
Copyright

by

Robert Davis Bock

2002



The Dissertation Committee for Robert Davis Bock
Certifies that this is the approved version of the following dissertation:

Gravitation and Electromagnetism

Committee:

William C. Schieve, Supervisor

Larry Horwitz

William Jefferys

Richard Matzner

Yuval Ne’eman

Linda Reichl



Gravitation and Electromagnetism

by

Robert Davis Bock, B. Sc

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2002



To my parents



Acknowledgments

I would like to thank my parents for their unending support. I would

also like to thank Professor W. Schieve and Professor L. Horwitz for their

input.

v



Gravitation and Electromagnetism

Publication No.

Robert Davis Bock, Ph.D.

The University of Texas at Austin, 2002

Supervisor: William C. Schieve

The theory of general relativity unifies gravitation with the geometry of space-

time by replacing the scalar Newtonian gravitational potential with the sym-

metric metric tensor gµν of a four-dimensional general Riemannian manifold by

means of the equivalence principle. As is well known, the electromagnetic field

has resisted all efforts to be interpreted in terms of the geometrical properties

of space-time as well. In this investigation, we show that the electromagnetic

field may indeed be given a geometrical interpretation in the framework of a

modified version of general relativity - unimodular relativity. According to

the theory of unimodular relativity developed by Anderson and Finkelstein,

the equations of general relativity with a cosmological constant are composed

of two independent equations, one which determines the null-cone structure

of space-time, another which determines the measure structure of space-time.

The field equations that follow from the restricted variational principle of this

version of general relativity only determine the null-cone structure and are

globally scale-invariant and scale-free. We show that the electromagnetic field
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may be viewed as a compensating gauge field that guarantees local scale in-

variance of these field equations. In this way, Weyl’s geometry is revived.

However, the two principle objections to Weyl’s theory do not apply to the

present formulation: the Lagrangian remains first order in the curvature scalar

and the non-integrability of length only applies to the null-cone structure.
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Chapter 1

Introduction

Einstein’s theory of general relativity [16, 21] is considered one of the

greatest intellectual achievements of twentieth century physics. It is a theory

of gravity that resulted from Einstein’s deep philosophical convictions about

the nature of physical laws. Throughout his arduous path to formulate a

generally covariant theory Einstein was guided by a simple experimental fact:

the equality of gravitational and inertial mass. Gravitation and the space-time

manifold became inextricably linked in the natural language of Riemannian

geometry as Einstein yet again revolutionized our conception of space and

time. Even Einstein’s own revolutionary postulate of the constancy of the

speed of light was revised in the wake of his new theory. General relativity

has enjoyed overwhelming success since its inception.

However, the theory of general relativity does not offer a geometrical

interpretation in terms of the space-time manifold of the other fundamental

forces of nature: the electromagnetic, weak, and strong forces. The electro-

magnetic field, for example, also manifests itself in our everyday experience; it

also possesses an infinite range of influence as well as a propagation speed equal

to that of gravitation. The field equations of electromagnetism, Maxwell’s
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equations, may be generalized in order to accommodate a gravitational field

and the Maxwell stress-energy tensor enters the gravitational field equations

naturally as the source for the gravitational field. Yet, the electromagnetic

field may not be interpreted in terms of the geometrical properties of space-

time. This difficulty has led many, including Einstein himself, to generalize

Riemannian geometry in order to cast the electromagnetic potentials into the

underlying geometrical framework [41, 43]. The problem was attacked primar-

ily from a mathematical point of view, as various authors identified particular

restrictions imposed by the choice of a four-dimensional Riemannian manifold

and examined the consequences of their mitigation.

For example, in 1918 Weyl [56, 57, 58, 59, 60] generalized Riemannian

geometry by introducing a change of scale to supplement the coordinate trans-

formations of general relativity. By relaxing the requirement of the constancy

of length under the parallel displacement of vectors he observed that a four-

vector potential emerged, which he identified with the electromagnetic four-

vector potential. Therefore, according to this theory, the electromagnetic po-

tentials determined the path-rescaling of length in an analogous manner that

the metric potentials determined the path dependence of direction. Weyl thus

developed an elegant mathematical structure that treated electromagnetism as

a manifestation of geometry. This theory even predicted the perihelion preces-

sion of Mercury in addition to the bending of light rays in a gravitational field

[43]. However, the physical interpretation of Weyl’s scale change was proven

unreasonable by Einstein [39, 43].
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With the same goal in mind, Kaluza [31] proposed a five-dimensional

generalization of Einstein’s theory by adding to the 4D space-time manifold

an additional coordinate x5. The fifth dimension assumed a distinct role via

the “cylinder condition” by which all derivatives with respect to x5 vanished.

Interpreting four of the additional metric components as the electromagnetic

potentials he showed that in weak fields and for non-relativistic velocities his

theory reproduced the Einstein-Maxwell field equations and the equations of

motion of a charged particle in a combined gravitational-electromagnetic field.

A few years later Klein [33] showed that these approximations were unnec-

essary and in addition discussed a connection between this formalism and

quantum theory [34]. Subsequent work has incorporated additional dimen-

sions in order to include the strong and weak forces as well (for reviews see

Appelquist et al. [4] and Overduin and Wesson [40]).

Eddington [15], Einstein [41, 43], and Schrodinger [52], also participated

in the unification program. Eddington and Schrodinger focused primarily on

the notion of the affine connection and attempted to develop purely affine

theories; they treated the metric tensor as a secondary item. Einstein, on the

other hand, worked incessantly on many different theories. For example, he

considered five-dimensional theories, purely affine theories, and nonsymmetric

metrico-affine theories, among others. Unfortunately, the lack of a physical

principle resembling the equality of gravitational and inertial mass, as in the

gravitational problem, rendered the number of such unified theories unlimited.

It is safe to say that a satisfactory understanding of the connection
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between gravitation and electromagnetism did not emerge from the early uni-

fication program. Of course modern gauge theory has brought investigators

a step closer. It is now generally believed that the gravitational and electro-

magnetic fields both possess a common gauge structure. As is well known

the electromagnetic field may be derived by demanding invariance of the La-

grangian for a complex scalar field under local U(1) phase transformations [50].

Similarly, the U4 theory of gravity [27], which is a generalization of Einstein’s

general relativity, emerges by demanding invariance under the local Poincaré

group. While the Poincaré group is the symmetry group of space-time, the

group U(1) is an internal symmetry group and is unrelated to the space-time

manifold. Therefore, modern gauge theory does not succeed in casting the

electromagnetic potentials into the space-time manifold even though it is in-

deed a great step forward in the problem of unification.

The purpose of this investigation is to return to the original problem of

unification. Our goal is to cast the electromagnetic potentials into the geomet-

rical framework. We begin, in Chapter 2, with a brief review of the traditional

gravitational and electromagnetic fields. Each field is first discussed sepa-

rately. Einstein’s general theory of relativity is reviewed and it is followed by

a review of Maxwell’s equations of electrodynamics. Gravitation and electro-

magnetism are then discussed simultaneously; we examine how the equations

of each theory may be changed in order to accommodate the presence of the

other field. Thus, Einstein’s field equations are modified in order to include

an electromagnetic field and the equations of electromagnetism are written in
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the presence of a gravitational field. We also discuss alternate formulations

of general relativity, in particular, Rosen’s bimetric theory and Brans-Dicke

theory.

In Chapter 3 we review some of the previous attempts to unify the grav-

itational and electromagnetic fields. Since it is beyond the scope of this work

to discuss all of the previously proposed theories, we focus on the important

contributions that shaped the manner in which the problem was subsequently

attacked. We begin with a review of Weyl’s proposal which generalizes the

Riemannian manifold by relaxing the restriction of length preservation under

vector transplantation. Weyl’s theory inspired the purely affine approach of

Eddington, which in turn, was further developed by Einstein and Schrodinger.

Next we turn our attention to five-dimensional Kaluza-Klein theory and ex-

amine gravitational theory in five dimensions. By restricting the set of trans-

formations to a special subset of the full five-dimensional coordinate trans-

formations we show how this theory reproduces the usual four-dimensional

gravitational field equations in the presence of an electromagnetic field. We

also discuss generalizing these field equations in order to include a scalar field.

This chapter is concluded with a brief discussion about the common gauge

structure of gravitation and electromagnetism.

In Chapter 4 we lay the groundwork for a new unified theory of gravita-

tion and electromagnetism that is associated with the group of scale transfor-

mations of the metric tensor. First we show that general coordinate invariance

and scale invariance of the action are fundamentally incompatible in gravita-
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tional theory. Since the gravitational action is not invariant under global scale

transformations one cannot proceed in the usual manner of gauge theory and

introduce a compensating gauge field that cancels the offending terms when

the parameters of the conformal group are permitted to depend on the space-

time coordinates. Therefore, we develop a new method of incorporating local

scale invariance into general relativity. First, we reformulate general relativity

so that the scale dependence is removed from the field equations themselves.

This is accomplished by a well-known procedure developed by Anderson and

Finkelstein [3] for introducing the cosmological constant into general relativity.

Thus, general relativity with a cosmological constant may be viewed as a union

of two independent equations. One of these equations determines the null-cone

or causal structure of space-time; the other equation determines the measure

structure of space-time. We show that this bifurcation of general relativity

into two independent components suggests a new relationship between geome-

try and space-time measurements. This naturally leads to the introduction of

a Weyl manifold W that is not immediately identifiable with space-time, but

nonetheless permits a correspondence with space-time measurements.

In Chapter 5 we derive a generalized set of field equations. Since

the field equations that determine the null-cone structure are globally scale-

invariant and scale-free, and are furthermore independent of the measure equa-

tion, we consider them the dynamical equations of a globally scale-invariant

theory. We demand local scale invariance of this theory and see that the

electromagnetic field may indeed be treated as a compensating gauge field as-
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sociated with the group of local scale transformations. The measure structure

is left undetermined by the field equations and is introduced as an external

field which is treated as an absolute object. This theory shares similarities

with Weyl’s unified theory but does not yield to the same criticisms, since the

Lagrangian is first order in the curvature scalar and Einstein’s objection does

not apply.

In Chapter 6 we summarize and discuss the results of this investigation.

In this work we use Gaussian cgs units and the following notation:

Greek indices run from 0 . . . 3, lower-case Latin indices run from 1 . . . 3, and

upper-case Latin indices denote 0 . . . 3, 5. The signature of 4D space-time is

+−−− and 5D space-time is +−−−−. In addition, the Einstein summation

convention applies for repeated indices.

7



Chapter 2

The Gravitational and Electromagnetic Fields

We begin our investigation by first introducing the gravitational and

electromagnetic fields separately. We then discuss these fields together by

considering the changes incurred in Einstein’s field equations due to the pres-

ence of an electromagnetic field as well as the equations of electromagnetism

in the presence of a gravitational field. Any theory that purportedly unifies

gravitation with electromagnetism must be able to reproduce these equations

identically, or at least in some well-defined limit. This is not intended to be a

complete review; we highlight the essential features that are relevant for the

developments to follow.

2.1 Gravitation

As is well known Einstein [16] replaced the scalar Newtonian gravita-

tional potential with the symmetric metric tensor gµν of a four-dimensional

general Riemannian manifold. Hence, he suggested that the gravitational field

determines the square of the distance in a coordinate system S : {xα} be-

tween two infinitesimally separated space-time points xα and xα + dxα by the
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relation:

ds2 = gµνdx
µdxν. (2.1)

The differential quadratic form ds2 is invariant under an arbitrary transforma-

tion to a new system of coordinates S ′ : {x′α} related to the first system by a

coordinate transformation of the form:

xµ = fµ(x′α). (2.2)

Infinitesimally small test particles and light propagation are governed by geo-

desic equations in this Riemannian space, which are derived by minimizing the

quantity:
∫

ds (2.3)

between two fixed points. In an inertial system of coordinates the line element

(2.1) becomes:

ds2 = ηµνdx
µdxν, (2.4)

where ηµν is the special-relativistic Minkowski metric:

ηµν =









+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (2.5)

The use of a general Riemannian space requires one to generalize many

of the mathematical operations that are trivial in Minkowski space (see Ref-

erences [1] and [11] for excellent introductions to the mathematical formula-

tion of general relativity). For example, the components of a vector do not
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necessarily remain constant under an infinitesimal displacement between two

neighboring points. Rather, given an arbitrary vector Aµ at a point P (xµ),

one obtains a new vector Aµ + dAµ upon displacing the vector from the point

P (xµ) to a new point Q(xµ + dxµ) in infinite proximity. The change dAµ is

determined by the law of parallel displacement. For a Riemann space this is

derived by first assuming that the change in the vector is a bilinear function

of the displacement and the vector components, and then demanding that the

scalar product between two arbitrary vectors remains constant under such a

displacement. Thus, the change in an arbitrary vector Aµ under an infinitesi-

mal displacement dxµ in a Riemann space is given by the expression:

dAµ = −Γµ
ρσA

ρdxσ, (2.6)

where Γµ
ρσ is the Christoffel symbol of the second kind:

Γµ
ρσ =

gµα

2

(

∂gαρ

∂xσ
+
∂gασ

∂xρ
− ∂gρσ

∂xα

)

. (2.7)

The above expression is symmetric in the two lower indices of Γµ
ρσ . Note that

dAµ = 0 for the case gµν = ηµν , as expected.

The covariant derivative of a contravariant vector field in a Riemann

space is defined as:

Aµ
;ν =

∂Aµ

∂xν
+ Γµ

νρA
ρ. (2.8)

This definition may be generalized to tensors with an arbitrary number of

covariant and contravariant indices. For example, the covariant derivative of

the tensor T αβ is given by:

T αβ
;ν =

∂T αβ

∂xν
+ Γα

τνT
τβ + Γβ

τνT
ατ . (2.9)
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In a general Riemannian space covariant derivatives do not necessarily com-

mute. We may characterize this non-commutability by the Riemann curvature

tensor Rα
νβγ . It is defined by the following expression:

Aα
;β;γ − Aα

;γ;β = Rα
νβγA

ν. (2.10)

Using equation (2.8) this gives explicitly:

Rρ
αβγ =

∂Γρ
αγ

∂xβ
−
∂Γρ

αβ

∂xγ
+ Γδ

αγΓ
ρ
βδ − Γδ

αβΓρ
γδ. (2.11)

General relativity unifies the so-called “fictitious forces” which are ob-

served in noninertial reference frames with the real or permanent gravitational

fields that are due to local masses. Indeed, the principle of equivalence states

that a noninertial system of reference is equivalent to an inertial system that

is permeated by a gravitational field; such fields are also called non-permanent

gravitational fields. For example, a uniformly accelerated system of reference

is identical to an inertial frame in the presence of a constant, external gravi-

tational field.

While fundamentally related, permanent and non-permanent gravita-

tional fields may be distinguished by their behavior at infinity. Non-permanent

gravitational fields remain finite or may even increase without limit at infinity;

real gravitational fields due to local masses, on the other hand, disappear at

infinite distances from the bodies producing these fields. For example, while

the gravitational field of a localized mass disappears at infinite distances from

the mass distribution, an external gravitational field due to a uniformly ac-
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celerated system of reference is the same over all space and hence non-zero at

infinity.

In addition, non-permanent gravitational fields may be distinguished

from real gravitational fields with the use of the Riemann curvature tensor.

Non-permanent fields to which noninertial reference systems are equivalent are

characterized by a vanishing curvature tensor. In such cases space-time is said

to be flat, or equivalently, Galilean. This implies that a coordinate system

exists such that the metric potentials assume the simple diagonal form ηµν of

special relativity. This is easily understood by calculating the curvature tensor

for a flat space-time. Since the components ηµν are constant we obtain:

Rρ
αβγ = 0. (2.12)

The above equation is a tensor equation and therefore it is valid for all frames

connected to the flat-space metric by a transformation of the form (2.2). Thus,

a vanishing curvature tensor indicates that the metric potentials gµν are con-

nected to the Minkowski metric ηµν by a general transformation of the coor-

dinates. In other words, an inertial system may be defined globally. In such

a manifold one may establish a contravariant vector field Aα by parallel dis-

placement from an initial point to all other points in the manifold independent

of the path. A real gravitational field, on the other hand, possesses a non-zero

Riemann curvature tensor and therefore may not be transformed away glob-

ally by a general transformation of the coordinates. Such a space-time is said

to be curved. When this is the case the change of a vector under parallel
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displacement is non-integrable and therefore path-dependent. Hence, in a per-

manent gravitational field, parallel displacement of a vector from an initial

point P (xµ) around a closed curve may produce a new vector upon return to

the same initial point P (xµ). The net change in an arbitrary contravariant

vector Aµ from the parallel displacement around a closed curve enclosed by

the two infinitesimal displacement vectors dx(1) and dx(2) is determined by the

Riemann curvature tensor according to the relation:

∆Aα = Rα
βηγA

βdxη
(1)dx

γ
(2). (2.13)

For an actual gravitational field the Riemann curvature tensor may

not be specified arbitrarily over all of space-time. The metric potentials must

satisfy a certain set of differential field equations supplemented by appropriate

boundary conditions. The field equations for a permanent gravitational field

are called Einstein’s field equations and follow naturally from a variational

principle. The action IG for the pure gravitational field may be determined

uniquely from reasonable mathematical restrictions. First, we note that the

action must be expressed in terms of a scalar integral over a given domain D

of space-time:

IG =

∫

D

LG

√−g d4x, (2.14)

where LG is the Lagrangian for the gravitational field and g is the determinant

of the metric tensor. Since the four-dimensional volume element
√−g d4x is an

invariant the quantity LG must be a scalar. Of course it is not possible to form

a scalar from the metric potentials gµν and the Christoffel symbols Γµ
ρσ alone
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because one may always choose a coordinate system such that the quantities

Γµ
ρσ vanish at a given point. Thus, it is easy to see that LG must contain second

derivatives of the metric potentials in order to remain invariant under general

coordinate transformations. However, if we demand that the resulting field

equations contain derivatives of the metric tensor no higher than the second,

then the second derivatives must enter the variational principle linearly in order

not to introduce third-derivative terms into the field equations. In order to

satisfy this demand, we consider the doubly contracted form of the curvature

tensor itself. The first contracted form of the Riemann curvature tensor is

called the Ricci tensor:

Rρ
αρβ = Rαβ. (2.15)

The second contracted form of the Riemann tensor is obtained by contracting

the Ricci tensor:

R = Rα
α = gαβRαβ. (2.16)

This is the Ricci scalar curvature. The scalar curvature R is the only quantity

constructed from the metric tensor and its first and second derivatives alone,

linear in the latter, that is an invariant. Therefore, we see that the choice of

the Lagrangian for the pure gravitational field is unique:

LG = R. (2.17)

Thus the action for the pure gravitational field is given by:

IG =

∫

D

R
√−g d4x. (2.18)
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The field equations are determined by the variational principle:

δIG = 0. (2.19)

The components gµν themselves are varied independently subject only to the

requirement that their variations δgµν as well as the variations of their first

derivatives δ
(

∂gµν

∂xλ

)

vanish on the boundary of integration. The resulting field

equations are:

Gµν = 0, (2.20)

where Gµν ≡ Rµν − 1
2
Rgµν is the divergenceless Einstein tensor. These equa-

tions are known as the Einstein free-field equations for the metric tensor gµν .

Contracting the above equation we see that the Ricci scalar also vanishes for

the free-field case; consequently, the free-field equations may also be written

as:

Rµν = 0. (2.21)

If additional fields are present then they may be included in the action

by adding terms representing these matter fields to the pure gravitational

Lagrangian:

I =

∫

D

(R− 2κLF )
√
−g d4x, (2.22)

where κ is a constant and LF describes all fields except the gravitational field.

Again, the variational principle:

δI = 0, (2.23)
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yields the field equations:

Gµν = κTµν , (2.24)

where Tµν is the energy-momentum tensor of all the other fields. These are

Einstein’s field equations in non-empty space. The constant κ is determined

by demanding that the field equations reproduce the equations of Newtonian

gravitational theory in the appropriate limit. Thus, by considering a source

with a low proper density moving at a low velocity, one may show that equation

(2.24) yields the classical equation of the gravitational field if we make the

identification:

κ =
8πG

c4
= 2.08 × 10−48cm−1g−1s2. (2.25)

2.1.1 The Cosmological Constant

General relativity provides a partial realization of Mach’s principle in

physics. Mach’s principle states that inertia cannot be defined relative to ab-

solute space, but must be defined relative to the entire matter content of the

universe. Thus, guided by Mach’s principle, Einstein believed that the quan-

tities Tµν should determine the gravitational field uniquely and in a generally

covariant manner. Indeed, the matter tensor Tµν serves as the source of the

field gµν in equation (2.24). However, it also follows from Mach’s principle that

the quantities gµν should vanish in the absence of matter, i.e. gµν = 0 when

Tµν = 0. Since Einstein’s equations (2.24) admit the solution gµν = constant

for matter-free space, there exists an apparent contradiction with Mach’s prin-

ciple. Therefore, Einstein [17] proposed a modified set of equations that were
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consistent with general covariance:

Rµν −
1

2
Rgµν + Λgµν = κTµν, (2.26)

where Λ is the cosmological constant. Einstein hoped that his reformulation of

the field equations with a cosmological constant would eliminate solutions in

the absence of mass, giving gµν = 0 when Tµν = 0. Also, he wanted to obtain

static cosmological solutions from the gravitational field equations because,

he observed, the relative velocities of the stars were small compared to the

velocity of light. Soon afterward, de Sitter [12] showed that a solution to

(2.26) with non-zero gµν existed even in the absence of matter [54]:

ds2 =
1

cosh2Hr

[

c2dt2 − dr2 − 1

H2
tanh2Hr(dθ2 + sin2 θdφ2)

]

, (2.27)

where H =
√

Λ/3. Subsequently, Hubble discovered the expansion of the

universe. Thus, Einstein retracted his proposal.

However, the cosmological constant has reappeared frequently ever

since, for there is no principle that prohibits its inclusion in the field equa-

tions. Nowadays the cosmological constant is interpreted as a contribution to

the total effective vacuum energy density ρV :

ρV = ρ0 +
Λ

8πG
, (2.28)

where ρ0 is the vacuum energy density. Current measurements of the cosmo-

logical expansion indicate an extremely small cosmological constant:

|ρV | < 10−29gcm3 ∼ (10−11GeV)4, (2.29)

much smaller than the underlying field zero-point energies of particle physics.
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2.2 Electromagnetism

We now discuss the electromagnetic field in the absence of gravitation;

hence, we assume that space-time possesses the metric ηµν . The electromag-

netic field is described by an antisymmetric second-rank tensor, the electro-

magnetic field-strength tensor Fµν , which satisfies [1, 30]:

∂Fµν

∂xλ
+
∂Fλµ

∂xν
+
∂Fνλ

∂xµ
= 0. (2.30)

Equation (2.30) is simply the necessary and sufficient condition that Fµν is

closed and has a tensor potential; hence the field strength tensor Fµν may be

written as a curl of a covariant vector φµ:

Fµν =
∂φµ

∂xν
− ∂φν

∂xµ
. (2.31)

The above relation is invariant under the so-called gauge transformations:

φµ → φµ +
∂f

∂xµ
, (2.32)

where f = f(xα) is an arbitrary function of the space-time coordinates. The

quantities φµ are the covariant components of the electromagnetic four-vector

potential defined such that in rectangular Galilean coordinates:

φµ = (V,−Ax,−Ay,−Az) , (2.33)

where V is the scalar potential and the Ai are the components of the magnetic

vector potential. As with the gravitational field we may also associate with

the electromagnetic field an invariant differential form which we call dω. In
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contrast to the gravitational differential form, however, the electromagnetic

differential form is linear:

dω = φµdx
µ, (2.34)

and does not have a simple interpretation in terms of the metrical properties of

the continuum. Equation (2.34) is invariant under arbitrary four-dimensional

coordinate transformations but it is not invariant under gauge transformations;

it acquires an additional exact differential term.

The field equations for the external electromagnetic field may also be

derived from a variational principle. We write the action for the electromag-

netic field in the absence of gravitation as:

IEM =

∫

D

Ld4x, (2.35)

where L is the Lagrangian density for the electromagnetic field. If we include

a source four-vector sµ, then the electromagnetic Lagrangian is:

L = − 1

16π
ηµαηνβFµνFαβ +

1

c
ηµνφµsν, (2.36)

where sµ = (cρ,−j), ρ is the charge density, and j is the vector current density.

Variation of the quantities φµ in (2.35) yields:

∂F µν

∂xν
=

4π

c
sµ. (2.37)

Equations (2.30) and (2.37) are the Maxwell field equations in flat space-time.

The electromagnetic field-strength tensor is related to the electric field
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E and the magnetic field B by the following identification:

Fαβ =









0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0









. (2.38)

Thus, the Maxwell system of equations may also be written:

∇×B − 1

c

∂E

∂t
=

4π

c
j (2.39)

∇·E = 4πρ (2.40)

∇×E +
1

c

∂B

∂t
= 0 (2.41)

∇·B = 0, (2.42)

where ∇ ≡
(

∂
∂x
, ∂

∂y
, ∂

∂z

)

.

We may also distinguish between permanent and non-permanent elec-

tromagnetic fields. If the electromagnetic field tensor Fµν vanishes, or equiv-

alently, if dω is an exact differential, then one may transform using a gauge

transformation (2.32) to a “frame” in which the electromagnetic potentials

vanish identically: φµ = 0. This “frame” is analogous to the frame in the

gravitational case where the metric potentials assume the Galilean form ηµν ;

however, it does not possess a similar physical meaning. Unlike the four-

dimensional coordinate transformations, gauge transformations have no simple

physical interpretation in terms of real observers. Therefore, there has been no

reason to recognize electromagnetic fields with Fµν = 0 for they are believed

to possess no physical significance.
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2.3 Gravitation and Electromagnetism

2.3.1 Einstein’s Equations in the Presence of an Electromagnetic

Field

We have already shown how to modify Einstein’s free-field equations

if additional fields LF are present. Thus, the electromagnetic field may be

included in the gravitational action by adding the Lagrangian for the electro-

magnetic field into equation (2.22). The Lagrangian for the electromagnetic

field LF that enters equation (2.22) is obtained by replacing ηµν in (2.36) with

the curved space-time metric tensor gµν:

LF = − 1

16π
gµαgνβFµνFαβ +

1

c
gµνφµsν. (2.43)

Let us consider the addition of the electromagnetic field with a vanishing

source four-vector, sµ = 0. Using this Lagrangian, variation of the action

(2.22) yields Einstein’s equations for non-empty space (2.24), with the elec-

tromagnetic stress-energy tensor serving as the source:

Tµν =
1

4π

(

1

4
FαβF

αβgµν − FµαF
α

ν

)

. (2.44)

Because the electromagnetic field strength tensor is antisymmetric, the trace of

the electromagnetic stress-energy tensor vanishes. Thus, the gravitational field

equations (2.24) in the presence of the electromagnetic field (2.44) simplify to:

Rµν = κTµν . (2.45)
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2.3.2 Maxwell’s Equations in the Presence of a Gravitational Field

In the presence of a gravitational field Maxwell’s system of equations

(2.30) and (2.37) must be generalized in order to accommodate a curved space-

time. As if often the case, this may be accomplished by replacing partial

derivatives with the corresponding covariant derivatives. First we note that

equation (2.31) is not changed if the partial derivatives are replaced by covari-

ant derivatives:

Fµν = φµ;ν − φν;µ =
∂φµ

∂xν
− ∂φν

∂xµ
. (2.46)

Therefore, the relation between the electromagnetic potentials and the electric

and magnetic fields is not changed due to the presence of a gravitational field.

Next we consider the first set of Maxwell’s equations (2.30) in the pres-

ence of a gravitational field. The proper generalization is again achieved by

replacing the partial derivatives with covariant derivatives; due to the anti-

symmetry of Fµν these equations are also unchanged in a curved space-time:

Fµν;λ + Fλµ;ν + Fνλ;µ =
∂Fµν

∂xλ
+
∂Fλµ

∂xν
+
∂Fνλ

∂xµ
= 0. (2.47)

The second set of Maxwell’s equations (2.37) may be generalized in

either of two ways. We may replace the partial derivative in equation (2.37)

with a covariant derivative, or we may treat the electromagnetic potentials

as independent variables in a variational principle. The electromagnetic La-

grangian in a curved space-time is given by equation (2.43). Either method

produces the second set of Maxwell’s equations generalized to accommodate a
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gravitational field:

F αβ
;β =

1√−g
∂

(√−gF αβ
)

∂xβ
=

4π

c
sα. (2.48)

This set of Maxwell’s equations in curved space-time depends on the metric

potentials gµν. Thus, in order to solve the above system of equations one must

know the metric tensor. However, as we have shown above, the metric com-

ponents themselves depend on the electromagnetic field; the electromagnetic

stress-energy tensor serves as the source for the gravitational field. Therefore,

Maxwell’s equations and Einstein’s equations must be solved simultaneously.

The system of equations (2.45) and (2.48) constitute the coupled Einstein-

Maxwell system of equations.

2.3.3 The Equations of Motion of Test Particles

Guided by the equivalence principle, Einstein originally postulated that

the motion of all infinitesimal test particles in a pure gravitational field was

governed by the geodesic equations of a four-dimensional general Riemannian

space. This postulate was originally an axiomatic addition to the field equa-

tions of general relativity. Because the gravitational field equations are non-

linear and satisfy a set of four differential identities, the Bianchi identities:

Rµ
ναβ;γ +Rµ

νγα;β +Rµ
νβγ;α = 0, (2.49)

it was subsequently observed that the geodesic postulate need not be assumed

separately [22, 23, 25, 29]. In fact, the contracted Bianchi identities provide
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the covariant conservation law of energy and momentum:

T µν
;ν = 0, (2.50)

which in turn gives the motion and distribution of the matter producing the

gravitational field.

Hence, the Einstein field equations contain the equations of motion of

matter. In electrodynamic theory, on the other hand, Maxwell’s equations do

not determine the equations of motion of charges. As Bergmann states [5]:

In electrodynamics, the law of motion of charges does not follow

from the field equations; in other words, it may happen that the

charges do not obey Lorentz’s force law, although Maxwell’s field

equations are satisfied. In fact, this is the case - according to

classical electrodynamics - whenever the charges are subject to

nonelectric forces in addition to the Lorentz forces.

Of course, the fact that the distribution and the motion of charges may be pre-

scribed arbitrarily in electrodynamic theory is due to the linearity of Maxwell’s

equations. Indeed, a linear superposition of solutions to Maxwell’s equations

is also a solution, and therefore, the Maxwell field equations do not restrict the

dynamics of point singularities of the field. However, in the context of general

relativity, the equations of motion of charged particles may be obtained from

the covariant conservation laws of energy and momentum as well [11].
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2.4 Alternate Formulations of General Relativity

Einstein’s general relativity is the accepted theory of gravitation. How-

ever, over the years a number of alternate theories and formulations have ap-

peared (see Wesson [55] for a summary of many of the alternate proposals).

While it is out of the scope of this investigation to review all of these alter-

nate formulations, we include two important developments: Rosen’s bimetric

theory and Brans-Dicke theory.

2.4.1 Rosen’s Bimetric Theory

In order to improve upon the formalism of general relativity Rosen

[44, 45] introduced a second metric tensor γµν at each point in space-time.

Thus, in addition to the usual line element:

ds2 = gµνdx
µdxν, (2.51)

Rosen considered the Euclidean line element:

dσ2 = γµνdx
µdxν , (2.52)

for which the corresponding Riemann curvature tensor vanishes. This leads

to two different forms of covariant differentiation. Rosen refers to the usual

covariant differentiation based on the metric gµν (2.8) as g-differentiation. Sim-

ilarly, he calls the covariant differentiation based on the Euclidean metric γ-

differentiation and designates it with a comma. The second metric tensor γµν

along with the new form of covariant differentiation permits one to rewrite the
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Christoffel three-index symbol Γλ
µν as a sum of two terms:

Γλ
µν = Sλ

µν + Θλ
µν , (2.53)

where Θλ
µν is the Christoffel three-index symbol formed from the quantities

γµν, and Sλ
µν is a tensor given by:

Sλ
µν =

gλα

2
(gµα,ν + gνα,µ − gµν,α). (2.54)

Note that Sλ
µν is identical to Γλ

µν but with ordinary partial derivatives replaced

by γ-derivatives. One may now rewrite the Riemann curvature tensor as:

Rλ
µνω = Kλ

µνω + P λ
µνω, (2.55)

where Kλ
µνω has the same form as Rλ

µνω, but with ordinary partial derivatives

replaced by γ-derivatives, and P λ
µνω is the Riemann tensor formed from the

tensor γµν. Since the quantities γµν describe flat space-time their correspond-

ing Riemann tensor vanishes:

P λ
µνω = 0, (2.56)

and therefore the Riemann curvature tensor Rλ
µνω may be written as:

Rλ
µνω = Sλ

µω,ν − Sλ
µν,ω + Sλ

βνS
β
µω − Sλ

βωS
β
µν . (2.57)

Thus, one concludes that the Riemann curvature tensor may be rewritten

with the quantities Sλ
µν replacing the Christoffel three-index symbols Γλ

µν and

γ-differentiation replacing ordinary differentiation. Interestingly enough, each
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term on the right hand side of (2.57) is a tensor and therefore Rλ
µνω is a tensor

as well.

We may now use this new formalism to rewrite the equations of general

relativity. This may be accomplished as above by replacing Γλ
µν with Sλ

µν and

ordinary differentiation with γ-differentiation in the equations of Einstein’s

theory. Furthermore, upon integration one must also make the substitutions:

√−g →
(

g

γ

)1/2

(2.58)

and:

d4x→ √−γ d4x, (2.59)

where g and γ are the determinants of gµν and γµν respectively. Thus, Ein-

stein’s free-field equations become:

Rµν −
1

2
Rgµν = 0, (2.60)

where the first and second contracted forms of the Riemann curvature tensor

are now obtained from (2.57); and, the corresponding action is:

IG =

∫

L̄G

√
−γ d4x, (2.61)

where:

L̄G =

(

g

γ

)1/2

gµν(Sα
βµS

β
αν − Sα

αβS
β
µν). (2.62)

One varies the quantities gµν, not the quantities γµν, in the variational princi-

ple.
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The use of two metrics improves upon the formalism of Einstein’s theory

[35, 36, 37, 42, 44, 45]. For example, in Rosen’s bimetric general relativity one

may distinguish between a permanent gravitational field and a non-permanent

gravitational field in the presence of both types of fields. Since the quantities

Sλ
µν constitute a tensor and the quantities Θλ

µν may always be made to vanish by

a suitable coordinate transformation, Rosen identified Sλ
µν with the permanent

field and Θλ
µν with the inertial field. Furthermore, Rosen’s formalism provides

an energy-momentum density complex that transforms as a tensor which may

replace the usual energy-momentum pseudo-tensor of general relativity; and,

it permits four additional covariant conditions on the gravitational field that

may be used to restrict the form of the solution for a given physical system.

In Rosen’s formalism the covariance and equivalence principles by them-

selves do not single out Einstein’s theory uniquely because the use of the sec-

ond metric γµν increases the number of tensors and scalars that may be used

in formulating the field equations. Thus, Rosen’s formalism accommodates

additional theories of gravity which satisfy the covariance and equivalence

principles. Einstein’s general relativity is just one specific theory that results

from postulating, in addition to the covariance and equivalence principles, in-

variance of the field equations with respect to changes in the tensor γµν. Rosen

[46, 47, 48, 49] suggested an alternate theory of gravity that satisfies the co-

variance and equivalence principles as well, but has a simpler structure than

general relativity. He obtained these field equations from an action principle

and postulated that the Lagrangian for the gravitational field is a homogeneous
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function of degree zero in the gµν and its derivatives, and that the quantities

γµν appear only in order to provide contraction of all of the differentiation

indices. In place of Einstein’s free-field equations (2.60) Rosen discovered:

Nµν = 0, (2.63)

where Nµν = 1
2
γαβgµν,αβ − 1

2
γαβgλρgµλ,αgνρ,β. He found that for the case of a

static, spherically-symmetric field the theory gave results in agreement with

observation [46, 47]. Furthermore, he found that his new theory did not predict

black hole solutions at a time when the existence of black holes was still greatly

questioned. Lee et al. [24] also showed that it agrees with general relativity

in the post-Newtonian limit and therefore is indistinguishable from general

relativity according to intra-solar system experimental tests. However, it was

subsequently observed that this alternate theory of gravity predicts the emis-

sion of dipole gravitational radiation from binary systems containing neutron

stars that is incompatible with observation [61] (see also [9]). We emphasize

that the failure of Rosen’s alternate theory of gravity, which is not uniquely

determined by the bimetric formalism, does not prohibit the use of a second

metric tensor in general relativity. In fact, there are certain advantages in

reformulating Einstein’s theory with a second metric tensor.

2.4.2 Brans-Dicke Theory

As we discussed above, general relativity only provides a partial real-

ization of Mach’s principle in physics; a non-vanishing gravitational field exists
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even in the absence of matter. Furthermore, deSitter [12] showed that Ein-

stein’s field equations with a cosmological constant possess a non-zero solution.

In an attempt to rectify this situation, Brans and Dicke postulated that the

gravitational constant κ = 8πG
c4

is related to a new scalar field determined by

the total mass-energy of the universe. Because the absolute inertial mass of

a particle can only be measured by measuring its gravitational acceleration

GM/r2, it follows from this postulate that the entire mass-energy content of

the universe would determine inertial masses. Therefore, gravitational theory

would be compatible with Mach’s principle.

Brans and Dicke start with the gravitational action of general relativity:

δ

∫

[R−
(

16πG

c4

)

L]
√
−g d4x = 0. (2.64)

Dividing by G and adding the Lagrangian density of a new scalar field φ gives:

δ

∫
[

φR−
(

16π

c4

)

L− ω

(

φ,µφ
,µ

φ

)]√
−g d4x = 0, (2.65)

where ω is a dimensionless constant. The field φ is a new scalar field that deter-

mines the local value of the gravitational constant. The Lagrangian density of

matter is assumed to be the same as that in general relativity, and since its ac-

tion is invariant under arbitrary four-dimensional coordinate transformations,

the divergence of its Hamiltonian derivative vanishes:

T µν
;ν = 0. (2.66)

Consequently, the equations of motion of matter in a given field gµν are the

same as those in general relativity.
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Varying the quantities φ and φ,µ in the usual manner gives the dynam-

ical equations for the scalar field φ:

2ω

(4φ
φ

)

− ω

φ2
φ,µφ,µ +R = 0, (2.67)

where we use the notation 4 for the generally covariant d’Alembertian oper-

ator:

4φ ≡ φ,µ
;µ =

1√−g [
√−gφ,µ],µ. (2.68)

The field equations for the gravitational field gµν are obtained by varying the

metric potentials and their first derivatives, producing:

Rµν−
1

2
gµνR = −

(

8π

φc4

)

Tµν+
ω

φ2

(

φ,µφ,ν −
1

2
gµνφ,αφ

,α

)

+
1

φ
(φ,µ;ν − gµν 4 φ) .

(2.69)

Contracting the above equation gives:

−R = −
(

8π

φc4

)

T − ω

φ2
φ,αφ

,α − 3

φ
4 φ. (2.70)

Combining this equation with equation (2.67) produces a new wave equation

for φ:

4φ = − 8π

(3 + 2ω)c4
T. (2.71)

Equations (2.69) and (2.71) are the Brans-Dicke field equations. Since the

gravitational coupling is a function of space and time, Brans-Dicke theory

contains no fundamental length scale. Furthermore, when ω = − 3
2

and the

trace of the energy-momentum tensor vanishes, the equations are invariant

under local scale transformations.
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In the limit ω → ∞ the field equations of Brans-Dicke theory reduce to

Einstein’s theory. In their original paper, Brans and Dicke stated that ω must

be on the order of unity. Using the weak field approximation and the data

available at the time on the perihelion precession of Mercury, they concluded:

ω ≥ 6. (2.72)

However, recent solar system observations indicate:

ω > 500. (2.73)

Thus, even if Brans-Dicke theory is valid, it does not differ significantly from

Einstein’s relativity in its consequences.
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Chapter 3

Attempts to Unify the Gravitational and

Electromagnetic Fields

Einstein successfully unified gravitation with geometry by replacing the

flat Minkowski space-time of special relativity with a general Riemannian man-

ifold. After the advent of general relativity Einstein and others turned their at-

tention to generalizations of Riemannian geometry itself, hoping to incorporate

the electromagnetic field into the space-time manifold as well. In addition to

his desire to associate electromagnetism with geometry Einstein was motivated

by the belief that a unified field theory of gravitation and electromagnetism

would lead to a greater understanding of quantum theory. Furthermore, he had

hoped that a new theory would provide singularity-free particle-like solutions

which he had failed to derive from the free-field equations of general relativ-

ity [41]. This program immediately encountered much difficulty for there was

no principle, analogous to the equivalence principle, for the electromagnetic

force. As a result, the unification of gravitation and electromagnetism was

attacked primarily from a mathematical point of view; fundamental restric-

tions of Riemannian geometry were identified and then relaxed with the hope

that the number of components determining the space-time geometry would

increase just enough in order to accommodate the electromagnetic four-vector
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potential.

The two pioneers of unified field theory were the mathematicians Weyl

[60] and Kaluza [31]. Weyl’s theory inspired the purely affine theory of Ed-

dington [15], which was further developed by Einstein [20] and Schrodinger

[52]. Kaluza’s theory was independently improved upon by Klein [33], who

also discussed quantum theory in this context. In this chapter we review these

important contributions.

3.1 Weyl’s Theory

In a series of papers beginning in 1918 Weyl [56, 57, 58, 59, 60] de-

veloped a generalization of Riemannian geometry based on the notion of the

affine connection. He suggested that a true infinitesimal geometry should not

only subject the direction but also the magnitude of an arbitrary vector to a

set of integrability conditions. He claimed that it was due to the “accidental

development of Riemannian geometry from Euclidean geometry” [56] that we

are able to compare the magnitudes of two vectors situated at any two arbi-

trarily separated points in a Riemannian manifold. Therefore, Weyl relaxed

the Riemannian condition that the length of a vector and the scalar product

of two vectors remain unchanged under infinitesimal parallel displacements.

Let us consider an arbitrary contravariant vector Aµ. Weyl retains the

basic form of the parallel displacement law for the components Aµ:

dAµ = −Γµ
ρσA

ρdxσ, (3.1)

34



which is motivated by considering the change in the components of the vector

in an arbitrary coordinate system when it is constant in one system. How-

ever, Γµ
ρσ no longer represents the Christoffel connection. We recall that the

Christoffel connection is unique to a Riemann space and is derived by demand-

ing length preservation under parallel displacements. In order to determine an

expression for the generalized connection components Γµ
ρσ in Weyl’s geometry

one must postulate a law of parallel displacement for the length of the vector

as well. The length of the vector Aµ is defined in the usual manner as:

l2 ≡ ‖A‖2 = gαβA
αAβ. (3.2)

Weyl assumed, in analogy with the parallel displacement law (3.1), that the

increment in length under parallel displacement is a bilinear function of the

displacement and the length itself:

dl = −ϕβdx
βl, (3.3)

where the vector ϕβ serves as the connection coefficient for the parallel dis-

placement of length. We may now solve for the generalized connection coeffi-

cients Γµ
ρσ in terms of the metric tensor gµν and the vector ϕβ. Using equations

(3.1), (3.2), and (3.3), it is easy to show that:

(
∂gαβ

∂xγ
− 2gαβϕγ) + gσβΓσ

αγ + gσαΓσ
βγ = 0, (3.4)

for an arbitrary vector Aα and an arbitrary displacement dxα. By a cyclical

permutation of the indices one obtains three equations that may be solved
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simultaneously for the quantities Γα,ρσ. This produces:

Γα,ρσ = Γ∗
α,ρσ + (gαρϕσ + gασϕρ − gρσϕα), (3.5)

where Γα,ρσ = gαλΓ
λ
ρσ and Γ∗

α,ρσ is the usual Christoffel connection of Rie-

mannian geometry. Notice that Weyl’s geometry reduces to Riemannian geom-

etry when the vector ϕα vanishes. This is to be expected, for in this case the

change in the length under parallel displacement vanishes according to equa-

tion (3.3).

By generalizing the geometry to include changes in vector lengths un-

der parallel displacement, Weyl’s formalism places scale transformations of

the metric potentials on an equal footing with the arbitrary four-dimensional

coordinate transformations of general relativity; at each space-time point we

may multiply all elements of length by an arbitrary factor. Thus, the scale of

the metric is now arbitrary. Let us consider the transformation:

g′αβ = f(xµ)gαβ, (3.6)

where f(xµ) is an arbitrary function of the space-time coordinates. Under this

transformation, the vector field ϕα transforms according to:

ϕ′
α = ϕα − 1

2

∂ log f

∂xα
= ϕα − 1

2f

∂f

∂xα
, (3.7)

because of equation (3.3). Since transformation (3.6) may be interpreted as a

change of scale at each point of the manifold the transformation (3.6) is called

a gauge transformation and the vector ϕα is called a gauge vector field.
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Let us consider a vector of length lP at a point P and displace it to

an arbitrary point Q. Its length lQ at the point Q is obtained by integrating

equation (3.3):

lQ = lP exp

(

−
∫ Q

P

ϕµdx
µ

)

. (3.8)

Thus, if the linear form ϕµdx
µ is a total differential then the length of a vector

is independent of the path along which it is transferred. Therefore, Weyl’s

geometry may be reduced to Riemannian geometry by a transformation of

the form (3.6) if the vector field ϕα is a gradient vector field, that is, if the

quantities defined by the expression:

fµν ≡ ∂ϕµ

∂xν
− ∂ϕν

∂xµ
(3.9)

vanish. For a general Weyl geometry, however, the quantities fµν do not

necessarily vanish. Therefore, a non-trivial Weyl geometry is defined by a non-

zero antisymmetric tensor fµν that resembles the electromagnetic field strength

tensor (2.31). Furthermore, these quantities are scale (gauge) invariant; and,

because of equation (3.9) they also satisfy the first set of Maxwell’s equations:

∂fµν

∂xλ
+
∂fλµ

∂xν
+
∂fνλ

∂xµ
= 0. (3.10)

Weyl concluded that the quantities ϕα are proportional to the electromagnetic

four-vector potential φα and that the transformation (3.6) is an electromag-

netic gauge transformation (2.32) of the electromagnetic potentials. Indeed,

this is how transformation (2.32) acquired its name. Thus, Weyl’s proposal

placed the electromagnetic field-strength tensor Fαβ on an equal geometrical
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footing as the Riemann curvature tensor Rαµβν : just as the quantities Rαµβν

determine the path dependence of direction of an arbitrary vector, the quan-

tities Fαβ determine the path dependence of its length.

Weyl’s geometry naturally accommodates all operations of Riemannian

geometry that are defined solely by the concept of parallel displacement. Thus,

the covariant derivative of a contravariant vector field is again defined by:

Aµ
;ν =

∂Aµ

∂xν
+ Γµ

νρA
ρ. (3.11)

However, now the connection coefficients Γµ
νρ are defined by the more general

expression (3.5). As before, the curvature tensor follows by interchanging the

order of covariant differentiation:

Aα
;β;γ − Aα

;γ;β = Rα
νβγA

ν. (3.12)

Again, this procedure yields the expression:

Rα
νβγ =

∂Γα
βν

∂xγ
−
∂Γα

νγ

∂xβ
+ Γα

τγΓ
τ
βν − Γα

τβΓτ
γν . (3.13)

Because the quantities Γα
βν are now defined by equation (3.5) a complete ex-

pression for Rα
νβγ in terms of the metric tensor gµν and the vector ϕµ is

somewhat involved.

In Weyl’s geometry tensors are assigned a weight. The weight of a ten-

sor is defined by the factor of f(xα) it acquires under the transformation (3.6).

Thus, the metric tensor gµν by definition is weight +1; and, the inverse metric

tensor gµν is weight −1. Similarly, the quantity
√−g is weight +2. Since the
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quantities Γα
µβ are gauge invariant (weight 0) according to equation (3.5) the

Riemann curvature tensor Rα
νβγ is also gauge invariant. Consequently, the

Ricci scalar curvature R, which enters the action for the pure gravitational

field in conventional relativity is weight −1.

Weyl derived the field equations of his theory by postulating invari-

ance of the action under scale transformations (3.6) in addition to the general

four-dimensional coordinate transformations of general relativity. However,

the action from which Einstein’s equations are produced (2.18) is weight +1

and therefore is not gauge invariant. Thus, the demand for gauge invariant

physical laws forces one to use the square of the scalar curvature rather than

the scalar curvature itself in the action principle. This is an undesirable prop-

erty for quadratic Lagrangians lead to fourth-order differential equations [28].

Nevertheless, Pauli [43] showed that this theory reproduces the usual classi-

cal results of general relativity, namely, the perihelion precession of Mercury

as well as the bending of light rays by a gravitational field. However, Ein-

stein pointed out that according to equation (3.8) the readings of clocks would

depend on their prehistory, which is in conflict with the well-defined electro-

magnetic spectrum of chemical elements [39, 43]. As a result, Weyl was forced

to abandon his original proposal despite its mathematical elegance.

3.2 Eddington, Einstein, and Schrodinger

Eddington [15], Einstein [41, 43], and Schrodinger [52], also offered fun-

damental investigations into the mathematical foundations of general relativity
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in an attempt to incorporate the electromagnetic field into the space-time man-

ifold. Inspired by the work of Weyl, Eddington focused on the notion of the

affine connection and attempted to develop a purely affine theory, relegating

the metric to a derived, rather than a postulated quantity. Eddington called

this work a generalization of Weyl’s theory; however, Schrodinger states [51]

that this is a modest characterization, for it was a great step forward in the

development of the subject. Beginning with a symmetric affine connection as

the only primary quantity, Eddington showed that the Ricci tensor is not nec-

essarily symmetric and therefore may be separated into a sum of symmetric

and antisymmetric parts:

Rµν = R̄µν + Řµν , (3.14)

where R̄µν is symmetric and Řµν is antisymmetric. Eddington hoped to iden-

tify the antisymmetric term with the electromagnetic field strength tensor.

Indeed, he recognized that Řµν could be written as a curl of a four-vector.

Since the affine connections were the only primary quantities, the metric ten-

sor was not postulated from the beginning, but was derived as a secondary

quantity. Eddington derived the metric from the following scalar:

ds2 ≡ 1

λ
Rµνdx

µdxν =
1

λ
R̄µνdx

µdxν, (3.15)

where lambda is a constant. This suggests that the symmetric part of the

Ricci tensor may be identified with the metric tensor according to:

R̄µν = λgµν , (3.16)
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which is similar to Einstein’s field equations with a cosmological constant. Ein-

stein further elaborated on this theory by deriving the field equations for these

primary affine connections [20], using Eddington’s proposal that the square-

root of the determinant of the curvature tensor may serve as the Lagrangian

density. This approach was developed by Schrodinger [52] who also consid-

ered a purely affine theory with a non-symmetric affine connection. While

mathematically appealing none of these proposals were capable of reproduc-

ing Maxwell’s field equations.

As we mentioned above, Einstein participated in almost every aspect

of the unification program. He proposed a number of original ideas and also

followed many of the proposals of his colleagues to their logical conclusions [41].

Much of his early work was similar to the work of Eddington and Schrodinger;

as we mentioned above he elaborated on Eddington’s purely affine approach. In

later theories, Einstein treated both the metric tensor and the affine connection

as independent variables [41, 43]. In these attempts, Einstein relaxed the

symmetry of both the metric tensor and the affine connection. In so doing he

hoped to identify the electromagnetic field as an independent antisymmetric

entity within the resulting nonsymmetric terms. While he was able to recover

traditional gravitational theory in the usual symmetric limit, Einstein was not

able to duplicate Maxwell’s free-field equations in any of these attempts [41].
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3.3 The Kaluza-Klein Decomposition of 5D Relativity

Kaluza-Klein theory takes a different approach towards unification.

Rather than introducing a new class of connections or abandoning the sym-

metry of the metric tensor Kaluza-Klein theory retains the basic elements of

Riemannian geometry, but increases the dimension of the manifold from four

to five dimensions. Kaluza-Klein theory stands alone among all of the attempts

at a unification for it is the only theory capable of reproducing the coupled

Einstein-Maxwell system of equations exactly. We now proceed with a review

of the original Kaluza-Klein proposal, following Klein’s original presentation

[33].

Let us consider a five-dimensional space-time manifold with coordinates

{xA} = {xµ, x5}. The five-dimensional line element is given by:

dσ2 = γABdx
AdxB, (3.17)

and is invariant under general five-dimensional coordinate transformations:

xA = fA(x′B). (3.18)

If we demand that the coordinates xµ denote the usual coordinates of space-

time then their transformations are restricted to the 4D coordinate transfor-

mations of general relativity:

xµ = fµ(x′α). (3.19)

Furthermore, if we demand that Kaluza’s cylinder condition [31] ∂γAB

∂x5 = 0 is
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satisfied in all frames then the fifth coordinate is restricted to transform as:

x5 = x′5 + f 5(x′α), (3.20)

ignoring an irrelevant constant factor. The component γ55 is invariant under

the above transformation, therefore we are free to set γ55 = −1. Note that

the fifth dimension is assumed to be space-like. Under these assumptions the

five-dimensional line element may be written as a sum of two terms each inde-

pendently invariant under the subset of transformations defined by equations

(3.19) and (3.20):

dσ2 = ds2 + γ55dθ
2, (3.21)

where

ds2 ≡
(

γµν −
γ5µγ5ν

γ55

)

dxµdxν and dθ ≡ dx5 +
γ5µ

γ55
dxµ. (3.22)

The quantity ds2 is identified as the usual line element of the 4D space-time

manifold and gµν ≡ γµν − γ5µγ5ν

γ55
is the four-dimensional metric.

Under the four-dimensional coordinate transformations (3.19) the quan-

tities
γ5µ

γ55
transform as the covariant components of a four-vector. Furthermore,

under the transformation (3.20) the components
γ5µ

γ55
acquire a four-dimensional

gradient of an arbitrary function f 5(x′α) of the space-time coordinates:
(

γ5µ

γ55

)′

=
γ5µ

γ55
+
∂f 5

∂x′µ
. (3.23)

Hence, one assumes that the components γ5µ

γ55
are proportional to the covariant

components of the electromagnetic four-vector potential φµ:

γ5µ

γ55

= βφµ, (3.24)
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where β is a constant. As we mentioned above the quantities φµ are defined

such that in rectangular Galilean coordinates φµ = (V,−Ax,−Ay,−Az), where

V is the scalar potential and the Ai are the components of the magnetic vector

potential. The electromagnetic field-strength tensor is defined as:

Fµν =
∂φµ

∂xν
− ∂φν

∂xµ
. (3.25)

As a result of identification (3.24) this expression transforms as a covariant

second-rank tensor under transformation (3.19) and is invariant under trans-

formation (3.20).

The constant β is easily determined by computing the field equations

resulting from the variation of the pure gravitational action in five dimensions:

I
(5)
G =

∫

D(5)

R(5)
√
−γ d5x, (3.26)

where γ is the determinant of γAB and R(5) is the five-dimensional curvature

scalar derived from the metric corresponding to the line element (3.21). The

variation is performed by varying the quantities γAB and ∂γAB

∂xµ , assuming that

the variations vanish on the boundary of D(5) and γ55 remains constant during

the process of variation. The resulting field equations are the coupled Einstein-

Maxwell system of equations, (2.45) and (2.48), with a vanishing source four-

vector sµ, provided one makes the identification:

β =

√
16πG

c2
. (3.27)

The assumption of a space-like fifth dimension is crucial in order to obtain

the correct sign for the electromagnetic stress-energy tensor in these resultant

field equations.
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The equations of motion of charged particles are the equations of geo-

desics belonging to the five-dimensional line element (3.21). This conclusion

follows naturally from the five-dimensional conservation laws, just as in the

four-dimensional case. Charge is identified as the momentum along the fifth

dimension. Thus, given the Lagrangian:

L =
1

2
m

(

dσ

dτ

)2

, (3.28)

where dτ is the differential of proper time, and the usual definition of momen-

tum:

pA =
∂L

∂(dxA

dτ
)
, (3.29)

one obtains the correct equations of motion for a particle of charge q in a

combined gravitational-electromagnetic field provided one makes the identifi-

cation:

p5 =
q

βc
. (3.30)

Leibowitz and Rosen [38] showed that in order to accommodate charged parti-

cles with arbitrary values of q/m it is necessary to consider time-like, space-like,

and null geodesics in five dimensions.

Of course the proposal that space-time is a five-dimensional manifold

introduces five additional metric components, not only four, and therefore

the theory outlined above may easily be generalized in order to include an

additional scalar field [40]. Indeed, one degree of freedom was suppressed by

the assumption γ55 = −1. Let us therefore relax the restriction γ55 = −1 and
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replace it with the identification:

γ55 ≡ −ψ2, (3.31)

where ψ(xµ) is a scalar field. The variation of the five-dimensional action

(3.26) now produces the following set of equations:

Gαβ =
β2ψ2

2
Tαβ − 1

ψ

[

(

∂ψ

∂xβ

)

;α

− gαβ2ψ

]

, (3.32)

F αβ
;β = − 3

ψ

∂ψ

∂xβ
F αβ, (3.33)

2ψ =
β2ψ3

4
F αβFαβ, (3.34)

where 2 is the four-dimensional Laplacian. The field ψ may be identified as a

Brans-Dicke-type scalar field [40]. Of course the Einstein-Maxwell system of

equations emerge when ψ is taken to be constant.

The above procedure for extracting four-dimensional gravity along with

electromagnetism from a subset of five-dimensional coordinate transformations

is now well known. As we stated above, five-dimensional Kaluza-Klein theory

is the only unified theory of gravitation and electromagnetism that reproduces

the coupled Einstein-Maxwell system of equations exactly. However, the mere

reproduction of the equations of gravitation and electromagnetism is not satis-

factory for no new effects are predicted that may confirm or refute this theory.

Furthermore, Kaluza-Klein theory is subject to the same criticism of the other

unified field theories of the same period, namely, that there is no physical

motivation for the proposed mathematical operations.
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3.4 Postscript

It is now generally believed that the gauge principle governs the four

fundamental interactions. The general procedure for introducing a gauge field

is well known [39]: if a Lagrangian is invariant under some global transforma-

tion group, then the properties of the gauge field may be deduced by demand-

ing that it enters the Lagrangian in such a way that guarantees invariance

when the parameters of the group become arbitrary functions of the inde-

pendent variables. The field emerges through a covariant derivative and its

transformation properties are uniquely defined by the local symmetry group

under investigation. The interaction of the field with matter follows naturally

from the new invariant Lagrangian; and, the free Lagrangian for the new field

is usually postulated to be the lowest order covariant combination of the new

gauge potentials.

Electromagnetism is the quintessential example of a gauge theory [50].

Consider the Lagrangian for a complex scalar field ψ of mass m:

L = (∂µψ)(∂µψ∗) −m2ψ∗ψ, (3.35)

where ∂µ ≡ ∂
∂xµ , ∂µ = gµν∂ν , and ψ∗ is the complex conjugate. This expression

is invariant under the global transformation group:

ψ → e−iΛψ ψ∗ → eiΛψ∗, (3.36)

where Λ is a constant. If we demand invariance of the above Lagrangian

when Λ is permitted to become a function of the coordinates, that is when
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Λ = Λ(xα), one must replace the derivatives ∂µ with the following covariant

derivatives:

Dµψ ≡ (∂µ + ieφµ)ψ, (3.37)

where φµ is a four-vector potential and e is the coupling strength. Under the

local transformation group the four-vector φµ must transform according to:

φµ → φµ +
1

e
∂µΛ. (3.38)

It is easy to see that the lowest order covariant combination of the potentials

φµ is given by the quantity F µνFµν where Fµν = ∂µφν − ∂νφµ. Therefore,

we may identify φµ as the electromagnetic four-vector potential and e as the

electric charge. One concludes that the electromagnetic field is the gauge field

that must be introduced in order to guarantee invariance of the Lagrangian

under local U(1) phase transformations.

Due to the success of the above procedure for the electromagnetic

field one might expect that the gravitational field may be similarly associ-

ated with a symmetry group. Indeed, a gauge theory of gravity was first

suggested by Utiyama [53], who applied the gauge principle to the homoge-

neous Lorentz group. Kibble [32] modified Utiyama’s proposal by considering

the ten-parameter Poincaré group. The Poincaré group is the global symmetry

group of space-time; it includes translations in space, displacements in time,

rotations, and transitions to systems in uniform relative motion. It is now gen-

erally believed that the local gauge theory of the Poincaré group in space-time

is the U4 theory of gravity which admits spin and torsion into relativistic grav-
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itational theory. This subject has received much attention and is thoroughly

reviewed by Hehl et al. [27].

The ten parameters of the Poincaré group exhaust the external degrees

of freedom of space-time, and therefore any fields postulated in addition to the

gravitational field must stem from an internal symmetry of the Lagrangian.

For example, we have seen that the electromagnetic field is derived by de-

manding invariance with respect to local U(1) phase transformations, which

is an internal symmetry of the Lagrangian. Therefore, the gravitational and

electromagnetic fields remain unconnected, even though they both possess a

common gauge structure.
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Chapter 4

Global Scale Invariance

The generalizations of the space-time geometry that emerged from the

early unification program were mathematically intriguing; however, no theory

satisfactorily placed the electromagnetic four-vector potentials φµ alongside

the gravitational potentials gµν in the space-time manifold. Besides Kaluza-

Klein theory, which offers no new physical predictions, none of these theories

were capable of reproducing the coupled Einstein-Maxwell system of equations

exactly. It is safe to say that a satisfactory understanding of the connection

between gravitation and electromagnetism still does not exist today.

In this chapter we lay the groundwork for a new unified theory of grav-

itation and electromagnetism that treats the electromagnetic field as a com-

pensating gauge field associated with local scale invariance. We show that

a well-known procedure developed by Anderson and Finkelstein [3] for intro-

ducing the cosmological constant removes the scale dependence from the field

equations, leaving a set of scale-free field equations behind. Thus, general

relativity with a cosmological constant may be viewed as a union of two inde-

pendent equations. One equation determines the null-cone or causal structure

of space-time; the other equation determines the measure structure of space-
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time. We will see that the equations for the null-cone structure are both

globally scale-invariant and scale-free, and hence permits the application of

the standard gauge trick.

4.1 Coordinate Invariance vs. Scale Invariance

Consider an arbitrary action:

I =

∫

W
√−g d4x, (4.1)

where W is an arbitrary function of the metric tensor and its derivatives. The

variational derivative of I with respect to the metric is defined as:

δI

δgµν
= Wµν , (4.2)

where Wµν is a symmetrical contravariant density of the second rank. As is well

known, if the action is invariant under an arbitrary infinitesimal coordinate

transformation that vanishes on the boundary:

x′µ = xµ − ξµ, (4.3)

where ξµ are arbitrary infinitesimal functions of the space-time coordinates,

then the covariant divergence of Wµν vanishes identically:

Wµν
;ν = 0. (4.4)

This follows from equations (4.1) and (4.2), noting that the transformation

(4.3) produces a variation in the metric:

δgµν = ξµ;ν + ξν;µ. (4.5)
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Similarly, if the action is invariant under an infinitesimal scale transformation

of the metric tensor that vanishes on the boundary:

gµν → λgµν = (1 + ε)gµν , (4.6)

where λ = λ(xα) is an arbitrary function of the space-time variables and ε� 1,

then the trace of Wµν vanishes identically:

Wµ
µ = 0. (4.7)

This also follows from equations (4.1) and (4.2), noting that the transformation

(4.6) produces a variation in the metric:

δgµν = εgµν . (4.8)

The action for the gravitational field in the absence of matter is ob-

tained by setting W = gµνRµν in (4.1):

IG =

∫

gµνRµν

√
−g d4x, (4.9)

where Rµν is the Ricci tensor. The variational derivative of equation (4.9) with

respect to the metric is:

δIG
δgµν

= Gµν√−g ≡
(

Rµν − 1

2
gµνR

)√
−g, (4.10)

Since R
√−g is a scalar density, the action (4.9) is invariant under the trans-

formation (4.3). Therefore, the covariant divergence of Gµν vanishes:

Gµν
;ν = 0. (4.11)
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Note that this equation is a consequence of the invariance of the action and

is therefore valid for any reasonable metric field distribution gµν, regardless of

whether or not gµν satisifes the field equations. Equation (4.11) also follows

from the Bianchi identities.

While the action (4.9) is invariant under general coordinate transfor-

mations it is not invariant under the scale transformation (4.6). IG is not

even invariant under a global scale transformation for which λ = constant; R

and
√−g transform under a global scale transformation with Weyl weights −1

and +2, respectively. However, the scalar curvature is the only quantity con-

structed from the metric tensor and its first and second derivatives alone, linear

in the latter, that is an invariant under general coordinate transformations.

Therefore, we see that general coordinate invariance and scale invariance of

the action are fundamentally incompatible in general relativity. This is further

supported by the fact that the trace of the divergenceless quantity Gµν does

not vanish. Of course, one may proceed as Weyl [60] and consider Lagrangians

quadratic in the curvature scalar in order to guarantee scale invariance of the

action. However, the resulting field equations necessarily contain derivatives

of the metric tensor higher than the second. Alternatively, one may proceed

as Dirac [14] and introduce a new scalar field that transforms under a scale

transformation with Weyl weight −1. This theory has enjoyed only limited

success [55].

Rather than formulating an action principle that is invariant with re-

spect to both coordinate transformations and scale transformations simultane-
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ously, we reformulate general relativity so that the scale-dependent quantity,

the Ricci scalar curvature, remains undetermined by the field equations them-

selves. As a result, the remaining field equations become scale-free. This

allows us to treat these equations as the dynamical equations of a globally

scale invariant theory that can be gauged locally.

First, let us consider Einstein’s equations in the absence of matter:

Rµν −
1

2
Rgµν = 0, (4.12)

which follow from the variational principle δIG = 0, in which the metric

components are varied independently. While the gravitational action is not

invariant under a global scale transformation defined by equation (4.6) with

λ = constant, Einstein’s free-field equations are invariant with respect to global

scale transformations. This follows because Rµν , R, and gµν transform under

a global scale transformation with Weyl weights 0, −1, and +1 respectively.

The fact that the equations are globally scale invariant does not imply that

the theory is also scale-free. This follows by taking the trace of (4.12), giving:

R = 0. (4.13)

Because R vanishes, pure gravity is also scale-free: pure gravity contains no

intrinsic length scale. Note that equation (4.13) is not independent of (4.12);

rather, it is a consequence of the field equations.

We stress that the terms scale-free and scale-invariant are similar but

not identical. A theory is scale-free if it does not contain any constant funda-

mental length scale. A theory is (globally) locally scale-invariant if, in addition
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to the absence of any fundamental length scale, the dynamical equations are

covariant with respect to (global) local scale transformations. Note that a the-

ory may be scale-free and not scale-invariant. As we saw above, pure gravity

is globally scale-invariant: the equations of pure gravity are covariant, in fact

invariant, with respect to global scale transformations, and since R vanishes

pure gravity is also scale-free.

Once matter is introduced, global scale invariance of the theory is lost.

The action for the gravitational field in the presence of matter is:

I = IG + IM , (4.14)

where

IM = −2κ

∫

LM

√−g d4x, (4.15)

is the matter action and κ = 8πG
c4

is the Einstein gravitational constant. The

resulting field equations are:

Rµν −
1

2
Rgµν = κTµν . (4.16)

Taking the trace of the above equation yields: R = −κT . Again, this equation

is contained in the field equations. The equations (4.16) may be considered

globally scale invariant if one assumes that the product κTµν is scale-invariant

[10], regardless of the manner in which each term transforms individually.

However, since R does not vanish the theory is no longer globally scale invari-

ant. Rest masses introduce an intrinsic length scale.
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4.2 Unimodular Relativity

There is a way of reformulating the theory so that the scale dependence

remains undetermined by the field equations themselves. This is accomplished

by a well-known procedure developed by Anderson and Finkelstein [3] for

introducing the cosmological constant into Einstein’s equations, not as a pre-

determined coefficient of the action, but as an arbitrary integration constant.

Indeed, if one introduces the constraint in the variational principle:

√−g = σ(x), (4.17)

where σ(x) is a scalar density of weight +1, an external field provided by na-

ture, then the components of the metric tensor cannot be varied independently

in the action principle, but must satisfy:

δ
√
−g = −1

2

√
−ggµνδg

µν = 0. (4.18)

The resulting field equations express the equality of the traceless parts of

equation (4.16):

Rµν −
1

4
gµνR = κ

(

Tµν −
1

4
gµνT

)

. (4.19)

Because of equation (4.11) and

T µν
;ν = 0, (4.20)

one obtains:

R + κT = 4Λ, (4.21)
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where Λ is an integration constant and the factor four is introduced for con-

venience. Substituting this back into the field equations (4.19) we recover

Einstein’s field equations with a cosmological constant:

Rµν −
1

2
Rgµν + Λgµν = κTµν. (4.22)

Einstein [19] examined the field equations (4.19) with Tµν representing only the

stress-energy tensor of the electromagnetic field, and similarly recovered the

cosmological constant as a constant of integration. Anderson and Finkelstein

[3] were the first to propose the above general procedure in their theory of

unimodular relativity. This formulation has the attractive property that the

contribution of vacuum fluctuations automatically cancels on the right hand

side of equation (4.19) [54]. The full theory is contained in either equations

(4.17) and (4.19) or equations (4.17) and (4.22). The full theory is not scale-

invariant, because it contains the constraint (4.17), which manifests itself in

the field equations by the presence of the fundamental length Λ−1/2. However,

the set of equations (4.19) are scale-free. Equation (4.22) is valid for any

value of Λ which is an arbitrary constant of integration. The condition (4.17)

does not determine the value of Λ, which must be determined by external

conditions.

The ability to remove the scale dependence from the field equations is

a consequence of the ability to reduce the metric tensor into two nontrivial

geometric objects [3]: g the determinant of gµν , and γµν the relative tensor

gµν/(
√−g)1/2 of determinant −1. The determinant determines entirely the
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measure structure of space-time, while the relative tensor alone determines

the null-cone or causal structure. In unimodular relativity, the irreducible

relative tensor γµν is the fundamental geometric object of space-time. The

metric tensor:

gµν = (
√
−g)1/2γµν , (4.23)

is treated as an artificial construct of two independent entities, the fundamental

object γµν and the measure field
√−g. The measure field is only included in

the formulation of the action principle in order to maintain general covariance.

Because of the constraint (4.17), the invariance group of unimodular relativity

is the subgroup of the Einstein group with unit determinant:

det

∣

∣

∣

∣

∂x′µ

∂xν

∣

∣

∣

∣

= 1. (4.24)

(See Reference [2] for a lucid discussion of the terms “invariance” and “covari-

ance” as they are used here.)

4.3 Geometry and Space-Time Measurements

The bifurcation of general relativity into two independent parts sug-

gests a new way of looking at the connection between geometry and space-time

measurements. In general relativity, actual space-time is represented geometri-

cally by a Riemannian manifold R: there exists a transparent correspondence

between geometrical quantities on the one hand and physical space-time mea-

surements on the other hand. The square of the length of an arbitrary vector
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Aµ in R is:

A2 = gαβA
αAβ, (4.25)

and the change of an arbitrary vector Aµ under an infinitesimal displacement

dxα in R is:

dAµ = −Γµ
ρσA

ρdxσ, (4.26)

where Γµ
ρσ is the Christoffel symbol of the second kind:

Γµ
ρσ =

gµα

2

(

∂gαρ

∂xσ
+
∂gασ

∂xρ
− ∂gρσ

∂xα

)

. (4.27)

Equation (4.27) is obtained from the condition:

gµν;λ = 0, (4.28)

which follows from the requirement that the length of an arbitrary vector

is preserved under parallel displacement in R. Because we identify R with

physical space-time in general relativity it follows that the quantity A2 may

be identified with the result of a physical space-time measurement, that is, a

length or time interval. Furthermore, it follows that the parallel displacement

of a vector Aµ in R may be equated with the transfer of the corresponding

physical rods and clocks in actual space-time. Moreover, any generalization

of the geometrical manifold R will presumably manifest itself as a general-

ization of the behavior of physical rods and clocks. These assumptions are

fundamental to Einstein’s theory.

Unimodular relativity, owing to the bifurcation of the metric tensor,

admits a substructure to the manifold R, and hence permits the introduc-

tion of another geometrical manifold that is not directly related to space-time
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measurements. According to unimodular relativity the metric tensor gµν is

an artificial construct of two independent quantities, σ(x) and γµν . From this

viewpoint, the Riemannian manifold of general relativity is constructed by

first determining the null-cone structure and then multiplying it by the mea-

sure structure. Therefore, we may define a geometry only associated with the

null-cone structure that permits a correspondence with physical space-time

measurements via the measure structure.

Let us rewrite equation (4.25) in terms of the quantities γαβ and
√−g

of unimodular relativity:

A2 = (
√
−g)1/2γαβA

αAβ. (4.29)

We define the “length”:

a2 ≡ γαβA
αAβ, (4.30)

so that equation (4.29) becomes:

A2 = (
√−g)1/2a2 = σ1/2a2. (4.31)

We see that a physical space-time measurement is obtained by multiplying

two independent quantities, σ1/2 and a2. In general relativity, both of these

quantities are obtained from the geometrical manifold R. However, since σ(x)

and γµν are completely independent in unimodular relativity, we may construct

a sub-geometry that is only associated with the fundamental object γµν. Only

when we multiply the quantities γµν by the measure structure do we recover

the Riemannian manifold R of general relativity.
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Thus, we define a manifold M. On this manifold we define a metric

tensor g̃µν and an affine connection Γ̃µ
ρσ. We do not assume that g̃µν satis-

fies equation (4.28); thus, the quantities Γ̃µ
ρσ are not necessarily Christoffel

symbols. Furthermore, the measure field
√−g̃ is not identified with σ. A

correspondence with physical space-time measurements may be obtained from

M from the following procedure. We first determine from M the null-cone

structure via the relationship:

γµν ≡ g̃µν

(
√−g̃)1/2

. (4.32)

Then, from these quantities we construct the Riemannian manifold R. This is

accomplished by multiplying the quantities γµν by the measure structure σ1/2:

gµν = σ1/2γµν = σ1/2 g̃µν

(
√−g̃)1/2

. (4.33)

We see that the null-cone structure defines a geometry that is once

removed from the actual geometry of space-time, but nevertheless

permits a correspondence with physical space-time measurements.

In the original formulation of unimodular relativity [3], Anderson and

Finkelstein tacitly assumed that the manifold M was also a Riemannian mani-

fold. However, a physical measurement defined in this manner admits a natural

generalization, for the only geometrical quantity obtained from M is the scale-

independent quantity a2. Consequently, the choice of the scale of the metric

tensor on M is arbitrary. Therefore, we may choose a Weyl manifold W for

M. The law of parallel displacement of an arbitrary vector Aµ in W is:

dAµ = −Γ̃µ
ρσA

ρdxσ, (4.34)
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where Γ̃α
βγ is the Weyl affine connection:

Γ̃α
βγ = Γα

βγ − g̃σα[g̃σβϕγ + g̃σγϕβ − g̃βγϕσ]. (4.35)

Γα
βγ now represents the Christoffel symbol constructed from the quantities g̃µν.

The Weyl affine connection Γ̃α
βγ follows from Γα

βγ by the substitution:

∂γ → ∂γ − 2ϕγ. (4.36)

The vector ϕµ serves as the connection coefficient for the parallel displacement

of length in W:

dl = −ϕβdx
βl, (4.37)

where l is the length of an arbitrary vector in W. As long as physically mea-

sured quantities are associated with the manifold W via equation (4.33), the

comparison of physical lengths at different points in space-time is an unam-

biguous procedure that is not to be confused with the comparison of vector

lengths at different points in the manifold W. Consequently, the identification

M = W is not incompatible with the existence of the well-defined electro-

magnetic spectrum observed from chemical elements and Einstein’s objection

does not apply to this use of a Weyl geometry. Both Weyl [60] and Edding-

ton [15] envisioned that such a geometry could be constructed which is not

immediately identifiable with actual space-time but could be associated with

physical measurements. We see that unimodular relativity provides a natural

framework for the realization of this vision.
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Chapter 5

Local Scale Invariance and the Unification of

Gravitation and Electromagnetism

We now show that the electromagnetic field can be introduced as a

compensating gauge field that guarantees local scale invariance in unimodu-

lar relativity. There have been a number of scale-invariant theories of grav-

ity proposed in the past. The first scale-invariant theory of gravity, due to

Weyl [56, 57, 58, 59, 60], was also an attempt to incorporate electromagnetism

into general relativity. Weyl’s theory is based on an elegant generalization of

Riemannian geometry that is covariant with respect to both coordinate trans-

formations and local scale transformations. Since the action that produces

Einstein’s field equations is only invariant with respect to the former group,

Weyl proposed a new action that is invariant with respect to the latter group as

well. This, however, requires a Lagrangian quadratic in the curvature scalar,

and therefore leads to field equations that are fourth-order differential equa-

tions. Consequently, Weyl’s theory does not reduce to general relativity in

the absence of electromagnetism. Furthermore, Einstein [18] showed that the

reading of an atomic clock would depend on its prehistory according to Weyl’s

theory, which is in conflict with the well-defined electromagnetic spectrum

observed from chemical elements. As a result, Weyl’s theory was ultimately
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rejected. Years later, Dirac [14] (see also Canuto et al. [10]) revived Weyl’s

geometry in an attempt to reconcile general relativity with his Large Num-

bers hypothesis [13]. Dirac maintains second-order differential equations at

the expense of introducing a new scalar field and avoids Einstein’s objection

with his postulate of a second metric, independent of the gravitational poten-

tials, that determines the interval ds measured by an atomic apparatus. This

theory belongs to a wider class of theories, named variable-gravity theories,

that predict a time-dependent variation in the strength of the gravitational

interaction. The advantages and drawbacks of such theories are reviewed by

Wesson [55]. Other attempts at incorporating scale invariance in general rela-

tivity (see, for example, Hehl et al. [26]) have been motivated by developments

in particle physics. Since approximate scale invariance has been observed in

deep inelastic electron-nucleon scattering [6, 7] many believe, in accordance

with grand unification, that gravitation must also exhibit approximate scale

invariance at very high energies.

5.1 The Field Equations

The field equations of unimodular relativity (4.19) are the equations

that determine the quantities γµν corresponding to the special case M = R.

These equations are globally scale-invariant and scale-free, and are furthermore

independent of the measure equation. Therefore, we view these equations

as the dynamical set of equations of a globally scale-invariant theory. This

interpretation is further supported by the fact that equation (4.19) is traceless
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(see equation (4.7)).

We now demand local scale invariance of this globally scale-invariant

theory. We replace the Ricci tensor Rµν in the action (4.9) by the scale-

invariant Ricci tensor R̃µν of Weyl’s theory:

R̃αβ =
∂Γ̃ρ

αβ

∂xρ
−
∂Γ̃ρ

αρ

∂xβ
+ Γ̃σ

αβΓ̃ρ
ρσ − Γ̃σ

αρΓ̃
ρ
βσ, (5.1)

where the quantities Γ̃α
βγ are constructed from the metric tensor and the vector

field ϕα according to equation (4.35). Under the transformation (4.6), ϕα

transforms according to:

ϕα → ϕα +
1

2
(logλ),α = ϕα +

1

2

ε,α
ε
, (5.2)

where a comma denotes ordinary differentiation. Equation (5.2) guarantees

the invariance of Γ̃α
βγ under local scale transformations. Thus, ϕα may be

considered a compensating gauge field that guarantees local scale invariance.

Similarly, R̃αβ is an invariant under transformation (4.6) and the scalar cur-

vature R̃:

R̃ = R + 6(ϕαϕα) − 6ϕα
;α, (5.3)

transforms with Weyl weight −1. The free Lagrangian L0 for the gauge field

ϕµ is the lowest order covariant combination of the gauge potentials:

L0 = − 1

16π
fµνf

µν, (5.4)

where fµν = ϕµ,ν − ϕν,µ and the indices are raised with the metric g̃µν. Con-

sequently, the action is:
∫

[

R + 6(ϕαϕα) − 6ϕα
;α − k

16π
fµνf

µν

]

√

−g̃ d4x+ IM , (5.5)
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where k is a constant that transforms under a local scale transformation with

Weyl weight +1.

We obtain the field equations for the quantities g̃µν by the usual vari-

ational method; however, the theory of unimodular relativity dictates that

the only the traceless part of the Hamiltonian derivative must vanish. The

components g̃µν themselves are varied independently subject only to the re-

quirement that their variations δgµν as well as the variations of their first

derivatives δ
(

∂g̃µν

∂xλ

)

vanish on the boundary of integration. Calculation of the

Hamiltonian derivative of the action (5.5) is a little more complicated than in

the Riemannian case because the covariant derivative of the metric tensor no

longer vanishes. Instead, the following relationship holds:

g̃µν;α = 2ϕαg̃µν. (5.6)

Therefore, the integral over δRµν does not reduce to a surface integral. Fur-

thermore, one must keep in mind that the Riemann tensor is constructed from

the Weyl affine connection:

Γ̃α
βγ = Γα

βγ − g̃σα[g̃σβϕγ + g̃σγϕβ − g̃βγϕσ], (5.7)

and not the Christoffel connection Γα
βγ.

Variation of the third term in (5.5) gives:

∫

κTµνδg̃
µν

√

−g̃ d4x, (5.8)

where Tµν is the stress-energy tensor of matter.
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Variation of the fourth term in (5.5) gives:

∫

kT (EM)δg̃µν
√

−g̃ d4x, (5.9)

where T
(EM)
µν ≡ 1

8π

(

fµαf
α

ν − 1
4
g̃µνf

αβfαβ

)

is proportional to the stress-energy

tensor of the electromagnetic field.

Setting the traceless part of the Hamiltonian derivative to zero gives:

R̃µν −
1

4
R̃g̃µν = kT (EM)

µν + κ

(

Tµν −
1

4
gµνT

)

. (5.10)

These field equations are invariant under local scale transformations (4.6).

They are similar, but not identical to the Maxwell-Einstein system of equa-

tions. The correction terms are on the order of the cosmological constant.

Bergmann and Einstein [5] have examined the set of equations: R̃µν− 1
2
g̃µνR̃ =

0, and found that its solutions do not satisfy reasonable boundary conditions.

However, they identified g̃µν with the scale-dependent metric tensor of space-

time and also failed to include the term kT
(EM)
µν .

The field equations for the quantities ϕµ are obtained by a variation of

ϕµ in (5.5). This produces Maxwell’s free-field equations:

fµν
;ν = 0, (5.11)

only for the case of a vanishing cosmological constant. Therefore, we may

identify ϕµ as being proportional to the electromagnetic four-vector potential.

This gives a physical interpretation to the electromagetic gauge potentials.

They introduce a non-integrability of length into the null-cone structure of
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space-time. Note the important condition that exact gauge invariance of elec-

tromagnetism is connected to a vanishing cosmological constant. This provides

possible theoretical evidence that the cosmological constant is identically zero.
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Chapter 6

Summary and Conclusions

Einstein’s general theory of relativity unifies geometry and gravitation

by treating space-time as a four-dimensional general Riemannian manifold. At

its foundation rests the principles of equivalence and general covariance, which

were motivated by Einstein’s reflections concerning mass and acceleration. Im-

mediately after the advent of general relativity Einstein turned his attention

to electromagnetism, hoping to incorporate the electromagnetic potentials φµ

into the space-time geometry as well. As a result, the unification program

was launched. This program subsequently attracted the attention of many of

the leading mathematicians and physicists of the time. Einstein was a major

force behind this program, contributing his own original research in addition

to critical examinations of other theories. Unfortunately, no principles analo-

gous to the principles of equivalence and general covariance suggested how to

generalize Riemannian geometry in order to account for the electromagnetic

field. This was due to the lack of a clear physical picture for charged phenom-

ena. Hence, all attempts to incorporate electromagnetism into the geometry

of space-time were guided primarily by mathematical considerations.

As we have seen, in the work of Weyl, Kaluza and Klein, Eddington,
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Einstein, and Schrodinger, the problem was approached by first identifying

basic assumptions of four-dimensional general Riemannian geometry and then

by relaxing these restrictions. For example, Weyl suggested that the conser-

vation of length under the parallel displacement of vectors is an unnecessary

assumption in a “true infinitesimal geometry” and consequently relaxed this

restriction in order to develop a new non-Riemannian geometry. Excellent

discussions of Weyl’s theory are in Adler et al. [1], Pauli [43], and Weyl’s

own book [60]. Kaluza and Klein both took the bold step of increasing the

dimension of space-time to five dimensions, thus relaxing the restriction of

a four-dimensional manifold. The interested reader may find the collection

of articles by Appelquist et al. [4] very informative. Eddington, Einstein,

and Schrodinger developed purely affine theories and attempted to formu-

late field equations under a minimum number of assumptions for the action

principle. In this approach the symmetry properties of the Riemann curva-

ture tensor, the metric tensor, and the affine connections were relaxed in a

variety of ways. Schrodinger’s book [52] is an excellent exposition of this ap-

proach, outlining clearly the fundamental assumptions associated with general

relativity and Riemannian geometry and its subsequent non-symmetric gen-

eralizations. While all of these attempts were mathematically intriguing, no

single theory satisfactorily incorporated the electromagnetic potentials into

the four-dimensional space-time geometry.

This problem remains unsolved today. To be sure, modern gauge

theory has provided some insight into the fundamental structure of the two
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fields. According to modern gauge theory, the gravitational and electromag-

netic fields are both gauge fields, meaning their existence can be tied to a local

symmetry group. However, the symmetry group of the electromagnetic field

is the group of phase transformations of the wave function, a group that does

not enjoy a space-time interpretation, while the symmetry group of the gauge

theory of gravity is the Poincaré group, the fundamental symmetry group of

space-time. Therefore, the gravitational and electromagnetic fields remain un-

connected even to this day, despite the great insight gained from modern gauge

theory

In this investigation we have returned to the original problem of uni-

fication. We began with a careful examination of global scale invariance in

general relativity. We discovered that coordinate invariance and scale invari-

ance are fundamentally incompatible in the gravitational action. In Weyl’s

original theory [60], invariance under local scale transformations was imposed

on the action. However, since the gravitational action itself is not even in-

variant under the group of global scale transformations because the quantities

√−g and R transform with Weyl weights +2 and −1, respectively, Weyl was

forced to reformulate general relativity and consider Lagrangians quadratic

in the curvature tensor. This led to field equations of the fourth differential

order. Years later, Dirac [14] revived Weyl’s geometry and introduced a new

scalar field that transforms under scale transformations with Weyl weight −1.

He also introduced a second metric, independent of the gravitational metric,

that determines the interval ds measured by an atomic apparatus. In this
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way, he maintained second-order differential equations and avoided Einstein’s

objection. However, Dirac’s theory has enjoyed only limited success [55].

In the same tradition of Weyl and Dirac, we have introduced a new

method of incorporating local scale invariance into general relativity. Unlike

Weyl and Dirac, however, we do not demand full local scale invariance of the

action. Rather, we only demand that the theory of the null-cone structure of

space-time is locally scale invariant. This is accomplished by reviving the the-

ory of unimodular relativity developed by Anderson and Finkelstein [3], which

is a modified version of general relativity. The field equations of unimod-

ular relativity only determine the null-cone structure of space-time, leaving

the measure structure determined by independent, external conditions. These

field equations are equivalent to Einstein’s equations with a cosmological con-

stant. In unimodular relativity, however, the cosmological constant enters as

an arbitrary integration constant and not as a predetermined coefficient in the

action.

The authors’ original intent in their theory of unimodular relativity was

to formulate a theory of gravity that treated the irreducible relative tensor γµν

as the fundamental geometrical object of space-time. This was motivated by

the observation that the metric tensor gµν is reducible into two irreducible

objects, the relative tensor γµν and the determinant g. However, we have

observed that the properties of the unimodular field equations point

beyond the original intent of its authors. Indeed, the equations of uni-

modular relativity in the presence of matter are globally scale-invariant and
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scale-free, in contrast to the field equations of general relativity, which are glob-

ally scale-invariant and scale-free only in the absence of matter. Therefore, one

may proceed in the usual manner of gauge theory and demand local scale in-

variance of the unimodular field equations. Consequently, the electromagnetic

field may be viewed as a compensating gauge field that guarantees local scale

invariance in unimodular relativity. This procedure avoids the fourth-order

differential equations that plagued Weyl’s theory and avoids the introduction

of Dirac’s new scalar field.

We have seen that the space-time manifold R of general relativity be-

comes an artifical construct defined from the fundamental manifold M that we

introduced for unimodular relativity. The manifold M may be identified with

the manifolds defined by Weyl and Eddington in their attempts to respond

to Einstein’s objection to Weyl’s theory because the only quantity obtained

from the fundamental manifold M is the scale-independent quantity a defined

by equation (4.30). Thus, the scale of the metric g̃µν on M is arbitrary and

consequently permits the generalization of geometry first introduced by Weyl.

Note, in our theory, gµν is still identified with the gravitational potentials and

the geometry of space-time. The quantities g̃µν , on the other hand, are only

identifiable with the geometry of space-time via equations (4.23) and (4.32).

We contend that general relativity is an artifical melding of two inde-

pendent theories. A theory that determines the null-cone structure of space-

time and a theory that determines the measure structure of space-time are

combined naturally by the mathematical formalism of general relativity chosen
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by Einstein. However, this union may have hidden an important substructure

that prevented the incorporation of local scale invariance first envisioned by

Weyl. Indeed, the failure of Weyl’s theory may be attributed to the fact that

the union of these two theories, the null-cone theory and the measure theory,

is not globally scale-invariant, while the theory defining the null-cone struc-

ture alone is globally scale-invariant. Only when general relativity is separated

into its two fundamental parts may local scale invariance be imposed. Once

this is imposed the electromagnetic field emerges as a gauge field. Then, and

only then, may the theories be combined into the unified formalism of general

relativity.

We emphasize that this work adopts a new approach in the unifica-

tion of gravitation and electromagnetism. We have not generalized Einstein’s

theory of general relativity; we have generalized unimodular relativity, a refor-

mulation of general relativity that differs from Einstein’s orginal theory only

by the cosmological constant term. On the solar system scale unimodular rel-

ativity and general relativity are indistinguishable. We hope that this work

stimulates other efforts in this direction, for different formulations of general

relativity that are indistinguishable on the solar system scale may possess

different advantages for incorporating electromagnetism into the space-time

manifold. Rosen’s bimetric reformulation of general relativity and Brans-Dicke

theory, for example, are to some extent indistinguishable from general relativ-

ity and may also be amenable to electromagnetic generalizations. This is the

reason they have been included in our discussion.
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However, there is an interesting connection between our theory and

Brans-Dicke theory because a new solution to the problem of Mach’s principle

in general relativity emerges. The source of the measure field σ(x) was not

specified in the original paper [3]; its value was simply provided by an external

condition. We postulate that the source of the measure field is the background

mass distribution of the distant stars, and consequently the tensor Tµν only

represents local matter. Note that in Einstein’s original formulation of general

relativity there is no distinction between a local mass distribution, such as a

planet or the sun, and the background mass distribution of the distant stars.

The entire matter content of the universe is contained in the matrix Tµν .

However, if we postulate that the distant stars are the source of the field σ(x)

then such a distinction can be made. According to this postulate, distant

matter would determine the measure structure of space-time and local matter

would detemine the null-cone structure of space-time. Since the volume of

space-time within the interval d4x is σ(x)d4x, the very existence of the volume

element would then be tied into the boundary conditions defined by the distant

stars.

This postulate solves an important problem concerning Mach’s princi-

ple in general relativity. Mach’s principle states that inertia cannot be defined

relative to absolute space, but must be defined relative to the entire matter

content of the universe. As is well known, one of the reasons Einstein [17] in-

troduced the cosmological constant into the gravitational field equations was

to accommodate Mach’s principle. Einstein hoped that his reformulation of
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the field equations with a cosmological constant would eliminate solutions in

the absence of mass, giving gµν = 0 when Tµν = 0. Soon afterward, de Sitter

[12] showed that this was not the case; a solution with a non-zero gµν existed

even in the absence of matter. However, if the above postulate is adopted then

de Sitter’s solution is not in conflict with Mach’s principle, for then the condi-

tion Tµν = 0 would only indicate the absence of a local mass distribution. The

existence of de Sitter’s solution would then be connected to a non-zero σ(x),

which would presumably vanish if the background mass distribution of the

distant stars were to disappear. This solution to the problem of Mach’s prin-

ciple in general relativity is similar to that provided by Brans and Dicke [8],

who supplied a scalar field in addition to the metric tensor. However, instead

of adding an additional degree of freedom, we identify one of the ten degrees

of freedom of the metric tensor as a scalar field connected to the boundary

conditions of space-time.

In the limit that the measure field may be ignored, viz. small length

scales, the full theory is scale invariant, in accordance with the belief that

general relativity should exhibit approximate scale-invariance at high energies.

In this limit, space-time possesses no volume: for time there is no duration,

and for space there is no extension.

The theory outlined above may also provide insight into the strange

behavior of quantum particles. As is well known, singularities of the field gµν

traverse geodesics of the manifold, which are identified with the trajectories of

material particles. However, according to the theory described above, this is
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just an approximation, for material particles should be viewed as singularities

of the field γµν , not gµν.
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