

Copyright

by

Trenton John Grale

2021

The Dissertation Committee for Trenton John Grale certifies that this is the

approved version of the following dissertation:

Rescheduled Montgomery Multiplication:

Digit Level Parallelism in Serial Architectures

Committee:

Earl E. Swartzlander, Jr., Supervisor

Andreas Gerstlauer

Lizy K. John

Michael E. Orshansky

Michael J. Schulte

Rescheduled Montgomery Multiplication:

Digit Level Parallelism in Serial Architectures

by

Trenton John Grale

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2021

Dedication

Ad maiorem Dei gloriam.

 v

Acknowledgements

It is with great pleasure that I thank my supervisor, Dr. Earl E. Swartzlander, Jr.

He made quite a positive impression on me when I first took his Computer Architecture

class, and later, High Speed Computer Arithmetic when pursuing my master’s degree.

After several years in industry, I returned to academia to pursue a doctorate, and Dr.

Swartzlander kindly and generously agreed to be my supervising professor again. He has

always encouraged me and given practical recommendations for my research and my

writing.

I would also like to thank Dr. Andreas Gerstlauer, Dr. Lizy John, Dr. Michael

Orshansky, and Dr. Michael Schulte for taking the time to serve on my dissertation

committee. I sincerely appreciate their valuable feedback and suggestions to improve my

research and dissertation. Their rigorous demands have been challenging, and they have

helped drive me to produce a far better dissertation than I could have without them.

Dr. Jason T. Arbaugh has always been available to discuss my ideas for this

research in depth. He has reviewed several sections of the dissertation and given me well

thought-out, genuinely insightful feedback and advice. The recommendations and advice

have not always been what I wanted to hear, but were what I needed to hear. Jason’s

practical assistance has been vital to my success in this work.

Joel W. Page was my first manager in the chip design business. I am grateful for

all that I learned from him, both on a practical engineering level and in collaborating with

others on complex technical projects. Like Jason, Joel has very generously reviewed

parts of the dissertation. He has asked challenging questions and provided original

insights. His assistance has been invaluable to my success.

 vi

Other people whom I consider good friends also deserve recognition. Dr. Edwin

De Angel first suggested I consider returning to graduate school to earn a Ph.D. He has

given me good insights and suggestions about the process of completing a dissertation.

Dr. K’Andrea Bickerstaff, whom I met while pursuing my Master’s degree many years

ago, has always been kind and caring. She was encouraging and welcoming when I

decided to return for a Ph.D.

Finally, I am grateful to close friends who have offered their support throughout

this journey. John G. Chertude has been a constant source of encouragement and faith in

my ability to succeed. Steven T. Vogel has also encouraged me and given me much

practical advice. My longtime friend Dr. Mark E. Swartzburg has always given me

unqualified cheerleading and a sympathetic ear, as well as insights on dissertation

writing. Finally, one of my oldest friends, Dr. James E. Hamman, has helped me by

suggesting alternative ways of thinking about and confronting the tasks at hand.

 vii

Abstract

Rescheduled Montgomery Multiplication:

Digit Level Parallelism in Serial Architectures

Trenton John Grale, Ph.D.

The University of Texas at Austin, 2021

Supervisor: Earl E. Swartzlander, Jr.

Two well-known cryptographic protocols, RSA and ECC, employ modular

multiplication on large integers or binary polynomial bit strings of hundreds or thousands

of bits. The modulus may be an odd integer (usually prime), or an irreducible

polynomial. Large products exceeding the value of the modulus must be reduced to

congruent values smaller than the modulus. In simple terms, this is done by taking the

remainder with respect to the modulus. However, reduction by integer or polynomial

division is computationally expensive.

The Montgomery Multiplication transform and algorithm replace arbitrary

division by the modulus with division by a power of two. Both hardware and software

realizations of the Montgomery algorithm have been proposed over the past three

decades. These range from serial algorithms that perform bit or digit level operations to

large full word parallel architectures.

A widely-adopted classification scheme categorizes and characterizes serial

Montgomery architectures. This dissertation introduces the Serial Montgomery Model

 viii

by fundamentally upgrading the existing scheme to accurately characterize a rich

universe of architectures that employ digit level parallelism.

Certain properties of the Montgomery computation present optimization

opportunities that have been little noted by prior researchers. This dissertation presents a

novel Rescheduled Montgomery Multiplication architecture that targets those

opportunities to drive a new level of optimal tradeoffs between area cost and latency.

The architecture exploits digit level parallelism and dependency scheduling to attain

higher performance than is attainable with serial architectures while avoiding the high

area cost associated with large parallel architectures.

 ix

Table of Contents
List of Tables...xi	

List of Figures ..xii	

Chapter 1	 Introduction ..1	

1.1	 Motivation ..1	

1.2	 Proposal ..4	

1.3	 Organization ...5	

Chapter 2	 Background ..7	

2.1	 Public Key Cryptographic Systems..7	

2.2	 Mathematical Foundation...11	

2.3	 Montgomery Multiplication ...14	

2.4	 Montgomery Inverse ..17	

2.5	 Iterative Algorithms ...19	

Chapter 3	 Related Work ...22	

3.1	 McIvor ECC Processor with Pipelined Multiplier ...22	

3.2	 Eberle Serial Digit-Digit Architecture..24	

3.3	 Großschädl Serial Bit-Word Architecture ..26	

3.4	 Tenca and Koç Serial Hybrid Bit-Digit Architecture...28	

3.5	 Sanu Parallel Architecture..31	

Chapter 4	 Serial Montgomery Design Space..35	

4.1	 Koç Montgomery Classification ..35	

4.2	 Serial Montgomery Model ...41	

Chapter 5	 Montgomery Algorithm Optimization ...47	

5.1	 Rescheduled Montgomery Multiplication..48	

5.2	 Architecture ..55	

5.3	 Implementation...63	

Chapter 6	 Methodology ..65	

6.1	 Architectural Comparisons...65	

6.2	 RTL Design and Simulation...66	

6.3	 Synthesis and Static Timing Analysis ..67	

6.4	 Evaluation Criteria..71	

 x

Chapter 7	 Elementary Montgomery Realizations...73	

7.1	 Synthesized Parallel Multipliers...73	

7.2	 Pipelined Karatsuba-Ofman Multiplier ..74	

7.3	 Full Direct Montgomery Multipliers ..77	

Chapter 8	 Results ..81	

8.1	 Synthesized Parallel Multipliers...81	

8.2	 Pipelined Karatsuba-Ofman Multiplier ..83	

8.3	 Full Direct Montgomery Multipliers ..84	

8.4	 McIvor ECC Processor with Pipelined Multiplier ...85	

8.5	 Eberle Serial Digit-Digit Architecture..87	

8.6	 Großschädl Serial Bit-Word Architecture ..92	

8.7	 Tenca and Koç Serial Hybrid Bit-Digit Architecture...93	

8.8	 Rescheduled Montgomery Multiplier...97	
8.8.1	 RMM (2, m).. 98	

8.8.2	 RMM (3, m).. 100	

8.8.3	 RMM (4, m).. 101	

8.8.4	 RMM (5, m).. 103	

8.8.5	 RMM (6, m).. 104	

8.8.6	 RMM (7, m).. 105	

8.8.7	 RMM (8, m).. 106	

8.8.8	 Rescheduled Montgomery Multiplier Summary .. 107	

8.9	 Montgomery Multiplier Comparisons..111	

Chapter 9	 Conclusions ..118	

9.1	 Results ..119	

9.2	 Future Research ..119	

References ..121	

Vita...124	

 xi

List of Tables
Table 1.	 Elliptic curve point operations for three points P1, P2, and P3.. 9	

Table 2.	 Transforms between affine and alternate coordinate systems [3]... 10	

Table 3.	 Koç, et al. serial Montgomery architecture taxonomy. .. 39	

Table 4.	 Montgomery architecture classification.. 40	

Table 5.	 Serial Montgomery Model. ... 43	

Table 6.	 Selected Serial Montgomery Model digit schedules and cycles... 45	

Table 7.	 Cycle counts for SOS, CIOS, FIOS, and SPS for k = 4 and 1 ≤ m ≤ 5................................... 46	

Table 8.	 Synthesized parallel multiplier (multiple scheduling) area and latency. 82	

Table 9.	 Synthesized parallel multiplier (multiple instantiation) area and latency............................... 82	

Table 10.	 Pipelined Karatsuba-Ofman multiplier area and latency. ... 83	

Table 11.	 Direct parallel and pipelined Montgomery area and latency. ... 84	

Table 12.	 McIvor, et al. ECC Processor area and latency. ... 85	

Table 13.	 Eberle, et al. multiplier area and latency. ... 88	

Table 14.	 Eberle, et al. multiplier with register LUT area and latency. ... 91	

Table 15.	 Eberle, et al. multiplier with RAM LUT area and latency. .. 92	

Table 16.	 Großschädl, et al. multiplier area and latency. ... 93	

Table 17.	 Tenca and Koç multiplier area and latency... 97	

Table 18.	 Rescheduled Montgomery Multiplier (k, m) combinations. ... 98	

Table 19.	 RMM (2, m) area and latency. .. 99	

Table 20.	 RMM (3, m) area and latency. .. 100	

Table 21.	 RMM (4, m) area and latency. .. 101	

Table 22.	 RMM (5, m) area and latency. .. 103	

Table 23.	 RMM (6, m) area and latency. .. 104	

Table 24.	 RMM (7, m) area and latency. .. 105	

Table 25.	 RMM (8, m) area and latency. .. 106	

Table 26.	 RMM results (Pareto frontier). ... 107	

Table 27.	 RMM results (non Pareto). ... 108	

Table 28.	 Montgomery 256-bit multipliers ranked by area. ... 112	

 xii

List of Figures
Fig. 1.	 Some elliptic curves over the set of real numbers [5]. .. 9	

Fig. 2.	 Digit multiplication.. 21	

Fig. 3.	 Eberle architecture dependency chain (k = 2). .. 25	

Fig. 4.	 Großschädl architecture dependency chain. .. 28	

Fig. 5.	 Tenca and Koç architecture dependency chain. .. 30	

Fig. 6.	 Sanu Montgomery multiplier array [23].. 32	

Fig. 7.	 Scan priority for partial product assembly [25]... 38	

Fig. 8.	 Montgomery computation steps [11]... 47	

Fig. 9.	 Digit multiplication for Q. ... 49	

Fig. 10.	 Rescheduled Montgomery Multiplier SPS dependency chain, k = 2. 51	

Fig. 11.	 Digit product scheduling for k = 2, m = 1.. 53	

Fig. 12.	 RMM pipeline for k = 2, m = 1.. 55	

Fig. 13.	 Rescheduled Montgomery Multiplier architecture. ... 57	

Fig. 14.	 Digit product accumulation for T (k = 2, m = 1).. 59	

Fig. 15.	 Digit multiplication schedule for k = 3, m = 2... 60	

Fig. 16.	 Revised digit multiplication schedule for k = 3, m = 2.. 61	

Fig. 17.	 Gate-level circuit timing with positive slack. .. 68	

Fig. 18.	 Gate-level circuit timing with negative slack. ... 69	

Fig. 19.	 Karatsuba-Ofman Z term summation. ... 75	

Fig. 20.	 Karatsuba-Ofman partial product summation. .. 76	

Fig. 21.	 Full direct parallel Montgomery architecture. ... 78	

Fig. 22.	 Full direct pipelined Montgomery architecture. .. 79	

Fig. 23.	 Full direct optimized pipelined Montgomery architecture. ... 80	

Fig. 24.	 Tenca and Koç multiplier latency versus number of PEs (m). .. 94	

Fig. 25.	 Tenca and Koç architecture latency versus area.. 96	

Fig. 26.	 RMM latency versus area with Pareto frontier.. 109	

Fig. 27.	 Latency versus area, serial architectures and RMM.. 113	

Fig. 28.	 Latency versus area, RMM and full word architectures.. 115	

Fig. 29.	 Latency versus area for implemented Montgomery multipliers.. 117	

 1

Chapter 1 Introduction

1.1 Motivation

Ensuring the privacy and integrity of sensitive electronic information continues to

gain importance as mobile and interconnected devices become more prevalent.

Encryption of data scrambles it in such a way that an unauthorized recipient cannot read

it, but an authorized recipient can. The data to be encrypted, called plaintext, is input to

an encryption algorithm with a key. The output is the encrypted data, called ciphertext.

On receipt of the ciphertext, the receiver applies it and a key to a decryption algorithm,

which outputs the plaintext.

Broadly speaking, modern cryptographic systems can be categorized as either

symmetric or asymmetric. In symmetric encryption, the same key is used for both

encryption and decryption. Two parties who wish to communicate with each other must

first share this private key between themselves. In asymmetric encryption, two separate

keys must be used: one for encryption, and one for decryption. A party that wants to

communicate securely with others will generate both keys. This is referred to as a key

pair. The encryption key is usually termed a public key, because the party generating it

makes it available to the public. Any person may use the public key to encrypt and send

a message to the generating party. It cannot be used to decrypt the message. The

decryption key is usually termed the private key, because the generating party will keep it

private, or secret. Only the private key can be used to decrypt the message. Because the

usual convention is for the encryption key to be made public, asymmetric encryption is

also referred to as a public key (PK) cryptographic system.

Public key cryptographic systems work because they are difficult to crack. They

are built upon what are termed one-way trap door functions. A function is one-way in

that it operates on the message and the encryption key to produce an encrypted output,

 2

but the reverse operation is computationally difficult. Given only the encrypted message

and the encryption key, it is a computationally hard problem to retrieve the original

message. The private encryption key provides the trap door: with the encrypted message

and the decryption key, the original message can be computed relatively easily. The

public encryption and private decryption keys have a mathematical relationship to each

other. Given a public encryption key, it is computationally difficult to determine from it

the private decryption key [1].

Two currently prevalent public key cryptosystems are the Rivest-Shamir-

Adleman (RSA) algorithm [2] and Elliptic Curve Cryptography (ECC) [3]. In both

systems, larger key sizes are correlated with higher levels of security. Currently, RSA

uses key sizes on the order of 2,048 bits or more. To achieve a comparable level of

security, ECC uses key sizes in the hundreds of bits.

At a basic level, both RSA and ECC employ modular arithmetic extensively.

That is, arithmetic operations such as addition, subtraction, multiplication, division, and

exponentiation are performed, followed by computing the modulo function on the result

with respect to some pre-selected modulus. In some cases the operands are integers, and

the modulus is often a prime number. In other cases the operands are binary

polynomials, and the modulus is an irreducible (nonfactorable) polynomial.

Multiplication and exponentiation operations present a challenge because their

intermediate results can be large relative to the operand size. Taking the modulus of a

large result can be computationally expensive. P. L. Montgomery proposed an efficient

algorithm for performing modular multiplication [4]. It plays a prominent role in this

dissertation.

Although public key cryptography employs well-understood mathematical

principles, high-performance implementation remains a challenge. One obvious reason

 3

for this is the relatively large operand sizes, on the order of hundreds or thousands of bits.

A software implementation on a general purpose 64-bit CPU can require many cycles of

loads, computations, and stores because the register file space is unlikely to be large

enough to hold the operands. A dedicated hardware implementation, with large registers,

can have high performance, but will have a high complexity and relatively low utilization

since it is dedicated to a specific function.

For a well-defined problem set, a hardware implementation will generally be

faster than a software implementation on a general purpose microprocessor. This

remains true for PK cryptosystems, for which there are pure software implementations at

one extreme, and direct hardware implementations for a specified set of parameters, at

the other. Between those extremes, there are relatively fast hardware implementations

that still provide flexibility in parameters such as key size and choice of field modulus.

Over the past several decades, researchers have proposed numerous hardware

implementations of the Montgomery multiplication algorithm, either standalone or as

components of comprehensive cryptographic engines. These architectures have made

different tradeoffs among such parameters as area, performance, power, and operand size,

according to the targeted application and other constraints such as cost. Some operate at

a fine level of granularity, splitting up operands into smaller pieces and employing a

sequence of small-scale mathematical computations which are then merged into a final

whole. If performed sequentially, the small computations can require a large number of

cycles, but with a very fast clock. Others operate at a coarser granular level, in which

each major step of the algorithm is performed whole. This usually results in a much

slower clock, but only a small number of cycles are required.

In general, the Montgomery algorithm is taken as given, and all its steps

performed. Proposals for optimizing performance or area typically focus on

 4

microarchitectural improvements to the chosen architecture. They may include

reordering parts of the algorithm, but do not change it substantively.

1.2 Proposal

When architecting a cryptographic processor, the designer will have a set of

criteria that must be met. One criterion is whether the architecture should be specific to a

particular algorithm, or general to support a multitude of algorithms. Other criteria

include the targeted operand sizes, and performance requirements such as latency (less is

generally better) and throughput (higher is generally better). At the same time, the

designer is confronted with limitations and constraints, such as allowable die area and

maximum energy consumption (especially, but not solely, in the case of mobile

deployments). Therefore, there is seldom a “one size fits all” solution. The requirements

and constraints guide the designer in choosing an architecture that best fits the particular

set of tradeoffs for the targeted deployment.

This dissertation presents a comprehensive classification scheme for Montgomery

architectures that employ digit level parallelism. It demonstrates that a widely accepted,

existing taxonomy for serial Montgomery multiplication lacks an important dimension. It

fundamentally revises the taxonomy to incorporate that dimension, and thereby expands

the taxonomy’s reach and analytic utility. The proposed Serial Montgomery Model

provides expressions for estimating the performance of realizations employing varying

degrees of digit level parallelism.

This dissertation presents a novel hardware architecture for performing

Montgomery multiplication, termed the Rescheduled Montgomery Multiplier. It

demonstrates that the proposed architecture achieves a new set of latency-area tradeoffs

 5

for hardware Montgomery multiplication, and shifts a targeted region of the latency-area

Pareto frontier to new minima.

Conceptually, this dissertation demonstrates optimization opportunities present in

the Montgomery algorithm to reduce latency in computing a Montgomery product. It is

the first research to identify and analyze those opportunities systematically and

comprehensively. Optimizations include avoiding unnecessary computations, deferring

some computations where possible, and short-circuiting other computations by replacing

them with equivalent simpler ones. The Rescheduled Montgomery Multiplier employs

parallelism and targeted instruction ordering to enable concurrent processing of different

parts of the overall computation, despite macro level dependencies. It achieves a new

level of performance while minimizing area.

Compared to various previous architectures, the Rescheduled Montgomery

Multiplier achieves at least one order of magnitude of latency reduction without invoking

a drastic area penalty. Compared to some other architectures, the Rescheduled

Montgomery Multiplier fits into less than 25% of the area, while having lower latency.

1.3 Organization

This dissertation is organized as follows. Chapter 2 introduces RSA and ECC and

describes the fundamental importance of modular multiplication to their realization. It

describes the underlying mathematical principles on which modular multiplication is

based. It presents the Montgomery multiplication algorithm and related algorithms.

Chapter 3 reviews the prior work of other researchers on Montgomery multiplication,

particularly in hardware realizations. Chapter 4 introduces a novel Montgomery

taxonomy for serial architectures that encompasses a variable degree of digit level

parallelism. Chapter 5 analyzes the Montgomery multiplication algorithm and

 6

systematically identifies opportunities for optimization. It proposes a family of hardware

architectures for dedicated Montgomery multipliers that exploit digit level parallelism

coupled with the optimization opportunities. Chapter 6 establishes the experimental

methodology and criteria for evaluation. For comparison purposes, Chapter 7 reviews

some possible naive Montgomery realizations. Chapter 8 reviews results of the

experiments. Chapter 9 draws conclusions and describes opportunities for further

research.

 7

Chapter 2 Background

2.1 Public Key Cryptographic Systems

Both RSA and ECC systems employ a large but restricted set of operands and

make extensive use of modular arithmetic. RSA employs modular exponentiation over

integer fields. This is often implemented as repeated modular multiplication and

squaring. ECC uses elliptic curve (EC) point operations on elliptic curves defined over

either finite integer fields GF(p) or finite polynomial fields GF(2n). In turn, the point

operations consist of modular addition, subtraction, multiplication, and division.

Modular division is implemented as a product of the dividend and the multiplicative

inverse (modular inversion) of the divisor.

Because a computation can produce a result that is outside the allowable range of

elements of the field, an important step is reduction of the result to a congruent value that

is within the permitted range. As previously discussed, modular addition and subtraction

are relatively easy. Modular multiplication is more computationally intensive. Finally,

modular inversion is the most computationally intensive. Accordingly, some ECC

implementations employ alternative coordinate systems that permit the inversion

operation to be deferred until the very end of a computation. The tradeoff is usually a

substantially larger number of intermediate computations.

Deploying an RSA cryptographic system begins with generating a public and

private key pair. Two fairly large primes p and q of equal width are selected. Typical

sizes are over one thousand bits. These primes are multiplied to yield the modulus n: n =

pq. n is large enough such that it is computationally expensive to factor. Next a term φ is

computed: φ = (p – 1)(q – 1). The user then chooses a random integer e, which is

relatively prime to φ. The term “relatively prime” means that e and φ have no common

divisors. The pair (n, e) constitutes the public key, and is freely shared. The user

 8

generates a private key d = e–1 (mod φ). d is relatively prime to n, and ed ≡ 1 (mod φ).

The user keeps d secret. One component of RSA’s security is that, while it is

straightforward for the user to compute d from e and φ, it is computationally very

expensive to compute d from e and n. Factoring n to find p and q, and thus φ, is

expensive [1], [2].

Given a message m that a second person wishes to send privately to the person

who generated the key pair, the second person encrypts it as follows. If the message is

large, it can be broken up into smaller blocks. The second person encrypts, or transforms

the message to ciphertext c using c = me mod n, and transmits it to the first person. The

first person receives c, and decrypts it to plaintext p using p = cd mod n. p is identical to

the original message m because p = (me)d (mod n) = med (mod n) ≡ m (mod n) for all m

[1], [2]. The product ed itself is not necessarily congruent to 1 (mod n). In both cases,

encryption and decryption, modular exponentiation is employed. It is often implemented

as a sequence of repeated modular multiplication and squaring operations.

Elliptic curve cryptography (ECC) employs operations on a geometric construct

called an elliptic curve (EC). An EC is represented as a graph in a 2-dimensional plane

and is described most generally by the following expression, called the Weierstrass

equation [3]. In most curves of interest for ECC, some of these terms, e.g. a1xy, are

absent.

 E: y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (2.1)

Fig. 1 shows some examples of elliptic curves defined over the set of real

numbers [5].

 9

 (a) y2 = x3 – 4x + 1 (b) y2 = x3 – 5x + 5

Fig. 1. Some elliptic curves over the set of real numbers [5].

A point P on elliptic curve E has x and y coordinates that satisfy (2.1), but E is not

necessarily defined for all possible values of x and y. ECC algorithms define and employ

three operations for all points P on E. These operations are termed point negation, point

addition, and point doubling. The operations have specific geometric meanings, and their

computations are nontrivial. Let the points P1 = (x1, y1) and P2 = (x2, y2). Table 1 lists

the point operations and their underlying computations.

Table 1. Elliptic curve point operations for three points P1, P2, and P3.

Point Operation Expression Computation

Negation P3 = –P1
x3 = x1
y3 = x1 + y1

Addition P3 = P1 + P2

€

λ =
y2 + y1

x2 + x1
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

Doubling P3 = 2P1

€

λ = x1 +
y1

x1

=
x1

2 + y1

x1
x3 = λ2 + λ + a = x1

2 + b/x1
2

y3 = x1
2 + (λ + 1)x3 = x1

2 + λx3 + x3

 10

Although Fig. 1 depicts ECs defined over the real numbers, ECC employs curves

defined over a finite field. It is implied that the computations in the third column of

Table 1 are performed over the underlying finite field, i.e. modulo a field modulus M. As

evident from the table, the computations consist of modular addition, multiplication, and

division. Modular division is implemented as a multiplicative inversion (reciprocal)

followed by a multiplication. For example, A/B mod M is implemented as A × (1/B) mod

M = AB–1 mod M. Furthermore, modular squaring is often treated as a separate operation

from multiplication, because just as in integer implementations, its computation is usually

cheaper than general multiplication.

Modular inversion is typically expensive to compute relative to addition,

multiplication, and squaring. Consequently, ECC researchers have devised alternative

coordinate systems which defer inversion to the end, by carrying redundant information

and performing a larger set of computations along the way. The two-dimensional (x, y)

coordinates used in Table 1 are referred to as affine coordinates. Other coordinate

systems that have been proposed include Projective, Lopez-Dahab, and Jacobian [3].

Table 2 lists transforms between affine and these other coordinate systems.

Table 2. Transforms between affine and alternate coordinate systems [3].

Alternate
Coordinate

System

Affine
Coordinates

Transform
to

Alternate

Alternate
Coordinates

Transform
to

Affine
Projective (x, y) (x, y, 1) (X, Y, Z) (X/Z, Y/Z)
Lopez-Dahab (x, y) (x, y, 1) (X, Y, Z) (X/Z, Y/Z2)
Jacobian (x, y) (x, y, 1) (X, Y, Z) (X/Z2, Y/Z3)

The third, Z-coordinate carries the redundant information. The point operation

computations for the alternate coordinate systems are omitted here. However, the only

 11

inversion that must be performed is on the final value of Z at the end of the computations

to return to affine coordinates.

Two entities A and B that wish to communicate mutually choose a particular

elliptic curve and a point P on that curve. A randomly selects a private key kA, which it

does not reveal. B randomly selects its own private key kB, which it also keeps secret. A

computes a point multiplication PA = kAP, and shares it with B. In turn B computes a

point multiplication PB = kBP, and shares it with A. Both A and B can now compute a

shared secret Q, as follows. A computes kA(PB) = kA(kBP), and B computes kB(PA) =

kB(kAP). kA(kBP) = kB(kAP) = Q. Both can now use Q as a key to a separate symmetric

cryptographic algorithm to use for sharing payload messages.

2.2 Mathematical Foundation

RSA and ECC employ operations on a finite set of elements. The results of those

operations are also elements of the finite set. In many cases the set consists of a sequence

of integers. The operations are modular arithmetic functions, such as addition and

multiplication, which are performed with respect to a modulus.

At the foundational level is the concept of a group. A group G is defined as a set

that additionally has some binary operation defined, denoted generically as *. As a rule,

a group has the following properties. First, the group is associative, such that for set

members (elements) a, b, c ∈ G, a * (b * c) = (a * b) * c. Second, there is an identity

element e such that for all a ∈ G, a * e = e * a = a. Third, there is an inverse element a–1

such that for all a, a * a–1 = a–1 * a = e. Additionally, if the group is commutative, such

that a * b = b * a, then the group is termed abelian [6]. As an example, consider the set

Z of all integers and the binary operation addition, denoted by +. Given arbitrarily-

chosen integers 3, 5, and 9, it is evident that all of the preceding properties apply:

 12

associativity, such that 3 + (5 + 9) = (3 + 5) + 9 = 17; there is an identity element 0, such

that 3 + 0 = 0 + 3 = 3; an inverse element –3, such that 3 + –3 = –3 + 3 = 0; and finally,

commutativity, such that 3 + 5 = 5 + 3 = 8.

At the next level is the ring. It has two operations and it is denoted as (R, +, ⋅),

where R indicates the set, and the two binary operations + and ⋅ are defined. For present

purposes, the operations can be assumed to be addition (+) and multiplication (×), and

thus the ring is (R, +, ×). A ring has the following properties. First, the set R is abelian

with respect to addition. Second, multiplication is associative: (a × b) × c = a × (b × c).

Third, multiplication is distributive: a × (b + c) = a × b + a × c [6].

Next is the field. If the nonzero elements of the set R constitute a group for the ×

operation, and if the ring is commutative, it is termed a field. For practical purposes, the

additive identity element is termed the zero element and is 0. The multiplicative identity

element is 1. That is, for a ∈ R, a + 0 = a, and a × 1 = a. Given a prime number p, and

the finite set of integers {0, 1, …, p – 1} as elements, a finite field is termed a Galois

Field of order p, and is typically denoted as GF(p) [6].

In addition to integers, it is possible to apply the foregoing concepts to

polynomials. For purposes of this research, a polynomial field is defined over a

polynomial in 2, where the coefficients ai ∈ {0, 1}. This is termed a binary polynomial,

and is denoted as GF(2n). The maximum degree of a polynomial element is n – 1. The

modulus is an irreducible polynomial of degree n.

Operations over finite fields are characterized by the concept of congruence.

What this means is that the result of a defined operation, even if the result initially falls

outside the bounds of the field, always has an equivalent corresponding element within

the field. Consider the field GF(5). The integer 7 is not an element of the field, but it is

congruent to field element 2. This is computed by taking the modulus of 7 with respect

 13

to 5, or 7 mod 5 = 2. Symbolically, the congruence is represented as 7 ≡ 2 (mod 5). One

can think of the field elements as wrapping around once they exceed 5 – 1 = 4. The

process of computing a congruence within the field is termed modular reduction.

The following arithmetic operations are defined for GF(p) fields: addition (+) and

multiplication (×). These operations, when correctly and completely executed, produce

results that are themselves elements of the field. GF(p) arithmetic is the same as integer

arithmetic, except that the initial result may be a value outside the range of the field and

must be transformed (reduced) to the congruent element within the field.

Addition is straightforward. Consider a finite field GF(M), where M is used in

place of p to denote the modulus. The sum S of two elements A and B is S = A + B. If S

≥ M, then it is easy to compute the congruent field element Sʹ by subtracting M from S:

S′ = S – M. For example, in GF(5), 2 + 4 = 6 ≥ 5. Thus to compute the congruence, 5 is

subtracted from 6, with 1 as the result.

Multiplication is more complicated, because an initial product T = AB can be

many times as large as the modulus M, i.e. as large as (M – 1)2. Reduction of T can be

performed by repeated subtraction of the modulus until the result is less than the

modulus. Alternatively, if an integer divider is available, it can be used to compute the

quotient and remainder of T/M, taking the remainder as the congruent result.

Two additional properties defined for GF(p) fields are an additive inverse (–A)

and a multiplicative inverse (A–1). Given a finite field with modulus M and an arbitrary

field element A, the additive inverse of A is another field element, denoted by –A, such

that the sum A + –A is congruent to 0. Symbolically: A + –A ≡ 0 (mod M). For example,

in GF(7), let A = 2. Then, –A = 5 because 2 + 5 = 7 ≡ 0 (mod 7). The multiplicative

inverse, 1/A, denoted by A–1, is the field element such that A × A–1 ≡ 1 (mod M). Again in

GF(7), let A = 2. Then, A–1 = 4 because 2 × 4 = 8 ≡ 1 (mod 7).

 14

Although the preceding introduction describes modular operations over prime

integer fields GF(p), they are also applicable in cases where the modulus itself is not

prime, subject to some limitations. One such use case is RSA, whose modulus is actually

the product of two large primes: n = pq where p and q are both prime [2], [1].

2.3 Montgomery Multiplication

As previously demonstrated, modular multiplication in integer fields is

complicated by the difficulty of computing the modular reduction. P. L. Montgomery

offers an ingenious solution to this problem [4]. The Montgomery multiplication

algorithm replaces division by the arbitrary modulus M with division by a power of two,

which is simply a right shift. The key to this method is the prior transformation of the

field elements into M-residues in what is referred to as the Montgomery domain.

At a high level, the algorithm works as follows. Assume a modulus M of n bits,

such that n = ⎡log2M⎤. Let R = 2n. It is usually beneficial that R be a multiple of the

machine word size. The modular multiplicative inverse of R with respect to M is R–1

(mod M) = 2–n (mod M). Consider two field elements A and B whose modular product is

to be computed. These can be transformed to the M-residues Aʹ and Bʹ via conventional

modular multiplication of A and B, respectively, by R with respect to M. Thus: A′ = AR

mod M and B′ = BR mod M. When Montgomery Multiplication is invoked with A′ and

B′, it computes the following product: AʹBʹR–1 mod M:

MontMult(A′B′) = (A′B′)R–1 mod M

 = (AR)(BR)R–1 mod M

 = (AB)R mod M

 = (AB)′

 15

The Montgomery Multiplication function computes the M-residue of the product

of the M-residues of the multiplicands. In other words, given two elements in the

Montgomery domain, the function computes a product which itself is in the Montgomery

domain. In addition to the M-residues, the Montgomery algorithm requires that two other

terms be precomputed:

R–1 (mod M) where RR–1 mod M = 1

M′ where RR–1 – MM′ = 1

The Montgomery Multiplication Algorithm is listed as Algorithm 2.1. Assume

that A and B are already M-residues.

Algorithm 2.1. Montgomery Multiplication Algorithm [4].
Input: A, B
Output: P = ABR–1 mod M

1. T = AB T0 = T mod R
2. Q = T0M′ Q0 = Q mod R
3. U = Q0M
4. P = (T + U) / R
5. if (P > M):
6. P = P – M
7. end if
8. return P

In Step 1, the input operands A and B are multiplied to produce initial product T,

which is 2n bits wide. For purposes of this discussion, T can be decomposed into two n-

bit words, a high word T1 and a low word T0. Word concatenation is illustrated with

parentheses, so T = (T1, T0). In Step 2, Q is computed as the product of T0 and M′. The

low word Q0 of this product is selected (Q mod R). Q0 may be described as a quotient

term, and it is what makes it possible to avoid performing a conventional division

 16

operation, as will be seen presently. In Step 3, Q0 is multiplied with M to produce U. In

Step 4, T and U are summed, and the entire result is divided by R to produce a

preliminary product result P. The division by R is merely a right-shift by n bits. It is

possible that after the shift P > M (however P < 2M), and Step 5 tests for this case. If it

occurs, the subtraction in Step 6 ensures that 0 ≤ P < M.

Replacing the division by R with an n-bit right shift in Step 4 is possible without

any loss of information because the low word of the sum computes to zero. M′ is the

additive inverse of the multiplicative inverse of M with respect to R. In other words M′ =

–M–1 (mod R). In effect then, Q0 = –T0M–1 (mod R). Because of the foregoing, U = –

T0M–1M and U0 = –T0 (mod R). The addition of T and Q0M = (T1, T0) + (U1, U0) = (T1,

T0) + (U1, –T0) = (T1+U1+c, 0), where c is the carry out of the sum T0 + U0 = T0 + –T0. In

this way, the quotient term Q0 and the foregoing computations have zeroed out T0, thus

making the right shift possible.

Clearly, there is a cost to using Montgomery multiplication. Prior to

multiplication, the operands must be transformed to M-residues, and then the

Montgomery product must be transformed back to the integer domain. For a single

modular multiplication this overhead may confer no benefit. On the other hand, where a

sequence of several multiplications is required, the overhead may be acceptable. This is

the case in RSA implementations which perform modular exponentiation as a sequence

of modular multiplications and squarings. It is also invariably the case in ECC whose

point operations consist of several modular multiplications.

Over the preceding three decades, a variety of Montgomery multiplier

implementations have been proposed. These implementations have ranged from software

to hardware, and have included bit-serial, word-serial, and fully parallel designs.

 17

2.4 Montgomery Inverse

Multiplicative modular inversion is a vital function for elliptic curve

cryptography. For a field element X, its inverse is defined as Y = X–1 (mod M) such that

XY = XX–1 (mod M) ≡ 1 (mod M). In terms of processing time, modular inversion can be

relatively expensive, even when compared to multiplication. Furthermore, depending on

the algorithm, the computation time can vary with the input. Nevertheless several novel

and efficient inversion algorithms and hardware have been proposed.

In a foundational paper, B. S. Kaliski describes an algorithm to compute the

Montgomery inverse of an arbitrary integer A [7]. In this context, let M be the prime

modulus, R = 2n, where 2n–1 ≤ M < 2n. The algorithm computes A–1R mod M, the M-

residue of the multiplicative inverse of A. As originally presented, the algorithm uses a

sequence of additions and right shifts; no general multiplication or division operations are

required. In describing the algorithm, the author first refers to a greatest common divisor

algorithm (GCD) which uses halvings (right shifts) and subtractions. He then refers to a

related algorithm for the modular inverse which uses halving. His contribution is

twofold: First, he notes that it is possible to defer the halvings to the end, such that an

intermediate result is A–12z mod M where z ≥ n. Second, he observes that, for z ≥ n, one

of the intermediate values is the M-residue of the inverse, i.e. A–12n mod M = A–1R mod

M. The algorithm consists of two processing phases, designated Phase 1 and Phase 2.

 18

Algorithm 2.2. Kaliski’s Montgomery Inverse Algorithm, Phase 1 [7].
Input: A, M
Output: r = A–12z mod M, z
1. u = M
2. v = A
3. r = 0
4. s = 1
5. z = 0
6. while (v > 0) do:
7. if (u is even) then:
8. u = u / 2
9. s = 2s
10. else if (v is even) then:
11. v = v / 2
12. r = 2r
13. else if (u > v) then:
14. u = (u – v) / 2
15. r = r + s
16. s = 2s
17. else:
18. v = (v – u) / 2
19. s = r + s
20. r = 2r
21. end if
22. z = z + 1
23. end while
24. if (u ≠ 1) then:
25. return “Not relatively prime.”
26. end if
27. if (r ≥ M) then:
28. r = r – M
29. end if
30. return r, z

Algorithm 2.3. Kaliski’s Montgomery Inverse Algorithm, Phase 2 [7].
Input: z, n, r, M
Output: Z = A–12n mod M = A-1R mod M
1. for i = 1 to (z – n) do:
2. if (r is even) then:
3. r = r / 2
4. else:
5. r = (r + M) / 2
6. end if
7. end do
8. return Z = M – r

 19

If z > n, then this algorithm computes the Montgomery inverse faster than it

would take to first compute the ordinary inverse and then convert it to the Montgomery

domain (M-residue) [7].

The paper by E. Savas and Ç. K. Koç is an important work is a that analyzes

Kaliski’s Montgomery inversion algorithm in detail and extends it [8]. The authors

introduce a modification to the definition of the Montgomery inverse which they term the

New Montgomery Inverse. The change makes it possible to replace Kaliski’s Phase 2

with a short sequence of Montgomery multiplications. The authors propose algorithms to

compute the following:

• Classical modular inverse

• Kaliski-Montgomery inverse

• New Montgomery inverse

A. Gutub, et al. extend the Savas and Koç basic algorithm into a scalable

architecture in which operands are not limited to a fixed machine word size [9]. C.

McIvor, et al. propose and employ a unified architecture for both multiplication and

inversion [10], [11].

2.5 Iterative Algorithms

Ordinary multiplication can be implemented with iterative algorithms that operate

on smaller portions of the operands. An operand may be split into multiple words or

digits. Then, the arithmetic components can be smaller but operate in a reduced cycle

time. Taken to the extreme, operands may be processed at the bit level. Bit

implementations can have a bare minimum of complexity and extremely short cycle time,

at the cost of performing a large number of iterations.

 20

Assume that operands are n bits wide and that they are divided into digits, each of

which is d bits wide. Each operand then consists of k = ⎡n/d⎤ digits. An arbitrary

operand A can be expressed as a concatenation of its digits: (A[k–1], A[k–2], …, A[1],

A[0]), where A[i] indicates the i-th digit from the right. Algorithm 2.4 illustrates how a

product of two large operands A and B can be computed via serial digit multiplication and

accumulation.

Algorithm 2.4. Digit-Based Iterative Multiplication.
Input: A, B
Output: P = AB
1. P = 0
2. for i = 0 to k – 1 do:
3. C = 0
4. for j = 0 to k – 1 do:
5. (C, S) = A[i]×B[j] + P[i+j] + C
6. P[i+j] = S
7. end for
8. P[i+k] = C
9. end for

Inspection of Algorithm 2.4 shows that to compute the full product, NP = k2 digit

multiplications must be performed:

 NP = k2 (2.2)

For example, let P = AB, and A and B are split into k = 2 digits each, denoted by

A[1], A[0] and B[1], B[0] respectively. The subscripts used here are digit indices, not bit

indices. For k = 2, d = n/2. The product is computed by adding the digit products as

follows:

 P = 2n(A[1]×B[1]) + 2n/2(A[1]×B[0] + A[0]×B[1]) + A[0]×B[0] (2.3)

 21

Fig. 2 illustrates how the digit products are aligned and accumulated to produce

the product P.

Fig. 2. Digit multiplication.

 22

Chapter 3 Related Work

Hardware Montgomery multiplier architectures are not new. The paper by S. E.

Eldridge and C. D. Walter [12] conducts a systematic review of implementations extant

in the early 1990s. H. Orup proposes a digit-serial architecture based on optimizing

quotient determination (Step 2 of the Montgomery Algorithm) [13]. O. Nibouche, et al.

present a parallel implementation, and a systolic variant, that incorporates finely

interleaved Montgomery reduction [14].

Some recent research has targeted field programmable gate arrays (FPGAs) for

hardware implementation. The proposed architectures typically take advantage of the

chosen FPGA family’s resources to drive high performance. The digit-serial

implementation by Erdem, et al. targets the Xilinx Virtex-7 [15]. A tool to generate

VHDL code for several different Xilinx FPGAs is described in [16].

The remainder of this chapter reviews a specific, diverse set of architectures for

computing Montgomery products. The objectives of these architectures vary among

minimizing area, maximizing performance, offering flexibility in operand size, and

potentially enabling other related computations. These architectures also vary in how

they divide up the work. Division may be spatial, in the sense that parts of the

computation may be split up and performed concurrently in duplicated hardware.

Division may also be temporal, in that sequential processing and pipelining may be

employed.

3.1 McIvor ECC Processor with Pipelined Multiplier

C. McIvor, et al. present a complete ECC coprocessor that employs several

innovative techniques [11]. It performs Montgomery multiplication and uses a novel

 23

implementation of modular inversion. The processor is developed for FPGA

implementation and includes a 256×256-bit pipelined multiplier.

The architecture places considerable emphasis on efficient modular inversion.

The authors present a unified inversion algorithm in [10]. It builds upon prior algorithms

proposed by Savas and Koç which substitute Montgomery multiplication for some of

Kaliski’s iterative computations [8]. The unified inversion algorithm can compute the

Montgomery inverse of an ordinary integer, or the ordinary inverse of a Montgomery

element, as well as convert between the ordinary domain and the Montgomery domain.

The coprocessor can be configured to perform any of the following four

operations: Montgomery multiplication, multiplicative inversion (whether conventional

or Montgomery), modular addition, and modular subtraction.

The 256×256 multiplier is hierarchical in composition. At the top level, the array

is divided into four 256-bit partial product quadrants. Its 512-bit output register is fed by

the sum of the four registered 256-bit partial products, properly aligned. The same

hierarchical grouping is recursively applied to the 256-bit quadrants on down. At the

lowest level the McIvor multiplier consists of 256 16×16 digit multipliers. Successively

larger partial products are formed by adder logic and registered in a kind of bottom-up

pipelining.

Although the McIvor ECC Processor is a complete acceleration engine that

employs Montgomery multiplication, it does not attempt to optimize the Montgomery

algorithm as such. It performs the algorithm step by step to compute the word products

T, Q, and U sequentially as listed in Algorithm 2.1. Since the multiplier circuit is

pipelined, it could achieve a hypothetical throughput of one product per cycle, but this is

not available for a Montgomery operation. Interproduct dependencies among the

products T → Q → U preclude overlapping them for increased throughput.

 24

3.2 Eberle Serial Digit-Digit Architecture

H. Eberle, et al. describe a coprocessor extension to general purpose processors

on the server side to support high performance public key cryptography [17]. The focus

is on high performance as opposed to low power. The coprocessor supports both RSA

and ECC.

This architecture operates serially and its computation unit is the digit. Large

operands are split into k digits of size d, where k = ⎡n/d⎤. Input operands are stored in

memory and fetched sequentially digit by digit instead of in a large parallel load

operation. Likewise, intermediate outputs and final results are stored to memory

sequentially digit by digit. For a change in operand size, only the loop counter values for

operand addressing need to be changed, whereas the digit datapath and data buses remain

unchanged. There is no register file, only an accumulator register, so operands are read

from and written back to memory with each instruction. The architecture builds upon

one previously described by the authors in [18].

Digit multiplication is performed as described by Algorithm 2.4, except that

Montgomery reduction is interleaved with partial product row computation. Instead of

computing the entire T = AB product followed by the Q and U steps, this architecture

computes a digit-word product A[i]×B and then performs the Montgomery reduction on

that. A digit-word product is computed sequentially by accumulating A[i]×B[j], 0≤ j < k.

Once Qi is computed, the partial product is reduced sequentially by accumulating with

Qi×M[j], 0 ≤ j < k. All digit-word partial products are accumulated in a sliding region of

product memory P. This approach might be termed Montgomery Micro Reduction. A

formal mathematical definition of the computations is (3.1).

€

ABR−1 mod M ≡ 2id A[i]× B
i=0

k−1
∑ + 2id Qi[0]× M

i=0

k−1
∑⎛

⎝
⎜ ⎞

⎠
⎟ 2−kd ,0 < Qi[0] < 2d (3.1)

 25

The first summation represents the conventional partial product summation of

digit-word products. The second summation represents the Montgomery reduction digit-

word products. This sum is effectively divided by R = 2n = 2kd, not by shifting the partial

products right, but by incrementing the P address.

Because the Montgomery reduction is interleaved with partial product

computation, there are dependencies both within partial product words and between

partial product words. Fig. 3 depicts a dependency graph for the Eberle digit-serial

architecture in which operands are split into k = 2 digits. Numbers along the top of the

graph indicate computation dependency steps.

Fig. 3. Eberle architecture dependency chain (k = 2).

The figure shows that the Eberle architecture has a chain of seven dependency

steps. The first partial product digit stored in P[0] in Step 0 is required to compute Q0 in

Step 1. Q0 is required before the reduction can start in Step 2. Reduction starts in Step 2

and modifies the digits stored in P[2:0]. P[2:1] is required for the next partial product

accumulation. With sequential digit accumulation, P[1] is not fully computed until Step

3. Accordingly, the next partial product computation cannot start until Step 4. The same

 26

dependencies exist for the second partial product as for the first, and so P[1] in Step 6

precedes P[3:2] in Step 7. There is a cyclic dependency pattern centered on the product

memory P. Partial product computation is followed by in-place reduction, which is

followed by in-place computation of the next partial product, and so on.

3.3 Großschädl Serial Bit-Word Architecture

Großschädl, et al. present a bit-word serial multiplier which can compute an n-bit

Montgomery product in n cycles, plus some overhead [19]. As a bonus, the architecture

can compute a conventional product P = AB in n/2 cycles plus the overhead.

In contrast to the digit-digit architecture proposed by Eberle, et al. in [17], this

architecture operates on single bits of operand A (denoted as ai) and the entire full-width

operand B to compute bit-word partial products. No actual multiplier circuit is required,

as a partial product aiB can simply be computed by a row of n AND gates. This is

accumulated in place in an accumulator with previous the bit-word product.

Montgomery reduction is performed on each iteration of the running partial product Pi.

The quotient term is a single bit qi, which is used to gate the modulus as qiM for the

reduction step. No computation is required to generate qi, it can be shown

mathematically to resolve to bit 0 of the current partial product word Pi before reduction.

Computed in this way, the Montgomery product of A and B is defined by (3.2).

€

AB2−n mod M ≡ 2i aiBi=0

n−1
∑ + 2i qi Mi=0

n−1
∑⎛

⎝
⎜ ⎞

⎠
⎟ 2−n ,qi ∈ {0,1} (3.2)

The first summation represents the conventional partial product summation using

bit-word products. The second summation represents the Montgomery reduction terms,

one for each qi, 0 ≤ i < n.

 27

Accumulation of partial products is performed in two cascaded n-bit carry save

adders (CSAs). The accumulator register complex consists of two registers, RS and RC,

which hold the partial product in redundant carry save form. After all partial products are

computed and Montgomery-reduced, RS and RC are summed sequentially in a small

digit adder of size d, and shifted back into RS. In this mode, RS and RC are right-shifted

digit by digit instead of bit by bit. Typical sizes of the d-bit adder may be 8, 16, or 32

bits. Computing the nonredundant form requires n/d cycles.

This architecture has both parallel and sequential aspects to operation. The

parallelism is in computing and accumulating the whole bit-word product Pi = Pi–1 + aiB

+ qiM. This is computed and then right-shifted by one bit in a single cycle. qi is

determined in combinational logic in the same clock cycle. The sequential aspect is in

accumulating all n Montgomery-reduced products Pi for 0 ≤ i < n, followed by converting

the product to nonredundant form.

The dependency chain in the Großschädl architecture is simple. At a macro level,

a sequential dependency exists from one bit-word product to the next. There is an intra-

word dependency chain within a bit-word partial product: bit 0 of Pi before reduction →

qi → final Pi), but the simplicity of the qi and qiM computations means it can be resolved

combinationally in one cycle. Fig. 4 illustrates the sequential dependency chain.

 28

Fig. 4. Großschädl architecture dependency chain.

The figure shows that the first, reduced partial product P0 is required to compute

P1, which is then required for P2, and so on. Because this is a sequential architecture, the

dependency exists from one cycle to the next, one for each of the n partial products.

3.4 Tenca and Koç Serial Hybrid Bit-Digit Architecture

A. F. Tenca and Ç. K. Koç present a Montgomery architecture that employs a

simple bit-digit multiplier for a minimal area footprint [20], [21]. The architecture is

scalable in two ways. First, it can accommodate arbitrary operand sizes. Second,

multiple computation blocks can easily be cascaded to drive increased performance and

throughput by increasing parallelism.

At a high level, this architecture computes Montgomery products in the same way

as the Großschädl architecture described in the previous section [19], and (3.2) applies.

The difference in this architecture is that both A and B are subdivided. As in the

Großschädl architecture, A is split into n individual bits, denoted by ai, 0 ≤ i < n. B is

split into k uniform digits d bits in width, where k = n/d.

 29

The main compute block is termed a Processing Element (PE). It is a two-stage

miniature pipeline. In the first stage it sequentially computes partial product Pi[j] digits

from bit ai and digits Pi–1[j], B[j], and M[j] received from queues. The Montgomery

division by two is performed on a digit basis on each Pi[j] digit as it is transferred to the

second stage register. This happens concurrently with the first stage computation of

Pi[j+1], whose LSB is copied into the MSB position of Pi[j].

While being computed, Pi digits may be fed back to the same PE via a queue, or

can be can be routed to another PE in cascade which is computing Pi+1. There is a two-

cycle delay until the next PE can start because of the two stage PE pipeline. Other

researchers have proposed optimizations to reduce the two-cycle delay to one cycle [22].

Any number of PEs may be cascaded in this way for increased throughput. There is

generally little performance benefit if the number of PEs exceeds k/2.

The architecture must compute a total of n bit-word partial products and n partial

product reductions. For a bit-digit partial product Pi, a PE computes k partial product

digits and k digit reductions, but the reduction is performed combinationally. The entire

design must compute a total of nk bit-digit products.

Dependencies in the Tenca and Koç architecture occur both between sequential

partial products Pi and within those products. As with the Großschädl architecture, each

partial product Pi requires the previous product Pi–1. The difference is that Pi does not

need to wait for Pi–1 to complete before starting, due to the bit-digit serialization. Within

a product Pi there are both backward and forward dependencies. As used here,

“backward dependency” indicates a typical dependency of a computation on the result of

a previous computation. “Forward dependency” indicates that a computation has a

dependency on a subsequent result. The backward dependencies are that the reduction

digits qiM[j] require the quotient bit qi, which in turn is a function of Pi–1[0] + aiB[0], but

 30

all of this is resolved in combinational logic. Each partial product digit Pi[j] depends on

the carry out of Pi[j–1]. The forward dependency is caused by the division by two (right

shift) step in Montgomery reduction. In this case the Pi[j] digit is right-shifted, dropping

its LSB, and receiving as its new MSB a copy of the LSB of the subsequent digit Pi[j+1].

Consequently, two cycles are required to effectively compute a Pi[j] digit, but the

throughput is one digit per cycle.

The sequential digit processing of the Tenca and Koç architecture is what enables

concurrent computation of bit-word partial products Pi and Pi+1. The PE computing Pi+1

is merely offset two cycles later than the one computing Pi. Fig. 5 shows a dependency

graph of the Tenca and Koç architecture.

Fig. 5. Tenca and Koç architecture dependency chain.

 31

The first partial bit-word product P0 starts computation in Step 0, with digit 0

(P0[0]). The next digit P0[1] cannot start until Step 1, because it depends on the carry out

of P0[0]. Also, P0[0] is not completely finished yet and so it transitions to Step 1 and

down. There, its forward dependency on the LSB from P0[1] is shown by an arrow

pointing down and annotated with an asterisk (*). Partial bit-word product P1 is being

computed in an adjacent PE. Because it requires P0, it cannot start processing until Step

2.

The effective length of the dependency chain in this architecture is 2(n – 1) + k +

1 = 2n + k – 1. The reason is that all n bits of one operand are processed in sequence to

produce n bit-word partial products, as in the Großschädl architecture, and there is a two-

step delay from the start of one partial product to the next. Processing k bit-digit products

instead of a single bit-word product adds k steps. This imposes a lower bound on the

number of cycles required to compute a Montgomery product, after which there is no

way to increase performance by adding more PE resources.

3.5 Sanu Parallel Architecture

Sanu, et al. describe a fully combinational Montgomery multiplier architecture in

[23]. This design integrates the Montgomery reduction terms into the partial product

reduction array. The authors demonstrate a mathematical transform that permits the

Montgomery reduction algorithm to be performed by a vector summation of h n-bit

numbers. The key is that the sum is congruent to the n×n-bit product. The summation

and reduction may be computed in log1.5(h) time [23].

First, the authors present the congruence expression, which is the same as (3.2).

Second, the authors suggest a possible substitution:

 32

€

X jj=0

h−1
∑ ≡ 2i aiBi=0

n−1
∑⎛ ⎝ ⎜

⎞
⎠
⎟ mod M (3.3)

The left side of the substitution shows the summation of h n-bit numbers from the

set {X0, X1, …, Xh–1}. In this case the subscripts are merely identifiers and do not signify

digits or bits of X. If for all Xj, 0 ≤ Xj < 2n, then the authors show mathematically that the

overall summation result will grow minimally beyond n bits. A conventional multiplier

array grows to 2n bits wide. Montgomery reduction performed as in Algorithm 2.1

effectively zeroes out the lower n bits, leaving an n-bit Montgomery product in the upper

bits. The transform used by this architecture keeps the reduction array more “vertical”

with the final result growing minimally beyond n bits. Fig. 6 illustrates the transform

with a trivial 4-bit example.

 (a) Initial Dadda array. (b) Transform.

Fig. 6. Sanu Montgomery multiplier array [23].

Fig. 6(a) shows a 4×4 Dadda dot array of bit partial products, and how they are

reduced through succeeding stages of half adders and full adders [24]. The final two

 33

rows are summed in a conventional carry propagate adder. The first row of dots indicates

the a0B partial product in columns n–1 down to 0. The second row indicates a1B in

columns n down to 1, and so on. The array grows to eight bits wide., and then a2B and

a3B, each shifting one bit further to the left. Ultimately the final product will be eight bits

wide. Not shown explicitly are the interleaved Montgomery reduction rows between

partial product reduction rows.

Fig. 6(b) shows the substitutions designed to minimize horizontal growth in the

array. Effectively, the product bits to the left of column 3 in the initial array are replaced

with congruent terms fetched from a lookup table (LUT). The original array has been

transformed to a series of summands derived from the left hand side of the array and the

LUT. The authors propose variants in which the MSBs are combined in different ways so

as to minimize the number of congruent terms and LUT size.

A key point is that Montgomery reduction steps are interleaved with the

summation. The interleaving is similar but not identical to that employed by the

Großschädl and Tenca and Koç architectures, and is effected spatially instead of

sequentially. Groups of three summation rows are Montgomery reduced with interleaved

modulus M terms. This is omitted form the figure for clarity. It is what makes it possible

to compute the modular product in logarithmic time.

This architecture is fully parallel (combinational). It uses a traditional Dadda type

multiplier array for the partial products [24]. A simple Dadda type multiplier starts with

n rows, and has approximately ⎡log1.5(n)⎤ reduction stages. A naive implementation of

interleaved Montgomery reduction would double the original n rows to 2n. The Sanu, et

al. architecture cleverly applies the interleaving to groups of three rows for

approximately ⎡n/3⎤ modular reduction rows, for an initial total of n + ⎡n/3⎤.

 34

Furthermore, it minimizes array growth (both width and height) by replacing the upper

bits with a smaller number of congruent reduction terms fetched from a lookup table.

Dependencies exist within groups of rows and between stages. Each group of

three or fewer partial product rows will potentially be Montgomery-reduced, based on the

sum of the LSBs of the three rows. This bit selects either the modulus M or a row of

zeroes, and so it is dependent on the sum of those three rows. Each group of rows can be

taken separately from the other groups, at that stage. The output rows of that stage then

become the input rows of the next partial product and modular reduction stage.

 35

Chapter 4 Serial Montgomery Design Space

The preceding review of several Montgomery hardware architectures reveals a

wide range of fundamental approaches to the problem, as well as specific implementation

choices that can be made. Some architectures employ arithmetic circuits that operate on

full, word-sized operands. For a serial approach, other architectures split the operands

into smaller parts, such as digits or bits. Digit or bit scale arithmetic circuits of relatively

low complexity are employed in a serial algorithm to build up the final result. As the

preceding review has shown, there is no requirement for symmetry in operand division—

one operand may be split into bits while the other operand is split into digits. The

number of basic operations that must be performed, such as digit multiplication,

determines the performance of an architecture.

4.1 Koç Montgomery Classification

Koç, et al. review and classify serial Montgomery multiplication algorithms [25].

The classification scheme they devised has become the de facto taxonomy for

characterizing serial Montgomery realizations. Most research on Montgomery

multiplication references it and classifies proposed architectures into one of its categories

[10], [16], [19], [20], [21], [22], [26], [27], [28], [29]. It is applicable to both software

and hardware realizations, and may be termed the serial Montgomery classification or

taxonomy.

The classification scheme has two major dimensions. First, it considers whether

Montgomery reduction is separated from or integrated with product computation.

Integrated reduction may be further classified as either coarse or fine. Second, it

considers whether input operand digits or product digits are prioritized for scanning.

 36

Computing a Montgomery product step by step as listed in Algorithm 2.1 is one

example of separated reduction. The initial product T is computed first. Then the

quotient term Q is computed. Finally, the reduction term U is computed and added to T

to perform the reduction. Each of these steps may be considered to be atomic, no matter

whether performed in one cycle in a large multiplier, or over several cycles using a digit-

sized multiplier.

As an alternative to separated reduction, reduction can be integrated with product

computation. A partial product is computed, and then a Montgomery reduction is

performed on it. This process continues for each partial product, so that a series of partial

products and reductions are performed and accumulated into one final Montgomery

product. In coarsely integrated scanning, the partial product computation is followed

sequentially by a separate reduction operation. Partial products alternate with reduction

operations. With finely integrated scanning, both the partial product computation and

reduction are computed in the same step.

Digit scanning is treated as a separate, orthogonal parameter. It may prioritize the

digits of either the input operands or of the product. The choice of priority affects the

order in which digits are read from the input operands and the order in which product

digits are written. If operands are given scanning priority (operand scanning), then they

are scanned in a regular order. A partial product is built up from right to left. The next

partial product, accumulated with the previous one, starts in the next higher digit position,

rewriting product digits, so that most product digits are written more than once.

Consider an example of operand scanning. Assume operands are split into four

digits each, and let multiplier A be indexed by i in an outer loop, and multiplicand B

indexed by j in an inner loop. For the first i = 0 loop iteration digit A[0] is fetched and

the digits B[j] of B are scanned in succession for j = 0, 1, 2, 3. The product is

 37

accumulated into P[k] where k = i + j. The five-digit digit-word partial product will

reside in P[4:0]. For the next iteration of i, partial product accumulation is moved one

digit to the left, so A[1]×B will be accumulated into P[5:1].

Alternatively, priority may be assigned to product digits. In this case, all

computations that target a particular product digit are executed close together in time, in

adjacent cycles or phases. The operands are scanned only for the digits that will

contribute to that targeted product digit. The i and j loop bounds are adjusted such that

all partial products accumulated to a product digit occur in immediate succession. Once

the product digit is fully computed, it is not revisited. Thus the product digits are written

in order as P[0], P[1], P[2], …, etc. Fig. 7 illustrates operand priority scanning and

product priority scanning.

 38

 (a) Operand scanning. (b) Product scanning.

Fig. 7. Scan priority for partial product assembly [25].

Observe that in Fig. 7(a), product digit P[1] is first computed in iterations (i, j) =

(0, 0) and (0, 1) when partial product A[0]×B is being computed. Later in iteration (i, j) =

(1, 0), it is written again when partial product A[1]×B is being computed. Conversely, in

Fig. 7(b), all digit computations that contribute to product digit P[1] are computed in

immediate succession, and index variables i and j are cycled accordingly. After P[1] is

completed, subsequent iterations need never revisit it.

Altogether, Koç, et al. identify five iterative Montgomery algorithm classes.

They are listed in Table 3.

 39

Table 3. Koç, et al. serial Montgomery architecture taxonomy.

Digit Scanning Priority Reduction Mode Operand Hybrid Product
Separated SOS

Coarse CIOS CIHS Integrated Fine FIOS FIPS

The first three cover operand scanning for both separated and integrated

reduction: Separated Operand Scanning (SOS), Coarsely Integrated Operand Scanning

(CIOS), and Finely Integrated Operand Scanning (FIOS). Finely Integrated Product

Scanning (FIPS) prioritizes product digit scanning, and integrates Montgomery reduction

finely on a digit basis. There is a hybrid method which they term Coarsely Integrated

Hybrid Scanning (CIHS). It performs product scanning for the low word of the full

product, and then switches to operand scanning for the integrated Montgomery reduction

of the high word.

Beyond functioning as a shorthand for concisely describing a Montgomery

realization, the Koç taxonomy provides useful expressions for evaluating performance

and storage requirements. It assumes that both input operands are split in the same way,

i.e. that both are split into k digits of d bits each. It specifies the number of digit

operations that must be performed. These operations include multiplication, addition,

reads, and writes. In all categories, the required number of digit multiplications is 2k2 +

k, while additions, reads, and writes vary. Since digit multiplications are performed

serially, it follows that the minimum number of cycles required to compute a

Montgomery product is 2k2 + k. The minimum storage requirements for most categories

is k + 3 digits, while for SOS it is 2k + 2.

 40

For an architecture that fits into the classification scheme, this provides a useful

starting point for making performance estimates. Table 4 lists the architectures reviewed

in Chapter 3 along with their Koç, et al. classification, if applicable.

Table 4. Montgomery architecture classification.

Architecture Base
Operand

Base
Operations

Cycles

Koç
Classification Notes

McIvora Word 3 3p + 1 —
Eberle Digit 2k2 + k 2k2 + k CIOS
Großschädl Bit/word n n + k FIOSb Bit-word
Tenca & Koç Bit/digit nk 2n + k – 1 FIOSb Bit-digit
Sanu Word 1 1 —
aNumber of pipeline stages p.
bClosest fit.

The McIvor and Sanu architectures operate on word size operands, so computing

their respective numbers of operations is straightforward. Because the McIvor

architecture has a pipeline of depth p and computes the three intermediate products T, Q,

and U sequentially (with no overlap possible), it requires 3p cycles, plus an additional

cycle for the final T + U sum. The Sanu architecture is fully combinational and requires

only a single cycle, although that cycle may be of long duration. Neither of these fits into

the Koç serial classification scheme.

The Eberle architecture operates at the digit level and integrates reduction

operations, once per each digit-word partial product. It may be classified as Coarsely

Integrated Operand Scanning (CIOS), and it requires a minimum of 2k2 + k cycles.

The Großschädl and Tenca and Koç architectures use mixed operand sizes, bit-

word and bit-digit respectively. Because they do not divide A and B operands

symmetrically, they do not precisely fit the Koç classification scheme. The Großschädl

architecture computes n bit-word products, and requires n + k cycles to complete. The

 41

final k cycles are required to convert the carry save product into nonredundant form in a

digit multiplier. Priority is given to scanning the bits of operand A in succession, and

reduction is performed combinationally (finely) during partial product computation.

Because of the foregoing, it can be classified as FIOS. The Tenca and Koç architecture

computes nk bit-digit products and requires 2n + k – 1 cycles to complete. It scans the

bits of operand A and the digits of operand B, and performs reduction combinationally

without a separate reduction step. Therefore it also can be classified as FIOS.

4.2 Serial Montgomery Model

Despite its universal acceptance, the serial Montgomery taxonomy suffers from

two major limitations. First, it omits possible reduction and scanning combinations.

Second and more importantly, it neglects to consider opportunities for parallelization,

particularly at the digit level. A major upgrade to the taxonomy broadens its reach and

enhances its utility.

Architectures that perform integrated reduction include both operand and product

scanning instances (CIOS, FIOS, CIHS, FIPS). However, the category for separated

reduction only considers operand scanning (SOS). It is possible to devise architectures

which prioritize product scanning and still perform reduction in a separated manner, as

will be demonstrated in a subsequent chapter. Accordingly, the taxonomy can be

broadened to include a new category denoted as Separated Product Scanning (SPS).

The serial Montgomery taxonomy can also be expanded to encompass digit level

parallelism. In its present form, the classification scheme considers only serial

realizations in which a single digit multiplier or multiply-accumulate (MAC) unit

performs each multiplication in sequence. Indeed, use of the term scanning in reference

to operand or product digit priority reflects this one-dimensional conception of digit

 42

processing. It can be shown, however, that many digit computations can be performed

concurrently. For portions of a particular Montgomery realization that can be

parallelized, simply adding a second digit multiplier can cut those portions’ latency in

half. Employing digit level parallelism, a Montgomery architecture’s performance can

therefore receive a substantial performance boost at relatively low cost. At present the

serial Montgomery taxonomy is strictly two dimensional. Its two axes represent

separated versus integrated reduction, and operand versus product priority digit scanning.

Expanding the classification scheme to encompass digit level parallelism provides it with

a third dimension, converting the scheme from a flat surface to a large volume of

descriptive and analytic power.

It is possible to parallelize portions of any serial Montgomery architecture

selectively for targeted performance enhancement. Where multiple operand or product

digits are being processed concurrently, a more accurate term than digit scanning would

be digit scheduling. Each category from the serial Montgomery taxonomy can be

expanded to apply to realizations with two or more digit arithmetic units. Accordingly,

this Serial Montgomery Model can be used effectively to classify and characterize

Montgomery architectures that schedule multiple concurrent digit operations. Table 5

lists the categories from the improved classification scheme. Novel categories are

indicated in bold font.

 43

Table 5. Serial Montgomery Model.

Digit Scheduling
Operand Hybrid Product Reduction

Serial
(m = 1)

Parallelized
(m > 1)

Serial
(m = 1)

Parallelized
(m > 1)

Serial
(m = 1)

Parallelized
(m > 1)

Separated SOS SOS/m a a SPSb SPS/mb
Coarse CIOS CIOS/m CIHS CIHS/m a a Integrated Fine FIOS FIOS/m a a FIPS FIPS/m

aReview of relevant literature has not revealed any architectures with these combinations.
bNew categories applicable to the Montgomery architecture proposed in this dissertation.

Each scanning method is split into two subcategories. One column applies to the

original category with no added parallelism, which usually indicates a single instance of a

digit multiplier or MAC unit. The original category from the Koç serial taxonomy is

carried forward to this column. The adjacent column applies where a degree of digit

level parallelism has been added. The category abbreviation is suffixed with “/m,” where

m indicates the number (> 1) of instantiated digit multipliers. For example, a CIOS

architecture employing two digit multipliers would be denoted as CIOS/2, for 2-digit

parallelism. The new SPS and SPS/m categories are also listed.

Enhancing the taxonomy comprises more than merely adding and modifying

category names. The entire purpose of adding the third dimension of digit level

parallelism is to provide a means to estimate performance and resource requirements.

This can be especially useful when comparing two disparate architectures that employ

digit level parallelism in different ways.

Estimating the performance impact of increased parallelism in a serial

Montgomery architecture is nontrivial. It is not as simple as adding a digit multiplier and

dividing the cycle count by the total number of multipliers. Dependencies may prevent

some digit computations from being performed concurrently. The unique characteristics

and dependency relationships of each architecture determine where and to what degree

 44

digit parallelism can be increased. Furthermore, dependency relationships can determine

whether operand or product scanning is best.

For utility in making performance estimates, the categories from the existing

serial Montgomery taxonomy list the number of cycles required assuming a single digit

multiplier. In all cases, 2k2 + k digit multiplications are required, and it can be assumed

that at least that number of cycles is required. It would be possible to construct an SPS

architecture that requires 2k2 + k cycles. The preferred realization, however, requires

2.5k2 + 0.5k cycles. It is described in Chapter 5. Although this digit multiplication count

is higher, it offers more opportunities for parallel optimization, partly because of the

dependency ordering. As a result, it can offer higher performance than other categories

with the same number of digit multipliers.

Estimating the performance effect of adding parallel digit multipliers requires

analysis of the underlying digit operations and their dependency relationships. For

example, consider architectures in the CIOS category. CIOS requires a total of 2k2 + k

digit multiplications, which are performed sequentially with a single digit multiplier.

This category employs operand scheduling to compute and reduce a digit-word partial

product A[i]×B in each iteration i via three dependent steps:

1. Compute and accumulate k digit products A[i]×B[j], 0 ≤ j < k.

2. Compute one quotient digit Qi.

3. Compute and accumulate k reduction digit products Qi×M[j], 0 ≤ j < k.

The first step proceeds, and indeed all the digit products could be computed in

parallel if sufficient digit multipliers are available. The second step for Qi cannot be

performed concurrently because Qi depends on the first step. The third step depends on

Qi, and so it cannot be executed in parallel with Qi. These dependencies thus impose a

sequential ordering of digit multiplications as follows: k, 1, k. The group of three steps

 45

must in turn be performed for all k digits of A. The total sequence then consists of (k, 1,

k)0, (k, 1, k)1, …, (k, 1, k)k–1 digit multiplications. Because each group depends on the

previous group’s result, they must be performed sequentially. This requires k(k + 1 + k)

= 2k2 + k cycles.

Employing m > 1 digit multipliers increases parallelism, but only for those digit

operations that can be performed concurrently. In the preceding example, the partial

product and reduction steps can each benefit from parallelization, whereas the quotient

term Qi cannot. The sequence for a single digit-word partial product becomes ⎡k/m⎤, 1,

⎡k/m⎤. Because k sequences must be performed, the total number of cycles required to

compute a Montgomery product is k(⎡k/m⎤ + 1 + ⎡k/m⎤). If m = k, then this reduces to k(1

+ 1 + 1) = 3k cycles. Table 6 lists the digit scheduling sequences for selected Serial

Montgomery Model categories for both the strictly serial mode (m = 1) and modes with

some degree of digit parallelism (m > 1).

Table 6. Selected Serial Montgomery Model digit schedules and cycles.

Category Schedule Order
(m = 1) # Cycles Schedule Order

(m > 1) # Cycles

SOS k2, k(1, k) 2k2 + k ⎡k2/m⎤, k(1, ⎡k/m⎤) ⎡k2/m⎤ + k⎡k/m⎤ + k
CIOS k(k, 1, k) 2k2 + k k(⎡k/m⎤, 1, ⎡k/m⎤) 2k⎡k/m⎤ + k
FIOS k[1, 1, 1, 2(k – 1)] 2k2 + k k[1, 1, 1, ⎡2(k – 1)/m⎤] k⎡2(k – 1)/m⎤ + 3k
SPS k2, (k2 + k)/2, k2 2.5k2 + 0.5k ⎡[k2, (k2 + k)/2, k2]/m⎤ ⎡(2.5k2 + 0.5k)/m⎤

Schedule order for the proposed SPS category differs subtly from that for SOS,

CIOS, and FIOS. In the latter three categories, the schedule follows a strict digit order

that is imposed by partial product/reduction dependency ordering. By contrast, the SPS

has a macro level dependency order only. There is no alternating dependency chain of

the form (partial product, reduction, partial product, …) as in the integrated scheduling

 46

categories. Because SPS employs product digit scheduling, one phase need not complete

before the next one can begin. In this way, the phases may be overlapped, though they

need not be. If they are overlapped, the dependency order guarantees that all digit

dependencies from one phase to the next are available before the next phase begins, as

long as m ≤ k2. Chapter 5 explains the proposed SPS dependency chain more fully.

To illustrate the degree to which certain categories can benefit from digit

parallelism, let k = 4 and consider SOS, CIOS, FIOS, and the proposed SPS. The

expressions in Table 6 determine how many cycles are required for different values of m.

Table 7 lists the cycle count for the respective categories for m, where 1 ≤ m ≤ 5.

Table 7. Cycle counts for SOS, CIOS, FIOS, and SPS for k = 4 and 1 ≤ m ≤ 5.

m SOS CIOS FIOS SPS
1 36 36 36 42
2 20 20 24 21
3 18 20 20 14
4 12 12 20 11
5 12 12 20 9

The table shows the relative benefit of increasing digit parallelism for the listed

categories. Some categories benefit more than others. For m = 1, the categories SOS,

CIOS, and FIOS all require 36 cycles, whereas the proposed SPS category is worse in

that it requires 42 cycles. If m is increased to 2, however, SOS and CIOS improve to 20

cycles and SPS improves to 21 cycles, but FIOS only improves to 24 cycles. For m = 3

SOS requires 18 cycles, while CIOS and FIOS both require 20 cycles. In this case,

however, SPS is faster than the other three in only requiring 14 cycles. In fact, for m = 4

and 5, SPS is again faster than the other three categories.

 47

Chapter 5 Montgomery Algorithm Optimization

Closer examination of the McIvor, et al. multiplier and the Montgomery

algorithm listed as Algorithm 2.1 suggests a few possible ways to improve performance.

Consider the computation steps. The steps include three multiplications, two modulus

functions, an addition, and a division which can be computed as a simple right shift. Fig.

8 illustrates the steps.

Fig. 8. Montgomery computation steps [11].

From the figure, it is evident that some portions of the intermediate results are not

required immediately, or are not used at all. Step 1 computes an initial product T of M-

residues A and B. Its upper and lower halves are designated as T1 and T0 respectively. In

Step 2, the quotient Q is computed from T0 and M′. The upper half, designated as Q1, is

discarded, and only the lower half Q0 is used as the operand in the following step. Next

in Step 3, the Montgomery reduction term U (U1 and U0) is computed. In Step 4, U is

added to the initial product T, followed by a divide by R (a right shift by n bits where R =

2n) to compute the final Montgomery product P.

 48

Some potential optimizations are readily apparent. After T is computed in Step 1,

only its lower half, T0, is immediately required by Step 2. The upper half, T1, is not

required until Step 4. It may be possible to reduce overall latency if the computation of

T0 can be expedited, and the computation of T1 overlapped with Step 2. Because Q1 is

discarded at the end of Step 2, simply not computing it could save time and energy. This

property is rarely mentioned explicitly in the literature; brief exceptions are found in [19]

and [30]. The Montgomery algorithm guarantees that in Step 4 P0 will resolve to zero. It

is only necessary to know whether in Step 4 there would be a carry generated from the

addition of T0 and U0, to compute P1 correctly. Other research that has acknowledged

this is [31]. In fact, it is not even necessary to add T0 and U0 at all. If T0 = 0, then Step 2

ensures that Q = 0, and as a result U = 0 and therefore U0 = 0. Conversely, if T0 ≠ 0, U0

is guaranteed to be nonzero. Because P0 = T0 + U0 always resolves to zero, a carry into

P1 = T1 + U1 is invariably generated for T0 ≠ 0. Only P1 = T1 + U1 + 1 needs to be

computed. It is merely necessary in Step 4 to know whether T0 is nonzero.

5.1 Rescheduled Montgomery Multiplication

Rescheduled Montgomery Multiplication enables efficient computation of the

Montgomery product by minimizing unnecessary computations and deferring some other

computations. The Montgomery algorithm as listed in Algorithm 2.1 requires three

multiplications of n-bit operands to produce three 2n-bit products T, Q, and U. It has

already been noted that the more significant half of Q, designated as Q1, is not used and

so need not be computed. Furthermore, the more significant half of T (T1), does not need

to be computed in full until U1 is computed.

In order to exploit the foregoing properties, the architecture devised here uses

digit multiplication. Input operands are split into k digits of d bits each. One or more

 49

digit multipliers compute partial products, which are then summed in an accumulator.

Generally, there are fewer digit multipliers than there are digit products to compute, even

as few as one multiplier. Multiple phases of digit multiplication and accumulation are

required.

According to (2.2) and Algorithm 2.1, computing T, Q, and U as full products

would require 3NP = 3k2 digit multiplications. However, in the Rescheduled

Montgomery algorithm, the top half of the Q product (Q1) need not be computed. Fig. 9

illustrates the computation of Q0. The shaded areas indicate unused computations. The

T[0]×M[1] and T[1]×M[0] digit products are required for Q0, but their upper halves are

not used. Similarly T[1]×M[1] contributes only to Q1, and so can be skipped altogether.

Fig. 9. Digit multiplication for Q.

The number of digit multiplications NQ to compute Q0 then is as follows:

 NQ = (k2 + k)/2 (5.1)

 50

NQ < NP and the ratio of digit multiplications to compute Q0 to the number to

compute a full product is rQ = NQ/NP. It is evident that as k increases, this ratio

approaches 1/2.

€

rQ =
NQ

N P

=
k 2 + k() / 2

k 2 =
k +1
2k

 (5.2)

€

lim
k→∞

k +1
2k

= 0.5 (5.3)

Thus, the total number of digit multiplications for a Montgomery product NM

using the Rescheduled Montgomery algorithm requires NP = k2 for each of T and U, and

NQ for Q0: NM = k2 + k2 + (k2 + k)/2. Thus:

 NM = 2.5k2 + 0.5k (5.4)

The ratio rR of digit multiplications in the Rescheduled Montgomery algorithm

relative to the full approach is described in (5.5).

€

rR =
2.5k 2 + 0.5k

3k 2 =
5k +1

6k
 (5.5)

As k grows large, the ratio asymptotically approaches 5/6.

€

lim
k→∞

5k +1
6k

=
5
6

= 0.83 ≈ 83%
 (5.6)

 51

The Rescheduled Montgomery Multiplier employs the novel Separated Product

Scheduling method from the Serial Montgomery Model. From (5.4), it is evident that it

requires a larger number of digit multiplications than the other categories such as CIOS,

FIOS, etc. Despite this, the Rescheduled Montgomery architecture is inherently equipped

to employ digit level parallelism more efficiently than the previous categories. Both

fundamental aspects of the SPS mode, separated reduction, and product scheduling, make

this possible. Separated reduction as employed here ensures that the dependencies occur

only at the macro level between products T, Q0, and U. There is no alternating

dependency chain between partial product and reduction phases. Digit level parallelism

can therefore be fully applied within a phase without interruption by an intervening

dependency. Nevertheless, dependencies from one phase to the next can be broken down

into digit level dependencies, which means that one phase need not complete in full

before the next phase can begin. As a result, it is possible to schedule digit operations

from two phases concurrently straddling the temporal boundary between the two phases.

It also minimizes stalls when operations are pipelined. Fig. 10 illustrates the SPS

dependency chain for the Rescheduled Montgomery Multiplier with k = 2.

Fig. 10. Rescheduled Montgomery Multiplier SPS dependency chain, k = 2.

 52

The first three rows of bubbles in Fig. 10 correspond to the intermediate product

phases T, Q0, and U. As depicted, each of these phases is split into steps corresponding

to digit multiplications, with the product digits that are being worked on indicated. Refer

to Fig. 2 for T and U, and Fig. 9 for Q0. Because reduction via Q0 and U is separated

from T partial product generation, there is no alternating dependency chain in which a

later partial product depends on a previous reduction. The CIOS dependency chain of

(partial product, quotient, reduction, partial product, …) does not apply. In the

Rescheduled Montgomery Multiplier, the SPS dependency chain is strictly a single

sequence of (product, quotient, reduction), full stop.

Moreover, as the figure illustrates, the dependencies broken down to the digit

level make it possible to overlap T, Q0, and U computation. This feature can be useful in

some cases. Separated product scheduling largely permits increased digit level

parallelism within relatively large phases uninterrupted by alternating dependency chains.

If k2 is not divisible by m, then at the end of one phase fewer than m multipliers are

required for the remaining digit products in that phase. The remaining digit multipliers

need not be idled; instead they can be scheduled to begin computation of the next phase.

The new phase’s first few digit products depend on digits already computed early in the

phase that is just completing.

Fig. 11 illustrates the RMM digit multiplication and accumulation schedule for k

= 2 and using a single digit multiplier (m = 1). Each row corresponds to a clock cycle.

Digit products appear on the left. To the right of each digit product are the result digits

that are being computed during that cycle. The third column lists, in italics, the result

digits that have been fully computed in the previous cycles and are available in the

accumulator. Finally, the clock cycle count is shown in the rightmost column.

 53

Fig. 11. Digit product scheduling for k = 2, m = 1.

The figure shows only the scheduling of the digit products and their offsets, and

does not indicate partial product accumulation. It should not be read to imply that all of

the digit products shown are summed together. There are, in fact, three phases in which

the same hardware is reused: computing T in Cycles 0-3, computing Q0 in Cycles 4-6,

and finally computing U in Cycles 7-10.

A detailed, step-by-step description of the schedule is as follows. The first row

shows Cycle 0 in which digit product A[0]×B[0] is computed, contributing to result digits

T[1:0]. The digit product is latched in the accumulator register. The T[0] digit is

complete and available after this cycle; it is listed in italics on the next row, i.e. in Cycle

1. In Cycle 1, T[1] is not yet complete, because it also depends on accumulation of the

digit products A[0]×B[1] and A[1]×B[0]. These latter two are computed in Cycles 1 and

2, and T[1] finally becomes available in the accumulator register in Cycle 3. This process

continues until all four digits of T are available in the accumulator register in Cycle 4. In

the second phase, computation of Q0 starts in Cycle 4 with digit product T[0]×Mʹ[0]. The

digit products T[0]×Mʹ[1] and T[1]×Mʹ[0] are computed in Cycles 5 and 6, and straddle

the line between the unused Q1 (Q[3:2]) and Q0 (Q[1:0]). Their upper halves are shaded

to indicate that they are not used. The final digit product T[1]×Mʹ[1], which contributes

 54

only to the unused Q1, is skipped. Finally, computation of U occurs in Cycles 7-10. The

figure shows that, for k = 2 digits and employing m = 1 digit multiplier, computing the

Montgomery product requires only 11 instead of 12 digit multiplications, or about 91.7%.

Increasing the number of digits into which the operands are subdivided permits a

higher degree of granularity. As shown by (5.3), higher granularity permits eliminating

an increasing percentage of digit multiplications that would otherwise contribute to Q1.

In the example above, a full product requires 22 = 4 digit multiplications, while Q0 only

requires 3, or 75%. In the overall scheme, (5.6) shows that the savings from reducing Q1

computations approaches 17%.

Another example will illustrate the increasing savings. Suppose now that k = 4.

Computing a full product requires NP = 42 = 16 digit multiplications (T and U), while

computing Q0 requires only NQ = (16 + 4) / 2 = 10 multiplications, or 62.5%. Thus for k

= 4, the digit multiplication approach results in a further savings by eliminating

unnecessary computations. From (5.5), rR = 42 / 48 = 87.5%. This compares even more

favorably to the k = 2 case where rR = 91.7%.

It is, of course, possible to employ more than a single digit multiplier. A plurality

of multipliers can be scheduled concurrently for increased parallelism and lower latency.

At the same time, the increased granularity afforded by digit multiplication to minimize

Q0 computations remains.

In general, a digit-based architecture must perform the following operations for

each set of digit products. First, digits are selected from the full-sized operands; this can

be done with a multiplexer tree. Next, the digits are multiplied together. Finally, the

digit product is summed with the previous products’ running sum in an accumulator

register. Due to the relatively large digit sizes, with 32 bits being the minimum, it is

expected that the digit multiplier will be the critical timing path. Accordingly, pipelining

 55

the digit operations can increase the throughput and improve the overall latency of a

Montgomery product computation.

5.2 Architecture

The Rescheduled Montgomery Multiplier architecture consists of a three-stage

reusable pipeline with stages designated as Load (L), Multiply (M), and Accumulate (A).

In Load, the input operands are selected and loaded into the digit multiplier input

registers. In Multiply, the actual digit multiplication occurs and is written to the digit

multiplier output register. Finally, in Accumulate, the digit partial product, with

appropriate bit offset, is summed with the accumulator. Fig. 12 depicts the pipeline for

the k = 2, m = 1 case.

Fig. 12. RMM pipeline for k = 2, m = 1.

Data progress through the pipeline occurs vertically from top to bottom, through

stages L, M, and A. Time is indicated horizontally, with the Load cycle count on top,

ranging from 0 to 10. The pipeline boxes indicate the result computation that is being

performed. Computation of T[1:0] begins in Cycle 0, with digits A[0] and B[0] being

loaded in Stage L. The actual digit multiplication A[0]×B[0] occurs in Stage M during

Cycle 1. Finally, accumulation occurs in Stage A during Cycle 2. The 0 underneath the

 56

stage indicates that accumulation is being performed on the result of the computation that

started in Stage L during Cycle 0. Alternatively it can be considered as Accumulate

Cycle 0. The accumulated result then becomes available in the accumulator register in

Cycle 3 (Accumulate Cycle 1). The completed part of that result is T[0], so it is shown

below in italics. Recall that T[1] requires two more digit multiplications before it is

complete.

Because it is a pipelined architecture, the entire Montgomery product requires

more cycles than the 11 implied by the digit product scheduling. Two additional cycles

account for the pipeline depth. Two more cycles represent the final Montgomery T1 + U1

operation, which may include a subtraction of M if the initial result is out of range, for a

total of 15 cycles.

Fig. 13 depicts the Rescheduled Montgomery Multiplier microarchitecture.

Computation progresses from left to right. At the front end are the n-bit input registers A,

B, Mʹ, and M. These registers, along with a feedback path from the accumulator register,

feed digit selection logic. This logic is controlled by a counter in a separate finite state

machine. It selects digits from the inputs to feed to one or more digit multipliers. The

input registers and select logic form the Load stage of the pipeline. The Multiply stage

contains the digit multipliers. Each digit multiplier has two d-bit input registers X and Y

and computes a 2d-bit digit product P in one clock cycle. This is the critical timing path

of the entire design because of the large size of the digits. Next, the Accumulate stage

adds one or more digit products to the contents of the accumulator register ACCUM.

Finally, computation of the Montgomery product occurs in the Final Sum stage. This

stage is only active after all the intermediate operands T, Q0, and U have been fully

computed in the L-M-A pipeline.

 57

Fig. 13. Rescheduled Montgomery Multiplier architecture.

During the computation of T in Step 1, digits from A and B are selected according

to the schedule. After some number of cycles determined by the number of digits and

available number of digit multipliers, the computation of T0 is complete and occupies the

low order bits of the accumulator register ACCUM. T1 computation may still be in

progress. T0 is checked for any non-zero bits by means of an OR reduction. If any of its

bits is 1, the single-bit T0_CARRY register is set; if they are all zero, the register is

cleared. This register is used later during final Montgomery computation and indicates

whether a carry out of the T0 + U0 sum would have occurred. When the entire T word has

been computed in the Accumulate stage, its upper word is moved to the T1 register,

because subsequent phases for Q0 and U will eventually overwrite ACCUM.

When the last digits of A and B have been clocked into the digit multipliers, Step

2 for computing Q0 can begin in the Load stage. Q0 is a function of T0 and Mʹ. T0 digits

are selected from the low order word of the accumulator register which is fed back to the

 58

Load stage. Mʹ digits are selected from its input register. When Q0 is complete, it

occupies the low order bits of the accumulator register just as T0 had when it was

completed during Step 1. Depending on the (k, m) design configuration, and due to the

pipelining, it is possible that all of the T0 digits will be read before the first partial result

of Q arrives in ACCUM. In this case, T0 would not need to be moved from the

accumulator register. In other cases where T0 digits are still being selected in the Load

stage while the ACCUM is being written with intermediate Q results, T0 can be saved in

and then fetched from an auxiliary register T0. Because only Q0 instead of the full value

of Q is computed, Step 2 requires fewer cycles to complete than either Step 1 or 3. It

stops after slightly more than half the number of digit multiplications that would be

required to compute a complete Q.

After the last T0 and Mʹ digits have been input into the digit multipliers, Step 3 to

compute U can begin. In the Load stage, the Q0 digits are selected from the fed-back low

word of the accumulator, while M digits are selected from the M input register. This

computation proceeds just as in Step 1. Depending on the (k, m) design configuration,

and due to the pipelining, it is possible that all of the Q0 digits will be read before the first

partial result of U arrives in ACCUM. In this case, Q0 would not need to be moved from

the accumulator register. In other cases where Q0 digits are still being selected in the

Load stage while the ACCUM is being written with intermediate U results, Q0 can be

saved in and then fetched from an auxiliary register Q0. At the end of this phase, the

entire value of U = (U1, U0) is present in the accumulator register ACCUM.

The accumulator datapath varies from configuration to configuration. The

number of digits k into which the full sized operands are divided, and the number of digit

multipliers m that are instantiated, along with the digit product scheduling, directly

determine the structure and complexity of the datapath.

 59

Consider the case where k = 2 and m = 1. Refer to Fig. 11 for the digit product

scheduling for T. When any product computation phase starts, the accumulator register is

first cleared to zero. The first digit product A[0]×B[0] is computed in Cycle 0 and written

to the least significant bits of the accumulator register ACCUM. In Cycle 1, the next

digit product A[0]×B[1] is left-shifted by d bits and added to ACCUM. In Cycle 2,

A[1]×B[0] is also left-shifted by d bits and added. Finally in Cycle 3, A[1]×B[1] is left-

shifted by 2d bits and added. Fig. 14 illustrates this process.

Fig. 14. Digit product accumulation for T (k = 2, m = 1).

The accumulator datapath logic thus must support three configurations, or modes:

(1) in Cycle 0, no shift and no addition; (2) in Cycles 1 and 2, a one-digit left shift of the

digit product, accumulated with the contents of ACCUM; and (3) in Cycle 3, a two-digit

left shift and accumulation with ACCUM. This same logic can be reused exactly when

computing Q0 and U. Q0 is computed in Cycles 4-6, corresponding to Cycles 0-2, while

the accumulator mode of Cycle 3 is skipped. U is computed in Cycles 7-10,

corresponding to Cycles 0-3.

As much as is practicable for a given (k, m) configuration, the same accumulation

schedule should be used for the three T, Q0, and U computation phases. This maximizes

 60

gate reuse and minimizes combinational area growth in the accumulator datapath.

Consider an architecture with k = 3 digits and m = 2 digit multipliers. From (5.4), 24

digit multiplications must be performed. Fig. 15 illustrates one possible schedule.

Fig. 15. Digit multiplication schedule for k = 3, m = 2.

In the figure, observe that the final digit product for T is computed in Cycle 4, as

is the initial digit product for Q0. There is a disconnect in that these two partial products

are not added together. Moreover, in Cycle 0 the first two partial products for T are

accumulated, but in Cycle 4 only the first Q0 partial product is written to the accumulator.

The second Q0 partial product is not written until Cycle 5, during which it is added with

the third partial product. Thus, the accumulation logic must be different for Cycle 4 from

 61

that in Cycle 0. Cycle 7 is yet another case where the accumulation requirements diverge

and are not consistent with Cycles 0 and 4. In all, the accumulator datapath requires ten

different states. Cycles 0 through 7, 10, and 11 each requires a unique accumulation

state. Cycles 8 and 9 can reuse the same states as Cycles 5 and 6 respectively.

By maximizing uniformity of accumulation for the three phases, the number of

accumulator states can be reduced. Using a slightly different digit product and

accumulation schedule, the k = 3, m = 2 architecture only requires five accumulator

states. Fig. 16 depicts the revised schedule.

Fig. 16. Revised digit multiplication schedule for k = 3, m = 2.

 62

Step 1 for computing most of T proceeds through Cycles 0-3. However, the

A[2]×B[2] contribution to the final digit products T[5:4] is not computed in Cycle 4. The

fact that T1 (= T[5:3]) is not required until the end makes it possible to defer computing

the T[5:4] digits for now. Thus in Cycle 4, Step 2 begins for computing Q0. Observe that

the two digit products T[0]×Mʹ[0] and T[0]×Mʹ[1] are computed and accumulated in

exactly the same way as were A[0]×B[0] and A[0]×B[1] for T in Cycle 0. This means that

the exact same accumulator state logic can be reused but with the new digit product

inputs. The same result obtains for the Step 3 U computation that begins in Cycle 7.

Looking at the schedule as a whole, it is evident that the same accumulator logic state is

reused for Cycles 0, 4, and 7. Likewise, another accumulator logic state is reused for

Cycles 1, 5, and 8; another for Cycles 2, 6, and 9; and yet another for Cycles 3 and 10.

This constitutes only four accumulator states. Finally, Cycle 11 is a special case. The

Q[2]×M[2] partial product is added to the accumulator as expected, but the A[2]×B[2]

partial product is concurrently added not to the accumulator, but to the T1 save register.

This does require some duplicated accumulator logic, but it is more than offset by the

logic reuse in earlier cycles.

After all intermediate quantities have been computed, the final addition to

compute the Montgomery product may proceed in the Final Sum stage. T1, which has

been saved in register T1, is added to U1 in the high word of ACCUM. Also added is the

bit from the T0_CARRY register. Recall that the Montgomery algorithm guarantees that

the low word of the final product will compute to zero. If T0 computed to zero, U0 will

also be zero. If T0 computed to nonzero, U0 will have the value that cancels it out as well

as generating a carry into the high word. Therefore, there is no need to actually add T0

and U0—just T1 and U1 plus the potential carry bit from T0. This results in an addition

 63

path that is half as wide as would be required for a direct implementation of the

Montgomery algorithm.

5.3 Implementation

For 256-bit operands, the number of digits was varied from two to eight, in steps

of one. For any given architecture the digit size was kept uniform. Thus, the digit sizes

were varied from 128 down to 32 bits, according to the number of digits chosen for a

particular architecture. For example, choosing a two-digit architecture meant that the

256-bit operands were divided into two digits of 128 bits each. A four-digit architecture

employed 64-bit digits. In the case of a digit count that was not an integral divisor of

256, the operand size was increased slightly so that all digits would be of equal size. In a

three-digit architecture, 256 is not divisible by three, so in that case the datapath size was

increased slightly to 258 bits, and the digit size was 86 bits (3×86 = 258).

In addition, the number of digit multipliers was varied. In the simplest realization

of the Rescheduled Montgomery Multiplier architecture, a single digit multiplier could be

employed to compute all digit partial products. With the operands divided into only a

few large digits, this would be sufficient and provide acceptable performance. However,

the number of cycles would be proportional to the square of the number of digits.

Therefore with a larger number of smaller digits, the performance would be too slow.

Consider a four-digit architecture. Recall from (5.4) that the total number of

required digit multiplications is NM = 2.5k2 + 0.5k. For k = 4, this computes to 42. With

only a single digit multiplier, 42 cycles plus the 4-cycle overhead would be required to

compute the Montgomery product. Employing more than one digit multiplier permits

computation of multiple digit products concurrently, reducing the number of cycles.

 64

Assume two digit multipliers are employed. This reduces the number of cycles to 42/2 =

21.

 65

Chapter 6 Methodology

6.1 Architectural Comparisons

Several alternative architectures were built, including those of other researchers,

to evaluate the relative impact of the Rescheduled Montgomery Multiplier optimizations

on area and performance. The proposed alternative architectures are listed below.

This research is focused on algorithmic optimization of the Montgomery steps,

and not on designing the fastest multiplier possible. As such it allows the synthesis tool

to build multiplier circuits that meet, as much as practicable, the applied design and

optimization constraints.

The McIvor, et al. full-word Montgomery multiplier and ECC coprocessor

architecture originally motivated this research because it dispensed with the interleaved

reduction employed by the serial architectures. It also incorporated new algorithms to

speed up multiplicative inversion, and therefore could conceivably be used to perform

ECC point operations using affine coordinates.

The Eberle architecture [17] operates at the digit level like the Rescheduled

Montgomery Multiplier, although without any parallelism. Digit sizes for the experiment

range from 8 to 32 bits.

The Großschädl architecture [19] offers the potential to perform fast sequential

bit-word computation using less complex logic than a multibit multiplier circuit.

The Tenca and Koç architecture [20], [21] uses a hybrid bit-digit approach. This

permits multiple bit-word partial products to be computed concurrently. It can be

implemented in a very small area if a minimum number of the relatively simple

processing elements are instantiated.

 66

The prior Montgomery multiplier architectures were originally designed and

evaluated on a varied set of platforms and technology nodes. For example, the McIvor, et

al. Elliptic Curve Coprocessor was targeted to an FPGA.

This research focuses on bottom-up IC design using standard cells and synthesis.

It targets the Nangate 45 nm research process node [32]. In order to make fair

comparisons, the preceding Montgomery architectures have been built and simulated in

the same way as the proposed Rescheduled Montgomery Multiplier. In all cases, the

RTL design adheres as closely as possible to the architectures described by the respective

authors. The objective is to remain as faithful as possible to those architectures as

described by the authors in their publications, in the absence of actual RTL or circuits.

6.2 RTL Design and Simulation

Initial algorithm analysis and development is performed in software using Python.

Python is widely available and fast. Its inherent capacity for arbitrarily large operands

suits it well to exploring and analyzing the GF(p) and GF(2n) algorithms of interest here

with operands on the order of hundreds of bits. In many cases Python functions are

employed to generate test data for RTL simulations.

All architectures that were evaluated for area and performance were designed at

the register transfer level (RTL) in the Verilog hardware definition language (HDL). The

circuits were partitioned using a strict hierarchical design methodology. In particular, the

objective was to evaluate overall design performance and complexity, not merely raw

datapath performance. For the most part a structural design approach has been employed,

especially in organizing and connecting well-defined submodules. In some cases, low

level modules such as integer digit multipliers were defined with simple behavioral

statements (e.g. of the form P = A × B). In other cases, such as with GF(2n) multiplier

 67

circuits, a structural approach was employed down to the gate level. At higher levels of

abstraction, such as with finite state machines (FSMs), behavioral RTL was used.

All designs were simulated in a conventional Verilog testbench. The open source

Icarus Verilog simulator has proven to be reliable and fast, and was employed here [33].

Result checking was automated, and an accompanying waveform viewer aided in

debugging.

6.3 Synthesis and Static Timing Analysis

Synthesis translates an RTL design to a circuit consisting of standardized gates

(referred to as standard cells) that implement Boolean logic functions, simple arithmetic,

and memory functions in the form of sequential cells, or registers. The gates have been

designed for a particular semiconductor process technology and characterized over a

wide range of process variation, voltage, and temperature (PVT). The synthesis tool

retrieves the gates from a library, and combined with various constraints, builds the

circuit.

Synthesis constraints are varied and derive from multiple sources. For example,

the standard cell library imposes constraints such as cell area, capacitance, transitions

(slew), maximum fanout, and a range of output loads. For optimization purposes

additional constrains are placed on the design, most fundamentally the target clock period

for sequential logic. The synthesis tool translates the RTL to a circuit which consists of

combinational and sequential logic gates to effect the function of the design.

Each combinational logic gate has a propagation delay. A source sequential gate

(register) has a delay from the launching clock edge to when the Q data output pin

changes (referred to as clock-to-Q delay). These delays are partly a function of the input

transition and output load of the pins. Finally, a destination register has a setup time

 68

requirement, usually positive, which is the amount of time before the capturing clock

edge by which the input data must be stable in order to be captured correctly.

In most cases, timing paths are measured from a rising, launching clock edge at a

startpoint register, to the data’s arrival at the D pin of an endpoint register. If data arrives

sufficiently early at the endpoint register’s D pin before the next rising clock edge, it is

captured correctly. The path does not have a timing violation. Fig. 17 illustrates such a

case. The output function of the combinational logic gates has settled to its final value at

the point denoted as arrival time. This is earlier than the required arrival time, a function

of the setup time of the destination register. The difference between the two is the timing

path’s positive slack. For a first order approximation, slack is computed by (6.1).

 tslack = tCLK – tCLK2Q – tprop – tSU (6.1)

Fig. 17. Gate-level circuit timing with positive slack.

 69

If the combinational path is large, such as having many levels of logic, the result

data may resolve later than the required time. In such a case, an incorrect value will be

captured by the endpoint register. Thus the circuit cannot operate as fast as the required

clock frequency. Fig. 18 illustrates this condition. The combinational logic function

resolves, and it arrives later the required time. The difference between arrival time and

required time is termed negative slack. In this case, the circuit can still be run without

timing-related errors by switching to a lower clock frequency. For example, given a

clock period constraint of 2.0 ns, if the worst timing path has 0.2 ns of negative slack (–

0.2 ns), it means that the data has arrived 0.2 ns too late to be correctly captured by the

endpoint register. However, an increased clock period of 2.2 ns could be selected and the

circuit operated without errors caused by timing violations.

Fig. 18. Gate-level circuit timing with negative slack.

 70

During synthesis, the tool can be driven, within reason, to certain optimization

constraints. Operating conditions, design size, and the capabilities of the standard cell

library all interact to determine how fast the design can function. Often the optimization

constraints are more aggressive than what can realistically be achieved in a particular

process corner. Synthesis tools operate on cost functions that determine a balance

between building a design that meets the required performance specifications, and

actually finishing the build. The optimization effort (duration) is thus limited to ensure

the synthesis job does not run forever attempting to optimize a circuit beyond what is

physically possible. Consequently, it is possible that upon completion of synthesis, the

circuit may operate at a lower level of performance than what was requested. Although

the synthesis tool has its own timing engine to handle the timing optimization, industry

practice is to evaluate timing using a dedicated static timing analysis (STA) tool.

Static timing analysis (STA) of a synchronous digital circuit uses the standard cell

libraries and operating conditions to compute the minimum and maximum time for

signals to travel from all startpoints (input ports and registers) to their endpoints (output

ports and registers). This determines the effective achievable minimum clock period for

a design. A synthesized design may be timed with wireload models to model signal

delays between cells. On a design that has been fully routed, STA can provide an even

more accurate estimate of performance by taking into account routing delays, clock tree

effects, and signal crosstalk.

All of the architectures implemented for this research were built and timed in the

same integrated circuit technology. This allowed apples-to-apples comparisons of factors

such as area and performance. The Nangate 45 nm standard cell library was chosen for

the target library [32]. All designs were synthesized with the Synopsys Design Compiler

synthesis tool [34]. Finally, static timing analysis (STA) was performed using Synopsys

 71

PrimeTime [35]. During synthesis designs were driven with a clock period of 2.0 ns, i.e.

a targeted clock frequency of 500 MHz. The clock period was also set to 2.0 ns for STA.

Where a design had positive slack, it was subtracted from 2.0 ns to derive the possible

clock period at which the circuit could run faster. Similarly where a design had timing

violations, i.e. negative slack, the worst negative slack figure was added to the 2 ns clock

period to compute a slower clock period at which the circuit could run without data

errors.

6.4 Evaluation Criteria

In broad terms, a fundamental objective of the GF(p) portion of this research is to

exploit properties of the Montgomery algorithm to maximize efficiency. A large

component of that is to optimize computation by avoiding unnecessary operations. This

applies in computing the Q0 quotient term as well as in performing the final T + U

reduction. Where opportunities arise, operations or portions of operations can be

deferred, such as computing the high word T1. This may permit reduction in the number

of clock cycles as these operations can be rescheduled to run concurrently with others.

Given the foregoing, performance (latency) is of prime importance. Even as

transistors become increasingly cheaper in succeeding generations of deep submicron

process technologies, however, design complexity (area) should not be ignored. Both

area and latency also contribute to power, or perhaps more important, energy

consumption. To assist in evaluating design tradeoffs between performance and area

(which is a cost) across many diverse architectures, many researchers have employed a

figure of merit that takes into account both performance and area. This typically is

expressed as an area-latency product. Simply, a design’s latency in some unit of time is

multiplied with its size in some unit of area. For purposes of this research, design area is

 72

reported in square microns (µm2), while latency is expressed in nanoseconds (ns). Thus

the area-latency product would be expressed in units of µm2⋅ns. In fact, the area results

show fairly large numbers when expressed in µm2 (on the order of 100,000 µm2), so an

adjustment is made by dividing the area-latency product by 106 to keep the figures of

merit simple with one or two whole digits. The figure of merit computation is shown in

(6.2) below, where A denotes area and L denotes latency.

 Area⋅Latency FOM = A × L / 106 (6.2)

From (6.2), the units of this figure of merit are mm2⋅ns, but in practice the units

are dropped.

 73

Chapter 7 Elementary Montgomery Realizations

It can be useful to establish a baseline for what is possible using only basic

resources such as a process design kit, a library of standard cells, and a synthesis tool.

The steps in the Montgomery algorithm set out in Algorithm 2.1 are regular and

uncomplicated, consisting of integer multiplication, addition/subtraction, and

comparison.

7.1 Synthesized Parallel Multipliers

A single multiplier circuit may be instantiated and reused to perform Steps 1, 2,

and 3 of the Montgomery algorithm. Modern logic synthesis tools are equipped with a

wide variety of algorithms for design partitioning and logic optimization. These include

algorithms for constructing highly efficient multipliers to meet process design rules as

well as area and performance optimization targets. A parallel multiplier may be specified

with simple RTL of the form P = A × B. From this, the synthesis tool can build an

appropriate architecture to meet the design and optimization constraints. In addition to

the 256-bit operand size target of this research, it can be instructive to build multipliers of

various sizes such as 128×128, 64×64, and even 32×32, and examine different ways of

employing them.

For each multiplier size, two hypothetical deployments can be analyzed for area

and performance. In the first deployment, a single instance of the multiplier is scheduled

as many times as necessary to compute all the partial products, culminating in a final

Montgomery product. In the second deployment, a baseline multiplier is treated as

instantiated as many times as necessary to form a 256×256 multiplier. The first

deployment may be termed multiple-scheduling. For example, given an operand size of

256 bits, a single 128×128 multiplier can be scheduled sequentially four times to compute

 74

a single 512-bit product. Because a Montgomery product requires three intermediate

products T, Q, and U, the latency would be multiplied by a factor of three. The second

deployment may be termed multiple-instantiation. Four copies of a 128×128 multiplier

could be instantiated along with addition logic to sum the partial products and produce

the 512-bit result.

This approach is only intended to give a first order estimate of the area and

performance results that may be possible with a simple synthesized multiplier. It would

not be a comprehensive solution as it does not take into account other datapath logic such

as addition/subtraction, multiplexing, and storage registers. Furthermore it ignores

control logic resource requirements.

7.2 Pipelined Karatsuba-Ofman Multiplier

The Karatsuba-Ofman multiplication algorithm is a divide-and-conquer approach

to integer multiplication. In simplest form, it splits up the input operands into two digits

each and performs digit multiplication and accumulation. This permits the use of a

smaller multiplication unit. Furthermore, it employs a mathematical identity to reduce

the number of digit multiplications that must be performed from four to three [31], [36].

Let A and B be n-bit operands whose product P = AB is to be computed. They are

decomposed into two digits of n/2 bits each. Digits are indicated with subscripts. For

example, A = 2n/2A1 + A0. Digit concatenation is shown with parentheses: A = (A1, A0)

and B = (B1, B0). Using the present notation, (2.3) is reproduced as (7.1).

 P = 2nA1B1 + 2n/2(A1B0 + A0B1) + A0B0 (7.1)

 75

Let Z2 = A1B1, Z0 = A0B0, and Z1 = (A1B0 + A0B1). Substituting the Z terms into

(7.1) gives (7.2).

 P = 2nZ2 + 2n/2Z1 + Z0 (7.2)

Fig. 19 illustrates (7.2) graphically.

 2n–1 n n–1 0
 Z2 Z0

+ Z1

Fig. 19. Karatsuba-Ofman Z term summation.

The middle term of (7.1) and (7.2), Z1 = (A1B0 + A0B1), requires two (n/2)-bit digit

multiplications. Z1 can be replaced via an identity which requires only a single (n/2+1)-

bit multiplication. The following steps show how the identity is derived. It begins by

factoring (A1 + A0)(B1 + B0) and culminates in (7.3).

 (A1 + A0)(B1 + B0) = A1B1 + A1B0 + A0B1 + A0B0

(A1 + A0)(B1 + B0) – A1B1 – A0B0 = A1B0 + A0B1

A1B0 + A0B1 = (A1 + A0)(B1 + B0) – A1B1 – A0B0

Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0

 Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0 (7.3)

 76

Fig. 20 depicts the final partial product summation. The Z0 product A0B0 is in the

least significant position, while the Z2 product A1B1 is shifted up by n bits. From (7.2) the

Z1 term is shifted up by n/2 bits. Z2 and Z0 are subtracted, while the (A1 + A0)(B1 + B0)

product term is added as indicated in (7.3).

 2n–1 n n–1 0
 A1B1 A0B0

– A1B1
– A0B0
+ (A1 + A0)(B1 + B0)

Fig. 20. Karatsuba-Ofman partial product summation.

Thus, performing an extra two additions and two subtractions makes it possible to

compute only three digit-magnitude products instead of four: (A1 + A0)(B1 + B0), A1B1,

and A0B0. The Z1 identity may be defined and computed in a few different ways, and it is

added or subtracted depending on which one is chosen.

Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0 → P = 2nZ2 + 2n/2Z1 + Z0

Z1 = (A1 – A0)(B1 – B0) – Z2 – Z0 → P = 2nZ2 – 2n/2Z1 + Z0

Z1 = –(A1 – A0)(B1 – B0) + Z2 + Z0 → P = 2nZ2 + 2n/2Z1 + Z0

A hierarchical pipelined Karatsuba-Ofman 256×256 multiplier circuit was

constructed in similar manner to the pipelined multiplier in the McIvor, et al. ECC

Processor. At the top level, the three Z terms were further decomposed into smaller

Karatsuba-Ofman type multipliers whose outputs were registered. The decomposition

 77

was applied at three hierarchical levels in all. The lowest level used 32×32 conventional

multipliers of RTL form P = A × B.

As with the simple synthesized multipliers, the Karatsuba-Ofman realization is

only intended as a point of reference for the three multiplication steps in the Montgomery

algorithm. It does not include the other datapath circuitry, register storage, or control

logic required for a full Montgomery deployment.

7.3 Full Direct Montgomery Multipliers

Algorithm 2.1 lists the Montgomery computations as a list of steps. It is tempting

to think of these steps as being performed sequentially. With this in mind, the same

integer multiplier can be reused to compute the three intermediate products in Steps 1-3.

Scheduling the multiplier in this way maximizes its utilization.

An obvious alternative is to perform the sequence of operations in space as

opposed to time, if resource constraints are ignored. In other words, using a brute force

approach it is certainly possible to design a fully combinational Montgomery

multiplication circuit. Operands A, B, M, and Mʹ can be applied to a set of input registers,

and the Montgomery product P can be captured one cycle later in an output register.

Three multiplier units for intermediate products T, Q0, and U can be built and connected

such that the output of one cascades to the next. Because only the low word Q0 of the

quotient term is required, its multiplier unit will necessarily be less complex than the

other two multipliers. Fig. 21 depicts the parallel architecture.

 78

Fig. 21. Full direct parallel Montgomery architecture.

The next obvious step is to partition the combinational datapath into stages such

that it is pipelined. Pipelining can increase latency, even with the shorter clock period

that it typically enables. Conversely, the throughput gain of pipelining can easily be

exploited for both RSA and ECC. An RSA application can use a sequence of repeated

multiplications to compute a modular exponent. The ECC point operations necessarily

employ a sequence of modular multiplications as well. Fig. 22 depicts the pipelined

architecture.

 79

Fig. 22. Full direct pipelined Montgomery architecture.

Fully parallel and pipelined Montgomery circuits with n = 256 were built. The

fully parallel circuit was a direct implementation of the Montgomery multiplication

algorithm. Inputs and output were registered. Next, pipeline registers were added to this

design to break up the large combinational arithmetic logic. A relatively simple pipeline

consisting of four stages was built. Each of the three multiplication steps was segregated

into a dedicated pipeline stage, and the final add, compare, and subtract operations were

placed into a fourth stage.

Finally, a second pipelined version was built. This version had the remaining

optimizations applied. First, a ones detector was applied to the T0 output of the first

multiplier in Stage 1. It took the form of a large OR gate structure to detect any 1s in T0.

 80

Only the single bit needed to be registered, saving register area for T0, which could be

discarded. The second optimization was to reduce the size of the adder circuit in Stage 4.

Instead of computing the sum of double words T and U, only the upper word must be

computed from T1, U1, and the single bit from the ones detector in Stage 1, in a classic

add-with-carry approach. Fig. 23 depicts the pipelined architecture with the opportunistic

Montgomery optimizations applied.

Fig. 23. Full direct optimized pipelined Montgomery architecture.

 81

Chapter 8 Results

8.1 Synthesized Parallel Multipliers

Parallel multipliers for input operand sizes of 32, 64, 128, and 256 bits were built.

Each multiplier had two n-bit input registers for the multiplier and multiplicand, and one

2n-bit product output register.

Results for the multiple-scheduling deployment are as follows. The smallest

simple multiplier is the 32×32. This multiplier has an area of just under 6.5k µm2, and an

effective period of 1.5 ns. To compute a complete Montgomery product, this multiplier

would need to be scheduled for 164 cycles, plus an additional cycle for the final P – M

computation. Its total Montgomery latency is 249.2 ns. While this is large, the relatively

moderate size gives this multiplier a small area-latency product of about 1.6.

Moving up to 64×64, its size is 3.4 times as large as the smaller one, at just under

22k µm2. Its effective clock period is longer as well, at 1.849 ns. Conversely, because of

the number of partial products is quadratically related to the number of digits, this

multiplier only requires about 25% the number of cycles as the 32×32 version. Even with

the slightly larger clock period, its latency is reduced by 68% to 79.5 ns.

As expected, the trend continues with the 128-bit and 256-bit variants. Each

variant’s area increases by a factor of between 3 and 4 of that of the next smaller one, and

the latency decreases by about a factor of 3 each time.

Table 8 lists the results for the simple parallel multipliers deployed under

multiple-scheduling. It should be kept in mind that the data are somewhat ideal and not

completely realistic. They are based on the area of the multiplier itself and do not

account for partial product summation logic. Likewise, the latencies only consist of the

latency through the multiplier itself, plus one cycle at the end for the final add, test, and

 82

possible subtract in the Montgomery algorithm. Additional delays for accumulation,

which would affect the overall timing in a fully constructed circuit, and not included here.

Table 8. Synthesized parallel multiplier (multiple scheduling) area and latency.

n×n
Total
Area

 (µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

32×32 6,438 1.510 662 165 249.2 1.60
64×64 21,935 1.849 541 43 79.5 1.74

128×128 78,307 2.124 471 12 25.5 2.00
256×256 289,483 2.504 399 4 10.0 2.90

For the multiple-instantiation deployment estimates, area is traded for

performance. In all cases the basic synthesized multiplier is considered to be tiled in such

a way as to construct a full 256×256 parallel multiplier. Thus, the full size multiplier

circuit consists of a single 256×256 multiplier itself, four 128×128 multipliers, or 16

64×64 multipliers, or 64 32×32 multipliers. Table 9 lists the results.

Table 9. Synthesized parallel multiplier (multiple instantiation) area and latency.

n×n #
Instances

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

32×32 64 411,998 1.510 662 4 6.0 2.49
64×64 16 350,954 1.849 541 4 7.4 2.60

128×128 4 313,227 2.124 471 4 8.5 2.66
256×256 1 289,483 2.504 399 4 10.0 2.90

Based on this simplistic approach, the data might suggest that the best

performance would be obtained from tiling 32×32 multipliers, because the presumed

latency is only 6 ns. However, these data are not realistic and are useful only as an

 83

approximate first order estimate of performance and area. It is certainly the case that the

32-bit multiplier by itself has the lowest latency, at 1.51 ns, but in the big picture this

datum is incomplete. It ignores the fact that the 32×32 partial products must themselves

be summed, and that the accumulation circuitry has not actually been built. Furthermore,

all of the synthesized multipliers are designed such that the inputs and outputs are

registered. These intermediate registers add to the overall area and would not be present

in a purely combinational design. Either the data must be pipelined through each rank of

32×32 multipliers or the internal registers would have to be removed. In the latter case,

of course, the combinational logic paths are increased in depth and thus in delay. As the

size of the base multiplier increases, the area and performance estimates become more

accurate. Finally, the algorithms available to synthesis tools are at present quite

sophisticated. It is very difficult for an engineer to devise a more efficient combinational

circuit than the tools themselves. Accordingly, the results in Table 9 can only be

considered a very general starting point. For completeness, the 256×256 is repeated here.

Its results are the most “realistic” because it lacks the data artifacts caused by the simple

tiling assumption.

8.2 Pipelined Karatsuba-Ofman Multiplier

The results for the Karatsuba-Ofman multiplier are listed in Table 10.

Table 10. Pipelined Karatsuba-Ofman multiplier area and latency.

n
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

256 251,949 1.620 617 22 35.6 8.98

 84

Area is substantial, nearly a fourth of a square millimeter. Effective clock period

is on the order of 1.6 ns, and the single product latency is seven cycles. As employed to

perform the Montgomery algorithm, a total of 22 cycles would be required for a latency

of 35.6 ns.

These data are only for the Karatsuba-Ofman multiplier circuit itself, and do not

reflect a complete Montgomery design. Omitted are the actual circuitry to store the

intermediate products T, Q, and U, as well as the final add, compare, and potential

subtract.

8.3 Full Direct Montgomery Multipliers

All three full directly implemented Montgomery circuits have similar area cost

and performance. Total areas are in the vicinity of 700k µm2, the largest being the

pipelined design at 711,744 µm2. The pipeline registers account for this growth. The

area for the optimized pipelined design falls to 698,660 µm2. Shrinking the final adder

circuit from 512 to 256 bits, as well as eliminating the 256-bit T0 pipeline registers

accounts for this saving. Table 11 lists the results.

Table 11. Direct parallel and pipelined Montgomery area and latency.

Design
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

Area⋅
Throughput

Product
Parallel 698,628 6.895 145 1 6.9 4.82 4.82
Pipelined 711,744 2.496 401 4 10.0 7.11 1.78
Optimized Pipelined 698,660 2.512 398 4 10.0 7.02 1.76

While performance is similar, there is a significant difference between that of the

parallel design and that of the pipelined designs. In the parallel design, a great deal of

 85

arithmetic combinational logic must be built between the input and output registers for a

one-cycle computation. The achievable clock cycle time is about 6.9 ns. While this is

slower than the targeted clock period of 2 ns, it is the entire latency of the design. Its

area-latency product is only 4.82. The pipelined designs, on the other hand, can be run

with a faster clock of approximately 2.5 ns. With four stages their latency is 10 ns, and

their area-latency products are worse than that of the parallel design, at just over 7.

Conversely, the pipelining brings with it the usual advantage of higher throughput if a

series of Montgomery products are to be computed. In this case, a Montgomery product

can be output every 2.5 ns. An area-throughput figure of merit can be computed as the

area-throughput product. For both pipelined designs it is just under 1.8.

8.4 McIvor ECC Processor with Pipelined Multiplier

The McIvor, et al. ECC Processor provides the original motivation for this

research [11]. Its integration of related functions for ECC computations, such as the

optimized inversion algorithm, make it interesting as a comprehensive solution in the

application space. Table 12 lists the area and performance results for the ECC Processor.

Table 12. McIvor, et al. ECC Processor area and latency.

Design
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

ECC Processor 640,106 1.496 668 35 52.4 33.52

As the table shows, the entire ECC Processor is large, well over half a square

millimeter at 640k µm2. The multiplier itself occupies 584k µm2, or 91% of the total. Of

 86

the multiplier’s area, 26% consists of noncombinational logic, mainly the pipeline

registers.

In this design, the multiplier simply computes the 512-bit product of its inputs. It

is scheduled to perform the sequential steps of computing T, Q, and U of the basic

Montgomery algorithm as listed in Algorithm 2.1. The multiplier computes the 512-bit

product in nine clock cycles. Despite the pipelining, the operations for a single

Montgomery product cannot be overlapped because each integer product depends on the

prior one. Additional cycles are required for overhead (such as loading input registers)

and for computing the final product P from the original product T and the reduction word

U. The total number of cycles to perform a Montgomery multiplication is 35. At the

typical process, voltage, and temperature (PVT) corner, PrimeTime STA results showed

that the design could run with a minimum clock period of 1.496 ns. Total latency for a

Montgomery product then is 35 × 1.496 ns, or 52.4 ns.

There are some obvious ways to improve the performance. First, some stages of

the multiplier pipeline could be merged. It is possible that a different tradeoff between

clock period and cycle count would result in faster computation. In this instance the

critical paths are in the final 512-bit carry propagate addition at the end. For some of the

phases this could be reduced. For example, in computing the quotient word Q in

multiplication Step 2, only the less significant word Q0 is used while the more significant

Q1 is discarded. Resource scheduling in the datapath could be changed so that in this

case only the lower 256-bit sum need be computed. Thus it should be possible to reduce

the cycle time of the design further.

 87

8.5 Eberle Serial Digit-Digit Architecture

The digit-digit Montgomery multiplier proposed by H. Eberle, et al. [17] was

implemented in three separate configurations. Each configuration was determined by the

digit size, d, from the set {8, 16, 32}. The design consists of three major units: a

controller, a multiplier-accumulator (MAC) unit, and a memory for operand storage. The

memory is implemented in standard cell registers but could also be implemented as a

register file.

In contrast to the architecture presented in [17], the controller designed for this

research is not a fully programmable coprocessor. The objective is to analyze

Montgomery multiplication performance specifically, and a fixed hardware control is

sufficient and entails less implementation risk. The controller is comprised of a

hierarchical set of two finite state machines (FSMs). The primary FSM controls the outer

loop of the algorithm, denoted by index i, and the secondary FSM controls the inner loop,

denoted by index j. Operands are fetched from memory into registers, and digit

computations are performed in accumulator register ACC, which is two digits wide. The

two halves of the accumulator are denoted by ACC[1] and ACC[0]. Partial product digits

are written back to memory. Digit operations are pipelined.

With the digit sizes from the set {8, 16, 32} used in this realization, the MAC

datapath is small relative to the 256-bit operand size. As a result, total areas are all under

20k µm2. In all cases the noncombinational area is a substantial portion of the total area,

varying between 9k and 11k µm2. It mainly consists of standard cell registers that are

used for the memory. Table 13 lists the area and latency results.

 88

Table 13. Eberle, et al. multiplier area and latency.

Digit
Size

d

Digits

k

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

8 32 12,462 0.967 1,034 2,817 2,724.0 33.95
16 16 14,125 1.296 772 897 1,162.5 16.42
32 8 19,605 1.599 625 321 513.3 10.06

As might be expected, increasing digit size has two opposing effects on

performance. First, at larger digit sizes, the MAC circuitry grows more complex. This

results in more and larger combinational timing paths. Consequently, the minimum

achievable clock period grows. The 32-bit version runs at a lower frequency than the 8-

bit version. Conversely, increasing digit size dramatically reduces the number of cycles

required. From (2.2), the number of multiplications is a quadratic function of the number

of digits. For a fixed operand size, doubling the digit size cuts the number of digits in

half. Therefore, to a first order approximation, a 75% cycle count reduction might be

expected. In practice, the reduction is approximately 67% for each doubling of digit size.

Some handshaking between the primary and second FSMs and the fixed cycle count to

compute the quotient digit Qi do not scale down. With small digits (d = 8), 2,817 cycles

are required. For d = 16, the number of cycles drops to 897, and for d = 32 only 321

cycles are required.

Despite the area minimization afforded by a digit-centric approach, the high

latencies make this architecture unattractive. The area-latency products range from 10 (d

= 32) to almost 34 (d = 8).

It would be possible to make microarchitectural changes to reduce the number of

cycles. One way would be to merge the partial product and reduction phases, converting

it from a CIOS to FIOS architecture. The product phase could be interrupted after inner

loop iteration j = 0 to compute Qi. At this point, iterations could resume for 1 ≤ j ≤ k – 1,

 89

and the partial product A[i]×B[i+j] and reduction Qi×M[j] computations could be

performed concurrently and summed. The cost would be an additional multiplier and

more complex addition circuitry, but the separate reduction phase would be eliminated.

Closer examination of the Montgomery reduction step suggests another possible

approach, within some bounds. Once the reduction term Ui is computed, adding it to the

initial product effectively cancels out the least significant word, digit, or bit to zero.

Applying Algorithm 2.1 to the digit case, Ui depends only on Ti[0], M′, and M.

Therefore, a particular bit pattern of Ti[0] will always generate the same reduction word

Ui.

If Ti[0] is relatively small, a lookup table (LUT) of precomputed reduction terms

Ui could feasibly be constructed. Instead of computing Qi in phase 2 followed by in

phase 3, Ui digits could be fetched from the table while phase 1 is iterating. As a result,

the number of cycles could be reduced by more than 50%, without adding a second digit

multiplier, but at the cost of storage for the reduction terms.

In the present digit-digit architecture, assume digit size d = 8. Using the eight bits

of partial product digit Ti[0] as an address translates to a LUT size of 28 = 256 entries.

For n = 256, this would require a 65,536-bit memory.

The reduction terms are partly a function of the radix R = 2n and the modulus M.

In a completely programmable circuit in which the user can choose these parameters, the

reduction terms must be precomputed for the chosen R and M. For maximum flexibility,

then, the LUT would reside in some type of writable storage, such as registers or RAM.

The LUT can be programmed with the precomputed terms prior to deployment.

For larger sizes of d, such as 16 and 32, an address width equal to d becomes

infeasible. Consider the d = 16 case. The LUT entries still must be 256 bits wide, but

now the number of entries has increased from 256 to 65,536. This translates to a LUT

 90

size of 16 megabits (Mb). Instead, an approach could be to reuse the LUT but for each 8-

bit subset of the least significant digit. The upper eight bits cannot be used directly,

because the reduction for the lower eight bits will change the upper eight bits. This

means that the reduction must first start on the lower eight bits to reduce the remainder of

the digit. Now, the upper eight bits can be used as an address into the LUT to fetch the

next reduction term. Thus throughout the reduction operations there are two overlapping

reductions. In this way the partial product can be reduced, with the least significant 16-

bit digit zeroed out. A similar technique may be applied to the d = 32 case, only in this

case there must be four 8-bit reduction term fetches with each digit. In an ideal case a

register file with four read ports could be employed. If this is impractical, four identical

register files could be tiled. and independently read.

In broad terms, such a variant of the Eberle, et al. digit-digit Montgomery

multiplier was designed to use a lookup table as described above. There were actually six

implementations considered, according to two parameters. The first parameter

determined the design of the LUT storage, which could be standard cell registers, or a

compiled RAM. The second parameter was the digit size d, whose values were chosen

from the set {8, 16, 32}.

Table 14 lists the results for the modified Eberle, et al. architecture with standard

cell register LUTs for the cases d = 8, 16, and 32. In all cases the register LUT increases

the area massively by factors between 30 and 40 of that of the canonical design. This

result is not unexpected, because standard cell registers are large. In the Nangate 45 nm

library used here, the SDFF_X1 register is over 6 µm2 in area, and the LUT alone

requires 65,536 of them.

 91

Table 14. Eberle, et al. multiplier with register LUT area and latency.

Digit
Size

d

Digits

k

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

8 32 422,329 1.127 887 1,409 1,587.9 670.6
16 16 486,569 1.468 681 513 753.1 366.4
32 8 615,327 1.784 561 257 458.5 282.1

In the “best” area case, for d = 8, the LUT design latency is 1,588 ns, compared to

2,724 ns for the canonical design. The register LUT speedup over canonical design is

merely 1.7. For larger digit sizes, performance gains become even less impressive. For d

= 16, the LUT design has a latency of 753 ns, versus 1,153 ns for the canonical design.

This is only about a 35% reduction. For d = 32 there is virtually no performance benefit

at all, only improving from 513 to 459 ns. Clearly this is not a compelling tradeoff.

Dedicated memory circuits are much more space efficient for storage than a bank

of standard cell registers. The bit density of even a 6-transistor static random access

memory (SRAM) is higher than equivalent storage using registers. OpenRAM is an open

source RAM compiler tool. It can be employed to generate compiled RAMs of almost

any configuration [37]. The open source FreePDK 45 nm physical design kit contains a

library of bit cells that can be used by OpenRAM [38].

OpenRAM was used to generate RAMs with different configurations of word size

and word count, and the area results compared. Using a compiled RAM in lieu of

registers for the LUT did result in lower area. Table 15 lists the results.

 92

Table 15. Eberle, et al. multiplier with RAM LUT area and latency.

Digit
Size

d

Digits

k

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

8 32 100,884 1.127 887 1,409 1,587.9 160.2
16 16 103,413 1.468 681 513 753.1 77.9
32 8 109,929 1.784 561 257 458.5 50.4

The only practical benefit of the RAM over the registers is in smaller area.

Latencies are the same as with the register LUT. Critical paths are in the MAC circuit

itself, not the memory access, so there is no overall performance difference between the

register LUT and RAM LUT. A 64k-bit RAM is still massive, however. Even with the

smallest available configuration for a RAM LUT, the total circuit areas are between five

and eight times as large as those in the canonical Eberle, et al. design. The minor

performance benefit offered by a LUT is negated by the large area growth. In any case,

the high latency and massive area result in massive double or triple digit area-latency

products.

8.6 Großschädl Serial Bit-Word Architecture

This section describes the implementation results for the bit-word multiplier

architecture proposed in [19]. As in the other architecture implementations, the digit size

d is varied. In this case, however, the digit size pertains only to the size of the carry

propagate adder used at the end for merging the working carry save words. The

multiplier datapath itself remains 1×n in all cases.

There is a large fanout of 256 from the ai bit of the A register to the AND gates

computing aiB. The first CSA’s least significant output bit is used as the quotient bit qi to

compute qiM. It too has a fanout of 256 to the AND gates computing qiM. It could help

 93

to add a pipeline stage with duplicated/multiple ai registers between A and the AND gates

to reduce the fanout-caused delays.

Because only the size of the carry propagate adder varies, all three variants of the

Großschädl architecture have similar area, on the order of 20k µm2. Performance is

similar as well. In all cases, the product computation requires 260 cycles, consisting of

256 cycles for the bit-word multiply-accumulate plus four cycles of overhead.

Performing the final carry propagate addition is what varies with the digit size. For

example, for a digit size of d = 8, k = 32 digits need to be summed and therefore require

32 cycles to compute, for a total cycle count of 292. For d = 32, only eight additional

cycles are required to compute the final nonredundant product. Table 16 lists the results.

Table 16. Großschädl, et al. multiplier area and latency.

Digit
Size

d

Digits

k

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

8 32 19,934 0.810 1,235 292 236.5 4.72
16 16 20,093 0.825 1,212 276 227.7 4.58
32 8 20,760 0.820 1,220 268 219.8 4.56

The effective clock period is roughly identical for all configurations. The smaller

number of digit additions for k = 8 provides the highest performance, with a total latency

of 219.8 ns for one Montgomery multiplication. The area-latency product figure of merit

for all three variants is less than 5.

8.7 Tenca and Koç Serial Hybrid Bit-Digit Architecture

Multiple versions of the Tenca and Koç architecture [20], [21] were designed,

simulated, and built. Digit size d was chosen from the set {8, 16, 32}. For each digit

 94

size, the number of processing elements (m) was varied from 1 to 20. Fig. 24 plots the

latency versus PE count (m = 1 to 20) for each digit size d.

Fig. 24. Tenca and Koç multiplier latency versus number of PEs (m).

Increasing the number of PEs increases parallelism, and results in improved

performance up to a point, after which continuing to add PEs yields no additional

improvement. For example, for d = 8 (k = 32) and m = 1, latency is approximately 6,820

ns. Doubling m to 2 reduces the latency in half to 3,333 ns. Latency incrementally

improves until there are about 17 PEs, and then levels out. A similar trend is evident for

d = 16 and d = 32. The d = 16 design’s latency stops improving after m = 8 PEs, and the

d = 32 design reaches its minimum even sooner.

For each digit size d, the minimum hypothetical latency is achieved when the

number of PEs m = k/2, where k indicates the number of digits and k = n/d. The reason is

 95

that at that point, just enough PEs are available to process all partial products in

sequence, and no partial products are stalled waiting for a PE to complete its previous

partial product. In the actual implementations, adding another PE or two beyond k/2

nevertheless yields some slight improvement because PE-PE handoff is slightly faster

than the handoff from PEm–1 via circular buffer to PE0. The circular buffer design

introduces a few cycles of delay.

A bit-digit multiplier with d = 32 effectively computes a result twice the size of

one with d = 16, and four times the size of one with d = 8. Accordingly, a configuration

with d = 32 and m = 1 is roughly equivalent to one with d = 16 and m = 2, or d = 8 and m

= 4. For d = 32 and m = 1, area is 12.4k µm2 and latency is 2,180 ns. For d = 16 and m =

2, area is 12.4k µm2 and latency is 1,880 ns. Finally, for d = 8 and m = 4, area is 12.7k

µm2 and latency is 1,671 ns. The trend appears to favor smaller digit sizes.

For d = 8, the minimum latency approaches 460 ns, corresponding to 570 cycles,

for 18 or more PEs. For d = 16, the minimum approaches just under 500 ns, about 550

cycles, for eight and more PEs. Finally, for d = 32, the minimum approaches 540 ns,

approximately 540 cycles, for nine or more PEs. In general the smaller digit size results

in a lower latency because, despite a higher cycle count, the clock period can be shorter.

Fig. 25 plots latency versus area for most of the configurations. Some d = 16 and

d = 32 variants with a larger number of PEs (and thus higher area) are omitted to prevent

the x-axis from growing too large to be legible on the page.

 96

Fig. 25. Tenca and Koç architecture latency versus area.

The plot labeled Optimal Latency is the Pareto frontier of the latency versus area

curve, and the lowest-latency for each d on the frontier is called out. For d = 32, the best

Pareto latency is a relatively slow 733.5 ns, with m = 3. The next d = 32 configuration (m

= 4) is also indicated, with a 622 ns latency, although it is not on the frontier. The (d =

16, m = 9) configuration’s latency is just under 500 ns, and the (d = 8, m = 17)

configuration has a latency of 454.5 ns.

Table 17 list the results for three Pareto frontier implementations of the Tenca and

Koç Montgomery architecture. For each digit size d, the fastest configuration on the

Pareto frontier is listed.

 97

Table 17. Tenca and Koç multiplier area and latency.

Digit
Size

d

Digits

k

PEs
m

Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

8 32 17 23,124 0.789 1,267 576 454.5 10.51
16 16 9 20,869 0.849 1,178 586 497.5 10.38
32 8 3 16,655 0.944 1,059 777 733.5 12.22

The first configuration uses d = 8-bit digits. This particular instance of the design

employs m = 17 PEs in cascade and occupies 23k µm2 of area. Each PE has a single 1×8

bit-digit multiplier which requires 32 cycles to compute a 1×256 partial product. Thus

this instance employs 17 multipliers concurrently. Its latency of 454.5 ns is the smallest

of any of the Tenca and Koç designs that were implemented. The next configuration uses

d = 16-bit digits. Nine PEs are cascaded in this configuration, so there are nine 1×16

multipliers. Its total area is 20.9k µm2, and it can produce a 256-bit Montgomery product

in 497.5 ns. This is not the fastest 16-bit architecture, but it is the fastest one that lies on

the Pareto frontier. Finally, the third configuration uses digit size d = 32. It uses only

three PEs in cascade, so there are three 1×32 multipliers computing partial products

concurrently. It is the fastest 32-bit design on the Pareto frontier, with a latency of 733.5

ns. There are faster 32-bit designs. For example, the k = 4 variant has a latency of 622

ns, an area of 18.7k µm2, and an even better area-latency product of 11.60. But as the

plot in Fig. 25 shows, 32-bit designs larger than this are all undercut by faster d = 16 and

d = 8 designs for equivalent area.

8.8 Rescheduled Montgomery Multiplier

The Rescheduled Montgomery Multiplier (RMM) architecture was built in 31

different configurations. In all cases, the operand size n was set to 256, or to a nearby

value to permit a split into k uniform digits each. One or more RMMs were designed for

 98

each value of k from 2 to 8. The number of digit multipliers, m, was also varied for each

k configuration. Table 18 is a matrix indicating which combinations of k and m were

built. As used in this dissertation, a Rescheduled Montgomery Multiplier configuration is

designated as RMM (k, m).

Table 18. Rescheduled Montgomery Multiplier (k, m) combinations.

 # Digit Multipliers m
 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 • •
3 • • •
4 • • • •
5 • • •
6 • • • • • •
7 • • • • • •

D

ig
its

 k

8 • • • • • • •

From (5.4), computing the intermediate products T, Q0, and U requires a total of

NM = 2.5k2 + 0.5k digit multiplications. With only a single digit multiplier, that many

cycles is required to compute the digit products. If (m > 1) digit multipliers are

employed, digit products can be scheduled concurrently. In such a case, the number of

cycles for product computation is approximately ⎡(2.5k2 + 0.5k)/m⎤. The three-stage

pipeline adds two cycles of latency. One cycle is then required to compute the P = T1 +

U1 sum. One final cycle is used to test for P ≥ M and conditionally compute P = P – M.

These four cycles are considered overhead and are invariant regardless of the specific

RMM (k, m) microarchitecture chosen.

8.8.1 RMM (2, m)

The first set of RMMs were designed with k = 2. For this configuration, a total of

NM = 11 digit multiplications must be performed to compute T, Q0, and U. Two RMMs

 99

were built, one with a single (m = 1) digit multiplier, and one with m = 2 digit multipliers,

denoted as RMM (2, 1) and RMM (2, 2) respectively. These variants provided

straightforward, first-order insights into the area-latency tradeoff. Table 19 lists the area

and performance results for k = 2.

Table 19. RMM (2, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

128 (2, 1) 105,697 2.217 451 15 33.3 3.52
128 (2, 2) 188,374 2.217 451 10 22.2 4.18

With only a single digit multiplier, RMM (2, 1) requires 11 cycles to compute the

NM = 11 digit products, plus the four-cycle overhead, for a total of 15 cycles. The

synthesized area of this design is 105,697 µm2. A substantial portion consists of the

128×128 digit multiplier, at over 80k µm2. As synthesized, this design can run at an

effective clock period of 2.217 ns, or 451 MHz. For the 15 cycles required, the total

latency is 33.3 ns.

Adding a second digit multiplier for a (2, 2) configuration permits concurrent

computation of two digit products during a cycle. This configuration reduces the digit

product cycles from eleven to six, but with the four-cycle overhead, overall cycle latency

drops by only one third from 15 to 10 cycles. These digit multipliers are large, so adding

the second one increases area by slightly more than 80k µm2 to 188,374 µm2. Because

the critical path is in the digit multipliers, and not in other areas such as the accumulator

datapath, the effective clock period is not degraded further, and remains at 2.217 ns.

Therefore, the total latency is 22.2 ns. This is a 33% reduction in latency relative to

RMM (2, 1), but the area cost of 83k µm2 constitutes a 78% increase over RMM (2, 1).

 100

8.8.2 RMM (3, m)

RMMs with operands split into k = 3 digits were built next. For this

configuration, a total of NM = 24 digit multiplications must be performed. Three

configurations were built, with m = 1, 2, and 3 digit multipliers: RMM (3, 1), (3, 2), and

(3, 3). The word size n was increased slightly to 258 bits to permit a uniform digit size d

= 86 bits. Table 20 lists the area and performance results for k = 3.

Table 20. RMM (3, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

86 (3, 1) 66,429 1.969 508 28 55.1 3.66
86 (3, 2) 114,610 2.013 497 16 32.2 3.69
86 (3, 3) 146,060 2.002 500 12 24.0 3.51

Smaller digit multipliers result in area savings. The entire area of RMM (3, 1) is

only 66,429 µm2. Increasing the number of digit multipliers naturally increases the area,

sometimes dramatically. RMM (3, 2) is almost twice the size of RMM (3, 1), at over

114k µm2. This is caused by the more complex accumulator logic required to add two

172-bit digit products with the accumulator. The overall increase for instantiating a third

multiplier is less dramatic, at just under 32k µm2 to 146k µm2.

All three RMMs have improved cycle time compared to the k = 2 case. This is a

direct result of reducing the digit multiplier width from 128×128 to 86×86. For the

single-digit multiplier design RMM (3, 1), the effective clock period of 1.969 ns and 28

cycles gives a latency of 55.1 ns. The two- and three-multiplier designs RMM (3, 2) and

(3, 3) have slightly larger clock periods at just over 2 ns, which is caused by additional

propagation delay through the more complex accumulator circuit.

 101

The RMM (3, 2) configuration has a similar latency (32.2 ns) to that of RMM (2,

1) (33.3 ns), but is larger by approximately 9k µm2. The next configuration, RMM (3, 3)

has a latency of 24 ns, only slightly more than RMM (2, 2) at 22.2 ns, but its area is 42k

µm2 smaller. RMM (3, 3) has an area-latency product of 3.5, the best of the k = 3

designs. If a (3, 4) configuration were built, it would require only 10 cycles for an

estimated latency of 20 ns.

8.8.3 RMM (4, m)

RMMs with operands split into k = 4 digits were built. For this configuration, a

total of NM = 42 digit multiplications must be performed. Four variants were built, with

m = 2, 3, 4, and 5 digit multipliers: RMM(4, 2), RMM (4, 3), RMM (4, 4), and RMM (4,

5). All could be optimized to run at a clock period of less than 2 ns. As before, the digit

multipliers determined the critical timing path. Table 21 lists the area and performance

results for k = 4.

Table 21. RMM (4, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

64 (4, 2) 76,933 1.910 524 25 47.8 3.67
64 (4, 3) 101,974 1.881 532 19 35.7 3.64
64 (4, 4) 120,631 1.881 532 15 28.2 3.40
64 (4, 5) 144,877 1.904 525 13 24.8 3.59

With two digit multipliers, RMM (4, 2) requires NM/2 = 21 cycles, plus the four

overhead cycles, for a total of 25 cycles to compute a full Montgomery product. With an

effective clock period of 1.91 ns, this translates to a latency of 47.8 ns. The

implementation is relatively compact at just under 77k µm2. As expected, increasing the

 102

number of digit multipliers reduces the number of cycles and overall latency, to just

under 25 ns with m = 5. However, the area-latency product minimum is achieved in

RMM (4, 4), with a value of 3.40. It can perform a full Montgomery multiplication in

28.2 ns in an area of 120,631 µm2.

It can be instructive to compare the RMM (4, m) configurations to the RMM (2,

m) configurations, because the digit size of the former is exactly half that of the latter. It

is possible to examine two different designs that nevertheless have the same number of

multiplication bits “in flight” during any cycle. For example, RMM (2, 1) has a single

digit multiplier, so during each cycle one 128×128 product is being computed, for 16,384

partial bit products in flight. It has an area of 106k µm2 and a latency of 33.3 ns. RMM

(4, 4) computes four 64×64 digit products concurrently, for 4×64×64 = 16,384 partial bit

products in flight. Its area is 121k µm2 but it has a latency of only 28.2 ns.

For a full product, halving the digit size results in squaring the number of digit

multiplications that must be performed. A single 256×256 product computed with 128-

bit digits requires four digit multiplications. If those digits are reduced to d = 64 bits, k =

4 and the number is increased to 42 digit multiplications. With the RMM, however, the

Q0 computation makes it possible to avoid some of those digit multiplications. In the d =

128 case, (5.1) provides that Q0 requires only three digit multiplications—one digit

multiplication is saved compared to computing the full Q = (Q1, Q0), a 25% reduction.

For d = 64, Q0 requires only 10 instead of 16 digit multiplications, a 37.5% reduction

relative to a full Q product.

The scheduling algorithm ensures that the product bits being computed and

accumulated are more “vertical” in the (4, 4) configuration than in the (2, 1)

configuration. In the (2, 1) configuration more of the “vertical” partial bit product

accumulation occurs in the digit multiplier (with higher complexity). In the (4, 4)

 103

configuration, a portion of that vertical accumulation is moved out of the digit multipliers

and into the accumulator datapath.

RMM (2, 1) requires 106k µm2 of die area and has a latency of 33.3 ns. RMM (4,

4) is larger, at 121k µm2, but only requires 28.2 ns. Switching from RMM (2, 1) to RMM

(4, 4) costs a 14% increase in area, but purchases a speedup of 1.18. The overall area-

latency product declines from 3.51 to 3.40. Although the area-latency product improves,

it can be argued that RMM (4, 4)’s resource utilization is not as efficient as that of RMM

(2, 1). Configuring m = 4 digit multipliers does not evenly divide the NM = 42 (or NQ =

10) digit multiplications required. That means that during one cycle, two of the digit

multipliers are not used. It is partially compensated for by the algorithmically more

efficient Q0 computation enabled by employing smaller digits.

8.8.4 RMM (5, m)

RMMs with operands split into k = 5 digits were built. For this configuration, a

total of NM = 65 digit multiplications must be performed. m was varied between 4 and 6:

RMM (5, 4), RMM (5, 5), and RMM (5, 6). As with the k = 3 configurations, n = 256 is

not divisible by k. Therefore for k = 5, n is set to 260 to allow uniform digit sizes of d =

52 bits. Table 22 lists the area and performance results for k = 5.

Table 22. RMM (5, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

52 (5, 4) 116,492 1.770 565 21 37.2 4.33
52 (5, 5) 118,482 1.794 557 17 30.5 3.61
52 (5, 6) 131,231 1.816 551 16 29.1 3.81

 104

RMM (5, 5) is only 2k µm2 (1.7%) larger than RMM (5, 4) but is nearly 7 ns

faster, for a speedup of 1.22. The initial RMM (5, 6) implementation grew quite large,

approximately 45k µm2 (38%) larger than RMM (5, 5), for only a two cycle (4 ns)

decrease in latency and a speedup of 1.15. That implementation did not employ uniform

accumulator scheduling through the three products T, Q0, and U. As a result, the

accumulator datapath did not have much reuse between phases and grew large. The

RMM (5, 6) design was reworked to use uniform accumulator scheduling. Area shrank

from 163k µm2 to 131k µm2, at the cost of an additional clock cycle. Total latency was

29.1 ns. Compared to RMM (5, 5), RMM (5, 6) is 11% larger, for a speedup of only

1.05.

8.8.5 RMM (6, m)

RMMs with operands split into k = 6 digits were built. For this configuration, a

total of NM = 93 digit multiplications must be performed. m was varied from 5 to 10.

Word size n was increased to 258, which is divisible by 6, for a uniform digit size of d =

43 bits. Uniform accumulator scheduling was employed for all variants. Table 23 lists

the area and performance results for k = 6.

Table 23. RMM (6, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

43 (6, 5) 110,362 1.677 596 24 40.2 4.44
43 (6, 6) 114,452 1.676 597 20 33.5 3.84
43 (6, 7) 124,165 1.690 592 18 30.4 3.78
43 (6, 8) 132,035 1.694 590 16 27.1 3.58
43 (6, 9) 137,644 1.666 600 15 25.0 3.44
43 (6, 10) 152,388 1.677 596 14 23.5 3.58

 105

Due to the relatively smaller digit multiplier size, areas increase moderately with

increasing m. For all configurations the effective clock period is just under 1.7 ns,

determined by the digit multiplier datapath delay. Minimum area-latency product is

achieved for RMM (6, 9), with a value of 3.44. Although its 138k µm2 area is not small,

it achieves a latency of 25 ns.

8.8.6 RMM (7, m)

Several RMMs were built with operands split into k = 7 digits. For this

configuration, a total of NM = 126 digit multiplications must be performed. The number

of digit multipliers m was varied from 6 to 11. Operand size n was set to 259 bits to

ensure a uniform digit size d = 37. Table 24 lists the area and performance results for k =

7.

Table 24. RMM (7, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

37 (7, 6) 114,560 1.585 631 26 41.2 4.72
37 (7, 7) 113,293 1.610 621 22 35.4 4.01
37 (7, 8) 123,762 1.614 620 21 33.9 4.20
37 (7, 9) 130,158 1.600 625 19 30.4 3.96
37 (7, 10) 130,941 1.625 615 17 27.6 3.62
37 (7, 11) 142,091 1.602 624 16 25.6 3.64

RMM (7, 6) has an area of 115k µm2, and the area increases to 142k µm2 for

RMM (7, 11). A 37×37 digit multiplier requires approximately 7.7k µm2 of area. Thus,

incrementing m by one should normally increases area by about that much. However,

that does not necessarily hold here. For example, RMM (7, 7) is actually slightly smaller

than RMM (7, 6), at just over 113k µm2. That area for the additional digit multiplier in

 106

RMM (7, 7) is more than offset by a decrease in accumulator datapath logic. Scheduling

the six digit multipliers in RMM (7, 6) requires nine distinct states of the accumulation

logic. For RMM (7, 7), only seven states are required. Similarly, RMM (7, 10) is only

larger than RMM (7, 9) by about 800 µm2. The RMM (7, 10) accumulator datapath has

only five different states, versus seven for RMM (7, 9).

In all cases the attainable clock period is approximately 1.6 ns. For the k = 7

configurations, RMM (7, 10) has the minimum area-latency product of 3.62. It computes

the Montgomery product in 17 cycles, for a total latency of 27.6 ns.

8.8.7 RMM (8, m)

Seven variants of RMM with k = 8 were built and analyzed. For this

configuration, a total of NM = 164 digit multiplications must be performed. The number

of digit multipliers for concurrent multiplications had to be sufficiently high in order to

have a reasonably low cycle count. Accordingly, m was varied within the range 8 to 14.

Table 25 lists the area and performance results for k = 8.

Table 25. RMM (8, m) area and latency.

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

32 (8, 8) 113,970 1.550 645 25 38.8 4.42
32 (8, 9) 120,079 1.546 647 23 35.6 4.27
32 (8, 10) 131,725 1.535 652 21 32.2 4.25
32 (8, 11) 124,298 1.769 565 19 33.6 4.18
32 (8, 12) 133,169 1.522 657 18 27.4 3.65
32 (8, 13) 133,720 1.547 646 17 26.3 3.52
32 (8, 14) 142,074 1.667 600 16 26.7 3.79

With increasing m, total area does not increase monotonically. For example,

RMM (8, 10) requires 131 µm2 of die area, but in RMM (8, 11) the area actually shrinks

 107

to 124 µm2. Moving from RMM (8, 12) to RMM (8, 13), the overall area increase is on

the order of a few hundred square microns. This is similar to the area change from RMM

(7, 9) to RMM (7, 10) previously shown, whereby area savings from the simpler

accumulation logic offset the area of an additional digit multiplier.

Effective clock period hovers around 1.5 ns, except for RMM (8, 11), at which it

increases to almost 1.8 ns, and RMM (8, 14) at which it increases to almost 1.7 ns. In

fact, overall latency is degraded slightly by about 400 ps moving from RMM (8, 13) to

RMM (8, 14), even though the latter requires one less cycle. Of these designs, the best

latency is provided by RMM (8, 13), at 26.3 ns. It also has the minimum area-latency

product for k = 8 of 3.52.

8.8.8 Rescheduled Montgomery Multiplier Summary

Table 26 summarizes the results for RMM instances which lie on the Pareto

frontier of the latency-area plot, ordered by area.

Table 26. RMM results (Pareto frontier).

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

86 (3, 1) 66,429 1.969 508 28 55.1 3.66
64 (4, 2) 76,933 1.910 524 25 47.8 3.67
64 (4, 3) 101,974 1.881 532 19 35.7 3.64

128 (2, 1) 105,697 2.217 451 15 33.3 3.52
86 (3, 2) 114,610 2.013 497 16 32.2 3.69
52 (5, 5) 118,482 1.794 557 17 30.5 3.61
64 (4, 4) 120,631 1.881 532 15 28.2 3.40
37 (7, 10) 130,941 1.625 615 17 27.6 3.62
43 (6, 8) 132,035 1.694 590 16 27.1 3.58
32 (8, 13) 133,720 1.547 646 17 26.3 3.52
43 (6, 9) 137,644 1.666 600 15 25.0 3.44
64 (4, 5) 144,877 1.904 525 13 24.8 3.59
86 (3, 3) 146,060 2.002 500 12 24.0 3.51
43 (6, 10) 152,388 1.677 596 14 23.5 3.58

128 (2, 2) 188,374 2.217 451 10 22.2 4.18

 108

Table 27 lists the results for the remaining RMM instances.

Table 27. RMM results (non Pareto).

d (k, m)
Total
Area
(µm2)

Effective
Period

(ns)

Effective
Frequency

(MHz)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

43 (6, 5) 110,362 1.677 596 24 40.2 4.44
37 (7, 7) 113,293 1.610 621 22 35.4 4.01
32 (8, 8) 113,970 1.550 645 25 38.8 4.42
43 (6, 6) 114,452 1.676 597 20 33.5 3.84
37 (7, 6) 114,560 1.585 631 26 41.2 4.72
52 (5, 4) 116,492 1.770 565 21 37.2 4.33
32 (8, 9) 120,079 1.546 647 23 35.6 4.27
37 (7, 8) 123,762 1.614 620 21 33.9 4.20
43 (6, 7) 124,165 1.690 592 18 30.4 3.78
32 (8, 11) 124,298 1.769 565 19 33.6 4.18
37 (7, 9) 130,158 1.600 625 19 30.4 3.96
52 (5, 6) 131,231 1.816 551 16 29.1 3.81
32 (8, 10) 131,725 1.535 651 21 32.2 4.25
32 (8, 12) 133,169 1.522 657 18 27.4 3.65
32 (8, 14) 142,074 1.667 600 16 26.7 3.79
37 (7, 11) 142,091 1.602 624 16 25.6 3.64

Fig. 26 plots latency versus area for all RMM implementations. The Pareto

frontier for area-latency tradeoff is indicated.

 109

Fig. 26. RMM latency versus area with Pareto frontier.

Unsurprisingly, increasing area generally purchases a reduction in latency. Of

course, the trend is not monotonic, because other variables in the architecture and

scheduling contribute to achievable performance, beyond aggregate area. This is evident

from the variations in achievable latency in the central region of the plot. Between 110k

µm2 and 145k µm2 there are 16 configurations that are not at Pareto minimum.

All configurations with k ∈ {2, 3, 4} lie on the Pareto frontier, whereas only one

configuration each for k ∈ {5, 7, 8} lies on the frontier. Each of those has the minimum

area-latency product for that k. There are three configurations with k = 6 on the frontier:

RMM (6, 8), (6, 9), and (6, 10), with the k = 6 minimum area-latency product of 3.44

achieved in configuration (6, 9).

 110

For k ∈ {3, 4, 5}, configurations in which m = k have the lowest area-latency

product for that k. For example, the RMM (4, 4) area-latency product is the minimum of

all RMM (4, m) configurations, at 3.40. This implementation requires 121k µm2 and has

a latency of 28 ns. Considering other k = 4 configurations, it is possible to reduce area to

just over 100k µm2 by switching to RMM (4, 3) for a 16% area reduction and 8 ns (29%)

of additional latency. In the opposite direction, the (4, 5) configuration saves 3 ns (11%)

of latency (speedup = 1.12) but at an additional area cost of over 20k µm2, 20% larger.

For the smaller digit sizes in which the operands are subdivided into 6 to 8 digits,

the minimum area-latency product is achieved closer to m = 1.5k. Thus, for k = 6, the

minimum area-latency product of 3.44 is obtained configuration (6, 9). It has a 25 ns

latency in an area of 138k µm2. For k = 7, configuration (7, 10) has an area-latency

product of 3.62. For k = 8, the best configuration is (8, 13) with area-latency product

3.52.

A few reasons for this shift include the following. As the digit size d decreases

and the number of digits k increases, the number of digit multiplications increases

quadratically relative to k. More digit multipliers are required to keep the number of

cycles under control. RMM (5, 5) computes a result in 17 cycles of about 1.8 ns each in

118k µm2. For RMM (6, 6), although the clock period improves to about 1.7 ns, the

number of cycles jumps to 20, an 18% increase, in an area of 114k µm2. RMM (5, 5) has

52×52×5 = 13,520 digit multiplication bits in flight, whereas RMM (6, 6) has 43×43×6 =

11,094 bits in flight. This is a lower degree of digit level parallelism. Conversely, RMM

(6, 9) only requires 15 cycles (25 ns) in 138k µm2, because it has 16,641 bits in flight in

any given multiplication cycle. Increasing the number of multipliers with large digits is

costly because those multipliers are relatively large. With small digits, adding another

 111

multiplier results in a marginal increase in area but improves performance by reducing

cycles.

The central clustering is also partly a function of the configurations that were

chosen for analysis. For example, for the k ≥ 5 RMM configurations, designs could have

been built with small values of m (1, 2, etc.) as well as large values of m further beyond

1.5k. The latency curve would approach vertical for smaller and smaller values of k with

small m because of the digit count to digit product quadratic relationship. Conversely, it

would flatten toward horizontal for a given value of k and with increasing values of m as

more and more circuitry were added and the cycles approach a 5-cycle minimum.

The latency-area curves of Fig. 26 suggest that a point of diminishing returns has

been reached with respect to further increases in k. Using an increasing number k of

smaller digits becomes more costly relative to less complex designs. This is the case

even despite the fact that the smaller digits permit a higher granularity in computing Q0

more efficiently. The quadratic relationship of the number of digit multiplications to k

means that m must also grow quadratically to keep cycle count down. Although the

timing paths within the smaller digit multipliers are shorter, the accumulator logic

complexity must grow to handle more vertically stacked digit products. For higher

performance the plot suggests that the better tradeoff is in configurations with a small

number of large digits (k = 4, 3, 2).

8.9 Montgomery Multiplier Comparisons

Table 28 lists the area and performance results for most of the fully functional

Montgomery multiplier architectures, plus the 256×256-bit synthesized and the pipelined

Karatsuba-Ofman multipliers. The Eberle, et al. design variants that employ lookup

tables are excluded, because their poor area-latency tradeoffs preclude their utility. Only

 112

those RMM instances lying on the Pareto frontier are listed. The table orders the results

from lowest to highest area. In all cases the performance figures are for computing a

256-bit Montgomery product from two 256-bit operands.

Table 28. Montgomery 256-bit multipliers ranked by area.

Architecture
Total
Area
(µm2)

Effective
Period

(ns)

Cycles

Total
Latency

(ns)

Area⋅
Latency
Product

Eberle Digit-Digit 8×8, k = 32 12,462 0.967 2,817 2,724.0 33.95
Eberle Digit-Digit 16×16, k = 16 14,125 1.296 897 1,162.5 16.42
Tenca Bit-Digit 1×32, k = 8, m = 3 16,655 0.944 777 733.5 12.22
Eberle Digit-Digit 32×32, k = 8 19,605 1.599 321 513.3 10.06
Großschädl Bit-Word 1×256, d = 8 19,934 0.810 292 236.5 4.72
Großschädl Bit-Word 1×256, d = 16 20,093 0.825 276 227.7 4.58
Großschädl Bit-Word 1×256, d = 32 20,760 0.820 268 219.8 4.56
Tenca Bit-Digit 1×16, k = 16, m = 9 20,869 0.849 586 497.5 10.38
Tenca Bit-Digit 1×8, k = 32, m = 17 23,124 0.789 576 454.5 10.51
RMM (3, 1), d = 86 66,429 1.969 28 55.1 3.66
RMM (4, 2), d = 64 76,933 1.910 25 47.8 3.67
RMM (4, 3), d = 64 101,974 1.881 19 35.7 3.64
RMM (2, 1), d = 128 105,697 2.217 15 33.3 3.52
RMM (3, 2), d = 86 114,610 2.013 16 32.2 3.69
RMM (5, 5), d = 52 118,482 1.794 17 30.5 3.61
RMM (4, 4), d = 64 120,631 1.881 15 28.2 3.40
RMM (7, 10), d = 37 130,941 1.625 17 27.6 3.62
RMM (6, 8), d = 43 132,035 1.694 16 27.1 3.58
RMM (8, 13), d = 32 133,720 1.547 17 26.3 3.52
RMM (6, 9), d = 43 137,644 1.666 15 25.0 3.44
RMM (4, 5), d = 64 144,877 1.904 13 24.8 3.59
RMM (3, 3), d = 86 146,060 2.002 12 24.0 3.51
RMM (6, 10), d = 43 152,388 1.677 14 23.5 3.58
RMM (2, 2), d = 128 188,374 2.217 10 22.2 4.18
Pipelined Karatsuba-Ofman 256×256a 251,949 1.620 22 35.6 8.98
Synthesized 256×256a 289,483 2.504 4 10.0 2.90
McIvor MUL256×256 only 583,830 1.496 35 52.4 30.57
McIvor ECC Processor 640,106 1.496 35 52.4 33.52
Full Direct Parallel 698,628 6.895 1 6.9 4.82
Full Direct Optimized Pipelinedb 698,660 2.512 4 10.0 7.02
Full Direct Pipelinedc 711,744 2.496 4 10.0 7.11
aOptimistic and does not reflect actual implementation of full algorithm.
bThroughput 2.51 ns, area-throughput product 1.76.
cThroughput 2.50 ns, area-throughput product 1.78.

 113

Visual representations of the results collected in Table 28 can aid in better

understanding the strengths and weaknesses of the various architectures and the tradeoffs

among them. Fig. 27 plots latency versus area for the serial architectures along with

several configurations of the Rescheduled Montgomery Multiplier.

Fig. 27. Latency versus area, serial architectures and RMM.

The serial architectures are clustered near the left side of the plot with low areas

and varied, relatively high latencies, while the RMM architectures vary in size but all

have low latency well under 100 ns. The Eberle, Tenca, and Großschädl serial designs

have areas on the order of 23k µm2 or less. The latencies of the Eberle and Tenca designs

are over 400 ns, approaching 2,800 ns for the worst Eberle instance. Operating at the bit

 114

or digit level necessarily requires a substantial number of clock cycles, and this tends to

overwhelm any performance benefit of reduced cycle time resulting from less complex

logic. In other words, the cycle count tends to increase faster than the clock period

decreases. In contrast, the Großschädl architecture, while still small on the order of 20k

µm2, has latencies all clustered just above 200 ns. Its three configurations compute the

Montgomery product identically. The only difference is the size of the final digit

multiplier used for converting the carry save result to nonredundant form. This

architecture gives the best performance for area among the serial designs, with area-

latency products under 5. The Eberle and Tenca architectures possess an advantage in

that they can readily support arbitrary operand sizes. The RMM designs all have

latencies on the order of 50 ns and less, but of course the area varies greatly. The

smallest RMM is just over three times the size of the Großschädl architectures, but is five

times as fast.

Fig. 28 plots latency versus area for the Rescheduled Montgomery Multiplier and

the word size architectures.

 115

Fig. 28. Latency versus area, RMM and full word architectures.

The RMM designs are all smaller than the word size architectures, and in some

cases even have superior performance. Most of the RMMs are faster than the pipelined

Karatsuba-Ofman multiplier, despite being smaller. The latter’s pipelining contributes to

its area bloat and performance degradation similarly to the McIvor design. The 256-bit

simple synthesized multiplier is potentially faster, but its performance is overly

optimistic. Neither the Karatsuba-Ofman nor the simple synthesized multiplier is

complete, in that each is strictly the multiplier component. Both lack the additional

circuitry required to compute a complete Montgomery result. Furthermore, since they

operate on full size operands, neither of these multipliers can be further optimized for the

Montgomery Q0 computation.

 116

The McIvor ECC Processor, as well as its constituent multiplier considered in

isolation, are massive, on the order 0.5 mm2. Even with the large scale of resources

devoted to Montgomery multiplication, they have substantially worse performance than

most of the RMM designs. The results here suggest that it is overpipelined for an ASIC

realization. The large number of pipeline registers contributes to area growth, and the

resulting large number of cycles contributes to high latency. Overlapping the

intermediate products T, Q, and U is also not possible due to their mutual dependencies.

The full directly-implemented Montgomery architecture, in both parallel and

pipelined versions, is capable of very high performance. Both pipelined versions can

support a high throughput of one Montgomery product every 2.5 ns. This would be

especially advantageous for RSA’s modular exponentiation and ECC’s point operations,

both of which employ many modular multiplications in sequence. Their performance is

costly, requiring 0.7 mm2 of die area at the 45 nm process node.

Finally, Fig. 29 combines the results from the preceding two plots and depicts the

results of all designs. The latency axis uses a logarithmic scale.

 117

Fig. 29. Latency versus area for implemented Montgomery multipliers.

The plot shows the area versus latency points for all the architectures, along with

two curves fit to those points. The dashed line is the curve fit for the points of the prior

architectures but excludes the proposed Rescheduled Montgomery Multiplier results. It

has a downward slope from the serial architectures to the full size architectures. The

solid line shows the curve fit to all points, including the RMM architectures. The RMM

latencies fall well below the original, dashed curve fit. Within the context of the

architectures that were implemented, it suggests that the RMM establishes a new

minimum on the Pareto frontier of the latency-area plot.

 118

Chapter 9 Conclusions

This dissertation presents the Serial Montgomery Model, a fundamental

expansion of an established taxonomy commonly used to categorize serial realizations of

the Montgomery algorithm. The Serial Montgomery Model encompasses comprehension

of digit level parallelism. It permits the designer to assess the performance and area

effects of employing a variable degree of digit level parallelism in an otherwise serial

architecture. It augments the prior taxonomy with a new type of digit scheduling termed

Separated Product Scheduling (SPS). The Serial Montgomery Model provides

expressions that take account of the number of digit multiplications, dependency

relationships, and the number of digit multipliers to estimate the number of cycles a

particular realization will require to compute a result.

This dissertation also presents a novel hardware architecture for Montgomery

multiplication, termed the Rescheduled Montgomery Multiplier. The architecture

synthesizes techniques from a diverse set of sources. It borrows the concept of digit

multiplication from serial approaches. It then improves on that by exploiting digit level

parallelism to compute multiple digit products concurrently. Employing the novel SPS

approach, it orders digit multiplications to simplify the dependency chain. This

minimizes stalls and resource underutilization. The digit-centric approach allows it to

exploit opportunities in the canonical Montgomery algorithm to eliminate unnecessary

computation. This brings two benefits, reducing the number of digit multiplications that

must be performed, and permitting opportunistic deferral of some digit multiplications

until later in the process. Moreover, it permits a greater degree of parallelization, and a

wider range of parallelization options, than are available to prior serial architectures.

 119

9.1 Results

The Rescheduled Montgomery Multiplier establishes a new region of possible

area-latency tradeoffs between, on the one hand, small digit- or bit-oriented serial

architectures, and large word-size architectures that perform the canonical Montgomery

algorithm in a more conventional way.

9.2 Future Research

Although the Rescheduled Montgomery Multiplier architectures proposed in this

research are limited to 256-bit operands and have fixed control circuits, it is not hard to

envision adding programmability to support larger operands. In lieu of a fixed

accumulator block with a finely-tuned set of accumulation states, a standardized

accumulator block could be designed. During computation of the T, Q0, and U products,

the accumulator path could effectively “slide” right to left under microprogram control.

Outputs from the plurality of digit multipliers would be correctly aligned via multiplexers

and fed into the accumulator block during each cycle. Such an approach would require a

more complex accumulator block but would offer flexibility for arbitrary operand sizes

while still avoiding “unnecessary” reduction accumulations.

In the current technological era with the ubiquity of mobile devices, energy

consumption is a primary concern. The designs realized here were taken through logic

synthesis to gates in a 45 nm process node. This provides a first order estimate of area

and performance, especially for comparison among different architectures. An obvious

next step would be to take the synthesized designs and run them through the place and

route flow. Not only would this provide even more accurate area and performance

estimates, it would facilitate making valid estimates of energy consumption. In modern

deep submicron technologies, the interconnect between gates and the effects of parasitic

 120

capacitance become more prevalent. With a routed database, effects of crosstalk on

performance and power can be estimated and incorporated into making more accurate

predictions.

With its capacity to analyze digit level parallelism, the Serial Montgomery Model

can be used to evaluate the effects of adding parallelism to previous serial architectures.

For example, a second digit multiplier can be added to the Eberle serial architecture,

placing it into the CIOS/2 category of the new classification scheme. Using the

expressions provided, it will be straightforward to estimate the performance of the

revised architecture. In many cases it is expected that the Rescheduled Montgomery

Multiplier can exploit digit level parallelism more efficiently than the previous serial

architectures. Accordingly, serial designs to a degree of concurrent digit multiplication is

added can be compared to equivalent RMM designs with the same number of digit

multipliers.

 121

References
[1] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd ed., New York: John Wiley and Sons, 1996.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120-126,
1978.

[3] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography, New York: Springer-Verlag, 2004.

[4] P. L. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519-521, April 1985.

[5] M. Amara and A. Siad, “Elliptic Curve Cryptography and Its Applications,” 7th
International Workshop on Systems, Signal Processing and their Applications
(WOSSPA), pp. 247-250, Corne d’Or, Tipaza, Algeria, May 2011.

[6] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications,
Cambridge University Press, Cambridge, UK, 1986.

[7] B. S. Kaliski, Jr., “The Montgomery Inverse and Its Applications,” IEEE Trans.
Computers, vol. 44, no. 8, pp. 1064-1065, August 1995.

[8] E. Savas and Ç. K. Koç, “The Montgomery Modular Inverse—Revisited,” IEEE
Trans. Computers, vol. 49, no. 7, pp. 763-766, July 2000.

[9] A. A.-A. Gutub, A. F. Tenca, and Ç. K. Koç, “Scalable VLSI Architecture for
GF(p) Montgomery Modular Inverse Computation,” Proc. IEEE Computer Society
Annual Symposium on VLSI (ISVLSI 2002), pp. 46-51, Pittsburgh, PA, April 25-26, 2002.

[10] C. McIvor, M. McLoone, and J. V. McCanny, “Improved Montgomery Modular
Inverse Algorithm,” Electronics Letters, vol. 40, no. 18, pp. 1110-1112, September 2,
2004.

[11] C. McIvor, M. McLoone, and J. V. McCanny, “Hardware Elliptic Curve
Cryptographic Processor over GF(p),” IEEE Trans. Circuits and Systems I—Regular
Papers, vol. 53, no. 9, pp. 1946-1957, September 2006.

[12] S. E. Eldridge and C. D. Walter, “Hardware Implementation of Montgomery’s
Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 42, no. 6, pp. 693-699,
June 1993.

[13] H. Orup, “Simplifying Quotient Determination in High-Radix Modular
Multiplication,” Proc. 12th IEEE Symposium on Computer Arithmetic, pp. 193-199,
Bath, England, UK, July 19-21, 1995.

[14] O. Nibouche, A. Bouridane, and M. Nibouche, “Architectures for Montgomery’s
Multiplication,” IEE Proc. – Computers and Dig. Techniques, vol. 150, no. 6, pp. 361-
368, November 2003.

 122

[15] S. S. Erdem, T. Yanik, and A. Çelebi, “A General Digit-Serial Architecture for
Montgomery Modular Multiplication,” IEEE Trans. Very Large Scale Integration (VLSI)
Sys., vol. 25, no. 5, pp. 1658-1668, May 2017.

[16] G. Gallin and A. Tisserand, “Generation of Finely-Pipelined GF(P) Multipliers
for Flexible Curve Based Cryptography on FPGAs,” IEEE Trans. Computers, vol. 68, no.
11, pp. 1612-1622, November 2019.

[17] H. Eberle, N. Gura, S. Chang-Shantz, V. Gupta, and L. Rarick, “A Public-key
Cryptographic Processor for RSA and ECC,” Proc. 15th IEEE Conf. Appl.-Specific Syst.,
Arch., and Processors (ASAP’04), 2004.

[18] H. Eberle, N. Gura, and S. Chang-Shantz, “A Cryptographic Processor for
Arbitrary Elliptic Curves over GF(2m),” Proc. Appl.-Specific Syst., Arch., and Processors
(ASAP’03), pp. 444-454, The Hague, Netherlands, June 2003.

[19] J. Großschädl, E. Savas, and K. Yumbul, “Realizing Arbitrary-Precision Modular
Multiplication with a Fixed-Precision Multiplier Datapath,” Proc. 2009 International
Conference on Reconfigurable Computing and FPGAs, pp. 261-266, Cancun, Mexico,
December 9-11, 2009.

[20] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Montgomery
Multiplication,” Proc. 1st International Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’99), Lecture Notes in Computer Science (LNCS), vol. 1717,
pp. 94-108, Worcester, MA, August 12-13, 1999.

[21] A. F. Tenca and Ç. K. Koç, “A Scalable Architecture for Modular Multiplication
Based on Montgomery’s Algorithm,” IEEE Trans. Computers, vol. 52, no. 9, pp. 1215-
1221, September 2003.

[22] M. Q. Huang, K. Gaj, and T. El-Ghazawi, “New Hardware Architectures for
Montgomery Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 60, no. 7,
pp. 923-935, July 2011.

[23] M. O. Sanu, E. E. Swartzlander, Jr., and C. M. Chase, “Parallel Montgomery
Multipliers,” Proc. 15th IEEE Conf. Appl.-Specific Syst., Arch., and Processors (ASAP
’04), pp. 63-72, Galveston, TX, September 27-29, 2004.

[24] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp.
349-356, 1965.

[25] Ç. K. Koç, T. Acar, and B. S. Kaliski, Jr., “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26-33, June
1996.

[26] A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-Radix Design of a Scalable
Modular Multiplier,” Proc. Third International Workshop on Cryptographic Hardware
and Embedded Systems (CHES ’01), Lecture Notes in Computer Science (LNCS), vol.
2162, pp. 185-201, Paris, France, May 14-16, 2001.

 123

[27] E. Savas, A. F. Tenca, M. E. Çiftçibasi, and Ç. K. Koç, “Multiplier Architectures
for GF(p) and GF(2n),” IEE Proc. – Computers and Dig. Techniques, vol. 151, no. 2, pp.
147-160, March 2004.

[28] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An Improved
Unified Scalable Radix-2 Montgomery Multiplier,” Proc. 17th IEEE Symposium on
Computer Arithmetic (ARITH ’05), pp. 172-178, Cape Cod, MA, June 27-29, 2005.

[29] Gabriel Gallin and Arnaud Tisserand, “Hyper-Threaded Multiplier for HECC,”
51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
October 29-November 1, 2017, pp. 447-451.

[30] R. R. Liu and S. G. Li, “A Design and Implementation of Montgomery Modular
Multiplier,” 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
Sapporo, Japan, 2019, pp. 1-4.

[31] J. N. Ding and S. G. Li, “Broken-Karatsuba Multiplication and Its Application to
Montgomery Modular Multiplication,” Proc. 27th International Conference on Field
Programmable Logic and Applications (FPL), Ghent, Belgium, September 4-6, 2017.

[32] Nangate FreePDK45 Generic Open Cell Library,
http://projects.si2.org/openeda.si2.org/projects/nangatelib.

[33] S. Williams. Icarus Verilog. http://iverilog.icarus.com.

[34] Synopsys, Inc. Design Compiler. https://www.synopsys.com.

[35] Synopsys, Inc. PrimeTime. https://www.synopsys.com.

[36] A. Karatsuba and Yu. Ofman, “Multiplication of Multidigit Numbers on
Automata,” Proc. USSR Academy of Sciences, vol. 145, no. 2, pp. 293-294, July 1962.
Translation by USSR Academy of Sciences, 1962 from: А. Карацуба и Ю. Офман,
«Умножение многозначных чисел на автоматах», Докл. Академии Наук СССР, 1962
г., том 145, № 2, с. 293-294.

[37] Open Source Static RAM Compiler, University of California at Santa Cruz,
https://openram.soe.ucsc.edu.

[38] FreePDK Open Source 45 nm Physical Design Kit (PDK).
https://www.eda.ncsu.edu/wiki/FreePDK.

 124

Vita

Trenton J. Grale was born in suburban Cleveland, Ohio. He earned a Bachelor of

Arts (with honors) at Colgate University in Hamilton, New York and a Master of Science

in Engineering at the University of Texas at Austin in Austin, Texas. He is a member of

Phi Beta Kappa, Tau Beta Pi, and Eta Kappa Nu. He holds five patents in integrated

circuit design.

Permanent address: Trenton J. Grale

 P.O. Box 9118

 Austin, TX 78766-9118

 tgrale@utexas.edu

This dissertation was typed by the author.

