


1 Abstract

To help the state of Texas plan pandemic influenza interventions, we build a stochastic

mixed-integer program to compute time-based antiviral releases. We can derive millions of scenarios

in the stochastic program from an epidemic simulator that accounts for large amount of uncertainty

in the disease progression. We study techniques to solve this problem, as a direct-solve is intractable.

2 Introduction

Influenza pandemics occur when novel strains of the influenza virus emerge in human pop-

ulations and spread around the globe. The primary control measures for pandemic influenza are

antiviral medications and vaccines [6] as well as non-pharmaceutical interventions such as social dis-

tancing measures, school closures, and hygienic precautions [15]. Although the efficacy of influenza

vaccines depends on factors such as patient age and viral type/subtype [12], they are arguably

the most important intervention strategy [4]. Since the development and deployment of effective

vaccines for a new influenza virus may take several months [3], antivirals and non-pharmaceutical

interventions are particularly critical for early pandemic control. Antivirals are thought to re-

duce disease severity and duration of infectiousness in individual patients, if taken sufficiently

early [6], and to protect contacts of infected individuals, if taken prophylactically [9, 10, 8]. Some

studies have even suggested that aggressive treatment policies can effectively mitigate local trans-

mission [2, 1]. In preparation for future influenza pandemics, the U.S. Department of Health and

Human Services (HHS) therefore maintains a large Strategic National Stockpile (SNS) of antiviral

drugs [19], and most states include SNS antivirals as a major component of their pandemic response

plans [20, 17, 7, 18].

The spread of an influenza pandemic is highly stochastic. Key quantities in describing a

pandemic are the disease reproduction number, R0, and age-specific case fatality rates. These de-
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termine the pandemic’s transmissibility and severity, respectively. We let the term disease scenario

refer to a specific spatiotemporal progression of the disease. Describing a pandemic using trans-

missibility, severity, and starting location is not sufficient to describe the disease scenario, as there

are many scenarios with those starting conditions.

We build a stochastic binary optimization model for spatiotemporal antiviral releases in an

influenza pandemic. We derive disease scenarios for this model from an epidemic simulator that

accounts for the large degree of uncertainty in the disease progression. Since different population

groups react differently to a pandemic, the optimization objective is to maximize the benefit from

delivering antivirals to the population in need. Benefit can be defined as hospitalizations averted,

deaths saved, or quality life years saved, for example.

At the start of a pandemic we have limited information about its origin, severity and trans-

mission. Public health officials making decisions of spatiotemporal release of antivirals can only

make their decisions based on the information they have available. To describe the available infor-

mation, we classify the evolution of the disease into “information sets” — blocks of weeks containing

different disease scenarios. At any time stage, a number of disease scenarios and information sets

are possible. However, at any time stage a scenario can only lie within a single information set.

An example of the relationship between time stages, information sets, and scenarios is provided in

Figure 1.

We use Texas as a case study for our analysis, using data from the 2009 H1N1 flu. Our initial

effort on developing spatiotemporal antiviral release schedules is used by the Texas Department

of State Health Services (DSHS) for guidance in future pandemics [11]. We provide a screenshot

of the tool in Figure 2. In the initial effort, to create a computationally tractable optimization

model, we average the number of individuals who fall sick across different scenarios in the same

information set. This averaging considerably reduces the problem size. In this report, we explain
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the drawbacks of this approach. In addition, we describe possible reformulations and associated

algorithms to make the optimization problem tractable in ways other than averaging. Finally,

we provide several examples that provide insight into the modeling of antiviral release schedule

optimization.

Figure 1: An example of the relationship between time stages, information sets, and scenarios. At
any time stage, a number of disease scenarios and information sets are possible. However, a scenario
can only lie within a single information set at a given time stage. Here ω7 is the true unknown
disease scenario, indicated in dotted lines. An information set is a group of disease scenarios for a
group of time stages. Public health officials cannot differentiate between the disease scenarios in
an information set, and thus have to pick one spatiotemporal strategy for each information set.

3 Modeling Framework

In this section we explain how we create disease scenarios, and describe the optimization

model for antiviral releases. Disease scenarios are created using an influenza simulator, as described

in Section 3.1. Section 3.2 describes a mixed integer program for computing an optimal release

schedule.
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Figure 2: Screenshot of Texas Antiviral Release Scheduling Tool [11]. The x-axis denotes bi-weekly
time stages, and the y-axis denotes the number of antivirals released. Some quantity of antivirals
are wasted on individuals who think they are sick, but are not. This wastage happens even under
an optimal release schedule.

3.1 Disease Scenarios

We use the Texas Pandemic Flu Exercise Tool, available at http://flu.tacc.utexas.

edu/exercise/, to create a library of disease scenarios. The scenarios in the library are grouped

by their type; i.e., severity and transmissibility, and geographic initial condition. We simulate five

historical epidemics and three geographic initial conditions, for a total of 15 scenario groups. Each

group includes 150 individual scenarios, for a library total of 2250 scenarios. We summarize the

transmissibility and severity parameters in Table2, while Table 2 summarizes the geographic initial

conditions.

v

http://flu.tacc.utexas.edu/exercise/
http://flu.tacc.utexas.edu/exercise/


Given the transmissibility, severity, and geographic initial condition parameters specified

in the Tables 2 and 2, we create a disease scenario in the following way. For each scenario, the

reproduction number, R0, is uniformly drawn from a range of specified values. Case fatality rates

are set to the reported point estimates. Each scenario is initialized with a small number of cases.

We first select a uniform random number between 1 and 10 to determine the number of counties

that contain initial cases. We choose these many counties based on the geographic conditions

specified in Table 2. To determine the number of cases in each county, we choose a uniformly

random number between 1 and 20 for each county.

Case-fatality rates Reproduction numbers

Pandemic type 0-4 years 5-24 years 25-49 years 50-65 years 65+ years Lower Upper

2009-like 0.000092 0.000168 0.000343 0.000253 0.000037 1.4 1.55
1968-like 0.000096 0.000134 0.000222 0.001377 0.010019 1.55 1.75
1957-like 0.0001 0.0001 0.0001 0.0025 0.02 1.55 1.75
1928-like 0.0087 0.0011 0.003 0.0098 0.0403 1.75 2.3
1918-like 0.0196 0.0156 0.016 0.0068 0.0151 1.75 2.3

Table 1: Parameters of five historical influenza pandemics. Age-specific case-fatality rates are
available for the 2009-like pandemic from [14], for the 1968-like and 1957-like pandemics from [13],
and for the 1928-like and 1918-like pandemics from [5].

3.2 Optimization Model

We summarize the notation for our different optimization models as follows:

Indices / Sets
t ∈ T time stages
θ ∈ Θ information sets about the disease
c ∈ C counties
ω ∈ Ω disease scenarios
t ∈ Tθ time stages at which information θ is available
ω ∈ Ωθ disease scenarios in information set θ
anc(θ, t) the information θ′ such that t ∈ Tθ′ and Ωθ ⊆ Ωθ′ . Intuitively, the information set of the

decision maker at time t, if currently the decision maker is in θ.

Data
sωct population in scenario ω, county c, stage t, that is seeking antivirals
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Geographic region Number
of counties
chosen

Location criteria Number of
initial cases

Random U ∼ (1, 10) uniformly random U ∼ (1, 20)
Random-weighted U ∼ (1, 10) uniformly random by population

weight
U ∼ (1, 20)

Migration-weighted U ∼ (1, 10) uniformly random from counties
bordering Mexico, weighted by mi-
gration rates

U ∼ (1, 20)

Table 2: Initial geographic conditions of influenza pandemic simulator. We choose three different
criteria for selecting the locations (counties) of the initial outbreak: random, proportional to pop-
ulation size, and proportional to cross-border migration rates [16]. In each case, the number of
initial counties is selected uniformly from 1 to 10 counties, and in each county, the number of initial
cases is selected uniformly from 1 to 20 cases.

Bωct benefit of providing antivirals in scenario ω, county c, stage t
pω probability that scenario ω occurs;

∑
ω∈Ω p

ω = 1
at antivirals available for release at stage t

Decision Variables
shωct number of antivirals on shelf in scenario ω, county c, stage t
fωct fraction of population who receive antivirals in scenario ω, county c, stage t
xωct 1 if entire population in need does not receive antivirals in scenario ω, county c, stage t;

0 otherwise
rθct number of antivirals released under information θ, in county c, stage t
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Formulation

z∗ = max
∑

t∈T,c∈C
Eω[Bωctf

ω
ct] (1a)

s.t. shωct = shωc,t−1 − fωc,t−1s
ω
c,t−1 + rθ,c,t,∀θ ∈ Θ, ω ∈ Ωθ, c ∈ C (1b)∑

c∈C,t′:t′≤t

ranc(θ,t′),c,t′ ≤
∑
t′:t′≤t

at′ , ∀t ∈ Tθ, θ ∈ Θ (1c)

fωcts
ω
ct ≤ shωct, ∀t ∈ T, ω ∈ Ω, c ∈ C (1d)

1− xωct ≤ fωct, ∀t ∈ T, ω ∈ Ω, c ∈ C (1e)

fωct ≥
shωct
sc,t,p

−M (1− xωct), ∀t ∈ T, ω ∈ Ω, c ∈ C (1f)

xωct = {0, 1}, ∀t ∈ T, ω ∈ Ω, c ∈ C (1g)

0 ≤ fωct ≤ 1, ∀t ∈ T, ω ∈ Ω, c ∈ C (1h)

shωct, rθct ≥ 0, ∀t ∈ Tθ, θ ∈ Θ, ω ∈ Ωθ, c ∈ C. (1i)

The objective function in equation (1a) maximizes the sum of the expected benefit derived

from antiviral pickups. The constraint (1b) computes antivirals on the shelf by considering roll-

over from the previous stage, pickups, and new releases. Specifically, the quantity fωcts
ω
ct is the

number of antiviral pickups in county c at stage t under scenario ω. The constraint (1c) bounds

the number of antivirals that can be released at any stage with those that are available. The

constraint (1d) analogously bounds the antivirals that get picked up at any stage, the left hand

side of the constraint, with antivirals on shelf. The constraint (1e) says that if all population groups

do not receive exactly the antivirals they seek (i.e., f < 1) then x is 1. When x = 1, constraint (1f)

says all antivirals on the shelf get picked up. When xωct = 0, constraint (1f) is vacuous, but fωct = 1

via constraints (1f) and constraint (1h). Intuitively, constraints (1e)-(1h) prevent the model from

having antivirals on the shelf that are not picked up by people who want them. They are required

because sometimes, the benefits of picking up antivirals are negative, for example if antivirals are

needed by a group of worried individuals who are not sick.

We note that fωct = min{1, sh
ω
ct

sωct
}. In other words, if the antivirals on the shelf exceed the
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population seeking them, i.e., shωct > sωct, then the entire population picks up antivirals. If the

antivirals on the shelf are short of the population seeking them, i.e., shωct < sωct, then all antivirals

are picked up.

4 Analysis

Our modeling framework resembles that of a stochastic programming model with relatively

complete recourse. The first stage deterministic decision variables are how many antivirals to release

spatiotemporally, across different information sets; i.e.,rθct. After the disease scenario is realized,

the model decides how many antivirals would be on the shelf, shωct, and how many antivirals would

get picked up by different population groups, fωcts
ω
ct. The following lemma makes these statements

precise.

Lemma 4.1. Given the values of rθct,∀θ ∈ Θ, c ∈ C, t ∈ T , the variables shωct and fωct are completely

determined ∀ω ∈ Ωθ, θ ∈ Θ, c ∈ C, t ∈ T .

Proof. We prove this by induction on t. We start with the base case, t = 1. From constraint (1b),

we have shωc1 = rθc1. Given shωc1, we determine fωc1 via fωct = min{1, sh
ω
c1

sωc1
}, and hence the base

case is true. Next, as the inductive hypothesis, we assume that the lemma is true for stage t − 1,

and we will show that it is also true for stage t. Again, via constraint (1b), we have shωct =

shωc,t−1 − fωc,t−1sωc,t−1 + rθ,c,t. However, shωc,t−1 and fωc,t−1 are determined by the release variables,

rθc1, rθc2, . . . rθct−1, by the induction hypothesis. Hence shωct is also determined as a function of the

release variables. Given shωct, we can further determine fωct via fωct = min{1, sh
ω
ct

sωct
}, and hence the

lemma holds for stage t.

Even in the absence of integer restrictions on the release and shelf variables, model (1) is
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intractable due to the large number of scenarios, ω ∈ Ω, a large number of binary variables xωct,

and the M in constraint (1f). We study methods to solve this problem.

4.1 Some reformulations

An LP relaxation of model (1) does not provide an optimal solution. Model (1) forces

fωct = min{1, sh
ω
ct

sωct
}; i.e., if an antiviral is available in a (c, t, ω) triplet then it gets picked up even if

it corresponds to a negative benefit, Bω
ct. An LP relaxation of model (1) instead chooses to wait to

have antivirals picked up until a positive benefit exists. We illustrate this via the following example.

Example For model (1), consider |C| = |T | = |Θ| = 1, |T | = 3, |Ω| = 2, and, pω1 = pω2 =

0.5, at1 = 11, at2 = at3 = 0, and other relevant data inputs as provided in Table (3). The optimal

solution to this problem is rt1 = 1, rt3 = 10, with an objective function value of 25. The solution

to the LP relaxation is rt1 = 10, rt3 = 1, but with an objective function value of 74.99. The LP

model allows only a small number of antivirals to get picked up at (ω2, t2) which has a negative

benefit, thus having fω1
t1

= fω2
t3

= 1. This is not possible in the original model which forces

fω1
t1

= fω2
t2

= 0.1, fω2
t3

= 1, despite the negative benefit of t2. Intuitively, the LP relaxation allows

roll-over on the shelf, without people who want antivirals, picking up available antivirals.

Table 3: Example data showing LP relaxation of model (1) and Algorithm (1) may not provide an
optimal solution. The table entries provide values for (Bω

c,t, s
ω
c,t), respectively.

Scenario/Time t1 t2 t3
ω1 100, 10 1,10 0,0
ω2 0,0 -100,10 50,10

In the initial study performed for DSHS [11], we average the population seeking antivirals

within an information set across all scenarios. Thus, instead of having decision variables for each
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scenario we have them only for information sets. We call this as the aggregated model. We illustrate

the aggregated model via an example, which also shows a potential drawback of this approach.

Example For model (1), consider |C| = |T | = |Θ| = 1, |Ω| = 2, and, sω1
ct = 10, sω2

ct = 1, at =

10, pω1 = pω2 = 0.5, Bω1
ct = 10, Bω2

ct = 1. The optimal value of this model is 5.5 with all ten antivirals

being released, and f = 1 for both scenarios. In the aggregated model, we have sθct = 10+1
2 = 5.5.

The optimal value is again 5.5, but with only 5.5 antivirals being released. Thus, in the aggregated

model under scenario ω2 the model creates a shortage of antivirals for 4.5 people. Ultimately, a

state health agency is interested in the antiviral release schedule, and typically prefers covering

individuals to the negative effects of wasting antivirals. As such, the antiviral release schedule from

the aggregated model does not perform as well as possible.

Finally, we also provide a robust formulation for model (1) in model (2).

z∗ = max y (2a)

s.t. y ≤
∑

c∈C,t∈T
Bωctf

ω
ct,∀ω ∈ Ω (2b)

(1b), (1c), (1d), (1e), (1f), (1g, (1h), (1i). (2c)

Model (2) is a standard way for modeling a worst-case approach. However, this formulation does

not provide a useful solution for antiviral release schedules. In the presence of even a single scenario

with negative benefits in all (county, time stage) pairs, the robust model would release no antivirals

for the entire information set. This behavior does not capture the kinds of optimization sought by

a public health agency. Specifically, an agency might lean entirely the other way, where they prefer

to release antivirals even if only a single scenario has positive benefits. We are studying alternate

worst case formulations which would have more suitable interpretations.
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4.2 An Algorithm

Algorithm 1 describes a possible method to compute antiviral release schedules. The in-

tuition behind the algorithm is to release a single antiviral to the (county, time stage) pair with

the maximum myopic benefit, defining benefit as the expected benefit across all scenarios. This

single antiviral is released from the closest preceding time stage where antivirals are available. The

algorithm stops releasing antivirals when we have distributed all available antivirals or when there

are no more (county, time stage) pairs left with a positive benefit.

This greedy scheme is optimal for releasing a single antiviral. This method either presents

a heuristic, or can be guaranteed to produce correct solutions under some conditions. We have not

yet verified the conditions under which it produces correct solutions. On the other hand, we have

tested the algorithm on several random instances and it provides optimal release schedules in those

instances. For sufficiently small instances of the problem—with few (county, time stage) pairs—we

can run the algorithm as well as the optimization model on a laptop.

In an effort to prove the conditions under which the algorithm produces optimal solutions,

we have created an example where it fails. This example provides intuition that the algorithm fails

when the instance has large negative benefits for some scenarios. We are currently working on a

proof based on this intuition.

Example For model (1), consider |C| = |T | = |Θ| = 1, |T | = 1, |Ω| = 2, and, pω1 = pω2 =

0.5, at1 = 3, Bω1
c1,t1

= −20, Bω2
c1,t1

= 27, sω1
c1,t1

= 2, and sω2
c1,t1

= 3. The optimal solution to to release

three antivirals, for an objective function value of 3.5. The algorithm, however, myopically sees

that releasing one antiviral gives a benefit of −1, and thus stops at the first iteration. Algorithm 1

releases antivirals only when a non-negative benefit can be realized.
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Algorithm 1 Antiviral Release algorithm

1: Initialize:
rctθ ← 0, ∀θ ∈ Θ, t ∈ T, c ∈ C
shωct ← 0,∀ω ∈ Ω, t ∈ T, c ∈ C
Dct ← 0,∀c ∈ C,∀t ∈ T

2: while at 6= 0∀t ∈ T or Dct ≥ 0∀c ∈ C, t ∈ T do
3: for c ∈ C, θ ∈ Θ, ω ∈ Ω, t ∈ Tθ, do
4: t′ = min {k|k ≥ t, shωck < sωck, s

ω
ck > 0}

5: if t′ 6= ∅ then dωct ← Bω
ct′ ;

6: else dωct ← 0
7: end if
8: end for
9: Dct = E(dωct), ∀c ∈ C, t ∈ T

10: (c∗, t∗)← argmaxDct

11: t′′ = max {k|k ≤ t∗, ak > 0}
12: Update:

a′′t ← a′′t − 1
shωc∗t∗ ← shωc∗t∗ + 1 ∀ω ∈ Ω
rc∗t∗θ ← rc∗t∗θ

13: end while

4.3 Computation

We use GAMS to model all of our work. We created and tested random instances of

model (1) to test our work, and provide insightful examples presented above. Thus, we concluded

that the aggregated model, the LP relaxation, and the robust model all lead to solutions that are

not typically applicable to antiviral release schedules. In addition to running the small examples

we describe on a laptop, we ran larger instances on the supercomputers available at the Texas

Advanced Computing Center (TACC). One larger instance had sets of size |C| = 254, |T | = 451 to

describe daily antiviral releases Texas counties over 15 months. In reality, weekly release schedules

would be more appropriate for the application, but we consider this large instance to push the

computational boundaries of the model. Even with only two disease scenarios, the resulting model

builds up to a size of around 11 GB of memory and crashes. This illustrates the need for a tractable
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formulation or for efficient heuristics.

5 Future work

We are studying the hardness of model (1). This can be done by a reduction from a known

NP hard problem. We are also investigating conditions under which the algorithm produces optimal

solutions, in addition to the use of sophisticated data structures for optimizing the running time

of the algorithm. We continue to seek tractable formulations of the proposed optimization models,

and we continue to test possible solutions on the supercomputers available at the TACC. Finally,

we seek to provide guidelines from our models to the state of Texas for deciding future antiviral

releases.
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