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Abstract 

 

 Image Captioning Algorithms for Images Taken by People with Visual 

Impairments 

 

Meng Zhang, B.E., M.S.Info.St. 

The University of Texas at Austin, 2019 

 

Supervisor:  Danna Gurari 

 

People with visual impairments regularly encounter the challenge that their visual 

impairments expose them to a time-consuming, or even impossible, task: what content is 

presented in an image without assistance. One method to address this problem is image 

captioning with machine learning. With the help of image captioning algorithms together 

with artificial intelligence speech system, people who are blind can instantly learn what is 

in an image, since such systems can automatically generate text captions. In this work, we 

analyze the new VizWiz dataset and compare it to the MSCOCO dataset, which is widely 

used for evaluating the performance of image captioning algorithms. We also implement 

and evaluate two state-of-the-art image caption models with accuracy, runtime, and 

resource analysis. Hopefully, our research will help the improvement of image captioning 

algorithms which focus on fulfilling the everyday needs of people with visual impairments.  
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Chapter 1

Introduction

Images are widely used in our daily lives. Compared to text descrip-

tions, images are capable of containing and conveying more complex, detailed

information. However, for some people, it is hard or even impossible to under-

stand the content of images. Specifically, people with visual impairments will

frequently encounter the challenge that their disability limits their capability

of learning what content is present in an image without assistance. This prob-

lem will not only cause daily inconvenience but also will sometimes be serious

enough to threaten their lives (for example, failure to recognize medicines and

the instructions of some dangerous tools).

One way to address this problem is to first transform images to the

form of text describing the content of the images. Then with the help of some

text-to-speech systems [9, 11, 18], people with visual impairments can hear and

learn about the images. The first processing step is known as image captioning

or image annotation. Traditionally this work is done manually, which is time-

consuming and expensive. Recently, with the advances in machine learning

and computer vision, it has become a popular research topic. [4, 19, 14, 22, 20,

30, 24]. According to Wikipedia, automatic image annotation is the process
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by which a computer system automatically assigns metadata in the form of

captioning or keywords to a digital image. [35]

In recent years, some machine learning challenges and competitions re-

lated to image captioning have been created, of which one of the most famous

is the MSCOCO Captioning Challenge [23]. However, automatic image cap-

tioning with machine learning is not easy. First, a huge-scale image dataset

must be collected for training the captioning models. Then state-of-the-art

algorithms should be developed so that the captioning system will not only

provide high-quality image captions but also run quickly so that users can get

an immediate response when they upload an image to the system.

In this work, I explore how machine learning algorithms perform on

a new image captioning dataset created using images taken by people with

visual impairments. In Section 2, I will discuss some recent studies about

image captioning, including image captioning services, algorithms, datasets

and evaluation metrics. In Section 3, I will describe two state-of-the-art image

captioning algorithms that we will evaluate. In Section 4, I will describe

two image captioning datasets which will be used in our experiments. In

Section 5, I will describe some standard evaluation metrics for evaluating the

performance of image captioning algorithms. In Section 6, I will describe how

we perform runtime, resource and accuracy analysis for the two algorithms on

the two datasets, and then analyze the results. In Section 7, I will discuss some

defections of current image captioning algorithms and datasets, and provide

some potential directions of our further works.
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Chapter 2

Related Works

2.1 Image Captioning Services

Publicly-available image captioning services support customers to up-

load their images and receive the text description of the images automatically.

Typically, a customer can upload one image each time via the computer or the

web link, and the image will be taken as an input to the captioning model used

by the service to predict the description to show the result to the customer.

Currently, one typical image caption service for developers is Microsoft Cap-

tionBot [1]1. Some image captioning services for users are provided by Twitter2

and Facebook3. On twitter, users can add captioning for their uploaded images

for people with visual impairments. Figure 2.1 shows the interface for users to

add an image description when uploading their images. On Facebook, an API

called Automatic Alt-text [39] can automatically generate captions for users

when uploading their images, and they can overwrite the captions if feeling

unsatisfied with the quality of the automatically generated image descriptions.

Figure 2.2 shows the interface for users to create an image description for their

1The website of Microsoft CaptionBot: https://www.captionbot.ai/
2https://help.twitter.com/en/using-twitter/picture-descriptions
3https://www.facebook.com/help/216219865403298?helpref=faq content
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images.

Figure 2.1: Facebook’s Image Captioning Service. Users can see the
automatically-generated image descriptions(words and phrases) and/or over-
write them for their uploaded images for people with visual impairments.

These services, mostly stand from the view of users to help people

with visual impairments, but not directly from the views of people with visual

impairments. In my work, I try to address this problem by providing image

captioning services directly aiming to people with visual impairments so that
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Figure 2.2: Twitter’s Image Captioning Service. Users can add descriptions
for their uploaded images for people with visual impairments.

they can get immediate response to the content of the images they want to

learn about.

2.2 Image Captioning Algorithms

Image captioning services rely on image captioning algorithms to pre-

dict the content of the images. In recent years, most of the state-of-the-art

computer vision algorithms [4, 19, 38, 42, 3] use deep learning methods. Im-

ages are encoded and extracted into some feature vectors, from which any

objects shown in the imaged can be recognized. Then the feature vectors will

be decoded to words describing the objects and then arranged in some order as

sentences to describe the images. In this work, we will focus on two state-of-

the-art algorithms for the MS COCO Challenge [22], the Up-Down Captioner
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[4] and the Recurrent Fusion Network [19]. The details will be discussed in

Chapter 3. The former researches, however, trained their models with images

datasets with high-quality images. In this work, I will study the performance

of these two image captioning algorithms for images taken by people with vi-

sual impairments, to find out if these algorithms fit well with those special

type of images and if the algorithms need specific optimization.

2.3 Image Captioning Datasets

Image captioning datasets are datasets collected for the purpose of

training and evaluating algorithms for image captioning. Typically, such

datasets will include many images, and for each image, there will are one

or more human-made text sentences or phrases to describe the content of

the image, i.e. annotations. Taking these annotations as the ground truth,

researchers can train their model to predict the automated annotation and

evaluate it with the ground truth.

In recent years several image captioning datasets are collected. MS

COCO [22] is one of the most famous datasets for image captioning. It contains

more than 330,000 images, and for each labeled image, there are five human-

made annotations to describe the content of the image. Some other image

captioning datasets are Pascal Sentences [27], Flickr8K [27], Flickr30K [44]

and Conceptual Captions [31]. In this work, I will focus on a new VizWiz

dataset, with new ground truth captions collected. This work is special since

the VizWiz is one of the first image datasets that are totally composed of

6



images taken by people with visual impairments.

2.4 Evaluation Metrics for image captioning

Evaluating the performance of image captioning is a challenge. Unlike

image classification, for which we can simply calculate the accuracy, which is

the portion where the predicted categories of the images are the same with

the true categories, for image captioning, two sentences may both precisely de-

scribe one image while being quite di↵erent. For example, when to describing

the scene of a plane flying in the sky, one may use the words “plane”, “fly”,

while another will use “jet”, “in flight”.

Currently, the five most-widely-used standard evaluation metrics for

image captioning are BLEU [26], ROUGE [21], METEOR [6], CIDEr [33] and

SPICE [2], in the order of the published date. All of these five standard eval-

uation metrics set some formulas to quantify the performance of how similar

the predicted caption is to the ground truth description. The details of these

evaluation metrics will be demonstrated and discussed in Chapter 5.1 Image

Captioning Accuracy Metrics. In this work, I will research on the evaluation

scores of the automatically generated captions using the two image captioning

algorithms on VizWiz, and find out which metrics fit well with images taken

by people with visual impairments, as well as what elements should be added

into evaluating the performance of the captions with regard to those specific

type of images.
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Chapter 3

Image Captioning Algorithms

Image captioning is the task of providing text description that describes

an image that can include the objects, people, scenes, activities, etc. Man-

ual image captioning relies on human perception and knowledge. it is time-

consuming to hire people for such tasks and costs lots of money. In recent year,

machine learning algorithms for image captioning is on the rise. For these al-

gorithms, the input is one image, and the output is a phrase or complete

sentence describing the corresponding images.

Recently, most of the state-of-the-art works [4, 19, 15, 8, 5, 40, 29, 41,

25, 24, 43] implement an encode-decode framework to address this problem.

The basic method is to use a convolutional neural network (CNN) as the

encoder to encode input images so that image feature vectors can be found

and extracted. Then a recurrent neural network (RNN) is used as the decoder

will take the image feature vectors as the input, create words corresponding

to the image features, and then compose the words into a meaningful sentence

to describe the image.

We implement two state-of-the-art image captioning algorithms and

the details of each work are shown below.
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3.1 Up-Down-Captioner [4]

This method combines a bottom-up mechanism based on fast R-CNN

[28] in conjunction with ResNet-101 CNN [16] to propose regions from images

and extract image feature vectors. A top-down mechanism composed of two

LSTM [17] layers calculates the attention of each object recognized, determines

feature weightings for them, and then forms a sequence of words. This is why

it is called Up-Down-Captioner.

In the bottom-up attention model, Faster R-CNN is used to identify in-

stances of objects by localizing them with bounding boxes. The Faster R-CNN

is initialized with ResNet-101 [30] and is pretrained on the Visual Genome

dataset [20]. For each given image I, on each spatial location, a Region Pro-

posal Network will predict object box proposals of multiple scales. Then the

top box proposals are selected using greedy non-maximum suppression (NMS)

with an intersection-over-union (IoU) threshold. NMS is used to make sure

there is only one particular object recognized in a region that may contain

multiple detected boxes of the same object overlapping with each other. In

performing NMS, this helps to avoid getting redundant objects. Then the pro-

posals are passed to region of interest (ROI) pooling to extract feature maps

and batched together to output the softmax distribution over the class labels.

The final output with non-maximum suppression for each object class uses an

IoU threshold and all regions where any class detection probability exceeds a

confidence threshold are selected and formed as the image feature vectors.

In the top-down caption model, two LSTM layers are used with the
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standard implementation [10]. The first is a top-down attention LSTM and the

second is a language LSTM. At each step, the normalized attention weights for

each of the k image features is generated. At the Top-Down Attention LSTM

layer, it takes the outputs from the bottom-up attention model as the image

features. For each time step, the input vector consists of the previous output

of the language LSTM, the mean-pooled image features and an encoding of the

previously generated word. Given these inputs, the top-down attention LSTM

can calculate a weight of each image feature vector. Then in the language

LSTM layer, it takes the image features with the outputs of the top-down

attention LSTM as the input. At each time step, the conditional distribution

over possible output words is calculated with the softmax of the learned weights

and biases. The model seeks to minimize the standard cross entropy loss for

optimizing the model.

According to the evaluation results, compared to other works [29, 37,

41, 25, 24, 43], this method has competitive performance in terms of identifying

objects, object attributes and also the relationships between objects when

trained with cross entropy loss without using ensemble methods.

3.2 Recurrent-Fusion-Network [19]

This method also uses a similar encoder-decoder framework [8, 32]

where images are encoded by a CNN and then translated into natural lan-

guage with an RNN.

First, multiple pre-trained CNN models are employed as the encoder to

10



extract several sets of feature vectors of the input images, respectively. Then a

LSTM is deployed as the decoder to transform the representation of the images

into a natural language description. This architecture adds a recurrent fusion

network (RFNet) right before the decoder LSTM, which consists of multiple

components of various encoders and extracts complementary information from

them which are formed into one set of thought vectors. A thought vector

is a vector containing hundreds of numeric values which represent how each

thought relates to other thoughts. [36] It is composed by two stages.

In Fusion Stage I, it takes several sets of annotation vectors as inputs,

which are generated using multiple CNN models. For each set, it will calculate

a corresponding thought vectors. Then these vectors will be aggregated into

one set of thought vectors which contains all of the components and passed

into the second stage.

In Fusion Stage II, it will review and compress the aggregated thought

vectors to select only one set of thought vectors. In this way, the thought

vectors can provide more information than directly input to the feature vectors

from the CNN architecture to the LSTM decoder. After the final decoding,

the annotation will be generated.

The most novel contribution of this algorithm is that they applied mul-

tiple encoders, and proposed a recurrent fusion network (RFNet) including

interactions among the outputs of various encoding CNN models and gener-

ate new compact and informative representations for the decoder. This work

performed state-of-the-art on the MS COCO test server [22].

11



Chapter 4

Datasets

In this section, we will discuss the details of the image datasets we use in

our experiments. We use datasets proposed for general and specific purposes.

The MS COCO dataset is used for training and evaluation since this dataset

is a standard in the field of image annotation and is widely used in most of

the state-of-the-art image captioning algorithms. We will also evaluate our

image captioning algorithms with the VizWiz dataset, which is developed by

us specifically for captioning images taken by people with visual impairments.

We will describe each dataset below.

4.1 MS COCO dataset [22]

MS COCO is a large-scale image dataset for object recognition and

image captioning with more than 200,000 labeled images. Most of the images

contain complex scenes with multiple objects. Each image was labeled with

five distinct human-made sentences in English that describe the image. The

five sentences were provided as the ground truth for image captioning. An

example of a MS COCO image is shown in Figure 4.11. The 2014 version

1Source of this example image: http://cocodataset.org/#explore?id=208408
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of the MS COCO dataset, i.e. 2014 train/validation/test images2 is used by

most of our baseline algorithms for training and/or evaluation. The training,

validation and test set contains 83,000, 41,000 and 41,000 images respectively.

Figure 4.1: An example of an image taken from MS COCO [22]. With this
image, five human-made sentences are provided that describing the image.

2http://cocodataset.org/#download
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4.2 VizWiz dataset [14]

This dataset is proposed for a challenge to develop algorithms to help

people with visual impairments overcome their daily visual di�culty like recog-

nizing objects. What makes this dataset unique is that images in this dataset

are taken by people who are blind, thus typically the images will be highly

blurred as the picture is improperly focused, or just capture an incomplete

part of the objects they want to include in the picture since people who are

blind cannot see and verify the quality of the photos they make. This is help-

ful to develop optimized algorithms to specifically recognize photos taken by

people who have visual impairments and annotate the content.

Curenntly, VizWiz has two versions, VizWiz v1 [14] and v2 [13]. VizWiz

v1 contains 20,000/3173/8000 images for training/validation/test, respectively.

VizWiz v2 contains 8088 images. For each image, there are five human-created

text descriptions describing the content of the image. Additionally, eaach im-

age is also marked with the quality of the image for some possible problems

including blur, light, framing, etc. One example of a VizWiz images is shown

in Figure 4.2. As we can see, a typical image taken by people with visual

impairments can be blurred, too bright or too dark, incomplete, or in strange

view. Unlike other datasets like MS COCO, due to possible low quality of the

images, some people may not be able to recognize and describe the image, so

not all captions describe objects, scenes, etc.

14



Figure 4.2: An example of VizWiz [14] images. Together with each image are
several human-generated captions and quality problems. We can tell that even
for humans it is hard to recognize the content of the image.

15



Chapter 5

Evaluation Metrics

To evaluate the quality of the generated image captions, we use five

standard image captioning evaluation metrics. They are BLUE [26], ROUGE

[21], METEOR [6], CIDEr [33] and SPICE [2]. We will describe each metric

below.

5.1 BLEU [26]

BLEU is one of the most classic image captioning evaluation metrics.

BLEU is based on the precision measure, comparing n-grams of the candidate

captions with the reference translation and counting the number of matches.

The core component of the formula of BLEU is as follows:

Pn =

P
C2{candidates}

P
ngram2C Countclip(ngram)

P
C02{candidates}

P
ngram02C0 Count(ngram0)

(5.1)

where n is the number of n-grams (a word group consisting n words), Count

is the number of all n-grams in each caption, and clip is the number of n-

grams that have a match between the candidate and reference captions. If

using multiple n-grams, then BLEU will calculate the geometric average of all

the precision values and return the final score. For example, given a reference

sentence “The president speaks to the public” and a candidate sentence “The

16



president speaks in public”, the BLEU-1 score will be 0.8, since there are four

matched unigrams between the reference and candidate sentences out of the

five words in the candidate sentence.

This evaluation is only based on precision so lacks consideration of

recall. There’s also no consideration of word stemming, word order, or syn-

onyms. Since BLEU uses geometric average, so the final score will be zero if

one precision of n-gram is zero, which is another defection of this metric.

5.2 ROUGE [21]

This metric is similar to BLEU, except for it is recall-based. The equa-

tion of the core component of ROUGE is shown below:

ROUGE

=

P
S2{RefSummaries}

P
gramn2S Countmatch(gramn)P

S2{RefSummaries}
P

gramn2S Count(gramn)

(5.2)

ROUGE compares n-grams of the candidate captions with the reference trans-

lation and count the number of matches, and then calculate the recall score.

For the same example as demonstrated in BLEU, the 1-gram ROUGE score

will be 0.67, since there are four matched unigrams between the reference and

candidate sentences out of six in total the count of words in the reference

sentence.

ROUGE shares the same pros and cons as the BLEU does.
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5.3 METEOR [6]

METEOR combines unigram precision, unigram recall, as well as a

penalty for sentence fragmentation. The formula for METEOR score is shown

below:

Score =
10PR

R + 9P
⇤ (1� penalty) (5.3)

where P is the unigram precision calculated like the BLEU score and R is the

unigram recall calculated like the ROUGE score. The Penalty is a proportion

of the number of “chunks” (word segments) where in each chunk all matched

unigrams are in adjacent positions, out of the number of matched unigrams.

In other words, the more fragments of unigrams that the candidate caption

has compared to the reference captions, the higher the penalty will be. The

equation is as follows:

penalty = 0.5 ⇤ ( #chunks

#matchedunigrams
)3 (5.4)

Still using the same example, the unigram precision is 0.8, and the unigram

recall is 0.67, thus the score without penalty is 0.68. As for the penalty, there

are two matched chunks – “The president speak” and “public”, and so four

matched unigrams in total. Thus the penalty equals 0.0625, and the final score

is 0.6375.

5.4 CIDEr [33]

The unique feature for this evaluation metric is that it introduces a

Term Frequency Inverse Document Frequency (TF-IDF) wighting for each n-

18



gram. The formula of CIDEr score of n-gram is shown as:

CIDErn(Ci, Si) =
1

m

X

j

g
n(ci) · gn(sij)

kgn(ci)k k·gn(sij)k (5.5)

Where C is the candidate sentence and S are the reference sentences. g
n(ci)

is a vector corresponding to TF-IDF scores for all n-grams, and kgn(ci)k is

the magnitude of the vector. So as for Sij. Then the CIDEr score will be the

uniform weight average of all CIDEr scores of n-grams.

5.5 SPICE [2]

Rather than calculate based on n-gram overlap, SPICE uses semantic

propositional content (a scene graph) to assess the quality of image captions.

For a set of reference caption sentences, SPICE will first generate a scene

graph, which lists all objects recognized, recognized attributes (e.g. colors,

shapes) of these objects, and possible relationships between objects like actions

and belonging. Then SPICE will calculate the score based on the how well the

candidate sentence matches the scene graph. SPICE shows the best correlation

with human judgement compared with the previously discussed n-gram based

metrics. Figure 5.1 shows an example of how the scene graph is generated for

SPICE evaluation.
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Figure 5.1: This figure is taken from [2]. It is included to illustrate how SPICE
works. For a given image, SPICE will generate a scene graph based on the
reference sentences as shown in the right side of the figure.
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Chapter 6

Experiments and Results

Some experiments are designed to test and evaluate the performance

of the two algorithms. Runtime analysis conducted evaluate how fast the

algorithms are when generating captions for a given image. Accuracy analysis

conducted to evaluate the quality of the automatically generated captions.

Finally resource analysis conducted to evaluate how much resources (CPU,

disk memory, etc) are needed.

6.1 Runtime Analysis

Runtime anaylsis is of great interest in evaluating the performance of

an algorithm. Runtime analsis provides an overview of the duration the code

runs to complete the task. To test the performance of the Up-down model [4], I

separately run two runtime analyses where this algorithm is used to predict the

caption results for the MSCOCO [22] and VizWiz [14, 13] datasets separately.

The detailed results are shown in below subsections.

21



6.1.1 Runtime Analysis for VizWiz Dataset

We implement a runtime analysis for the Up-down-captioner [4] model.

We generate one caption for each of the images from the VizWiz dataset,

including both v1 [14] and v2 [13] versions on a machine which contains four

GPUs, each having 11GB memory.

According to our results, we test a total of 39,168 VizWiz images. The

average size of the images is 1050*1400 pixels. The average runtime for the

algorithm to generate an annotation for an image is 0.44 seconds. A histogram

of the distribution of the runtime for all images is shown in Figure 6.1. As we

can see, the distribution of the runtime roughly follows a normal distribution.

We also analyze the correlation among runtime and the image length,

width, as well as the number of boxes recognized in the image. A box is a small

region in the image where there contains recognized objects. The number of

boxes in each image will be calculated when captioning the image. The result

is as in Figure 6.2. According to the chart, the runtime has a strong positive

correlation with image length and width, while having a weak correlation with

the number of boxes.

Additionally, to test if the image size has a consistent impact on the

runtime, we also implement a runtime analysis per pixel. Removing some

outliers, the average runtime per pixel is 0.46 microsecond. A histogram of

the distribution of the runtime per pixel is shown in Figure 6.3. The vari-

ance of runtime per pixel is 4e-07, which shows the runtime per pixel is quite
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Figure 6.1: The histogram of the runtime distribution on the VizWiz [14, 13]
dataset.

consistent.

6.1.2 Runtime Analysis for MSCOCO Dataset

We also implement a runtime analysis with the MSCOCO [22] dataset.

The average size of the images is 577*484 pixels. The average runtime is 0.37

second, which is slightly lower than observed for the VizWiz [14, 13] dataset.

A histogram of the distribution of the runtime is shown in Figure 6.4. As we

can see, the distribution of the runtime roughly follows a normal distribution.

The correlation analysis is shown in Figure 6.5. The result indicates

that the runtime has a very weak correlation with either image width, height
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Figure 6.2: The correlation analysis on the VizWiz [14, 13] dataset.

or the number of boxes. A possible reason is in MSCOCO [22], most of the

images have similar sizes.

The histogram of the distribution of runtime per pixel is shown in

Figure 6.6. Removing the outliers which have strangely higher runtime, the

average runtime per pixel is 1.4 microseconds, which is about three times that

seen for the VizWiz [14, 13] dataset. A possible reason for that is images in

MSCOCO [22] generally has a more complicated scene than VizWiz [?, 14, 13],

and so has more objects to be recognized. The variance of runtime per pixel

is 1e-07, which shows the runtime per pixel is quite consistent.
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Figure 6.3: The histogram of the runtime distribution per pixel on the VizWiz
[14, 13] dataset.

According to the results of the runtime analysis of the Up-down model

on both the MSCOCO [22] and VizWiz [14, 13] datasets, this algorithm has

consistent performance in runtime. If further optimized, it has the potential

of being applied in commercial use when large-scale batch processing of image

captioning tasks will be required.

6.2 Accuracy Analysis

The accuracy of image captions is one of the most important metrics

when we evaluate the performance of an image captioning model. In this
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Figure 6.4: The histogram of the runtime distribution on the MSCOCO [22]
dataset.

subsection, we evaluate the accuracy of our models using all five standard

evaluation metrics discussed above: BLEU [26], ROUGE [21], METEOR [6],

CIDEr [33] and SPICE [2]. For each model, we will evaluate those scores on

both MSCOCO [22] and VizWiz [14, 13] datasets. The results of the accuracy

analysis are shown below in each subsection.

6.2.1 Accuracy Analysis of the Up-Down model [4]

We evaluate the accuracy of this model on the MSCOCO [22] dataset

and report the evaluation results together with the scores reported in [43, 29]

in Table 5.1. Comparing the scores with those reported in [43, 29], the Up-
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Figure 6.5: The correlation analysis on the MSCOCO [22] dataset.

down model has slightly better scores in terms of nearly all of the evaluation

metrics.
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Figure 6.6: The histogram of the runtime distribution per pixel on the
MSCOCO [22] dataset.

6.2.2 Accuracy Analysis of the Recurrent Fusion model [19]

We evaluate the accuracy of this model on the MSCOCO [22] dataset as

well. The author of this model did not provide a publicly available pre-trained

model, so we trained the model with the same dataset split used in [19], and

got similar evaluation results as shown in Table 6.2.

Compared with the other methods [29, 43], this method has slightly

higher scores. But surprisingly, it has lower scores than the Up-Down model

[4], even though it combines and aggregates multiple CNN encoders.
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Table 6.1: Evaluation Scores of the Up-Down Model

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr SPICE

LSTM-A3* [43] 0.735 0.566 0.429 0.324 0.539 0.255 0.998 0.185
SCST:Att2all* [29] - - - 0.300 0.534 0.259 0.994 -

UpDown [4] 0.769 0.611 0.472 0.362 0.563 0.270 1.136 0.203
UpDown* [4] 0.772 - - 0.362 0.564 0.270 1.135 0.203

Note: Datasets with a “*” indicates that the scores are from the original
papers [4, 43, 29], whereas datasets without that sign indicates the scores are

from our evaluation.

Table 6.2: Evaluation Scores of the Recurrent Fusion Model

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr SPICE

LSTM-A3* [43] 0.735 0.566 0.429 0.324 0.539 0.255 0.998 0.185
SCST:Att2all* [29] - - - 0.300 0.534 0.259 0.994 -

UpDown* [4] 0.772 - - 0.362 0.564 0.270 1.135 0.203
Recurrent [19] 0.753 0.588 0.440 0.326 0.551 0.265 1.067 0.197
Recurrent [19]* 0.764 0.604 0.466 0.358 0.565 0.274 1.125 0.205

Note: Datasets with a “*” indicates that the scores are from the original
papers [4, 43, 29, 19], whereas datasets without that sign indicates the scores

are from our evaluation.

6.3 Resource Analysis on the Recurrent Fusion model

[19]

Similar to the runtime analysis, resource analysis is another kind of

assessment of the performance of an algorithm. If running a model will occupy

too much memory, it will not be feasible in practice, even if the model will

result in accurate predictions.

When implementing [19], we need to first create the flipped version of

each image, and then crop both the original images and the flipped images on

the top left, top right, bottom left and bottom right corner, respectively, to
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enrich the training dataset. As a result, we will basically need ten times the

storage space to save these images. Then in the process of feature extraction,

we face the same problem, and the experiment shows that running this model

needs more than two terabytes of space, which is not really feasible and e�cient

in practice.
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Chapter 7

Discussion

7.1 Defects of Current Image Captioning Research

Although there are a lot of research about image captioning in recent

years, there are still significant defects with image captioning services, algo-

rithms, datasets, and evaluation metrics.

As described in previous sections, there are some image captioning

services provided in the market at present. These services, however, mainly

stand from the view of sighted people helping people with visual impairments,

and the image captioning services themselves are not very convenient. For

example, on Twitter, users have to manually add descriptions to their images,

which is time consuming and trivial. For Facebook, although they provide

automatically-generated captions for images, the quality of those captions are

poor – they are formed by just a bunch of words rather than meaningful

sentences. And only a few major objects can be captured and recognized.

Such services are more like object detection from images, and cannot fulfill

the need for people with visual impairments to learn about the content of the

images, especially when the scenes in the images are complex.

There are many image datasets developed for computer vision and im-
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age captioning, but quite few image datasets are developed for the purpose of

fulfilling the needs of people with visual impairment. Current image datasets

are typically large-scale, but the images in the datasets are generally high

quality with rich content details, multiple objects, and excellent framing. This

is not the typical pattern for images taken by people with visual impairments.

Due to there disabilities, most of the photos taken by people with visual im-

pairments are in low quality. The algorithms trained with improper dataset

will result in poor performance for predicting on low quality images. Apart

from the images themselves, a good dataset for image captioning aimed to

people with visual impairments also involves reviewing the quality of the im-

ages, like whether or not it is too dim, bright, blurred, or taken from a bad

point of view. This may not directly help to improve the performance of image

captioning, but can help to research on the patterns of typical images taken

by people with visual impairments.

Currently, most image captioning algorithms take BLEU [26], ROUGE

[21], METEOR [6], CIDEr [33] and SPICE [2] as the standard evaluation

metrics for evaluating their performance. These metrics are classic, and the

evaluation scores of these algorithms can be impressive. However, these scores

may not truly represent the capabilities for those image captioning algorithms

to describe the content of the images taken by people with visual impairments.

That is because the standard evaluation metrics have some vulnerabilities.

They ignore special needs from people with visual impairments. For example,

people with visual impairments will frequently have the need to recognize text
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on images, since they cannot read it.

7.2 Reflections and Future Works

This project is one of the first research which creatively studies image

captioning for fulfilling the need of people with visual impairments. There are

a lot of research need to be improved in potential future works, though.

We have collected the VizWiz [14, 13] dataset specifically developed

using images taken by people with visual impairments. However, the dataset

still does not contain enough images for training and evaluation. additionally,

there is a problem we need to figure out – there are many low quality images in

this dataset so that even humans will find it hard to describe them. Whether

these images are valuable for the training of image captioning algorithms, and

how to generate the ground truth for these images should be dealt with.

In my experiments, I have done the accuracy analysis of the two al-

gorithms on the MSCOCO [22] dataset. It is important to apply the two

algorithms on the VizWiz [14, 13] dataset as well. In the future research, I

may first use the models trained by the two algorithms on the MSCOCO [22]

dataset to predict the captions for the VizWiz [14, 13] dataset to evaluate the

performance of the two algorithms on images taken by people with visual im-

pairments. Then I may train the two algorithms directly on the VizWiz [14, 13]

dataset to see if the models will have better performance. A new method of

image captioning algorithms may be developed based on our analysis of the

results of these experiments.
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Moreover, I may come up with a new evaluation metric for assessing

the accuracy of the image captions generated. As I have discussed, current

evaluation metrics [26, 21, 6, 33, 2] have some limitations in evaluating images

with low quality. For people with visual impairments, they want the captions

to be as detailed and rich in information as possible, and they may want to

know any text shown in the images because they cannot read them. I may

propose an evaluation metric which adds more weight on the complexity of

the description (i.e. how much detailed information can be provided by the

caption), as well as the number of words that are recognizing text in the image.

A penalty of short length may be added to decrease the evaluation score.

Finally, if possible, I may expect the research about image captioning

for people with visual impairments can be applied with some commercial ap-

plications, so that this research can actually bring benefit to people with visual

impairments.
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Chapter 8

Conclusion

For people with visual impairments, it is hard or even impossible to

understand the content of images. Image captioning with deep learning is one

of the fastest methods to help people with visual impairments learn about im-

ages by automatically generating image captions. In this project, I study two

state-of-the-art image captioning algorithms, design experiments to train and

evaluate them on MSCOCO [22]. I also study a new dataset, VizWiz, which

is developed with images taken by visual impairments and annotated with

human descriptions. This project acts as a pilot research aimed to come up

with possible thoughts about developing better image captioning algorithms,

datasets, evaluation metrics and applications in future works.
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