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Anthropogenically-derived substances, including pharmaceuticals and personal 

care products, endocrine-disrupting chemicals, and pesticides, are increasingly being 

detected in drinking water supplies and wastewater effluents.  Concerns over the presence 

of these compounds in water supplies include their ability to impart toxicological activity, 

their capacity to spread antibiotic resistance, and their potential to affect cell-signaling 

processes.  For these reasons, water treatment processes geared towards removal of these 

trace organic contaminants are vital. 

 

In this work, ozone was used to treat four pharmaceutical contaminants:  

ciprofloxacin, cyclophosphamide, erythromycin, and ifosfamide.  Ciprofloxacin and 

erythromycin are antibiotic/antimicrobial compounds, and cyclophosphamide and 

ifosfamide are chemotherapy agents.  Ozone effectively transformed all four 

pharmaceuticals, even in the presence of background natural organic matter, which exerts 

a considerable ozone demand.  The apparent rate constants for the reaction of the 

pharmaceuticals with ozone at pH 7 were determined:  3.03 M-1s-1 for cyclophosphamide; 

7.38 M-1s-1 for ifosfamide; 1.57×104 M-1s-1 for ciprofloxacin; and 7.18×104 M-1s-1 for 

erythromycin.  Cyclophosphamide and ifosfamide, which do not react quickly with 

ozone, exhibited high rate constants (2.7×109 M-1s-1) for transformation by hydroxyl 

radicals, which are formed through ozone decomposition.  Nevertheless, complete 
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removal of cyclophosphamide and ifosfamide was achievable using a novel continuous 

aqueous ozone addition reactor and an ozone-based advanced oxidation process 

(peroxone). 

 

In ozone-based processes, pharmaceuticals are systematically transformed via 

complex oxidative pathways towards CO2, H2O, and the oxidized forms of other 

elements.  Intermediate oxidation products containing oxygen atoms or hydroxyl groups 

substituted into the chemical structure of the parent pharmaceutical were identified using 

liquid chromatography-mass spectrometry (LC-MS).  Given the structural similarity of 

intermediate oxidation products to the parent pharmaceuticals, an antimicrobial activity 

assay was employed to monitor the removal of pharmacological activity associated with 

ciprofloxacin, erythromycin, and their respective intermediate oxidation products 

throughout treatment.  For solutions containing ciprofloxacin or erythromycin, ozone was 

able to completely eliminate the corresponding antimicrobial activity.  Ciprofloxacin 

intermediate oxidation products were pharmacologically active; however, erythromycin’s 

intermediate products did not contribute to the residual antimicrobial activity.  These 

results suggest that the design of conventional and advanced ozone-based processes must 

incorporate ozone demand from background organic matter and account for destruction 

of pharmacologically active intermediates. 

  



ix 
 

TABLE OF CONTENTS 

 

List of Tables xiii 

List of Figures xv 

 

Chapter 1: Introduction 1 

Problem Statement 2 

Objectives 3 

Approach 4 

Significance 6 

 

Chapter 2: Literature Review 8 

Pharmaceuticals in the Environment 8 

Avenues for Pharmaceutical Introduction into the Environment 11 

Legislation of Pharmaceutical Contaminants 13 

Pharmaceuticals of Concern in this Study 16 

Ciprofloxacin 16 

Erythromycin 18 

Cyclophosphamide and Ifosfamide 19 

Environmental Presence of Compounds of Concern 19 

Human and Environmental Health Threat from PhAC Presence in Drinking 

Water Supplies 23 

Water and Wastewater Treatment of Trace Organic Contaminants 26 

Ozone and Peroxone Chemistry 29 

Ozone Reactor Schemes 34 

Gaseous Ozonation 34 

Aqueous Ozone Addition 37 

Measuring Ozone and Hydroxyl Radical Kinetics 40 

Isolating Ozone Kinetics 40 



x 
 

Determining Hydroxyl Radical Kinetics 41 

Oxidation and Advanced Oxidation Processes (AOPs) 43 

Impact of Natural Organic Matter on Oxidation Processes 45 

Intermediate Oxidation Products 47 

Residual Pharmacological Activity 49 

 

Chapter 3: Materials and Methods 50 

Chemicals 51 

Pharmacologically Active Compounds 52 

Natural Organic Matter 52 

Analytical Methods  55 

Ozone Analysis 55 

Ciprofloxacin Analysis 59 

Cyclophosphamide Analysis 60 

Erythromycin Analysis 62 

Ifosfamide Analysis 64 

para-Chlorobenzoic Acid (pCBA) Analysis 66 

NOM Analysis 67 

Hydrogen Peroxide Titration 68 

pH 69 

Ozone Reactors 70 

Determination of PhAC Transformation in Batch Reactors with Aqueous 

Ozone 71 

Continuous Aqueous Ozone Addition Reactor 72 

Continuous Peroxone Addition Reactor 76 

Measurement of Ozone and Hydroxyl Radical Kinetics 79 

Isolating Ozone Kinetics 80 

Determination of Hydroxyl Radical Kinetics 82 

Anti-Microbial Susceptibility Assay 89 



xi 
 

 

Chapter 4: Ozonation of Cyclophosphamide and Ifosfamide:  Determination of 

Rate Constants, Impact of Organic Matter, and Identification of 

Major Intermediate Products 95 

Abstract 95 

Introduction 96 

Materials and Methods 99 

Results 105 

Kinetics 105 

Percent Transformation 113 

Intermediate Product Identification 117 

 

Chapter 5: Effects of Natural Organic Matter on Ozonation of Ciprofloxacin 

and Removal of Antimicrobial Activity 126 

Abstract 126 

Introduction 127 

Materials and Methods 132 

Results and Discussion 139 

 

Chapter 6: Ozonation of Erythromycin:  Determination of Rate Constants, 

Identification of Major Intermediate Products, and Removal of 

Antimicrobial Activity 155 

Abstract 155 

Introduction 156 

Materials and Methods 160 

Results 165 

Chemical Structure of Erythromycin and Erythromycin Degradation 

Products 165 

Erythromycin Kinetics with Ozone 167 



xii 
 

Inhibition Profile of Erythromycin 174 

Antimicrobial Activity of Erythromycin Intermediate Oxidation Products 178 

Conclusions 184 

 

Chapter 7: Conclusions 186 

Significance 190 

Recommendations for Future Work 192 

 

Appendix A: Dish Washing and Autoclave Protocols 196 

Appendix B: Fluorescence EEM Data for NOM isolates 197 

Appendix C: Antimicrobial Activity Assay Data Analysis 200 

Appendix D: Cytotoxicity Assay 211 

Appendix E: Comparison of the Variable Volume, Constant Volume, and 

Modified Constant Volume Models for Pharmaceutical 

Transformation in the Continuous Ozone Addition Reactor 216 

 

References 226 

Vita 243 

  



xiii 
 

LIST OF TABLES 

 
 
Table 2-1.  State bills relating to regulation of unused pharmaceuticals. .......................14 

Table 2-2.  Salient information for the chemicals of concern. ........................................17 

Table 2-3.  Mode of action for PhACs of concern. .........................................................18 

Table 2-4.  Detection of the four pharmaceuticals of concern. .......................................21 

Table 2-5.  Ozone decomposition models. ......................................................................31 

Table 2-6.  Properties of t-BuOH and pCBA. .................................................................41 

 
Table 3-1.  Summary of organic matter recovery during NOM extractions. ..................53 

Table 3-2.  Raw water quality of Claremore Lake and Lake Austin water 
sources. .........................................................................................................54 

 
Table 4-1.  Properties of ifosfamide and cyclophosphamide. .........................................97 

Table 4-2.  Rate constants for cyclophosphamide and ifosfamide with ozone and 
hydroxyl radicals.........................................................................................110 

Table 4-3.  Proposed intermediate products formed via ozonation of 
cyclophosphamide and ifosfamide..............................................................121 

 
Table 5-1.  Salient properties of ciprofloxacin and depiction of structure-activity 

relationship for quinolones. ........................................................................127 

Table 5-2.  Source water and NOM characteristics. .....................................................133 

Table 5-3.  Applied ozone dose (mg/L) necessary for 50% removal of 
ciprofloxacin and antimicrobial activity for a variety of NOM 
matrices. ......................................................................................................151 

 
Table 6-1.  Salient information for erythromycin. ........................................................156 

Table 6-2.  Apparent second order rate constants (k”
O3,app,EA) for the 

transformation of erythromycin A by ozone at pH 5.35-6.81. ...................168 



xiv 
 

 
Table B-1.  Fluorescence index for organic matter isolates. ..........................................199 

 
Table C-1.  Summary of inhibition data for antimicrobial activity assay with 

ciprofloxacin. ..............................................................................................202 

Table C-2.  Summary of inhibition data for antimicrobial activity assay with 
erythromycin run using the potency equivalents protocol. .........................207 

 
 
 
 
  



xv 
 

LIST OF FIGURES 

 
 
Figure 2-1.  SciFinder returns for keywords relating to pharmaceutical presence 

in the environment and water treatment processes aimed at treating 
pharmaceuticals. ...........................................................................................10 

Figure 2-2.  Peroxone chemistry (adapted from Acero and von Gunten, 2001). .............33 

Figure 2-3.  (a)  Vosmaer sterilizer in Philadelphia circa 1905 (Vosmaer, 1916);  
(b)  Schematic of Vosmaer sterilizer (Vosmaer, 1916). ...............................35 

Figure 2-4.  (a) Schematic of a gaseous ozone reactor.  (b) The ozone mass flow 
rate is a function of the oxygen gas flow rate and the ozone generator 
settings. .........................................................................................................36 

Figure 2-5.  Representation of the interfacial film for a pseudo-first order kinetic 
regime with respect to ozone consumption (Dodd et al., 2008). ..................37 

Figure 2-6.  Aqueous ozone experimental setup for batch experimentation. ...................39 

Figure 2-7.  Impact of SUVA on NOM reactivity with ozone (Westerhoff et al., 
1999a). ..........................................................................................................47 

Figure 2-8.  Structure-activity relationship for quinolone antibiotics (Lemke and 
Williams, 2008). ...........................................................................................48 

 
 
Figure 3-1.  Examples of direct ozone measurement at 258 nm and the 

corresponding ozone concentrations found using Eq. 3-1. ...........................56 

Figure 3-2.  Ozone reaction with indigotrisulfonate, and the resulting ozonation 
products (adapted from Bader and Hoigné, 1981). .......................................57 

Figure 3-3.  Example of indirect ozone measurement using indigotrisulfonate, 
which absorbs light at 600 nm. .....................................................................58 

Figure 3-4.  Representative chromatogram of ciprofloxacin analysis using HPLC 
with FLD. ......................................................................................................59 

Figure 3-5.  Cyclophosphamide (100 µg/L) peak using LC-MS/MS. ..............................60 



xvi 
 

Figure 3-6.  Typical peaks for cyclophosphamide and intermediate oxidation 
products generated by ozone and hydroxyl radical reaction with 
cyclophosphamide. .......................................................................................61 

Figure 3-7.   A representative erythromycin peak using the LC-MS/MS analytical 
method described above. ...............................................................................62 

Figure 3-8.  Examples of erythromycin and erythromycin intermediate oxidation 
products generated by erythromycin reaction with aqueous ozone. .............63 

Figure 3-9.  A typical ifosfamide peak using the LC-MS/MS method described 
above. ............................................................................................................64 

Figure 3-10. Example of combined method allowing concomitant analysis of 
cyclophosphamide and ifosfamide for the same injection volume. ..............65 

Figure 3-11.  Ifosfamide and ifosfamide intermediate peaks detected using LC-
MS.  Ifosfamide and ifosfamide intermediate oxidation products 
were detected by their distinctive m/z values and separated from the 
total ion current. ............................................................................................66 

Figure 3-12. A representative pCBA peak (10 µM) using the HPLC with PDA. .............67 

Figure 3-13. Schematic of the ozone reactor showing gaseous generation of ozone 
and the ozone stock solution container. ........................................................70 

Figure 3-14. Schematic of experimental setup for batch transformation studies. .............72 

Figure 3-15. Schematic of the experimental setup for continuous ozone addition 
experiments. ..................................................................................................73 

Figure 3-16. Typical ozone concentration and ozone exposure profiles during 
experimentation. ...........................................................................................75 

Figure 3-17. Demonstration of the impact that dosing 1 mg/L DOC from Lake 
Austin HPOA on the aqueous ozone concentration in continuous 
ozone reactor. ................................................................................................76 

Figure 3-18. Schematic of the continuous peroxone addition reactor. ..............................78 

Figure 3-19.  (a) Ozone concentration and hydroxyl radical exposure history 
throughout a typical continuous peroxone addition experiment; (b) 
Hydroxyl radical exposure as a function of applied ozone exposure. ..........78 

Figure 3-20. Determination of the second-order rate constant for ozone reaction 
with ifosfamide. ............................................................................................82 



xvii 
 

Figure 3-21. Determination of Rct using the relationship described in Eq. 3-11. ..............84 

Figure 3-22. Ozone and hydroxyl radical exposure throughout an experiment 
employing 10 µM pCBA. .............................................................................85 

Figure 3-23. Determination of the second-order rate constant for hydroxyl radical 
reaction with ifosfamide. ..............................................................................86 

Figure 3-24.  Ifosfamide transformation in the peroxone system as described by 
Eq. 3-17. ........................................................................................................88 

Figure 3-25. Representative data and model fits (solid lines) collected from (a) the 
inhibition profile protocol (with ciprofloxacin) and (b) the potency 
equivalents protocol (with erythromycin) for running the 
antimicrobial activity assay. .........................................................................93 

 
 
Figure 4-1.  (a) Schematic of the continuous liquid ozone addition reactor; (b) 

Behavior of ozone concentrations and ozone exposure throughout a 
continuous ozone addition experiment. ......................................................101 

Figure 4-2.  Determination of second order rate constant for hydroxyl radical 
reaction with cyclophosphamide (a) and ifosfamide (b) using the 
continuous addition peroxone reactor. ........................................................107 

Figure 4-3.  Determination of cyclophosphamide and ifosfamide second-order 
rate constants with ozone. ...........................................................................109 

Figure 4-4.  (a) Determination of Rct and (b) plots of ozone and hydroxyl radical 
exposure corresponding to ozonation of a solution containing 
1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 10-5 M pCBA, 3.83×10-7 
M cyclophosphamide, and 3.83×10-7 µg/L ifosfamide at pH 8.3. ..............111 

Figure 4-5.  Transformation of cyclophosphamide and ifosfamide in a system 
that demonstrates ozone and hydroxyl radical exposure. ...........................113 

Figure 4-6.  The impact of three different concentrations (0, 0.28, and 27.6 mg/L 
DOC) of organic matter (Lake Austin HPOA) on (a) 
Cyclophosphamide and (b) Ifosfamide removal as a function of the 
applied ozone dose (mol/L). .......................................................................116 

Figure 4-7.  Cyclophosphamide transformation and production of intermediate 
products as a function of the molar ratio of applied ozone to the 
initial cyclophosphamide concentration (mol O3/ mol CYP) at a.) pH 



xviii 
 

2.5 and b.) pH 9.6.  Ifosfamide transformation and production of 
intermediate products as a function of the molar ratio of applied 
ozone to the initial ifosfamide concentration (mol O3/ mol IFO) at c.) 
pH 2.5 and d.) pH 9.6..................................................................................118 

Figure 4-8.  Formation and transformation of m/z = 221.0, which corresponds to 
phosphoramide mustard (cyclophosphamide) and isophosphoramide 
mustard (ifosfamide) as a percentage of the initial 
cyclophosphamide/ ifosfamide response. ...................................................123 

Figure 4-9.  Typical LC-MS peaks for (a) cyclophosphamide and phosphoramide 
mustard and (b) ifosfamide and isophosphamide mustard. ........................125 

 
 
Figure 5-1.  The impact of NOM source (no organic matter, Lake Austin HPOA, 

and Claremore Lake HPOA) and concentration (0, 2, and 4 mg/L 
DOC) on ciprofloxacin oxidation. ..............................................................140 

Figure 5-2.  Kinetics of ciprofloxacin reaction with ozone and hydroxyl radical at 
pH 7 with 1mM NaHCO3. in two solutions, one without organic 
matter and one with 0.5 mg/L DOC from Claremore Lake HPOA. ...........143 

Figure 5-3.  The impact of NOM composition (hydrophobic organic acids and 
transphilic organic acids fractions) and pH (8.4 and 6.5) of 
Claremore Lake organic matter on ciprofloxacin oxidation. ......................145 

Figure 5-4.  E.coli inhibition profiles with ciprofloxacin for standards (“without 
oxidation”) and ozonated samples (“with oxidation”). ...............................147 

Figure 5-5.  Simultaneous removal of ciprofloxacin (heavy curves; corresponding 
to the model fits from Figure 5-1) and antimicrobial activity (hollow 
symbols) in the synthetic (0 mg/L DOC) and Lake Austin HPOA (2 
and 4 mg/L DOC) solutions. .......................................................................149 

Figure 5-6.  Elimination of antimicrobial activity in the synthetic (0 mg/L DOC), 
Lake Austin HPOA (4 mg/L DOC), and Claremore Lake HPOA and 
TPIA (4 mg/L DOC) water matrices. .........................................................150 

 
 
Figure 6-1.  (a)  Ozone reactor setup; (b) aqueous ozone concentration with time. .......161 



xix 
 

Figure 6-2.  (a) Erythromycin transformation at different pH values; (b) 
determination of specific second order rate constant for 
erythromycin with ozone. ...........................................................................169 

Figure 6-3.  Changes in erythromycin and anhydroerythromycin concentrations 
as a function of the mass ratio of applied ozone to DOC 
concentration. ..............................................................................................171 

Figure 6-4.  Verification of erythromycin rate constants through comparison of 
ozone exposure calculated from changes in erythromycin A and 
anhydroerythromycin A concentrations. .....................................................174 

Figure 6-5.  Inhibition profile for erythromycin A against E. coli at pH 8.3. ................176 

Figure 6-6.  Difference between solutions containing erythromycin A and 
anhydroerythromycin A as the dominant species in solution on the E. 
coli-based antimicrobial activity assay. ......................................................177 

Figure 6-7.  Antimicrobial activity data for experimental samples overlaid on the 
inhibition profile of erythromycin. .............................................................179 

Figure 6-8.  Peaks for intermediate oxidation products generated by ozonation of 
erythromycin and anhydroerythromycin. ...................................................181 

 
 
Figure B-1.  Description of the major regimes of a Fluorescence EEM map. ................197 

Figure B-2.  Fluorescence maps of (a) Claremore Lake HPOA, b.) Claremore 
Lake TPIA, c.) Lake Austin raw water, and d.) Lake Austin HPOA. ........198 

 
 
Figure C-1.  GraphPad Prism input/output for analysis of the ciprofloxacin and 

percent inhibition data presented above in Table C-1. ...............................203 

Figure C-2.  The inhibition profile of ciprofloxacin against E. coli................................204 

Figure C-3.  Percent inhibition plotted against LOG(C/Co) for the ten data sets 
described in Table C-2.. ..............................................................................209 

Figure C-4.  Potency equivalents plotted against normalized erythromycin 
concentration. ..............................................................................................210 

 



xx 
 

Figure D-1.  a.) A microphotograph of a portion of the hemacytometer grid; each 
of the small boxes shown is 0.0625-mm × 0.0625-mm.  b.) An 
illustration of the grid pattern on the hemacytometer and 
presentation of what areas (A-D) are used for cell counting. .....................212 

Figure D-2.  Photograph of the solution coloring throughout the cell-response 
calibration experiment using HEK-293 cells and the MTS/PMS 
reagent solution. ..........................................................................................213 

Figure D-3.  Calibration curve of initial number of HEK-293 cells added to the 
microplate wells with the response determined using the difference 
in absorbance at 490 nm and 650 nm. ........................................................214 

Figure D-4.  Results from an attempt to standardize the response of the MTS 
cytotoxicity assay to standard solutions of cyclophosphamide. .................215 

 
Figure E-1.  Comparison of the constant volume, variable volume, and modified 

constant volume models for ifosfamide transformation. ............................222 

Figure E-2.  Comparison of the constant volume, variable volume, and modified 
constant volume models for cyclophosphamide transformation. ...............223 

Figure E- 3.  Comparison of the constant volume, variable volume, and modified 
constant volume models for ifosfamide transformation. ............................224 

Figure E-4.  Comparison of the constant volume, variable volume, and modified 
constant volume models for cyclophosphamide transformation. ...............225 

 
  



1 
 

 

CHAPTER 1:  INTRODUCTION 

 

This is an especially interesting time in the field of environmental engineering.  In 

the past, water and wastewater treatment for specific compounds were reactionary 

measures aimed at resolving issues surrounding the contamination of water supplies.  In 

fact, the birth of the modern environmental movement can be considered a reaction to 

Rachel Carson’s landmark book, Silent Spring (Carson, 1962).  With the rapid advances 

in environmental engineering since the 1970s, we are now in a unique position to 

engineer treatment processes aimed at removing emerging contaminants from water 

sources.  The focus of this dissertation is on the removal of pharmacologically active 

compounds (PhACs) from water. 

 

The sheer number of chemical compounds that the human population produces 

and employs is intimidating.  PhACs represent only a small portion of these compounds.  

While it is difficult to estimate the total number of PhACs used in the world, 7,929 

approved drugs are listed in the National Institutes of Health (NIH) Chemical Genomics 

Center (NCGC) pharmaceutical collection (NPC) browser (Huang et al., 2011).  From 

2004 to 2008, global pharmaceutical sales grew from $578 billion to over $735 billion 

(IMS Health, 2007).   

 

Documentation of the presence of such compounds in water  is widespread, with 

PhACs being detected in surface waters on every continent (Ternes, 1998; Stumpf et al., 

1999; Schulz and Peall, 2000; Kolpin et al., 2002; Falconer et al., 2006; Kim et al., 2007; 

Hale et al., 2008).  The concentrations of PhACs in the environment tend to range from 

less than 1 ng/L to several μg/L (Ternes, 1998; Kolpin et al., 2002; Kim et al., 2007).  

However, exceptions exist; most notably, Larsson et al. (2007) reported ciprofloxacin 



2 
 

concentrations up to 31 mg/L in the wastewater effluent of a treatment plant serving 

ninety bulk drug manufacturers. 

 

 A considerable amount of research has concentrated on assessing the impact of 

pharmaceuticals and personal care products (PPCPs), endocrine-disrupting chemicals 

(EDCs), and pesticides/insecticides, among other chemicals, on aquatic life.  Aquatic life 

is especially susceptible to hydrophobic contaminants, including many of the EDCs and 

PhACs, because of the potential for bioaccumulation in low trophic levels and 

biomagnification of these compounds in the marine food chain (Tyler et al., 1998; Vos et 

al., 2000).  The impact of PhACs on human health is not yet fully understood; however, 

progress has been made in three major areas of study:  direct impacts on human cells 

(Pomati et al., 2006), spread of antibiotic resistance (Schwartz et al., 2003; Duong et al., 

2008; Szczepanowski et al., 2009), and indirect impacts on cell signaling processes 

(Linares et al., 2006; Fajardo and Martínez, 2008).  To lessen the threat from PhAC 

contamination, several states (Maine, 2005; California, 2007; Iowa, 2007; Oregon, 2007; 

Wisconsin, 2007; Pennsylvania, 2008) have enacted legislation to encourage proper 

disposal of unused and expired medication.  On the federal level, concern over the 

presence of PhACs in the environment has prompted Congress to propose adding 

hazardous pharmaceutical wastes to The Universal Waste Rule (EPA, 2008). 

 

PROBLEM STATEMENT 

 Research efforts aimed at identifying the capabilities of water treatment plants to 

remove pharmaceuticals in various background water quality matrices are ongoing 

(Steger-Hartmann et al., 1997; Ternes, 1998; Stumpf et al., 1999; Adams et al., 2002; 

Westerhoff et al., 2005).  Several research studies have focused on oxidation and 

advanced oxidation processes (AOPs) for removal of PhACs due to process flexibility, 

ease of installation, and competitive economics (Huber et al., 2003; Snyder et al., 2006).  

Ozone-based processes have great potential, as reflected in their increasingly frequent use 

in water reuse scenarios (Halliday, 2006; APTwater, 2011; Windhoek, 2011).  The work 
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of von Gunten has demonstrated the use of aqueous ozone stock solutions for various 

purposes, including the determination of ozone‒PhAC reaction kinetics (Dodd et al., 

2006), PhAC transformation for specific ozone doses (Suarez et al., 2007), and 

measurement of hydroxyl radical exposure (Elovitz and von Gunten, 1999; Elovitz et al., 

2000).  This body of literature builds on earlier work by Hoigné, Staehelin, and Bader 

(Hoigné and Bader, 1976; Staehelin and Hoigné, 1982) in understanding ozone 

decomposition in water and reaction chemistry with chemical contaminants. 

 

Oxidative treatment is a transformative process.  DeWitte et al. (2008) identified 

some of the operative ciprofloxacin transformations during ozonation; the chemical 

structures of the twelve intermediate oxidation products that were suggested are markedly 

similar to the structure of ciprofloxacin.  Since pharmacological activity is a strong 

function of chemical structure (Lemke and Williams, 2008), one key hypothesis 

associated with this research is that some oxidative intermediate products may exert 

pharmacological or toxicological activity.  In the past few years, several researchers 

(Suarez et al., 2007; Baeza, 2008; Dodd et al., 2009; Paul et al., 2010) have used an 

antimicrobial susceptibility assay (NCCLS, 2004) to describe treatment efficiency in 

terms of pharmacological activity.  The ability to monitor residual antimicrobial activity 

allows for pragmatic treatment goals (i.e., treatment goals based upon removal of the 

biological response exerted by the contaminants rather than individual targets for each 

PhAC). 

 

OBJECTIVES 

 The overall goal of this research was to develop an approach for considering 

water treatment of PhACs in terms of not only parent compound removal but also 

elimination of residual pharmacological activity.  In this research, four pharmaceuticals 

(i.e., ciprofloxacin, cyclophosphamide, erythromycin, and ifosfamide) were employed to 

build a comprehensive story about how transformation of parent compounds by 

ozonation and advanced oxidation processes relates to the elimination of pharmacological 
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activity in a water treatment context.  To elucidate this relationship, the following 

objectives were undertaken: 

 

1. To investigate the transformation of the four compounds of concern in the ozone 

and peroxone systems; 

2. To describe the kinetics of degradation of the four compounds of concern with 

aqueous ozone and hydroxyl radicals; 

3. To identify the early intermediate oxidation products for the compounds of 

concern; 

4. To measure the antimicrobial activity of water sources containing ciprofloxacin 

and erythromycin throughout the treatment process; and, 

5. To characterize the impact of natural organic matter (NOM) on the transformation 

of the four compounds of concern and on the elimination of residual antimicrobial 

activity. 

 

APPROACH 

The findings from Objective 1 were employed to determine the suitability of 

ozone-based processes to treat PhACs.  In Objective 2, the rate constants for the PhACs 

of concern with ozone and hydroxyl radicals were found to enable prediction of PhAC 

transformation in treatment processes where ozone exposure and hydroxyl radical 

exposure can be controlled.  The intermediate oxidation products formed through PhAC 

reaction with ozone and hydroxyl radicals were identified in Objective 3.  The cumulative 

findings from Objectives 1-2 illustrate the amount and rate of PhAC transformation 

expected in ozone-based processes; furthermore, the structures of the resulting 

intermediate oxidation products were characterized in Objective 3.  For the four PhACs 

of concern, the structures of intermediate products suggested their relative ability to exert 

a specific biological response.  For ciprofloxacin and erythromycin, the ability of 

intermediate oxidation products to maintain residual antimicrobial activity was tested in 

Objective 4; however, for cyclophosphamide and ifosfamide, the discussion was limited 
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to the theoretical potential for intermediate oxidation products to manifest 

pharmacological activity.  Finally, the impacts of NOM (Objective 5) on pharmaceutical 

oxidation in ozone-based systems were investigated in terms of parent compound 

transformation, intermediate product formation, and elimination of residual 

pharmacological activity. 

 

The chapters of this dissertation are organized as follows.  Chapter 2 contains an 

extensive literature review of pharmaceutical presence in water sources, the chemistry of 

the four compounds studied in this research, ozone chemistry, ozone application 

strategies (gaseous vs. aqueous ozone addition), and the impact of NOM on ozone 

processes.  Chapter 3 describes the materials and methods employed in the research with 

a particular emphasis on the analytical methods used to measure pharmaceuticals, the 

experimental designs employed for ozone experiments, and the antimicrobial activity 

protocols utilized to measure residual antimicrobial activity.  Chapter 4 discusses ozone 

and peroxone treatment of the two chemotherapy agents (cyclophosphamide and 

ifosfamide), including identification of rate constants using the novel continuous aqueous 

ozone addition reactor, demonstration of the impact of DOC on transformation, and 

characterization of intermediate oxidation products.  Chapter 5 presents results showing 

ciprofloxacin oxidation in a continuous aqueous ozone addition reactor and how the 

presence and composition of NOM can impact not only ciprofloxacin transformation, but 

also antimicrobial activity elimination.  Chapter 6 examines the transformation kinetics of 

erythromycin and a major erythromycin metabolic product, anhydroerythromycin A, with 

ozone, the intermediate oxidation products formed via ozonation, and the antimicrobial 

activity of erythromycin, anhydroerythromycin A, and their intermediate oxidation 

products.  Chapters 4 through 6 were written as drafts of papers to be submitted for 

publication in refereed journals and therefore repeat, in abbreviated form, some of the 

background and methods from Chapters 2 and 3.  Chapter 7 draws conclusions about the 

results presented in Chapters 4-6 and describes plans for future work.   
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SIGNIFICANCE 

The significance of this research lies in the extension of the results to water and 

wastewater treatment applications.  Of particular interest is the application for water 

reuse scenarios.  One of the most contentious aspects of water reuse and wastewater 

reclamation is the ability for trace organic contaminants to pass through treatment 

processes and enter drinking water supplies.  Many water reuse facilities employ tertiary 

treatment processes aimed at disinfection and treatment of trace organic contaminants 

(Halliday, 2006; APTwater, 2011; Windhoek, 2011).  As ozonation is a typical unit 

process employed in water reuse scenarios, understanding the ability of the ozone process 

to remove trace organic contaminants, including pharmacologically active compounds, 

from the water source is crucial.   

 

As the length of the pathway between wastewater and drinking water is reduced, 

the efficacy of ozonation processes needs to be better understood and changes to 

traditional ozonation processes need to be developed.  This dissertation introduces the 

employment of two novel ozone processes to determine the kinetics of PhAC 

transformation by ozone and hydroxyl radicals:  the continuous aqueous ozone addition 

reactor and the continuous peroxone addition reactor.  In the first scenario, a highly 

concentrated ozone solution is continuously pumped into a reactor containing the water 

of interest; in the second scenario, hydrogen peroxide and the highly concentrated ozone 

solution are concurrently pumped into a reactor containing the water of interest. 

 

  Finally, this research takes important strides beyond many previous ozone-based 

research efforts.  Traditionally, researchers have investigated individual aspects of ozone 

treatment processes relevant to water treatment scenarios.  In this body of work, I 

demonstrate not only the ability of ozone-based treatment processes to transform 

pharmaceuticals, but also the impact of NOM on the removal efficiency of 

pharmaceuticals; furthermore, I characterize intermediate oxidation products.  Perhaps 

the most important aspect of this research is the measurement of residual antimicrobial 
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activity throughout treatment processes for ciprofloxacin and erythromycin.  As treatment 

goals should be based upon the ability of the water to exert a biological response, 

demonstrating the means to measure the residual pharmacological activity is extremely 

important.    
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CHAPTER 2:  LITERATURE REVIEW 

 

 

In Pharma-ecology:  The Occurrence and Fate of Pharmaceuticals and Personal 

Care Products in the Environment, Jjemba (2008) states, “The human impulse for a cure 

runs quite deep, and our first instinct whenever we feel sick or heading toward sickness is 

to medicate.”  This impulse has contributed to the rapid rise of the pharmaceutical 

industry, and our increased consumption of various medications.  As with many other 

anthropogenically-derived substances, increased consumption inevitably leads to 

environmental contamination. 

 

PHARMACEUTICALS IN THE ENVIRONMENT 

The presence of trace organic compounds, and pharmacologically active 

compounds (PhACs) in particular, in global water supplies has been widely documented 

during the last decade (Halling-Sorensen et al., 1998; Daughton and Ternes, 1999; 

Kolpin et al., 2002).  Halling-Sorensen et al.’s (1998) review article discussed the 

presence of pharmaceutical substances in groundwater, river water, sediments, ocean 

dumping sites, and soils; the paper goes on to describe studies investigating the 

biodegradability, sorption, and toxicity of pharmaceutical substances in a variety of 

media.  In the conclusion of the article, Halling-Sorensen et al. note that “further research 

in this hitherto little explored field would be necessary to assess the environmental risk 

involved in exposing medical substances to the environment.”  In 1999, Daughton and 

Ternes asked whether pharmaceuticals and personal care products are “agents of subtle 

change.”  In this landmark review, Daughton and Ternes (1999) aimed “to catalyze a 

discussion in the environmental science community to determine the significance of 

PPCPs in the environment.”  A few years later, Kolpin et al. (2002) documented the 

results of a nationwide reconnaissance conducted by the United States Geological Survey 
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(USGS) to assess the presence of trace organic contaminants, including pharmaceuticals, 

personal care products, hormones, pesticides, and plasticizers, among other wastewater-

derived contaminants, in U.S. surface water.  That study sampled from 139 streams 

across 30 U.S. states; the analytical methods developed for the study were able to test for 

95 different trace organic contaminants (TrOCs) found in municipal wastewater.  Of the 

95 compounds investigated, 82 compounds were detected at least once in the study; 

furthermore, 80% of the 139 streams investigated contained at least one compound.  

Kolpin et al. (2002) interpreted these results as evidence that TrOCs pass through 

wastewater treatment and persist in the environment. 

 

In 2008, this issue was brought to the public’s attention through an Associated 

Press news report by Donn et al. (2008).  The journalists contacted water utilities around 

the country and inquired as to whether pharmaceuticals had been detected in drinking 

water supplies or finished drinking water.  This report was distributed in major 

newspapers around the country with headlines such as AP Probe Finds Drugs in 

Drinking Water (Donn et al., 2008).  The original article opens with the following 

statement:  “A vast array of pharmaceuticals – including antibiotics, anti-convulsants, 

mood stabilizers and sex hormones – have been found in the drinking water supplies of at 

least 41 million Americans…”  Other findings from this report include the following: 

 
“Officials in Philadelphia said testing there discovered 56 pharmaceuticals or 
byproducts in treated drinking water, including medicines for pain, infection, high 
cholesterol, asthma, epilepsy, mental illness and heart problems. Sixty-three 
pharmaceuticals or byproducts were found in the city's watersheds. 
 
Anti-epileptic and anti-anxiety medications were detected in a portion of the treated 
drinking water for 18.5 million people in Southern California. 
 
A sex hormone was detected in San Francisco's drinking water.”  (Donn et al., 2008) 

 

Needless to say, this article generated a media frenzy regarding the presence of 

pharmaceuticals in drinking water; that frenzy has resulted in increased research activity 

with respect to treatment processes aimed at removing trace organic contaminants in 
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water and wastewater treatment plants.  As mentioned above, the first major articles 

addressing the issue of pharmaceutical presence in the environment came in the late 

1990s.  Figure 2-1 shows the number of SciFinder returns for two separate searches:  (1) 

“”pharmaceutical” & “environment” & “contamination” and (2) “pharmaceutical” & 

“water treatment.”  In the mid-late 1990s, the slope of the curve steepens.  Recall that this 

period coincides with publication of the first major articles (Halling-Sorensen et al., 

1998; Daughton and Ternes, 1999) calling attention to this topic.  The dates for release of 

the Kolpin et al. (2002) and Donn et al. (2008) studies are also superimposed on the plot.  

Clearly, release of these reports coincided with increased research activity in this field. 

 

 

Figure 2-1. SciFinder returns for keywords relating to pharmaceutical presence in 
the environment and water treatment processes aimed at treating 
pharmaceuticals. 
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Avenues for Pharmaceutical Introduction into the Environment 

Daughton (2007) recently published a figure documenting the avenues for 

pharmaceutical contamination of the environment, including usage by individuals and 

pets, release of treated/untreated hospital wastes to domestic sewage systems, release to 

private septic/leach fields, applications of biosolids to agricultural land, direct release to 

open waters via washing, bathing, and swimming, discharge of regulated/controlled 

industrial manufacturing waste streams, disposal to landfills, release to open waters from 

aquaculture, and release of drugs that serve as pest control agents, among others.  In this 

dissertation, the focus rests on wastewater treatment plants (WWTPs).  In WWTPs, the 

two major avenues for pharmaceutical contamination are excretion of unmetabolized 

pharmaceuticals from the human body and improper disposal of medication. 

 

Excretion of pharmaceuticals and active metabolites from the human body 

(Lienert et al., 2007) is a direct function of drug uptake into plasma, metabolism of the 

drug, and the urinary excretion rate (Lemke and Williams, 2008).  The excretion rate of 

pharmaceuticals depends on the chemical structure and properties of individual 

compounds and is expressed as   

 

 %100(%)
,

, 
dosePhAC

urinePhAC
ex M

M
F  Eq. 2-1 

 

In Eq. 2-1, Fex is the urinary excretion factor, MPhAC,urine is the mass of the parent 

pharmaceuticals excreted in the urine, and MPhAC,dose is the mass of parent pharmaceutical 

dosed to the patient.  Additionally, the administered dose can also affect the excretion 

factor.  For example, ifosfamide administered at low doses (1.5 g/m2 oral dose) 

demonstrates an excretion factor of 12-18%; however, at high doses (5 g/m2 IV dose and 

1.5 g/m2 oral dose) shows a much higher excretion factor, 53.1±9.6% (Brunton et al., 

2006).  Here, the m2 refers to body surface area, which is calculated as a function of 

height and weight.  Other compounds demonstrate a wide range of urinary excretion 
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factors; for instance, heparin, an anticoagulant, exhibits negligible urinary excretion, and 

metformin, one of the most widely prescribed antidiabetic drugs, has a urinary excretion 

factor of 99.9% (Brunton et al., 2006).  While other factors are involved, higher excretion 

factors correlate to higher PhAC concentrations in raw wastewater. 

 

Disposal of unused or expired medication has been a topic of recent investigations 

(Bound et al., 2006; Braund et al., 2009; Glassmeyer et al., 2009).  Glassmeyer et al. 

(2009) found that only 2% of respondents from the United States used all of their 

medication, while 7.2% of respondents did not dispose of unused medications, 1.4% 

returned the unused medication to the pharmacy, 35.4% disposed of unused medication 

down the sink or toilet, and 54% disposed of unused medication in the garbage.  Disposal 

of medication down the sink or toilet constitutes improper disposal due to the potential 

for pharmacologically active compounds to enter the aquatic environment and drinking 

water supplies.  Bound et al. (2006) found that the disposal method for unused 

medications by people in the United Kingdom varied by pharmaceutical class.  For 

example, 75.3% of respondents said that they dispose of antihistamines into the trash, 

9.1% into the toilet/sink, and 14.3% are returned to the pharmacy; however, 66.7% of 

respondents said that dispose of antidepressants in the trash, and the other 33.3% return 

unused antidepressants to the pharmacy.  Later, Braund et al. (2009) found that the 

disposal method for unused medications in New Zealand varies depending on the 

medication formulation (i.e., liquid, tablet/capsule, or ointment/cream).  Liquid 

medications are more likely to be disposed of into the sink/toilet, whereas 

tablets/capsules and ointments/creams are more likely to be disposed of into the garbage 

(Braund et al., 2009).  Recently, legislative action in the United States has aimed to 

decrease the amount of PhACs entering wastewater streams through improper disposal of 

unused and/or expired medication.  
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LEGISLATION OF PHARMACEUTICAL CONTAMINANTS 

 

The Office of National Drug Control Policy published a document titled “Proper 

Disposal of Prescription Drugs” in October, 2009 (ONDCP, 2009).  In that document, 

citizens are advised to only flush drugs approved for flushing by the Federal Drug 

Administration (FDA, 2010); the FDA list contains 27 drugs.  If the drugs are not 

recommended for flushing, citizens are told to use community drug take-back programs 

or household hazardous waste collection events.  If drug collection programs are not 

available, citizens are told to mix the drugs with cat litter or coffee grounds, seal the 

mixture in a disposable container or sealable bag, and to dispose of the container in the 

trash.   

 

In 2005, Maine became the first state to legislate the disposal of unused 

pharmaceuticals.  Title 22 §2700 of the Maine Revised Statutes (Maine, 2005) 

established the Unused Pharmaceutical Disposal Program, the purpose of which is “to 

ensure the safe, effective, and proper disposal of unused pharmaceuticals.”  The 

legislation calls for the creation of a system that provides for the return of unused 

pharmaceuticals through the use of prepaid mailing envelopes (Maine, 2005).  Since that 

time, a number of other states have enacted similar bills; short descriptions of those bills 

(California, 2007; Iowa, 2007; Oregon, 2007; Wisconsin, 2007; Pennsylvania, 2008; 

Virginia, 2008) are provided in Table 2-1.   

 



14 
 

Table 2-1. State bills relating to regulation of unused pharmaceuticals. 
State Year Bill Description 

Maine 2005 
Revised Statutes Title 
22 § 2700 

Unused Pharmaceutical Disposal Program 
collects unused pharmaceuticals and ensures 
safe, effective, and proper disposal. 

California 2007 
Public Resources 
Code § 47120-47126 

The new sections of the code tasked state 
agencies with developing a model for the 
safe take-back of drugs and the diversion of 
drug waste for use or sale. 

Iowa 2007 Senate File 579 
This act appropriated $225,000 for a 
pharmaceutical collection and disposal pilot 
project. 

Oregon 2007 Senate Bill 737 
The bill relates to bettering water quality.  
One of the measures listed is the institution 
of pharmaceutical take-back programs. 

Wisconsin 2007 Senate Bill 40 
The bill makes amendments to household 
hazardous waste laws. 

Pennsylvania 2008 House Bill 2073 

The Pharmaceutical Drug Disposal Act 
requires pharmaceutical retailers to establish 
means for collecting pharmaceutical drugs 
for proper disposal. 

Virginia 2008 House Bill 86 

The bill created the Unused Pharmaceutical 
Disposal Program, which establishes a 
system for returning unused pharmaceuticals 
to a single collection location. 

 

 

Concern over the presence of PhACs in the environment has prompted Congress 

to propose adding hazardous pharmaceutical wastes to The Universal Waste Rule (EPA, 

2008).  The proposed regulation would essentially mandate pharmaceutical waste 

collection guidelines to minimize the amount of pharmaceuticals being introduced into 

the environment; however, the rule relies on pharmacies, hospitals, physicians’ offices, 

dentists’ offices, outpatient care centers, ambulatory health care services, residential care 

facilities, veterinary clinics, and other facilities that generate hazardous pharmaceutical 

wastes to act as collection centers for expired and unused medications.  Although this 

legislation was proposed in 2008, these changes to the Universal Waste Rule have not yet 

been finalized. 
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While states are starting to adopt legislation requiring proper handling and 

disposal of unused and expired medication, treatment of pharmaceuticals in wastewater 

streams or drinking water sources has not yet been included in legislation.  Given the 

media buzz generated by the 2008 Associated Press article (Donn et al., 2008), future 

legislation on the discharge of pharmacologically active compounds from wastewater 

treatment plants is expected.  In fact, the EPA’s Candidate Contaminant List 3 (CCL3) 

lists several PPCPs and EDCs including 1,4-diozane, 17α-ethinylestradiol, 2-

methoxyethanol, 2-propen-1-ol, benzyl chloride, cobalt, equilenin, equilin, erythromycin, 

17β-estradiol, estriol, estrone, mestranol, nitrobenzene, nitroglycerin, 19-norethisterone, 

σ-toluidine, quinoline, tellurium, and, triethylamine (EPA, 2009).  Selection of a 

contaminant to the EPA CCL3 means that these chemicals are currently being considered 

for regulation under the Safe Drinking Water Act; therefore, it seems likely that future 

contaminant candidate lists will also include pharmaceuticals.  For that reason, study of 

the ability of water treatment processes to treat PhACs is merited.  In this research, 

ozone-based water treatment processes are employed to treat four model pharmaceuticals. 
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PHARMACEUTICALS OF CONCERN IN THIS STUDY 

 

This study focused on four pharmacologically active compounds (PhACs):  

ciprofloxacin, cyclophosphamide, ifosfamide, and erythromycin.  Salient information for 

the four compounds of concern is provided in Table 2-2.  These compounds represent 

two pharmaceutical classes, namely, antibiotic (ciprofloxacin and erythromycin) and 

chemotherapy agents (cyclophosphamide and ifosfamide).  Clearly, these compounds are 

distinctly different in their degree of aromaticity, molecular weight, and speciation; 

however, they also demonstrate chemical similarities, especially the two chemotherapy 

agents, cyclophosphamide and ifosfamide, which are structural isomers.  In this case, 

cyclophosphamide and ifosfamide were both studied to determine how the placement of 

the two chloroethyl functional groups affects transformation kinetics with ozone and 

hydroxyl radicals, as well as the structures of the resultant intermediate oxidation 

products. 

 

Ciprofloxacin 

Ciprofloxacin is a second generation fluoroquinolonic antibiotic.  Shortly after the 

introduction of fluoroquinolonic antibiotics in the late 1980s, ciprofloxacin became the 

most widely used antibiotic in the world (Norrby and Lietman, 1993).    In 2006, 

ciprofloxacin ranked 139th in pharmaceutical sales with $755 million in sales 

(Humphreys, 2007).  As of 2006, ciprofloxacin had generated a lifetime sales profit of 

$19 billion (Finch and Hunter, 2006); and in 2009, fluoroquinolones were the third most 

profitable class of antibiotics with sales of $7.1 billion (Hamad, 2010).  Ciprofloxacin is 

widely prescribed for urinary tract infections, cystitis, diarrhea, Typhoid fever, sinusitis, 

and gonorrhea, among others (FDA, 2004).  Most notably, ciprofloxacin was prescribed 

for anthrax infections (Meyerhoff et al., 2004).  Given the extremely active research into 

newer fluoroquinolones (De Souza, 2005), ciprofloxacin use is beginning to decline; 

however, it is still a widely prescribed pharmaceutical (Prescription, 2011).  The mode of 
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action for ciprofloxacin, as well as the other three pharmaceuticals of concern, is 

provided in Table 2-3. 

 

Table 2-2. Salient information for the chemicals of concern. 
NAME CIPROFLOXACIN ERYTHROMYCIN 

Chemical Formula C17H18FN3O3
  C37H67NO13

  

Molecular Weight (g/mol) 331.3 733.9 

Structure 

 

 

Class Antibiotic Antibiotic 

CAS Number 85721-33-1 114-07-8 

pKa 6.2, 8.8 8.8 

Fex (%) 50 ± 5 12 ± 7 

Name CYCLOPHOSPHAMIDE IFOSFAMIDE 

Chemical Formula C7H15Cl2N2O2P
  C7H15Cl2N2O2P

  

Molecular Weight (g/mol) 260.9 260.9 

Structure 

 

 

Class Chemotherapy Agent Chemotherapy Agent 

CAS Number 50-18-0 3778-73-2 

pKa 2.84 - 6.5 1.45 - 4.0 

Fex (%) 6.5 ± 4.3 
12-18 (low dose), 

53.1 ± 9.6 (high dose) 
 
 

O
OH

N
CH3 CH3

CH3

O
CH3

OH
CH3

O
CH3

CH3

CH3

OH
O

CH3

O

CH3

CH3
OH

OH

CH3 O

O

CH3

O

NH

P
O

O
N

Cl

Cl P

N

O NH
O

Cl

Cl

NN

NH2
+

F

O

O
-

O



18 
 

Table 2-3. Mode of action for PhACs of concern. 
Pharmaceutical Mode of Action 

Ciprofloxacin 

Inhibits DNA gyrase and topoisomerase IV, which relieve 
stress during DNA unwinding.  Inhibition of these enzymes 
disallows bacterial DNA separation, thereby inhibiting cell 
division. 

Erythromycin 

Binds to the 50S subunit of the bacterial 70S rRNA complex.  
Erythromycin interferes with aminoacyl translocation, 
preventing the transfer of the tRNA bound at the A site of the 
rRNA complex to the P site of the rRNA complex.  Without 
this translocation, the A site remains occupied, which 
interferes with the production of functionally useful proteins. 

Cyclophosphamide 

Cyclophosphamide is metabolized by cytochrome P450 to 4-
hydroxycyclophosphamide, which is then metabolized to 
phosphoramide mustard.  Phosphoramide mustard forms DNA 
crosslinks between and within DNA strands at guanine N-7 
positions. 

Ifosfamide 

Ifosfamide is metabolized by cytochrome P450 to 4-
hydroxyifosfamide, which is then metabolized to 
isophosphoramide mustard.  Isophosphoramide mustard forms 
DNA crosslinks between and within DNA strands at guanine 
N-7. 

 

Erythromycin 

Erythromycin was discovered in 1952 when it was isolated from the metabolic 

products of a strain of Streptomyces erythreus (McGuire et al., 1952).  Erythromycin is a 

broad-spectrum antibiotic in the macrolide family, and it is prescribed for bacterial 

infections like bronchitis, diphtheria, Legionnaires’ disease, pertussis, pneumonia, and 

ear, urinary tract, and skin infections, among others (Wishart et al., 2008).  Since the 

discovery of erythromycin, a number of other macrolide compounds have been 

developed, including clarithromycin (1970s), azithromycin (1980), roxithromycin (1987), 

and telithromycin (1998); regardless, erythromycin remains one of the most successful 

drugs of all time (Omura, 2002; Pal, 2006).  In 2009, macrolides were the fourth most 

popular class of antibiotics with total sales of $4.8 billion (Hamad, 2010).   
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Cyclophosphamide and Ifosfamide 

Cyclophosphamide and ifosfamide are structural isomers.  These compounds are 

prodrugs, meaning that cyclophosphamide and ifosfamide, themselves, are 

pharmacologically inactive; the compounds are converted into their active forms during 

metabolism.  First, the two compounds are converted to 4-hydroxycyclophosphamide and 

4-hydroxyifosfamide, respectively, which are also prodrugs (Low et al., 1983).  The 4-

hydroxy derivatives are further metabolized to the reactive mustards, phosphoramide 

mustard (cyclophosphamide) and isophosphoramide mustard (ifosfamide), respectively 

(Low et al., 1983).  The reactive mustards are cytotoxic and work by alkylating DNA, 

prohibiting separation of DNA strands during replication (Fleming, 1997).  In addition to 

being cytotoxic, cyclophosphamide and ifosfamide are teratogenic, mutagenic, and 

carcinogenic (Bus et al., 1973; Murthy et al., 1973; Mohn and Ellenberger, 1976).  The 

concentrations associated with cyclophosphamide and ifosfamide toxicity are organism 

dependent.   

 

Environmental Presence of Compounds of Concern 

As discussed in a previous section, many avenues exist for pharmacologically 

active compounds to enter the environment; however, for the compounds studied in this 

research, the major source is wastewater treatment plants (WWTPs).  The excretion 

factors for the four pharmaceuticals of concern range from 6.5% to 50%, indicating that a 

relatively large fraction of the consumed pharmaceuticals is excreted and sent to 

WWTPs.  As a result, all four of these compounds have been detected in hospital 

wastewater, wastewater treatment plant influent, wastewater treatment plant effluent, and 

surface water (Table 2-4).  While the measured concentrations vary by compound, PhAC 

concentrations in hospital wastewater can be relatively high (1-150 µg/L).  Due to 

dilution and some removal in wastewater treatment plants, surface water concentrations 

were low for all four compounds, typically on the order of tens of ng/L or less.  Two 

notable exceptions to this trend are the following:  Larsson et al. (2007) reported 

concentrations of 28-31 mg/L ciprofloxacin in effluent from a WWTP serving about 90 
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bulk drug manufacturers and Kolpin et al. (2002) detected surface water erythromycin 

concentrations of up to 1.7 µg/L.  The presence of the four chemicals of concern in 

surface waters suggests the potential for occurrence in drinking water but no literature 

has reported their presence to date.  
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Table 2-4. Detection of the four pharmaceuticals of concern. 
Drug Source Concentration (ng/L) Concentration Type Reference 

Ciprofloxacin 

Groundwater nd * range Barnes et al., 2008 

Hospital WW 140,000 max Vasconcelos et al., 2009 

Hospital WW nd – 54,049 range Thomas et al., 2007 

Hospital WW 1,100 – 25,800 range Duong et al., 2008 

Hospital WW (treated) 3,700 average Duong et al., 2008 

Surface water nd - 26.15 range Calamari et al., 2003 

Surface water 26 average Castiglioni et al., 2004 

Surface water nd-18 range Golet et al., 2002 

Surface water nd range Tamtam et al., 2008 

Surface water nd – 36 range Vieno et al., 2007 

Surface water nd  - 30 range Kolpin et al., 2002 

WW effluent 62-106 range Golet et al., 2002 

WW effluent nd – 400 range Miao et al., 2004 

WW effluent 251 median Zuccato et al., 2005 

WW effluent nd – 2,700 range Bhandari et al., 2008 

WW effluent nd - 742 range Thomas et al., 2007 

WW effluent 45 - 405 range Golet et al., 2001 

WW effluent 28,000,000 – 31,000,000 range Larsson et al., 2007 

WW influent 313-568 range Golet et al., 2002 

WW influent nd - 4600 range Bhandari et al., 2008 

WW influent nd - 5876 range Thomas et al., 2007 

Cyclophosphamide 

Hospital WW nd - 21 range Thomas et al., 2007 

Surface water nd range Calamari et al., 2003 

Surface water 0.05 - 0.17 range Buerge et al., 2006 

WW effluent 0.6 median Zuccato et al., 2005 
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Drug Source Concentration (ng/L) Concentration Type Reference 

Cyclophosphamide 

WW effluent nd range Thomas et al., 2007 

WW effluent 2 - 10 range Buerge et al., 2006 

WW effluent nd - 17 range Steger-Hartmann et al., 1997 

WW effluent 6 average Kim et al., 2009 

WW influent nd range Thomas et al., 2007 

WW influent 2 - 11 range Buerge et al., 2006 

WW influent nd - 143 range Steger-Hartmann et al., 1997 

Ifosfamide 

Hospital WW nd - 338 range Thomas et al., 2007 

Surface water nd - 0.14 range Buerge et al., 2006 

WW effluent nd - 71 range Thomas et al., 2007 

WW effluent nd - 6 range Buerge et al., 2006 

WW influent nd range Thomas et al., 2007 

WW influent nd - 5 range Buerge et al., 2006 

Erythromycin 

Groundwater nd range Barnes et al., 2008 

Reclaimed WW 154 - 611 range Kinney et al., 2006 

Surface water 1.40-15.90 range Calamari et al., 2003 

Surface water 5 average Castiglioni et al., 2004 

Surface water nd - 6.9 range Hao et al., 2006 

Surface water nd – 1,700 range Kolpin et al., 2002 

WW effluent 838 maximum Miao et al., 2004 

WW effluent 47.4 median Zuccato et al., 2005 

WW effluent nd range Ternes et al., 2003 

WW effluent 110 average Kim et al., 2009 

WW effluent 6,000 maximum Hirsch et al., 1999 

WW influent 620 average Ternes et al., 2003 
* nd = non-detect
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HUMAN AND ENVIRONMENTAL HEALTH THREAT FROM PHAC PRESENCE IN DRINKING 

WATER SUPPLIES 

 

  Based upon their pharmaceutical class, the four compounds listed above are of 

concern due to documented and perceived threats to human and environmental health.  

Pomati and coworkers (2006; 2007; 2008) have undertaken several studies to investigate 

the effects of 13 pharmaceuticals on Escherichia coli, zebrafish liver, human embryonic 

kidney, and human ovarian carcinoma cells.  They have found that trace levels of 

pharmaceuticals can inhibit the growth of human embryonic kidney cells by up to 30% 

(Pomati et al., 2006), and that the pharmacological activity of drug mixtures can vary 

from that of individual compounds (Pomati et al., 2008).  These findings are of great 

importance because they include the first toxicological investigation into the effects of 

trace levels of (non-endocrine disrupting) PhAC mixtures on human cells.  In addition to 

effects of trace organic contaminants on proliferation of select bacterial and mammalian 

cell lines, other human health and environmental concerns include the spread of antibiotic 

resistance, toxicity, and interruption of cell signaling processes. 

 

As mentioned in a previous section, several authors have detected antibiotic 

resistance genes in and downstream from wastewater treatment plants (Schwartz et al., 

2003; Volkmann et al., 2004; Mispagel and Gray, 2005; Baquero et al., 2008; Duong et 

al., 2008; Szczepanowski et al., 2009).  While hundreds of antibiotic resistance genes 

have been detected in wastewater treatment plants and in wastewater treatment plant 

effluent, consider the Szczepanowski et al. (2009) paper that identified the following 

ciprofloxacin resistance genes:  qnrB1, qnrB2, qnrB5, qnr, and qnrS2, as well as general 

quinolone resistance genes such as qnrB4; all of these genes were found in the activated 

sludge tank and the final WWTP effluent.  Erythromycin resistance genes were also 

detected:  ereA2, ereA, ereB, mph(B), mph(A), mph, ermA, ermB, mef(A), mefE, mefI, 

mel, msrA, and mexD, as well as general macrolide resistance genes like mphBM 

(Szczepanowski et al., 2009).  All of these genes were detected in the activated sludge 



24 
 

tank; however, only ereA2, ereA, mph(B), mph(A), mph, ermB, mel, and mexD, were 

found within the viable microorganism population in the final WWTP effluent.  Clearly, 

antibiotic resistance is widespread in wastewater treatment plants and wastewater 

treatment plant effluent.  Previous research has described wastewater effluent as the third 

tier of the transfer of antibiotic resistance, with the first tier composed of antibiotic use in 

animals and humans and the second tier composed of hospitals, long-term care facilities, 

and farms (Baquero et al., 2008). 

  

Documented evidence describes the decreasing susceptibility of microorganisms 

in patients to fluoroquinolones, including ciprofloxacin (Ridley and Threlfall, 1998; 

Karlowsky et al., 2002; Bhavnani et al., 2003).  In the Bhavnani et al. (2003) paper, the 

authors compiled data from 174 hospitals and reported that the median susceptibility of 

Pseudomonas aeruginosa to ciprofloxacin fell from 84% in 1993 to 71% in 1999.  

Similar concerns exist for erythromycin (Seppala et al., 1992; Descheemaeker et al., 

2000) and other macrolides.  In Finland, erythromycin resistance in Group A streptococci 

rose from 4% in 1988 to 24% in 1990 (Seppala et al., 1992).  To combat antibiotic 

resistance, several countries have actually lowered consumption of antibiotic 

medications; in fact, between 2000 and 2009, France and Japan decreased antibiotic 

usage by 21% and 15%, respectively (Hamad, 2010). 

 

Several authors (Kummerer et al., 1997; Steger-Hartmann et al., 1997; Buerge et 

al., 2006; Johnson et al., 2007; Chen et al., 2008) have indicated concern for the presence 

of chemotherapy agents in the environment.  The basis for this concern often stems from 

the fact that chemotherapy agents tend to exhibit carcinogenicity, mutagenicity, 

teratogenicity, and embryotoxicity, among other toxic effects.  The mechanism of action 

for cyclophosphamide and ifosfamide was described above in Table 2-3; recall that these 

compounds are metabolized into products that alkylate DNA (Low et al., 1983; Fleming, 

1997).  No research efforts have investigated whether environmental degradation of 
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chemotherapy agents can lead to formation of the active compounds; furthermore, the 

excretion of metabolic products is not typically reported. 

 

Recently, an increasing amount of attention has been given to characterization of 

the sub-lethal effects caused by PhACs, and antibiotics in particular.  In 2006, Linares et 

al. (2006) reported on the ability of antibiotics to act as intermicrobial signaling agents 

rather than “weapons.”  In that study, the authors reported that ciprofloxacin induced 

expression of 1.4% and repressed expression of 3.8% of a specific subset of 555 genes.  

In conclusion, the authors state that “subinhibitory concentrations of antibiotics can 

produce specific changes in the behavior of susceptible bacteria.”  Fajardo and Martinez 

(2008) also reported that low concentrations of antibiotics can trigger specific 

transcriptional responses; the authors reference the inhibition of the quorum sensing 

response by macrolides as an example of how antibiotics can affect cell signaling 

processes.  Quorum sensing is the regulation of gene expression in response to changes in 

cell density.  Davies et al. (2006) assembled a table showing a snapshot of the functional 

groups of genes affected by subinhibitory concentrations of antibiotics.  In that work, the 

authors describe several effects caused by fluoroquinolones and macrolides, including the 

ability of fluoroquinolones to reduce hemolytic activity and induce colicin synthesis in E. 

coli.  They also documented the ability of macrolides to decrease biofilm formation in 

Mycobacterium fortuitum and to inhibit quorum sensing in Pseudomonas aeruginosa 

(Davies et al., 2006).  Most of these subinhibitory effects are organism dependent, but 

regardless of the specific effect, more research into the implications for ecological 

systems is required. 
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WATER AND WASTEWATER TREATMENT OF TRACE ORGANIC CONTAMINANTS 

 

Shortly after publication of the initial review articles (Halling-Sorensen et al., 

1998; Daughton and Ternes, 1999) documenting the presence of pharmaceuticals in the 

environment, a number of research investigations targeting water and wastewater 

treatment of pharmaceuticals and other TrOCs were undertaken.  Several authors have 

documented the transport of PPCPs and EDCs through wastewater treatment processes 

(Ternes, 1998; Stumpf et al., 1999; Thomas et al., 2007; Okuda et al., 2008).  Similar 

studies have been conducted at drinking water treatment plants (Ternes et al., 2002; 

Stackelberg et al., 2004; Vieno et al., 2007).  This review focuses on drinking water 

treatment processes employed to remove PhACs from various water sources. 

 

  Adams et al. (2002) treated Missouri River water spiked with seven antibiotics at 

concentrations of 50 μg/L using conventional water treatment processes, including the 

following:  coagulation/flocculation/sedimentation with alum and iron salts, excess lime / 

soda ash softening, ultraviolet irradiation (at disinfection dosages), ion exchange, 

sorption onto powdered activated carbon (PAC), reverse osmosis, chlorination, and 

ozonation.  Their results showed that coagulation, softening, UV disinfection, and ion 

exchange did not demonstrate high removal efficiencies for the seven antibiotics of 

concern.  The other processes (PAC, reverse osmosis, chlorination, and ozonation) all 

demonstrated high potential to treat the seven antibiotics employed in this study.  

Ultimately, this work established which unit processes could successfully treat 

pharmaceuticals in water matrices.  Other efforts focused on testing the treatment 

efficacy of many unit processes have yielded similar results.  For example, Westerhoff et 

al. (2005) investigated removal of 62 different PPCPs and EDCs at concentrations 

ranging from 10-250 ng/L using alum (0-72% removal) and iron (0 - ~80%) coagulation, 

softening (0 - ~80%) , PAC (14-98%), hypochlorite oxidation (0-99%), and ozonation (2-

99%).  Removal efficiencies varied widely depending on the chemical structure and 
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properties of each individual PPCP or EDC; regardless, the highest individual removal 

efficiencies were observed for the ozone-based oxidation process. 

 

Other authors have investigated cumulative removal throughout an entire drinking 

water treatment process train.  Stackelburg et al. (2004) followed the concentrations of 

eleven PPCPs throughout a conventional drinking water treatment plant with coagulation, 

sedimentation, filtration (granular activated carbon; GAC), and disinfection 

(hypochlorite).  The concentrations of the eleven PPCPs in the raw water ranged from 6-

860 ng/L.  Of the eleven PPCPs followed through this drinking water treatment plant, 

only one compound, caffeine, showed significant removal.  Vieno et al. (2007) conducted 

a similar investigation, in which the authors documented changes in the concentrations of 

eleven pharmaceuticals (6-55 ng/L) through a pilot-scale drinking water treatment plant.  

The post-sedimentation and post-sand filtration concentrations were not statistically 

different from raw water concentrations.  The water was then ozonated, and the 

concentrations of all eleven pharmaceuticals were significantly reduced (16-99%).  The 

final units of the process train consisted of two granular activated carbon beds and UV-

disinfection.  Only three compounds were present above the detection limit after 

ozonation; two of those compounds, ibuprofen and naproxen, were removed below the 

detection limit after the first GAC bed.  The third compound, ciprofloxacin, did not 

demonstrate statistically significant removal after UV disinfection.  

 

  Other researchers (Xu et al., 2005; Kim et al., 2007; Snyder et al., 2007; Wang et 

al., 2009) have investigated the ability of membrane-based processes to remove 

pharmacologically active compounds from water and wastewater sources.  Xu et al. 

(2005) looked into the ability for reverse osmosis (RO) and nanofiltration (NF) 

membranes to remove seven pharmaceuticals at concentrations of 300 ng/L.  In that 

study, RO successfully removed over 90% of all seven compounds, but NF removal 

efficiencies varied from 10% to 70%.  Snyder et al. (2007) demonstrated the ability of 

ultrafiltration, membrane bioreactor (MBR), and RO processes to treat a cocktail of 36 
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pharmaceuticals.  In the ultrafiltration study, three compounds showed negative removal 

efficiencies; the other compounds demonstrated a wide range of removal (2.63 to greater 

than 98.85%).  Removal efficiencies in the MBR process ranged from 0% to greater than 

96.4%.  In the RO system, all compounds except caffeine (84.9% removal) and 

pentoxifylline (90.4% removal) were removed to below detection limits.  While reverse 

osmosis can effectively remove pharmaceuticals from water sources, the energy cost of 

using RO for low ionic strength water sources can be relatively high; for example, Lee et 

al. (2010) determined that the energy consumption of reverse osmosis was 1.1-1.5 

kWh/1000 gallons compared to 0.061-0.12 kWh/1000 gallons for ozone treatment. 

 

While the removal efficiencies for various PPCPs and EDCs in the drinking water 

treatment processes outlined in these studies (Adams et al., 2002; Stackelberg et al., 

2004; Westerhoff et al., 2005; Vieno et al., 2007) vary widely, the studies utilizing ozone 

processes always demonstrated the highest removal efficiencies with the possible 

exception of RO processes, which tend to be cost- and energy-intensive for water sources 

with low salt concentrations.  As a result, ozone-based treatment processes have emerged 

as the leading technology for removing trace concentrations of pharmacologically active 

compounds.  In this work, ozone and the peroxone process were employed in treating the 

four pharmaceuticals of concern. 
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OZONE AND PEROXONE CHEMISTRY 

 

Ozone can effectively oxidize trace concentrations of organic contaminants, 

including pharmaceuticals.  While all four of the selected compounds react with ozone to 

some degree, hydroxyl radicals, the principal ozone decomposition product, also 

contribute some oxidative capacity.  Peroxone, i.e., the combination of ozone and 

hydrogen peroxide, is an advanced oxidation process (AOP) that provides rapid 

generation of hydroxyl radicals by initiating ozone decomposition by hydrogen peroxide.  

For these reasons, it is important to consider ozone decomposition chemistry in the 

absence and presence of hydrogen peroxide.  Ozone decomposition reactions are 

presented below (Table 2-5).  These reactions essentially describe the rate of ozone 

decomposition in solution in pure water (Hoigné and Bader, 1976; Staehelin and Hoigné, 

1982; Buehler et al., 1984; Staehelin et al., 1984) and in water at alkaline conditions 

(Tomiyasu et al., 1985).  The reactions are split into three categories:  initiation, 

propagation, and termination reactions.  As the names suggest, initiation reactions trigger 

ozone decomposition, propagation reactions continue the ozone decomposition chain, and 

termination reactions end that chain of reactions.  In both scenarios, ozone decomposes 

into two radical species, which then undergo a complex set of propagation reactions to 

form hydroxyl radicals (HO·) and other reactive oxygen species (ROS), including the 

superoxide radical (O2
-·) and the peroxy radical (HO2·). 

 

  Below, two initiation reactions (Reactions 2-1, 2-2; Tomiyasu et al., 1985) and 

two propagation reactions (Reactions 2-3 (Westerhoff et al., 1997), 2-4 (Tomiyasu et al., 

1985)) are shown for pure water at alkaline conditions.  The major oxidizing agents 

formed via ozone decomposition include hydroxyl radicals (HO·) and superoxide radicals 

(O2
-·).  Both of these radicals are highly reactive and will attack almost all molecules 

present in solution.  In Reaction 2-5, a generic reaction for ROS attack on a 

pharmaceutical compound is shown.  Ozone, itself, will also attack organic molecules 

(Reaction 2-6).   
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Table 2-5. Ozone decomposition models. 
 

Ozone Decomposition in Pure Water 
(Buehler et al., 1984; Staehelin et al., 1984; Westerhoff et al., 1997) 

 
Initiation Reaction 

 
 

223 OHOHOO  70 M-1s-1 
 

 
Propagation Reactions 

 
  HOHO 22
 7.9 × 105 s-1 

 
22 HOHO  5 × 1010 M-1s-1 

2323 OOOO    1.6 × 109 M-1s-1 

 
33 HOHO  5.2 × 1010 M-1s-1 
  HOHO 33
 3.3 × 102 s-1 

23 OHOHO   1.1 × 105 s-1 

 43 HOHOO  2 × 109 M-1s-1 

224 OHOHO   2.8 × 104 s-1 
 

Termination Reactions 
 

32244 2 OOHHOHO   5 × 109 M-1s-1 

322234 OOOHHOHO   5 × 109 M-1s-1 

 
 

Ozone Decomposition in Pure Water at Alkaline Conditions 
(Tomiyasu et al., 1985; Westerhoff et al., 1997) 

 
Initiation Reaction 

 

223 OHOHOO    40 M-1s-1 * 

 
3223 OHOHOO  2.2 × 106 M-1s-1 

 
Propagation Reactions 

 
  HOHO 22
 7.9 × 105 s-1 

 
22 HOHO  5 × 1010 M-1s-1 

2323 OOOO    1.6 × 109 M-1s-1 
  HOOHOOHO 223
 20 - 30 M-1s-1 

 
223 OHOHOO  6 × 109 M-1s-1 

223 OHOHOO   3 × 109 M-1s-1 

222 OHHHO    5 × 1010 M-1s-1 

  HHOOH 222
 0.25 s-1 

 
Termination Reactions 

 
 HOOHOO 33
 2.5 × 109 M-1s-1 

 
3

2
3 COHOCOHO  4.2 × 108 M-1s-1 

 
22233 OCOOOCO  no data given 

* A value of 70 M-1s-1 is more widely employed for the ozone decomposition initiation reaction.
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 Reactions 2-2 to 2-5 also apply to the peroxone system as ozone is rapidly 

decomposed into a number of radical compounds that ultimately form ROS, including 

hydroxyl radicals and superoxide radicals, that are capable of transforming organic 

molecules.  Dissociation of hydrogen peroxide (Rxn. 2-7) leads to formation of peroxide 

(HO2
-), which can react with ozone as described above (Rxns. 2-2, 2-4).  The general 

reaction can be written as shown in Reaction 2-8 (Glaze and Kang, 1989; Alsheyab and 

Muñoz, 2006).  Ultimately, this reaction shows that, in the peroxone system, every mole 

of ozone is transformed into one mole of hydroxyl radicals; furthermore, the ideal molar 

ratio of hydrogen peroxide to ozone is 0.5 mol H2O2 / mol O3.  If the ratio is lower than 

0.5 mol H2O2 / mol O3, some ozone will not react, and lower hydroxyl radical exposures 

(∫[HO·]dt) will be attained.  On the other hand, if the molar ratio of H2O2 to ozone is 

greater than 0.5 mol/mol, the excess H2O2 will react with hydroxyl radicals (Rxns. 2-9, 2-

10; Beltran, 2003), effectively scavenging them and preventing their reaction with 

PhACs. 

 

   


HHOOH sk
2

25.0
22

1
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 2
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223 322
116

OHOOHO sMk  
  Rxn. 2-8 

 OHHOOHHO sMkH
22

107.2
22

117
1  

  Rxn. 2-9 

   


HOHOHOHO sMkH
2

105.7
2

119
2  Rxn. 2-10 

 

Figure 2-2 illustrates the complexity of hydroxyl radical reactions, which are 

formed during ozonation and can be scavenged by carbonate (HCO3
-, CO3

2-), NOM, or t-

butanol (t-BuOH), among other compounds.  Hydroxyl radicals can also interact with 

NOM, methanol (MeOH), or formaldehyde, among other compounds, to generate the 

superoxide anion (O2
-), which promotes ozone decomposition.  Ozone decomposition to 

hydroxyl radicals is also facilitated by interaction with the hydroxide ion (HO-); 

therefore, ozone can be considered an AOP at high pH. 
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The left side of Figure 2-2 shows ozone decomposition in the peroxone system.  

In this scheme, carbonate actually promotes ozone decomposition through formation of 

superoxide.  As discussed in Reactions 2-2 and 2-8, hydrogen peroxide and peroxide also 

react with ozone to form hydroxyl radicals.  This reaction is extremely fast, i.e., the rate 

constant for ozone reaction with peroxide is 2.2×106 M-1s-1 (Tomiyasu et al., 1985). 

 

 

Figure 2-2. Peroxone chemistry (adapted from Acero and von Gunten, 2001). 
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OZONE REACTOR SCHEMES 

 

Throughout the history of ozone in water treatment, a number of ozonation 

schemes have been utilized.  Some researchers have used gaseous ozonation (Andreozzi 

et al., 2003; Andreozzi et al., 2005; Snyder et al., 2006; DeWitte et al., 2008; Dodd et al., 

2008; DeWitte et al., 2009), while others have employed aqueous ozone (Acero et al., 

2000; Huber et al., 2003; McDowell et al., 2005; Dodd et al., 2006; Suarez et al., 2007; 

Dodd et al., 2009).   

  

Gaseous Ozonation 

Gaseous ozonation was the original ozone application method employed for water 

disinfection in the early 20th century.  In 1905, the experimental ozonation plant in 

Philadelphia (Vosmaer, 1916), employed a Vosmaer sterilizer (Figure 2-3).  Essentially, a 

gaseous stream containing some fraction of ozone, which was produced via electrolysis 

of water, was bubbled through the raw water.  The gaseous stream ran counter to the raw 

water stream to maximize contact time. 

 

While the technology has changed substantially over the last 100 years, the basic 

methodology of gaseous ozonation remains the same.  An ozone generator is employed to 

convert some fraction of an inlet oxygen gas stream into ozone (typically 8-12% O3 v/v); 

that ozone/oxygen gaseous stream is bubbled into a reactor containing the water of 

interest.  Typically, the amount of ozone adsorbed into solution is determined via mass 

balance (Eq. 2-2); this value represents the applied ozone dose. 

 

    
    

t

dtOO

OO

t

outletginletg

doseappliedaqabsorbedaq

 

 0

,3,3

,3,3  Eq. 2-2 
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Figure 2-3. (a)  Vosmaer sterilizer in Philadelphia circa 1905 (Vosmaer, 1916);  
(b)  Schematic of Vosmaer sterilizer (Vosmaer, 1916). 

 

 

A multitude of research efforts have focused on application of gaseous ozone to 

remove organic contaminants of interest, from natural organic matter (Olson and Barbier, 

1994; Siddiqui et al., 1997; Volk et al., 1997; Westerhoff et al., 1999a) to trace organic 

compounds such as PPCPs and EDCs (Huber et al., 2003; Ternes et al., 2003; Westerhoff 

et al., 2005; Dodd et al., 2006; Hua et al., 2006; Snyder et al., 2006).  For laboratory 

studies, most of these endeavors have employed a gas-washing bottle containing the 

sample of interest; this scenario is represented schematically in Figure 2-4a.  Pilot- and 

full-scale studies employ ozone contactor tanks that are typically operated in a counter-

flow fashion (Huber et al., 2005; Snyder et al., 2006; Hollender et al., 2009).  For 

experimental studies, an ozone/oxygen gas is bubbled into the gas-washing bottle starting 

at time, t = 0.  Hence, at time, t = 0, the ozone and hydroxyl radical concentrations are 

both 0 M.  As the experiment progresses, ozone dissolves into solution, interacts with 

other dissolved compounds, and decomposes to form ROS, including hydroxyl radicals 
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(Table 2-5).  The ozone mass flow rate is dependent upon the oxygen gas flow rate and 

the ozone generator settings (Figure 2-4b). 

 

 

Figure 2-4. (a) Schematic of a gaseous ozone reactor.  (b) The ozone mass flow rate 
is a function of the oxygen gas flow rate and the ozone generator 
settings.  (The sample is placed into the gas washing bottle and ozone is 
introduced to the sample in the gaseous phase.  The gaseous ozone 
concentration is measured in the inlet/outlet lines to determine the amount of 
ozone dissolved in solution.) 

 

For the most part, researchers employing gaseous ozonation tend to use pseudo-

first order kinetics to describe the transformation of organic compounds via ozonation 

(Huber et al., 2003; DeWitte et al., 2008; DeWitte et al., 2009).  By analyzing PhAC 

concentrations throughout the batch experiment, and assuming that the ozone 

concentration is constant throughout experimentation, the pseudo-first order rate constant 

(k’
pseudo,O3,PhAC) can be found (Eq. 2-3).  It should be noted that since [O3] and [HO·] are 

both 0 M at time, t = 0, pseudo-first order kinetics do not apply at early times.  

Regardless, this kinetic model is employed, and typically provides a nice fit to 

experimental data. 
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   PhACk
dt

PhACd
r PhACpseudoOPhAC  '

,,3

 Eq. 2-3 

 

The mass transfer involved with gaseous ozonation is quite complicated.  Dodd et 

al. (2008) investigated gaseous ozonation of EDCs in urine.  In that paper, the authors 

present a kinetic snapshot (Figure 2-5) of what occurs in a gaseous ozonation scenario.  

Accounting for all of the different terms in Figure 2-5 is a complex undertaking and 

complicates experimentation; therefore, many researchers have moved to using 

concentrated aqueous ozone stock solutions (Acero et al., 2000; Huber et al., 2003; 

McDowell et al., 2005; Dodd et al., 2006; Suarez et al., 2007; Dodd et al., 2009). 

 

 

Figure 2-5. Representation of the interfacial film for a pseudo-first order kinetic 
regime with respect to ozone consumption (Dodd et al., 2008). 

 

Aqueous Ozone Addition 

The use of concentrated ozone stock solutions dates back to the early work of 

Hoigné and Bader (Hoigné and Bader, 1975; 1976; Bader and Hoigné, 1981).  That work 

employed aqueous ozone stocks to measure ozone decomposition kinetics; regardless, the 
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bulk of water treatment applications and studies employed gaseous ozone.  Recently, 

several researchers have returned to aqueous ozone for treatment of trace organic 

contaminants (Elovitz and von Gunten, 1999; Acero et al., 2000; Huber et al., 2003; 

McDowell et al., 2005; Dodd et al., 2006; Suarez et al., 2007) especially in experimental 

scenarios.  Given the complicated mass transfer picture associated with gaseous 

ozonation (Figure 2-5), the use of aqueous ozone presents a unique advantage to studying 

transformation reactions between ozone (and other ROS, including hydroxyl radicals) 

and PhACs. 

 

This ozonation scenario involves generating a concentrated ozone stock solution 

by bubbling gaseous ozone into deionized water (DI) for several hours.  Figure 2-6 shows 

a schematic representation of this setup.  The solution is placed in an ice bath to increase 

the ozone saturation concentration; some researchers also acidify the stock solution to 

increase ozone stability in solution (recall, HO- initiates O3 decomposition; Table 2-5).  

After 5-6 hours of ozonation, the ozone concentration of a stock solution at 0.5°C and 

near neutral pH can reach 60-70 mg O3/L; however, this concentration is dependent on 

the ozone generator, the gas diffuser, and the ozone solution vessel. 

 

The ozone stock solution can then be dosed into other reaction vessels at the 

desired concentration.  It is important to note that, at time t = 0, the ozone concentration 

is the applied dose (Eq. 2-4). 

 

    
reactor

stockstock
doseapplied V

VO
O


 3

3  Eq. 2-4 

 

As ozone decomposition products, including hydroxyl radicals, are present in the 

stock solution, some concentration of those decomposition products are introduced into 

the reaction vessel.  For this reason, the initial conditions are different with liquid ozone 

addition than with the gaseous addition counterpart; recall that for gaseous ozonation, 

[O3] and [HO·] were both zero at time, t = 0.  More importantly, since differences may 
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exist between ozone generators, warm-up time, diffuser size, and the temperature and pH 

of the stock solution, the HO· concentration in the stock solution may not be uniform 

among laboratories. 

 

 

Figure 2-6. Aqueous ozone experimental setup for batch experimentation. 
 

 

At time, t = 0, a volume of ozone stock solution, corresponding to a specific 

ozone dose, is added to a water sample containing the PhAC and background matrix of 

interest.  The concentrations of ozone and PhAC are followed throughout the duration of 

the experiment.  As the experiment progresses, the ozone concentration goes to zero 

because of reaction with organic compounds, interaction with the background matrix, and 

decomposition.  Therefore, at some point, ozone is no longer present.  More information 

on the ozone reactor is provided in Chapter 3. 
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Measuring Ozone and Hydroxyl Radical Kinetics 

As discussed above, two dominant oxidants are present in ozonation applications:  

ozone (O3) and hydroxyl radicals (HO·).  Typically, second order kinetics are used to 

describe the transformation of organic compounds with aqueous ozone and hydroxyl 

radicals (Yao and Haag, 1991; Dodd et al., 2006).  The transformation of a PhAC by 

ozone and hydroxyl radicals in a batch experiment is described by Eq. 2-5.  By running 

two batch experiments (described below), the second order rate constants for PhAC 

transformation by ozone (k”
O3,app,PhAC) and hydroxyl radicals (k”

HO·,app,PhAC) can be 

determined. 

 

 

         PhACHOkPhACOk
dt

PhACd
r PhACappHOPhACappOPhAC  

"
,,3

"
,,3

 Eq. 2-5
 

 

Isolating Ozone Kinetics 

To isolate the contribution of ozone to the transformation of a PhAC, hydroxyl 

radicals need to be scavenged.  Ideally, hydroxyl radical scavengers should react 

minimally with ozone and rapidly with hydroxyl radicals.  Most researchers use t-BuOH 

for this purpose; however, a number of other compounds, including 2-propanol (Ho and 

Ho, 1976), octanol (von Gunten and Hoigne, 1994), and others, have been employed.  In 

this study we employed t-BuOH.  The second order rate constants for t-BuOH 

transformation by ozone and hydroxyl radicals are provided in Table 2-6.  Clearly, t-

BuOH does not significantly react with O3.   
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Table 2-6. Properties of t-BuOH and pCBA. 
Property t-BuOH pCBA 

Chemical formula C4H10O C7H5ClO2 

Molecular weight (g/mol) 74.1 156.6 

Structure 

 

 

k"
O3,app (M

-1s-1) 
0.003 

(Hoigné and Bader, 1983a) 
0.15 

(Yao and Haag, 1991) 

k"
HO·,app (M

-1s-1) 
6×108 

(Buxton et al., 1988) 
5.9×109 

(Neta and Dorfman, 1968) 

 

 Assuming that t-BuOH scavenges the hydroxyl radicals in solution, the change in 

[PhAC] caused by hydroxyl radicals (the last term in Eq. 2-5) goes to zero.  Therefore, by 

plotting the change in PhAC concentration vs. ozone exposure (∫[O3]dt), the second order 

rate constant for PhAC transformation by ozone can be deduced.  Several authors have 

employed this protocol to determine the rate constants for transformation of various 

organic contaminants with ozone (McDowell et al., 2005; Dodd et al., 2006; Suarez et 

al., 2007).  More information regarding experimental conditions and the mathematics of 

solving for the second order rate constant are provided in Chapter 3. 

 

Determining Hydroxyl Radical Kinetics 

A number of hydroxyl radical probe compounds have been used to determine 

hydroxyl radical exposure; however, the most frequently employed compound is para-

chlorobenzoic acid (pCBA; Table 2-6).  The second order rate constants for pCBA 

reaction with O3 and HO· are listed in Table 2-6.  Like t-BuOH, pCBA reacts negligibly 

with ozone; hence, any change in pCBA concentration is mainly due to reaction with 

hydroxyl radicals.  Given that relationship, the change in pCBA concentration can be 

used to solve for the hydroxyl radical exposure.  The second order rate constant for the 

CH3

OH

CH3 CH3

Cl

OHO
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reaction between hydroxyl radicals and pharmaceuticals can be found once the second 

order rate constant for PhAC transformation by ozone, measured values of ozone 

exposure, measured values of pharmaceutical concentration, and the hydroxyl radical 

exposure are known.  Again, the experimental conditions and mathematics of these 

calculations are provided in Chapter 3.  Ultimately, determination of the rate constants 

for PhAC transformation by ozone and hydroxyl radicals allows for calculation of the 

ozone and/or hydroxyl radical exposure required to meet treatment requirements.  
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OXIDATION AND ADVANCED OXIDATION PROCESSES (AOPS) 

 

Ternes and coworkers (2002; 2003) investigated the abilities of ozone processes 

to treat 22 PPCPs and EDCs.  In the earlier work, Ternes et al. (2002) demonstrated 

removals of approximately 80% for carbamazepine, diclofenac, bezafibrate, and 

primidone at an applied ozone dose of 3 mg/L; however, clofibric acid (a metabolic 

product of the cholesterol-lowering drug, clofibrate) only achieved ~40% removal for the 

same applied ozone dose.  In the later paper, Ternes et al. (2003) investigated the ability 

of two different applied ozone doses to successfully transform 22 different PPCPs and 

EDCs (with concentrations ranging from 15-2100 ng/L) in municipal wastewater.  At an 

applied ozone dose of 5 mg/L, fourteen compounds were treated to below the limit of 

quantification (LOQ).  With an applied ozone dose of 10 mg/L, all compounds were 

successfully treated below their LOQs; these removals corresponded to greater than 50% 

to greater than 98% for individual compounds. 

 

Huber et al. (2003) studied the removal of five pharmaceuticals in lake water 

from Finland ([DOC] = 3.7 mg/L, alkalinity = 0.7 mM) and bank filtrate from the River 

Seine ([DOC] = 1.3 mg/L, alkalinity = 4.1 mM) at pH 8.  Overall, higher removal 

efficiencies were found in the bank filtrate matrix, presumably due to the lower DOC 

concentration, which acts as the primary ozone scavenger in water treatment processes.  

Subsequently, Huber et al. (2004) investigated ozonation of 17α-ethinylestradiol, 

removal of estrogenic activity, and identification of the intermediate oxidation products.  

The reaction kinetics of eleven PPCPs and EDCs were determined by Huber et al. 

(2005); at pH 7, the apparent second order rate constants for PhAC transformation by 

ozone varied from 0.75 M-1s-1 (diazepam) to 3×106 M-1s-1 (17α-ethinylestradiol) and the 

second order rate constants for PhAC transformation with hydroxyl radicals varied in the 

narrow range of 3.3×109 M-1s-1 (iopromide) to 9.8×109 M-1s-1 (17α-ethinylestradiol).  In 

batch transformation studies, most compounds demonstrated high transformation (>95%) 

for an applied ozone dose of 3.5 mg/L; iopromide, the compound exhibiting the lowest 
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second order rate constant, did not achieve high removal efficiencies even at applied 

ozone doses up to 5 mg/L. 

 

Other researchers have identified the reaction kinetics of various PPCPs and 

EDCs with ozone and hydroxyl radicals (Andreozzi et al., 2003; Lopez et al., 2003; 

Andreozzi et al., 2005; McDowell et al., 2005; Dodd et al., 2006; Suarez et al., 2007; 

Rosal et al., 2008; An et al., 2010; Garcia-Ac et al., 2010).  Based on the work of these 

investigators, as well as that of earlier authors, especially Hoigné and coworkers (Hoigné 

and Bader, 1983a; b; Hoigné et al., 1985) and Yao and Haag (Yao and Haag, 1991; Haag 

and Yao, 1992), kinetic regimes for ozone and hydroxyl radicals have been established.  

For this work, we define the fast and slow regimes of transformation by ozone as greater 

than and less than 103 M-1s-1, respectively.  The rate constant is a function of the 

molecular structure of the target compound.  Ozone preferentially oxidizes electron-rich 

molecules like alkenes and aromatic alcohols (Hoigné and Bader, 1983a; b); therefore, 

compounds with double bonds, free amines, and other electron-rich areas will 

demonstrate high reactivity with ozone.  Most organic molecules interact with hydroxyl 

radicals on the order of 108‒1010 M-1s-1; given the magnitude of these rate constants, the 

“slowness” or “fastness” of the reaction is dependent upon hydroxyl radical exposure.  

Furthermore, as a result of the high reactivity and instability of hydroxyl radicals in 

solution, hydroxyl radicals essentially react randomly with adjacent molecules; the 

relatively narrow range of rate constants observed for hydroxyl radical reaction with 

PhACs corroborates this statement.   

 

From the results described above, it is clear that ozone-based water treatment 

processes offer a great deal of potential for effectively treating trace organic 

contaminants.  This potential is based on the reactivity of PPCPs with not only ozone, but 

also with ozone decomposition products, particularly hydroxyl radicals.  Some 

investigators have encouraged the implementation of advanced oxidation processes 

(AOPs) to treat PhACs.  Recall that AOPs are oxidation processes that are engineered to 
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rapidly produce hydroxyl radicals.  Many authors have reported on the peroxone process 

(Acero and von Gunten, 2001; Venta et al., 2005; Rosal et al., 2008; DeWitte et al., 

2009; Lin et al., 2009; Vasconcelos et al., 2009), which uses the reaction between ozone 

and hydrogen peroxide to generate hydroxyl radicals.  Depending on the specific 

contaminants present in a water source, the user can determine whether ozone or 

peroxone processes would be ideal.  This decision would be based on two pieces of 

information:  the rate constants for the specific PhACs of concern and the background 

water quality matrix, which controls the ratio of hydroxyl radical exposure to ozone 

exposure.   

 

Impact of Natural Organic Matter on Oxidation Processes 

  Huber et al. (2003) investigated the ability of ozone (O3) and peroxone (O3/H2O2) 

to treat nine pharmaceuticals in four different water matrices; the results indicated that 

pharmaceutical structure and the alkalinity and dissolved organic carbon (DOC) 

concentration of the water source are the most important variables in determining 

treatment efficiency.  In that research, the peroxone process demonstrated better overall 

performance than ozone treatment.  Other researchers have documented the impacts of 

DOC on O3 and O3/H2O2 processes (Westerhoff et al., 1999a) and UV/H2O2 processes 

(Baeza, 2008).  Ultimately, these impacts are likely to govern the oxidant dose required 

to treat a given water containing PhACs.  Furthermore, it is likely that the organic matter 

composition, particularly the relative amounts of terrestrially-, microbially-, and 

anthropogenically-derived organic matter, will exert an impact on treatment efficiency, 

mainly through the different rate constants for different DOC sources with ozone and 

hydroxyl radicals. 

 

Throughout the past few decades, water treatment engineers have discovered that 

organic matter affects virtually every treatment process.  Since composition of the 

organic matter matrix differs from location to location, we can expect the organic matter 

impact on PhAC treatment to be source dependent.  Traditionally, the term natural 
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organic matter (NOM) was used to refer to organic matter present in surface waters; 

however, the increased use of indirect and direct potable water reuse has changed the 

organic matter matrix.  For this reason, the composition of organic matter in surface 

waters consists of both NOM and wastewater effluent-derived organic matter, or EfOM.  

Ma et al. (2001) compiled an extensive summary of the organic matter differences 

between several NOM-dominated waters and a wastewater effluent.  Sirivedhin and Gray 

(2005a; 2005b) showed the differences between the organic matter present in WWTP 

effluent (EfOM) and NOM; the authors went on to demonstrate that these structural 

differences impact the formation of disinfection byproducts.  For that reason, it seems 

plausible that the compositional differences should also affect the behavior of organic 

matter in oxidation and advanced oxidation processes. 

 

  For advanced oxidation, organic matter affects treatment via the following means:  

direct oxidant consumption, initiator for oxidant consumption, promoter of oxidant 

consumption, or inhibitor of oxidant consumption (Westerhoff et al., 1999a).  The most 

important mechanism is direct oxidant consumption, which essentially causes organic 

matter to compete with PhACs for the oxidant.  Westerhoff et al. (1999a) showed that 

ozone consumption by organic matter varied with SUVA254 and organic matter structure 

(Figure 2-7); that paper also showed that hydroxyl radical consumption varies with 

SUVA254 (Figure 2-7).  In a second paper, Westerhoff et al. (1999b) described the 

changes in NOM structure caused by reaction with ozone.  Ozone specifically reacted 

with aromatic carbon and this reaction resulted in the insertion of an oxygen atom at the 

carbon-carbon double bond; furthermore, the authors postulated that increased oxygen 

functionality may affect NOM reactions, including chlorination and disinfection by-

product formation. 
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Figure 2-7. Impact of SUVA on NOM reactivity with ozone (Westerhoff et al., 
1999a). 

 

Intermediate Oxidation Products 

  Oxidative treatment, unlike ion exchange, PAC, or RO, is a transformative 

process.  Parent compounds (i.e., pharmaceuticals) are attacked by the oxidant and a 

complex oxidative transformation pathway follows.  Several researchers (Acero et al., 

2000; Huber et al., 2004; Andreozzi et al., 2005; McDowell et al., 2005; DeWitte et al., 

2008) have characterized the oxidation products formed through ozone reaction with 

PPCPs and EDCs.  These investigators identified transformation products of 17α-

ethinylestradiol, amoxicillin, atrazine, carbamazepine, and ciprofloxacin after exposure to 

ozone and hydroxyl radicals.  McDowell et al. (2005) proposed a classical ozone attack 

on the double bond present in carbamazepine’s central ring, resulting in the addition of 

oxygen atoms to the chemical structure.  The ozonation products of 17α-ethinylestradiol 

were investigated by Huber et al. (2004); the initial transformation mechanism occurs at 

aromatic rings and effectively open the ring forming carboxylic acid functional groups.  

These results are consistent with Westerhoff et al.’s (1999b) findings regarding the 

structural changes induced in NOM via ozonation. 
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  Recent work by DeWitte et al. (2008) suggested twelve structures for 

intermediate oxidation products formed during gaseous ozonation of ciprofloxacin.  

These compounds are structurally similar to ciprofloxacin.  Lemke and Williams (2008) 

delineated the structure-activity relationship for quinolonic compounds, as seen in Figure 

2-8.  The pharmacophore is the core structure required for the compound to exert 

pharmacological activity; furthermore, three functional groups determine the 

pharmacological capabilities of the compound.  The R6 group contributes to the ability of 

the compound to penetrate cell walls; fluoroquinolones, such as ciprofloxacin, have a 

fluoro group at R6.  The R7 group relates to the compound’s spectrum of activity, i.e., this 

functional group establishes what microorganisms will be affected by the compound.  

The R group determines the relative potency of the compound.  Of the twelve 

intermediate oxidation products determined by DeWitte et al. (2008), all twelve 

structures retained the fluoro group on R6, all twelve compounds retained the same 

potency group as ciprofloxacin, and six intermediate oxidation products retained the 

pharmacophore.  The majority of oxidative transformations target the piperazinyl group 

(R7; DeWitte et al., 2008), which may change the spectrum of microorganisms affected 

by the compound but does not necessarily remove pharmacological activity.  Therefore, 

the potential for oxidative intermediate products to exhibit residual pharmacological 

activity is high. 

 

 

Figure 2-8. Structure-activity relationship for quinolone antibiotics (Lemke and 
Williams, 2008). 
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Residual Pharmacological Activity 

In the past few years, a few researchers (Suarez et al., 2007; Baeza, 2008; Dodd et 

al., 2009; Paul et al., 2010) have used an antimicrobial susceptibility assay (NCCLS, 

2004) to describe treatment efficacy in terms of pharmacological activity.  Suarez et al. 

(2007) treated triclosan with aqueous ozone and showed that antibacterial activity closely 

followed triclosan concentration.  Baeza (2008) used this assay in combination with UV 

photolysis and photochemical UV/H2O2 treatment of four antimicrobials to demonstrate 

that the impact of the background water matrix varied depending on the treatment 

conditions.  Dodd et al. (2009) employed an antimicrobial susceptibility assay to track 

the pharmacological activity of 14 antimicrobial compounds from various pharmaceutical 

classes, including macrolides, fluoroquinolones, and β-lactams, among others.  The 

findings from the Dodd et al. (2009) study suggest that intermediate oxidation products 

generated through ozonation of roxithromycin, penicillin G, and cephalexin retain some 

residual antibacterial activity; furthermore, no apparent contribution of ciprofloxacin’s 

intermediate oxidation products to the residual antimicrobial activity was detected.  A 

recent paper by Paul et al. (2010) indicates that ciprofloxacin degradation products from 

photolytic (UV) and photocatalytic (UV-TiO2) processes exert some antimicrobial 

activity.  In summary, many questions remain unresolved regarding the pharmacological 

activity of intermediate oxidation products resulting from transformations of 

pharmaceuticals in natural and engineered systems. 
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CHAPTER 3:  MATERIALS AND METHODS 

 

The research approach used in this work was employed to meet the primary 

research objectives discussed in Chapter 1.  These objectives include investigating the 

transformation of four model PhACs in ozone-based treatment processes, characterizing 

the impact of NOM on PhAC removal efficiency, and description of the residual 

antimicrobial activity of water sources containing antimicrobial PhACs.  In this chapter, 

the properties of the chemicals, pharmaceuticals of concern, and natural organic matter 

(NOM) isolates are presented.  Furthermore, the analytical methods employed to measure 

ozone, the pharmaceuticals of concern, intermediate oxidation products, para-

chlorobenzoic acid, NOM, hydrogen peroxide, and pH are described.   

 

Several different ozone reactors were employed to meet the research objectives.  

In particular, batch ozonation experiments were conducted to demonstrate the impact of 

NOM on the transformation of cyclophosphamide, erythromycin, and ifosfamide, to 

characterize the intermediate oxidation products formed via ozonation and peroxonation 

of cyclophosphamide, erythromycin, and ifosfamide, and to monitor the residual 

antimicrobial activity of ozone-treated solutions containing erythromycin.  Continuous 

aqueous ozone addition experiments were employed to demonstrate the impact of NOM 

on ciprofloxacin transformation and elimination of ciprofloxacin-associated antimicrobial 

activity and to determine the transformation kinetics of cyclophosphamide and ifosfamide 

with ozone and hydroxyl radicals.  The continuous peroxone addition reactor was used to 

verify the rate constants for the reaction of cyclophosphamide and ifosfamide with 

hydroxyl radicals.  These reactor setups are described in detail below; furthermore, the 

data analysis procedures for the different types of experiments are also explained.  The 

antimicrobial activity assay, which is used to measure the residual antimicrobial activity 
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of samples, is also presented in this chapter; analysis of data resulting from the 

antimicrobial activity assay is demonstrated in Appendix C. 

 

CHEMICALS 

All chemicals were purchased through VWR.  The pharmaceuticals employed in 

this work are discussed in the following section.  Certain chemicals (pCBA (99%), t-

BuOH, and indigotrisulfonate) were employed for various reasons as documented 

throughout this Chapter.  Hydrogen peroxide was purchased as 30% H2O2; stock 

solutions of 0.105 M were created and stored in amber bottles in a dark, 4°C 

environment; the stock solution was stable for at least 6 months.  Several inorganic salts, 

including NaCl, NaHCO3, NaH2PO4, Na2HPO4, and BaCl were employed in 

experimentation; these chemicals were ACS grade.  Hydrochloric (trace metal grade), 

sulfuric (trace metal grade), and phosphoric acids (ACS grade) were employed for 

various uses.  Sodium hydroxide (10 N) was diluted to 1N and 0.1N solutions that were 

employed for pH adjustment purposes.  A 0.1 N potassium permanganate solution (ACS 

grade) was employed for H2O2 titrations.  ACS grade pH buffers (4.01, 7.01, and 10.01) 

were employed for calibration of pH probes. 

 

Several different solutions were employed in the analytical methods relevant to 

this research.  HPLC analysis of ciprofloxacin employed HPLC grade acetonitrile and a 

25 mM phosphate buffer, which was made by adding H3PO4 to deionized water (DI).  

LC-MS grade methanol and LC-MS grade water were employed in measurement of 

cyclophosphamide and ifosfamide via LC-MS and LC-MS/MS.  LC-MS grade 

acetonitrile was employed for measurement of erythromycin using LC-MS and LC-

MS/MS methods.  The erythromycin LC-MS and LC-MS/MS methods also employed a 

0.1% formic acid eluent, which was generated by adding ACS grade formic acid (88%) to 

DI.  LC-MS grade methanol and the 25 mM phosphate buffer, discussed above for 

ciprofloxacin analysis, were employed for HPLC analysis of para-chlorobenzoic acid 

(pCBA).   
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All glassware was meticulously washed using the washing procedure described in 

Appendix A, which also contains information regarding autoclave protocols. 

 

Pharmacologically Active Compounds 

The four pharmacologically active compounds (ciprofloxacin, cyclophosphamide, 

erythromycin, and ifosfamide) employed in these studies were purchased from VWR.  

Ciprofloxacin, cyclophosphamide monohydrate, and ifosfamide were all purchased in the 

powder form, while erythromycin was purchased as a 50 mg/mL solution in ethanol. 

 

Working stock solutions of ciprofloxacin (10 mg/L), cyclophosphamide (1000 

mg/L), and ifosfamide (1000 mg/L) were created by dissolving the appropriate mass of 

the compounds into DI water.  A working stock solution of erythromycin (1000 mg/L) 

was produced by diluting the purchased solution (50 mg/mL) with DI.  Working solutions 

were kept in amber bottles, and these solutions were stored in a dark, 4°C environment.  

New stock solutions were made every three months; ciprofloxacin and erythromycin 

concentrations were periodically confirmed using the antimicrobial activity assay 

described below.  Detailed description of these compounds and their presence in 

environmental waters is provided in Chapter 2 and is not repeated here. 

 

Natural Organic Matter 

  Organic matter was extracted from two sources:  Lake Austin (LA; Austin, TX) 

and Claremore Lake (CL; Claremore, OK).  The extractions followed the method 

developed by Thurman and Malcolm (1981) and later refined by Aiken et al. (1992).  The 

details of these extraction materials and methods are presented in Marron (2010) and are 

not described in extensive detail here.  After isolation, the concentrated NOM solutions 

were freeze-dried at the USGS to yield a solid product. 

 

  Claremore Lake water was collected near the Ranger Station on D4168 Road 

(Latitude = +36.329864°, Longitude = -95.581356°) in Claremore, OK.  Approximately 
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200 L of raw Claremore Lake water was collected.  Extractions of Claremore Lake 

hydrophobic organic acids (HPOA) and transphilic organic acids (TPIA) were conducted 

at the USGS (Boulder, CO) under the direction of George Aiken and Kenna Butler.  

Knowing the volume of water passed through the XAD-8 and XAD-4 resins, as well as 

the dissolved organic carbon (DOC) concentration of the raw water, the percent recovery 

of DOC for the HPOA and TPIA isolates could be calculated (Table 3-1).  

Approximately 95% and 89% DOC recovery was experienced for the Claremore Lake 

HPOA and TPIA, respectively.  

 

  Approximately 400 L of Lake Austin water was collected from the raw water 

pump station on Forest View Drive at the Ullrich Drinking Water Treatment Plant 

(Austin, TX).  The HPOA fraction of the Lake Austin NOM was isolated at the 

University of Texas.  Approximately 89% of the HPOA present in the raw Lake Austin 

water was recovered during the organic matter extraction. 

 

Table 3-1. Summary of organic matter recovery during NOM extractions. 

Parameter 
Claremore 
Lake TPIA 

Claremore 
Lake HPOA 

Lake Austin 
HPOA 

Volume of sample loaded onto columns (L) 201.6 201.6 423.3 

Expected mass recovery (mg) 490 1161 1037 

Mass recovered (mg) 436 1100 923 

Percent recovered 89% 95% 89% 

 

The raw water quality of the Claremore Lake and Lake Austin sources is 

presented in Table 3-2.  While pH, alkalinity, and turbidity are important water quality 

parameters for ozone-based processes, these characteristics are for the whole waters, not 

the NOM isolates.  In most of the experimentation discussed in this dissertation, organic 

matter was added to solution in extract form; furthermore, pH and alkalinity were 

controllable parameters.  While the turbidity of experimental samples was not tested, no 

significant turbidity should have been present in any experimental samples.  On the 

contrary, the UV254 nm, DOC concentration, specific ultraviolet absorbance at 254 nm 
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(SUVA254 nm), percent of HPOA, and percent of TPIA are important raw water 

characteristics because these parameters describe the makeup of the HPOA and TPIA 

isolates, which impact the reactivity of these fractions with ozone and hydroxyl radicals.  

The distinction between the absorbance at 254 nm for the Claremore Lake (UV254 nm,CL = 

0.185 cm-1) and Lake Austin (UV254 nm,LA = 0.059 cm-1) waters indicates that the 

Claremore Lake water contains more aromatic substances, which are highly reactive with 

ozone as discussed in Chapter 2.  That difference is somewhat due to the higher DOC 

concentration of the Claremore Lake ([DOC] = 6.4 mg/L) water as compared to the Lake 

Austin water ([DOC] = 3.5 mg/L).  Since the organic matter isolates are available in 

extract form, we can control the [DOC] of experimental solutions.  The SUVA254 nm 

value, which is an inherent characteristic of individual organic matter isolates, provides 

one way to compare the impact of these three organic matter isolates on ozone-based 

processes for treatment of pharmacologically active compounds.  In this case, the higher 

SUVA254 nm of the Claremore Lake raw water (SUVA254 nm,CL = 2.9 L/mg-m) as 

compared to the Lake Austin raw water (SUVA254 nm,LA = 1.7 L/mg-m) suggests that the 

Claremore Lake organic matter matrix is more reactive with ozone and hydroxyl radicals 

(Westerhoff et al., 1999a). 

 

Table 3-2. Raw water quality of Claremore Lake and Lake Austin water sources. 
Parameter Claremore Lake Lake Austin 

Collection Date 6/18/09 7/22/09 

pH 7.5 8.0 

Alkalinity (mg CaCO3/L) 57 164.5 

UV254 nm (cm-1) 0.185 0.059 

[DOC] (mg/L) 6.4 3.5 

Turbidity (NTU) 8.5 4.5 

SUVA254 nm (L/mg-m) 2.9 1.7 

HPOA (%) 45 35 

TPIA (%) 19 20 
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ANALYTICAL METHODS  

 

Ozone Analysis 

Dissolved ozone concentrations of stock solutions were measured directly at 258 

nm on a UV-VIS spectrophotometer (Agilent).  This method was only used for stock 

ozone solutions with aqueous ozone concentrations greater than 10 mg/L.  Typically, 0.5 

mL of the ozone stock solution was mixed into 3.5 mL of 5 mM phosphate buffer in a 1 

cm quartz cuvette with Teflon cap.  These samples were measured immediately after 

addition of the ozone stock solution.  Using the absorbance at 258 nm and the molar 

absorptivity of ozone, the concentration of aqueous ozone can be calculated using Eq. 

3-1, 
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where, UV258 nm is the absorbance at 258 nm, MW is the molecular weight of ozone (48 

mg/mmol), dil is the dilution factor (typically, 8), and εO3 is the molar absorptivity of 

ozone (3000 M-1cm-1; Acero and von Gunten, 2000).  Typical absorbance scans are 

shown in Figure 3-1; the corresponding aqueous ozone concentration is listed next to 

each peak.  

 



56 
 

 

Figure 3-1. Examples of direct ozone measurement at 258 nm and the 
corresponding ozone concentrations found using Eq. 3-1. 

 

Aqueous ozone concentrations in the 2-L continuous aqueous ozone addition 

reactor were measured using the indigo blue method (Bader and Hoigné, 1981).  In this 

method, indigotrisulfonate (Figure 3-2) is cleaved by ozone at the double bond in the 

center of the molecule to form the products shown.  Indigotrisulfonate has a significant 

molar absorptivity at 600 nm, whereas the products do not demonstrate any absorbance at 

600 nm; this difference allows the use of indigotrisulfonate for quantification of aqueous 

ozone concentrations.  Indigotrisulfonate reacts very quickly with ozone 

(k”
O3,indigotrisulfonate = 9.4×107 M-1s-1; Munoz and von Sonntag, 2000).  Hence, addition of 

indigotrisulfonate allows measurement of the aqueous ozone concentration while also 

quenching aqueous ozone concentrations, thereby stopping both the generation of 

hydroxyl radicals and the oxidation of any organic compounds of interest. 
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Figure 3-2. Ozone reaction with indigotrisulfonate, and the resulting ozonation 
products (adapted from Bader and Hoigné, 1981). 

 

Indigo Reagent I and Indigo Reagent II solutions (Standard Method 4500-O3 B.  

Indigo Colorimetric Method; APHA et al., 2006) were employed in this research.  Indigo 

stock solution was created by dissolving 770 mg of indigotrisulfonic acid 

(C16H10N2O11S3), 1 mL phosphoric acid, and 12 mg Na2HPO4 in 100 mL of DI.  Indigo 

reagent I was made by adding 1000 mg of Na2HPO4, 0.7 mL of phosphoric acid, and 2 

mL of indigo stock solution to 100 mL of DI; indigo reagent II was made in the same 

manner, albeit with 10 mL of indigo stock solution.  Indigo Reagent I was employed for 

lower aqueous ozone concentrations (6×10-8 – 2×10-6 M with a 4-cm quartz cuvette); 

however, Indigo Reagent II offered a larger range of ozone measurement (6×10-8 – 

10×10-6 M with a 4-cm quartz cuvette), and so was used more often than Indigo Reagent 

I.  In select cases, a 10-cm quartz cuvette was employed to provide higher sensitivity and 

lower aqueous ozone detection (2.5×10-8 – 10×10-6 M).  It should be noted that samples 

were often diluted to ensure incomplete indigo transformation, which is required for 

calculation of aqueous ozone calculations.  For example, as the aqueous ozone 

concentration increases during continuous ozonation experimentation, samples were 

diluted 1:1 or 1:3 with DI.  Indigo was measured at 600 nm on the UV-VIS 

spectrophotometer (Figure 3-3).  Aqueous ozone concentrations were calculated using 

Eq. 3-2: 
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where [O3] is the aqueous ozone concentration, ABS600 nm,initial is the absorbance at 600 

nm of the initial solution (pre-ozonation), ABS600 nm,sample is the absorbance at 600 nm of 

the sample, VT is the total volume of the solution (indigo reagent, sample, and DI) being 

measured, f is a constant based on the molar absorptivity of indigo (20,000 M-1cm-1; 

Bader and Hoigné, 1981) and is equal to 0.42 L-cm/mg, l is the path length (in cm, the 

units are incorporated into the ABS600 nm values), and Vsample is the volume of the sample 

added to the total solution. 

 

 

Figure 3-3. Example of indirect ozone measurement using indigotrisulfonate, which 
absorbs light at 600 nm.  (The different spectra correspond to different 
aqueous ozone concentrations.  As the UV600 decreases, less 
indigotrisulfonate is remaining in solution; therefore, more aqueous ozone 
was introduced to the sample.) 
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Ciprofloxacin Analysis 

Ciprofloxacin was measured by high performance liquid chromatography (HPLC; 

Waters 2795, Waters Corporation, Milford, MA) equipped with a fluorescence detector 

(FLD); a Phenomenex (Torrence, CA) Luna 5u C18(2) (250×4.6mm, 5µm) column was 

utilized for analyte separation.  Fifty microliter aliquots were directly injected into the 

HPLC.  The analytical method is based on the procedure developed by Golet et al. (2001) 

but several changes were made to optimize the response on the instrument.  The eluent 

gradient was 7% acetonitrile (ACN), 93% 25-mM H3PO4 for 2 min; 3 min ramp to 12% 

ACN, 88% 25-mM H3PO4; 2 min ramp to 15% ACN, 85% 25-mM H3PO4; 3 min ramp to 

20% ACN, 80% 25-mM H3PO4; 10 min isocratic.  The flow rate was 0.70 mL/min, and 

the column temperature was set at 40°C.  Excitation and emission wavelengths were set 

at 278 nm and 445 nm, respectively.  Ciprofloxacin was eluted at 8.3 minutes (Figure 3-

4). 

 

 

Figure 3-4. Representative chromatogram of ciprofloxacin analysis using HPLC 
with FLD.  (The concentration of ciprofloxacin in this sample was 100 
µg/L.) 
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Cyclophosphamide Analysis 

Cyclophosphamide was measured with LC-MS/MS (TSQ Quantum, Thermo 

Finnigan, Waltham, MA).  The injection volume was 10 μL and the flow rate was 700 

μL/min.  HPLC separation was achieved with a C18 (Shimadzu 150×4.6 mm; particle 

size, 5 µm) column; the eluent gradient was 5% MeOH, 95% H2O (0-3 min); ramp to 

80% MeOH, 20% H2O (3-10 min); 80% MeOH, 20% H2O (10-12 min); ramp to 100% 

MeOH, 0% H2O (12-12.1 min); 100% MeOH, 0% H2O (12.1-16 min); ramp to 5% 

MeOH, 95% H2O (16-16.1 min); 5% MeOH, 95% H2O (16.1-18 min).  The electrospray 

ionization tandem mass spectrometer was operated in positive ion mode.  Method 

parameters include the following:  parent mass, 261.0 mg; product mass, 139.8 mg; 

collision gas pressure, 1.5 mTorr; collision energy, 20 V; spray voltage, 4000 V; 

vaporizer temperature, 400 °C; sheath gas pressure, 50 psi; and auxiliary gas pressure, 30 

psi.  Cyclophosphamide was eluted at 12.0 minutes as shown in Figure 3-5. 

 

 

Figure 3-5. Cyclophosphamide (100 µg/L) peak using LC-MS/MS. 
 

 

Cyclophosphamide intermediate products were analyzed using LC-MS; the 

measured m/z range was 30–1500.  The injection volume was 20 μL and the flow rate 

was 350 μL/min.  The eluent gradient was 5% MeOH, 95% H2O (0-15 min); ramp to 
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80% MeOH, 20% H2O (15-22 min); 80% MeOH, 20% H2O (22-29 min); ramp to 100% 

MeOH, 0% H2O (29-29.1 min); 100% MeOH, 0% H2O (29.1-33 min); ramp to 5% 

MeOH, 95% H2O (33-33.1 min); 5% MeOH, 95% H2O (33.1-35 min).  The electrospray 

ionization tandem mass spectrometer was operated in positive ion mode.  Method 

parameters include the following:  parent mass, 261.0 mg; collision gas pressure, 1.5 

mTorr; collision energy, 20 V; spray voltage, 4000 V; vaporizer temperature, 400 °C; 

sheath gas pressure, 25 psi; and auxiliary gas pressure, 15 psi.  Example LC-MS peaks 

for cyclophosphamide and cyclophosphamide intermediate oxidation products are shown 

in Figure 3-6.  These compounds were eluted in the 26-29 minutes range. 

 

 

Figure 3-6. Typical peaks for cyclophosphamide and intermediate oxidation 
products generated by ozone and hydroxyl radical reaction with 
cyclophosphamide.  (Intermediate oxidation products were detected by 
peak presence in the total ion current; those peaks were then extracted and 
plotted individually.  In this case, the m/z window was ±0.5 m/z units to 
either side of the central m/z value.) 
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Erythromycin Analysis 

Erythromycin was analyzed using LC-MS/MS (Thermo Finnigan, TSQ 

Quantum).  The injection volume was 10 µL and the flow rate was 700 µL/min.  LC 

separation was achieved with a C18 column (Shimadzu Premier C18 5µ 150×4.6-mm); 

the eluent gradient was 100% 0.1% Formic acid (FA), 0% Acetonitrile (ACN) (0-3 min); 

ramp to 88% 0.1% FA, 12% ACN (3-10 min); 75% 0.1% FA, 25% ACN (10-12 min); 

ramp to 50% 0.1% FA, 50% ACN (12-12.1 min); 50% 0.1% FA, 50% ACN (12.1-16 

min); ramp to 50% 0.1% FA, 50% ACN (16-16.1 min); 88% 0.1% FA, 12% ACN (16.1-

18 min).  The electrospray ionization tandem mass spectrometer was operated in positive 

ion mode.  Method parameters include the following:  parent mass, 734.4 mg; product 

mass, 576.2 mg; collision gas pressure, 1.5 mTorr; collision energy, 24 V; spray voltage, 

4000 V; vaporizer temperature, 400 °C; sheath gas pressure, 25 psi; and auxiliary gas 

pressure, 20 psi.  Erythromycin was eluted at 15.2 minutes (Figure 3-7).  A similar 

method was employed by Huang (2011) to measure anhydroerythromycin A, an 

erythromycin degradation product. 

 

 

Figure 3-7.  A representative erythromycin peak using the LC-MS/MS analytical 
method described above.  (The erythromycin concentration of this sample 
was 100 mg/L.) 

 

Samples were also analyzed using LC-MS to detect erythromycin’s intermediate 

oxidation products; the measured m/z range was 150–1500.  The injection volume was 20 
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µL and the flow rate was 350 µL/min.  The eluent gradient was 100% 0.1% FA, 0% ACN 

(0-2 min); ramp to 88% 0.1% FA, 12% ACN (2-12 min); 75% 0.1% FA, 25% ACN (12-

16 min); ramp to 50% 0.1% FA, 50% ACN (16-21 min); 50% 0.1% FA, 50% ACN (21-

28 min); ramp to 50% 0.1% FA, 50% ACN (28-30 min); 88% 0.1% FA, 12% ACN (30-

35).  The electrospray ionization tandem mass spectrometer was operated in positive ion 

mode.  Method parameters include the following:  parent mass, 734.4 mg; collision gas 

pressure, 1.5 mTorr; collision energy, 24 V; spray voltage, 4000 V; vaporizer 

temperature, 400 °C; sheath gas pressure, 25 psi; and auxiliary gas pressure, 20 psi.  

Example LC-MS peaks for erythromycin and erythromycin intermediate oxidation 

products are shown in Figure 3-8.  These compounds were eluted in the 26-28 minutes 

range. 

 

 

Figure 3-8. Examples of erythromycin and erythromycin intermediate oxidation 
products generated by erythromycin reaction with aqueous ozone.  (In 
this case, erythromycin and erythromycin intermediate oxidation products 
were detected from the total ion current of the sample.  The individual peaks 
were separated and are plotted according to the major m/z values found in 
the total ion current.  For erythromycin, m/z windows of ±0.2 m/z units were 
employed.) 
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Ifosfamide Analysis 

Ifosfamide was measured with LC-MS/MS (Thermo Finnigan, TSQ Quantum).  

The injection volume was 10 μL and the flow rate was 700 μL/min.  HPLC separation 

was achieved with a C18 (Shimadzu 150×4.6 mm; particle size, 5 µm) column; the eluent 

gradient was the same as that employed in the LC-MS/MS method used for 

cyclophosphamide analysis.  The electrospray ionization tandem mass spectrometer was 

operated in positive ion mode.  Method parameters include the following:  parent mass, 

261.0 mg; product mass, 153.9; collision gas pressure, 1.5 mTorr; collision energy, 20 V; 

spray voltage, 4000 V; vaporizer temperature, 400 °C; sheath gas pressure, 30 psi; and 

auxiliary gas pressure, 10 psi.  Ifosfamide was eluted at 11.7 minutes (Figure 3-9). 

 

 

Figure 3-9. A typical ifosfamide peak using the LC-MS/MS method described 
above.  (In this sample, the ifosfamide concentration was 100 µg/L.) 

 

In kinetics experiments, cyclophosphamide and ifosfamide were typically both 

present in solution.  For that reason, these two compounds were often both analyzed in 

LC-MS/MS mode using a combined method.  That method essentially combined the 

ifosfamide method described above from minutes 0 to 11.85, and then the detection 

method was switched to the cyclophosphamide LC-MS/MS method described earlier.  An 

example of the chromatogram observed using this method is shown in Figure 3-10. 
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Figure 3-10. Example of combined method allowing concomitant analysis of 
cyclophosphamide and ifosfamide for the same injection volume.  (For 
this sample, the concentration of both PhACs was 100 µg/L.) 

 

 

Ifosfamide intermediate products were analyzed using LC-MS; the measured m/z 

range was 30–1500.  The injection volume was 20 μL and the flow rate was 350 μL/min.  

The eluent gradient was the same employed in LC-MS analysis of cyclophosphamide and 

cyclophosphamide intermediate oxidation products.  The electrospray ionization tandem 

mass spectrometer was operated in positive ion mode.  Method parameters include the 

following:  parent mass, 261.0 mg; collision gas pressure, 1.5 mTorr; collision energy, 20 

V; spray voltage, 4000 V; vaporizer temperature, 400 °C; sheath gas pressure, 15 psi; and 

auxiliary gas pressure, 5 psi.  Example LC-MS peaks for ifosfamide and ifosfamide 

intermediate oxidation products are shown in Figure 3-11.  These peaks are eluted in the 

24 to 29 minute range. 
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Figure 3-11. Ifosfamide and ifosfamide intermediate peaks detected using LC-MS.  
Ifosfamide and ifosfamide intermediate oxidation products were 
detected by their distinctive m/z values and separated from the total ion 
current.  (In the figure, all compounds are plotted across a window of m/z 
values (central m/z ± 0.5) as described above.) 

 

 

para-Chlorobenzoic Acid (pCBA) Analysis 

The hydroxyl radical probe compound, pCBA, was measured at 234 nm using an 

HPLC (Waters Corporation) with PDA.  HPLC separation was achieved with a C18 

column (Sonoma C18(2), 3µ 100 Å).  The eluent, 60% MeOH, 40% 25 mM H3PO4, was 

pumped at a constant flow rate (0.5 mL/min).  pCBA was eluted after 5.35 minutes as 

shown in Figure 3-12. 
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Figure 3-12. A representative pCBA peak (10 µM) using the HPLC with PDA. 
 

 

NOM Analysis 

Preliminary analysis of the NOM source waters and the NOM isolates was 

conducted at the USGS laboratories in Boulder, CO (Marron, 2010).  As discussed in 

Marron’s thesis (2010), the NOM isolates were freeze-dried to provide a solid NOM 

powder.  NOM working solutions were prepared by dissolving 100 mg of the dried NOM 

extract in 100 mL of DI; the pH of the NOM solutions was dropped to pH ~1.9 through 

the addition of concentrated phosphoric acid.  After dissolution of the NOM extract in the 

acidified working solution, several water quality parameters, namely, pH, total organic 

carbon (TOC), and the absorbance at 254 nm (UV254), were measured to characterize the 

strength of the NOM working solution.  The pH was measured using a Thermo Electron 

Corporation pH meter (Orion 720 A+) as described below. 
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The TOC of working solutions was measured using a TOC Analyzer (O.I. 

Corporation, College Station, TX).  Standard organic carbon solutions were prepared 

using potassium hydrogen phthalate according to Standard Methods (5310 B. 

Combustion-Infrared Method; APHA et al., 2006).  Due to the high concentration of the 

working solutions (1 g NOM / L), these solutions were diluted 100× before analysis on 

the TOC Analyzer.  While the TOC concentration of the different NOM working 

solutions varied, the TOC was typically 380-420 mg C / L; therefore, the percentage of 

organic carbon in the NOM isolates was approximately 38-42%. 

 

The UV254 was measured using a UV-VIS spectrophotometer (Agilent 

Technologies).  Approximately 12 mL of the 100× dilution used for TOC analysis was 

placed into a 10-cm quartz cuvette, and the absorbance was measured at 254 nm.  The 

resultant absorbance at 254 nm and the TOC concentration can be used to calculate the 

SUVA254 nm of the NOM working solutions, according to Eq. 3-3. 
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The NOM isolates were also analyzed using Excitation-Emission Matrix (EEM) 

fluorescence spectroscopy.  As the results of that analysis are not discussed in the body of 

this document, the fluorescence EEM characterization of all three organic matter isolates 

as well as the Lake Austin whole water used in the NOM extractions are provided in 

Appendix B. 

 

Hydrogen Peroxide Titration 

For peroxone experiments, a hydrogen peroxide solution was employed.  A 

hydrogen peroxide stock solution (30% H2O2) was purchased from VWR.  A hydrogen 

peroxide working solution (0.105 M) was made by diluting the stock solution (30% 
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H2O2) with DI.  The working solution was kept in an amber bottle at 4°C in a dark 

environment to prevent hydrogen peroxide decomposition.  Hydrogen peroxide 

concentrations were measured via titration with permanganate according to Reaction 3-1.   

 

 OHMnOHMnOOH 2
2

2422 825625    Rxn. 3-1 

 

For experimental titrations, 1 mL of the H2O2 working solution, 0.4 mL of H2SO4, and 

8.6 mL of DI were mixed together to constitute the sample.  The titrant was 0.1 N 

KMnO4 (0.02 M MnO4
-).  The titration endpoint was reached when the sample solution 

changed color from clear to pink.  The hydrogen peroxide concentration (Eq. 3-4) was 

calculated using the volume of titrant (Vtitrant), the volume of the sample (Vsample = 1 mL), 

and the stoichiometry of Rxn. 3-1.   
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Over the course of six months, the hydrogen peroxide concentration of the 

working solution (0.105 M) did not change; regardless, new working solutions were 

prepared every six months. 

 

pH 

The pH was measured and recorded during continuous ozone and peroxone 

addition experiments, as well as in other solutions throughout this research.  A Thermo 

Electron Corporation pH meter (Orion 720 A+) was employed for these purposes; the 

probe was a Thermo Fisher Scientific Orion ROSS Sure-Flow pH electrode.  The pH 

meter was calibrated before every use using standard buffer solutions (pH 4.01, 7.01, and 

10.01). 
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OZONE REACTORS 

A schematic of the ozone supply system and reactor is shown in Figure 3-13.  

Oxygen gas flowed into the ozone generator at 30 cm3/min; a fraction of that oxygen was 

converted to ozone.  This combined gas stream was directed into a gas-washing bottle, 

which served as a stock ozone solution.  The ozone stock solution was kept on ice 

(Tsolution ~ 0.5°C) to increase the solubility of ozone (Sotelo et al., 1989).  After 4-6 hours, 

the ozone concentration in the stock solution reached a plateau at 50-60 mg O3/L.  These 

concentrations are comparable to ozone concentrations in stock solutions used by other 

researchers (Buffle et al., 2004; Buffle et al., 2006; Suarez et al., 2007).  For all 

experiments discussed in this dissertation, the aqueous ozone stock solution was 

employed as the primary supply of ozone. 

 

 

Figure 3-13. Schematic of the ozone reactor showing gaseous generation of ozone 
and the ozone stock solution container. 
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Determination of PhAC Transformation in Batch Reactors with Aqueous Ozone 

Small aliquots of the ozone stock solution were added to culture tubes containing 

the solution of interest (Figure 3-14) for a variety of reasons, including the following:  to 

demonstrate the impact of NOM on the transformation of cyclophosphamide, 

erythromycin, and ifosfamide; to characterize the intermediate oxidation products formed 

via ozonation and peroxonation of cyclophosphamide, erythromycin, and ifosfamide; and 

to monitor the residual antimicrobial activity of ozone-treated solutions containing 

erythromycin.  The water quality matrix varied depending on the type of experiment; for 

instance, lower PhAC concentrations were employed in experiments documenting the 

transformation of the parent pharmaceutical, but higher PhAC concentrations were 

employed for experiments aimed at characterization of intermediate oxidation products,.  

The background water quality matrix (e.g., pH, NOM, [DOC], t-BuOH, pCBA, and 

alkalinity, among others) also changed between experiments.  For batch experiments, all 

solutions were immediately capped, shaken, and placed into a dark environment (at room 

temperature) for at least 24 hours before analysis; before analysis, samples were 

quenched using indigotrisulfonate.  Details on specific ozone doses added to samples 

containing the PhACs of interest are provided in Chapters 4 and 6.   

 

An essentially identical protocol was employed for batch peroxone experiments.  

Hydrogen peroxide was added to the individual batch solutions in concentrations that 

were calculated to yield specific H2O2 to O3 molar ratios after application of aqueous 

ozone.  Besides inclusion of hydrogen peroxide in the water quality matrix, no 

differences between batch ozone experiments and batch peroxone experiments existed. 
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Figure 3-14. Schematic of experimental setup for batch transformation studies.  
 

 

Continuous Aqueous Ozone Addition Reactor 

The continuous aqueous ozone addition reactor (Figure 3-15) is a novel method 

for investigating the transformation of organic compounds.  Teflon tubing and stainless 

steel connections were employed to reduce ozone loss from the stock reservoir and into 

the 2-L reactor.  Prior to all experiments, the ozone stock solution was continuously 

cycled through the tubing; hence any ozone demand from the tubing would have been 

sated.  In addition, quality control experiments were run to ascertain whether any 

significant ozone loss occurred between the stock reservoir and the reactor; the results 

show that for a stock ozone solution containing 36.96 (±0.41) mg/L O3, the ozone 

concentration measured at the effluent of the tubing (i.e., the influent line to the reactor) 

was 36.89 (±0.44) mg/L O3.  Given these results, no appreciable changes in ozone 

concentration from the stock reservoir to the reactor were encountered. 
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Figure 3-15. Schematic of the experimental setup for continuous ozone addition 
experiments. 

 

In this research, the continuous ozone reactor was employed to demonstrate the 

impact of NOM on ciprofloxacin transformation and elimination of ciprofloxacin-

associated antimicrobial activity and to determine the transformation kinetics of 

cyclophosphamide and ifosfamide with ozone and hydroxyl radicals.  Two experimental 

protocols were utilized.  In the first scenario (Method 1), concentrated ozone stock 

solution was continuously pumped into the separate 2-L reactor, which contained the 

water matrix of interest, to determine the impact of NOM on transformation of 

ciprofloxacin and elimination of the associated antimicrobial activity.  Samples were 

taken at set time intervals.  This reactor setup is discussed in more detail in Chapter 5, 

which shows how this process is utilized for removal of ciprofloxacin, and its associated 

antimicrobial activity, from various water sources.  The second operational scenario 

(Method 2) was utilized to elucidate the reaction kinetics of cyclophosphamide and 

ifosfamide reaction with aqueous ozone and hydroxyl radicals.  In this method, the ozone 

stock solution was pumped into the 2-L reactor for a set period of time (typically, 30 

minutes) before dosing in the organic compounds of interest.  During this period, the 

aqueous ozone concentration in the reactor builds up to a controllable concentration.  
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This concentration is a function of several variables, including the ozone stock solution 

concentration, the pumping rate, and the composition of the background matrix, 

specifically the carbonate species and other compounds that affect ozone decomposition.  

As ozone is being continually introduced into the reactor, the ozone concentration can be 

controlled throughout experimentation; therefore, at time, t = 0, defined as the time at 

which the pharmaceuticals and the background water matrix are dosed into the reactor, an 

excess of ozone and hydroxyl radicals are present in solution.  This process is explained 

in more detail in Chapter 4, which details the investigation of cyclophosphamide and 

ifosfamide kinetics with ozone and hydroxyl radicals. 

 

The ozone profile for a continuous ozone addition experiment with pre-ozonation 

(Method 2) is shown in Figure 3-16.  The initial solution contained 100 mg/L NaCl, 200 

mg/L NaHCO3, and 10 mM t-BuOH at a pH of 8.3.  At time, t = 0, 100 µg/L of 

cyclophosphamide and 100 µg/L of ifosfamide was dosed into the reactor.  Figure 3-16 

also shows the ozone exposure (integration of [O3] with respect to time) for the duration 

of the experiment.  Clearly, the ozone exposure in the continuous liquid addition reactor 

increases in a linear fashion throughout experimentation due to the relatively steady 

aqueous ozone concentrations; in contrast, for a batch ozonation experiment, the ozone 

exposure approaches an asymptote as the aqueous ozone concentration decreases to zero.  

As the ozone exposure is controllable (through maintenance of a desired ozone 

concentration), the continuous ozone reactor provides a unique advantage over more 

traditional methods for determining the kinetics of compounds that react slowly with 

ozone.  It should be noted that this process is novel, that is, this research is the first time 

that a continuous liquid ozone addition reactor was employed for determination of the 

reaction kinetics of compounds with ozone and hydroxyl radicals.  In Chapter 4, the rate 

constants for cyclophosphamide reaction with ozone and hydroxyl radicals are 

determined using Method 2, and those values compare well to previously published data. 
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Figure 3-16. Typical ozone concentration and ozone exposure profiles during 
experimentation.  (100 mg/L NaCl, 200 mg/L NaHCO3, and 10 mm t-
BuOH at pH 8.3.  At time, t = 0 minutes, 100 µg/L cyclophosphamide and 
100 µg/L ifosfamide were introduced to the reactor.) 

 

Upon dosing of organic compounds, an immediate loss in ozone and hydroxyl 

radical concentration occurs due to “instantaneous” reaction with the organic matrix.  In 

this case, the loss in ozone concentration is minimal because of the low reactivity of 

cyclophosphamide/ifosfamide with ozone (see Chapter 4).  For this experiment, hydroxyl 

radicals were scavenged using t-BuOH; therefore, no effect of ifosfamide addition on 

hydroxyl radical exposure is expected.  More details about the use of t-BuOH are 

presented below.  For other cases, the initial drop in pharmaceutical and ozone 

concentrations is more drastic (Marron, 2010).  One example of a more drastic initial 

drop in ozone concentration upon dosing of the chemicals of interest in illustrated in 

Figure 3-17.  In this experiment, a 2-L reactor containing 100 mg/L NaCl and 200 mg/L 

NaHCO3 at pH 8.3; at time, t = 0, 1 mg/L DOC from Lake Austin HPOA was applied to 

the reactor.  As Figure 3-17 demonstrates, the aqueous ozone concentration in the reactor 

quickly drops and then begins to recover as the more reactive fractions of the NOM are 

exhausted.  The recovery of ozone in this scenario demonstrates that the continuous 
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aqueous ozone addition reactor can maintain ozone exposure even in the presence of 

background NOM; therefore, PhACS can be effectively treated even in the presence of 

relatively high concentrations of NOM. 

 

 

Figure 3-17. Demonstration of the impact that dosing 1 mg/L DOC from Lake 
Austin HPOA on the aqueous ozone concentration in continuous ozone 
reactor. 

 

Continuous Peroxone Addition Reactor 

Continuous peroxone addition was achieved by concomitantly pumping the ozone 

stock solution and a hydrogen peroxide stock solution into a separate 2-L reactor (Figure 

3-18).  This reactor was used to verify the rate constants for the reaction of 

cyclophosphamide and ifosfamide with hydroxyl radicals.  The 2-L reactor contained the 

water composition of interest, which included PhACs, 100 mg/L NaCl, 200 mg/L 

NaHCO3, and 10 µM pCBA at a particular pH.  At time, t = 0, both pumps (the one 

connected to the ozone stock solution and the one connected to the hydrogen peroxide 

working solution) were switched on.  The ozone and hydrogen peroxide concentrations 

(of the ozone stock solution and the hydrogen peroxide working solution) were used to 
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determine what ozone and hydrogen peroxide pumping rates were required to achieve the 

desired H2O2 to O3 molar ratio. 

 

As discussed in Chapters 2 and 4, hydrogen peroxide reacts quickly with ozone to 

promote ozone decomposition and, ultimately, to form hydroxyl radicals.  Therefore, in 

this reactor setup, very low concentrations of aqueous ozone are expected; furthermore, 

hydroxyl radical exposure should continually increase.  Figure 3-19a shows the measured 

ozone concentrations (via the indigo method) and the hydroxyl radical exposure 

(determined by the change in [pCBA]).  These data were obtained from an experiment in 

which ozone (9.77×10-4 M) and hydrogen peroxide (1.05×10-3 M) were continuously 

pumped into a 2-L reactor containing 200 mg/L NaHCO3, 100 mg/L NaCl, 100 µg/L 

ifosfamide, and 10 µM pCBA at pH 8.3.  The pumping rate of the ozone and hydrogen 

peroxide solutions were 3.1 mL/min and 2.53 mL/min, respectively.  Therefore, the 

molar ratio of hydrogen peroxide to ozone was 0.88 mol/mol.  This ratio is higher than 

the ideal molar ratio of 0.5 mol H2O2 / mol O3, indicating that the excess hydrogen 

peroxide may have scavenged some of the hydroxyl radicals, which would lower the 

achievable hydroxyl radical exposure.  In Figure 3-19b, the hydroxyl radical exposure is 

plotted as a function of the applied ozone exposure, that is, the integration of the 

cumulative ozone dose with respect to time.  Clearly, the attainable hydroxyl radical 

exposure is a function of the applied ozone exposure; this relationship makes sense as 

hydroxyl radicals are a product of ozone decomposition.  These relationships were typical 

of all of the continuous peroxone addition experiments.  The hydroxyl radical exposure 

was used in combination with changes in PhAC concentration throughout treatment to 

determine the second order rate constant for PhAC transformation with hydroxyl radicals. 

 



78 
 

 

Figure 3-18. Schematic of the continuous peroxone addition reactor. 
 

 

Figure 3-19. (a) Ozone concentration and hydroxyl radical exposure history 
throughout a typical continuous peroxone addition experiment; (b) 
Hydroxyl radical exposure as a function of applied ozone exposure. 
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MEASUREMENT OF OZONE AND HYDROXYL RADICAL KINETICS 

As discussed in Chapter 2, in ozone-based oxidation processes, organic molecules 

interact not only with ozone but also with hydroxyl radicals (Eq. 3-5).   

 

 
       PhACHOkPhACOk

dt

PhACd
r PhACappHOPhACappOPhAC  

"
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"
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 Eq. 3-5
 

 

where [PhAC] is the concentration of the pharmacologically active compound at time t in 

a batch reactor, kO3,app,PhAC is the apparent rate constant for the reaction between ozone 

and the PhAC, [O3] is the ozone concentration at time t, [HO·] is the hydroxyl radical 

concentration at time t, and kHO·,app, PhAC is the rate constant for the reaction between 

ozone and the PhAC.  In this work, the rate constants for PhAC transformation by ozone 

and hydroxyl radicals were determined using three different means.  Cyclophosphamide 

and ifosfamide kinetics with ozone and hydroxyl radicals were determined using the 

continuous addition ozone reactor.  The rate constants for ciprofloxacin and erythromycin 

transformation by ozone were found using a conventional batch ozone reactor; however, 

these tasks were primarily completed by Marron (2010) for ciprofloxacin and Huang 

(2011) for erythromycin and so are not described in detail here.  The rate constant for 

erythromycin was used in batch tests to calculate the rate constant for 

anhydroerythromycin transformation by ozone.  This section focuses on the use of the 

continuous aqueous ozone addition reactor to determine rate constants for 

cyclophosphamide and ifosfamide transformation by ozone and hydroxyl radicals.   

 

After continuous ozonation for 6-8 hours, a highly concentrated ozone stock 

solution (50-60 mg/L O3) was generated.  That solution was continuously pumped into a 

2-L reactor containing the background matrix of interest for at least 30 minutes.  During 

the course of these 30 minutes, an excess of aqueous ozone was built up in the reactor as 

shown in Figure 3-16a.  Note that the pre-ozonation time is listed as negative time in 

Figure 3-16a.  At time, t = 0 min, a small volume of cyclophosphamide and/or ifosfamide 

stock solution was added to the reactor to achieve an initial concentration of 
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approximately 100 µg/L.  These details were the same for all experiments; however, two 

separate background matrices were employed to determine the rate constants for the 

PhACs with ozone and hydroxyl radicals.  The two experiments were run with the 

following background matrices:  (1) 10 mM t-BuOH was added to scavenge hydroxyl 

radicals and (2) 1-10 µM pCBA was included as a hydroxyl radical probe compound.  

The strategy for using the results of experiments with these chemicals to elucidate the 

rate constants for PhAC transformation by ozone and hydroxyl radicals is presented 

below. 

 

Isolating Ozone Kinetics 

As discussed above and earlier in Chapter 2, t-BuOH is an excellent hydroxyl 

radical scavenger.  Recall, t-BuOH reacts slowly with ozone (k”
app,O3,t-BuOH = 0.003 

M-1s-1; Hoigné and Bader, 1983a) but quickly with hydroxyl radicals (k”
app,HO·,t-BuOH = 

6×108 M-1s-1; Buxton et al., 1988).  For this reason, t-BuOH is not expected to 

significantly affect aqueous ozone concentrations, and therefore, should not greatly 

impact the aqueous ozone exposure.  However, due to the relatively high concentration of 

t-BuOH in solution and the high rate constant for t-BuOH transformation with hydroxyl 

radicals, t-BuOH will scavenge virtually all of the hydroxyl radicals in solution; 

therefore, any changes in PhAC concentration can be attributed to reaction with ozone 

(Eq. 3-6).   

 

 

    PhACOk
dt

PhACd
PhACOapp 3

"
,3,

 Eq. 3-6
 

 

It should be noted that the reactor volume varies with time in these experiments 

due to the continuous flow of ozone stock solution into the reactor and sample 

withdrawal.  Here, a modified constant volume equation was employed; in this case, the 

effects of dilution on PhAC concentrations were accounted for in the data analysis by 

multiplying the pharmaceutical concentration by the ratio of the initial reactor volume to 

the reactor volume at time, t.  Appendix E demonstrates that this assumption has a 
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negligible impact on calculation of the rate constant for pharmaceutical transformation by 

ozone; therefore, the modified constant volume model was used here. 

 

At a concentration of 10mM t-BuOH, the molar ratio of t-BuOH to ifosfamide 

(100 µg/L or 0.38 µM) is over 26,000.  Assuming that hydroxyl radicals react with t-

BuOH at the same rate as ifosfamide, then t-BuOH will scavenge 99.996% of the 

hydroxyl radicals in solution.  During experimentation, t-BuOH is transformed through 

reaction with hydroxyl radicals.  In these experiments, the maximum hydroxyl radical 

exposure observed is approximately 10-9 M-s, which would transform 45% of the t-

BuOH in solution; even then, the residual t-BuOH would still scavenge 99.993% of the 

hydroxyl radicals formed.  

 

The rearrangement and integration of Eq. 3-6 yields Eq. 3-7. 
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By carrying out the integrations shown in Eq. 3-7, a direct relationship between changes 

in PhAC concentration and ozone exposure can be determined (Eq. 3-8). 
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By plotting ln [PhAC]/[PhAC]o vs. the ozone exposure (∫[O3]dt), the second order rate 

constant for PhAC transformation with ozone (k”
app,O3,PhAC) can be measured.  Figure 3-

20 demonstrates such a plot; in this case, the rate constant for ifosfamide reaction with 

ozone was determined to be k”
app,O3,IFO = 6.07 M-1s-1.  This model (Eq. 8) has been 

extensively employed by previous authors (McDowell et al., 2005; Dodd et al., 2006; 

Suarez et al., 2007) to determine the second order rate constant for ozone with various 
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trace organic contaminants.  It should be noted that, if a significant fraction of the t-

BuOH added into solution is transformed, the data in this plot would exhibit a steepening 

slope due to PhAC transformation through reaction with hydroxyl radicals.  This issue 

was never observed; therefore, it can be concluded that the original t-BuOH 

concentration was sufficient to allow effective scavenging of hydroxyl radicals 

throughout experimentation.  More details on these experiments and the meaning of the 

results are presented in Chapter 4. 

 

 

Figure 3-20. Determination of the second-order rate constant for ozone reaction with 
ifosfamide.  (The slope of the curve represents k”

app,O3,IFO.  The data in this 
figure correspond to a background solution containing 100 mg/L NaCl, 200 
mg/L NaHCO3, 10 mM t-BuOH, 100 µg/L cyclophosphamide, and 100 
µg/L ifosfamide at pH 8.3.) 

 

 

Determination of Hydroxyl Radical Kinetics 

The second type of experiment involved using a hydroxyl radical probe 

compound.  In this work, para-chlorobenzoic acid (pCBA) was employed.  The second-
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order rate constants for pCBA with ozone and hydroxyl radical are known from the 

literature:  k”
app,O3,pCBA = 0.15 M-1s-1 (Yao and Haag, 1991) and k”

app,HO·,pCBA = 5.2×109 

M-1s-1 (Buxton et al., 1988).  Because of the low reactivity with ozone, we can consider 

changes in pCBA concentration in a batch reactor to be due solely to reaction with 

hydroxyl radicals (Eq. 3-9). 

 

 
    pCBAHOk

dt

pCBAd
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 Eq. 3-9
 

 

Integration of Eq. 3-9 with respect to time yields Eq. 3-10. 
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By plotting ln [pCBA]/[pCBA]o versus ozone exposure (Eq. 3-11), we can solve for 

Elovitz and von Gunten’s (1999) Rct term (Eq. 3-12) as shown in Figure 3-21.  Rct is the 

ratio of hydroxyl radical exposure to ozone exposure.  In this case, the value of Rct was 

2.16×10-8 mol HO· / mol O3. 
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Figure 3-21. Determination of Rct using the relationship described in Eq. 3-11.  (The 
slope of the data corresponds to the Rct for this particular experiment.  The 
data in this figure correspond to a solution containing 100 mg/L NaCl, 200 
mg/L NaHCO3, 10 µM pCBA, 100 µg/L cyclophosphamide, and 100 µg/L 
ifosfamide at pH 8.3.) 

 

 

In batch ozonation tests (i.e., experiments with one dose of ozone stock solution at 

time, t = 0), most real waters demonstrate an Rct in the range of 4.9×10-7 to 7.0×10-10 mol 

HO· / mol O3 (Elovitz et al., 2000).  In synthetic matrices containing acetate, t-BuOH, 

carbonate, and phosphate buffer (pH 8.0), Elovitz and von Gunten (Elovitz and von 

Gunten, 1999) found Rct values on the order of 1.4×10-10 mol HO· / mol O3.  While the 

value found in Figure 3-21 is on the higher end of the range observed by Elovitz et al. 

(2000), the water matrix is relatively clean, which means that fewer hydroxyl radical 

scavengers are present in solution.  With fewer hydroxyl radical scavengers in solution, 

hydroxyl radical exposure and Rct will both be higher.  Thus, it appears that continuous 

aqueous ozone addition scenarios yield Rct values that are consistent with those observed 

in batch ozone experiments.   



85 
 

The ozone and hydroxyl radical exposures for this scenario are shown in Figure 3-

22.  Unlike the t-BuOH experiments (Figure 3-20) where hydroxyl radicals are 

scavenged, the pCBA experiment does exhibit hydroxyl radical exposure (Figure 3-22).  

Furthermore, the pCBA experiment also demonstrates significant ozone exposure (Figure 

3-22).  For that reason, it is clear that PhACs can interact with both ozone and hydroxyl 

radicals (Eq. 3-5), and both terms must be incorporated into the rate expression.  

Integration of the overall rate expression for PhAC degradation (Eq. 3-5) with respect to 

time, and substitution of Eq. 3-12 yields Eq. 3-13. 
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Figure 3-22. Ozone and hydroxyl radical exposure throughout an experiment 
employing 10 µM pCBA.  (The magnitudes of ozone and hydroxyl radical 
exposure are sufficient for transformation of ifosfamide according to both 
mechanisms.  The data in this figure correspond to the same experiment 
described by Figure 3-21.) 
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The slope of a plot of ln [PhAC]/[PhAC]o vs. ozone exposure is represented by Eq. 3-14. 
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 Eq. 3-14 

 

The second-order rate constant for PhAC transformation with ozone was determined 

using Eq. 3-8 and Rct was calculated from Eq. 3-11; therefore, Eq. 3-14 can be solved for 

the second-order rate constant for the PhAC with hydroxyl radicals.  Example plots of 

Eq. 3-13 for cyclophosphamide and ifosfamide are shown in Figure 3-23.  In this case, 

the slope (Eq. 3-14) is equal to 121 M-1s-1. 

 

 

Figure 3-23. Determination of the second-order rate constant for hydroxyl radical 
reaction with ifosfamide.  (The slope was used to solve for the second-
order rate constant of ifosfamide PhAC with hydroxyl radicals (Eq. 3-14).  
The data in this figure correspond to the same experimental conditions 
described in Figure 3-21 and Figure 3-22.) 

 

In the continuous peroxone reactor, the rate constant for PhAC transformation by 

hydroxyl radicals was determined using only the experiment with pCBA because 
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hydroxyl radicals are the dominant oxidant present in the system.  Indeed, as shown in 

Figure 3-19a, the aqueous ozone concentration in continuous peroxone experiments was 

negligible; therefore, the ozone component of Eq. 3-5 goes to zero.  Then, transformation 

of PhACs can be described by Eq. 3-15. 
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 Eq. 3-15 

 

Integration of Eq. 3-15 with respect to time yields Eq. 3-16. 
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The change in pCBA concentration can be used to obtain the hydroxyl radical exposure; 

therefore, the change in pCBA concentration and the rate constant for pCBA reaction 

with hydroxyl radicals can be substituted into Eq. 3-16 to yield Eq. 3-17. 
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 Eq. 3-17 

 

Eq. 3-17 is a competition kinetics model that relates the hydroxyl radical exposure found 

through manipulation of the [pCBA] data with the hydroxyl radical exposure determined 

from the [PhAC] data.  An example of the use of Eq. 3-17 to determine the second order 

rate constant for ifosfamide reaction with hydroxyl radicals is shown in Figure 3-24.  In 

this case, the second-order rate constant for ifosfamide transformation by hydroxyl 

radicals (with 95% confidence intervals) is 2.73(±0.16)×109 M-1s-1. 
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Figure 3-24. Ifosfamide transformation in the peroxone system as described by Eq. 
3-17.  (The slope of the plot represents the second order rate constant for 
ifosfamide reaction with hydroxyl radicals.  The data correspond to an 
experiment run at a molar ratio of 0.88 mol H2O2 / mol O3; the reactor 
solution contained 100 mg/L NaCl, 200 mg/L NaHCO3, 100 µg/L 
ifosfamide, and 10 µM pCBA at pH 8.3.) 

 

As shown in Chapter 6, a competition kinetics model (Dodd et al., 2006) is used 

to determine the kinetics of an erythromycin degradation product, anhydroerythromycin 

A, with ozone.  In that situation, the hydroxyl radical exposure is negligible; therefore, 

the known rate constant for erythromycin transformation by ozone, the ozone exposure 

calculated from erythromycin data, and the ozone exposure from anhydroerythromycin 

data were used to calculate the rate constant for anhydroerythromycin reaction with 

ozone.  This relationship (Eq. 3-18) is similar to that shown in Eq. 3-17.  In Eq. 3-18, a 

general form of this equation is shown. 

 

 

 
 

 
 oknown

known

PhACOapp

PhACOapp

ounknown

unknown

PhAC

PhAC

k

k

PhAC

PhAC

known

unknown lnln
"

,3,

"
,3, 

 Eq. 3-18



89 
 

ANTI-MICROBIAL SUSCEPTIBILITY ASSAY 

To determine the antimicrobial activity of the pharmaceuticals of concern and the 

residual antimicrobial activity throughout treatment, the Clinical Laboratory Standards 

Institute (CLSI) standard, Methods for Dilution Antimicrobial Susceptibility Tests for 

Bacteria That Grow Aerobically (NCCLS, 2004), was employed.  This assay was 

developed to test the ability of antimicrobial pharmaceuticals (i.e., ciprofloxacin and 

erythromycin, in this case) to inhibit the growth of various microorganisms.  A standard 

microorganism, Escherichia coli (ATCC #25922), was employed to describe the 

inhibition profile of individual pharmaceuticals and to determine how ozone treatment 

affects the residual antimicrobial activity of a water containing the PhACs of concern, 

PhAC intermediate oxidation products, and other compounds, including background 

electrolytes and NOM, among others.  The protocol for using the antimicrobial activity 

assay is described below, and more detail on the data analysis is presented in Appendix 

C.  All glassware, disposables, and solutions employed in antimicrobial activity studies 

were sterilized using the autoclave protocol available in Appendix A. 

 

  E. coli was purchased from the American Type Culture Collection (ATCC).  

Upon arrival, a small aliquot of the E. coli stock was scraped into 10-mL of Mueller-

Hinton Broth (MHB).  The suspension was incubated in an ambient air environment at 

37°C for 48 hours.  After the incubation time, the E. coli suspension was quite dense.  

Using a sterile inoculation loop, a streak plate was made on Trypticase Soy Agar.  One 

distinct colony forming unit was selected and mixed into a solution of 10-mL MHB.  

That suspension was incubated for three days at 37°C in ambient air.  The resulting E. 

coli suspension was mixed 1:1 with a 50% glycerol solution; aliquots of 1-mL were 

placed into 5 separate sterile cryotubes.  These E. coli stock suspensions were then placed 

into a dark, -80°C freezer for storage. 

 

  Every month, an E. coli working solution was generated by scraping a small 

amount of frozen (-80°C) E. coli suspension into 10-mL of Mueller-Hinton broth (MHB) 
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and incubating the mixture in ambient air at 37°C overnight (12-18 hours).  Throughout 

the month, the E. coli working solution was split 1:10 at least every three days.  The 

purity of the E. coli working solutions were confirmed throughout the month by 

comparing the inhibition profiles of ciprofloxacin/erythromycin standards. 

 

  The inoculum for antimicrobial activity assays was prepared by diluting the E. 

coli working solution with sterile MHB to obtain the same absorbance at 625 nm as a 

BaSO4 turbidity standard equivalent to a 0.5 McFarland standard.  The BaSO4 standard 

was produced by mixing 0.5-mL of a 0.048 M BaCl solution with 99.5-mL of 0.36 N 

H2SO4 (NCCLS, 2004).  The antimicrobial susceptibility assays were run in 96-well 

microplates.  Assays were run according to two different protocols, as described below. 

 

Inhibition Profile Protocol.  Wells were partially filled with 100 μL of either a standard 

containing a known concentration of an antimicrobial PhAC in the background matrix of 

choice or a sample from experimentation; then, 100 μL of the E. coli inoculum was added 

to the well.  Positive growth controls consisted of 100 μL of the background matrix 

without the drug and 100 μL of inoculum; negative growth controls were made up of 100 

μL of the background matrix and 100 μL of MHB.  Triplicate analyses were run for all 

standards, samples, and controls. 

 

Potency Equivalent Protocol.  In the first row (“A”) of the microplate, the wells (A2-

A11) are filled with 250 μL of either a standard containing a known concentration of an 

antimicrobial PhAC in the background matrix of choice or a sample from 

experimentation.  All other wells (i.e., rows “B” through “H”) are filled with 100 μL of 

sterile DI water.  Each sample/standard from row “A” is serially diluted into the 

subsequent rows.  In most cases, a dilution factor of 0.6 was used, i.e., the concentration 

in row “B” was 60% of the concentration in row “A.”  Therefore, 150 μL of the 

sample/standard in row “A” was added to the 100 μL in row “B.”  Next, 150 μL of the 

solution now in row “B” was added to the 100 μL in row “C,” and so on.  After all 
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samples/standards are serially diluted, 100 μL of the E. coli inoculum is added to each 

well.  The resultant wells contain 100 μL of the sample/standard and 100 μL of the E. coli 

inoculum.  Columns 1 and 12 contained positive and negative growth controls, 

respectively. 

 

  After each plate was prepared, microplates were covered in Parafilm to prevent 

evaporative water loss and incubated in ambient air at 37°C for 20 hours.  After the 20 

hour incubation period, plates were read on a microplate reader (BioTek) at 600 nm.  No 

condensation was observable on the Parafilm covers.  This wavelength is routinely used 

to correlate absorbance with microbial growth (or optical density).  Therefore, low 

absorbance values correspond to high inhibition, whereas high absorbance values indicate 

E. coli growth and, therefore, low inhibition.  The percent inhibition can be calculated 

from the absorbance at 600 nm (ABS600 nm) according to Equation 3-19. 
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 After calculation of the percent inhibition, GraphPad Prism (GraphPad Software, 

Inc.) was used to fit the data to the Hill curve.  This software was used to determine the 

half maximal inhibitory concentration (IC50) and the Hill slope, H, and also to calculate 

95% confidence intervals on the resultant Hill curve.  When the inhibition profile 

protocol was employed, all data were modeled together in GraphPad Prism, that is, one 

curve was fit to each set of samples or standards.  With the potency equivalents method, 

“inhibition profiles” were generated for each set of serial dilutions by plotting the percent 

inhibition against LOG(CPhAC,i/CPhAC,o), where CPhAC,i and CPhAC,o are the PhAC 

concentration in the “i”th dilution and the PhAC concentration in the original 

sample/standard.  The equivalent of IC50 (i.e., the value of LOG(CPhAC,i/CPhAC,o) that 

corresponds to 50% inhibition) for these curves was calculated by GraphPad Prism.  
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Using those values, the potency equivalents (PEQ) were calculated according to Equation 

3-20 (Suarez et al., 2007; Dodd et al., 2009; Paul et al., 2010). 
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In Eq. 3-20, the numerator refers to the antilog of the value of LOG(CPhAC,i/CPhAC,o) that 

corresponds to 50% inhibition for the serial diluted data derived from the initial (highest 

concentration) sample; the term in the denominator corresponds to the same value for 

treated samples or standards at concentrations lower than the initial sample. 

 

 Potency equivalents are a tool designed to provide quantitative measurement of 

antimicrobial activity at drug concentrations that demonstrate high inhibition.  With 

solutions containing only standards, every step down in concentration results in an 

equivalent drop in potency equivalents.  While more details are presented in Appendix C, 

a graphical description of these different data analysis mechanisms is shown in Figure 3-

25.  Figure 3-25a presents the inhibition profile of ciprofloxacin against E. coli ATCC 

25922.  In Figure 3-25b, the “inhibition profile”s of ten individual samples (containing 

erythromycin) introduced to the potency equivalent protocol for measurement of 

antimicrobial activity are shown.  

 

 These tools allow for effective description of the residual antimicrobial activity 

throughout water treatment; by plotting percent inhibition and parent compound 

concentration against treatment dose or time, the relationship between parent compound 

concentration and antimicrobial activity can be determined.  Furthermore, the impact of 

intermediate oxidation products and/or advanced oxidation byproducts can be assessed by 

comparing the standard inhibition profile with that of the treated samples.  The potency 

equivalents protocol allows for greater elucidation of the impact of early (i.e., the first 
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products formed by ozone/hydroxyl radical attack on the parent compound) intermediate 

oxidation products on residual antimicrobial activity.   

 

 

Figure 3-25. Representative data and model fits (solid lines) collected from (a) the 
inhibition profile protocol (with ciprofloxacin) and (b) the potency 
equivalents protocol (with erythromycin) for running the antimicrobial 
activity assay. 
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Both protocols have advantages.  In the inhibition profile protocol, the change in 

antimicrobial activity throughout treatment can be easily conveyed; as treatment occurs, 

the PhAC concentration decreases and the residual antimicrobial activity is eliminated.  

Furthermore, by plotting the antimicrobial activity of treated samples, the contributions 

of intermediate oxidation products to the residual antimicrobial activity can be identified.  

In the serial dilution protocol, deviations from the 1:1 relationship of potency equivalents 

with the normalized PhAC concentration suggest positive or negative contributions of 

intermediate products with respect to residual pharmacological activity.  This protocol is 

especially relevant at high PhAC concentrations (e.g., ones that demonstrate >90% 

inhibition) because it allows quantitative analysis of the residual antimicrobial activity.  

Regardless, for some compounds, the antimicrobial activity stemming from the presence 

of intermediate oxidation products may be masked in the serial dilution scheme.  

Substantial discussion regarding the employment of these two techniques for 

measurement of antimicrobial activity is provided in Chapters 5-6 within the context of 

ciprofloxacin and erythromycin treatment. 
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CHAPTER 4: OZONATION OF CYCLOPHOSPHAMIDE AND 

IFOSFAMIDE:  DETERMINATION OF RATE CONSTANTS, 

IMPACT OF ORGANIC MATTER, AND IDENTIFICATION 

OF MAJOR INTERMEDIATE PRODUCTS 

 

ABSTRACT 

A novel continuous aqueous ozone addition reactor was employed to determine the rate 

constants for the transformation of two environmentally-relevant chemotherapy agents, 

cyclophosphamide and ifosfamide, by ozone and hydroxyl radicals.  The rate constants 

for cyclophosphamide and ifosfamide transformation with ozone were determined to be 

3.23(±0.71) M-1s-1 and 6.84 (±0.37) M-1s-1, respectively.  The second-order rate constants 

for cyclophosphamide and ifosfamide transformation by hydroxyl radicals were found to 

be 2.69(±0.17) ×109 M-1s-1 and 2.73(±0.16) ×109 M-1s-1, respectively; these rate constants 

were verified using a continuous peroxone addition reactor.  Batch ozone experiments 

demonstrated that NOM can significantly decrease hydroxyl radical exposure, and 

thereby, decrease transformation of cyclophosphamide and ifosfamide.  Overlap in m/z 

values of intermediate oxidation products was observed for the two chemotherapy agents, 

which are structural isomers.  The 4-keto-, 4-hydroxy-, and imino- derivatives of the 

parent compounds were the most dominant intermediate oxidation products in the applied 

ozone dose range employed in this research.  Furthermore, the active metabolites of 

cyclophosphamide and ifosfamide (phosphoramide mustard and isophosphoramide 

mustard, respectively) were also detected in treated samples.  The presence of the active 

metabolites suggests that treated solutions could retain some residual pharmacological 

activity. 

 

Key words: cyclophosphamide, ifosfamide, ozone, pharmacologically active 
compounds, reaction kinetics, intermediate oxidation products 
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INTRODUCTION 

Recently, several authors have reported a wide range of pharmacologically active 

compounds (PhACs) in wastewater streams, surface waters, and treated drinking water 

(Ternes, 1998; Kolpin et al., 2002; Kim et al., 2007).  The list of PhACs detected in these 

water supplies includes compounds from many different pharmaceutical classes, 

including antibiotics, anti-microbials, anti-inflammatories, chemotherapy agents, and 

anti-depressants, among others.  Several authors (Kummerer et al., 1997; Steger-

Hartmann et al., 1997; Buerge et al., 2006; Johnson et al., 2007; Chen et al., 2008) have 

indicated concern for chemotherapy agent presence in the environment because of the 

tendency for such chemicals to exhibit toxic effects.  This paper concentrates on ozone-

based treatment processes for removing two chemotherapy agents, cyclophosphamide 

and ifosfamide, from water. 

 

Cyclophosphamide and ifosfamide are structural isomers as shown in Table 4-1.  

These compounds are prodrugs, meaning that cyclophosphamide and ifosfamide, 

themselves, are inactive; the compounds are converted into their active forms during 

metabolism.  First, the two compounds are converted to 4-hydroxycyclophosphamide and 

4-hydroxyifosfamide, respectively, which are also prodrugs (Low et al., 1983).  The 4-

hydroxy derivatives are further metabolized to the reactive mustards, phosphoramide 

mustard (cyclophosphamide) and isophosphoramide mustard (ifosfamide), respectively, 

and acrolein (Low et al., 1983).  The reactive mustards are cytotoxic and work by 

alkylating DNA, prohibiting separation of DNA strands during replication (Fleming, 

1997).  No research into whether treatment processes or environmental degradation 

pathways lead to the active compounds formed through metabolism has yet been 

performed; furthermore, the excretion of metabolic products is not typically reported.  As 

the parent compounds are not pharmacologically active, characterization of intermediate 

oxidation products and comparison of those compounds to metabolic products warrants 

study. 
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In addition to being cytotoxic, cyclophosphamide and ifosfamide are teratogenic, 

mutagenic, and carcinogenic (Bus et al., 1973; Murthy et al., 1973; Mohn and 

Ellenberger, 1976).  The concentrations associated with cyclophosphamide and 

ifosfamide toxicity are organism-dependent.  Currently, the contribution of trace 

concentrations of cyclophosphamide and ifosfamide to the ultimate ecotoxicological 

activity of a water are unknown; however, some researchers (Pomati et al., 2006; Pomati 

et al., 2007; Pomati et al., 2008) have investigated the impact of environmentally-

relevant concentrations of a suite of 11 pharmaceuticals, including cyclophosphamide, on 

inhibition of E. coli, ovarian cancer cells (OVCAR3), human embryonic kidney cells 

(HEK-293), and zebrafish liver cells.  Pomati et al. (2006) found that HEK-293 

proliferation can be inhibited by up to 30% in the presence of trace concentrations of 

pharmaceuticals.  Nevertheless, the ecotoxicological impact of trace concentrations of 

cyclophosphamide and ifosfamide is not yet fully understood.  

 

Table 4-1. Properties of ifosfamide and cyclophosphamide. 
Property Cyclophosphamide Ifosfamide 

Molecular Formula C7H15Cl2N2O2P C7H15Cl2N2O2P 

Molecular Weight (g/mol) 261.1 261.1 

Molecular Structure 

 

 

log Kow 0.63 0.86 

pKa 2.84-6.5 * 1.45-4.0 ** 

CAS number 50-18-0 3778-73-2 
* Mahoney et al., 2003; Sottani et al., 2008; Wang et al., 2009 
** Mahoney et al., 2003; Sottani et al., 2008 

 

The log Kow for cyclophosphamide and ifosfamide are 0.63 and 0.86 (Hansch et 

al., 1995), respectively; hence, these compounds can be expected to pass through 

traditional wastewater treatment processes without being adsorbed onto particles or 
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microorganisms.  Steger-Hartmann et al. (1997) found that cyclophosphamide is poorly 

removed in sewage treatment plants (STPs); additionally, Kiffmeyer et al. (1998) 

concluded that cyclophosphamide is not biodegradable.  Unsurprisingly, 

cyclophosphamide and ifosfamide have been detected in various water sources over the 

past 15 years.  Ifosfamide (5-338 ng/L) and cyclophosphamide (2-21 ng/L) have been 

detected in hospital wastewater (Steger-Hartmann et al., 1997; Thomas et al., 2007).  

Cyclophosphamide and ifosfamide have also been detected at concentrations of 1-143 

ng/L in STPs (Steger-Hartmann et al., 1997; Metcalfe et al., 2003; Zuccato et al., 2005; 

Buerge et al., 2006; Thomas et al., 2007).  Significant concentrations of these two 

compounds have been detected in landfill leachate:  97-192 ng/L for cyclophosphamide 

and 32-42 ng/L for ifosfamide (Jjemba, 2008). 

 

Ozonation has proven an effective treatment process for removal of PhACs 

(Huber et al., 2003; Ternes et al., 2003; von Gunten, 2003; Westerhoff et al., 2005).  

Several authors have investigated ozone treatment of cyclophosphamide and ifosfamide 

in various water sources (McDowell et al., 2005; Venta et al., 2005; Chen et al., 2008; 

Garcia-Ac et al., 2010).  Venta et al. (2005) investigated cyclophosphamide degradation 

in a gaseous ozonation reactor; the authors reported the pseudo-first order rate constant 

for cyclophosphamide degradation in the peroxone process (the molar ratio of H2O2/O3 

was varied from 0.15 to 0.39) system and identified 4-ketocyclophosphamide as an 

intermediate oxidation product; detection of the reactive mustards was not reported.  

Garcia-Ac et al. (2010) determined the second-order rate constant for cyclophosphamide 

reaction with ozone in ultrapure water to be k”
O3,CYP = 3.3 M-1s-1; in contrast, Chen et al. 

(2008) determined the second-order rate constant for cyclophosphamide transformation 

by ozone to be nearly two orders of magnitude greater (k”
O3,CYP = 143 M-1s-1) than that 

determined by Garcia-Ac et al. (2010).  In both of these studies, highly concentrated 

aqueous ozone was injected into a batch solution containing cyclophosphamide; samples 

were taken over time and analyzed for ozone and cyclophosphamide concentrations.  

Both papers report similar values for the second-order rate constant for 
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cyclophosphamide transformation by hydroxyl radicals:  2.0×109 M-1s-1 (Garcia-Ac et al., 

2010) and 2.1×109 M-1s-1 (Chen et al., 2008).  The work of McDowell et al. (2005) 

demonstrates removal of cyclophosphamide and ifosfamide as a function of applied 

ozone dose.  Of the nine compounds investigated by these investigators, 

cyclophosphamide and ifosfamide exhibited the lowest percent transformation for all 

applied ozone doses.  The transformation kinetics of ifosfamide with ozone and hydroxyl 

radicals has not previously been reported. 

 

In this paper, we report on the use of a novel continuous liquid ozone addition 

reactor to determine the kinetics of cyclophosphamide and ifosfamide transformation 

through reactions with ozone (O3) and hydroxyl radicals (HO·).  This method for 

determining kinetics is especially relevant for compounds that react slowly with ozone, 

because ozone concentrations can be effectively controlled without the limitations 

incurred by ozone decay or the complications associated with modeling of aqueous ozone 

concentrations.  In addition, the impact of natural organic matter (NOM) on the 

transformation of cyclophosphamide and ifosfamide at specific applied ozone doses was 

investigated.  Finally, we provide initial characterization of major intermediate oxidation 

products produced during ozone and hydroxyl radical oxidation of cyclophosphamide and 

ifosfamide.  The value of studying both of these closely related compounds was to 

determine how the placement of the two chloroethyl functional groups affects both the 

transformation kinetics with ozone and hydroxyl radicals and the structures of the 

resultant intermediate oxidation products.  

 

MATERIALS AND METHODS 

Chemicals and stock solutions.  Cyclophosphamide monohydrate and ifosfamide were 

purchased through VWR from MP Biomedicals (Solon, OH) and US Pharmacopeia 

(Rockville, MD), respectively.  Stock solutions of cyclophosphamide (CYP) and 

ifosfamide (IFO) were prepared at 1 mg/mL in deionized water and stored in amber 

bottles in the dark at 4°C.  para-chlorobenzoic acid (pCBA) stock solutions (100 µM) 



100 
 

were made in deionized water and stored in the dark at 4°C.  LC-MS grade methanol and 

water were employed in LC-MS and LC-MS/MS analysis of cyclophosphamide and 

ifosfamide.  HPLC grade methanol was employed in HPLC-UV analysis of pCBA.  

NOM was isolated from Lake Austin (Austin, TX) using the procedures described by 

Aiken et al. (1992).  The hydrophobic organic acids (HPOA) fraction of Lake Austin 

NOM was isolated using XAD-8 resin.  Lake Austin HPOA was chosen as a 

representative NOM source; furthermore, because the Lake Austin HPOA was available 

in extract form, the DOC concentration could be controlled.  A stock solution of 

hydrogen peroxide was made from 30% H2O2; the H2O2 stock solution (0.105 M H2O2) 

was placed in an amber bottle and stored in the dark at 4°C.   

 

Ozone reactor setup.  A schematic of the ozone supply system and reactor is shown in 

Figure 4-1a.  Oxygen gas flowed into the ozone generator at 30 cm3/min; a fraction of 

that oxygen was converted to ozone.  This combined gas stream was directed into a gas-

washing bottle, which served as a stock ozone solution.  The ozone stock solution was 

maintained on ice (Tsolution ~ 0.5°C) to increase the solubility of ozone.  After 4-6 hours, 

the ozone concentration in the stock solution reached a plateau at 50-60 mg O3/L.  In this 

research, the ozone stock solution was employed in three different ozone reactors:  

continuous aqueous ozone addition, continuous peroxone addition, and batch ozone 

experiments.  The continuous aqueous ozone addition experiments were used to calculate 

the rate constants for cyclophosphamide and ifosfamide transformation by ozone and 

hydroxyl radicals; the rate constants for cyclophosphamide and ifosfamide transformation 

with hydroxyl radicals were verified using the continuous peroxone addition reactor.  The 

batch ozone experiments were utilized to (1) describe the impact of NOM on 

cyclophosphamide and ifosfamide transformation and (2) characterize the intermediate 

oxidation products of cyclophosphamide and ifosfamide transformation for specific 

ozone doses. 
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Figure 4-1. (a) Schematic of the continuous liquid ozone addition reactor; (b) 
Behavior of ozone concentrations and ozone exposure throughout a 
continuous ozone addition experiment.  (In (b), the solution is composed 
of 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, and 10-2 M t-BuOH at pH 6.3.  
At time equal to zero, 3.83×10-7 M cyclophosphamide and 3.83×10-7 M 
ifosfamide were dosed into solution.) 
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Continuous ozone addition experiments.  The ozone stock solution was pumped into the 

2-L reactor for 30 minutes; the aqueous ozone concentration in the 2-L reactor was 

controlled by adjusting the pumping rate from the stock reservoir.  After 30 minutes of 

pre-ozonation, a small volume of solution (400 µL) containing cyclophosphamide 

(1.92×10-3 M) and ifosfamide (1.92×10-3 M) was dosed into the 2-L reactor to achieve 

concentrations of 3.83×10-7 M of cyclophosphamide and 3.83×10-7 M  of ifosfamide.  

Samples were taken at regular time intervals and analyzed for ozone, cyclophosphamide, 

and ifosfamide concentrations, as described below.  An example of ozone concentrations 

and ozone exposure (∫[O3]dt) throughout a typical experiment is shown in Figure 4-1b.  

Clearly, the ozone exposure in the continuous liquid addition reactor increases in a linear 

fashion throughout experimentation.  In contrast, for a batch ozonation experiment aimed 

at determining the kinetics for compounds that react slowly with ozone (k”
app,O3,PhAC < 102 

M-1s-1), the ozone exposure approaches an asymptote as the aqueous ozone concentration 

decreases to zero.  The continuous ozone reactor provides a unique advantage over more 

traditional methods for determining the kinetics of compounds that react slowly with 

ozone because the ozone concentration in the reactor is controllable and non-zero for an 

extended time.  Nevertheless, batch kinetics experiments are useful for determining the 

transformation kinetics of compounds that react quickly with ozone (Marron, 2010; 

Huang, 2011).  Batch experiments are also useful for determining removal efficiency as a 

function of applied ozone dose (transformation as a function of the molar ratio of applied 

ozone to the initial PhAC concentration) as indicated below.  

 

Continuous peroxone addition experiments.  A stock hydrogen peroxide solution was also 

employed in the continuous peroxone addition experiments.  The molar ratio of hydrogen 

peroxide to ozone was essentially controlled by the pumping rates of the ozone stock 

solution ( ) and the hydrogen peroxide stock solution ( ), since the ozone and 

hydrogen peroxide concentrations are measured.  Then, using Eq. 4-1, the molar ratio of 

applied H2O2 to O3 is calculated. 
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Batch ozone experiments.  Small aliquots of ozone stock solution were added to culture 

tubes containing a small volume (2-7 mL) of solutions containing cyclophosphamide 

and/or ifosfamide in the background matrix of choice.  After ozone addition, samples 

were immediately shaken, capped, and placed in a dark environment for 24 hours before 

analysis to ensure that the applied ozone was completely exhausted.  Samples were 

measured for residual ozone concentrations using the indigotrisulfonate method (APHA 

et al., 2006); as expected, no samples demonstrated residual ozone after the reaction 

period.  This type of experiment was used to determine the transformation of 

cyclophosphamide and ifosfamide in different NOM matrices and to generate 

intermediate oxidation products for LC-MS characterization.  For experiments 

investigating the impact of organic matter on the transformation of cyclophosphamide 

and ifosfamide, the initial concentrations of cyclophosphamide and ifosfamide 

were 1.15×10-5 M; the applied ozone dose varied from 0 to 1.09×10-4 M.   Experiments 

used to characterize intermediate oxidation products employed initial cyclophosphamide 

and ifosfamide concentrations of 3.83×10-4 M; ozone doses were calculated to achieve 

molar ratios of applied ozone to initial PhAC in the range of 0 to 7.5 mol/mol.   

 

Analytical Procedures.  Dissolved ozone concentrations of stock solutions were 

measured directly at 258 nm on a UV-VIS spectrophotometer (Agilent).  Aqueous ozone 

concentrations in the 2-L continuous liquid ozone addition reactor were measured using 

the indigo blue method (Bader and Hoigné, 1981) and employing Indigo Reagent II 

(Standard Method 4500.B; APHA et al., 2006).  Hydrogen peroxide concentrations were 

measured using the potassium permanganate titration (Schumb et al., 1955). 

 

Cyclophosphamide and ifosfamide samples pertaining to kinetics and the impact 

of organic matter on percent transformation experiments were measured with LC-MS/MS 
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(Thermo Finnigan, TSQ Quantum).  The injection volume was 10 μL and the flow rate 

was 700 μL/min.  HPLC separation was achieved with a C18 (Shimadzu 150×4.6 mm; 

particle size, 5 µm) column; the eluent gradient was 5% MeOH, 95% H2O (0-3 min); 

ramp to 80% MeOH, 20% H2O (3-10 min); 80% MeOH, 20% H2O (10-12 min); ramp to 

100% MeOH, 0% H2O (12-12.1 min); 100% MeOH, 0% H2O (12.1-16 min); ramp to 5% 

MeOH, 95% H2O (16-16.1 min); 5% MeOH, 95% H2O (16.1-18 min).  The electrospray 

ionization tandem mass spectrometer was operated in positive ion mode.  Method 

parameters include the following:  parent mass, 261.0 mg; product mass, 139.8 mg (CYP) 

and 153.9 (IFO); collision gas pressure, 1.5 mTorr; collision energy, 20 V; spray voltage, 

4000 V; vaporizer temperature, 400 °C; sheath gas pressure, 50 psi (CYP) and 30 psi 

(IFO); and auxiliary gas pressure, 30 psi (CYP) and 10 psi (IFO).  Ifosfamide was eluted 

at 11.7 minutes; cyclophosphamide was eluted at 12.0 minutes. 

 

Samples from the batch experiments employed for characterization of 

cyclophosphamide and ifosfamide intermediate oxidation products were analyzed using 

LC-MS; the measured m/z range was 30–1500.  The injection volume was 20 μL and the 

flow rate was 350 μL/min.  The eluent gradient was 5% MeOH, 95% H2O (0-15 min); 

ramp to 80% MeOH, 20% H2O (15-22 min); 80% MeOH, 20% H2O (22-29 min); ramp 

to 100% MeOH, 0% H2O (29-29.1 min); 100% MeOH, 0% H2O (29.1-33 min); ramp to 

5% MeOH, 95% H2O (33-33.1 min); 5% MeOH, 95% H2O (33.1-35 min).  The 

electrospray ionization tandem mass spectrometer was operated in positive ion mode.  

Method parameters include the following:  parent mass, 261.0 mg; collision gas pressure, 

1.5 mTorr; collision energy, 20 V; spray voltage, 4000 V; vaporizer temperature, 400 °C; 

sheath gas pressure, 25 psi (CYP) and 15 psi (IFO); and auxiliary gas pressure, 15 psi 

(CYP) and 5 psi (IFO). 

 

The hydroxyl radical probe compound, pCBA, was measured at 234 nm using an 

HPLC (Waters Corporation) with photo-diode array (PDA).  HPLC separation was 

achieved with a C18 column (Sonoma C18(2), 3µ 100 Å).  The eluent, 60% MeOH, 40% 
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25 mM H3PO4, was pumped at a constant flow rate (0.5 mL/min).  pCBA was eluted after 

5.35 minutes. 

 

RESULTS 

 In this section, the results of the transformation kinetics experiments using the 

continuous aqueous ozone addition reactor are presented.  The impact of NOM on the 

transformation of cyclophosphamide and ifosfamide achievable for a specific ozone dose 

and characterization of the intermediate oxidation products formed during ozonation of 

cyclophosphamide and ifosfamide are also discussed. 

 

Kinetics 

The continuous peroxone addition reactor was employed to determine the second-

order rate constant for PhAC transformation with hydroxyl radicals.  In this system, 

hydroxyl radicals are the dominant oxidant; therefore, the change in PhAC concentration 

with respect to time can be described by Eq. 4-2. 
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 Eq. 4-2
 

 

[PhAC] is the pharmaceutical concentration at time, t; k”
HO·,app,PhAC is the second-order 

rate constant for PhAC transformation by hydroxyl radicals; and, [HO·] is the hydroxyl 

radical concentration at time, t.  Integration of Eq. 4-2 with respect to time yields Eq. 4-3. 
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The term, ∫[HO·]dt, is called the hydroxyl radical exposure, and it can be calculated using 

data from transformation of the hydroxyl radical probe compound, para-chlorobenzoic 

acid (pCBA).  The second-order rate constants for pCBA with ozone and hydroxyl 

radical are known from the literature:  k”
O3,pCBA = 0.15 M-1s-1 (Yao and Haag, 1991) and 
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k”
HO·,pCBA = 5.2×109 M-1s-1 (Buxton et al., 1988).  Because of the low reactivity with 

ozone, changes in [pCBA] in a batch reactor (with respect to pCBA) are attributed solely 

to reaction with hydroxyl radicals.  Then, the transformation of pCBA with respect to 

time is similar to Eq. 4-3; thus, the hydroxyl radical exposure at any time, t, can be 

calculated as shown in Eq. 4-4. 
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Using the hydroxyl radical exposure determined from the pCBA transformation data with 

the PhAC transformation data allows calculation of the second-order rate constant for 

PhAC transformation by hydroxyl radicals. 

 

Two separate solutions containing 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 10-5 

M pCBA, and 7.66×10-7 M of either cyclophosphamide or ifosfamide were created.  The 

pH of both solutions was 8.2.  The ozone concentration in the ozone stock solution was 

measured, and pumping rates were set for the O3 and H2O2 systems.  For both 

experiments, the H2O2 to O3 molar ratio was set at 0.88.  At time, t = 0, both pumps were 

started and measurements commenced, i.e., pre-ozonation was not performed due to rapid 

hydroxyl radical decomposition.  The results from these experiments can be seen in 

Figure 4-2.  The slope of the data plotted in Figure 4-2 is equal to the second-order rate 

constant for PhAC transformation by hydroxyl radicals as demonstrated by Eq. 4-3.  In 

this case, the second-order rate constants (with 95% confidence intervals) for 

cyclophosphamide and ifosfamide transformation by hydroxyl radicals were 

2.69(±0.17)×109 M-1s-1 and 2.73(±0.16)×109 M-1s-1, respectively. 
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Figure 4-2. Determination of second order rate constant for hydroxyl radical 
reaction with cyclophosphamide (a) and ifosfamide (b) using the 
continuous addition peroxone reactor.  (Dashed lines are 95% confidence 
bands.) 

 

 

The aqueous ozone concentrations were found to be below the detection limit (8.0×10-8 

mol/L using the indigo method with indigo reagent II) throughout these experiments.  

Given these observations, the maximal ozone exposure for the experiments shown in 

Figure 4-2 is approximately 1.44×10-4 M-s, which would only correspond to ~0.1% 

PhAC removal efficiency; clearly, the majority of the transformation, then, is due to 

PhAC transformation by hydroxyl radicals.  These observations reflect the rapid reaction 

of ozone with hydrogen peroxide (Rxn. 4-1; Glaze and Kang, 1989; Alsheyab and 

Muñoz, 2006): 

 

 2
108.2

223 322
116

OHOOHO sMk  


 Rxn. 4-1 

 

The rate constants for cyclophosphamide and ifosfamide transformation by ozone 

were found using the continuous liquid ozone addition reactor.  The aqueous ozone 

concentration was built up, and then the PhACs were dosed into the reactor.  To isolate 

PhAC reaction with ozone, 10 mM t-BuOH was added to the reactor solution.  t-BuOH 

reacts slowly with ozone (k”
O3,t-BuOH = 0.003 M-1s-1; Hoigné and Bader, 1983a) but 
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quickly with hydroxyl radicals (k”
HO·,t-BuOH = 6×108 M-1s-1; Buxton et al., 1988).  For this 

reason, t-BuOH does not affect the aqueous ozone exposure but, at sufficient 

concentration, will scavenge virtually all of the hydroxyl radicals in solution.  At a 

concentration of 10mM t-BuOH, the molar ratio of t-BuOH to the total PhAC 

concentration (3.83×10-7 M) is over 26,000; for this molar ratio, t-BuOH will scavenge 

99.998% of hydroxyl radicals in solution.  Therefore, in these experiments, any changes 

in cyclophosphamide or ifosfamide concentration can be attributed to reaction with 

ozone, as described in Eq. 4-5.  Integration of Eq. 4-5 with respect to time yields Eq. 4-6. 
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It should be noted that the reactor volume varies with time in these experiments 

due to the continuous flow of ozone stock solution into the reactor and sample 

withdrawal.  Here, a modified constant volume equation was employed; in this case, the 

effects of dilution on PhAC concentrations were accounted for in the data analysis by 

multiplying the pharmaceutical concentration by the ratio of the initial reactor volume to 

the reactor volume at time, t.  Appendix E demonstrates that this assumption has a 

negligible impact on calculation of the rate constant for pharmaceutical transformation by 

ozone; therefore, the modified constant volume model was used here. 

 

By plotting ln [PhAC]/[PhAC]o vs. the ozone exposure (∫[O3]dt), the second order 

rate constant for PhAC transformation by ozone (k”
O3,app,PhAC) can be measured.  Figure 

4-3 shows determination of the second-order rate constants for cyclophosphamide 

([CYP]o = 3.83×10-7 M) and ifosfamide ([IFO]o = 3.83×10-7 M) transformation by ozone; 

the background matrix includes 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 10-2 M t-

BuOH, and the pH was 6.3.  Similar experiments were completed at pH 4.4 and 8.3 (not 
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shown), the second-order rate constant for ifosfamide and cyclophosphamide with ozone 

was similar at all pH values studied.  The ozone concentration was held at different 

concentrations for each experiment; those concentrations ranged from 1.6–4.6×10-5 M.  

Recall from Table 4-1 that the pKa values for cyclophosphamide and ifosfamide reported 

by different investigators show some discrepancies; regardless, no differences in the rate 

constants were found in the investigated pH range.  For the experimental results shown in 

Figure 4-3, the rate constants were found to be k”
O3,app,CYP = 2.27(±0.31) M-1s-1 and 

k”
O3,app,IFO = 6.07(±0.44) M-1s-1, respectively.  Experiments were conducted at other pH 

values in the range of 4.4-8.3 to yield specific rate constants (with 95% confidence 

intervals) of k”
O3,app,CYP = 3.03 (± 0.48) M-1s-1 and k”

O3,app,IFO = 7.38 (± 0.27) M-1s-1, 

respectively.  The specific rate constants (and 95% confidence intervals) were determined 

using the cumulative data from all experiments. 

 

  

Figure 4-3. Determination of cyclophosphamide and ifosfamide second-order rate 
constants with ozone.  (The data in this figure correspond to a background 
solution containing 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 10-2 M t-
BuOH, 3.83×10-7 M cyclophosphamide, and 3.83×10-7 µg/L ifosfamide at 
pH 6.3.) 
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The apparent rate constants for cyclophosphamide and ifosfamide transformation 

by hydroxyl radicals at pH 8.2 and the average rate constants for cyclophosphamide and 

ifosfamide transformation by ozone across the investigated pH values are shown in Table 

4-2.  The second-order rate constant for the reaction of cyclophosphamide with ozone 

(k”
O3,CYP = 3.03 (± 0.48) M-1s-1) found in this study is reasonably similar to that found by 

Garcia-Ac et al. (2010), 3.3 M-1s-1, and almost two orders of magnitude less than that 

found by Chen et al. (2008), 143 M-1s-1.  The second-order rate constant for 

cyclophosphamide reaction with hydroxyl radicals (k”
HO·,CYP  = 2.69 (± 0.17) ×109 M-1s-1) 

compares reasonably well with the values found by both Garcia-Ac et al. (2010), 2.0×109 

M-1s-1, and Chen et al. (2008), 2.1×109 M-1s-1. 

 

Table 4-2. Rate constants for cyclophosphamide and ifosfamide with ozone and 
hydroxyl radicals. 

Rate constants Cyclophosphamide Ifosfamide 

k”
O3,PhAC (M-1s-1) 3.03 (± 0.48) 7.38 (± 0.27) 

k”
HO·,PhAC (M-1s-1) 2.69 (± 0.17) ×109 2.73 (± 0.16) ×109 

 

 

The validity of these rate constants was verified by running the continuous ozone 

addition reactor under conditions where both oxidants (O3 and HO·) are significant.  For 

these experiments, the 2-L reactor contained 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 

10-5 M pCBA, 3.83×10-7 M cyclophosphamide, and 3.83×10-7 µg/L ifosfamide at the pH 

of interest; as above, the pH range investigated was 4.4-8.3.  In this scenario, Eq. 4-4 can 

be rearranged as shown in Eq. 4-7.  

 

 

 
     

t

pCBAappHO
o

dtHOk
pCBA

pCBA

0

"
,,ln

 Eq. 4-7 

 



111 
 

Elovitz and von Gunten’s (1999) Rct term (Eq. 4-8), which is defined as the molar ratio of 

hydroxyl radical exposure to ozone exposure, can be substituted into Eq. 4-7 to yield Eq. 

4-9.  
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Then, Rct can be calculated as the slope of a plot of ln [pCBA]/[pCBA]o versus k”
HO·,pCBA 

× ∫[O3]dt, as shown in Figure 4-4a.  In this case, the value of Rct is 2.16×10-8 mol HO· / 

mol O3. 

 

 

Figure 4-4. (a) Determination of Rct and (b) plots of ozone and hydroxyl radical 
exposure corresponding to ozonation of a solution containing 1.71×10-3 
M NaCl, 2.38×10-3 M NaHCO3, 10-5 M pCBA, 3.83×10-7 M 
cyclophosphamide, and 3.83×10-7 µg/L ifosfamide at pH 8.3. 
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Figure 4-4b presents the ozone (0-1.6×10-2 M-s) and hydroxyl radical (0-3.7×10-10 

M-s) exposure throughout this experiment.  The presence of non-negligible ozone and 

hydroxyl radical exposure indicates that ozone and hydroxyl radicals are available for 

reaction with cyclophosphamide and ifosfamide and so both must be accounted for in the 

reaction rate expression (Eq. 4-10): 
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Integration of Eq. 4-10 with respect to time, and substitution of Eq. 4-8 yields Eq. 4-11. 
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This equation was used to test whether the rate constants found above could be used to 

predict what would occur in scenarios where both oxidants are present.  The results 

shown in Figure 4-5 correspond to a solution containing 1.71×10-3 M NaCl, 2.38×10-3 M 

NaHCO3, 10-5 M pCBA, 3.83×10-7 M cyclophosphamide, and 3.83×10-7 µg/L ifosfamide 

at pH 8.3. The lines labeled “model” employ the rate constants listed in Table 4-2, which 

were determined from other experiments besides those modeled here, and the Rct 

determined in Figure 4-4, which stems from analysis of pCBA concentrations in this 

experiment.  The 95% confidence intervals were calculated by propagating the 95% 

confidence intervals associated with k”
O3,PhAC, k”

HO·,PhAC, and Rct.  In this case, the rate 

constants for cyclophosphamide and ifosfamide transformation by ozone and hydroxyl 

radicals do an excellent job of describing the transformation of cyclophosphamide and 

ifosfamide in a scenario where both ozone and hydroxyl radicals are relevant. 
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Figure 4-5. Transformation of cyclophosphamide and ifosfamide in a system that 
demonstrates ozone and hydroxyl radical exposure.  (The solution 
composition is 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, 10-5 M pCBA, 
3.83×10-7 M cyclophosphamide, and 3.83×10-7 µg/L ifosfamide at pH 8.3.  
The lines labeled “model” employ the rate constants listed in Table 4-2 and 
the Rct determined in Figure 4-4.) 

 

 

Percent Transformation 

The transformation of cyclophosphamide (1.15×10-5 M) and ifosfamide 

(1.15×10-5 M) was studied in three background matrices:  (1) DI with 1.71×10-3 M NaCl, 

2.38×10-3 M NaHCO3, 10-5 M pCBA, (2) solution (1) with 0.276 mg/L DOC (2.3×10-5 M 

as C) from Lake Austin hydrophobic organic acids (HPOA), and (3) solution (1) with 

27.6 mg/L DOC (2.3×10-3 M as C) from Lake Austin HPOA.  The pH of all solutions 

was adjusted to 8.30.  Solution 1 contained no organic matter; in solutions 2 and 3, the 

molar ratio of dissolved organic carbon (as mol C) to the total moles of 

cyclophosphamide and ifosfamide was 1 and 100 mol C (from LA HPOA) / mol PhACs, 

respectively.  pCBA was included in all solutions to determine the hydroxyl radical 
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exposure associated with specific applied ozone doses.  Incremental volumes of highly 

concentrated ozone from a stock solution (8.75×10-4 M O3) were added to 7-mL of 

solutions 1-3 to get applied ozone doses in the range of 0 to 1.1×10-4 M O3.  Dilution 

effects were accounted for in subsequent calculations.  Hence the data in Figure 4-6 

represents the transformation of cyclophosphamide and ifosfamide, as well as the 

hydroxyl radical exposure, obtained for a given applied ozone dose. 

 

From Figure 4-6a, the impact of the increasing concentrations of DOC from Lake 

Austin HPOA is clearly observable; as the DOC concentration increases, less 

cyclophosphamide is transformed.  The same trend exists for ifosfamide (Figure 4-6b).  

In Solution 3 (100 mol DOC (as C) / mol PhAC), the transformation efficiencies of 

cyclophosphamide and ifosfamide for an ozone dose of 9.92×10-5 M were approximately 

38% and 28%, respectively, of the transformations observed in the no DOC solution 

(Solution 1).  Hence, the impact of DOC at environmentally relevant concentrations can 

be significant for compounds that react slowly with ozone.  That impact also extends to 

advanced oxidation processes (AOPs).  The change in pCBA concentration was used to 

calculate the hydroxyl radical exposure (Eq. 4-4).  As seen in Figure 4-6c, the hydroxyl 

radical exposure observed in Solution 3 was significantly lower than that in Solutions 1 

and 2.  For the ozone dose discussed above (9.92×10-5 M), the hydroxyl radical exposure 

observed in Solution 3 was only 19% of that observed in Solution 1.  For all ozone doses 

but two, the hydroxyl radical exposure in Solution 3 was 19-23% of that observed in 

Solution 1; the other two samples exhibited 29% and 38% of the hydroxyl radical 

exposure.  It is important to note that although the reduction of hydroxyl radical exposure 

in the presence of DOC (Solution 3) was only 20%, the reduction of the removal of CYP 

and IFO were 38% and 28%, respectively.  Predicted removals of CYP and IFO (using 

the calculated values of hydroxyl radical exposure and known rate constants for reaction 

with hydroxyl radicals) were somewhat lower than measured removals.  For example, for 

an applied ozone dose of 9.92×10-5 M in Solution 1, the predicted CYP and IFO 

remaining were 33.1(±2.2)% and 32.6(±2.1)%, respectively; measured values of CYP 
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and IFO remaining were 38.7% and 40.3%, respectively.  Regardless, the reduction in 

hydroxyl radical exposure seems to be the major contributor to the reduced 

transformation of cyclophosphamide and ifosfamide observed in Figure 4-6.  

 

 These results are interesting in the context of the ozone demand of the NOM 

matrix.  Cyclophosphamide and ifosfamide do not react quickly with ozone; therefore, 

most of the cyclophosphamide and ifosfamide transformation observed in these 

experiments derives from reaction with hydroxyl radicals.  At a molar ratio of 1 mol C 

(from DOC) to 1 mol PhAC, the effects of NOM on hydroxyl radical exposure are minor; 

however, as that ratio shifts up to 100 mol C (from DOC) / mol PhAC, the impact of 

NOM on the treatment process becomes more important.  In this scenario, a significant 

portion of the applied ozone likely reacts with NOM; this situation results in a lower 

hydroxyl radical exposure (due to less ozone available for decomposition) and a changed 

ozone decomposition rate (due to ability for NOM to inhibit and/or propagate ozone 

decomposition; Figure 2-2).  For these reasons, it would be interesting to employ the 

continuous ozone (or peroxone) addition reactor toward CYP and IFO treatment in the 

context of how different NOM matrices affect the transformation of these compounds.  In 

Chapter 5, the ability for the continuous aqueous ozone addition reactor to treat 

ciprofloxacin in the presence of various organic matter matrices is demonstrated. 
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.  

Figure 4-6. The impact of three different concentrations (0, 0.28, and 27.6 mg/L 
DOC) of organic matter (Lake Austin HPOA) on (a) Cyclophosphamide 
and (b) Ifosfamide removal as a function of the applied ozone dose 
(mol/L).  (The hydroxyl radical exposure (M-s) for solutions (1)-(3) is 
plotted against the applied ozone dose in (c).  The molar ratio of LA HPOA 
(as mol C / L) to the total concentration of PhACs is 0, 1, and 100 for 
solutions (1)-(3), respectively.) 
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Intermediate Product Identification 

To study the formation and transformation of intermediate oxidation products 

generated by ozone and hydroxyl radical reaction with cyclophosphamide and 

ifosfamide, solutions containing 3.83×10-4 M of cyclophosphamide or ifosfamide were 

prepared.  Four separate solutions were employed; two (pH 2.5 and pH 9.6) containing 

cyclophosphamide and two (pH 2.5 and pH 9.6) containing ifosfamide.  All solutions 

contained 1.71×10-3 M NaCl, 2.38×10-3 M NaHCO3, and 3.83×10-4 M of either 

cyclophosphamide or ifosfamide.  Solution pH was adjusted by adding a small volume of 

5N H2SO4 or 5N NaOH.  The low pH solutions contained 10 mM t-BuOH to isolate O3-

based transformative mechanisms.  On the other hand, 10 µM pCBA was added to the 

high pH solutions to quantify the hydroxyl radical exposure.  At pH 9.6, ozone decay 

kinetics are fairly fast (kd,O3 = 4.70×10-2 s-1, extrapolated from Elovitz et al., 2000); the 

fast ozone decay kinetics combined with the slow reaction between ozone and 

cyclophosphamide (k”
O3,CYP = 3.03 (± 0.48) M-1s-1) and ifosfamide (k”

O3,IFO = 7.38 (± 

0.27) M-1s-1) allow us to examine hydroxyl radical-initiated transformations.   

 

Small (2-mL) aliquots of each of these four solutions were dosed with incremental 

volumes of ozone stock solution (1.15×10-3 M O3), corresponding to a specific applied 

ozone dose.  The response associated with select m/z values versus the molar ratio of 

applied ozone to initial cyclophosphamide (Figure 4-7a-b) and initial ifosfamide (Figure 

4-7c-d) confirm the presence of several intermediate oxidation products.  A number of 

other intermediate oxidation products were identified; however, m/z values that did not 

demonstrate at least one data point that was at least 10% of the initial cyclophosphamide 

or ifosfamide response were not included in this analysis.  From these plots, it is clear 

that several major intermediate oxidation products are formed during the transformation 

of cyclophosphamide and ifosfamide via ozone- and hydroxyl radical-based pathways.  

Furthermore, a large overlap existed in the m/z values that were observed between ozone 

and hydroxyl radical pathways.  Given the structural similarity of cyclophosphamide to 

ifosfamide, it is not surprising that many of the m/z values for intermediate oxidation 
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products formed from cyclophosphamide transformation (Figure 4-7a-b) are also 

observed for ifosfamide oxidation (Figure 4-7c-d). 

 

 

Figure 4-7. Cyclophosphamide transformation and production of intermediate 
products as a function of the molar ratio of applied ozone to the initial 
cyclophosphamide concentration (mol O3/ mol CYP) at a.) pH 2.5 and 
b.) pH 9.6.  Ifosfamide transformation and production of intermediate 
products as a function of the molar ratio of applied ozone to the initial 
ifosfamide concentration (mol O3/ mol IFO) at c.) pH 2.5 and d.) pH 9.6.  
(All solutions also contained 100 mg/L NaCl and 200 mg/L NaHCO3; pH 
was adjusted using 5N H2SO4 or 5N NaOH.  The pH 2.5 solutions contained 
10mM t-BuOH to isolate O3-based transformative mechanisms.  The pH 9.6 
solutions contained an initial concentration of 10 µM pCBA, to quantify the 
hydroxyl radical exposure as seen in b.) and d.).) 

 

While these experiments were allowed to proceed until completion, the rate 

constants found above can provide some insight to the data.  In comparing Figure 4-7a-d, 
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it is clear that more ifosfamide is transformed for a given ozone dose as compared to 

cyclophosphamide at both low and high pH.  The molar ratios of applied ozone to initial 

PhAC corresponding to 50% transformation of cyclophosphamide (Figure 4-7a-b) and 

ifosfamide (Figure 4-7c-d) were 2.93, 4.61, 1.29, and 3.67 mol O3/ mol PhAC, 

respectively.  As expected, the ratio of the 50% transformation values for ifosfamide to 

cyclophosphamide at low pH (0.44) is similar to the ratio of the second order ratio 

constant for ifosfamide with ozone to that of cyclophosphamide with ozone (0.47).  

Additionally, the ratio of the 50% transformation values for ifosfamide to 

cyclophosphamide at high pH (0.80) is similar to the ratio of the second order ratio 

constant for ifosfamide with hydroxyl radicals to that of cyclophosphamide with 

hydroxyl radicals (0.71).  These results are consistent with the higher rate constants for 

ifosfamide transformation by ozone and hydroxyl radicals, as compared to 

cyclophosphamide. 

 

For the most part, the formation and transformation of m/z = 274.9 and m/z = 

276.9 are closely related.  These species appear to be the dominant intermediate products 

for ozone-based reaction of cyclophosphamide and ifosfamide in the range of ozone 

doses reported.  The m/z = 198.9 peak was only identified in the high pH solutions, 

suggesting that this compound is formed primarily through HO· attack on 

cyclophosphamide and ifosfamide.  One major difference between the intermediate 

products identified for cyclophosphamide transformation, as compared to ifosfamide 

transformation, is the magnitude of the m/z = 258.9 peak; the formation of this compound 

is more pronounced in cyclophosphamide oxidation for the ozone- and hydroxyl radical-

initiated scenarios.   

 

Venta et al. (2005) investigated treatment of cyclophosphamide using peroxone; 

in that study the intermediate oxidation product associated with the m/z = 274.9 peak was 

identified as 4-ketocyclophosphamide.  In this study, that peak was identified for both 

cyclophosphamide and also ifosfamide; given the structural similarity of these 
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compounds, we postulate that the m/z = 274.9 peak corresponds to 4-ketoifosfamide, 

which is formed through ozone attack on the C4 atom.  Another peak was observed at m/z 

= 276.9 for both compounds; this m/z value corresponds to the addition of one oxygen 

atom into the molecule.  Given, the production of 4-ketocyclophosphamide and 4-

ketoifosfamide, it is likely that the m/z = 276.9 peaks correspond to 4-

hydroxycyclophosphamide and 4-hydroxyifosfamide.  The m/z = 198.9 peak, which is 

only significant for the high pH solution containing ifosfamide, appears to form due to 

the loss of one chloroethyl group from the parent cyclophosphamide and ifosfamide 

structures.  An attack on the hydroxyl group of the 4-hydroxy derivative of 

cyclophosphamide or ifosfamide results in the loss of an H2O molecule and the formation 

of a double bond between the C4 and C5 atoms; this compound corresponds to m/z = 

258.9.  The proposed structures of these intermediate oxidation products are shown in 

Table 4-3.  The other major intermediate product shown in Table 4-3 is m/z = 330.9.  A 

proposed molecular formula for this compound is provided in Table 4-3; however, at this 

time, no structure has been proposed.   
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Table 4-3. Proposed intermediate products formed via ozonation of 
cyclophosphamide and ifosfamide. 

m/z 
measured 

Proposed 
molecular 
formula 

Change 
Proposed structure             

(from cyclophosphamide) 
Proposed structure                
(from ifosfamide) 

260.9 
(parent) 

C7H15Cl2N2O2P --- 

 

cyclophosphamide 

 

ifosfamide 

274.9 C7H13Cl2N2O3P 
-2H 
+1O 

 

4-ketocyclophosphamide 

 

4-ketoifosfamide 

276.9 C7H15Cl2N2O3P +1O 

 

4-hydroxycyclophosphamide 

 

4-hydroxyifosfamide 

198.9 C5H12ClN2O2P 
-2C 
-3H 
-1Cl 

 

Dechloroethylcyclophosphamide

 

2-dechloroethylifosfamide 
3-dechloroethylifosfamide 

258.9 C7H13Cl2N2O2P -2H 

 

Iminocyclophosphamide 

 

Iminoifosfamide 

330.9 C7H13Cl4N2O2P 
-1H 
+2Cl 

None proposed       None proposed 
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While the m/z values shown in Figure 4-7 and Table 4-3 correspond to those 

products that demonstrated the most significant instrument response, m/z ratios of 221.0 

and 56.1 were also monitored.  These m/z values correspond to phosphoramide and 

isophosphoramide mustard (m/z = 221.0) and acrolein (m/z = 56.1).  Recall that 

cyclophosphamide and ifosfamide are prodrugs that are first metabolized into the 4-

hydroxy derivatives and then further metabolized to the active form of the drugs, 

phosphoramide mustard and isophosphoramide mustard, respectively.  The ratio of the 

response for m/z = 221.0 to the response of the initial PhAC concentration (for the 

corresponding data set) for all four data sets are plotted in Figure 4-8.  No peaks were 

observed for m/z = 56.1; however, that might be a function of the LC-MS method, which 

was optimized for cyclophosphamide and ifosfamide elution.  For cyclophosphamide and 

ifosfamide, similar trends were observed in the formation/transformation of the m/z 

=221.0 peak.  At high pH, the m/z = 221.0 peak demonstrated relatively high formation 

for molar ratios of ozone to the initial PhAC concentration ranging from 1.0‒3.5 mol O3 / 

mol PhAC.  The highest response (as a percent of the initial PhAC response) was 

approximately 5%.  As the molar ratio of ozone to cyclophosphamide/ifosfamide was 

increased the peak at m/z = 221.0 declined.  However, at low pH, no apparent formation 

of the reactive mustards occurred.  It should be noted that while the peak areas were 

small in magnitude, distinct peaks were observed (Figure 4-9). 
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Figure 4-8. Formation and transformation of m/z = 221.0, which corresponds to 
phosphoramide mustard (cyclophosphamide) and isophosphoramide 
mustard (ifosfamide) as a percentage of the initial cyclophosphamide/ 
ifosfamide response. 

 

 

Recently, Li et al. (2010) investigated the metabolism of cyclophosphamide and 

ifosfamide in a mouse model.  That research identified several metabolites of 

cyclophosphamide and ifosfamide, including those discussed above, with the exception 

of m/z = 330.9.  The overlap between the intermediate products identified in this study 

with the metabolites found in Li et al.’s (2010) work is of special interest because it 

demonstrates that ozone- and hydroxyl radical- based water treatment processes have the 

potential to replicate metabolic transformative processes in terms of what products are 

formed.  In fact, Hohorst et al. (1976) employed ozone to synthetically generate the 4-

hydroxy derivatives, 4-hydroxycyclophosphamide and 4-hydroxyifosfamide (Low et al., 

1983; Fleming, 1997).  Furthermore, the chloroethyl group, lost from cyclophosphamide 

and ifosfamide during formation of the m/z = 198.9 peak, may form chloroacetaldehyde, 

which is a known alkylating agent (Guengerich et al., 1979).  The potential for ozonation 
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to form pharmacologically active intermediate products is a topic of debate in the field of 

environmental engineering.  For prodrugs, this scenario is of increasing interest due to the 

potential of water treatment to actually increase the toxicological activity of a water.  

Here, initial characterization of intermediate oxidation products resulting from ozonation 

of cyclophosphamide and ifosfamide was described; the literature suggests that some of 

these compounds can exert pharmacological activity.  These results suggest that further 

research to explore the residual pharmacological activity of cyclophosphamide and 

ifosfamide intermediate oxidation products throughout ozone treatment processes is 

justified.  Attempts were made to measure the residual pharmacological activity of 

treated solutions containing cyclophosphamide and ifosfamide; however, the 

corresponding cytotoxicity assay was never successfully employed (Appendix D). 

 

In the next Chapter, the residual pharmacological activity associated with 

ciprofloxacin and its intermediate oxidation products was measured and the results were 

used to draw conclusions regarding the ability of intermediate oxidation products to 

retain pharmacological activity. 

 



125 
 

 

Figure 4-9. Typical LC-MS peaks for (a) cyclophosphamide and phosphoramide 
mustard and (b) ifosfamide and isophosphamide mustard.  (The total ion 
current for these samples are provided for magnitude comparison.  The 
sample demonstrated in (a) corresponds to a sample containing 1.71×10-3 M 
NaCl, 2.38×10-3 M NaHCO3, 10-5 M pCBA, and 3.83×10-4 M 
cyclophosphamide (at pH 9.6) that was dosed with 1.53 mol O3 / mol CYP.  
In (b), the sample contained the same background compounds, but with 
3.83×10-4 M ifosfamide rather than cyclophosphamide; the ozone dose for 
the sample shown in (b) was 1.04 mol O3 / mol IFO.) 
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CHAPTER 5: EFFECTS OF NATURAL ORGANIC MATTER ON 

OZONATION OF CIPROFLOXACIN AND REMOVAL OF 

ANTIMICROBIAL ACTIVITY 

 

ABSTRACT 

Elimination of the fluoroquinolone antibiotic, ciprofloxacin, was evaluated during 

aqueous ozonation in the presence of natural organic matter from various sources.  The 

impacts of natural organic matter (NOM) concentration, source (Lake Austin, TX and 

Claremore Lake, OK), and composition (hydrophobic organic acids and transphilic 

organic acids) on ciprofloxacin transformation were determined.  Additionally, the 

residual pharmacological activity of treated samples was determined using an 

antimicrobial susceptibility assay.  Two metrics, ciprofloxacin transformed and 

antimicrobial activity eliminated, were used to describe treatment efficiency.  Each NOM 

source, at equivalent dissolved organic carbon (DOC) concentrations, was found to alter 

the applied ozone dose required to remove 50% of the initial ciprofloxacin and 

antimicrobial activity.  DOC concentration and NOM composition also affected the 

required applied ozone dose.  The inhibition profile of treated samples suggests that 

pharmacologically active intermediate oxidation products were formed during treatment. 

 

Key words: ciprofloxacin, natural organic matter, ozone, antimicrobial activity, 

residual pharmacological activity 
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INTRODUCTION 

Ciprofloxacin, a second generation fluoroquinolonic antibiotic, has been detected 

in water supplies around the world (Golet et al., 2002; Kolpin et al., 2002; Zuccato et al., 

2005; Larsson et al., 2007).  Ciprofloxacin inhibits the DNA gyrase and topoisomerase 

IV enzymes, which are involved in the DNA replication process of many microorganisms 

(Drlica and Zhao, 1997).  The widespread detection of ciprofloxacin in water supplies 

reflects its longstanding popularity as a prescribed drug (Prescription, 2009); by 2006, 

ciprofloxacin had recorded a lifetime sales profit of $19 billion dollars (Finch and Hunter, 

2006).  The structure and properties of ciprofloxacin are shown in Table 5-1. 

 

Table 5-1. Salient properties of ciprofloxacin and depiction of structure-activity 
relationship for quinolones. 

Property Ciprofloxacin 
Generalized Quinolone 

(Lemke and Williams, 2008) 

Structure 

 

 

 

 
 

Formula C17H18FN3O3 
Molecular Weight (g/mol) 331.35 
pKa1 6.2 
pKa2 8.8   
 

 

Due to ciprofloxacin’s widespread popularity and use, it is not surprising that 

ciprofloxacin has been detected in raw wastewater, treated wastewater, and surface 

waters (Golet et al., 2002; Kolpin et al., 2002; Zuccato et al., 2005; Larsson et al., 2007).  

Golet et al. (2002) tracked ciprofloxacin concentrations in raw wastewater (300-600 

ng/L), treated wastewater (60-110 ng/L), and in downstream river locations (5-18 ng/L) 

throughout the Glatt River Valley in Switzerland.  Similarly, Zuccato et al. (2005) found 

ciprofloxacin concentrations as high as 251 ng/L in wastewater effluents and 14-26 ng/L 

in two Italian river systems.  A 2002 USGS study (2002) identified ciprofloxacin in three 
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of the 139 surface water sampling locations across the continental United States; the 

highest concentration detected was 30 ng/L.  In at least one case, high ciprofloxacin 

concentrations have been discharged to the environment; specifically, Larsson et al. 

(2007) found 28-31 mg/L of ciprofloxacin in effluent from an industrial wastewater 

treatment plant near Hyderabad, India. 

 

The release of pharmacologically active compounds (PhACs), such as 

ciprofloxacin, into the environment is thought to have negative effects on environmental 

and human health.  Pomati and coworkers (2006; 2008) have investigated the effects of 

13 pharmaceuticals on Escherichia coli, human embryonic kidney, and human ovarian 

carcinoma cells.  These investigators found that environmentally relevant levels of 

pharmaceuticals can inhibit the proliferation of human embryonic kidney cells by up to 

30% (Pomati et al., 2006) and that the pharmacological activity of drug mixtures can vary 

from that predicted solely on the basis of additive effects for individual compounds 

(Pomati et al., 2008).  While the impact of trace levels of pharmaceuticals on human 

development is still widely debated, concern over the contribution of low levels of 

antibiotics in wastewater to the acceleration of antibiotic resistance is increasing 

(Kummerer, 2004).  Evidence of antibiotic resistant organisms and antibiotic resistance 

genes in wastewater and wastewater treatment plants (Schwartz et al., 2003; 

Szczepanowski et al., 2009) corroborates these concerns.  Finally, increasing attention is 

being paid to characterization of the sub-lethal effects on bacterial cells caused by 

PhACs, and antibiotics in particular; the ability of antibiotics to act as signaling agents 

may have negative environmental impacts (Davies et al., 2006; Fajardo and Martínez, 

2008). 

 

With the emerging concern over this class of contaminants, several research 

efforts have focused on removing pharmaceuticals from water using a variety of 

separation treatment processes: ion exchange, activated carbon, or membrane-based 

technologies (Adams et al., 2002; Westerhoff et al., 2005; Xu et al., 2005).  While 
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reverse osmosis treatment provided good removal (>90%) of all test compounds, the 

other processes offered widely variant removal efficiencies (0-98%) due to the range of 

polarity and hydrophobicity of different pharmaceutical compounds.  However, process 

flexibility, ease of installation, and competitive economics have propelled oxidation 

processes to the forefront of this emerging field. 

 

Given the superior capabilities of oxidation processes for treatment of trace 

organic contaminants, several research efforts have focused on the ability of ozone and 

ozone-based advanced oxidation processes to remove PhACs from water and wastewater 

streams.  Huber et al. (2003) investigated the ability of aqueous ozone to treat nine 

pharmaceuticals in batch reactors; their results indicated that pharmaceutical structure, 

solution alkalinity, and the dissolved organic carbon (DOC) concentration of the water 

source are the most important variables in determining the percent of parent compound 

transformed during batch ozonation.  Ternes and coworkers (2002; 2003) conducted full- 

and pilot-scale studies with various ozone-based advanced oxidation processes (AOPs) 

and showed successful removal of over twenty pharmaceuticals.  Hua et al. (2006) 

operated two side-by-side pilot plants, one with coagulation, flocculation, and 

sedimentation followed by GAC filtration and the other with pre-ozonation before the 

same processes.  The pilot plant containing ozone treatment demonstrated better removal 

of the four PhACs (carbamazepine, cotinine, caffeine, and atrazine). 

 

Because of its widespread popularity and use, ciprofloxacin has emerged as a 

model PhAC and has been previously studied in the context of ozone-based treatment 

processes (Dodd et al., 2006; DeWitte et al., 2008; DeWitte et al., 2009; Dodd et al., 

2009).  The reaction kinetics of ciprofloxacin with ozone and hydroxyl radicals has been 

studied in gaseous addition (DeWitte et al., 2009) and liquid addition (Dodd et al., 2006) 

schemes.  Dodd et al. (2006) observed significant variations in the second order (i.e., first 

order with respect to both ozone and ciprofloxacin) rate constants for the protonated 

(dominant at pH < 6.2), zwitterionic (dominant at 6.2 < pH < 8.8), and deprotonated 
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(dominant at pH > 8.8) ciprofloxacin species:  4.0×102 M-1s-1, 7.5×103 M-1s-1, and 

9.0×105 M-1s-1, respectively.  The second order rate constant for ciprofloxacin with 

hydroxyl radicals was determined to be 4.1×109 M-1s-1 at pH 7.  In that work, Dodd et al. 

(2006) postulate that ozone and hydroxyl radicals attack ciprofloxacin at sites other than 

the pharmacophore (see Table 5-1 for the structure-activity relationship for 

fluoroquinolones).  This hypothesis is of great interest due to the potential for 

pharmaceutical metabolites and intermediate oxidation products (i.e., those compounds 

formed as products of PhAC reaction with ozone or hydroxyl radicals) to exert the same 

pharmacological activity as the original parent compound in environment systems. 

 

Lemke and Williams (2008) delineated the structure-activity relationship for 

quinolonic compounds, as seen in Table 5-1.  The pharmacophore is the core structure 

required for the compound to exert pharmacological activity; furthermore, three 

important functional groups that determine the pharmacological capabilities of the 

compound.  The R6 group contributes to the ability of the compound to penetrate cell 

walls; fluoroquinolones, such as ciprofloxacin, have a fluoro group at R6.  The R7 group 

relates to the compound’s spectrum of activity, i.e., this functional group establishes what 

microorganisms will be affected by the compound.  The R group determines the relative 

potency of the compound.  Recent work by DeWitte and coworkers (2008; 2009) 

suggested structures for intermediate oxidation products formed during gaseous 

ozonation of ciprofloxacin.  Of the twelve intermediate oxidation products determined by 

DeWitte et al. (2008), all twelve structures retained the fluoro group on R6, all twelve 

compounds retained the same potency group as ciprofloxacin, and six intermediate 

oxidation products retained the pharmacophore.  The majority of oxidative 

transformations target the piperazinyl group (R7) (DeWitte et al., 2008; 2009), which 

may change the spectrum of microorganisms affected by the compound but does not 

necessarily remove pharmacological activity.  Therefore, the potential for formation of 

pharmacologically active oxidative intermediate products via ozonation of ciprofloxacin 

is high. 
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In the past few years, several researchers (Suarez et al., 2007; Baeza, 2008; Dodd 

et al., 2009; Paul et al., 2010) have used an antimicrobial susceptibility assay (NCCLS, 

2004) to describe treatment efficacy in terms of pharmacological activity.  Suarez et al. 

(2007) treated triclosan with aqueous ozone and showed that antibacterial activity against 

E. coli ATCC 23716 closely followed triclosan concentration.  Baeza (2008) used this 

assay (with E. coli ATCC 25922) in combination with UV photolysis and photochemical 

UV/H2O2 treatment of four antimicrobials to demonstrate that the impact of the 

background water matrix varied depending on the treatment conditions.  Dodd et al. 

(2009) employed an antimicrobial susceptibility assay (with E. coli ATCC 23716 and 

Bacillus subtilis ATCC 6051) to track the pharmacological activity of 14 antimicrobial 

compounds, including ciprofloxacin, during ozone treatment; in this work, the authors 

concluded that ciprofloxacin intermediate products did not demonstrate any quantifiable 

antimicrobial activity.  These findings seemingly contradict the hypothesis put forth in 

Dodd et al.’s earlier work (2006), which suggested that because ozone and hydroxyl 

radicals mainly attack at ciprofloxacin’s piperazinyl group (R7, spectrum of activity) the 

intermediate oxidation products may demonstrate antimicrobial activity.  A recent paper 

by Paul et al. (2010) indicates that ciprofloxacin degradation products from photolytic 

(UV) and photocatalytic (UV-TiO2) processes exert some antimicrobial activity against 

E. coli ATCC 23716.  In summary, many questions still surround the pharmacological 

activity of ciprofloxacin’s intermediate oxidation products. 

 

The objectives of the present study were threefold: (1) to determine the impact of 

different NOM matrices on ciprofloxacin transformation by continuous addition of a 

high-strength aqueous ozone solution, (2) to employ an antimicrobial activity assay to 

track residual antimicrobial activity throughout treatment, and (3) to compare 

ciprofloxacin transformation with elimination of antimicrobial activity.  This work should 

be considered an extension of the work already performed by others (Dodd et al., 2006; 

DeWitte et al., 2008; DeWitte et al., 2009; Dodd et al., 2009; Paul et al., 2010) on 

ciprofloxacin oxidation.  The data presented in this paper offers key insights on the use of 
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ozone for transformation of ciprofloxacin and removal of residual antimicrobial activity, 

in the presence of NOM.  This two-pronged approach of measuring ciprofloxacin 

concentration and residual antimicrobial activity allows determination of the treatment 

required to remove pharmacological activity and provides a framework for treatment of 

other antimicrobial PhACs encountered in water treatment plants. 

 

MATERIALS AND METHODS 

 

Chemicals and stock solutions.  Stock solutions of ciprofloxacin were prepared at 10 

mg/L in deionized water and stored in the dark at 4°C.  HPLC-grade acetonitrile (ACN) 

and ACS-grade phosphoric acid (H3PO4) were used for HPLC analysis of ciprofloxacin.  

Mueller-Hinton broth (MHB) was purchased in powder form and was prepared according 

to the manufacturer’s guidelines, autoclaved at 121°C for 20 minutes, and stored in the 

dark at 4°C. 

 

Natural organic matter sources.  NOM was isolated from Lake Austin (Austin, TX) 

and Claremore Lake (Claremore, OK) using the procedures described by Aiken et al. 

(1992).  Lake Austin NOM was available as the hydrophobic organic acids (HPOA) 

fraction, which was isolated using XAD-8 resin.  Organic matter isolation of the 

Claremore Lake NOM was completed with XAD-8 followed by XAD-4.  The XAD-8 

isolate represents the HPOA fraction and contains aliphatic carboxylic acids of 5-9 

carbons, one- and two-ring aromatic carboxylic acids, one- and two-ring phenols, and 

aquatic humic substances.  The XAD-4 isolate contains the transphilic organic acids 

(TPIA), i.e., polyfunctional organic acids and aliphatic acids with five or fewer carbon 

atoms.  Characteristics, including SUVA254, of the NOM and HPOA / TPIA isolates are 

summarized in Table 5-2.   
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Table 5-2. Source water and NOM characteristics. 
Parameter Claremore Lake Lake Austin 
pH 7.52 8.01 
Alkalinity (mg CaCO3/L) 57 164.5 
DOC (mg/L) 6.4 3.5 
SUVA254 (L/mg-m) 2.89 1.76 
HPOA (%) 45 35 
HPOA SUVA254 (L/mg-m) 3.7 2.9 
TPIA (%) 19 20 
TPIA SUVA254 (L/mg-m) 2.9 1.7 

 

Ozone reactor setup.  Oxygen gas flowed into the ozone generator at 30 cm3/min; some 

fraction of that oxygen was converted to ozone.  This combined gas stream was directed 

into a 500-mL gas-washing bottle, which served as a stock ozone solution.  The ozone 

stock solution was kept on ice to increase the solubility of ozone.  After 4-6 hours, the 

ozone concentration in the stock solution reached a plateau at 55-65 mg/L O3.  A 

schematic of the ozone supply system and reactor is shown in Figure 3-15.   

 

Two types of ozonation experiments, namely, continuous liquid addition and 

batch, are described in this paper.  In the continuous liquid addition experiments, the 

ozone stock solution was pumped at rates between 2.2 and 4.5 mL/min into a 2-L 

solution in a closed reactor, which contained ciprofloxacin and the background matrix of 

choice.  No drop in aqueous ozone concentration was observed between the stock 

solution and the tubing entering the reactor.  Experiments were run for 30 minutes with 

continuous ozone addition from the stock solution; the flow rate of that solution was 

adjusted for different experiments to capture the treatment window of ciprofloxacin in 

different background matrices.  Changes in volume were accounted for and ciprofloxacin 

concentrations were normalized.  The applied ozone dose ([O3]applied) was computed by 

dividing the product of the flow rate of the stock solution, the ozone concentration of the 

stock solution, and the time that the sample was taken by the volume of solution in the 

reactor.   
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For the batch kinetics experiments, a small aliquot of ozone stock solution, 

corresponding to a specific ozone dose, was introduced into a 1-L reactor containing 

ciprofloxacin and the background matrix of choice.  A bottle-top dispenser with Teflon 

tubing was used to rapidly sample at small time intervals.  Two types of batch 

experiments were conducted.  The first type of experiment involved the introduction of 

10 mM t-BuOH, a recognized hydroxyl radical scavenger (Dodd et al., 2006), into the 1-

L reactor.  Hence, this experiment allows determination of the second order rate constant 

for ciprofloxacin reaction with ozone.  The apparent rate constant (corresponding to a 

specific pH) can be calculated by plotting the transformation of ciprofloxacin (ln 

[CIP]/[CIP]o) vs. ozone exposure (∫[O3]dt), as described in Eq. 5-1. 
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The other batch experiment employed 1 µM pCBA, which is known to react 

minimally with ozone (k”
O3,pCBA = 0.15 M-1s-1; Yao and Haag, 1991), but quickly with 

hydroxyl radicals (k”
HO·,pCBA = 5.2×109 M-1s-1; Neta and Dorfman, 1968).  By monitoring 

the transformation of pCBA, Rct (∫[HO·]dt / ∫[O3]dt) can be determined (Elovitz and von 

Gunten, 1999).  Rct is calculated by dividing the slope of ln [pCBA]/[pCBA]o) vs. ∫[O3]dt 

by k”
HO·,pCBA,  as shown in Eq. 5-2. 
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Finally, the second order rate constant between ciprofloxacin and hydroxyl 

radicals was determined by plotting ln [CIP]/[CIP]o) vs. ozone exposure for the pCBA 

experiment.  In this case, both O3 and HO· contribute to the transformation of 

ciprofloxacin, and so both terms are included in Eq. 5-3.  The slope of Eq. 5-3 can be 

manipulated to yield k”
HO·,app,CIP since k”

O3,app,CIP and Rct were determined above. 
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Modeling ciprofloxacin transformation in the continuous aqueous ozone addition 

reactor.  The NOM in solution exerts a large ozone demand.  Essentially, as each drop of 

ozone stock solution is introduced into the reactor, it quickly reacts with ciprofloxacin 

and the DOC matrix.  In such scenarios, hydroxyl radical exposure is negligible.  Then, 

ciprofloxacin transformation can be modeled according to Eq. 5-4. 

 

 
     3,,3 OCIPk
dt

CIPd
CIPappO   Eq. 5-4 

 

[CIP] is the ciprofloxacin concentration, kO3,app,CIP is the apparent rate constant for 

ciprofloxacin reaction with ozone, and [O3] is the aqueous ozone concentration.  In this 

case, the aqueous ozone concentrations were low due to rapid ozone reaction with 

ciprofloxacin and NOM.  Then, over the course of an experiment (or until ciprofloxacin 

and the reactive fraction of the NOM matrix are exhausted), the ozone concentration in 

the reactor will remain nearly steady at a very low value.  In this case, samples were 

analyzed using the indigo blue method; however, no change in absorbance was observed, 

that is, the concentration of aqueous ozone in the reactor was below detection (6×10-8 M) 

for solutions containing DOC.  For the synthetic water (without DOC), the aqueous 

ozone concentration was directly proportional to the applied ozone dose in the region of 

ciprofloxacin transformation.  For these reasons, a proportionality constant (kprop) was 

used to relate the aqueous ozone exposure with the applied ozone exposure (Eq. 5-5). 
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The aqueous ozone exposure is the integration of the aqueous ozone concentration in the 

reactor with respect to time, whereas the applied ozone exposure is the integration of the 

applied ozone dose (constant) over time.  Therefore, kprop describes the proportion of the 

applied ozone exposure that is available as aqueous ozone exposure.  Lower values of 

kprop correspond to high ozone demands from the background water matrix (i.e., NOM). 

 

Integration of Eq. 5-4 with substitution of Eq. 5-5 yields the model represented in 

Equation 5-6. 
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 Application of this model provided a good (R2 > 0.93, in all cases) fit to all 

experimental data for ciprofloxacin; that is, the curves in these figures represent fits of 

Eq. 5-6 to the data, with the only fitting parameter being kprop.   

 

Analytical procedures.  The ozone concentration of the stock solution was calculated 

directly using the absorbance at 258 nm and the molar absorptivity of ozone (3000 

M-1cm-1; Acero and von Gunten, 2000).  Aqueous ozone measurements for kinetics 

experiments were measured using the indigo blue method (Bader and Hoigné, 1981). 

 

Ciprofloxacin was measured by high performance liquid chromatography (HPLC; 

Waters 2795, Waters Corporation, Milford, MA) with a fluorescence detector; a 

Phenomenex (Torrence, CA) Luna 5u C18(2) (250×4.6mm, 5µm) column was utilized for 

analyte separation.  50-μL aliquots were injected directly into the HPLC.  The analytical 

method is based on the procedure developed by Golet et al. (2001) but several changes 

were made to optimize the response on our instrument.  The eluent gradient was 7% 

acetonitrile (ACN), 93% 25-mM H3PO4 for 2 min; 3 min ramp to 12% ACN, 88% 25-

mM H3PO4; 2 min ramp to 15% ACN, 85% 25-mM H3PO4; 3 min ramp to 20% ACN, 
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80% 25-mM H3PO4; 10 min isocratic.  The flow rate was 0.70 mL/min, and the column 

temperature was set at 40°C.  Excitation and emission wavelengths were set at 278 nm 

and 445 nm, respectively. 

 

Microorganisms.  Escherichia coli #25922 was purchased from the American Type 

Culture Collection (ATCC).  A small amount of the freeze-dried E. coli was scraped into 

10-mL of MHB and incubated in ambient air at 37°C for 24 hours.  After the incubation 

period, the E. coli suspension was mixed 1:1 with 50% glycerol and stored at -80°C.  

Before experimentation, a small amount of the frozen E. coli stock was scraped into 10 

mL of MHB and incubated aerobically at 37°C for 12-18 hours.  To prepare the 

inoculum, the stock E. coli solution was diluted with MHB to obtain the same absorbance 

(ABS) at 600 nm as a BaSO4 turbidity standard equivalent to a 0.5 McFarland standard. 

 

Antimicrobial susceptibility assay.  The antimicrobial susceptibility assay, which was 

based on the NCCLS protocol (2004), was run in 96-well microplates.  Wells were 

partially filled with 50 μL of either a standard containing a known concentration of 

ciprofloxacin in the background matrix of choice or a sample from ozonation 

experiments; then, 50 μL of the E. coli inoculum was added to each well.  Positive 

growth controls consisted of 50 μL of the background matrix without the drug and 50 μL 

of inoculum; negative growth controls contained 50 μL of the background matrix and 50 

μL of MHB.  All standards and samples were prepared in triplicate.  Microplates were 

covered in Parafilm to prevent evaporative water loss and incubated in ambient air at 

37°C for 20 hours, while being shaken at 75 rpm; no condensation appeared on the inside 

of the Parafilm.  After this incubation period, plates were shaken for 5 minutes in a 

microplate reader (BioTek), and the wells were aspirated using a micropipette.  The 

absorbance at 600 nm was recorded.  The absorbance at 600 nm for the positive/negative 

growth controls was used to calculate the percent of E. coli inhibition for a given sample. 
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 This assay has been employed previously in two different ways to describe the 

removal of antimicrobial activity associate with antimicrobial compounds throughout 

water treatment processes.  Some researchers (Dodd et al., 2009; Paul et al., 2010) have 

serially diluted individual samples to describe residual antimicrobial activity as a 

stoichiometric measure of ciprofloxacin remaining using potency equivalents (PEQ = 

IC50,standard / IC50,sample).  This technique allows description of the residual antimicrobial 

activity for PhAC concentrations that are greater than the minimum concentration 

required to completely inhibit microbial growth, as the serial diluted samples will still 

demonstrate a spectrum of inhibitory activity.  If intermediate oxidation products do not 

contribute to the residual antimicrobial activity, the PEQ data should be equivalent to the 

fraction of ciprofloxacin remaining in solution ([CIP]/[CIP]o); however, if intermediate 

oxidation products exert some antimicrobial activity, then the PEQ data will fall above 

the 1:1 line.  This approach is especially useful for quantifying the contribution of early 

intermediate products to residual antimicrobial activity when the concentrations of the 

parent compound and intermediates are high. 

 

 The assay has also been employed for triclosan, sulfamethoxazole, sulfamethazine, 

sulfadiazine, trimethoprim, bisphenol-A, and diclofenac without serial dilution of 

individual samples (Suarez et al., 2007; Baeza, 2008).  The variation of antimicrobial 

activity as a function of extent of treatment is measured for samples containing undiluted 

concentrations of parent and intermediate oxidation products.  In this scenario, the 

percent of E. coli inhibition (i.e., the residual antimicrobial activity) is plotted as a 

function of the aqueous concentration of the parent compound or applied ozone dose.  

Antimicrobial activity contributions from intermediate oxidation products can be 

assessed via the presence of shifts in the inhibition profile of treated samples as compared 

to the inhibition profile of standard solutions obtained from serial dilution of the parent 

compound in the background matrix.  As the focus of this research was to demonstrate 

ciprofloxacin transformation and antimicrobial activity removal in the presence of 

different background water matrices, this assay configuration was employed.   
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RESULTS AND DISCUSSION 

 

Ciprofloxacin oxidation.  Synthetic water was prepared by adding 200 mg/L NaHCO3, 

100 mg/L NaCl, and 100 μg/L ciprofloxacin to deionized water; the solution pH was 

approximately 8.3.  Two other solutions were created by adding 2 mg/L DOC and 4 mg/L 

DOC of Lake Austin HPOA to the synthetic water recipe; the pH was 8.4 for both of 

these solutions.  Ozone was applied to these solutions using the continuous liquid 

addition process described above, and represented in Figure 3-15.  The ciprofloxacin 

degradation for these three solutions as a function of applied ozone dose is shown in 

Figure 5-1.  For the synthetic water matrix (no organic matter), the aqueous ozone 

concentration was found to be directly correlated to the applied ozone dose in the region 

of ciprofloxacin transformation.  In contrast, aqueous ozone concentrations in solutions 

containing organic matter were below detection ([O3] < 6×10-8 M) with the indigo blue 

method throughout experimentation due to the high ozone demand of the NOM; the low 

aqueous ozone concentration is discussed in more detail below.  For these reasons, the 

applied ozone dose was used as the principal descriptor of ozone introduced to the 

reactor.  The data in Figure 5-1 represent the extent of reaction for the specific ozone 

dose and background matrix. 
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Figure 5-1. The impact of NOM source (no organic matter, Lake Austin HPOA, 
and Claremore Lake HPOA) and concentration (0, 2, and 4 mg/L DOC) 
on ciprofloxacin oxidation.  (Symbols represent experimental data; curves 
represent model fits using Eq. 5-6.  Initial ciprofloxacin concentration = 100 
μg/L) 

 

 

In the synthetic water (no DOC), ciprofloxacin was transformed at a low applied 

dose of ozone, with 50% removal at an applied ozone dose of approximately 0.06 mg/L.  

The water samples containing 2 and 4 mg/L DOC of Lake Austin HPOA showed 

markedly higher 50% removal treatment requirements, 0.33 and 0.54 mg/L applied O3, 

respectively.  These differences manifest because the HPOA exert an ozone demand, 

thereby decreasing the amount of ozone (and its primary degradation product, hydroxyl 

radicals) available to react with ciprofloxacin.  At higher DOC concentrations, the 

number of organic matter sites available for reaction with ozone increases yielding a 

higher degree of competition between NOM and ciprofloxacin for ozone.  Therefore, a 

smaller fraction of the applied oxidant is available for ciprofloxacin oxidation in the 
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presence of 4 mg/L DOC from Lake Austin HPOA as compared to 2 mg/L DOC, and 

higher applied ozone doses are required to remove ciprofloxacin. 

 

The results from ozonating solutions containing Claremore Lake HPOA (pH 8.4) 

are shown along with the Lake Austin HPOA data sets in Figure 5-1.  The solutions 

containing 2 mg/L DOC and 4 mg/L DOC from Claremore Lake HPOA demonstrated 

50% removal treatment requirements of 0.41 and 0.69 mg/L applied O3, respectively; 

these treatment requirements are higher than the corresponding values for the Lake 

Austin HPOA solutions.  Recall from Figure 5-1 that the SUVA254 of Claremore Lake 

HPOA (3.9 L/mg-m) is markedly greater than that of the Lake Austin HPOA 

(2.5 L/mg-m).  The data suggest a relationship between the SUVA254 of the HPOA and 

the 50% treatment requirement.  Such a relationship follows from the work of Westerhoff 

et al. (1999a), who demonstrated that the oxidant rate parameters for NOM reaction with 

ozone and hydroxyl radicals are directly related to SUVA254.  Therefore, NOM with 

higher SUVA254 are expected to exert a greater ozone demand than those with lower 

SUVA254.  Then, the increased organic matter reactivity (with respect to ozone and 

hydroxyl radicals) causes greater oxidant consumption by the Claremore Lake HPOA as 

compared to Lake Austin HPOA.  The difference in NOM reactivity with ozone results in 

less oxidant reaction with ciprofloxacin in the Claremore Lake HPOA matrix, and hence, 

less ciprofloxacin transformation for a given applied ozone dose.  Figure 5-1, then, 

demonstrates the significance of Westerhoff et al.’s (1999a) findings regarding NOM 

reactivity with ozone and hydroxyl radicals for oxidation processes targeting trace 

organic contaminants.  While these results are expected, it is interesting to note that in an 

ozone limited treatment scenario, such as that presented here, NOM can have major 

impacts (i.e., the 50% treatment requirements varied widely for the 0 mg/L DOC, 4 mg/L 

DOC from LA HPOA, and 4 mg/L DOC from CL HPOA cases:  0.06, 0.54, and 0.69 

mg/L applied ozone, respectively). 
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It is interesting to consider these 50% treatment requirements as a function of the 

mass ratio of applied ozone to DOC.  While the required ozone dose depends on the DOC 

composition, mass ratios of applied ozone to DOC of 1-2 mg O3/mg DOC are generally 

recommended for ozonation processes (van der Kooij et al., 1989; Langlais et al., 1991).  

In this case, 50% removal was observed at applied ozone to DOC mass ratios ranging 

from 0.14-0.21 mg applied O3/mg DOC.  These results indicate that ciprofloxacin 

competes rather well with Lake Austin HPOA and Claremore Lake HPOA for reaction 

with ozone. 

 

The competition between NOM and ciprofloxacin for the oxidant is a function of 

the transformation kinetics of these compounds by ozone and hydroxyl radicals.  To 

demonstrate that the transformation kinetics of ciprofloxacin with ozone and hydroxyl 

radicals does not change in the presence of organic matter, kinetics tests were run in the 

absence and presence of Claremore Lake HPOA.  Figure 5-2 shows data and model fits 

for the two types of batch kinetics experiments described above.  The second order rate 

constants for ciprofloxacin reaction with ozone (k”
O3,app,CIP = 1.55(±0.13)×104 M-1s-1 at 

pH 7.0) and hydroxyl radicals (k”
HO·,app,CIP = 1.19(±0.69)×1010 M-1s-1 at pH 7.0) do not 

significantly change in the presence of 0.5 mg/L DOC from Claremore Lake HPOA 

(k”
O3,app,CIP = 1.33(±0.25)×104 M-1s-1; k”

HO·,app,CIP = 1.32(±0.55)×1010 M-1s-1).  No 

significant difference in the rate constants for ciprofloxacin with ozone and hydroxyl 

radicals were observed in presence/absence of NOM.  These results confirm that the 

differences between the data sets shown in Figure 5-1 derive from the oxidant demand 

exerted by the DOC concentration and HPOA composition. 
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Figure 5-2. Kinetics of ciprofloxacin reaction with ozone and hydroxyl radical at 
pH 7 with 1mM NaHCO3. in two solutions, one without organic matter 
and one with 0.5 mg/L DOC from Claremore Lake HPOA.  (Symbols 
represent experimental data; curves represent second-order kinetics model 
fits.  Initial ciprofloxacin concentration = 100 µg/L) 

 

 

These values are comparable to rate constants available in the literature.  For 

example, Dodd et al. (2006) found an apparent second order rate constant of 1.9×104 

M_1s-1 for the reaction between ciprofloxacin and ozone at pH 7.  An et al. (2010) 

conducted pulse radiolysis experiments to obtain a value of 2.15(±0.1)×1010 M-1s-1 for 

k”
HO·,app,CIP.; contrarily, Dodd et al. (2006) reported a value of 4.1(±0.3)×109 M-1s-1,  The 

value found in this work, k”
HO·,app,CIP = 1.19(±0.69)×1010 M-1s-1 (at pH 7.0), falls between 

these two reported values.  Ultimately, the high rate constant for ciprofloxacin 

transformation by ozone indicates that ozone processes can effectively treat water sources 

containing ciprofloxacin; furthermore, as demonstrated above, this reaction is also 

competitive in the presence of high DOC concentrations. 
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The impact of NOM composition was also investigated using the continuous 

liquid ozone addition reactor.  Figure 5-3 shows ciprofloxacin transformation for the 

synthetic water and 2 and 4 mg/L DOC from Claremore Lake HPOA and TPIA.  The 

50% removal treatment requirement for the solutions containing 2 and 4 mg/L DOC from 

Claremore Lake TPIA were 0.29 and 0.42 mg/L applied O3, respectively, as compared to 

0.41 and 0.69 mg/L applied O3 for the solutions with 2 and 4 mg/L DOC from Claremore 

Lake HPOA.  Table 5-2 lists the SUVA254 values for the Claremore Lake HPOA and 

TPIA isolates as 3.9 and 2.5 L/mg-m, respectively.  As noted above, Westerhoff et al. 

(1999a) demonstrated that the reactivity of NOM with ozone and hydroxyl radicals is 

directly related to SUVA254.  The data in Figure 5-3, and the resulting treatment 

requirements, agree with this relationship; however, to more fully describe this 

relationship more NOM sources should be studied.  Regardless, it is clear that NOM 

composition can have a significant influence on the treatability of PhACs with ozone.  

Finally, it is important to note that the applied ozone to DOC mass ratio required for 50% 

ciprofloxacin transformation was relatively low, 0.11-0.15 mg applied O3 / mg DOC. 
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Figure 5-3. The impact of NOM composition (hydrophobic organic acids and 
transphilic organic acids fractions) and pH (8.4 and 6.5) of Claremore 
Lake organic matter on ciprofloxacin oxidation.  (All data sets 
correspond to pH 8.4, unless otherwise noted.  Symbols represent 
experimental data; curves represent model fits using Eq. 5-6.  Initial 
ciprofloxacin concentration = 100 μg/L) 

 

 

Solution pH can also play a significant role in ciprofloxacin transformation in 

different organic matter matrices because the second-order rate constant between 

ciprofloxacin and ozone is species dependent.  Recall that the second-order rate constants 

found by Dodd et al. (2006) of the zwitterionic (6.2 < pH < 8.8) ciprofloxacin species 

with ozone is 7.5×103 M-1s-1 and that of the deprotonated (pH > 8.8) species is 9.0×105 

M-1s-1; therefore, the rate constant is almost two orders of magnitude smaller at pH 6.5 

than at pH 8.4.  A set of continuous liquid ozone addition experiments (Figure 5-3) was 

run with 100 mg/L NaCl, 200 mg/L NaHCO3, 100 µg/L ciprofloxacin, and 4 mg/L DOC 

from Claremore Lake HPOA at two distinct pH values:  6.5 and 8.4.  The data in Figure 

5-3 show that lower applied ozone doses are required to treat ciprofloxacin at pH 8.4, as 

compared to pH 6.5.  Indeed, the 50% treatment requirement increased from 0.69 mg/L at 
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pH 8.4 to 1.29 mg/L applied O3 at pH 6.5.  Even though the apparent second-order rate 

constant for the reaction between ciprofloxacin and ozone is over 30 times lower at pH 

6.5 than at pH 8.4, the ozone dose required to remove 50% of the ciprofloxacin only 

increases by a factor of approximately 1.9.  As the aqueous ozone that is introduced to the 

reactor is used rapidly (i.e., no significant buildup of aqueous ozone concentrations in the 

reactor throughout the experiment), no significant impact from the faster ozone 

decomposition rate at pH 8.4 (as compared to pH 6.5) can be expected.  That is, as an 

excess of ozone is not available, ozone reaction with NOM and ciprofloxacin outcompete 

ozone decay.  Hence, these results indicate that it is possible to effectively transform 

ciprofloxacin in the presence of high DOC concentrations for the pH range of interest 

(even when the second order rate constant with ozone varies within the 103-105 M-1s-1 

range) to water treatment processes. 

 

Inhibition profile.  The inhibition profile of ciprofloxacin can be constructed by 

performing the antimicrobial susceptibility assay over a range of ciprofloxacin 

concentrations to determine regions of inhibition, partial inhibition, and no inhibition.  In 

a specific background matrix, the inhibition profile will indicate the maximum drug 

concentration that shows no effect on the test microorganism, the minimum concentration 

that leads to complete inhibition (no growth of the microorganism), and an intermediate 

region with partial inhibition.  The ciprofloxacin inhibition profile for E. coli ATCC 

#25922 in a background matrix containing 100 mg/L NaCl, 200 mg/L NaHCO3, and 4 

mg/L of Lake Austin DOC is shown in Figure 5-4. Note that the concentrations listed on 

the abscissa correspond to the ciprofloxacin concentration of the sample (not the 

microplate well). 
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Figure 5-4. E.coli inhibition profiles with ciprofloxacin for standards (“without 
oxidation”) and ozonated samples (“with oxidation”).  (The curves 
represent the Hill equation fit to the data (R2 = 0.966 for both data sets); the 
dotted lines represent the 95% confidence bands found with GraphPad 
Prism software.) 

 

 

The Hill curve (Equation 5-7) has been shown to describe dose-response curves 

(Suarez et al., 2007; Baeza, 2008; Dodd et al., 2009; Paul et al., 2010) for antimicrobial 

compounds and was used to fit the data in Figure 5-4. 
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 Eq. 5-7 

 

Imin is the minimum inhibition (0%), Imax is the maximum inhibition (100%), IC50 is the 

ciprofloxacin concentration that corresponds to 50% inhibition, Csample is the sample’s 

ciprofloxacin concentration, and H is the Hill slope.  The fitting parameters for this 
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equation are the values of IC50 and H.  GraphPad Prism (GraphPad Software, Inc.) was 

used to solve for IC50 and H.  The focus of the current discussion is on the data set 

labeled, “without oxidation”; the “with oxidation” data set is discussed subsequently.  

The values of the “without oxidation” model line in Figure 5-4 are IC50 = 9.0 µg/L and H 

= 0.42 (R2 = 0.966); the surrounding dotted lines represent the 95% confidence intervals 

determined by GraphPad Prism.  Use of this equation provides a convenient way to 

quantify the effects of other parameters (such as the treatment conditions or NOM 

content) on the inhibition profile.  Furthermore, by substituting Eq. 5-6 into Eq. 5-7, we 

can measure the antimicrobial activity (in terms of E. coli inhibition) as a function of the 

applied treatment, i.e., applied ozone dose.   

 

The most important facet of Figure 5-4 is that the relationship between 

ciprofloxacin concentration and antimicrobial activity follows a sharp S-shaped curve.  

This characteristic results in a narrow window of partial activity; for ciprofloxacin with 

E. coli #29522, that window is only about 7 μg/L wide (Figure 5-4).  For other 

pharmaceuticals and personal care products, the width of that region of partial 

antimicrobial activity may differ (Suarez et al., 2007; Baeza, 2008; Dodd et al., 2009; 

Paul et al., 2010).   

 

Removal of antimicrobial activity.  With the ability to monitor antimicrobial activity 

through the antimicrobial susceptibility assay, the relationships between applied ozone 

dose, ciprofloxacin concentration, and antimicrobial activity can be described.  Figure 5-5 

shows model fits for ciprofloxacin remaining and data and model fits for antimicrobial 

activity (as a percent of E. coli inhibition, see Eq. 5-7) as a function of the applied ozone 

dose for the synthetic and Lake Austin HPOA solutions shown in Figure 5-1.  For all 

three solutions, the antimicrobial activity remains nearly constant (100(±10)% E. coli 

inhibition) until the ciprofloxacin remaining approaches approximately 20% (i.e., 20 

µg/L) for the 0 and 2 mg/L DOC solutions and approximately 15% for the 4 mg/L DOC 

solution.  At those points, the antimicrobial activity drops from 100% to 0% over a 
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narrow window of applied ozone dose (approximately 0.1-0.2 mg/L applied O3).  The 

treatment requirements for 50% removal of antibiotic activity for the synthetic (0 mg/L 

DOC) and Lake Austin HPOA (2 and 4 mg/L DOC) solutions are shown in Table 5-3.  

Clearly, the impact of organic matter on ciprofloxacin transformation is the major cause 

for the differences in the applied ozone dose required to remove the antimicrobial activity 

from these three solutions. 

 

 

Figure 5-5. Simultaneous removal of ciprofloxacin (heavy curves; corresponding to 
the model fits from Figure 5-1) and antimicrobial activity (hollow 
symbols) in the synthetic (0 mg/L DOC) and Lake Austin HPOA (2 and 
4 mg/L DOC) solutions.  (The Hill curve (R2 > 0.91 in all cases) and 
accompanying 95% confidence bands (light curves) are shown for the 
antimicrobial activity data.  Initial ciprofloxacin concentration = 100 μg/L) 

 

 

The effects of NOM concentration, source, and composition on elimination of 

antimicrobial activity with ozone are further expounded in Figure 5-6, which shows the 

antimicrobial activity history for ciprofloxacin in the synthetic water, the Lake Austin 
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HPOA solution (4 mg/L DOC), and the Claremore Lake HPOA and TPIA solutions (4 

mg/L DOC); in all cases the R2 associated with the Hill curve was greater than 0.91.  As 

expected from Figure 5-1 and Figure 5-3, the ciprofloxacin solution containing 

Claremore Lake HPOA requires the greatest applied ozone dose to eliminate 

antimicrobial activity; excepting the synthetic water, the lowest treatment requirement 

was observed in the Claremore Lake TPIA matrix.  The elimination of antimicrobial 

activity in the solutions containing 2 mg/L DOC exhibited lower ozone treatment 

requirements than the 4 mg/L DOC solutions and followed the same order (i.e., 

Claremore Lake TPIA < Lake Austin HPOA < Claremore Lake HPOA) in all cases; these 

data were not included in Figure 5-6 to maintain clarity. 

 

 

Figure 5-6. Elimination of antimicrobial activity in the synthetic (0 mg/L DOC), 
Lake Austin HPOA (4 mg/L DOC), and Claremore Lake HPOA and 
TPIA (4 mg/L DOC) water matrices.  (The Hill curve (R2 > 0.91 in all 
cases) and accompanying 95% confidence bands are shown.  Initial 
ciprofloxacin concentration = 100 μg/L) 
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The treatment requirements for 50% removal of ciprofloxacin and antibiotic 

activity for the synthetic (0 mg/L DOC), Lake Austin HPOA (2 and 4 mg/L DOC), and 

Claremore Lake HPOA and TPIA (2 and 4 mg/L DOC) waters are shown in Table 5-3.  

The treatment requirements for 50% removal of ciprofloxacin correlate well to the 

treatment requirements for 50% removal of antimicrobial activity (R2 = 0.992; not 

shown).  This result would be expected if ciprofloxacin is the most potent compound 

present in solution.  The treatment required for 50% removal of ciprofloxacin and 

antimicrobial activity in the 0 mg/L DOC solution was subtracted from that of the 2 and 4 

mg/L DOC solutions.  Then, the ratio of the normalized 50% treatment requirements was 

calculated (not shown).  The ratio of the treatment requirement for 50% removal of 

ciprofloxacin in the 2 mg/L DOC solution to that of the 4 mg/L DOC solution was 

approximately 59%; for antimicrobial activity, the value of the ratio is 51%.  With only 

three NOM sources, no conclusive relationships can be made regarding these treatment 

requirement ratios; however, these data suggest that the 50% treatment requirements for 

antimicrobial activity scale relatively well with DOC concentration. 

 

Table 5-3. Applied ozone dose (mg/L) necessary for 50% removal of ciprofloxacin 
and antimicrobial activity for a variety of NOM matrices. 

Solution 
50% Removal of 

ciprofloxacin 
50% Removal of 

antimicrobial activity 
Synthetic (0 mg/L DOC) 0.06 0.11 
Claremore Lake TPIA (2 mg/L DOC) 0.29 0.45 
Lake Austin HPOA (2 mg/L DOC) 0.33 0.53 
Claremore Lake HPOA (2 mg/L DOC) 0.41 0.76 
Claremore Lake TPIA (4 mg/L DOC) 0.42 0.74 
Lake Austin HPOA (4 mg/L DOC) 0.54 1.04 
Claremore Lake HPOA (4 mg/L DOC) 0.69 1.37 
Claremore Lake HPOA (4 mg/L DOC; pH 6.5) 1.29 2.54 

 

 

Impact of intermediate products on antimicrobial activity.  While the data in Figure 

5-5 suggest that ciprofloxacin is the major contributor to antimicrobial activity in these 

experiments, the pharmacology fundamentals discussed earlier demonstrate the potential 

for forming pharmacologically active intermediate oxidation products.  This issue can be 
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more closely investigated by comparing ciprofloxacin inhibition profiles deriving from 

standards and ozonated samples.  In Figure 5-4, the “without oxidation” curve represents 

the inhibition profile of standard solutions while the “with oxidation” curve corresponds 

to the inhibition profile of treated samples.  Therefore, the “with oxidation” data 

exemplifies not only the antimicrobial activity of ciprofloxacin at the concentrations 

listed on the abscissa but also any pharmacological impact from intermediate oxidation 

products and/or treatment byproducts.  The IC50 for the “no oxidation” data set is 9.0 

μg/L, while the IC50 for the “with oxidation” data set was 6.6 μg/L.  Furthermore, the 

partially inhibited region was “stretched” in the “with oxidation” data set as evidenced by 

the smaller Hill slope value: 0.42 and 0.26 for “no oxidation” and “with oxidation,” 

respectively.  The shift in the data indicates that equivalent antimicrobial activities 

manifest in the presence of lower ciprofloxacin concentrations within ozone treated 

samples, suggesting that some other compounds are exerting pharmacological activity.  It 

should be noted that samples from control experiments run by ozonating the three NOM 

sources did not exert any antimicrobial activity, i.e., the inhibition profile and the 

resultant shift were observed for all background water matrices.  In similar experiments, 

Dodd et al. (2009) did not find evidence of pharmacologically active intermediate 

products from ciprofloxacin ozonation; however, Paul et al. (2010) recently reported that 

early ciprofloxacin intermediate products formed through photolysis (UV) and 

photocatalysis (UV/TiO2) did exert some pharmacological activity.  Both of these studies 

employed the serial dilution scheme (see Chapter 3 and Appendix C) for running the 

antimicrobial activity assay. 

 

In the serial dilution scheme employed by Dodd et al. (2009) and Paul et al. 

(2010), ciprofloxacin concentrations are being serially diluted, but so are intermediate 

oxidation products.  As the region of partial inhibition for ciprofloxacin is narrow 

(approximately, 7 µg/L), it is reasonable to assume the region of partial inhibition for 

intermediate products is also narrow.  Hence, if the antimicrobial potency of intermediate 

oxidation products is less than that of the parent compound and the inhibition profile is 
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sharp, any antimicrobial activity stemming from the presence of intermediate oxidation 

products may be masked in the serial dilution scheme.  This is an important point, 

because it acknowledges the utility of the serial dilution scheme for employing the 

antimicrobial activity assay at high antibiotic concentrations but it also suggests that the 

employment of this technique at lower drug concentrations may mask the contributions of 

intermediate oxidation products to the ultimate antimicrobial activity.  For ciprofloxacin, 

the serial dilution scheme is more useful at ciprofloxacin concentrations greater than 11 

µg/L, and the direct antimicrobial activity measurement scheme is most useful at 

concentrations lower than 11 µg/L. 

 

Another reason for the difference between our results and those of Dodd et al. 

(2009) lies in the inherent difference in the initial ciprofloxacin concentration employed.  

In the Dodd et al. (2009) and Paul et al. (2010) papers, the initial ciprofloxacin 

concentration was 330-1650 and 33,100 µg/L, respectively; we used initial ciprofloxacin 

concentrations of 100 µg/L.  In the Paul et al. (2010) paper, the data suggests a slight 

contribution of intermediate oxidation products to the residual antimicrobial activity; 

however, Dodd et al. (2009) saw no impact from ciprofloxacin’s intermediate oxidation 

products.  This difference may be due to the initial ciprofloxacin concentrations 

employed.  The higher initial concentration in the Paul et al. (2010) study would result in 

higher concentrations of intermediate oxidation products.  Therefore, dilution of those 

samples would result in greater intermediate oxidation product concentrations being 

introduced into the assay, allowing the contribution of those products to the residual 

antimicrobial activity to be observed.  Although our initial ciprofloxacin concentration 

(100 µg/L) was lower than that employed in the Dodd et al. (2009) and Paul et al. (2010) 

papers, intermediate oxidation products were not diluted and, therefore, the contribution 

of those compounds to the residual antimicrobial activity was observed.  Both methods 

for running the antimicrobial activity assay have merit and provide meaningful data; 

however, it is clear that the best method for characterizing the antimicrobial potency of 

intermediate products is through isolation of those compounds and developing their 
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individual inhibition profiles.  For that reason, further investigation is necessary to 

positively identify the cause for the shift in the inhibition profile of partially treated 

samples observed in Figure 5-4. 

 

The organic matter source, concentration, and composition have all been shown to 

impact ciprofloxacin transformation in ozonation.  That impact significantly affects the 

removal of antimicrobial activity.  Furthermore, the presence of pharmacologically active 

intermediate oxidation products has been shown to be theoretically possible, and the data 

presented above suggests that active intermediate products are present in experimental 

samples.  The combined determination of ciprofloxacin concentration and antimicrobial 

activity throughout treatment provides a useful metric for determining the treatment 

requirement.  Ultimately, the application of an ozone model that incorporates the kinetics 

of ozone decomposition and oxidation of NOM should be able to predict destruction of 

parent PhACs; however, the development of such a model will eventually have to include 

pharmacologically active intermediate oxidation products. 
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CHAPTER 6: OZONATION OF ERYTHROMYCIN:  RATE CONSTANTS, 

MAJOR INTERMEDIATE PRODUCTS, AND REMOVAL OF 

ANTIMICROBIAL ACTIVITY 

 

ABSTRACT 

Ozone experiments were run with erythromycin A, which is the only antibiotic/ 

antimicrobial compound listed on the US EPA Candidate Contaminant List 3.  The rate 

constant for erythromycin A transformation by ozone was found to be 4.36(±0.14)×106 

M-1s-1.  Additionally, the rate constant for anhydroerythromycin A, the common form of 

erythromycin present in the environment, with ozone was determined to be 

6.00(±0.25)×106 M-1s-1.  The dominant intermediate oxidation products for erythromycin 

A and anhydroerythromycin A were determined to be erythromycin A N-oxide and 

anhydroerythromycin A N-oxide.  An antimicrobial activity assay was employed to 

determine the inhibition profile of erythromycin A against E. coli (ATCC 25922), and an 

IC50 of approximately 4.87(±0.55)×10-5 M was determined.  Treated samples were 

introduced to an antimicrobial activity assay; however, the presence of intermediate 

oxidation products did not alter the residual antimicrobial activity, that is, the 

intermediate oxidation products were not pharmacologically active.  Ozonation 

effectively removed the antimicrobial activity associated with erythromycin A; 

furthermore, the antimicrobial activity of anhydroerythromycin A was determined to be 

negligible.  That fact, along with the irreversible formation of anhydroerythromycin A 

(from erythromycin A), downplay the need for treatment of anhydroerythromycin A.  

 

Key words: erythromycin A, anhydroerythromycin A, ozone, residual antimicrobial 

activity, reaction kinetics, intermediate oxidation products 

Manuscript to be submitted to Environmental Science and Technology  
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INTRODUCTION 

The U.S. Environmental Protection Agency recently released its Candidate 

Contaminant List 3 (CCL3; EPA, 2009).  Of the 104 chemical compounds present on that 

list, erythromycin is the only antimicrobial; most compounds are pesticides, herbicides, 

insecticides, or estrogenic chemicals (EPA, 2009).  Erythromycin is a macrolide 

antimicrobial compound containing a large 14-membered lactone ring with two sugar 

moieties (C-3 L-cladinose and C-5 D-desosamine).  Under environmental conditions, 

erythromycin exists as two major forms:  erythromycin A, which is the conventional 

structure of erythromycin, and anhydroerythromycin A, which is an acid-catalyzed 

degradation product of erythromycin A.  Salient information for erythromycin A and 

anhydroerythromycin A is presented in Table 6-1.  In this paper, erythromycin 

corresponds to the total erythromycin (i.e., the sum of erythromycin A and 

anhydroerythromycin A) present in solution; however, the individual behavior of 

erythromycin A and anhydroerythromycin A throughout treatment processes is also 

described.   

 

Table 6-1. Salient information for erythromycin. 
Property Erythromycin A Anhydroerythromycin A 

Chemical Formula C37H67NO13 C37H65NO12 

Molecular Weight (g/mol) 733.93 715.92 

CAS Number 114-07-8 23893-13-2 

Structure 

 

 

pKa 8.8 8.8 * 
* The pKa of anhydroerythromycin A was estimated at 8.8 (Harang and Westerlund, 1999). 
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Erythromycin was discovered in 1952 when it was isolated from the metabolic 

products of a strain of Streptomyces erythreus (McGuire et al., 1952).  Since the 

discovery of erythromycin, a number of other macrolide compounds have been 

developed, including clarithromycin (1970s), azithromycin (1980), roxithromycin (1987), 

and telithromycin (1998), among others; generally, for the most part macrolides 

containing 14-membered rings are employed in the United States, whereas 16-membered 

rings are popular in Europe (Lemke and Williams, 2008).  Over 2000 macrolides have 

been identified, including at least 153 and 362 compounds with 14- and 16-membered 

rings, respectively; research into the isolation and synthesis of new macrolide compounds 

is ongoing (Omura, 2002).  Regardless of the development of these other macrolides, 

erythromycin is one of the most successful drugs of all time (Pal, 2006).  Erythromycin is 

used to treat bacterial infections like bronchitis; diphtheria; Legionnaires’ disease; 

pertussis; pneumonia; and ear, urinary tract, and skin infections (Wishart et al., 2008).  

Macrolides are bacteriostatic and work by binding to the 23S rRNA in the 50S 

subparticle and thereby inhibit production of peptidyltransferase (Mao and Robishaw, 

1972).  Lemke and Williams (2008) indicated that the C-5 D-desosamine moiety is 

particularly important in inhibition, and that removal of the C-3 L-cladinose results in an 

100-fold decrease in biological activity.  Therefore, ozone attack at these sites is likely to 

significantly decrease the ultimate antimicrobial activity of solutions containing 

erythromycin. 

 

With an annual production of approximately 4000 tons (Minas, 2004), 

erythromycin is one of the most popular macrolides prescribed.  Given that popularity, it 

is not surprising that trace concentrations of erythromycin have been detected in 

wastewater supplies.  Hirsch et al. (1999) detected 6 µg/L of erythromycin in a German 

sewage treatment plant.  In a critical review by Oulton et al. (2010), erythromycin was 

shown to exhibit one of the lowest removal efficiencies of the 43 compounds investigated 

in traditional wastewater treatment plants; therefore, erythromycin is expected to pass 

through wastewater treatment and enter the environment.  In a 2002 US Geological 
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Survey (USGS) survey, erythromycin was detected at 21.5% of the 139 streams tested; 

the maximum erythromycin concentration detected was 1.70 µg/L (Kolpin et al., 2002).  

Only one antibiotic (trimethoprim) exhibited a higher detection frequency (27.4%; 

Kolpin et al., 2002).  In another USGS-sponsored study, Kinney et al. (2006) measured 

erythromycin concentrations up to 611 ng/L in reclaimed wastewater; the soil irrigated 

with that reclaimed wastewater demonstrated erythromycin concentrations of 1-6 ng/g.  

Given the widespread presence of erythromycin in the environment and the listing of 

erythromycin on the EPA CCL3, investigation of water treatment processes aimed at 

removing erythromycin is merited. 

 

Ozone-based treatment processes have demonstrated potential for transforming 

erythromycin.  In their landmark paper, Ternes et al. (2003) treated 0.62 µg/L 

erythromycin in sewage treatment plant effluent to below 50 ng/L with an ozone dose of 

5 mg/L.  Westerhoff et al. (2005) investigated the abilities of several water treatment 

processes to remove trace organic contaminants from water supplies; approximately 33%, 

54%, and 97% of erythromycin was removed through addition of alum, addition of 

powdered activated carbon, and ozonation, respectively.  Erythromycin has also been 

shown to be more effectively treated using conventional ozonation as compared to 

advanced oxidation through the peroxone (O3/H2O2) system (Lin et al., 2009).   

 

Some research efforts have identified the rate constants for other macrolide 

compounds with ozone and hydroxyl radicals (Huber et al., 2005; Dodd et al., 2006; 

Lange et al., 2006); however, to our knowledge, the kinetics of erythromycin 

transformation with ozone have not been reported previously.  Lange et al. (2006) 

reported that the free tertiary amine present on the D-desosamine moiety of most 

macrolide antibiotics (including erythromycin, clarithromycin, roxithromycin, and 

azithromycin, among others) reacts with ozone with a rate constant near 4×106 M-1s-1; 

that site is the main ozone attack site and controls the kinetics of the transformation of 

most macrolides with ozone.  In that same paper, Lange et al. (2006) provided the 
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apparent second order rate constant of clarithromycin with ozone at pH 7 as 7×104 M-1s-1.  

The literature yields pKa values for clarithromycin ranging from 8.6–9.0 (Gustavson et 

al., 1995; Liu and Ren, 2006), meaning that the specific rate constant for clarithromycin 

with ozone is 2.9–7.1×106 M-1s-1.  The specific rate constants for roxithromycin (k”
O3,RX = 

1.0(±0.1)×107 M-1s-1) and azithromycin (k”
O3,AZ = 6.0(±1.1)×106 M-1s-1) were reported by 

Dodd et al. (2006).  The apparent rate constant for roxithromycin at pH 7 was listed as 

7×104 M-1s-1 by Huber et al. (2005); taking the pKa of roxithromycin (pKa = 8.8) into 

account, the specific rate constant for roxithromycin would be 4.49×106 M-1s-1.  

Discrepancies exist between the rate constants for macrolide interaction with ozone 

reported in the literature; however, Lange et al.’s (2006) prediction that these rate 

constants would be clustered around 4×106 M-1s-1 seems to be consistent. 

 

Increasingly, antimicrobial activity assays have been employed to describe 

treatment of antimicrobial pharmaceuticals and to determine if intermediate oxidation 

products exert antimicrobial activity (Suarez et al., 2007; Baeza, 2008; Dodd et al., 2009; 

Paul et al., 2010).  Dodd et al. (2009) investigated ozonation of other macrolide 

compounds, namely, roxithromycin, azithromycin, and tylosin.  The chemical structures 

of roxithromycin and azithromycin are similar to that of erythromycin A.  For most 

macrolides, the free tertiary amine located on the desosamine moiety (see Table 6-1) 

represents the primary ozone attack site.  Using the serial dilution technique, Dodd et al. 

(2009) concluded that intermediate oxidation products formed via ozonation of the 

macrolides listed above did not exert any significant residual antimicrobial activity.  To 

our knowledge, no work has been completed regarding the elimination of antimicrobial 

activity of erythromycin in water treatment processes.  In this paper, the intermediate 

oxidation products of erythromycin transformation by ozone are identified, and the 

theoretical antimicrobial activity of those products is compared with measured values of 

residual antimicrobial activity.  Therefore, this paper provides the first documentation of 

how the antimicrobial activity associated with erythromycin, and erythromycin 

intermediate oxidation products, changes throughout ozone treatment. 
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Given the documented evidence of erythromycin presence in water supplies, as 

well as the importance of erythromycin with regard to the EPA CCL3, erythromycin 

transformation in an ozone-based water treatment process was studied.  In this work, we 

discuss the importance of erythromycin speciation between erythromycin A (EA) and 

anhydroerythromycin A (AEA) from environmental detection and antimicrobial activity 

standpoints, the transformation kinetics of EA and AEA with aqueous ozone, the 

characterization of primary oxidation products formed through ozone reaction with EA 

and AEA, and the residual antimicrobial activity of treated waters containing EA, AEA, 

and their intermediate oxidation products.  Ultimately, we hope to demonstrate effective 

treatment of erythromycin using ozone-based processes not only in terms of 

erythromycin transformation, but also in terms of elimination of residual antimicrobial 

activity. 

 

MATERIALS AND METHODS 

Chemicals.  Erythromycin (50 mg/mL in ethanol) was purchased from VWR; that 

solution was kept in a dark environment at -20°C.  Working solutions of 1 mg/mL were 

made by diluting the erythromycin stock solution into DI water; working solutions were 

stored in the dark at 4°C to prevent erythromycin degradation.  LC-MS grade acetonitrile 

was employed in LC-MS and LC-MS/MS analysis of erythromycin.  LC-MS analysis 

also required 0.1% formic acid, which was made by diluting 88% formic acid with DI.  

NOM was isolated from Lake Austin (Austin, TX) and Claremore Lake (Claremore, OK) 

using the procedures described by Aiken et al. (1992).  The details of these NOM sources 

have been described earlier (Chapters 3 and 5), and as the role of NOM is not crucial to 

the results presented in this paper, the characteristics of these NOM isolates are not 

discussed here. 

 

Ozone Stock Solution and Analysis.  An ozone generator (Yanco Industries) was used 

to generate an aqueous ozone stock solution.  Oxygen gas was introduced to the ozone 

generator at a flow rate of 30 cm3/min.  The ozone generator was set to the maximum 



161 
 

setting, which resulted in a mass ozone flow rate of approximately 4.08 mg/min.  The 

combined (oxygen and ozone) gas stream was bubbled into deionized water in a 500-mL 

gas washing bottle, which was placed in an ice bath.  The temperature of the solution in 

the gas-washing bottle was approximately 0.5°C.  The aqueous ozone concentration of 

the ozone stock solution quickly increased; the ozone concentration was greater than 40 

mg/L after only 30 minutes of ozonation.  The aqueous ozone concentration continued to 

increase to approximately 60 mg/L after three hours of ozonation.  The ozone reactor is 

shown in the schematic presented in Figure 6-1a, and the development of the aqueous 

ozone concentration in the stock solution is shown in Figure 6-1b. 

 

 

Figure 6-1. (a)  Ozone reactor setup; (b) aqueous ozone concentration with time. 
 

Aqueous ozone concentrations were measured in two ways:  direct measurement 

at 258 nm and indirect measurement of indigotrisulfonate at 600 nm (Bader and Hoigné, 

1981).  The ozone concentration of the stock solution was always measured directly at 

258 nm because of the high steady state ozone concentrations reached in that reactor 

(typically, 45-55 mg/L).  For batch kinetics experimentation, the aqueous ozone 

concentrations were measured using indigotrisulfonate as an ozone probe compound.  

Indigotrisulfonate reacts quickly with ozone (k”
O3,indigo = 9.4×107 M-1s-1; Munoz and von 
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Sonntag, 2000); therefore, as long as a molar excess of indigotrisulfonate to ozone is 

added to the solution, the indigotrisulfonate compound, which absorbs light at 600 nm, 

can be used as an ozone probe compound.  In this work, Indigo Reagent II (Standard 

Method 4-104; APHA et al., 2006) was employed to measure low (6×10-8 M < [O3] < 

1.04×10-4 M) aqueous ozone concentrations with a 4-cm quartz cuvette. 

 

Batch Experimentation.  Ozone experiments were run in two different configurations.  

In the first configuration, a predetermined ozone dose (2.92–8.32×10-6 M) was introduced 

into a 2-L reactor containing 1.36×10-6 M erythromycin and the background matrix of 

interest to determine the kinetics of erythromycin A transformation with ozone.  

Experiments were run with 10-2 M t-BuOH to isolate ozone kinetics from that associated 

with hydroxyl radicals.  The 2-L reactor was equipped with a bottle-top dispenser to 

enable rapid sampling; the first sample was generally taken approximately 11-13 seconds 

after introduction of aqueous ozone, and several samples were taken during the short 

period of one to two minutes after ozone introduction.  Samples were analyzed for 

aqueous ozone using the indigotrisulfonate method (Bader and Hoigné, 1981) and for 

anhydroerythromycin A using the LC-MS/MS method described below.   

 

The other experimental configuration consisted of adding specific applied ozone 

doses to solutions containing 1.36×10-4 M erythromycin and a background matrix of 

interest.  In this case, the predetermined ozone dose was introduced to the sample; 

samples were kept in a 21°C dark environment for at least 12 hours, allowing complete 

aqueous ozone degradation ([O3] < 6×10-8 M).  At this time, samples were analyzed for 

residual ozone concentration using the indigotrisulfonate method (Bader and Hoigné, 

1981) to ensure complete ozone degradation; erythromycin A, anhydroerythromycin A, 

and erythromycin intermediate oxidation products were analyzed using the LC-MS 

method described below.  This experimental configuration was employed to calculate the 

rate constant for anhydroerythromycin A transformation with ozone and to identify the 
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intermediate oxidation products corresponding to ozonation of erythromycin A and 

anhydroerythromycin A. 

 

Erythromycin Analysis.  Erythromycin A was measured using an LC-MS/MS (Thermo 

Finnigan, TSQ Quantum) method based on that employed by Calamari et al. (2003).  The 

injection volume was 20 µL and the flow rate was 700 µL/min.  LC separation was 

achieved with a C18 column (Shimadzu Premier C18 5µ 150×4.6-mm); the eluent 

gradient was 100% 0.1% Formic acid (FA), 0% Acetonitrile (ACN) (0-3 min); ramp to 

88% 0.1% FA, 12% ACN (3-10 min); 75% 0.1% FA, 25% ACN (10-12 min); ramp to 

50% 0.1% FA, 50% ACN (12-12.1 min); 50% 0.1% FA, 50% ACN (12.1-16 min); ramp 

to 50% 0.1% FA, 50% ACN (16-16.1 min); 12% 0.1% FA, 88% ACN (16.1-18 min).  

The electrospray ionization tandem mass spectrometer was operated in positive ion mode.  

Method parameters include the following:  parent mass, 716.4 mg; product mass, 558.3 

mg; collision gas pressure, 1.5 mTorr; collision energy, 24 V; spray voltage, 4000 V; 

vaporizer temperature, 400 °C; sheath gas pressure, 25 psi; and auxiliary gas pressure, 5 

psi.  The parent mass of 716.4 corresponds to anhydroerythromycin A, which was formed 

from erythromycin A due to the low pH of samples containing Indigo Reagent II (from 

aqueous ozone measurement).  At low pH, erythromycin A is quickly degraded into 

anhydroerythromycin A.  Erythromycin A was eluted at 15.6 minutes. 

 

Erythromycin A and anhydroerythromycin A were also analyzed in LC-MS mode 

to characterize the formation and transformation of intermediate oxidation products 

resulting from erythromycin reaction with ozone.  The injection volume was 20 µL and 

the flow rate was 350 µL/min.  The eluent gradient was 100% 0.1% FA, 0% ACN (0-2 

min); ramp to 88% 0.1% FA, 12% ACN (2-12 min); 75% 0.1% FA, 25% ACN (12-16 

min); ramp to 50% 0.1% FA, 50% ACN (16-21 min); 50% 0.1% FA, 50% ACN (21-28 

min); ramp to 50% 0.1% FA, 50% ACN (28-30 min); 88% 0.1% FA, 12% ACN (30-35).  

The electrospray ionization tandem mass spectrometer was operated in positive ion mode 

and the m/z range of 150–1500 was monitored.  Method parameters include the 
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following:  parent mass, 734.4 mg; collision gas pressure, 1.5 mTorr; collision energy, 24 

V; spray voltage, 4000 V; vaporizer temperature, 400 °C; sheath gas pressure, 25 psi; and 

auxiliary gas pressure, 20 psi.  Erythromycin A, anhydroerythromycin A, and their major 

intermediate oxidation products were generally eluted between 25 and 29 minutes. 

 

Antimicrobial Activity Assay.  An E. coli -based antimicrobial activity assay (NCCLS, 

2004) was employed to monitor changes in antimicrobial activity throughout treatment.  

In this work, E. coli ATCC 25922 was utilized.  After purchase, a small aliquot of the 

purchased E. coli was grown in 10 mL Mueller-Hinton Broth.  After a significant growth 

period, a streak plate was run, and an inoculation loop was used to select a single colony 

forming unit from the streak plate.  Stock E. coli solutions were created in Mueller-

Hinton Broth from that original colony forming unit.  The stock solution was incubated at 

37°C in an aerobic environment until the suspension was quite turbid, at that point, the E. 

coli suspension was mixed 1:1 with 50% glycerol and stored in a dark environment at -

80°C.  During experimentation, an E. coli working solution was maintained at 37°C in an 

aerobic environment.   

 

Antimicrobial activity assays were run in 96-well microplates.  First, standards 

and samples (100 µL) were added to the microplate wells.  After the standard / sample 

solutions were added to the wells, the E. coli inoculum was prepared by diluting the E. 

coli stock solution with Mueller-Hinton Broth to attain an absorbance at 625 nm 

equivalent to a 0.5 McFarland standard.  The inoculum (100 µL) was immediately added 

to each well.  Positive and negative growth controls were created by adding the inoculum 

(100 µL) and Mueller-Hinton Broth (100 µL) to DI (100 µL), respectively.  All samples 

were run in triplicate.  Microplates were then incubated at 37°C in an aerobic 

environment for 20 hours while being shaken at 75 rpm.  After the 20-hour incubation 

period, the absorbance at 600 nm of each well in the microplate was recorded using a 

microplate reader (BioTek).  The absorbance data was converted into percent inhibition 

using Eq. 6-1. 
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The resulting antimicrobial activity data was analyzed using the GraphPad Prism 

software; the specific GraphPad equations used are discussed below. 

 

 

RESULTS 

 

Chemical Structure of Erythromycin and Erythromycin Degradation Products 

Based on the pKa for erythromycin A, the dominant species at low pH (pH < pKa 

= 8.8) would be the erythromycin molecule with a proton on the tertiary amine located on 

the desosamine sugar, resulting in the protonated form of erythromycin shown in the 

bottom right of Scheme 6-1.  In actuality, at these lower pH values, erythromycin is acid-

catalyzed to form erythromycin A enol ether and anhydroerythromycin A (Kurath et al., 

1971; Atkins et al., 1986; Cachet et al., 1989; Vinckier et al., 1989).  Cachet et al. (1989) 

described the kinetics of the system shown in Scheme 6-1.  At pH 5.83, k1, k2, and k3 

were 0.76(±0.11)×10-4 min-1, 6.23(±1.44)×10-4 min-1, 1.20(±0.02)×10-4 min-1, 

respectively (Cachet et al., 1989).  As k2 is greater than k1, the ultimate product of 

erythromycin degradation is anhydroerythromycin A.  One other important observation is 

that the reaction between erythromycin A and anhydroerythromycin A is not reversible; 

therefore, once anhydroerythromycin A is formed, no anhydroerythromycin A conversion 

back to erythromycin A is possible.  The implications of this irreversible reaction are 

discussed below. 
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Scheme 6-1. Erythromycin degradation products (adapted from Cachet et al., 1989) 
and clarification of erythromycin A and anhydroerythromycin A 
structures. 

 

 

Hirsch et al. (1999) discussed the speciation of erythromycin A and 

anhydroerythromycin A and determined that environmental samples contain mostly 

anhydroerythromycin A; given the degradation kinetics described above and oral 

administration of erythromycin (exposure to acidic conditions during digestion), this 

finding is not surprising.  Previous researchers have listed anhydroerythromycin A as 

“erythromycin” or “erythormycin-H2O,” which is often incorrectly described using the 

molecular weight and CAS number of erythromycin A.  This name is slightly misleading 
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as the water molecule that is lost from erythromycin A causes drastic structural changes 

as demonstrated by the chemical structure of anhydroerythromycin A as shown in Table 

6-1 and Scheme 6-1.  Furthermore, it is important to note that environmental sampling 

and preservation techniques may result in undesired erythromycin speciation.  For 

example, the landmark report by Kolpin et al. (2002) used an LC-MS based analytical 

technique that acidified samples to pH 3 before analytical measurement, which would 

cause erythromycin A to degrade to anhydroerythromycin A.  Given the importance of 

erythromycin with respect to the EPA CCL3 list, it is important to clarify the chemical 

structures of erythromycin and degradation products that are expected to exist in the 

environment.  The implications of erythromycin speciation with respect to antimicrobial 

activity are discussed below. 

 

Erythromycin Kinetics with Ozone 

Kinetic experiments were run at several different pH values ranging from 5.35 to 

6.81.  The solutions were composed of 1.36×10-6 M erythromycin A (EA), 1×10-3 M 

phosphate buffer, and 1×10-3 M t-BuOH.  Ozone was spiked into these solutions at 

applied doses of 2.92–8.32×10-6 M.  The ozone concentration data from each experiment 

was integrated with respect to time to yield ozone exposure (∫[O3]dt).  Then, 

ln ([EA]/[EA]o) was plotted against ozone exposure.  As hydroxyl radicals were being 

scavenged by t-BuOH, Eq. 6-2 describes erythromycin A transformation. 

 

 
    EAOk
dt

EAd
EAappO 3,,3  Eq. 6-2 

 

In Eq. 6-2, [EA] is the erythromycin A concentration at time t, [O3] is the aqueous ozone 

concentration at time t, and kO3,app,EA is the apparent rate constant for erythromycin A 

with ozone at a particular pH.  Integrating Eq. 6-2 yields Eq. 6-3. 
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This equation can be further simplified by substituting the specific rate constants for each 

erythromycin species with ozone and the ionization factor (α0 and α1) terms for the 

apparent rate constant, as shown in Eq. 6-4. 
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In this case, α0 and α1 correspond to the fraction of protonated and deprotonated, 

respectively, erythromycin A compared to the total erythromycin A present in solution. 

 

The data from the experiments described above are plotted as ln [EA]/[EA]o vs. 

ozone exposure in Figure 6-2a.  These data were modeled using Eq. 6-3; therefore, the 

slope of the trend lines fitted to each data set represents the apparent second order rate 

constant for erythromycin A at the corresponding pH value.  The apparent second order 

rate constants for erythromycin at pH 5.35-6.81 are provided in Table 6-2. 

 

Table 6-2. Apparent second order rate constants (k”
O3,app,EA) for the 

transformation of erythromycin A by ozone at pH 5.35-6.81. 

Solution pH kO3,app,EA (M-1s-1) α1 

5.35 1.89×103 3.55×10-4 
5.66 4.45×103 7.24×10-4 
6.00 7.11×103 1.58×10-3 
6.40 2.04×104 3.97×10-3 
6.81 4.02×104 1.01×10-2 
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Figure 6-2. (a) Erythromycin transformation at different pH values; (b) 
determination of specific second order rate constant for erythromycin 
with ozone.  (The solutions contained 1.36×10-6 M erythromycin, 1×10-3 M 
phosphate buffer, and 1×10-3 M t-BuOH at the pH values listed in the 
legend.  The dotted red lines represent the 95% confidence bands.) 

 

 

Previous researchers have assumed that reaction between the protonated forms of 

other macrolides (roxithromycin, azithromycin, and clarithromycin, in particular) and 

ozone is negligible (Dodd et al., 2006; Lange et al., 2006).  This assumption stems from 

work by previous researchers demonstrating low rate constants for compounds containing 

protonated amine groups with ozone (Hoigné and Bader, 1983b; Munoz and von 

Sonntag, 2000).  In contrast, ozone reacts quickly with deprotonated amine groups due to 

the presence of a lone pair of electrons on the nitrogen atom; therefore, high apparent rate 

constants between the deprotonated form of erythromycin and ozone are expected.  For 

these reasons, we considered the reaction between the protonated form of erythromycin A 

and ozone to be negligible (k”
O3,EA-H+ < 1.0 M-1s-1).  To determine the specific second 

order rate constant for erythromycin A, the data from Figure 6-2a were replotted as ln 

[EA]/[EA]o vs. the product of the ionization factor (α1) for the deprotonated form of 

erythromycin A and ozone exposure in Figure 6-2b (Eq. 6-4).  The resultant data 

collapses into one curve.  The slope of that curve is the specific second order rate 

constant for transformation of the deprotonated form of erythromycin A by ozone; the 

rate constant (± 95% confidence interval) is 4.36 (±0.14) ×106 M-1s-1. 
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Similar experiments were run to determine the rate constant of erythromycin A 

with hydroxyl radicals, which are the most important ozone degradation product in terms 

of oxidant activity.  In those experiments, 1 µM para-chlorobenzoic acid (pCBA) was 

added to the reactor solution in the place of the 10 mM t-BuOH used to isolate ozone 

kinetics.  While erythromycin A and pCBA transformation were both observed, the 

degradation of these compounds did not occur in the same time range; that is, 

erythromycin A was completely degraded before pCBA demonstrated any removal.  

Ultimately, the high reactivity of erythromycin A with ozone precludes determination of 

k”
HO·,AEA using an ozone-based method.  Other authors have employed UV- and 

radiation-based methods for determination of the second order rate constants of 

wastewater derived organic contaminants with hydroxyl radicals (Dodd et al., 2009; An 

et al., 2010).  The second order rate constant for azithromycin and roxithromycin with 

hydroxyl radicals at pH 7 were determined by Dodd et al. (2006) to be 2.9(±0.6)×109 

M-1s-1 and 5.4(±0.3)×109 M-1s-1, respectively.  Given the similarity of these macrolides 

with erythromycin A and anhydroerythromycin A, we expect the rate constants with 

hydroxyl radicals for erythromycin A (and anhydroerythromycin A) would be in the same 

range, namely 2-6×109 M-1s-1. 

 

Batch experiments were run by dosing 6.0-12.7×10-5 M of ozone into solutions 

containing 4.81-13.6×10-5 M erythromycin, 2.38 ×10-3 M NaHCO3, 1.71 ×10-3 M NaCl, 

and 10-5 M pCBA at pH 8.4.  At this pH, the initial samples, approximately 24.5% of the 

total erythromycin in solution was present as anhydroerythromycin A and the other 

75.5% was present as erythromycin A; this speciation was determined using LC-MS.  

These solutions also contained various concentrations of DOC; the mass ratio of applied 

ozone to initial DOC ranged from 0‒0.164 mg O3 / mg DOC.  In this experiment, a select 

volume of the ozone stock solution was added to each solution to correspond to a molar 

ratio of applied ozone to initial erythromycin of 1.25 mol O3 / mol ERY (ERY is the total 

erythromycin in solution, that is the sum of erythromycin A and the anhydroerythromycin 

A).  The solutions were allowed to react over the course of at least 12 hours.  Aqueous 
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ozone concentrations were measured before measuring erythromycin concentrations via 

LC-MS; all solutions showed no ozone residual after the 12-hour reaction period.  The 

samples were analyzed in LC-MS mode and erythromycin A and anhydroerythromycin A 

concentrations were measured.  The normalized erythromycin A and 

anhydroerythromycin A (anhydroerythromycin A response divided by the initial 

erythromycin A response) remaining are plotted against the mass ratio of applied ozone 

to initial DOC in Figure 6-3.  The rapid reaction kinetics of erythromycin and DOC with 

ozone effectively quenched aqueous ozone before ozone decomposition to hydroxyl 

radicals occurred, i.e., no hydroxyl radical exposure was observed for any of the samples.  

Furthermore, the rapid transformation kinetics of erythromycin with ozone allowed 

highly effective erythromycin competition with DOC for reaction with ozone; for that 

reason, minimal differences were observed between the three DOC sources. 

 

  

Figure 6-3. Changes in erythromycin and anhydroerythromycin concentrations as 
a function of the mass ratio of applied ozone to DOC concentration.  
(The molar ratio of applied ozone to initial erythromycin was held constant 
at 1.25 mol O3 / mol ERY (ERY is the total erythromycin in solution, that is 
the sum of erythromycin A and the anhydroerythromycin A).  The 
background water quality matrix contained 1.36×10-6 M erythromycin, 2.38 
×10-3 M NaHCO3, 1.71 ×10-3 M NaCl, and 4 mg/L DOC at pH 8.4.) 
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In Chapter 5, the rate constant for ciprofloxacin transformation by ozone did not 

change in the presence of NOM.  Here, we assume the same conclusion for erythromycin 

transformation kinetics.  This data was also used to calculate the second-order rate 

constant for anhydroerythromycin A transformation by ozone.  Using the change in 

erythromycin A (ln [EA]/[EA]o), the change in anhydroerythromycin A (ln [AEA]/[AEA]o) 

and the apparent second order rate constant for erythromycin A at pH 8.4 (α1 = 0.285; 

k”
O3,app,EA = 1.24×106 M-1s-1), the apparent second order rate constant describing 

anhydroerythromycin A reaction with ozone was calculated, as shown in Eq. 6-5. 
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The apparent rate constant for anhydroerythromycin A at pH 8.4 was determined 

to be 1.71(±0.07)×106 M-1s-1.  This approach is mathematically equivalent to calculating 

the ozone exposure using the erythromycin A data, and then using the calculated ozone 

exposure and the change in the anhydroerythromycin A (ln [AEA]/[AEA]o) to get the 

second order rate constant for anhydroerythromycin A reaction with ozone; the range of 

ozone exposures observed was 6.74×10-8 – 2.41×10-6 M-s.  As with erythromycin A, the 

apparent rate constant was divided by the ionization factor of anhydroerythromycin A at 

pH 8.4 (α1 = 0.285) to yield the specific rate constant, k”
O3,AEA = 6.00(±0.25)×106 M-1s-1.  

As the primary ozone attack site is the free tertiary amine, the specific rate constants for 

erythromycin A (k”
O3,EA = 4.36(±0.14)×106 M-1s-1) and anhydroerythromycin A (k”

O3,AEA 

= 6.00(±0.25)×106 M-1s-1) are both close to the 4×106 M-1s-1 value predicted by Lange et 

al. (2006). 

 

These rate constants were verified using data from a separate experiment, in 

which ozone doses of 0-2.23×10-4 M of ozone were spiked into solutions containing 

1.36×10-4 M erythromycin, 2.38 ×10-3 M NaHCO3, 1.71 ×10-3 M NaCl, and 10-5 M 
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pCBA at pH 8.4.  No organic matter was present in these solutions.  The molar ratio of 

the applied ozone to initial erythromycin was spread across the range of 0 to 2.12 mol O3 

/ mol erythromycin.  The LC-MS response for both erythromycin A and 

anhydroerythromycin A was measured, and those values, along with the apparent rate 

constants calculated above for pH 8.4, were employed to determine the ozone exposure.  

In this case, the ozone exposure was found using both sets of data, i.e., the erythromycin 

A data and the anhydroerythromycin A data.  Figure 6-4 shows the ozone exposure 

calculated using the erythromycin A data plotted against the ozone exposure calculated 

using the anhydroerythromycin A data.  A 1:1 dashed line is overlaid on the plot.  

Clearly, the ozone exposure calculated for each individual compound compare nicely 

with each other.  This relationship suggests that the rate constants calculated above (from 

different data sets) accurately describe erythromycin A and anhydroerythromycin A 

transformation by ozone.  In these experiments, the hydroxyl radical exposure was 

minimal (i.e., no change in pCBA concentration). 
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Figure 6-4. Verification of erythromycin rate constants through comparison of 
ozone exposure calculated from changes in erythromycin A and 
anhydroerythromycin A concentrations. 

 

 

Inhibition Profile of Erythromycin 

The inhibition profile E. coli ATCC #25922 for erythromycin was generated by 

performing the antimicrobial susceptibility assay over a range of erythromycin 

concentrations using standard solutions.  The inhibition profile of erythromycin standards 

prepared in sterile DI with 2.38 ×10-3 M NaHCO3 and 1.71 ×10-3 M NaCl at pH 8.3 is 

shown in Figure 6-5.  The model line in Figure 6-5 follows the Hill equation (Eq. 6-6), 

which has been used to describe inhibition profiles (Suarez et al., 2007; Baeza, 2008; 

Dodd et al., 2009); the Hill Equation model parameters were determined by the 

GraphPad Prism software. 

 



175 
 

 

%100

1

%

50

minmax
min 






































H

sampleC

IC

II
IInhibition

 Eq. 6-6 

 

Imin is the minimum inhibition, Imax is the maximum inhibition, IC50 is the erythromycin 

concentration that corresponds to 50% inhibition, Csample is the erythromycin 

concentration of the sample, and H is the Hill slope.  The equation used in the GraphPad 

Prism software automatically sets the minimum and maximum inhibition at 0% and 

100%, respectively; therefore, IC50 and H were the only fitting parameters.   

 

The Hill curve and the 95% confidence bands (dotted red lines) were generated 

using the “log(inhibitor) vs. normalized response – variable slope” equation in the 

GraphPad Prism software.  In Figure 6-5, the erythromycin concentrations on the abscissa 

correspond to the concentration of erythromycin present in the sample/standard solution 

added to the well; recall that 100 µL of the E. coli inoculum was added to wells 

containing 100 µL of standards/samples.  The IC50 and Hill slope (with 95% confidence 

intervals) were 4.9(±0.55)×10-5 M and 1.7(±0.32)×104, respectively; the correlation 

coefficient (R2) was 0.83.  It should be noted that erythromycin demonstrates a relatively 

large window of partial inhibition.  In Chapter 5, we discussed ozone treatment of 

ciprofloxacin and the antimicrobial activity associated with ciprofloxacin and its 

intermediate oxidation products (Chapter 5).  The region of partial inhibition (20-80% 

inhibition of E. coli) was 1.39×10-8 M for ciprofloxacin (Chapter 5); for erythromycin, 

the same region is more than two orders of concentration wider (7.00×10-5 M).  While a 

sharp inhibition profile (e.g., ciprofloxacin) elucidates a clear treatment goal, the impacts 

of the background water quality (especially, the DOC content) are more likely to be 

problematic for compounds with wider inhibition profiles. 
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Figure 6-5. Inhibition profile for erythromycin A against E. coli at pH 8.3. 
 

 

Experimentation demonstrated that anhydroerythromycin A is not antimicrobially 

active in the same concentration range of erythromycin A.  Figure 6-6 shows the results 

of two experiments where specific ozone doses were applied to solutions containing 

1.36×10-4 M erythromycin, 2.38 ×10-3 M NaHCO3, 1.71 ×10-3 M NaCl, 10-5 M pCBA, 

and 4 mg/L of DOC from Lake Austin HPOA at two distinct pH values, 8.5 and 4.1.  In 

the pH 8.5 solution, approximately 24.5% of the erythromycin was present as 

anhydroerythromycin A, whereas anhydroerythromycin A made up 94.7% of the total 

erythromycin present in the pH 4.1 solution.  Aliquots of these solutions were dosed with 

ozone (the molar ratio of applied ozone to initial erythromycin was 0-2.47 mol O3 / mol 

ERY) and samples were kept in a dark environment at room temperature for at least 12 

hours before LC-MS analysis.  All samples demonstrated no ozone residual and no 

hydroxyl radical exposure.   

 



177 
 

 

Figure 6-6. Difference between solutions containing erythromycin A and 
anhydroerythromycin A as the dominant species in solution on the E. 
coli-based antimicrobial activity assay.  (In (a) samples were ozonated at 
pH 8.5 and erythromycin A was the dominant erythromycin species; in (b), 
samples were ozonated at pH 4.1 and anhydroerythromycin A was the 
dominant species.  For both cases, the initial erythromycin concentration 
was 1.36×10-4 M erythromycin.) 

 

 

These samples were also run in the antimicrobial activity assay; it should be noted 

that even though experimental samples were at pH 8.5 and 4.1, the MHB growth medium 

is sufficiently buffered at pH ~7.2.  Hence, the pH of experimental samples did not lead 

to differences in the biological response measured in the antimicrobial activity assay.  

The most interesting aspect of Figure 6-6 is that the initial sample did not demonstrate 

any significant antimicrobial activity.  These data suggest that anhydroerythromycin A is 

not antimicrobially active.  Kibwage et al. (1985) provided minimum inhibitory 

concentrations (MICs) for erythromycin A and anhydroerythromycin A against a number 

of gram-positive and gram-negative bacteria; in all cases, the MIC of 

anhydroerythromycin A was greater than that of erythromycin A.  For E. coli ATCC 

25922, the MIC of erythromycin A and anhydroerythromycin A were listed as 32 and 

>64 µg/mL, respectively.  As the highest concentration employed in that study was 64 

µg/mL, it is difficult to compare the relative antimicrobial activity of 

anhydroerythromycin A to that of erythromycin A for E. coli ATCC 25922; however, for 

two other gram-negative bacteria (Neisseria meningitides 1 and Pasteurella ureae) the 
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MIC listed for anhydroerythromycin A was over 60 and 500 times greater, respectively, 

than that listed for erythromycin A (Kibwage et al., 1985).  These findings align well 

with the results shown in Figure 6-6 and demonstrate the importance of erythromycin 

speciation with respect to antimicrobial activity. 

 

Recall that the reaction from erythromycin A to anhydroerythromycin A is not 

reversible; hence sampling/preservation protocols that acidify environmental samples will 

convert erythromycin A to anhydroerythromycin A, thereby eliminating antimicrobial 

activity.  Therefore, later analysis of the samples for residual pharmacological activity 

may not accurately describe the environmental sample.  While the antimicrobial activity 

of other macrolide antibiotics and their degradation products is outside of the scope of 

this research, it should be noted that other macrolides (clarithromycin and azithromycin, 

among others) do not undergo the type of acid-catalyzed transformations described in 

Scheme 6-1 (Hirsch et al., 1999).  Hence, the effects of sampling/preservation techniques 

on the speciation of these compounds are not expected to generate drastic changes in 

antimicrobial activity. 

 

Antimicrobial Activity of Erythromycin Intermediate Oxidation Products 

Figure 6-7 shows the antimicrobial activity (as percent E. coli inhibition) versus 

the erythromycin A concentration of the treated samples that were plotted earlier in 

Figure 6-3.  These samples were generated by dosing 0–2.47×10-4 M of ozone into 

samples containing 1.36×10-4 M erythromycin, 2.38 ×10-3 M NaHCO3, 1.71 ×10-3 M 

NaCl, 10-5 M pCBA, and 4 mg/L of DOC (with the exception being the “No NOM” data 

set, which did not contain any DOC).  As described earlier, this dosing scheme resulted in 

applied ozone to initial erythromycin molar ratios of 0–2.42 mol O3 / mol ERY.  On this 

type of plot, any contribution of intermediate oxidation products to the overall 

antimicrobial activity would cause a shift up in the percent inhibition data; however, if 

the intermediate oxidation products do not exert any significant antimicrobial activity, the 

data should fall on the inhibition profile shown in Figure 6-5.  In Figure 6-7, it is clear 
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that most of the data from these four data sets fall within or quite close to the 95% 

confidence bands of the erythromycin A inhibition profile.   

 

 

Figure 6-7. Antimicrobial activity data for experimental samples overlaid on the 
inhibition profile of erythromycin.  (The data correspond to samples 
containing 1.36×10-4 M erythromycin, 2.38 ×10-3 M NaHCO3, 1.71 ×10-3 M 
NaCl, and 4 mg/L of DOC (with the exception being the “No NOM” data 
set, which did not contain any DOC) that were dosed with 0–2.47×10-4 M of 
ozone.) 

 

Recall from Chapter 5 that the intermediate oxidation products generated by 

ozonation of ciprofloxacin resulted in a shift in the inhibition profile of ciprofloxacin.  In 

that work, the IC50 of the standard inhibition profile exhibited an IC50 of 9.0 µg/L and an 

H of 0.42; the inhibition profile of treated samples (i.e., those containing ciprofloxacin 

and intermediate oxidation products formed through ciprofloxacin reaction with ozone) 

had an IC50 of 6.6 μg/L and an H of 0.26.  The difference in IC50 illustrates the 

contribution of intermediate oxidation products to the residual antimicrobial activity, 

while the change in the Hill slope corresponds to a wider region of partial inhibition, 
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presumably due to a difference in potency between ciprofloxacin and its antimicrobially 

active intermediate products.  For erythromycin, model (Hill curve with 95% confidence 

bands) fits to the four data sets all intersect; therefore, we can conclude that the 

intermediate oxidation products generated from ozone attack on erythromycin A do not 

demonstrate considerable antimicrobial activity.  Furthermore, the differences observed 

for ciprofloxacin and erythromycin demonstrate the need to consider the transformation 

chemistry of individual compounds when considering residual pharmacological activity.  

 

As intermediate oxidation products did not appear to exert any antimicrobial 

activity, we investigated the chemical structures of the compounds produced through 

ozone attack to determine if the structures of the intermediate oxidation products agree 

with experimental evidence suggesting that they do not express antimicrobial activity.  

LC-MS analysis of the samples previously plotted in Figure 6-3 and Figure 6-7 

demonstrated four major m/z peaks:  733.9, 715.9, 749.9, and 731.9; these peaks are 

shown in Figure 6-8. 
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Figure 6-8. Peaks for intermediate oxidation products generated by ozonation of 
erythromycin and anhydroerythromycin.  (The individual 
chromatograms stem from two different samples: one at pH 8.5 where 
erythromycin A dominates, and the other at pH 4.1, where 
anhydroerythromycin A dominates.  The m/z = 733.9 and m/z = 749.9 
chromatograms come from a sample that was dosed with ozone to achieve a 
molar ratio of applied ozone to erythromycin of 0.97 mol/mol; the pH of the 
sample was 8.5.  The total ion current, m/z = 715.9, and m/z = 731.9 
chromatograms correspond to a sample that was dosed with ozone to 
achieve a molar ratio of applied ozone to erythromycin of 1.46 mol/mol; the 
pH of the sample was 4.1.) 
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The 733.9 and 715.9 m/z peaks correspond to erythromycin A and 

anhydroerythromycin A, respectively; the m/z = 749.9 and m/z = 731.9 peaks correspond 

to intermediate oxidation products.  Lange et al. (2006) identified clarithromycin-N-oxide 

(MW = 764 g/mol) as a major product of clarithromycin (MW = 748 g/mol) reaction with 

ozone.  In this case, ozone attacks the lone pair of electrons on the tertiary amine present 

on the desosamine group, resulting in addition of a double-bonded oxygen onto the 

nitrogen atom in the desosamine sugar (Lange et al., 2006).  In that work, Lange et al. 

(2006) postulated that formation of the macrolide-N-oxide product can be expected for 

erythromycin, roxithromycin, and “all the other macrolide drugs.”  From the major peaks 

identified in our samples, the m/z = 749.9 peak would correspond to the addition of an 

oxygen atom to the m/z = 733.9 peak.  Furthermore, the difference between the m/z = 

715.9 peak (anhydroerythromycin A) and the m/z = 731.9 peak is also 16 units, which 

corresponds to addition of an oxygen atom to the molecule.  Both of these products can 

be described by the same ozone attack mechanism that was proposed by Lange et al. 

(2006).  For these reasons, the evidence suggests that the two major oxidation products 

identified in this work correspond to erythromycin A N-oxide (CAS #992-65-4) and 

anhydroerythromycin A N-oxide (CAS #63950-90-3).  In Scheme 6-2, we show the 

proposed site of ozone attack on the erythromycin A and anhydroerythromycin A 

molecules as well as the structures of the proposed transformation products. 
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Scheme 6-2. Erythromycin A and anhydroerythromycin A oxidation mechanisms. 
 

 

These transformations essentially remove the antimicrobial activity of the 

erythromycin molecule as demonstrated above in Figure 6-6 and Figure 6-7.  This result 

corresponds well to the known pharmacology of macrolides.  As described earlier, Lemke 

and Williams (2008) indicated that the C-5 D-desosamine moiety is especially important 

to inhibition.  As the transformation from erythromycin A to erythromycin A N-oxide 

affects the predominant active site of the D-desosamine functional group, it is not 

surprising that binding to the 23S rRNA would be affected, thereby, eliminating 

inhibition of peptidyltransferase and the bacteriostatic activity of erythromycin. 
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CONCLUSIONS 

The behavior of erythromycin was studied throughout an oxidative treatment process: 

 At acidic pH, erythromycin A degrades to form anhydroerythromycin A; 

 While erythromycin A demonstrates antimicrobial activity (IC50 = 

4.87(±0.55)×10-5 M, H = 1.72(±0. 32)×104 for E. coli ATCC #25922), 

anhydroerythromycin A is a much less potent antimicrobial compound and no 

significant activity was observed in this study; 

 The specific rate constants for erythromycin A and anhydroerythromycin A 

transformation by ozone were determined to be 4.36(±0.14)×106 M-1s-1 and 

6.00(±0.25)×106 M-1s-1, respectively.  These rate constants correspond to the 

deprotonated species; rate constants for the reaction of protonated erythromycin 

species with ozone are negligible (< 1 M-1s-1); 

 Both erythromycin A and anhydroerythromycin A underwent the same oxidative 

mechanism, namely, the addition of an oxygen atom on the free tertiary amine 

located on the D-desosamine moiety to form erythromycin A N-oxide 

(C37H67NO14, MW = 749.9 g/mol) and anhydroerythromycin A N-oxide 

(C37H65NO13, MW = 731.9 g/mol), respectively;  

 The intermediate oxidation products identified in this study did not contribute to 

the residual antimicrobial activity of samples, that is, erythromycin A was the 

only antimicrobially active substance present in our samples. 

 

The implications of this research for the field of environmental engineering 

demonstrate that not only does erythromycin degrade to form anhydroerythromycin A, 

which is much less antimicrobially potent than erythromycin A, but also erythromycin 

intermediate oxidation products do not possess antimicrobial potency.  These findings 

relieve some of the concern over erythromycin presence in the environment because it 

demonstrates that ozone-based treatment of erythromycin will eliminate most (due to the 

rapid reaction of erythromycin with ozone) of the corresponding antimicrobial activity.  

The rapid erythromycin transformation kinetics with ozone allow for highly effective 
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erythromycin treatment in ozone processes; in advanced oxidation processes, 

erythromycin will not compete as well because transformation will be a direct function of 

the relative concentration of erythromycin with respect to background NOM.  Questions 

still abound regarding non-lethal concerns of antimicrobial presence in the environment 

especially with regards to antibiotic resistance (Kummerer, 2004) and interruption of cell-

signaling processes (Davies et al., 2006; Fajardo and Martínez, 2008).  
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CHAPTER 7 – CONCLUSIONS 

 

 

In The Sea Around Us, Rachel Carson, arguably the mother of the environmental 

movement, stated “For all at last returns to the sea…” (Carson, 1951)  As technology, 

chemical production, and pharmaceutical development progresses, we must remember 

that the chemicals that we produce and consume do indeed find their way into our water 

supplies.  To protect environmental and human health, water and wastewater treatment 

processes that are capable of removing the threat from trace organic contaminants need to 

be developed and tested.  The ability of ozone-based treatment processes to transform 

four model pharmaceuticals was demonstrated in this research.  The scientific 

understanding of how those chemicals are transformed and the potential for the 

intermediate oxidation products to exert pharmacological activity was investigated.  

Additionally, novel methods for employing ozone-based processes to determine the 

transformation kinetics of PhACs with ozone and hydroxyl radicals were presented.  

Below, three sets of bulleted lists describing the major conclusions drawn from the 

research results from Chapters 4-6 are presented below.  Those lists describe major 

conclusions stemming from ozone experimentation with four pharmaceuticals:  

cyclophosphamide (Chapter 4), ifosfamide (Chapter 4), ciprofloxacin (Chapter 5), and 

erythromycin (Chapter 6).  These compounds were chosen for a variety of reasons, 

including their predicted reactivity with ozone and their pharmacological mechanisms of 

action.  Subsequent to the summation of findings for individual pharmaceuticals, an 

overview that ties these separate results together into a unified story of the significance of 

the research is given.   

 

Based on the experimental findings presented in Chapter 4, which focuses on 

determination of the transformation kinetics of cyclophosphamide and ifosfamide by 
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ozone and hydroxyl radicals, identification of the impact of NOM on cyclophosphamide 

and ifosfamide transformation, and characterization of intermediate oxidation products, 

the following conclusions were reached. 

 A highly concentrated ozone stock solution can be continuously pumped into a 

separate reactor, and the aqueous ozone concentration and ozone exposure can be 

controlled by the flow rate. 

 A similar experimental design, with inclusion of continuous addition of hydrogen 

peroxide, can be employed to achieve a controllable level of hydroxyl radical 

exposure. 

 The rate constants for cyclophosphamide and ifosfamide reaction with hydroxyl 

radicals were determined using the continuous peroxone addition reactor.  The use 

of this reactor to determine transformation kinetics of PhACs with hydroxyl 

radicals is novel.  The rate constants for the transformation cyclophosphamide and 

ifosfamide by hydroxyl radicals are 2.69(±0.17) ×109 M-1s-1 and 2.73(±0.16) ×109 

M-1s-1, respectively. 

 The continuous ozone reactor can be employed to determine the rate constants for 

compounds that react slowly with ozone (i.e., cyclophosphamide and ifosfamide), 

and this methodology is an improvement over standard batch reactors with a 

single ozone addition at time zero due to the ability to control the ozone 

concentration throughout experimentation.  The rate constants for the 

transformation of cyclophosphamide and ifosfamide with ozone are 3.03(±0.48) 

M-1s-1 and 7.38 (±0.27) M-1s-1, respectively. 

 The presence of NOM impacts the rate of transformation of cyclophosphamide 

and ifosfamide mainly through NOM reaction with ozone, which reduces the 

achievable hydroxyl radical exposure for a specific ozone dose. 

 Many intermediate oxidation products are observed for cyclophosphamide and 

ifosfamide, and an overlap exists for the m/z values associated with 

cyclophosphamide and ifosfamide transformation products; furthermore, these 

products are similar to known metabolites of cyclophosphamide and ifosfamide, 
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including the 4-keto-, 4-hydroxy-, and imino- derivatives of the parent 

compounds. 

 The pharmacologically active metabolites of cyclophosphamide (phosphoramide 

mustard) and ifosfamide (isophosphoramide mustard) were formed at pH 9.6 but 

not pH 2.5; these results suggest that the pharmacological activity associated with 

these compounds was not removed by ozonation. 

 

In Chapter 5, the ability of the continuous ozone addition reactor to treat ciprofloxacin 

and its associated antimicrobial activity in the presence of NOM was demonstrated.  The 

major conclusions from that work include the following. 

 Ciprofloxacin reacts quickly with ozone (k”
O3,app,CIP = 1.55(±0.13)×104 M-1s-1 at 

pH 7) and hydroxyl radicals (k”
HO·,app,CIP = 1.19(±0.69)×1010 M-1s-1 at pH 7). 

 In the continuous ozone addition reactor, ciprofloxacin is quickly transformed in 

the absence of any background DOC. 

 In the presence of NOM, ciprofloxacin removal for particular applied ozone doses 

depended on the DOC concentration and NOM composition. 

 Of the three NOM sources tested, the hydrophobic organic acids isolated from 

Claremore Lake exerted the greatest impact on ciprofloxacin transformation.  The 

Claremore Lake transphilic organic acids isolate exerted the lowest impact on 

ciprofloxacin transformation, while the Lake Austin hydrophobic organic acids 

were intermediate in their effect.  These results are consistent with the 

composition and SUVA254 of the NOM isolates. 

 Ciprofloxacin inhibits E. coli at relatively low concentrations, and the inhibition 

profile is exceptionally sharp with the difference between complete and no 

inhibition being approximately 7 µg/L (4-11 µg/L).  The IC50 and Hill slope of the 

ciprofloxacin inhibition profile are 9.0 µg/L and 0.42, respectively. 

 The residual antimicrobial activity of samples from continuous ozone addition 

experiments was measured, and the inhibition profile of oxidized samples was 
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shifted to lower ciprofloxacin concentrations, suggesting that intermediate 

oxidation products exert a non-negligible antimicrobial activity. 

 The applied ozone dose required for complete removal of residual antimicrobial 

activity depends on the presence, concentration, and composition of the 

background NOM present in solution. 

 

The rate constants for erythromycin transformation by ozone, identification of the 

intermediate oxidation products formed through erythromycin reaction with ozone, and 

characterization of the antimicrobial activity of erythromycin and its major intermediate 

oxidation products were presented in Chapter 6.  In solution, erythromycin A readily 

degrades to anhydroerythromycin A; this reaction is irreversible.  As erythromycin A and 

anhydroerythromycin A were present in samples, experimentation addressed the points 

listed above for both compounds.  The following conclusions were reached. 

 The rate constants for transformation of the deprotonated forms of erythromycin 

A and anhydroerythromycin A by ozone were determined to be k”
O3,EA = 

4.36(±0.14)×106 M-1s-1 and k”
O3,AEA = 6.00(±0.25)×106 M-1s-1, respectively. 

 The kinetics of erythromycin transformation by ozone are so rapid that no 

hydroxyl radical exposure was observed (while erythromycin remained in 

solution). 

 The inhibition profile of erythromycin exhibited a gentler slope (i.e., a larger 

range of pharmaceutical concentrations result in partial E. coli inhibition) than 

that of ciprofloxacin.  The IC50 and Hill slope of the erythromycin inhibition 

profile were 4.87(±0.55)×10-5 M and 1.72(±0.32)×104, respectively. 

 The antimicrobial activity against E. coli of anhydroerythromycin A was found to 

be negligible compared to that of erythromycin A; therefore, one approach to 

removing the antimicrobial activity of solutions containing erythromycin A is to 

lower the pH. 
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 The major intermediate oxidation products formed via ozone attack on 

erythromycin A and anhydroerythromycin A were identified as erythromycin A 

N-oxide and anhydroerythromycin A N-oxide. 

 Erythromycin A N-oxide and anhydroerythromycin A N-oxide demonstrated 

negligible antimicrobial activity against E. coli. 

 

SIGNIFICANCE 

As comprehension of the extent of pharmaceutical contamination increases, the 

understanding of engineered processes aimed at effectively removing these compounds 

from water and wastewater sources is crucial.  In this research, the ability of ozone to 

treat four pharmacologically active compounds was demonstrated.  The dual oxidation 

mechanism (i.e., ozone and hydroxyl radicals) present in ozone processes ensures 

effective treatment of PhACs.  For this reason, ozone-based processes have a unique 

advantage with respect to treatment of wastewater-derived organic contaminants. 

 

The individual findings from Chapters 4-6 can be merged to demonstrate the 

higher level findings of this research.  From the calculated rate constants, it is clear that 

cyclophosphamide and ifosfamide react slowly with ozone and that ciprofloxacin and 

erythromycin react quickly with ozone.  The four compounds demonstrate rate constants 

for reaction with hydroxyl radicals of 2.7‒12×109 M-1s-1.  Typical values of ozone 

exposure and hydroxyl radical exposure after 30 minutes in the continuous aqueous 

ozone addition reactor were 9.1×10-3 M-s and 4.0×10-10 M-s, respectively.  At pH 7, these 

exposures would lead to complete ciprofloxacin and erythromycin transformation; the 

removal efficiencies of cyclophosphamide and ifosfamide would be approximately 66%.  

With a hydroxyl radical exposure of 2×10-9 M-s, over 99% removal of cyclophosphamide 

and ifosfamide can be achieved.  In the continuous ozone and peroxone addition reactors, 

the ozone and hydroxyl radical exposures can be easily controlled; therefore, depending 

on the PhAC composition of the untreated water, the process can be optimized.  For 

conventional ozone reactors, the applied ozone dose that corresponds to a sufficient 
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ozone exposure (and by extension, hydroxyl radical exposure) for the water of interest 

must be determined.  The rate constants for transformation of these four compounds by 

ozone span the range of expected values for a much broader array of PhACs; therefore, 

ozone-based treatment processes aimed at PhAC treatment should be capable of 

achieving an ozone exposure of at least 9.1×10-3 M-s and a hydroxyl radical exposure of 

at least of 2×10-9 M-s, even in the presence of background NOM. 

 

The findings of this study indicate that concern over the formation of 

pharmacologically active intermediate oxidation products during ozonation of 

pharmaceuticals is valid.  Erythromycin was the only compound that did not theoretically 

or experimentally demonstrate the ability to form pharmacologically active compounds 

through reaction with ozone.  During treatment of the two prodrugs, cyclophosphamide 

and ifosfamide, the active metabolites, phosphoramide mustard and isophosphoramide 

mustard, were formed.  Other metabolic products of cyclophosphamide and ifosfamide 

were also detected, indicating the ability of hydroxyl radical driven oxidation processes 

to emulate metabolic processes.  Additionally, intermediate oxidation products stemming 

from ciprofloxacin transformation contributed to the residual antimicrobial activity of 

treated samples.  For this reason, detailed analyses of other pharmaceuticals are expected 

to indicate that the potential to form pharmacologically active products is widespread.  

Therefore, this work should be considered as part of a model relating ozone and hydroxyl 

radical attacks to the structure-pharmacological activity relationships of various classes of 

drugs. 

 

The rise of wastewater reclamation and indirect water reuse has propelled the 

issue of trace organic contaminants into media and academic spotlight.  Due to mounting 

pressure from their customers, municipal water utilities are concerned about the presence 

of trace constituents in finished drinking water and wastewater.  In these treatment 

scenarios, it is important to consider compounds that compete with pharmaceuticals for 

reaction with ozone and hydroxyl radicals.  For the most part, competition will be 
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manifested through the oxidant demand of the background NOM matrix.  A major focus 

of the research presented herein was to determine the impact of organic matter on 

oxidation of the four target pharmaceuticals.  Results demonstrate that the presence and 

composition of NOM can significantly alter the applied ozone dose required to achieve 

the desired removal efficiency.  While others have demonstrated how NOM composition 

affects NOM reactivity with ozone, this research goes further to show the impact that 

NOM reaction with ozone has on not only ciprofloxacin and erythromycin removal, but 

also elimination of residual antimicrobial activity. 

 

With the increasing attention on treating trace constituents in water and 

wastewater processes, pioneering changes to traditional ozonation experiments are vital.  

Traditionally, ozone has been applied in the gaseous form, necessitating the presence of 

gaseous diffusers in the ozone contact tanks.  Moving forward, it would be interesting to 

assess the effectiveness of the continuous ozone and peroxone addition reactors in pilot-

scale projects.  These pilot-scale reactors would supply highly concentrated liquid ozone 

(and hydrogen peroxide in the case of peroxone treatment) in a similar manner as liquid 

chlorination processes.  In addition, opportunities exist for using the off-gas from the 

ozone stock solution in other stages of the treatment train, applying higher ozone doses, 

and improving occupational safety.  Given these possibilities and the operational ease of 

employing aqueous ozone, these novel ozone-based processes might demonstrate 

significant advantages in water and wastewater treatment plants. 

 

RECOMMENDATIONS FOR FUTURE WORK 

This research has demonstrated the ability for ozone-based water treatment 

processes to effectively treat four pharmaceuticals (two antimicrobials and two 

chemotherapy agents) in a variety of background water matrices.  The experimental 

design of the research activities described within this dissertation has connected key 

parameters in oxidation processes aimed at treating trace organic contaminants, and in 

particular, pharmacologically active compounds.  While key connections have been made 
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regarding the impact of organic matter on treatment of pharmaceuticals, the ability for 

pharmacologically active intermediate oxidation products to be formed in oxidation 

processes, and the removal of residual antimicrobial activity throughout treatment of 

pharmaceuticals, this field is still relatively young.  Therefore, I propose the following 

recommendations for future work aimed at furthering the scientific and engineering 

understanding of ozone-based processes aimed at water treatment of organic wastewater-

derived contaminants. 

 

1.) Isolation of intermediate products.  While the antimicrobial activity assay 

employed in this research (and that of other researchers) can suggest the impact of 

intermediate oxidation products on residual antimicrobial activity, a direct 

measure of the inhibition profile of all intermediate products will provide a clearer 

evaluation of how intermediate oxidation products contribute to the ultimate 

antimicrobial activity.  At this time, no such work has been done; however, with 

advanced analytical equipment (LC-MS/MS) and the versatile collection of solid-

phase extraction materials, isolation of individual intermediate oxidation products 

should be possible.  By isolating individual products and measuring their 

inhibition profile, a detailed library of compound potencies can be created for 

individual pharmaceuticals.  Such work would allow a more thorough 

understanding of the overall potency of intermediate oxidation products as 

compared to that of the parent pharmaceuticals. 

 

2.) Residual pharmacological activity of water sources containing multiple 

pharmaceuticals.  In this research, the behavior of the residual pharmacological 

activity of a water containing a mixture of pharmaceuticals from the same class of 

drugs (e.g., antibiotics) was not investigated.  Can the ultimate pharmacological 

activity of the mixture be determined by considering the additive effects of the 

individual pharmaceuticals?  If not, is the ultimate pharmacological activity of 

mixtures synergistic (the combined effect is greater than the additive effects of the 
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individual components) or antagonistic (the combined effect is less than the 

additive effects of the individual components)?  Furthermore, this question 

applies to the additive effects of a parent compound and its intermediate oxidation 

products.  Does the formation of intermediate oxidation products affect the 

residual antimicrobial activity on a per mole of parent compound basis? 

 

3.) Consideration of non-lethal impacts.  The work on the pharmacological activity 

of both parent compounds and transformation products presented in this 

dissertation focused only on antimicrobial activity, which was measured as a 

function of E. coli proliferation.  While such work is pioneering, the next step in 

this hybrid association of water treatment with environmental toxicology is 

consideration of non-lethal impacts that pharmaceuticals exert on environmental 

and human health.  How does the presence of anti-inflammatory, 

antihypertensive, antidepressant, anti-diabetic, and other drugs in water affect 

environmental and human health?  Furthermore, research in the antibiotic 

community has demonstrated that, at sub-lethal concentrations, antibiotics can 

affect cell-signaling processes.  As environmentally-relevant concentrations are 

typically in the sub-lethal regime, it would be interesting to extend this research 

into how water and wastewater treatment processes affect the ability of water 

containing PhACs to impact cell-signaling processes. 

 

4.) Model development for predicting PhAC transformation efficiency.  Using known 

rate constants for PhACs, PhAC intermediate oxidation products, and NOM, and 

typical values of ozone exposure and hydroxyl radical exposure experienced in 

oxidation and advanced oxidation processes, the transformation efficiency of 

PhACs can be modeled for specified systems.  Given the wide range of rate 

constants observed for PhAC transformation by ozone, this model would be 

particularly useful in delineating PhAC transformation efficiencies for solutions 

containing mixtures of pharmaceuticals. 
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5.) Pilot scale testing of the continuous aqueous ozone addition reactor.  While the 

above efforts are mainly focused on environmental toxicology extensions of this 

work, future work on the engineering aspects of this project also exist.  In 

particular, it would be interesting to study the ability of the continuous aqueous 

ozone addition reactor to operate in a pilot-scale setting.  In this case, I envisage a 

process that is similar to liquid chlorination processes.  Engineering challenges 

include (1) maintaining the stock ozone supply while introducing enough ozone to 

effectively treat trace organic contaminants in a continuous flow scheme, (2) 

efficiently using the off-gas from the ozone stock solution in other stages of the 

treatment train, and (3) conducting an energy audit of the continuous aqueous 

ozone reactor and comparing the treatment cost (kWh/1000 gallons) with a 

gaseous ozonation system operating at the same level of PhAC transformation.  
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APPENDIX A – DISH WASHING AND AUTOCLAVE PROTOCOLS 

 

Dish Washing Protocol 

All glassware underwent stringent washing protocol.  First dishes were rinsed 

with tap water and submerged in an Alconox solution for at least 30 minutes.  Dishes 

were rinsed with Alconox solution at least three times, rinsed five times with tap water, 

and submerged in a Micro-90® (an alkaline detergent; Micro-90(R), 2009) bath 

overnight.  After rinsing at least three times with the Micro-90® solution, the dishes were 

rinsed five times with DI and submerged in a 10% nitric acid bath overnight.  The dishes 

were rinsed at least three times with the acid bath solution, rinsed five times with DI, and 

left to dry overnight.  To remove any organic carbon from the glassware, dishes were 

baked in a muffle furnace set to 550°C for at least three hours.  After cooling, dishes were 

covered with Parafilm to prevent accumulation of dust or particles in the glassware.   

 

Autoclave Procedure 

All dishware and solutions used in the antimicrobial activity assay were 

autoclaved prior to use.  The autoclave was the Sterilmatic model from Market Forge 

Industries, Inc.  Dishware was either loosely capped or covered with aluminum foil and 

autoclaved for 21 minutes using a fast temperature ramp.  Solutions, including DI and 

Mueller-Hinton Broth (MHB), were autoclaved for 21 minutes using a slower 

temperature ramp.  All solid microbial waste was collected in an autoclavable bag, 

autoclaved for at least 30 minutes, marked with a “Treated in Accordance with Section 

1.136 of the TAC Special Waste from Health Care Related Facilities Regulations” 

sticker, and disposed of into normal-use waste bins.  All liquid waste was placed into a 

bottle containing approximately 10% bleach and autoclaved for at least 30 minutes, and 

disposed of into hazardous waste bins for subsequent disposal by the University of Texas 

Environmental Health and Safety team.  
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APPENDIX B – FLUORESCENCE EEM DATA FOR NOM ISOLATES 

 

 

Recently, several authors (Baker, 2001; 2002a; b; Chen et al., 2003; Her et al., 

2003) have used fluorescence mapping as a tool for describing the makeup of organic 

matter in water sources.  Chen et al. (2003) published a Fluorescence Excitation-

Emission Matrix (EEM) map (Figure B-1) that listed the location of several classes of 

organic compounds.  Several authors have employed this tool to show how NOM 

matrices are altered in treatment processes (Win et al., 2000; Holbrook et al., 2005). 

 

 

Figure B-1. Description of the major regimes of a Fluorescence EEM map. 
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Below, in Figure B-2, the fluorescence maps for the Claremore Lake HPOA and 

TPIA isolates, and the Lake Austin whole water and HPOA isolate are presented.  The 

EEMs for these NOM matrices are different; also, note the difference in magnitude of the 

fluorescence signal amongst the four samples.  These Fluorescence EEMs contain a lot of 

data; therefore, several authors have taken to calculating the fluorescence index as the 

ratio of the emission at 470 nm by the emission at 520 nm at an excitation wavelength of 

370 nm (Jaffe et al., 2008).  The fluorescence indices for the NOM matrices presented in 

Figure B-2 are provided in Table B-1.   

 

 

Figure B-2. Fluorescence maps of (a) Claremore Lake HPOA, b.) Claremore Lake 
TPIA, c.) Lake Austin raw water, and d.) Lake Austin HPOA. 

 

 



199 
 

Table B-1. Fluorescence index for organic matter isolates. 
Solution Fluorescence Index 
Claremore Lake HPOA 1.31 
Claremore Lake TPIA 1.55 
Lake Austin Raw Water 1.52 
Lake Austin HPOA 1.34 
 

 

In Chapters 4-6, the impact of organic matter on oxidation of the four 

pharmacologically active compounds of concern was investigated.  As only three NOM 

isolates were available, no overriding conclusions were drawn from that data with respect 

to the Fluorescence Excitation-Emission Matrix data.  Regardless, this information is 

provided here for future researchers employing the Lake Austin and Claremore Lake 

isolates employed in this research. 
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APPENDIX C:  ANTIMICROBIAL ACTIVITY ASSAY DATA ANALYSIS 

 

 

This Appendix explains the analysis of antimicrobial activity data using the 

inhibition profile and the potency equivalents protocols that were discussed in Chapters 

5-6. 

 

Inhibition Profile Protocol 

Wells were partially filled with 100 μL of a standard or sample; then, 100-μL of 

the E. coli inoculum is added to the well.  Triplicates are run for all standards and 

samples.  The plate setup for a microplate containing standard solutions of ciprofloxacin 

is shown below; please note, that the positive and negative growth controls were present 

on another plate for this particular experiment. 

 

PLATE SETUP 
CIP 

(µg/L) 1 2 3 4 5 6 7 8 9 10 11 12 

A 100.00 80.00 64.00 51.20 40.96 32.77 26.21 20.97 16.78 13.42 10.74 8.59 

B 100.00 80.00 64.00 51.20 40.96 32.77 26.21 20.97 16.78 13.42 10.74 8.59 

C 100.00 80.00 64.00 51.20 40.96 32.77 26.21 20.97 16.78 13.42 10.74 8.59 

D      
E 6.87 5.50 4.40 3.52 2.81 2.25 1.80 1.44 1.15 0.92 0.74 0.59 

F 6.87 5.50 4.40 3.52 2.81 2.25 1.80 1.44 1.15 0.92 0.74 0.59 

G 6.87 5.50 4.40 3.52 2.81 2.25 1.80 1.44 1.15 0.92 0.74 0.59 

H      

 

In this example, standard solutions containing various concentrations (0.59-100 

µg/L) of ciprofloxacin were added to microplate.  After 100-µL of each standard was 

added to the wells, 100-µL of the E. coli inoculum was added to each well.  The plate 

was incubated for 20 hours at 37°C in ambient air.  After the incubation period, the 
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absorbance at 600 nm for each well was read using a microplate reader.  The absorbance 

of a microplate containing no solution (i.e., a blank plate) was subtracted from the raw 

data.  The raw data and the corrected data are presented below: 

 

RAW ABSORBANCE DATA 
ABS600 nm 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.149 0.159 0.146 0.150 0.149 0.145 0.159 0.146 0.164 0.167 0.196 0.198 

B 0.146 0.143 0.139 0.142 0.144 0.136 0.152 0.146 0.144 0.144 0.161 0.213 

C 0.137 0.136 0.131 0.138 0.140 0.141 0.150 0.136 0.139 0.142 0.178 0.187 

D 0.095 0.094 0.095 0.096 0.099 0.099 0.097 0.093 0.099 0.097 0.089 0.098 

E 0.204 0.225 0.224 0.246 0.245 0.254 0.246 0.242 0.242 0.237 0.248 0.250 

F 0.216 0.230 0.240 0.239 0.234 0.235 0.243 0.221 0.247 0.242 0.241 0.257 

G 0.216 0.229 0.246 0.240 0.233 0.228 0.251 0.241 0.251 0.258 0.235 0.251 

H 0.094 0.096 0.091 0.098 0.095 0.105 0.104 0.098 0.101 0.098 0.103 0.105 

CORRECT ABSORBANCE DATA 
ABS600 nm 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.338 0.018 0.335 0.328 0.323 0.315 0.311 0.280 0.263 0.259 0.261 0.254 

B 0.325 0.012 0.273 0.196 0.196 0.226 0.289 0.221 0.258 0.258 0.250 0.227 

C 0.231 0.012 0.201 0.324 0.331 0.256 0.233 0.172 0.235 0.167 0.236 0.219 

D 0.011 0.004 0.009 0.005 0.005 0.011 0.009 0.004 0.007 0.000 0.003 -0.002 

E 0.211 0.197 0.202 0.179 0.167 0.129 0.052 0.035 0.045 0.034 0.012 0.010 

F 0.221 0.209 0.198 0.152 0.171 0.149 0.072 0.040 0.040 0.044 0.014 -0.004 

G 0.226 0.205 0.197 0.191 0.171 0.166 0.124 0.068 0.053 0.046 0.019 0.008 

H 0.013 0.009 0.008 0.010 0.010 0.015 0.011 0.010 -0.008 0.003 0.022 0.028 

 

For this example, the corrected absorbance values for the negative and positive 

growth controls were 0.033 and 0.144, respectively.  The corrected raw data was then 

normalized using Eq. C-1, and converted to percent of E. coli inhibition using Eq. C-2.  

These equations set the negative and positive growth controls to 0 and 100% inhibition, 

respectively.   
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Table C-1 shows the ciprofloxacin concentration, the corrected and normalized 

absorbance at 600 nm data, and the percent of E. coli inhibition for the microplate 

described above. 

 

Table C-1. Summary of inhibition data for antimicrobial activity assay with 
ciprofloxacin. 

CIP 
(µg/L) 

ABS600 nm ABS600 nm,norm. Percent E. coli Inhibition 

Rep. 1 Rep. 2 Rep. 3 Rep. 1 Rep. 2 Rep. 3 Rep. 1 Rep. 2 Rep. 3 

100.00 0.0333 0.0270 0.0387 0.0012 -0.0558 0.0491 99.9 105.6 95.1 

80.00 0.0347 0.0410 0.0213 0.0132 0.0701 -0.1067 98.7 93.0 110.7 

64.00 0.0390 0.0367 0.0353 0.0521 0.0311 0.0191 94.8 96.9 98.1 

51.20 0.0360 0.0310 0.0363 0.0251 -0.0198 0.0281 97.5 102.0 97.2 

40.96 0.0297 0.0427 0.0423 -0.0318 0.0851 0.0821 103.2 91.5 91.8 

32.77 0.0217 0.0203 0.0307 -0.1037 -0.1157 -0.0228 110.4 111.6 102.3 

26.21 0.0443 0.0437 0.0450 0.1000 0.0941 0.1060 90.0 90.6 89.4 

20.97 0.0300 0.0443 0.0417 -0.0288 0.1000 0.0761 102.9 90.0 92.4 

16.78 0.0430 0.0337 0.0293 0.0881 0.0042 -0.0348 91.2 99.6 103.5 

13.42 0.0527 0.0423 0.0423 0.1750 0.0821 0.0821 82.5 91.8 91.8 

10.74 0.0863 0.0603 0.0790 0.4776 0.2439 0.4117 52.2 75.6 58.8 

8.59 0.0830 0.1067 0.0833 0.4476 0.6604 0.4506 55.2 34.0 54.9 

6.87 0.1130 0.1240 0.1203 0.7173 0.8162 0.7833 28.3 18.4 21.7 

5.50 0.1330 0.1397 0.1350 0.8971 0.9571 0.9151 10.3 4.3 8.5 

4.40 0.1260 0.1467 0.1503 0.8342 1.0200 1.0529 16.6 -2.0 -5.3 

3.52 0.1427 0.1387 0.1443 0.9840 0.9481 0.9990 1.6 5.2 0.1 

2.81 0.1490 0.1420 0.1300 1.0410 0.9780 0.8702 -4.1 2.2 13.0 

2.25 0.1510 0.1280 0.1227 1.0589 0.8522 0.8042 -5.9 14.8 19.6 

1.80 0.1400 0.1360 0.1503 0.9600 0.9241 1.0529 4.0 7.6 -5.3 

1.44 0.1457 0.1150 0.1337 1.0110 0.7353 0.9031 -1.1 26.5 9.7 

 

The first column (ciprofloxacin concentration) and the last three columns (Percent 

of E. coli Inhibition) were copied into GraphPad Prism.  The data was analyzed using the 

“log(inhibitor) vs. normalized response – Variable slope” model using a least squares fit.  

In addition to calculation of the standard error associated with the model fits on IC50 and 

H, the 95% confidence bands were generated.  Model input/output are shown in Figure 

C-1, below. 
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Figure C-1. GraphPad Prism input/output for analysis of the ciprofloxacin and percent 
inhibition data presented above in Table C-1. 

 

In this case, the IC50 of the data is given as the LOG(IC50) value (9.338 µg/L) 

presented in Figure C-1.  The standard error on the IC50 is ±0.2423 µg/L, and the 95% 

confidence band on the IC50 ranges from 8.854 – 9.821 µg/L.  Similarly, the Hill slope 

for this data is 0.2216, with a standard error of 0.002172; the 95% confidence band for 

the Hill slope ranges from 0.1782 to 0.2650.  The coefficient of correlation provided by 

GraphPad Prism is R2 = 0.9662.  In Figure C-2, the average (of the three replicate 

samples) for the percent inhibition data is plotted against ciprofloxacin concentration.  

The Hill curve and 95% confidence bands were plotted using the fitted values for IC50 

and H described in Figure C-1. 
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Figure C-2. The inhibition profile of ciprofloxacin against E. coli.  (The Hill curve and the 
95% confidence bands were generated in GraphPad Prism.) 

 

 

Potency Equivalents Protocol 

In this example, a 1000 mg/L erythromycin solution was generated.  That solution 

was serially diluted ten times using a dilution factor of 0.50; the final solution contained 

1.95 mg/L ERY.  These solutions (1000 µL) were added to the first row of the microplate 

(A2 through A11).  Sterile DI water (100 µL) was added to every other well on the plate 

(A1, A12, B1:H12).  The standards in A2-A11 were then serially diluted by a factor of 

0.6.  For example, 150 µL of the solution (1000 mg/L ERY) in well A11 was added to 

well B11, which already contained 100 µL of DI, thereby generating a solution with 

27.99 mg/L ERY.  It should be noted that 100 µL of sample/standard was left in each 

well.  This process was completed for each initial standard solution (A2-A11), working 

down the plate.  Hence, seven dilutions were created.  Column 1 (A1-H1) were reserved 

for positive growth controls, while Column 12 (A12-H12) were set aside for negative 

growth controls; all of these wells contained sterile DI water and the background matrix.  

A schematic of the erythromycin concentrations in each well is provided below: 
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PLATE SETUP 
ERY 

(mg/L) 1 2 3 4 5 6 7 8 9 10 11 12 

A Pos. 1.95 3.91 7.81 15.63 31.25 62.50 125.00 250.00 500.00 1000.00 Neg. 

B Pos. 1.17 2.34 4.69 9.38 18.75 37.50 75.00 150.00 300.00 600.00 Neg. 

C Pos. 0.70 1.41 2.81 5.63 11.25 22.50 45.00 90.00 180.00 360.00 Neg. 

D Pos. 0.42 0.84 1.69 3.38 6.75 13.50 27.00 54.00 108.00 216.00 Neg. 

E Pos. 0.25 0.51 1.01 2.03 4.05 8.10 16.20 32.40 64.80 129.60 Neg. 

F Pos. 0.15 0.30 0.61 1.22 2.43 4.86 9.72 19.44 38.88 77.76 Neg. 

G Pos. 0.09 0.18 0.36 0.73 1.46 2.92 5.83 11.66 23.33 46.66 Neg. 

H Pos. 0.05 0.11 0.22 0.44 0.87 1.75 3.50 7.00 14.00 27.99 Neg. 

 

After the samples were added to the plate, 100-µL of the E. coli inoculum was added to 

Columns 1-11; 100 µL of MHB was added to Column 12, which contained negative 

growth controls.  The raw data was then normalized using Eq. C-1, and converted to 

percent of E. coli inhibition using Eq. C-2.  The raw and corrected data are shown below: 

 

RAW ABSORBANCE DATA 

ABS600 nm 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.434 0.374 0.330 0.297 0.250 0.180 0.160 0.147 0.157 0.159 0.150 0.121 

B 0.406 0.363 0.343 0.308 0.258 0.243 0.157 0.145 0.152 0.149 0.150 0.114 

C 0.411 0.370 0.351 0.328 0.288 0.242 0.191 0.153 0.139 0.139 0.140 0.103 

D 0.389 0.367 0.353 0.338 0.312 0.270 0.220 0.161 0.145 0.146 0.133 0.113 

E 0.387 0.371 0.366 0.352 0.332 0.303 0.260 0.217 0.150 0.145 0.133 0.105 

F 0.380 0.380 0.360 0.352 0.345 0.316 0.291 0.239 0.210 0.146 0.132 0.105 

G 0.387 0.386 0.375 0.369 0.352 0.330 0.313 0.279 0.233 0.181 0.138 0.106 

H 0.396 0.399 0.402 0.383 0.365 0.364 0.345 0.306 0.275 0.227 0.166 0.116 
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CORRECTED ABSORBANCE DATA 

ABS600 nm 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.315 0.250 0.222 0.184 0.126 0.052 0.046 0.030 0.042 0.043 0.040 0.007 

B 0.296 0.264 0.240 0.197 0.155 0.134 0.049 0.041 0.043 0.046 0.049 0.007 

C 0.309 0.268 0.253 0.227 0.183 0.132 0.084 0.057 0.029 0.039 0.042 0.006 

D 0.293 0.262 0.253 0.231 0.205 0.155 0.105 0.058 0.036 0.030 0.027 0.005 

E 0.291 0.270 0.262 0.246 0.229 0.197 0.152 0.112 0.042 0.040 0.038 0.007 

F 0.289 0.291 0.266 0.254 0.250 0.208 0.183 0.125 0.102 0.051 0.040 0.003 

G 0.292 0.291 0.282 0.274 0.260 0.232 0.216 0.184 0.133 0.088 0.047 0.011 

H 0.284 0.300 0.301 0.280 0.266 0.255 0.244 0.208 0.166 0.123 0.052 0.013 

 

Table C-2 shows the erythromycin concentration and the serial dilutions for each 

sample, the corrected and normalized absorbance at 600 nm data, and the percent of E. 

coli inhibition for the microplate described above. 

 

The second column (Erythromycin concentration) was plotted against the last 

column (LOG(C/Co)) for all ten data sets using GraphPad Prism®, as seen in Figure C-3.  

The data was analyzed using the “log(inhibitor) vs. normalized response – Variable 

slope” model using a least squares fit; the standard error was also computed.  The 

GraphPad Prism software was not able to fit sample set #1 (serial dilutions of 1000 mg/L) 

or sample set #9 (serial dilutions of 3.91 mg/L).   
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Table C-2. Summary of inhibition data for antimicrobial activity assay with 
erythromycin run using the potency equivalents protocol. 

Top level 
ERY 

(mg/L) 
ABS600 nm ABS600 nm,norm 

Percent E. coli 
Inhibition (%) 

LOG(C/Co) 

Pos. Pos. 0.296 1.000 0.0 

Neg. Neg. 0.003 0.000 100.0 

1.95 1.95 0.250 0.842 15.8 0.000 

1.17 0.264 0.891 10.9 -0.222 

0.70 0.268 0.905 9.5 -0.444 

0.42 0.262 0.884 11.6 -0.666 

0.25 0.270 0.912 8.8 -0.887 

0.15 0.291 0.983 1.7 -1.109 

0.09 0.291 0.983 1.7 -1.331 

0.05 0.300 1.013 -1.3 -1.553 

3.91 3.91 0.222 0.746 25.4 0.000 

2.34 0.240 0.809 19.1 -0.222 

1.41 0.253 0.852 14.8 -0.444 

0.84 0.253 0.852 14.8 -0.666 

0.51 0.262 0.884 11.6 -0.887 

0.30 0.266 0.896 10.4 -1.109 

0.18 0.282 0.953 4.7 -1.331 

0.11 0.301 1.016 -1.6 -1.553 

7.81 7.81 0.184 0.616 38.4 0.000 

4.69 0.197 0.662 33.8 -0.222 

2.81 0.227 0.763 23.7 -0.444 

1.69 0.231 0.777 22.3 -0.666 

1.01 0.246 0.828 17.2 -0.887 

0.61 0.254 0.855 14.5 -1.109 

0.36 0.274 0.924 7.6 -1.331 

0.22 0.280 0.946 5.4 -1.553 

15.63 15.63 0.126 0.420 58.0 0.000 

9.38 0.155 0.519 48.1 -0.222 

5.63 0.183 0.613 38.7 -0.444 

3.38 0.205 0.690 31.0 -0.666 

2.03 0.229 0.770 23.0 -0.887 

1.22 0.250 0.843 15.7 -1.109 

0.73 0.260 0.876 12.4 -1.331 

0.44 0.266 0.897 10.3 -1.553 

31.25 31.25 0.052 0.166 83.4 0.000 

18.75 0.134 0.448 55.2 -0.222 

11.25 0.132 0.440 56.0 -0.444 

6.75 0.155 0.517 48.3 -0.666 

4.05 0.197 0.661 33.9 -0.887 

2.43 0.208 0.701 29.9 -1.109 

1.46 0.232 0.782 21.8 -1.331 

0.87 0.255 0.859 14.1 -1.553 

62.50 62.50 0.046 0.146 85.4 0.000 

37.50 0.049 0.157 84.3 -0.222 
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22.50 0.084 0.276 72.4 -0.444 

13.50 0.105 0.347 65.3 -0.666 

8.10 0.152 0.508 49.2 -0.887 

4.86 0.183 0.614 38.6 -1.109 

2.92 0.216 0.726 27.4 -1.331 

1.75 0.244 0.821 17.9 -1.553 

125.00 125.00 0.030 0.093 90.7 0.000 

75.00 0.041 0.131 86.9 -0.222 

45.00 0.057 0.185 81.5 -0.444 

27.00 0.058 0.189 81.1 -0.666 

16.20 0.112 0.372 62.8 -0.887 

9.72 0.125 0.417 58.3 -1.109 

5.83 0.184 0.616 38.4 -1.331 

3.50 0.208 0.698 30.2 -1.553 

250.00 250.00 0.042 0.132 86.8 0.000 

150.00 0.043 0.135 86.5 -0.222 

90.00 0.029 0.090 91.0 -0.444 

54.00 0.036 0.111 88.9 -0.666 

32.40 0.042 0.134 86.6 -0.887 

19.44 0.102 0.337 66.3 -1.109 

11.66 0.133 0.442 55.8 -1.331 

7.00 0.166 0.557 44.3 -1.553 

500.00 500.00 0.043 0.135 86.5 0.000 

300.00 0.046 0.147 85.3 -0.222 

180.00 0.039 0.123 87.7 -0.444 

108.00 0.030 0.091 90.9 -0.666 

64.80 0.040 0.127 87.3 -0.887 

38.88 0.051 0.163 83.7 -1.109 

23.33 0.088 0.290 71.0 -1.331 

14.00 0.123 0.409 59.1 -1.553 

1000.00 1000.00 0.040 0.126 87.4 0.000 

600.00 0.049 0.157 84.3 -0.222 

360.00 0.042 0.133 86.7 -0.444 

216.00 0.027 0.083 91.7 -0.666 

129.60 0.038 0.119 88.1 -0.887 

77.76 0.040 0.127 87.3 -1.109 

46.66 0.047 0.149 85.1 -1.331 

27.99 0.052 0.168 83.2 -1.553 
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Figure C-3. Percent inhibition plotted against LOG(C/Co) for the ten data sets described in 
Table C-2.  (GraphPad Prism was not able to fit a model to sample set #1 (1000 
mg/L) and #9 (3.91 mg/L).) 

 

 

The equivalent of IC50 (i.e., the value of LOG(C/Co) that corresponds to 50% 

inhibition) for these curves was calculated by GraphPad Prism.  Using those values, the 

potency equivalents (PEQ) were calculated according to Equation 3 (Suarez et al., 2007).  

As data set #2 did not demonstrate less than 50% inhibition, that data was not used for 

calculation of potency equivalents.  Therefore in Eq. C-3, the numerator refers to the 

antilog of the value of LOG(C/Co) that corresponds to 50% inhibition for sample set #3 

(serial dilutions of 250 mg/L); the term in the denominator corresponds to the 

corresponding value for the other sample sets.  As expected for standard solutions, the 
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PEQ data demonstrates a 1:1 relationship (Figure C-4) with the normalized erythromycin 

concentration (C/Co). 
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Figure C-4. Potency equivalents plotted against normalized erythromycin concentration. 
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APPENDIX D:  CYTOTOXICITY ASSAY  

 

The Promega CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay 

was utilized in attempts to measure the residual cytotoxic activity of solutions containing 

cyclophosphamide and ifosfamide.  Below, the procedures employed are documented to 

provide a starting point for future research efforts aimed at assessment of this parameter. 

 

Human embryonic kidney cells (HEK-293) were grown in Dulbecco’s Modified 

Eagles Medium (DMEM) with 10% Fetal Bovine Serum (FBS) in T25 culture flasks.  At 

approximately 80% confluence, the cells were rinsed with 3-mL of phosphate buffered 

saline (PBS).  The cells were then exposed to 2-mL of 0.53-mM EDTA-trypsin, which 

detaches the cells from the culture flask’s growing surface.  After 5 minutes of exposure 

to the EDTA-trypsin solution, the cell suspension was aspirated using a micropipette.  

The cell suspension was then centrifuged at 10000 rpm for 5 minutes.  The supernatant 

was wasted, and the cells were resuspended in 1-mL of PBS.  50-µL of the cell 

suspension was mixed with 50-µL of 0.4% trypan blue.  The trypan blue stain passes 

through the membrane of nonviable (dead) cells and colors the cells blue; therefore, the 

trypan blue stain allows counting of viable and nonviable cells.  10-µL of the cell-trypan 

blue mixture was added to a hemacytometer.  The hemacytometer was viewed at 200× 

magnification (Figure D-1a), and cells were counted as described by Eq. D-1 and Figure 

D-1b. 
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Figure D-1. a.) A microphotograph of a portion of the hemacytometer grid; each of 
the small boxes shown is 0.0625-mm × 0.0625-mm.  b.) An illustration of 
the grid pattern on the hemacytometer and presentation of what areas 
(A-D) are used for cell counting.

   

 

After counting the cells, the cell suspension (in PBS) was centrifuged at 10000 

rpm for 5 minutes.  The supernatant was wasted, and the HEK-293 cells were 

resuspended in 1-mL of DMEM with 10% FBS.  Next, different numbers of cells were 

added to the microplate wells in a total volume of 100-µL DMEM with 10% FBS.  In 

Figure D-2, six different cell concentrations (0, 7800, 19,500, 39,000, 58,500, and 78,000 

cells/well) were employed.  After the cells were added to the wells, the plate was 

incubated at 37°C with 5% CO2 for one hour.  Then, 20-µL of the assay solution (a 

mixture of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium (MTS) and phenazine methosulfate (PMS), an electron coupling reagent) 

was introduced to the well.  Viable cells convert MTS into a formazan product that 

absorbs light at 490 nm.  Hence, the absorbance at 490 nm can be used as an indirect 

measure of the number of viable cells in each well; the absorbance at 650 nm was used as 

a reference wavelength.  After addition of the MTS/PMS solution, the microplate was 

incubated for 2 hours at 37°C with 5% CO2.  The microplate was then analyzed using a 

microplate reader (BioTek), and the absorbance at 490 nm and 650 nm (reference) were 

recorded. 
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Figure D-2. Photograph of the solution coloring throughout the cell-response 
calibration experiment using HEK-293 cells and the MTS/PMS reagent 
solution. 

 

 

The calibration protocol described above and the photographs shown in Figure D-

2 only employed single measurements of six cell concentrations.  Figure D-3 represents 

the same type of calibration experiment; however, more cell concentrations were 

employed, and samples were prepared in triplicate.  The difference in the absorbance at 

490 nm and the absorbance at 650 nm is plotted against the original number of cells 

added to each well in Figure D-3.  The calibration curve demonstrates a linear fit with 

good correlation coefficient (R2 = 0.992) from 0 to 70,000 cells.  At cell counts greater 

than 70,000, the difference in absorbance at 490 nm and 650 nm leveled out.  

Observation of the strong purple color of the solutions in these wells suggests that the 

absorbance at 490 nm maxes out at these high cell counts because all of the MTS in 

solution was converted to formazan.   
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Figure D-3. Calibration curve of initial number of HEK-293 cells added to the 
microplate wells with the response determined using the difference in 
absorbance at 490 nm and 650 nm. 

 

 

Unfortunately, we were unsuccessful in our attempts to standardize this assay 

with standard solutions containing cyclophosphamide.  The results of one attempt to 

build a standard calibration curve using known concentrations of cyclophosphamide are 

shown in Figure D-4.  Clearly, no trend was observed.  Based on the intermediate 

oxidation products identified in Chapter 4, we believe that future application of a similar 

assay to measure the residual pharmacological activity associated with ozonation of 

cyclophosphamide or ifosfamide would provide interesting results. 
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Figure D-4. Results from an attempt to standardize the response of the MTS 
cytotoxicity assay to standard solutions of cyclophosphamide.  (No 
calibration curve could be generated.) 
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APPENDIX E:  COMPARISON OF THE VARIABLE VOLUME, CONSTANT 

VOLUME, AND MODIFIED CONSTANT VOLUME MODELS 

FOR PHARMACEUTICAL TRASNFORMATION IN THE 

CONTINUOUS OZONE ADDITION REACTOR 

 

 

Variable Volume Model 

 

The continuous ozone addition reactor is essentially a continuous flow stirred tank 

reactor (CFSTR).  The change in concentration of any species in a CFSTR can be 

modeled using Eq. E-1.  In this case, two general assumptions were made:  sample 

withdrawal was assumed to be a flow rate, that is, the sample volume was divided by the 

sampling interval to obtain Qout; and, both flow rates (Qin and Qout) were considered to be 

constant throughout experimentation. 

  

 

 
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dt

dV
C

dt

dC
V
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VCd
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outout 
 Eq. E-1

 

 

Substituting in the variables relevant to this problem yields Eq. E-2.  In this case, the 

pharmaceutical concentration is the variable of interest.  For this example, we are only 

considering pharmaceutical transformation by ozone.  As the influent is the ozone stock 

solution, [PhAC]in is zero and the influent mass flow term goes to zero. 
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 Eq. E-2
 

 

V is the volume of solution in the reactor, which is a function of the initial solution 

volume (Vo), influent flow rate (Qin), the effluent flow rate (Qout), and time (t), as shown 
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in Eq. E-3; [PhAC] is the pharmaceutical concentration at time t; dV/dt is the derivative 

of the volume with respect to time (Eq. E-4); k”
O3,PhAC is the second-order rate constant 

for transformation of the pharmaceutical by ozone; and [O3] is the ozone concentration at 

time t. 

 

   tQQVV outino   Eq. E-3 
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 Eq. E-4
 

 

Dividing both sides of Eq. E-2 by V yields Eq. E-5. 
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 Eq. E-5
 

 

Substituting Eq. E-4 into Eq. E-5 yields Eq. E-6. 
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 Eq. E-6
 

 

Eq. E-3 can be substituted into Eq. E-6; rearrangement and simplification of the resulting 

equation leads to Eq. E-7. 
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Multiplying Eq. E-7 by dt/[PhAC] and integrating both sides with respect to time yields 

Eq. E-8. 
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Integration of the left hand side of Eq. E-8 is relatively straightforward.  The right hand 

side of Eq. E-8 can be integrated in parts (Eq. E-9). 
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Consider the first term on the right hand side of Eq. E-9.  The denominator can be called 

u, as shown in Eq. E-10.  The derivative of Eq. E-10 with respect to time (du) is shown in 

Eq. E-11. 

 

   tQQVu outino   Eq. E-10 

 

  dtQQdu outin   Eq. E-11 

 

Substitution of Eqs. E-10 and E-11 into the first term on the right hand side of Eq. E-9 

allows integration of that term with respect to time as shown in Eqs. E-12 and E-13. 
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Integration of the second term on the right hand side of Eq. E-9 is relatively 

straightforward.  For this analysis the ozone concentration ([O3]) was set to a constant 

value, i.e., [O3] did not vary with time.  This assumption is well grounded in the ozone 

data from experimentation, and it allows straightforward analysis of the change in 

pharmaceutical concentration as a function of time.  Then, integration of Eq. E-9 with 

respect to time yields Eq. E-14. 
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Rearrangement of Eq. E-14 yields Eq. E-15, which can be directly compared to Eq. E-5 

to assess the effect of the constant volume assumption.  Eq. E-15 is the general solution 

for a CFSTR resembling the continuous ozone addition reactor.  The solution for a 

scenario where Qin = Qout is shown in Eq. E-15*. 
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Constant Volume Model 

 

The change in pharmaceutical concentration in a batch reactor (constant volume) 

can also be modeled.  In this case, the overriding assumption is that there are no inputs or 

outputs to the reactor (i.e., Qin = 0, Qout = 0).  Using these assumptions, the change in 

pharmaceutical concentration in a batch reactor was modeled using Eq. E-16. 

 



220 
 

 
Vr

dt

dC
V 

 Eq. E-16
 

 

As expected, the volume term cancels itself out in Eq. E-16.  Substituting the 

pharmaceutical concentration at time t [PhAC] in for C, and the second-order reaction 

term in for r, Eq. E-16 becomes Eq. E-17. 
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Rearrangement of Eq. E-17 and integration with respect to time yields Eq. E-18. 
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Integration of these two terms was completed above for Eq. E-9.  The resultant 

expression is shown in Eq. E-19. 
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Rearranging Eq. E-19 allows us to solve for the pharmaceutical concentration at any 

time, t, as shown in Eq. E-20. 
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Modified Constant Volume Model 

 

Clearly, the constant volume model (Eq. E-20) oversimplifies the mass transfer 

system present in the continuous ozone addition reactor.  However, the variable volume 

model (Eq. E-15) is complex and difficult to employ for data that demonstrates several 

time dependent parameters.  Therefore, a modified constant volume model was employed 

to describe pharmaceutical transformation in the continuous ozone addition reactor.  In 

this model, Eq. E-20 is multiplied by the ratio of the initial reactor volume to the reactor 

volume at time, t, as shown in Eq. E-21.  The inclusion of this parameter allows us to 

account for the changing volume in the reactor. 
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Comparison of the Three Models 

 

Typical values of the relevant parameters were employed to demonstrate the 

differences between the variable volume model (Eq. E-15), the constant volume model 

(Eq. E-20), and the modified constant volume model (Eq. E-21) that was used in 

Chapters 3-5. 

 

For the first example, consider the following values:  Qin was 2.73 mL/min, Qout 

was 1.2 mL/min; Vo was 2000 mL, [IFO]o was 3.83×10-7 M, k”
O3,IFO was 6.84 M-1s-1, and 

[O3] was 3.90×10-5 M.  In these scenarios, the second-order rate constant for IFO 

transformation by ozone refers to the value measured using the constant volume model; 

that value is used in the variable volume and constant volume models.  For the modified 

constant volume model, the rate constant determined in the t-BuOH experiment 

incorporates the dilution adjustment (Vo/V) that is present in Eq. E-21.  For this example, 

the second-order rate constant for IFO transformation by ozone in the modified constant 
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volume model is k”
O3,PhAC = 7.38 M-1s-1.  In this example, the volume change throughout 

experimentation is approximately 9%.  The resultant curves for the variable volume, 

constant volume, and modified constant volume solutions are shown below in Figure E-1. 

 

 

Figure E-1. Comparison of the constant volume, variable volume, and modified 
constant volume models for ifosfamide transformation. (In this example, 
the volume changed by approximately 9% during experimentation.) 

 

 

In this case, the constant volume assumption results in a rate constant 

(6.84(±0.27) M-1s-1) approximately 8.4% lower than that of the variable volume model 

(7.47 M-1s-1).  The rate constant for the modified constant volume model was found to be 

7.38(±0.27) M-1s-1, which is approximately 1.2% less than that predicted by the variable 

volume model; however, the 95% confidence interval on the rate constant found using the 

modified constant volume model overlaps the value predicted by the variable volume 

model.   
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Similar results were attained for cyclophosphamide.  Consider the same example 

as that just discussed, but now the rate constants for the constant volume and modified 

constant volume models are k”
O3,CYP was 2.50(±0.48) M-1s-1 and k”

O3,CYP was 3.03(±0.48) 

M-1s-1, respectively (Figure E-2).  Recall that these parameters were calculated from 

experimental data as described above.  In the variable volume model, the calculated rate 

constant is 3.05 M-1s-1.  Clearly, the modified constant volume model (with 95% 

confidence intervals) overlaps with the variable volume rate constant. 

 

 

Figure E-2. Comparison of the constant volume, variable volume, and modified 
constant volume models for cyclophosphamide transformation. 

 

Next, consider an example with a greater difference in Qin and Qout.  The values of 

the parameters were:  Qin was 3.23 mL/min, Qout was 0.27 mL/min; Vo was 2000 mL, 

[PhAC]o was 3.83×10-7 M, k”
O3,IFO was 6.84 M-1s-1, and [O3] was 4.60×10-5 M.  In this 

case, the total volume change is approximately 18%.  The resultant curves for the 

constant volume and variable volume solutions are shown below in Figure E- 3. 
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Figure E- 3. Comparison of the constant volume, variable volume, and modified 
constant volume models for ifosfamide transformation. (In this example, 
the volume changed by approximately 18% during experimentation.) 

 

The rate constant measured using the constant volume model (k”
O3,IFO = 

6.84(±0.27) M-1s-1) is approximately 7.4% lower than that described by the variable 

volume reactor (k”
O3,IFO = 7.39 M-1s-1).  Again, the modified constant volume model 

(k”
O3,IFO = 7.38(±0.27) M-1s-1) compares well to the variable volume model. 

 

The impact of the volume change in the reactor was also studied to understand 

how the increase or decrease in reactor volume affects the rate constant (for 

cyclophosphamide) calculated in the variable volume model.  For this scenario, the same 

values for the relevant parameters were used as in the previous example.  Volume 

changes of -40%, -20%, -10%, 10%, 20%, and 40% were studied.  The negative volume 

changes were modeled by changing Qout to achieve the necessary volume change over the 

course of the experiment; the positive volume changes were achieved by adjusting Qin.  

Eq. E-15* was also plotted to describe a scenario where there is an influent stream (ozone 

stock solution) and an effluent stream (sample withdrawal) but the reactor volume 
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remains constant (e.g., V(t) = 2000 mL).  From Figure E-4, it is clear that variable reactor 

volume does affect the rate constant found using the variable volume model; however, a 

volume change of approximately +36% or -71% is required before the rate constant from 

the variable volume reactor falls outside of the 95% confidence interval for the modified 

constant volume model.  All but two of the experiments were within 10% volume change 

(one experiment exhibited an 18% change and another showed 15%); therefore, we 

expect that the modified constant volume model successfully describes pharmaceutical 

transformation in the continuous ozone addition reactor. 

 

 

Figure E-4. Comparison of the constant volume, variable volume, and modified 
constant volume models for cyclophosphamide transformation.  (In this 
example, the volume change in the reactor was controlled by adjusting Qin 
and Qout.  Note, that a scenario where volume change in 0%, but influent and 
effluent streams are present (Eq. E-15*) is also plotted.) 
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