this chapter

we conclude and point out directions for future work based on this dissertation.

We demonstrated that it is possible and practical to perform path based

statistical static timing analysis, and that such an analysis can be written compactly

in matrix notation, allowing the use of standard highly optimized linear algebra

techniques. The major advantage of this formulation is that it places no restrictions

on process parameter distributions. It embeds an accurate polynomial-based delay

model which takes into account slope propagation naturally. Data was presented to

show that many practical circuits have a bounded number of paths, making such an

analysis possible. It should be noted that this demonstration should not be taken

as sufficient license to propose a purely path-based SSTA algorithm. (Chapter 2)

We presented a rigorous mathematical analysis of waveforms which led to

a logical extension of present waveform modeling methods such as saturated-ramp

model. The waveform models described in the work would find application in any

125

situation where having a more detailed description of digital switching waveforms is

useful. We demonstrated the application of waveform modeling to path-based STA

demonstrating near-Spice like accuracy. (Chapter 3)

A new closed form delay metric based on the modified centroid of dissipated

power was also presented. This new metric was inspired by our key observation that

the Sakurai-Newton (SN) delay can be viewed as the centroid of current. We also

provided a theoretic proof that the SN delay is the Elmore delay of a CMOS gate

when a gate is modeled as an RC circuit. (Chapter 4)

We introduced a new path based methodology to size sleep transistors using

temporal currents and timing windows. We have also proposed an efficient method

to estimate the temporal switching current of the circuit. The results obtained

indicate that our proposed technique results in area reduction of sleep transistors

compared to the methods presented in the literature. (Chapter 5)

We also studied the effects of ignoring the nonlinearity of thermal conductiv-

ity while simulating the temperature profile of a chip. Ignoring thermal conductivity

may lead to a temperature profile that is off by 10◦ C and can cause inaccurate re-

sults in reliability analysis. (Chapter 7)

A new model for power grid simulation was also presented, which retains

the features that make power grid simulation amenable to linear algebraic methods

presented in the literature. The proposed model can be seamlessly integrated into

the existing power grid models. It is more accurate compared to the current source

model and it also retains the efficiency of the current source model by including

a constant conductance matrix. The proposed model offers a middle ground be-

tween the accuracy of SPICE simulation and the speed of the current source model.

(Chapter 6)

126

8.1 Future Work

A possible future work is to extend the sparse matrix formulation for SSTA to han-

dle wires, and show how incremental computation may be done in the framework.

Potential application of this formulation lies in gate sizing. The sparse matrix con-

tains the parameterized delays of every path in the circuit. Thus one can easily look

up the sensitivity of a particular path to a particular variation and also which paths

a given gate affects. This might lead to a formulation which globally optimizes the

gate sizes rather than the sensitivity based local optimization which is widely used

now. In the context of waveform modeling using SVD, the model can be extended

to include interconnects and process variations. In the SSTA framework, one can

incorporate the SVD based waveform models in the path-based timer using sparse-

matrix framework. In the context of power grid analysis, one can investigate how

size of decoupling capacitance reduces when the drain capacitance of the transistors

is taken into account. Another possible topic is investigating approximation meth-

ods to find the voltage drop in the local charge distribution faster. This will help to

improve time-step in the simulation and hence the runtime.

127

Bibliography

[1] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan.

First-order incremental block-based statistical timing analysis. In DAC ’04:

Proceedings of the 41st annual conference on Design automation, pages 331–

336, 2004.

[2] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8), April 1965.

[3] Semiconductor Industry Association. International Technology Roadmap for

Semiconductors, 2005.

[4] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro,

19(4):23–29, 1999.

[5] Larry McMurchie and Carl Sechen. WTA: waveform-based timing analysis for

deep submicron circuits. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM

international conference on Computer-aided design, pages 625–631, 2002.

[6] T. Sakurai and A. Richard Newton. Alpha-power law MOSFET model and

its applications to CMOS inverter delay and other formulas. IEEE Journal of

Solid-State Circuits, 25(2):584–594, 1990.

128

[7] James Kao, Anantha Chandrakasan, and Dimitri Antoniadis. Transistor sizing

issues and tool for multi-threshold CMOS technology. In DAC ’97: Proceedings

of the 34th annual conference on Design automation, pages 409–414, 1997.

[8] Angela D. McConnell, Srinivasan Uma, and Kenneth E. Goodson. Thermal

conductivity of doped polysilicon layers. Journal of Microelectromechanical

Systems, 10(3):360–369, September 2001.

[9] Jing-Jia Liou, Kwang-Ting Cheng, Sandip Kundu, and Angela Krstic. Fast

statistical timing analysis by probabilistic event propagation. In DAC ’01:

Proceedings of the 38th conference on Design automation, pages 661–666, 2001.

[10] Aseem Agarwal, David Blaauw, Vladimir Zolotov, and Sarma Vrudhula. Com-

putation and refinement of statistical bounds on circuit delay. In DAC ’03:

Proceedings of the 40th conference on Design automation, pages 348–353, 2003.

[11] Anirudh Devgan and Chandramouli Kashyap. Block-based static timing anal-

ysis with uncertainty. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM

international conference on Computer-aided design, pages 607–614, 2003.

[12] Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analysis un-

der spatial correlations. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 24(9):1467–1482, 2005.

[13] Jiayong Le, Xin Li, and Lawrence T. Pileggi. STAC: statistical timing analysis

with correlation. In DAC ’04: Proceedings of the 41st annual conference on

Design automation, pages 343–348, 2004.

129

[14] Anne E. Gattiker, Sani R. Nassif, Rashmi Dinakar, and Chris Long. Timing

yield estimation from static timing analysis. In ISQED ’01: 2nd International

Symposium on Quality of Electronic Design, pages 437–442, 2001.

[15] Jing-Jia Liou, Angela Krstic, Li-C. Wang, and Kwang-Ting Cheng. False-

path-aware statistical timing analysis and efficient path selection for delay

testing and timing validation. In DAC ’02: Proceedings of the 39th conference

on Design automation, pages 566–569, 2002.

[16] Aseem Agarwal, David Blaauw, Vladimir Zolotov, Savithiri Sundareswaran,

Min Zhao, Kaushik Gala, and Rajendran Panda. Path-based statistical timing

analysis considering inter and intra-die correlations. In ACM/IEEE Interna-

tional Workshop on Timing Issues, 2002.

[17] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten, and

C. Visweswariah. Statistical timing for parametric yield prediction of digi-

tal integrated circuits. In DAC ’03: Proceedings of the 40th conference on

Design automation, pages 932–937, 2003.

[18] Michael Orshansky and Arnab Bandyopadhyay. Fast statistical timing analysis

handling arbitrary delay correlations. In DAC ’04: Proceedings of the 41st

annual conference on Design automation, pages 337–342, 2004.

[19] Yaping Zhan, Andrzej J. Strojwas, Xin Li, Lawrence T. Pileggi, David New-

mark, and Mahesh Sharma. Correlation-aware statistical timing analysis with

non-gaussian delay distributions. In DAC ’05: Proceedings of the 42nd annual

conference on Design automation, pages 77–82, 2005.

[20] Lizheng Zhang, Weijen Chen, Yuhen Hu, John A. Gubner, and Charlie Chung-

Ping Chen. Correlation-preserved non-gaussian statistical timing analysis with

130

quadratic timing model. In DAC ’05: Proceedings of the 42nd annual confer-

ence on Design automation, pages 83–88, 2005.

[21] Vishal Khandelwal and Ankur Srivastava. A general framework for accurate

statistical timing analysis considering correlations. In DAC ’05: Proceedings

of the 42nd annual conference on Design automation, pages 89–94, 2005.

[22] Hongliang Chang, Vladimir Zolotov, Sambasivan Narayan, and Chandu

Visweswariah. Parameterized block-based statistical timing analysis with non-

gaussian parameters, nonlinear delay functions. In DAC ’05: Proceedings of

the 42nd annual conference on Design automation, pages 71–76, 2005.

[23] Khaled R. Heloue and Farid N. Najm. Statistical timing analysis with two-

sided constraints. In ICCAD ’05: Proceedings of the 2005 IEEE/ACM inter-

national conference on Computer-aided design, pages 829–836, 2005.

[24] Debjit Sinha and Hai Zhou. A unified framework for statistical timing analysis

with coupling and multiple input switching. In ICCAD ’05: Proceedings of the

2005 IEEE/ACM international conference on Computer-aided design, pages

837–843, 2005.

[25] Jaskirat Singh and Sachin S. Sapatnekar. Statistical timing analysis with

correlated non-gaussian parameters using independent component analysis.

In ACM/IEEE International Workshop on Timing Issues, 2006.

[26] David Blaauw, Vladimir Zolotov, and Savithri Sundareswaran. Slope propaga-

tion in static timing analysis. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 21(10):1180–1192, 2002.

131

[27] Franc Brglez, David Bryan, and Krzysztof Koźmiński. Combinational profiles

of sequential benchmark circuits. In Proc. of International Symposium on

Circuits and Systems, pages 1929–1934, 1989.

[28] Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analysis con-

sidering spatial correlations using a single PERT-like traversal. In ICCAD ’03:

Proceedings of the 2003 IEEE/ACM international conference on Computer-

aided design, page 621, 2003.

[29] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[30] Ashish Kumar Singh. Statistical Algorithms for Circuit Synthesis under Pro-

cess Variations and High Defect Density. PhD thesis, The University of Texas,

Austin, 2007.

[31] Yu Cao, Takashi Sato, Michael Orshansky, Dennis Sylvester, and Chenming

Hu. New paradigm of predictive MOSFET and interconnect modeling for early

circuit simulation. In Proceedings of Custom Integrated Circuits Conference,

pages 201–204, 2000.

[32] Maogang Wang, Xiaojian Yang, and Majid Sarrafzadeh. Dragon2000:

standard-cell placement tool for large industry circuits. In ICCAD ’00: Pro-

ceedings of the 2000 IEEE/ACM international conference on Computer-aided

design, pages 260–263, 2000.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

132

[34] Masanori Hashimoto, Yuji Yamada, and Hidetoshi Onodera. Equivalent wave-

form propagation for static timing analysis. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 23(4):498–508, 2004.

[35] Sani R. Nassif and Emrah Acar. Advanced waveform models for the nano-

meter regime. In ACM/IEEE International Workshop on Timing Issues, 2004.

[36] Chirayu S. Amin, Florentin Dartu, and Yehea I. Ismail. Weibull-based an-

alytical waveform model. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 24(8):1156–1168, 2005.

[37] Alireza Kasnavi, Joddy W. Wang, Mahmoud Shahram, and Jindrich Zejda.

Analytical modeling of crosstalk noise waveforms using weibull function. In

ICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design, pages 141–146, 2004.

[38] Amit Jain, David Blaauw, and Vladimir Zolotov. Accurate delay compu-

tation for noisy waveform shapes. In ICCAD ’05: Proceedings of the 2005

IEEE/ACM international conference on Computer-aided design, pages 946–

952, 2005.

[39] John F. Croix and D. F. Wong. Blade and razor: cell and interconnect delay

analysis using current-based models. In DAC ’03: Proceedings of the 40th

conference on Design automation, pages 386–389, 2003.

[40] Igor Keller, Ken Tseng, and Nisath Verghese. A robust cell-level crosstalk

delay change analysis. In ICCAD ’04: Proceedings of the 2004 IEEE/ACM

International conference on Computer-aided design, pages 147–154, 2004.

133

[41] Chirayu Amin, Chandramouli Kashyap, Noel Menezes, Kip Killpack, and Eli

Chiprout. A multi-port current source model for multiple-input switching

effects in CMOS library cells. In DAC ’06: Proceedings of the 43rd annual

conference on Design automation, pages 247–252, 2006.

[42] Hanif Fatemi, Shahin Nazarian, and Massoud Pedram. Statistical logic cell

delay analysis using a current-based model. In DAC ’06: Proceedings of the

43rd annual conference on Design automation, pages 253–256, 2006.

[43] Gilbert Strang. The fundamental theorem of linear algebra. American Math-

ematical Monthly, 100(9):848–855, November 1993.

[44] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[45] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006.

[46] Peter R. O’Brien and Thomas L. Savarino. Modeling the driving point charac-

teristic of resistive interconnect for accurate delay estimation. In ICCAD ’89:

Proceedings of the 1989 IEEE/ACM international conference on Computer-

aided design, pages 512–515, 1989.

[47] Dmitry Messerman, Alex Gershtein, Sergey Goldenberg, and Vladi Tsipenyuk.

Advanced modeling techniques for accurate transistor-level timing analysis. In

ACM/IEEE International Workshop on Timing Issues, 2007.

[48] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three

methods for selecting values of input variables in the analysis of output from

a computer code. Technometrics, 21(2):239–245, May 1979.

134

[49] Anand Ramalingam, Ashish Kumar Singh, Sani R. Nassif, Gi-Joon Nam,

Michael Orshansky, and David Z. Pan. An accurate sparse matrix based

framework for statistical static timing analysis. In ICCAD ’06: Proceedings

of the 2006 ACM/IEEE international conference on Computer-aided design,

pages 231–236, 2006.

[50] Charles J. Alpert, Anirudh Devgan, and Chandramouli V. Kashyap. RC delay

metrics for performance optimization. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 20(5):571–582, May 2001.

[51] Jorge Rubinstein, Paul Penfield, and Mark A. Horowitz. Signal delay in RC

tree networks. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2(3):202–211, July 1983.

[52] Lawrence T. Pillage and Ronald A. Rohrer. Asymptotic waveform evalua-

tion for timing analysis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 9(4):352–366, April 1990.

[53] Bogdan Tutuianu, Florentin Dartu, and Lawrence Pileggi. An explicit RC-

circuit delay approximation based on the first three moments of the impulse

response. In DAC ’96: Proceedings of the 33rd annual conference on Design

automation, pages 611–616, 1996.

[54] Andrew B. Kahng and S. Muddu. An analytical delay model for RLC intercon-

nects. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 16(12):1507–1514, December 1997.

[55] Rony Kay and Lawrence Pileggi. PRIMO: Probability interpretation of mo-

ments for delay calculation. In DAC ’98: Proceedings of the 35th annual

conference on Design automation, pages 463–468, 1998.

135

[56] Tao Lin, Emrah Acar, and Lawrence Pileggi. h-gamma: an RC delay metric

based on a gamma distribution approximation of the homogeneous response.

In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international conference

on Computer-aided design, pages 19–25, 1998.

[57] Frank Liu, Chandramouli Kashyap, and Charles J. Alpert. A delay metric

for RC circuits based on the weibull distribution. In ICCAD ’02: Proceedings

of the 2002 IEEE/ACM international conference on Computer-aided design,

pages 620–624, 2002.

[58] Charles J. Alpert, Frank Liu, Chandramouli Kashyap, and Anirudh Devgan.

Delay and slew metrics using the lognormal distribution. In DAC ’03: Pro-

ceedings of the 40th conference on Design automation, pages 382–385, 2003.

[59] Yuan Taur and Tak H. Ning. Fundamentals of Modern VLSI Devices. Cam-

bridge University Press, 1998.

[60] William Shockley. A unipolar ‘field-effect’ transistor. In Proceedings of Insti-

tute of Radio Engineers, pages 1365–1376, 1952.

[61] T. Sakurai and A. Richard Newton. A simple MOSFET model for circuit

analysis. IEEE Transactions on Electron Devices, 38(4):887–894, April 1991.

[62] Chandramouli V. Kashyap, Charles J. Alpert, Frank (Ying) Liu, and Anirudh

Devgan. Closed-form expressions for extending step delay and slew metrics to

ramp inputs for RC trees. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 23(4):509–516, April 2004.

136

[63] David Hodges, Horace Jackson, and Resve Saleh. Analysis and Design of

Digital Integrated Circuits: In Deep Submicron Technology. McGraw-Hill,

2003.

[64] Rohini Gupta, Bogdan Tutuianu, and Lawrence Pileggi. The elmore delay

as a bound for RC trees with generalized input signals. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 16(1):95–104,

January 1997.

[65] W.C. Elmore. The transient response of damped linear networks with partic-

ular regard to wideband amplifiers. Journal of Applied Physics, 19(1):55–63,

January 1948.

[66] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and

Systems. Prentice Hall, 1996.

[67] James Kao, Siva Narendra, and Anantha Chandrakasan. MTCMOS hierar-

chical sizing based on mutual exclusive discharge patterns. In DAC ’98: Pro-

ceedings of the 35th annual conference on Design automation, pages 495–500,

1998.

[68] Mohab Anis, Shawki Areibi, and Mohamed Elmasry. Design and optimiza-

tion of multithreshold CMOS (MTCMOS) circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 22(10):1324–1342,

2003.

[69] Changbo Long and Lei He. Distributed sleep transistor network for power

reduction. In DAC ’03: Proceedings of the 40th conference on Design automa-

tion, pages 181–186, 2003.

137

[70] Himanshu Bhatnagar. Advanced ASIC Chip Synthesis: Using Synopsys Design

Compiler, Physical Compiler and PrimeTime. Kluwer Academic Publishers,

1999.

[71] Howard H. Chen and J. Scott Neely. Interconnect and circuit modeling tech-

niques for full-chip power supply noise analysis. IEEE Transactions on Com-

ponents, Packaging, and Manufacturing Technology, Part B: Advanced Pack-

aging, 21(3):209–215, August 1998.

[72] Tsung-Hao Chen and Charlie Chung-Ping Chen. Efficient large-scale power

grid analysis based on preconditioned krylov-subspace iterative methods. In

DAC ’01: Proceedings of the 38th conference on Design automation, pages

559–562, 2001.

[73] Yu Min Lee and Charlie Chung-Ping Chen. Power grid transient simulation in

linear time based on transmission-line-modeling alternating-direction-implicit

method. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM international

conference on Computer-aided design, pages 75–80, 2001.

[74] Joseph N. Kozhaya, Sani R. Nassif, and Farid N. Najm. A Multigrid-like

technique for power grid analysis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 21(10):1148–1160, October 2002.

[75] Haihua Su, Emrah Acar, and Sani R. Nassif. Power grid reduction based on

algebraic multigrid principles. In DAC ’03: Proceedings of the 40th conference

on Design automation, pages 109–112, 2003.

[76] Yu Zhong and Martin D. F. Wong. Fast algorithms for IR drop analysis in large

power grid. In ICCAD ’05: Proceedings of the 2005 IEEE/ACM international

conference on Computer-aided design, pages 351–357, 2005.

138

[77] Quming Zhou, Kai Sun, Kartik Mohanram, and Danny C. Sorensen. Large

power grid analysis using domain decomposition. In DATE ’06: Proceedings of

the conference on Design, automation and test in Europe, pages 27–32, 2006.

[78] Jin Shi, Yici Cai, Sheldon X.-D. Tan, and Xianlong Hong. High accurate

pattern based precondition method for extremely large power/ground grid

analysis. In ISPD ’06: Proceedings of the 2006 international symposium on

Physical design, pages 108–113, 2006.

[79] Hao Yu, Yiyu Shi, and Lei He. Fast analysis of structured power grid by

triangularization based structure preserving model order reduction. In DAC

’06: Proceedings of the 43rd annual conference on Design automation, pages

205–210, 2006.

[80] Min Zhao, Rajendran Panda, Sachin S. Sapatnekar, and David Blaauw. Hi-

erarchical analysis of power distribution networks. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 21(2):159–168,

February 2002.

[81] Sachin S. Sapatnekar and Haihua Su. Analysis and optimization of power

grids. IEEE Design & Test of Computers, 20(3):7–15, 2003.

[82] Weikun Guo, Sheldon X.-D. Tan, Zuying Luo, and Xianglong Hang. Par-

tial random walks for transient analysis of large power distribution networks.

IEICE Transactions on Fundamentals of Electronics, Communications and

Computer, E87-A(12):3265–3272, December 2004.

[83] Haifeng Qian, Sani R. Nassif, and Sachin S. Sapatnekar. Early-stage power

grid analysis for uncertain working modes. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 24(5):676–682, May 2005.

139

[84] Haifeng Qian, Sani R. Nassif, and Sachin S. Sapatnekar. Power grid anal-

ysis using random walks. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 24(8):1204–1224, August 2005.

[85] Imad A. Ferzli and Farid N. Najm. Statistical verification of power grids

considering process-induced leakage current variations. In ICCAD ’03: Pro-

ceedings of the 2003 IEEE/ACM international conference on Computer-aided

design, pages 770–777, 2003.

[86] Sanjay Pant, David Blaauw, Vladimir Zolotov, Savithri Sundareswaran, and

Rajendran Panda. A stochastic approach to power grid analysis. In DAC

’04: Proceedings of the 41st annual conference on Design automation, pages

171–176, 2004.

[87] Peng Li. Variational analysis of large power grids by exploring statistical

sampling sharing and spatial locality. In ICCAD ’05: Proceedings of the 2005

IEEE/ACM international conference on Computer-aided design, pages 645–

651, 2005.

[88] Praveen Ghanta, Sarma Vrudhula, Sarvesh Bhardwaj, and Rajendran Panda.

Stochastic variational analysis of large power grids considering intra-die cor-

relations. In DAC ’06: Proceedings of the 43rd annual conference on Design

automation, pages 211–216, 2006.

[89] Eli Chiprout. Fast flip-chip power grid analysis via locality and grid shells. In

ICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design, pages 485–488, 2004.

140

[90] Sanjay Pant and Eli Chiprout. Power grid physics and implications for CAD.

In DAC ’06: Proceedings of the 43rd annual conference on Design automation,

pages 199–204, 2006.

[91] Su-Wei Wu and Yao-Wen Chang. Efficient power/ground network analysis for

power integrity-driven design methodology. In DAC ’04: Proceedings of the

41st annual conference on Design automation, pages 177–180, 2004.

[92] Chen-Wei Liu and Yao-Wen Chang. Floorplan and power/ground network

co-synthesis for fast design convergence. In ISPD ’06: Proceedings of the 2006

international symposium on Physical design, pages 86–93, 2006.

[93] Jǐŕı Vlach and Kishore Singhal. Computer Methods for Circuit Analysis and

Design. Van Nostrand Reinhold, New York, NY, USA, 1993.

[94] Atsushi Muramatsu, Masanori Hashimoto, and Hidetoshi Onodera. Effects of

on-chip inductance on power distribution grid. In ISPD ’05: Proceedings of

the 2005 international symposium on Physical design, pages 63–69, 2005.

[95] Leon O. Chua and Pen-Min Lin. Computer-Aided Analysis of Electronic Cir-

cuits: Algorithms and Computational Techniques. Prentice Hall Professional

Technical Reference, Eaglewood Cliffs, NJ, USA, 1975.

[96] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid

tutorial: second edition. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2000.

[97] Mark Alan Horowitz. Timing Models for MOS Circuits. PhD thesis, Stanford

University, January 1984.

141

[98] Yoshishige Murakami. A Method for the Formulation and Solution of Circuits

Composed of Switches and Linear RLC Elements. IEEE Transactions on

Circuits and Systems, 34(5):496–509, May 1987.

[99] Huang-Jin Wu and Wu-Shiung Feng. Efficient simulation of switched networks

using reduced unification matrix. IEEE Transactions on Power Electronics,

14(3):481–494, May 1999.

[100] Shu-Yuen Ron Hui and S. Morrall. Generalised associated discrete circuit

model for switching devices. IEE Proceedings on Science, Measurement and

Technology, 141(1):57–64, January 1994.

[101] Predrag Pejović and Dragan Maksimović. A method for fast time-domain sim-

ulation of networks with switches. IEEE Transactions on Power Electronics,

9(4):449–456, July 1994.

[102] Shiyou Zhao, Kaushik Roy, and Cheng-Kok Koh. Decoupling capacitance

allocation and its application to power-supply noise-aware floorplanning. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

21(1):81–92, 2002.

[103] Maha Nizam, Farid N. Najm, and Anirudh Devgan. Power grid voltage in-

tegrity verification. In ISLPED ’05: Proceedings of the 2005 international

symposium on Low power electronics and design, pages 239–244, 2005.

[104] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, and Vassou Lebonheur.

Thermal performance challenges from silicon to systems. Intel Technology

Journal, 4(Q3), August 2000.

142

[105] Haihua Su, Frank Liu, Anirudh Devgan, Emrah Acar, and Sani Nassif. Full

chip leakage estimation considering power supply and temperature variations.

In ISLPED ’03: Proceedings of the 2005 international symposium on Low

power electronics and design, pages 78–83, 2003.

[106] Sang-Soo Lee and David J. Allstot. Electrothermal simulation of integrated

circuits. IEEE Journal of Solid-State Circuits, pages 1283–1293, 1993.

[107] Yi-Kan Cheng, Prasun Raha, Chin-Chi Teng, Elyse Rosenbaum, and Sung-

Mo Kang. ILLIADS-T: An electrothermal timing simulator for temperature-

sensitive reliability diagnosis of CMOS VLSI chips. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 668–681,

1998.

[108] Ching-Han Tsai and Sung-Mo Kang. Fast temperature calculation for tran-

sient electrothermal simulation by mixed frequency/time domain thermal

model reduction. In DAC ’00: Proceedings of the 37th conference on Design

automation, pages 750–755, 2000.

[109] Ting-Yuan Wang and Charlie Chung-Ping Chen. Thermal ADI: A linear-

time chip level dynamic thermal-simulation algorithm based on alternating-

direction-implicit (ADI) method. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, pages 691–700, 2003.

[110] Peng Li, Lawrence T. Pileggi, Mehdi Asheghi, and Rajit Chandra. Efficient

full-chip thermal modeling and analysis. In ICCAD ’04: Proceedings of the

2004 IEEE/ACM International conference on Computer-aided design, pages

319–326, 2004.

143

[111] Danqing Chen, Erhong Li, Elyse Rosenbaum, and Sung-Mo Kang. Intercon-

nect thermal modeling for accurate simulation of circuit timing and reliability.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, pages 197–205, 2000.

144

Vita

Anand Ramalingam was born in Kanyakumari (Cape Comorin), India on 21 May

1979. He joined the P.S.G. College of Technology, Coimbatore in 1996 where he

received the Bachelor of Engineering degree in Electronics and Communication En-

gineering in April 2000. He worked in Honeywell India as a software engineer for

more than a year. In September 2001, he joined the graduate program in the De-

partment of Electrical Engineering at the Stanford University where he received

the Master of Science degree in Electrical Engineering in June 2003. In August

2003, he joined the graduate program in the Department of Electrical and Com-

puter Engineering at the University of Texas at Austin. Currently he is working

under the supervision of Prof. David Z. Pan in the area of timing analysis and circuit

simulation.

Permanent Address: 45, Sivasakthi Nagar,

Thaneer Pandal Road,

Coimbatore, Tamil Nadu,

India 641 004

145

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

146

