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The southern Patagonian Andes record the Late Cretaceous closure and inversion 

of the Late Jurassic – Early Cretaceous Rocas Verdes marginal basin, subsequent 

development of the Patagonian retroarc fold-thrust belt and the Neogene to present 

tectonic superposition of a left-lateral strike-slip plate margin defined by the Magallanes-

Fagnano fault zone. In this dissertation, I present new geologic maps, cross sections and 

detailed macro- and microscopic structural analyses that describe the geometry and 

kinematic evolution of the fold-thrust belt and superposed strike-slip deformation over 

~200 km along-strike between 53° and 55° S latitude. Results are discussed in the context 

of the regional tectonic development of the southernmost Andes and are relevant to the 

understanding of important tectonic processes including the development of a retroarc 

fold-thrust belt, the formation of a basal décollement below and toward the hinterland of 

a fold-thrust belt and the spatial distribution of deformation along a strike-slip plate 

margin. 

New maps and balanced cross-sections of the Patagonian fold-thrust belt show 

that it developed during two main phases of Late Cretaceous to Paleogene shortening that 

were partly controlled by the antecedent geology and mechanical stratigraphy of the 

Rocas Verdes basin. During the Late Cretaceous, a thin-skinned thrust belt developed 

above a décollement that formed first in relatively weak shale deposits of the Rocas 

Verdes basin and later deepened to <1 km below the basement-cover contact. Ramps that 
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cut mechanically rigid volcanic rocks of the marginal basin link the two décollements. 

Basement-involved reverse faults that cut the early décollements and probably reactivate 

Jurassic normal faults reflect Paleogene shortening. Shortening estimates increase 

northwest to southeast from 26 to 37% over 100 km along-strike and are consistent with 

regional models of the fold-thrust belt. 

Structural data, kinematic analyses, and microstructural observations from the 

lower décollement show that it is defined by transposition of several generations of 

northeast-vergent noncylindrical folds, shear bands, and a quartz stretching lineation that 

are kinematically compatible with first-generation structures of the fold-thrust belt. 

Quartz microstructural data from the décollement are consistent with deformation 

temperatures that decrease from ~500-650° C to ~400-550° C over ~75 km in the 

transport direction, indicating that the décollement dipped shallowly (~6°) toward the 

hinterland. The décollement decoupled the underthrust continental margin from the fold-

thrust belt and exemplifies the kinematic relationship between shortening that occurs 

coevally in a retroarc fold thrust-belt and its polydeformed metamorphic ‘basement’. 

Fault kinematic data and crosscutting relationships show kinematic and temporal 

relationships between populations of thrust, strike-slip and normal faults that occur in the 

study area. Thrust faults form an internally compatible population that shows 

subhorizontal northeast-trending shortening of the fold-thrust belt and is kinematically 

distinct from populations of normal and strike-slip faults. Both strike-slip and normal 

faults crosscut the fold-thrust belt, are localized near segments of the Magallanes-

Fagnano fault zone, have mutually compatible kinematic axes and are interpreted to be 

coeval. Strike-slip faults form Riedel and P-shear geometries that are compatible with 

left-lateral slip on the Magallanes-Fagnano fault-zone. Strike-slip and normal faults occur 

in a releasing step-over between two overlapping left-lateral, left-stepping segments of 

the Magallanes fault zone and record a tectonic event defined by sinistral transtension 

that probably reflects changing plate dynamics associated with the opening of the Drake 

Passage during the Early Miocene.  
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INTRODUCTION 

 
The southern Patagonian Andes extend for ~1000 km along-strike between 50° S 

lat. around the bend of the Patagonian orocline to Isla de los Estados, east of Isla Grande 

de Tierra del Fuego. The mountain-belt preserves at least 150 m.y. of geologic history 

that includes formation of a marginal basin during the Jurassic rifting of Gondwana, the 

inversion of that basin during a Cretaceous-Paleogene orogeny, and the development of a 

strike-slip plate margin since the Neogene. In southern Chile, mafic rocks that comprise 

the Jurassic to Early Cretaceous Rocas Verdes marginal basin are tectonically imbricated 

with pre-Jurassic schist of the Cordillera Darwin Metamorphic Complex and Cretaceous 

to Neogene sedimentary rocks of the Magallanes foreland basin that altogether form the 

Patagonian fold-thrust belt. In this dissertation, I describe the geometry and structural 

evolution of the Patagonian fold-thrust belt where it is exposed for ~200 km along-strike 

between 53° and 55° S latitude and use it as a proxy for understanding the regional 

tectonic history, the kinematic evolution of a retroarc fold-thrust belt, the relationship 

between tectonic shortening in both basement and cover rocks during orogenesis, and the 

distribution of deformation along a strike-slip plate margin. Conducting this study in the 

Patagonian fold-thrust belt is important because it preserves one of the largest exposures 

of the lower levels of the orogen in the Andes (i.e. near and below the brittle-ductile 

transition) that has been exhumed and can be observed.  

The study area is a ~120 km2 area of the Patagonian fold-thrust belt between 53° 

and 55° S that is located within the bend of the Patagonian orocline, south of the Ultima 

Esperanza region of Chile and west of Argentine Tierra del Fuego. Here, rocks of the 

Rocas Verdes basin and Cordillera Darwin Metamorphic Complex are imbricated with 

those of the Magallanes foreland basin. The trend of the thrust belt follows along the 

bend of the Patagonian orocline from Ultima Esperanza to Tierra del Fuego. I 
participated in four ship-based and one land-based mapping campaigns for a total of ~6 

1



 
 

 

months of fieldwork between 2008-2012 to produce new 1:50,000 and 1:25,000 scale 

geological maps of Seno Otway, Peninsula Brunswick and Seno Martínez. Inflatable 

boats were used to map transects along all of the fiords in the map area where wave-

washed shoreline outcrops provide the best bedrock exposure. The geologic maps 

presented herein build upon the existing 1:1,000,000 scale Mapa Geológico del Chile 

(SERNAGEOMIN, 2002). I used the local stratigraphic nomenclature of Mpodozis et al. 

(2007) and stratigraphic thicknesses and ages of McAtamney et al. (2011). Surface 

geological data was collected at each data station and integrated to construct the geologic 

map. Where the surface geology was not telling, I used publically available satellite 

imagery (SRTM DEMs, Google Earth) to correlate geologic contacts between fiords. No 

subsurface data was available for this study.  

This dissertation is divided into three chapters that are each intended to be 

submitted as stand-alone manuscripts for peer-reviewed journals. Chapter one discusses 

the geometry and structure of the Patagonian fold-thrust belt for ~100 km along-strike in 

a previously poorly known region near Peninsula Brunswick and Seno Otway. Data 

presented in this chapter include a new geologic map and eight strike-perpendicular 

cross-sections of the (1:100,000 scale, Plate 1), structural analyses of geologic data, and 

three line-length balanced reconstructions of the fold-thrust belt. This study documents 

the geometry and structural evolution of the fold-thrust belt and discusses the influence of 

the antecedent geology of the Rocas Verdes basin on its development.   

Chapter two considers the kinematic evolution of the basal décollement of the 

Patagonian fold-thrust belt. In this chapter, I present new geologic mapping as well as 

detailed macro- and microscopic structural analyses including quartz textural descriptions 

and deformation mechanisms, quartz crystallographic fabrics, shear zone kinematic 

indicators, and superposed fold patterns from the décollement where it crops out near 

Seno Martínez and Bahía Fortesque. Results from the two locations are compared and 

indicate that the décollement is a regional structure. I present a new model that describes 
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the kinematic evolution of the décollement and how shortening in the overlying fold-

thrust belt is related to shortening in the polydeformed metamorphic basement. 

In chapter three, I present kinematic analyses of populations of thrust, strike-slip 

and normal faults that occur within the Patagonian fold-thrust belt near Seno Otway and 

Peninsula Brusnwick. Data include the attitudes of faults and striae, as well as 

observations of fault-slip indicators such as Riedel, P- and T-shears, fault surface 

asperities and/or the orientations of tensile and sigmoidal veins. This study demonstrates 

that thrust faults form a population that is kinematically distinct from mutually 

compatible sets of strike-slip and normal faults. I conclude that strike-slip and normal 

faults in the study are part of a Neogene to present phase of transtensinoal deformation 

that is superimposed on the Patagonian fold-thrust belt. I document the extent of this 

deformation where it was previously not recognized. 
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CHAPTER 1: ALONG-STRIKE VARIATION IN CRUSTAL 
SHORTENING AND KINEMATIC EVOLUTION OF THE 

MAGALLANES FOLD-THRUST BELT, MAGALLANES, CHILE 
53°-54°  

 

Abstract 

 

The Late Cretaceous closure and inversion of the Late Jurassic – Early Cretaceous 

Rocas Verdes marginal basin defines the onset of the Andean orogeny and the 

development of the Patagonian retroarc fold-thrust belt and Magallanes foreland basin 

between 50°-54.5° S. New geologic maps, structural data, and three retrodeformed, line-

balanced cross-sections of the fold-thrust belt over 100 km2 in the Magallanes region of 

Chile between 53°-54° S constrain the kinematic evolution and along-strike structural 

correlations of the fold-thrust belt. Results show the stratigraphic architecture of the 

antecedent Rocas Verdes basin was a primary control on position of décollement levels 

that formed in the subsequent fold-thrust belt. During the initial stage of closure (Albian-

Campanian), the basaltic floor of the Rocas Verdes basin was imbricated and thrust onto 

the continental margin to form a regional décollement within Jurassic-Lower Cretaceous 

shale deposits. Continued shortening resulted in the deepening of the décollement to a 

ductile shear zone that formed <1 km below the basement-cover contact. Below the lower 

décollement and toward the hinterland, ductile polyphase folding accommodated 

basement shortening and was detached from the overlying fold-thrust belt. Ramps cut 

Jurassic volcanic deposits to link the lower and upper décollements and transfer 

displacement into the nascent Magallanes foreland basin. A second stage of shortening is 

characterized by thick-skinned basement-involved reverse faults that cut the early 

décollements and reflect complete closure of the Rocas Verdes basin by the 

Maastrichtian-Eocene. Shortening estimates show a systematic northwest-southeast 

increase from 26-37%, respectively, over 100 km along-strike and is consistent with 

regional models of the Patagonian fold-thrust belt. The results provide an important 
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example of the kinematic evolution of the base of a retroarc fold-thrust belt in an 

‘Andean-style’ orogen.  

 

1. Introduction 

 

The Cretaceous-Paleogene Patagonian retroarc fold-thrust belt formed by the 

closure and inversion of a Jurassic-Early Cretaceous marginal basin. The basin, known as 

the Rocas Verdes basin, formed during the Jurassic rifting of Gondwana and was floored 

by new oceanic crust (Dalziel et al., 1974; Bruhn et al., 1978; Saunders, 1979; Dalziel, 

1981; Stern and De Wit, 2003; Fildani and Hessler, 2005; Calderón et al., 2007). By the 

Cretaceous, the Rocas Verdes basin began to close in a compressional setting defining the 

onset of the Andean orogeny in the southern Andes (Dalziel and Palmer, 1979; Nelson, 

1980; Klepeis et al., 2010). Rocks of the Rocas Verdes basin were thrust onto the 

continental margin and formed a retroarc fold-thrust belt and foreland basin, known as 

the Patagonian fold-thrust belt and Magallanes Foreland Basin by the Late Cretaceous 

(Katz, 1963; Biddle, 1986; Wilson, 1991; Klepeis, 1994a; Fildani et al., 2003; Fosdick et 

al., 2011). Here, I report on the structural evolution of the base of this fold-thrust belt 

where it is exposed in a previously understudied ~100 km2 location in southern Chile near 

Seno Otway and Peninsula Brunswick in the Magallanes region of Chile (Figure 1.1). 

This location allowed me to evaluate the influence of the structure and stratigraphy of an 

antecedent marginal basin on the kinematic evolution of a retroarc fold-thrust belt, to 

understand the structural evolution of the base of a fold-thrust belt near the basement-

cover contact, and to determine along-strike spatial variation in the structure of the fold-

thrust belt by comparing it with previous work toward the northwest and southeast of the 

study area (Figure 1.1).  

The study area (Figure 1.1) is an important locality for understanding the structure 

of the Patagonian fold-thrust belt because it is situated in the bend of the Patagonian 

orocline, a ~90° counterclockwise bend in the trend of the orogen between 51° and 54° S 
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latitude located between the Ultima Esperanza region of Chile toward the northwest and 

Tierra del Fuego to the southeast (Figure 1.1). The structure of the Patagonian fold-thrust 

belt is well known in both Ultima Esperanza (e.g. Fosdick et al., 2011) and Tierra del 

Fuego (e.g., Klepeis et al., 1994a; 2010; Rojas and Mpodozis, 2006), and regional 

tectonic models associate the development of the Patagonian orocline with a systematic 

northwest to southeast increase in tectonic shortening during the closure of the Rocas 

Verdes basin and development of the fold-thrust belt (Cunningham et al., 1995; Diraison 

et al., 2000; Kraemer et al., 2003; Ghiglione and Cristallini, 2007). However, little is 

known about the geology and structure of the Magallanes region of Chile for >250 km 

along-strike between Ultima Esperanza and Tierra del Fuego, casting some doubt on 

regional structural correlations. New mapping results from a ~100 km2 in the Magallanes 

region of Chile, eight new structural cross sections, and three new balanced and restored 

cross sections of the Magallanes segment of the Patagonian fold-thrust belt presented in 

this paper allow more robust structural correlations and test for systematic along-strike 

increase in tectonic shortening between Ultima Esperanza and Tierra del Fuego. The 

results match well with regional tectonic interpretations and help to correlate the 

kinematic evolution of the fold-thrust belt for over 400 km along-strike of the orogen.  

Finally, the present structural depth-of-exposure in the study area preserves 

outcrops at the base of the fold-thrust belt where Jurassic and Cretaceous volcanic and 

sedimentary cover rocks of the Rocas Verdes basin and Magallanes foreland basin are in 

tectonic contact with the pre-Jurassic metamorphic ‘basement’ (Figure 1.1). In Patagonia, 

the ‘basement’ comprises a belt of Paleozoic lower-greenschist to upper-amphibolite 

facies metamorphic rocks that are capped by a regional unconformity and were deformed 

and metamorphosed during the Late Cretaceous contemporaneous with the development 

of the Patagonian fold-thrust belt (Nelson et al., 1980; Klepeis et al., 2010). I test two 

hypotheses regarding the kinematic development of a retroarc fold-thrust belt: 1) the 

structure of the fold-thrust belt is strongly influenced by the antecedent stratigraphic 

architecture of the predecessor marginal basin; 2) shortening in the basement may be 

detached from the overlying thrust belt. These questions are important to address because  
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Figure 1.1 Simplified geologic map of the southernmost Andes showing 
tectonostratigraphic provinces, modified from McAtamney et al. (2011); Fildani & 
Hessler (2005). Contours (thin dashed lines) show sediment isopach overlying 
Jurassic volcanic rocks after Biddle et al. (1986). Metamorphic complexes include 
Cordillera Darwin (CD), Eastern Andes (EA), Duque de York, (DY), the Deseado 
Massif (DM). Ophiolitic suites include the Sarmiento (S) and Tortuga (T) com-
plexes. UE, Ultima Esperanza; SS, Seno Skyring; SO, Seno Otway; PB, Peninsula 
Brunswick; TdF, Tierra del Fuego. Extent of the study area is shown in figure 1.3. 
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many orogens are the result of compressional inversions of extensional basins (e.g. the 

Central Andes: Allmendinger, 1997; Mpodozis et al., 2005; the Alpine-Apennine orogen: 

Butler et al., 2006; Taiwan: Mouthereau and Lacombe, 2006; see review by Lowell, 

1995), and many orogens have high topographic relief that cannot be entirely explained 

by shortening in a fold-thrust belt and therefore require mid-lower crustal thickening (e.g. 

Eastern Cordillera of the Central Andes, McQuarrie et al., 2005; Himalayan-Tibet 

orogen, Clark and Royden, 2000). Our results describe the formation of two décollement 

levels that formed 1) in the Jurassic-Lower Cretaceous shale deposits, and 2) near the 

basement-cover contact on the continental margin. Décollement levels control the 

kinematic development of the Patagonian fold-thrust belt and effectively decouple 

shortening that occurs in the metamorphic basement from the overlying fold-thrust belt. 

 

2. Geologic setting and tectonostratigraphy 

2.1 CORDILLERA DARWIN METAMORPHIC COMPLEX 
The Cordillera Darwin Metamorphic Complex comprises a ~5000 km2 exhumed 

massif of lower-greenschist to upper-amphibolite schist and orthogneiss of mixed origin 

that forms a topographic high in the southernmost Andes (Figure 1.1; Darwin, 1846; 

Kranck, 1932; Nelson et al., 1980; Kohn et al., 1995; Cunningham et al., 1995; Hervé et 

al., 2003, 2010; Klepeis et al., 2010). Detrital zircon ages from schistose rocks within the 

Cordillera Darwin yielded both Ordovician-Devonian (Hervé et al., 2010) and 

Carboniferous-Permian (Barbeau et al., 2009) populations. Schistose rocks of the 

Cordillera Darwin Metamorphic Complex are interpreted to be similar to the Eastern 

Andes Metamorphic Complex (Hervé and Mpodozis, 2005) that was deposited on the 

Gondwanan passive margin during the Paleozoic (Hervé et al., 2010). Upper Jurassic and 

Lower Cretaceous volcanic and sedimentary cover rocks unconformably overlie the 

Cordillera Darwin Metamorphic Complex, which defines the local ‘basement.’  

Late Cretaceous upper amphibolite metamorphic mineral assemblages include 

garnet, kyanite, staurolite and sillimanite and occur in both Paleozoic basement and 
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Jurassic-Early Cretaceous cover rocks (Nelson, 1980). Peak metamorphic conditions of P 

= 9-12 kbar and T = 620°C are reported from the high-grade core of the metamorphic 

complex near the Beagle Channel (Kohn et al., 1993; Maloney et al., 2011). 

Metamorphic isograds within the Cordillera Darwin Metamorphic Complex form an 

antiformal dome, and thus outcrops along the margins of the Cordillera Darwin 

Metamorphic Complex preserve chlorite- and biotite-bearing lower-greenschist facies 

assemblages that were not as deeply buried as the upper-amphibolite facies rocks that are 

exposed in the core (Nelson et al., 1980; Kohn et al., 1993; Klepeis et al., 2010). Low-

grade rocks around the margins of the Cordillera Darwin are commonly tectonically 

interleaved with weakly metamorphosed Jurassic-Lower Cretaceous cover rocks (Nelson 

et al., 1980; Kohn et al., 1993; Klepeis et al., 2010). In the study area, pervasively 

deformed lower greenschist facies, quartz-chlorite schist that form the local basement are 

hereafter referred to as part of the Cordillera Darwin Metamorphic Complex after the 

Paleozoic detrital zircon ages, map, and definition of the Cordillera Darwin Metamorphic 

Complex presented by Hervé et al., (2010).  

Granitic plutons and dikes of the Upper Jurassic Darwin suite and intruding 

basaltic dikes of the Rocas Verdes basin floor intrude the Cordillera Darwin schist and its 

cover rocks (Nelson et al., 1980; Mukasa & Dalziel, 1996; Calderon et al., 2007; Klepeis 

et al., 2010). Upper Cretaceous granitic plutons and post-tectonic pegmatite dikes of the 

Beagle Granite suite crosscut rocks of the Cordillera Darwin, its cover, and all Jurassic 

intrusive suites (Nelson, et al., 1980; Hervé et al., 1981; 2010; Klepeis et al., 2010). 

2.2 ROCAS VERDES BASIN 
Middle to Late Jurassic continental extension and crustal thinning of the pre-

Jurassic continental crust of southern South America, the Antarctic Peninsula and Africa 

(Bruhn et al., 1978; Dalziel, 1981; Pankhurst et al., 2000) ultimately resulted in the 

rifting of Gondwana. Widespread silicic volcanic rocks of the Chon Aike Province 

(Pankhurst et al., 1998) were deposited from the Middle Jurassic to Late Jurassic and 

largely reflect magmas resulting from anatexis of continental crust (Pankhurst et al., 

2000). Middle-Late Jurassic subaqueous ignimbrite deposits known as the Tobífera 
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Formation, record volcanism associated with continental rifting and unconformably 

overlie Paleozoic schist of the Cordillera Darwin and Eastern Andes metamorphic 

complexes (Figure 1.1; Dalziel and Cortés, 1972; Natland, 1974; Gust et al., 1985; 

Hanson and Wilson, 1991; Pankhurst et al., 2003). 

In southern Patagonia, Late Jurassic mafic metaigneous complexes, known as the 

Sarmiento and Tortuga complexes (Figure 1.1), include pillow lava, chert and breccia, 

sheeted dikes, and gabbro. Rocks of the Sarmiento and Tortuga complexes are interpreted 

as the upper part of an ophiolite sequence that formed at a mid-ocean-ridge-type 

spreading center along the continental margin of South America and floor the Late 

Jurassic-Early Cretaceous Rocas Verdes basin (Dalziel, et al., 1974; Dalziel, 1981; Stern 

& De Wit, 2003; Calderón et al., 2007). Mafic submarine volcanism in the Sarmiento 

complex began prior to 150 Ma (Calderón et al., 2007). Zircon U/Pb ages from crystal 

lapilli tuffs in the Tobífera Formation as young as 148 and 142 Ma are reported from 

outcrops near the Sarmiento complex and indicate silicic ignimbrite volcanism continued 

into the Berriasian (Early Cretaceous) and was coeval with sea-floor spreading in the 

Rocas Verdes basin (Calderón et al., 2007). The southern part of the Rocas Verdes basin 

became a back-arc basin after the onset of magmatism in the southern Patagonian 

Batholith during Late Cretaceous (see below, Mpodozis and Rojas, 2006). 

Late Jurassic and Early Cretaceous sedimentation into the Rocas Verdes basin is 

recorded by successions of 1000-1200 m-thick deep marine hemipelagic mudstones and 

shallow water interbedded shale and siltstone known as the Zapata Formation that were 

deposited conformably on top of the Tobífera Formation and Sarmiento complex (Figure 

1.2; Fildani & Hessler, 2005; McAtamney et al., 2011). A 3000 m-thick succession of 

Jurassic – Upper Cretaceous volcanoclastic turbidites known as the Yaghan Formation 

filled the Rocas Verdes basin to the south, overlie the Tortuga complex (Suárez et al., 

1976) and correlate with the Zapata Formation. In the study area near Seno Otway, 

Mpodozis et al. (2007) and McAtamney et al. (2011) report successions of sandy, distal 

turbidite deposits that overlie the Zapata Formation. They refer to these deposits as the 

Canal Bertrand Formation (Figure 1.2). Mpodozis et al. (2007) report detrital zircon U/Pb  
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ages of ~106-98 Ma from the top of the Canal Bertrand Formation near Seno Skyring that 

are consistent with 104 Ma U/Pb detrital zircon ages reported by McAtamney et al. 

(2011) from the similar deposits at Seno Otway (Figure 1.1). In the study area, thinly 

bedded volcanoclastic turbidites of both the Zapata and Canal Bertrand Formations are 

pervasively deformed and the distinction between the two units is difficult to make in the 

field, for this reason the units are grouped and hereafter referred to as the Zapata-Canal 

Bertrand Formation (c.f. McAtameny et al., 2011). McAtamney et al. (2011) demonstrate 

that the Zapata-Canal Bertrand Formation is between 1000-1500m thick at Seno Otway. 

2.3 PATAGONIAN BATHOLITH 
The Patagonian Batholith (Figure 1.1) resulted from subduction related 

magmatism that occurred along the western margin of South America from the Late 

Jurassic to the Neogene (Hervé et al., 1984; Bruce et al., 1991; Hervé et al., 2007). The 

oldest pulses of magmatism formed a biomodal suite composed of leucogranite and 

gabbro between 157 and 145 Ma., contemporaneous with silicic ignimbrite deposits of 

the Tobífera Formation, the Darwin Granite intrusive suite (Mukasa and Dalziel, 1996) 

and the mafic igneous complexes that form the floor of the Rocas Verdes basin (Hervé et 

al., 2007; Calderón et al., 2007). The batholith is interpreted as the root of a volcanic arc 

that developed along the western rim of the Rocas Verdes basin in the Late Jurassic 

(Hervé et al., 2007; Fildani and Hessler, 2005) north of the Magallanes Straits, however 

Mpodozis and Rojas (2006) point out that no evidence exists for a magmatic arc south of 

Tierra del Fuego until the Late Cretaceous. North of Magallanes Straits near Ultima 

Esperanza, provenance analyses from sandstones within Upper Jurassic-Lower 

Cretaceous turbidite deposits of the Zapata Formation contain a volcanic arc signature 

derived from the Patagonian Batholith and its corresponding volcanic arc, indicating that 

the turbidites were deposited in a back-arc setting in the northern part of the Rocas 

Verdes basin (Fildani and Hessler, 2005). By the Early Cretaceous the locus of 

magmatism shifted to the west, outboard of the Late Jurassic belt, and magmatism  
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initiated in the southern Patagonian Batholith near Tierra del Fuego (Suárez and 

Pettigrew, 1976; Fildani & Hessler, 2005; McAtamney et al., 2011). The timing of this 

shift coincides with the opening of the south Atlantic and the beginning of the closure of 

the Rocas Verdes basin (Herve et al., 2007). Sedimentation in the Rocas Verdes basin 

ultimately occurred in a back-arc setting everywhere after the onset of Late Cretaceous 

magmatism within the southern Patagonian Batholith. 

2.4 MAGALLANES FORELAND BASIN 
Cretaceous-Neogene crustal shortening was accompanied by the formation of the 

Magallanes foreland basin (Figure 1.1). In Ultima Esperanza distal turbidite deposits 

known as the Punta Barrosa Formation conformably overlie the Zapata Formation and 

were first recognized by Katz (1963) as ‘flysch-type’ sedimentation related to Late 

Cretaceous tectonism (Figure 1.2). Subsequent work on the Punta Barrosa Formation 

confirmed that it marks the onset of thrusting and sedimentation into the Magallanes 

foreland basin (Biddle et al., 1986; Wilson, 1991) and that this transition occurred at ~92 

Ma in Ultima Esperanza (Fildani et al., 2003; Fildani & Hessler, 2005). 

In central southern Patagonia near Seno Otway (Figure 1.1), the transition from 

back-arc to foreland basin sedimentation occurred during the Turonian-Coniacian. Recent 

detrital zircon studies from medium-bedded turbidite deposits that overlie the Zapata-

Canal Bertrand Formation near Seno Otway identify early Coniacian (~89 Ma.) turbidite 

deposits of the Latorre Formation as the earliest foreland basin sediments in this region 

(Mpodozis et al., 2007). Sedimentological, provenance, and U/Pb detrital zircon studies 

by McAtamney et al. (2011) confirm that the Latorre Formation represents the first flux 

of sediments into the Magallanes foreland basin, spanned the time interval from ~106-84 

Ma, and is ~1200 m thick near Seno Otway. A thick succession of submarine fan 

channel-fill conglomerates and turbidite deposits, known as the Escarpada Formation, are 

interbedded with and conformably overly the top of the Latorre Formation (Figure 1.2; 

Mpodozis et al., 2007; McAtamney et al., 2011). The top of the Escarpada Formation is 

not observed in the study area but map patterns presented in this paper indicate that it 

must be ~1800 m thick. U/Pb detrital zircon populations of ~86 Ma (Mpodozis et al., 
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2007) and ~81 Ma (McAtamney et al., 2011) from the Escarpada Formation indicate that 

it was deposited from the late Coniacian to the Campanian. The Escarpada Formation 

correlates along-strike with well documented submarine fan deposits of the Lago Sofía 

member of the Cerro Toro Formation found in Ultima Esperanza (e.g. Scott, 1966; 

Natland et al., 1974; Winn and Dott, 1979; Hubbard et al., 2008; Fildani et al., 2009; 

Romans et al., 2011; Bernhardt et al., 2011). 

Slope and shelf-edge deposits (Fuentes Formation) and nearshore estuarine 

deposits (Rocallosa Formation) overlie the Escarpada Formation near Seno Otway and 

Seno Skyring in central southern Patagonia (Figure 1.1) and were deposited over the time 

interval from 84-66 Ma (Mpodozis et al., 2007). The Fuentes and Rocallosa Formations 

are interpreted by Mpodozis et al. (2007) as along-strike equivalents of the shallower 

water slope systems of the Campanian-early Maastrichtian Tres Pasos Formation (Figure 

1.2; Biddle et al., 1986; Romans et al., 2010) and shallow marine and deltaic facies of the 

Maastrichtian-Danian Dorotea Formation that crop out in Ultima Esperanza (Covault et 

al., 2009). In this study no distinction is made between the Fuentes and Rocallosa 

Formations due to lack of quality field exposures; instead they are grouped and referred 

to as the Fuentes/Rocallosa Formation. The Tertiary stratigraphic evolution of the 

Magallanes foreland basin is poorly known and not exposed in the study area near Seno 

Otway. However, work to the north in Ultima Esperanza (e.g. Fosdick et al., 2011) and to 

the east on Argentine Tierra del Fuego (e.g. Olivero & Martinioni, 2001) document 

continuous syntectonic shallow marine and deltaic sedimentation until the early Miocene 

(Katz, 1963; Natland et al., 1974; Wilson, 1991; Fildani and Hessler, 2005; Hubbard et 

al., 2008; Covault et al., 2009; Romans et al., 2010, 2011). 

2.5 PATAGONIAN FOLD-THRUST BELT 
Late Cretaceous crustal shortening closed and inverted the Rocas Verdes basin, 

leading to the formation of the Patagonian fold-thrust belt and Magallanes foreland basin. 

The development of the Patagonian thrust belt occurred in two main stages separated by 

several million years (Klepeis et al., 2010). Near the Beagle Channel, the earliest thrusts 

emplaced the oceanic floor of the Rocas Verdes basin onto the adjacent continental 
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margin (Dalziel et al., 1974; Nelson et al., 1980; Klepeis et al., 2010; Fosdick, 2011; 

Calderón et al., 2012) and resulted in the underthrusting, thickening and metamorphism 

of the continental margin to depths ~35 km (Kohn et al., 1993; Klepeis et al., 2010; 

Maloney et al., 2011). These early thrusts formed prior to ~86 Ma based on U/Pb zircon 

crystallization ages from cross cutting granitic dikes of the Beagle Suite (Klepeis et al., 

2010; c.f. Mukasa and Dalziel, 1996). In Ultima Esperanza, in situ 40Ar/39Ar laserprobe 

chronology from syntectonic phengite in a shear zone at the base of the Sarmiento 

complex yields an age ca. 85 Ma (Calderón et al., 2012). 

Near the Beagle Channel, a second stage of thrusting marked by bivergent thick-

skinned thrusts cut the early thrusts, uplifting and juxtaposing the high-grade core of the 

Cordillera Darwin against the nascent fold-thrust belt (Klepeis, 1994a; Mpodozis & 

Rojas, 2006; Klepeis et al., 2010). Exhumation began by the Campanian-Maastrichtian as 

shown by ~80-60 Ma 40Ar/39Ar cooling ages reported by Kohn et al. (1995) and 

pseudosection modeling of aluminosilicate-bearing assemblages that yielded 76.2 ± 1.1 

Ma U-Th-Pb ages from synkinematic monazite associated with second generation thrusts 

in the Cordillera Darwin (Maloney et al., 2011). Sandstone provenance and detrital 

zircon studies of the Upper Cretaceous strata in the Magallanes basin indicate that 

Jurassic rocks of the Rocas Verdes basin were a significant component of detritus by ~70 

Ma (Romans et al., 2010) and were the dominant source of detritus by the Eocene 

(Barbeau et al., 2009; Gambosi et al., 2009). Klepeis et al. (2010) and Maloney et al. 

(2011) argue that the onset of uplift and exhumation of the Cordillera Darwin 

Metamorphic Complex began in the Maastrichtian (76.2 ± 1.1 Ma after Maloney et al., 

2011) and culminated in the Paleogene. The Paleogene phase of deformation is 

coincident in time with an expansion of the Patagonian fold-thrust belt into the foreland 

basin (Alvarez-Marrón et al., 1993; Ghiglione and Ramos, 2005; Ghiglione et al., 2010; 

Fosdick et al., 2011). 
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2.6 NEOGENE STRIKE-SLIP FAULTING 

The tectonic setting of the southernmost Andes changed in the Neogene as 

contraction subsided and left-lateral strike-slip faulting dominated (Cunningham, 1993; 

Klepeis, 1994b; Klepeis and Austin, 1997; Lodolo et al., 2003; Menichetti et al., 2008). 

The left-lateral Magallanes-Fagnano fault zone strikes sub-parallel to the trend of the 

Patagonian fold-thrust belt and defines the current plate boundary between the South 

American and Scotia Sea plates (Klepeis, 1994b; Klepeis and Austin, 1997; Lodolo et al., 

2003). Motion along this fault zone is slow (~0.5 cm/yr, Del Cogliano et al., 2000; 6.6 ± 

1.3 mm/yr, Smalley et al., 2007) and accounts for ~40 km displacement (Klepeis, 1994b; 

Lodolo et al., 2003) near Lago Fagnano. Several left-lateral fault segments are linked by 

en echelon arrays that form either pull-apart basins or restraining bends, depending on the 

geometry of the fault segments (see Lodolo et al., 2003; Menichetti et al., 2008 for a 

review).  

 

3. Methodology 

 
Geologic maps and eight strike-perpendicular cross sections were constructed 

from surface geological data and are presented in this paper (Plate 1; locations in Figure 

1.2). From these eight sections, three serial, strike-perpendicular, line-balanced and 

incrementally restored cross-sections were constructed using line and area balancing 

techniques to provide a quasi-three-dimensional reconstruction of the fold-thrust belt 

(Dalstrom, 1969; Marshak & Mitra. 1998). Structural analyses of deformed rocks in the 

field and in thin sections were conducted to confirm the sense of shear of faults and 

related folds in the thrust belt. The structural modeling software LithoTectTM was used to 

model the depth and dip of décollement for second-generation thrusts where surface 

geologic data did not provide adequate control. Otherwise, all décollement levels, dips 

and structures drawn in cross section are projections of surface geological data coupled 

with stratigraphic constraints.  
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4. Results 

 

The field area is divided into four geological domains (Figure 1.3): 1) The 

Patagonian Batholith and Rocas Verdes basin terrane are best preserved in the 

northwestern part of the study area where the mafic floor of the Rocas Verdes basin is 

thrust on top of rocks of the Tobífera Formation and Zapata-Canal Bertrand Formation. 

2) Structurally below the Rocas Verdes basin rocks and trending southeast along-strike, 

the pre-Jurassic schist of Cordillera Darwin Metamorphic Complex is exposed in the 

hanging wall of a reverse fault that cuts earlier structures in the fold-thrust belt and is 

continuous along-strike for ~80 km. 3) In the footwall of this fault, Jurassic rocks of the 

Tobífera and Zapata-Canal Bertrand Formations are imbricated with Cretaceous 

synorogenic sediments of the Magallanes foreland basin. A major décollement (defined 

below) is contained within the Zapata-Canal Bertrand Formation and is exposed along-

strike for >100 km. 4) Cretaceous-Paleogene Magallanes foreland basin sedimentary 

rocks are exposed in the northeast of the study area (Figure 1.3). Mapping results, 

structural analyses, and cross-section are presented below from northwest to southeast 

along-strike across the study area. Plate 1 shows the geologic map and cross sections at 

1:100,000 scale. 

4.1 PATAGONIAN BATHOLITH AND ROCAS VERDES TERRANE 
Seno Condor (Figure 1.4), in the western most part of the study area, preserves 

exposures of the contact between the Patagonian Batholith and mafic rocks of the Rocas 

Verdes basin floor (Figure 1.3, 1.4). Felsic intrusive rocks, including granodiorite, 

tonalite and diorite that lack any foliation, crop out on the southern shore of Seno Condor 

and are interpreted to form part of the Southern Patagonian Batholith (Figure 1.4, 1.5a). 

The northern shore exposes gabbro and porphyritic basalt comprised of plagioclase, 

hornblende, clinopyroxene and olivine that is commonly altered to chlorite and actinolite. 

Along the northeast shore of Seno Condor and the southeast shore of Canal Jeronimo  
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Figure 1.3. Geologic map of Seno Otway and Peninsula Brunswick constructed from data 
collected in this study. Unit names for Cretaceous sedimentary strata are from Castielli et al. 
(1993) and Mpodozis et al. (2007). The locations of !gures 3, 7 and 14 are shown as well as 
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data collected during this study. Black dots and corresponding numbers refer to data stations 
mentioned in text. Data collected at 1:50,000 scale. SC, Seno Condor; BN, Brazo Nuñez; EF, 
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Figure 1.5. Cross sections and structural data from Canal Jeronimo and Seno Otway. See 
figure 1.4 for cross section locations. (a) Cross section from C-C’. (b) Stereograms show-
ing structural data from the Rocas Verdes basin terrane (b-d) and Cordillera Darwin 
Metamorphic Complex (e-g). (h) Cross section from B-B’. (i-l) Stereograms showing 
structural data from the Zapata-Canal Bertrand duplex. (m) Cross section from A-A’. 
Stereograms showing structural data from three structural domains: (n) the Tobífera Fm., 
(o-p) the Zapata-Canal Bertrand décollement, and (q-r) the foreland fold-thrust belt. All 
stereograms hereafter are equal-area stereographic projections. Planar data are represented 
as poles (white symbols) unless otherwise plotted as great circles. Linear data are repre-
sented with black symbols. Great circles through girdles are cylindrical best fits to data. 
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interlayered massive gabbro and porphyritic basalt crop out. These units generally either 

lack or display a poorly developed subsolidus foliation that dips steeply toward the 

southwest. The contact between the felsic rocks of the Patagonian Batholith and gabbro 

and porphyritic basalt is exposed at site 0915 (Figure 1.4) where it is an igneous contact 

characterized by co-magmatic textures between a crosscutting plagiogranite dike and 

olivine-bearing gabbro (Figure 1.6a). Zircon U/Pb dating reported by McAtamney et al. 

(2011) yield a crystallization age of 154.3 ± 1.6 Ma. for the plagiogranite dike, indicating 

a Late Jurassic emplacement age for the dike and probably a similar age for the gabbroic 

host based on the textural relationship. On the basis of their age and field context, I  

interpret the mafic intrusive suites as the gabbro and sheeted dike part of the mafic floor 

of the Rocas Verdes basin, similar to the ophiolitic sequence described near the Beagle 

Channel by Cunningham (1994).  

Site 0921 (Figure 1.4) exposes a tectonic contact where massive gabbro and basalt 

of the Rocas Verdes basin rocks are thrust on top of thinly bedded turbidite deposits 

interpreted to be the Zapata-Canal Bertrand Formation. In the footwall, turbiditic rocks 

are deformed and folded into a top-northeast overturned anticline (Figure 1.5a). Near the 

contact, the turbidite deposits are sheared and contain a moderately southwest-dipping 

spaced cleavage (S1 ) that is subparallel to bedding (S0 ) on the right-side-up limb of the 

fold. North-dipping C’ shear bands, northwest- to west-northwest-trending intersection 

lineations between shear bands and spaced cleavages, and a southwest-trending white 

mica mineral lineation (L1 ) that occurs on cleavage surfaces, all show a top-northeast 

thrust sense of shear (Figure 1.5b, c). Approximately 2 km toward the northeast near the 

mouth of Brazo Nuñez (location on Figure 1.4), bedding in the turbidite deposits is 

overturned-to-the-northeast and dips more steeply than the spaced cleavage (S1) 

indicating the overturned limb of the regional anticline. 

Brazo Nuñez exposes serpentinized and chloritized gabbro and basalt similar to 

those discussed above. Along the southwest shore of Brazo Nuñez, quartzite, slate 

containing chert nodules and basaltic sills are interbedded and overlie serpentinized 

gabbro. Here, bedding dips moderately to the southwest and is right way up  
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Condor, (b) view looking northeast from site 11086 at a second-generation basement-involved 
fault, person for scale, (c) view looking southeast from Canal Jeronimo at the Zapata-Canal 
Bertrand duplex, (d) strata of the Latorre Fm. dipping homoclinally southwest on the long 
limb of a regional fold near Seno Otway, person for scale, (e) strata of the Escarpada Fm. 
forming northeast-vergent closed folds on the short limb of a regional fold near Seno Otway, 
and (f) silicic dike that intrudes the Cordillera Darwin Metamorphic Complex near site 11086 
and displays a schistose foliation that is coplanar with S1 in the Cordillera Darwin Metamor-
phic Complex, sledge hammer for scale.
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(Figure 1.5d), in contrast to the overturned beds of the Zapata-Canal Bertrand Formation 

on the southwest side of the contact. Near the contact on the southwest shore of Brazo 

Nuñez, metepelitic layers display a southwest-dipping schistose foliation that contains a 

southwest-plunging white-mica lineation (Figure 1.5d). Here, the contact is not exposed 

but I interpret the interbedded quartzites, chert bearing slate, and basaltic sills as the 

upper part of the Rocas Verdes basin oceanic floor that was overlain by deep marine 

turbidite deposits of the Zapata-Canal Bertrand Formation. The depositional contact is 

sheared and forms a thrust-flat, the turbidite deposits are deformed above the contact.  

Near the northeastern entry to Brazo Nuñez, rocks of the Rocas Verdes basin 

ocean floor are thrust above quartz-chlorite schist of the Cordillera Darwin Metamorphic 

Complex. In the footwall, the schist is pervasively deformed by several generations of 

structures that are discussed below. These rocks are juxtaposed against the Jurassic 

ignimbrite deposits of the Tobífera Formation along a southwest-dipping, second 

generation reverse fault. This fault is best observed in the valley between Canal Jeronimo 

and the southern end of Estuario Wickham near site 11086 (Figure 1.4, 1.5a, 1.6b). 

Cross-section C-C’ (Figure 1.4, 1.5a) displays the structure of the Rocas Verdes basin 

terrane exposed in the study area and overlaps slightly with the southwestern ends of 

sections B-B’ and A-A’. 

4.2 STRUCTURE OF CANAL JERONIMO AND SENO OTWAY: DUPLEXES AND 
DÉCOLLEMENTS 

Along Canal Jeronimo to the north of the second-generation basement-involved 

fault, the Tobífera Formation crops-out on both shores and is imbricated, forming a 

hinterland-dipping duplex (Figure 1.5h, m). Here, the Tobífera Formation dips 

moderately toward the southwest and displays a poorly developed schistose foliation 

defined by the alignment of white mica and quartz (S1 ). A southwest-plunging 

recrystallized quartz stretching lineation occurs on S1  surfaces (Figure 1.5n). Rigid 

feldspar porphyroclasts have asymmetric recrystallized quartz and mica tails that indicate 

top-northeast sense of shear. The top of the formation is exposed on the north side of 

Canal Jeronimo where ignimbrite deposits and ash beds of the Tobífera Formation are 
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interbedded with deep marine shale of the Zapata-Canal Bertrand Formation. The base of 

the Tobífera Formation is sheared and displays a well-defined schistose foliation where it 

is thrust on top of the Zapata-Canal Bertrand Formation. Map patterns indicate the 

Tobífera Formation must be at least 1800 m thick. Hanging-wall cutoffs are eroded and 

not exposed in the study area. 

Toward the northeast, the Zapata-Canal Bertrand Formation crops out along the 

southeast shore of Canal Jeronimo (Figure 1.4, section B-B’). Here strata of the Zapata-

Canal Bertrand Formation are imbricated by two thrust faults to form a hinterland-

dipping duplex (Figure 1.5h, 1.6c). Strata dip homoclinally toward the west to west-

southwest (Figure 1.5j, l), except in the footwall of the faults where they are folded into 

northeast-vergent overturned tight folds (F1 ) that plunge gently toward the northwest 

(Figure 1.5h-i, k). The formation displays a well-developed spaced cleavage (S1) that is 

axial-planar to F1  folds. A southwest-plunging white-mica lineation occurs on S1  

surfaces (Figures 1.5j). Microscopically, well-developed pressure solution seams are 

subparallel to bedding and form calcite and white-mica pressure shadows around quartz 

and feldspar clasts. The southern contact with the Tobífera Formation is defined by a 

second-generation thrust that cuts the earlier structures that form duplex in the Zapata-

Canal Bertrand Formation (Figure 1.4, 1.5h).  

On the north shore of Canal Jeronimo, the Zapata-Canal Bertrand Formation 

crops out for 15 km to the northeast of the Tobífera Formation along transect A-A’ 

(Figure 1.4, 1.5m). Here it is pervasively deformed by a series of tight to isoclinal 

northeast vergent, inclined to recumbent overturned folds (F1) that fold bedding (S0) and 

have ~1 m wavelengths (Figure 1.5o, 1.7a-d). A well-developed spaced cleavage (S1) is 

axial-planar to the folds (Figure 1.7a-f). Subhorizontal fold axes trend northeast-

southwest and are parallel to cleavage-bedding intersection lineations (Figure 1.5o). 

Spaced cleavages that are axial planar to F1 folds occupy two dominant orientations, 

either moderately-dipping southwest where F1  folds are inclined (Figures 5p, 1.7a-d) or 

shallowly-dipping west-southwest where F1  folds are recumbent (Figures 1.5p, 1.7e-f).  
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Figure 1.7. (a-f) Photographs and corresponding outcrop sketches of structures that define 
the Zapata-Canal Bertrand décollement zone along section A-A’ near Canal Jeronimo and 
Seno Otway. Bedding is folded forming northeast-vergent, overturned, steeply inclined to 
recumbent tight folds. A prominent spaced cleavage forms axial planar to folds. Dark-grey 
shading indicates silt-sandstone. Light-grey shading indicates mudstone. Pencil or field book 
for scale.
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This change in orientation indicates that S1 is gently refolded by open folds (F2). These F2 

folds are coaxial with F1 and have long (~2 km) wavelengths based on the map pattern. 

Along transect A-A’ northeast of the thrust uplifting the Tobífera Formation, the train of 

tight to isoclinal folds is continuous for ~15 km to the mouth of Estuario Fanny (Figure 

1.4). There, F1 folds open and their wavelengths increase to ~2-5 m, indicating 

qualitatively lower strain than toward the southwest and down-section. Thus the train of 

tight to isoclinal folds defines a shear zone at the base of the Zapata-Canal Bertrand 

Formation (Figure 1.5m). This shear zone is important because it is the basal décollement 

of the Magallanes fold-thrust belt (discussed below).  

4.3 STRUCTURE OF THE MAGALLANES FOLD-THRUST BELT NEAR SENO OTWAY 
The basal member of the Latorre Formation is exposed on the north shore of 

Estuario Fanny where it dips shallowly toward the north and is gently folded into open 

folds with wavelengths >100 m (Figure 1.4, 1.5m). The contact between the Zapata-

Canal Bertrand Formation and overlying Latorre Formation is not well exposed in 

Estuario Fanny, however, to the south of the contact in Estuario Fanny, inclined, 

overturned folds deform the Zapata-Canal Bertrand Formation indicating that the contact 

is either an angular unconformity or a fault. I map the contact here as a north-dipping top-

southwest thrust fault on the basis of field relationships exposed on Estuario Wickham 

that are discussed below. 

Along transect A-A’ toward the north, the Latorre Formation is folded into an 

open syncline that is truncated by a southwest-dipping reverse fault. The fault juxtaposes 

the Latorre Formation in the hanging wall against strata of the Escarpada Formation in 

the footwall. This fault is inferred to be basement involved because of a change in 

stratigraphic level across the fault; northeast of this structure, sea-level exposures do not 

return to the level of the Zapata-Canal Bertrand Formation (Figure 1.4, 1.5m). In the 

footwall, strata of the Escarpada Formation conformably overlie the Latorre Formation, 

and both formations are imbricated by two first generation thrust faults that dip southwest 

and sole into a décollement at the level of the Zapata-Canal Bertrand Formation (Figure 

1.4, 1.5m). The Latorre Formation is exposed along long limbs of regional folds that dip 
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homoclinally toward the southwest and probably reflect hanging-wall thrust flats over 

footwall ramps (Figure 1.5m, 1.6d). On short northeast-dipping limbs of regional folds, 

strata of the Escarpada Formation (S0 ) are folded by tight, northeast-vergent folds (F1 ) 

with horizontal northwest-southeast-trending fold axes and moderately inclined 

southwest-dipping axial planar cleavages (S1 ) (Figure 1.5q, r; 1.6e). Hanging wall cutoffs 

are eroded and not exposed in the study area.  

At the northeastern end of transect A-A’, strata of the Latorre and Escarpada 

Formations are juxtaposed against Maastrichtian strata of the Fuentes/Rocallosa 

Formation along a second-generation basement-involved reverse fault (Figure 1.4, 1.5m). 

In the footwall, strata of the Fuentes/Rocallosa Formation are flat lying and not 

deformed. Northeast of the section line the bedrock geology is covered by Quaternary 

glacial sediment, and no exposures are present.  

4.4 STRUCTURE OF ESTUARIO WICKHAM AND ESTUARIO SILVA PALMA: TRIANGLE 
ZONE AND PASSIVE-ROOF THRUST 

Structural and stratigraphic contacts exposed along Canal Jeronimo can be traced 

for more than 40 km along-strike to Estuario Wickham (Figure 1.3, 1.4) and Estuario 

Silva Palma (Figure 1.3, 1.8). The basement-involved reverse fault mapped near site 0944 

in Canal Jeronimo crops out in Estuario Wickham near site 09145 (Figure 1.4) and 

Estuario Silva Palma near site 11055 (Figure 1.8). In the hanging wall, the Paleozoic 

greenschist of the Cordillera Darwin Metamorphic Complex and overlying Tobífera 

Formation are thrust on top of imbricated strata of the Tobífera and Zapata-Canal 

Bertrand Formations in the footwall. Strata of the Tobífera Formation are exposed in a 

valley at the southwestern end of Estuario Wickham where they overlie the Paleozoic 

schist (Figure 1.4). Here the contact is sheared, characterized by a southwest-dipping 

schistose foliation defined by white mica and quartz alignment (Figure 1.9a, b). Although 

inaccessible, the Tobífera Formation was observed from a distance to overlie the 

Cordillera Darwin Metamorphic Complex in the ridges to the southwest of Estuario Silva 

Palma, where I infer that the contact is also sheared (Figure 1.8). In both Estuarios 

Wickham and Silva Palma, basement schist is pervasively deformed by several 
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Figure 1.9. Cross-section and structural data from Estuario Wickham. (a) 
Composite cross section from E-E’ and D-D’, see figure 1.4 for location. 
Short-dashed lines show schematic trace of bedding, long-dashed lines show 
trace of axial-planar cleavage. Stereograms of structural data from four struc-
tural domains:  (b,e) the Tobífera Fm., (c-d) the Cordillera Darwin Metamor-
phic Complex, (f-g) the Zapata-Canal Bertrand triangle zone, and (h-i) the 
Latorre back thrust.
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generations of folds that do not affect the Tobífera Formation or overlying strata 

(discussed below). In all locations, the basement-involved reverse fault truncates the 

Tobífera Formation and associated duplex structures that occur in the footwall (discussed 

below), indicating that it is a second-generation fault relative to the duplex structures 

(Figure 1.5a, m, 1.9a, 1.10a).  

In the footwall of the basement-involved reverse fault, strata of the Tobífera 

Formation crop out everywhere in the study area. In both Estuarios Wickham and Silva 

Palma, the Tobífera Formation is not imbricated as near Canal Jeronimo to the north, but 

instead is folded. Bedding is difficult to distinguish, but in Estuario Silva Palma it is 

observed folded by mesoscale (~3m wavelength) tight, northeast-vergent asymmetric  

folds with a northwest-plunging fold axis (Figure 1.10e). A prominent schistose foliation 

defined by the alignment of white-mica and quartz is axial planar to these folds, dips 

southwest, and contains a southwest-plunging quartz and white-mica stretching lineation. 

In both locations the foliation is subparallel to bedding along the limbs of the folds, 

indicating tight folds (Figure 1.9e).  

Everywhere in the study area within the footwall of the basement-involved 

reverse fault, the Tobífera Formation is thrust on top of the Zapata-Canal Bertrand 

Formation. The thrust can be traced for ~100 km along strike from Canal Jeronimo to 

exposures near Cabo Froward (Figure 1.3). It is best exposed in Estuario Silva Palma 

where it is a shallowly southwest-dipping thrust fault (Figure 1.11a). In the footwall, the 

Zapata-Canal Bertrand Formation is pervasively deformed. Tight northeast-vergent 

inclined folds (F1) that have northwest- and southeast-trending subhorizontal fold axes 

fold bedding (S0). A southwest-dipping spaced cleavage (S1) is axial planar to F1 folds, 

and its intersection with bedding forms a prominent intersection lineation that is parallel 

to F1 fold axes. In some outcrops a poorly developed white mica lineation plunges 

southwest on S1 surfaces (Figure 1.9f, g; 1.10f, g; 1.11b). Microscopically, well-

developed pressure solution seams are subparallel to bedding and form calcite, chlorite 

and white-mica pressure shadows around quartz and feldspar clasts. In close proximity 
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Figure 1.10. Cross-section and structural data from Estuario Silva Palma. (a) Cross 
section from F-F’, see figure 1.8 for location. Short-dashed lines show schematic 
trace of bedding. Stereograms of structural data from four structural domains: (b-d) 
the Cordillera Darwin Metamorphic Complex, (e) Tobífera Fm., (f-g) the Zapata-
Canal Bertrand triangle zone, and (h-i) the Latorre back thrust. 
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Figure 1.11. Photographs of triangle zone exposed in Estuarios Wickham and Silva Palma. (a) 
Tobífera over Zapata-Canal Bertrand thrust in Estuario Silva Palma. (b) Bedding (S0) of the 
Zapata-Canal Bertrand Fm. folded by northeast-vergent inclined closed folds (F1) in the footwall 
of the Tobífera thrust, spaced cleavage (S1) is axial planar to the folds. (c) Intraformational thrust 
faults that truncate folds of the Zapata-Canal Bertrand Fm. within the core of the triangle zone, 
inset shows equal area stereonet projection of the fault surfaces (great circles) and slickenlines 
(points) with arrow showing the motion of the hanging wall, shaded area shows linked Bingham 
fault plane solution to data. (d) Bedding of the Zapata-Canal Bertrand Fm. folded by recumbent 
tight folds (F1) that are refolded by upright open folds (F2) within close proximity of the Tobífera 
thrust within the core of the triangle zone. (e) Equal area stereonet projection of fault surfaces 
(great circles) and slickenlines (points) from Figure 11a with arrow showing the motion of the 
hanging wall, shaded area shows linked Bingham fault plane solution to data. (f) Equal area 
stereonet projection of fault surfaces (great circles) and slickenlines (points) from Figure 11c.
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to the Tobífera thrust, a second set of pressure solution seams that overprint bedding 

defines crenulation cleavage that is parallel to S1. 

F1 folds are commonly truncated by top-northeast intraformational thrust faults 

that thicken the Zapata-Canal Bertrand Formation (Figure 1.11c). Within close proximity 

of the thrust that uplifts the Tobífera Formation, open upright folds that lack an axial-

planar cleavage (F2 ) refold tight F1  folds (Figure 1.11d). This thrust truncates the 

structures observed in the Zapata-Canal Bertrand Formation and therefore, it is mapped 

as a second-generation fault that is probably coeval with the F2 folds its footwall. 

In all localities in the study area, the Latorre Formation overlies the Zapata-Canal 

Bertrand Formation and dips gently toward the north. The contact between the Latorre 

and Zapata-Canal Bertrand Formations is best exposed in Estuario Wickham near site 

11071 (Figure 1.4). Here the contact is tectonized, defined by a north-dipping back thrust 

that contains a 0.5 m thick zone of cataclasite. In the footwall, overturned beds and a 

penetrative spaced cleavage of the Zapata-Canal Bertrand Formation dip southwest and 

are truncated by the back thrust. In the hanging wall, strata of the Latorre Formation dip 

shallowly toward the north and are gently folded, but lack evidence of pervasive strain 

displayed by the Zapata-Canal Bertrand Formation (Figure 1.12a). Kinematic indicators 

within the fault zone include a northeast-dipping fault zone cleavage, both synthetic and 

antithetic microfaults, and tensile veins that formed at high angles to the fault zone 

cleavage confirm a top-southwest sense of shear (Figure 1.12b-d).  

In the hanging wall of the back thrust exposed in Estuario Wickham, the Latorre 

Formation dips toward the north and is imbricated by a second north-dipping thrust, 

forming a duplex that is detached at the base of the Latorre Formation (Figure 1.4, 1.9a). 

In the hanging wall of the duplex, the Latorre Formation dips dominantly toward the 

north except where it is gently folded by a series of upright open folds (F1) with 

subhorizontal northwest- and southeast-trending fold axes. A well-developed southwest-

dipping spaced cleavage is axial planar to F1 folds, and it forms a prominent intersection 

lineation that is parallel to the fold axis (Figure 1.9a, h-i). In Estuario Silva Palma, the  
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Figure 1.12. Photographs of (a) back thrust exposed in Estuario Wickham 
showing shallowly north-dipping upright strata of the Latorre Fm. thrust on 
top of overturned bedding and southwest-dipping cleavage in the Zapata-
Canal Bertrand Fm. in the footwall of the thrust, inset shows equal area 
stereonet projection of the fault surfaces (great circles) and slickenlines 
(points) with arrow showing the motion of the hanging wall, shaded area 
shows linked Bingham fault plane solution to data, and (b) fault zone cata-
clasite exhibiting fault zone cleavage that forms a top-southwest asymmetric 
fabric (FZS1, FZS2) and antithetic microfaults consistent with top-southwest 
sense of shear, location shown in Figure 12a. Photomicrograph (c) and 
corresponding sketch (d) of fault zone cataclasite from Figure 12b that 
shows angular clasts within the cataclasite, fault zone cleavage (Sfz) tensile 
quartz veins and both synthetic and antithetic microfaults that are consistent 
with top-southwest sense of shear.
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Latorre Formation crops out along the northeastern end of section F-F’ where it is gently 

folded by open, upright folds with northwest-plunging fold axes and southwest-dipping 

axial planar cleavages (Figure 1.9a, h-i). Although the contact between the Latorre 

Formation and Zapata-Canal Bertrand Formation is not as well exposed in Estuario 

Fanny to the north of Estuario Wickham, nor Silva Palma to the southeast, it must be 

discordant in all locations because the Latorre Formation lacks evidence for penetrative 

strain displayed everywhere by the Zapata-Canal Bertrand Formation. On the basis of 

similarities in the hanging wall structure of the Latorre Formation exposed in Estuario 

Wickham to those observed to the northwest and southeast, I infer that the back thrust is 

continuous for ~70 km along strike and defines a northeastern boundary of a triangle-

zone that is cored by the Zapata-Canal Bertrand Formation. Displacements on the thrust 

are not known, but they are inferred to be small and to decrease toward the northwest and 

southeast of site 11071 in Esutario Wickham (Figure 1.3). The Latorre Formation is 

relatively weakly deformed along a passive-roof duplex in the hanging wall of the 

triangle-zone (Figure 1.9a, 1.10a).  

4.5 STRUCTURE OF CORDILLERA DARWIN METAMORPHIC COMPLEX NEAR CANAL 
JERONIMO, ESTUARIOS WICKHAM AND SILVA PALMA 

Nearly everywhere in the study area, exposures of the pre-Jurassic metamorphic 

‘basement’ (Cordillera Darwin Metamorphic Complex) are juxtaposed against Jurassic 

and younger cover along a second-generation reverse fault (Figure 1.3). In the hanging 

wall of the fault, the Cordillera Darwin Metamorphic Complex is pervasively deformed 

by several generations of structures that do not affect the overlying volcanic and 

sedimentary cover. Near Canal Jeronimo (Figure 1.4), the schist displays a pervasive 

schistose foliation (S1) that is defined by the alignment of chlorite, white-mica and quartz. 

A prominent, recrystallized, quartz stretching lineation (L1) occurs on S1 surfaces and 

trends dominantly toward the southwest (Figure 1.5e). Conjugate sets of closed, inclined, 

horizontal folds (F2) have steeply southwest- and northeast-dipping axial planes and 

shallowly-plunging northwest and southeast-trending fold axes and fold both S1  and L1  

in the hinge of an overturned-to-the-northeast synform (Figure 1.5e, f). S1 and S2  surfaces 
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are overprinted by a well-developed crenulation cleavage (S3) that dips steeply toward the 

north and has a west-northwest-plunging crenulation lineation (L3, Figure 1.5g). 

Along-strike toward the southeast, outcrops of the Cordillera Darwin 

Metamorphic Complex exposed in Estuario Wickham (Figure 1.4, 1.9a) display three 

generations of structures. A pervasive schistose foliation (S1) defined by chlorite and 

quartz dips southwest and contains a recrystallized quartz and mica stretching lineation 

(L1) that plunges southwest (Figure 1.9c). Both S1 and L1 are refolded by isoclinal inclined 

folds (F2) with an axial planar cleavage (S2) that dips southwest and is parallel to the 

limbs of the folds. F2 fold axes are subhorizontal and trend northwest-southeast. A west-

northwest-trending crenulation lineation overprints F2 folds (Figure 1.9d) and is parallel 

to those exposed near Canal Jeronimo. In the valley between Canal Jeronimo and 

Estuario Wickham near site 11084 (Figure 1.4), silicic dikes intrude the Cordillera 

Darwin Metamorphic Complex and are interpreted to be feeder dikes to the Jurassic 

Tobífera Formation (Figure 1.6f, 1.9a). The dikes are dynamically recrystallized and 

contain a pervasive schistose foliation that is co-planar with those of the Cordillera 

Darwin Metamorphic Complex. On this basis, I interpret that the S1/L1 and younger 

fabrics in the Cordillera Darwin Metamorphic Complex formed after the Jurassic.  

Greenschist of the Cordillera Darwin Metamorphic Complex is well exposed at 

the southeastern end of Estuario Silva Palma where the depth of exposure is >1 km below 

the sheared contact with the overlying Tobífera Formation (Figure 1.8, 1.10a). Here, a 

pervasive schistose foliation (S1) contains a prominent dynamically recrystallized quartz 

stretching lineation (L1). The S1/L1 surface is refolded by two generations of folds with 

perpendicular, subhorizontal axes. Recumbent, horizontal, tight folds (F2) that trend west-

northwest and east-southeast fold S1/L1 (Figure 1.10b-d). Figure 1.13a-b shows the scale 

of F2 folds and the L1 recrystallized quartz lineation refolded around F2 hinges. Open, 

shallowly southwest-plunging folds (F3) gently refold the axial planes of F2 folds (S2) 

(Figure 1.10d, 1.13c). In the valley near the southwestern end of transect F-F’ (Figure 

1.8, 1.10a), north-dipping C’ shear bands cut F2 and F3 folds and display top-northeast 

transport. I interpret these structures to reflect top-northeast motion along the  
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Figure 1.13. Photographs and sketches of structures in the Cordillera Darwin metamorphic 
complex exposed near Estuario Silva Palma (a-c) showing (a) recumbent, tight-isoclinal F2 
folds that refold the schistose foliation (S1) viewed parallel to the fold axis, (b) the L1 quartz 
stretching lineation and S1 surface refolded around F2 axes viewed orthogonal to the fold 
axes, and (c) a sketch of the three-dimensional geometry of the F2 folds; the S2 surface is 
folded by open F3 folds with fold axes orthogonal to F2, dark shaded layers represent 
chlorite-rich domains. (d-f) Photographs and sketches of the Cordillera Darwin metamorphic 
complex within the shear zone exposed at Bahía Fortesque showing (d) relict F2 folds that 
are tightened and transposed within the shear zone fabric, C’ shear bands and C-S fabrics that 
indicate top-northeast sense of shear, (e) a prominent southwest-plunging quartz stretching 
lineation on the shear zone surface (S1-2), and (f) sketch showing structural elements of the 
shear zone at Bahía Fortesque including the transposition of F2 folds, C’ shear bands and C-S 
fabrics that indicate top-northeast sense of shear, a southwest-plunging quartz stretching 
lineation on the composite S1-2 surface, and upright, north-dipping kink folds (F3) that refold 
the shear zone surface, dark shaded layers represent chlorite-rich domains.
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sheared contact with the overlying Tobífera Formation, an interpretation supported by the 

lack of these structures in deeper exposures of the Cordillera Darwin Metamorphic 

Complex <5 km to the northeast (Figure 1.10a). Everywhere in the Cordillera Darwin 

Metamorphic Complex from Canal Jeronimo to Estuario Silva Palma, the prominent L1  

quartz stretching lineation is overprinted by at least two younger generations of folds 

(e.g. Figure 1.13a-c), suggesting that continued shortening by progressive folding 

outlasted shearing. 

4.6 STRUCTURE OF THE CORDILLERA DARWIN METAMORPHIC COMPLEX NEAR BAHÍA 
FORTESQUE AND SENO CORDES 

Near the Estrecho de Magallanes (Figure 1.3), Bahía Fortesque and Seno Cordes 

provide important hinterland exposures of the Cordillera Darwin Metamorphic Complex 

where it is imbricated with the Tobífera Formation in the hanging wall of the second-

generation reverse fault (Section G-G’; Figure 1.8, 1.14). The Cordillera Darwin 

Metamorphic Complex crops out at the northern end of transect G-G’ in Seno Cordes, 

where it displays a schistose foliation defined by quartz, chlorite and white mica (S1).  

Upright, horizontal, northwest-southeast-trending tight folds, with < 1m wavelengths fold 

S1 surfaces (F2; Figure 1.14a, f). A recrystallized quartz stretching lineation (L1) is 

preserved on S1 surfaces that is perpendicular to F2 fold axes is also folded by F2. Axial 

planes to F2 folds (S2) are sub-vertical (Figure 1.14g). The contact with the Tobífera 

Formation is moderately sheared and folded by upright to inclined F2 folds. 

Overlying the Cordillera Darwin Metamorphic Complex, the Tobífera Formation 

is internally deformed and folded by a steeply inclined syncline. In the core of the 

syncline a white-mica schistose foliation (S1) contains a poorly developed southwest-

plunging quartz stretching lineation (L1), and both are refolded by a conjugate set of 

steeply inclined kink folds (F2). The kink folds have axial planes (S2) that dominantly dip 

steeply to the southwest, however a subordinate northeast-dipping conjugate set exists. F2 

fold axes trend toward the northwest and south-southeast and are subparallel to a 

crenulation lineation that occurs on the limbs of the kink folds (Figure 1.14a, d-e). 
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and (f-g) the Cordillera Darwin Metamorphic Complex below the high-strain zone. 
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In Bahía Fortesque at the southwestern end of transect G-G’, the contact between 

the Tobífera Formation and the Cordillera Darwin Metamorphic Complex is strongly 

tectonized and dips moderately to the southwest. Here <1 km below the contact, the 

Cordillera Darwin Metamorphic Complex displays a southwest-dipping schistose 

foliation (S1) and prominent, recrystallized, quartz stretching lineation (L1) that plunges 

southwest (Figure 1.14a, b). Isoclinal rootless folds (F2) that have curved west-northwest 

and south-southeast-trending axes (Figure 1.14c) fold the S1/L1 surface and are sheared to 

form the composite S1-2 foliation. The limbs of F2 folds are commonly truncated by C’ 

shear bands that indicate top-northeast transport. In micaceous domains the composite 

foliation is transposed and forms well developed C-S fabrics that also indicates top-

northeast shear (Figure 1.13d-f). Steeply inclined kink folds (F3) refold the composite 

foliation. F3 folds have north-dipping axial planes and trend northwest-southeast 

subparallel to F2 fold axes (Figure 1.13f, 1.14c). The tightening, transposition, and 

shearing of F2 folds defines a 1-km thick shear zone that cuts up-section through the 

basement-cover contact imbricating the Cordillera Darwin Metamorphic Complex with 

the Tobífera Formation (Figure 1.14a). This shear zone is interpreted as the first-

generation basal décollement that developed <1 km below the basement-cover contact 

and is an important example of the structurally lowest and most hinterland exposures of 

the fold-thrust belt in the study area.  

4.7 STRUCTURE OF THE MAGALLANES FOLD-THRUST BELT NEAR PENINSULA 
BRUNSWICK 

Shoreline exposures along a 30-km transect from Cabo Froward toward the 

northeast preserve the structure of the Magallanes foreland basin in the southeastern most 

part of the study area (Transect H-H’; Figure 1.3, 1.15, 1.16). Near Cabo Froward at the 

southwestern end of transect H-H’, the Tobífera Formation crops out along the Estrecho 

de Magallanes and can be easily correlated using satellite imagery with exposures in 

Silva Palma (Figure 1.3). Near Cabo Froward, the top of the Tobífera Formation is 

exposed and sheared. A schistose white mica and quartz foliation (S1) dips north and 

contains a well-defined, recrystallized, quartz lineation that plunges toward the north  
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Figure 1.15. Geologic map of Peninsula Brunswick near Cabo Froward showing 
data collected during this study. Black dot and corresponding number refers to 
data station mentioned in text. Data collected at 1:25,000 scale. 
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Figure 1.16. Cross-section and structural data from Cabo Froward and the 
Magallanes Straits. (a) Cross section from H-H’, see figure 1.15 for loca-
tions. Short-dashed lines show schematic trace of bedding. Stereograms of 
structural data from five structural domains: (b) the Tobífera Fm. at Cabo 
Froward, (c-d) the Zapata-Canal Bertrand décollement at Cabo Froward, 
(e-f) bedding orientations and folds within the Zapata-Canal Bertrand, 
Latorre, and Escarpada-Fuentes Fms. near the pop-up structure, (g-h) folds 
within the Escarpada-Fuentes Fms. in the foreland fold-thrust belt, and (i-j) 
folds within the Fuentes-Rocallosa Fm. in close proximity to Neogene 
strike-slip faults. 
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(L1, Figure 1.16a,b). On surfaces oriented perpendicular to S1 and parallel to L1, rigid, 

feldspar porphyroclasts with asymmetric recrystallized quartz tails and C’ shear bands 

that truncate and displace S1 indicate top-north sense of shear. 

Above the contact at Cabo Froward, the Zapata-Canal Bertrand Formation crops 

out and is pervasively deformed. Here, bedding (S0 ) of the Zapata-Canal Bertrand 

Formation is folded into tight, northeast-vergent overturned folds with northwest-

plunging fold axes (F1 ) and west-southwest-dipping axial planes (S1). A prominent 

cleavage-bedding intersection lineation (S1) is exposed on bedding surfaces and is parallel 

to F1 fold axes (Figure 1.16c, d). At Cabo Froward, F1 folds in the Zapata-Canal Bertrand 

Formation are detached from the underlying Tobífera Formation which is not folded. The 

top-north sense of shear at the contact between the two formations is sympathetic with 

the vergence of the overturned folds in the overlying Zapata-Canal Bertrand Formation.  

A basement-involved, southwest-dipping reverse fault is inferred and mapped in 

the valley north of Cabo Froward to explain the juxtaposition of stratigraphic levels 

between exposures of the Tobífera-Zapata-Canal Bertrand contact in the hanging wall 

and the Zapata-Canal Bertrand-Latorre contact in the footwall (Figure 1.15, 1.16a). This 

fault correlates with the second-generation thrust that uplifts the Tobífera Formation 

where it crops out in Estuarios Silva Palma and Wickham to the northwest (Figure 1.3). 

A minor southeast-dipping normal fault cuts the reverse fault and strikes northeast along 

the valley between Cabo Froward and Peninsula Brunswick (Figure 1.15, 1.16a). To the 

north of these faults, the upper part of the Zapata-Canal Bertrand Formation is exposed 

and is not deformed. Bedding (S0) dips steeply toward the north. The contact between the 

Zapata-Canal Bertrand Formation and overlying Latorre Formation is exposed near site 

10217 (Figure 1.15) where it is conformable and dips north. Above the contact the full 

thickness of the Latorre Formation (~1200 m) is intermittently exposed. The Escarpada 

Formation conformably overlies the Latorre Formation and also dips to the north (Figure 

1.15, 1.16). 

Approximately 1 km northeast of site 10217, a back thrust juxtaposes the base of 

the Latorre Formation against the Escarpada Formation (Figure 1.15, 1.16). In the 
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hanging wall of the back thrust, bedding (S0) is folded by a regional syncline. Mesoscale 

(~5 m wavelengths) second order folds have axes that trend north-northwest and steeply 

southwest-dipping or upright axial planar cleavages (S1). Bedding-cleavage intersection 

lineations occur on bedding surfaces and trend north-northwest (Figure 1.16e, f). The 

northern limb of the syncline is truncated by a southwest-dipping thrust fault that uplifts 

the Latorre Formation in the hanging wall above the Escarpada Formation in the footwall. 

On the basis of the stratigraphic separation across the fault, the thrust is inferred to be 

detached at the base of the Zapata-Canal Bertrand Formation, and it forms a pop-up 

structure with the back thrust exposed to the south (Figure 1.16a). 

To the north of the pop-up structure, the Escarpada Formation is imbricated by a 

southwest-dipping thrust fault that also is inferred to be detached at the base of the 

Zapata-Canal Bertrand Formation on the basis of geometric constraints from stratigraphic 

thicknesses (Figure 1.16a). In the hanging wall, bedding is folded into a regional 

syncline-anticline pair. Second order folds in the core of the syncline are overturned-to-

the-northeast and have northwest-southeast-trending horizontal fold axes. In the footwall 

north of Punta Brigida (Figure 1.15), regional F1 folds are upright and tighter than those 

in the hanging wall. Here, second-order F1 folds display a subvertical axial planar 

cleavages (S1, Figure 1.16a, g-h). Near site 10338 (Figure 1.15), bedding dips vertically 

and is cut by a 2 m wide sinistral strike-slip fault zone that strikes northwest subparallel 

to bedding (Figure 1.15, 1.16a). The amount of offset is unknown, however stratigraphic 

thickness constraints require at least 1 km of throw across the fault indicating a reverse-

sinistral sense-of-motion (Figure 1.16a). 

On the south shore of Bahía del Indio, the Escarpada Formation crops out and is 

subvertical. Here, clustered sets of conjugate strike-slip faults cut bedding and indicate 

dominantly sinistral slip. On the north shore 1.5 km toward the northeast, strata of the 

Fuentes/Rocallosa Formation dip shallowly to the southwest. A high-angle basement-

involved reverse fault is inferred to explain the stratigraphic separation across the bay. 

This fault probably correlates with similar structures exposed near Seno Otway on section 

A-A’, ~100 km to the northeast (Figure 1.3). Here, the fault also is inferred to have a left-
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lateral component of motion on the basis of the clustered sets of conjugate faults on the 

south shore of Bahia del Indio (discussed in Chapter 3).  

Toward the north in the footwall of the basement-involved fault, the 

Fuentes/Rocallosa Formation is folded by a series of three tight upright folds with ~2 km 

wavelengths (F1). A vertical spaced cleavage is axial planar to the folds (S1). Fold axes 

and cleavage-bedding intersection lineations plunge shallowly toward the northwest 

(Figure 1.16i-j). Several sets of conjugate strike-slip faults cluster on the limb of the fold 

near Bahía del Aguila and show dominantly sinistral-slip. A steeply-dipping, bedding 

parallel, left-lateral strike slip fault is mapped along the north shore of Bahía del Aguila 

where conjugate fault sets are densely clustered (Figure 1.15, 1.16a). Tight upright folds 

and strike-slip deformation preserved on the northern end of transect H-H’ post-date the 

fold-thrust belt and probably reflect Neogene strike-slip tectonics.  

 

5. Discussion 

5.1 CORRELATION OF STRUCTURES AND TECTONIC INTERPRETATIONS 

5.1.1 Second-Generation Basement-Involved Structures 
New mapping results presented above reveal several faults that correlate along-

strike from Seno Otway to Peninsula Brunswick. A second-generation basement-involved 

reverse fault crops out on each transect A-F and again along the Estrecho de Magallanes, 

and everywhere it juxtaposes deformed schist of the Cordillera Darwin Metamorphic 

Complex in its hanging wall against deformed and imbricated strata of the Tobífera and 

Zapata-Canal Bertrand Formations in the footwall. This fault is continuous for ~80 km 

along-strike from Seno Otway to the Estrecho de Magallanes (Figure 1.3), and it may be 

similar to an out of sequence basement-involved reverse fault mapped to the southeast 

along the northern boundary of the Cordillera Darwin (Figure 1.1; Klepeis, 1994; Klepeis 

et al., 2010; McAtamney et al., 2011). If correct, this suggests the fault is continuous 

along-strike for >300 km and everywhere defines the northern boundary of the Cordillera 

Darwin Metamorphic Complex on Tierra del Fuego (Figure 1.1). North of this structure 
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exposed near Seno Otway, two additional basement-involved reverse faults cut first-

generation structures and Cretaceous strata within the Magallanes foreland basin (Figure 

1.4, 1.5m). Each of these faults must be a second-generation basement-uplift because the 

stratigraphic level of exposure changes across the fault and they cut earlier structures 

including the Escarpada and Latorre duplex, as well as the Tobífera duplex along transect 

A-A’ (Figure 1.4, 1.5). The basement involved reverse fault exposed along transect H-H’ 

near Bahía del Indio that juxtaposes the Escarpada Formation above the 

Fuentes/Rocallosa Formation (Figure 1.15) probably correlates with the northernmost 

basement structure near Seno Otway, suggesting that it is continuous for ~100 km along-

strike (Figure 1.3).  

In the Ultima Esperanza region of Chile (Figure 1.1), Fosdick et al. (2011) 

documented a phase of out-of-sequence basement involved faulting that reactivated 

Jurassic normal faults, cut early décollement levels in the Magallanes fold-thrust belt and 

occurred from the Campanian to the early Oligocene. This pulse of thrusting is coeval 

with Late Cretaceous-Paleogene synorogenic deposition of the Tres Pasos and Dorotea 

Formations (Figure 1.2) that sample uplifted and eroded Jurassic volcanic and 

volcanoclastic rocks of the Rocas Verdes basin (Romans et al., 2010). Mpodozis et al. 

(2007) showed peak U-Pb detrital zircon populations from 62-66 Ma for the Fuentes and 

Rocallosa Formations near Seno Otway that are equivalents of the Tres Pasos and 

Dorotea Formations in Ultima Esperanza (Figure 1.2). On the basis of similarities in the 

sequence and structural-style of basement-involved faults between Seno Otway and 

Ultima Esperanza (e.g. Fosdick et al., 2011) and the timing of Paleogene synorogenic 

sedimentation that samples uplifted Rocas Verdes basin terrane, I postulate that 

basement-involved faulting near Seno Otway reflects the reactivation of Jurassic normal 

faults and was probably coeval with that to the northwest beginning in the Maastrichtian 

and culminating in the Paleogene (c.f. Winslow et al., 1981; Fosdick et al., 2011). This 

interpretation is consistent with a phase of basement-involved, out-of-sequence thrusting 

documented on Tierra del Fuego toward the southeast (Klepeis, 1994a) and a phase of 

rapid exhumation and erosion of basement and Upper Jurassic igneous rocks of the 
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Cordillera Darwin Metamorphic Complex during the Paleogene (Barbeau et al., 2009; 

Gombosi et al., 2009; Zahid & Barbeau, 2010). Data from this study indicate that 

basement-involved faults crop out continuously along the trend of the fold-thrust belt and 

suggest that out-of-sequence basement-involved faulting was an orogen-wide event 

probably resulting from the complete closure of the Rocas Verdes basin and collision of 

the Patagonian batholith (c.f. Klepeis et al., 2010). 

5.1.2 First Generation Décollement Levels, Basement Deformation, Triangle Zone 
and Mechanical Stratigraphy 

Lower décollement. The basement-cover contact between the Cordillera Darwin 

Metamorphic Complex and Jurassic volcanic rocks of the Rocas Verdes basin and 

Tobífera Formation is exposed along transects C, E, F and G, where it is sheared and 

displays top-northeast sense of transport (Figure 1.3, 1.4, 1.5a, 1.6, 1.9a, 1.10a, 1.13, 

1.14a). Important exposures near Bahía Fortesque (transect G-G’) are the most 

hinterlandward and structurally lowest exposures in the study area. Here, the sheared 

contact ramps up-section through the Tobífera Formation and imbricates the basement 

schist with the cover (Figure 1.14), defining a lower décollement < 1 km below the 

basement-cover contact at the base of the thrust-belt. The Cordillera Darwin 

Metamorphic Complex displays a pervasive schistose foliation S1  that contains a 

prominent, recrystallized, quartz stretching lineation (L1) everywhere it is exposed within 

and below the décollement near Bahía Fortesque, Seno Cordes and the southwestern ends 

of Estuarios Silva Palma and Wickham (Figure 1.4, 1.8). I interpret the S1/L1 surface to 

reflect the earliest phase of shearing along the basal décollement that thrust the Rocas 

Verdes terrane onto the continental margin. These early structures are similar to those 

reported in contractional craton-vergent shear zones that formed at the base of the Rocas 

Verdes terrane rocks near the Beagle Channel prior to ~86 Ma (Klepeis et al., 2010; 

Nelson, 1980) and in the Sarmiento complex to the north ~ 85 Ma (Calderon et al., 2012), 

suggesting that obduction of the Rocas Verdes rocks was everywhere underway by the 

Turonian-Coniacian. 
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Observations from the base of the fold-thrust belt presented in this study provide 

an important example of crustal thickening that occurred in the metamorphic basement 

below and toward the hinterland of a fold-thrust belt. Below the basal décollement S1/L1  

are refolded by two generations of folds (F2 -3; Figure 1.13) that are not expressed in the 

overlying Tobífera Formation (Figures 1.9a, c-d, 1.10a-d, 1.14), indicating that basement 

shortening was accommodated by progressive polyphase folding and dynamic 

recrystallization processes that did not occur in the overlying thrust-belt. Here, basement 

shortening was accommodated by different deformation mechanisms and was 

mechanically detached from the overlying thrust belt, perhaps providing some insight to 

orogenic processes elsewhere that form large topographic reliefs that cannot be 

completely explained by balancing shortening within a retroarc fold-thrust belt and 

therefore require mid-lower crustal thickening (e.g. Altiplano Plateau, McQuarrie et al., 

2005). 

Upper décollement. Material above the basal décollement was translated along 

the décollement and up-section over ramps through the Tobífera Formation. Exposures of 

the upper contact of the Tobífera Formation with the Zapata-Canal Bertrand Formation 

near Cabo Froward confirm that this is also a sheared contact with a top-north sense-of-

shear and forms a thrust-flat (Figure 1.15, 1.16a-d), thus defining a higher décollement 

level at the base of the Zapata-Canal Bertrand Formation. The thrust ramp exposed at 

Bahía Fortesque links the lower and upper décollements (Figure 1.3, 1.8, 1.14a, 1.15, 

1.16a). Similarly, near Canal Jeronimo (Transect A-A’, B-B’; Figure 1.5h, m), the floor-

thrust of the duplex within the Tobífera Formation occurs at the basement-cover contact 

and ramps up-section to form a roof-thrust in the Zapata-Canal Bertrand Formation <400 

m stratigraphically above the contact between the Zapata-Canal Bertrand and Tobífera 

Formations. Structures that imbricate the Tobífera Formation are consistent with those 

near Bahía Fortesque and Cabo Froward and indicate that everywhere ignimbrite deposits 

of the Tobífera Formation are bound on both sides by thrust flats linked by ramps that cut 

the formation. A second-generation thrust that soles into the lower décollement uplifts the 
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Tobífera Formation, cuts first generation structures, and is exposed for >80 km along-

strike at Canal Jeronimo, Estuario Wickham and Estuario Silva Palma (Figure 1.3). 

Along transects A, B, E and F in the footwall of the second generation thrust that 

uplifts the Tobífera Formation (Figure 1.3), the Zapata-Canal Bertrand Formation is 

pervasively deformed by up to two generations of folds with top-northeast vergence and 

shallowly northwest-plunging fold axes that are subparallel everywhere in the study area 

(Figure 1.5m, o-p; 1.9a, f-g; 1.10a, f-g; 1.16c-d). Intraformational thrust faults with top-

northeast slip indicators truncate folds in the Zapata-Canal Bertrand Formation (Figure 

1.11c) and are synthetic with the top-northeast vergence of the folds. Along section B-B’ 

the Zapata-Canal Bertrand Formation is imbricated by at least two southwest-dipping 

thrust faults that sole into a thrust-flat at the base of the formation to form a hinterland-

dipping duplex (Figure 1.5h). Here, northeast-vergent folds occur in the footwalls of the 

thrusts (Figure 1.5i-l) and are subparallel to those observed elsewhere. Folds observed 

within the Zapata-Canal Bertrand Formation along transect A-A’ occur at the base of the 

formation where they are tighter than folds exposed elsewhere near the top of the 

formation (e.g. Estuarios Wickham and Silva Palma), indicating increasing strain toward 

the base of the Zapata-Canal Bertrand Formation that defines a regional décollement at 

the base of the formation (Figure 1.5m). 

The Zapata-Canal Bertrand décollement is the floor-thrust for the Zapata-Canal 

Bertrand duplex exposed along transect B-B’ and the Escarpada-Latorre duplex exposed 

near Seno Otway along transect A-A’. This inference is supported by the observation that 

footwall folds in both duplexes are subparallel to those in the décollement (Figures 1.5m, 

i, k, o-p, q-r). Furthermore, the second-generation basement-involved fault exposed near 

the mouth of Estuario Fanny at the north shore (Figure 1.4) uplifts the Zapata-Canal 

Bertrand décollement in the hanging wall relative to the Escarpada-Latorre imbricate 

thrusts in the footwall (Figure 1.5m), indicating the décollement formed a regional 

structural level prior to being displaced by second-generation reverse faults. Exposed 

along transect H-H’ ~100 km to the southeast, the Zapata-Canal Bertrand décollement 

crops out at Cabo Froward where tight overturned folds are parallel to those in the 
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décollement near Canal Jeronimo (Figures 1.5o-p, 1.16c, d). Folds associated with thrusts 

that imbricate foreland base strata along section H-H’ trend northwest-southeast are 

subparallel to those exposed at Seno Otway and in the Zapata-Canal Bertrand 

décollement at Cabo Froward and Canal Jeronimo (Figure 1.16g, h) and indicate the 

same southwest-northeast shortening direction. One exception includes folds in the 

hanging wall of the pop-up structure along transect H-H’ that trend more toward the north 

(Figures 1.16e-f). The misorientation of these folds probably indicates that folding in the 

hanging wall of the pop-up was not exactly coaxial with the rest of the thrust belt. 

The orientations and shortening directions associated with folds and faults in the 

foreland basin strata and Canal Bertand Formation are subparallel for >100 km along-

strike, suggesting that the Zapata-Canal Bertrand Formation acts as a regional basal 

décollement that accommodated top-northeast thrusting and folding of foreland basin 

strata everywhere in the study area. Structures within the Zapata-Canal Bertrand 

Formation in the study area probably correlate with similar structures, including top-

northeast intraformational tight folds and faults reported >100 km toward the southeast 

near Bahía Brookes (McAtamney et al., 2011; Mpodozis and Rojas, 2006), suggesting 

that it is a major regional décollement level below the fold-thrust belt for >200 km along-

strike in southern Patagonia and Tierra del Fuego (see also, Klepeis, 1994a).  

Triangle Zone. Everywhere in the study area, neither the underlying Tobífera 

Formation, nor the overlying Latorre Formation record the pervasive deformation 

exhibited by the Zapata-Canal Bertrand Formation, indicating that this deformation is 

localized within the formation. The lower contact between the Zapata-Canal Bertrand and 

Tobífera Formations is exposed near Canal Jeronimo and Cabo Froward where it is 

sheared along a lower décollement within ~400 m of the contact with the Tobífera 

Formation. The upper contact between the Zapata-Canal Bertrand and Latorre 

Formations is exposed near Estuario Wickham where strata of the Latorre Formation are 

back thrust above the pervasively deformed Zapata-Canal Bertrand Formation (Figure 

1.3, 1.5, 1.9, 1.10, 1.12). Although the Latorre Formation is less deformed than the 

Zapata-Canal Bertrand Formation, the orientations of axial planar cleavages (S1), 
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intersection lineations (L1), and F1 folds of bedding of the Latorre Formation in the 

hanging wall of the back thrust (Figure 1.9h-i, 1.10h-i) are subparallel to those from folds 

of bedding in the Zapata-Canal Bertrand Formation in the footwall (Figure 1.9f-g, 1.10f-

g) suggesting that the deformation probably formed coevally. These observations suggest 

that pervasively deformed strata of the Zapata-Canal Bertrand Formation occupy the core 

of a triangle-zone that is detached at both the upper and lower contacts (c.f. MacKay, 

1996). 

Triangle zone structures are commonly reported at the leading edge of thin-

skinned thrust belts (e.g. MacKay, 1996; Stockmal et al., 2001; Banks and Warburton, 

1986; Sans et la., 1996; Sobornov, 1996; Ramos, 1989), especially in settings 

characterized by weak shale décollements that are overlain by synorogenic sedimentary 

rocks (see review by Couzens & Wiltschko, 1996; McMechan, 1985). I postulate that the 

mechanical contrast between relatively weak shale with the underlying volcanoclastic 

rocks and overlying siliciclastic turbidites allowed a triangle-zone to form within the 

Zapata-Canal Bertrand Formation at the tip of the propagating thrust wedge as it 

advanced into the Magallanes Foreland basin (c.f. Couzens & Wiltschko, 1996). It is well 

known that mechanically layered stratigraphy can influence the kinematic development 

of a fold-thrust belt (e.g. Thomas, 2007; Davis & Engelder, 1985; Cotton & Koyi, 2000; 

Farzipour-Saein et al. 2009; Teixell & Koyi, 2003). In Patagonia, silicic ignimbrites of 

the Tobífera Formation form a competent layer relative to the ductile chlorite-schist 

below, and shale above. I attribute the occurrence of regional décollement levels along 

both the upper and lower contacts of the Tobífera Formation to reflect a mechanical 

stratigraphy inherited from the predecessor marginal basin that ultimately controlled the 

location of décollement levels and kinematic development of the thrust-belt.  

5.1.3 Neogene Strike-Slip Deformation 
Structures exposed in the foreland fold-thrust belt along the northeastern segment 

of transect H-H’ contrast slightly with those near Seno Otway toward the northwest. 

Along transect H-H’ northeast of Cabo Froward, F1 folds are upright with subvertical 

axial planar cleavages (S1) in contrast to southwest-dipping inclined folds that occur near 
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Seno Otway. I postulate that upright fold orientations along transect H-H’ (Figure 1.16) 

reflect a Neogene strike-slip overprint on the Late Cretaceous-Paleogene thrust belt that 

rotated initially northeast-vergent folds into upright orientations. Near Bahía del Indio 

and Bahía del Aguila, at least three left-lateral strike slip faults cut the thrust-belt, strike 

northwest-southeast parallel to the trend of the thrust belt, and probably reactivated 

Cretaceous-Paleogene faults (Figure 1.15, 1.16a). These faults are likely right-stepping, 

left-lateral splays from the Magallanes left-lateral fault zone to the south (Figure 1.1; c.f. 

Lodolo et al., 2003). I interpret that Cretaceous-Paleogene folds initially formed in the 

thrust-belt and subsequently were tightened and rotated into upright orientations within 

close proximity of the strike-slip faults. This interpretation is consistent with a well 

documented phase of wrench tectonics (Menichetti et al., 2008; Lodolo et al., 2003; 

Diraison et al., 1998) that began after the Eocene (Barbeau et al., 2009; Gombosi et al., 

2009; Zahid & Barbeau, 2010) and was associated with the Magallanes-Fagnano fault 

zone and opening of the Scotia Sea (Klepeis et al., 1994; Cunningham 1993; 1995).  

5.1.4 Timing of Deformation: Correlation with Synorogenic Sedimentation in the 
Magallanes Foreland Basin 

The Latorre and Escarpada Formations record the earliest Late Cretaceous 

synorogenic sedimentation foreland of the advancing thrust belt in the Magallanes region 

of Chile (Mpodozis et al., 2007; McAtamney et al., 2011). U-Pb detrital zircon analyses 

from the Latorre Formation near Seno Otway indicate that it spanned the interval from 

106 – 84 Ma (McAtamney et al., 2011) with large peaks ~91 Ma (Mpodozis et al., 2007). 

Provenance analyses and sandstone petrography by McAtamney et al. (2011) show a 

dominant volcanic arc signature for sediments of the Latorre Formation. These authors 

suggest that early thrusts that obducted the Rocas Verdes terrane prior to ~85 Ma (e.g. 

Calderon et al., 2012; Klepeis et al., 2010; Hervé et al., 1984) were initially buried and 

coeval with deposition of the Latorre Formation which sampled the active volcanic arc 

(c.f. McAtamney et al., 2011). 

The overlying Escarpada Formation is reported to have a more complex rock 

composition; sandstone modal analysis and detrital zircon populations that indicate rocks 
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of the Rocas Verdes terrane were emergent and shedding sediment into the foreland basin 

by ~80-81 Ma (McAtamney et al., 2011) or slightly earlier (~86 Ma, Mpodozis et al., 

2007). Exhumation and denudation of the Rocas Verdes terrane that was coeval with 

deposition of the Escarpada Formation indicates substantial hinterland shortening of the 

Rocas Verdes terrane prior to the Campanian propagation of the thrust front into the 

foreland basin (c.f. Fosdick et al., 2011). During the Campanian, deformation propagated 

along the Zapata-Canal Bertrand décollement into the Late Cretaceous foreland basin 

where thrusts imbricated the Latorre and Escarpada Formations. Detrital zircon ages and 

provenance analyses from the overlying Fuentes and Rocallosa Formations (Ultima 

Esperanza: Tres Pasos and Dorotea Formations; Mpodozis et al., 2007; Romans et al., 

2010; discussed above) indicate that Jurassic-Lower Cretaceous rocks of the Rocas 

Verdes basin were a substantial source of sediment into the foreland basin by the 

Maastrichtian (84-66 Ma, Mpodozis et al., 2007; 70 Ma, Romans et al., 2010) and into 

the Eocene (Barbeau et al., 2009; Gambosi et al., 2009). These data lend credence to the 

interpretation that out-of-sequence basement-involved thrusting began in the 

Maastrichtian and probably culminated in the Paleogene (c.f. Klepeis et al., 2010).  

5.2 REGIONAL KINEMATIC EVOLUTION OF THE FOLD-THRUST BELT AND SHORTENING 
ESTIMATES 

To help constrain the kinematic evolution of the fold-thrust belt and test for 

along-strike variability in tectonic shortening, I constructed and incrementally restored 

three strike-perpendicular, line-balanced cross sections. The northwestern section 

includes transects A-A’, B-B’ and C-C’, the central section includes transects D-D’ and 

E-E’ and the southeastern-most section includes transects F-F’ and G-G’ (Figure 1.3). 

Transect H-H’ was not restored because Neogene strike-slip deformation deems it 

unsuitable for cross-section balancing. 

In each restored cross section, the depths to the lower décollements for basement-

involved structures were modeled using the cross-section balancing software LithoTectTM. 

Upper décollement levels were assumed to be horizontal where data did not provide 

adequate constraints. The Tobífera Formation is selected as a marker bed for estimating 
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shortening using line-length restoration as it is the most competent unit in the study area. 

The pin line in the Tobífera Formation where shortening estimates were measured is 

marked with a red line in each cross section (e.g. Figure 1.17a). In most locations 

hanging wall cutoffs are eroded; to be conservative and minimize shortening estimates, 

the hanging wall cutoffs were constructed as close to the corresponding footwall cutoffs 

as possible. In all of the restored cross-sections, shortening within the Cordillera Darwin 

Metamorphic Complex below the lower décollement is shown schematically where 

polyphase folding accommodates shortening that is detached from the overlying cover. 

No attempt was made to quantify internal strain in the thrust sheets. Therefore, shortening 

estimates should be considered minimums and are most useful when contrasted with 

shortening estimates made elsewhere in the fold-thrust belt (e.g. this study, Fosdick et al., 

2011; Klepeis et al., 2010; Kramer et al., 2003). The timing constraints associated with 

each stage of the restorations are from previously published data and are discussed in 

section 5.1.4. Incrementally restoring the composite cross-sections demonstrates how 

each of the structural elements, décollement levels and geologic terranes discussed above 

may have evolved during the formation of the thrust-belt. 

5.2.1 Composite Section A-B-C, Restoration 
Cross sections A-A’, B-B’ and C-C’ each overlap at the basement-involved 

second generation thrust that crops out in Canal Jeronimo (Figure 1.3). Transect C-C’ 

mostly represents the hanging wall of the fault whereas transects A-A’ and B-B’ are in 

the footwall. The southwest-dipping duplex in the Zapata-Canal Bertrand Formation 

along transect B-B’ is floored by the Zapata-Canal Bertrand décollement (Figure 1.5h) 

and is projected above the Zapata-Canal Bertrand décollement on transect A-A’ to form 

composite section ABC (Figure 1.17a). Starting in the Paleogene and working back in 

time, removal of slip along basement-involved structures restores 6.9 km of shortening 

and accounts for ~11.5% of the total shortening. The restored geometry (Figure 1.17b) 

retains the foreland fold-thrust belt that is detached along the Zapata-Canal Bertrand 

décollement and the Tobífera duplex that is detached at the basement-cover contact. At 

this time (Campanian-Maastrichtian) the second-generation Tobífera thrust was the active   
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Figure 1.17. (a) Composite profile A-B-C constructed from profiles A-A’, B-B’ and 
C-C’ near Canal Jeronimo and Seno Otway presented in this study see text for details. 
(b-e) incrementally restored cross sections showing the kinematic evolution of the 
thrust belt and positions of major décollements discussed in text. The red line marks 
the position of the footwall cutoff in the Tobífera Fm. to which shortening estimates are 
measured. Incremental shortening estimates are labeled. Basement shortening and 
thickening is shown schematically in each step to reflect pervasive strain. Restoration 
of the Rocas Verdes Terrane in (d-e) is schematic due to paucity of data. Data sources: 
1, McAtamney et al. (2011); 2, Mpodozis et al. (2007); 3, Romans et al. (2010); 4, 
Barbeau et al. (2009); 5, Gombosi et al. (2009); 6, Fosdick et al. (2011).
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fault and cuts the Zapata-Canal Bertrand duplex. Restoring the second-generation 

Tobífera thrust accounts for an additional 3.8 km (6.3%) of shortening (Figure 1.17c). 

During the Campanian, the first thrust in the Tobífera duplex was active and transfers slip 

from the décollement at the base of the Tobífera Formation over a ramp into the Zapata-

Canal Bertrand décollement allowing deformation to propagate into the foreland basin. 

Restoring the first-generation Tobífera thrust accounts for an additional 4.9 km (8.1%) of 

shortening and balances the total shortening in the foreland fold-thrust belt above the 

Zapata-Canal Bertrand décollement. A kinematic restoration to this stage (Conician-

Campanian, Figure 1.17d) yields a total of 15.6 km (~26%) shortening of the Tobífera 

Formation. 

Although the paucity of data from the Rocas Verdes Terrane in the study area 

does not warrant shortening estimates, field relations indicate that the first thrusts to form 

partially obducted the Rocas Verdes Terrane onto the continental margin and formed a 

décollement in the shale and turbidites of the Zapata and Zapata-Canal Bertrand 

Formations (schematically drawn in Figure 1.17d-e). Restoring shortening in the Zapata-

Canal Bertrand duplex extends the original length of the Zapata-Canal Bertrand 

Formation entirely over the top of the Tobífera Formation (Figure 1.17e), a constraint 

that requires the Zapata-Canal Bertrand duplex to have formed before any motion along 

the Tobífera thrust sheets. This constraint suggests that the Zapata-Canal Bertrand 

décollement was the first active décollement and is supported by structural observations 

from transect C-C’ (Figure 1.5a) that indicate the Tobífera duplex is structurally below 

the Rocas Verdes basin terrane. Our interpretation is consistent with structural studies 

elsewhere in Patagonia that conclude the first thrusts to form partially obducted the 

oceanic floor of the Rocas Verdes basin basin (Nelson et al., 1980; Klepeis et al., 2010; 

Fosdick et al., 2011; Calderon et al. 2012). 

5.2.2 Composite Section D-E, Restoration 
Along-strike ~20 km toward the southeast, Estuario Wickham (section D-E; 

Figure 1.3, 1.9, 1.18a) preserves important exposures of the second-generation basement 

fault, the Zapata-Canal Bertrand Triangle zone, and the passive-roof thrust in the Latorre  
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Figure 1.18. (a) Composite pro!le D-E constructed from pro!les D-D’ and E-E’ at Estuario 
Wickham presented in this study. (b-d) incrementally restored cross sections showing the 
kinematic evolution of the thrust belt and positions of the Canal Bertrand triangle zone and 
Latorre back thrust discussed in text. The red line marks the position of the footwall cuto" in 
the Tobífera Fm. to which shortening estimates are measured. Incremental shortening 
estimates are labeled. Data sources as in Figure 1.17.
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Formation. Beginning in the Paleogene, removing displacement along the basement-

involved reverse fault accounts for 8.3 km (20.3%; Figure 1.17b) of shortening. During 

the Campanian-Maastrichtian, the active décollement occurred at the base of the Tobífera 

Formation and ramped up section to cut the Zapata-Canal Bertrand triangle zone. 

Restoring displacement along the second-generation Tobífera thrust accounts for an 

additional 5.6 km (13.8%) of shortening, yielding a total of 13.9 km (~34%; Figure 

1.18a-c). During the Coniacian-Campanian (Figure 1.18c), the décollement at the base of 

the Tobífera Formation ramped up section and transferred displacement to the Zapata-

Canal Bertrand décollement forming a triangle zone and allowing the propagation of the 

thrust sheet into the foreland basin. Although the hanging wall cutoffs are eroded, Figure 

1.18d shows a schematic restoration of the triangle zone and Zapata-Canal Bertrand 

décollement to the Early Cretaceous.  

5.2.3 Composite Section F-G, Restoration 
Exposures along transect F-F’ and G-G’, >20 km along-strike toward the 

southeast, include the second-generation basement fault and Zapata-Canal Bertrand 

triangle zone near Estuario Silva Palma, as well as the basal décollement in the basement 

schist exposed near Bahía Fortesque. Composite transect F-G was constructed by 

combining the two sections at the base of the Tobífera Formation where it crops out at the 

southwestern end of F-F’ and northeastern end of G-G’ (Figure 1.8, 1.10, 1.14, 1.19a). 

Beginning in the Paleogene, removing displacement along the second-generation 

basement thrust accounts for 7.9 km (19.6%) of shortening (Figure 1.19a-b). During the 

Campanian-Maastrichtian, the active décollement level is the base of the Tobífera 

Formation where it truncates the Zapata-Canal Bertrand triangle zone. Toward the 

hinterland, the décollement dips shallowly (~6°) toward the southwest and is defined by a 

~1 km thick shear zone exposed near Bahía Fortesque (Figure 1.19b). Restoring 

displacement along the second-generation Tobífera thrust accounts for an additional 6 km 

(14.8%) of shortening (Figure 1.19c). By the Conician-Campanian, a ductile décollement 

that formed below the basement-cover contact ramped up-section through the Tobífera  
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Figure 1.19. (a) Composite profile F-G constructed from profiles F-F’ and G-G’ 
near Estuario Silva Palma and Bahía Fortesque presented in this study. (b-d) 
Incrementally restored cross sections showing the kinematic evolution of the 
thrust belt and positions of the basal ductile décollement, Zapata-Canal 
Bertrand triangle zone and Latorre back thrust discussed in text. The red line 
marks the position of the footwall cutoff in the Tobífera Fm. to which shorten-
ing estimates are measured. Incremental shortening estimates are labeled. 
Basement shortening and thickening is shown schematically in each step to 
reflect pervasive strain below the lower décollement. The dip of the lower 
décollement was determined using the structural modeling software 
LithoTectTM. Data sources as in Figure 1.17.
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Formation and transferred material onto the Zapata-Canal Bertrand décollement where a 

triangle zone formed at the tip of the thrust wedge. Figure 1.19d shows the complete 

restoration of the thrust belt to the Early Cretaceous and accounts for an additional 1 km 

(2.6%) shortening in the footwall syncline beneath the basement ramp. Total shortening 

estimates from composite transect F-G indicates ~14.9 km or 37% shortening (Figure 

1.19).  

5.2.4 Kinematic Synthesis 
Incrementally restored line-balanced cross sections from three composite cross 

sections in the study area demonstrate that the kinematic evolution of the thrust-belt is 

characterized by multiple décollement levels that are linked by thrust ramps and get 

progressively deeper through time. Figure 1.20 highlights elements of the fold-thrust belt 

that correlate well for over ~100 km along-strike in the study area. The first thrusts to 

form partially obducted the Rocas Verdes basin rocks onto the continental margin prior to 

the Campanian and formed an early décollement in the Late Jurassic-Early Cretaceous 

shale (Zapata-Canal Bertrand Formation) that crops out along sections A-B-C and H 

(Figure 1.20). During this stage (Conician-Campanian), a low-taper triangle zone 

developed in the shale at the tip of the propagating thrust wedge, and the earliest 

synorogenic turbidites (Latorre Formation) were passively back thrust over the tip of the 

wedge (Figure 1.20, sections D-E, F-G). Continued shortening during the Campanian 

resulted in the deepening of the basal décollement to <1 km below the basement-cover 

contact. Thrust ramps cut the Tobífera Formation and linked the basal décollement with 

the Zapata-Canal Bertrand décollement (Figure 1.20, sections A-B-C, F-G). Shortening 

of the Tobífera Formation propagated deformation into the foreland basin along the 

Zapata-Canal Bertrand décollement (Figure 1.20, sections A-B-C, H). Below the basal 

décollement and toward the hinterland, polyphase folding that was detached from the 

overlying cover shortened the basement schist. Continued shortening prior to the end of 

the Maastrichtian resulted in a second phase of out-of-sequence thrusting and the  
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formation of thick-skinned basement-involved reverse faults that cut the early 

décollements, culminated in the Paleogene and reactived Jurassic normal faults. Neogene 

strike-slip deformation overprinted the fold-thrust belt toward the southeast (Figure 1.20, 

section H). Shortening estimates suggest a systematic along-strike increase in tectonic 

shortening from ~26% in northwestern localities to ~37% toward the southeast. 

Shortening estimates from this study correlate well with regional structural 

models that predict along-strike increase in tectonic shortening from northwest to 

southeast that occurred during the Late Cretaceous—Paleogene (e.g. Kraemer, 2003). 

Because the calculated shortening magnitudes are estimates, and are measured in 

different parts of the fold-thrust belt due to limited exposure, comparing the shortening 

percentages along-strike is an objective way to evaluate if there is a systematic 

southeastward increase in shortening. In the Ultima Esperanza region of Chile, Fosdick et 

al. (2011) report minimum shortening of 19% (~32 km), in contrast to ~70% of 

shortening (~100 km) of the Cordillera Darwin Metamorphic Complex reported by 

Klepeis et al. (2010) near Tierra del Fuego to the southeast. Our results support regional 

models by showing a ~11% increase in shortening (26-37%) over ~100 km along-strike 

between Ultima Esperanza and Tierra del Fuego (Figure 1.1).  

Regional shortening estimates also are consistent with paleomagnetic data 

(Dalziel 1973; Burns et al., 1980; Rapalini et al., 2001, 2007) that suggest a large (up to 

90°) counterclockwise rotation of the Patagonian-Fuegian arc since a Cretaceous 

remagnetization event. Along-strike increase in shortening and bending of the orogen 

may reflect the closure of an initially wedge-shaped Rocas Verdes basin that was wider 

toward the south (Stern & De Wit, 2003). Recent plate reconstructions (Dalziel et al., 

2013) indicate that the Antarctic Peninsula was situated outboard of the Patagonian-

Fuegian arc and possibly acted as a collider (c.f. Hervé et al., 2005), closing the Rocas 

Verdes basin as the South American plate moved westward relative to the Antarctic plate 

by the Early Cretaceous. Thus this collision would provide a likely mechanism for the 

bending of the volcanic arc and for the systematic increase in shortening toward the 

southeast. 
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6. Conclusions 

 

New mapping presented in this study reveals the structure and kinematic 

evolution of the Patagonian fold-thrust belt over 100 km2 on Peninsula Brunswick within 

the Magallanes region of Chile that formed between the Late Cretaceous and Paleogene. 

Results show that the thrust-belt developed during two main phases of deformation 

characterized by multiple décollement levels that become deeper through time. A 

preexisting mechanical stratigraphy defined by relatively weak shale deposits from the 

antecedent Jurassic Rocas Verdes basin and ductilly deformed schist of the continental 

margin controls the stratigraphic positions of the décollements. 

The first phase of deformation occurred in the Conician-Campanian and is 

characterized by top-northeast thin-skinned thrusting of the mafic floor of the Rocas 

Verdes basin onto the continental margin along an upper décollement that formed within 

relatively weak shale deposits. This early stage of thin-skinned thrusting is 

contemporaneous with the deposition of the first sediments into the Magallanes foreland 

basin (Latorre and Escarpada Formations). Continued shortening resulted in the 

formation of a ductile décollement <1 km below the basement-cover contact. By the 

Campanian, thrust ramps with top-northeast displacements cut competent volcanic rocks 

of the Tobífera Formation, linked the lower and upper décollements, and transferred 

displacement into the nascent Magallanes foreland basin. A triangle zone cored by weak 

shale (Zapata-Canal Bertrand Formation) formed at the tip of the propagating thrust 

wedge as it advanced into the Magallanes foreland basin. Below the lower décollement 

and toward the hinterland, shortening in the basement schist was accommodated by 

polyphase folding and crystal plasticity, and it was entirely detached from the overlying 

fold-thrust belt.  Continued shortening beginning in the Maastrichtian resulted in second 

phase of out-of-sequence thrusting that cut the early décollements, culminated in the 

Paleocene-Eocene and was defined by thick-skinned basement-involved faults that 

juxtapose basement schist of the Cordillera Darwin Metamorphic Complex against the 

overlying fold-thrust belt. Thick-skinned basement-involved faults are interpreted as 
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compressional reactivations of Jurassic normal faults and probably reflect the complete 

closure of the Rocas Verdes basin and collision of the Patagonian arc. 

Shortening estimates from three incrementally restored line-balanced cross 

sections across the Magallanes fold-thrust belt indicate an 11% along-strike increase in 

tectonic shortening from 26% in the northwest to 37% toward the southeast that occurred 

between Turonian and Paleogene time. Shortening estimates from this study are 

consistent with regional tectonic models that predict an along-strike increase in tectonic 

shortening from the Ultima Esperanza region of Chile (~19%, Fosdick et al., 2011) along 

the trend of the orogen toward the southeast through the Magallanes region of Chile (this 

study, 26-37%) to Tierra del Fuego (~70%, Klepeis et al., 2010). Results show good 

correlations of both thin- and thick-skinned structures along the trend of the Patagonian 

fold-thrust belt for >400 km from Ultima Esperanza to Tierra del Fuego and suggest that 

the development of the Patagonian orocline at least partly occurred between the Late 

Cretaceous and Paleogene. Shortening estimates are also consistent with paleomagnetic 

data that indicates a post-Cretaceous counterclockwise rotation of the Patagonian arc. 

Mechanisms that caused increased shortening toward the southeast include the closing an 

initially wedge-shaped Rocas Verdes basin that was wider and deeper toward the 

southeast as well as counterclockwise bending of the Patagonian arc as South America 

moved westward relative to Antarctica by the Cretaceous.  

In southeast of the study area near the Estrecho de Magallanes, left-lateral strike-

slip faults cut both folds and thrust faults and reactivate Late Cretaceous thrusts. Folds 

and corresponding axial planar cleavages that formed in the Cretaceous fold-thrust belt 

are tightened and rotated to upright orientations in close proximity to strike-slip faults. 

Left-lateral faults strike northwest-southeast parallel to the trend of the thrust belt and are 

probably right stepping left-lateral splays from the Magallanes-Fagnano fault zone to the 

south. Strike-slip faults reflect a phase of Neogene wrench tectonics that overprints the 

Cretaceous fold-thrust belt.  
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CHAPTER 2: STRUCTURAL EVOLUTION OF A DUCTILE 
DÉCOLLEMENT AT THE BASE OF A RETROARC FOLD-THRUST 

BELT, PATAGONIA, CHILE. 

 

 Abstract  

 

 During Late Cretaceous inversion of the Late Jurassic – Early Cretaceous Rocas 

Verdes basin in southern Chile between 53°-55° S, a high strain zone formed in 

continental crust, accommodating northeast!directed thrusting of Rocas Verdes basin 

rocks onto the continental margin and transferring displacement into a nascent 

Patagonian retroarc fold!thrust belt. New mapping, Electron Backscatter Diffraction 

(EBSD) fabric analysis and microstructural data document the kinematic evolution and 

deformation conditions of the high-strain zone in two locations within the fold-thrust belt. 

 Toward the hinterland, at Seno Martínez, mafic schists that form part of the Rocas 

Verdes basin were thrust above garnet!bearing chlorite schist and psammite of the 

Cordillera Darwin Metamorphic Complex. The schist of the Cordillera Darwin 

Metamorphic Complex shows a quartz/chlorite composite schistose foliation (S1-2) that is 

progressively refolded by noncylindrical, tight and isoclinal folds (F3). Beneath the thrust 

contact, deformation intensifies in a ~5 km thick high-strain zone that is defined by the 

tightening of F3, pronounced southwest!plunging quartz lineations (L2), and F3 sheath 

folds that are subparallel to and fold L2. C!S fabrics, C’ shear bands and rotated 

porphyroblasts show top!northeast, foreland directed transport. Kink!folds and steeply 

inclined tight folds (F4) with both north- and south!dipping axial planes (S4) overprint D2 

and D3 structures and are related to subhorizontal contraction during the Paleogene. 

Quartz textures from D2 and D4 fabrics are typical of subgrain rotation and grain 

boundary migration recrystallization equivalent to Regime 3, and quartz CPO patterns 

indicate basal <a> and mixed<a> and [c] slip systems. Quartz microstructures suggest 

deformation temperatures between 500°-650°C during D2 -D4 at Seno Martínez. 
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At Bahía Gallant, ~75 km toward the foreland, volcanoclastic rocks that are part 

of the Rocas Verdes basin terrane were thrust above Cordillera Darwin Metamorphic 

Complex schist along a > 1 km thick high-strain zone defined by the tightening of F2 

recumbent isoclinal folds and a prominent southwest plunging quartz lineation. C!S 

fabrics, C’ shear bands and asymmetric quartz boudins indicate top!northeast transport. 

Quartz textures indicate subgrain rotation recrystallization typical of Regime 2, and 

quartz CPO patterns suggest dominantly basal <a> slip. Quartz microstructures suggest 

deformation temperatures between 400°-550°C at Bahía Fortesque. The structural 

position of the high-strain zone and sequence of deformation of the Cordillera Darwin 

Metamorphic Complex schist in each locality allows regional correlation of the high-

strain zone. Quartz deformation mechanisms indicate the high-strain zone formed under 

greenschist facies conditions in the foreland and amphibolite facies conditions in the 

hinterland and thus dipped shallowly (<10°) toward the hinterland. The high-strain zone 

decoupled the Patagonian fold-thrust belt from the underthrust continental margin and 

formed a regional décollement at the base of the nascent retroarc fold!thrust belt. 

 

1. Introduction 

 

The Patagonian Andes record a phase of Late Cretaceous-Paleogene crustal 

contraction that resulted in the closure and inversion of a marginal basin, known as the 

Rocas Verdes basin, and subsequent formation of the Magallanes foreland basin and 

Patagonian retroarc fold-thrust belt. These events define the Andean Orogeny in the 

southernmost Andes (Dalziel and Palmer, 1979, Nelson et al., 1980; Klepeis et al., 2010). 

A belt of metamorphic rocks known as the Cordillera Darwin Metamorphic Complex 

(Kranck, 1932; Nelson et al., 1980; Hervé et al., 2010) located in Tierra del Fuego in 

southern Chile, record deformation and syntectonic moderate to high pressure 

metamorphism that occurred during the late-Cretaceous – Paleogene orogeny (Nelson et 

al., 1980; Kohn, 1993; Klepeis et al., 2010; Maloney et al., 2011). Metamorphic rocks of 
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the Cordillera Darwin Metamorphic Complex form the local ‘basement’ and are 

tectonically juxtaposed against volcanic and sedimentary ‘cover’ rocks of the Rocas 

Verdes basin and Magallanes foreland basin that now form part of the Patagonian 

retroarc fold-thrust belt (Klepeis, 1994; Kohn et al., 1995; Klepeis et al., 2010; Maloney 

et al., 2011). The juxtaposition of polydeformed moderate to high pressure metamorphic 

rocks against a coeval retroarc fold-thrust belt provide a unique opportunity to study 

possible kinematic relationships between polyphase deformation that occurs in 

metamorphic ‘basement’ and the development of an overlying fold-thrust belt. In this 

chapter, I report on the kinematic evolution of polydeformed schists of the Cordillera 

Darwin Metamorphic Complex, where they are tectonically interleaved with the 

Patagonian retroarc fold-thrust belt, to understand how base of a retroarc fold-thrust belt 

interacts with its plastically deformed ‘basement’.  

 The study areas, located along the western margin of the Cordillera Darwin 

Metamorphic Complex near Seno Martínez and the southern end of Peninsula Brunswick 

near Bahía Fortesque and Estuario Silva Palma (Figure 2.1), preserve important contacts 

between the Cordillera Darwin Metamorphic Complex and overlying volcanic and 

volcanoclastic strata of the Rocas Verdes marginal basin. Near Bahía Fortesque, the 

contact is sheared and rocks of Cordillera Darwin Metamorphic Complex are imbricated 

with the rocks of Rocas Verdes basin to form the hinterland domain of the Patagonian 

retroarc-fold thrust belt. Retrodeformed line-balanced cross sections of the Patagonian 

fold-thrust belt predict that the sheared contact is part of a regional décollement that 

detaches the Patagonian fold-thrust belt from polydeformed ‘basement’ schist of the 

Cordillera Darwin Metamorphic Complex (i.e. Chapter 1). Here, I test the hypothesis that 

the shear zone recognized near Bahía Fortesque forms part of a regional décollement 

between polydeformed basement of the Cordillera Darwin Metamorphic Complex and 

the overlying strata and structures of the Patagonian retroarc fold-thrust belt. Testing this 

hypothesis is important for several reasons: 1) previous workers have identified similar 

shear zones that accommodated Late Cretaceous craton-vergent thrusting of Rocas 

Verdes rocks onto the continental margin elsewhere in southern  
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Patagonia, indicating that the décollement may be a regional structure (Nelson et al., 

1980; Calderón et al., 2012; Klepeis et al., 2010); 2) the depth of the exposure in the 

study is at the basement-cover contact and provides a good opportunity to study the 

kinematic relationship between polyphase ductile deformation of ‘metamorphic 

basement’ and the development of a coeval retroarc fold-thrust belt; and 3) polyphase 

deformation below a regional décollement may provide a mechanism for crustal 

thickening below and toward the hinterland of retroarc fold-thrust belts in other orogenic 

systems that cannot be entirely accounted for by shortening of a fold-thrust belt (e.g. 

Eastern Cordillera, McQuarrie et al., 2005). 

I present new mapping and field-based descriptions of polydeformed rocks of the 

Cordillera Darwin Metamorphic Complex in two study areas near the basement-cover 

contact. I also contribute new microstructural and crystallographic preferred orientation 

(CPO) analyses of deformed rocks with the goal of understanding the kinematic 

development and deformation conditions of the basement schist and their kinematic 

relationship with the overlying fold-thrust belt. Results from this study confirm the 

occurrence of a regional décollement at the contact between volcanic rocks of the Rocas 

Verdes basin and the Cordillera Darwin Metamorphic Complex and constrain its 

structural evolution.  

 

2. Geologic setting 

2.1 THE CORDILLERA DARWIN METAMORPHIC COMPLEX 
The Cordillera Darwin is a topographic high that defines the apex of the Fuegian 

Andes. It is a ~5000 km2 metamorphic massif of pelite, psammite and orthogneiss of 

lower greenschist to upper amphibolite grade known as the Cordillera Darwin 

Metamorphic Complex (Kranck, 1932; Nelson et al., 1980; Kohn et al., 1995; Hervé et 

al., 2003, 2010; Klepeis et al., 2010). Detrital zircon populations from meta-sedimentary 

rocks of the Cordillera Darwin Metamorphic Complex yield both Ordovician-Devonian 

and Carboniferous-Permian depositional ages (Barbeau et al., 2009; Hervé et al., 2010) 
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and are interpreted to record Paleozoic sedimentation along the continental margin of 

Gondwana (Hervé et al., 2010). Paleozoic sedimentary rocks of the Cordillera Darwin 

Metamorphic Complex are entirely overprinted by Cretaceous – Paleocene 

metamorphism and deformation that defines the Andean Orogeny in the southernmost 

Andes (Klepeis et al., 2010; Kohn et al., 1993; M. J. Kohn et al., 1995; Nelson et al., 

1980). 

Near the Beagle Channel (Figure 2.1), upper amphibolite grade mineral 

assemblages that include sillimanite, kyanite, staurolite and garnet record Late 

Cretaceous peak metamorphic conditions of P = 12 kbar and T = 620°C (Kohn et al., 

1993; Maloney et al., 2011). The margins of the Cordillera Darwin Metamorphic 

Complex are dominantly comprised of chlorite-, biotite- and garnet-bearing lower-

greenschist facies pelitic and psammitic rocks, thus forming an antiformal dome with the 

highest metamorphic grade exposed in the core of the orogen (Klepeis et al., 2010; Kohn 

et al., 1993; Nelson et al., 1980). A suite of Late Jurassic granitic orthogneiss known as 

the Darwin Granite intrudes pelitic and psammitic rocks of the Cordillera Darwin 

Metamorphic Complex and displays equivalent amphibolite-grade metamorphic mineral 

assemblages as the host rock. 

Several generations of Late Cretaceous structures that record crustal shortening 

and thickening during the Andean Orogeny pervasively deform orthogneiss and schist of 

the Cordillera Darwin Metamorphic Complex. The pioneering work of Nelson et al. 

(1980) described in detail for the first time three main phases of deformation. An early 

phase of north-vergent shearing and folding is overprinted by a subsequent phase of 

bivergent (top-north and south) conjugate folding and shearing. Top-south back thrusting 

and the development of a pervasive north-dipping crenulation cleavage characterize a 

latter phase of shortening. Recent work by Klepeis et al. (2010) describe imbricated, 

northeast-vergent first-generation ductile thrusts near the Beagle Channel that place the 

basaltic floor of the Rocas Verdes basin onto the continental margin. Upper Cretaceous 

post-tectonic granitic plutonic rocks and pegmatite dikes (~86 Ma, Herve et al., 1984; 

Klepeis et al., 2010; see also Mukasa and Dalziel, 1996) intrude and cut the thrusts, 
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indicating that obduction of the Rocas Verdes basin floor occurred by the Late 

Cretaceous. Two latter stages of deformation reported by Klepeis et al., (2010) are 

characterized by bivergent (north- and south-vergent) folding and thrusting of high-grade 

rocks in the core of the orogen that are now exposed near the Beagle Channel. Here, 

back-thrusts and back folds (south-vergent) formed pop-up structures that thickened and 

uplifted the hinterland of the orogen and accommodated ~70% horizontal shortening 

(Klepeis et al., 2010; see also Dalziel and Cortés, 1972; Nelson et al., 1980). 

In support of these interpretations, pseudosection modeling and in situ monazite 

geochronology of retrogressed mineral assemblages from second-generation fabrics 

within the high-grade core of the Cordillera Darwin Metamorphic Complex show that 

exhumation was underway by ~73 Ma [Maloney et al., 2011] and is consistent with P-T-t 

pathways calculated for sillimanite-, kyanite-, staurolite- and garnet-bearing mineral 

assemblages from the Cordillera Darwin Metamorphic Complex presented by Kohn et al. 

(1995). Uplift and exhumation of the Cordillera Darwin Metamorphic Complex 

continued well into the Paleogene and was partly accomplished by uplift in the hanging 

walls of thick-skinned basement involved reverse faults (Barbeau et al., 2009; Gombosi 

et al., 2009; Kohn et al., 1995). 

2.2 THE ROCAS VERDES BASIN AND PATAGONIAN BATHOLITH 
An Upper Jurassic – Lower Cretaceous succession of volcanic, volcanoclastic and 

marine sedimentary rocks overly the Cordillera Darwin Metamorphic Complex (Figure 

2.1). Silicic volcanic and volcanoclastic rocks known as the Tobífera Formation 

unconformably overlie the Cordillera Darwin Metamorphic Complex and record 

widespread silicic volcanism associated with a Late Jurassic phase of continental rifting 

during the breakup of Gondwana (Dalziel and Cortés, 1972; Natland, 1974; Bruhn et al., 

1978; Gust et al., 1985; Hanson and Wilson, 1991; Pankhurst et al., 2000; Pankhurst et 

al., 2003). Contemporaneous with rift-related volcanism, a suite of bimodal, calc-alkaline 

intrusive rocks that are part of the Patagonian Batholith, now preserved in the Ultima 

Esperanza region of Chile, record the earliest pulses of arc magmatism along the Pacific 

margin of Gondwana in the southernmost Andes (Hervé et al., 1984; Bruce et al., 1991; 
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Hervé et al., 2007; Calderón et al., 2007). Protracted continental extension during the 

Jurassic resulted in the formation of a marginal basin located between the Patagonian arc 

and the extended continental margin; known as the Rocas Verdes basin (Dalziel, et al., 

1974; Dalziel, 1981). Extension in the Rocas Verdes basin led to the generation of new 

quasi-oceanic crust that is now preserved in the Sarmiento and Tortuga complexes of 

southern Chile (Figure 2.1, Stern & De Wit, 2003; Calderón et al., 2007) and the Larsen 

Harbour Complex of South Georgia (Mukasa and Dalziel, 1996). The Rocas Verdes basin 

was filled with a thick succession (>2 km) of Upper Jurassic – Lower Cretaceous marine 

hemipelagic mudstones and turbidites (Dalziel et al., 1975; Suárez et al., 1976; Winn and 

Dott, 1979; Storey and Macdonald, 1984; Wilson, 1991; Fildani & Hessler, 2005; 

Mpodozis et al., 2007; McAtamney et al., 2011).  

2.3 THE MAGALLANES FORELAND BASIN AND PATAGONIAN FOLD-THRUST BELT  
 Crustal thickening recorded by structures and prograde metamorphic textures in 

the Cordillera Darwin Metamorphic Complex (e.g. Nelson et al., 1980; Kohn et al., 1993; 

1995; Mpodozis & Rojas, 2006; Klepeis et al., 2010; Maloney et al., 2011) was 

contemporaneous with the development of the Magallanes Foreland basin and Patagonian 

fold-thrust belt (Figure 2.1, e.g. Fildani et al., 2003; Fildani and Hessler, 2005; Romans 

et al., 2010; Zahid and Barbeau, 2010; Mpodozis et al., 2007; McAtamney et al., 2011). 

Shortening resulted in the development of a thin-skinned thrust belt by the Late 

Cretaceous that propagated into the foreland basin and imbricated strata of the Rocas 

Verdes basin with that of the Magallanes Foreland basin (Alvarez-Marrón et al., 1993; 

Klepeis et al., 1994; Ghiglione and Ramos, 2005; Rojas and Mpodozis, 2006; Fosdick et 

al., 2011; Chapter 1). A second pulse of deformation characterized by thick-skinned 

faults dissected the fold-thrust belt and uplifted basement rocks of the Cordillera Darwin 

Metamorphic Complex and Rocas Verdes terrane, aiding the exhumation, denudation and 

resedimentation of these rocks into the Magallanes foreland basin by the Paleogene 

(Klepeis, 1994; Mpodozis and Rojas, 2006; Gombosi et al., 2009; Klepeis et al., 2010; 

Zahid and Barbeau, 2010; Romans et al., 2010; McAtamney et al., 2011; Chapter 1). 
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3. Field Observations at Seno Martínez 

3.1 OVERVIEW OF SENO MARTÍNEZ 
Seno Martínez is a north-northeast-trending fiord located along the western 

margin of the Cordillera Darwin in Tierra del Fuego (Figure 2.1). Bedrock exposures of 

the Cordillera Darwin Metamorphic Complex crop out along the shoreline as a chlorite, 

biotite and locally garnet-bearing pelitic and psammitic schist of lower-greenschist to 

lower-amphibolite facies (Figure 2.2). The southern end of the fiord preserves plutonic 

rocks of the Patagonian Batholith as well as outcrops of epidote-actinolite bearing schist 

that are interpreted to be part of the Rocas Verdes basin seafloor. The contact with the 

batholith is not exposed and is inferred to be an intrusive contact. Along the eastern shore 

of Seno Fontane (Figure 2.2), epidote-actinolite schist is in tectonic contact with the 

underlying pelitic and psammitic schist of the Cordillera Darwin Metamorphic Complex. 

Toward the north of the study area, the mouth of Seno Martínez merges with a northwest-

trending fiord called Seno Keats. On the northern shore of Seno Keats at Bahía Angelito 

(Figure 2.2), quartz and chlorite-bearing schist of the Cordillera Darwin Metamorphic 

Complex are in tectonic contact with the overlying Jurassic volcanic strata of the 

Tobífera Formation.  

Thus, pelitic and psammitic schist of the Cordillera Darwin Metamorphic 

Complex exposed along Seno Martínez form a structural culmination bound on the north 

by Jurassic rocks of the Tobífera Formation, and south by mafic schist of the Rocas 

Verdes basin terrane. Exposed along Seno Martínez in the core of the culmination, pelitic 

and psammitic schist of the Cordillera Darwin Metamorphic Complex are deformed by at 

least four generations of ductile noncylindrical folds and associated deformation (D1 - D4, 

discussed below). I divided the study area into four structural domains on the basis of 

overprinting relationships and intensity of specific structures (Figure 2.2, 2.3): Domain I 

occurs along Seno Fontane and Seno Martínez on the southwest-dipping limb of a 
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regional anitform (F4) that culminates near Seno Oryan (Figure 2.2, 2.3). Domain II 

occurs in the core of the regional antiform and on its vertical limb. Domain III is located 

north of the antiform near the confluence of Seno Martínez and Seno Keats. Domain IV 

is located at Bahía Angelito along the north shore of Seno Keats where pelitic schist of 

the Cordillera Darwin Metamorphic Complex is in tectonic contact with the overlying 

Tobífera formation (Figure 2.2, 2.3).  

3.2 STRUCTURE OF DOMAIN I: THE CONTACT BETWEEN THE ROCAS VERDES BASIN 
TERRANE AND THE CORDILLERA DARWIN METAMORPHIC COMPLEX, D2 AND D3 HIGH-
STRAIN ZONE 

The southeastern end of Seno Fontane (Figure 2.2) exposes outcrops of 

metavolcanic rocks that are predominantly epidote-actinolite grade greenschist (Figure 

2.4a). The mineral assemblage of the schist is epidote, actinolite, (±) hornblende, 

feldspar, quartz, pyrite and hematite (Figure 2.4c-d). Diabase dikes intrude the schist and 

are commonly boudinaged (Figure 2.4a). In some locations, metatuffs are preserved that 

dip gently toward the west-southwest (Figure 2.4b). Here, a subsolidus schistose foliation 

(S1) is defined by the alignment of actinolite (±) hornblende and recrystallized quartz (±) 

feldspar layers that dips gently toward the west-southwest. A poorly developed 

recrystallized quartz lineation (L1) plunges gently toward the west-northwest (Figure 

2.4e). On the basis of their probable volcanic origin and intermediate-mafic composition 

mineral assemblage, I interpret the epidote-actinolite schist as reflecting the part of the 

oceanic floor of the Jurassic Rocas Verdes basin. 

Northward and structurally below the epidote-actinolite schist, rocks exposed at 

site 1006 (Figure 2.2) are chlorite- and- muscovite-bearing schists that have a pelitic 

composition different than the metavolcanic rocks described above and are thus 

interpreted as part of the Cordillera Darwin Metamorphic Complex. On the basis of a 

change in lithology and first appearance of chlorite-grade pelitic schist, the contact 

between the Rocas Verdes basin terrane (epidote-actinolite schist) and Cordillera Darwin 

metamorphic complex (quartz-chlorite pelitic schist) is located between sites 1005 and 
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Figure  2.4.  Photographs  of  (a)  a  diabase  dike  and  (b)  metatuffs  that  comprise  part  of  the  Rocas  
Verdes  basin  terrane  near  Seno  Fontane,  (c)  plane  light  and  (d)  polarized  light  photomicrographs  
of  epidote-­actinolite  schist  from  the  Rocas  Verdes  basin  terrane  showing  a  subsolidus  schistose  
foliation  (S1,  parallel  to  base  of  each  photo)  and  (e)  stereogram  plot  showing  poles  to  foliation  
(S1)  and  quartz  mineral  lineation  (L1)  from  outcrops  of  the  Rocas  Verdes  basin  terrane  in  Seno  
Fontane.  All  stereograms  hereafter  are  equal-­area,  lower  hemisphere  stereographic  projections.  
Planar  data  are  represented  as  poles  (open  symbols)  unless  otherwise  plotted  as  great  circles.  
Linear  data  are  represented  with  solid  black  symbols.  
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1006 (Figures, 2.2, 2.3). Northward of the contact between sites 1006 and 1009 (Figure 

2.2), lower greenschist facies chlorite- and- muscovite-bearing pelitic schists are 

tectonically interleaved with epidote-actinolite schists. Here, the pelitic schist contains a 

pervasive composite schistose foliation (S2) defined by the alignment of muscovite, 

quartz and chlorite as well as transposed intrafolial isoclinal folds (F2) of an early 

foliation (S1 , discussed below). Intrafolial folds (F2) are unique to the pelitic schist and 

not expressed in the epidote-actinolite schist. Where the pelitic and epidote-actinolite 

schists are interleaved, they share a pervasive schistose foliation (S2) that dips moderately 

southwest and contains a prominent dynamically recrystallized quartz stretching lineation 

that plunges southwest (S2 /L2 , Figure 2.5a-b). Diabase dikes that intrude the pelitic and 

epidote-actinolite schists are dismembered, forming boudin lenses enveloped by S2 

(Figure 2.5d). Boudin neck extension directions do not have a preferred orientation 

(Figure 2.5c). Interleaved pods of epidote-actinolite schist that occur within and share a 

pervasive schistose foliation and quartz stretching lineation (S2 /L2) with the quartz-

chlorite schist define a shear zone at and below the contact of the Rocas Verdes basin 

schist with the underlying Cordillera Darwin Metamorphic Complex between sites 1005 

and 1009. Epidote-actinolite schist does not occur north of site 1009. 

Pelitic schist of the Cordillera Darwin Metamorphic Complex preserves two 

younger phases of folding that are not expressed in the epidote-actinolite schist of the 

Rocas Verdes basin terrane. Between sites 1006 and 1012, sets of tight, upright, inclined 

and reclined folds (F3) refold the pervasive S2 schistose foliation (Figures 2.5e-h). F3 folds 

generally do not exhibit a well-developed axial planar foliation. F3 fold axes plunge 

shallowly either northwest-southeast or east-west (Figures 2.5f-h), indicating dominantly 

northeast-southwest or north-south shortening. In some locations, F3 fold axes are 

subparallel with the L2 quartz stretching lineation (Figure 2.5b, e, f). Asymmetric, upright 

kink-bands (F4) fold the S2 surface and overprint F3 (Figure 2.5i). The axial surfaces of F4 

kink-bands are well developed in phylosilicate-rich domains and dominantly dip steeply 

toward the west-southwest (Figure 2.5j). A subsidiary set of kink-bands dips steeply  

88



WNWESE
a)

SWNE
d)

30 cm

1 m

L2

S2

S2

S2

boudin lens

ENEWSW
i)

NNWSSE
e)

15 cm

15 cm

L2

S2

F3

S2

S4

S2 - schistose foliation
L2 - stretching lineation
        (qtz) 

b) N

Circle = 23%, N=9
Boudin neck

extension direction

c) N

L3 -  F3 fold axis

S3- axial-planar cleavageL3 - F3 fold axis

S2 - schistose foliation

S3- axial-planar cleavage

L4 - F4 fold axis
S4- axial-planar cleavage

g) h)

j)

f )

N

N NN

N = 30 N = 6N = 11N = 7

N = 13

S3- axial-planar cleavage

S2 - schistose foliation S2 - schistose foliation
L3 -  F3 fold axis

Figure  2.5

89



Figure  2.5.  Domain  I  field  photographs  and  stereograms.  (a)  Photograph  of  
L-­S  tectonite  defined  by  a  composite  schistose  foliation  (S2)  and  prominent  
quartz  stretching  lineation  (L2)  in  an  outcrop  of  epidote-­actinolite  schist  that  
is  interleaved  with  pelitic  schist  at  site  1009,  (b)  stereogram  showing  struc-­
tural  data  from  sites  1006-­1009,  (c)  rose  diagram  showing  trends  of  boudin  
neck  extension  directions  from  Domain  I,  (d)  photograph  showing  mafic  
boudin  lens  that  is  enveloped  by  S2,  (e)  photograph  of  upright-­tight  F3  folds  
of  S2  and  F2  (upper  right)  with  axes  subparallel  to  the  quartz  stretching  linea-­
tion  (L2),  (f-­h)  stereograms  showing  geometries  of  F3  folds  in  Domain  I  that  
occur  in  upright  (f-­g)  and  reclined  (h)  orientations.  (i)  Photograph  of  F4  
kink-­folds  that  overprint  S2  and  (j)  stereogram  showing  the  geometry  of  F4    
folds  in  Domain  I.  
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toward the east-northeast, conjugate to the west-southwest dipping set. Kink-band axes 

plunge shallowly toward the north and south (Figure 2.5j). F4 kink folds are asymmetric 

and show contractional senses of rotation (i.e. top-northeast on southwest-dipping S4 

surfaces or top-southwest on northeast-dipping S4 surfaces). 

3.3 STRUCTURE OF DOMAIN II OF THE CORDILLERA DARWIN METAMORPHIC 
COMPLEX 

Rocks exposed along Seno Oryan preserve the highest metamorphic grade in the 

study area and are located in the core of a regional antiform (F4, Figure 2.2, 2.3). 

Between sites 1009 and 1018, garnet-bearing upper greenschist facies pelitic schist are 

exposed in the core of the antiform where they are deformed and record the superposition 

of three generations of folds (F2 -F4 , Figure 2.6a-e). Here, the pervasive macroscopic 

foliation (S2) contains a prominent quartz stretching lineation (L2) and is defined by the 

same composite foliation as in Domain I. Near Seno Oryan (Figure 2.2), S2 is folded, and 

poles to S2 define a southwest-northeast trending girdle (F3 , Figures 2.6f). Here, F3 fold 

axes plunge moderately toward the west-northwest or steeply toward the east. Axial 

surfaces to F3 folds (S3) dip steeply and moderately toward the north and east, indicating 

both upright-horizontal and reclined orientations for F3 folds, as they are folded by F4 

(Figure 2.6g). Quartz lineations (L2) are locally parallel to F3 axes and plunge shallowly 

toward the west-northwest (Figure 2.6f-g). 

Along the upright, northern limb of the regional F4 antiform between Seno Oryan 

and site 1021, tight and isoclinal folds (F3) refold the quartz stretching lineation (L2) and 

the schistose foliation (S2). Here, F3 folds are commonly isoclinal and occur as upright, 

reclined and recumbent folds depending on how they are refolded by F4  (Figure 2.6a-b). 

L2 and poles to S2 define southwest-northeast-trending girdle (Figure 2.6h). F3 fold axes 

plunge shallowly toward the southeast, and S3 axial surfaces occur in both upright and 

recumbent orientations (Figures 2.6i). In some locations, F3 folds form sheath folds 

(Figure 2.6c-d). In outcrops where the limbs of F3 sheath folds are well preserved, a 

prominent quartz mineral lineation (L2) exists on the folded S2 surface (Figure 2.6e). 

Here, sheath folds (F3) refold the S2 /L2 surface, have isoclinal limbs and form long-axes  
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Figure  2.6.  Domain  II  field  photographs  and  stereograms.  Photographs  of  (a)  
Ramsay  type-­III  and  (b)  type-­II  superimposed  fold  relationships  formed  by  the  
folding  of  F3  by  F4,  (c-­d)  F3  sheath  folds  with  long  axes  that  are  subparallel  to  
the  local  quartz  stretching  lineation  (L2)  and  (e)  S2  /L2  L-­S  tectonite  in  the  hinge  
zone  of  a  macroscopic  F3  fold.  (f-­j)  Stereograms  showing  (f)  girdle  formed  by  S2  
with  quartz  lineation  parallel  to  the  predicted  fold  axis  at  Seno  Oryan  (SO),  (g)  
orientation  of  F3  folds  at  Seno  Oryan,  (h)  girdle  defined  by  folding  of  S2  /L2  and  
sheath  fold  axes  near  sites  1018-­1020  at  Seno  Martínez  (SM),  (i)  orientation  of  
F3  folds  near  in  Domain  II  at  Seno  Martínez  and  (j)  orientation  of  F4  folds  in  
Domain  II.  
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that are subparallel to the local stretching lineation (L2 , Figure 2.6c) and plot along the 

same girdle is S2  and L2 (Figure 2.6h). Everywhere in Domain II, the S2 /L2 surface and F3 

folds are refolded by upright, steeply plunging tight folds (F4) that form both Ramsay 

type II (Figure 2.6b) and type III (Figure 2.6a) superposed fold patterns (Ramsay, 1983). 

F4 folds have upright, north-striking axial surfaces and steeply north- and south-plunging 

fold axes and thus form reclined folds (Figure 2.6j). 

 

3.4 STRUCTURE OF DOMAIN III OF THE CORDILLERA DARWIN METAMORPHIC 
COMPLEX 

North of site 1020 (Figure 2.2), quartz- chlorite- and- muscovite bearing schist 

contains a pervasive composite schistose foliation (S2) and recrystallized quartz mineral 

lineation (L2) similar to S2 /L2 elsewhere along Seno Martínez. Here, regional, gently 

inclined isoclinal folds (F3) refold the S2 /L2 surface and have amplitudes on the order of 

100s of meters (e.g. Figure 2.7a). Poles to refolded S2 /L2 surfaces form a southwest-

northeast-trending girdle (Figure 2.7c). S3 axial surfaces dip gently toward the north and 

south, and F3 axes plunge shallowly toward the west and southeast (Figure 2.7d). Sheath 

folds (F3) occur at site 1020 and 1021 where they refold the S2 /L2 surface and have long 

axes that plot along a girdle defined by L2 and poles to S2  (F3 , Figure 2.7c). However, 

sheath folds do not occur north of site 1021. Everywhere in Domain III, the S2 /L2 surface 

and F3 folds are overprinted by sets of kink-folds (F4) that have steeply east-northeast- or 

northeast-dipping axial surfaces (S4), and fold axes that plunge both steeply and shallowly 

toward the south-southeast (Figure 2.7a-b, e). F4 kink-folds are asymmetric and show a 

clockwise sense of rotation when viewed down-plunge (toward the SE), indicating top-

southwest contraction. 
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Figure  2.7.  Field  photographs  and  stereograms  from  Domain  III.  Photographs  of  (a)  regional  
recumbent  isocline  F3  folds  and  (b)  steeply  inclined  F4  kink-­folds,  note  top-­southwest  vergence.  
Stereograms  showing  (c)  girdle  defined  by  S2  /L2  and  F3  sheath  folds  in  Domain  III  near  sites  
1020,  and  1021,  (d)  orientations  of  F3  folds  from  Domain  III  and  (e)  orientation  of  F4  folds  in  
Domain  III.  
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3.5 DOMAIN IV, FAULTED CONTACT BETWEEN THE CORDILLERA DARWIN 
METAMORPHIC COMPLEX AND THE TOBÍFERA FORMATION AT BAHÍA ANGELITO 

Along the north shore of Seno Keats in Bahía Angelito, the quartz- and- chlorite-

bearing pelitic schist of the Cordillera Darwin Metamorphic Complex is in tectonic 

contact with the Tobífera Formation (Figure 2.2, 2.8). Here, a 4 m thick conglomerate 

with pebble and cobble sized clasts supported by a muddy matrix unconformably overlies 

the Cordillera Darwin Metamorphic Complex. The conglomerates are overlain by 1 m of 

turbidite sandstones. The conglomerates and sandstones dip southwest and are interpreted 

to represent a basal clastic unit within the Tobífera Formation that is described elsewhere 

in Tierra del Fuego (c.f. Dalziel & Cortés, 1972; Johnson, 1990). 

The contact is sheared and cut by several small thrust faults. Five meters below 

the contact at site 1024 (Figure 2.2), the pelitic schist is observed in the footwall of a 

thrust where it preserves structures similar those in Domain I and III in Seno Martínez 

(Figure 2.8a,d). Here, a pervasive schistose foliation (S2) contains a recrystallized quartz 

stretching lineation (L2), and the S2 /L2 surface is folded (F3), forming a north-trending 

girdle (Figure 2.8b). F3 folds are isoclinal, upright folds with steeply north-northwest- 

and- south-southeast-dipping axial surfaces that form a conjugate set. F3 fold axes are 

horizontal and trend toward the east-northeast and west-southwest (Figure 2.8c). Directly 

below the contact (<5 m) the Cordillera Darwin Metamorphic Complex is sheared and 

displays schistose foliation (S2) that dips dominantly toward the southwest (Figure 2.8d). 

Southwest-dipping C-S fabrics that are parallel to S2 indicate top-northeast sense of shear. 

In some locations, lenses of conglomerate are enveloped by the basement schist and are 

bound on all sides by small thrust faults (Figure 2.8d). Both the conglomeratic lenses and 

sandstones contain a cleavage defined by pressure solution seams that is coplanar with 

the foliation in the pelitic schist, indicating that they are also sheared (Figure 2.8d-f).  

One hundred meters southwest of site 1024, the conglomerate and sandstone 

deposits are conformably overlain by volcanoclastic units of the Tobífera Formation 

(Figure 2.8g). Here, white, silicic ignimbrites overlie dark-grey ash beds and dip  
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Figure  2.8.  Field  photographs  and  stereograms  from  Domain  IV.  (a)  Photograph  of  a  
thrust  contact  between  the  basal  conglomerate  beds  of  the  Tobifera  Fm.  (above)  and  
polydeformed  pelitic  schist  (below),  (b,  c)  stereograms  showing  (b)  girdle  formed  by  the  
refolded  S2  /L2  surface  and  (c)  geometry  of  F3  folds  within  the  pelitic  schist,  (d)  
conglomerate  lens  that  is  bound  my  small  thrusts  and  enveloped  by  pelitic  schist;;  C-­S  
fabric  in  the  schist  indicates  top-­northeast  sense  of  shear,  (e)  stereogram  showing  cleav-­
age  from  the  Tobífera  Fm.,  locally  coplanar  with  S2  in  the  pelitic  schist  and  (f)  photo-­
graph  of  cleavage  in  basal  clastic  units  of  the  Tobífera  Fm.  overlying  the  pelitic  schist  of  
the  Cordillera  Darwin  Metamorphic  Complex.  (g)  Photograph  of  small  thrusts  that  form  
an  imbricate  fan  in  the  Tobífera  Fm.,  and  (h-­j)  stereograms  of  (h)  cleavage  and  crenula-­
tions  near  the  thrusts  in  (g),  (i)  fault  kinematic  data  from  the  thrusts  and  (j)  tensile  quartz  
vein  orientations  near  the  thrusts  in  (g).  (k)  View  toward  the  north  from  Bahía  Angelito  
showing  folded  strata  of  the  Tobífera  Fm.  forming  a  regional  syncline.  
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southwest. The ash beds display a cleavage (S1) defined by pressure solution seams and 

flattened quartz and feldspar lapilli. Bedding is not distinguishable within the ash beds. S1 

dips toward the southwest and is overprinted by a set of crenulation cleavages (S2). The 

crenulations cleavages (S2) dip steeply toward the east-northeast, and crenulation 

lineations (L2) are horizontal, trending north-northwest and south-southeast (Figure 2.8h). 

The S2 crenulation cleavage is asymmetric and shows a top-southwest sense of rotation, 

indicating contraction. S1 is cut by a set of small brittle thrust faults that form a 

southwest-dipping imbricate fan (Figure 2.8g). Fault planes dip shallowly toward the 

south-southwest; one set contains a slickenline that plunges obliquely toward the west-

southwest, indicating a thrust-left sense of slip (Figure 2.8i). Sets of tensile quartz veins 

occur in close proximity to the thrusts and dip towards the east-northeast (Figure 2.8g, j). 

Some quartz veins are sigmoidal and indicate a top-northeast sense of rotation. Although 

inaccessible on foot, bedding in the Tobífera Formation is well exposed on the 

mountainside northeast of Bahía Angelito where it dips toward the northeast and is gently 

folded to form a regional syncline, suggesting that the sheared contact at the base of the 

Tobífera Formation is also folded (Figure 2.8k).  

 

4. Microstructures and Kinematic Indicators 

4.1 DOMAIN I AND II 

4.1.1 Kinematic indicators 
Mesoscopic kinematic indicators from S2 fabrics are commonly absent or 

ambiguous, however, microstructures preserve reliable shear-sense indicators. For 

example, Figure 2.9 shows examples of microstructures and kinematic indicators 

associated with the macroscopic schistose foliation (S2). Compositional layering defined 

by micaceous, fine-grained quartz and feldspar domains and coarse-grained quartz-rich 

domains (S1) is folded by intrafolial, rootless, isoclinal folds (F2) that are transposed 

parallel to and partly define the composite S1/S2 foliation. Dynamically recrystallized 

coarse-grained quartz domains have elongate grains parallel to S2 helping define it. 
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Kinematic indicators include C’ shear bands in micaceous domains and asymmetric 

muscovite sigma tails on garnet porphyroblasts. Both types of kinematic indicator show 

top-northeast sense of shear (Figure 2.9a-b). Curved, synkinematic quartz inclusion trails 

in garnet poryphyroblasts are continuous with S2 and also indicate top-northeast shear 

(Figure 2.9c-d).  

4.1.2 Quartz microstructure 
In quartz-rich domains, alternating layers of dynamically recrystallized fine- and 

coarse- grained quartz defines S2 (Figure 2.10a-c). Within coarse-grained S2 domains, 

recrystallized quartz grains are typically flattened and have cuspate-lobate shaped 

irregular grain boundaries. Quartz grains are commonly internally deformed, containing 

polygonalized subgrain boundaries (e.g. Figure 2.10a-c). Fine-grained domains consist of 

polyphase aggregates of quartz, feldspar and chlorite. Although quartz is also 

recrystallized in fine-grained domains, pinning microstructures associated with the other 

phases inhibited grain growth. Quartz textures from S2 domains indicate both subgrain 

rotation and grain boundary migration recrystallization consistent with Regime 3 

dislocation creep (Hirth and Tullis, 1992) and/or the subgrain rotation recrystallization to 

grain boundary migration transition of Stipp et al. (2002). In samples collected near the 

core of the F4 antiform at Seno Oryan (Figure 2.3), some quartz grains also exhibit 

chessboard extinction indicative of high temperature dislocation creep (Figure 2.10c). 

Quartz textrures do not exhibit evidence for a separate foliation associated with F3 folds, 

consistent with the observation that macroscopic F3 folds to not display a pervasive 

foliation (i.e. section 3.2). 

In quartz-rich domains where F4 kink-bands are well expressed, quartz exhibits a 

prominent shape-preferred orientation parallel to the axial surface of F4 (S4, Figure 2.10d-

f). S4 is oblique (~65°) to and overprints S2 (Figure 2.10d-f). Recrystallized, elongate, 

course-grained quartz grains that contain well-developed subgrain boundaries define S4 

(Figure 2.10d-f). Parallel to S4 subgrain boundaries, irregular, cuspate-shaped grains 

protrude into adjacent grains (Figure 2.10d), thus providing textural evidence of grain 

boundary migration recrystallization associated with the formation of S4. Quartz  
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Figure  2.9.  Photomicrographs  (a)  and  (c)  and  sketches  (b)  and  (d),  respectively  of  microscopic  
kinematic  indicators  from  Domains  I  and  II  near  Seno  Martínez.  See  text  for  descriptions.  In  
both  samples  the  composite  S2  foliation  is  parallel  to  the  base  of  the  photograph.  Intrafolial  (F2)  
folds  are  highlighted  in  (b)  and  (d).  Abbreviations:  m,  micaceous  domain;;  q,  quartz  domain;;  q+f,  
polyphase  quartz  and  feldspar  domain;;  gt,  garnet,  C  and  C’  refer  to  shear  bands.  Cross  polarized  
light.
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Figure  2.10.  Photomicrographs  showing  quartz  recrystallization  textures  from  Domains  I  and  II  
where  S2  is  well  preserved  (a-­c)  and  (d-­f)  where  S4  pervasively  overprints  S2.  See  text  for  descrip-­
tions.  All  photomicrographs  are  taken  in  cross-­polarized  light  and  (a),  (e)  and  (f)  are  taken  with  
the  lambda  plate  inserted.  GBM,  grain  boundary  migration;;  SGR,  subgrain  rotation;;  SGB,  
subgrain  boundary.
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textures from S4 domains indicate both subgrain rotation and grain boundary migration 

recrystallization consistent with Regime 3 dislocation creep (Hirth and Tullis, 1992) 

and/or the subgrain rotation recrystallization to grain boundary migration transition of 

Stipp et al. (2002). Microstructural kinematic indicators parallel to S4 are ambiguous, 

however, asymmetric kink-folds that define the macroscopic S4 foliation always show 

contractional senses of rotation (i.e. top-southwest on northeast dipping surfaces, and visa 

versa, Figure 2.5i).  

4.2 DOMAIN III MICROSTRUCTURES 
In domain III, the composite schistose foliation (S2) is pervasively overprinted by 

F4 kink-folds. Here, S2 is a composite foliation defined by the axial surfaces of transposed 

intrafolial F2 folds and dynamically recrystallized quartz layers, similar to the S2 foliation 

from Domains I and II (Figure 2.11a,b). Likewise, samples from domain III also lack 

textural evidence for a foliation associated with F3 folds. F4 kink folds are best expressed 

in micaceous layers where they display top-southwest sense of rotation and a well-

developed northeast-dipping axial surface (S4) that crosscuts S2 (Figure 2.11a). Coarse-

grained quartz exhibits shape-preferred orientations that are parallel to S4 (Figure 2.11a-

c). Subgrain boundaries and flattened recrystallized grains with cuspate, irregular grain 

boundaries that are parallel to S4 provide textural evidence for grain boundary migration 

and subgrain rotation recrystallization (Figure 2.11c). S4 quartz textures in Domain III are 

equivalent to those in Domain I and II and reflect Regime 3 of Hirth and Tullis (1992), 

and/or the subgrain rotation recrystallization to grain boundary migration transition of 

Stipp et al. (2002). Quartz microstructures from Domain IV are similar to those of 

Domains I-III and are not discussed further. 
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Figure  2.11.  Photomicrographs  showing  quartz  recrystallization  textures  from  Domain  III  where  
S4  is  pervasive.  (a)  Plane-­light  photomicrograph  showing  axial  plane  of  S4  kink-­folds  in  mica-­
ceous  domains  that  are  subparallel  to  a  prominent  shape  preferred  orientation  of  quartz  grains  
(S4)  that  overprints  S2.  (b)  Cross-­polarized  light  photomicrograph  showing  S1  isoclinally  folded  
by  F2  and  overprinted  by  a  quartz  shape  preferred  orientation  (S4).  (c)  Photomicrograph  showing  
quartz  recrystallization  textures  parallel  to  S4  (the  upright  fabric).  GBM,  grain  boundary  migra-­
tion;;  SGR,  subgrain  rotation;;  SGB,  subgrain  boundary.
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5. Quartz crystallographic preferred orientations from S2 and S4 fabrics 
at Seno Martínez 

 
 Field and microstructural observations indicate that there are two prominent 

foliations (S2 and S4) in all of the structural Domains (I-IV) along Seno Martinez. To 

better characterize the deformation temperatures and sense of shear during formation of 

each foliation, I measured the crystallographic preferred orientations (CPOs) of 

dynamically recrystallized quartz in 10 samples from S2 domains and 8 samples from S4 

domains.  

CPOs are a function of many factors that describe the deformation path of a rock 

including the active slip systems, the strain type (i.e. plane strain, flattening or 

constriction), the magnitude of finite strain, the degree of non-coaxial deformation (i.e. 

kinematic vorticity), the activity of recrystallization mechanisms, and the growth of 

grains from solution (see Passchier and Trouw, 2005 and references therein). Many 

empirical and experimental studies have attempted to find the relationship between 

common quartz CPOs in shear zones and each of the above factors (e.g. Lister, 1977; 

Lister et al., 1978; Lister and Hobbs, 1980; Law et al., 1984; Law, 1987; 1990; Law et 

al., 1990; Schmid and Casey, 1986; Stipp et al., 2002; Barth et al., 2010). Quartz has four 

primary slip systems: basal {001}-<a>, prism {100}-<a>, rhomb {101}-<a> and prism 

{010}-[c]. Experimental and empirical studies show that the dominant slip-system is 

temperature dependent. Basal - <a> and prism - <a> slip-systems are favored under 

greenschist to lower amphibolite facies conditions, whereas the transition to prism-[c] 

slip occurs at relatively high homologous temperatures (>600° C for quartz) under upper 

amphibolite facies conditions (Lister and Dornsiepen, 1982; Law, 1990) and is possibly 

facilitated by hydrolytic weakening (Mainprice et al., 1986). 

The work of Stipp et al. (2002) correlated quartz CPOs with quartz 

recrystallization mechanisms and dislocation creep regimes over a large range of 

independently determined deformation temperatures (~270 to ~700°C), allowing quartz 

CPO patterns to be used to infer deformation conditions. These authors found that the 
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transition from bulge to subgrain rotation recrystallization occurs ~400° C and is 

coincident with a textural change in quartz c-axis CPOs from c-axis maxima near Z to c-

axis gridles in the Z-Y plane, indicating mixed - <a> slip and suggesting a transition from 

basal - <a> to prism - <a> slip-systems near the bulge to subgrain rotation 

recrystallization transition with increasing temperatures. The transition from subgrain 

rotation recrystallization to grain boundary migration occurs ~500° C and correlates with 

a textural change to dominantly c-axis maxima near Y, indicative to prism-<a> slip. Stipp 

et al. (2002) only observed evidence of prism - [c] slip in the grain boundary migration 

recrystallization regime above ~630° C where it occurred together with basal - <a> slip, 

indicating that mixed <a> and [c] slip systems can occur at relatively high temperatures.  

The symmetry or asymmetry of c- and a-axis CPO patterns also contains useful 

information about the type of finite strain and kinematic framework of the deformation. 

During progressive deformation the a-axes rotate into parallelism with the shear plane, 

and thus the geometry of c- and a-axis CPOs can be used to evaluate the degree of non-

coaxial deformation and shear sense. Pole figures with relatively symmetric patterns 

reflect coaxial deformation, and those with asymmetric patterns reflect a component of 

rotation during the deformation (Lister, 1977; Lister et al., 1978; Schmid and Casey, 

1986). Similarly, the type of strain imposed on quartz-bearing rocks will influence the 

geometry of the pole figure. Quartzites that have undergone bulk coaxial constriction 

show broad cleft girdle c-axis patterns in the ZY plane and small-circle a-axis girdles 

around X. Conversely, samples that have undergone coaxial flattening should exhibit c-

axes that form small-circle gridles around Z and a-axis patterns defined by broad cleft-

girdles in the XY plane (Lister & Hobbs, 1980; Schmid & Casey, 1986). Samples that 

experience constriction or flattening under non-coaxial deformation will form similar 

patterns but also exhibit a degree of asymmetry that is synthetic with the direction of 

shear. Thus, pole figure patterns can be used to determine the shear sense and type of 

strain that was imposed on the sample.  

Analyses were performed on thin sections cut perpendicular to foliation (either S2  

or S4) and parallel to the L2 quartz lineation for analyses of S2 /L2 fabrics or perpendicular 
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to the F4  kink fold axes for analyses of S4 fabrics (i.e. XZ thin sections). CPOs were 

measured using the HKL Nordlys Electron Backscatter Detector (EBSD) on the Phillips 

XL30 Environmental Scanning Electron Micrscopic at the University of Texas at Austin 

Department of Geosciences. All analyses were conducted using a working distance 

between 18-25mm and an accelerating voltage of 25-30kv. Background conditions and 

diffraction patterns were automatically collected using the AztecHKL EBSD software 

package by Oxford Instruments. Only indexed diffraction patterns with a mean angular 

deviation <1° were accepted. Data were collected in quartz-rich domains using a variable 

step size that was appropriate for the grainsize of each sample. The data were reduced 

using the HKL Channel5 software to one point per grain with a misorientation angle of 

10° to define grain boundaries. C-axis and a-axis pole figures were plotted using Pfch5 

(Mainprice, 2005) and contoured with multiples of uniform distribution (MUD). Only 

plots with c-axis pole figures that yield MUD > 2 were considered. Quartz CPO results 

from 10 samples within S2 domains and 8 samples within S4 domains are presented below. 

Both c- and- a-axis orientations are presented as pole figures (left and middle columns, 

respectively) whereas the sample coordinate X (parallel to lineation) is presented in an 

inverse pole figure diagram (right column). The samples are ordered by location to 

highlight spatial trends in the data, beginning at the southwest end of transect A-A’ at site 

1006 and continuing toward the northeast to Seno Keats. Sample locations are presented 

in Figure 2.2.  

5.1 S2  QUARTZ CPOS, SENO MARTINEZ 
 Samples 1006, 1007 and 1009 were collected from Domain 1 within 5 km of the 

contact with overlying rocks of the Rocas Verdes basin terrane (Figure 2.2). C-axis 

patterns from sample 1006A (Figure 2.12a) form a small-circle girdle that is symmetric 

around Z. A-axes form a mostly symmetric cross-girdle pattern in the XY plane. The 

lineation direction (X) is subparallel to or gently inclined toward <a> (210, 120). C-axes 

from sample 1007A (Figure 2.12b) form a type-I asymmetric cross-girdle, and a-axes 

form moderately developed small-circle girdles in the ZY plane. The asymmetries of c- 

and a-axis patterns are sinistral and indicate top-northeast shear sense. The lineation (X) 
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Figure  2.12.  CPOs  of  S2  quartz  from  Domains  I-­III  at  Seno  Martínez.  Lower  hemisphere  
pole  figures  of  quartz  c-­axis  (left  column),  a-­axis  (center  column)  and  inverse  pole  figures  of  
X  (extension  direction,  right  column).  The  sample  number  and  sense  of  shear  independently  
determined  from  thin  sections  (open  half-­arrow  pairs)  is  shown  in  the  lower  left  corner  of  
each  figure.  The  shear  sense  interpreted  from  the  pole  figures  are  shown  in  black  half  arrow  
pairs  above  the  pole  figures  and  the  type  of  strain,  and  slip-­systems  and  shear  sense  are  
interpreted  below  each  set  of  plots.  Pole  figures  are  contoured  in  multiples  of  uniform  distri-­
bution  and  the  contour  interval  is  shown  to  the  right  of  each  plot.  Hereafter  all  pole  figures  
are  presented  the  same  way.
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is strongly parallel with <a> (210, 120). Sample 1009A (Figure 2.12c) exhibits c-axis 

patterns that cluster around Z, whereas a-axes form a girdle defined by three point 

maxima in the XY plane. The c-axis plot is slightly asymmetric indicating dextral (top-

northeast) sense of shear. The lineation (X) is subparallel to or gently inclined toward 

<a> (210, 120). CPO patterns from samples 1006A, 1007A and 1009A predominantly 

indicate basal-<a> slip and top-northeast sense of shear. A secondary c-axis point-

maxima near Y in sample 1007A (Figure 2.12b) indicates a minor component of prism-

<a> slip. 

 Samples 1010, 1011, and 1012 were collected from Domain I >5 km north of the 

contact with the Rocas Verdes basin terrane and are from garnet-bearing schist, which are 

at a higher grade than samples 1006, 1007, and 1009 (Figure 2.2). C-axis patterns from 

1010CA form a poorly developed, asymmetric (dextral, top-west-southwest) type-I cross 

girdle in the ZY plane with point maxima near to and clockwise from Z and a secondary 

point maxima near Y. A-axes plot around the primitive circle, and form small-circle 

girdles around X. The lineation (X) is subparallel to <a> (210 & 120; Figure 2.12d). 

Sample 1011A has a c-axis pattern that forms a well developed asymmetric (dextral, top-

northeast) type-II cross girdle with maxima both along the primitive circle and 

subparallel to Y. A-axes form small-circle girdles in the ZY plane that are centered 

around X, and the lineation (X) is gently inclined toward <a> (210 & 120; Figure 2.12e). 

C-axes from sample 1012A plot around the primitive circle and form maxima near X and 

secondary maxima near Z. A-axes form a moderately developed girdle in the ZY plane, 

and both c-axis and a-axis patterns show slightly clockwise asymmetry, indicating dextral 

(top-west-southwest) shear. The lineation is strongly parallel to [c] (001; Figure 2.12f). 

CPOs from these samples are indicative of both basal-<a> and prism-<a> slip systems, as 

well as prism-[c] slip recorded by sample 1012A, suggesting higher temperature 

deformation conditions than recorded by samples 1006, 1007 and 1009. 

 Samples from Domain II include 1015A, 1018C and 1018EA (Figure 2.2). Of 

these, only sample 1015A is from garnet-bearing schist. C-axis patterns from sample 

1015A form a girdle in the XY plane that contains primary point maxima near X and a 
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secondary maxima parallel to Y. A-axes form point maxima near Z and a poorly 

developed girdle in the ZY plane. The asymmetries of both plots indicate dextral sense of 

shear (top-northwest). The lineation (X) is well aligned with (001) indicating 

predominantly prism-[c] slip (Figure 2.12g). C-axis patterns from sample 1018C form a 

girdle in the XY with point maxima near X, and a-axes form a YZ girdle with maxima 

near Z. The lineation (X) is moderately inclined [c] (001). Both pole figures are 

asymmetric and show dextral (top-south) shear sense (Figure 2.12h). Sample 1018EA 

records c-axis patterns that form two point maxima that plunge gently (~20°) toward Z. 

A-axis form point maxima on the primitive circle near X and a girdle in the XY plane. 

Both c-axis and a-axis plots show counterclockwise asymmetry, indicating sinistral (top-

northeast) sense of shear. The lineation (X) is well aligned with <a> (210 & 120; Figure 

2.12i). CPO patterns from Domain II samples are indicative of prism-[c] and rhomb-<a> 

(i.e. sample 1018EA) slip systems, suggesting higher-temperature deformation than 

samples from the southern end of Domain I. This difference is compatible with the 

observation that samples exhibiting evidence of prism-[c] slip (1012A, 1015A, 1018C) 

were collected from a structurally lower position in the core of the F4  antiform.  

 S2  CPOs in Domain III are pervasively overprinted by S4 , as a result only one 

sample from Domain III preserves quality S2  data (1021BA). C-axes from sample 

1021BA form a ZY girdle that is asymmetric (dextral, top-north) and contains point 

maxima that plot along the primitive circle and parallel to Y. A-axes are distributed near 

the primitive circle and form two point maxima that are moderately inclined from X. The 

lineation is plunges shallowly toward <a> (210; Figure 2.12j). CPO patterns from sample 

1021BA indicate both basal-<a> and prism-<a> slip, indicating cooler D2 deformation 

temperatures than in Domain II. 

 5.2 S4  QUARTZ CPOS, SENO MARTINEZ 
 Domain I includes samples 1010AA, 1010CA, and 1012A (Figure 2.2). C-axes 

from sample 1010AA form a point maximum near X, and a-axis are well aligned and 

form a girdle defined by three point maxima in the ZY plane. The lineation (X) is parallel 

with [c], and the asymmetry of the plots indicates dextral (top-southwest) sense of shear 
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(Figure 2.13a). Sample 1010CA yielded c-axis orientations that form a point maximum 

parallel to Y, and a-axes that plot around the primitive circle. The lineation (X) is parallel 

to <a>. The sense of shear is unclear (Figure 2.13b). Sample 1012A yielded c-axis 

orientations that cluster near X, and a symmetric a-axis cross girdle in the ZY plane that 

is poorly defined by point maxima and indicates coaxial shear. The lineation (X) is 

parallel with [c]. Results from domain I suggest both prism-[c] and prism-<a> slip 

systems were active during D4 top-southwest or coaxial shear.  

 Quartz CPOs from domain II were measured on samples 1018C, 1018EA, and 

1019BA. Sample 1018C yields c-axis maxima that cluster near Z, and an a-axis girdle in 

the XY plane. Both c- and a-axis plots are asymmetric and indicate dextral (top-south) 

shear. The lineation (X) is subparallel with <a> (Figure 2.13d). C-axis orientations from 

sample 1018EA form a dextral (top-southwest) type-I cross-girdle with maxima near Z, 

X and Y. A-axes plot near the primitive circle, and the lineation is subparallel to and 

moderately inclined toward <a> (Figure 2.13e). C-axes from sample 1019BA form an 

inclined girdle in the ZY plane, and a-axes form point maxima that are inclined ~30° 

clockwise from X. The asymmetry of each plot is dextral indicating top-north shear. The 

lineation (X) plunges moderately toward <a> (Figure 2.13f). Results from domain II are 

indicative of both basal-<a> (Figure 2.12d,e,f) and prism-<a> (Figure 2.13d-f) slip 

associated with top-southwest or top-north shear sense. 

Quartz CPOs from Domain III were measured on sample 1020A and 1021A 

(Figure 2.2). Sample 1020A yields c-axes that form a point maximum near X and a 

secondary maximum near Z. A-axes form a girdle in the ZY plane, and the asymmetry of 

c-axis and a-axis plots indicates dextral (top-southwest) shear. The lineation (X) is 

parallel with [001] (Figure 2.13g). C-axes from sample 1021BA form a poorly defined 

girdle in the XY plane with secondary maxima near Z. A-axes are not well aligned, but 

form moderately developed point maxima near Z and X. The slight asymmetry of c- and 

a-axis pole figures suggests sinistral (top-northeast) sense of shear. The lineation (X) is 

subparallel to both <a> and [c] (Figure 2.13h). CPO patterns from S4 foliations in domain 

III provide evidence of the concurrent activity of basal-<a>, prism-<a> and prism-[c] slip 
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along with both top-northeast and top-southwest shear. Quartz CPO results from D4 

domains show evidence for all three of the important quartz slip systems (basal-<a>, 

prism-<a> and prism-[c]) and have no apparent spatial trend, suggesting D4 deformation 

temperatures were high enough to allow multiple slip systems. 

5.3 S2 AND S4  CPO SYNTHESIS AT SENO MARTÍNEZ 
S2 and S4 microstructural observations and quartz CPO data from Domains I-III in 

Seno Martínez are synthesized in Figure 14. Dynamically recrystallized quartz elongate 

parallel to S2 is locally recrystallized and overprinted by S4 (Figure 14a-c; see also Figure 

2.10). In S2 domains (lower portions of Figures 2.14a-c), shear sense indicators and 

quartz CPOs are commonly well preserved. Here, quartz CPOs indicate dominantly top-

northeast shear sense associated with S2 fabrics. Slip-systems indicated by CPO patterns 

in S2 domains include basal-<a>, prism-<a> and prism-[c] slip. Any affect of 

recrystallization during F3 folding on CPOs from S2 fabrics is unclear, however, on the 

basis of subparallelism of F3 sheath folds with the L2 stretching lineation (i.e. section 3.3) 

it is inferred that the transport direction was parallel and that F3 recrystallization would 

probably have enhanced S2 CPOs. 

Coarse-grained quartz domains are commonly recrystallized and overprinted by S4 

(upper portions of Figure 2.14a-c). The shear sense associated with S4 domains is 

dependent on the vergence of F4 kink-folds that define them, but is commonly antithetic 

to (i.e. top-southwest) the sense-of-shear associated with S2 (Figure 14c). Slip-systems 

associated with the formation of S4 include, basal-<a>, prism-<a> and prism-[c] slip and 

show no apparent spatial trends, suggesting mixed slip-systems were active during the 

formation of S4. 
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Figure  2.14.  Synthesis  of  CPO  data  from  S2    and  S4  fabrics  in  Domains  I-­III  near  Seno  Martínez.  
(a-­b)  Photomicrographs  showing  examples  of  samples  that  exhibit  good  preservation  of  both  S2  
(parallel  to  base  of  slide)  and  S4  (steeply  inclined  toward  the  NE)  fabrics  and  (c)  sketch  showing  
interpretation  of  CPO  results  for  S2  and  S4  fabrics.  In  regions  where  S2  is  well  preserved  (i.e.  
lower  part  of  (a)  and  (c)),  CPO  results  indicate  the  activity  of  all  three  major  slip-­systems,  basal    
<a>,  prism  <a>  and  prism  <c>  and  dominantly  top-­northeast  shear  that  is  sympathetic  with  other  
microstructural  shear  sense  indicators.  In  regions  where  S4  is  pervasive  (i.e.  (b)  and  the  upper  
part  of  (a)  and  (c))  relict  S2  fabrics  are  reoriented  by  the  S4  fabric  that  is  indicative  of  all  three  
slip-­systems  and  dominantly  top-­southwest  shear.  
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6. The Cordillera Darwin Metamorphic Complex near Bahía Fortesque 
and Estuario Silva Palma 

 
Along-strike ~75 km toward the northwest from Seno Martínez, rocks of the 

Cordillera Darwin Metamorphic Complex are exposed on Peninsula Brunswick where 

they are tectonically interleaved with Jurassic rocks of the Rocas Verde basin (Tobífera 

Formation). Near Bahía Fortesque (Figure 2.1), a ~1 km thick ductile high strain zone 

known as the Bahía Fortesque shear zone juxtaposes the Cordillera Darwin Metamorphic 

Complex above the Tobífera Formation (see Chapter 1). Near Estuarios Silva Plama and 

Wickham (> 10 km northeast of Bahía Fortesque), the Cordillera Darwin Metamorphic 

Complex is exposed in the hanging wall of an out-of-sequence fault that juxtaposes it 

above rocks of the Magallanes fold-thrust belt and Upper-Cretaceous to Paleocene 

foreland basin strata (see chapter 1). In both locations, chlorite-quartz schist of the 

Cordillera Darwin Metamorphic Complex are pervasively deformed by several 

generations of structures (see Chapter 1) that are similar to those at Seno Martínez. To 

determine the deformation conditions associated with structures in the Cordillera Darwin 

Metamorphic Complex on Peninsula Brunswick and compare them with those at Seno 

Martínez, I describe the quartz recrystallization textures and performed EBSD analyses of 

five samples from Bahía Fortesque, five samples from Estuario Silva Palma and one 

sample from Estuario Wickham. For a detailed description of the macroscopic structures 

in these locations see Chapter 1. 

6.1 QUARTZ MICROSTRUCTURES AND KINEMATIC INDICATORS FROM THE CORDILLERA 
DARWIN METAMORPHIC COMPLEX ON PENINSULA BRUNSWICK 

6.1.1 The Bahía Fortesque high-strain zone 
The Bahía Fortesque shear zone is defined by a southwest-dipping, composite 

schistose foliation (S2) that contains a prominent southwest-plunging, recrystallized 

quartz lineation (L2, Figure 1.14, chapter 1). Macroscopic kinematic indicators include C-

S fabrics and C’ shear bands that indicate and top-northeast shear (see Chapter 1). In thin 

section, the S1 foliation is defined by compositional layering between quartz-rich and 
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phylosilicate-rich domains. The S1 surface is commonly transposed by C-S type shear 

bands to form a composite foliation (S2). The asymmetry of C-S fabrics indicates top-

northeast shear (Figure 2.15a). S1 is commonly folded by intrafolial isoclinal folds (F2) 

that are also transposed parallel to S2 (Figure 2.15a). A sample collected from below the 

Bahía Fortesque shear zone (1116) preserves upright, tight F2 folds that do not have a 

pervasive S2  (Figure 2.15b), indicating qualitatively lower strains than samples from 

within the Bahía Fortesque high-strain zone.  

 Quartz occurs in layers parallel to S2 in the Bahía Fortesque high-strain zone and 

has undergone substantial recrystallization and subgrain formation. Recrystallized 

subgrains are commonly polygonal and have approximately uniform grain size (Figure 

2.15a, d). In some locations, layers of recrystallized, elongate grains form a second 

foliation (S2) that is oblique to S1 and indicates top-northeast shear (Figure 2.15c). 

Feldspar grains are not common, but where observed they are not substantially 

recrystallized (Figure 2.15d). Quartz microstructures from the Bahía Fortesque shear 

zone are characteristic of subgrain rotation recrystallization and Regime 2 dislocation 

creep of Hirth and Tullis (1992) and/or the subgrain rotation regime of Stipp et al. 

(2002).  

6.1.2 Estuario Silva Palma 
 The Cordillera Darwin Metamorphic Complex at Estuario Silva Palma is 

deformed by two generations of structures similar to those at Bahía Fortesque. Here, the 

pervasive schistose foliation (S1) contains a prominent quartz stretching lineation (L1), 

and both structures are folded by isoclinal F2 folds (see chapter 1). In phylosilicate 

domains, S2 is commonly defined by pressure solution seams that overprint an older 

crenulated surface (S1, Figure 2.15e). In quartz-rich domains, quartz occurs in layers that 

are extensively recrystallized to form polygonal subgrains of approximately uniform 

grain size (Figure 2.15e-f). In the hinges of F2 folds, recrystallized quartz grains are 

elongate parallel to the axial plane (S2) of the folds (Figure 2.15f). Quartz microstructures 

from the Cordillera Darwin Metamorphic Complex in Estuario Silva Palma are indicative 

subgrain rotation recrystallization and regime 2 dislocation creep of Hirth and  
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Figure  2.15.  Photomicrographs  showing  quartz  subgrain  rotation  recrystallization  textures,  
superposed  fabric  relationships  and/or  kinematic  indicators  from  the  Bahía  Fortesque  shear  zone  
(a-­d)  and  from  pelitic  schist  of  the  Cordillera  Darwin  Metamorphic  Complex  at  Estuario  Silva  
Palma  (e-­f).  Oval  in  (d)  highlights  a  rigid  feldspar  grain.  See  text  for  descriptions.  
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Tullis (1992) and/or the subgrain rotation regime of Stipp et al. (2002). Microstructural 

shear sense indicators are absent or ambiguous in samples form Estuario Silva Palma.  

 

7. Quartz CPOs from the Cordillera Darwin Metamorphic Complex on 
Peninsula Brunswick 

7.1 BAHÍA FORESTQUE HIGH-STRAIN ZONE 
Quartz CPOs were measured in five samples from the Bahía Fortesque high-strain 

zone to determine the slip-systems, sense of shear and deformation temperatures 

associated with the shear zone. Results are presented in Figure 2.16. Samples 11105A-D 

are from within the high-strain zone (Figure 2.16a-d) and sample 11116 (Figure 2.16e) is 

from below it. C-axes from sample 11105A form a small circle girdle centered on Z, and 

a-axes form a symmetric cross girdle in the XY plane. The lineation (X) is inclined ~30° 

toward <a> (Figure 2.16a). The symmetry of the plots indicates coaxial shear. C-axes 

from sample 11105B form primary point maxima near Z and a secondary maximum near 

Y (Figure 2.16b). A-axes form a poorly defined girdle in the XY plane, and X plunges 

moderately toward <a>. Both c- and a-axis plots show clockwise asymmetry, indicating 

dextral (top-northeast) shear. Samples 11105C and D are very similar (Figure 2.16c-d). 

C-axis orientations form point-maxima near Z, and a-axes form a girdle in the XY plane. 

Each plot is asymmetric and indicates a sinistral (top-northeast) sense of shear. The 

lineation (X) is subparallel to or gently inclined toward <a> (Figure 2.16c-d). Sample 

1116 was collected below the high-strain zone. Point maxima for c-axes are subparallel to 

Y and X, and for a-axes, subparallel to Y and Z. The lineation (X) is inclined toward <a> 

suggesting <a>-slip, however, the c- and a- axis patterns from this sample are not 

diagnostic of a particular slip-system (Figure 2.16e). Poorly developed patterns in sample 

1116 (Figure 2.16e) probably reflect its position in a relatively low strain zone outside of 

the Bahía Fortesque shear zone. 
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Figure  2.16.  CPOs  of  S2  quartz  from  pelitic  schist  within  (a-­d)  and  below  (e)  the  Bahía  Fortesque  
high-­strain  zone.  

123



 
 

 

7.2 ESTUARIOS SILVA PALMA AND WICKHAM 
 Four samples (1053 and 1054A-C, Figure 2.17a-d) from the Cordillera Darwin 

Metamorphic Complex near Estuario Silva Palma and one sample from Estuario 

Wickham (11086B, Figure 2.17e) were selected for EBSD fabric analysis of quartz. C-

axis orientations from sample 11053 form point maxima that are symmetric around Z and 

a secondary maxima near Y. A-axes form a symmetric cross girdle in the XY plane. The 

symmetry of these plots are indicative of coaxial deformation. The lineation (X) is 

subparallel to <a> (210, Figure 2.17a). C-axis patterns from sample 1054A form an 

asymmetric (dextral, top-northeast) type-I cross girdle; a-axes form a cross-girdle in the 

XY plane, and the lineation is subparallel to <a> (210; Figure 2.17b). Sample 11054B 

yields c-axis patterns that define point maxima near Z and a weak ZY girdle; a-axes form 

a girdle in the XY plane, and both plots are asymmetric indicating dextral (top-southwest) 

shear. The lineation (X) is plunges moderately toward <a> (Figure 2.17c). Sample 

11054C has c-axis orientations that form a ZY girdle with point maxima near both Z and 

Y. A-axes define small circle girdles centered around X. The lineation plunges shallowly 

toward <a>, and the asymmetry of the pole figures indicates dextral shear (top-northeast; 

Figure 2.17d). Sample 11086B from Estuario Wickham gives c-axis orientations that 

form point maxima near Z, and a-axes that are poorly organized. The lineation is also 

poorly defined in the crystallographic reference frame. The asymmetry of the c-axis pole 

figure indicates sinistral (top-northeast) shear.  

 7.3 SYNTHESIS OF QUARTZ CPOS FROM THE CORDILLERA DARWIN METAMORPHIC 
COMPLEX ON PENINSULA BRUNSWICK  

All pole figures from Estuario Silva Palma (Figure 2.17a-d) and Estuario 

Wickham (Figure 2.17e) are indicative of predominantly basal-<a> slip. Data from 

Estuario Silva Palma (Figure 2.17a-d) also include some evidence for prism-<a> slip (e.g. 

Figure 2.17a & d). CPOs are consistent with quartz textural evidence that suggest 

subgrain rotation recrystallization and Regime 2 dislocation creep, indicating deformation 

temperatures equivalent to those from the Bahía Fortesque high-strain zone but cooler 

than those from Domains I-III near Seno Martínez.  
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Figure  2.17.  CPOs  of  S2  quartz  from  pelitic  schist  of  the  Cordillera  Darwin  Metamorphic
Complex  at  Estuario  Silva  Palma  (a-­d)  and  Estuario  Wickham  (e).  
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8. Discussion 

8.1 CORRELATION OF STRUCTURES IN THE CORDILLERA DARWIN METAMORPHIC 
COMPLEX NEAR SENO MARTÍNEZ.  
 Pelitic schists of the Cordillera Darwin Metamorphic Complex exposed near Seno 

Martínez are everywhere deformed by at least four generations of structures (D1 -D4). The 

sequence of deformation allows for correlation between structural domains. Everywhere 

along Seno Martínez the pelitic schist of the Cordillera Darwin Metamorphic Complex 

displays a prominent composite schistose foliation (S1/S2) and quartz stretching lineation 

(L2) that are refolded. Therefore structures from each domain can be correlated relative to 

this surface. In Domain I the composite S1-2 fabric in the pelitic schist is subparallel with 

S1 in the epidote-actinolite schists, thus both fabrics are interpreted to reflect the same 

deformation. S1 that is unique to the Paleozoic pelitic schists of the Cordillera Darwin 

Metamorphic Complex is transposed by intrafolial folds (F2) that partly define the 

composite foliation (S1-2). Therefore, S1 in the pelitic schist must reflect an older 

deformation than S2 /L2 in the pelitic schist and S1 /L1 in the epidote-actinolite schist (D1; 

c.f. ‘pre-Andean’ fabric of Nelson et al., 1980) and are not discussed further. Relative to 

the S2 /L2 surface, F3 folds are equivalent in age across all four of the structural domains 

(D3). Similarly, F4 folds are interpreted to be coeval everywhere in the study area (D4).  

Each structural domain displays evidence for each of the main phases of 

deformation (D2 -D4), however, the magnitude of each deformation is spatially variable 

between domains and is evaluated on the basis of tightness of folds and occurrences of 

structures commonly associated with high-strain zones such as prominent mineral 

lineations and/or sheath folds. Below I correlate the macroscopic and microscopic 

structures from Seno Martínez and interpret them in terms of qualitative high- and low-

strain zones associated with each deformation (D2 –D4).  

8.1.1 D2 macroscopic structures 
Everywhere along Seno Martíez D2 structures are defined by a pervasive schistose 

foliation that is defined by the alignment of quartz, chlorite and muscovite and contains a 

prominent quartz stretching lineation (S2 /L2). This surface occurs in all four of the 
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structural domains at Seno Martínez where it is everywhere refolded by F3 and F4. The 

common occurrence of this surface across all domains at Seno Martínez suggests that D2 

deformation was relatively homogeneous across the study area.  

8.1.2 D3 macroscopic structures 
 D3 structures along Seno Martínez are spatially heterogeneous. In Domain I, F3 

are generally tight folds that occupy upright, inclined and reclined orientations that refold 

the S2 /L2 surface (e.g. Figure 2.5e-h). In contrast, F3 folds in Domain II are tight to 

isoclinal and include sheath folds with axes that are parallel to the local quartz stretching 

lineation (L2; e.g. Figures 2.6a-d). Thus relative to Domain I, F3 fold limbs have been 

tightened and the fold hinges sheared to form the sheaths. On this basis, a qualitative 

increase in strain is inferred toward the northeast from Domain I to Domain II with 

regard to D3 structures. The parallelism of F3 sheath folds in Domain II with the L2 

stretching lineation is interpreted to reflect progressive deformation during D2 and D3 

where the highest intensity of D3 deformation is localized in Domain II. Farther to the 

north in Domain III, sheath folds disappear and regional, recumbent tight and isoclinal 

folds characterize F3 (e.g. Figure 2.7a). Although the regional folds reflect large amounts 

of shortening, the absence of the sheath folds suggests qualitatively lower shear strains in 

Domain III than in Domain II and defines a negative strain gradient from Domain II to 

III. In Domain IV, F3 folds are upright tight folds (e.g. Figure 2.8b, c) that are similar in 

geometry and structural-style to upright folds observed in Domain I and thus reflect 

lower strains than Domain II and III.  

8.1.3 D2 microstructure and quartz CPOs 
Quartz microstructures associated with D2 fabrics everywhere near Seno Martínez 

show textural evidence for subgrain rotation recrystallization and grain boundary 

migration that are equivalent to Regime 3 dislocation creep (Hirth and Tullis, 1992) 

and/or the subgrain rotation recrystallization to grain boundary migration transition of 

Stipp et al. (2002) (Figure 2.10a-c). Quartz CPOs from S2 fabrics in domains I and II 

suggest a systematic increase in deformation temperature structurally down-section from 
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the sheared contact with the Rocas Verdes basin terrane (near site 1006, Figure 2.2) 

toward the core of the D4 antiform near Seno Oryan (Figure 2.2, 2.3). In Domain I, 

Quartz CPOs from D2 structures record a southwest to northeast change in quartz slip 

systems from basal-<a> slip (Figure 2.12a-c) to basal-<a> + prism-<a> slip (Figure 2.12 

d-e) and prism-[c] slip near site 1012 (Figure 2.12f). The occurrence of prism-[c] slip in 

two samples from domain II near Seno Oryan near sites 1015 and 1018 (Figure 2.3,m 

12g-h) record the highest temperature slip-systems in the study area. This trend in quartz 

slip systems is consistent with textural evidence (i.e. chessboard extinction, Figure 2.10c) 

for high-temperature dislocation creep that only occurs in Seno Oryan near the core of the 

F4 antiform. North of Seno Oryan, near sites 1018 and 1021 quartz CPOs reflect basal-

<a> and prism-<a> slip (e.g. figures 2.12i, j) and suggest D2 deformation conditions that 

are equivalent of those in located in Domain I on the southwest dipping limb of the 

regional F4 antiform (i.e. Figures 2.12a-e). Quartz slip systems and CPOs from Domains 

I-III are indicative deformation temperatures ranging from ~500-650° C during D2.  

Microstructural kinematic indicators from the Cordillera Darwin Metamorphic 

Complex in Domain I and II include C-S and C’ shear bands and asymmetric tails on 

synkinematic garnet porphyroblasts that are compatible with top-northeast shear during 

D2 (Figure 2.9). Supporting these observations, pole figures from D2 recrystallized quartz 

fabrics in Domain I and II are commonly asymmetric and indicate either dominantly 

coaxial or top-northeast sense of shear (Figure 2.12a-c, e, i). However, quartz CPOs from 

several samples collected in Domains I and II have asymmetries that indicate a different 

sense of shear, either top-west or northwest (Figures 2.12 d, f-g) or top-S (Figure 2.12h). 

These samples probably reflects reorientation of the D2 fabrics as they were folded 

around later (F3 and F4) folds. The dominance to top-NE kinematic indicators from 

microstructures and quartz CPOs is interpreted to reflect bulk top-northeast shear during 

D2 in domains I and II. 
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8.1.4 D4  macroscopic structures 
 Evidence for D4 occurs in Domains I-III near Seno Martínez and is also spatially 

heterogeneous. In Domains I and III, F4 is defined by sets of upright kink-bands with 

axial surfaces that dip steeply toward the east and west (Figures 2.5i-j and 2.7b, e). F4 

kink-folds in Domains I and III are localized to phylosilicate-rich lithologies. The 

geometry of F4 folding in Domain II contrasts sharply with Domains I and III. In Domain 

II, F3 structures are refolded by steeply plunging reclined folds with upright axial surfaces 

(F4) and form Ramsay type II and III superposed fold patterns (Figures 2.6a-d, j). In 

Domain II, F4 deformation is pervasive and defines a D4 high-strain zone relative to 

Domains I and III.  

8.1.5 D4  microstructure and quartz CPOs 
 Quartz CPOs associated with D4 fabrics from Domain I in Seno Martínez (Figure 

2.13a-c) record both prism-<a> and prism-[c] slip parallel to the S4 foliation. Quartz 

CPOs from D4 fabrics in Domain II indicate both basal-<a> and prism-<a> slip (Figure 

2.12d-f) and Domain III CPOs record basal-<a>, prism-<a> and prism-[c] slip (Figure 

2.12g-h). The asymmetry of pole figures for D4 fabrics indicates either top-south to 

southwest or top-north to northeast shear that is compatible with the asymmetry of local 

F4 kink bands that define the S4 foliation.  

Pole figures from D4 fabrics in Domains I-III show evidence for all of the quartz 

slip systems and do not reflect any spatial trend, suggesting deformation temperatures 

were regionally high enough (> ~500°C, Stipp et al., 2002) to allow mixed slip. This 

interpretation is compatible with quartz recrystallization textures from D4 fabrics 

everywhere in Domains I, II and III near Seno Martínez that indicate subgrain rotation 

recrystallization and grain boundary migration dislocation creep were dominant 

recrystallization mechanisms, equivalent with Regime 3 dislocation creep (Hirth and 

Tullis, 1992) and/or the subgrain rotation recrystallization to grain boundary migration 

transition of Stipp et al. (2002) (Figure 2.10d-f). Quartz slip systems and CPOs from D4 

structures are indicative of deformation temperatures ranging from ~500-650° C, 

equivalent to those of D2.  
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8.1.6 Domain IV: structure of Bahía Angelito 
Field relations at Bahía Angelito indicate that the contact between the Cordillera 

Darwin Metamorphic Complex and Tobífera Formation is a sheared unconformity that 

forms a thrust flat. F3 folds in the Cordillera Darwin Metamorphic Complex below the 

contact are upright, tight folds that indicate south-north shortening. Here, top-northeast 

C-S fabrics that occur parallel to S2 (Figure 2.8d) are interpreted to reflect top-northeast 

shearing of the Tobífera Formation over the Cordillera Darwin Metamorphic Complex 

during D2 and D3.  

Above the contact, a set of south-southwest dipping brittle thrust faults imbricate 

the Tobífera Formation. Kink folds and quartz veins associated with the brittle thrusts 

(i.e. Figure 2.8h-j) share the same northeast-southwest shortening direction as F4 kink-

bands in the Cordillera Darwin Metamorphic Complex to the south (i.e. Figure 2.7e), 

suggesting that the structures reflect the same shortening event. Consequently, the shear 

zone below the contact is interpreted to be coeval with D2 and D3 deformation near Seno 

Martínez, and brittle faults that crosscut the ductile fabrics in the schist are interpreted to 

reflect the progressive deformation of the contact as it was sheared and uplifted during D3 

–D4 (discussed below).  

8.2 SYNTHESIS OF MICROSTRUCTURES FROM THE CORDILLERA DARWIN 
METAMORPHIC COMPLEX ON PENINSULA BRUNSWICK 

 Microstructural observations from the Bahía Fortesque shear zone show 

differences in deformation conditions from those in the Cordillera Darwin Metamorphic 

Complex taken near Estuario Silva Palma and Estuario Wickham on Peninsula 

Brunswick (Figure 2.2).  

Quartz CPO results from the Bahía Fortesque high-strain zone (Figure 2.16a-d) 

indicate ubiquitous basal-<a> slip with minor evidence for the occurrence of prism-<a> 

slip (i.e. Figures 2.16b), and microstructural observations indicate dominantly subgrain 

rotation recrystallization mechanisms for quartz in each sample (Figure 2.15a-d). The 

sense of shear from CPO patterns are top-northeast in every sample (Figure 2.16), 

consistent with macroscopic kinematic indicators from the shear zone (see chapter 1). 
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Quartz recrystallization textures and CPOs are indicative of Regime 2 dislocation creep 

of Hirth and Tullis (1992) and/or the SGR recrystallization regime of Stipp et al., (2002), 

suggesting deformation temperatures between 400°-500° C during the formation of the 

Bahía Fortesque high-strain zone.  

 Samples of the Cordillera Darwin Metamorphic Complex taken near Estuario 

Silva Palma and Estuario Wickham preserve quartz recrystallization textures that are 

similar to those observed at the Bahía Fortesque high-strain zone. Here, subgrain rotation 

recrystallization is the dominant deformation mechanism for quartz (Figure 2.15 e-f). 

Quartz CPOs from these locations indicate dominantly basal-<a> slip. Pole figures from 

some samples near Estuario Silva Palma also record prism-<a> slip and thus suggest 

slightly higher deformation temperatures than those at the Bahía Fortesque high-strain 

zone where prism-<a> slip is mostly absent. Quartz textural observations and CPOs are 

indicative of deformation temperatures between 400°-550° C. Slightly warmer 

deformation conditions at Estuario Silva Palma are interpreted to reflect the position of 

the samples structurally below the Bahía Fortesque high strain zone (i.e. Chapter 1 Figure 

2.10).  

8.3 REGIONAL SYNTHESIS OF STRUCTURES, DEFINITION OF THE MAGALLANES 
DÉCOLLEMENT 

Structures of the Cordillera Darwin Metamorphic Complex near Seno Martínez 

and Peninsula Brunswick share many common structural and geologic elements that 

allow regional correlation on the basis of their stratigraphic position, sense of shear, and 

sequence of deformation. Most importantly, the Bahía Fortesque high-strain zone, the D2 

-D3 high-strain zones at Seno Martínez, and the Bahía Angelito shear zone each 

accommodated top-northeast thrusting of rocks from the Rocas Verdes basin terrane 

(Tobífera Formation at Bahías Fortesque and Angelito, mafic-intermediate volcanic rocks 

of the Rocas Verdes basin seafloor at Seno Martínez) over the Cordillera Darwin 

Metamorphic Complex schist. In each of these localities, the earliest macroscopic 

structure in the Cordillera Darwin Metamorphic Complex is a pervasive schistose 

foliation that contains a prominent down-dip quartz mineral lineation that is refolded (i.e. 
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S2 /L2 at Seno Martínez, S1-2 composite and L2 at Bahía Fortesque and S1 /L1 at Estuario 

Silva Palma) and displays dominantly top-northeast shear shear-sense indicators. 

Similarly, D3 is characterized by the transposition of D2 structures by northeast-vergent 

tight and/or isoclinal noncylindrical folds that are interpreted to reflect progressive 

deformation during top-northeast D2 and D3 shearing. Qualitative strain gradients defined 

by the tightness of D3 folds and/or occurrence of F3 sheath folds indicate D3 high strain 

zones in Domain II at Seno Martínez and at Bahía Fortesque (i.e. Chapter 1). Upright or 

steeply inclined kink-folds and/or tight folds characterize D4 structures everywhere in the 

study area and indicate a regional pulse of northeast-southwest horizontal shortening that 

is superimposed on D2 /D3 structures (discussed below). Table 1 summarizes the 

structural elements that are unique to each structural domain and sequence of deformation 

in the study area.  

Progressive, top-northeast D2 /D3 shearing appears to have occurred regionally 

near the top of the Cordillera Darwin Metamorphic Complex and at the contact with the 

volcanic and volcanoclastic rocks of the Rocas Verdes basin terrane. At Seno Martínez, 

Bahía Fortesque and Bahía Angelito the contact is sheared and separates polydeformed 

and metamorphosed basement schist below the high-strain zones from overlying rocks of 

the Rocas Verdes basin terrane that do not express the same degree of deformation and 

superposed folding (see also Chapter 1), indicating that a regional structural detachment 

separates Jurassic rocks of the Rocas Verdes basin from the underlying pre-Jurassic 

basement and thus defining a regional décollement at the base of the Patagonian fold-

thrust belt (see also Chapter 1). The décollement occurs at a major stratigraphic and 

rheological contact between relatively strong ignimbrite and volcanic units of the 

Tobífera Formation and Rocas Verdes basin seafloor with weaker pelitic schists of the 

underlying Cordillera Darwin Metamorphic Complex, which is thought to reflect either a 

pre-Jurassic accretionary complex (Dalziel & Cortés, 1972; Nelson et al., 1980) or a 

succession of clastic passive margin deposits (Hervé et al., 2008) before it was 

metamorphosed during the Cretaceous Andean Orogeny. Deformed rocks in the 

Cordillera Darwin Metamorphic Complex within and below the décollement have the 
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same top-northeast shear sense during D2-3 as the first generation structures of the 

Patagonian fold-thrust belt above the décollement and toward the foreland (i.e. Chapter 

1). Within and below the décollement, shortening was accomodated by crystal plasticity 

while above it and toward the foreland by formation of the fold-thrust belt. 

Defined here for the first time, the Magallanes décollement (new name) is 

exposed at Seno Martínez, Bahía Angelito and Bahía Fortesque and is interpreted to have 

accommodated top-northeast thrusting of the Rocas Verdes basin onto the continental 

margin (i.e. Cordillera Darwin Metamorphic Complex), underthrusting of the continental 

margin, and the development of the Patagonian fold-thrust belt during the Andean 

Orogeny (c.f. Klepeis et al., 2010; see also Chapter 1). Quartz microstructures and CPOs 

presented in this study indicate the deformation temperatures associated with D2 -D4 

stages of the décollement at Seno Martínez were ~100° C warmer (500-650° C) than at 

Bahía Fortesque (400-550° C), suggesting that the décollement dipped shallowly (~6°) 

toward the south-southwest (present-day coordinates, Figure 2.18) during its formation.  

8.4 MODEL OF THE EVOLUTION OF POLYPHASE STRUCTURES IN THE CORDILLERA 

DARWIN METAMORPHIC COMPLEX AND REGIONAL SIGNIFICANCE 

Integrating the new data presented in this study with previous work (Klepeis et 

al., 2010), I present a model to describe the structural evolution of the Magallanes 

décollement and polyphase deformation of the Cordillera Darwin Metamorphic Complex 

(Figure 2.19). In the Late Jurassic, the Rocas Verdes basin existed Pacficward of the 

continental margin of South America but inboard of the Patagonian arc (e.g. Dalziel, et 

al., 1974; Dalziel, 1981; Fildani and Hessler, 2005; Figure 2.19a). The onset of the 

Andean Orogeny in the southernmost Andes is defined by the closure and inversion of 

the Rocas Verdes basin (Dalziel et al., 1974; Nelson et al., 1980; Fildani and Hessler, 

2005; Klepeis et al., 2010). Regional-scale obduction of the mafic seafloor of the Rocas 

Verdes basin and underthrusting and metamorphism of the continental margin were 

underway by ~86 Ma (Figure 2.19b; Klepeis et al., 2010). Obduction of the Rocas Verdes 

basin terrane was partly facilitated by the development of the Magallanes décollement   
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D1

D2

D3

Table  1  -­  Correlation  of  structures  from  the  Cordillera  Darwin  Metamorphic  Complex  near  Seno  Martínez,  Bahía  
Angelito  and  Peninsula  Brunswick

D4

Domain I Domain II Domain III Domain IV
Upright kink-folds that

form conjugate sets;
localized to phylosilicate-rich

lithologies

upright kink-folds that
form conjugate sets;

localized to phylosilicate
lithologies

High-strain zone
steeply-dipping tight and 

isoclinal reclined folds;
Ramsay type II and III 

superposed fold patterns

High-strain zone
upright, reclined and recumbent

tight and isoclinal folds and sheath
folds refold S2 /L2; sheath fold 
axes are parallel to the local L2

upright, inclined and
reclined tight 

folds refold S2 /L2 upright tight folds
refold S2 /L2;
C-S fabric

regional, recumbent tight
and isoclinal folds

pervasive schistose foliation 
and quartz mineral lineation

(S2 /L2); S2 /L2 is subparallel
and coeval with S1 /L1 

in epidote-actinolite schist
of the RVB terrane

pervasive schistose foliation 
and quartz mineral lineation

(S2 /L2)

SGR + GBM, basal-<a>, prism-<a>
and prism-[c] slip

T ~500-650°

pervasive schistose foliation 
and quartz mineral lineation

(S2 /L2)
pervasive schistose
foliation and quartz

mineral lineation (S2 /L2)

intrafolial foliation (S1); not
present in epidote-actinolite

schist of the RVB terrane

intrafolial foliation (S1) intrafolial foliation (S1) intrafolial foliation (S1)

Bahía Fortesque
high-strain zone

Estuario
Silva Palma

SGR + GBM, basal-<a>,
prism-<a>, and prism-[c] slip

T ~500-650°

SGR + GBM, basal-<a>,
prism-<a> slip

T ~500-650°

SGR + GBM, basal-<a>,
 and prism-[c] slip

T ~500-650°

SGR + GBM, basal-<a>, and
prism-<a>

T ~500-650° 

SGR + GBM, basal-<a>,
prism-<a>, and prism-[c] slip

T ~500-650°
Top-SW dominant Top-SW dominant Top-SW dominant

Top-NE dominant Top-NE dominant Top-NE dominant

Top-NE dominant Top-NE dominant Top-NE dominant Top-NE Top-NE

Top-NE Top-NETop-NE dominant

crenulation cleavage
and brittle faulting

kink-folds (local F3)* 

Top-SW

composite schistose
foliation (local S1-2) and

quartz mineral lineation
(local L2)*

schistose foliation
(local S1) and quartz

mineral lineation
(local L1)*

High-strain zone
isoclinal inclined folds
(local F2) transposed

parallel to S1-2 *

isoclinal recumbent
folds (local F2) *

SGR, basal-<a> +
minor prism-<a> slip

T ~400-550°

SGR, basal-<a> +
minor prism-<a> slip

T ~400-550°

not recognized not recognized

Regional 
Event

Seno Martínez
Peninsula Brunswick

not recognized

* data source from Chapter 1
Dashed line is intended to represent progressive deformation between D2 and D3 events
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Figure  2.18.  Regional  correlation  of  structures  between  Seno  Martínez,  Bahía  Fortesque  
and  the  Patagonian  fold-­thrust  belt.  Cross-­sections  A  and  B  are  from  Chapter  1  and  are  
shown  in  their  relative  positions  with  respect  to  Seno  Martínez  (the  locations  are  shown  on  
the  inset  map).  Sea  level  is  indicated  on  each  cross  section  to  provide  a  sense  of  the  struc-­
tural  level  of  each  cross  section.  The  Magallanes  décollement  (new  name,  see  text)  is  
exposed  at  Bahía  Fortesque  where  it  ramped  up  section  and  fed  displacement  into  the  
Patagonian  fold-­thrust  belt.  Southwest  of  Bahía  Fortesque  at  Seno  Martínez,  the  décolle-­
ment  is  defined  several-­kilometer-­wide  high  strain  zones  that  accommodated  the  thrusting  
of  Rocas  Verdes  basin  terrane  rocks  above  the  Cordillera  Darwin  metamorphic  complex.  
Deformation  conditions  from  fabrics  within  the  décollement  were  ~100°  warmer  at  Seno  
Martínez  and  indicate  that  the  décollement  dipped  shallowly  toward  the  hinterland.  
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Figure  2.19.  Cartoon  model  showing  the  possible  development  of  the  Magallanes  décolle-­
ment  and  tectonic  significance  of  superposed  fabrics  at  Seno  Martínez.  Modified  after  
Klepeis  et  al.  (2010).  (a)  Extension,  diking  and  bimodal  magmatism  formed  the  Rocas  Verdes  
basin  during  the  Late  Jurassic.  The  basin  is  filled  with  a  thick  sequence  of  Upper  Jurassic  -­  
Lower  Cretaceous  mudstone  and  turbidites.  (b)  By  the  Late  Cretaceous,  closure  of  the  Rocas  
Verdes  basin  resulted  in  the  obduction  of  its  quasi-­oceanic  floor  onto  the  continental  margin  
and  formation  of  a  regional  décollement  at  the  basement-­cover  contact  that  is  reflected  by  D2  
fabrics  at  Seno  Martínez.  (c)  Continued  shortening  resulted  in  the  imbrication  of  the  Rocas  
Verdes  basin  terrane  and  propagation  of  thin-­skinned  thrust  wedge  toward  the  foreland  (i.e.  
Bahía  Fortesque  high-­strain  zone  and  other  first  generation  structures  of  Patagonian  fold-­
thrust  belt,  Chapter  1).  Within  the  décollement  zone  at  Seno  Martínez,  progressive  deforma-­
tion  was  accomplished  by  the  transposition  of  D2  fabrics  by  noncylindrical  and/or  sheath  
folds  (D3).  The  décollement  dipped  shallowly  (~6°)  toward  the  hinterland.  Below  the  décolle-­
ment,  regional  F3  folds  thicken  the  Cordillera  Darwin  metamorphic  complex.  (d)  Complete  
closure  of  the  Rocas  Verdes  basin  and  docking  of  the  Patagonian  arc  in  the  Paleogene  resulted  
in  thick-­skinned  deformation  of  the  thrust  wedge.  At  Seno  Martínez,  horizontal  shortening  
was  accommodated  by  doming  and  pervasive  refolding  (F4)  of  D3  structures  that  resulted  in  
the  uplift  and  partial  exhumation  of  high-­grade  rocks  in  the  core  of  the  Cordillera  Darwin  
Metamorphic  Complex.  Thick-­skinned  deformation  propagated  toward  the  foreland  where  a  
phase  of  out-­of-­sequence  basement-­involved  reverse  faulting  occurred  (i.e.  second-­generation  
structures  of  the  Patagonian  fold-­thrust  belt,  Chapter  1).  
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that formed near the basement-cover contact. At this time, pre-Andean fabrics (i.e. S1 at 

Seno Martínez) were transposed into parallelism with the pervasive composite schistose 

foliation (S2) and prominent quartz stretching lineation (L2) associated with D2 fabrics 

near Seno Martínez. Displacement was transferred toward the northeast resulting in the 

shearing and imbrication of the Tobífera Formation, development of the Bahía Fortesque 

high-strain zone and the earliest first-generation thrusts of the Patagonian fold-thrust belt 

(see Chapter 1). The D2 fabrics from the Magallanes décollement are considered to be 

contemporaneous and correlative with first generation obduction structures described by 

Klepeis et al. (2010) along the Beagle Channel and to reflect regional underthrusting of 

the continental margin beneath the Rocas Verdes basin terrane (see also, D1 of Nelson et 

al., 1980).  

Continued shortening and underthrusting of the continental margin resulted in the 

progressive deformation, burial and synkinematic metamorphism of the Cordillera 

Darwin Metamorphic Complex schists, and the transposition of third-generation folds 

(F3, D3) into D2 structures. Within the Seno Martínez D3 high-strain zone (Table 1), F3 

folds are expressed as both isoclinal and sheath folds that are both compatible with 

southwest-northeast shortening and bulk top-northeast shearing. Below the D3 high-strain 

zone at Seno Martínez, F3 folds occurred as regional recumbent folds that thickened the 

Cordillera Darwin Metamorphic Complex. Displacement during D3 was transferred 

toward the northeast along the Magallanes décollement toward the Bahía Foretesque 

high-strain zone where D3 is characterized by the isoclinal folding and shearing of S2 /L2. 

Displacement ramped over the Bahía Fortesque high-strain zone and was transferred into 

the Patagonian fold-thrust belt (see Chapter 1). Craton-directed (top-northeast) D2-3 

progressive deformation documented in this study is correlative with a phase of north-

vergent first-generation thrusting reported near the Beagle Channel that accomodated the 

partial obduction of the Rocas Verdes terrane onto the continental margin prior to ~86 

Ma (Klepeis et al., 2010; see also, Nelson et al., 1980). Deformation conditions during 

D2-3 near Seno Martínez were between 500-650° C, suggesting the Magallanes 

décollement occurred at ~20-25 km depth (assuming a 25° C/km geothermal gradient). 
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These deformation conditions are compatible with thermobarometry and pseudosection 

modeling from amphibolite-grade rocks exposed in the high-grade core of the Cordillera 

Darwin Metamorphic Complex near the Beagle Channel that were buried to depths ~35 

km (P = 12 kbar and T = 620°C, Malonely et al., 2011; see also Kohn et al., 1993) and 

were structurally below garnet-bearing rocks near Seno Martínez. D2-3 events recorded at 

Seno Martínez are part of a regional tectonic event that partially obducted rocks of the 

Rocas Verdes terrane and resulted in the underthrusting and buriel of the continental 

margin (c.f. obduction thrusts of Klepeis et al., 2010; D1 of Nelson et al., 1980; D1 of 

Calderón et al., 2012; prograde (S1) fabrics of Maloney et al., 2011). The Bahía Fortesque 

shear zone transferred displacement up-section and toward the northeast into the nacent 

Patagonian fold-thrust belt during D2-3 (c.f. Chapter 1). 

Fourth-generation structures at Seno Martínez reflect the complete closure of the 

Rocas Verdes basin and collision of the Patagonian arc by the Paleogene (c.f. Nelson et 

al., 1980; Klepeis et al., 2010). At Seno Martínez, D4 is defined by the sets of upright 

north- and south-dipping kink bands that overprint D2 and D3 structures and record 

horizontal southwest-northeast shortening and subvertical extension. D4 strains localized 

in Domain II where upright, isoclinal F4 folds refold D2 and D3 structures and form a high 

strain zone that uplifts garnet-grade rocks in the core of a regional F4  antiform. Folding 

of the garnet isograd at Seno Martínez probably correlates with the antiformal doming of 

amphibolite-grade isograds near the Beagle Channel (i.e. Kohn et al., 1993; Klepeis et 

al., 2010) that resulted in the uplift and partial exhumation of high-grade rocks in the core 

of the Cordillera Darwin Metamorphic Complex by the Paleogene (c.f. exhumation 

fabrics (S2) of Maloney et al., 2011; second generation bivergent structures of Klepeis et 

al., 2010; D2 and D3 of Nelson et al., 1980) and is compatible with Late-Cretaceous – 

Paleogene cooling of the high-grade core of the Codillera Darwin Metamorphic Complex 

(Maloney et al., 2011; Kohn et al., 1995). At Seno Martínez, D4 shortening is interpreted 

to cause the uplift and partial exhumation Cordillera Darwin Metamorphic Complex and 

be coincident with the propagation of out-of-sequence thick-skinned basement-involved 

reverse faults that cut first generations structures of the Magallanes décollement and fold-
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thrust belt (Figure 2.19d; c.f. Klepeis et al., 2010, see Chapter 1). The timing of D4 is also 

coincident with the depositional ages of sediments in the Magallanes forland basin that 

reflect rapid Paleogene exhumation and denudation of the Cordillera Darwin (Gombosi et 

al., 2009; Zahid et al., 2010). 

 

9. Conclusions 

 

 A newly defined regional ductile shear zone named the Magallanes décollement is 

several kilometers thick and decoupled an underthrust continental margin from an 

overlying retroarc fold-thrust belt during the Late Cretaceous inversion of a marginal 

basin and formation of Patagonian Andes. The décollement is defined by the 

transposition of several generations of noncylindrical folds including sheath folds, 

northeast-vergent L-S tectonites, C-S fabrics and C’-type shear bands that indicate 

dominantly top-northeast transport. The structural evolution of the décollement occurred 

in two phases of Late Cretaceous-Paleogene progressive deformation that resulted in the 

folding, synkinematic metamorphism and burial of the underlying Cordillera Darwin 

Metamorphic Complex (D2 -D3). These first two phases of deformation (D2 -D3) are 

interpreted to record the obduction of the Rocas Verdes Terrane and propagation of 

displacement into the Patagonian fold-thrust belt. A later stage of deformation (D4) 

records regional southwest-northeast horizontal contraction and vertical extension that 

resulted in the uplift and doming of high-grade rocks of the Cordillera Darwin 

Metamorphic Complex and folded the Magallanes décollement. The latter stage of 

deformation is coincident with a pulse of thick-skinned out of sequence thrusting the cut 

the décollement and first-generation thrusts in the Patagonian fold-thrust belt. D4 

shortening is interpreted to reflect complete closure of the Rocas Verdes basin  
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and collision of the Patagonian Arc with the continental margin.  

The décollement is a regional structure that is exposed in at least three locations 

over 100 km2 of the Patagonian Andes where it separates Late Jurassic and Early 

Cretaceous rocks of the Rocas Verdes basin above from the underlying Paleozoic 

Cordillera Darwin Metamorphic Complex. Quartz microstructures and CPOs record 

deformation temperatures of the décollement that are ~500-650° C in hinterland localities 

and ~400-550° C toward the foreland, indicating a regional hinterland dip of ~6°. Below 

the décollement and toward the hinterland, tectonic shortening was accommodated 

polyphase folding and crustal thickening of the basement schist. Above the décollement 

and toward the foreland shortening was accomplished by the formation of a retroarc fold-

thrust belt. The Magallanes décollement is a well exposed example of the kinematic link 

between polyphase ‘basement’ shortening and the development of a retroarc fold thrust 

belt during an ‘Andean-style’ orogeny.  
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CHAPTER 3: FAULT KINEMATICS OF THRUST, STRIKE-SLIP 
AND NORMAL FAULTS ALONG THE MAGALLANES-FAGNANO 

FAULT SYSTEM; IMPLICATIONS FOR LATE TERTIARY 
SINISTRAL TRANSTENSION  

 

Abstract 

 

The present tectonic setting of the southernmost Andes between 52° and 55°S 

latitude is dominated by a system of left-lateral faults that separates the South American 

and Scotia plates, known as the Magallanes-Fagnano fault system. Crosscutting 

relationships, modern fault scarps, and geomorphic lineaments indicate that recent strike-

slip deformation is superimposed on a Late Cretaceous – Paleogene Patagonian fold-

thrust belt that formed as a result of crustal shortening during the Andean orogeny. Fault 

kinematic data and crosscutting relationships from a population of thrust, strike-slip and 

normal faults located in a ~100 km2 region of the Magallanes fold-thrust belt, presented 

herein, show possible kinematic and temporal relationships between thrust and sets of 

coeval strike-slip and normal faults. Results indicate that thrust fault kinematics are 

spatially homogeneous in the study area and record subhorizontal northeast-trending 

shortening. Strike-slip faults form two kinematically distinct populations. The dominant 

set consists of northeast-striking right-lateral faults as well as east-northeast- and 

northwest-striking left lateral faults. The dominant set of strike-slip faults form a Riedel 

and less common P-shear geometry that is compatible with left-lateral slip on a west-

northwest trending principal fault zone, inferred to be the main splay of the Magallanes-

Fagnano fault system. A subsidiary set of strike-slip faults has kinematic axes opposite 

the dominant set and is older. Normal faults strike east and record north-south trending 

extension. Normal faults are generally kinematically compatible with the dominant set of 

strike-slip faults and are inferred to be coeval. Normal and strike-slip faults crosscut 

thrust faults and associated folds. A newly mapped, left-lateral fault zone termed the 

Bahía del Indio fault strikes northwest for ~100 km across the study area and reactivates 
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a Paleogene high-angle reverse fault. The study area occurs in a releasing step-over 

between overlapping left-lateral, left-stepping segments of the Bahía del Indio fault and 

the Magallanes-Fagnano fault. Results indicate that strike-slip and normal faults record a 

tectonic event defined by sinistral transtension that post-dates all contractional structures. 

Results are consistent with regional tectonic models that suggest sinistral shearing in the 

southernmost Andes was probably contemporaneous with the opening of the Drake 

Passage and the onset of seafloor spreading in the Western Scotia Sea during the Early 

Miocene.  

 

1. Introduction  

 
Three major sinistral transform systems accommodate present-day plate motions 

between the South American, Antarctica and Scotia plates including the Magallanes-

Fagnano fault – North Scotia ridge transform, South Scotia Ridge transform and the 

Shakleton fracture zone (e.g. Barker and Burrell, 1977; Pelayo & Wiens, 1989; Barker, 

2001; Smalley et al., 2003; 2007; Dalziel et al., 2013). The Magallanes-Fagnano fault 

system is located in southern Argentina and Chile between 52° and 55° S latitude (Figure 

3.1; Pelayo & Wiens, 1989) and accommodates most of the motion between the South 

American and Scotia plates (Smalley et al., 2003; 2007). Modern geomorphic lineaments 

and fault scarps of the Magallanes-Fagnano fault system are superimposed on the trend of 

the Patagonian retroarc fold-thrust belt, a ~700 km long orogenic belt that extends from 

Tierra del Fuego to the Pacific margin of Chile and records crustal contraction from the 

Late-Cretaceous to Tertiary Andean Orogney (e.g. Dalziel and Palmer, 1979; Nelson, 

1980; Klepeis, 1994; Ghiglione and Ramos, 2005; Klepeis et al., 2010; Fosdick et al., 

2011). 

The tectonic origin and timing of the onset of sinistral deformation along the 

Magallanes-Fagnano fault system has been the subject of some debate for several decades 

(e.g. Cunningham, 1993; Cunningham et al., 1995; Diraison et al., 2000; Kraemer, 2003; 

Ghiglione & Cristallini, 2007). Some interpretations suggest that sinistral deformation  

145



66°0'0"W

66°0'0"W

67°0'0"W

67°0'0"W

68°0'0"W

68°0'0"W

69°0'0"W

69°0'0"W

70°0'0"W

70°0'0"W

71°0'0"W

71°0'0"W

72°0'0"W

72°0'0"W

73°0'0"W

73°0'0"W

74°0'0"W

74°0'0"W

75°0'0"W

75°0'0"W

65°0'0"W

52
°0
'0
"S

52
°0
'0
"S

53
°0
'0
"S

53
°0
'0
"S

54
°0
'0
"S

54
°0
'0
"S

55
°0
'0
"S

55
°0
'0
"S

56
°0
'0
"S

Figure  3.1

Study Area

ANT SCO

SAM

6.6 ± 1.3 mm/yr1 M F F S

M F F S

B C F S

70°W 50°W 30°W 65
°S

55
°S

70°W 50°W 30°W

65°S
55°S

SAM SAM

SCO

ANT

ANT

N S R

S S R

S F Z

M F F S

L F
S A

P B

S O

146



Figure  3.1.  Shaded relief image of the southernmost Andes complied from SRTM topogra-
phy data. Location of the study area is shown. Thick blue line indicates map trace of the 
Magallanes-Fagnano and Beagle Channel fault systems after Cunningham (1993), Klepeis, 
(1994), Klepeis and Austin (1997), Smalley et al. (2003) and Lodolo et al. (2007). Thin 
blue lines indicate map trace of Neogene normal faults (tick on down-dropped block) after 
Diraison et al. (1997). Thick black line represents location of trench between the Antarctic 
and Scotia plates, teeth on overriding plate. Inset, physiography of the Scotia Arc region 
showing major plate bounding structures after Dalziel et al. (2013) and Smalley et al. 
(2003). Bold black lines are subduction zones with teeth in the upper plate, solid black 
lines are transform faults and dashed red lines are modern spreading centers. Abbreviations 
as follows: SAM, South American Plate: SCO, Scotia Plate; ANT, Antarctic Plate; MFFS, 
Magallanes-Fagnano fault system; BCFS, Beagle Channel fault system; NSR, North Scotia 
Ridge; SSR, South Scotia Ridge; SFZ, Shackleton Fracture Zone; LF, Lago Fagnano; SA, 
Seno Almirantazgo; PB, Peninsula Brunswick; SO, Seno Otway. Data sources: Digital 
Elevation Model, Farr et al. (2007); inset basemap from GeoMapApp 
(http://www.geomapapp.org, Ryan et al., 2009); 1, Smalley et al. (2003); 2, DeMets et al. 
(1990).
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occurred since the Late Cretaceous and that the Patagonian fold-thrust belt is product of 

ongoing wrench tectonics that occurred during and since the Andean Orogeny 

(Cunningham 1993; Cunningham et al., 1995; Menichetti et al., 2008). Other authors 

interpret the development of the thrust belt and onset of strike-slip deformation as having 

occurred as two separate tectonic events and conclude that strike-slip deformation has 

overprinted the thrust belt since the Oligocene (Klepeis, 1994; Klepeis & Austin, 1997; 

Lodolo et al., 2003; Ghiglione & Ramos, 2005). Most studies of the Magallanes-Fagnano 

fault system focus on a region of Tierra del Fuego near Lago Fagnano or the Beagle 

Channel where the fault strands are well exposed (Figure 3.1), however, the spatial extent 

and field relations of strike-slip deformation in the Patagonian fold-thrust belt beyond 

Tierra del Fuego is not well understood. 

This paper presents the results of a kinematic analysis of a population (n=235) of 

thrust, strike-slip and normal faults that occur within a previously unmapped ~100 km2 

region of the Patagonian fold-thrust belt between the Magallanes Straits and Isla Riesco 

in southern Chile (Figure 3.1). The goals of this study were to 1) determine the spatial 

extent of strike-slip deformation along-strike to the northwest from where it is well 

described on Tierra del Fuego, 2) test for kinematic compatibility between populations of 

thrust, strike-slip and normal faults in the study area and, 3) document field crosscutting 

relationships between thrust, strike-slip and normal faults. The results document the 

occurrence of coeval sets of strike-slip and normal faults that record sinistral transtension 

within a left-lateral, left-stepping segment of the Magallanes-Fagnano fault system. The 

results are discussed in the context of a tectonic transition from contraction to left-lateral 

shear that probably occurred in the early Miocene.  
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2. Tectonic setting and geologic background 

2.1 MAGALLANES-FAGNANO FAULT SYSTEM 

The Magallanes-Fagnano fault system transects Isla Grande of Tierra del Fuego 

and occupies the northwest-trending segment of the Magallanes Strait near the Pacific 

margin (Figure 3.1). Toward the northwest, the Magallanes-Fagnano fault system 

terminates at a trench-transform triple junction between the Antarctic, South American 

and Scotia plates. East of Tierra del Fuego, the Magallanes-Fagnano fault system joins 

the North Scotia Ridge, a sinistral transform boundary that extends from Tierra del Fuego 

>1700 km east toward South Georgia island and defines the northern boundary of the 

Scotia Sea plate (Pelayo & Wiens, 1989). On Tierra del Fuego, GPS data indicate that the 

present-day slip rate along the Magallanes-Fagnano transform is 6.6 ± 1.3 mm/yr and that 

an additional 1-2 mm/yr of sinistral slip is accommodated by diffuse deformation in 

Tierra del Fuego and southern Patagonia (Smalley et al., 2003). Relative plate motions 

are consistent with earthquake focal mechanism solutions from two events that occurred 

along the Magallanes-Fagnano fault segment on Tierra del Fuego (Smalley et al., 2007) 

and offshore toward the east (Pelayo & Wiens, 1989) that both indicate nearly pure 

strike-slip sinistral motion.  

In Tierra del Fuego and the Magallanes region of Chile, the Magallanes-Fagnano 

fault system consists of an array of steeply-dipping, sinistral transform faults that strike 

west near Tierra del Fuego and northwest near the Pacific margin of Chile (Figure 3.1). 

Individual fault strands are arranged in an en-echelon arrays that contain both right- 

(restraining step-over) and left- (releasing step-over) stepping segments. Asymmetric, 

normal fault bounded basins are commonly associated with releasing step-overs and 

oblique contractile folds are documented within restraining step-overs (Figure 3.1, 

Winslow, 1982; Klepeis & Austin, 1997; Lodolo et al., 2003; Menichetti et al., 2008). 

Lago Fagnano and Seno Almirantazgo (Figure 3.1) form prominent west trending 

lineaments that occupy oblique-normal fault bounded basins within a left-stepping 
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segment of the fault zone (Klepeis, 1994; Klepeis & Austin, 1997; Lodolo et al., 2003; 

Menichetti et al., 2008). 

Klepeis (1994) conducted the first detailed field-based kinematic analysis of the 

Magallanes-Fagnano fault system and demonstrated that it is characterized by dominantly 

sinistral strike-slip motion with a lesser component of normal-slip. He reported 20-25 km 

of sinistral separation and as much as 3 km of throw based on an offset thrust contact 

exposed near the western end of Lago Fagnano. Lodolo et al. (2003) postulated that the 

Magallanes-Fagnano fault system accommodated as much as 40 km of sinistral offset by 

extrapolating a GPS-based slip rate (~0.5 mm/yr after Del Cogliano et al., 2000) back to 

the cessation of seafloor spreading in the Scotia Sea at 8 Ma (after Barker and Burrell, 

1977). Kinematic analyses of brittle faults along the Magallanes-Fagnano fault segment 

near Lago Fagnano reported by Menichetti et al. (2008) indicate a dominant population 

of sinistral strike-slip faults and a smaller population of normal faults that is also 

consistent with the kinematic data of Klepeis (1994) and Klepeis and Austin (1997).  

2.2 TIMING OF STRIKE-SLIP DEFORMATION 

Field-based constraints on the age of the onset of strike-slip deformation are 

limited. Klepeis (1994) postulated that sinistral strike-slip deformation on Tierra del 

Fuego occurred after 60 Ma and dominantly since 30 Ma based on field observations 

indicating that strike-slip structures consistently crosscut Late Cretaceous contractional 

structures. In support of field observations, reflection seismic data across the Magallanes-

Fagnano transform fault, collected along the north trending segment of the Magallanes 

Strait, demonstrates that the main strand of the Magallanes-Fagnano fault overprints 

Cretaceous contractional structures (Klepeis and Austin, 1997) and is interpreted by the 

authors to be a result of the Oligocene onset of seafloor spreading in the Scotia Sea (i.e. 

~30 Ma; Barker and Burrell, 1977). In contrast, Lodolo et al. (2003; 2006) proposed a 

late Miocene (<9.5-6 Ma) age for the onset of sinistral translation along the Magallanes-

Fagnano fault system. These authors postulate a causal response between the cessation of 
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sea floor spreading in the western Scotia Sea (Lodolo et al., 2006) and the onset of strike-

slip deformation in Tierra del Fuego. 

On South Georgia (a displaced continental fragment of the Fuegian Cordillera 

now located at the eastern terminus of the North Scotia Ridge, see Dalziel et al., 1975), 

Curtis et al. (2010) described a ductile shear zone known as the Cooper Bay dislocation 

that formed under sinistral transpression during the first phase of the Andean Orogeny. 

These authors reported an 83.7 ± 1.2 Ma Rb/Sr age from synkinematic biotite within the 

shear zone and cite this as a minimum age for sinistral shearing (Curtis et al., 2010).  

A tectonic model proposed by Cunningham (1993) suggests that the Andean 

Orogeny in Tierra del Fuego was defined by sinistral transpression since 120 Ma as South 

America moved westward relative to the Antarctic Peninsula. This model is in part 

supported by a plate reconstruction that indicates a total of 1320 km of left-lateral strike-

slip displacement has occurred between southern South America and the Antarctic 

Peninsula since the relative westward rate of motion of southern South America increased 

c. 84 Ma. The model suggests that ~900 km of the motion occurred after 50 Ma 

(Cunningham et al., 1995). Although the absolute timing of the onset of strike-slip 

deformation in the southern Andes remains under debate, most authors agree that it is 

probably spatially variable and occurred mostly during the Cenozoic (see discussions by 

Klepeis 1994; Cunningham et al., 1995; Lodolo et al., 2003; Menichetti et al., 2008; and 

review by Dalziel et al., 2013).  

 

3. Methodology 

 

Fault-slip data including the attitudes of fault planes and striae as well as sense-

of-slip was collected from faults everywhere they were observed in the field. Sense-of-

slip was determined using observed offsets and common fault-slip indicators including 

fault surface asperities (‘steps’), secondary fractures such as Riedel-shears as well as 

tensile and/or sigmoidal vein orientations (e.g. Petit, 1987). Where possible, multiple 
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sense-of-slip indicators were noted. The quality of shear-sense indicators were ranked on 

a three-point scale and considered when interpreting the dataset. Where available, the 

magnitudes of displacement and thickness of fault gouge was measured. 

Kinematic analyses of the fault-slip data were conducted using the methods of 

Marrett and Allmendinger (1990), which facilitates a graphical comparison of the 

distribution and orientations of average incremental strain axes among populations of 

kinematically scale-invariant faults. Shortening and extension axes were calculated for 

each fault by bisecting the angle between the pole to the fault plane and the slip lineation 

and thus always lie within the movement plane (defined by the pole to fault and slip-

lineation, Aleksandrowski, 1985) at 45° to those features. Directional maxima for a 

population of shortening and extension axes representing a set of faults were calculated 

using the linked Bingham distribution statistics function of FaultKin and considered to 

reflect the average incremental strain axes of the population (Marrett and Almendinger, 

1990). Fault-slip data were weighted equally and assumed to be scale-invariant, the latter 

assumption is supported by both theoretical (e.g. Turcotte, 1986) and natural (e.g. Marrett 

& Allmendinger, 1992) examples of fault populations and is qualitatively testable by the 

‘Weighting test’ of Marrett and Allmendinger (1990). Fault plane solutions were 

constructed from the linked Bingham axes and plotted to illustrate the average kinematics 

from a population of faults.  

To test for spatial homogeneity of faulting, the scale-invariance of fault 

populations and the kinematic compatibility of fault-slip data in the study area, 

stereograms of faults and striae as well as kinematic axes and fault plane solutions from 

different field locations were graphically compared. Fault populations with subparallel 

kinematic axes and/or slip directions were considered to be kinematically compatible and 

scale-invariant. Subsets of fault populations with anomalous kinematic axes and/or slip 

directions were considered separately. Both brittle and semi-brittle fault zones are 

considered in this study. Because this study only considers fault kinematics and does not 

address the mechanical behavior of the faults, it is considered reasonable to compare 

kinematic axes from both brittle and semi-brittle fault zones and discuss them in the 
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context of understanding the orientation and distribution of average incremental strain 

axes for fault populations. Graphical analyses of fault-slip data and field observations of 

crosscutting relationships between fault sets were evaluated to understand the geologic 

significance of faults in the study area.    

 

4. Fault kinematic data 

 

A population (n=235) of fault kinematic data was collected from three study areas 

located between Seno Otway and the Magallanes Straits. The data are organized into 

separate populations of thrust, strike-slip and normal faults and are presented according 

to location for three study areas: 1) Canal Jeronimo, Seno Otway and Estuario Wickham 

to the northwest, 2) Estuario Silva Palma, Seno Cordes and Bahía Fortesque near central 

Peninsula Brunswick and 3) Cabo Forward and the Magallanes Straits toward the 

southeast (Figure 3.1). Refer to Chapter 1 for the names and significance of the structures 

mentioned. 

 

4.1 FAULTS NEAR CANAL JERONIMO, SENO OTWAY AND ESTUARIO WICKHAM 

4.1.1 Thrust faults 

Fault kinematic data were collected from 29 thrust faults exposed along the shores 

of Canal Jeronimo and Seno Otway (Figure 3.2). Near Canal Jeronimo, first generation 

thrust faults from the Tobífera duplex (Figure 3.2a) and a thrust that imbricates the Rocas 

Verdes basin terrane (Figure 3.2c) all display moderately southwest-dipping fault 

surfaces with down-dip, southwest-plunging or oblique south-southwest plunging slip 

lineations. Shortening axes are subhorizontal and plunge shallowly southwest and 

northeast and extension axes are subvertical. Minor fault planes associated with second-

generation thrusts near Canal Jeronimo dip steeply toward the southwest and  
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have down-dip slip lineations. Kinematic axes of the second generation thrusts are 

subparallel to those of first generation thrusts (Figure 3.2d). Toward the northeast, a 

steeply dipping out-of-syncline thrust is exposed within the Zapata-Canal Bertrand 

décollement (Figure 3.2e), fault planes, striae and kinematic axes from this fault are 

subparallel to those from first generation structures toward the southwest (Figures 3.2a-

c). 

Near Seno Otway, eight first-generation minor thrust faults are located in the 

footwalls of map scale thrusts that imbricate Late Cretaceous foreland basin strata. The 

minor faults form both synthetic and antithetic fault sets (Figure 3.2 f-g). Synthetic faults 

dip shallowly south-southwest and southwest and contain down-dip to obliquely plunging 

striae. Antithetic faults dip steeply toward the east-northeast and contain steeply north 

plunging striae. Shortening axes from first-generation thrusts within foreland basin strata 

plunge shallowly northeast, and extension axes are subvertical to steeply east-southeast 

plunging (Figures 3.2f-g).  

Near Estuario Wickham (Figure 3.3), minor thrust faults occur in the hanging wall 

of the second-generation Tobífera thrust. The fault planes dip shallowly to the west-

southwest and contain down-dip striae. Shortening axes from this thrust plunge shallowly 

northeast, and extension axes are subvertical (Figure 3.3a). In the hanging wall of the 

Tobífera thrust, first-generation thrust-sense shear bands that thicken the Cordillera 

Darwin Metamorphic Complex are axial planar to F1 folds (see Chapter 1), dip steeply 

toward the southwest, and contain down-dip quartz and mica mineral lineations. 

Shortening axes from thrusts in the Cordillera Darwin Metamorphic Complex plunge 

shallowly northeast and southwest and extension axes are subvertical (Figure 3.3b-c). 

Second-generation reverse faults that juxtapose the Cordillera Darwin Metamorphic 

Complex above the Tobífera Formation dip steeply toward the west and contain down-

dip quartz stretching lineations. Shortening axes plunge shallowly to the east and 

extension axes are subvertical (Figure 3.3d).  

In the footwall of the Tobífera thrust, minor thrusts that shear the limbs of first-

generation overturned folds within the Zapata-Canal Bertrand Formation (see chapter 1),  
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dip shallowly toward the southwest and contain down-dip white mica lineations and tool 

marks. Shortening axes from minor thrusts in the Zapata-Canal Bertrand Formation 

plunge shallowly to the northeast and extension axes are subvertical (Figure 3.3e). A 

small population of minor back thrusts (n=5) occur within the Latorre Formation. The 

back thrusts dip dominantly toward the north-northeast and contain down-dip slip 

lineations (Figure 3.3f-g). One antithetic thrust dips shallowly toward the south-

southwest. Shortening axes from back thrusts within the Latorre Formation plunge 

shallowly south-southeast, and extension axes are subvertical (Figures 3.3f-g).  

4.1.2 Strike-slip and normal faults 

A relatively small population (n=21) of strike-slip faults crop out near Seno 

Otway and Estuario Wickham (Figure 3.4). In Seno Condor at the southwest corner of 

Canal Jeronimo, five strike-slip faults are exposed. Four of the faults strike northeast and 

are right-lateral, and one fault strikes west-northwest and is left-lateral. Slip lineations on 

all of the fault planes are subhorizontal. Shortening axes plunge shallowly east-northeast 

and west-southwest. Extension axes are also subhorizontal and trend north and south 

(Figure 3.4a). 

Evidence for strike-slip deformation is absent along Canal Jeronimo between 

Seno Condor and Seno Otway. Strike-slip faults occur again in the eastern part of the 

study area near Seno Otway and Estuario Wickham (Figure 3.4). In Estuario Wickham, 

strike-slip faults occupy two dominant orientations. A set of west-striking faults is left-

lateral and north-northeast-striking faults are right-lateral. Trends of kinematic axes from 

strike-slip faults are mutually subparallel. Shortening axes plunge shallowly to 

moderately northeast and southwest. Extension axes are subhorizontal and plunge 

northwest or southeast (Figures 3.4b-c). At site 11071 (Figure 3.4), a right-lateral fault 

crosscuts a first-generation back thrust. 

Near Seno Otway, strike slip faults occupy similar orientations to those in 

Estuario Wickham. Sets of right-lateral faults strike northeast or north-   
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Figure  3.4.  Map  showing  spatial  distribution  and  orientations  of  strike-­slip  fault  popula-­
tions  and  kinematic  axes  in  the  northwestern  part  of  the  study  area  near  Canal  Jeronimo,  
Seno  Otway  and  Estuario  Wickham.  (a-­g)  Stereographic  projections  showing  attitudes  of  
faults  and  striae  (left)  and  kinematic  axes  (right).  (h)  Field  photograph  showing  map  view  
of  a  right-­lateral  strike-­slip  fault  (horizontal  trace  in  photo)  with  three  subsidiary  left-­
lateral  faults.  S0,  bedding,  field  book  for  scale.  
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northeast and left-lateral faults are west-striking (Figure 3.4d-h). Kinematic axes for fault 

sets dominated by right-lateral slip are mutually subparallel and have north- and south-

plunging extension axes and shortening axes that plunge both east and west (Figures 

3.4d, f, g). One set of left-slip faults has shortening axes that plunge northeast and 

southwest as well as southeast-trending extension axes (Figure 3.4f). Figure 3.4h shows 

an example of both right-lateral and left-lateral minor faults that are characteristic of  

those exposed near Seno Otway and Estuario Wickham. Displacements are on the order 

of centimeters to decimeters where they can be measured. 

4.2 FAULTS NEAR ESTUARIO SILVA PALMA, BAHÍA FORTESQUE AND SENO CORDES 

4.2.1 Thrust faults 

A population of 16 thrust faults from Estuario Silva Palma and 11 thrust-sense 

ductile shear bands from the Cordillera Darwin Metamorphic Complex schist exposed in 

Bahía Fortesque and Seno Cordes were measured. Near Estuario Silva Palma, the second 

generation Tobífera thrust is well exposed at sea level in three locations (Figure 3.5a). 

Everywhere this thrust dips shallowly to the southwest and contains down-dip quartz 

stretching lineations. Shortening axes plunge shallowly northeast and southwest, and 

extension axes are subvertical to steeply southwest plunging (Figure 3.5a). In the 

footwall, out of syncline thrusts that thicken the Zapata-Canal Bertrand Formation dip 

dominantly toward the southwest and contain down-dip to oblique south-southwest 

plunging calcite slip lineations. Shortening axes from thrusts in the Zapata-Canal 

Bertrand Formation plunge shallowly northeast and southwest, and extension axes are 

subvertical (Figure 3.5b). 

In Seno Cordes toward the south, a first generation shear zone is exposed at the 

base of the Tobífera Formation where it dips steeply to the west-southwest and contains 

down-dip quartz stretching lineations. Shortening axes plunge shallowly to the west-

southwest and extension axes are subvertical (Figure 3.5c). In Bahía Fortesque, thrust-

sense shear bands that are axial-planar to isoclinal F1 folds (i.e. Chapter 1, Figure 3.13f) 

dip shallowly to the southwest and contain down-dip to oblique southwest to south- 
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Figure  3.5.  Map  showing  spatial  distribution  and  orientations  of  thrust  fault  populations  
and  kinematic  axes  in  the  central  part  of  the  study  area  near  Estuario  Silva  Palma,  Bahía  
Fortesque  (BF)  and  Seno  Cordes  (SC).  (a-­d)  Stereographic  projections  showing  attitudes  
of  faults  and  striae  (left)  and  kinematic  axes  (right).  
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southwest plunging quartz stretching lineations. Shortening axes from the Bahía 

Fortesque shear zone plunge shallowly northeast and southwest, and extension axes are 

subvertical (Figure 3.5d).  

4.2.2 Strike-slip and normal faults 

In Estuario Silva Palma, a small population (n=8) of strike-slip and normal faults 

crosscut contractional structures (Figure 3.6). Strike-slip faults are not common in 

Estuario Silva Palma, however, where they occur they crosscut F1 folds within the 

Zapata-Canal Bertrand Formation and occupy similar orientations to those observed at 

Seno Otway. North-northeast-striking faults are right-lateral, and northwest-striking 

faults are left-lateral. Shortening axes plunge shallowly to the east, and extension axes are 

subhorizontal and plunge north and south (Figure 3.6a).  A small population of normal 

faults also occurs at Estuario Silva Palma (Figure 3.6b-e). Normal faults occupy two 

west-striking orientations, one set dips moderately toward the south, and a second dips 

shallowly toward the north to form a conjugate-style geometry. Striae have both down-

dip and oblique rakes on normal fault planes. Shortening axes cluster and are subvertical 

to steeply plunging. Extension axes plunge north and south (Figures 3.6b, c). At site 

11055 (Figure 3.6), a set of minor brittle faults with normal-sense displacements offsets 

the contact between a silicic dike that intrudes psammitic schist of the Cordillera Darwin 

Metamorphic Complex. Here, both the dike and the psammite share a subsolidus foliation 

that is interpreted to reflect the first phase Andean contractional deformation (S1, Figure 

3.6e), indicating that normal faulting postdated thrusting.  
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Figure 3.6. Map showing spatial distribution and orientations of strike-slip 
and normal fault populations and kinematic axes in the central part of the 
study area near Estuario Silva Palma, Bahía Fortesque and Seno Cordes. (a-c) 
Stereographic projections showing attitudes of faults and striae (left) and 
kinematic axes (right). (d-e) Field photographs of an outcrop face showing 
examples of brittle normal faults o!setting bedding (d) and a subsolidus S1 
foliation (e).
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4.3 FAULTS NEAR CABO FROWARD AND THE MAGALLANES STRAITS 

4.3.1 Thrust faults 

Eleven thrust faults were measured near Cabo Froward from exposures within the 

Zapata-Canal Bertrand Formation and Late Cretaceous foreland basin strata (Figure 3.7). 

At Cabo Froward, a set of four out-of-syncline thrust faults truncate overturned F1 tight 

folds within the Zapata-Canal Bertrand Formation (Figure 3.7a). Here, thrust faults dip 

shallowly toward the west and contain down-dip calcite slip lineations and tool marks. 

Shortening axes plunge shallowly east, and extension axes are subvertical (Figure 3.7b). 

A set of tensile calcite veins that formed adjacent to the thrust faults trends east and helps 

to confirm a top-northeast thrust sense of motion (Figure 3.7c). Northward along the 

Magallanes Straits, sets of both synthetic and antithetic minor thrust faults imbricate the 

Latorre and Escarpada Formations and dip moderately toward the northeast and 

southwest. Slip lineations defined by calcite fibers and mechanical grooves trend down-

dip. Shortening axes plunge shallowly northeast and southwest, and extension axes are 

subvertical (Figure 3.7d-e). North of Cabo Froward along the Magallanes Straits, fault 

populations are dominated by strike-slip and normal faults (discussed below). 

4.3.2 Strike-slip faults 

Along the Magallanes Straits for 30 km northeast of Cabo Froward (Figure 3.8), 

folds and thrusts of the Cretaceous foreland thrust belt (see Chapter 1) are overprinted by 

a substantial (n > 100) population of brittle strike-slip faults. Near Cabo Froward, several 

left-lateral strike-slip faults strike west and crosscut contractional F1 folds and thrusts that 

thicken the Zapata-Canal Bertrand Formation (Figure 3.8a, 3.9a). At this locality, one 

right-lateral fault strikes northeast in a conjugate-style orientation to the left-lateral set. 

Shortening axes from the population of 5 faults plunge shallowly northeast and 

southwest; extension axes are also shallowly plunging northwest and southeast (Figure 

3.8a). Between Cabo Froward and Bahía Rosa (Figure 3.8), a set of both right-lateral and 

left-lateral minor strike-slip faults crosscut tilted Late Cretaceous strata of the Latorre  
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Figure  3.7.  Map  showing  spatial  distribution  and  orientations  of  thrust  fault  populations  
and  kinematic  axes  in  the  southeastern  part  of  the  study  area  near  Cabo  Froward  and  the  
Magallanes  Straits.  (a)  Field  photograph  showing  F1  folds  within  the  Zapata-­Canal  
Bertrand  Fm.  near  Cabo  Froward  that  are  truncated  by  thrust  faults.  (b,  d-­e)  Stereo-­
graphic  projections  showing  attitudes  of  faults  and  striae  (left)  and  kinematic  axes  
(right).  (c)  Rose  diagram  showing  trends  of  tensile  calcite  veins  associated  with  thrust  
faults.  
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Figure  3.8.  Map  showing  spatial  distribution  and  orientations  of  the  dominant  strike-­slip  
fault  populations  and  kinematic  axes  in  the  southeastern  part  of  the  study  area  near  Cabo  
Froward  and  the  Magallanes  Straits.  (a-­g)  Stereographic  projections  showing  attitudes  of  
faults  and  striae  (left)  and  kinematic  axes  (right).  Rose  diagrams  in  (b-­d,  f-­g)  show  trends  
of  tensile  and  sigmoidal  calcite  veins  associated  with  the  strike-­slip  faults  in  each  location.
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Figure  3.9.  Field  photographs  showing  examples  of  strike-­slip  faults  near  Cabo  Froward  (a)  and  
the  Magallanes  Straits  (b-­f).  Faults  are  marked  by  broken  lines  and  bedding  (S0)  by  dotted  lines.  
(a)  Strike-­slip  faults  crosscutting  deformed  bedding  of  the  Zapata-­Canal  Bertrand  Fm.  near  Cabo  
Froward,  senses  of  displacement  are  apparent;;  here  slickenlines  are  subhorizontal  (see  figure  
3.8a),  (b-­c)  conjugate  sets  of  strike-­slip  faults  near  Bahía  Rosa  crosscutting  strata  of  the  Latorre  
(b,  map  view)  and  Escarpada  (c)  Fms.,  (d)  map  view  of  cataclasite  in  a  ~5  m  wide  left-­lateral  
fault  zone  at  site  10338,  (e-­f)  map  view  of  conjugate  sets  of  strike-­slip  faults  displacing  bedding  
of  the  Fuentes-­Rocallosa  Fms.,  short  solid  lines  highlight  trends  of  tensile  calcite  veins.  
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and Escarpada Formations (Figure 3.8b, 3.9b). Left-lateral faults occupy two common 

orientations, one set strikes west-northwest and the second set strikes north-northwest 

(Figure 3.8b). All right-lateral faults are northeast striking (Figure 3.8b). Kinematic axes 

from this population of right- and left-lateral faults cluster well. Shortening axes are 

shallowly east and west plunging, and extension axes plunge shallowly north and south 

(Figure 3.8b). Less than 5 km northeast of Bahía Rosa (Figure 3.8), F1 folds that thicken 

the Latorre Formation are crosscut by a set of right- and left-lateral faults that occupy 

similar orientations to those toward the southwest. Here, left lateral faults are east-

northeast and northwest striking, and all right-lateral faults strike northeast (Figure 3.8c). 

Kinematic axes are subparallel for both right- and left-lateral fault sets; shortening axes 

trend east-northeast and west-southwest, and extension axes trend north-northwest and 

south-southeast (Figure 3.8c). Near Punta Glasgot and Punta Brigida (Figure 3.8d,e), a 

small population of strike slip faults crosscuts F1 folds within the Escarpada Formation 

Here, left-lateral faults strike east-northeast and northwest, and right-lateral faults strike 

north-northeast. The kinematic axes are subhorizontal; shortening axes trend east to 

northeast and southeast, and extension axes plunge shallowly northwest and southwest or 

north and south. 

North of Punta Brigida near Bahía del Indio and Bahía del Aguila, strike-slip 

deformation intensifies. Between Punta Brigida and Bahía del Indio, a large set (n=49) of 

both left- and right-lateral faults crosscut steeply dipping strata of the Escarpada 

Formation (Figure 3.8f, g, 3.9c). Here, left-lateral faults strike dominantly east-northeast. 

Near site 10338 (Figure 3.8), a ~5 m wide intensely fractured zone that contains 

cataclasite defines a map-scale left-lateral fault that strikes northwest (Figure 3.9d). All 

right-lateral faults in this population are north- or northeast-striking. Kinematic axes from 

both right- and left-lateral faults cluster and are subhorizontal.  Shortening axes plunge 

northeast and southwest; extension axes plunge north to northwest and south to southeast 

(Figure 3.8f). Near Bahía del Aguila, both right- and left-lateral fault sets crosscut folded 

Maastrichtian strata of the Fuentes-Rocallosa Formations (Figure 3.8g, 3.9e, f). Here all 

right-lateral faults strike north to northeast, and all left-lateral faults strike east-northeast. 
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One left-lateral fault strikes northwest (Figure 3.8g). Kinematic axes from strike-slip 

faults near Bahía del Aguila cluster and are subhorizontal. Shortening axes plunge 

northeast and southwest; extension axes plunge northwest and southeast (Figure 3.8g). 

4.3.3 Veins 

Calcite-filled veins are commonly associated with strike-slip faults everywhere 

along the Magallanes Straits. Calcite veins occur either in tensile (i.e. mode-I fractures) 

or in sigmoidal geometries. The asymmetric orientations of mode-I veins and asymmetry 

of sigmoidal veins relative to fault planes was used to help determine the shear sense of 

associated of strike-slip faults. Calcite veins dominantly strike east to northeast. The 

dominant strikes are generally parallel to shortening axes associated with the strike-slip 

faults, indicating that veining and faulting were probably contemporaneous and lending 

credence to kinematic interpretations of the faults that are based on fault surface 

asperities and/or secondary fractures (Figure 3.8b-d, f-g; 3.9e-f).  

4.3.4 Anomalous strike-slip faults 

A small population (n=15) of strike-slip faults occurs along the Magallanes Straits 

with shear senses opposite those of the dominant sets discussed above. East of Cabo 

Froward, three left-lateral faults strike northeast, and one right-lateral fault strikes 

northwest (Figure 3.10a). At Punta Brigida, three left-lateral faults strike northeast or 

north (Figure 3.10b). A set of five faults near Bahía del Indio (Figure 3.10c) and three 

faults near Bahía del Aguila (Figure 3.10d) consist of right-lateral faults striking 

southeast and left-lateral faults striking northeast. Kinematic axes from the population 

(n=15) of anomalous faults cluster well and are subhorizontal. Shortening axes plunge 

north and south, and extension axes plunge east and west (Figures 10a-d).  Crosscutting 

relationships between the dominant and anomalous sets of faults were only observed in 

two localities at site 10315 (location in Figure 3.10). Here, two northeast-striking right-

lateral faults from the dominant set crosscut southeast-striking right lateral-faults of the 

anomalous set. On this basis, it is inferred that the dominant set of right- and left-lateral  
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Figure  3.10.  Map  showing  spatial  distribution  and  orientations  of  the  anomalous  strike-­slip  
fault  populations  and  kinematic  axes  in  the  southeastern  part  of  the  study  area  near  Cabo  
Froward  and  the  Magallanes  Straits.  (a-­d)  Stereographic  projections  showing  attitudes  of  
faults  and  striae  (left)  and  kinematic  axes  (right).  
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faults discussed above (i.e. Figure 3.8) are everywhere younger than the anomalous set 

discussed here (i.e. Figure 3.10).  

4.3.5 Normal Faults 

A small population (n=13) of minor normal faults also occurs along the 

Magallanes Straits between Cabo Froward and Bahía del Aguila (Figure 3.11). At Cabo  

Froward, one minor normal fault crosscuts sheared ignimbrite deposits near the contact 

between the Tobífera and Zapata-Canal Bertrand Formations (Figure 3.11a). Along the 

shore of the Magallanes Strait <5 km east of Cabo Froward, at least seven normal faults 

occur (e.g. Figure 3.11b). Here, striae have steep rakes on normal fault planes that 

indicate oblique slip. One east-northeast-striking and three northwest-striking faults have 

a left-normal sense of slip. Three northeast-striking faults have a right-normal sense of 

slip (Figure 3.11b). Near Punta Brigida, two west-striking normal faults have down-dip 

striae, and one northeast-striking oblique slip fault has a normal-right sense of shear 

(Figure 3.11c). Only two normal faults were observed north of Punta Brigida (Figure 

3.11d). Here, an east-northeast-striking fault has a right-normal shear sense, and a 

northwest-striking fault has a left-normal sense of shear. Throughout the study area, 

shortening axes are clustered and subvertical. Most west-striking normal faults have 

extension axes that are subhorizontal and plunge north or south. East of Cabo Froward, 

extension axes are subhorizontal and generally trend north or south (Figure 3.11a-d). 
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Figure  3.11.  Map  showing  spatial  distribution  and  orientations  of  normal  fault  populations  
and  kinematic  axes  in  the  southeastern  part  of  the  study  area  near  Cabo  Froward  and  the  
Magallanes  Straits.  (a-­d)  Stereographic  projections  showing  attitudes  of  faults  and  striae  
(left)  and  kinematic  axes  (right).  
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5. Results: Test for kinematic compatibility among fault sets 

 

To test for kinematic compatibility among faults sets in different locations along-

strike, the attitudes of fault planes and striae as well as orientations of kinematic axes are 

graphically compared using the methods of Marrett and Allmendinger (1990). 

5.1 THRUST FAULTS 

Thrust faults near Canal Jeronimo, Seno Otway and Estuario Wickham dip 

dominantly toward the southwest and contain down-dip or steeply oblique striae. A  

subsidiary northeast-dipping set of faults occurs that forms a conjugate orientation with 

the main set. Shortening axes are subhorizontal and trend northeast, and extension axes 

are subvertical (Figure 3.12a, b). Thrust faults exposed near Estuario Silva Palma, Bahía  

Fortesque and Seno Cores have similar orientations. Here, thrusts dip dominantly 

southwest and contain down-dip or steeply oblique striae. Shortening axes plunge 

shallowly northeast and southwest, and extension axes are subvertical or  

steeply southwest-plunging (Figure 3.12c, d). Thrust faults exposed near Cabo Froward 

and along the Magallanes Straits also have similar orientations. Both west-southwest and 

northeast dipping faults form a conjugate geometry. Subhorizontal shortening axes 

plunge northeast and southwest; extension axes are subvertical (Figure 3.12e). A plot of 

all thrust faults in the study area highlights a high degree of kinematic compatibility 

within the population (Figure 3.12f). It is clear that thrust faults have a dominant 

orientation that dips shallowly toward the southwest and contains striae with high-angle 

rakes on the fault surfaces. Kinematic axes from the total population (n=88) of thrust 

faults form point maxima indicating that they show kinematic homogeneity throughout 

the study area. Shortening axes are subhorizontal and trend northeast. Extension axes are 

subvertical. The plunge and trend of mean principal strain axes calculated by the linked 

Bingham method are 1) extension = 78°, 216°; 2) intermediate = 4°, 325°; and 3) 

shortening = 11°, 056° (Figure 3.12f), which are compatible with the regional trends of  
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Figure  3.12.  Stereographic  projections  showing  attitudes  of  faults  and  striae  (left)  and  
kinematic  axes  (right)  from  all  thrust  faults  near  (a)  Canal  Jeronimo  and  Seno  Otway,  (b)  
Estuario  Wickham,  (c)  Estuario  Silva  Palma,  (d)  Seno  Cordes  and  Bahía  Fortesque,  (e)  
Cabo  Froward  and  the  Magallanes  Straits  and  (f)  all  thrust  faults  in  the  study  area.
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contractional structures of the Cretaceous to Paleocene Magallanes fold-thrust belt (see 

Chapter 1).   

5.2 STRIKE-SLIP FAULTS 

Strike-slip faults occupy two dominant orientations near Canal Jeronimo and Seno 

Otway (Figure 3.13a), Estuario Wickham (Figure 3.13b) and Estuario Silva Palma 

(Figure 3.13c). North to northeast-striking faults sets are all right-lateral, northwest- and 

east-northeast-striking sets are left-lateral. Striae are always moderately to shallowly 

plunging on fault surfaces, indicating a small component of either normal or reverse  

displacement that depends on the dip-direction of the fault surface and plunge direction 

of the slickenline. However, faults with small components of either normal or reverse 

senses of motion have subparallel kinematic axes and are therefore considered  

kinematically compatible and part of the same deformation. Kinematic axes from strike-

slip fault populations near Canal Jeronimo, Seno Otway, Estuarios Wickham and  

Silva Palma are subparallel. Shortening axes plunge generally northeast and southwest; 

extension axes plunge generally northwest and southeast (Figures 13a-c).  

Two populations of strike-slip faults occur near Cabo Froward and the 

Magallanes Straits. The dominant set (n=105) is subparallel to strike-slip faults elsewhere 

in the study area. Right-lateral faults all strike northeast, and left-lateral faults strike east-

northeast, forming a conjugate-style set, or northwest. Shortening axes from this 

population generally plunge shallowly east-northeast or west-southwest; extension axes 

generally plunge shallowly north-northwest and south-southeast (Figure 3.13e). The 

anomalous set of strike-slip faults (n=15) have opposite senses of shear for their 

orientations compared with the dominant population (Figure 3.13d). For this reason the 

kinematic axes from this population of faults is also opposite those of the dominant set. 

Where observed, strike-slip faults from the dominant set always crosscut strike-slip faults 

of the anomalous set, indicating that the anomalous set probably reflects an earlier phase 

of strike-slip deformation than the dominant set. Thus the two sets of strike-slip faults are 

discussed separately. 
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Figure  3.13.  Stereographic  projections  showing  attitudes  of  faults  and  striae  (left)  and  
kinematic  axes  (right)  from  all  strike-­slip  faults  near  (a)  Canal  Jeronimo  and  Seno  Otway,  
(b)  Estuario  Wickham,  (c)  Estuario  Silva  Palma,  (d)  Cabo  Froward  and  the  Magallanes  
Straits,  (e)  all  anomalous  strike-­slip  faults  and  (f)  all  strike-­slip  faults  from  the  dominant  
population  in  the  study  area.
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The attitudes of faults and striae, as well as the orientations of kinematic axes, 

from the dominant set of faults near Cabo Froward and the Magallanes Straits (i.e. Figure 

3.13e) are generally parallel to those elsewhere in the study area (Figure 3.13f). The total 

population of strike-slip faults in the study area (n=128, excluding the anomalous set) is 

internally kinematically homogeneous based on the subparallelism of shallowly plunging 

kinematic axes that form statistically distinct point maxima defined by north-northwest-

trending extension axes and east-northeast-trending shortening axes (Figure 3.13f). The 

plunge and trend of the mean principal strain axes calculated by the linked Bingham 

method are 1) extension = 01°, 339°; 2) intermediate = 81°, 244°; and 3) shortening = 

09°, 070° (Figure 3.13f). 

Right- and left-lateral strike-slip faults from the dominant population form a 

conjugate set such that right-lateral faults have a mean strike of 030° and left-lateral  

faults have a mean strike of 085°. A small sub-population of left-lateral faults strikes 

toward 300° (Figure 3.14a). The orientations and sense of slip of the dominant faults are  

sympathetic with the predicted attitudes and shear senses expected for a population of 

faults that form Riedel shears. Northeast-striking right-lateral faults form R’-shears and 

east-northeast striking left lateral faults form R-shears. The small set of northwest-

striking left-lateral faults has an orientation consistent with P-shears (Figure 3.14a). 

Tensile calcite veins associated with strike-slip faults exposed along the Magallanes 

Straits trend dominantly northeast and have a mean strike of 043° (Figure 3.14b) that is 

subparallel to the expected orientation of T-shears. The orientations of R-, R’-, P- and T-

shears in the study are compatible with a principal fault plane that strikes west-northwest 

(~280°) and has a left-lateral sense of slip. The predicted principal fault zone is strikingly 

parallel to the trend of the Magallanes-Fagnano fault system (~275° near Tierra del 

Fuego and ~300° in the Magallanes Straits, Figure 3.1), thus strongly suggesting a 

genetic relationship between strike-slip faulting in the study area and the development of 

the Magallanes-Fagnano fault system.  
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Figure  3.14.  Kinematic  synthesis  of  the  dominant  set  of  strike-­slip  faults,  (a)  rose  diagram  
showing  strikes  of  the  dominant  sets  of  right-­  and  left-­lateral  faults  in  the  study  area,  thick  blue  
line  shows  trend  of  predicted  principle  fault  zone  based  on  Riedel  shear  geometry,  (b)  rose  
diagram  showing  trends  of  tensile  veins  in  the  study  area,  (c)  diagram  synthesizing  trends  of  
right-­  and  left-­lateral  faults  as  well  as  tensile  veins  according  to  Riedel  shear  theory,  ellipse  is  a  
schematic  strain  ellipse  and  thick  black  arrows  show  expected  shortening  and  extension       
directions.  
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5.3 NORMAL FAULTS 

Normal faults in the study area were only observed near Estuario Silva Palma or 

along the Magallanes Straits (Figure 3.15a-b). In both locations they occupy three 

common orientations that strike west, northeast or northwest. Normal faults commonly 

dip steeply (~60°) and form conjugate-style sets that contain steeply plunging to oblique 

striae on the fault surfaces (Figure 3.15a-c). Kinematic axes from all normal faults in the 

study area form moderately defined point maxima such that shortening axes are 

subvertical, and extension axes are subhorizontal and north- or south-plunging. The 

plunge and trend of principal kinematic axes of normal faults calculated by the linked 

Bingham method are 1) extension = 3°, 183°; 2) intermediate = 2°, 093°; and 3) 

shortening = 86°, 332° (Figure 3.15c).  

5.4 RELATIVE TIMING OF NORMAL, STRIKE-SLIP AND THRUST FAULTS 

Minor normal faults were only observed in close proximity to strike-slip faults. In 

many cases oblique-slip normal faults have the same strike-slip component of shear as 

parallel sets strike-slip faults discussed above. For example, east of Cabo Froward, the 

northwest-striking set of normal faults has a component of left-lateral slip, consistent 

with northwest-striking strike-slip faults from the same location (i.e. Figures 3.8b, 3.11b). 

Similarly, northeast-striking normal faults in this locality have a component of right-

lateral slip, consistent with the set of right-lateral faults that also strike northeast (i.e. 

Figures 3.8b, 3.11b). Extension axes for normal fault populations plunge northward and 

southward and are subparallel, similar to the north-northwest and south-southeast plunges 

of those from the dominant set of strike-slip faults in the study area (Figure 3.15d) and 

indicating a degree of kinematic compatibility between strike-slip and normal fault sets.  

On this basis it is interpreted that strike slip and normal faults are kinematically related 

and reflect a phase of bulk transtensional strain (c.f. Klepeis, 1994; Lodolo et al., 2003; 

Menichetti et al., 2008).  

Although the orientation of shortening axes from strike-slip faults is subparallel to 

that of thrust faults (Figure 3.15d), the extension axes are perpendicular.  Also, cross- 
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Figure  3.15.  Stereographic  projections  showing  attitudes  of  faults  and  striae  (left)  
and  kinematic  axes  (right)  from  all  normal  faults  near  (a)  Estuario  Silva  Palma,  (b)  
Cabo  Froward  and  the  Magallanes  Straits,  (c)  all  normal  faults  in  the  study  area,  and  
(d)  equal  area  stereographic  projection  of  linked  Bingham  axes  calculated  for  the  
total  normal  fault  population  (solid  circles),  the  total  population  of  dominant  strike-­
slip  faults  (solid  squares),  the  population  of  anomalous  strike-­slip  faults  (solid  
diamonds),  and  the  total  population  of  thrust  faults  (solid  triangles)  in  the  study  area.  
Red  indicates  principal  extension  axes,  black  indicates  intermediate  axes  and  blue  
indicates  principal  shortening  axes.  
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cutting relationships clearly indicate that strike-slip faulting everywhere overprints F1  

folds and thrusts from the Magallanes fold-thrust belt (i.e. Figure 3.9a, c). Consistent with 

this observation, the deformation conditions for strike-slip and normal faults were not the 

same as those for thrust faults. Many thrust faults in the study are defined by subsolidus 

quartz and feldspar foliations and recrystallized quartz stretching lineations (e.g. Bahía 

Fortesque, Figure 3.6b; Chapter 1, 2), indicating deformation temperatures >300°C (see 

Chapter 2). In contrast, all strike-slip and normal faults observed are brittle shear 

fractures indicating that they formed under much cooler deformation conditions and 

probably shallower levels of the crust, thus requiring substantial exhumation of the thrust 

belt to have occurred prior to the onset of strike-slip deformation. On the basis of 

crosscutting relationships and deformation conditions for each set of faults, it is deduced 

that strike-slip- and normal- faulting probably initiated during the Oligocene after the 

main pulse of Late-Cretaceous to Eocene contractional deformation ceased (c.f. Klepeis, 

1994; Klepeis and Austin, 1997; Torres Carbonell et al., 2008) and significant 

exhumation of the fold-thrust belt occurred (Fosdick et al., 2013).  

The small population (n=15, Figure 3.10) of anomalous strike-slip faults exposed 

near the Magallanes Straits is not kinematically compatible with any other fault set in the 

study area. The kinematic axes from these faults reflect north-south shortening and east-

west extension (Figure 3.15d). Bingham analysis indicates that the intermediate principal 

strain axes of both sets of strike slip faults are subparallel however, the shortening and 

extension axes of the anomalous set occur ~65° CCW from those of the dominant set 

(Figure 3.15d). It is possible that the anomalous set of strike-slip faults reflects the 

earliest motions of sinistral strike-slip deformation associated with the Magallanes-

Fagnano fault system and records north-trending shortening and east-trending extension 

that occurred in a restraining bend that developed near the northwest-striking segment of 

the Magallanes-Fagnano fault zone near Bahía del Indio. This interpretation is supported 

by the observation that northeast-vergent inclined folds of bedding that are common in 

the fold-thrust belt (i.e. Chapter 1) are tighter and occur in more upright orientations near 

the map trace of strike-slip faults at Bahía del Indio (Chapter 1 Figure 1.15, 1.16a, g-j). 
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Furthermore, the dominant set of strike-slip faults that is kinematically compatible with 

normal faults always crosscuts the anomalous set, indicating that transtensional 

deformation is younger. This interpretation is favored because it does not require 

complicating regional tectonic interpretations based on a relatively small population of 

minor faults.  

 

6. Discussion 

6.1 SPATIAL DISTRIBUTION OF STRIKE-SLIP AND NORMAL FAULTS, IMPLICATIONS FOR 

EXTENT OF THE MAGALLANES FAULT SYSTEM 

Strike-slip deformation is heterogeneously distributed throughout the study area. 

The highest density of strike-slip faults occurs along the Magallanes Straits, probably 

because of their close proximity to the of the Magallanes-Fagnano fault system (e.g. 

Figure 3.8). Winslow (1982) used areal photos to identify several young (Holocene?) 

fault scarps that she interpreted as left-lateral splays from the Magallanes fault system. 

One splay transects Isla Dawson and trends northwest toward Peninsula Brunswick 

(Figure 3.16). A second fault scarp truncates stream meanders of the Río San Juan, 

located on Peninsula Brunswick north of the study area (Figure 3.16). New data 

presented in this study discerns a high-density of minor strike-slip faults near Bahía del 

Indio and Bahía Aguila that are kinematically compatible with a left-lateral, west-

northwest striking principal fault zone. Bahía del Indio is exactly on strike from the trace 

of the fault splay on Isla Dawson interpreted by Winslow (1982), and thus minor faults in 

the area are interpreted to be associated with as the same structure (Figure 3.16). 

Subsurface seismic data collected along the north-trending segment of the 

Magallanes Straits between Isla Dawson and Peninsula Brunswick (Figure 3.1) confirm 

the occurrence of a steeply southwest-dipping fault plane along strike from Bahía del 

Indio and the map trace of a the fault picked by Winslow (1982) (Klepeis and Austin, 

1997; Lodolo et al., 2003). Lodolo et al. (2003) interpret a component of normal down-

to-the-southwest displacement in addition to left-lateral shear based on growth strata that 
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fill a small graben in the hanging wall of the fault (Figure 3.15 of Lodolo et al., 2003). 

Similarly, Klepeis and Austin (1997) interpret normal-sense offset of bright reflectors 

between 1 and 5 second TWT.  However, the data are not migrated because of problems 

with seafloor reverberation and sidewall echoes making the actual position of the 

reflectors somewhat ambiguous (Figure 6 of Klepeis and Austin, 1997). These seismic  

interpretations conflict with field mapping along the shore of Peninsula Brunswick near 

Bahía del Indio. Here, the stratigraphic separation across the fault requires a substantial 

reverse component of motion on a southwest-dipping fault that I interpret to be a thick-

skinned second-generation basement uplift with ~3 km of throw (see Chapter 1). A 

possible explanation for the apparently conflicting interpretations lies in knowing the age 

of the reflectors that are interpreted by Lodolo et al. (2003) and Klepeis and Austin 

(1997). The former authors had interpretable seismic resolution to 1 second TWT, and  

the sediment water interface is located at 0.8 second TWT, suggesting that the growth 

strata in the fault graben are probably very young (Quaternary?, Lodolo et al., 2003). On 

the basis of field mapping along the shore of Peninsula Brunswick that requires a 

substantial component of reverse motion on the fault (~3 km of throw), my interpretation 

is that a high-angle Cretaceous reverse fault was reactivated by left-normal slip described 

by Klepeis and Austin (1997) and Lodolo et al. (2003). This interpretation is consistent 

with field observations from this study that indicate strike-slip faults consistently crosscut 

contractional structures of the Magallanes fold-thrust belt as well as recent seismicity 

(Pelayo and Wiens, 1989) and geodetic data (Smalley et al., 2003) that indicate left-

lateral deformation is presently active.  

The map trace of the reverse fault near Bahía del Indio is inferred to continue for 

~100 km toward the northwest, where it crops out again at Seno Otway (Figure 3.16). 

Here, strike-slip deformation is localized in the eastern part of the map area (i.e. Figure 

3.4) near Seno Otway and Estuario Wickham. Faults from these locations are 

kinematically compatible with the population of Riedel shears that form under bulk left 

lateral shear (i.e. Figure 3.14). For this reason, it is inferred that minor strike-slip faults 

that occur near Seno Otway and Estuario Wickham are Riedel shears associated with left- 
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Figure  3.16.  Shaded  relief  image  showing  trace  of  the  newly  mapped  Bahía  del  Indio  
fault  and  correlation  with  splay  of  the  Magallanes-­Fagnano  fault  system  as  mapped  by  
1,  Winslow  (1982);;  2,  Klepeis  (1994);;  3,  Klepeis  and  Austin  (1997)  and  4,  Lodolo  et  al.  
(2003).  Thin  dashed  lines  show  traces  of  normal  faults  inferred  from  the  shaded  relief  
image  or  from  apparent  changes  in  the  depth  of  exposure  that  are  observed  in  the  field  
(see  Chapter  1).  The  geologic  map  of  Peninsula  Brunswick  (see  Chapter  1)  is  shown  to  
demonstrate  the  superposition  of  strike-­slip  deformation  along  the  trend  of  the  
Cretaceous-­Paleogene  fold-­thrust  belt.  Inset,  schematic  showing  the  development  of  a  
releasing  step-­over,  modified  after  Twiss  and  Moores  (2007).  MFF,  Magallanes-­
Fagnano  fault;;  BdIF,  Bahía  del  Indio  fault.
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lateral slip along the Bahía del Indio fault, suggesting that left-lateral deformation persists 

northwestward across Peninsula Brunswick along the Bahía del Indio fault for ~100 km 

farther than previously mapped. On the basis of the much lower density of strike-slip 

deformation near Seno Otway than the Magallanes Straits, I infer that the fault probably 

loses its strike-slip component of displacement toward the northwest (Figure 3.16).  

Strike-slip faults also occur in Seno Condor northwest of Canal Jeronimo. Here, I 

interpret them to reflect a left-lateral splay fault from the Magallanes-Fagnano fault 

system toward the south that probably formed along the boundary between the 

Patagonian Batholith and mafic rocks of the Rocas Verdes basin, which may have 

localized strain (Figure 3.4a, 3.16). 

Figure 3.16 shows map traces of three east-northeast- or northeast-striking faults 

that are inferred from lineaments in the DEM or from changes in the depth of exposure 

across a fiord (i.e. Canal Jeronimo, see Chapter 1).  The faults are inferred to have 

normal-sense displacements based on their orientation relative to the Magallanes-

Fagnano fault system, the strikes of minor normal faults presented in this study (Figure 

3.15) and the strikes of regional normal faults interpreted by Diraison et al. (1997) and 

shown in Figure 3.1. Northeast-striking normal faults are located between overlapping 

strands of the Magallanes-Fagnano fault and the Bahía del Indio fault and strike ~45° 

counterclockwise to the strike-slip faults, thus occupying the expected orientation for a 

system of normal faults that formed between two strands of a left-stepping left lateral 

fault system (Figure 3.16, see inset). On this basis, it is concluded that the Magallanes-

Fagnano fault segment in the Magallanes straits south of Peninsula Brunswick and the 

newly mapped Bahía del Indio fault strand form a left-stepping, left-lateral fault segment 

from Isla Dawson to Seno Otway. Thus the study area on Peninsula Brunswick occurs in 

releasing zone of the Magallanes-Fagnano fault system. This interpretation is consistent 

with fault kinematic results from strike-slip and normal fault sets in the study area near 

Estuario Silva Palma, Cabo Froward and the Magallanes Straits that are apparently 

coeval and record left-lateral shear along a northwest striking fault system and north-

south extension (Figures 3.6, 3.8, 3.11, 3.15d, 3.16). Left-stepping releasing segments of 
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the Magallanes-Fagnano fault system are well documented near Mt. Hope and Lago 

Fagnano and Isla Dawson (Klepeis and Austin, 1997; Lodolo et al., 2003; Menichetti et 

al., 2008), and near Isla Desolación along the Pacific margin of Chile (Lodolo et al., 

2003), indicating that transtensional deformation occurred in many places along the 

Magallanes-Fagnano fault system.  

6.2 TIMING OF TRANSTENSION 

Although the absolute timing of the onset of strike-slip deformation in the 

southernmost Andes is not well constrained, most authors agree that sinistral transtension 

has occurred dominantly since Oligocene time (e.g. Klepeis, 1994; Lodolo et al., 2003; 

Menichetti et al., 2008) and probably shares a genetic relationship with the opening of the 

Drake Passage and development of the Scotia Plate (e.g. Barker, 2001; Geletti et al., 

2005; Lodolo et al., 2006). Crosscutting relationships presented in this paper are 

consistent with those reported by many authors (e.g. Klepeis et al., 1994; Klepeis and 

Austin, 1997; Lodolo et al., 2003; Menichetti et al., 2008; Torres Carbonell, 2008) that 

indicate strike-slip deformation overprints the Late-Cretaceous to Eocene retroarc fold-

thrust belt. Time-constrained balanced cross sections of the Fuegian retroarc thrust belt 

indicate that the last pulse of thrusting occurred during the Late Oligocene or Early 

Miocene (Torres Carbonell et al., 2011). This author reports that contractional structures 

of the Fuegian fold and thrust belt are offset by ~48km of sinistral displacement across 

the Magallanes-Fagnano fault system, indicating a maximum Miocene age for the 

development of the fault system based on the age of offset strata. The magnitude of offset 

and crosscutting relationships that indicate a Miocene age for the onset of strike-slip 

deformation are consistent with an extrapolation of the present slip-rate (~6.6 mm/yr after 

Smalley et al., 2003) combined with the obtained offset to ~7 Ma. (Torres Carbonell, 

2008; c.f. Lodolo et al., 2003). A Miocene age for the onset of strike-slip deformation on 

Tierra del Fuego coincides with a widespread pulse of uplift and exhumation of the 

Patagonian fold-thrust belt near Ultima Esperanza (Fosdick et al., 2013) and the 

emergence of the North Scotia Ridge and Tierra del Fuego (Barker, 2001; Eagles, 2005; 
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Lagabrielle et al., 2009), suggesting a regional response to changes in the tectonic setting 

of the Scotia Arc during the opening of the Drake Passage and development of the West 

Scotia Sea (c.f. Dalziel et al., 2013).  

 

7. Conclusions 

 

Fault slip data collected over a ~100 km2 of the Magallanes retroarc fold thrust 

belt near Peninsula Brunswick and Seno Otway fall into four well defined populations: 1) 

thrust faults strike northwest and have subhorizontal, northeast-trending shortening axes; 

2) a dominant set strike-slip faults form a conjugate set that consists of northeast-striking 

right-lateral faults and east-northeast left-lateral faults as well as less common northwest-

striking left-lateral faults; 3) normal faults for a population that strike east to east-

northeast and northwest and have subhorizontal north- or south-plunging extension axes; 

4) an anomalous set of strike-slip faults consisting of northeast-striking left-lateral faults 

and northwest-striking right lateral faults that is crosscut by the dominant set. 

Strike-slip faults form Riedel, T- and P-shear geometries and have subhorizontal 

east-northeast trending shortening axes, kinematically compatible with the west-

northwest-trending map trace of the sinistral Magallanes-Fagnano fault system. A 

population of oblique-slip normal faults is kinematically compatible with strike-slip faults 

of the dominant set and together both fault sets reflect regional bulk transtension. An 

older, subsidiary set of left- and right-lateral strike-slip faults is crosscut by the dominant 

set and has horizontal shortening axes that trend northward. The subsidiary set is 

interpreted to reflect the earliest stages strike-slip motion and to reflect north-trending 

shortening in a restraining bend.  

A newly mapped left-lateral fault segment named the Bahía del Indio fault strikes 

northwest for ~100 km across Peninsula Brunswick between the Magallanes Straits and 

Seno Otway. The map trace of this fault is continuous with a prominent lineament that 

appears in areal photographs and satellite imagery to transect Isla Dawson (Winslow, 
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1982) and a left-normal fault that appears in reflection seismic data below the Magallanes 

Straits (Klepeis and Austin, 1997; Lodolo et al., 2003), indicating that the Bahía del Indio 

fault is part of the Magallanes-Fagnano fault system. The southwestern end of Peninsula 

Brunswick occurs in a left-lateral, left-stepping releasing zone between the Bahía del 

Indio fault and the Magallanes-Fagnano fault trace in the northwestern trending segment 

of the Magallanes Straits.  

Strike-slip and normal faults crosscut thrust faults and contractional folds of the 

Magallanes retroarc fold-thrust belt everywhere they were observed, indicating that the 

onset of strike-slip deformation on Peninsula Brunswick postdates the Late-Cretaceous – 

Eocene fold-thrust belt. Crosscutting relationships and fault kinematic data from 

Peninsula Brunswick support a growing body of literature that place the Magallanes-

Fagnano fault system in a tectonic framework defined regional sinistral transtension that 

occurred in response to the opening of the Western Scotia Sea and the Drake Passage 

during the Early Miocene. 
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APPENDIX A: UTM COORDINATES OF DATA STATIONS, WGS84 

Station 
No. 

Zone 
(S) Easting Northing 

Station 
No. 

Zone 
(S) Easting Northing 

Station 
No. 

Zone 
(S) Easting Northing 

900 19 372308 4057416 938 18 668548 4081800 975 18 671664 4101772 

901 19 326083 4034414 939 18 668333 4082804 976 18 671928 4101105 

902 19 303028 4045636 940 18 669741 4082787 977 18 671532 4100027 

903 19 302377 4047274 941 18 670390 4082997 978 18 672172 4099054 

904 18 697954 4047685 942 18 670972 4083763 979 18 675821 4097744 

905 18 656996 4085314 943 18 670504 4084895 980 18 676280 4097738 

906 18 657174 4085231 944 18 670108 4085660 981 18 676866 4098326 

907 18 657569 4084581 945 18 670233 4086451 982 18 677813 4098389 

908 18 657676 4084470 946 18 670538 4087812 983 18 678155 4098706 

909 18 657927 4083601 947 18 670357 4088589 984 18 678791 4099095 

910 18 657837 4082623 948 18 670984 4088954 986 18 685395 4101220 

911 18 656746 4084009 949 18 671951 4089550 987 18 685828 4102029 

912 18 658134 4082415 950 18 672088 4089818 989 18 686718 4102466 

913 18 658380 4081967 951 18 664591 4090309 990 18 686349 4102895 

914 18 658069 4082262 952 18 664169 4089645 991 18 673963 4117151 

915 18 658955 4082788 953 18 664442 4088338 992 18 674533 4118182 

916 18 660386 4082545 954 18 665000 4089452 994 18 674960 4118573 

917 18 661703 4082336 955 18 667474 4090468 995 18 676272 4118017 

918 18 662925 4082894 956 18 668065 4090448 996 18 676546 4116824 

919 18 663131 4082889 957 18 669242 4091126 997 18 677737 4116891 

920 18 663794 4083110 958 18 668601 4090941 998 18 700321 4110547 

921 18 663912 4083248   18 668831 4091063 999 18 700332 4110318 

923 18 665743 4084724 959 18 669586 4091698 9100 18 700415 4110229 

924 18 680054 4096138 960 18 669896 4092799 9101 18 699474 4109661 

925 18 679631 4096119 961 18 670152 4093235 9102 18 699190 4108963 

926 18 679440 4095635 962 18 670417 4093961 9103 18 699097 4108887 

927 18 677495 4094209 963 18 670675 4094123   18 700007 4109860 

929 18 676663 4093676 964 18 670887 4094363 9104 18 692455 4107656 

930 18 675544 4093038 966 18 671054 4094630 9105 18 693739 4107377 

931 18 674206 4091890 968 18 671990 4095881 9106 18 694037 4107375 

932 18 673373 4091605 969 18 669601 4100591 9107 18 695100 4107972 

933 18 673462 4091716 970 18 670562 4100918 9108 18 694543 4107890 

934 18 673219 4091480 971 18 669319 4102143 9109 18 695876 4107850 

935 18 673024 4091266 972 18 669421 4102689 9110 18 696617 4108478 

936 18 672707 4090987 973 18 670245 4102911 9112 18 697363 4108474 

937 18 667877 4081190 974 18 671582 4101853 9113 18 694763 4108137 
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APPENDIX B. FAULT KINEMATIC DATA FROM CHAPTER 3 

 
Table of thrust fault kinematic data from Peninsula Brunswick 

Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip 

T 
trend 

T 
plunge 

P 
trend 

P 
plunge 

902 155 32 215 28 TR 183 69 46 15 
902 148 32 207 28 TR 174 69 39 15 
921 170 41 193 19 TR 152 50 40 18 
921 163 60 215 54 TR 115 68 238 13 
921 154 53 196 42 TR 126 64 221 3 
921 154 39 211 34 TR 162 71 45 9 
921 145 44 214 42 TR 145 79 44 2 
935 157 26 232 25 TR 219 70 57 20 
935 142 9 225 9 TR 224 54 46 36 
936 162 48 231 46 TR 141 79 242 2 
936 137 49 242 48 TL 349 82 234 4 
947 148 56 205 51 TR 106 71 224 9 
947 140 57 226 57 TR 57 78 228 12 
956 189 27 212 11 TR 185 50 52 29 
956 184 22 215 12 TR 193 53 50 31 
956 176 31 214 20 TR 181 58 52 21 
956 161 63 215 58 TR 105 67 238 16 
958 155 34 240 34 TR 230 79 62 11 
961 174 37 236 34 TR 193 73 68 10 
961 173 34 225 28 TR 187 67 60 15 
961 172 37 226 31 TR 182 69 61 11 
962 155 46 240 46 TR 132 87 243 1 
975 171 57 216 47 TR 134 65 241 8 
9100 117 30 200 30 TR 191 75 23 15 
9102 352 67 36 59 TR 296 62 66 19 
9102 9 68 39 51 TR 321 55 75 17 
9103 100 18 237 12 TL 253 56 46 31 
9114 112 31 260 18 TL 293 55 60 23 
9115 152 26 240 26 TR 238 71 61 19 
9115 145 12 256 11 TL 261 56 72 34 
9115 140 12 235 12 TL 236 57 54 33 
9121 322 28 10 22 TR 342 62 204 21 
9126 354 11 15 4 TR 4 48 204 40 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip 

T 
trend 

T 
plunge 

P 
trend 

P 
plunge 

9126 88 32 199 30 TL 226 73 11 14 
9140 178 35 252 34 TR 222 77 79 11 
9140 172 18 255 18 TR 252 63 77 27 
9140 161 16 249 16 TR 248 61 69 29 
9140 142 26 248 25 TL 262 69 63 20 
9145 173 45 290 42 TL 0 76 97 2 
9145 173 43 290 40 TL 352 76 97 4 
9148 162 51 245 51 TR 99 83 249 6 
9149 160 56 200 44 TR 127 62 227 5 
9155 168 48 200 30 TR 147 56 47 7 
11014 170 60 255 60 TR 87 75 258 15 
11014 167 54 264 54 TL 59 80 260 9 
11017 153 22 245 22 TL 246 67 64 23 
11017 150 23 210 20 TR 192 63 39 24 
11017 150 30 230 30 TR 217 74 54 15 
11022 170 35 235 32 TR 198 73 65 12 
11022 165 42 217 35 TR 162 69 54 7 
11025 325 85 45 85 TR 236 50 54 40 
11025 165 17 216 13 TR 202 57 45 31 
11025 110 12 222 11 TL 228 56 38 34 
11025 100 24 220 21 TL 239 64 31 23 
11030 160 35 240 35 TR 219 79 64 10 
11032 125 50 235 48 TL 337 79 224 4 
11032 80 10 240 3 TL 250 48 51 41 
11037 135 52 245 50 TL 356 78 234 6 
11038 0 6 50 5 NL 234 40 46 49 
11040 121 27 200 27 TR 189 71 24 18 
11046 111 23 245 17 TL 267 59 53 26 
11046 110 20 245 14 TL 263 57 54 29 
11056 135 12 240 12 TL 244 56 57 33 
11056 130 12 249 11 TL 256 55 64 34 
11062 124 17 229 16 TL 235 61 46 28 
11062 120 14 228 13 TL 234 58 44 32 
11065 210 10 254 7 TR 246 51 80 38 
11065 130 40 250 36 TL 302 73 57 7 
11071 310 24 45 24 TL 49 69 223 21 
11073 280 26 30 25 TL 47 68 204 20 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip 

T 
trend 

T 
plunge 

P 
trend 

P 
plunge 

11086 160 42 230 40 TR 170 79 59 4 
11087 160 58 240 58 TR 86 76 246 13 
11088 148 74 225 74 TR 63 61 235 29 
11105 165 29 217 24 TR 188 64 50 20 
11105 160 50 235 49 TR 122 81 243 5 
11105 140 50 225 50 TR 74 84 228 5 
11106 150 36 185 23 TR 146 58 26 17 

10pb001 321 51 70 49 TL 178 79 60 5 
10pb166 157 25 232 24 TR 220 69 57 21 
10pb183 165 59 228 56 TR 110 72 244 13 
10pb187 165 41 234 39 TR 179 78 64 5 
10pb205 202 30 259 26 TR 229 67 91 18 
10pb205 191 28 255 26 TR 232 68 84 19 
10pb205 180 32 271 32 TL 273 77 91 13 
10pb206 186 36 235 29 TR 193 66 71 13 
10pb232 200 37 290 37 TR 290 82 110 8 
10pb243 322 40 48 40 TR 28 85 230 5 
10pb243 305 34 42 34 TL 56 78 219 11 

 
Table of strike-slip fault kinematic data from Peninsula Brunswick 

Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip T trend 

T 
plunge P trend 

P 
plunge 

10pb342 80 87 80 6 NL 125 2 35 6 
10pb355 73 85 75 26 NL 122 14 26 22 
10pb368 72 85 73 16 NL 119 8 27 15 
10pb368 89 57 107 25 NL 321 5 56 43 
10pb373 304 90 304 11 NL 350 8 258 8 
10pb373 255 72 255 0 NL 119 13 211 13 
10pb373 93 75 267 21 TL 316 26 224 4 
10pb316 270 64 270 1 NL 132 17 228 19 
10pb316 81 78 84 16 NL 128 3 37 20 
10pb321 79 71 256 9 TL 301 20 34 7 
10pb332 79 59 256 4 TL 298 25 37 18 
10pb332 86 59 89 5 NL 308 18 47 25 
10pb332 87 68 265 6 TL 309 19 43 11 
10pb332 76 64 80 8 NL 300 12 36 24 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip T trend 

T 
plunge P trend 

P 
plunge 

10pb332 260 75 77 13 TL 123 20 214 2 
10pb332 65 86 65 7 NL 110 2 20 8 
10pb340 165 74 167 6 NL 30 7 122 15 
10pb294 80 65 250 20 TL 299 33 31 3 
10pb299 330 80 143 33 TL 197 31 98 15 
10pb304 265 78 81 20 TL 129 23 37 5 
10pb309 310 74 319 29 NL 2 9 266 33 
10pb274 84 79 90 27 NL 135 11 39 27 
10pb282 250 90 250 0 NL 295 0 205 0 
10pb210 152 75 154 7 NL 17 6 109 15 
10pb210 120 86 300 5 TL 345 6 255 1 
10pb214 316 47 344 27 NL 192 9 294 53 
10pb216 323 72 125 43 TL 189 44 84 15 
10pb217 164 90 344 6 TL 29 4 299 4 
10pb220 95 56 265 15 TL 310 35 48 12 
10pb223 331 83 331 0 NL 196 5 286 5 
10pb226 100 67 274 14 TL 320 27 53 6 
10pb227 105 82 109 27 NL 155 13 59 25 
10pb236 118 54 122 5 NL 339 21 81 29 
10pb236 120 67 130 22 NL 350 1 80 33 
10pb236 338 70 143 35 TL 201 40 103 9 
10pb237 287 55 293 9 NL 150 17 251 31 
10pb237 302 62 101 34 TL 159 47 65 4 
10pb238 160 30 160 0 NL 7 38 133 38 
10pb238 90 70 108 40 NL 148 12 46 44 
10pb239 114 81 116 13 NL 160 3 70 16 
10pb256 325 86 328 35 NL 17 21 276 27 
10pb192 82 88 82 6 NL 127 3 37 6 
10pb194 85 86 263 26 TL 312 21 216 15 
10pb207 260 72 75 14 TL 122 23 213 3 
10pb204 71 33 251 0 TL 280 36 42 36 
10pb199 117 70 289 20 TL 338 29 248 0 
10pb202 90 71 96 18 NL 318 1 48 27 
10pb001 321 51 115 28 TL 167 51 265 6 
10pb002 134 84 135 11 NL 180 3 89 12 
10pb002 111 85 112 9 NL 157 3 66 10 
10pb163 260 85 78 24 TL 126 20 32 13 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip T trend 

T 
plunge P trend 

P 
plunge 

10pb163 131 51 139 10 NL 354 19 98 35 
10pb187 79 86 82 34 NL 130 20 30 26 

11078 75 15 120 11 NL 309 33 107 55 
9119 88 70 259 24 TL 309 32 218 3 
9127 65 46 92 25 NL 299 11 44 52 
11041 145 75 152 25 NL 195 7 102 29 
920 292 88 293 18 NL 339 11 246 14 

11098 99 79 107 35 NL 152 16 52 33 
10pb342 228 84 229 14 TR 183 14 274 6 
10pb346 22 90 202 4 NR 157 3 247 3 
10pb351 200 44 220 18 TR 177 47 69 17 
10pb353 215 72 34 4 NR 171 10 78 15 
10pb354 216 72 34 6 NR 171 9 79 17 
10pb354 235 66 50 11 NR 189 9 95 25 
10pb356 195 80 197 11 TR 151 15 241 1 
10pb367 182 70 1 3 NR 138 12 45 16 
10pb370 25 80 203 9 NR 339 1 249 13 
10pb374 20 70 24 10 TR 338 22 246 7 
10pb375 35 70 35 0 TR 352 14 258 14 
10pb375 20 90 200 2 NR 155 1 245 1 
10pb378 28 86 29 9 TR 343 9 74 3 
10pb313 20 39 34 11 TR 358 43 242 24 
10pb314 61 70 70 24 TR 20 32 111 3 
10pb315 227 79 44 15 NR 0 3 91 18 
10pb315 202 86 11 70 NR 310 38 92 45 
10pb315 199 87 199 3 TR 154 4 64 0 
10pb315 33 85 34 9 TR 348 10 79 3 
10pb315 10 81 11 5 TR 326 10 235 3 
10pb316 215 85 216 11 TR 170 11 261 4 
10pb316 30 52 199 14 NR 344 15 242 37 
10pb316 45 82 46 4 TR 0 8 270 3 
10pb317 195 88 15 14 NR 329 8 61 11 
10pb318 217 80 35 9 NR 171 1 81 13 
10pb324 185 82 3 12 NR 319 3 50 14 
10pb327 43 63 43 1 TR 2 19 265 18 
10pb332 30 62 31 2 TR 349 21 252 18 
10pb332 22 61 22 0 TR 341 20 243 20 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip T trend 

T 
plunge P trend 

P 
plunge 

10pb332 45 65 45 0 TR 3 17 267 17 
10pb332 64 85 64 0 TR 19 4 289 4 
10pb340 30 79 209 3 NR 345 6 254 10 
10pb294 235 67 239 9 TR 194 23 100 10 
10pb304 200 90 200 1 TR 155 1 245 1 
10pb310 12 65 188 9 NR 327 11 232 24 
10pb272 24 78 201 15 NR 157 2 248 19 
10pb282 185 83 185 0 TR 140 5 50 5 
10pb210 32 86 33 12 TR 347 11 78 6 
10pb223 213 84 214 6 TR 168 8 78 0 
10pb227 202 60 13 15 NR 155 10 59 32 
10pb227 209 50 20 10 NR 166 19 61 35 
10pb227 212 65 21 22 NR 162 2 71 34 
10pb227 205 66 8 33 NR 330 6 65 42 
10pb227 226 77 37 33 NR 353 13 92 33 
10pb229 234 70 242 22 TR 193 30 283 1 
10pb229 39 90 39 36 TR 348 25 90 25 
10pb243 48 90 48 6 TR 3 4 93 4 
10pb191 225 80 43 10 NR 179 0 89 14 
10pb001 62 64 227 28 NR 189 1 280 40 
10pb162 214 88 214 7 TR 169 6 259 4 
10pb177 40 74 215 18 NR 172 1 263 24 
10pb183 245 83 248 20 TR 200 19 293 9 

11071 7 90 7 46 TR 312 31 62 31 
9119 15 76 180 45 NR 136 19 244 42 
9129 190 87 190 9 TR 145 8 236 4 
11025 205 88 24 20 NR 338 13 71 15 
914 230 78 46 20 NR 2 5 94 23 
915 215 74 32 9 NR 169 5 78 18 
916 205 75 22 12 NR 159 2 68 19 
989 50 89 50 6 TR 5 5 95 4 
9116 63 67 213 50 NR 177 15 290 55 
9118 225 88 226 20 TR 179 15 272 13 
9118 218 42 10 23 NR 164 14 54 53 
9118 58 88 238 0 NR 13 1 283 1 
9118 235 78 51 19 NR 7 5 99 22 
989 50 89 50 6 TR 5 5 95 4 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip T trend 

T 
plunge P trend 

P 
plunge 

11095 10 66 178 25 NR 139 1 229 36 
11098 260 86 79 19 NR 33 10 126 16 
11102 235 88 53 50 NR 357 31 112 34 

10pb356 45 81 47 11 NL 91 1 1 14 
10pb363 326 86 145 20 NR 99 11 192 17 

  40 60 50 16 NL 267 9 3 33 
10pb315 323 76 142 3 NR 278 8 187 12 
10pb315 223 72 224 2 NL 87 11 180 14 
10pb315 42 84 44 19 NL 89 9 357 18 
10pb315 310 80 129 4 NR 265 4 174 10 
10pb315 314 90 314 16 TR 268 11 0 11 
10pb227 256 82 74 14 TL 121 16 29 4 
10pb227 237 89 56 38 TL 108 27 5 25 
10pb235 337 75 149 29 NR 105 9 201 32 
10pb235 210 85 210 4 NL 75 1 165 6 
10pb307 50 80 53 18 NL 98 5 6 20 
10pb309 180 88 360 9 TL 45 8 315 5 
10pb309 239 85 240 11 NL 285 4 194 11 

 
Table of normal fault kinematic data from Peninsula Brunswick 

Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip 

T 
trend 

T 
plunge 

P 
trend 

P 
plunge 

10pb332 265 40 41 30 NR 202 11 89 64 
10pb315 309 72 7 69 NL 30 26 235 61 
10pb296 280 70 335 66 NL 360 24 211 63 
10pb294 98 79 220 77 NR 194 34 359 56 
10pb294 57 67 190 60 NR 162 20 295 63 
10pb242 152 55 210 50 NL 228 8 113 72 
10pb239 82 55 132 48 NL 154 7 47 68 
10pb239 331 55 30 51 NL 48 8 291 72 
10pb236 64 44 204 32 NR 2 8 257 62 
10pb227 237 66 347 65 NR 333 21 131 68 
10pb227 220 55 356 45 NR 331 5 73 65 
10pb213 320 55 30 53 NL 42 9 268 77 
10pb191 262 17 341 17 NL 164 28 336 62 

11055 259 44 46 28 NR 201 10 95 57 
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Field 
No. 

Fault 
strike 

Fault 
dip 

Striae 
trend 

Striae 
plunge 

Sense 
of Slip 

T 
trend 

T 
plunge 

P 
trend 

P 
plunge 

11055 285 10 33 10 NR 210 35 37 54 
11023 84 57 230 41 NR 200 4 297 58 
11023 65 52 180 49 NR 166 6 280 76 
11023 70 57 157 57 NL 159 12 346 78 
11018 270 85 279 60 NL 335 33 209 42 
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