
 

 

 

 

 

 

 

 

 

Copyright 

by 

Trenton John Grale 

2021 

 

 



 

The Dissertation Committee for Trenton John Grale certifies that this is the 

approved version of the following dissertation: 

 

Rescheduled Montgomery Multiplication: 

Digit Level Parallelism in Serial Architectures 

 

 

 
Committee: 
 
 
 
 
Earl E. Swartzlander, Jr., Supervisor 
 
 
 
Andreas Gerstlauer 
 
 
 
Lizy K. John 
 
 
 
Michael E. Orshansky 
 
 
 
Michael J. Schulte 
 



Rescheduled Montgomery Multiplication: 

Digit Level Parallelism in Serial Architectures 

 

 
by 

Trenton John Grale 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

August 2021 



Dedication 

 

Ad maiorem Dei gloriam. 

 

 



 v 

Acknowledgements 

 

It is with great pleasure that I thank my supervisor, Dr. Earl E. Swartzlander, Jr.  

He made quite a positive impression on me when I first took his Computer Architecture 

class, and later, High Speed Computer Arithmetic when pursuing my master’s degree.  

After several years in industry, I returned to academia to pursue a doctorate, and Dr. 

Swartzlander kindly and generously agreed to be my supervising professor again.  He has 

always encouraged me and given practical recommendations for my research and my 

writing. 

I would also like to thank Dr. Andreas Gerstlauer, Dr. Lizy John, Dr. Michael 

Orshansky, and Dr. Michael Schulte for taking the time to serve on my dissertation 

committee.  I sincerely appreciate their valuable feedback and suggestions to improve my 

research and dissertation.  Their rigorous demands have been challenging, and they have 

helped drive me to produce a far better dissertation than I could have without them. 

Dr. Jason T. Arbaugh has always been available to discuss my ideas for this 

research in depth.  He has reviewed several sections of the dissertation and given me well 

thought-out, genuinely insightful feedback and advice.  The recommendations and advice 

have not always been what I wanted to hear, but were what I needed to hear.  Jason’s 

practical assistance has been vital to my success in this work. 

Joel W. Page was my first manager in the chip design business.  I am grateful for 

all that I learned from him, both on a practical engineering level and in collaborating with 

others on complex technical projects.  Like Jason, Joel has very generously reviewed 

parts of the dissertation.  He has asked challenging questions and provided original 

insights.  His assistance has been invaluable to my success. 



 vi 

Other people whom I consider good friends also deserve recognition.  Dr. Edwin 

De Angel first suggested I consider returning to graduate school to earn a Ph.D.  He has 

given me good insights and suggestions about the process of completing a dissertation.  

Dr. K’Andrea Bickerstaff, whom I met while pursuing my Master’s degree many years 

ago, has always been kind and caring.  She was encouraging and welcoming when I 

decided to return for a Ph.D. 

Finally, I am grateful to close friends who have offered their support throughout 

this journey.  John G. Chertude has been a constant source of encouragement and faith in 

my ability to succeed.  Steven T. Vogel has also encouraged me and given me much 

practical advice.  My longtime friend Dr. Mark E. Swartzburg has always given me 

unqualified cheerleading and a sympathetic ear, as well as insights on dissertation 

writing.  Finally, one of my oldest friends, Dr. James E. Hamman, has helped me by 

suggesting alternative ways of thinking about and confronting the tasks at hand. 

 

 



 vii 

 

Abstract 

 

Rescheduled Montgomery Multiplication: 

Digit Level Parallelism in Serial Architectures 

 

Trenton John Grale, Ph.D. 

The University of Texas at Austin, 2021 

 

Supervisor:  Earl E. Swartzlander, Jr. 

 

Two well-known cryptographic protocols, RSA and ECC, employ modular 

multiplication on large integers or binary polynomial bit strings of hundreds or thousands 

of bits.  The modulus may be an odd integer (usually prime), or an irreducible 

polynomial.  Large products exceeding the value of the modulus must be reduced to 

congruent values smaller than the modulus.  In simple terms, this is done by taking the 

remainder with respect to the modulus.  However, reduction by integer or polynomial 

division is computationally expensive. 

The Montgomery Multiplication transform and algorithm replace arbitrary 

division by the modulus with division by a power of two.  Both hardware and software 

realizations of the Montgomery algorithm have been proposed over the past three 

decades.  These range from serial algorithms that perform bit or digit level operations to 

large full word parallel architectures. 

A widely-adopted classification scheme categorizes and characterizes serial 

Montgomery architectures.  This dissertation introduces the Serial Montgomery Model 
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by fundamentally upgrading the existing scheme to accurately characterize a rich 

universe of architectures that employ digit level parallelism. 

Certain properties of the Montgomery computation present optimization 

opportunities that have been little noted by prior researchers.  This dissertation presents a 

novel Rescheduled Montgomery Multiplication architecture that targets those 

opportunities to drive a new level of optimal tradeoffs between area cost and latency.  

The architecture exploits digit level parallelism and dependency scheduling to attain 

higher performance than is attainable with serial architectures while avoiding the high 

area cost associated with large parallel architectures. 
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Chapter 1 Introduction 

1.1 Motivation 

Ensuring the privacy and integrity of sensitive electronic information continues to 

gain importance as mobile and interconnected devices become more prevalent.  

Encryption of data scrambles it in such a way that an unauthorized recipient cannot read 

it, but an authorized recipient can.  The data to be encrypted, called plaintext, is input to 

an encryption algorithm with a key.  The output is the encrypted data, called ciphertext.  

On receipt of the ciphertext, the receiver applies it and a key to a decryption algorithm, 

which outputs the plaintext. 

Broadly speaking, modern cryptographic systems can be categorized as either 

symmetric or asymmetric.  In symmetric encryption, the same key is used for both 

encryption and decryption.  Two parties who wish to communicate with each other must 

first share this private key between themselves.  In asymmetric encryption, two separate 

keys must be used:  one for encryption, and one for decryption.  A party that wants to 

communicate securely with others will generate both keys.  This is referred to as a key 

pair.  The encryption key is usually termed a public key, because the party generating it 

makes it available to the public.  Any person may use the public key to encrypt and send 

a message to the generating party.  It cannot be used to decrypt the message.  The 

decryption key is usually termed the private key, because the generating party will keep it 

private, or secret.  Only the private key can be used to decrypt the message.  Because the 

usual convention is for the encryption key to be made public, asymmetric encryption is 

also referred to as a public key (PK) cryptographic system. 

Public key cryptographic systems work because they are difficult to crack.  They 

are built upon what are termed one-way trap door functions.  A function is one-way in 

that it operates on the message and the encryption key to produce an encrypted output, 
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but the reverse operation is computationally difficult.  Given only the encrypted message 

and the encryption key, it is a computationally hard problem to retrieve the original 

message.  The private encryption key provides the trap door:  with the encrypted message 

and the decryption key, the original message can be computed relatively easily.  The 

public encryption and private decryption keys have a mathematical relationship to each 

other.  Given a public encryption key, it is computationally difficult to determine from it 

the private decryption key [1]. 

Two currently prevalent public key cryptosystems are the Rivest-Shamir-

Adleman (RSA) algorithm [2] and Elliptic Curve Cryptography (ECC) [3].  In both 

systems, larger key sizes are correlated with higher levels of security.  Currently, RSA 

uses key sizes on the order of 2,048 bits or more.  To achieve a comparable level of 

security, ECC uses key sizes in the hundreds of bits. 

At a basic level, both RSA and ECC employ modular arithmetic extensively.  

That is, arithmetic operations such as addition, subtraction, multiplication, division, and 

exponentiation are performed, followed by computing the modulo function on the result 

with respect to some pre-selected modulus.  In some cases the operands are integers, and 

the modulus is often a prime number.  In other cases the operands are binary 

polynomials, and the modulus is an irreducible (nonfactorable) polynomial.  

Multiplication and exponentiation operations present a challenge because their 

intermediate results can be large relative to the operand size.  Taking the modulus of a 

large result can be computationally expensive.  P. L. Montgomery proposed an efficient 

algorithm for performing modular multiplication [4].  It plays a prominent role in this 

dissertation. 

Although public key cryptography employs well-understood mathematical 

principles, high-performance implementation remains a challenge.  One obvious reason 
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for this is the relatively large operand sizes, on the order of hundreds or thousands of bits.  

A software implementation on a general purpose 64-bit CPU can require many cycles of 

loads, computations, and stores because the register file space is unlikely to be large 

enough to hold the operands.  A dedicated hardware implementation, with large registers, 

can have high performance, but will have a high complexity and relatively low utilization 

since it is dedicated to a specific function. 

For a well-defined problem set, a hardware implementation will generally be 

faster than a software implementation on a general purpose microprocessor.  This 

remains true for PK cryptosystems, for which there are pure software implementations at 

one extreme, and direct hardware implementations for a specified set of parameters, at 

the other.  Between those extremes, there are relatively fast hardware implementations 

that still provide flexibility in parameters such as key size and choice of field modulus. 

Over the past several decades, researchers have proposed numerous hardware 

implementations of the Montgomery multiplication algorithm, either standalone or as 

components of comprehensive cryptographic engines.  These architectures have made 

different tradeoffs among such parameters as area, performance, power, and operand size, 

according to the targeted application and other constraints such as cost.  Some operate at 

a fine level of granularity, splitting up operands into smaller pieces and employing a 

sequence of small-scale mathematical computations which are then merged into a final 

whole.  If performed sequentially, the small computations can require a large number of 

cycles, but with a very fast clock.  Others operate at a coarser granular level, in which 

each major step of the algorithm is performed whole.  This usually results in a much 

slower clock, but only a small number of cycles are required. 

In general, the Montgomery algorithm is taken as given, and all its steps 

performed.  Proposals for optimizing performance or area typically focus on 
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microarchitectural improvements to the chosen architecture.  They may include 

reordering parts of the algorithm, but do not change it substantively. 

1.2 Proposal 

When architecting a cryptographic processor, the designer will have a set of 

criteria that must be met.  One criterion is whether the architecture should be specific to a 

particular algorithm, or general to support a multitude of algorithms.  Other criteria 

include the targeted operand sizes, and performance requirements such as latency (less is 

generally better) and throughput (higher is generally better).  At the same time, the 

designer is confronted with limitations and constraints, such as allowable die area and 

maximum energy consumption (especially, but not solely, in the case of mobile 

deployments).  Therefore, there is seldom a “one size fits all” solution.  The requirements 

and constraints guide the designer in choosing an architecture that best fits the particular 

set of tradeoffs for the targeted deployment. 

This dissertation presents a comprehensive classification scheme for Montgomery 

architectures that employ digit level parallelism.  It demonstrates that a widely accepted, 

existing taxonomy for serial Montgomery multiplication lacks an important dimension.  It 

fundamentally revises the taxonomy to incorporate that dimension, and thereby expands 

the taxonomy’s reach and analytic utility.  The proposed Serial Montgomery Model 

provides expressions for estimating the performance of realizations employing varying 

degrees of digit level parallelism. 

This dissertation presents a novel hardware architecture for performing 

Montgomery multiplication, termed the Rescheduled Montgomery Multiplier.  It 

demonstrates that the proposed architecture achieves a new set of latency-area tradeoffs 



 5 

for hardware Montgomery multiplication, and shifts a targeted region of the latency-area 

Pareto frontier to new minima. 

Conceptually, this dissertation demonstrates optimization opportunities present in 

the Montgomery algorithm to reduce latency in computing a Montgomery product.  It is 

the first research to identify and analyze those opportunities systematically and 

comprehensively.  Optimizations include avoiding unnecessary computations, deferring 

some computations where possible, and short-circuiting other computations by replacing 

them with equivalent simpler ones.  The Rescheduled Montgomery Multiplier employs 

parallelism and targeted instruction ordering to enable concurrent processing of different 

parts of the overall computation, despite macro level dependencies.  It achieves a new 

level of performance while minimizing area. 

Compared to various previous architectures, the Rescheduled Montgomery 

Multiplier achieves at least one order of magnitude of latency reduction without invoking 

a drastic area penalty.  Compared to some other architectures, the Rescheduled 

Montgomery Multiplier fits into less than 25% of the area, while having lower latency. 

1.3 Organization 

This dissertation is organized as follows.  Chapter 2 introduces RSA and ECC and 

describes the fundamental importance of modular multiplication to their realization.  It 

describes the underlying mathematical principles on which modular multiplication is 

based.  It presents the Montgomery multiplication algorithm and related algorithms.  

Chapter 3 reviews the prior work of other researchers on Montgomery multiplication, 

particularly in hardware realizations.  Chapter 4 introduces a novel Montgomery 

taxonomy for serial architectures that encompasses a variable degree of digit level 

parallelism.  Chapter 5 analyzes the Montgomery multiplication algorithm and 
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systematically identifies opportunities for optimization.  It proposes a family of hardware 

architectures for dedicated Montgomery multipliers that exploit digit level parallelism 

coupled with the optimization opportunities.  Chapter 6 establishes the experimental 

methodology and criteria for evaluation.  For comparison purposes, Chapter 7 reviews 

some possible naive Montgomery realizations.  Chapter 8 reviews results of the 

experiments.  Chapter 9 draws conclusions and describes opportunities for further 

research. 
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Chapter 2 Background 

2.1 Public Key Cryptographic Systems 

Both RSA and ECC systems employ a large but restricted set of operands and 

make extensive use of modular arithmetic.  RSA employs modular exponentiation over 

integer fields.  This is often implemented as repeated modular multiplication and 

squaring.  ECC uses elliptic curve (EC) point operations on elliptic curves defined over 

either finite integer fields GF(p) or finite polynomial fields GF(2n).  In turn, the point 

operations consist of modular addition, subtraction, multiplication, and division.  

Modular division is implemented as a product of the dividend and the multiplicative 

inverse (modular inversion) of the divisor. 

Because a computation can produce a result that is outside the allowable range of 

elements of the field, an important step is reduction of the result to a congruent value that 

is within the permitted range.  As previously discussed, modular addition and subtraction 

are relatively easy.  Modular multiplication is more computationally intensive.  Finally, 

modular inversion is the most computationally intensive.  Accordingly, some ECC 

implementations employ alternative coordinate systems that permit the inversion 

operation to be deferred until the very end of a computation.  The tradeoff is usually a 

substantially larger number of intermediate computations. 

Deploying an RSA cryptographic system begins with generating a public and 

private key pair.  Two fairly large primes p and q of equal width are selected.  Typical 

sizes are over one thousand bits.  These primes are multiplied to yield the modulus n:  n = 

pq.  n is large enough such that it is computationally expensive to factor.  Next a term φ is 

computed:  φ = (p – 1)(q – 1).  The user then chooses a random integer e, which is 

relatively prime to φ.  The term “relatively prime” means that e and φ have no common 

divisors.  The pair (n, e) constitutes the public key, and is freely shared.  The user 
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generates a private key d = e–1 (mod φ).  d is relatively prime to n, and ed ≡ 1 (mod φ).  

The user keeps d secret.  One component of RSA’s security is that, while it is 

straightforward for the user to compute d from e and φ, it is computationally very 

expensive to compute d from e and n.  Factoring n to find p and q, and thus φ, is 

expensive [1], [2]. 

Given a message m that a second person wishes to send privately to the person 

who generated the key pair, the second person encrypts it as follows.  If the message is 

large, it can be broken up into smaller blocks.  The second person encrypts, or transforms 

the message to ciphertext c using c = me mod n, and transmits it to the first person.  The 

first person receives c, and decrypts it to plaintext p using p = cd mod n.  p is identical to 

the original message m because p = (me)d (mod n) = med (mod n) ≡ m (mod n) for all m  

[1], [2].  The product ed itself is not necessarily congruent to 1 (mod n).  In both cases, 

encryption and decryption, modular exponentiation is employed.  It is often implemented 

as a sequence of repeated modular multiplication and squaring operations. 

Elliptic curve cryptography (ECC) employs operations on a geometric construct 

called an elliptic curve (EC).  An EC is represented as a graph in a 2-dimensional plane 

and is described most generally by the following expression, called the Weierstrass 

equation [3].  In most curves of interest for ECC, some of these terms, e.g. a1xy, are 

absent. 

 

 E:  y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (2.1) 

 

Fig. 1 shows some examples of elliptic curves defined over the set of real 

numbers [5]. 
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 (a) y2 = x3 – 4x + 1 (b) y2 = x3 – 5x + 5 

Fig. 1. Some elliptic curves over the set of real numbers [5]. 

 

A point P on elliptic curve E has x and y coordinates that satisfy (2.1), but E is not 

necessarily defined for all possible values of x and y.  ECC algorithms define and employ 

three operations for all points P on E.  These operations are termed point negation, point 

addition, and point doubling.  The operations have specific geometric meanings, and their 

computations are nontrivial.  Let the points P1 = (x1, y1) and P2 = (x2, y2).  Table 1 lists 

the point operations and their underlying computations. 

 

Table 1. Elliptic curve point operations for three points P1, P2, and P3. 

Point Operation Expression Computation 

Negation P3 = –P1 
x3 = x1 
y3 = x1 + y1 

Addition P3 = P1 + P2     

€ 

λ =
y2 + y1

x2 + x1  
x3 = λ2 + λ + x1 + x2 + a 
y3 = λ(x1 + x3) + x3 + y1 

Doubling P3 = 2P1     

€ 

λ = x1 +
y1

x1

=
x1

2 + y1

x1  
x3 = λ2 + λ + a = x1

2 + b/x1
2 

y3 = x1
2 + (λ + 1)x3 = x1

2 + λx3 + x3 
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Although Fig. 1 depicts ECs defined over the real numbers, ECC employs curves 

defined over a finite field.  It is implied that the computations in the third column of 

Table 1 are performed over the underlying finite field, i.e. modulo a field modulus M.  As 

evident from the table, the computations consist of modular addition, multiplication, and 

division.  Modular division is implemented as a multiplicative inversion (reciprocal) 

followed by a multiplication.  For example, A/B mod M is implemented as A × (1/B) mod 

M = AB–1 mod M.  Furthermore, modular squaring is often treated as a separate operation 

from multiplication, because just as in integer implementations, its computation is usually 

cheaper than general multiplication. 

Modular inversion is typically expensive to compute relative to addition, 

multiplication, and squaring.  Consequently, ECC researchers have devised alternative 

coordinate systems which defer inversion to the end, by carrying redundant information 

and performing a larger set of computations along the way.  The two-dimensional (x, y) 

coordinates used in Table 1 are referred to as affine coordinates.  Other coordinate 

systems that have been proposed include Projective, Lopez-Dahab, and Jacobian [3].  

Table 2 lists transforms between affine and these other coordinate systems. 

 

Table 2. Transforms between affine and alternate coordinate systems [3]. 

Alternate 
Coordinate 

System 

Affine 
Coordinates 

Transform 
to 

Alternate 

Alternate 
Coordinates 

Transform 
to 

Affine 
Projective (x, y) (x, y, 1) (X, Y, Z) (X/Z, Y/Z) 
Lopez-Dahab (x, y) (x, y, 1) (X, Y, Z) (X/Z, Y/Z2) 
Jacobian (x, y) (x, y, 1) (X, Y, Z) (X/Z2, Y/Z3) 

 

The third, Z-coordinate carries the redundant information.  The point operation 

computations for the alternate coordinate systems are omitted here.  However, the only 
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inversion that must be performed is on the final value of Z at the end of the computations 

to return to affine coordinates. 

Two entities A and B that wish to communicate mutually choose a particular 

elliptic curve and a point P on that curve.  A randomly selects a private key kA, which it 

does not reveal.  B randomly selects its own private key kB, which it also keeps secret.  A 

computes a point multiplication PA = kAP, and shares it with B.  In turn B computes a 

point multiplication PB = kBP, and shares it with A.  Both A and B can now compute a 

shared secret Q, as follows.  A computes kA(PB) = kA(kBP), and B computes kB(PA) = 

kB(kAP).  kA(kBP) = kB(kAP) = Q.  Both can now use Q as a key to a separate symmetric 

cryptographic algorithm to use for sharing payload messages. 

2.2 Mathematical Foundation 

RSA and ECC employ operations on a finite set of elements.  The results of those 

operations are also elements of the finite set.  In many cases the set consists of a sequence 

of integers.  The operations are modular arithmetic functions, such as addition and 

multiplication, which are performed with respect to a modulus. 

At the foundational level is the concept of a group.  A group G is defined as a set 

that additionally has some binary operation defined, denoted generically as *.  As a rule, 

a group has the following properties.  First, the group is associative, such that for set 

members (elements) a, b, c ∈ G, a * (b * c) = (a * b) * c.  Second, there is an identity 

element e such that for all a ∈ G, a * e = e * a = a.  Third, there is an inverse element a–1 

such that for all a, a * a–1 = a–1 * a = e.  Additionally, if the group is commutative, such 

that a * b = b * a, then the group is termed abelian [6].  As an example, consider the set 

Z of all integers and the binary operation addition, denoted by +.  Given arbitrarily-

chosen integers 3, 5, and 9, it is evident that all of the preceding properties apply:  
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associativity, such that 3 + (5 + 9) = (3 + 5) + 9 = 17; there is an identity element 0, such 

that 3 + 0 = 0 + 3 = 3; an inverse element –3, such that 3 + –3 = –3 + 3 = 0; and finally, 

commutativity, such that 3 + 5 = 5 + 3 = 8. 

At the next level is the ring.  It has two operations and it is denoted as (R, +, ⋅), 

where R indicates the set, and the two binary operations + and ⋅ are defined.  For present 

purposes, the operations can be assumed to be addition (+) and multiplication (×), and 

thus the ring is (R, +, ×).  A ring has the following properties.  First, the set R is abelian 

with respect to addition.  Second, multiplication is associative:  (a × b) × c = a × (b × c).  

Third, multiplication  is distributive:  a × (b + c) = a × b + a × c [6]. 

Next is the field.  If the nonzero elements of the set R constitute a group for the × 

operation, and if the ring is commutative, it is termed a field.  For practical purposes, the 

additive identity element is termed the zero element and is 0.  The multiplicative identity 

element is 1.  That is, for a ∈ R, a + 0 = a, and a × 1 = a.  Given a prime number p, and 

the finite set of integers {0, 1, …, p – 1} as elements, a finite field is termed a Galois 

Field of order p, and is typically denoted as GF(p) [6]. 

In addition to integers, it is possible to apply the foregoing concepts to 

polynomials.  For purposes of this research, a polynomial field is defined over a 

polynomial in 2, where the coefficients ai ∈ {0, 1}.  This is termed a binary polynomial, 

and is denoted as GF(2n).  The maximum degree of a polynomial element is n – 1.  The 

modulus is an irreducible polynomial of degree n. 

Operations over finite fields are characterized by the concept of congruence.  

What this means is that the result of a defined operation, even if the result initially falls 

outside the bounds of the field, always has an equivalent corresponding element within 

the field.  Consider the field GF(5).  The integer 7 is not an element of the field, but it is 

congruent to field element 2.  This is computed by taking the modulus of 7 with respect 
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to 5, or 7 mod 5 = 2.  Symbolically, the congruence is represented as 7 ≡ 2 (mod 5).  One 

can think of the field elements as wrapping around once they exceed 5 – 1 = 4.  The 

process of computing a congruence within the field is termed modular reduction. 

The following arithmetic operations are defined for GF(p) fields:  addition (+) and 

multiplication (×).  These operations, when correctly and completely executed, produce 

results that are themselves elements of the field.  GF(p) arithmetic is the same as integer 

arithmetic, except that the initial result may be a value outside the range of the field and 

must be transformed (reduced) to the congruent element within the field. 

Addition is straightforward.  Consider a finite field GF(M), where M is used in 

place of p to denote the modulus.  The sum S of two elements A and B is S = A + B.  If S 

≥ M, then it is easy to compute the congruent field element Sʹ by subtracting M from S:  

S′ = S – M.  For example, in GF(5), 2 + 4 = 6 ≥ 5.  Thus to compute the congruence, 5 is 

subtracted from 6, with 1 as the result. 

Multiplication is more complicated, because an initial product T = AB can be 

many times as large as the modulus M, i.e. as large as (M – 1)2.  Reduction of T can be 

performed by repeated subtraction of the modulus until the result is less than the 

modulus.  Alternatively, if an integer divider is available, it can be used to compute the 

quotient and remainder of T/M, taking the remainder as the congruent result. 

Two additional properties defined for GF(p) fields are an additive inverse (–A) 

and a multiplicative inverse (A–1).  Given a finite field with modulus M and an arbitrary 

field element A, the additive inverse of A is another field element, denoted by –A, such 

that the sum A + –A is congruent to 0.  Symbolically:  A + –A ≡ 0 (mod M).  For example, 

in GF(7), let A = 2.  Then, –A = 5 because 2 + 5 = 7 ≡ 0 (mod 7).  The multiplicative 

inverse, 1/A, denoted by A–1, is the field element such that A × A–1 ≡ 1 (mod M).  Again in 

GF(7), let A = 2.  Then, A–1 = 4 because 2 × 4 = 8 ≡ 1 (mod 7). 
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Although the preceding introduction describes modular operations over prime 

integer fields GF(p), they are also applicable in cases where the modulus itself is not 

prime, subject to some limitations.  One such use case is RSA, whose modulus is actually 

the product of two large primes:  n = pq where p and q are both prime [2], [1]. 

2.3 Montgomery Multiplication 

As previously demonstrated, modular multiplication in integer fields is 

complicated by the difficulty of computing the modular reduction.  P. L. Montgomery 

offers an ingenious solution to this problem [4].  The Montgomery multiplication 

algorithm replaces division by the arbitrary modulus M with division by a power of two, 

which is simply a right shift.  The key to this method is the prior transformation of the 

field elements into M-residues in what is referred to as the Montgomery domain. 

At a high level, the algorithm works as follows.  Assume a modulus M of n bits, 

such that n = ⎡log2M⎤.  Let R = 2n.  It is usually beneficial that R be a multiple of the 

machine word size.  The modular multiplicative inverse of R with respect to M is R–1 

(mod M) = 2–n (mod M).  Consider two field elements A and B whose modular product is 

to be computed.  These can be transformed to the M-residues Aʹ and Bʹ via conventional 

modular multiplication of A and B, respectively, by R with respect to M.  Thus:  A′ = AR 

mod M and B′ = BR mod M.  When Montgomery Multiplication is invoked with A′ and 

B′, it computes the following product:  AʹBʹR–1 mod M: 

 

MontMult(A′B′) = (A′B′)R–1 mod M 

 = (AR)(BR)R–1 mod M 

 = (AB)R mod M 

 = (AB)′ 
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The Montgomery Multiplication function computes the M-residue of the product 

of the M-residues of the multiplicands.  In other words, given two elements in the 

Montgomery domain, the function computes a product which itself is in the Montgomery 

domain.  In addition to the M-residues, the Montgomery algorithm requires that two other 

terms be  precomputed: 

 

R–1 (mod M) where RR–1 mod M = 1 

M′ where RR–1 – MM′ = 1 

 

The Montgomery Multiplication Algorithm is listed as Algorithm 2.1.  Assume 

that A and B are already M-residues. 

 
Algorithm 2.1.  Montgomery Multiplication Algorithm [4]. 
Input: A, B 
Output: P = ABR–1 mod M 
 
1. T = AB    T0 = T mod R 
2. Q = T0M′   Q0 = Q mod R 
3. U = Q0M 
4. P = (T + U) / R 
5. if (P > M): 
6.  P = P – M 
7. end if 
8. return P 

 

In Step 1, the input operands A and B are multiplied to produce initial product T, 

which is 2n bits wide.  For purposes of this discussion, T can be decomposed into two n-

bit words, a high word T1 and a low word T0.  Word concatenation is illustrated with 

parentheses, so T = (T1, T0).  In Step 2, Q is computed as the product of T0 and M′.  The 

low word Q0 of this product is selected (Q mod R).  Q0 may be described as a quotient 

term, and it is what makes it possible to avoid performing a conventional division 
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operation, as will be seen presently.  In Step 3, Q0 is multiplied with M to produce U.  In 

Step 4, T and U are summed, and the entire result is divided by R to produce a 

preliminary product result P.  The division by R is merely a right-shift by n bits.  It is 

possible that after the shift P > M (however P < 2M), and Step 5 tests for this case.  If it 

occurs, the subtraction in Step 6 ensures that 0 ≤ P < M. 

Replacing the division by R with an n-bit right shift in Step 4 is possible without 

any loss of information because the low word of the sum computes to zero.  M′ is the 

additive inverse of the multiplicative inverse of M with respect to R.  In other words M′ = 

–M–1 (mod R).  In effect then, Q0 = –T0M–1 (mod R).  Because of the foregoing, U = –

T0M–1M and U0 = –T0 (mod R).  The addition of T and Q0M = (T1, T0) + (U1, U0) = (T1, 

T0) + (U1, –T0) = (T1+U1+c, 0), where c is the carry out of the sum T0 + U0 = T0 + –T0.  In 

this way, the quotient term Q0 and the foregoing computations have zeroed out T0, thus 

making the right shift possible. 

Clearly, there is a cost to using Montgomery multiplication.  Prior to 

multiplication, the operands must be transformed to M-residues, and then the 

Montgomery product must be transformed back to the integer domain.  For a single 

modular multiplication this overhead may confer no benefit.  On the other hand, where a 

sequence of several multiplications is required, the overhead may be acceptable.  This is 

the case in RSA implementations which perform modular exponentiation as a sequence 

of modular multiplications and squarings.  It is also invariably the case in ECC whose 

point operations consist of several modular multiplications. 

Over the preceding three decades, a variety of Montgomery multiplier 

implementations have been proposed.  These implementations have ranged from software 

to hardware, and have included bit-serial, word-serial, and fully parallel designs. 
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2.4 Montgomery Inverse 

Multiplicative modular inversion is a vital function for elliptic curve 

cryptography.  For a field element X, its inverse is defined as Y = X–1 (mod M) such that 

XY = XX–1 (mod M) ≡ 1 (mod M).  In terms of processing time, modular inversion can be 

relatively expensive, even when compared to multiplication.  Furthermore, depending on 

the algorithm, the computation time can vary with the input.  Nevertheless several novel 

and efficient inversion algorithms and hardware have been proposed. 

In a foundational paper, B. S. Kaliski describes an algorithm to compute the 

Montgomery inverse of an arbitrary integer A [7].  In this context, let M be the prime 

modulus, R = 2n, where 2n–1 ≤ M < 2n.  The algorithm computes A–1R mod M, the M-

residue of the multiplicative inverse of A.  As originally presented, the algorithm uses a 

sequence of additions and right shifts; no general multiplication or division operations are 

required.  In describing the algorithm, the author first refers to a greatest common divisor 

algorithm (GCD) which uses halvings (right shifts) and subtractions.  He then refers to a 

related algorithm for the modular inverse which uses halving.  His contribution is 

twofold:  First, he notes that it is possible to defer the halvings to the end, such that an 

intermediate result is A–12z mod M where z ≥ n.  Second, he observes that, for z ≥ n, one 

of the intermediate values is the M-residue of the inverse, i.e. A–12n mod M = A–1R mod 

M.  The algorithm consists of two processing phases, designated Phase 1 and Phase 2. 
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Algorithm 2.2.  Kaliski’s Montgomery Inverse Algorithm, Phase 1 [7]. 
Input: A, M 
Output: r = A–12z mod M, z 
1. u = M 
2. v = A 
3. r = 0 
4. s = 1 
5. z = 0 
6. while (v > 0) do: 
7.  if (u is even) then: 
8.   u = u / 2 
9.   s = 2s 
10.  else if (v is even) then: 
11.   v = v / 2 
12.   r = 2r 
13.  else if (u > v) then: 
14.   u = (u – v) / 2 
15.   r = r + s 
16.   s = 2s 
17.  else: 
18.   v = (v – u) / 2 
19.   s = r + s 
20.   r = 2r 
21.  end if 
22.  z = z + 1 
23. end while 
24. if (u ≠ 1) then: 
25.  return “Not relatively prime.” 
26. end if 
27. if (r ≥ M) then: 
28.  r = r – M 
29. end if 
30. return r, z 

 
Algorithm 2.3.  Kaliski’s Montgomery Inverse Algorithm, Phase 2 [7]. 
Input: z, n, r, M 
Output: Z = A–12n mod M = A-1R mod M 
1. for i = 1 to (z – n) do: 
2.  if (r is even) then: 
3.   r = r / 2 
4.  else: 
5.   r = (r + M) / 2 
6.  end if 
7. end do 
8. return Z = M – r 
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If z > n, then this algorithm computes the Montgomery inverse faster than it 

would take to first compute the ordinary inverse and then convert it to the Montgomery 

domain (M-residue) [7]. 

The paper by E. Savas and Ç. K. Koç is an important work is a that analyzes 

Kaliski’s Montgomery inversion algorithm in detail and extends it [8].  The authors 

introduce a modification to the definition of the Montgomery inverse which they term the 

New Montgomery Inverse.  The change makes it possible to replace Kaliski’s Phase 2 

with a short sequence of Montgomery multiplications.  The authors propose algorithms to 

compute the following: 

• Classical modular inverse 

• Kaliski-Montgomery inverse 

• New Montgomery inverse 

A. Gutub, et al. extend the Savas and Koç basic algorithm into a scalable 

architecture in which operands are not limited to a fixed machine word size [9].  C. 

McIvor, et al. propose and employ a unified architecture for both multiplication and 

inversion [10], [11]. 

2.5 Iterative Algorithms 

Ordinary multiplication can be implemented with iterative algorithms that operate 

on smaller portions of the operands.  An operand may be split into multiple words or 

digits.  Then, the arithmetic components can be smaller but operate in a reduced cycle 

time.  Taken to the extreme, operands may be processed at the bit level.  Bit 

implementations can have a bare minimum of complexity and extremely short cycle time, 

at the cost of performing a large number of iterations. 
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Assume that operands are n bits wide and that they are divided into digits, each of 

which is d bits wide.  Each operand then consists of k = ⎡n/d⎤ digits.  An arbitrary 

operand A can be expressed as a concatenation of its digits:  (A[k–1], A[k–2], …, A[1], 

A[0]), where A[i] indicates the i-th digit from the right.  Algorithm 2.4 illustrates how a 

product of two large operands A and B can be computed via serial digit multiplication and 

accumulation. 

 
Algorithm 2.4.  Digit-Based Iterative Multiplication. 
Input: A, B 
Output: P = AB 
1. P = 0 
2. for i = 0 to k – 1 do: 
3.  C = 0 
4.  for j = 0 to k – 1 do: 
5.   (C, S) = A[i]×B[j] + P[i+j] + C 
6.   P[i+j] = S 
7.  end for 
8.  P[i+k] = C 
9. end for 

 

Inspection of Algorithm 2.4 shows that to compute the full product, NP = k2 digit 

multiplications must be performed: 

 

 NP = k2 (2.2) 

 

For example, let P = AB, and A and B are split into k = 2 digits each, denoted by 

A[1], A[0] and B[1], B[0] respectively.  The subscripts used here are digit indices, not bit 

indices.  For k = 2, d = n/2.  The product is computed by adding the digit products as 

follows: 

 

 P = 2n(A[1]×B[1]) + 2n/2(A[1]×B[0] + A[0]×B[1]) + A[0]×B[0] (2.3) 
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Fig. 2 illustrates how the digit products are aligned and accumulated to produce 

the product P. 

 

 

Fig. 2. Digit multiplication. 
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Chapter 3 Related Work 

Hardware Montgomery multiplier architectures are not new.  The paper by S. E. 

Eldridge and C. D. Walter [12] conducts a systematic review of implementations extant 

in the early 1990s.  H. Orup proposes a digit-serial architecture based on optimizing 

quotient determination (Step 2 of the Montgomery Algorithm) [13].  O. Nibouche, et al. 

present a parallel implementation, and a systolic variant, that incorporates finely 

interleaved Montgomery reduction [14]. 

Some recent research has targeted field programmable gate arrays (FPGAs) for 

hardware implementation.  The proposed architectures typically take advantage of the 

chosen FPGA family’s resources to drive high performance.  The digit-serial 

implementation by Erdem, et al. targets the Xilinx Virtex-7 [15].  A tool to generate 

VHDL code for several different Xilinx FPGAs is described in [16]. 

The remainder of this chapter reviews a specific, diverse set of architectures for 

computing Montgomery products.  The objectives of these architectures vary among 

minimizing area, maximizing performance, offering flexibility in operand size, and 

potentially enabling other related computations.  These architectures also vary in how 

they divide up the work.  Division may be spatial, in the sense that parts of the 

computation may be split up and performed concurrently in duplicated hardware.  

Division may also be temporal, in that sequential processing and pipelining may be 

employed. 

3.1 McIvor ECC Processor with Pipelined Multiplier 

C. McIvor, et al. present a complete ECC coprocessor that employs several 

innovative techniques [11].  It performs Montgomery multiplication and uses a novel 
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implementation of modular inversion.  The processor is developed for FPGA 

implementation and includes a 256×256-bit pipelined multiplier. 

The architecture places considerable emphasis on efficient modular inversion.  

The authors present a unified inversion algorithm in [10].  It builds upon prior algorithms 

proposed by Savas and Koç which substitute Montgomery multiplication for some of 

Kaliski’s iterative computations [8].  The unified inversion algorithm can compute the 

Montgomery inverse of an ordinary integer, or the ordinary inverse of a Montgomery 

element, as well as convert between the ordinary domain and the Montgomery domain. 

The coprocessor can be configured to perform any of the following four 

operations:  Montgomery multiplication, multiplicative inversion (whether conventional 

or Montgomery), modular addition, and modular subtraction. 

The 256×256 multiplier is hierarchical in composition.  At the top level, the array 

is divided into four 256-bit partial product quadrants.  Its 512-bit output register is fed by 

the sum of the four registered 256-bit partial products, properly aligned.  The same 

hierarchical grouping is recursively applied to the 256-bit quadrants on down.  At the 

lowest level the McIvor multiplier consists of 256 16×16 digit multipliers.  Successively 

larger partial products are formed by adder logic and registered in a kind of bottom-up 

pipelining. 

Although the McIvor ECC Processor is a complete acceleration engine that 

employs Montgomery multiplication, it does not attempt to optimize the Montgomery 

algorithm as such.  It performs the algorithm step by step to compute the word products 

T, Q, and U sequentially as listed in Algorithm 2.1.  Since the multiplier circuit is 

pipelined, it could achieve a hypothetical throughput of one product per cycle, but this is 

not available for a Montgomery operation.  Interproduct dependencies among the 

products T → Q → U preclude overlapping them for increased throughput. 
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3.2 Eberle Serial Digit-Digit Architecture 

H. Eberle, et al. describe a coprocessor extension to general purpose processors 

on the server side to support high performance public key cryptography [17].  The focus 

is on high performance as opposed to low power.  The coprocessor supports both RSA 

and ECC. 

This architecture operates serially and its computation unit is the digit.  Large 

operands are split into k digits of size d, where k = ⎡n/d⎤.  Input operands are stored in 

memory and fetched sequentially digit by digit instead of in a large parallel load 

operation.  Likewise, intermediate outputs and final results are stored to memory 

sequentially digit by digit.  For a change in operand size, only the loop counter values for 

operand addressing need to be changed, whereas the digit datapath and data buses remain 

unchanged.  There is no register file, only an accumulator register, so operands are read 

from and written back to memory with each instruction.  The architecture builds upon 

one previously described by the authors in [18]. 

Digit multiplication is performed as described by Algorithm 2.4, except that 

Montgomery reduction is interleaved with partial product row computation.  Instead of 

computing the entire T = AB product followed by the Q and U steps, this architecture 

computes a digit-word product A[i]×B and then performs the Montgomery reduction on 

that.  A digit-word product is computed sequentially by accumulating A[i]×B[j], 0≤ j < k.  

Once Qi is computed, the partial product is reduced sequentially by accumulating with 

Qi×M[j], 0 ≤ j < k.  All digit-word partial products are accumulated in a sliding region of 

product memory P.  This approach might be termed Montgomery Micro Reduction.  A 

formal mathematical definition of the computations is (3.1). 

 
 
    

€ 

ABR−1 mod M ≡ 2id A[i]× B
i=0

k−1
∑ + 2id Qi[0]× M

i=0

k−1
∑⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 2−kd ,0 < Qi[0] < 2d  (3.1) 
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The first summation represents the conventional partial product summation of 

digit-word products.  The second summation represents the Montgomery reduction digit-

word products.  This sum is effectively divided by R = 2n = 2kd, not by shifting the partial 

products right, but by incrementing the P address. 

Because the Montgomery reduction is interleaved with partial product 

computation, there are dependencies both within partial product words and between 

partial product words.  Fig. 3 depicts a dependency graph for the Eberle digit-serial 

architecture in which operands are split into k = 2 digits.  Numbers along the top of the 

graph indicate computation dependency steps. 

 

 

Fig. 3. Eberle architecture dependency chain (k = 2). 

 

The figure shows that the Eberle architecture has a chain of seven dependency 

steps.  The first partial product digit stored in P[0] in Step 0 is required to compute Q0 in 

Step 1.  Q0 is required before the reduction can start in Step 2.  Reduction starts in Step 2 

and modifies the digits stored in P[2:0].  P[2:1] is required for the next partial product 

accumulation.  With sequential digit accumulation, P[1] is not fully computed until Step 

3.  Accordingly, the next partial product computation cannot start until Step 4.  The same 
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dependencies exist for the second partial product as for the first, and so P[1] in Step 6 

precedes P[3:2] in Step 7.  There is a cyclic dependency pattern centered on the product 

memory P.  Partial product computation is followed by in-place reduction, which is 

followed by in-place computation of the next partial product, and so on. 

3.3 Großschädl Serial Bit-Word Architecture 

Großschädl, et al. present a bit-word serial multiplier which can compute an n-bit 

Montgomery product in n cycles, plus some overhead [19].  As a bonus, the architecture 

can compute a conventional product P = AB in n/2 cycles plus the overhead. 

In contrast to the digit-digit architecture proposed by Eberle, et al. in [17], this 

architecture operates on single bits of operand A (denoted as ai) and the entire full-width 

operand B to compute bit-word partial products.  No actual multiplier circuit is required, 

as a partial product aiB can simply be computed by a row of n AND gates.  This is 

accumulated in place in an accumulator with previous the bit-word product.  

Montgomery reduction is performed on each iteration of the running partial product Pi.  

The quotient term is a single bit qi, which is used to gate the modulus as qiM for the 

reduction step.   No computation is required to generate qi, it can be shown 

mathematically to resolve to bit 0 of the current partial product word Pi before reduction.  

Computed in this way, the Montgomery product of A and B is defined by (3.2). 

 
 

    

€ 

AB2−n mod M ≡ 2i aiBi=0

n−1
∑ + 2i qi Mi=0

n−1
∑⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 2−n ,qi ∈ {0,1} (3.2) 

 

The first summation represents the conventional partial product summation using 

bit-word products.  The second summation represents the Montgomery reduction terms, 

one for each qi, 0 ≤ i < n. 



 27 

Accumulation of partial products is performed in two cascaded n-bit carry save 

adders (CSAs).  The accumulator register complex consists of two registers, RS and RC, 

which hold the partial product in redundant carry save form.  After all partial products are 

computed and Montgomery-reduced, RS and RC are summed sequentially in a small 

digit adder of size d, and shifted back into RS.  In this mode, RS and RC are right-shifted 

digit by digit instead of bit by bit.  Typical sizes of the d-bit adder may be 8, 16, or 32 

bits.  Computing the nonredundant form requires n/d cycles. 

This architecture has both parallel and sequential aspects to operation.  The 

parallelism is in computing and accumulating the whole bit-word product Pi = Pi–1 + aiB 

+ qiM.  This is computed and then right-shifted by one bit in a single cycle.  qi is 

determined in combinational logic in the same clock cycle.  The sequential aspect is in 

accumulating all n Montgomery-reduced products Pi for 0 ≤ i < n, followed by converting 

the product to nonredundant form. 

The dependency chain in the Großschädl architecture is simple.  At a macro level, 

a sequential dependency exists from one bit-word product to the next.  There is an intra-

word dependency chain within a bit-word partial product:  bit 0 of Pi before reduction → 

qi → final Pi), but the simplicity of the qi and qiM computations means it can be resolved 

combinationally in one cycle.  Fig. 4 illustrates the sequential dependency chain. 
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Fig. 4. Großschädl architecture dependency chain. 

 

The figure shows that the first, reduced partial product P0 is required to compute 

P1, which is then required for P2, and so on.  Because this is a sequential architecture, the 

dependency exists from one cycle to the next, one for each of the n partial products. 

3.4 Tenca and Koç Serial Hybrid Bit-Digit Architecture 

A. F. Tenca and Ç. K. Koç present a Montgomery architecture that employs a 

simple bit-digit multiplier for a minimal area footprint [20], [21].  The architecture is 

scalable in two ways.  First, it can accommodate arbitrary operand sizes.  Second, 

multiple computation blocks can easily be cascaded to drive increased performance and 

throughput by increasing parallelism. 

At a high level, this architecture computes Montgomery products in the same way 

as the Großschädl architecture described in the previous section [19], and (3.2) applies.  

The difference in this architecture is that both A and B are subdivided.  As in the 

Großschädl architecture, A is split into n individual bits, denoted by ai, 0 ≤ i < n.  B is 

split into k uniform digits d bits in width, where k = n/d. 
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The main compute block is termed a Processing Element (PE).  It is a two-stage 

miniature pipeline.  In the first stage it sequentially computes partial product Pi[j] digits 

from bit ai and digits Pi–1[j], B[j], and M[j] received from queues.  The Montgomery 

division by two is performed on a digit basis on each Pi[j] digit as it is transferred to the 

second stage register.  This happens concurrently with the first stage computation of 

Pi[j+1], whose LSB is copied into the MSB position of Pi[j]. 

While being computed, Pi digits may be fed back to the same PE via a queue, or 

can be can be routed to another PE in cascade which is computing Pi+1.  There is a two-

cycle delay until the next PE can start because of the two stage PE pipeline.  Other 

researchers have proposed optimizations to reduce the two-cycle delay to one cycle [22].  

Any number of PEs may be cascaded in this way for increased throughput.  There is 

generally little performance benefit if the number of PEs exceeds k/2. 

The architecture must compute a total of n bit-word partial products and n partial 

product reductions.  For a bit-digit partial product Pi, a PE computes k partial product 

digits and k digit reductions, but the reduction is performed combinationally.  The entire 

design must compute a total of nk bit-digit products. 

Dependencies in the Tenca and Koç architecture occur both between sequential 

partial products Pi and within those products.  As with the Großschädl architecture, each 

partial product Pi requires the previous product Pi–1.  The difference is that Pi does not 

need to wait for Pi–1 to complete before starting, due to the bit-digit serialization.  Within 

a product Pi there are both backward and forward dependencies.  As used here, 

“backward dependency” indicates a typical dependency of a computation on the result of 

a previous computation.  “Forward dependency” indicates that a computation has a 

dependency on a subsequent result.  The backward dependencies are that the reduction 

digits qiM[j] require the quotient bit qi, which in turn is a function of Pi–1[0] + aiB[0], but 
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all of this is resolved in combinational logic.  Each partial product digit Pi[j] depends on 

the carry out of Pi[j–1].  The forward dependency is caused by the division by two (right 

shift) step in Montgomery reduction.  In this case the Pi[j] digit is right-shifted, dropping 

its LSB, and receiving as its new MSB a copy of the LSB of the subsequent digit Pi[j+1].  

Consequently, two cycles are required to effectively compute a Pi[j] digit, but the 

throughput is one digit per cycle. 

The sequential digit processing of the Tenca and Koç architecture is what enables 

concurrent computation of bit-word partial products Pi and Pi+1.  The PE computing Pi+1 

is merely offset two cycles later than the one computing Pi.  Fig. 5 shows a dependency 

graph of the Tenca and Koç architecture. 

 

 

Fig. 5. Tenca and Koç architecture dependency chain. 
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The first partial bit-word product P0 starts computation in Step 0, with digit 0 

(P0[0]).  The next digit P0[1] cannot start until Step 1, because it depends on the carry out 

of P0[0].  Also, P0[0] is not completely finished yet and so it transitions to Step 1 and 

down.  There, its forward dependency on the LSB from P0[1] is shown by an arrow 

pointing down and annotated with an asterisk (*).  Partial bit-word product P1 is being 

computed in an adjacent PE.  Because it requires P0, it cannot start processing until Step 

2. 

The effective length of the dependency chain in this architecture is 2(n – 1) + k + 

1 = 2n + k – 1.  The reason is that all n bits of one operand are processed in sequence to 

produce n bit-word partial products, as in the Großschädl architecture, and there is a two-

step delay from the start of one partial product to the next.  Processing k bit-digit products 

instead of a single bit-word product adds k steps.  This imposes a lower bound on the 

number of cycles required to compute a Montgomery product, after which there is no 

way to increase performance by adding more PE resources. 

3.5 Sanu Parallel Architecture 

Sanu, et al. describe a fully combinational Montgomery multiplier architecture in 

[23].  This design integrates the Montgomery reduction terms into the partial product 

reduction array.  The authors demonstrate a mathematical transform that permits the 

Montgomery reduction algorithm to be performed by a vector summation of h n-bit 

numbers.  The key is that the sum is congruent to the n×n-bit product.  The summation 

and reduction may be computed in log1.5(h) time [23]. 

First, the authors present the congruence expression, which is the same as (3.2).  

Second, the authors suggest a possible substitution: 
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€ 

X jj=0

h−1
∑ ≡ 2i aiBi=0

n−1
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ mod M  (3.3) 

 

The left side of the substitution shows the summation of h n-bit numbers from the 

set {X0, X1, …, Xh–1}.  In this case the subscripts are merely identifiers and do not signify 

digits or bits of X.  If for all Xj, 0 ≤ Xj < 2n, then the authors show mathematically that the 

overall summation result will grow minimally beyond n bits.  A conventional multiplier 

array grows to 2n bits wide.  Montgomery reduction performed as in Algorithm 2.1 

effectively zeroes out the lower n bits, leaving an n-bit Montgomery product in the upper 

bits.  The transform used by this architecture keeps the reduction array more “vertical” 

with the final result growing minimally beyond n bits.  Fig. 6 illustrates the transform 

with a trivial 4-bit example. 

 

 

 (a) Initial Dadda array. (b) Transform. 

Fig. 6. Sanu Montgomery multiplier array [23]. 

 

Fig. 6(a) shows a 4×4 Dadda dot array of bit partial products, and how they are 

reduced through succeeding stages of half adders and full adders [24].  The final two 
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rows are summed in a conventional carry propagate adder.  The first row of dots indicates 

the a0B partial product in columns n–1 down to 0.  The second row indicates a1B in 

columns n down to 1, and so on.  The array grows to eight bits wide., and then a2B and 

a3B, each shifting one bit further to the left.  Ultimately the final product will be eight bits 

wide.  Not shown explicitly are the interleaved Montgomery reduction rows between 

partial product reduction rows. 

Fig. 6(b) shows the substitutions designed to minimize horizontal growth in the 

array.  Effectively, the product bits to the left of column 3 in the initial array are replaced 

with congruent terms fetched from a lookup table (LUT).  The original array has been 

transformed to a series of summands derived from the left hand side of the array and the 

LUT. The authors propose variants in which the MSBs are combined in different ways so 

as to minimize the number of congruent terms and LUT size. 

A key point is that Montgomery reduction steps are interleaved with the 

summation.  The interleaving is similar but not identical to that employed by the 

Großschädl and Tenca and Koç architectures, and is effected spatially instead of 

sequentially.  Groups of three summation rows are Montgomery reduced with interleaved 

modulus M terms.  This is omitted form the figure for clarity.  It is what makes it possible 

to compute the modular product in logarithmic time. 

This architecture is fully parallel (combinational).  It uses a traditional Dadda type 

multiplier array for the partial products [24].  A simple Dadda type multiplier starts with 

n rows, and has approximately ⎡log1.5(n)⎤ reduction stages.  A naive implementation of 

interleaved Montgomery reduction would double the original n rows to 2n.  The Sanu, et 

al. architecture cleverly applies the interleaving to groups of three rows for 

approximately ⎡n/3⎤ modular reduction rows, for an initial total of n + ⎡n/3⎤.  
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Furthermore, it minimizes array growth (both width and height) by replacing the upper 

bits with a smaller number of congruent reduction terms fetched from a lookup table. 

Dependencies exist within groups of rows and between stages.  Each group of 

three or fewer partial product rows will potentially be Montgomery-reduced, based on the 

sum of the LSBs of the three rows.  This bit selects either the modulus M or a row of 

zeroes, and so it is dependent on the sum of those three rows.  Each group of rows can be 

taken separately from the other groups, at that stage.  The output rows of that stage then 

become the input rows of the next partial product and modular reduction stage. 
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Chapter 4 Serial Montgomery Design Space 

The preceding review of several Montgomery hardware architectures reveals a 

wide range of fundamental approaches to the problem, as well as specific implementation 

choices that can be made.  Some architectures employ arithmetic circuits that operate on 

full, word-sized operands.  For a serial approach, other architectures split the operands 

into smaller parts, such as digits or bits.  Digit or bit scale arithmetic circuits of relatively 

low complexity are employed in a serial algorithm to build up the final result.  As the 

preceding review has shown, there is no requirement for symmetry in operand division—

one operand may be split into bits while the other operand is split into digits.  The 

number of basic operations that must be performed, such as digit multiplication, 

determines the performance of an architecture. 

4.1 Koç Montgomery Classification 

Koç, et al. review and classify serial Montgomery multiplication algorithms [25].  

The classification scheme they devised has become the de facto taxonomy for 

characterizing serial Montgomery realizations.  Most research on Montgomery 

multiplication references it and classifies proposed architectures into one of its categories 

[10], [16], [19], [20], [21], [22], [26], [27], [28], [29].  It is applicable to both software 

and hardware realizations, and may be termed the serial Montgomery classification or 

taxonomy. 

The classification scheme has two major dimensions.  First, it considers whether 

Montgomery reduction is separated from or integrated with product computation.  

Integrated reduction may be further classified as either coarse or fine.  Second, it 

considers whether input operand digits or product digits are prioritized for scanning. 
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Computing a Montgomery product step by step as listed in Algorithm 2.1 is one 

example of separated reduction.  The initial product T is computed first.  Then the 

quotient term Q is computed.  Finally, the reduction term U is computed and added to T 

to perform the reduction.  Each of these steps may be considered to be atomic, no matter 

whether performed in one cycle in a large multiplier, or over several cycles using a digit-

sized multiplier. 

As an alternative to separated reduction, reduction can be integrated with product 

computation.  A partial product is computed, and then a Montgomery reduction is 

performed on it.  This process continues for each partial product, so that a series of partial 

products and reductions are performed and accumulated into one final Montgomery 

product.  In coarsely integrated scanning, the partial product computation is followed 

sequentially by a separate reduction operation.  Partial products alternate with reduction 

operations.  With finely integrated scanning, both the partial product computation and 

reduction are computed in the same step. 

Digit scanning is treated as a separate, orthogonal parameter.  It may prioritize the 

digits of either the input operands or of the product.  The choice of priority affects the 

order in which digits are read from the input operands and the order in which product 

digits are written.  If operands are given scanning priority (operand scanning), then they 

are scanned in a regular order.  A partial product is built up from right to left.  The next 

partial product, accumulated with the previous one, starts in the next higher digit position, 

rewriting product digits, so that most product digits are written more than once. 

Consider an example of operand scanning.  Assume operands are split into four 

digits each, and let multiplier A be indexed by i in an outer loop, and multiplicand B 

indexed by j in an inner loop.  For the first i = 0 loop iteration digit A[0] is fetched and 

the digits B[j] of B are scanned in succession for j = 0, 1, 2, 3.  The product is 
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accumulated into P[k] where k = i + j.  The five-digit digit-word partial product will 

reside in P[4:0].  For the next iteration of i, partial product accumulation is moved one 

digit to the left, so A[1]×B will be accumulated into P[5:1]. 

Alternatively, priority may be assigned to product digits.  In this case, all 

computations that target a particular product digit are executed close together in time, in 

adjacent cycles or phases.  The operands are scanned only for the digits that will 

contribute to that targeted product digit.  The i and j loop bounds are adjusted such that 

all partial products accumulated to a product digit occur in immediate succession.  Once 

the product digit is fully computed, it is not revisited.  Thus the product digits are written 

in order as P[0], P[1], P[2], …, etc.  Fig. 7 illustrates operand priority scanning and 

product priority scanning. 
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 (a) Operand scanning. (b) Product scanning. 

Fig. 7. Scan priority for partial product assembly [25]. 

 

Observe that in Fig. 7(a), product digit P[1] is first computed in iterations (i, j) = 

(0, 0) and (0, 1) when partial product A[0]×B is being computed.  Later in iteration (i, j) = 

(1, 0), it is written again when partial product A[1]×B is being computed.  Conversely, in 

Fig. 7(b), all digit computations that contribute to product digit P[1] are computed in 

immediate succession, and index variables i and j are cycled accordingly.  After P[1] is 

completed, subsequent iterations need never revisit it. 

Altogether, Koç, et al. identify five iterative Montgomery algorithm classes.  

They are listed in Table 3. 



 39 

Table 3. Koç, et al. serial Montgomery architecture taxonomy. 

Digit Scanning Priority Reduction Mode Operand Hybrid Product 
Separated SOS   

Coarse CIOS CIHS  Integrated Fine FIOS  FIPS 

 

The first three cover operand scanning for both separated and integrated 

reduction:  Separated Operand Scanning (SOS), Coarsely Integrated Operand Scanning 

(CIOS), and Finely Integrated Operand Scanning (FIOS).  Finely Integrated Product 

Scanning (FIPS) prioritizes product digit scanning, and integrates Montgomery reduction 

finely on a digit basis.  There is a hybrid method which they term Coarsely Integrated 

Hybrid Scanning (CIHS).  It performs product scanning for the low word of the full 

product, and then switches to operand scanning for the integrated Montgomery reduction 

of the high word. 

Beyond functioning as a shorthand for concisely describing a Montgomery 

realization, the Koç taxonomy provides useful expressions for evaluating performance 

and storage requirements.  It assumes that both input operands are split in the same way, 

i.e. that both are split into k digits of d bits each.  It specifies the number of digit 

operations that must be performed.  These operations include multiplication, addition, 

reads, and writes.  In all categories, the required number of digit multiplications is 2k2 + 

k, while additions, reads, and writes vary.  Since digit multiplications are performed 

serially, it follows that the minimum number of cycles required to compute a 

Montgomery product is 2k2 + k.  The minimum storage requirements for most categories 

is k + 3 digits, while for SOS it is 2k + 2. 
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For an architecture that fits into the classification scheme, this provides a useful 

starting point for making performance estimates.  Table 4 lists the architectures reviewed 

in Chapter 3 along with their Koç, et al. classification, if applicable. 

 

Table 4. Montgomery architecture classification. 

Architecture Base 
Operand 

# Base 
Operations 

# 
Cycles 

Koç 
Classification Notes 

McIvora Word 3 3p + 1 —  
Eberle Digit 2k2 + k 2k2 + k CIOS  
Großschädl Bit/word n n + k FIOSb Bit-word 
Tenca & Koç Bit/digit nk 2n + k – 1 FIOSb Bit-digit 
Sanu Word 1 1 —  
aNumber of pipeline stages p.    
bClosest fit.    

 

The McIvor and Sanu architectures operate on word size operands, so computing 

their respective numbers of operations is straightforward.  Because the McIvor 

architecture has a pipeline of depth p and computes the three intermediate products T, Q, 

and U sequentially (with no overlap possible), it requires 3p cycles, plus an additional 

cycle for the final T + U sum.  The Sanu architecture is fully combinational and requires 

only a single cycle, although that cycle may be of long duration.  Neither of these fits into 

the Koç serial classification scheme. 

The Eberle architecture operates at the digit level and integrates reduction 

operations, once per each digit-word partial product.  It may be classified as Coarsely 

Integrated Operand Scanning (CIOS), and it requires a minimum of 2k2 + k cycles. 

The Großschädl and Tenca and Koç architectures use mixed operand sizes, bit-

word and bit-digit respectively.  Because they do not divide A and B operands 

symmetrically, they do not precisely fit the Koç classification scheme.  The Großschädl 

architecture computes n bit-word products, and requires n + k cycles to complete.  The 
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final k cycles are required to convert the carry save product into nonredundant form in a 

digit multiplier.  Priority is given to scanning the bits of operand A in succession, and 

reduction is performed combinationally (finely) during partial product computation.  

Because of the foregoing, it can be classified as FIOS.  The Tenca and Koç architecture 

computes nk bit-digit products and requires 2n + k – 1 cycles to complete.  It scans the 

bits of operand A and the digits of operand B, and performs reduction combinationally 

without a separate reduction step.  Therefore it also can be classified as FIOS. 

4.2 Serial Montgomery Model 

Despite its universal acceptance, the serial Montgomery taxonomy suffers from 

two major limitations.  First, it omits possible reduction and scanning combinations.  

Second and more importantly, it neglects to consider opportunities for parallelization, 

particularly at the digit level.  A major upgrade to the taxonomy broadens its reach and 

enhances its utility. 

Architectures that perform integrated reduction include both operand and product 

scanning instances (CIOS, FIOS, CIHS, FIPS).  However, the category for separated 

reduction only considers operand scanning (SOS).  It is possible to devise architectures 

which prioritize product scanning and still perform reduction in a separated manner, as 

will be demonstrated in a subsequent chapter.  Accordingly, the taxonomy can be 

broadened to include a new category denoted as Separated Product Scanning (SPS). 

The serial Montgomery taxonomy can also be expanded to encompass digit level 

parallelism.  In its present form, the classification scheme considers only serial 

realizations in which a single digit multiplier or multiply-accumulate (MAC) unit 

performs each multiplication in sequence.  Indeed, use of the term scanning in reference 

to operand or product digit priority reflects this one-dimensional conception of digit 
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processing.  It can be shown, however, that many digit computations can be performed 

concurrently.  For portions of a particular Montgomery realization that can be 

parallelized, simply adding a second digit multiplier can cut those portions’ latency in 

half.  Employing digit level parallelism, a Montgomery architecture’s performance can 

therefore receive a substantial performance boost at relatively low cost.  At present the 

serial Montgomery taxonomy is strictly two dimensional.  Its two axes represent 

separated versus integrated reduction, and operand versus product priority digit scanning.  

Expanding the classification scheme to encompass digit level parallelism provides it with 

a third dimension, converting the scheme from a flat surface to a large volume of 

descriptive and analytic power. 

It is possible to parallelize portions of any serial Montgomery architecture 

selectively for targeted performance enhancement.  Where multiple operand or product 

digits are being processed concurrently, a more accurate term than digit scanning would 

be digit scheduling.  Each category from the serial Montgomery taxonomy can be 

expanded to apply to realizations with two or more digit arithmetic units.  Accordingly, 

this Serial Montgomery Model can be used effectively to classify and characterize 

Montgomery architectures that schedule multiple concurrent digit operations.  Table 5 

lists the categories from the improved classification scheme.  Novel categories are 

indicated in bold font. 
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Table 5. Serial Montgomery Model. 

Digit Scheduling 
Operand Hybrid Product Reduction 

Serial 
(m = 1) 

Parallelized 
(m > 1) 

Serial 
(m = 1) 

Parallelized 
(m > 1) 

Serial 
(m = 1) 

Parallelized 
(m > 1) 

Separated SOS SOS/m a a SPSb SPS/mb 
Coarse CIOS CIOS/m CIHS CIHS/m a a Integrated Fine FIOS FIOS/m a a FIPS FIPS/m 

aReview of relevant literature has not revealed any architectures with these combinations. 
bNew categories applicable to the Montgomery architecture proposed in this dissertation. 

 

Each scanning method is split into two subcategories.  One column applies to the 

original category with no added parallelism, which usually indicates a single instance of a 

digit multiplier or MAC unit.  The original category from the Koç serial taxonomy is 

carried forward to this column.  The adjacent column applies where a degree of digit 

level parallelism has been added.  The category abbreviation is suffixed with “/m,” where 

m indicates the number (> 1) of instantiated digit multipliers.  For example, a CIOS 

architecture employing two digit multipliers would be denoted as CIOS/2, for 2-digit 

parallelism.  The new SPS and SPS/m categories are also listed. 

Enhancing the taxonomy comprises more than merely adding and modifying 

category names.  The entire purpose of adding the third dimension of digit level 

parallelism is to provide a means to estimate performance and resource requirements.  

This can be especially useful when comparing two disparate architectures that employ 

digit level parallelism in different ways. 

Estimating the performance impact of increased parallelism in a serial 

Montgomery architecture is nontrivial.  It is not as simple as adding a digit multiplier and 

dividing the cycle count by the total number of multipliers.  Dependencies may prevent 

some digit computations from being performed concurrently.  The unique characteristics 

and dependency relationships of each architecture determine where and to what degree 
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digit parallelism can be increased.  Furthermore, dependency relationships can determine 

whether operand or product scanning is best. 

For utility in making performance estimates, the categories from the existing 

serial Montgomery taxonomy list the number of cycles required assuming a single digit 

multiplier.  In all cases, 2k2 + k digit multiplications are required, and it can be assumed 

that at least that number of cycles is required.  It would be possible to construct an SPS 

architecture that requires 2k2 + k cycles.  The preferred realization, however, requires 

2.5k2 + 0.5k cycles.  It is described in Chapter 5.  Although this digit multiplication count 

is higher, it offers more opportunities for parallel optimization, partly because of the 

dependency ordering.  As a result, it can offer higher performance than other categories 

with the same number of digit multipliers. 

Estimating the performance effect of adding parallel digit multipliers requires 

analysis of the underlying digit operations and their dependency relationships.  For 

example, consider architectures in the CIOS category.  CIOS requires a total of 2k2 + k 

digit multiplications, which are performed sequentially with a single digit multiplier.  

This category employs operand scheduling to compute and reduce a digit-word partial 

product A[i]×B in each iteration i via three dependent steps: 

1. Compute and accumulate k digit products A[i]×B[j], 0 ≤ j < k. 

2. Compute one quotient digit Qi. 

3. Compute and accumulate k reduction digit products Qi×M[j], 0 ≤ j < k. 

The first step proceeds, and indeed all the digit products could be computed in 

parallel if sufficient digit multipliers are available.  The second step for Qi cannot be 

performed concurrently because Qi depends on the first step.  The third step depends on 

Qi, and so it cannot be executed in parallel with Qi.  These dependencies thus impose a 

sequential ordering of digit multiplications as follows:  k, 1, k.  The group of three steps 
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must in turn be performed for all k digits of A.  The total sequence then consists of (k, 1, 

k)0, (k, 1, k)1, …, (k, 1, k)k–1 digit multiplications.  Because each group depends on the 

previous group’s result, they must be performed sequentially.  This requires k(k + 1 + k) 

= 2k2 + k cycles. 

Employing m > 1 digit multipliers increases parallelism, but only for those digit 

operations that can be performed concurrently.  In the preceding example, the partial 

product and reduction steps can each benefit from parallelization, whereas the quotient 

term Qi cannot.  The sequence for a single digit-word partial product becomes ⎡k/m⎤, 1, 

⎡k/m⎤.  Because k sequences must be performed, the total number of cycles required to 

compute a Montgomery product is k(⎡k/m⎤ + 1 + ⎡k/m⎤).  If m = k, then this reduces to k(1 

+ 1 + 1) = 3k cycles.  Table 6 lists the digit scheduling sequences for selected Serial 

Montgomery Model categories for both the strictly serial mode (m = 1) and modes with 

some degree of digit parallelism (m > 1). 

 

Table 6. Selected Serial Montgomery Model digit schedules and cycles. 

Category Schedule Order 
(m = 1) # Cycles Schedule Order 

(m > 1) # Cycles 

SOS k2, k(1, k) 2k2 + k ⎡k2/m⎤, k(1, ⎡k/m⎤) ⎡k2/m⎤ + k⎡k/m⎤ + k 
CIOS k(k, 1, k) 2k2 + k k(⎡k/m⎤, 1, ⎡k/m⎤) 2k⎡k/m⎤ + k 
FIOS k[1, 1, 1, 2(k – 1)] 2k2 + k k[1, 1, 1, ⎡2(k – 1)/m⎤] k⎡2(k – 1)/m⎤ + 3k 
SPS k2, (k2 + k)/2, k2 2.5k2 + 0.5k ⎡[k2, (k2 + k)/2, k2]/m⎤ ⎡(2.5k2 + 0.5k)/m⎤ 

 

Schedule order for the proposed SPS category differs subtly from that for SOS, 

CIOS, and FIOS.  In the latter three categories, the schedule follows a strict digit order 

that is imposed by partial product/reduction dependency ordering.  By contrast, the SPS 

has a macro level dependency order only.  There is no alternating dependency chain of 

the form (partial product, reduction, partial product, …) as in the integrated scheduling 
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categories.  Because SPS employs product digit scheduling, one phase need not complete 

before the next one can begin.  In this way, the phases may be overlapped, though they 

need not be.  If they are overlapped, the dependency order guarantees that all digit 

dependencies from one phase to the next are available before the next phase begins, as 

long as m ≤ k2.  Chapter 5 explains the proposed SPS dependency chain more fully. 

To illustrate the degree to which certain categories can benefit from digit 

parallelism, let k = 4 and consider SOS, CIOS, FIOS, and the proposed SPS.  The 

expressions in Table 6 determine how many cycles are required for different values of m.  

Table 7 lists the cycle count for the respective categories for m, where 1 ≤ m ≤ 5. 

 

Table 7. Cycle counts for SOS, CIOS, FIOS, and SPS for k = 4 and 1 ≤ m ≤ 5. 

m SOS CIOS FIOS SPS 
1 36 36 36 42 
2 20 20 24 21 
3 18 20 20 14 
4 12 12 20 11 
5 12 12 20 9 

 

The table shows the relative benefit of increasing digit parallelism for the listed 

categories.  Some categories benefit more than others.  For m = 1, the categories SOS, 

CIOS, and FIOS all require 36 cycles, whereas the proposed SPS category is worse in 

that it requires 42 cycles.  If m is increased to 2, however, SOS and CIOS improve to 20 

cycles and SPS improves to 21 cycles, but FIOS only improves to 24 cycles.  For m = 3 

SOS requires 18 cycles, while CIOS and FIOS both require 20 cycles.  In this case, 

however, SPS is faster than the other three in only requiring 14 cycles.  In fact, for m = 4 

and 5, SPS is again faster than the other three categories. 

 



 47 

Chapter 5 Montgomery Algorithm Optimization 

Closer examination of the McIvor, et al. multiplier and the Montgomery 

algorithm listed as Algorithm 2.1 suggests a few possible ways to improve performance.  

Consider the computation steps.  The steps include three multiplications, two modulus 

functions, an addition, and a division which can be computed as a simple right shift.  Fig. 

8 illustrates the steps. 

 

 

Fig. 8. Montgomery computation steps [11]. 

 

From the figure, it is evident that some portions of the intermediate results are not 

required immediately, or are not used at all.  Step 1 computes an initial product T of M-

residues A and B.  Its upper and lower halves are designated as T1 and T0 respectively.  In 

Step 2, the quotient Q is computed from T0 and M′.  The upper half, designated as Q1, is 

discarded, and only the lower half Q0 is used as the operand in the following step.  Next 

in Step 3, the Montgomery reduction term U (U1 and U0) is computed.  In Step 4, U is 

added to the initial product T, followed by a divide by R (a right shift by n bits where R = 

2n) to compute the final Montgomery product P. 
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Some potential optimizations are readily apparent.  After T is computed in Step 1, 

only its lower half, T0, is immediately required by Step 2.  The upper half, T1, is not 

required until Step 4.  It may be possible to reduce overall latency if the computation of 

T0 can be expedited, and the computation of T1 overlapped with Step 2.  Because Q1 is 

discarded at the end of Step 2, simply not computing it could save time and energy.  This 

property is rarely mentioned explicitly in the literature; brief exceptions are found in [19] 

and [30].  The Montgomery algorithm guarantees that in Step 4 P0 will resolve to zero.  It 

is only necessary to know whether in Step 4 there would be a carry generated from the 

addition of T0 and U0, to compute P1 correctly.  Other research that has acknowledged 

this is [31].  In fact, it is not even necessary to add T0 and U0 at all.  If T0 = 0, then Step 2 

ensures that Q = 0, and as a result U = 0 and therefore U0 = 0.  Conversely, if T0 ≠ 0, U0 

is guaranteed to be nonzero.  Because P0 = T0 + U0 always resolves to zero, a carry into 

P1 = T1 + U1 is invariably generated for T0 ≠ 0.  Only P1 = T1 + U1 + 1 needs to be 

computed.  It is merely necessary in Step 4 to know whether T0 is nonzero. 

5.1 Rescheduled Montgomery Multiplication 

Rescheduled Montgomery Multiplication enables efficient computation of the 

Montgomery product by minimizing unnecessary computations and deferring some other 

computations.  The Montgomery algorithm as listed in Algorithm 2.1 requires three 

multiplications of n-bit operands to produce three 2n-bit products T, Q, and U.  It has 

already been noted that the more significant half of Q, designated as Q1, is not used and 

so need not be computed.  Furthermore, the more significant half of T (T1), does not need 

to be computed in full until U1 is computed. 

In order to exploit the foregoing properties, the architecture devised here uses 

digit multiplication.  Input operands are split into k digits of d bits each.  One or more 
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digit multipliers compute partial products, which are then summed in an accumulator.  

Generally, there are fewer digit multipliers than there are digit products to compute, even 

as few as one multiplier.  Multiple phases of digit multiplication and accumulation are 

required. 

According to (2.2) and Algorithm 2.1, computing T, Q, and U as full products 

would require 3NP = 3k2 digit multiplications.  However, in the Rescheduled 

Montgomery algorithm, the top half of the Q product (Q1) need not be computed.  Fig. 9 

illustrates the computation of Q0.  The shaded areas indicate unused computations.  The 

T[0]×M[1] and T[1]×M[0] digit products are required for Q0, but their upper halves are 

not used.  Similarly T[1]×M[1] contributes only to Q1, and so can be skipped altogether. 

 

 

Fig. 9. Digit multiplication for Q. 

 

The number of digit multiplications NQ to compute Q0 then is as follows: 

 

 NQ = (k2 + k)/2 (5.1) 
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NQ < NP and the ratio of digit multiplications to compute Q0 to the number to 

compute a full product is rQ = NQ/NP.  It is evident that as k increases, this ratio 

approaches 1/2. 

 

 
    

€ 

rQ =
NQ

N P

=
k 2 + k( ) / 2

k 2 =
k +1
2k

 (5.2) 

 

 
    

€ 

lim
k→∞

k +1
2k

= 0.5 (5.3) 

 

Thus, the total number of digit multiplications for a Montgomery product NM 

using the Rescheduled Montgomery algorithm requires NP = k2 for each of T and U, and 

NQ for Q0:  NM = k2 + k2 + (k2 + k)/2.  Thus: 

 

 NM = 2.5k2 + 0.5k (5.4) 

 

The ratio rR of digit multiplications in the Rescheduled Montgomery algorithm 

relative to the full approach is described in (5.5). 

 

 
    

€ 

rR =
2.5k 2 + 0.5k

3k 2 =
5k +1

6k
 (5.5) 

 

As k grows large, the ratio asymptotically approaches 5/6. 

 

     

€ 

lim
k→∞

5k +1
6k

=
5
6

= 0.83 ≈ 83%
 (5.6) 
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The Rescheduled Montgomery Multiplier employs the novel Separated Product 

Scheduling method from the Serial Montgomery Model.  From (5.4), it is evident that it 

requires a larger number of digit multiplications than the other categories such as CIOS, 

FIOS, etc.  Despite this, the Rescheduled Montgomery architecture is inherently equipped 

to employ digit level parallelism more efficiently than the previous categories.  Both 

fundamental aspects of the SPS mode, separated reduction, and product scheduling, make 

this possible.  Separated reduction as employed here ensures that the dependencies occur 

only at the macro level between products T, Q0, and U.  There is no alternating 

dependency chain between partial product and reduction phases.  Digit level parallelism 

can therefore be fully applied within a phase without interruption by an intervening 

dependency.  Nevertheless, dependencies from one phase to the next can be broken down 

into digit level dependencies, which means that one phase need not complete in full 

before the next phase can begin.  As a result, it is possible to schedule digit operations 

from two phases concurrently straddling the temporal boundary between the two phases.  

It also minimizes stalls when operations are pipelined.  Fig. 10 illustrates the SPS 

dependency chain for the Rescheduled Montgomery Multiplier with k = 2. 

 

 

Fig. 10. Rescheduled Montgomery Multiplier SPS dependency chain, k = 2. 
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The first three rows of bubbles in Fig. 10 correspond to the intermediate product 

phases T, Q0, and U.  As depicted, each of these phases is split into steps corresponding 

to digit multiplications, with the product digits that are being worked on indicated.  Refer 

to Fig. 2 for T and U, and Fig. 9 for Q0.  Because reduction via Q0 and U is separated 

from T partial product generation, there is no alternating dependency chain in which a 

later partial product depends on a previous reduction.  The CIOS dependency chain of 

(partial product, quotient, reduction, partial product, …) does not apply.  In the 

Rescheduled Montgomery Multiplier, the SPS dependency chain is strictly a single 

sequence of (product, quotient, reduction), full stop. 

Moreover, as the figure illustrates, the dependencies broken down to the digit 

level make it possible to overlap T, Q0, and U computation.  This feature can be useful in 

some cases.  Separated product scheduling largely permits increased digit level 

parallelism within relatively large phases uninterrupted by alternating dependency chains.  

If k2 is not divisible by m, then at the end of one phase fewer than m multipliers are 

required for the remaining digit products in that phase.  The remaining digit multipliers 

need not be idled; instead they can be scheduled to begin computation of the next phase.  

The new phase’s first few digit products depend on digits already computed early in the 

phase that is just completing. 

Fig. 11 illustrates the RMM digit multiplication and accumulation schedule for k 

= 2 and using a single digit multiplier (m = 1).  Each row corresponds to a clock cycle.  

Digit products appear on the left.  To the right of each digit product are the result digits 

that are being computed during that cycle.  The third column lists, in italics, the result 

digits that have been fully computed in the previous cycles and are available in the 

accumulator.  Finally, the clock cycle count is shown in the rightmost column. 
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Fig. 11. Digit product scheduling for k = 2, m = 1. 

The figure shows only the scheduling of the digit products and their offsets, and 

does not indicate partial product accumulation.  It should not be read to imply that all of 

the digit products shown are summed together.  There are, in fact, three phases in which 

the same hardware is reused:  computing T in Cycles 0-3, computing Q0 in Cycles 4-6, 

and finally computing U in Cycles 7-10. 

A detailed, step-by-step description of the schedule is as follows.  The first row 

shows Cycle 0 in which digit product A[0]×B[0] is computed, contributing to result digits 

T[1:0].  The digit product is latched in the accumulator register.  The T[0] digit is 

complete and available after this cycle; it is listed in italics on the next row, i.e. in Cycle 

1.  In Cycle 1, T[1] is not yet complete, because it also depends on accumulation of the 

digit products A[0]×B[1] and A[1]×B[0].  These latter two are computed in Cycles 1 and 

2, and T[1] finally becomes available in the accumulator register in Cycle 3.  This process 

continues until all four digits of T are available in the accumulator register in Cycle 4.  In 

the second phase, computation of Q0 starts in Cycle 4 with digit product T[0]×Mʹ[0].  The 

digit products T[0]×Mʹ[1] and T[1]×Mʹ[0] are computed in Cycles 5 and 6, and straddle 

the line between the unused Q1 (Q[3:2]) and Q0 (Q[1:0]).  Their upper halves are shaded 

to indicate that they are not used.  The final digit product T[1]×Mʹ[1], which contributes 
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only to the unused Q1, is skipped.  Finally, computation of U occurs in Cycles 7-10.  The 

figure shows that, for k = 2 digits and employing m = 1 digit multiplier, computing the 

Montgomery product requires only 11 instead of 12 digit multiplications, or about 91.7%. 

Increasing the number of digits into which the operands are subdivided permits a 

higher degree of granularity.  As shown by (5.3), higher granularity permits eliminating 

an increasing percentage of digit multiplications that would otherwise contribute to Q1.  

In the example above, a full product requires 22 = 4 digit multiplications, while Q0 only 

requires 3, or 75%.  In the overall scheme, (5.6) shows that the savings from reducing Q1 

computations approaches 17%. 

Another example will illustrate the increasing savings.  Suppose now that k = 4.  

Computing a full product requires NP = 42 = 16 digit multiplications (T and U), while 

computing Q0 requires only NQ = (16 + 4) / 2 = 10 multiplications, or 62.5%.  Thus for k 

= 4, the digit multiplication approach results in a further savings by eliminating 

unnecessary computations.  From (5.5), rR = 42 / 48 = 87.5%.  This compares even more 

favorably to the k = 2 case where rR = 91.7%. 

It is, of course, possible to employ more than a single digit multiplier.  A plurality 

of multipliers can be scheduled concurrently for increased parallelism and lower latency.  

At the same time, the increased granularity afforded by digit multiplication to minimize 

Q0 computations remains. 

In general, a digit-based architecture must perform the following operations for 

each set of digit products.  First, digits are selected from the full-sized operands; this can 

be done with a multiplexer tree.  Next, the digits are multiplied together.  Finally, the 

digit product is summed with the previous products’ running sum in an accumulator 

register.  Due to the relatively large digit sizes, with 32 bits being the minimum, it is 

expected that the digit multiplier will be the critical timing path.  Accordingly, pipelining 
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the digit operations can increase the throughput and improve the overall latency of a 

Montgomery product computation. 

5.2 Architecture 

The Rescheduled Montgomery Multiplier architecture consists of a three-stage 

reusable pipeline with stages designated as Load (L), Multiply (M), and Accumulate (A).  

In Load, the input operands are selected and loaded into the digit multiplier input 

registers.  In Multiply, the actual digit multiplication occurs and is written to the digit 

multiplier output register.  Finally, in Accumulate, the digit partial product, with 

appropriate bit offset, is summed with the accumulator.  Fig. 12 depicts the pipeline for 

the k = 2, m = 1 case. 

 

 

Fig. 12. RMM pipeline for k = 2, m = 1. 

 

Data progress through the pipeline occurs vertically from top to bottom, through 

stages L, M, and A.  Time is indicated horizontally, with the Load cycle count on top, 

ranging from 0 to 10.  The pipeline boxes indicate the result computation that is being 

performed.  Computation of T[1:0] begins in Cycle 0, with digits A[0] and B[0] being 

loaded in Stage L.  The actual digit multiplication A[0]×B[0] occurs in Stage M during 

Cycle 1.  Finally, accumulation occurs in Stage A during Cycle 2.  The 0 underneath the 
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stage indicates that accumulation is being performed on the result of the computation that 

started in Stage L during Cycle 0.  Alternatively it can be considered as Accumulate 

Cycle 0.  The accumulated result then becomes available in the accumulator register in 

Cycle 3 (Accumulate Cycle 1).  The completed part of that result is T[0], so it is shown 

below in italics.  Recall that T[1] requires two more digit multiplications before it is 

complete. 

Because it is a pipelined architecture, the entire Montgomery product requires 

more cycles than the 11 implied by the digit product scheduling.  Two additional cycles 

account for the pipeline depth.  Two more cycles represent the final Montgomery T1 + U1 

operation, which may include a subtraction of M if the initial result is out of range, for a 

total of 15 cycles. 

Fig. 13 depicts the Rescheduled Montgomery Multiplier microarchitecture.  

Computation progresses from left to right.  At the front end are the n-bit input registers A, 

B, Mʹ, and M.  These registers, along with a feedback path from the accumulator register, 

feed digit selection logic.  This logic is controlled by a counter in a separate finite state 

machine.  It selects digits from the inputs to feed to one or more digit multipliers.  The 

input registers and select logic form the Load stage of the pipeline.  The Multiply stage 

contains the digit multipliers.  Each digit multiplier has two d-bit input registers X and Y 

and computes a 2d-bit digit product P in one clock cycle.  This is the critical timing path 

of the entire design because of the large size of the digits.  Next, the Accumulate stage 

adds one or more digit products to the contents of the accumulator register ACCUM.  

Finally, computation of the Montgomery product occurs in the Final Sum stage.  This 

stage is only active after all the intermediate operands T, Q0, and U have been fully 

computed in the L-M-A pipeline. 
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Fig. 13. Rescheduled Montgomery Multiplier architecture. 

 

During the computation of T in Step 1, digits from A and B are selected according 

to the schedule.  After some number of cycles determined by the number of digits and 

available number of digit multipliers, the computation of T0 is complete and occupies the 

low order bits of the accumulator register ACCUM.  T1 computation may still be in 

progress.  T0 is checked for any non-zero bits by means of an OR reduction.  If any of its 

bits is 1, the single-bit T0_CARRY register is set; if they are all zero, the register is 

cleared.  This register is used later during final Montgomery computation and indicates 

whether a carry out of the T0 + U0 sum would have occurred.  When the entire T word has 

been computed in the Accumulate stage, its upper word is moved to the T1 register, 

because subsequent phases for Q0 and U will eventually overwrite ACCUM. 

When the last digits of A and B have been clocked into the digit multipliers, Step 

2 for computing Q0 can begin in the Load stage.  Q0 is a function of T0 and Mʹ.  T0 digits 

are selected from the low order word of the accumulator register which is fed back to the 
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Load stage.  Mʹ digits are selected from its input register.  When Q0 is complete, it 

occupies the low order bits of the accumulator register just as T0 had when it was 

completed during Step 1.  Depending on the (k, m) design configuration, and due to the 

pipelining, it is possible that all of the T0 digits will be read before the first partial result 

of Q arrives in ACCUM.  In this case, T0 would not need to be moved from the 

accumulator register.  In other cases where T0 digits are still being selected in the Load 

stage while the ACCUM is being written with intermediate Q results, T0 can be saved in 

and then fetched from an auxiliary register T0.  Because only Q0 instead of the full value 

of Q is computed, Step 2 requires fewer cycles to complete than either Step 1 or 3.  It 

stops after slightly more than half the number of digit multiplications that would be 

required to compute a complete Q. 

After the last T0 and Mʹ digits have been input into the digit multipliers, Step 3 to 

compute U can begin.  In the Load stage, the Q0 digits are selected from the fed-back low 

word of the accumulator, while M digits are selected from the M input register.  This 

computation proceeds just as in Step 1.  Depending on the (k, m) design configuration, 

and due to the pipelining, it is possible that all of the Q0 digits will be read before the first 

partial result of U arrives in ACCUM.  In this case, Q0 would not need to be moved from 

the accumulator register.  In other cases where Q0 digits are still being selected in the 

Load stage while the ACCUM is being written with intermediate U results, Q0 can be 

saved in and then fetched from an auxiliary register Q0.  At the end of this phase, the 

entire value of U = (U1, U0) is present in the accumulator register ACCUM. 

The accumulator datapath varies from configuration to configuration.  The 

number of digits k into which the full sized operands are divided, and the number of digit 

multipliers m that are instantiated, along with the digit product scheduling, directly 

determine the structure and complexity of the datapath. 
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Consider the case where k = 2 and m = 1.  Refer to Fig. 11 for the digit product 

scheduling for T.  When any product computation phase starts, the accumulator register is 

first cleared to zero.  The first digit product A[0]×B[0] is computed in Cycle 0 and written 

to the least significant bits of the accumulator register ACCUM.  In Cycle 1, the next 

digit product A[0]×B[1] is left-shifted by d bits and added to ACCUM.  In Cycle 2, 

A[1]×B[0] is also left-shifted by d bits and added.  Finally in Cycle 3, A[1]×B[1] is left-

shifted by 2d bits and added.  Fig. 14 illustrates this process. 

 

 

Fig. 14. Digit product accumulation for T (k = 2, m = 1). 

 

The accumulator datapath logic thus must support three configurations, or modes:  

(1) in Cycle 0, no shift and no addition; (2) in Cycles 1 and 2, a one-digit left shift of the 

digit product, accumulated with the contents of ACCUM; and (3) in Cycle 3, a two-digit 

left shift and accumulation with ACCUM.  This same logic can be reused exactly when 

computing Q0 and U.  Q0 is computed in Cycles 4-6, corresponding to Cycles 0-2, while 

the accumulator mode of Cycle 3 is skipped.  U is computed in Cycles 7-10, 

corresponding to Cycles 0-3. 

As much as is practicable for a given (k, m) configuration, the same accumulation 

schedule should be used for the three T, Q0, and U computation phases.  This maximizes 
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gate reuse and minimizes combinational area growth in the accumulator datapath.  

Consider an architecture with k = 3 digits and m = 2 digit multipliers.  From (5.4), 24 

digit multiplications must be performed.  Fig. 15 illustrates one possible schedule. 

 

 

Fig. 15. Digit multiplication schedule for k = 3, m = 2. 

 

In the figure, observe that the final digit product for T is computed in Cycle 4, as 

is the initial digit product for Q0.  There is a disconnect in that these two partial products 

are not added together.  Moreover, in Cycle 0 the first two partial products for T are 

accumulated, but in Cycle 4 only the first Q0 partial product is written to the accumulator.  

The second Q0 partial product is not written until Cycle 5, during which it is added with 

the third partial product.  Thus, the accumulation logic must be different for Cycle 4 from 
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that in Cycle 0.  Cycle 7 is yet another case where the accumulation requirements diverge 

and are not consistent with Cycles 0 and 4.  In all, the accumulator datapath requires ten 

different states.  Cycles 0 through 7, 10, and 11 each requires a unique accumulation 

state.  Cycles 8 and 9 can reuse the same states as Cycles 5 and 6 respectively. 

By maximizing uniformity of accumulation for the three phases, the number of 

accumulator states can be reduced.  Using a slightly different digit product and 

accumulation schedule, the k = 3, m = 2 architecture only requires five accumulator 

states.  Fig. 16 depicts the revised schedule. 

 

 

Fig. 16. Revised digit multiplication schedule for k = 3, m = 2. 
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Step 1 for computing most of T proceeds through Cycles 0-3.  However, the 

A[2]×B[2] contribution to the final digit products T[5:4] is not computed in Cycle 4.  The 

fact that T1 (= T[5:3]) is not required until the end makes it possible to defer computing 

the T[5:4] digits for now.  Thus in Cycle 4, Step 2 begins for computing Q0.  Observe that 

the two digit products T[0]×Mʹ[0] and T[0]×Mʹ[1] are computed and accumulated in 

exactly the same way as were A[0]×B[0] and A[0]×B[1] for T in Cycle 0.  This means that 

the exact same accumulator state logic can be reused but with the new digit product 

inputs.  The same result obtains for the Step 3 U computation that begins in Cycle 7.  

Looking at the schedule as a whole, it is evident that the same accumulator logic state is 

reused for Cycles 0, 4, and 7.  Likewise, another accumulator logic state is reused for 

Cycles 1, 5, and 8; another for Cycles 2, 6, and 9; and yet another for Cycles 3 and 10.  

This constitutes only four accumulator states.  Finally, Cycle 11 is a special case.  The 

Q[2]×M[2] partial product is added to the accumulator as expected, but the A[2]×B[2] 

partial product is concurrently added not to the accumulator, but to the T1 save register.  

This does require some duplicated accumulator logic, but it is more than offset by the 

logic reuse in earlier cycles. 

After all intermediate quantities have been computed, the final addition to 

compute the Montgomery product may proceed in the Final Sum stage.  T1, which has 

been saved in register T1, is added to U1 in the high word of ACCUM.  Also added is the 

bit from the T0_CARRY register.  Recall that the Montgomery algorithm guarantees that 

the low word of the final product will compute to zero.  If T0 computed to zero, U0 will 

also be zero.  If T0 computed to nonzero, U0 will have the value that cancels it out as well 

as generating a carry into the high word.  Therefore, there is no need to actually add T0 

and U0—just T1 and U1 plus the potential carry bit from T0.  This results in an addition 
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path that is half as wide as would be required for a direct implementation of the 

Montgomery algorithm. 

5.3 Implementation 

For 256-bit operands, the number of digits was varied from two to eight, in steps 

of one.  For any given architecture the digit size was kept uniform.  Thus, the digit sizes 

were varied from 128 down to 32 bits, according to the number of digits chosen for a 

particular architecture.  For example, choosing a two-digit architecture meant that the 

256-bit operands were divided into two digits of 128 bits each.  A four-digit architecture 

employed 64-bit digits.  In the case of a digit count that was not an integral divisor of 

256, the operand size was increased slightly so that all digits would be of equal size.  In a 

three-digit architecture, 256 is not divisible by three, so in that case the datapath size was 

increased slightly to 258 bits, and the digit size was 86 bits (3×86 = 258). 

In addition, the number of digit multipliers was varied.  In the simplest realization 

of the Rescheduled Montgomery Multiplier architecture, a single digit multiplier could be 

employed to compute all digit partial products.  With the operands divided into only a 

few large digits, this would be sufficient and provide acceptable performance.  However, 

the number of cycles would be proportional to the square of the number of digits.  

Therefore with a larger number of smaller digits, the performance would be too slow. 

Consider a four-digit architecture.  Recall from (5.4) that the total number of 

required digit multiplications is NM = 2.5k2 + 0.5k.  For k = 4, this computes to 42.  With 

only a single digit multiplier, 42 cycles plus the 4-cycle overhead would be required to 

compute the Montgomery product.  Employing more than one digit multiplier permits 

computation of multiple digit products concurrently, reducing the number of cycles.  
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Assume two digit multipliers are employed.  This reduces the number of cycles to 42/2 = 

21. 
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Chapter 6 Methodology 

6.1 Architectural Comparisons 

Several alternative architectures were built, including those of other researchers, 

to evaluate the relative impact of the Rescheduled Montgomery Multiplier optimizations 

on area and performance.  The proposed alternative architectures are listed below. 

This research is focused on algorithmic optimization of the Montgomery steps, 

and not on designing the fastest multiplier possible.  As such it allows the synthesis tool 

to build multiplier circuits that meet, as much as practicable, the applied design and 

optimization constraints. 

The McIvor, et al. full-word Montgomery multiplier and ECC coprocessor 

architecture originally motivated this research because it dispensed with the interleaved 

reduction employed by the serial architectures.  It also incorporated new algorithms to 

speed up multiplicative inversion, and therefore could conceivably be used to perform 

ECC point operations using affine coordinates. 

The Eberle architecture [17] operates at the digit level like the Rescheduled 

Montgomery Multiplier, although without any parallelism.  Digit sizes for the experiment 

range from 8 to 32 bits. 

The Großschädl architecture [19] offers the potential to perform fast sequential 

bit-word computation using less complex logic than a multibit multiplier circuit. 

The Tenca and Koç architecture [20], [21] uses a hybrid bit-digit approach.  This 

permits multiple bit-word partial products to be computed concurrently.  It can be 

implemented in a very small area if a minimum number of the relatively simple 

processing elements are instantiated. 
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The prior Montgomery multiplier architectures were originally designed and 

evaluated on a varied set of platforms and technology nodes.  For example, the McIvor, et 

al. Elliptic Curve Coprocessor was targeted to an FPGA. 

This research focuses on bottom-up IC design using standard cells and synthesis.  

It targets the Nangate 45 nm research process node [32].  In order to make fair 

comparisons, the preceding Montgomery architectures have been built and simulated in 

the same way as the proposed Rescheduled Montgomery Multiplier.  In all cases, the 

RTL design adheres as closely as possible to the architectures described by the respective 

authors.  The objective is to remain as faithful as possible to those architectures as 

described by the authors in their publications, in the absence of actual RTL or circuits. 

6.2 RTL Design and Simulation 

Initial algorithm analysis and development is performed in software using Python.  

Python is widely available and fast.  Its inherent capacity for arbitrarily large operands 

suits it well to exploring and analyzing the GF(p) and GF(2n) algorithms of interest here 

with operands on the order of hundreds of bits.  In many cases Python functions are 

employed to generate test data for RTL simulations. 

All architectures that were evaluated for area and performance were designed at 

the register transfer level (RTL) in the Verilog hardware definition language (HDL).  The 

circuits were partitioned using a strict hierarchical design methodology.  In particular, the 

objective was to evaluate overall design performance and complexity, not merely raw 

datapath performance.  For the most part a structural design approach has been employed, 

especially in organizing and connecting well-defined submodules.  In some cases, low 

level modules such as integer digit multipliers were defined with simple behavioral 

statements (e.g. of the form P = A × B).  In other cases, such as with GF(2n) multiplier 
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circuits, a structural approach was employed down to the gate level.  At higher levels of 

abstraction, such as with finite state machines (FSMs), behavioral RTL was used. 

All designs were simulated in a conventional Verilog testbench.  The open source 

Icarus Verilog simulator has proven to be reliable and fast, and was employed here [33].  

Result checking was automated, and an accompanying waveform viewer aided in 

debugging. 

6.3 Synthesis and Static Timing Analysis 

Synthesis translates an RTL design to a circuit consisting of standardized gates 

(referred to as standard cells) that implement Boolean logic functions, simple arithmetic, 

and memory functions in the form of sequential cells, or registers.  The gates have been 

designed for a particular semiconductor process technology and characterized over a 

wide range of process variation, voltage, and temperature (PVT).  The synthesis tool 

retrieves the gates from a library, and combined with various constraints, builds the 

circuit. 

Synthesis constraints are varied and derive from multiple sources.  For example, 

the standard cell library imposes constraints such as cell area, capacitance, transitions 

(slew), maximum fanout, and a range of output loads.  For optimization purposes 

additional constrains are placed on the design, most fundamentally the target clock period 

for sequential logic.  The synthesis tool translates the RTL to a circuit which consists of 

combinational and sequential logic gates to effect the function of the design. 

Each combinational logic gate has a propagation delay.  A source sequential gate 

(register) has a delay from the launching clock edge to when the Q data output pin 

changes (referred to as clock-to-Q delay).  These delays are partly a function of the input 

transition and output load of the pins.  Finally, a destination register has a setup time 
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requirement, usually positive, which is the amount of time before the capturing clock 

edge by which the input data must be stable in order to be captured correctly. 

In most cases, timing paths are measured from a rising, launching clock edge at a 

startpoint register, to the data’s arrival at the D pin of an endpoint register.  If data arrives 

sufficiently early at the endpoint register’s D pin before the next rising clock edge, it is 

captured correctly.  The path does not have a timing violation.  Fig. 17 illustrates such a 

case.  The output function of the combinational logic gates has settled to its final value at 

the point denoted as arrival time.  This is earlier than the required arrival time, a function 

of the setup time of the destination register.  The difference between the two is the timing 

path’s positive slack.  For a first order approximation, slack is computed by (6.1). 

 

 tslack = tCLK – tCLK2Q – tprop – tSU (6.1) 

 

 

Fig. 17. Gate-level circuit timing with positive slack. 
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If the combinational path is large, such as having many levels of logic, the result 

data may resolve later than the required time.  In such a case, an incorrect value will be 

captured by the endpoint register.  Thus the circuit cannot operate as fast as the required 

clock frequency.  Fig. 18 illustrates this condition.  The combinational logic function 

resolves, and it arrives later the required time.  The difference between arrival time and 

required time is termed negative slack.  In this case, the circuit can still be run without 

timing-related errors by switching to a lower clock frequency.  For example, given a 

clock period constraint of 2.0 ns, if the worst timing path has 0.2 ns of negative slack (–

0.2 ns), it means that the data has arrived 0.2 ns too late to be correctly captured by the 

endpoint register.  However, an increased clock period of 2.2 ns could be selected and the 

circuit operated without errors caused by timing violations. 

 

 

Fig. 18. Gate-level circuit timing with negative slack. 
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During synthesis, the tool can be driven, within reason, to certain optimization 

constraints.  Operating conditions, design size, and the capabilities of the standard cell 

library all interact to determine how fast the design can function.  Often the optimization 

constraints are more aggressive than what can realistically be achieved in a particular 

process corner.  Synthesis tools operate on cost functions that determine a balance 

between building a design that meets the required performance specifications, and 

actually finishing the build.  The optimization effort (duration) is thus limited to ensure 

the synthesis job does not run forever attempting to optimize a circuit beyond what is 

physically possible.  Consequently, it is possible that upon completion of synthesis, the 

circuit may operate at a lower level of performance than what was requested.  Although 

the synthesis tool has its own timing engine to handle the timing optimization, industry 

practice is to evaluate timing using a dedicated static timing analysis (STA) tool. 

Static timing analysis (STA) of a synchronous digital circuit uses the standard cell 

libraries and operating conditions to compute the minimum and maximum time for 

signals to travel from all startpoints (input ports and registers) to their endpoints (output 

ports and registers).  This determines the effective achievable minimum clock period for 

a design.  A synthesized design may be timed with wireload models to model signal 

delays between cells.  On a design that has been fully routed, STA can provide an even 

more accurate estimate of performance by taking into account routing delays, clock tree 

effects, and signal crosstalk. 

All of the architectures implemented for this research were built and timed in the 

same integrated circuit technology.  This allowed apples-to-apples comparisons of factors 

such as area and performance.  The Nangate 45 nm standard cell library was chosen for 

the target library [32].  All designs were synthesized with the Synopsys Design Compiler 

synthesis tool [34].  Finally, static timing analysis (STA) was performed using Synopsys 



 71 

PrimeTime [35].  During synthesis designs were driven with a clock period of 2.0 ns, i.e. 

a targeted clock frequency of 500 MHz.  The clock period was also set to 2.0 ns for STA.  

Where a design had positive slack, it was subtracted from 2.0 ns to derive the possible 

clock period at which the circuit could run faster.  Similarly where a design had timing 

violations, i.e. negative slack, the worst negative slack figure was added to the 2 ns clock 

period to compute a slower clock period at which the circuit could run without data 

errors. 

6.4 Evaluation Criteria 

In broad terms, a fundamental objective of the GF(p) portion of this research is to 

exploit properties of the Montgomery algorithm to maximize efficiency.  A large 

component of that is to optimize computation by avoiding unnecessary operations.  This 

applies in computing the Q0 quotient term as well as in performing the final T + U 

reduction.  Where opportunities arise, operations or portions of operations can be 

deferred, such as computing the high word T1.  This may permit reduction in the number 

of clock cycles as these operations can be rescheduled to run concurrently with others. 

Given the foregoing, performance (latency) is of prime importance.  Even as 

transistors become increasingly cheaper in succeeding generations of deep submicron 

process technologies, however, design complexity (area) should not be ignored.  Both 

area and latency also contribute to power, or perhaps more important, energy 

consumption.  To assist in evaluating design tradeoffs between performance and area 

(which is a cost) across many diverse architectures, many researchers have employed a 

figure of merit that takes into account both performance and area.  This typically is 

expressed as an area-latency product.  Simply, a design’s latency in some unit of time is 

multiplied with its size in some unit of area.  For purposes of this research, design area is 
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reported in square microns (µm2), while latency is expressed in nanoseconds (ns).  Thus 

the area-latency product would be expressed in units of µm2⋅ns.  In fact, the area results 

show fairly large numbers when expressed in µm2 (on the order of 100,000 µm2), so an 

adjustment is made by dividing the area-latency product by 106 to keep the figures of 

merit simple with one or two whole digits.  The figure of merit computation is shown in 

(6.2) below, where A denotes area and L denotes latency. 

 

 Area⋅Latency FOM = A × L / 106 (6.2) 

 

From (6.2), the units of this figure of merit are mm2⋅ns, but in practice the units 

are dropped. 
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Chapter 7 Elementary Montgomery Realizations 

It can be useful to establish a baseline for what is possible using only basic 

resources such as a process design kit, a library of standard cells, and a synthesis tool.  

The steps in the Montgomery algorithm set out in Algorithm 2.1 are regular and 

uncomplicated, consisting of integer multiplication, addition/subtraction, and 

comparison. 

7.1 Synthesized Parallel Multipliers 

A single multiplier circuit may be instantiated and reused to perform Steps 1, 2, 

and 3 of the Montgomery algorithm.  Modern logic synthesis tools are equipped with a 

wide variety of algorithms for design partitioning and logic optimization.  These include 

algorithms for constructing highly efficient multipliers to meet process design rules as 

well as area and performance optimization targets.  A parallel multiplier may be specified 

with simple RTL of the form P = A × B.  From this, the synthesis tool can build an 

appropriate architecture to meet the design and optimization constraints.  In addition to 

the 256-bit operand size target of this research, it can be instructive to build multipliers of 

various sizes such as 128×128, 64×64, and even 32×32, and examine different ways of 

employing them. 

For each multiplier size, two hypothetical deployments can be analyzed for area 

and performance.  In the first deployment, a single instance of the multiplier is scheduled 

as many times as necessary to compute all the partial products, culminating in a final 

Montgomery product.  In the second deployment, a baseline multiplier is treated as 

instantiated as many times as necessary to form a 256×256 multiplier.  The first 

deployment may be termed multiple-scheduling.  For example, given an operand size of 

256 bits, a single 128×128 multiplier can be scheduled sequentially four times to compute 
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a single 512-bit product.  Because a Montgomery product requires three intermediate 

products T, Q, and U, the latency would be multiplied by a factor of three.  The second 

deployment may be termed multiple-instantiation.  Four copies of a 128×128 multiplier 

could be instantiated along with addition logic to sum the partial products and produce 

the 512-bit result. 

This approach is only intended to give a first order estimate of the area and 

performance results that may be possible with a simple synthesized multiplier.  It would 

not be a comprehensive solution as it does not take into account other datapath logic such 

as addition/subtraction, multiplexing, and storage registers.  Furthermore it ignores 

control logic resource requirements. 

7.2 Pipelined Karatsuba-Ofman Multiplier 

The Karatsuba-Ofman multiplication algorithm is a divide-and-conquer approach 

to integer multiplication.  In simplest form, it splits up the input operands into two digits 

each and performs digit multiplication and accumulation.  This permits the use of a 

smaller multiplication unit.  Furthermore, it employs a mathematical identity to reduce 

the number of digit multiplications that must be performed from four to three [31], [36]. 

Let A and B be n-bit operands whose product P = AB is to be computed.  They are 

decomposed into two digits of n/2 bits each.  Digits are indicated with subscripts.  For 

example, A = 2n/2A1 + A0.  Digit concatenation is shown with parentheses:  A = (A1, A0) 

and B = (B1, B0).  Using the present notation, (2.3) is reproduced as (7.1). 

 

 P = 2nA1B1 + 2n/2(A1B0 + A0B1) + A0B0 (7.1) 
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Let Z2 = A1B1, Z0 = A0B0, and Z1 = (A1B0 + A0B1).  Substituting the Z terms into 

(7.1) gives (7.2). 

 

 P = 2nZ2 + 2n/2Z1 + Z0 (7.2) 

 

Fig. 19 illustrates (7.2) graphically. 

 
 2n–1 n n–1 0 
 Z2 Z0 

+  Z1  

Fig. 19. Karatsuba-Ofman Z term summation. 

 

The middle term of (7.1) and (7.2), Z1 = (A1B0 + A0B1), requires two (n/2)-bit digit 

multiplications.  Z1 can be replaced via an identity which requires only a single (n/2+1)-

bit multiplication.  The following steps show how the identity is derived.  It begins by 

factoring (A1 + A0)(B1 + B0) and culminates in (7.3). 

 

 (A1 + A0)(B1 + B0) = A1B1 + A1B0 + A0B1 + A0B0 

(A1 + A0)(B1 + B0) – A1B1 – A0B0 = A1B0 + A0B1 

A1B0 + A0B1 = (A1 + A0)(B1 + B0) – A1B1 – A0B0 

Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0 

 

 Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0 (7.3) 
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Fig. 20 depicts the final partial product summation.  The Z0 product A0B0 is in the 

least significant position, while the Z2 product A1B1 is shifted up by n bits.  From (7.2) the 

Z1 term is shifted up by n/2 bits.  Z2 and Z0 are subtracted, while the (A1 + A0)(B1 + B0) 

product term is added as indicated in (7.3). 

 
 2n–1 n n–1 0 
 A1B1 A0B0 

–  A1B1  
–  A0B0  
+  (A1 + A0)(B1 + B0)  

Fig. 20. Karatsuba-Ofman partial product summation. 

 

Thus, performing an extra two additions and two subtractions makes it possible to 

compute only three digit-magnitude products instead of four:  (A1 + A0)(B1 + B0), A1B1, 

and A0B0.  The Z1 identity may be defined and computed in a few different ways, and it is 

added or subtracted depending on which one is chosen. 

 

Z1 = (A1 + A0)(B1 + B0) – Z2 – Z0 → P = 2nZ2 + 2n/2Z1 + Z0 

Z1 = (A1 – A0)(B1 – B0) – Z2 – Z0 → P = 2nZ2 – 2n/2Z1 + Z0 

Z1 = –(A1 – A0)(B1 – B0) + Z2 + Z0 → P = 2nZ2 + 2n/2Z1 + Z0 

 

A hierarchical pipelined Karatsuba-Ofman 256×256 multiplier circuit was 

constructed in similar manner to the pipelined multiplier in the McIvor, et al. ECC 

Processor.  At the top level, the three Z terms were further decomposed into smaller 

Karatsuba-Ofman type multipliers whose outputs were registered.  The decomposition 
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was applied at three hierarchical levels in all.  The lowest level used 32×32 conventional 

multipliers of RTL form P = A × B. 

As with the simple synthesized multipliers, the Karatsuba-Ofman realization is 

only intended as a point of reference for the three multiplication steps in the Montgomery 

algorithm.  It does not include the other datapath circuitry, register storage, or control 

logic required for a full Montgomery deployment. 

7.3 Full Direct Montgomery Multipliers 

Algorithm 2.1 lists the Montgomery computations as a list of steps.  It is tempting 

to think of these steps as being performed sequentially.  With this in mind, the same 

integer multiplier can be reused to compute the three intermediate products in Steps 1-3.  

Scheduling the multiplier in this way maximizes its utilization. 

An obvious alternative is to perform the sequence of operations in space as 

opposed to time, if resource constraints are ignored.  In other words, using a brute force 

approach it is certainly possible to design a fully combinational Montgomery 

multiplication circuit.  Operands A, B, M, and Mʹ can be applied to a set of input registers, 

and the Montgomery product P can be captured one cycle later in an output register.  

Three multiplier units for intermediate products T, Q0, and U can be built and connected 

such that the output of one cascades to the next.  Because only the low word Q0 of the 

quotient term is required, its multiplier unit will necessarily be less complex than the 

other two multipliers.  Fig. 21 depicts the parallel architecture. 

 



 78 

 

Fig. 21. Full direct parallel Montgomery architecture. 

 

The next obvious step is to partition the combinational datapath into stages such 

that it is pipelined.  Pipelining can increase latency, even with the shorter clock period 

that it typically enables.  Conversely, the throughput gain of pipelining can easily be 

exploited for both RSA and ECC.  An RSA application can use a sequence of repeated 

multiplications to compute a modular exponent.  The ECC point operations necessarily 

employ a sequence of modular multiplications as well.  Fig. 22 depicts the pipelined 

architecture. 
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Fig. 22. Full direct pipelined Montgomery architecture. 

 

Fully parallel and pipelined Montgomery circuits with n = 256 were built.  The 

fully parallel circuit was a direct implementation of the Montgomery multiplication 

algorithm.  Inputs and output were registered.  Next, pipeline registers were added to this 

design to break up the large combinational arithmetic logic.  A relatively simple pipeline 

consisting of four stages was built.  Each of the three multiplication steps was segregated 

into a dedicated pipeline stage, and the final add, compare, and subtract operations were 

placed into a fourth stage. 

Finally, a second pipelined version was built.  This version had the remaining 

optimizations applied.  First, a ones detector was applied to the T0 output of the first 

multiplier in Stage 1.  It took the form of a large OR gate structure to detect any 1s in T0.  
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Only the single bit needed to be registered, saving register area for T0, which could be 

discarded.  The second optimization was to reduce the size of the adder circuit in Stage 4.  

Instead of computing the sum of double words T and U, only the upper word must be 

computed from T1, U1, and the single bit from the ones detector in Stage 1, in a classic 

add-with-carry approach.  Fig. 23 depicts the pipelined architecture with the opportunistic 

Montgomery optimizations applied. 

 

 

Fig. 23. Full direct optimized pipelined Montgomery architecture. 
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Chapter 8 Results 

8.1 Synthesized Parallel Multipliers 

Parallel multipliers for input operand sizes of 32, 64, 128, and 256 bits were built.  

Each multiplier had two n-bit input registers for the multiplier and multiplicand, and one 

2n-bit product output register. 

Results for the multiple-scheduling deployment are as follows.  The smallest 

simple multiplier is the 32×32.  This multiplier has an area of just under 6.5k µm2, and an 

effective period of 1.5 ns.  To compute a complete Montgomery product, this multiplier 

would need to be scheduled for 164 cycles, plus an additional cycle for the final P – M 

computation.  Its total Montgomery latency is 249.2 ns.  While this is large, the relatively 

moderate size gives this multiplier a small area-latency product of about 1.6. 

Moving up to 64×64, its size is 3.4 times as large as the smaller one, at just under 

22k µm2.  Its effective clock period is longer as well, at 1.849 ns.  Conversely, because of 

the number of partial products is quadratically related to the number of digits, this 

multiplier only requires about 25% the number of cycles as the 32×32 version.  Even with 

the slightly larger clock period, its latency is reduced by 68% to 79.5 ns. 

As expected, the trend continues with the 128-bit and 256-bit variants.  Each 

variant’s area increases by a factor of between 3 and 4 of that of the next smaller one, and 

the latency decreases by about a factor of 3 each time. 

Table 8 lists the results for the simple parallel multipliers deployed under 

multiple-scheduling.  It should be kept in mind that the data are somewhat ideal and not 

completely realistic.  They are based on the area of the multiplier itself and do not 

account for partial product summation logic.  Likewise, the latencies only consist of the 

latency through the multiplier itself, plus one cycle at the end for the final add, test, and 
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possible subtract in the Montgomery algorithm.  Additional delays for accumulation, 

which would affect the overall timing in a fully constructed circuit, and not included here. 

 

Table 8. Synthesized parallel multiplier (multiple scheduling) area and latency. 

n×n 
Total 
Area 

 (µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

32×32 6,438 1.510 662 165 249.2 1.60 
64×64 21,935 1.849 541 43 79.5 1.74 

128×128 78,307 2.124 471 12 25.5 2.00 
256×256 289,483 2.504 399 4 10.0 2.90 

 

For the multiple-instantiation deployment estimates, area is traded for 

performance.  In all cases the basic synthesized multiplier is considered to be tiled in such 

a way as to construct a full 256×256 parallel multiplier.  Thus, the full size multiplier 

circuit consists of a single 256×256 multiplier itself, four 128×128 multipliers, or 16 

64×64 multipliers, or 64 32×32 multipliers.  Table 9 lists the results. 

 

Table 9. Synthesized parallel multiplier (multiple instantiation) area and latency. 

n×n # 
Instances 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

32×32 64 411,998 1.510 662 4 6.0 2.49 
64×64 16 350,954 1.849 541 4 7.4 2.60 

128×128 4 313,227 2.124 471 4 8.5 2.66 
256×256 1 289,483 2.504 399 4 10.0 2.90 

 

Based on this simplistic approach, the data might suggest that the best 

performance would be obtained from tiling 32×32 multipliers, because the presumed 

latency is only 6 ns.  However, these data are not realistic and are useful only as an 
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approximate first order estimate of performance and area.  It is certainly the case that the 

32-bit multiplier by itself has the lowest latency, at 1.51 ns, but in the big picture this 

datum is incomplete.  It ignores the fact that the 32×32 partial products must themselves 

be summed, and that the accumulation circuitry has not actually been built.  Furthermore, 

all of the synthesized multipliers are designed such that the inputs and outputs are 

registered.  These intermediate registers add to the overall area and would not be present 

in a purely combinational design.  Either the data must be pipelined through each rank of 

32×32 multipliers or the internal registers would have to be removed.  In the latter case, 

of course, the combinational logic paths are increased in depth and thus in delay.  As the 

size of the base multiplier increases, the area and performance estimates become more 

accurate.  Finally, the algorithms available to synthesis tools are at present quite 

sophisticated.  It is very difficult for an engineer to devise a more efficient combinational 

circuit than the tools themselves.  Accordingly, the results in Table 9 can only be 

considered a very general starting point.  For completeness, the 256×256 is repeated here.  

Its results are the most “realistic” because it lacks the data artifacts caused by the simple 

tiling assumption. 

8.2 Pipelined Karatsuba-Ofman Multiplier 

The results for the Karatsuba-Ofman multiplier are listed in Table 10. 

 

Table 10. Pipelined Karatsuba-Ofman multiplier area and latency. 

n 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

256 251,949 1.620 617 22 35.6 8.98 
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Area is substantial, nearly a fourth of a square millimeter.  Effective clock period 

is on the order of 1.6 ns, and the single product latency is seven cycles.  As employed to 

perform the Montgomery algorithm, a total of 22 cycles would be required for a latency 

of 35.6 ns. 

These data are only for the Karatsuba-Ofman multiplier circuit itself, and do not 

reflect a complete Montgomery design.  Omitted are the actual circuitry to store the 

intermediate products T, Q, and U, as well as the final add, compare, and potential 

subtract. 

8.3 Full Direct Montgomery Multipliers 

All three full directly implemented Montgomery circuits have similar area cost 

and performance.  Total areas are in the vicinity of 700k µm2, the largest being the 

pipelined design at 711,744 µm2.  The pipeline registers account for this growth.  The 

area for the optimized pipelined design falls to 698,660 µm2.  Shrinking the final adder 

circuit from 512 to 256 bits, as well as eliminating the 256-bit T0 pipeline registers 

accounts for this saving.  Table 11 lists the results. 

 

Table 11. Direct parallel and pipelined Montgomery area and latency. 

Design 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

Area⋅  
Throughput 

Product 
Parallel 698,628 6.895 145 1 6.9 4.82 4.82 
Pipelined 711,744 2.496 401 4 10.0 7.11 1.78 
Optimized Pipelined 698,660 2.512 398 4 10.0 7.02 1.76 

 

While performance is similar, there is a significant difference between that of the 

parallel design and that of the pipelined designs.  In the parallel design, a great deal of 
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arithmetic combinational logic must be built between the input and output registers for a 

one-cycle computation.  The achievable clock cycle time is about 6.9 ns.  While this is 

slower than the targeted clock period of 2 ns, it is the entire latency of the design.  Its 

area-latency product is only 4.82.  The pipelined designs, on the other hand, can be run 

with a faster clock of approximately 2.5 ns.  With four stages their latency is 10 ns, and 

their area-latency products are worse than that of the parallel design, at just over 7.  

Conversely, the pipelining brings with it the usual advantage of higher throughput if a 

series of Montgomery products are to be computed.  In this case, a Montgomery product 

can be output every 2.5 ns.  An area-throughput figure of merit can be computed as the 

area-throughput product.  For both pipelined designs it is just under 1.8. 

8.4 McIvor ECC Processor with Pipelined Multiplier 

The McIvor, et al. ECC Processor provides the original motivation for this 

research [11].  Its integration of related functions for ECC computations, such as the 

optimized inversion algorithm, make it interesting as a comprehensive solution in the 

application space.  Table 12 lists the area and performance results for the ECC Processor. 

 

Table 12. McIvor, et al. ECC Processor area and latency. 

Design 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

ECC Processor 640,106 1.496 668 35 52.4 33.52 

 

As the table shows, the entire ECC Processor is large, well over half a square 

millimeter at 640k µm2.  The multiplier itself occupies 584k µm2, or 91% of the total.  Of 
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the multiplier’s area, 26% consists of noncombinational logic, mainly the pipeline 

registers. 

In this design, the multiplier simply computes the 512-bit product of its inputs.  It 

is scheduled to perform the sequential steps of computing T, Q, and U of the basic 

Montgomery algorithm as listed in Algorithm 2.1.  The multiplier computes the 512-bit 

product in nine clock cycles.  Despite the pipelining, the operations for a single 

Montgomery product cannot be overlapped because each integer product depends on the 

prior one.  Additional cycles are required for overhead (such as loading input registers) 

and for computing the final product P from the original product T and the reduction word 

U.  The total number of cycles to perform a Montgomery multiplication is 35.  At the 

typical process, voltage, and temperature (PVT) corner, PrimeTime STA results showed 

that the design could run with a minimum clock period of 1.496 ns.  Total latency for a 

Montgomery product then is 35 × 1.496 ns, or 52.4 ns. 

There are some obvious ways to improve the performance.  First, some stages of 

the multiplier pipeline could be merged.  It is possible that a different tradeoff between 

clock period and cycle count would result in faster computation.  In this instance the 

critical paths are in the final 512-bit carry propagate addition at the end.  For some of the 

phases this could be reduced.  For example, in computing the quotient word Q in 

multiplication Step 2, only the less significant word Q0 is used while the more significant 

Q1 is discarded.  Resource scheduling in the datapath could be changed so that in this 

case only the lower 256-bit sum need be computed.  Thus it should be possible to reduce 

the cycle time of the design further. 
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8.5 Eberle Serial Digit-Digit Architecture 

The digit-digit Montgomery multiplier proposed by H. Eberle, et al. [17] was 

implemented in three separate configurations.  Each configuration was determined by the 

digit size, d, from the set {8, 16, 32}.  The design consists of three major units:  a 

controller, a multiplier-accumulator (MAC) unit, and a memory for operand storage.  The 

memory is implemented in standard cell registers but could also be implemented as a 

register file. 

In contrast to the architecture presented in [17], the controller designed for this 

research is not a fully programmable coprocessor.  The objective is to analyze 

Montgomery multiplication performance specifically, and a fixed hardware control is 

sufficient and entails less implementation risk.  The controller is comprised of a 

hierarchical set of two finite state machines (FSMs).  The primary FSM controls the outer 

loop of the algorithm, denoted by index i, and the secondary FSM controls the inner loop, 

denoted by index j.  Operands are fetched from memory into registers, and digit 

computations are performed in accumulator register ACC, which is two digits wide.  The 

two halves of the accumulator are denoted by ACC[1] and ACC[0].  Partial product digits 

are written back to memory.  Digit operations are pipelined. 

With the digit sizes from the set {8, 16, 32} used in this realization, the MAC 

datapath is small relative to the 256-bit operand size.  As a result, total areas are all under 

20k µm2.  In all cases the noncombinational area is a substantial portion of the total area, 

varying between 9k and 11k µm2.  It mainly consists of standard cell registers that are 

used for the memory.  Table 13 lists the area and latency results. 
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Table 13. Eberle, et al. multiplier area and latency. 

Digit 
Size 

d 

# 
Digits 

k 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

8 32 12,462 0.967 1,034 2,817 2,724.0 33.95 
16 16 14,125 1.296 772 897 1,162.5 16.42 
32 8 19,605 1.599 625 321 513.3 10.06 

 

As might be expected, increasing digit size has two opposing effects on 

performance.  First, at larger digit sizes, the MAC circuitry grows more complex.  This 

results in more and larger combinational timing paths.  Consequently, the minimum 

achievable clock period grows.  The 32-bit version runs at a lower frequency than the 8-

bit version.  Conversely, increasing digit size dramatically reduces the number of cycles 

required.  From (2.2), the number of multiplications is a quadratic function of the number 

of digits.  For a fixed operand size, doubling the digit size cuts the number of digits in 

half.  Therefore, to a first order approximation, a 75% cycle count reduction might be 

expected.  In practice, the reduction is approximately 67% for each doubling of digit size.  

Some handshaking between the primary and second FSMs and the fixed cycle count to 

compute the quotient digit Qi do not scale down.  With small digits (d = 8),  2,817 cycles 

are required.  For d = 16, the number of cycles drops to 897, and for d = 32 only 321 

cycles are required. 

Despite the area minimization afforded by a digit-centric approach, the high 

latencies make this architecture unattractive.  The area-latency products range from 10 (d 

= 32) to almost 34 (d = 8). 

It would be possible to make microarchitectural changes to reduce the number of 

cycles.  One way would be to merge the partial product and reduction phases, converting 

it from a CIOS to FIOS architecture.  The product phase could be interrupted after inner 

loop iteration j = 0 to compute Qi.  At this point, iterations could resume for 1 ≤ j ≤ k – 1, 
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and the partial product A[i]×B[i+j] and reduction Qi×M[j] computations could be 

performed concurrently and summed.  The cost would be an additional multiplier and 

more complex addition circuitry, but the separate reduction phase would be eliminated. 

Closer examination of the Montgomery reduction step suggests another possible 

approach, within some bounds.   Once the reduction term Ui is computed, adding it to the 

initial product effectively cancels out the least significant word, digit, or bit to zero.  

Applying Algorithm 2.1 to the digit case, Ui depends only on Ti[0], M′, and M.  

Therefore, a particular bit pattern of Ti[0] will always generate the same reduction word 

Ui. 

If Ti[0] is relatively small, a lookup table (LUT) of precomputed reduction terms 

Ui could feasibly be constructed.  Instead of computing Qi in phase 2 followed by in 

phase 3, Ui digits could be fetched from the table while phase 1 is iterating.  As a result, 

the number of cycles could be reduced by more than 50%, without adding a second digit 

multiplier, but at the cost of storage for the reduction terms. 

In the present digit-digit architecture, assume digit size d = 8.  Using the eight bits 

of partial product digit Ti[0] as an address translates to a LUT size of 28 = 256 entries.  

For n = 256, this would require a 65,536-bit memory. 

The reduction terms are partly a function of the radix R = 2n and the modulus M.  

In a completely programmable circuit in which the user can choose these parameters, the 

reduction terms must be precomputed for the chosen R and M.  For maximum flexibility, 

then, the LUT would reside in some type of writable storage, such as registers or RAM.  

The LUT can be programmed with the precomputed terms prior to deployment. 

For larger sizes of d, such as 16 and 32, an address width equal to d becomes 

infeasible.  Consider the d = 16 case.  The LUT entries still must be 256 bits wide, but 

now the number of entries has increased from 256 to 65,536.  This translates to a LUT 
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size of 16 megabits (Mb).  Instead, an approach could be to reuse the LUT but for each 8-

bit subset of the least significant digit.  The upper eight bits cannot be used directly, 

because the reduction for the lower eight bits will change the upper eight bits.  This 

means that the reduction must first start on the lower eight bits to reduce the remainder of 

the digit.  Now, the upper eight bits can be used as an address into the LUT to fetch the 

next reduction term.  Thus throughout the reduction operations there are two overlapping 

reductions.  In this way the partial product can be reduced, with the least significant 16-

bit digit zeroed out.  A similar technique may be applied to the d = 32 case, only in this 

case there must be four 8-bit reduction term fetches with each digit.  In an ideal case a 

register file with four read ports could be employed.  If this is impractical, four identical 

register files could be tiled. and independently read. 

In broad terms, such a variant of the Eberle, et al. digit-digit Montgomery 

multiplier was designed to use a lookup table as described above.  There were actually six 

implementations considered, according to two parameters.  The first parameter 

determined the design of the LUT storage, which could be standard cell registers, or a 

compiled RAM.  The second parameter was the digit size d, whose values were chosen 

from the set {8, 16, 32}. 

Table 14 lists the results for the modified Eberle, et al. architecture with standard 

cell register LUTs for the cases d = 8, 16, and 32.  In all cases the register LUT increases 

the area massively by factors between 30 and 40 of that of the canonical design.  This 

result is not unexpected, because standard cell registers are large.  In the Nangate 45 nm 

library used here, the SDFF_X1 register is over 6 µm2 in area, and the LUT alone 

requires 65,536 of them. 
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Table 14. Eberle, et al. multiplier with register LUT area and latency. 

Digit 
Size 

d 

# 
Digits 

k 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

8 32 422,329 1.127 887 1,409 1,587.9 670.6 
16 16 486,569 1.468 681 513 753.1 366.4 
32 8 615,327 1.784 561 257 458.5 282.1 

 

In the “best” area case, for d = 8, the LUT design latency is 1,588 ns, compared to 

2,724 ns for the canonical design.  The register LUT speedup over canonical design is 

merely 1.7.  For larger digit sizes, performance gains become even less impressive.  For d 

= 16, the LUT design has a latency of 753 ns, versus 1,153 ns for the canonical design.  

This is only about a 35% reduction.  For d = 32 there is virtually no performance benefit 

at all, only improving from 513 to 459 ns.  Clearly this is not a compelling tradeoff. 

Dedicated memory circuits are much more space efficient for storage than a bank 

of standard cell registers.  The bit density of even a 6-transistor static random access 

memory (SRAM) is higher than equivalent storage using registers.  OpenRAM is an open 

source RAM compiler tool.  It can be employed to generate compiled RAMs of almost 

any configuration [37].  The open source FreePDK 45 nm physical design kit contains a 

library of bit cells that can be used by OpenRAM [38]. 

OpenRAM was used to generate RAMs with different configurations of word size 

and word count, and the area results compared.  Using a compiled RAM in lieu of 

registers for the LUT did result in lower area.  Table 15 lists the results. 
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Table 15. Eberle, et al. multiplier with RAM LUT area and latency. 

Digit 
Size 

d 

# 
Digits 

k 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

8 32 100,884 1.127 887 1,409 1,587.9 160.2 
16 16 103,413 1.468 681 513 753.1 77.9 
32 8 109,929 1.784 561 257 458.5 50.4 

 

The only practical benefit of the RAM over the registers is in smaller area.  

Latencies are the same as with the register LUT.  Critical paths are in the MAC circuit 

itself, not the memory access, so there is no overall performance difference between the 

register LUT and RAM LUT.  A 64k-bit RAM is still massive, however.  Even with the 

smallest available configuration for a RAM LUT, the total circuit areas are between five 

and eight times as large as those in the canonical Eberle, et al. design.  The minor 

performance benefit offered by a LUT is negated by the large area growth.  In any case, 

the high latency and massive area result in massive double or triple digit area-latency 

products. 

8.6 Großschädl Serial Bit-Word Architecture 

This section describes the implementation results for the bit-word multiplier 

architecture proposed in [19].  As in the other architecture implementations, the digit size 

d is varied.  In this case, however, the digit size pertains only to the size of the carry 

propagate adder used at the end for merging the working carry save words.  The 

multiplier datapath itself remains 1×n in all cases. 

There is a large fanout of 256 from the ai bit of the A register to the AND gates 

computing aiB.  The first CSA’s least significant output bit is used as the quotient bit qi to 

compute qiM.  It too has a fanout of 256 to the AND gates computing qiM.  It could help 
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to add a pipeline stage with duplicated/multiple ai registers between A and the AND gates 

to reduce the fanout-caused delays. 

Because only the size of the carry propagate adder varies, all three variants of the 

Großschädl architecture have similar area, on the order of 20k µm2.  Performance is 

similar as well.  In all cases, the product computation requires 260 cycles, consisting of 

256 cycles for the bit-word multiply-accumulate plus four cycles of overhead.  

Performing the final carry propagate addition is what varies with the digit size.  For 

example, for a digit size of d = 8, k = 32 digits need to be summed and therefore require 

32 cycles to compute, for a total cycle count of 292.  For d = 32, only eight additional 

cycles are required to compute the final nonredundant product.  Table 16 lists the results. 

 

Table 16. Großschädl, et al. multiplier area and latency. 

Digit 
Size 

d 

# 
Digits 

k 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

8 32 19,934 0.810 1,235 292 236.5 4.72 
16 16 20,093 0.825 1,212 276 227.7 4.58 
32 8 20,760 0.820 1,220 268 219.8 4.56 

 

The effective clock period is roughly identical for all configurations.  The smaller 

number of digit additions for k = 8 provides the highest performance, with a total latency 

of 219.8 ns for one Montgomery multiplication.  The area-latency product figure of merit 

for all three variants is less than 5. 

8.7 Tenca and Koç Serial Hybrid Bit-Digit Architecture 

Multiple versions of the Tenca and Koç architecture [20], [21] were designed, 

simulated, and built.  Digit size d was chosen from the set {8, 16, 32}.  For each digit 
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size, the number of processing elements (m) was varied from 1 to 20.  Fig. 24 plots the 

latency versus PE count (m = 1 to 20) for each digit size d. 

 

 

Fig. 24. Tenca and Koç multiplier latency versus number of PEs (m). 

 

Increasing the number of PEs increases parallelism, and results in improved 

performance up to a point, after which continuing to add PEs yields no additional 

improvement.  For example, for d = 8 (k = 32) and m = 1, latency is approximately 6,820 

ns.  Doubling m to 2 reduces the latency in half to 3,333 ns.  Latency incrementally 

improves until there are about 17 PEs, and then levels out.  A similar trend is evident for 

d = 16 and d = 32.  The d = 16 design’s latency stops improving after m = 8 PEs, and the 

d = 32 design reaches its minimum even sooner. 

For each digit size d, the minimum hypothetical latency is achieved when the 

number of PEs m = k/2, where k indicates the number of digits and k = n/d.  The reason is 
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that at that point, just enough PEs are available to process all partial products in 

sequence, and no partial products are stalled waiting for a PE to complete its previous 

partial product.  In the actual implementations, adding another PE or two beyond k/2 

nevertheless yields some slight improvement because PE-PE handoff is slightly faster 

than the handoff from PEm–1 via circular buffer to PE0.  The circular buffer design 

introduces a few cycles of delay. 

A bit-digit multiplier with d = 32 effectively computes a result twice the size of 

one with d = 16, and four times the size of one with d = 8.  Accordingly, a configuration 

with d = 32 and m = 1 is roughly equivalent to one with d = 16 and m = 2, or d = 8 and m 

= 4.  For d = 32 and m = 1, area is 12.4k µm2 and latency is 2,180 ns.  For d = 16 and m = 

2, area is 12.4k µm2 and latency is 1,880 ns.  Finally, for d = 8 and m = 4, area is 12.7k 

µm2 and latency is 1,671 ns.  The trend appears to favor smaller digit sizes. 

For d = 8, the minimum latency approaches 460 ns, corresponding to 570 cycles, 

for 18 or more PEs.  For d = 16, the minimum approaches just under 500 ns, about 550 

cycles, for eight and more PEs.  Finally, for d = 32, the minimum approaches 540 ns, 

approximately 540 cycles, for nine or more PEs.  In general the smaller digit size results 

in a lower latency because, despite a higher cycle count, the clock period can be shorter. 

Fig. 25 plots latency versus area for most of the configurations.  Some d = 16 and 

d = 32 variants with a larger number of PEs (and thus higher area) are omitted to prevent 

the x-axis from growing too large to be legible on the page. 
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Fig. 25. Tenca and Koç architecture latency versus area. 

 

The plot labeled Optimal Latency is the Pareto frontier of the latency versus area 

curve, and the lowest-latency for each d on the frontier is called out.  For d = 32, the best 

Pareto latency is a relatively slow 733.5 ns, with m = 3.  The next d = 32 configuration (m 

= 4) is also indicated, with a 622 ns latency, although it is not on the frontier.  The (d = 

16, m = 9) configuration’s latency is just under 500 ns, and the (d = 8, m = 17) 

configuration has a latency of 454.5 ns. 

Table 17 list the results for three Pareto frontier implementations of the Tenca and 

Koç Montgomery architecture.  For each digit size d, the fastest configuration on the 

Pareto frontier is listed. 
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Table 17. Tenca and Koç multiplier area and latency. 

Digit 
Size 

d 

# 
Digits 

k 

# 
PEs 
m 

Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

8 32 17 23,124 0.789 1,267 576 454.5 10.51 
16 16 9 20,869 0.849 1,178 586 497.5 10.38 
32 8 3 16,655 0.944 1,059 777 733.5 12.22 

 

The first configuration uses d = 8-bit digits.  This particular instance of the design 

employs m = 17 PEs in cascade and occupies 23k µm2 of area.  Each PE has a single 1×8 

bit-digit multiplier which requires 32 cycles to compute a 1×256 partial product.  Thus 

this instance employs 17 multipliers concurrently.  Its latency of 454.5 ns is the smallest 

of any of the Tenca and Koç designs that were implemented.  The next configuration uses 

d = 16-bit digits.  Nine PEs are cascaded in this configuration, so there are nine 1×16 

multipliers.  Its total area is 20.9k µm2, and it can produce a 256-bit Montgomery product 

in 497.5 ns.  This is not the fastest 16-bit architecture, but it is the fastest one that lies on 

the Pareto frontier.  Finally, the third configuration uses digit size d = 32.  It uses only 

three PEs in cascade, so there are three 1×32 multipliers computing partial products 

concurrently.  It is the fastest 32-bit design on the Pareto frontier, with a latency of 733.5 

ns.  There are faster 32-bit designs.  For example, the k = 4 variant has a latency of 622 

ns, an area of 18.7k µm2, and an even better area-latency product of 11.60.  But as the 

plot in Fig. 25 shows, 32-bit designs larger than this are all undercut by faster d = 16 and 

d = 8 designs for equivalent area. 

8.8 Rescheduled Montgomery Multiplier 

The Rescheduled Montgomery Multiplier (RMM) architecture was built in 31 

different configurations.  In all cases, the operand size n was set to 256, or to a nearby 

value to permit a split into k uniform digits each.  One or more RMMs were designed for 
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each value of k from 2 to 8.  The number of digit multipliers, m, was also varied for each 

k configuration.  Table 18 is a matrix indicating which combinations of k and m were 

built.  As used in this dissertation, a Rescheduled Montgomery Multiplier configuration is 

designated as RMM (k, m). 

 

Table 18. Rescheduled Montgomery Multiplier (k, m) combinations. 

  # Digit Multipliers m 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 • •             
3 • • •            
4  • • • •          
5    • • •         
6     • • • • • •     
7      • • • • • •    

# 
D

ig
its

 k
 

8        • • • • • • • 

 

From (5.4), computing the intermediate products T, Q0, and U requires a total of 

NM = 2.5k2 + 0.5k digit multiplications.  With only a single digit multiplier, that many 

cycles is required to compute the digit products.  If (m > 1) digit multipliers are 

employed, digit products can be scheduled concurrently.  In such a case, the number of 

cycles for product computation is approximately ⎡(2.5k2 + 0.5k)/m⎤.  The three-stage 

pipeline adds two cycles of latency.  One cycle is then required to compute the P = T1 + 

U1 sum.  One final cycle is used to test for P ≥ M and conditionally compute P = P – M.  

These four cycles are considered overhead and are invariant regardless of the specific 

RMM (k, m) microarchitecture chosen. 

8.8.1 RMM (2, m) 

The first set of RMMs were designed with k = 2.  For this configuration, a total of 

NM = 11 digit multiplications must be performed to compute T, Q0, and U.  Two RMMs 
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were built, one with a single (m = 1) digit multiplier, and one with m = 2 digit multipliers, 

denoted as RMM (2, 1) and RMM (2, 2) respectively.  These variants provided 

straightforward, first-order insights into the area-latency tradeoff.  Table 19 lists the area 

and performance results for k = 2. 

 

Table 19. RMM (2, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

128 (2, 1) 105,697 2.217 451 15 33.3 3.52 
128 (2, 2) 188,374 2.217 451 10 22.2 4.18 

 

With only a single digit multiplier, RMM (2, 1) requires 11 cycles to compute the 

NM = 11 digit products, plus the four-cycle overhead, for a total of 15 cycles.  The 

synthesized area of this design is 105,697 µm2.  A substantial portion consists of the 

128×128 digit multiplier, at over 80k µm2.  As synthesized, this design can run at an 

effective clock period of 2.217 ns, or 451 MHz.  For the 15 cycles required, the total 

latency is 33.3 ns. 

Adding a second digit multiplier for a (2, 2) configuration permits concurrent 

computation of two digit products during a cycle.  This configuration reduces the digit 

product cycles from eleven to six, but with the four-cycle overhead, overall cycle latency 

drops by only one third from 15 to 10 cycles.  These digit multipliers are large, so adding 

the second one increases area by slightly more than 80k µm2 to 188,374 µm2.  Because 

the critical path is in the digit multipliers, and not in other areas such as the accumulator 

datapath, the effective clock period is not degraded further, and remains at 2.217 ns.  

Therefore, the total latency is 22.2 ns.  This is a 33% reduction in latency relative to 

RMM (2, 1), but the area cost of 83k µm2 constitutes a 78% increase over RMM (2, 1). 
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8.8.2 RMM (3, m) 

RMMs with operands split into k = 3 digits were built next.  For this 

configuration, a total of NM = 24 digit multiplications must be performed.  Three 

configurations were built, with m = 1, 2, and 3 digit multipliers:  RMM (3, 1), (3, 2), and 

(3, 3).  The word size n was increased slightly to 258 bits to permit a uniform digit size d 

= 86 bits.  Table 20 lists the area and performance results for k = 3. 

 

Table 20. RMM (3, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

86 (3, 1) 66,429 1.969 508 28 55.1 3.66 
86 (3, 2) 114,610 2.013 497 16 32.2 3.69 
86 (3, 3) 146,060 2.002 500 12 24.0 3.51 

 

Smaller digit multipliers result in area savings.  The entire area of RMM (3, 1) is 

only 66,429 µm2.  Increasing the number of digit multipliers naturally increases the area, 

sometimes dramatically.  RMM (3, 2) is almost twice the size of RMM (3, 1), at over 

114k µm2.  This is caused by the more complex accumulator logic required to add two 

172-bit digit products with the accumulator.  The overall increase for instantiating a third 

multiplier is less dramatic, at just under 32k µm2 to 146k µm2. 

All three RMMs have improved cycle time compared to the k = 2 case.  This is a 

direct result of reducing the digit multiplier width from 128×128 to 86×86.  For the 

single-digit multiplier design RMM (3, 1), the effective clock period of 1.969 ns and 28 

cycles gives a latency of 55.1 ns.  The two- and three-multiplier designs RMM (3, 2) and 

(3, 3) have slightly larger clock periods at just over 2 ns, which is caused by additional 

propagation delay through the more complex accumulator circuit. 
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The RMM (3, 2) configuration has a similar latency (32.2 ns) to that of RMM (2, 

1) (33.3 ns), but is larger by approximately 9k µm2.  The next configuration, RMM (3, 3) 

has a latency of 24 ns, only slightly more than RMM (2, 2) at 22.2 ns, but its area is 42k 

µm2 smaller.  RMM (3, 3) has an area-latency product of 3.5, the best of the k = 3 

designs.  If a (3, 4) configuration were built, it would require only 10 cycles for an 

estimated latency of 20 ns. 

8.8.3 RMM (4, m) 

RMMs with operands split into k = 4 digits were built.  For this configuration, a 

total of NM = 42 digit multiplications must be performed.  Four variants were built, with 

m = 2, 3, 4, and 5 digit multipliers:  RMM(4, 2), RMM (4, 3), RMM (4, 4), and RMM (4, 

5).  All could be optimized to run at a clock period of less than 2 ns.  As before, the digit 

multipliers determined the critical timing path.  Table 21 lists the area and performance 

results for k = 4. 

 

Table 21. RMM (4, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

64 (4, 2) 76,933 1.910 524 25 47.8 3.67 
64 (4, 3) 101,974 1.881 532 19 35.7 3.64 
64 (4, 4) 120,631 1.881 532 15 28.2 3.40 
64 (4, 5) 144,877 1.904 525 13 24.8 3.59 

 

With two digit multipliers, RMM (4, 2) requires NM/2 = 21 cycles, plus the four 

overhead cycles, for a total of 25 cycles to compute a full Montgomery product.  With an 

effective clock period of 1.91 ns, this translates to a latency of 47.8 ns.  The 

implementation is relatively compact at just under 77k µm2.  As expected, increasing the 
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number of digit multipliers reduces the number of cycles and overall latency, to just 

under 25 ns with m = 5.  However, the area-latency product minimum is achieved in 

RMM (4, 4), with a value of 3.40.  It can perform a full Montgomery multiplication in 

28.2 ns in an area of 120,631 µm2. 

It can be instructive to compare the RMM (4, m) configurations to the RMM (2, 

m) configurations, because the digit size of the former is exactly half that of the latter.  It 

is possible to examine two different designs that nevertheless have the same number of 

multiplication bits “in flight” during any cycle.  For example, RMM (2, 1) has a single 

digit multiplier, so during each cycle one 128×128 product is being computed, for 16,384 

partial bit products in flight.  It has an area of 106k µm2 and a latency of 33.3 ns.  RMM 

(4, 4) computes four 64×64 digit products concurrently, for 4×64×64 = 16,384 partial bit 

products in flight.  Its area is 121k µm2 but it has a latency of only 28.2 ns. 

For a full product, halving the digit size results in squaring the number of digit 

multiplications that must be performed.  A single 256×256 product computed with 128-

bit digits requires four digit multiplications.  If those digits are reduced to d = 64 bits, k = 

4 and the number is increased to 42 digit multiplications.  With the RMM, however, the 

Q0 computation makes it possible to avoid some of those digit multiplications.  In the d = 

128 case, (5.1) provides that Q0 requires only three digit multiplications—one digit 

multiplication is saved compared to computing the full Q = (Q1, Q0), a 25% reduction.  

For d = 64, Q0 requires only 10 instead of 16 digit multiplications, a 37.5% reduction 

relative to a full Q product. 

The scheduling algorithm ensures that the product bits being computed and 

accumulated are more “vertical” in the (4, 4) configuration than in the (2, 1) 

configuration.  In the (2, 1) configuration more of the “vertical” partial bit product 

accumulation occurs in the digit multiplier (with higher complexity).  In the (4, 4) 
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configuration, a portion of that vertical accumulation is moved out of the digit multipliers 

and into the accumulator datapath. 

RMM (2, 1) requires 106k µm2 of die area and has a latency of 33.3 ns.  RMM (4, 

4) is larger, at 121k µm2, but only requires 28.2 ns.  Switching from RMM (2, 1) to RMM 

(4, 4) costs a 14% increase in area, but purchases a speedup of 1.18.  The overall area-

latency product declines from 3.51 to 3.40.  Although the area-latency product improves, 

it can be argued that RMM (4, 4)’s resource utilization is not as efficient as that of RMM 

(2, 1).  Configuring m = 4 digit multipliers does not evenly divide the NM = 42 (or NQ = 

10) digit multiplications required.  That means that during one cycle, two of the digit 

multipliers are not used.  It is partially compensated for by the algorithmically more 

efficient Q0 computation enabled by employing smaller digits. 

8.8.4 RMM (5, m) 

RMMs with operands split into k = 5 digits were built.  For this configuration, a 

total of NM = 65 digit multiplications must be performed.  m was varied between 4 and 6:  

RMM (5, 4), RMM (5, 5), and RMM (5, 6).  As with the k = 3 configurations, n = 256 is 

not divisible by k.  Therefore for k = 5, n is set to 260 to allow uniform digit sizes of d = 

52 bits.  Table 22 lists the area and performance results for k = 5. 

 

Table 22. RMM (5, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

52 (5, 4) 116,492 1.770 565 21 37.2 4.33 
52 (5, 5) 118,482 1.794 557 17 30.5 3.61 
52 (5, 6) 131,231 1.816 551 16 29.1 3.81 
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RMM (5, 5) is only 2k µm2 (1.7%) larger than RMM (5, 4) but is nearly 7 ns 

faster, for a speedup of 1.22.  The initial RMM (5, 6) implementation grew quite large, 

approximately 45k µm2 (38%) larger than RMM (5, 5), for only a two cycle (4 ns) 

decrease in latency and a speedup of 1.15.  That implementation did not employ uniform 

accumulator scheduling through the three products T, Q0, and U.  As a result, the 

accumulator datapath did not have much reuse between phases and grew large.  The 

RMM (5, 6) design was reworked to use uniform accumulator scheduling.  Area shrank 

from 163k µm2 to 131k µm2, at the cost of an additional clock cycle.  Total latency was 

29.1 ns.  Compared to RMM (5, 5), RMM (5, 6) is 11% larger, for a speedup of only 

1.05. 

8.8.5 RMM (6, m) 

RMMs with operands split into k = 6 digits were built.  For this configuration, a 

total of NM = 93 digit multiplications must be performed.  m was varied from 5 to 10.  

Word size n was increased to 258, which is divisible by 6, for a uniform digit size of d = 

43 bits.  Uniform accumulator scheduling was employed for all variants.  Table 23 lists 

the area and performance results for k = 6. 

 

Table 23. RMM (6, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

43 (6, 5) 110,362 1.677 596 24 40.2 4.44 
43 (6, 6) 114,452 1.676 597 20 33.5 3.84 
43 (6, 7) 124,165 1.690 592 18 30.4 3.78 
43 (6, 8) 132,035 1.694 590 16 27.1 3.58 
43 (6, 9) 137,644 1.666 600 15 25.0 3.44 
43 (6, 10) 152,388 1.677 596 14 23.5 3.58 

 



 105 

Due to the relatively smaller digit multiplier size, areas increase moderately with 

increasing m.  For all configurations the effective clock period is just under 1.7 ns, 

determined by the digit multiplier datapath delay.  Minimum area-latency product is 

achieved for RMM (6, 9), with a value of 3.44.  Although its 138k µm2 area is not small, 

it achieves a latency of 25 ns. 

8.8.6 RMM (7, m) 

Several RMMs were built with operands split into k = 7 digits.  For this 

configuration, a total of NM = 126 digit multiplications must be performed.  The number 

of digit multipliers m was varied from 6 to 11.  Operand size n was set to 259 bits to 

ensure a uniform digit size d = 37.  Table 24 lists the area and performance results for k = 

7. 

 

Table 24. RMM (7, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

37 (7, 6) 114,560 1.585 631 26 41.2 4.72 
37 (7, 7) 113,293 1.610 621 22 35.4 4.01 
37 (7, 8) 123,762 1.614 620 21 33.9 4.20 
37 (7, 9) 130,158 1.600 625 19 30.4 3.96 
37 (7, 10) 130,941 1.625 615 17 27.6 3.62 
37 (7, 11) 142,091 1.602 624 16 25.6 3.64 

 

RMM (7, 6) has an area of 115k µm2, and the area increases to 142k µm2 for 

RMM (7, 11).  A 37×37 digit multiplier requires approximately 7.7k µm2 of area.  Thus, 

incrementing m by one should normally increases area by about that much.  However, 

that does not necessarily hold here.  For example, RMM (7, 7) is actually slightly smaller 

than RMM (7, 6), at just over 113k µm2. That area for the additional digit multiplier in 
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RMM (7, 7) is more than offset by a decrease in accumulator datapath logic.  Scheduling 

the six digit multipliers in RMM (7, 6) requires nine distinct states of the accumulation 

logic.  For RMM (7, 7), only seven states are required.  Similarly, RMM (7, 10) is only 

larger than RMM (7, 9) by about 800 µm2.  The RMM (7, 10) accumulator datapath has 

only five different states, versus seven for RMM (7, 9). 

In all cases the attainable clock period is approximately 1.6 ns.  For the k = 7 

configurations, RMM (7, 10) has the minimum area-latency product of 3.62.  It computes 

the Montgomery product in 17 cycles, for a total latency of 27.6 ns. 

8.8.7 RMM (8, m) 

Seven variants of RMM with k = 8 were built and analyzed.  For this 

configuration, a total of NM = 164 digit multiplications must be performed.  The number 

of digit multipliers for concurrent multiplications had to be sufficiently high in order to 

have a reasonably low cycle count.  Accordingly, m was varied within the range 8 to 14.  

Table 25 lists the area and performance results for k = 8. 

 

Table 25. RMM (8, m) area and latency. 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

32 (8, 8) 113,970 1.550 645 25 38.8 4.42 
32 (8, 9) 120,079 1.546 647 23 35.6 4.27 
32 (8, 10) 131,725 1.535 652 21 32.2 4.25 
32 (8, 11) 124,298 1.769 565 19 33.6 4.18 
32 (8, 12) 133,169 1.522 657 18 27.4 3.65 
32 (8, 13) 133,720 1.547 646 17 26.3 3.52 
32 (8, 14) 142,074 1.667 600 16 26.7 3.79 

 

With increasing m, total area does not increase monotonically.  For example, 

RMM (8, 10) requires 131 µm2 of die area, but in RMM (8, 11) the area actually shrinks 
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to 124 µm2.  Moving from RMM (8, 12) to RMM (8, 13), the overall area increase is on 

the order of a few hundred square microns.  This is similar to the area change from RMM 

(7, 9) to RMM (7, 10) previously shown, whereby area savings from the simpler 

accumulation logic offset the area of an additional digit multiplier. 

Effective clock period hovers around 1.5 ns, except for RMM (8, 11), at which it 

increases to almost 1.8 ns, and RMM (8, 14) at which it increases to almost 1.7 ns.  In 

fact, overall latency is degraded slightly by about 400 ps moving from RMM (8, 13) to 

RMM (8, 14), even though the latter requires one less cycle.  Of these designs, the best 

latency is provided by RMM (8, 13), at 26.3 ns.  It also has the minimum area-latency 

product for k = 8 of 3.52. 

8.8.8 Rescheduled Montgomery Multiplier Summary 

Table 26 summarizes the results for RMM instances which lie on the Pareto 

frontier of the latency-area plot, ordered by area. 

 

Table 26. RMM results (Pareto frontier). 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

86 (3, 1) 66,429 1.969 508 28 55.1 3.66 
64 (4, 2) 76,933 1.910 524 25 47.8 3.67 
64 (4, 3) 101,974 1.881 532 19 35.7 3.64 

128 (2, 1) 105,697 2.217 451 15 33.3 3.52 
86 (3, 2) 114,610 2.013 497 16 32.2 3.69 
52 (5, 5) 118,482 1.794 557 17 30.5 3.61 
64 (4, 4) 120,631 1.881 532 15 28.2 3.40 
37 (7, 10) 130,941 1.625 615 17 27.6 3.62 
43 (6, 8) 132,035 1.694 590 16 27.1 3.58 
32 (8, 13) 133,720 1.547 646 17 26.3 3.52 
43 (6, 9) 137,644 1.666 600 15 25.0 3.44 
64 (4, 5) 144,877 1.904 525 13 24.8 3.59 
86 (3, 3) 146,060 2.002 500 12 24.0 3.51 
43 (6, 10) 152,388 1.677 596 14 23.5 3.58 

128 (2, 2) 188,374 2.217 451 10 22.2 4.18 
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Table 27 lists the results for the remaining RMM instances. 

Table 27. RMM results (non Pareto). 

d (k, m) 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

Effective 
Frequency 

(MHz) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

43 (6, 5) 110,362 1.677 596 24 40.2 4.44 
37 (7, 7) 113,293 1.610 621 22 35.4 4.01 
32 (8, 8) 113,970 1.550 645 25 38.8 4.42 
43 (6, 6) 114,452 1.676 597 20 33.5 3.84 
37 (7, 6) 114,560 1.585 631 26 41.2 4.72 
52 (5, 4) 116,492 1.770 565 21 37.2 4.33 
32 (8, 9) 120,079 1.546 647 23 35.6 4.27 
37 (7, 8) 123,762 1.614 620 21 33.9 4.20 
43 (6, 7) 124,165 1.690 592 18 30.4 3.78 
32 (8, 11) 124,298 1.769 565 19 33.6 4.18 
37 (7, 9) 130,158 1.600 625 19 30.4 3.96 
52 (5, 6) 131,231 1.816 551 16 29.1 3.81 
32 (8, 10) 131,725 1.535 651 21 32.2 4.25 
32 (8, 12) 133,169 1.522 657 18 27.4 3.65 
32 (8, 14) 142,074 1.667 600 16 26.7 3.79 
37 (7, 11) 142,091 1.602 624 16 25.6 3.64 

 

Fig. 26 plots latency versus area for all RMM implementations.  The Pareto 

frontier for area-latency tradeoff is indicated. 
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Fig. 26. RMM latency versus area with Pareto frontier. 

 

Unsurprisingly, increasing area generally purchases a reduction in latency.  Of 

course, the trend is not monotonic, because other variables in the architecture and 

scheduling contribute to achievable performance, beyond aggregate area.  This is evident 

from the variations in achievable latency in the central region of the plot.  Between 110k 

µm2 and 145k µm2 there are 16 configurations that are not at Pareto minimum. 

All configurations with k ∈ {2, 3, 4} lie on the Pareto frontier, whereas only one 

configuration each for k ∈ {5, 7, 8} lies on the frontier.  Each of those has the minimum 

area-latency product for that k.  There are three configurations with k = 6 on the frontier:  

RMM (6, 8), (6, 9), and (6, 10), with the k = 6 minimum area-latency product of 3.44 

achieved in configuration (6, 9). 
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For k ∈ {3, 4, 5}, configurations in which m = k have the lowest area-latency 

product for that k.  For example, the RMM (4, 4) area-latency product is the minimum of 

all RMM (4, m) configurations, at 3.40.  This implementation requires 121k µm2 and has 

a latency of 28 ns.  Considering other k = 4 configurations, it is possible to reduce area to 

just over 100k µm2 by switching to RMM (4, 3) for a 16% area reduction and 8 ns (29%) 

of additional latency.  In the opposite direction, the (4, 5) configuration saves 3 ns (11%) 

of latency (speedup = 1.12) but at an additional area cost of over 20k µm2, 20% larger. 

For the smaller digit sizes in which the operands are subdivided into 6 to 8 digits, 

the minimum area-latency product is achieved closer to m = 1.5k.  Thus, for k = 6, the 

minimum area-latency product of 3.44 is obtained configuration (6, 9).  It has a 25 ns 

latency in an area of 138k µm2.  For k = 7, configuration (7, 10) has an area-latency 

product of 3.62.  For k = 8, the best configuration is (8, 13) with area-latency product 

3.52. 

A few reasons for this shift include the following.  As the digit size d decreases 

and the number of digits k increases, the number of digit multiplications increases 

quadratically relative to k.  More digit multipliers are required to keep the number of 

cycles under control.  RMM (5, 5) computes a result in 17 cycles of about 1.8 ns each in 

118k µm2.  For RMM (6, 6), although the clock period improves to about 1.7 ns, the 

number of cycles jumps to 20, an 18% increase, in an area of 114k µm2.  RMM (5, 5) has 

52×52×5 = 13,520 digit multiplication bits in flight, whereas RMM (6, 6) has 43×43×6 = 

11,094 bits in flight.  This is a lower degree of digit level parallelism.  Conversely, RMM 

(6, 9) only requires 15 cycles (25 ns) in 138k µm2, because it has 16,641 bits in flight in 

any given multiplication cycle.  Increasing the number of multipliers with large digits is 

costly because those multipliers are relatively large.  With small digits, adding another 
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multiplier results in a marginal increase in area but improves performance by reducing 

cycles. 

The central clustering is also partly a function of the configurations that were 

chosen for analysis.  For example, for the k ≥ 5 RMM configurations, designs could have 

been built with small values of m (1, 2, etc.) as well as large values of m further beyond 

1.5k.  The latency curve would approach vertical for smaller and smaller values of k with 

small m because of the digit count to digit product quadratic relationship.  Conversely, it 

would flatten toward horizontal for a given value of k and with increasing values of m as 

more and more circuitry were added and the cycles approach a 5-cycle minimum. 

The latency-area curves of Fig. 26 suggest that a point of diminishing returns has 

been reached with respect to further increases in k.  Using an increasing number k of 

smaller digits becomes more costly relative to less complex designs.  This is the case 

even despite the fact that the smaller digits permit a higher granularity in computing Q0 

more efficiently.  The quadratic relationship of the number of digit multiplications to k 

means that m must also grow quadratically to keep cycle count down.  Although the 

timing paths within the smaller digit multipliers are shorter, the accumulator logic 

complexity must grow to handle more vertically stacked digit products.  For higher 

performance the plot suggests that the better tradeoff is in configurations with a small 

number of large digits (k = 4, 3, 2). 

8.9 Montgomery Multiplier Comparisons 

Table 28 lists the area and performance results for most of the fully functional 

Montgomery multiplier architectures, plus the 256×256-bit synthesized and the pipelined 

Karatsuba-Ofman multipliers.  The Eberle, et al. design variants that employ lookup 

tables are excluded, because their poor area-latency tradeoffs preclude their utility.  Only 
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those RMM instances lying on the Pareto frontier are listed.  The table orders the results 

from lowest to highest area.  In all cases the performance figures are for computing a 

256-bit Montgomery product from two 256-bit operands. 

 

Table 28. Montgomery 256-bit multipliers ranked by area. 

Architecture 
Total 
Area 
(µm2) 

Effective 
Period 

(ns) 

# 
Cycles 

Total 
Latency 

(ns) 

Area⋅  
Latency 
Product 

Eberle Digit-Digit 8×8, k = 32 12,462 0.967 2,817 2,724.0 33.95 
Eberle Digit-Digit 16×16, k = 16 14,125 1.296 897 1,162.5 16.42 
Tenca Bit-Digit 1×32, k = 8, m = 3 16,655 0.944 777 733.5 12.22 
Eberle Digit-Digit 32×32, k = 8 19,605 1.599 321 513.3 10.06 
Großschädl Bit-Word 1×256, d = 8 19,934 0.810 292 236.5 4.72 
Großschädl Bit-Word 1×256, d = 16 20,093 0.825 276 227.7 4.58 
Großschädl Bit-Word 1×256, d = 32 20,760 0.820 268 219.8 4.56 
Tenca Bit-Digit 1×16, k = 16, m = 9 20,869 0.849 586 497.5 10.38 
Tenca Bit-Digit 1×8, k = 32, m = 17 23,124 0.789 576 454.5 10.51 
RMM (3, 1), d = 86 66,429 1.969 28 55.1 3.66 
RMM (4, 2), d = 64 76,933 1.910 25 47.8 3.67 
RMM (4, 3), d = 64 101,974 1.881 19 35.7 3.64 
RMM (2, 1), d = 128 105,697 2.217 15 33.3 3.52 
RMM (3, 2), d = 86 114,610 2.013 16 32.2 3.69 
RMM (5, 5), d = 52 118,482 1.794 17 30.5 3.61 
RMM (4, 4), d = 64 120,631 1.881 15 28.2 3.40 
RMM (7, 10), d = 37 130,941 1.625 17 27.6 3.62 
RMM (6, 8), d = 43 132,035 1.694 16 27.1 3.58 
RMM (8, 13), d = 32 133,720 1.547 17 26.3 3.52 
RMM (6, 9), d = 43 137,644 1.666 15 25.0 3.44 
RMM (4, 5), d = 64 144,877 1.904 13 24.8 3.59 
RMM (3, 3), d = 86 146,060 2.002 12 24.0 3.51 
RMM (6, 10), d = 43 152,388 1.677 14 23.5 3.58 
RMM (2, 2), d = 128 188,374 2.217 10 22.2 4.18 
Pipelined Karatsuba-Ofman 256×256a 251,949 1.620 22 35.6 8.98 
Synthesized 256×256a 289,483 2.504 4 10.0 2.90 
McIvor MUL256×256 only 583,830 1.496 35 52.4 30.57 
McIvor ECC Processor 640,106 1.496 35 52.4 33.52 
Full Direct Parallel 698,628 6.895 1 6.9 4.82 
Full Direct Optimized Pipelinedb 698,660 2.512 4 10.0 7.02 
Full Direct Pipelinedc 711,744 2.496 4 10.0 7.11 
aOptimistic and does not reflect actual implementation of full algorithm. 
bThroughput 2.51 ns, area-throughput product 1.76. 
cThroughput 2.50 ns, area-throughput product 1.78. 
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Visual representations of the results collected in Table 28 can aid in better 

understanding the strengths and weaknesses of the various architectures and the tradeoffs 

among them.  Fig. 27 plots latency versus area for the serial architectures along with 

several configurations of the Rescheduled Montgomery Multiplier. 

 

 

Fig. 27. Latency versus area, serial architectures and RMM. 

The serial architectures are clustered near the left side of the plot with low areas 

and varied, relatively high latencies, while the RMM architectures vary in size but all 

have low latency well under 100 ns.  The Eberle, Tenca, and Großschädl serial designs 

have areas on the order of 23k µm2 or less.  The latencies of the Eberle and Tenca designs 

are over 400 ns, approaching 2,800 ns for the worst Eberle instance.  Operating at the bit 
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or digit level necessarily requires a substantial number of clock cycles, and this tends to 

overwhelm any performance benefit of reduced cycle time resulting from less complex 

logic.  In other words, the cycle count tends to increase faster than the clock period 

decreases.  In contrast, the Großschädl architecture, while still small on the order of 20k 

µm2, has latencies all clustered just above 200 ns.  Its three configurations compute the 

Montgomery product identically.  The only difference is the size of the final digit 

multiplier used for converting the carry save result to nonredundant form.  This 

architecture gives the best performance for area among the serial designs, with area-

latency products under 5.  The Eberle and Tenca architectures possess an advantage in 

that they can readily support arbitrary operand sizes.  The RMM designs all have 

latencies on the order of 50 ns and less, but of course the area varies greatly.  The 

smallest RMM is just over three times the size of the Großschädl architectures, but is five 

times as fast. 

Fig. 28 plots latency versus area for the Rescheduled Montgomery Multiplier and 

the word size architectures. 
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Fig. 28. Latency versus area, RMM and full word architectures. 

 

The RMM designs are all smaller than the word size architectures, and in some 

cases even have superior performance.  Most of the RMMs are faster than the pipelined 

Karatsuba-Ofman multiplier, despite being smaller.  The latter’s pipelining contributes to 

its area bloat and performance degradation similarly to the McIvor design.  The 256-bit 

simple synthesized multiplier is potentially faster, but its performance is overly 

optimistic.  Neither the Karatsuba-Ofman nor the simple synthesized multiplier is 

complete, in that each is strictly the multiplier component.  Both lack the additional 

circuitry required to compute a complete Montgomery result.  Furthermore, since they 

operate on full size operands, neither of these multipliers can be further optimized for the 

Montgomery Q0 computation. 
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The McIvor ECC Processor, as well as its constituent multiplier considered in 

isolation, are massive, on the order 0.5 mm2.  Even with the large scale of resources 

devoted to Montgomery multiplication, they have substantially worse performance than 

most of the RMM designs.  The results here suggest that it is overpipelined for an ASIC 

realization.  The large number of pipeline registers contributes to area growth, and the 

resulting large number of cycles contributes to high latency.  Overlapping the 

intermediate products T, Q, and U is also not possible due to their mutual dependencies. 

The full directly-implemented Montgomery architecture, in both parallel and 

pipelined versions, is capable of very high performance.  Both pipelined versions can 

support a high throughput of one Montgomery product every 2.5 ns.  This would be 

especially advantageous for RSA’s modular exponentiation and ECC’s point operations, 

both of which employ many modular multiplications in sequence.  Their performance is 

costly, requiring 0.7 mm2 of die area at the 45 nm process node. 

Finally, Fig. 29 combines the results from the preceding two plots and depicts the 

results of all designs.  The latency axis uses a logarithmic scale. 
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Fig. 29. Latency versus area for implemented Montgomery multipliers. 

 

The plot shows the area versus latency points for all the architectures, along with 

two curves fit to those points.  The dashed line is the curve fit for the points of the prior 

architectures but excludes the proposed Rescheduled Montgomery Multiplier results.  It 

has a downward slope from the serial architectures to the full size architectures.  The 

solid line shows the curve fit to all points, including the RMM architectures.  The RMM 

latencies fall well below the original, dashed curve fit.  Within the context of the 

architectures that were implemented, it suggests that the RMM establishes a new 

minimum on the Pareto frontier of the latency-area plot. 
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Chapter 9 Conclusions 

This dissertation presents the Serial Montgomery Model, a fundamental 

expansion of an established taxonomy commonly used to categorize serial realizations of 

the Montgomery algorithm.  The Serial Montgomery Model encompasses comprehension 

of digit level parallelism.  It permits the designer to assess the performance and area 

effects of employing a variable degree of digit level parallelism in an otherwise serial 

architecture.  It augments the prior taxonomy with a new type of digit scheduling termed 

Separated Product Scheduling (SPS).  The Serial Montgomery Model provides 

expressions that take account of the number of digit multiplications, dependency 

relationships, and the number of digit multipliers to estimate the number of cycles a 

particular realization will require to compute a result. 

This dissertation also presents a novel hardware architecture for Montgomery 

multiplication, termed the Rescheduled Montgomery Multiplier.  The architecture 

synthesizes techniques from a diverse set of sources.  It borrows the concept of digit 

multiplication from serial approaches.  It then improves on that by exploiting digit level 

parallelism to compute multiple digit products concurrently.  Employing the novel SPS 

approach, it orders digit multiplications to simplify the dependency chain.  This 

minimizes stalls and resource underutilization.  The digit-centric approach allows it to 

exploit opportunities in the canonical Montgomery algorithm to eliminate unnecessary 

computation.  This brings two benefits, reducing the number of digit multiplications that 

must be performed, and permitting opportunistic deferral of some digit multiplications 

until later in the process.  Moreover, it permits a greater degree of parallelization, and a 

wider range of parallelization options, than are available to prior serial architectures. 
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9.1 Results 

The Rescheduled Montgomery Multiplier establishes a new region of possible 

area-latency tradeoffs between, on the one hand, small digit- or bit-oriented serial 

architectures, and large word-size architectures that perform the canonical Montgomery 

algorithm in a more conventional way. 

9.2 Future Research 

Although the Rescheduled Montgomery Multiplier architectures proposed in this 

research are limited to 256-bit operands and have fixed control circuits, it is not hard to 

envision adding programmability to support larger operands.  In lieu of a fixed 

accumulator block with a finely-tuned set of accumulation states, a standardized 

accumulator block could be designed.  During computation of the T, Q0, and U products, 

the accumulator path could effectively “slide” right to left under microprogram control.  

Outputs from the plurality of digit multipliers would be correctly aligned via multiplexers 

and fed into the accumulator block during each cycle.  Such an approach would require a 

more complex accumulator block but would offer flexibility for arbitrary operand sizes 

while still avoiding “unnecessary” reduction accumulations. 

In the current technological era with the ubiquity of mobile devices, energy 

consumption is a primary concern.  The designs realized here were taken through logic 

synthesis to gates in a 45 nm process node.  This provides a first order estimate of area 

and performance, especially for comparison among different architectures.  An obvious 

next step would be to take the synthesized designs and run them through the place and 

route flow.  Not only would this provide even more accurate area and performance 

estimates, it would facilitate making valid estimates of energy consumption.  In modern 

deep submicron technologies, the interconnect between gates and the effects of parasitic 
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capacitance become more prevalent.  With a routed database, effects of crosstalk on 

performance and power can be estimated and incorporated into making more accurate 

predictions. 

With its capacity to analyze digit level parallelism, the Serial Montgomery Model 

can be used to evaluate the effects of adding parallelism to previous serial architectures.  

For example, a second digit multiplier can be added to the Eberle serial architecture, 

placing it into the CIOS/2 category of the new classification scheme.  Using the 

expressions provided, it will be straightforward to estimate the performance of the 

revised architecture.  In many cases it is expected that the Rescheduled Montgomery 

Multiplier can exploit digit level parallelism more efficiently than the previous serial 

architectures.  Accordingly, serial designs to a degree of concurrent digit multiplication is 

added can be compared to equivalent RMM designs with the same number of digit 

multipliers. 
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