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Supervised Language Models for Temporal Resolution of Text in

Absence of Explicit Temporal Cues

Abhimanu Kumar, M.S.C.S.

The University of Texas at Austin, 2013

Supervisor: Joydeep Ghosh

This thesis explores the temporal analysis of text using the implicit temporal cues

present in document. We consider the case when all explicit temporal expressions such as

specific dates or years are removed from the text and a bag of words based approach is used

for timestamp prediction for the text. A set of gold standard text documents with times-

tamps are used as the training set. We also predict time spans for Wikipedia biographies

based on their text. We have training texts from 3800 BC to present day. We partition this

timeline into equal sized chronons and build a probability histogram for a test document

over this chronon sequence. The document is assigned to the chronon with the highest

probability.

We use 2 approaches: 1) a generative language model with Bayesian priors, and 2) a

KL divergence based model. To counter the sparsity in the documents and chronons we use

3 different smoothing techniques across models. We use 3 diverse datasets to test our mod-

els: 1) Wikipedia Biographies, 2) Guttenberg Short Stories, and 3) Wikipedia Years dataset.
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Our models are trained on a subset of Wikipedia biographies. We concentrate on

two prediction tasks: 1) time-stamp prediction for a generic text or mid-span prediction for

a Wikipedia biography , and 2) life-span prediction for a Wikipedia biography. We achieve

an f-score of 81.1% for life-span prediction task and a mean error of around 36 years for

mid-span prediction for biographies from present day to 3800 BC. The best model gives a

mean error of 18 years for publication date prediction for short stories that are uniformly

distributed in the range 1700 AD to 2010 AD. Our models exploit the temporal distribu-

tion of text for associating time. Our error analysis reveals interesting properties about the

models and datasets used.

We try to combine explicit temporal cues extracted from the document with its

implicit cues and obtain combined prediction model. We show that a combination of the

date-based predictions and language model divergence predictions is highly effective for this

task: our best model obtains an f-score of 81.1% and the median error between actual and

predicted life span midpoints is 6 years. This would be one of the emphasis for our future

work.

The above analyses demonstrates that there are strong temporal cues within texts

that can be exploited statistically for temporal predictions. We also create good benchmark

datasets along the way for the research community to further explore this problem.
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Chapter 1

Introduction

This thesis deals with the assigning time to text: either a specific point of time on

a timeline or a range depending upon the prediction task. We propose temporal analysis

models that leverage ideas present in computational linguistics and information retrieval.

While there have been prior research that focus on extracting explicit mentions of temporal

expressions [2], in this work we primarily focus on the implicit temporal cues present in a

text. This extraction of implicit cues present in the text relies on the temporal distribution

of words in the corpora across time periods. By combining several such distributions across

time and corpora we can infer a unique temporal distribution for a test document.

1.1 Research Motivation

Accurate extraction and resolution of explicit mentions of time (absolute or relative)

is clearly important [2] and the problem becomes further complex if there are no explicit

temporal cues present in the text. A system that can assign time to text with no explicit

temporal cues can be used for various document dating applications.

In addition to document dating, such a system has potential to inform work in com-

putational humanities, specifically scholars’ understandings of how a work was influenced by

or reflects different time periods. It can provide clues as to how specific words and terms in

a language got into popular use and disuse over time. We can infer periodic events in a per-
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sons life via words that have different periods of temporal behavior. For example, breakfast

and dinner cycle every day, weekend cycles every week, paycheck cycles every month, and

winter and summer cycle every year. Data is now available for them via constant newswire

and Twitter feeds, and it is likely to be quite important to detect and tease apart such

periodic properties of words, especially for more fine-grained temporal resolution.

This system can also be used to keep track of terminology changes over time. There

are words in language that change their meaning or get obsolete over time. For example

“Siam” was used as a name for Thailand in the early 20th century but not at all anymore.

By obtaining the temporal distribution of “Siam” over a heterogeneous set of corpora we

can infer that “Siam” is obsolete these days.

1.2 Research Problems

From the discussion in section 1.1 it is our objective to assign time-stamps or time-

intervals to test documents. Providing a time-stamp to an incoming document involves three

major challenges: 1) a competitive text model that can provide an accurate prediction using

a training set, 2) smoothing for low-evidence training and test documents, and 3) analysis

of the prediction models over diverse dataset to evaluate the robustness of the technique.

1.2.1 Prediction Model

Statistical prediction model have become prevalent in computational linguistics in

recent years as they are more accurate and insightful compared to rule-based models. From

divergence and language-modeling based techniques to regression and graphical models have

provided great insights into text data. Among this diversity our aim is to find a statistical

model that is most suitable for the temporal analysis problem. One of the research problems
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that we want to solve is:

• (RP1) What is the best statistical model for the time-stamp prediction task?

We try to restrict the search space of our model to a subset of statistical techniques:

divergence based models and language models to tackle the generic research problem (RP1)

above.

1.2.2 Smoothing Techniques

Prediction models do not perform well when they have small evidence for a pre-

diction task and use various smoothing techniques to counter it. A small text document

has very little predictive content and thus needs to be augmented with evidence from the

training set or a generic corpora. But different smoothing techniques have different strength

(and weaknesses). It is important to pick the most suitable smoothing technique for a given

model and dataset as it provides increased accuracy as well as unique insights into the

dataset being dealt with. Hence the second research question is:

• (RP2) How various smoothing techniques fare for a given model and dataset for pre-

diction?

Again we restrict our set of smoothing techniques to the more prevalent ones such

as Dirichlet, Jellenick Mercer smoothing etc.

1.2.3 Heterogeneous Corpora

Given a document dating model, it is important to analyse the model’s robustness.

A model that is able to predict timestamps for a diverse set of documents is highly desirable.
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We try to solve this research problem for our set of models. Specifically we determine:

• (RP3) How our models fare on different test corpora?

We analyse this research question over 3 diverse set of test corpora.

1.3 The Approach

Our primary focus here is the challenge of learning implicit temporal distributions

over natural language use at-large. As a concrete example, consider the word wireless.

Introduced in the early 20th century to refer to radios, it fell into disuse and then its

meaning shifted later that century to describe any form of communication without cables

(e.g. Internet access). As such, the word wireless embodies implicit time cues, a notion we

might generalize by inferring its complete temporal distribution as well as that of all other

words. By harnessing many such implicit cues in combination across a document, we might

further infer a unique temporal distribution for the overall document.

As in prior document dating studies, we partition the timeline (and document collec-

tion) to infer an unique language model (LM) underlying each time period [20, 22]. However,

while prior work considered texts from the past 10-20 years, our work is far more historically-

oriented, learning temporal distributions from the present day back to 3800 B.C. We also

predict publication dates for historical works of fiction. Another point of distinction is that

we learn from and predict time spans in addition to single time instants.

We accomplish this by learning from a different kind of text: Wikipedia biographies.

By associating each individual’s lifetime with the textual description of their lives, we learn

word-time affinities for each lifespan. Wikipedia-based training is further advantageous since
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its recency enables us to control against stylistic vs. content factors influencing vocabulary

use (e.g. consider the difference between William Mavor’s 1796 discussion1 of Sir Walter

Raleigh vs. a modern retrospective biography2)

1.4 Contribution

Our primary contribution is to use the implicit cues present in text to assign times-

tamp. We propose 5 different models and evaluate them over 3 different datasets for times-

tamp prediction. We train the models over a set of Wikipedia biographies and predict for

the other 2 datasets using the same learnt model. In this process we demonstrate transfer

learning capabilities of the models. We predict an individual’s mid-life-span from the text of

his biography. Our best model achieves a median mid-life-span distance of around 22 years

and a mean distance of 36 years. We also predict the individual’s lifetime from the text of

his biography. Our best model achieves an f -score of 81% for overlap with actual lifetimes.

A second task is to predict publication dates of short stories from the Gutenberg

project.3 In comparison to Wikipedia biographies, these stories use relatively few explicit

temporal expressions or mentions of real-life named entities. We rely on the same time-based

language models learned from Wikipedia to predict these publication dates. This difference

between train vs. test genres, coupled with lack of explicit temporal cues, makes the task

particularly challenging, but our best model still achieves a mean distance of around 20

years and a median distance of 17 year from the true publication date.

A third task is to predict the year of occurrence of a set of events. Wikipedia

1http://bit.ly/lKR8Aa
2http://en.wikipedia.org/wiki/Walter_Raleigh
3http://www.gutenberg.org
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maintains a collection of year-wise events that occurred in the past 4. Each document in

this collection corresponds to a single year and each year has only one document in this

collection that contains a list of events that happened in that year. We again rely on the

same time-based language models learned from Wikipedia to predict the year of occurrence

for a given page. The pages are from 500 B.C. to 2010 A.D. The best model gives mean

error of 36 years and median error of 21 years.

1.5 Publications

During the course of this masters thesis we have the following works published or

under submission:

[1] (Accepted) Abhimanu Kumar, Matt Lease, and Jason Baldridge. 2011. Su-

pervised Language Modeling for Temporal Resolution of Texts. In Proceedings of the 20th

ACM Conference on Information Knowledge and Management (CIKM). Glasgow, Scotland.

[2] (Submitted) Abhimanu Kumar, Matt Lease, Jason Baldridge, and Joydeep

Ghosh. 2012. Effective Methods for Automatic Dating of Text in Absence of Explicit

Temporal Cues. In Proceedings of the 2012 Conference on Empirical Methods in Natural

Language Processing (EMNLP). Jeju, South Korea.

1.6 Thesis Organisation

In the 2nd chapter, we provide a brief background of prior work done in the area

of temporal prediction. In chapters 3 the datasets used are described and in chapter 4 the

models applied are discussed. Chapters 5 and 6 describe the evaluation metrics and the

4http://en.wikipedia.org/wiki/List_of_years
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experimental setup, respectively. Chapter 7 analyses the results obtained as well as the

interesting attributes of the models and datasets. Chapter 8 and 9 conclude this document

by providing an overview of the contibutions of this work and further areas of improvement.
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Chapter 2

Background and Related Work

Temporal analysis of text is an active area of research since the early days of text

mining with different focus in different areas. While the computational linguistics research

in the early days was primarily concerned with the fine-grained ordering of temporal events

[1, 47], information retrieval research focus has been largely on time-sensitive document

ranking [11, 31], temporal organization and presentation of search results [2], how queries

and documents change over time [24], etc. The main focus of this thesis is assigning

timestamps to documents in absence of any explicit temporal cue.

2.1 Annotation and corpora

Recent years have brought increased interest in creating new, richly annotated cor-

pora for training and evaluating time-sensitive models. TimeBank [41] and Wikiwars [38] are

great exemplars of such work. They have been used for tasks like modeling event structure

(e.g. work of [9] on TimeBank).

2.2 Analyzing literary and social media

Another line of work pursued shallower analysis applied to historical and literary

documents, as well as to microblogging data such as tweets and search queries. For example,
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the Google N-Grams Viewer1 allows word sequences to be plotted on a timeline with respect

to their relative frequency per year, based on counts obtained from millions of books and

their associated publication dates [16]. Time information in a historical or literary document

gives an insight into how events happen or how topics vary over time. [17] provide a semantic

approach to create and automatically update a database on infectious disease outbreaks.

Time information in tweets also provide valuable information about current trendy topics

in the microblogging world [54] crucial to enterprises reliant upon market sentiment.

2.3 Time-sensitive topic modeling

There has been a variety of work on time based topic-analysis in texts in recent years,

such as Dynamic Topic Models [7]. Subsequent work [6] proposes probabilistic time series

models to analyze the time evolution of topics in a large document collection. They take a

sequential collection of documents of a particular area e.g. news articles and determine how

topics evolve over time - topics appearing and disappearing, new topics emerging and older

ones fading away. [49] provide a model to evaluate variations in the occurrence of topics in

large corpora over a period of time. There have been other interesting contributions such

as work by [36] which studies the history of ideas in a research field using topic models, by

[10] which provides the temporal analysis of blogs and by [54] which gives models for mining

cluster evaluation from time varying text corpora.

1http://ngrams.googlelabs.com/

9



2.4 IR Applications

IR research has investigated time-sensitivity query interpretation and document

ranking [11, 31], time-based organization and presentation of search results [2], how queries

and documents change over time [24], etc. One of the first LM-based temporal approaches

by Li and Croft [31] used explicit document dates to estimate a more informative document

prior. More recent work by Dakka et al. [11] automatically identify important time intervals

likely to be of interest for a query and similarly integrate knowledge of document publication

date into the ranking function. The most relevant work to ours is that by Alonso et al.

[2], who provide valuable background on motivation, overview and discussion of temporal

analysis in IR. Using explicit temporal metadata and expressions, they create temporal

document profiles to cluster documents and create timelines for exploring search results.

2.5 Document dating

The most closely related work we are aware of studied LM-based document dat-

ing [20, 22]. We similarly partition the timeline (and document collection) to infer an unique

LM underlying each time period. We also similarly estimate a LM underlying each docu-

ment [40] and measure similarity between eac document’s LM and each time period’s LM,

yielding a distribution over the timeline for each document. While prior work focused on

the past 10-20 years, our work is far more historically-oriented, modeling the timeline from

the present day back to 3800 B.C. We also predict publication dates for historical works of

fiction, as well as learn from and predict time spans in addition to time instants.

The foundational work by de Jong et al. [20] considered Dutch newspaper articles

from 1999-2005 and compared language models using the normalised log-likelihood ratio

10



measure (NLLR), a variant of KL-divergence. Linear and Dirichlet smoothing were applied,

apparently to the partition LMs but not the document LMs. They also distinguish between

output granularity of time (to be predicted) and the granularity of time modeled. Kanhabua

et al. [22] extended de Jong et al.’s model with notions of temporal entropy, use of search

term trends from Google Zeitgeist, and semantic pre-processing. Temporal entropy weights

terms differently based on how well a term distinguishes between time partitions and how

important a term is to a specific partition. Semantic techniques included part-of-speech

tagging, collocation extraction, word sense disambiguation, and concept extraction. They

created a time-labeled document collection by downloading web pages (mostly web versions

of newspaper articles) from the Internet Archive which spanned roughly an eight year period.

In follow-on work inferring temporal properties of queries [23], they used the New York Times

annotated corpus, with articles spanning 1987-2007.

2.6 Geolocation

Temporal resolution can be seen as a natural pairing with geolocation: both are

ways of connecting texts to simple, but tremendously intuitive and useful, models of aspects

of the real world. There has been a long-standing interest in finding ways to connect

documents to specific places on the earth, especially for geographic information retrieval

[3, 14]. Of particular relevance to our paper is Wing and Baldridge’s LM based method of

measuring similarity of documents with language models for discrete geodesic cells on the

earth’s surface [51].
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2.7 Authorship attribution

A final relevant work of note is the LM-based authorship attribution work by Zhao

et al. [56]. They similarly partition the corpus by author, build partition-specific LMs,

and infer authorship based on model similarity computed with KL-divergence and Dirichlet

smoothing. They also consider English literature from the Gutenberg Project. Unlike us,

they train directly on this corpus instead of applying LMs from another domain.

2.8 Computer vision

Divergence based techniques have been used in the area of computer vision to as-

sign images to motion forms or event. Each standard form like the chronon has a distint

distribution over the pixel set. A test image’s distribution is compared to these standard

distributions to assign similarity metrics. Khokhar et al. [42] use this to classify test images

from different corpora to various motion events such as left turn, right turn, convergence

etc. They estimate distributions as continuos than discrete assuming Gaussian form and use

sampling techniques to evaluate KL divergence to avoid calculating the precise distribution

form. They are able to avoid smoothing by assuming continous distibution over the pixel

set though they have much bigger evidence set (training pixels) and can afford to estimate

a continuous distribution without using smoothing. Saleemi et al. [18] use clustering tech-

niques to temporally segment motion cues from a video and then use KL divergence to

assign forms to test images and in the process avoid smapling techniques for divergences

though clustering is more computational expensive in this case.
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Chapter 3

Corpora

Our models are trained and evaluated on three datasets 1

3.1 Wikipedia Biographies (wiki-bio)

The Wikipedia dump of English on September 4, 2010 is used 2 to extract biogra-

phies of individuals who lived between the years 3800 B.C. to 2010 A.D.

We extract the lifetime of each individual via each article’s Infobox birth date and

death date fields. We exclude biographies which do not specify both fields or which fall

outside the year range considered. We treat the lifetime of each individual as the article’s

labeled time span and use these spans to train and evaluate our methods, e.g. predicting

the mid-point of an individual’s lifetime from his biography’s text, or most likely year he

was alive. As is often typical of Wikipedia coverage, the distribution of biographies is quite

skewed toward recent times. 3.1 plots the number of birth per year in the training set.

We extract a total of 280,867 Wikipedia biographies of individuals whose lifetimes

begin and end within the year range considered (3800 B.C. to 2010 A.D.). These biographies

are split 80/10/10 into subsets for training (224,476 articles), development (28,212 articles)

1All the three will be released upon publication, including processing and extraction needed for easy
replication of experiments.

2http://download.wikimedia.org/enwiki/20100904/enwiki-20100904-pages-articles.

xml.bz2
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Figure 3.1: Graph of number of births per year in the Wikipedia biography training set.

and testing (28,179 articles). We remove all the documents from development and test set

whose either of their birth date or death date missing. This gives use 8,358 articles in

dev set and 8,440 articles in test set.

3.2 Gutenberg Short Stories (gutts)

We also consider a collection of English short stories, published between 1798 to

2008, obtained from the Gutenberg Project. Whereas with Wikipedia biographies we use

labeled time spans corresponding to lifetimes, Gutenberg stories are labeled by publication

year. Our inference task is then to predict the publication year given the story’s text. We

perform this task out-of-domain, applying models trained on the Wikipedia biographies to

predict Gutenberg stories’ publication dates. We use 678 Gutenberg short stories. The

average, minimum and maximum word count of these stories are (roughly) 14,000, 11,000

and 100,000 respectively. Stories are split into a development set of 333 documents and a

test set of 345 documents.
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3.3 Wiki-Year Pages (wiki-year)

.

Wikipedia has a collection of pages corresponding to various years that describe the

events that occurred for a given year. Each year has a corresponding page in Wikipedia and

each page has a corresponding year in this collection 3. This collection has pages starting

form year 500 B.C. to 2010 A.D. Each page has the corresponding year as its label and

the text contains all the events that occurred in that year. Our task is to predict the

year of occurrence given the text. These texts are further filtered to remove any temporal

expressions if present. The years are divided into even and odd sets. The even set is used for

validation and odd set is used for test. We use 2,511 wiki-year documents. 1,256 documents

become part of dev set and 1,255 are used for test set.

Figure 3.1 shows random sample lines from five wiki-year pages. The lines are terse

and the text as a whole contain very little temporal expressions. The frequency of a typical

word in this dataset is between 1 and 3 occurrences per document. Each event is a sort line

in the text and sometimes events overlap among two documents temporally close to each

other. This happens for the B.C. region of years as some events have a general know time

period rather than a fixed year. For example the events “Proto-Greek invasions of Greece.”,

“Minoan Old Palace (Protopalatial) period starts in Crete.” etc. are present in the text for

1878 as well as 1880 B.C. These occurred around 1880 B.C. but their exact occurrence date

is unknown. We avoid such overlapping docuemnts and only use documents from 500 B.C.

onwards till 2010 A.D.

3http://en.wikipedia.org/wiki/List_of_years
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Year Sample Text

1900 B.C.

Port of Lothal is abandoned.
Senwosret III (Twelfth Dynasty) started
to rule.
Proto-Greek invasions of Greece.
Hittite empire in Hattusa, Anatolia.
Fall of last Sumerian dynasty.

1000 B.C.

Early Horizon period starts in the An-
des.
Iron is introduced in Ancient India.
Phoenician alphabet is invented.
Chavin culture starts in the Andes.
Paracas culture starts in the Andes.

2 A.D.

Cedeides becomes Archon of Athens.
Deng Yu, Han Dynasty general and
statesman.
Publius Alfenus Varus and Publius Vini-
cius become Roman Consuls.
Lucius Caesar, son of Marcus Vipsanius
Agrippa and Julia the Elder, and heir to
the throne.
The Chinese census shows nearly one
million people living in Vietnam.

1000 A.D.

Middle Horizon period ends in the An-
des.
Dhaka, Bangladesh, is founded.
The Diocese of Koobrzeg is founded.
Stephen I becomes King of Hungary,
which is established as a Christian king-
dom.
Gunpowder is invented in China.

2000 A.D.

Stipe Mesic is elected president of Croa-
tia.
The Tate Modern Gallery opens in Lon-
don.
Tuvalu joins the United Nations.
The last Mini is produced in Long-
bridge.
Tuanku Syed Sirajuddin becomes Raja
of Perlis.

Table 3.1: Sample text from 5 different years in wiki-year dataset.
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3.4 Notation

.

With regards to notation and nomenclature, we refer to biographies, stories and

Wiki-Year pages alike as documents, and each dataset as defining a document collection c

consisting of N documents: c = d1:N .
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Chapter 4

Modeling and Estimation

This section describes the approach to represent time in our models and the 2

essential set of models that are utilised for 2 main tasks as described in previous sections.

4.1 Representing Time

Following aforementioned prior work [2, 20, 22], we quantize continuous time into

discrete units. Our terminology and formalization most closely follow that of Alonso et

al. [2]. The smallest temporal granularity we consider in this work is a single year, though

the methods we describe can in principle be used with units of finer granularity such as

days, weeks, months, etc.

4.1.1 Span

Let a span of multiple, contiguous years be some interval τ = [ys, ye], where ys and

ye refer to start and end years, respectively. For example, individual lifetimes (as reported

in Wikipedia biographies) we want to predict are expressed as spans. As noted in §3, we also

know the year range covered by each document collection and restrict our overall timeline

correspondingly to the span τo = [y0, yY ), covering a total of yY − y0 = ∆ years.
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4.1.2 Chronon

A chronon is an atomic interval x upon which a discrete timeline is constructed

[2]. In this paper, a chronon consists of δ years, where δ is a tunable parameter. Given δ,

the timeline Tδ is decomposed into a sequence of n contiguous, non-overlapping chronons

x = x1:n, where n = ∆

δ
.

4.1.3 Granule

A granule specifies a sequence of multiple contiguous chronons ω = xj:k [2]. A

granule therefore constitutes a kind of span. However, granules typically lack sufficient

granularity to precisely match the actual labeled span τd∗ for each document. A span τδ

can only be expressed as a granule if it is “chronon-aligned” on the timeline (i.e. τδ =

[y0 + ksδ, y0 + keδ], with {ks, ke} ∈ N). Consequenty, while some methods we describe infer

a representative granule ωd for each document d, other methods refine these granules to

predict finer-grained spans τd for higher accuracy.

4.2 Pseudo-documents

We generate the “pseudo-document” dx for each chronon x by concatenating all

training documents whose labeled span overlaps x. For example, for a chronon size δ of

25 years, the biography of Abraham Lincoln (1809-1865) would be included in the pseudo-

documents for each of the chronons representing 1800-1825, 1826-1850, and 1851-1875.

Models. Our models are divided into 2 sets dependending upon the task they perform: 1)

models for time-stamp prediction, amd 2) models for time-span prediction. For Wikipedia

biographies we predict their mid-life-span as well as life-span. For Guttenberg short stories
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and wiki-years we predict time-stamp, either a publication year or event year.

4.3 Time-stamp models

The models here are used to assign a time-stamp to each test document.

4.3.1 Modeling Affinity

We model the affinity between each chronon x and a document d by estimating the

discrete distribution P (x|d). In the next section, we use P (x|d) to infer affinity between

d and different chronons. The mid-point of (see section ??) the most likely chronon is

then returned as the predicted year by the model. We define two primary models for

estimating P (x|d). First, an LM-based approach for inferring affinity between chronon x

and document d via a generative scheme of generating documents from chronons. The

second approach estimates P (d|x) based on a model of divergence between latent unigram

distributions P (w|d) and P (w|x) [27]. In this work, we adopt a similar approach of modeling

the likelihood of each chronon x for a given document d.

4.3.2 Ranking by Model Comparison

Given the “pseudo-document” dx associated with each chronon x, we estimate

chronon model Θx from dx. In prior work by Kumar et al. [26], P (x|d) is then estimated

by computing the unnormalized likelihood of x given d through standard (inverse) KL-

divergence and normalizing this likelihood over all chronons x1:n:

P (x|d) =
D(Θd||Θx)−1

∑

x D(Θd||Θx)−1
(4.1)
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While they do not show this, it is straighforward to see that their formulation is rank

equivalent to the standard model comparison ranking with negative KL-divergence [20, 22]:

P (x|d) ∝ D(Θd||Θx)−1 rank
= −DKL(Θ

d||Θx) (4.2)

Lafferty and Zhai showed such ranking is equivalent to generating the query (i.e. query-

likelihood) assuming a uniform document prior and the query model being estimated by

relative frequency (i.e. maximum likelihood) [28]. This means that for our task, provided we

adopt a uniform prior over chronons and estimate the document model by relative frequency,

KL-ranking and document-likelihood approaches will be rank equivalent.

4.3.3 Ranking by Document Likelihood

Recall that for our task, the document is the “query” for which we wish to rank

chronons, hence document-likelihood here corresponds to the traditional query-likelihood

approach. As discussed above, document-likelihood and model comparison approaches are

rank equivalent if the document model is estimated by maximum likelihood and we assume a

uniform prior over chronons. Just as informed document priors (e.g. PageRank or document

length) inform traditional document ranking, an informed prior over chronons has potential

to benefit our task as well.

Using Bayes Rule, we estimate P (x|d) ∝ P (d|x)P (x). Assuming unigram modeling,

the likelihood is given by:

P (d|x) =
∏

w∈dx

θxw (4.3)

where w is a word token in the pseudo-document dx, and parameters of the chronon model

Θx are estimated from pseudo-document dx as described in Section 4.3.4. We adopt a
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chronon prior intuitively informed by the distribution of training documents over chronons:

P (x) =
|dtrain ∈ dx|

∑

∀y |dtrain ∈ dy|
(4.4)

where dtrain is a training document, dx is the pseudo-document for chronon x and |dtrain ∈

dx| is the number of dated training documents overlapping chronon x.

4.3.4 Smoothing

We use three smoothing techniques: a) Jelinek-Mercer smoothing (JM) [53], b)

Dirichlet smoothing [53], and c) chronon-specific smoothing (CS). For all three, for each

word w, θ̂dw can be computed as a mixture of document d and document collection c

maximum-likelihood (ML) estimates:

θ̂dw = λ
fd
w

|d|
+ (1− λ)

f c
w

|c|
, (4.5)

where fd
w and f c

w denote the frequency of word w in the document or collection respectively,

|d| and |c| are the document and collection lengths, and the parameter λ specifies the

smoothing strength.

With Dirichlet smoothing, we have:

λ =
|d|

|d|+ µ
(4.6)

where µ is a hyper-parameter learned over validation set.

Chronon-specific smoothing is a special case of Dirichlet smoothing:

µ =
ξ

|Vdx ∪ Vdi
|

(4.7)

where |Vdx ∪Vd| denotes the document-chronon specific vocabulary for some collection doc-

ument di and pseudo-document dx and ξ is a prior for hyper-parameter µ learned over

validation set. For Jelinek-Mercer smoothing λ is learned directly over validation set.
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The intuition behind chronon-specific smoothing is that mass is provided only for

the words that are present in the collection document or the chronon’s pseudo-document,

ignoring other words. Thus, the divergence calculation is done only with respect to either

the document or the chronon we have evidence for. There are many chronons for which we

have little textual evidence (e.g. those in the range before 500 B.C. and between 100 A.D.

to 1600 A.D.); if these are smoothed with respect to all words in the collection, then those

terms dominate the divergence calculation. When a short document is evaluated against a

low-evidence chronon, smoothing over all words leads to many terms (few of which actually

occur in the document or the chronon) having similar probabilities, leading to low divergence.

4.3.5 Inference

Section §4.3 described several models for estimating P (x|d). From P (x|d) we esti-

mate the midpoint ŷ or for each chronon. Every chronon x = [y, y+ δ] is represented by its

mid-point ŷ where ŷ = y+ δ/2. In case of Wikipedia biographies the predicted ŷ represents

the mid-life-span of the individual, for Guttenberg short stories it is the publication date

and for Wiki-Years dataset it is the year of happening of the given events page. In later

sections we will present the baseline year-prediction for ŷ.

4.4 Time Span Models

The models here are used to assign a time span to each incoming test document.

This is used for predicting life span of individula using their Wikipedia biographies.
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4.4.1 WordAffinity Model

In this work, we adopt a similar approach to modeling the likelihood of each chronon

x for a given document d. By forming a unique “pseudo-document” dx associated with each

chronon x, we estimate Θx from dx and estimate P (x|d) by comparing the similarity of Θd

and Θx [20, 22]. We compute the unnormalized likelihood of some x given d via standard

(inverse) KL-divergence D(Θd||Θx)−1 as in section 4.3.2 and normalize in straight-forward

fashion over all chronons x1:n:

Pwa(x|d) =
D(Θd||Θx)−1

∑

x D(Θd||Θx)−1
(4.8)

Smoothing We use chronon-specific smoothing as defined in 4.3.4

Example distributions. As examples of the kinds of distributions we obtain for

documents in the development set, figure 4.1 shows graphs of Pwa(x|d) for (a) Plato and

(b) Abraham Lincoln. Recall that these are based on no explicit temporal expressions. For

Plato, there is a clear spike around the time he was alive, along with another rising bump

toward the current day, reflecting modern interest in him. For Lincoln, there is a single

peak at 1835—very close to the 1837 midpoint of his life.

4.4.2 YearCounts model

YearCounts uses direct evidence of a document d’s temporality via explicit year

mentions in the document. Essentially, this creates and uses a temporal document profile

like that of [2], but it does not require existing named-entity recognizers and only considers

years. This makes it both more limited yet also more lightweight, since it does not require

training a temporal expression identifier.
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(a)

(b)

Figure 4.1: Example Pwa(x|d) distributions for the biographies of (a) Plato (428-348 B.C.)
and (b) Abraham Lincoln (1809-1965).

The model. Let fd
y denote the frequency of year y mentions found in d, and

let fd =
∑

y f
d
y denote the total number of year mentions in d. We bin years by the

chronons and then normalize over the timeline of all chronons to compute relative frequency:

Pyc(x|d) =
1

fd

∑

y∈x f
d
y .
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Identifying year mentions. We identify mentions of years via regular expressions

(tuned on development data). For spans expressed in simple numerical form (e.g. “1973-

1979”), we extract a mention for each year in the span. More complex expressions of spans

result in our detecting only the start and end years. As this simple example shows, accurately

identifying year mentions is non-trivial. To further illustrate, we list below examples of false

year mentions identified by our initial set of regular expressions:

• Month dates: February 12, 12 February, Feb 12 etc. Here 12 can be picked up as an

year if not removed

• Ordinal Numbers: of age 12, 2nd position, No. 2, #2, 3rd year

• Amounts: monetary information, decimal numbers, percentages: $200 million, 13.45,

15%

• Miscellaneous: 230px, 13:54, 134.jpg

Numeric values such as those in “He received 456 votes out of 1347” are difficult

to differentiate from a valid year using regular expression since they do not have a fixed

pattern. Thus, even after filtering out considerable noise, some tokens still are identified

erroneously as valid years which skews our estimation. Most of the intractable noise seems

to occur in range of 1-200.

Regardless of noise, YearCounts has two obvious limitations: (1) it ignores infor-

mation from other tokens in the document d, and (2) it completely fails if there are few or

no year mentions in d.

Example distributions. Figure 4.1 shows example distributions of Pyc(x|d) for

(a) Plato and (b) Abraham Lincoln. Note in particular that there is a great deal of noise in
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the distribution for Plato in the first century A.D. The word model in figure 4.1(a) effectively

balances that noise. Though the distribution for Lincoln is less affected by such noise, it

does spike at 1860 due to the heavy focus on the American Civil War in his biography. The

word model again balances this out so that the span of Lincoln’s life can be better estimated

in the combined model we describe next.

4.4.3 YW-Combined model

WordAffinity is not susceptible to the noise that profoundly affectsYearCounts

(and especially in in the lower range of 1-200), and it uses all of the textual evidence in the

document. However, the distribution Pwa(x|d) tends to be much smoother than Pyc(x|d)

and uses explicit year mentions much less directly, suggesting that a combination of the two

complementary approaches may be most effective. We use simple linear interpolation for

this:

Pyw(x|d) = αPwa(x|d) + (1− α)Pyc(x|d) (4.9)

where α is tuned on development data.

4.4.4 Inference

We now describe how we use P (x|d) to infer a representative chronon xd, granule ωd,

and/or span τd for each document. We define six methods: MaxChronon, MaxGranule,

CenterGranule, GranuleMaxChronon, TrimmedSpan, and VarianceSpan. The

first two methods infer these time units directly, and the latter four methods utilize the

output of the first two. We will refer to the most-likely chronon for a given granule as that
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granule’s anchor.

4.4.5 Chronon and Granule Identification

MaxChronon selects the most-likely chronon under P (x|d):

xd
mc = argmax

x∈x
P (x|d) (4.10)

The auxiliary function CenterGranule takes such a chronon xd = xj as input and

produces a representative granule ωd for d by centering a span of l = kδ years around xd,

where k ∈ N and l is a parameter. If (l − δ)/δ is odd, we will have one more chronon to

the left of xd than to the right of it. For example, if l = 120 and δ = 5, CenterGranule

will produce granule ωd
mc = xj−12:j+11 having 12 chronons left of xd and 11 chronons to its

right. We define ωd
mc = CenterGranule(xd

mc).

MaxGranule selects the most-likely granule ωd
mg for d according to P (x|d). The

size of this granule is a function of the parameter l: ⌊ l
δ
⌋ = w chronons. For example,

if l = 120 and δ = 40, MaxGranule considers granules of size w = 3 chronons. For the

overall timeline of n chronons, there are n−w+1 such granules ω = ω1:n−w+1. We effectively

slide a window of w chronons across x one at a time, where each position corresponds to a

unique granule. We then select the maximal granule:

ωd
mg = argmax

ω

∑

x∈ω

P (x|d) (4.11)

The probability of each consecutive granule can be efficiently computed since to move from

one granule to the next we just remove the left-most chronon and add a new one on the

right side.
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Another auxiliary function, GranuleMaxChronon, takes an input granule ωd and

outputs its most-likely chronon x ∈ ωd:

xd = arg max
x∈ωd

P (x|d) (4.12)

We define xd
mg = GranuleMaxChronon(ωd

mg). Whereas xd
mc corresponds to the most-likely

chronon over all x, xd
mg corresponds to maximal chronon within the most-likely granule

ωd
mg.

Finally, we note two possible approaches not used. By construction, GranuleMaxChronon(ωd
mc) =

xd
mc and so is redundant with MaxChronon. We also do not use CenterGranule(xd

mg),

which would center an l-sized granule around xd
mg.

4.4.6 Span identification

So far we have two methods of inferring a representative granule ωd for document d,

yielding ωd
mg and ωd

mc. While we could directly use either granule as a representative span

τd for d (since a granule is a kind of span), this has two limitations. First, both ωd
mg and

ωd
mc consist of a fixed number of chronons regardless of the the shape of P (x|d). In practice,

the same size of granule may not be optimal for all d. Secondly, granules may not have

sufficient granularity to match the optimal span τd∗ for d, meaning any choice of granule

would guarantee some loss of accuracy in attempting to precisely match actual document

spans.

To address these limitations, we define two additional methods, TrimmedSpan and

VarianceSpan, which each take a granule ωd as input. TrimmedSpan addresses the first

limitation by trimming one or more chronons from the left and right extent of ωd to create

a narrower granule ω̂d. (We do not consider extending an input granule with additional
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chronons.) VarianceSpan inspects the standard deviation of probability mass around ωd’s

anchor chronon xd to generate a new span τd centered on xd.

Specifically, TrimmedSpan trims the edges of ωd = xm:n with a simple heuristic

based on thresholding the relative probability from one interval to the next. Consider the

left-most chronon xm, letting xl = xm. Given parameter κ, while the inequality

P (xl+1|d)− P (xl|d)

P (x|d)
> κ (4.13)

holds, we trim xl from ωd, redefine xl = xm+1 and ωd = xm+1:n, and repeat. Trimming

terminates once the inequality no longer holds or we have |ωd| = 1 (i.e. ω consists of a single

chronon). Right-trimming proceeds similarly from the right- side rather than the left. The

final trimmed granule is denoted ω̂d.

VarianceSpan calculates the standard deviation of probability mass around the

anchor chronon xd of input granule ωd. Let ωd
l denote the sequence of chronons left of xj in

ωd (excluding xd), and |ωd
l | the number of chronons in ωd

l . Let P̄l denote the simple average

probability of chronons in ωd
l : P̄l = 1

|ωd

l
|

∑

x∈ωd

l

P (x|d). We the compute the standard

deviation for ωd
l by:

σl =

√

∑

x∈ωd

l

||P (x|d)− P̄l||2 (4.14)

We compute σr similarly for ωd
r , the chronons right of xd in ωd. By computing the left

and right standard deviations separately, we are able to capture some of the natural skew

that dominates many biographies, wherein most of the (temporal) interest is nearer to an

individual’s death than to their birth (giving a higher s.d. on the left side than the right).

Let ξs denote the first year of xd. We use these standard deviation statistics to
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generate the predicted span as:

τ̂d = [ ξs−⌊γσl⌋, ξs+⌊γσr⌋ ] (4.15)

where parameter γ ∈ R+ denotes a stretch multiplier we tune on development data.
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Chapter 5

Evaluation Metrics

This section describes the metrics used to eavluate our models.

5.1 Data Cleaning

We clean the documents to remove all temporal expressions (explicit or implicit

dates/times) using Heidel-Time temporal tagger [44]. Heidel-Time tags all temporal expre-

sion present in the text and we remove all such tagged words to avoid using any explicit

temporal cues. Heidel-Time also provides the first two dates present in the text which is

a very effective baseline for predicting the mid-life span of biographies. All numeric tokens

and standard stopwords are removed. This gives a vocabulary size of 374,973 words for the

entire Wikipedia biography corpus.

5.2 Metrics

We have two sets of evaluation metrics: 1) for time span prediction, and 2) for

time-stamp prediction. These are described bellow in sepearte sections.

5.2.1 Time-stamp Metrics

Parameters and Estimation. For each model+task, we tune the parameters δ,

µ, ξ, and λ over the dev sets of the corresponding dataset (task).
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As in prior work [20, 22, 26], we smooth chronon pseudo-document language models

(for all models as well as smoothing techniques) but not document models. While smoothing

both may potentially help, smoothing the former is strictly necessary to prevent division by

zero in the KL-divergence calculation.

Year Prediction. For Wikipedia biographies, we take the midpoint of individual’s

lifetime as the gold standard year to match for the text. With Gutenberg stories, the gold

standard to match for each story is a labeled year (publication date). For wiki-year the

gold-standard is the year of the document.

Error Measurement. When predicting a single year for a document, a natural

error measure between the predicted year ŷ (mid-point) and the actual year y∗ is the dif-

ference |ŷ − y∗|. We compute this difference for each document, then compute and report

the mean ȳ and median ỹ of differences across documents. Similar distance error measures

have also been used with document geolocation [15, 51].

Baselines For Wikipedia biographies the baseline is the mid-point of the first two

temporal-dates extracted by Heidel-Time [44]. This is a highly efficient baseline as for

Wikipedia biographies generally the first two dates are the birth date and death date.

For Gutenberg stories, we take 1903, the midpoint of the range of publication dates (1798-

2008) as the baseline. For Wiki-Year dataset the baseline is the midpoint of the prediction

range i.e. −500+2010

2
= 755.

5.2.2 Time Span Metrics

Parameters and Estimation. The models and methods we have described in-

volve various parameters. The l parameter of CenterGranule and MaxGranule is
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fixed at 120 without tuning (since the longest document human lifespan is 122 years).

All other parameters are tuned on the Wikipedia development data: the chronon size δ,

WordAffinity’s smoothing parameter λ, the weighting parameter α for YW-Combined,

TrimmedSpan’s κ threshold, and VarianceSpan’s γ parameter.

Here again we smooth chronon pseudo-document language models but not document

models.

Span Prediction. We measure precision P , recall R, and F-score F of predicted

spans τ̂ with respect to gold spans τ∗ using years as the unit of measure. For example,

predicting τ̂=1822-1874 (|τ̂ | = 52 years) for τ∗=1831-1889 (|τ∗| = 58 years, with |τ̂ ∩ τ∗| =

43 years correctly matched) obtains P = 82.7% (43/52), R = 74.1% (43/58), and F ≈

79% ( 2PR
P+R

). The values we report are the averages over all the documents being evaluated,

given by (P = 1

|D|

∑

d∈D
Pd) and (R = 1

|D|

∑

d∈D
Rd) respectively for each model where

d is a Wikipedia biography article and D is the set of biographies being evaluated.

A limitation of P and R is that zero credit is awarded no matter how closely a

prediction missed the actual interval. Consequently, we also report aggregate mean ȳ and

median ỹ difference in years between the prediction and the gold standard to see how close

we are to the actual value even if we miss it. Whereas with year prediction we use the

first year of the predicted chronon, here we use the midpoint of the predicted span as the

predicted year. We show that this in fact is a more accurate predictor (see §6.2.2).

Finally, the last metric used is PR0 which gives the number of documents the

model missed completely (for which P=R=0). This metric highlights situations where a

model might make many high quality predictions and then be wildly off on others, e.g. in
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the case of YearCounts when noise in the year extraction overcomes it and leads it to

pick dates in the 0-200 A.D. range.
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Chapter 6

Experiments

6.1 Time-stamp Prediction

6.1.1 Parameter Tuning

We begin with year prediction experiments on the development sets to tune the

parameters δ, ξ or µ. We parametrize µ as a function of the average chronon size:

µ = ⌈ρc̄⌉ (6.1)

where c̄ is the average chronon size in the training set. This is a constant whose

value is dependent upon the model and the task. The value of ρ is tuned over the validation

set.

Choice of chronon size and smoothing parameters. We tune the chronon

size (δ) over the validation set and tune the smoothing parameters λ, ρ, and ξ (depending

on the type of smoothing) for the best δ obtained. For δ tuning we assign an arbitrary

value to the smoothing parameter λ. The δ is tuned for each dataset and KL model with

CS and JM smoothings. Bayesian model with Dirichlet/JM smoothing and KL model with

Dirichlet smoothing use the same best δ obtained for KL model with JM smoothing on

the respective datasets. Each dataset, model and smoothing triad tunes its own unique

smoothing parameter λ, ξ, or ρ. The tuning parameters are trained on the mean-error

and over 8,358 documents for Wikipedia biographies, 333 documents for Guttenberg Stories

36



and 1956 documents for wiki-years. Our search space for smoothing parameters ξ, λ and ρ

includes { 1e− 12, 1e− 11, . . . , 0.1, 0.25, 0.75, 0.9, 0.99, . . . , 0.999999999 }

(a)

(b)

Figure 6.1: Tuning for δ (fig. a) and smoothing parameters (fig. b) over wiki-bio and gutts
datasets for KL model. The smoothing parameter ξ (for CS smoothing) and λ (for JM
smoothing) are fixed at 0.01 and 0.99 respectively for δ tuning (fig a.)
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Dataset Model Smoothing δ ȳ ỹ
baseline 298.22 0.0
wiki-bio KL ξ=10−4 10 42.65 22.00
wiki-bio KL λ=0.999 10 36.91 22.50
wiki-bio KL ρ=10−6 10 37.92 22.00
wiki-bio Bayesian λ=0.999 10 36.65 22.00
wiki-bio Bayesian ρ=10−6 10 37.94 22.00
baseline 37 50
gutts KL ξ=10−3 30 23.95 17.00
gutts KL λ=0.999 10 20.41 17.00
gutts KL ρ=10−6 10 23.00 19.00
gutts Bayesian λ=0.999 10 20.41 17.00
gutts Bayesian ρ=10−6 10 22.97 19.00
baseline 978 489
wiki-year KL ξ=0.99 70 149.64 29.00
wiki-year KL λ=0.25 50 36.76 21.00
wiki-year KL ρ=0.01 50 67.27 21.00
wiki-year Bayesian λ=0.50 50 37.78 21.00
wiki-year Bayesian ρ=0.01 50 65.39 21.00

Table 6.1: Model Results on dev set. JM=Jelinek-Mercer and CS=chronon-specific,
BM=Bayes Model, and non-U=non-uniform prior

Figure 6.1 shows the tuning of δ and smoothing parameters (λ for JM and ξ for

CS) for the wiki-bio and wiki-years dataset. All triplets formed by KL/Bayes model ×

JM/Dirichlet smoothing × wiki-years/wiki-bio/gutts dataset use the optimum chronon-size

obtained for the respective datasets from the KL model with JM smoothing. Table 6.1

provides the best results for each triplet (model, data, smoothing) and the baseline for each

dataset using the above described tuning scheme on the validation set. KL model with JM

smoothing stands out to be the best across all the there datasets over the validation set.

From Figure 6.1 the mean error curve is generally smooth for λ and ξ unlike the δ

(chronon-size parameter). This makes smoothing the LMs robust to a range of values. The δ

has more fluctuation even in the optimal neighborhood, and this makes tuning chronon-size

more intensive.
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As noted in Section 4.3.2, model comparison (i.e. KL divergence) is rank-equivalent

to Document-Likelihood assuming a uniform prior over chronons and that the document

model is estimated by relative frequency [28]. In this work, we estimate our prior P (x) from

the training set such that the chronon with the higher number of documents gets higher

probability P (x) (equation 4.4). Another way to choose the prior P (x) would be to assign it

the Maximum Likelihood of the chronon x in the chronon collection X1..n. Such exploration

of alternative priors will be investigated in our future work.

6.1.2 Test Results

Dataset Model Smoothing ȳ ỹ
baseline 306.6 0.0
wiki-bio KL ξ 42.8 22.5
wiki-bio KL λ 37.4 22.5
wiki-bio KL ρ 38.1 22.0
wiki-bio Bayesian λ 37.3 22.5
wiki-bio Bayesian ρ 38.0 22.0
baseline 37 50
gutts KL ξ 39.6 19.0
gutts KL λ 22.9 19.0
gutts KL ρ 37.3 22.0
gutts Bayesian λ 22.9 19.0
gutts Bayesian ρ 37.4 23.0
baseline 978 489
wiki-year KL ξ 143.6 30.0
wiki-year KL λ 37.9 20.0
wiki-year KL ρ 60.6 22.0
wiki-year Bayesian λ 37.9 20.0
wiki-year Bayesian ρ 52.1 20.0

Table 6.2: Model Results on test set. JM=Jelinek-Mercer and CS=chronon-specific,
BM=Bayes Model, and non-U=non-uniform prior

Wiki-bio year prediction. Table 6.2 shows the results for the wiki-bio prediction

on the wiki-bio test set (8440 documents). All the models beat the baseline with a huge
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margin. Note that the baseline is not weak; it gives a median error of zero that means that

it is correct atleast half of the time. The best model achieves a mean error of 37.35 years

even though the prediciton range is 5810 (3800 B.C. to 2010 A.D.) years and the number

of documents is 8440. Bayesian + JM smoothing provides the best result. Though the

best median and mean error are not achieved by the same model. Its value of 22.0 means

that the model is correct by atleast 22.0 years for atleast half of the documents. The mean

and median error was 36.6 and 22.0 years for the best preforming model (Bayesian + JM

smoothing) over dev set.

Gutts prediction. Table 6.2 shows the results for 345 short stories in the gutts

test set. The stories are in the range 1798 to 2000 and the baseline is the mid-point of this

range. There are very few explicit temporal expressions in the short stories so the baseline

relies on the short range rather than any temporal expression present in the text (as was

the case for wiki-bio baseline). This assumes that one knows a rough range of possible

publication dates, which might be reasonable in many applications and provides a strong

point of comparison. Recall that the model is trained on Wikipedia, so this both evaluates

how well the model works on texts with very few explicit temporal expressions and how well

it works on a different domain. All the models beat the baseline and the best model gives a

mean error of 22.89 years and median error of 19 years. This means that the best model is

off the true publication date by at most 19 years for no more than half of all the stories. For

dev set, the mean and median error was 20.4 and 17.0 years for the best preforming model

(Bayesian + JM smoothing).

Wiki-years prediction. The baseline is year 755, the mid-point of the range being

predicted. All models beat the baseline comfortably. The best performing models (KL+JM

40



as well as Bayesian+JM) provide a mean error of 37.92 years and a median error of 20.0.

This means that the prediction for atleast half of the documents is off by less than 20 years.

KL model with JM smoothing provided the best mean and median error of 36.7 and 21.0

years respectively.

The standard smoothing techniques (JM and Dirichlet) perform better than the CS

smoothing accross models and datasets. Among the conventional smoothings, JM performs

slightly better than Dirichlet given the dataset and model. From Table 6.2 the median error

for wiki-bio baseline is zero which is not surprising. For Wikipedia biographies, the first two

dates present are birth and death dates in order with very high probability. And once the

baseline picks it up its error goes to zero. This happens for atleast more than half of the

documents being predicted which results in the median error as zero.

6.2 Time Span Prediction

The span predicion is done for Wikipedia biography set only.

6.2.1 Parameter tuning: year prediction

We begin with year prediction experiments on the development sets to tune the pa-

rameters δ and α and identify which of MaxChronon and MaxGranule is more effective

for each model.

Choice of chronon size and combined model weight. The most important

parameter for computing and using the interval histograms is the chronon size δ. We tune

it by evaluating the mean and median differences on 1000 documents from the Wikipedia

development set. We also must pick the relative model weight α for YW-Combined. We
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Figure 6.2: Mean temporal difference for different δ values for the three models.

do this by calculating the mean temporal difference for each model for δ in the range 1 to

100 and for α in the range .01 to .99 (YW-Combined only). As shown in 6.2, the optimal

δ’s are 1, 40, and 5 for YearCounts, WordAffinity, and YW-Combined, respectively.

For YW-Combined with δ = 5, the best α value is .95. We hold the δ values fixed when

tuning other parameters (e.g. for span prediction) and obtaining remaining results, but do

consider other α values for span prediction.

MaxChronon vs. MaxGranule. 6.3 Shows the performance on the Wikipedia

development set for each of the models using either MaxChronon or MaxGranule for

identifying the anchor (recall that the predicted year is the first year of the anchor). The

best anchor extraction method fo each model is bolded. MaxGranule seems to protect

YearCounts and YW-Combined (which uses YearCounts) from picking up a chronon

that has high probability for the wrong reason—most likely, because of noise from false

positives in date extraction. WordAffinity is not susceptible to this, and MaxChronon

performs much better.
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(a)

(b)

Figure 6.3: Precision, Recall and F-score for span prediction with YW-Combined for
different values of (a) κ with the TrimmedSpan method and (b) γ with the VarianceSpan
method.

6.2.2 Parameter tuning: span prediction

We fix chronon size and anchor prediction methods for each model to be their best

as determined by year prediction in the previous section. We thus consider six variations

of the three models WordAffinity, YearCounts, and YW-Combined with the span

prediction methods TrimmedSpan and VarianceSpan.

Parameter setting. Using binned search over parameter values on the develop-
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Model Anchor δ ȳ ỹ
YearCounts MaxChronon 1 379 23
YearCounts MaxGranule 1 219 20
WordAffinity MaxChronon 40 68 33
WordAffinity MaxGranule 40 105 34
YW-Combined MaxChronon 5 159 15
YW-Combined MaxGranule 5 38 12

Table 6.3: Year prediction results: Wikipedia development set.

Model Anchor δ κ γ
YearCounts MaxGranule 1 .05 1.5
WordAffinity MaxChronon 40 .05 1.5
YW-Combined MaxGranule 5 .40, α=.91 1.15, α=.97

Table 6.4: Parameter settings for span prediction methods. The chronon size δ determined
in year prediction experiments is included for completeness.

Model Anchor Spans P R F ȳ ỹ PR0

YearCounts MaxGranule TrimmedSpan 72.3 67.4 69.8 209 8 126
YearCounts MaxGranule VarianceSpan 72.5 72.8 72.7 209 9 125
WordAffinity MaxChronon TrimmedSpan 43.8 50.8 47.1 68 34 157
WordAffinity MaxChronon VarianceSpan 40.5 70.5 51.4 71 36 85
YW-Combined MaxGranule TrimmedSpan 81.1 78.2 79.6 82 7 53
YW-Combined MaxGranule VarianceSpan 73.9 78.4 76.1 85 11 53

Table 6.5: Development set results for span prediction. The parameters kappa and gamma
for each method are set based on 6.4.
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Model Interval δ Anchor Spans P R F ȳ ỹ PR0

Baseline 1 1964 ±50 yrs 38.2 54.9 45.1 113 38 1154
YearCounts 1 MaxGranule VarianceSpan, γ = 1.5 77.8 71.6 74.6 192 8 427
WordAffinity 40 MaxChronon VarianceSpan, γ = 1.5 47.9 79.7 59.9 84 22 292
YW-Combined 5 MaxGranule TrimmedSpan, κ = .40 81.1 81.0 81.1 118 6 260

Table 6.6: Test set results for span prediction. Results are shown for the anchor and span
prediction methods that worked best for each model on the development set for a test set
of size 4000 documents.

ment set, we tune—with respect to F-score—the κ and γ parameters of TrimmedSpan

and VarianceSpan, respectively, for span prediction. For YW-Combined, we also tune

the α parameter at the same time. 6.3 shows the results for (a) kappa and (b) gamma

for YW-Combined using MaxGranule; similar searches were run to obtain values for

YearCounts with MaxGranule and WordAffinity with MaxChronon. The final

set of parameter values is given in 6.4.

6.5 lists the full results for each configuration. The best span prediction method for

each model is bolded. The results make it clear that YearCounts and WordAffinity

provide ideal complements to each other. YearCounts is often very close to the true year,

but when it is off, it is wildly off (largely due to noise). WordAffinity, instead, is usually

not as pinpointed (as evidenced by its much higher median value), but it is never as wildly

off (as evidenced by the much better mean value). The combined model effectively combines

the strengths of both underlying models, and obtains the best results, regardless of the span

prediction method. Finally, note that there is not tremendous variation between the span

selection methods for a given model: most of the effectiveness comes from the model’s ability

to hone in on the generally correct portion of the timeline.
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6.2.3 Test set results

Wikipedia life span prediction. Table 6.6 shows results for each model on the

test set (4000 documents), using the chronon sizes, anchor prediction and span prediction

(and associated parameters) determined with the development sets. As a baseline, we choose

1964—the year that is the most frequent midpoint in the life spans in the training set—as the

anchor, and create a span by adding 50 years to either side of it (1914-2014). This baseline

is actually quite strong due to the skew in the dataset, as evidenced by the histogram in 3.1

showing the large number of individuals born in the early 20th century and thus reaching

life midpoints in the mid-20th century. All of the models easily beat this baseline, and again

we see that YW-Combined performs best of all. It obtains a very low median error: over

half of the documents are classified to within six years of their true midpoints. Only 260

out of 4000 documents (6.5%) are totally off the mark.
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Chapter 7

Discussion

For the temporal prediction task we dicover interesting phenomena such as “tim

warps” or “wormholes”. This phenomenon has been studied in other areas of text mining

such as geolocating documents on the earth’s surface. Clements et al. discovered this in

Flickr geotags an tried to trace these to different places on earth [35]. We analyse such time

warps for the time-stamp prediction task.

7.1 Time Warps

Some of the documents for which our model predictions are off by huge margins

show interesting wormhole like trends. These are prominent in wiki-year documents due

to their terseness as these are list of events that happened in a given year. Besides the

models trained on wiki-bio set add to this phenomenon as the context for the two datasets

are slightly different. A cluster of dev event years from between 250 to 150 A.D. (e.g. wiki-

years 234, 214, 152, 156 etc.) are predicted to be in 2nd century B.C. (200 B.C. to 150 B.C.)

by our model. These event years are very short with an average length of 40-50 words per

document including. The discriminatory tokens present in these texts are: Roman, Empire,

Kingdom, Han, Dynasty, China, Selucid, Greek, etc.. In the 200 B.C. to 150 B.C. period

all the documents in training set are about Greek/Selucid, Roman and Chinese (mostly

from Han dynasty) emperors/personalities (e.g. Attalus I, Eratosthenes, Plautus, Emperor
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Gaozu of Han, Emperor Hui of Han, Zhang Qian, Emperor Wen of Han etc.) and contain

similar prominent terms as the wiki-year event texts. This common collection of terms leads

to the model mapping wiki-year texts to 2nd century B.C. Although these terms are present

in the chronons representing 2nd century A.D. too, their proportion in the overall chronon

size is very small. The dev document being small assign very high weight in these terms

which forces the model to choose chronons which have higher proportion of these words

leading to the chronons in 2nd century B.C.

Another interesting prediction is of a cluster of short documents containing similar

terms from 200 A.D. to 800 A.D. to mid 6th century A.D. The short wiki-year texts (e.g.

wiki-years 246, 822, 486, 750 etc.) contain co-occurring set of terms Bynzatine, Empire,

Roman, Arab, Conquest, Islam, Caliphate. These short year events text (around 40 to

50 words long on an average) contain events related to mostly Byzantine wars, emperors,

Islamic/Arab conquest, Caliphates etc. This is mapped to mid 6th century A.D. period that

predominantly contains biographies of Islamic Caliphates (e.g. Abd al-Malik, Abu Bakr,

Ali, Umar etc.) and Byzantine emperors and prominent personalities (e.g. Maurice, Fausta,

Constans II etc.) which has predominant terms such as: Byzantine, Empire, Caliph, Islam,

conquest etc.

7.2 Discriminative Words

Table 7.1 shows the top 25 words in the descending order of their strengths. These

words are only those that are present in both training and test set. The predictive strength

score Sw
predictive of a word w is calculated as average prediction error of all the documents

that contain the word w. The majority of the top 25 predictive words in table 7.1 are
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Most Predictive Least Predictive
meriwether, komatsu, capote, cranmer,
payload, morelos, kido, stopes, sap,
laila, hem, shakuntala, anthrax, scooby,
crayon, plutarch, sampaguita, woodbury,
untimely, teleplay, tele, electorates, deriva-
tives, polygram, wavelength

oneself, primari, ssu, thebes, porphyry,
lysias, confucius, morality, romana, mat-
teo, unbroken, goodness, timpul, tarii,
grout, sinop, cynical, tub, crates, lantern,
bite, phila, transaction, corporeal, concili-
ation

Table 7.1: Top 50 most predictive and least predicitve words in the descedning order of
their stregths on the dev set documents for the wiki-bio dataset.

uncommon nouns. They are mostly not-so-used last names or famous titles e.g. capote,

komatsu, cranmer etc. The least predictive ones are common words in majority of the cases

e.g. goodness, oneself, morality, tub, crates, lantern etc. The uncommon among the least

predictives are mostly ones that are present in just one or two documents for which our model

performs very poorly due to getting trapped into one of the time warps present; and it is

highly likely that these words might be inducing those warps due to their predominance and

“uncommonanlity”. Words such as tele, wavelength, electorates, teleplay, sap (the company)

etc. have strong temporal connection as these words have never been used before 19th

century and it is words like these that provide predictive strength to our models.
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Chapter 8

Conclusion

We have shown that it is possible to perform accurate temporal resolution of texts

by combining evidence from both explicit temporal expressions and the implicit temporal

properties of general words. We create a partitioned timeline with language models in each

partition; these are used to determine a probability over the timeline for new test documents.

The language models themselves are trained on texts that are labeled with times based on

their content rather than their publication date, allowing us to temporally resolve documents

in the range 3800 B.C. to 2010 A.D. For the time span task the best model, which combines

explicit and implicit indicators, obtains an f -score of 81.1% on predicting the life spans of

individuals based on their Wikipedia biographies.

The time warps and least and most predicitive word sets provide us insight into the

temporal distribution of the training set. As we would expect the least predictive words

were the most common words such as oneself, morality, confucius etc. The uncommon words

in the least predcitive set essentailly contributed to the time warp phenomena and lead to

a very high amount of error. The most predictive words were the uncommon as well as

ones having implicit temporal properties associated with them. Words like tele, wavelength,

electorates, teleplay have strong temporal association and as expected are found among the

top 20 most predictive words.

For time-stamp task our best model was able to predict the mid-life span of Wikipedia
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biographies upto a mean error of 37.35 years and median error of 22.0 years over the test

set, given the biographies spanned from year 3800 B.C. to present day. The best model gave

a mean-error of 22.89 years and median error of 19.0 years for predicting the publication

dates of English short stories obtained from Guttenberg over test set. The publication date

of the stories lied between the years 1798 to 2008. We also predicted the year of occurrence

of Wikipedia “year events” pages. We were able to locate the year of occurence with a mean

error of 37.9 years and a median error of 20.0 years.
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Chapter 9

Future Work

There are a number of ways to improve the present approach. In building our time-

sensitive language models, we can match between time spans on annotated documents and

the chronons on our timeline in different ways. In this work we include in each pseudo-

document the full counts of any document whose timespan overlaps it. We can instead give

fractional counts proportional to the degree of overlap, akin to our span-based evaluation

measures. Inspired by recent work in positional language models [34], we can also posit

some form of density function across the years within the annotated time span, or centered

on a text with only a single year annotated such as publication date. These modifications

are worth trying and are part of out planned future work.

Smoothing of LMs of chronons around their neighborhood might be of help here. It

is likely that chronons in proximity to each other will have similar LMs. Taking into account

the proximity of queries/ documents while generating their LMs have improved accuracy

of models in the past [13, 45]. It remains to be seen whether a similar approach taking

proximity into account can imporve the model accuracies. The models can be built using

n-grams instead of unigrams. Words such as New York have their own temporal signature

compared to their unigram counterparts (New and York).

The temporal models discussed here can be used for word sense dismabiguation. In

recent years there have been increased interests in grounding words to real world properties.
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Words have been traditionally defined in terms of other words, a cyclic (though useful)

definition. Recent works have tried to bind words to conceptual representations [4], models

of space [43] and time. This is useful for word sense disambiguation. For example, the

word apple used before 19th century will mean the fruit apple with a very high probability

compared to that in the late 19th century. It can mean Apple Inc. or the record label Apple

as well.

An interesting future work can be the exploration of possible space of priors that

can be assigned to the chronons in the Bayes model. The prior used here takes into account

the number of documents assigned to each chronon. It is worthwhile to looke for alternative

prior formulation. An obvious prior that can be explore is the chronon’s ML in the training

set. A prior that takes into account the degree of overlap of the documents assigned to a

chronon is also worth trying.

At present we obtain the smoothing parameters by searching through the possible

parameter space. We might be able to avoid this by using Empirical Bayes smoothing tech-

niques [30]. Another possibility is to assume a continuous distribution form (e.g. mixture

of gaussians) for each chronon and document over the words similar to that of Khokhar

et al. [42]. It would be computationally intensive to model mixture of gaussians for each

chronon and document though it would avoid a possible search over parameter space. It

would also need large amount of evidence for all the chronons. For the present training

set our choron size (in terms of number of tokens) is typically very small in the B.C. years

region as shown in figure 3.1. This might lead to problems in fitting a mixture of gaussians

over these chronons.

Another opportunity with our approach that is worth exploring is to bootstrap the
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training of the model by using the dates obtained via temporal expression taggers (e.g.

Heidel Time [44]). This would enable the creation of a much larger and more representative

corpus from which to estimate the chronon-specific language models. There are plenty of

such texts available, including the many non-biographic articles in Wikipedia and many

freely available books written in the 19th and early 20th century that are about much

earlier time periods (and which have many explicit temporal expressions). This analysis is

part of our planned future work.

Google N-grams dataset can be used to train the present models. This dataset is

obtained from scanning around 5 million books and contains books published from 15th

century till date [16]. They follow a similar approach of dividing the timeline into single

years and assign books to these years according to their publication date. Though it has

considerably more documents than our present training set it has books only from 15th

century onwards. This makes it not so useful for predicting time stamps in the B.C. region

of texts.

Separating out words that have different periods of temporal behavior is a promising

future work. For example, breakfast and dinner cycle every day, weekend cycles every week,

paycheck cycles every month, and winter and summer cycle every year—all of these are at

much finer granularities than the year-by-year models we use. Data is now available for them

via constant newswire and Twitter feeds, and it is likely to be quite important to detect

and tease apart such periodic properties of words, especially for more fine-grained temporal

resolution. This can be used to assign much finer time stamps to text especially micorblogs

or tweets. We might be able to tell apart morning form evening tweets or weekday from

weekend tweets. People typically have different routines for weekdays and weekends which
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leads to the words used over the two periods containing implicit temporal cues.

Finally, the models discussed here can also be used for identifying shifts in users

political or social bias over issues with time.
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