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Integrated Network-Based Models for Evaluating and Optimizing the 

Impact of Electric Vehicles on the Transportation System 

 

Ti Zhang, Ph.D. 

The University of Texas at Austin, 2012 

 

Supervisor:  S. Travis Waller 

 

The adoption of plug-in electric vehicles (PEV) requires research for models and 

algorithms tracing the vehicle assignment incorporating PEVs in the transportation 

network so that the traffic pattern can be more precisely and accurately predicted. To 

attain this goal, this dissertation is concerned with developing new formulations for 

modeling travelling behavior of electric vehicle drivers in a mixed flow traffic network 

environment. Much of the work in this dissertation is motivated by the special features of 

PEVs (such as range limitation, requirement of long electricity-recharging time, etc.), and 

the lack of tools of understanding PEV drivers traveling behavior and learning the 

impacts of charging infrastructure supply and policy on the network traffic pattern.  

The essential issues addressed in this dissertation are: (1) modeling the spatial 

choice behavior of electric vehicle drivers and analyzing the impacts from electricity-

charging speed and price; (2) modeling the temporal and spatial choices behavior of 

electric vehicle drivers and analyzing the impacts of electric vehicle range and 

penetration rate; (3) and designing the optimal charging infrastructure investments and 

policy in the perspective of revenue management. Stochastic traffic assignment that can 

take into account for charging cost and charging time is first examined. Further, a quasi-

dynamic stochastic user equilibrium model for combined choices of departure time, 
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duration of stay and route, which integrates the nested-Logit discrete choice model, is 

formulated as a variational inequality problem. An extension from this equilibrium model 

is the network design model to determine an optimal charging infrastructure capacity and 

pricing. The objective is to maximize revenue subject to equilibrium constraints that 

explicitly consider the electric vehicle drivers’ combined choices behavior. 

The proposed models and algorithms are tested on small to middle size 

transportation networks. Extensive numerical experiments are conducted to assess the 

performance of the models. The research results contain the author’s initiative insights of 

network equilibrium models accounting for PEVs impacted by different scenarios of 

charging infrastructure supply, electric vehicles characteristics and penetration rates. The 

analytical tools developed in this dissertation, and the resulting insights obtained should 

offer an important first step to areas of travel demand modeling and policy making 

incorporating PEVs. 
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Chapter 1 Introduction and Background 

1.1 MOTIVATION 

The world’s dependence on oil has created numerous negative impacts on both 

the environment and economy either directly or indirectly. For example, transportation 

activities are a dominant factor for the carbon emissions. In addition, the high 

dependence on such non-renewable resource results in facing energy shortages in the near 

future. More seriously, in the foreseeable future, climate change will likely become more 

obvious and petroleum prices will continuously climb. These problems/issues have 

caused a growing interest in reducing the petroleum dependence and diversifying the 

energy consumption. Reforms to transportation sector can significantly reduce these 

negative impacts caused by excessive petroleum consumption.  

The transportation sector accounts for 70% of U.S. petroleum consumption and 

27% of U.S. greenhouse gas emissions. With motor vehicles consuming such a large 

quantity of petroleum, the requirement for alternative fuel vehicles is being more 

demanding. A variety of fuel alternatives are available and innovations to battery 

technology are making electric vehicles a viable option. Plug-in electric vehicles (PEVs), 

which include battery electric vehicles (BEVs) and plug-in hybrid vehicles (PHEVs), 

have received tremendous attention in recent energy policy discussions because they 

produce no exhaust or emissions and relieve our current heavy dependence on petroleum. 

BEVs use a battery to store the electrical energy that powers the motor and is recharged 

by plugging a cord into an electric power source. 
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1.1.1 Perspective of plug-in electric vehicles 

The growth of the PEVs market and the PEVs traveler behavior will mostly be 

affected by the following two facts: the government support (e.g. incentives), and the 

charging infrastructures (e.g., availability, capacity, pricing, charging speed).  

First, the U.S. federal government highlighted electricity as a promising alternative to 

gasoline for transportation sector in the future (Ashtiani et al. 2011) and proposed that 

PEVs capture a significant share (5%-15%) of the market over the next 15 to 20 years 

(Edward 2011). The federal government also established a goal of putting one million 

PEVs on the road by 2015. In addition, federal, state and local government implemented 

a series of policies and incentives to encourage the penetration of vehicle electrifications. 

The national academies report that there will be 13 to 40 million PEV out of 300 million 

total vehicles on the U.S. roads by 2030 under different scenarios (John 2010). 

Second, with the expending ownership of the electric vehicles (EV), incentives and grants 

(such as electric vehicle charging equipment tax credit and electric vehicle battery and 

infrastructure tax exemptions ) have become available for the installation of electric 

vehicle charging outlet in a house or housing unit in many states (e.g., Arizona, Georgia, 

Washington). The need for widely distributed publicly accessible power points is also 

growing, and the public charging stations used to power the electric vehicles have been 

installed in many states over the country (Figure 1-1). California has more than 500 

charging stations installed, Texas and Florida both have 201-300 charging stations 

installed, and states such as Washington, Origen, Minnesota, Illinois, and Maryland also 

have more than 100 charging stations installed up until year 2012. It is expected that 

some projects will pave the way for deploying charging infrastructure across the country 

by 2013 (2012). 
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Figure 1-1: Density of Electric Charging Stations in the United States1 

Two problems inhibit the installation of a PEV charging infrastructure. Firstly, 

companies who initiate and perform the installation of charging infrastructure want to 

optimize the funding usage and maximize their profits by providing the public charging 

stations. Secondly, charging PEV batteries presents a high load on the power gird 

network. However, this can be mitigated by reducing PEV charging   during peak 

electricity usage periods. Additional issues will arise once a charging infrastructure is 

available. Deciding the capacity of the charging stations and the time of day pricing for 

EV charging are crucial for scheduling the appropriate load on the electrical grid and 

optimizing the charging infrastructure’s revenue. This research addresses these two 

problems by studying the development of network design models for charging 

infrastructures capacity and pricing strategies at different time of the day.  

                                                
1 Figure source: Website of U.S. Department of Energy. 
http://www.afdc.energy.gov/afdc/fuels/electricity_locations.html 
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1.1.2 Potentials of plug-in electric vehicles 

One of the goals of employing PEVs is to optimize the interactions between the 

multiple systems, such as transportation systems and energy systems. Figure 1-2 shows 

the interaction between travel choices and the power system. For example, PEVs 

demands of recharging in a certain zone will impacts the setup of the number of charging 

infrastructure at that zone. In turn, the PEV demands to a zone are influenced by the 

charging infrastructure availability and recharging price at that zone. Another instance is 

that if the charging station at a destination (e.g. whole foods, Wal-Mart) has incentives 

(such as coupons, vouchers), this might stimulate the demands to the destination.   

 

 

Figure 1-2: Travel Choices and Power Supply Interactions. 

To facilitate potential interactions, it is important to investigate the PEVs 

travelers’ response to the transportation network conditions and the charging facility 

supplies. Such response may include different travel choices, such as destination choice, 

departure time choice, route choices, charging choice, etc. Investigating the temporal and 

spatial traveling and charging behavior of PEV users under different charging schemes is 

desirable for learning the new traffic pattern. Knowing PEVs travelers’ responses and 
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behaviors will, in turn, help decision makers and agencies to set transportation policies 

and charging infrastructure supply and incentives.  

1.1.3 Characteristics of battery electric vehicles 

In this dissertation research, the study focuses on the adoption of BEVs, where the 

models and algorithms can also be applied to incorporating general PEVs. Although 

BEVs have many benefits on improving environments and reducing gas usage, they are 

facing some concerns as well.  

First, an average BEV can travel a shorter distance before recharging than the 

distance a gasoline vehicle (GV) can travel before refueling. On the other hand, given the 

lack of enough charging infrastructures, BEV drivers often worry about becoming 

stranded far from a charging station, a phenomenon called “range anxiety.” Unlike the 

gas stations, the charging infrastructures for electric vehicles are typically located at 

parking places such as street parking, parking lots, and home garages. These parking 

places with charging infrastructures are typically origins and destinations of vehicle trips. 

This is because, under the current battery-charging technology, the charging time for 

electric vehicles is usually very long. A passenger car with a driving range of 40~60 

miles will require 6~8 hours for a full charge at 220V, and around 20 hours at 110V 

(Hamilton 2011). Therefore, it is less likely that a BEV motorist stops at a charging 

station during his/her journey for vehicle charging only. With the proposed “battery 

swap” services at the charging stations, quickly replacing the battery seems reasonable. 

However, currently there are no battery swap stations built since it requires a large 

amount of expensive batteries. 

The comprehensive adoption of PEVs will have substantial impacts on the 

existing transportation network models both temporally and spatially, but we lack the 
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models for predicting such impacts at this early stage of adopting electric vehicle, The 

overarching theme of this work is the need to build models for quantifying the BEV 

travelers’ behavior and for predicting the new traffic patterns with some BEVs 

penetration on the road network. 

Overall, the need for this dissertation research on building various models for 

studying the transportation networks with PEVs considerations is required to match the 

government policies and incentives, the market driven, and the future convergence goal. 

The dissertation studies both the travel behaviors of PEV users and the charging 

incentives and policy. The goal of the dissertation is to develop models and algorithms 

tracing the vehicle assignment in the transportation network account for PEVs 

considerations.  

1.2 RESEARCH PROBLEMS AND CONTRIBUTIONS 

Three primary problems are examined in this dissertation: the route choice 

behavior of BEV users, the joint choices of departure time choice, duration of stay choice 

and route choice behavior of BEV users, and the pricing and capacity design for charging 

infrastructure. Each problem is raised from currently pressing need of research after 

adoption of BEVs, for which analytical tools are absent. 

The route choice behavior of BEV users is considered in this dissertation 

primarily on account of the special characteristic of BEVs. Existing traffic assignment 

models could not account for the BEVs in completion. For BEV traffic assignments, the 

vehicle range is restricted, the charging infrastructure availability is limited, and the 

charging speed of most charging stations is confined. As consequence, the primary 

elements that are taken into account for BEV users and are considered in this dissertation 

for the route choice behavior are the travel time costs, path length, charging speed, and 
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electricity-charging price. This dissertation explores answers to the questions (such as 

spatial choices behaviors of BEV users and algorithms to solve the models regarding to 

such behaviors) that are posed before the joint choices analysis proceeds. It is shown in 

the chapter 3, a path-based algorithm for stochastic user equilibrium with BEV charging 

behavior is developed, which will be used for examine the BEVs spatial flow patterns.  

The joint choices problem is studied with regards to the temporal choices in 

addition to the spatial choices. The temporal choices considered in this research are 

referring to the departure time and duration of stay at destination. A combined time-

dependent joint choices model is presented to identify the traveling behavior of PEV 

users on a network level with mix flows. The problem examined in this part is not only 

timely and important on their own, but also can be mingled within the consideration of 

the network design problem.  

On top of the joint-choices equilibrium model, a continuous network design 

problem of charging infrastructure capacity and electricity-charging pricing is discussed 

and solved. The objective of the problem tackled here is to optimize the revenue of 

building and operating the charging facilities. The revenue management is not necessarily 

the only objective but in the view of the author that analytical tools produced in this part 

are useful for other objectives as well. This is because this part of the research lays a 

foundation by developing a model and its solution algorithm for the continuous network 

design problem.  

The contribution of this dissertation research, thus, is to explore the above 

mentioned problems and develop modeling techniques to facilitate quantitative analysis. 

In summary, the main contribution of this study includes the following: 

• New formulations for modeling the BEVs travelers’ route choice behavior 

based on the stochastic user equilibrium traffic assignment models. 
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• Algorithms to solve the path-based network equilibrium models based on 

disaggregated simplicial decomposition and lagrangian relaxation with 

enumeration 

• Multi-class quasi-dynamic model formulations for joint choices of 

departure time, duration of stay and route choice for BEVs and gasoline 

vehicles, and its solution algorithm. 

• Continuous network design model for deciding charging infrastructure 

capacity and electricity-charging pricing and its solution algorithm.  

• Quantitative analysis of temporal and spatial traffic flow patterns with 

varied BEV penetration rates, BEV range, and charging infrastructures’ 

characters.  

1.3 DISSERTATION OVERVIEW 

This chapter has presented the background, the basic motivation and research 

problems of this dissertation, and the objectives to be achieved. Section 1.1 states the 

motivation of this research. According to the motivation and challenges, the 

objectives/contributions of this research are given in section 1.2. The rest of this 

dissertation is organized as follows. 

Chapter 2. A detailed and critical review of the relevant literature is conducted. It 

gives review of stochastic user equilibrium traffic assignment, solution algorithms of 

SUE models, the discrete choice formulations, as well as combined and integrated models 

for joint travel choices. 

Chapter 3. Development of two new models of the stochastic user equilibrium 

traffic assignment problems for BEVs. The new traffic flow patterns within the context of 

BEVs on the road network are determined and analyzed. New route cost functions are 
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defined. In order to study the impacts of charging on the BEVs users’ route choice, the 

electricity-charging cost and the charging time penalty cost are considered separately in 

the stochastic user equilibrium assignment models. Solution algorithms for solving the 

developed models are presented. Again, the traffic flow patterns are examined to test 

whether changes in charging price and charging speed leads to pressing impacts. 

Chapter 4. Combined travel choices modeling. The network travel pattern, 

overall, will be affected by introducing BEVs and their charging behavior. Given fixed 

charging price and charging capacity, the travelers’ choices are be studied, including the 

activity time choices and route choices. The travelers’ joint choices are considered 

hierarchical and modeled using the nested logit structure. A quasi-dynamic time-

dependent choice process is presented and an equivalent variational inequality model is 

built to account for the multi-class, time-dependent combined choices. This chapter 

presents formulation, solution algorithm, and numerical experiments that illustrate use of 

the methodology to evaluate various scenarios of BEVs penetration and BEV range 

improvements 

Chapter 5. Continuous network design of charging infrastructure. The design of 

the charging infrastructure capacity and the electricity-charging price is captured by an 

optimization model with variational inequality equilibrium constraint. The optimal 

capacity and pricing is determined in terms of revenue generation. The travel choices 

model developed in Chapter 4 is presented as the lower level equilibrium problem. A 

sensitivity analysis based optimization approach is derived and implemented to solve the 

proposed model.  

Chapter 6. concludes the dissertation, summaries the key contributions, the results 

from the analysis, and suggests the future research directions. 
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Chapter 2 Literature Review 

The research contained herein draws from existing research in the area of discrete 

choice models, user equilibrium models, stochastic traffic assignment models and 

algorithms to implementing them, joint choices models, and network design models with 

particular interests in continuous network design models. The remainder of this chapter is 

devoted to reviewing the literature techniques in these areas that are relevant to the 

research work. 

2.1 DISCRETE CHOICE MODELS FOR TRAVEL CHOICES 

Random utility models for the route choice play a central role in vehicles 

assignment to road networks. The utility maximization rule states that an individual 

selects the alternative from his/her set of available alternatives that maximizes his or her 

utility. Let ( )U ⋅ be the function representing the utility of an alternative, ,x y are the 

alternatives from the available alternative choice set C . Mathematically, the random 

utility rules can be described as follows 

 ( ) ( )U x U y x y C≥ ⇒ ∈≻   (2.1) 

Wherex y≻ means the alternative x is preferred to the alternativey . That is, if 

the utility of alternative i is greater than or equal to the utility of all other alternatives in 

the choice set, the alternative x is preferred over all other alternatives and is selected. 

The discrete choice models have been widely adopted to analyze and predict 

individual decisions on a finite set of discrete alternatives (Ben-Akiva and Lerman 1985). 

The discrete choice models have very good fit  because, in transportation behavior 

modeling, the analysis of travel behavior is usually disaggregated and the choice set in 

traveling decisions are usually discrete and finite (such as routes, destinations, mode, 

departure time, etc.). 
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In the discrete choice models, the preference of an alternative is based on the 

utility measure associated with that alternative. However the decision-maker may not 

have the complete information on the utility of the each alternative due to different 

sources of uncertainties, such as unobserved alternative attributes, measurement errors 

etc.(Manski, 1977). In such case, the utility is modeled as a random variable and the 

choice model gives a chosen probability of each alternative in the choice set in an 

aggregated manner. Mathematically, this probabilistic choice theory is represented as 

follows, 

 
x x x

U V ε= +  (2.2) 

Where 
x

U is the true utility of the alternative x to a decision maker, 
x
V is the 

observable portion of the utility, and 
x
ε is the portion of the utility that is random. Based 

on the different distribution of the random term, two typical discrete choice model 

families, namely Logit family and Probit family, are widely used in the traffic assignment 

context (Ben-Akiva and Bierlaire 2003; Cascetta 2009; Sheffi 1985).   

2.1.1, Multinomial Logit model 

The Logit models are models where the random variables are introduced by the 

Gumbel distributions. There are specific assumptions that lead to the Multinomial Logit 

Model (MNL). The assumptions are: the error components are Gumbel distributed; the 

error components are identically and independently distributed (i.i.d) across alternatives; 

and the error components are identically and independently distributed across individuals 

(Koppelman and Bhat 2006). 

The MNL models assign the choice probabilities of each alternative as a function 

of the systematic portion of the utility of all the alternatives. Given that the random term 
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x
ε in Equation (2.2) is i.i.d. Gumble distributed, the mathematical expression of the 

probability of choosing an alternative x from a set of alternatives C is as follows, 

 
exp( )

Pr( ) ,           
exp( )

x

y
y C

V
x x C

V
∈

= ∀ ∈
∑

 (2.3) 

As stated in Equation (2.2), 
x
V is the systematic component of the utility of the 

alternativex . The exponential function of 
x
V is positive and monotonically increasing. 

This implies that the probability of choosing an alternative increases monotonically with 

the increase of its systematic utility and decreases with the increase of the systematic 

utility of the other alternatives in the choice set. Noted that the variance of the random 

term 
x
ε  is  

 
2

var( )
6x

π
ε

µ
=  (2.4) 

Where µ  is the scale parameter which determines the variance of the Gumble 

distribution. 

The MNL models for travel choices were widely used and adopted by many 

researchers because of its simple mathematical form, ease of estimation and 

interpretation. They has been applied in the areas of mode choice (Koppelman and Bhat 

2006), mode choice and departure time choice (C. Bhat 1998a; H. Huang, J and Lam 

2003), departure time and route choice (Ben-Akiva and Bierlaire 2003), etc. 

2.1.2, Nested-Logit model 

MNL choice models sometimes lead to unreasonable results for a correlated 

choice set. For example, in the context of route choice; the MNL does not properly 

address the overlaps in different routes. There are renewed interests to improve the Logit-

based models. Some recent models in the Logit family relax restrictions on the 
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covariance structure and still maintain the tractability. Different models from the 

extended and modified logit models based on different assumptions concerning the 

structure of the random term of alternative utilities are derived (Bekhor and Prashker 

1999; Ben-Akiva and Bierlaire 1999; Cascetta et al. 1996; A. Chen et al. 2003a; 

Hoogendoorn-Lanser et al. 2005; Ramming 2001; Vovsha and Bekhor 1998). They can 

all be used to address the correlations between alternatives. Among them, the Nested 

Logit (NL) model, is the simplest and most widely used. The NL model is characterized 

by nesting subsets of similar alternatives. The NL model normally has a tree structure as 

shown in Figure 2-1. The Figure shows a two-level nested structure, there are four 

alternatives in the upper level nest and a number of alternatives in the lower level nest 

(McFadden and Train 2000; Williams 1977). 

 

x

y

 

Figure 2-1: Two-Level Nest Structure 

At the lower level in the NL model, the alternative’s utility depends on the 

utilities as subsequent level. This utility is called conditional utility. Let x represents an 

alternative in the lower level nest and y represents the alternative superior to x  in the 

upper level nest. 
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Let 
/x y

U  represent the conditional utility of a lower level choice x . Providing 

that upper-level choice y  has already been made, 
/x y

U  is equal to the sum of lower-

level choice systematic utility, 
x
V , the combined utility of first and second-level choice, 

xy
V , and the random utility terms 

xy
ε ,  

 
/x y x xy xy

U V V ε= + +  (2.5) 

With this utility structure, according to (Oppenheim 1995), the conditional 

probability of selecting the lower level alternative x , given that the upper-level 

alternative y  has already been chosen, equals to Eq. (2.6); while the unconditional 

probability that the upper level alternative y  is chosen equals to Eq.(2.7) 

 
' ' '

'

exp{ ( )}
Pr( / )

exp{ ( )}

x x xy

x x x y
x

V V
x y

V V

β

β

+
=

+∑
 (2.6) 

 
' ' '

'

exp{ ( )}
Pr( )

exp{ ( )}

y y y

y y y
y

V W
y

V W

β

β

+
=

+∑
 (2.7) 

where the term 
y

W  represents the expected indirect utility of the choice of 

( , )x y . The probability of choosing the alternatives x can be obtained by multiplying the 

conditional probability of the alternative x  by the marginal probability of choosing 

alternative y , as follows: 

 Pr( ) Pr( / ) Pr( )x x y y= ×  (2.8) 

By the utility theory, an individual would choose the alternative with the 

maximum utility (Eq. 2.9). The expected utility receives from utility maximizing choices 

is given by Eq. 2.10. 
y

W  is computed from the log of the sum of the exponents of the 

nested utilities, commonly referred to as the “logsum” variable. This is how the utilities 

are propagated upward in the NL model. 



 15 

 
/

{max( )}
y x yx

W E U
ε

=  (2.9) 

 
/

1 1
ln exp{ ( )} ln exp{ ( )}

y x x xy x x y
x xx x

W V V Uβ β
β β

= + =∑ ∑  (2.10) 

The logsum parameter 
x
β  (also called the “dissimilarity parameter”, “nesting 

coefficient”), is a function of the correlation between unobserved components for 

alternatives in the nest. This parameter characterizes the degree of dissimilarity between 

the pair of alternatives. Noted that 0 1
x
β≤ ≤ needs to be satisfied to be consistency 

with random utility maximization principles. The values of the parameter 
x
β  are related 

to the variances of random component 
xy
ε ; the relationship is 2 2 2/ 6

x
σ π β=  , where 

σ  is the variance of the Gumbel distributed random term 
xy
ε . 

2.2 STOCHASTIC USER EQUILIBRIUM AND ALGORITHMS 

2.2.1, user equilibrium models 

According to Wardrop’s first principle, the user equilibrium (UE) condition in 

transportation networks is reached when no travelers can improve their travel time by 

unilaterally changing the routes (Sheffi 1985; Wardrop 1952). The UE models are the 

most widely used route choice models in the transportation planning process. The 

deterministic UE traffic assignment assumes that the actual travel costs are known to all 

travelers in the network; therefore, all travelers choose the route that minimizes their own 

travel costs. The UE flow pattern can be found by solving the following Beckmann 

equivalent optimization problem (2.11)-(2.14) (Beckmann et al. 1956). 

 
0

min. ( ) ( )
a
x

ax
a

z x t x dx=∑∫  (2.11) 

Subject to 

 ,      ,rs rs

k
k

f q r s= ∀∑  (2.12) 
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 0,      , ,rs

k
f r s k≥ ∀  (2.13) 

 
,
,      rs rs

a k a k
r s k

x f aδ= ∀∑∑∑  (2.14) 

Where x represents the link flow vector and 
a
x represents the flow on link a . 

()
a
t ⋅  is the link performance function (e.g. travel time) as a function of the link flow. It is 

usually assumed positive and increasing. rs
q  is the trip rate between origin r and 

destination s , and rs

k
f  is the flow on path k  between Origin-Destination (O-D) pair 

( , )r s . The objective function is the sum over all arcs of the integrals of the link 

performance function. Eq. 2.12 is the flow conservation constraint at origins and 

destinations. Eq. 2.13 is the non-negative constraint of the total flow on all paths. Eq. 

2.14 is the link-path incidence relationship constraints, where 
,

rs

a k
δ is defined as follows: 

 
,

1      If link  is on path  of O-D pair ( , )

0     Otherwise
rs

a k

a k r s
δ

= 
 (2.15) 

2.2.2, stochastic user equilibrium models 

The assumptions of perfect knowledge of the network travel costs and thus to 

accurately identify the minimum travel time are rather unrealistic since travelers do not 

always end up picking the minimum travel cost route due to their imperfect perceptions. 

The stochastic user equilibrium (SUE) traffic assignment models are considered as a 

realistic generalization of the deterministic UE traffic assignment models because they 

relax the presumptions that every traveler in the network has accurate perceptions on the 

travel cost by introducing a random term to represent differences in the travelers’ 

perception of travel cost. Let perceived

k
c be the perceived travel cost of route k , real

k
c be the 

real travel cost on route k , and 
k
ε be the random errors. :perceived real

k k k
c c ε= + . A SUE is 

defined as no motorists can improve his or her perceived travel cost by unilaterally 
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changing the routes (Daganzo and Sheffi 1977; Sheffi 1985). The SUE conditions are 

satisfied by the following optimization problem (Sheffi 1985). 

0
min ( ) [min{ } | ( )] ( ) ( )

a
x

rs rs rs

k a a a ax k rs
rs a a

z x q E c x t x t dω ω
∈Κ

= − + −∑ ∑ ∑∫c x  (2.16) 

where rsc is a vector of the perceived path cost with element of { }rs
k
c . As the 

equation shown in (Sheffi, 1985), the first term in the objective function is the expected 

perceived travel time function [ ( )] [min{ } | ( )]rs rs rs

rs kk rs
S E c

∈Κ
=c x c x . It has been proved that 

the function [ ( )]rs

rs
S c x  is concave with respect to rsc (Sheffi 1985), and the following 

equation holds,  

 
( )rs

rsrs

krs

k

S

c

∂
=

∂

c
P  (2.17) 

Where rs

k
P is the probability vector of choosing any route k between r and s

.The above formulation is the link-based unconstrained optimization formulation for the 

general SUE problem developed by Sheffi and Powell (Sheffi and Powell 1982). Because 

the SUE traffic assignment models are considered more behavioral realistic, they have 

attracted more attention from many researchers in the traffic assignment area.  

Summarized by (Lo and Chen 2000a), traffic assignment formulations typically 

follow four approaches, namely, mathematical program (Fisk 1980; Janson 1991), 

nonlinear complementarity problem (H. Aashtiani 1979a), variational inequality 

formulation (S. Dafermos 1980; Nagurney 1993), and fixed point problem (K. Zhang and 

Mahmassani 2008). There are linkages and equivalence conditions among these 

approaches. In general , existing literatures for SUE traffic assignment are based on three 

types of formulations: (i) optimization-based general models for both Logit and Probit 

SUE models (Sheffi and Powell 1982) (ii) the Logit SUE model and its equivalent 

mathematical formulations by Fisk (Fisk 1980) (iii) Fixed point formulations and 
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nonlinear complimentary formulations with gap functions for general models (Daganzo 

1983; Lo and Chen 2000b). 

The logit SUE formulation developed by (Fisk 1980) uses path flow variables. 

The following equations (2.18)-(2.20) give Fisk’s path-based optimization formulations 

of the logit-based SUE problem.  

 (Fisk’s) 
0

1
min (ln ) ( )

a

rs
k

x
rs rs

k k a
f

rs k a

z f f t w dw
θ

= +∑∑ ∑∫  (2.18) 

Subject to 

 ,    ,rs rs

k
k

f q r s
∈Κ

= ∀∑  (2.19) 

 0,      , ,rs

k
f k r s≥ ∀  (2.20) 

where an entropy term is added to the objective function of Beckmann’s equation 

(2.11) (Beckmann et al. 1956).  

2.2.3, solution algorithms for stochastic user equilibrium  

One classification method for the algorithms solving the deterministic UE and 

SUE traffic assignment problem is based on how the link flows are aggregated. The link 

flows could be aggregated from three different types of flows: path flows, origin-based 

link flows, and destination-based link flows (Ahuja et al. 1993a). This classifies the 

algorithms into three categories: link-based algorithms, path-based algorithms, and 

origin-based or destination-based algorithms (Lee et al. 2010).  

Handful solution methods have been developed so far for the deterministic UE 

traffic assignment problems for all of the above three types of algorithms. Some novel 

literatures on link-based Frank-Wolfe algorithms are (Michael Florian et al. 1987; 

LeBlanc et al. 1975; Masao 1984). Origin-based approach has received more attractions 
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after introduced by (Bar-Gera and Boyce 2003) (for a summary of some of those early 

algorithms see (Michael Florian and Hearn 1995; Patriksson 1994)). After the first 

convergent path-based feasible descent direction method was proposed by Gibert (Gibert 

1968), Larsson and Patrikson (Larsson and Patriksson 1992) designed the Disaggregate 

Simplicial Decomposition (DSD) method. Later (Jayakrishnan et al. 1994) proposed a 

path-based gradient projection method. 

The link-based and origin-based algorithms have the advantage of avoiding path 

enumerations and route storage, which, subsequently is more computational efficient and 

inexpensive, especially for a large networks where the number of routes is much more 

than the number of links. However, there is resurgence in the interest of reformulating or 

solving the traffic assignment with path flows directly since in some problems the route 

flow results are necessary (Lo and Chen 2000a). For instance, when the route costs are 

non-additive (i.e. there are route specific costs), it is not possible to solve the problem 

with link flows alone (Agdeppa et al. 2007; Gabriel and Bernstein 1997).  

Unlike deterministic UE traffic assignment problem, only a few algorithms have 

been emerged for solving the logit-based SUE traffic assignment models (Bell 1995a; 

Damberg et al. 1996; David 2006; H.-J. Huang and Bell 1998; Lee et al. 2010; M. J. 

Maher 1992; M. J. Maher and Hughes 1997; M. Maher 1998; M. Maher et al. 2005; K. 

Zhang and Mahmassani 2008). Although the logit-based route choice model has a closed-

form probability expression based on the path flow variables, most solution algorithms 

for the above SUE formulations are link-based algorithms. Among the link-based 

solution algorithms, the Dial’s STOCH (Dial 1971) approach and its variants for 

stochastic network loading are, perhaps, the best known algorithms that simultaneously 

assign flows to the efficient links on reasonable paths in the network. The link efficiency 

is represented by likelihood and link weight, which is detailed in (Sheffi 1985). (Sheffi 
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and Powell 1982) proposed the link-based method of successive average (MSA) with a 

predetermined step size sequence. In link-based algorithms, although routes are generated 

in each iteration of the column generation procedure, the algorithms does not store or 

makes direct use of the routes gnerated. Motivated by Bar-Gera’s origin-based algorithm 

for deterministic UE traffic assignment, (Lee et al. 2010) developed an origin-based 

algorithm for solving the logit-based SUE traffic assignment problem based on 

Akamatsu’s model (Akamatsu 1996). Overall, there are limited algorithms that explicitly 

make use of the path flows when solving the SUE traffic assignment problems. 

Despite its several weakness, the logit-based SUE traffic assignment with the 

equivalent mathematical programming formulation (Fisk 1980) is the most widely used 

model because of its simplicity. Although Fisk’s mathematical formulation is represented 

using the path flow variable, many algorithms solving this SUE traffic assignment 

models use link flow variables instead of path flow variables. Although there has led to 

increased focus on path-based algorithms for deterministic UE, the path-based algorithms 

available for SUE models are very limited. However, the investigation on path-based 

algorithms is necessary and fulfilling. Because models resulting in explicit route flows 

allow more realistic behavioral assumptions and path-based algorithms provide higher 

accuracy for equilibrium solutions. 

Some of the path-based SUE traffic assignment models can be solved using path 

enumeration and column generation technics (Anthony Chen et al. 2003b). The explicit 

path enumeration technics assigns probabilities onto the pre-selected paths, which is 

called selective-explicit enumeration approach (Cascetta et al. 2002). This pre-selection 

of path is reasonable since motorists do not consider or perceive all alternatives in a 

transportation network. The perceived paths (pre-selected paths) in path enumeration 

approaches are obtained as those satisfying some rules (Ben-Akiva et al. 1984b; Cascetta 



 21 

et al. 1997; Cascetta et al. 2002) since the exhaustive enumerating of all paths in the 

network is computationally impossible. Some other path-based column generation 

techniques for SUE traffic assignment models do not store the paths generated during 

running the algorithm (Bell 1995b; Bell et al. 1997; Jayakrishnan et al. 1994). Based on 

the disaggregated simplicial decomposition (DSD) algorithm proposed by (Larsson and 

Patriksson 1992), (Damberg et al. 1996) extended this algorithm for the solutions of the 

SUE traffic assignment problem. It is the first work to present an algorithm that provides 

route flows explicitly for the SUE traffic assignment. The algorithm alternatives between 

two main phases: a restricted master problem phase where the equilibrium of path flows 

are solved within a restricted path set and a sub-problem phase where new routes are 

generated and augmented into the restricted path set. Huang and Bell (H.-J. Huang and 

Bell 1998) presented an efficient approach to generate all non-cyclic paths to solve SUE 

traffic assignment problem by applying the method of successive averages. The number 

of paths decreases greatly by the generation techniques, which results in reduction of the 

computational burden. Meanwhile, the generation of the perceived path set is very 

important, and plentiful work has been done on the choice set modeling for generating 

reasonable and realistic choice set within a satisfied computation burden (Cascetta and 

Papola 2009; Damberg et al. 1996) 

2.3 EQUILIBRIUM TRAVEL DEMAND PROBLEMS 

The network equilibrium models are useful tools for long term transportation 

planning. In order to address the drawback of inconsistency between different choices 

and to model more than one choice dimension in travelers’ behavior, many researchers 

proposed network equilibrium models which combine different choices together. Such 

combined choices include the mode and routes choices, destination choices and route 
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choices, departure time and route choices, etc. Many researchers proposed network 

equilibrium models for the combined choices (García-Ródenas and Marín 2005; 

Oppenheim 1995).  

(Sheffi 1985) presented a hypernetwork approach to accommodate the joint travel 

choices. The hypernetwork consists of hyperlinks for trip generation, mode choice, 

destination choice and the route choice (Figure 2-2). The network includes two origins, 3 

destinations. Node 1 and 2 are connected to destination 4 and 5 by transit links (dashed 

line). In addition, the destinations are connected to origin-specific dummy destination 

nodes.  

 

Figure 2-2: Hypernetwork Representing Joint Mode Split/Trip Distribution/Traffic 
Assignment Problem (Sheffi, 1985 (Sheffi 1985)) 

2.3.1, mathematical programming models  

For many years, formulating the combined choices into a mathematical 

programming problem is quite attractive because of the computational efficiency. The 

combined choices have been proposed for dozens of years on different levels of choice 

combinations. The combined choices model in this dissertation research is not a 

mathematical programming model, however, some innovation research works in the 

mathematical models are presented here as for the review completeness. (Michael Florian 

1977) and (Evans 1976) combined the trip distribution and traffic assignment into one 



 23 

model and solved the two step choices simultaneously to obtain more consistent results 

(Brake et al. 2007; Michael Florian et al. 1975). Evans (1976) extended the convex 

optimization formulation by introducing origin and/or destination constraints and she also 

presented an efficient convergent algorithm for solving the model (Brake et al. 2007). 

(Michael Florian and Nguyen 1978) extended the trip distribution and assignment models 

with two modes which had unrelated travel time. (T Abrahamsson and Lundqvist 1999a) 

developed a convex optimization problem combining trip distribution, mode choice and 

traffic assignment models with a set of hierarchical choices, where the transit and auto 

travel times are independent (Martin 1998). (William H. K. Lam and Huang 1992) and 

(Boyce and Bar-Gera 2001) formulated multimode, multiclass network equilibrium 

models. (William H. K. Lam and Huang 1992) incorporate trip distribution with the user-

equilibrium assignment for multiclass transportation networks. Convex programming was 

used after converting the link cost functions into symmetric forms; while modified 

algorithms based from Frank-Wolfe’s and Evans’ were applied to solve the problem 

(Diana and Dessouky 2004).  

2.3.2, fixed-point models  

The mathematical programming sometimes cannot be used to deal with multiple 

user classes; the interacting modes will cause asymmetric link cost functions that cannot 

be solved using mathematical formulation. Thus, in combined models, the equilibrium 

conditions are usually considered as a system of equations and inequalities (Aldaihani 

and Dessouky 2003), which have an intuitive behavior interpretation. Examples of such 

models are the nonlinear complementarily problem (H. Z. Aashtiani 1979b) and the 

fixed-point problem (Bar-Gera and Boyce 2003, 2006; Cantarella 1997; Lin et al. 2008; 

Martínez and Henríquez 2007).  
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(Cantarella 1997) presented a fixed-point formulation of a multi-modal, multi-

user equilibrium assignment with elastic demand. (Daganzo 1983), in addition, allowed 

stochastic link costs when modeling multimodal transportation network equilibrium 

problems. The SUE path flows can also be expressed as the solution of a fixed-point 

model defined on the feasible path flow set (Cascetta 2009). 

 
* *( ( ))rs rs rs T rs

rs rs
rs

q c= −∆ ∆∑f p f  (2.21) 

where *rsf is the path flow vector with element { }rs
k
f , 

rs
∆ is the link-path 

incident vector with element 
,

{ }rs

a k
δ . 

(Bar-Gera and Boyce 2003) presented a fixed-point model for the general 

combined travel demand and network assignment problem. The authors also proposed an 

origin-based algorithm for solving the combined models. Later, they discussed the 

algorithm’s ability to handle non-convex combined models (Bar-Gera and Boyce 2006). 

They demonstrated that a proper choice of step size in the method of successive averages 

for fixed-point problems can solve the non-convex combined models efficiently and 

precisely with an origin-based algorithm (Bar-Gera and Boyce 2006). (Lin et al. 2008) 

developed a fixed-point formulation and explored practical integration issues for 

combining activity-based travel demand modeling approaches and dynamic traffic 

assignment. 

2.3.3, variational inequality models  

Besides the fixed-point models, variational inequality (VI) is widely used for the 

combined choices (Chang and Yu 1996; Stella Dafermos 1982; Friesz and Mookherjee 

2006; Guo et al. 2010), especially for the time-dependent combined travel choices 

(Daniele et al. 1998). The VI problem is defined as follows. 
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Let : n nF D ⊂ℜ → ℜ be a vector-valued and continuous mapping on a 

nonempty, closed and convex set. The VI problem is to find a vector * D∈x  such that 

 ( *), * 0,      F D< − >≥ ∀ ∈x x x x  (2.22) 

where , T
a b a b< >= . The existence theorem for the VI model states that: If D  

is compact convex set and ( )F x  is continuous on D , the VI problem has at least one 

solution *x . Furthermore, the uniqueness theorem states that: if ( )F x  is strictly 

monotone on D , then, the solution is unique if there exists one. 

(Ran and Boyce 1996) proposed a path-based VI formulation for dynamic 

stochastic models. (Liu et al. 2002) presented a VI model over a stochastic network for 

dynamic stochastic models to capture the travelers’ decision making among discrete 

choices in a probabilistic environment.  

Yang et al. (1998) proposed a space-time expended network (STEN) for the 

departure time and route choice in a queuing network with elastic demand to determine 

the optimal variable congestion tolls. (Friesz et al. 1993) first formulated an infinite-

dimensional VI model for the combined choices of departure time and route choice 

without providing the solution approaches. Later, (Wie et al. 1995) developed a 

discretized VI formulation for simultaneous route and departure time choice equilibrium 

problem. In addition, they presented a heuristic algorithm but with no convergence 

established.  

(Zhou et al. 2007) developed a VI model and a heuristic procedure to describe and 

to solve the combined mode, departure time and route choices in multimodal urban 

transportation network. (X. Zhang 2007) considered simultaneous departure time and 

route choices using VI formulation. (M. Florian et al. 2002) formulated a VI formulation 

for a multi-class multi-mode variable demand equilibrium, in which the joint choices 
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model was a hierarchical Logit function. (Wu and Lam 2003) proposed a network 

equilibrium model that predicts the mode choice and route choice simultaneously in the 

VI form. (William H.K. Lam et al. 2006) proposed a time-dependent network equilibrium 

VI formulation for simultaneously departure time, route, parking location and parking 

duration choice in deterministic user equilibrium.  

2.4 BI-LEVEL MODELS FOR CONTINUOUS NETWORK DESIGN PROBLEM 

The continuous network design problem (CNDP) is an important problem in 

transportation planning, with a vast volume of literature published on this topic (Friesz 

1993; Wang and Lo 2010). The CNDP problems are typically formulated as bi-level 

programs or a mathematical programming with equilibrium constraints (MPEC). An 

MPEC problem can be formulated as a generalized bi-level programming model as 

follows (Luo et al. 1996). 

 min. ( , )
x
F x y  (2.23) 

subject to 

 x X∈  (2.24) 

where y is optimal for  

 min. ( , )
y
f y x  (2.25) 

subject to 

 ( )y Y x∈  (2.26) 

The objective min ( , )
x X
F x y∈ is referred to as the upper-level problem, and 

( )
min ( , )

y Y x
f y x

∈ is referred to as the lower-level problem for a fixed x . When this lower-

level problem is formulated as a VI problem, it is usually referred to as MPEC problem. 
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The models are generally non-convex due to the traffic assignment equilibrium 

conditions and non-linear travel time function. Many algorithms have been proposed to 

solve the CDNP formulations, including, e.g., Hooke–Jeeves algorithm proposed by 

(Abdulaal and LeBlanc 1979), sensitivity analysis based heuristic algorithms (Friesz et. 

al., 1990; Cho 1988; Yang 1995, 1997), equilibrium decomposed optimization heuristic 

(Suwansirikul et. al. 1987), gradient-based methods (Chiou 2005). (H. Yang and Bell 

1998) comprehensively surveyed on the models and algorithms known and adopted by 

the transportation field for solving network design problems. 

Among all solution approaches, sensitivity analysis based (SAB) method has been 

developed as an important approach for optimization problems in transportation systems, 

especially for the network design problems (usually bi-level programming problems). 

Such applications include a variety of optimal pricing, network design and traffic control 

problems in traffic networks (Bell and Iida 1997; Luo et al. 1996; Miyagi and Suzuki 

1996; H. Yang 1997; H. Yang et al. 2001). A detained and comprehensive review on 

models and algorithms for road network design can be found in (H. Yang and Bell 1998). 
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Chapter 3 Stochastic Traffic Assignment for Battery Electric Vehicles 

3.1 INTRODUCTION 

As mentioned in the first chapter, the electric vehicles (EVs) go a lot shorter 

distance between recharges than a conventional gasoline vehicle (GVs) between 

refueling. Because of the recharging requirements discussed above, we are wondering 

how these charging activities will influence their travel behaviors. Such influences may 

come from two factors: the charging cost and the charging time. Our initial focus is given 

to route choice behaviors. These factors, call for new route choice models for BEV 

drivers. This chapter aims to investigate the impacts of charging cost and charging time 

on the individual route choice behavior and network flow pattern under the stochastic 

user equilibrium conditions.  

A driver’s generalized total cost typically consists of travel time and operating 

cost. The motorist will choose a route that minimizes his/her generalized travel cost for 

the journey. Comparing to GV drivers, the BEV drivers will encounter the same non-

monetary cost (time spent undertaking the journey), but different out-of-pocket costs 

(operating cost, charging time costs, etc.). The operating cost for gasoline vehicle uses is 

basically the gas cost, while the operating cost for BEV motorists is mainly the electricity 

cost. It has been mentioned earlier that the difference between recharging/refueling 

infrastructure availability and recharging/refueling time for BEVs and GVs. Gas stations 

are available almost everywhere and the gas prices between different gas stations in a 

daily commute region are comparable; while in a traffic network, the number of 

electricity charging stations are limited at present as well as in the foreseeable future. 

These charging stations are mostly located at origin and destination nodes, for example, 

homes, offices, schools, shopping centers, etc. In addition, the charging price at home and 

at a public charging station could be very different. For example, most of the BEV 
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motorists are likely to charge their vehicles during night at home because of the low 

electricity cost at night and because of the convenience; while the electricity price is 

typically much higher at public charging stations because of the commercial purpose. 

Thus, unlike GV motorists, the BEV motorists will also consider where to charge their 

vehicles in addition to their route choice in order to complete their journey. 

Traditionally, in the route choice models, when the operating cost of gasoline 

vehicles are considered, this operating cost (mainly referring to the gas cost) is 

decomposed onto the links constituting the chosen route. Usually, this operating cost can 

be calculated by multiplying the link length and the per unit length gas cost ($/mile) on 

the link level. However, for BEV drivers, the electricity costs at different places are very 

different, as we discussed above, which leads to the operating cost is a mix of different 

electricity-charging costs, depending on how long the trip is and when and where the 

BEV is charged. Therefore, simply decomposing the electricity costs to links by using an 

average per-unit-length electricity cost is not reasonable. As a result, the operating cost 

for BEVs should be calculated with taking into account the different charging costs at 

different charging places. 

In addition, the charging time of a BEV at its destination influences the duration 

of stay. For instance, let us assume the motorist expects to spend 2 hours at a destination. 

But, in order to get back to the origin, the required charging time for his/her vehicle 

exceeds 2 hours, which means that this driver will have to stay longer until the minimum 

electricity storage in his/her BEV battery is reached. The battery charging time of a BEV 

depends on the amount of electricity it needs, and this amount of electricity it needs 

depends on how much electricity is left and how much more electricity is needed for the 

next trip. The route chosen for a BEV driver directly determines the electricity 

consumption (and how much electricity remains) and becomes a factor of the recharging 
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time. If we consider a simple origin-based trip chain, such as a origin-destination-origin 

round trip, the route chosen for the origin-destination trip obviously determines whether 

the vehicle needs to be recharged at the destination and how long the recharging time is if 

it is needed. Therefore, it is better to taking the charging time into account when building 

the route choice model for BEV drivers. 

The purpose of the research in this chapter is to develop a stochastic network 

equilibrium model that can also take into account for the above discussed (i) charging 

cost and (ii) the charging time for BEV drivers. This research result contains our 

initiative insights of an equilibrium route choice model for BEV motorists impacted by 

the charging price and speed. The concern of “range anxiety “for BEVs is not addressed 

here since most daily commuters will have a very good estimation on their travels, and 

will not go for any trip that is beyond the vehicle’s driving range. 

This chapter is structured as follows. . Section 3.1 presents the assumptions, 

definitions and problem statement of the stochastic user equilibrium assignment problem 

for EVs. The next section discusses the problem settings and assumptions, followed by 

the model formulations for incorporating charging cost and charging time as travel 

impedances, respectively in section 3.3. Two logit-based stochastic traffic assignment 

models are built to study the route choice behavior of BEV drivers in a network with 

charging infrastructures located at origins and destinations. Section 3.4 presents a 

solution algorithm to solve the proposed models and section 3.5 gives the result of the 

numerical tests for the developed models. 
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3.2 PROBLEM STATEMENT AND ASSUMPTIONS 

3.2.1, Problem setups 

We consider a traffic network ( , )G N A= , where N is a finite set of all nodes 

and A is a finite set of all directed arcs. Let R  be the set of origins and S  be the set of 

destinations, then ( , )r s  represents an origin-destination (O-D) pair, where r R∈  and 

s S∈ . 
rs

K  is the set of routes between O-D pair ( , )r s  and 
�
rsK  is the subset of routes 

between O-D pair ( , )r s . Other notation and variables are summarized as follows. 

Parameters: 

a
d  length/distance of link a  

rs

k
d  length/distance of route k between O-D pair ( , )r s  

rst  expected activity duration for drivers between O-D pair ( , )r s  

,

rs

a k
δ  link-path indicator for link a and route � between O-D pair ( , )r s  

h
e  travel time-equivalent cost per unit distance for electricity charging at 

origin h  

s
e  travel time-equivalent cost per unit distance for electricity charging at 

destination s  

rsq  O-D trip rates between O-D pair ( , )r s  

rsλ  Lagrangian multiplier associated with flow-demand reservation equation 

θ  dispersion parameter, which is a positive scaling factor related to the 

variance of the perceived travel costs of BEV drivers 

σ  charging time needed for per unit distance traveled 

Functions 

a
t  travel time cost functions on link a  

rs

k
e  charging cost for BEV drivers using route 	� between O-D pair ( , )r s  

rs

k
tc  charging time needed for drivers using route k between O-D pair ( , )r s  
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rs

k
ctp

 charging time penalty for travelers using route k between O-D pair ( , )r s  

rs

k
pe  charging time penalty cost for travelers using route k between O-D pair 

( , )r s  

Variables 

rs

k
f  path flow on path/route k between O-D pair ( , )r s , where path flow 

pattern [ ]rs
k
f=f  

a
x  Link flow on link �, where link flow pattern [ ]

a
x=x  

k
U  utility of route k  

k
V  systematic utility of route k  

k
ε  random error term of route k  

rs

k
U  utility of route k between O-D pair ( , )r s  

rs

k
V  systematic utility of route k between O-D pair ( , )r s  

rs

k
ε  random error term of route k between Od pair ( , )r s  

rs

k
C  generalized route cost of choosing route k between O-D pair ( , )r s  

rs

k
p  probability of choosing route k between O-D pair ( , )r s  

The OD demands for the entire analysis period, the duration distributions of 

motorist staying at destinations, electricity-charging prices at destinations (e.g., 

workplaces, schools, or shopping malls) and at all origins (i.e., homes) are assumed to be 

known a priori. For modeling static network equilibrium problems, the analysis period is 

typically referred to as a specific steady-state time-of-day period, such as morning peak 

hours, afternoon peak hours, or midday off-peak hours, among others. In particular, the 

analysis period of interest in this study is the morning peak period and all travel demands 

are home-to-work commuting trips. As we will discuss below, different time-of-day 

periods may imply different electricity-charging behaviors of BEV drivers. 
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The route choice behaviors is specified by the random utility maximization 

framework, that is, each driver chooses a route that maximizes his/her perceived utility. 

The choice probability of each route k between an O-D pair ( , )r s  can be determined as 

follows, 

 
''

( ) prob[ ( ) max{ ( )}]rs rs rs rs

k k k kk
p p U U= = =f f f  (3.1) 

  [probability]  [maximum utility amount all alternatives] 

The SUE network flow is obtained by applying both the equilibrium principle and 

random utility theory to congested networks. The perceived travel utility on route k  

between an O-D pair is described as 
k k k

U V ε= + , where 
k

V is the deterministic travel 

utility (actual travel cost) at a given flow pattern and 
k
ε  is a random component. 

Depending on the probability distributions chosen for this random term, different models 

are obtained (Sheffi 1985). We used a logit- based SUE model, where the random term is 

i.i.d Gumble variables. 

3.2.2, Charging logic of EV users and assumptions 

Assumption 1 (Cost-minimization charging behavior). We assume that the 

electricity-charging cost at origins (i.e., homes) is cheaper than destinations (i.e., 

workplaces). Whenever possible, all BEV drivers prefer to charge their vehicles at home 

garages as much as possible. We also assume that all BEV drivers fully charged their 

vehicles at origins, or charge their vehicles at destinations at least as much as electricity 

energy into the battery that is sufficient for their return trips to origins, before departing 

home. If a full charge at origins is not sufficient to support the entire round trips, BEV 

drivers will charge their batteries at destinations. Given that the electricity-charging cost 

at origins is cheaper, however, they will not charge more electricity energy than what is 

needed for their return trips. Under this assumption, it is readily known that the “whether 
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to charge” behavior at any destination will depend on the electricity consumption along 

the trip or the trip distance between the origin and the destination.  

Assumption 2 (Existence of feasible paths). We assume that for any O-D pair with 

a positive demand rate, there are a number of feasible routes, the length of which is less 

than or equal to the “effective” distance limit of BEVs.  

The effective distance limit is defined as the maximum driving distance that a 

BEV can achieve after a full charge under ideal driving conditions minus a “safety” or 

“buffer” range. The consideration of the safety range is necessary since extra electricity 

energy will more or less consumed under varying, imperfect driving conditions. For a 

round trip or a home-based trip chain (e.g., a home-workplace-home trip), if the distance 

of the home-workplace trip is greater than some threshold distance, the BEV driver has to 

charge their vehicles at the destination for his/her workplace-home trip; if the home-

workplace distance is less than the threshold distance, the BEV driver is not required to 

charge his/her vehicle at the destination. The threshold distance is named the threshold 

distance for recharging requirement, which, as we will discuss in the next section, is 

related to the effective distance limit defined above. The network equilibrium models 

presented in this paper are constructed on the basis of an alternative mixed travel cost 

structure determined by the threshold distance for recharging requirement. 

Assumption 3 (Equivalence of departure and return trip lengths). In a single 

origin-based trip chain, for example, the home-work-home tri chain, it is reasonable to 

assume that a driver will choose a route for his/her work-to-home trip parallel to the route 

for his/her home-to-work trip. The distances of the home-workplace trip and workplace-

home trip are equivalent. With this assumption, it is readily known that the threshold 

distance for recharging requirement is the half of the effective distance limit. 
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The charging formulations in this chapter are based on the above deterministic 

setting of the charging behavior, which could be shown in the following figure.  

 

Figure 3-1: A Simple Deterministic Setting of the Charging Logic 

3.3 MODEL FORMULATIONS 

3.3.1, SUE with charging cost 

(Daganzo and Sheffi 1977) defined the stochastic user equilibrium conditions as: 

No user can reduce his/her perceived travel time by unilaterally changing route. Based 

on this definition, we first give the definition of stochastic user equilibrium conditions for 

electric vehicle users: 

Definition 3.1: EVSUE 

No traveler in the network believes he can improve sum of his travel cost and 

charging cost by unilaterally changing routes. 

3.3.1.1 charging cost function 

Based on the problem settings and assumptions stated in the previous section, we 

now construct the charging cost functions for BEV drivers as follows: For a BEV 

choosing path k  between O-D pair ( , )r s , if 
2

rs

k
D d D< < , where rs

k
d =

,

rs

a a ka
d δ∑ , 

the BEV will need to be recharged for at least (2 )rs

k
d D−   amount of electricity (in 

terms of length/distance) for powering the return trip to the origin. 
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For modeling convenience, the electricity-charging cost is represented by the 

time-equivalent travel cost. If a BEV driver can complete the whole trip origin-

destination-origin (e.g., home-work-home) without recharging at the destination (e.g., 

work), the total electricity-charging cost for completion the round trip for the driver will 

be 
,

2 rs

h a a ka
e d δ∑ . However, if the driver needs to recharge the vehicle at the destination, 

the electricity-charging cost incurred is (2 )rs

s k
e d D− . Thus, if recharging at the 

destination is required, the total electricity-charging cost for a BEV driver is 

(2 )rs

s k h
e d D e D− +  for a trip chain. 

From assumption 3, we conclude that the electricity-charging cost for the origin-

destination (e.g., home-workplace) trip is half of the above total electricity-charging cost 

derived, as shown in E.q. (3.2). This can be further illustrated by the Fig.3-2, where the 

piece-wise solid line represents the electricity-charging cost, which is a function of the 

distance traveled. 

In overall, depending on the above settings, the charging cost for a BEV driver 

choosing route � between O-D pair ( , )r s  is as follows,  

 

 
, ,

, ,

,                                      
2

        , , ,
1

[ (2 ) ],         <
2 2

rs rs

h a a k a a k

a ars

k

rs rs

s a a k h a a k

a a

D
e d d

e k a r s
D

e d D e D d D

δ δ

δ δ


≤

= ∀
 ⋅ − + ≤


∑ ∑

∑ ∑
 (3.2) 
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D

,

rs

a a k
a

d δ∑

2

D

( )

2
s h
e e D−

rs

k
e

s h
e e>

s
e

h
e

 

Figure 3-2: Electricity-Charging Cost Function 

The dash line with slop 
h
e  represents the first part of the charging cost function, 

which is based on the home charging cost rate. The solid line gives the charging cost 

function, which is based on both the home and the destination charging cost rate. The 

slope of these two dash lines gives the per unit distance charging cost at home and 

destinations respectively. The intersection of the dash line with slop 
s
e  and the y axis 

gives the difference of destination and home charging cost for half of the vehicle range 

distance. The charging cost function derived in above is the maximum of the two dash 

lines, which can also be in the form of  

 

, , ,
max{ ,  ]},      

2
              no desti-    ,  with destination

              nation            charging

              charging

rs rs rs rsh s

k h a a k s a a k a a k
a a a

e e
e e d e d D d Dδ δ δ

−
= + ≤∑ ∑ ∑

 (3.3) 

Let rs

k
T be the travel time cost of choosing route k between O-D pair ( , )r s in an 

congested network. The route generalized cost is the summation of the travel time cost (

rs

k
T ) and the charging cost ( rs

k
e ) for BEV travelers: 
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 ,     , ,rs rs rs

k k k
C T e k r s= + ∀  (3.4) 

In logit-based choice model, the random error vector follows a Gumble 

distribution. The systematic utility function is defined in Eq. (3.5), and the total utility 

function is defined in Eq.(3.6) and also follows a i.i.d Gumble distribution. 

 ,      ,rs rs

k k
V C k rsθ=− ∀  (3.5) 

 ,      ,rs rs rs

k k k
U V k rsε= + ∀  (3.6) 

Eq. (3.1) gives the probability of choosing an alternative route k , in the context 

of the utility defined as in Eq. (3.5) and Eq. (3.6). The probability of choosing alternative 

k between O-D pair ( , )r s , which is also the stochastic user equilibrium conditions, is as 

follows: 

 
' '

prob[ , ' ],    , ', ,
rs

rs rs rs rs rsk

k k k k krs

f
p C C k k k k r s

q
ε ε= = + ≤ + ∀ ≠ ∀  (3.7) 

3.3.1.2 Mathematical formulations for EVSUE 

Given the electricity-charging cost the route choice behavior of BEV drivers 

should be different from the GV drivers. We have already discuss the reasons why they 

may behave differently in the previous sections. We build a new SUE traffic assignment 

model here, where one is concerned with the electricity-charging cost. The model is 

established on the behavioral basis of minimization of the sum of travel time and 

operating cost (i.e., charging cost). The model implies the origin-destination-origin trip 

chain as the basic travel analysis unit. Given Assumption 3, however, we only need to 

pay attention to the network flows consisting of either origin-destination trips or 

destination-origin trips and accordingly form trip-based network equilibrium models. In 

this model, we assume the BEV motorists between an O-D pair choose the route that 

minimizes his perceived travel time cost and electricity-charging cost. We claim that 
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BEV motorists have random perceptions on travel times but have the accurate 

perceptions on distances. Travel times are dependent on traffic flows and affected by 

many disturbing factors, such as traffic conditions, accidents, weather conditions, light 

conditions, and so on. Different travelers may experience different travel times in a time-

varying traffic network. The perceived distance of a route among all drivers can be very 

accurate since the distance of a route is fixed. We use the SUE traffic assignment to 

model the network equilibrium, not only because it can accommodate the stochastic 

perception of travel times, but also because its solution gives a unique route flow pattern, 

which is required for calculating the electricity-charging cost and the extra charging time. 

The mathematical formulation for electric vehicle SUE (EVSUE) traffic 

assignment is developed Fisk’s logit-based SUE traffic assignment. (Fisk 1980). The 

model was developed using the path flow variable rs

k
f , and the problem was proven to 

be a strictly convex minimization problem: 

Based on Fisk’s formulation, our mathematical formulation for stochastic traffic 

assignment is developed as  

(EVSUE) 

 
1 0

, ,

1
min (ln ) ( )

           max{ , }
2

a

rs
k

x
rs rs

k k a
f

rs k a

rs rs rss h

k s a a k h a a k
rs k a a

z f f t w dw

e e
f e d D e d

θ

δ δ

= +

−
+ ⋅ −

∑∑ ∑∫

∑∑ ∑ ∑
 (3.8) 

subject to 

 ,    ,rs rs

k
k

f q r s
∈Κ

= ∀∑  (3.9) 

 0,      , ,rs

k
f k r s≥ ∀  (3.10) 

where  

 
,
,      , ,rs rs

a k a k
rs k

x f a k rsδ= ∀∑∑  (3.11) 
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An optimization problem is a convex minimization problem if it is a problem of 

minimizing convex functions over convex sets (Boyd and Vandenberghe 2004). The 

following statement shows that the mathematical formulations for EVSUE problem 

Eq.(3.8)-Eq. (3.11) is a convex minimization problem. 

Proof: The feasible solution set defined in Eq. (3.9) and Eq. (3.10) is convex set 

since it is the same as that in the Fisk’s formulation, Eq. (2.19) and Eq. (2.20). Therefore, 

we only need to show that the objective function is convex function. The first two terms 

in the objective function 
0

1
(ln ) ( )

a
x

rs rs

k k a
rs k a

f f t w dw
θ

+∑∑ ∑∫  are convex since it is the 

same as those in the Fisk’s formulation’s objective function. Now we check with the last 

term in our objective function (3.8),  

, ,
max{ , }

2
rs rs rss h

k s a a k h a a k
rs k a a

e e
f e d D e dδ δ

−
⋅ −∑∑ ∑ ∑  

In this term, the variable is rs

k
f  , and the max term is a piecewise linear function 

of the path length , but is independent of the variable rs

k
f  . Therefore, it is a linear 

function of the variable rs

k
f , which is a convex function. Above all, the objective 

function is convex. Therefore, the mathematical formulation (EVSUE) developed is a 

convex minimization problem.□  

Next, we show that the optimality conditions of the above formulation are 

equivalent to the logit-based choice model.  

Proof. Construct the Lagrangian of the optima in the feasible region defined by 

Eq. (3.9) and Eq. (3.10). 
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0

, ,

1
( ) ln ( )

          max{ , }
2

          ( )

a
x

rs rs rs

k k k a
rs k

rs rs rss h

k s a a k h a a k
rs f a a

rs rs rs

k
k

L f f f t w dw

e e
f e d D e d

f q

θ

δ δ

λ

= +

−
+ −

+ −

∑∑ ∫

∑∑ ∑ ∑
∑

 (3.12) 

where rsλ is the lagrange multiplier associated with Eq. (3.9). Equating the partial 

derivatives of the Lagrangian  function L to zero will give the conditions of the 

stationary point of the path flow variable rs

k
f . The partial derivatives of the Lagrangian  

function L ensures that the path flow variable is positive, because ( ) /rs rs

k k
L f f∂ ∂ = ∞

 

when 0rs

k
f = . Therefore, a solution will only be valid if all components of the 

stationary points of the feasible region are strictly positive. By setting the derivatives of L 

to zero, we get 

 
,

, ,

( ) 1
(ln 1) ( )

                max{ , } 0
2

rs

rs rsk

k a a a krs
ak

rs rs rss h

s a a k h a a k
a a

L f
f t x

f

e e
e d D e d

δ
θ

δ δ λ

∂
= + +

∂
−

+ − + =

∑

∑ ∑
 (3.13) 

Using 
( )

0
rs

k

rs

k

L f

f

∂
=

∂
, we can get 

 

,

, ,

exp{ [ ( )

      max{ , }
2

      ] 1},         , ,

rs rs

k a a a k
a

rs rss h

s a a k h a a k
a a

rs

f t x

e e
e d D e d

k r s

θ δ

δ δ

λ

= −

−
+ −

+ − ∀

∑

∑ ∑  (3.14) 

Using the O-D demand conservation constraint, we obtain, 
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, , ,

, , ,

exp{ ( ( ) max{ , })}
2

exp{ ( ( ) max{ , })}
2

rs

rs k

k rs

rs rs rss h

a a a k s a a k h a a k
a a a

rs rs rss h

a a a l s a a k h a a k
l a a a

f
p

q

e e
t x e d D e d

e e
t x e d D e d

θ δ δ δ

θ δ δ δ
∈ℜ

=

−
− + −

=
−

− + −

∑ ∑ ∑

∑ ∑ ∑ ∑

 

'
'

exp( )
,            , ,

exp( )

rs

k

rs

k
k

C
k r s

C

θ

θ

−
= ∀

−∑
  (3.15) 

Finally, we get, 

 

'
'

exp( )
* ,          , ,

exp( )

rs

rs rs k

k rs

k
k

C
f q k r s

C

θ

θ

−
= ⋅ ∀

−∑
 (3.16) 

where the generalized route cost is a sum of travel time cost and electricity-

charging cost. 

 

,

, ,

( )

        max{ , }, , ,
2

rs rs

k a a a k
a

rs rss h

s a a k h a a k
a a

C t x

e e
e d D e d k r s

δ

δ δ

=

−
+ − ∀

∑

∑ ∑
 (3.17) 

Since the right hand side of Eq. (3.16) is strictly positive for all routes between all 

O-D pairs, it follows form Fisk’s formula that the higher cost path are expected to be less 

traveled than lower cost paths. *rs

k
f is a valid stationary point of Lagrangian  function L 

and consequently of 
1
z subject to the feasible region defined by Eq. (3.9) and Eq. (3.10). 

*rs

k
f produces a strict local minimum of 

1
z  and since the feasible region is convex, it is 

also the unique minimum of 
1
z in the feasible region. □  

3.3.2, SUE with charging time  

In the context of BEVs, the charging cost would be a significant part for route 

chosen behavior, since the charging time is usually long, and the charging time depends 
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on the route length. The previous section presents a model formulation for EVSUE traffic 

assignment, where the piecewise electricity-charging cost functions are included into the 

total perceived cost for BEV drivers. This section, based on the previous one, gives 

another model, which takes into account the destination activity duration. 

We then construct a cost function for representing the charging time in the travel 

impedance. As discussed in the previous section, the BEV drivers may have an expected 

activity duration of stay at their destinations (e.g., the working time of 8 hours) and the 

required recharging time of some BEVs may result in an extra time of stay for the drivers 

at destinations in addition to the expected stay duration. In this case, a penalty cost for 

this extra time is imposed in addition to the route travel cost to the drivers. Herein, we 

construct a function to calculate this extra time of stay. 

Let 
rs
t  be the expected activity duration for the BEV drivers at destination. We 

compare the required charging time rs

k
tc  with this expected activity duration rst . Only 

when the charging time exceed the expected activity duration, will the charging time 

become impacting the motorists’ activity duration. We name the cost for the difference 

between charging time needed for the BEV users and their expected duration of stay at 

destination as the charging time penalty cost. Therefore, we define another SUE for BEV 

travelers by taking into account this duration of stay at destination, which is the electric 

vehicle stochastic user equilibrium with charging time penalty (EVSUETP). 

Definition 3.2: EVSUETP 

No traveler in the network believes he can improve the sum of his travel cost and 

charging time penalty cost by unilaterally changing routes. 
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3.3.2.1 charging time penalty cost function 

Again, a same trip typed is considered in this model as in the previous one with 

charging cost functions. The charging time needed rs

k
tc is a linear function of total 

distance traveled (2 )rs

k
d D− , therefore, we have (2 )rs rs

k k
tc d D∝ − . The relationship 

among the desired activity duration, the charging time needed, and the charging time 

penalty ( rs

k
ctp ) is as follows, 

 , if    > rs rs rs rs rs

k k k
tc t ctp tc t− =  (3.18) 

Let σ be the electricity-charging rate, in the unit of charging time /unit distance, 

the total charging time needed is (2 )rs

k
d Dσ − .  

Since the charging time penalty cost is positive if and only if the required 

charging time is great than the expected activity duration, this charging time penalty is 

also a piecewise linear function as Eq. (3.19): The extra charging time cost is also 

illustrated in Fig.3-3, where the solid line represents the charging time penalty cost for 

choosing route � between O-D pair( , )r s . 
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Figure 3-3: Charging Time Functions 

3.3.2.2 Mathematical formulations for EVSUETP 

Similarly to the mathematical formulations for EVSUE developed in previous 

section, the logit-based EVSUETP is developed in this section. Given the charging time 

penalty cost, the route choice behavior of BEV driver is studied. The model is concerned 

with the charging time penalty cost, and it emphasizes minimizing the sum of travel time 

and charging time (at destinations). The model also implies the origin-destination-origin 

trip chain as the basic travel analysis unit. It is assumed that the BEV motorists between 

an O-D pair choose the route that minimizes the sum of his perceived travel time cost and 

the extra charging time cost. The SUE traffic assignment modeling approach is used since 

the route flow pattern is required for calculating the charging time. These two models 

could be wrapped together; however, either of the two models has its own value. Thet 

EVSUETP could be formulation as follows, 

(EVSUETP) 
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subject to 

 ,    ,rs rs

k
k

f q r s
∈Κ

= ∀∑  (3.21) 

 0,      , ,rs

k
f k r s≥ ∀  (3.22) 

where  

 
,
,      , ,rs rs

a k a k
rs k

x f a k rsδ= ∀∑∑  (3.23) 

The rs

k
t

 
term in the objective function is a constant for a certain BEV traveler, 

thus it could be moved into the max bracket, which will not impact the optimal solutions. 

This could also be seen from the Figure (3-3), as the solid line gives the charging time 

penalty. Then the objective function is: 

 
3 0

,

1
min (ln ) ( )
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rs k a
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k a a k
rs k a

z f f t w dw

f d D t

θ

σ δ +
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∑∑ ∑∫
∑∑ ∑

 (3.24) 

where [ ]+⋅ means the function term equals to zero when the inside function has a 

negative value. This simple transformation reduces the complexity in the solution 

algorithm, by reducing the number of constrained shortest path we need to solve at each 

subproblem iteration. In the original objective function, we need to solve three 

constrained shortest path problem, while with the help of Figure (3-3), in the transformed 

objective function, we need to solve two constrained shortest path problem. More details 

will be discussed in the next section. 
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Convexity: The above EVSUETP problem is also convex minimization problem, 

as is similar to the discussion for the EVSUE model, with the same feasible convex set 

and convex objective function. □  

The equivalency of the above EVSUETP mathematical formulation for the 

electric vehicles assignment with charging time penalty costs to the logit-based discrete 

choice model is checked by the first order optimality conditions of its Lagrangian . Let 

rsλ be the Lagrangian multiplier associated with the constraint Eq.(3.22), we construct 

the Lagrangian, 

 
3

( ) ( ) ( )rs rs rs rs rs

k k k
k

L f z f f qλ= + −∑  (3.25) 

Equating the partial derivatives on the path flows of the Lagrangian equation to 

zero will give the conditions that a stationary point rs

k
f  of formulation Eq. (3.24)-Eq. 

(3.25) must satisfy. In addition, the partial derivatives also restrict the path flow as 

strictly positive. By setting the partial derivate to zero, we have 
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This leads to 

 

*

, ,
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k a a a k a a k
a a

f t x d D t
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∑ ∑
 (3.27) 

The probability of choosing route k , which is also the ratio of path flow on k  

to the total trip rates between an O-D pair, is 
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where the total measured cost for choosing path k between O-D pair ( , )r s is, 

 
, ,

( ) [ (2 ) ]rs rs rs rs

k a a a k a a k
a a

C t x d D tδ σ δ
+= + − −∑ ∑  (3.29) 

The above equations shows that the path flows are strictly positive, and optimal 

path flow *rs

k
f is a valid stationary point of equation (3.25) and (3.26), subject to 

constraint (3.23) and (3.24). In addition, the total measured cost (3.30) is a summation of 

travel time cost and charging time penalty cost. Equation (3.29) and (3.30) show that the 

optimal solution satisfies the EVSUETP equilibrium conditions. 

3.4 SOLUTION ALGORITHM 

Both the electricity-charging cost and charging time penalty cost for a BEV 

motorist are calculated based on the length of his/her chosen route. We need to find the 

routes and the path flow pattern in order to obtain the generalized total travel cost of all 

BEV drivers. Therefore, a path-based algorithm for solving the above SUE problems is 

preferred. Among all possible choices, the simplicial decomposition method has been 

shown to be an efficient tool for equilibrium network flows. 

3.4.1, Disaggregate Simplicial Decomposition 

(Larsson and Patriksson 1992) first developed a modified simplicial 

decomposition method - the disaggregated simplicial decomposition (DSD), to solve the 

deterministic traffic assignment problem. They gave a disaggregated representation of the 

feasible solutions for convex problems over the Cartesian product sets. 
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For solving the traffic assignment problem, the DSD algorithm works at each 

iteration on a the subset of all routes between an O-D pair (restricted set) instead of on 

the complete set of all feasible routes between an O-D pair by solving a restricted master 

phase and a subproblem (column generation) phase iteratively. Following Larsson and 

Patriksson, the DSD algorithms works as follows (Larsson and Patriksson 1992):  

“Suppose that a disaggregated master problem, defined by a restricted set of 

routes,
�
rsK , has been solved. Given this solution, the shortest routes are calculated for all 

commodities. These sets 
�
rsK are augmented by the routes not contained in the sets 

already, and the procedure is repeated.”  

Based on this idea, (Damberg et al. 1996) extended the DSD algorithms for logit-

based SUE traffic assignment problem. In the restricted master problem phase, a path 

flow pattern is obtained over the subset of routes ��	

 , between each O-D pair, by directly 

applying the logit probability function. In the subproblem phase, new routes are 

generated and augmented into the restricted master set. The algorithm works iteratively 

between the master problem and subproblem phases to solve the SUE traffic assignment 

problem. Let 
i
f be a given feasible route flows vector at iteration i , the corresponding 

route costs could be calculated. Then an auxiliary route flow vector 
i
h is defined by  

 
�

( ) ( ),      ,rs rs rs
rs

k k
h i q p i k K rs= ∀ ∈  (3.30) 

If the vector 
i i
f - h  is nonzero, a descent direction with respect to ( )z f  is 

defined. A new solution 
i+1
f  could be obtained by searching in the descent direction. 

The process is repeated until convergent, which means the master problem is solved. This 

algorithm is applied in this research with some adjustments in the column generation 

phase to solve the alternative SUE problems for BEVs. In particular, in the column 
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generation phase, for solving either EVSUE or EVSUETP, we need to solve constrained 

shortest path (CSP) problems to find the augmenting routes. 

The details of the algorithms applied to solve the two mathematical models 

developed in this chapter are discussed in the following sections respectively. 

3.4.2, DSD for EVSUE  

The total number of routes for each O-D pair can be very large; however, it is 

reasonable to assume that in practice a small portion of them will carry most of the 

demand. Therefore, column generation method, ideally, becomes a most used method to 

generated utilized routes, and the error made by assuming that the remaining routes have 

zero flow is small. The DSD algorithm works in a master problem phase while combined 

with a column generation phase for generating utilized routes. 

3.4.2.1 Initialization 

The initialized subset of the restricted master problem could be generated in one 

of the following two ways: 

i. Calculated the shortest path for each O-D pair based on the free flow cost 

of the network, which could also be considered as the running the 

algorithm by going to the column generation phase (subproblem phase) 

first. 

ii. As suggested by Damberg (1996), run a few steps of an incremental 

assignment algorithm (see Sheffi, 1985). The incremental assignment is 

summarized as following: 

Step 0. Divide the entire trip distribution matrix q into smaller part 

matrices 1 2{ , ,... }mq q q , and the sum of all the part matrices should be 

equal to the actual trip distribution matrix, i.e. 1 2 ... mq q q q= + + + . 
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Set counter n=1, link flow is zero 

Step 1. Based on the current link flow, calculate the current link costs, 

assign nq part matrix using all-or-nothing assignment technique. Store the 

link volumes obtained from the all-or-nothing assignment. 

Step 2. Update the link flows, n=n+1, go to Step 1. 

Termination: when n=m 

3.4.2.2 The restricted master problem phase 

As presented in the previous section, the master problem is solved over a 

restricted subset of routes between each O-D pair, � rsK , by using a descent approach. The 

descent approach is presented as following: 

Let ( )rs

k
f i be a given feasible route flow on route k  between O-D pair ( , )r s  at 

iteration i . Calculate the resulted route costs. Let ( ) ( ( ))rs rs rs

k k k
C i C f i= , for all routes in 

the subset � rsK , define an auxiliary route flow ( )rs

k
h i  by the following equation: 

 �exp{ ( ( ))}
( ) ( ) ,    , ,

exp{ ( ( ))}

rs rs

rs rs rs rs k k
rs

k k rs rs

k k
k

C f i
h i q p i q k K r s

C f i

θ

θ

−
= = ∀ ∈

−∑
 (3.31) 

Let ( )ih  be a vector of auxiliary path flows with element { ( )}rs

k
h i  and ( )if be a 

vector of the current path flows with element { ( )}rs

k
f i . If the vector ( ) ( )i i−h f is not 

zero, then it defines a descent direction with respect to objective function (e.g.
1
z ) In the 

direction of ( ) ( )i i−h f , a line search is made, which results in a new solution vector 

( 1)i +f , and this process is repeated. The restricted master problem is solved when 

( ) ( )i i ζ− <h f , where ζ is the tolerance. That is, the SUE conditions (e.g. Eq. (3.15)) 

are satisfied for the restriction of the original problem to the subset of the total set of 

routes. The motivation behind the above scheme is detailed in (Damberg et al. 1996; 

Larsson and Patriksson 1992).  
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After the above restricted master problem is solved on the subset of the routes, a 

column generation method is used to generate the augmenting route to the subset � rsK , 

i.e. solving the subproblem phase.  

3.4.2.3 The subproblem-column generation phase 

One method to generate route is through the solution of the shortest path problem 

based on the measured cost. By saying measured travel cost, it means, when generating 

the shortest path, the random components of the travel costs is ignored temporarily. The 

approach is motivated when the random components are less significant, which is usually 

the case in daily commute in urban network. In this situation, the value of the parameter 

θ  is large and drivers are sensitive to the travel costs. This is usually true when the 

congestion level is high. 

In our problem, for solving EVSUE, two constraint shortest path problem needs to 

be solved in order to generate the augmenting route into the restricted master problem 

routes set. The two constrained shortest path (CSP) problems, [EVSUE-Sub1] and 

[EVSUE-Sub2], are as follows: 

Let 
uv
x be a binary variable, where 

uv
x equals to 1 if the link ( , )u v a=  is on a 

given feasible path and equals to 0 if the link ( , )u v a=  is not on the given feasible 

path. The two CSP subproblems for EVSUE are:  

[EVSUE-Sub1] 

 1

1
( , ) ( , )

1
min ( )

2uv

sub

uv uv s uv uv s hx
u v A u v A

z t x e d x e e D
∈ ∈

= + − −∑ ∑  (3.32) 

subject to 
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[EVSUE-Sub2] 
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1
( , ) ( , )
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uv

sub

uv uv h uv uvx
u v A u v A

z t x e d x
∈ ∈
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( , ) 2uv uv
u v A

D
d x

∈

≤∑  (3.38) 

 {0,1},        ( , )
uv

x u v A= ∀ ∈  (3.39) 

In this column generation phase, the above two CSP problems need to be solved 

to find the augmenting path. The objective values from these two CSP problems, 1

1

subz  

and 2

1

subz , are compared. If 1 2

1 1

sub subz z< , the resulted shortest path from [EVSUE-Sub1] 

will be chosen and added into the restricted master problem set, otherwise, chose the 

constrained shortest path generated by [EVSUE-Sub2]. Referring to Assumption 2, the 

feasibility of at least one of the subproblems is assured, since the feasible sets of 

[EVSUE-Sub1] and [EVSUE-Sub2] are complementary sets in the region [0, ]D . 

Furthermore, if 
( , ) 2uv uv
u v A

D
d x

∈

≤∑  is feasible to both [EVSUE-Sub1] and [EVSUE-
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Sub2], 2

1

subz  is always less than 1

1

subz  because 
h s
e e< . Due to this results, the 

constraint (3.35) for [EVSUE-Sub1] could be simplified to 
( , )

uv uv
u v A

d x D
∈

≤∑ . 

3.4.2.4 Lagrangian relaxation and enumeration for constrained shortest path2 

The CSP problem is known to be NP-complete in the weak sense.  

[CSP] (Ahuja et al. 1993b) 

 minz =
x
cx  (3.40) 

subject to 

 A =x b  (3.41) 

 F ≤x g  (3.42) 

 {0,1}=x  (3.43) 

where the Eq. (3.43) are the side constraints, and the structure leads to binary 

solutions without explicit constraint 1≤x .  

A number of different methods have been developed to solve the above CSP 

problem, and exact methods appearing in the literature can be divided into three 

categories: those based on the kth-shortest path algorithm, dynamic programming, and 

Lagrangian relaxation.   

A number of different methods have been developed to solve the CSP problem, 

and methods appearing in the literature can be divided into three categories: those based 

on the �-shortest path algorithm, dynamic programming, and Lagrangian relaxation. 

Algorithms based on dynamic programming used node-labeling schemes have been 

                                                
2 This section and the based algorithm is summarized from a variety of sources, namely Ahuja,et. al. 
(1993), Carlyle et. al. (2008), Carlyle and Wood (2005), Dumitrescu and Boland (2003), Handler and Zang 
(1980). 
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considered as an effective one for weight constrained shortest path problem, such as the 

work by Desrosiers et. al. (Desrochers and Soumis 1988; Desrosiers et al. 1995; 

Dumitrescu and Boland 2003; Jaumard et al. 1996; Jiang et al. 2012). Recently, new 

techniques based on Lagrangian relaxation are proposed, such as the Lagrangian 

relaxation plus enumeration (LRE) method (Carlyle et al. 2008). A new algorithm for 

enumerating the near-shortest path (NSPs) (Carlyle and Wood 2005) was developed, and 

is more appropriate in the context of LRE for the CSP problem than “�-shortest paths” 

which is used (Handler and Zang 1980). This algorithm was compared with the label-

setting algorithm of (Dumitrescu and Boland 2003), which suggests that it is more 

computational efficient in solving the single-resource-constrained shortest path problem, 

which is in our case. In this research we adopted the algorithm developed by Carlyle et. 

al. (Carlyle et al. 2008), with slightly modification in solving the Lagrangian relaxation 

formulation.  

Noted that, the CSP problem Eq. (3.41) – Eq. (3.44) could be easily solved as a 

shortest path problem with modified length values, if the constraint Eq. (3.43) could be 

relaxed, as shown in Eq. (3.45). Using the standard theory of Lagrangian relaxation, the 

relaxed shortest path (RSP) problem could be written as 

[SPLR] 

 ( ) min ( )z L Fλ λ≥ = + −
x
cx x g  (3.44) 

Subject to (3.42) and (3.44). 

where � is the Lagrangian  multiplier vector for the constraint Eq. (3.43). 

The Lagrangian lower bound is 

 
0 0

max ( ) max[min( ) )]z L F
λ λ

λ λ λ
≥ ≥

= = + −
x
c x g  (3.45) 

subject to (3.42) and (3.44). 
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The outer maximization over � was solved via bisection search in (Carlyle et al. 

2008), which is sufficient for single side constraint, but we will solve it using subgradient 

optimization, which is more general. 

Suppose �
��	 has a unique solution x'  and is differentiable. Then the solution 

x'  remains optimal for small change of	� , and let the small change be ( )Fα −x' g , 

which is the direction and α  is the step size. For Lagrangian multiplier updating, the 

following notations are defined: 

1kλ +  max{ ( ),0}k k

k
Fx gλ α+ −  

0λ  initial choice of the Lagrangian multiplier 

k
x  solution to the Lagrangian subproblem when kλ λ=  

k
α  step length at the kth iteration 

The choice of step size is important for convergence of the solution, and one 

simple example is just to set 
1

k k
α = . However, a reasonable and popular way for 

selecting the step length is  

 
*

2

[ ( )]

| |

k k

k k

z L

Fx g

µ λ
α

−
=

−
 (3.46) 

Where z  is the upper bound on the optimal objective function *z , and kµ is a 

scalar between 0 and 2. One can start with kµ =2 and then reduce kµ  until failing to 

find a better solution. 

Often, in process of optimizing ( )L λ , if F  is non-negative, a feasible solution 

x
ɵ

 could be found, and the upper bound can be compute z ≡ cxɵ . Given this upper 

bound, and a good vector 	� , the problem of identifying *x is a straightforward 

enumeration: 
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Theorem 3.1 (Carlyle et al. 2008). Let 
�( , )X zλ denote the set of feasible solutions 

to RSP such that ( )F zλ λ+ − ≤c x g . Then 
�* ( , )X zλ∈x . That is, an optimal solution 

*x to CSP can be identified by enumerating 
�( , )X zλ and selecting 

� ( , )|

* argmin
X z Fλ∈ ≤

∈
x x g

x cx . 

The proof to the above theorem could be found in (Carlyle et al. 2008). It was 

shown only 0λ ≥ is required to satisfy Theorem 3.1 and an near-optimal λ for the RSP 

can exponentially reduce the computational workload by reducing the size of 
�( , )X zλ .  

Note that Theorem 3.1 implies a complete enumeration of each path, represented 

by x
ɵ

, satisfying ( )F zλ λ+ − ≤c x g
ɵ

. In other words, if *
λ
x solves the shortest path 

problem given the modified link-length vector Fλ+c , and ( ) ( ) *L F λλ λ λ≡ + −c x g
ɵ

, 

then the CSP is solved by enumerating all pathx
ɵ

such that ( ) ( )L F zλ λ λ≤ + − ≤c x g
ɵ

. 

In turn , this means that given the modified link-length vector Fλ+c , all the ϵ-optimal 

path for ϵ ( )z L λ≡ −  need to be identified. (Carlyle and Wood 2005) presented a new 

near-shortest path (NSP) algorithm to identify all the ϵ-optimal paths, which is more 

natural for k-shortest paths algorithm in this problem setting. In the new NSP algorithm, 

all paths that are within ϵ  units of being shortest for a pre-specified ϵ ≥ 0  are 

enumerated in an efficient manner (see (Carlyle and Wood 2005) for the outline and 

pseudo-code of the NSP algorithm). 

In overall, the adopted Lagrangian relaxation plus enumeration algorithm for 

solving the CSP problem, which is the algorithm for solving the subproblems of our DSD 

algorithm, is summarized as following: 

1. Reformulate the original CSP problem into a shortest path Lagrangian 

relaxation problem. 

2. Use subgradient optimization method to optimize the Lagrangian lower bound 

( )L λ  to find a “good” Lagrangian multiplier vector �. 
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3. Identify a feasible path x
ɵ

 and an upper bound on *z , let the upper bound 

be z , then z ≡ cxɵ . 

4. Let the O-D pair be ( , )r s , use the NSP algorithm to enumerate all path x
ɵ

 

such that ( )F zλ λ+ − ≤c x g
ɵ

  

a. Use the modified link-length ( ) Fλ λ= +c c , calculate the all-to-one 

shortest-paths, from any node v  in the network to the destination 

node s , and name the corresponding minimum distance from v  to 

s as the minimum Lagrangian distance, noted as ( )
l
c v . 

b. Calculate the corresponding distance (which is the actual link length in 

our problem) ( )d v  from node v V∀ ∈  to destination s . 

c. Perform a standard path-enumeration algorithm with modifications. 

Suppose we have a current r u→ subpath, where r is the origin, 

u V∈ : 

i.  this subpath is extended along the link ( , )u v  if and only if 

(i) the length of the current subpath ( )l u
λ

, plus the modified 

link-length ( )
us
c λ , plus ( )

l
c v , does not exceed the definition 

of the “near-shortest”, i.e. ( ) ( ) ( )
uv l

l u c c v z
λ

λ ζ+ + ≤ − , where 

the “near-shortest” path is defined by a solution within units of 

the optimality rather than an exact solution.(ii) the path des not 

loop back on itself. 

ii. Use the side constraints to reduce the amount of enumeration 

by not violating the side constraints. That is, in our problem, if 

the current true length of the subpath r u→ , is noted as ( )l u , 

do not extend the path if 
( , )

( ) ( )
a u v l

l u d c v g
=

+ + > . In 
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addition, do not extend a subpath when it would lead to 

violation of the inequality z<cx . 

iii. Update the current solution x
ɵ

, and the upper bound, z = cxɵ  

whenever a better solution is detected. 

5. The best solution, x
ɵ

identified during this process, is optimal. 

So far, the algorithm for soling the CSP problem is presented. This subproblem 

phase generate the CSP, that could be augmented to the master problem phase. The whole 

DSD algorithm will be terminate if the change in the path flows between two consecutive 

restricted master problem less than the tolerance. 

3.4.3, DSD for EVSUETP 

The initialization and restricted master problem phase for solving the EVSUETP 

problem is the same as those for solving the EVSUE problem. The algorithms are 

presented in the previous sections. For the column generation, which is the subproblem 

phase, the Lagrangian relaxation and enumeration is applied to solve CSP problems. For 

EVSUETP, different CSP problems need to be solved for the subproblem phase.  

3.4.3.1 The subproblem-column generation phase 

For solving EVSUETP, using the intuitive objective function we developed 

earlier, Eq. (3.21) will result in solving three constrained shortest path problem as the 

subproblem phase, as follows. 

 [EVSUETP-Sub1] 

 1

2
( , )

min
uv

sub rs

uv uvx
u v A

z t x t
∈

= +∑  (3.47) 

subject to 
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1

2 uv uv
u v A

D d x D
∈

< ≤∑  (3.49) 

 {0,1},        ( , )
uv

x u v A= ∀ ∈  (3.50) 

[EVSUETP-Sub2] 

 2

2
( , )

min
uv

sub rs

uv uvx
u v A

z t x t
∈

= +∑  (3.51) 

Subject to Eq. (3.49), Eq. (3.51) and 

 
( , ) 2uv uv
u v A

D
d x

∈

≤∑  (3.52) 

[EVSUETP-Sub3] 

 3

2
( , ) ( , )

min (2 )
uv

sub

uv uv a uvx
u v A a u v A

z t x d x Dσ
∈ = ∈

= + −∑ ∑  (3.53) 

Subject to Eq. (3.49)-Eq. (3.51) . 

The above three CSP problems need to be solved separately. In the case when all 

three CSP problems are feasible, the result of the [EVSUETP-Sub1] and [EVSUETP-

Sub3] needs to be compared first. The one with the larger objective value is picked and 

further compared with [EVSUETP-Sub2], finally, the one with smaller objective value 

gives the augmenting path. In other words, the augmenting path is obtained by the 

subproblem with the objective value 2 1 3

2 2 2
min{ ,max{ , }}sub sub subz z z  If any of the 

subproblems is not feasible, just compare the remaining ones based on the above logic. It 

is guaranteed that at least one of the above three subproblems will be feasible, as 

discussed in section 3.4.2.3.  
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As discussed in section 3.3.2.2, the alternative objective function Eq. (3.25), is 

developed to reduce the number of constraint shortest path problems that need to be 

solved in the subproblem phase. We present here the two CSP problems that need to be 

solved, which give the same augmenting route into the restricted master problem routes 

set as the above three CSP problems, namely, [EVSUETP-Sub4] and [EVSUETP-Sub5]. 

[EVSUETP-Sub4] 

 4

3
( , )

min
uv

sub

uv uvx
u v A

z t x
∈

= ∑  (3.54) 

subject to E.q (3.49) and 

 
( , ) 2 2

rs

m

uv uv
u v A

tD
d x

σ∈

≤ +∑  (3.55) 

 {0,1},        ( , )
uv

x u v A= ∀ ∈  (3.56) 

[EVSUETP-Sub5] 

 5

3
( , ) ( , )

min [(2 ) ]
uv

sub rs

uv uv a uvx
u v A a u v A

z t x d x D tσ
∈ = ∈

= + − −∑ ∑  (3.57) 

Subject to Eq. (3.49), Eq.(3.56) and 

 
( , )2 2

rs

m

uv uv
u v A

tD
d x D

σ ∈

+ < ≤∑  (3.58) 

The above two CSP problems need to be solved, and the objective values from 

these two CSP problems are compared to determine the augmenting path. If 

4 5

3 3

sub subz z< , the resulted CSP from [EVSUETP-Sub4] will be chosen and augmented to 

the restricted master problem set, otherwise, augment the CSP generated by [EVSUETP-

Sub5]. 
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3.4.4, Algorithm synthesis 

A modified DSD algorithm for solving both EVSUE and EVSUETP would be as 

follows, 

Step 0.Initialization 

Find an initial subset of routes � rsK  for each O-D pair ( , )r s   

Compute and initial route 0

0
f (in the case of using shortest path for 

initialization, assigning all trips onto the shortest path between each O-D 

pair) 

Set 0i =   

Step 1.Restricted master problem phase 

Set 0j =  . 

Let j i

0
f = f   

Repeat the following until the stop criteria is met 

Compute the total cost of choosing route k  at jth iteration, 

( )rs

k
C jf  for all routes in the subset � rsK   

  Compute the auxiliary route flow 
j
h  according to the formulation  

  

�

exp{ ( )}

exp{ ( )}
rs

rs j

j rs k

rs j

l

l

C
q

C

θ

θ
∈Κ

−
=

−∑
f

h
f

 

  Stop if | |j j ε− <f h  . 

  Otherwise, find the step size 
j
t  , and let the new point be 

  1 ( )j j j j

j
t

+
= + −f f h f  

  Set : 1j j= +  . 

Output 
j
f   

Step 2.Subproblem phase (column generations) 
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For EVSUE problem, using the LRE to solve two CSP [EVSUE-Sub1] 

and [EVSUE-Sub2], get objective value and binary vector as 1

1 1
( *, *)subz x  

and 2

1 2
( *, *)subz x respectively.  

If both [EVSUE-Sub1] and [EVSUE-Sub2] are feasible, and 

1 2

1 1
* *sub subz z≤ , output 

1
*x ; if 1 2

1 1
* *sub subz z> , output 

2
*x . 

If [EVSUE-Sub1] is infeasible, then output 
2
*x  

If [EVSUE-Sub2] is infeasible, then output 
1
*x  

For EVSUETP problem, using the LRE to solve two CSP [EVSUETP-

Sub4] and [EVSUETP-Sub5], get objective value and binary vector as 

4

3 1
( *, *)subz x  and 5

3 2
( *, *)subz x respectively.  

If both [EVSUETP-Sub4] and [EVSUETP-Sub5] are feasible, and 

4 5

3 3
* *sub subz z≤ , output 

1
*x ; if 4 5

3 3
* *sub subz z> , output 

2
*x . 

If [EVSUETP-Sub4] is infeasible, then output 
2
*x  

If [EVSUETP-Sub5] is infeasible, then output 
1
*x  

 Let 
1i i+
f = f  

 Set : 1i i= +  

 Go to step 1. 

Note in the proposed algorithm, we pick up the constrained shortest path as the to-

be-added path in the column generation phase at each iteration. The iteration terminates 

when there is no new shortest path to be added to the master problem. The results are 

approximations and the accuracy has not been rigorously investigated. The algorithm 

may have the short come that it terminates too early without having enough routes in the 

solution space. Herein, we propose two methods to compensate the short come. Given 

that our numerical experiments show that the proposed algorithm is able to obtain 
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satisfactory solutions. The two improvement methods are supplemented here for the 

completeness of the solution procedure. 

The first supplementary approach is to find the constrained k-shortest path instead 

of the constrained shortest path in the column generation phase. These k-shortest paths 

will be augmented into the route set in the restricted master problem phase. Obviously, 

the accuracy of the results depends on the value of k. This k could be an increasing 

constant at every iteration, until a suitable value of obtained. For example, let 1k = , 

which means to find the constrained shortest path, if this path has already been included 

in the master problem set, increase 2k =  , check if there is new path in this 2 shortest 

path to be augmented in the master problem set, if yes, add it, if not, increase 

3, 4,5k = … until new path is find or a certain termination condition is reached.  

The second approach is to solve the traffic assignment problem using an exact 

link-based algorithm instead to obtain the link-flow pattern. This link-flow pattern can be 

converted into the path-flow pattern by the following approximation method. That is to 

find the k-shortest paths between each O-D pair and the use the logit function derived in 

this paper to assign O-D trip flows on the k paths in terms of the equilibrium travel costs. 

A sufficient large value of k should be used so that the generated path flow pattern can 

closely approximate and the link flow pattern. The second approach is preferred to the 

first one in terms of computational efficiency. 

3.5 NUMERICAL ANALYSIS 

This section first describes the example network used in this numerical example, 

and then analyzes the flow patterns with different charging cost parameters both at home 

and at destination for the BEVs assignment model. Also, the flow patterns and duration 

of stay at trip end for the EVSUEPT assignment models will be studied. 



 65 

3.5.1, Example networks 

Two networks are used in the numerical experiments. The numerical experiments 

are conducted to examine the influence of electricity-charging cost on the BEVs drivers 

for choosing path, to study the impacts of using BEVs on the duration of stay at 

destination, and to gain insights on the spatial flow pattern in the traffic network as well. 

The first network is a four-node, four-route network with single O-D pair (A�D), 

depicted in Figure 3-4. It will be used to illustrate the charging costs impacts on the BEV 

travelers’ path choice, the impacts on duration of stay, and path flow patterns of using 

BEVs in a trivial uncongested manner. The second is the Sioux Falls network, depicted in 

Figure 3-5. It will be used in analyzing the impacts under different scenarios of 

electricity-charging prices and speeds. 

The first network is a small uncongested network, with (travel cost, link length) 

marked on each link in Fig 3-4. There are 4 paths from node A to node D, path #1 

(A�B�D), path #2 (A�B�C�D), path #3 (A�C�B�D) and path #4 (A�C�D). 

The total trip demand between A and D is 100. The BEVs have an effective range of 120 

miles. 

The Sioux Falls network has 24 zones, 24 nodes, 76 links and 528 O-D pairs. The 

travel cost is calculated by using the BPR function: 

 4

0
( ) [1 0.15 ( ) ]a

a a

x
t x t

C
= ⋅ + ×  (3.59) 
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Figure 3-4: A Trivial Sample Network 
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Figure 3-5: Sioux Falls Test Network 
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For the first trivial network, the charging cost is calculated by using the threshold 

for charging at 60 miles, which is half of the vehicle’s effective range. The per unit 

distance charging cost at home is set as 0.01
h
e = units, and the per unit distance 

charging cost at destination is set as 0.03
s
e = units. The example network is solved by 

assigning probabilities of using on each utilized route (we let all four routes in this 

network be utilized). The total cost is the summation travel cost on a route and the 

charging cost for choosing the route. After the probabilities are calculated, the path flows 

could be obtained by assigning the O-D trips onto each path. Table 3-1 shows the traffic 

patterns with and without considering the electricity-charging cost. Column 2 gives the 

total travel cost on each route, and column 3 is the path length of the routes. The charging 

cost shown in column 4 is a result of the piecewise function. We can see that electricity-

charging cost at destination is zero if the path length if not greater than 60. The total cost 

in column 5 is the summation of the travel cost and the charging cost. Column 6 shows 

the path flow pattern without considering the charging cost, which is a result from the 

traditional SUE, and column 7 shows the path flow pattern by taking the charging costs 

into account. The difference between column 6 and column 7 makes the charging costs a 

reasonable consideration. The results shows that although the travel costs for route # 1 

and route # 3 are the same, the paths using link B-C is less attractive sine taking this link 

will increase the path length which increases the charging cost. Therefore, more BEV 

drivers will choose the route #1 and route #4. The decreases of flows on link B-C and C-

B can easily been seen in Figure 3-6. 
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path # 
travel 
cost  

path 
length 

charging 
cost 

total 
cost 

path flow 
(non-EV) 

path flows 
(EV) 

1 A-B-D 1.5 50 0.5 2 38.7455619 55.9164 

2 A-B-C-D 2 80 1.8 3.8 23.50037122 9.2429 

3 A-C-B-D 2.5 90 2.1 4.6 14.25369566 4.1531 

4 A-C-D 2 60 0.6 2.6 23.50037122 30.6876 

Table 3-1 Path Flow Patterns for the Trivial Network 

 

Figure 3-6: Link Flow Patterns 

3.5.2, Network flow pattern 

We first compare the BEV flow pattern and the GV flow pattern in the traffic 

network, where the GV flow pattern is produced by solving the following SUE problem. 
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subject to Eq (3.9)-(3.11). 

where g  is the travel time-equivalent fuel cost per unit distance for GVs,  and 

let us set 4
h

g e= . In this particular numerical test, we set 0.08, 0.32,
h
e g= =  and 

0.16
s
e = . The BEV traffic assignment is conducted using the model in Problem 

EVSUE. This network flow pattern is studied on the Sioux Falls network. Table 3-2 gives 
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the link flow pattern for GVs and the link flow pattern for BEVs with the above discussed 

gas and electricity-charging prices. It can be seen that the link flow pattern differs a lot on 

some of the links, for example Link 22, 24, 49,56, etc. With the gas price settled as 4 

times the home electricity-charging price and 2 times the destination charging price, the 

BEV drivers tends to use longer routes than GV drivers since the operating cost is much 

smaller. However, it should be noted that this choices also depend on the network 

congested level, the charging speeds, the BEV range etc. If the charging speed is not too 

slow (which means the charging time cost for BEV drivers is not very high) and the BEV 

range is long enough for most routes (which means the routes choice set for BEV drivers 

is similar to that of the GV drivers), we can conclude that with 
h s
e e g< < , BEV 

drivers tends to choose the longer path. In such case the total vehicle miles traveled 

(VMT) for BEVs are longer than that of GVs, while the total cost (total travel time cost 

and the operating cost) for BEVs is less than that of GVs. For this numerical test, the 

VMT for GVs is 2060103.12 and the VMT for BEVs is 2096140.893, which is greater 

than GVs. The total cost for GVs drivers is 1996555.293 and the total cost for BEVs 

drivers is 1527119.117, which is less than that of GVs drivers. 

  



 70 

Table 3-2 Link Flow Pattern of GVs and BEVs and System Performance 

Link_ID 1 2 3 4 5 6 7 

GV 1583.091 2500.909 1583.091 2750.091 2500.909 3676.097 2135.189 

BEV 1455.862 2628.138 1455.899 2622.862 2628.101 3964.663 2554.395 

Link_ID 8 9 10 11 12 13 14 

GV 3551.097 5428.62 2935.729 5303.621 3232.596 4051.366 2750.091 

BEV 3973.584 5822.77 3380.53 5489.602 4660.328 4213.398 2622.899 

Link_ID 15 16 17 18 19 20 21 

GV 3107.596 5529.913 2762.027 5201.759 5404.913 2762.027 468.3867 

BEV 4340.902 5714.344 3138.155 5092.433 5394.955 3122.627 643.3024 

Link_ID 22 23 24 25 26 27 28 

GV 5998.665 4051.366 468.3867 8107.659 8149.659 9637.856 5660.797 

BEV 4908.069 4199.657 1259.781 8188.643 8833.379 9854.077 6735.008 

Link_ID 29 30 31 32 33 34 35 

GV 11732.41 312.656 2977.729 9429.856 5237.35 7122.507 2260.189 

BEV 9756.237 416.4767 3764.618 9266.424 4661.967 6547.056 2545.437 

Link_ID 36 37 38 39 40 41 42 

GV 5112.35 4832.621 4873.621 4339.462 7122.507 3443.88 4503.028 

BEV 4618.859 4674.372 4663.306 4720.795 6427.599 3219.728 3874.309 

Link_ID 43 44 45 46 47 48 49 

GV 5702.797 3443.88 8871.933 8826.511 5873.665 11898.41 12305.02 

BEV 7108.747 3296.248 7219.916 8536.531 3956.673 10600.97 10536.46 

Link_ID 50 51 52 53 54 55 56 

GV 4274.175 312.656 12305.02 10612.37 5201.759 4315.175 2652.788 

BEV 4882.63 388.3919 10241.62 8939.849 5107.961 5070.802 3987.735 

Link_ID 57 58 59 60 61 62 63 

GV 8871.933 10612.37 3930.688 2652.788 3930.688 1845.746 1829.177 

BEV 7323.179 8616.931 4168.728 4150.436 3949.074 2717.511 2446.846 

Link_ID 64 65 66 67 68 69 70 

GV 1804.746 5153.896 5065.92 8826.511 1829.177 5153.896 3719.632 

BEV 2669.308 4557.513 5307.921 8841.526 2397.097 4656.783 3350.631 

Link_ID 71 72 73 74 75 76 

 GV 4503.028 3719.632 2799.82 4339.462 5024.92 2799.82 

 BEV 3678.333 3705.147 2705.402 4668.729 5160.447 2863.941 
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3.5.3, Impacts of charging price 

According to the assumption that the range of the vehicle would be enough for at 

least the one way trip, the we manipulate the link lengths in the network, and let the 

longest shortest path (in terms of path length only), noted as 
s
D , be approximately 

50
s
D =  distance units (miles), and set the vehicle range accordingly, as 

s
Dκ ⋅ , where 

κ  is a multiplier, {1,1.1,1.2,...,2}κ = .  

3.5.3.1 Sensitivities to electricity-charging prices at home 

In this numerical test, we fixed the electricity-charging price at the destination, 

and change the per unit distance electricity-charging price at home for BEV drivers. The 

per unit distance electricity-charging price at destination is set to 
s
e = 0.1 units, which is 

close enough to the real world case. However, this price could be varying in a large range 

due to different cities, or different destinations. The full tests results are shown in the 

Appendix A.  

From the Table A-1, we note that not the entire link flow pattern has significant 

changes. For instance, link 61, link 59, link 51, link 43 have minor changes with the 

changes of 
h
e . However, some of the link flows have been impacted by the changes in 

h
e  in a more significant way (up to 15% changes in link flows). The link flow changes 

are divided into 5 ranges, [0, 3%) ,[3%, 6%), [6%, 9%), [9%, 12%), [12%, 15%), the 

number of links, out of the total 76 links, that have the link flow changes following in 

each range are counted. The following table and figure (Figure 3-7) shows these 

statistical counts of number of links. 
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Figure 3-7: Counts in Each Range of Link Flow Changes 

 

Figure 3-8: Link Flow Changes According to 
h
e  
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destination charging cost at a fixed value, 0.1, and the charging cost at home is lower 

than that, which makes the electricity-charging cost not expensive. It is nature to 

anticipate that when the electricity-charging cost at destination and at home both increase 

at the same time, the percentage of links that have a higher link flow changes will 

increase, but with the similar changing trends. 

Figure 3-8 shows some selected links with notable changes in the link flows. 

Some of the link flows decrease (link 6, link 15, link 33, link 39)) with the increase of the 

electricity-charging cost; while some link flow increases (link 35, link 70, link 71). In 

both case, we can see that the most link flow changes have a sudden drop or a sudden 

increase, for example, flows on link 39 is near stable when the charging cost at home is 

less than 0.04, but with more significant decrease when the cost reaches 0.05. In addition, 

flows on link 71 increase suddenly when charging cost at home increase from 0.03 to 

0.04. This phenomenon is reasonable because of the piecewise charging cost functions. 

By noticing such phenomenon and thus acquiring the “turning point” will provide policy 

makers a tool for setting the value of electricity-charging price at home given fixed 

charging cost at destinations. 

3.5.3.2 Sensitivities to electricity-charging price at destination 

In addition to the above section, we also study the electricity-charging price at 

destination given a fixed electricity-charging price at home, which is more realistic, since 

the electricity-charging price at destinations in public charging infrastructure are usually 

within control and the electricity-charging price at home is highly typically related to the 

electricity cost for residents. 

The electricity-charging price per unit distance at home is fixed to be consistent to 

the real world, which is 0.08. The per unit distance electricity-charging price at 
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destinations with public charging infrastructure is set from 0.1 to 0.5. The full tests 

results are shown in the Appendix A. 

From the Table A-2, we that link flow patterns changes more than that in the 

previous case (section 3.5.3.1). The maximum change in link flow is up to 55%, which is 

significantly high. The link flow changes are divided into 11 ranges, form 0% to 55% 

with 5% interval for each range. The number of links that have the link flow changes 

falling in each range is counted. The following table and figure (Figure 3-9) shows these 

statistical counts of number of links. There are about 38% of the total links that have link 

flow changes more than 10%, and 16 links out of 76 total links have link flow changes 

more than 15%. This changes is due to the significant increase in 
s
e . Unlike in the 

previous section, where home electricity-charging price could not be too high, the 

destination electricity-charging price could be much higher than that at home. Therefore, 

by controlling the destination electricity-charging price, the network flow patterns of 

BEV users could be very different. The destination electricity-charging price is more 

changeable, such as giving coupon for travelers, charge for time-vary costs, etc. Although 

not all the link flows in the network are sensitive to the charging cost (e.g. this can be 

seen from both Fig. 3-7 and Fig. 3-9), the model still proved us a reference tool for 

controlling some of the link flows by changing the electricity-charging price. 

From Fig. 3-10, the ‘sudden drop’ and ‘sudden increase’ of link flows according 

to 
s
e  is more obvious. For instance, flows on link 56 and link 50 drop dramatically 

when the electricity-charging price at destination increases from 0.14 to 0.18. The flows 

on link 23 increase a lot when the electricity-charging price at destination increases from 

0.18 to 0.22. In both cases, after the significant decrease or increase, the link flows are 

more stable and seem not very sensitive to the changes of electricity-charging price at 

destination any more.  
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Figure 3-9: Counts in Each Range of Link Flow Changes 

 

Figure 3-10: Link Flow Changes According to 
s
e  
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3.5.4, Impacts of charging speed  

This section investigates the impacts on the duration of stay for BEV drivers 

between all O-D pairs under different charging speed. The charging speed is represented 

by the parameter σ in the formulation, which is the charging time needed for per unit 

distance traveled. Therefore, the larger σ is, the slower the charging speed is and vice 

versa. We set σ from 0.05 to 0.3, that is, for instance, for a BEV with effective range of 

60 miles (the manufacturing claimed range is higher than the effective range), the 

charging time needed ranges from 3 hours to 18 hours depends on the charging 

infrastructure installed. This is close to the realistic cases, where level I (110V), level II 

(220V) and quick charging infrastructures provide different charging speeds. Given the 

expected expected duration of stay for BEV drivers between each O-D pair, we examine 

the resulted duration of stay for them under different charging speeds. In our numerical 

test, the data for expected duration of stay, rst , is randomly generated and follows a 

“Gaussian” distribution over the time period range [0,9]. This time period range [0,9] is 

discretized and divided into 18 intervals, that is, the duration of stay for all drivers are 

grouped into 0~0.5hrs, 0.5~1hrs, 1~1.5hrs, 1.5~2hrs….The numbers of drivers falling 

into each duration of stay period interval are counted, and the results are represented 

using curves, instead of scatters by curve fitting method (see Figure 5). The solid line is 

the Gaussin fitting of the expected duration of stay curve. The dash lines are the Gaussin 

fitting curve of resulted duration of stay under different charging speeds. The Gaussian 

fitting method is used because the original data of expected duration of stay are generated 

using Gaussian distribution. 

It indicates that when charging speed decreases, the peak value of the duration of 

stay shifted to the right. This also means the average duration of stay is longer. It is 

obvious when we compare 0.05σ =  and 0.3σ = . With 0.05σ = , the duration stay 
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only have minor changes. However, when 0.3σ = , the portion of drivers staying at the 

destination between 0~5 hours decreases and the percentage of drivers staying between 

5~9 hours increases. It is logical because when the charging speed is slow, the drivers 

spend more time at the destination to wait until their vehicle finishes the recharging. It is 

worth noting that, not all drivers need to charge their vehicles at the destination. Also, 

drivers will shift their routes accordingly to reduce the extra time of stay at destination. 

Therefore, the percentage change is within a reasonable range.  

 

 

Figure 3-11: Duration of Stay under Different Charging Speed 

3.5.5, Impacts on the system performance 

Table 3-3 and table 3-4 gives the total vehicle miles traveled (VMT), system total 

costs, total electricity-charging cost, as well as total charging time penalty cost with 

different	e�, e�, and charging speed. The VMT decreases with the increase of electricity-

charging cost both at home and at destination. The VMT also decreases with the 
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decreases of charging speed. This is reasonable since the charging cost and charging time 

penalty cost both depends on the total miles traveled.  

Table 3-4 also indicates that when the charging speed increases, say, σ decreases 

from σ = 0.3 to σ = 0.025, the total charging time penalty cost decreases up to 99.5%. 

Figure 3-12 shows that this decrease is not linear and the decreasing rate is not a constant. 

With the charging speed increases at a constant rate, the total charging time penalty cost 

decrease is slower. This is obvious when σ < 0.1, where the total charging time penalty 

cost decreases only a little. 

 

��=0.08 �	 =0.14 �	 =0.18 �	 =0.22 �	 =0.26 �	 =0.3 

VMT 2112225 2091081 2083888 2081759 2080880 

System total cost 1502448 1505707 1508466 1510594 1512443 

total charging cost 172052.1 172288.7 173635.5 175322 177106.9 

��=0.08 �	 =0.34 �	 =0.38 �	 =0.42 �	 =0.46 �	 =0.5 

VMT 2074810 2073604 2071293 2069819 2067119 

System total cost 1514594 1516280 1518189 1519692 1521553 

total charging cost 177476.4 178850.4 179952.1 181218 182347.2 

�	=0.1 ��=0.01 �� =0.02 �� =0.03 �� =0.04 �� =0.05 

VMT 2125765 2124476 2123214 2121978 2120772 

System total cost 1356064 1376702 1397327 1417938 1438535 

total charging cost 26109.73 46789.73 67448.03 88085.46 108702.9 

�	=0.1 �� =0.06 �� =0.07 �� =0.08 �� =0.09   

VMT 2119596 2118452 2117341 2116263   

System total cost 1459121 1479694 1500255 1520806 
 total charging cost 129301.2 149881.3 170444.2 190990.8   

Table 3-3 VMT (mile) and Costs (time equivalent) with e� and e� 
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 � 0.3 0.275 0.25 0.225 0.2 0.175 

VMT 2142278 2144333 2147381 2148391 2149531 2150579 

System total cost 5991499 5979825 5968843 5959687 5950975 5943489 
total charging time 
penalty cost 68697.51 57015.91 46026.97 36870.27 28139.93 20647.47 

 � 0.15 0.125 0.1 0.075 0.05 0.025 

VMT 2152604 2152681 2153887 2153283 2154559 2155807 

System total cost 5936422 5931110 5926819 5924662 5923923 5923251 
total charging time 
penalty cost 13578.37 8266.617 3974.474 1837.442 1072.765 382.2585 

Table 3-4 VMT (mile) and Costs (time equivalent) with Charging Speed Changes 

 

 

Figure 3-12: Total Charging Time Penalty Cost 

3.6 SUMMARY 

This chapter developed two Logit-based SUE traffic assignment mathematical 

models for BEVs, which can account for the electricity-charging cost and charging time 

respectively. The objective functions of the model formulations contain special piecewise 

linear functions terms in both models. The piecewise linear functions are functions of the 
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travel distance. This special feature requires a path flow patterns as solution results. 

Therefore, a path-based solution algorithm is chosen and the DSD algorithm is adopted. 

The algorithm works iteratively between a restricted master phase and a column 

generation phase. In this modeling context, the column generation phase involves two 

CSP problems for both models. The solutions for these two CSP problems are compared 

in order to find the augmenting path to the restricted master problem.  

Numerical tests are given for evaluating the developed models and investigating 

the impacts of electricity-charging price and charging speed. The tests show that the 

models developed are able to capture the origin/destination based electricity-charging 

price changes. Also, the models could paint a rough relationship between flow patterns 

and charging speed at the destinations. The impacts of electricity-charging price and 

charging speed on the network level are investigated. The spatial flow patterns are 

influenced by the electricity-charging price and charging speed. Their impacts on total 

system performance are also studied, such as system wide various costs and vehicle miles 

traveled.  

The research in this chapter aims to be a preliminary study for evaluating the 

impacts of introducing electric vehicles on the transportation system. Those impacts are 

considered to be from the electricity-charging costs and the charging time in this 

research. For a more realistic model, traffic flows should be a combined one with both 

gasoline vehicles and electric vehicles and this will be studied in the next chapter. 

Nonetheless, for modeling simplicity, in this chapter, we focus on the BEVs only. 

Moreover, the models could be easily extended to incorporate both types of vehicles. In 

this next chapter, more realistic cases such as the combined choices for electric vehicle 

drivers with different electric vehicle penetration rates, where both spatial impacts and 

temporal impacts will be studied.   
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Chapter 4: Time –Dependent Combined Travel Choices for Electric 

Vehicles Users 

4.1 INTRODUCTION 

The network flow pattern, overall, might be affected by introducing BEVs onto 

the road and by the BEVs drivers’ charging behavior. In this chapter, the investigation of 

the subsequent travelers’ choices is carried out in terms of the activity time choices, the 

charging choices and the route choices. A multi-class joint choices network problem is 

studied.  

The activity time herein is comprised of two components: the departure time 

choice and the duration of stay choice. We assume that motorists have a preferred time 

window for their arrivals at the destination and they will encounter a schedule delay cost 

if arriving at the destination out of their preferred time window. In addition, as presented 

in the previous chapter, motorists will also have an expected duration of stay at their 

destinations. During different time of the day, the traffic network conditions are different 

in terms of congestion level. Therefore, different departure times of motorists will result 

in different travel time on a certain route. The departure time and the network conditions 

together will affect the motorists’ arrival time at destinations. Moreover, as discussed in 

the previous chapter, the electricity-charging time at destinations plays a role in the 

duration of stay for the BEVs drivers. 

 The previous chapter investigates a static SUE traffic assignment problem for 

BEVs. It has been concluded that the battery-charging time and as well as the electricity-

charging price at destinations may affect the duration of stay of motorists at destinations 

and their route choices. In this chapter, a time-dependent network equilibrium problem 

will be studied with different user class. The user class is defined by the duration of stay, 

purpose of trips and the types of vehicles used. Both the temporal and spatial choice 
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behaviors will be examined. A quasi-dynamic combined choices model on the network 

level is built. By saying quasi-dynamic, it means that in the model developed, the travel 

demand in each time interval is in steady-state equilibrium. The connection between 

successive time intervals is represented by the charging stations occupancy that is carried 

over to the next interval, which is similar to the problem setting in (Bifulco 1993). A 

combined choice of departure time, duration of stay and route is considered in this 

chapter. The departure time and duration of stay choices belong to the temporal choice 

and the route choice belongs to the spatial choice. The decision-making process for each 

motorist is assumed to follow a two-level hierarchical choice structure (Figure 4-1). In 

the upper-level, the motorists make choices on the departure time and the expected 

duration of stay at destination before traveling. In the lower-level, the motorists choose 

the perceived cheapest route directing to the destination. This hierarchical structure is 

modeled using a nested-Logit model, where all the choices are considered. 
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Figure 4-1: Combined Choices. 
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This chapter is structured as follows. Section 4.2 presents the definitions and 

problem statement of the time-dependent combined travel choices for BEV drivers. 

Section 4.3 presents a Virational Inequality (VI) formulation for the combined choices 

model. The optimality conditions are examined for achieving the Logit choice structure. 

Section 4.4 gives a solution algorithm for solving the VI model presented. Finally, 

Sensitivity analysis of travel patterns is discussed in the numerical experiments.  

4.2 PROBLEM STATEMENT  

4.2.1, The combined choices sets 

The departure time choice set is predefined as a set of discrete time intervals. 

Hypothesizing the whole day splitting into several periods, let the whole study period be 

[0, ]T . This whole study period is divided into several equal time intervals 

{0,1,..., }t T T∈ = . It is assumed that T  is large enough for all travelers to complete their 

journeys. 

The duration of stay choice set is also a set of discrete time durations 

1 2{ , ,...}l L l l∈ = . However, the feasible choices of durations of stay in this set depend on 

the route choice BEV drivers (Figure 4-2).  

 

min min min
{ , , 2 ...}l l t l t+∆ + ∆{0, ,2 ...}t t∆ ∆

 

Figure 4-2: Duration of Stay Choice Set 

For example, let   be the duration of stay for a BEV driver travelling from an 

origin to a destination. If the route the user chose has a length less than the “threshold” 



 84 

(as discussed in the previous chapter: users will charge their vehicle if the distance they 

have traversed is beyond this threshold) for charging, then the duration of stay will be a 

set of time duration from zero, that is {0, ,2 ...}l L t t∈ = ∆ ∆ . The t∆ is a time interval, 

within which a steady-state equilibrium is assumed. Otherwise, if the BEV drivers need 

to charge their vehicles at the destination, the minimum duration of stay choice in the 

choice set is not zero. Specifically, the minimum duration of stay of a motorist is the 

minimum electricity-charging time for his/her BEV at destination. This electricity-

charging time is related to the length of the path the motorist took. The electricity-

charging time should be long enough for the BEV to get enough electricity for the 

motorist to go back to the origin. Let 
min
l  be the minimum electricity-charging time for 

the BEV driver, then the duration of stay for the driver will be 

min min min
{ , , 2 ...}l L l l t l t= = +∆ + ∆ .  

The route choices are probabilistic choices over a subset of all routes between 

each O-D pair, which is obtained from a Logit SUE traffic assignment as discussed in the 

previous chapter. In addition, the choice of charging station can also be accommodated 

into the route choices (see Figure 4-3). For example, let 
1 2 3 4

{ , , , }p p p p p=  be charging 

locations (which are usually located at a parking garage/surface), and let index k  be a 

route from an origin ! to a destination	", then the generic choice ( , )p k is a (charging 

location, route) alternative in the study area. As is presented in Figure 4-3, a dummy 

destination 's  is adjacent to all the charging locations available at destination s . An 

“extended network” can be used to represent the charging location/route choice. In this 

case, the alternative ( , )p k  discussed above corresponds to an extended path, made up of 

the original path k and a sequence of links corresponding to the choice of charging 

location #. Thus, the generic alternative ( , )p k  described could be represented on the 

extended network by a path, say k  instead (Bifulco 1993).  
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Figure 4-3: Extended Network for Charging Location and Route Choice 

4.2.2, Problem setups 

As stated in Chapter 3, we consider a traffic network ( , )G N A= , where N is a 

finite set of all nodes and A is a finite set of all directed arcs. Let B  be the set of vehicle 

types, let J  be the set trip purposes, and let L  be the set of durations of stay for 

motorists at destinations, then { : ( , , ) }M m b j l B J L= ∈ × ×  represents the set of 

motorist class, where “×” denotes the Cartesian product. Let k  be the generic choice of 

route (or route/charging station combination) for BEV drivers. Let rs

c
K  be the subset of 

route between O-D pair ( , )r s  by taken which the BEV drivers need to recharge their 

vehicles at destination s . In addition to the notations stated in the section 3.2.1, we have 

the following setups: 

Parameters 

, ,rs b j
q  total demand of motorists of vehicle type  b  with trip purpose j  

traveling between O-D pair ( , )r s  

Functions 
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, ( )rs m

k
T t  the in-vehicle travel time cost for motorists between O-D pair 

( , )r s , for the travelling purpose j , using vehicle type b , 

departure at interval t  stay at destination of duration of l , via 

generic route k . Alternatively represented by , , , ( )rs b j l

k
T t  

, ( )rs mz t  waiting/congestion costs at charging for user class m , arrival at 

interval	t  at charging at destination s . 

,rs m

k
e  charging cost for BEV drivers using route � between O-D pair 

( , )r s  for user class m . 

rs

k
ctp  charging time penalty cost for motorists using route k  between 

O-D pair ( , )r s  for traveler class	
m . 

, ( )rs m

k
SD t  schedule delay costs for motorists of class m  between O-D pair 

( , )r s , via route k , arrival at time interval t. 

Variables 

, ( )rs m

k
f t  vehicle flows on route k  of user class m , between O-D pair 

( , )r s , departure at time interval t . 

, ( )rs m
q t  the portion of demand using vehicle type b  that departs at 

interval t  and stays at destination for duration of l  between O-

D pair ( , )r s . Alternatively represented as , , , ( )rs b j l
q t . 

,rs mC  the systematic disutility component (measured in time unit) for 

motorists class m  departing at interval t  between O-D pair 

( , )r s . 

, ( )rs m
G t  perceived disutility for motorists class m  departing at time 

interval t  between O-D pair ( , )r s . 

, ( )rs m
tε  random residual for the perceived disutility , ( )rs m

G t . 
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, ( )rs m

k
C t  the systematic disutility component (measured in time unit) for 

motorists class m  departing at time interval t  via generic route 

k  between O-D pair ( , )r s . 

, ( )rs m

k
G t  perceived disutility for motorists class m  departing at time 

interval t  via generic route k  between O-D pair ( , )r s . 

, ( )rs m

k
tε  random residual for the perceived disutility , ( )rs m

k
G t . 

, , ( , )rs b jP t l  the probability of choosing departure time and duration of stay 

alternative ( , )t l  for traveling between O-D pair ( , )r s  for 

travelers using type b vehicles and purpose of travel j . 

, ( )rs m
P t  an alternative representation of , , ( , )rs b jP t l , where m  is defined 

by , ,b j l . 

, , ( / , )rs b jP k t l  the conditional probability of choosing path k after choosing 

departure time and duration of stay alternative ( , )t l  between O-D 

pair ( , )r s  for travelers using type b vehicles and purpose of 

travel j . Alternatively represented as , ( )rs m

k
P t . 

The proposed formulation for the travel choices is a generalization of the classical 

random utility model (Cascetta 2009; Sheffi 1985). The choices of departure time, 

duration of stay at destination, route/charging is determined by a nested-Logit (NL) 

model. The Logit model has been adopted in many research for investigating many 

choices such as mode choices, destination choices, route choices, departure time choices 

and the joint/combined choices (T.  Abrahamsson and Lundqvist 1999b; Ben-Akiva et 

al. 1984a; C. R. Bhat 1998b; M. Florian et al. 2002; H.J. et al. 2003; T. Zhang et al. 2011) 

The O-D trip demand data for all purposes of travel and all vehicle types are 

considered given in the model. The disutility for user class m departing at interval t and 
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though generic route k  between O-D pair ( , )r s  is the summation of the following cost 

components: 

• On board cost , , ,( ) / ( )rs m rs j l

k k
T t T t  

• Charging station waiting/congestion costs , ( )rs mz t   

• Charging cost ,rs m

k
e   

• Charging time cost ,rs m

k
ctp   

• Schedule delay cost , ( )rs m

k
SD t   

Noted, the charging cost and the charging time cost in the total cost functions are 

not time-dependent. The measured travel disutility, , ( )rs m

k
C t , is formulated as the 

summation of the travel time cost from origin to the destination, the charging station 

waiting/congestion cost, and the charging cost, the charging time cost, and the schedule 

delay cost. The perceived travel disutility, , ( )rs m

k
G t  is summation of the measured travel 

disutility and the random residual , ( )rs m

k
tε , where the random residual , ( )rs m

k
tε  is i.i.d 

Gumbel distributed. We have the total travel disutility of choosing route k , departing at 

time interval t  and staying for a duration of l  as follows, 

 

, , , ,

1 2

. ,

3 4

, , , ,

5

( ) ( ) ( ( ))

            

            ( ( ) ( ( )))

rs m m rs m m rs m rs m

k k k

m rs m m rs m

k k

m rs m rs m rs m rs m

k s k

C t T t z t T t

e ctp

SD t T t z t T t

α α

α α

α

= + +

+ +

+ + + +

 (4.1) 

Where, 
1 2 5
, ,...m m mα α α are the coefficients of the different cost components, 

measuring the disutility changes with per unit change of that cost components in this 

disutility function. For example, 
1

mα is the disutility change with one unit of change in 

the on board travel cost by class m  users, which can also be explained as the disutility 

of a unit on board travel cost as perceived by class m  users. 
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4.3 MATHEMATICAL FORMULATIONS 

4.3.1, Nested-Logit model 

As shown in Figure 4-1, the combined choices follow a hierarchical structure, 

where the motorists choose departure time and duration of stay before taking the journey, 

and then they choose the route. The perceived utility of choosing a combination of 

departure time and duration of stay is shown in Eq. (4.2) and the perceived utility of 

choosing an alternative of route k  of user class m  departing at time interval t is 

shown in Eq. (4.3) 

 , , ,( ) ( ) ( )rs m rs m rs m
G t C t tε= +  (4.2) 

 
, , ,

( ) ( ) ( )
rs m rs m rs m

k k k
G t C t tε= +  (4.3) 

Let 
lt

W  represents the expected utility of choosing a (departure time, duration of 

stay) alternative. This expected utility could be calculated from the subsequent choice - 

route choices. A motorist’s expected utility from an alternative of departure time and 

duration of stay can be defined as  

 ,1
ln exp{ ( )}rs m

lt k
k

W C tθ
θ

= −∑  (4.4) 

The probability of motorist driving vehicle type b , for the purpose of traveling 

j , departing at time interval t and staying at destination for the duration of l , between 

O-D pair ( , )r s  as follows 

 ,

( , )

exp{ }
( )

exp{ }
rs m lt

lt
l t

W
P t

W

β

β
=
∑

 (4.5) 

where the values of parameters β  reflects the accuracy of drivers’ perception of 

the variation of the disutility of the (departure time, duration of stay) alternative. The 
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portion of motorists demand with trip purpose j  between O-D pair ( , )r s  using vehicle 

type b  departing at time t and staying at the destination for l , can be calculated as 

follows, 

 , , , , , , ,( ) ( ) ( )rs b j l rs m rs b j rs m
q t q t q P t= = ⋅  (4.6) 

The conditional probability of user class m  traveling between O-D pair ( , )r s  

at time interval t  and staying at the destination for duration l  via generic route k , can 

be given by the following equation 

 
,

,

,

'
'

exp{ ( )}
( )

exp{ ( )}

rs m

rs m k

k rs m

k
k

C t
P t

C t

θ

θ

−
=

−∑
 (4.7) 

The trip demand that uses route k , which is the route flow of user class m  

departing at time interval t  between O-D pair ( , )r s , is as follows, 

 , , ,( ) ( ) ( )rs m rs m rs m

k k
f t q t P t= ⋅  (4.8) 

The above equations (Eq. 4.5-4.8) give the NL model for the travelers’ departure 

time, duration of stay and route choices. 

4.3.2, Cost functions 

This section presents the different cost functions involved in the model. The travel 

time cost through a route is the summation of the travel time cost on different links 

constituting the route. Different user classes experience the same travel time on the same 

link at the same time. The travel time cost function through a route, which is also referred 

as the on board cost in this research, is shown as follows, 

 , ,

,
( ) ( ( ))rs m r s

k a a a k
a

T t t x t δ=∑  (4.9) 
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As the model in Chapter 3, where the origin-destination-origin trip chain is 

considered as the basic travel analysis unit. The BEV users need to charge their vehicle at 

the destination if necessary. This necessary condition for recharging at destinations has 

been discussed in previous chapter.  The charging cost ,rs m

k
e  and the charging time 

penalty cost were already discussed in the previous chapter. Both of these two costs are 

functions of the path length. Here, the charging cost has at destination " includes an 

additional term, i.e. 
0
e  (see Eq. 4.10). This 

0
e  could be considered as the 

charging/parking access fee for BEVs since the charging infrastructures are usually 

located in the parking lot or parking garage. This term 
0
e  adds the flexibility of defining 

the charging cost, and 
0

0e =  means there is only the electricity-charging cost. The 

charging time penalty cost function developed in the previous chapter is presented in Eq. 

(4.11). 
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(4.11) 

The number of charging infrastructures is finite at each destination and this may 

cause congestion or waiting for the BEVs that need to recharge. The waiting or searching 
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time for a free charging spot is considered as waiting/congestion cost for BEV drivers. It 

should be noted that only those BEV drivers who need to recharge their vehicles will 

encounter this cost. Herein, a soft capacity is considered for the charging infrastructures 

and a well-define the charging waiting/congestion time cost function is employed, which 

is the Bureau of public roads (BPR) function (W. Lam et al. 1999). It is a function of the 

current number of BEVs that recharge at the destination charging infrastructure when a 

new BEV comes for waiting. The charging waiting /congestion cost at time interval t  is 

, ( )rs mz t  as follows, 

 
,

, , 0, 4.03( ( ))
( ( )) 0.31 ( )

rs m

rs m rs m m s k

k s

s

D t T t
z t T t z

C

+
+ = + ×  (4.12) 

Where 0,m

s
z  is the access time for a BEV driver who needs to recharge his/her 

vehicle when there are no other BEVs using charging infrastructures at the same 

destination, so called the free-flow charging access time. 
s

C  is the number of charging 

infrastructures at the destination " (which is the capacity of the charging infrastructure). 

( )
s
D t  is the number of existing BEVs that are recharging at time interval t . For a 

motorist departing at time interval t  traveling between O-D pair ( , )r s  via route k , 

his/her arrival time at the destination’s charging station is , ( )rs m

k
t T t+ . The number of 

existing BEVs recharging electricity at destination s  at time interval t  equals the total 

number of BEVs recharging electricity that arrives before time interval t  (also 

represented as the accumulating recharging arrival flow ( )m

s
A t ) minus the total number of 

BEVs recharging electricity that leaves before time interval t ( also represented as the 

accumulating recharging departure flow ( )m

s
B t ), 

 ( ) ( ) ( )m m m

s s s
D t A t B t= −  (4.13) 
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where the accumulation of arrival flow ( )m

s
A t  and the accumulation of departure 

flow ( )m

s
B t  at destination s  are shown as follows, 

 
,

1
,

:( , ) 1 : ( )

( ) ( )
rs m rs
k c

t
m rs m

s k
r r s tt tt T t k K

A t f tt
ξ ξ

−

− + = ∈

= ∑∑ ∑ ∑  (4.14) 

 
,

1
,

:( , ) 1 : ( )

( ) ( )
rs m rs
k c

t l
m rs m

s k
r r s tt tt T t k K

B t f tt
ξ ξ

− −

− + = ∈

= ∑ ∑ ∑ ∑  (4.15) 

As discussed in the introduction, all motorists have their own preferred time of 

arrival at destinations. For example, motorists going to work need to be arriving at work 

at a required time or a required time window. Let the preferred time of arrival at 

destination s  for user class m  traveling between O-D pair ( , )r s  be represented by 

, ,[ , ]m lb m ub

rs rs
t t . We assume either early or late arrival at the destination result in a cost, which 

is named as the schedule delay cost. Within the context of (Lu and Mahmassani 2008), 

the schedule delay cost could be defined as a piecewise linear cost function (H. Yang and 

Meng 1998).  
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, ,

, ,
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m m lb m lb

e rs rs
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m m ub m ub

l rs rs
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SD t t t t

t t t t

λ

λ

 − >= ≤ ≤ − <

 (4.16) 

Where m

e
λ  is the value of early schedule delay and m

l
λ  is the value of late 

schedule delay for user class m . This schedule delay cost function assumes that if 

travelers arrive at destination within the time window, there is no schedule delay cost. 

4.3.3, Variational Inequality formulation 

The joint choices problem is the simultaneous prediction of departure time choice, 

duration of stay choice and the route choice for each user class between each O-D pair. 

As discussed in the previous sections, the departure time and the duration of stay choice 
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are represented using the Logit model and the route choices is also a Logit SUE traffic 

assignment problem. These three choices form a NL model with a  hieratical (two-level) 

structure (see section 4.3.1).  

In this section, an equivalent variational inequality (VI) formulation of the joint 

choices problem is given. The feasible set,	Ω, of all the constraints that are associated 

with the joint travel choices is defined by the following equations (4.17)-(4.20), where 

, , , ,( ) ( )rs m rs b j l
q t q t= , 

 , ,( ) ( ),    , , ,rs m rs m

k
k

f t q t rs m l t= ∀∑  (4.17) 

 , , , , ,

( , )

( ) ,       , ,rs b j l rs b j

l t

q t q rs b j= ∀∑  (4.18) 

 , ( ) 0,        , , , ,rs m

k
f t rs m l t k> ∀  (4.19) 

 , ( ) 0,      , , ,rs m
q t rs m t k≥ ∀  (4.20) 

Equation (4.17) is the route flow conservation constraint. Equation (4.18) is the 

departure time and duration of stay choice demand conservation constraint. Constraints 

(4.19) and (4.20) are the nonnegative and positive requirements of route flows, departure 

time and duration of stay demands.  

In the next section, the equivalent VI formulation of the quasi-dynamic model 

will be adopted to capture all the components of the proposed Logit models in an 

integrated form, with the description of the VI formulation first, followed by the proof of 

equivalence to the choice models  

, * , , *

, *
, , *

, *

, * , , *

( ) [ ( ) ( )]

( )1
                ln [ ( ) ( )]

( )

1
                ln ( )[ ( ) ( )] 0

rs m rs m rs m

k k k
rs m t k

rs m

rs m rs mk

k krs m
rs m t k

rs m rs m rs m

rs m t

C t f t f t

f t
f t f t

q t

q t q t q t

θ

β

⋅ −

+ −

+ − ≥

∑∑∑∑

∑∑∑∑

∑∑∑

 (4.21) 
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subject to the feasible space , ,( ( ), ( ))rs m rs m

k
f t q t ∈ Ω . For the model to be internally 

consistent, 0θ β≥ >  must hold (S. Dafermos 1980).  

4.3.4, The analysis of the VI model 

In this section, we prove that the developed VI formulation is equivalent to the 

SUE traffic assignment and simultaneously satisfies the Logit choice model of departure 

time and duration of stay. The Karush–Kuhn–Tucker (KKT) conditions of the VI 

formulation is derived and analyzed. It is shown that the KKT conditions recover the 

Logit model components.  

Let ,rs m

t
L  be the dual variable associated with the constraint (4.17), and let , ,rs b jL  

be the dual variable associated with the constraint (4.18). let ,

,

rs m

t k
λ  be the dual variable 

associated with the constraint (4.19) and (4.20). The KKT conditions are as follows, 

,
, , , ,

,,

( )1
( ) :             ( ) ln 0

( )

rs m

rs m rs m rs m rs mk

k k t t krs m

f t
f t C t L

q t
λ

θ
+ − − =  (4.22) 

, , , , ,1
( ) :              ln ( ) 0rs m rs m rs b j rs m

t
q t q t L L

β
− + =  (4.23) 

The complementarity conditions  

 , ,

,
( ) 0rs m rs m

t k k
f tλ ⋅ =  (4.24) 

 ,

,
0rs m

t k
λ ≥  (4.25) 

The above equations (4.27)-(4.30) combined with the primal feasible conditions 

Ω  (4.22)-(4.25) together is the KKT conditions of the VI formulation. Next the 

equivalence of the VI to the equilibrium conditions and the joint choice conditions are 

proved. 
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From the complementarity conditions we know that if , ( ) 0rs m

k
f t ≠  then 

,

,
0rs m

t k
λ = . For SUE traffic assignment problem, we know that the route flow 

, ( ) 0rs m

k
f t > , therefore, we get the following transformation from Eq.(4.22), 

 
,

, ,

,

( )1
ln ( )

( )

rs m

rs m rs mk

k trs m

f t
C t L

q tθ
= − +  (4.26) 

 
,

, ,

,

( )
exp( ( ) )

( )

rs m

rs m rs mk

k trs m

f t
C t L

q t
θ θ⇒ = − +  (4.27) 

Sum both sides of the above equation over all routes k , together with the route 

flow conservation constraint (4.17), we get the following equations, 

 

,
, ,

,

, ,

( )
exp( ( ) )

( )

             exp( ) exp( ( )) 1

rs m

rs m rs mk

k trs m
k k

rs m rs m

t k
k

f t
C t L

q t

L C t

θ θ

θ θ

= − +

= − ⋅ − =

∑ ∑
∑

 (4.28) 

 ,

,

1
exp( )

exp( ( ))

rs m

t rs m

k
k

L
C t

θ
θ

⇒ =
−∑

 (4.29) 

Therefore, we get the route choice model which follows the Logit choice model as 

shown in equation (4.7) and (4.8).  

 
,

, ,

,

'
'

exp{ ( )}
( ) ( )

exp{ ( )}

rs m

rs m rs m k

k rs m

k
k

C t
f t q t

C t

θ

θ

−
= ⋅

−∑
 (4.30) 

From Eq.(4.23), we have  

 , , , ,( ) exp( )rs m rs b j rs m

t
q t L Lβ β= −  (4.31) 

Sum both sides of the Eq. (4.31) over all combination of departure time t  and 

duration of stay l , we have 

 , , , ,

( , ) ( , )

( ) exp( ) exp( )rs m rs b j rs m

t
t l t l

q t L Lβ β= ⋅ −∑ ∑  (4.32) 
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Divide Eq. (4.31) over Eq. (4.32) on both sides, we have the following equation, 

 
, , ,,

, , , ,

( , ) ( , )

exp( ) exp( )( )

( ) exp( ) exp( )

rs b j rs mrs m

t

rs m rs b j rs m

t
t l t l

L Lq t

q t L L

β β

β β

⋅ −
=

⋅ −∑ ∑
 (4.33) 

From constraint (4.18), and the above constraint (4.33), we get the following 

departure time choice and duration of stay choice model, presented by the Logit choice 

model, 

 
,

, , ,

,

( , )

exp( )
( )

exp( )

rs m

rs m rs b j t

rs m

t
t l

L
q t q

L

β

β

−
=

−∑
 (4.34) 

By recalling from the section (2.1.2), in the hierarchical Logit structure, the 

expected upper-level disutility is obtained from utility of lower-level choices, as shown in 

Eq. (2.9) and (2.10). Therefore, the costs of choosing an alternative of departure time t

and duration of stay l  is the propagated cost from the route choices, in the logsum 

format, as follows: 

 , ,1
ln exp( ( ))rs m rs m

t k
k

L C tθ
θ

= − −∑  (4.35) 

Therefore, the proposed VI formulation does lead to the joint choices of departure 

time, duration of stay and the stochastic route choice. That is, the hierarchical Logit 

model representing the joint probabilities of simultaneous choices is equivalent to the VI 

formulation (4.21) subject to Ω. 

Since the feasible set of the VI model is defined by linear constraints, positive and 

nonnegative constraint, it is compact set. In addition, all the functions in the VI 

formulation are continuous; therefore, we know that there is at least one solution to the 

VI model.  
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4.4 SOLUTION ALGORITHM 

A solution algorithm for the above derived VI formulation is developed in this 

section. The algorithm is developed based on the Gauss-Seidel decomposition approach 

(Equilibration Algorithm), where the network assignment for given demands is computed 

in one block and the departure time and duration of stay choice model is solved in 

another block. Since the choices are inter-related in our model, these two blocks are 

solved iteratively. 

The demand matrices with specified vehicle type, departure time, duration of stay 

and purpose of travel between O-D pair are computed at every successive iteration by 

using the method of successive averages (MSA). The departure time choice set is 

predefined. The feasible duration of stay choice set for BEVs is updated at every 

successive iteration based on the utilized route length and the vehicle flows. The diagram 

of the solution approach is shown in Fig. 4-4. 
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, ( )rs mq t

, ,rs b jq

, ( )rs m

k
C t

 

Figure 4-4: Solution Approach 

Although there are multi-classes of travelers in the network, they are all auto users 

experiencing the same travel time on the network. We assume the motorists are 

homogenous on value of time and perception variants. In this chapter, two distinct types 

of vehicles are considered, the GVs and the BEVs. For BEV drivers, both the electricity-

charging cost and the charging time penalty cost are considered. The network assignment 

block for both types of vehicles requires the solution for the following VI problem. 
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, * , , *

, *
, , *

, *

( ) [ ( ) ( )]

( )1
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∑∑∑∑
 (4.36) 

Subject to (4.17) and (4.19) 

Next we prove that the solution of the above VI model (4.36) with constraint 

(4.17) and (4.19) is equivalent to the SUE condition (4.30). 

First of all, the Lagrangian function for the above VI problem (4.36) can be 

written as follows, 

 

,
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, , ,
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( , ) ( ) ln
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            [ ( ) ( )]
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∑∑∑ ∑

 (4.37) 

Where ,rs m

t
L  is the Lagrangian multiplier associated with conservation constraint 

(4.17). & is the vector with elements ,{ }rs m

t
L . The set of KKT conditions for the VI 

problem can be expressed as follows, 

 
,

, , ,

,

( )1
( )[ ( ) ln ] 0,     , , ,

( )

rs m

rs m rs m rs mk

k k trs m

f t
f t C t L rs k m t

q tθ
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C t L rs k m t

q tθ
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 , ( ) 0,       , , ,rs m

k
f t rs k m t≥ ∀  (4.40) 

The Lagrangian function requires , ( ) 0rs m

k
f t ≠ , otherwise, it will be meaningless, 

therefore, , ( ) 0rs m

k
f t >  must hold. The KKT conditions can be simplified as follows, 

 
,

, ,

,

( )1
( ) ln 0,      , , ,

( )

rs m
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k trs m

f t
C t L rs k m t

q tθ
+ − = ∀  (4.41) 
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According to the above conditions (4.41), the rout flows of user class m , 

departed at time interval t  between O-D pair ( , )r s  can be deduced as follows, 

 , , , ,( ) ( ) exp( ( )),     , , ,rs m rs m rs m rs m

k t k
f t q t L C t rs k m tθ θ= ⋅ − ∀  (4.42) 

Equations (4.17) and (4.42) lead to 

 , ,1
ln[ exp( ( ))],    , ,rs m rs m

t k
k

L C t rs m tθ
θ

= − − ∀∑  (4.43) 

It can be seen that the Lagrangian multiplier ,rs m

t
L  is the expected minimum 

perceived route travel time cost of user class m for departing at time interval t  

between O-D pair ( , )r s . Substituting (4.43) into (4.42), we can obtain the following 

Logit-based route choice model, 

 
,

, ,

,

'

exp( ( ))
( ) ( ) ,    , , ,

exp( ( ))

rs m

rs m rs m k

k rs m

k
k

C t
f t q t rs k m t

C t

θ

θ

−
= ⋅ ∀

−∑
 (4.44) 

Eq. (4.44) indicates that the motorists of user class m , departed at time interval 

t  between O-D pair ( , )r s  choose their travel route by a Logit model, which is 

consistent with the our SUE condition. 

The DSD algorithm stated in the previous chapter is used to solve the above 

network assignment model. In the column generation phase of the DSD algorithm, at 

least two paths are generated to the restricted master problem set. One is the shortest path 

for the GVs drivers, where the cost is only the travel time cost. The other is the preferred 

path for BEV drivers, where both the electricity-charging cost and the charging time 

penalty cost are considered into the total travel cost of choosing a route. This augmenting 

route is generated based on the following three CSP problems. 

[CSP1] 
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 1

( , ) ( , )

1
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 {0,1},        ( , )uvx u v A= ∀ ∈  (4.49) 
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uv
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= +∑ ∑  (4.50) 

subject to Eq.(4.48) , Eq. (4.49) and, 
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[CSP3] 
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subject to Eq.(4.48) , Eq. (4.49) and 
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There are three CSP problems shown above. In some of the CSP problems, the 

objective functions could be rewrite by eliminating the constant terms (e.g.CSP1 and 

CSP3). After rewrite those objective functions, the three CSP problems are: CSP1 (Eq. 

4.46-4.49), CSP2 (Eq. 4.48-4.51), CSP3 (Eq. 4.53-4.54, 4.48-4.59). These three CSP 

problems are solved separately, and their objective values of the original objective 

function '(, '*, '+ are compared. The solution route with the least objective values 

among 1 2 3{ , , }z z z  is selected and augmented to the restricted master problem set. 

In overall, the above discussed DSD could be used to solve the route choices (i.e. 

the lower-level choice of the hieratical structure). The upper-level choice and the lower-

level choice consisting the VI formulation (4.21) are solved in two sequential phase 

iteratively. The step-by-step procedure is for solving the joint choices problem is 

described in the following: 

Step 0. Initialization. 

Set 1i = , given the demand data, choose an initial O-D travel pattern 

, ( )rs mq t . 

Step 1. DSD algorithm for SUE assignment (refer to the previous chapter for 

more details). 

Step 1.1. Find initial subset of routes, compute the initial route flow. Set 

1j =  

Step 1.2. Restricted master problem phase. Assign , ( )rs mq t  to the subset 

of routes between O-D pair ( , )r s . Obtain the travel time cost , ( )rs m

k
T t , 

and route flows ,rs m

k
f   

Step 1.3. Column generation phase. Find the augmenting paths obtained 

from the shortest path (in terms of travel time) and from solving the CSP1 

~CSP3 problems above. 
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Step 1.4. At convergence, compute the electricity-charging cost ,rs m

k
e , 

charging time penalty cost ,rs m

k
ctp . Compute the charging/parking 

congestion cost, the schedule delay cost, and finally the travel disutility 

, ( )rs m

k
C t . 

Step 2. In accordance to the above travel disutility, calculate the logsum cost ,rs m

t
L  

Update the feasible duration of stay set.  

Step 2.1. Perform the departure time and duration of stay choice according 

to the Logit choice model, get the auxiliary O-D travel pattern , ( )' ( )rs m iq t .  

Step 2.2. Update the O-D travel demand using MSA 

, ( 1) , ( ) , ( ) , ( )1
( ) ( ) [ ' ( ) ( )]rs m i rs m i rs m i rs m iq t q t q t q t

i

+ = + −  

Step 3. Convergence check. If the equilibrium condition for the joint 

choice of departure time and duration of stay is reached, then terminate and output 

the solution; otherwise, set 1i i= + , and go to Step 1. 

The proposed algorithm to the solution of the VI problem consists of two 

sequential phases. Although the convergence of proposed algorithm has not been 

rigorously investigated, the numerical experiments next section show that this algorithm 

is able to obtain a satisfactory solution.  

4.5 NUMERICAL EXPERIMENTS 

This section first describes the test network used in the numerical experiments in 

section 4.5.1. The solution quality is checked in terms of convergence and feasibility in 

section 4.5.2. Finally, the analysis of the impacts of different BEV ranges and different 

BEV penetration rates in the test network are presented in section 4.5.3 and 4.5.4 

respectively. 
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4.5.1, test network 

The numerical experiments are conducted on the following network to examine 

the convergence pattern, the impact of BEV ranges, and the impact of the BEVs 

penetration rates. The network is shown in Figure 4-5. 

 

 

Figure 4-5: Test Network 

In this test network, there are two O-D pairs (1,12)  and (5,13) , 13 nodes, and 

24 road links. The dummy links between node 12 and 1s , and between node 13 and 2s  
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represent the charging links, where BEVs get recharging for electricity. In this numerical 

test, one charging station is considered associated with each destination. The parameters 

of all the link travel time functions are given in Appendix B, Table B-1.  

The free-flow charging access time 0,m

s
z  is 0.1h for both charging locations at 

destination 1s  and 2s  . The charging capacities at both destinations are set to be 80% 

of the total BEVs that are traveling to that destination.  

Both the GVs and BEVs are considered in this numerical test, therefore, it is a 

mixed flow environment. There are a total demand of 10,000 vehicles (including both 

BEVs and GVs) between O-D pair (1,12)  and a total demand of 7,000 vehicles between 

O-D pair (5,13) .  

As stated in the previous sections, the GVs drivers do not encounter the 

electricity-charging cost or the charging time penalty cost or the charging 

waiting/congestion cost. Instead GVs drivers encounter operating cost. This operating 

cost in the numerical example is considered as the fuel cost. The per unit distance 

operating cost for GV drivers is set as of 0.2g =  units and the operating cost for GV 

drivers is a function of the path length, i.e., ,

,

rs GV

a a k
a

g d δ∑ . The weighting parameter of 

GV drivers for the operating cost is represented using 
6

GVα . The travel time-equivalent 

electricity-charging cost at home is set as 0.05
h
e = , and the travel time-equivalent 

electricity-charging cost at both two destinations are assumed to be 0.15
s
e = , the 

access fee for charging is set to be 
0

1e = . The coefficient for electricity-charging speed 

is set to be 0.03σ = . 

The study period runs from 6:00 am to 7:00 pm and it is assumed that all travelers 

finished their journey within this study period. The whole period is divided into hourly 

intervals, and there are 13 intervals in total. Both GV drivers and BEV drivers are further 
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categorized into classes according to different durations of stay, which last for 1 hour, 2 

hours, or 3hours. Two types of trips are considered, namely, type A and type B. For all 

motorists between O-D pair (1,12) , type A trip is considered. For all motorists between 

O-D pair (5,13) , type B trip is considered. The perception coefficient θ  and β  are 

assumed to be the same for motorists between the same O-D pair for the same type of trip 

purpose. The perception coefficient for all motorists between O-D pair (1,12)  for trip 

purpose A is 
1
θ  and 

1
β . The perception coefficient for all motorists between O-D pair 

(5,13)  for trip purpose B is 
2
θ  and 

2
β .The number of classes in the example is twelve 

(2 vehicle types × 3 duration of stay × 2 types of trip purpose=12). The scheduled 

arrival time window for motorists of trip purpose A between O-D pair (1,12) is 
1, 1,

(1,12) (1,12)
[ , ]lb ubt t  and the parameters used for the schedule delay cost function are 1 1,

e l
λ λ . The 

scheduled arrival time window for motorists of trip purpose B between O-D pair (5,13) is 
2, 2,

(5,13) (5,13)
[ , ]lb ubt t  and the parameters used for the schedule delay cost function are 2 2,

e l
λ λ . 

Weight parameter values of different cost components for GVs and BEVs in the total cost 

functions are shown in Table 4-2. The parameters used for all classes are summarized in 

Appendix B, TableB-2. 

4.5.2, solution quality and convergence analysis 

First of all, the solution quality is checked on the tested network (Fig. 4.5). A 

relative gap value is defined to measure the effectiveness of the solutions, which 

measures how close is the output approaching the equilibrium conditions.  

4.5.2.1 Measurement values 

The solution effectiveness is measured as the absolute difference between the 

number of assigned path flows and the probabilistic path flows. That is the gap value 
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between the solution and the equilibrium condition. For the SUE traffic assignment, the 

measured gap value, 
1

G  is defined as follows, 

 
,
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 (4.55) 

If the value 
1

G  is zero for every path flow, the solution obtained satisfies the 

SUE conditions (Eq. 4.30). We use the following the total of all relative gap values to 

measure the closeness of solution results to the equilibrium conditions 
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 (4.56) 

For the departure time and duration of stay choice, the absolute difference 

between the solution demand trip rates and the expected trip rates, 
2

G  is defined as 

follows, 
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| ( ) |
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 (4.57) 

If the above value is zero for all feasible departure time and duration of stay 

choice combination, the solution obtained satisfies the Logit choice conditions (Eq. 4.34). 

We use the following the total of all relative gap values to measure the departure time and 

duration of stay choice solution qualities. 
,

, , ,

,

( , )

2 ,

exp( )
| ( ) |

exp( )

( )

rs m

rs m rs b j t

rs m
rs m t t

t l
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L
q t q

L
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q t
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−
−

−
=

∑∑∑ ∑

∑∑∑
 (4.58) 
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Both of the total relative gap values 
1

M  and 
2

M  provide a clue of the solution 

quality. At termination, we obtain both 
1

M  and 
2

M   value at around 5 310 ~ 10− −  for 

all the numerical tests. 

4.5.2.2 Convergence to the equilibrium conditions 

The convergence pattern of the solution is presented in this section. The 

convergence criterion is defined by the total relative gap value ,( for the inner loop of 

SUE traffic assignment and by the total relative gap value ,* for the outer loop of 

departure time and duration of stay choice.  

As the algorithm presented, the joint choices are given by the NL model. 

Therefore, the Logit-based equilibrium for all joint choice is always satisfied.  

Figures4-6 and 4-7 show the convergence patterns of the inner loop for SUE 

traffic assignment and outer loop for trip demands in the example network. The unit of 

the M-value is the number of vehicles. It can be seen that the algorithm achieve good 

convergence patterns for both level of choices.  
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Figure 4-6: Convergence Pattern for the Stochastic User Equilibrium 

 

Figure 4-7: Convergence Pattern for The O-D Trip Rates 
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4.5.2.3 Solution quality 

Since there are two O-D pairs in the test network, one shortest path is found 

between each O-D pair. Between these two shortest paths, we name the longer one as 

longer shortest path. It is found that the longer shortest path is 68 miles in the example 

network. For the numerical experiments in this section, we set the BEV effective range at 

1.5 times the longer shortest path length, which is 102 miles. This ensures that all O-D 

pairs can be reached by BEV drivers. The BEV penetration rate is set at 30%, which 

means there are 3,000 BEVs between O-D pair (1,12)  and 2,100 BEVs between O-D 

pair (5,13) . While there are 7,000 GVs between O-D pair (1,12)  and 4,900 GVs 

between O-D pair (5.13) . 

The departure demands of BEV drivers for each O-D pair, for each time slice 

departure and duration of stay are shown in the following Table 4-1. The BEV effective 

vehicle range is 102 miles, while the length of the shortest path between O-D pair (5,13) 

is 68 miles, which means all BEVs drivers between this O-D pair needs to charge their 

vehicles at the destination 2s . The charging speed parameter � is again assumed to be 

0.03, which means the recharging of BEVs between this O-D needs at least 
68 × 2 −

102� × 0.03 = 1.02 hrs. Therefore, as shown in Table 4-1, between O-D pair (5,13), 

there is no demand at any time slices for staying at destination for one hour or less for all 

BEV drivers. The demands for   =1h,   =2h, and   =3h between O-D pair (1,12) for 

BEVs are 872.3496 , 1039.567, and 1088.0826 respectively. The demands for   =1h,   

=2h, and   =3h between O-D pair (5,13) for BEVs are 0, 1027.9349, and 1072.065 

respectively. This indicates that BEV drivers tend to stay longer at the destination. The 

reason for this might be one or more of the following facts: (1) the BEVs drivers needs to 

wait until the necessary electricity-recharging finished; (2) the BEVs drivers needs to 
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wait for an unoccupied charging infrastructure, where the congestion in charging stations 

exists.  

Figure 4-8 presents the solution trip demands at different time of day with 2-hour 

duration of stay for BEV drivers and GV drivers. Both Table 4-1 and Figure 4-8 suggest 

that most of the motorists between O-D pair (1,12), both BEVs and GVs drivers, depart at 

the intervals between 9:00am~2:00pm, which is reasonable since all motorists try to 

reach their destination within the time window to reduce their schedule delay costs. Most 

of the motorists between O-D pair (5,13) depart between 6:00am~10:00 am to satisfy 

their expected time window. Overall, the trip demands at each departure time interval and 

each duration of stay obtained from the developed model consistent with expectations 

relative to the joint choices.  
  



 113 

 

Duration of stay l =1hour  l =2 hours  l =3 hours  

Departure Time (1,12) (5,13) (1,12) (5,13) (1,12) (5,13) 

6:00 ~ 7:00 21.68 0.00 22.75 176.07 23.09 181.89 

7:00 ~ 8:00 38.09 0.00 39.96 275.51 40.56 284.05 

8:00 ~ 9:00 69.63 0.00 72.76 294.10 73.77 309.37 

9:00 ~ 10:00 121.40 0.00 126.91 193.76 128.69 204.71 

10:00 ~ 11:00 129.57 0.00 144.85 63.21 149.57 65.76 

11:00 ~ 12:00 145.58 0.00 184.83 18.08 196.01 18.81 

12:00 ~ 13:00 139.61 0.00 184.71 5.16 197.85 5.36 

13:00 ~ 14:00 125.71 0.00 173.98 1.46 187.87 1.52 

14:00 ~ 15:00 62.03 0.00 68.71 0.41 70.79 0.43 

15:00 ~ 16:00 15.52 0.00 16.46 0.12 16.77 0.12 

16:00 ~ 17:00 2.90 0.00 3.07 0.03 3.13 0.03 

17:00 ~ 18:00 0.54 0.00 0.57 0.01 0.00 0.00 

18:00 ~ 19:00 0.10 0.00 0.00 0.00 0.00 0.00 

Table 4-1 Departure Rate for BEVs 
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Figure 4-8: Trip Demands for 2-Hour Stay at Different Time of Day 

The following Figure 4-9 and 4-10 presents the total number of accumulative 

arrivals, departures and accumulation of BEVs that recharging at charging locations at 

different time of the day. The accumulation for charging is the vertical distance between 

the cumulative arrival and cumulative departure curves. The capacity of the charging 

location at destination node 12 is 2400 and is 1680 at destination node 13. The maximum 

recharging flow at destination 12 is 590.3221 and is 1627.611 at destination 13. The 

number of BEV recharging flows is related to link length and the utilized paths’ length 

between each O-D pair. Thus, although the BEV trip demand between O-D (1,12) is 

higher than that of O-D (5,13), the total number of recharging flows between (1,12) is 

much less than that between (5.13). The charging facility started to be occupied at around 

12:00pm and the peak occupied time is at around 3:00pm at destination 12; while the 
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peak occupation at charging facility at destination 13 is between 9:00am~1:00pm. The 

behavior of the arrivals, departures and charging is consistent with our expectations in 

terms of time of the day and duration of stay.  

 

  

Figure 4-9: Charging Facility Arrival, Departure, and Accumulation at 12 
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Figure 4-10: Charging Facility Arrival, Departure, and Accumulation at 13 

The above results of the combined demand of departure time and duration of stay, 

as well as the behavior of accumulative arrivals, departures and charging curves at the 

charging facility verifies that the proposed model can indeed generate a network 

equilibrium solution of the joint choices. 

4.5.3, impacts of the vehicle range 

With the development of battery technologies, we might expect that the BEV 

batteries could hold more electricity. This will result in larger effective range of the 

BEVs. In this numerical test, the BEVs are set to have various effective ranges, which are 

used to study the impacts of improving BEV battery technologies.  

Recall the definition of the longer shortest path in the previous section, which is 

the longest path among all the shortest paths between all O-D pairs. The BEV efficient 
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range is set 0 times the longest shortest path, where 0 increases from 1.2 to 2.3. The 

BEVs penetration rate in this numerical test is fixed at 30% between each O-D pair. 

4.5.3.1 Trip demand for different durations of stay 

Following table 4-2 gives the BEV trip demands for the durations of stay with 

different effective ranges. The effective ranges of BEVs (shown in the second column of 

the table) are set from 81.6 miles to 156.4 miles. The 3rd~6th columns show the total trip 

demands of BEV travelers between each O-D pair for 1-hour, 2-hour, and 3-hour 

durations of stay respectively.  

Noted that, at the tested charging speed 0.03σ = , the BEVs trip demands 

between O-D (5,13) departing at any time for 1-hour duration of stay are zeros when 

BEV effective range is below 102 miles. The BEV trip demands between O-D (5,13) for 

1-hour duration of stay increase when the BEV effective range is improved (above 108.8 

miles). In addition, it can be observed from the table that the number of BEV drivers 

staying at destinations for 3 hours decreases with increasing BEV ranges; and the number 

of BEV drivers staying at destinations for 1 hour increases with increasing BEV ranges. 

The number of BEV drivers staying at destination for 2 hours increases first and then 

decreases with increasing BEV ranges. This indicates that when the BEV range is limited 

to a low value, BEV trips distributed diversely over different durations of stay (1h, 2h, 

3h) since the duration of stay are restricted by the range; while when the BEV range is 

large enough, BEV trips distributed more evenly over different durations of stay. These 

intuitive results indicate that the model’s fidelity for capturing the duration of stay 

feasibility and the duration of stay choice for BEV drivers. 
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Duration of stay l =1 hour  l =2 hours  l =3 hours  
ρ   Range (1,12) (5,13) (1,12) (5,13) (1,12) (5,13) 

1.2 81.6 875.07 0.00 989.38 1018.77 1135.55 1081.23 

1.3 88.4 872.25 0.00 1014.43 1022.76 1113.31 1077.24 

1.4 95.2 872.35 0.00 1039.57 1027.93 1088.08 1072.07 

1.5 102.0 874.82 0.00 1044.46 1034.60 1080.72 1065.40 

1.6 108.8 882.54 673.19 1050.21 708.69 1067.25 718.13 

1.7 115.6 899.55 672.94 1050.48 713.53 1049.96 713.53 

1.8 122.4 932.42 676.48 1034.04 711.76 1033.54 711.76 

1.9 129.2 962.21 681.09 1019.13 709.46 1018.65 709.45 

2.0 136.0 972.57 687.54 1013.95 706.23 1013.48 706.23 

2.1 142.8 988.29 694.81 1006.08 702.60 1005.63 702.59 

2.2 149.6 1000.20 700.00 1000.12 700.00 999.68 700.00 

2.3 156.4 1000.20 700.00 1000.12 700.00 999.68 700.00 

Table 4-2 Total Demands of BEVs for Different Durations of Stay and Vehicle Ranges 

Figures 4-11 depicts the above trip demand rates with different BEVs ranges 

between O-D (1,12). It can be observed from the figure that when the BEV range is less 

than 102 miles, the demands for 1-hour stay is almost stable and very low; while the 

demand for 2-hour stay increases and demand for 3-hour stay decreases. This suggests 

that with the BEV range increase (but still below 102 miles), BEV drivers switch from 3-

hour stay to 2-hour stay. It can also be observed that when the BEV range continuous 

increases (but still below 115.6 miles), both the 1-hour and 2-hour stay demands increase 

while the 3-hour stay demand decreases. After the BEV range increases beyond 115.6 

miles, both the 2-hour and 3-hour stay demand decreases while the 1-hour stay demand 

continues increasing. These indicates that the BEV drivers switch from 2-hour and 3-hour 

stay to 1-hour stay. From this figure, the effective range “points” for switching duration 

of stay could be observed at 102 and 115.6. The model is capable to capture the turning 

point of the switching behaviors.  
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Second, it can be observed from the figure that if the BEV range is not limited, 

the demand of BEV drivers for each duration of stay is evenly divided. This is due to the 

travel cost functions defined in the model. In the defined cost function, if there is no 

range limitation, none of the cost components a function of the duration of stay. We can 

expect that when there is a cost component settled as a function of the duration of stay 

(for example the vehicles are charged for the duration of parking), the number of 

travelers for different duration of stay will not be equal any more. 

 

Figure 4-11: Total BEVs Trip Demands Between (1,12) for Different Duration of Stay 

4.5.3.2 Impact on road networks 

Table 4-3 summarizes the total system performance with different BEV effective 

ranges, including total system travel time cost (TSTT), total vehicle miles traveled 

(TVMT), total system charging cost (TTCC), and total system charging time (TTCT). 
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The table shows that both TTST and TTCC decrease with the BEV range increase. This 

is intuitive because with the BEV range increase, the BEV drivers are less restricted by 

the length they can traverse. Therefore, the BEV drivers can pursue faster routes in terms 

of travel time. The increase of BEV ranges will either reduce the number of recharging 

BEVs at destinations or reduce the amount of recharging electricity for BEVs at 

destinations. Consequently, the total charging costs for the BEV drivers decrease. 

Moreover, the TVMT increases with the increase of BEV range. This is due to the fact 

that BEV drivers might be able to pursuing faster but longer routes. The total charging 

time penalty for all BEV drivers decreases to zero after the BEV range increase to and 

beyond 108.8 miles. That is because the charge time needed for all BEV drivers at 

destination is less than 1 hour.  

 

Ranges TSTT TVMT TTCC TTCT 

81.6 29366.8 999537 5655.46 584.028 

88.4 29083 1002897 5299.94 392.453 

95.2 28785.2 1006548 4938.18 203.337 

102 28524.7 1009967 4569.87 17.9211 

108.8 28336 1012476 4364.73 0.00 

115.6 28034.2 1016517 4000.46 0.00 

122.4 27776.4 1019850 3673.19 0.00 

129.2 27529.9 1023148 3344 0.00 

136 27336.9 1025921 3163.32 0.00 

142.8 27098 1029382 2894.19 0.00 

149.6 26834.2 1033038 2818.39 0.00 

156.4 26598 1035958 2759.14 0.00 

Table 4-3 System Performance 
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# Path Free Flow Travel Time Cost Length 

1 1-5-14-20 0.85 90 

2 2-7-16-22 0.9 40 

3 3-8-17-23 0.85 80 

4 10-4-6-9 0.8 90 

5 11-13-15-18 0.8 70 

6 12-19-21-24 0.9 68 

Table 4-4 Selected Paths Attributes 

Six paths are selected for investigating the path flows results. These paths 

between each O-D pair, these paths are summarized in the above table 4-4. The free flow 

travel time and the path lengths are shown in column 3~4. The second column is the 

associated links for each path. The path flow results for BEVs and GVs are shown in 

Appendix B, Table B-3 and B-4 respectively.  

Figure 4-12 depicts the selected BEV path flows changes with increased BEV 

ranges. Figure 4-13 depicts that for GV path flows. The three selected paths between O-D 

pair (1,12) are shown. The BEV path flows on path #1 and path #3 increase while that on 

path #2 decrease. This is because the travel time on path #2 is greater than those on the 

other two paths. The GV path flows follow an opposite behavior. This indicates that the 

BEV ranges not only affects the BEV drivers’ route choice behavior but also affects the 

GV drivers’ route choice behavior indirectly. Such indirect influence might not be very 

big but it is expected. The GVs drivers’ route choice behavior is affected by two factors: 

the travel time costs and the operating costs. When the BEV drivers switch to path #1 and 

path #3, the travel time cost on these two paths might increase because of congestions. 

Consequently, some GVs drivers might switch to path#2 since it has lowest operating 

costs and since the GVs operating cost is greater than that of the BEVs. 
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Figure 4-12: BEVs Path Flows Changes with Increasing BEV Range 

 

Figure 4-13: GVs Path Flows Changes with Increasing BEV Range 
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4.5.3.3 Impact on charging behavior 

The following two figures, Figure 4-14 depicts the number of accumulative BEV 

arrivals for recharging and accumulative departures from recharging at different time of 

day at destination node 13 with different BEV effective range. Figure 4-15 depicts the 

number of recharging BEVs at different time of day (the complete results are shown in 

Appendix B Table B-5). 

It can be observed from Figure 4-14 that when the BEV range is improved the 

BEV drivers are able to leave the charging stations earlier. This can be seen when the 

range is improved from 81.6 miles to 108.8 miles: while the accumulative arrivals do not 

change very much, the accumulative departure curve switches towards the left. This 

indicates that the charging time is shortened in general. Also, the peak recharging 

demands drops from around 1,630 vehicles to 1,404 vehicles when the BEV range 

increase from 81.6 miles to 108.8 miles (Fig. 4-15). 

In addition, the total demand of recharging BEVs drops when the BEV range 

increases, which is intuitive. This can be seen from both Figure 4-14 and 4-15. For 

instance, once the BEV effective range reaches 136 miles, the total demand for 

recharging drops from around 2,100 vehicles to around 1,200 vehicles, comparing to the 

range of 108.8 miles (Figure 4-14).  
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Figure 4-14: Charging Demand at Different Time of Day with Different BEV Ranges 

 

Figure 4-15: Charging Demand at Different Time of Day with Different BEV Ranges 
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4.5.4, impacts of penetration rate 

The portion of BEVs on the road network affects the importance of studying the 

BEVs users’ behavior. If there is only a small portion of BEVs on the road, it is expect 

that current road network conditions and trips rates at different time of day remains. 

However, if the portion of BEVs on the road is relatively large, studying the BEVs users’ 

behavior adds value to the research. 

The future BEV penetration rate is influenced by the market conditions, the 

improvement of BEV technologies, and the policy incentives, thus it is uncertain. 

Therefore, it is necessary to study different scenarios with different penetration rates. In 

the numerical example, scenarios with the BEV penetration rates ranging from 5% to 

100% of the total vehicles on the road are studied. The scenarios with BEV sharing more 

than 30% of the market are quite ambitious and unlikely. However, the purpose of these 

scenarios is to gain a more complete knowledge of the impacts from BEV market share. 

The BEV effective range is fixed at 1.5ρ = , i.e. 102D = . Other parameters remain 

the same (see Appendix, Table B-2).The demands of BEVs and GVs with different BEV 

penetration rate scenarios are shown in the following table 4-5. 

 

O D 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

1 12 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

5 13 350 700 1050 1400 1750 2100 2450 2800 3150 3500 

O D 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

1 12 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 

5 13 3850 4200 4550 4900 5250 5600 5950 6300 6650 7000 

Table 4-5 Trip Table of BEVs with Different Penetration Rate 

The results of the BEVs and GVs trip demands at different time of day are 

collected (see Appendix B, Table B-6~Table B-9). We note that, in the test results, the 
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different penetration rates of BEVs have minor impacts on the departure time of travelers. 

However, this might subject to change when the charging facility capacity is limited at 

the destination. In this example, the charging facility capacity is quite large, and neither 

of the two charging locations is fully occupied at any time. Therefore, the charging 

locations are not congested, which have minor impacts on the departure time choice of 

BEVs drivers. Actually, the BEV drivers and GV drivers between the same O-D pair, for 

the same purpose of travel, with the same arrival time window, may depart from the 

origins at different time intervals to avoid the congestion at charging if the charging 

facility capacity is very limited.  

Figure 4-16 depicts the TSTT and TVMT with different BEV penetration rates. It 

can be observed that the total length traveled by all motorists increases with more BEVs 

on the road network. But the increase is not significant. This might because the per unit 

distance operating cost (fuel costs) for GV drivers is greater than that for BEV drivers. 

Therefore, BEV drivers can choose longer path; however, this subject to the BEV range 

as well. In addition, the TSTT decreases with the increase of BEV penetration rates at 

first and then increases. The decrease is in TSTT is expected, as explained above, since 

BEV drivers have smaller operating cost (which is the charging cost here) than GV 

drivers that they can choose routes with longer length but shorter travel time. The 

increase of TSTT after the BEV penetration rates is greater than 80% might due to the 

congestions on those utilized routes by BEV drivers. These results are consistent of that 

presented in section 3.5.2. The TSTT and TVMT results are displayed in Appendix B, 

Table B-10~Table B-11 respectively. 
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Figure 4-16: TSTT and TVMT with Different BEV Penetration Rates 

4.6 SUMMARY 

New opportunities exist for studying the traveling behaviors of motorists and for 

investigating the impacts from introducing BEVs on to the road networks. Tractable 

modeling techniques are critical for developing realistic and effective travel behaviors 

models. The model formulation and solution approach presented in this paper provide a 

means for accounting for BEV drivers’ behavior in the time-dependent, multi-class, 

combined travel choices network equilibrium. Special consideration of BEV drivers 

including the recharging cost and electricity charging time are included in the model. The 

problem is formulated as a variational inequality model where the joint choices are 

proved to follow the NL structure.  
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The main contribution of this work is in formulating the joint travel choices 

behavior of BEV drivers and in formulating a multi-class time-dependent joint choices 

model for mixed traffic flows, including both BEVs and GVs. Further, the formulation 

was solved using a decomposition technique where the two-level travel choices are 

solved iteratively.  

The subsequent numerical analysis shows the demand matrix at different time of 

the day and the recharging flows at destinations’ charging locations. The results suggest 

that most of the motorists depart according to their time window. It was found that the 

duration of the stay choice for BEV drivers at destination is restricted by the vehicle 

range and the charging speed. The numerical solution result verifies that the proposed 

model can indeed generate a time-dependent network equilibrium solution. In addition, 

the numerical experiments aim to show the effects of various BEV effective ranges and 

different BEV penetration scenarios. The proposed modeling approach can be used to 

reveal and study the complex temporal and spatial interactions between BEV traffic 

pattern and BEV effective range, between BEV traffic pattern and BEV penetration rates, 

and between BEV and GV traffic pattern.  
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Chapter 5: Charging Facility Capacity and Pricing Design 

5.1, INTRODUCTION 

In response to the employing of PEVs, charging infrastructure is required for 

serving existing PEVs and for boosting the penetration rate for future PEVs. In general, 

the pricing is one of the most efficient ways to manage travel demand (Verhoef et al. 

1995). In the sense of managing travel demand, the supply and pricing of electricity-

charging infrastructure might be similar to that of the parking supply and pricing, (see 

(Garcia and Marín 2002; Li et al. 2007) for examples). Particularly, the pricing of the 

electricity-charging at destination together with the infrastructure supply may influence 

the PEV drivers' choice of routes, duration of stay and departure time. In addition, 

policies on charging supply and pricing might potentially impact the total transportation 

system performance and the market share of PEVs.  

The equilibrium model built in the previous chapter is able to answer the 

questions of route choice, departure time choice and duration of stay at destination choice 

with given electricity-charging pricing and charging infrastructure supply. Based on the 

drivers’ responses to the charging pricing and the supply, this chapter builds a model to 

determine the optimal pricing and supply with application in revenue management. The 

decisions to be made are the charging infrastructure supply and the time-dependent 

pricing within a day. The model proposed is situated in tactical planning and this type of 

optimization belongs to the well-known continuous network design problem (CNDP). 

This chapter of the dissertation proposes a model to assist the planner in deciding 

the optimal charging infrastructure supply and pricing of the electricity-charging to 

optimize the revenue. The mathematical formulation in the form of mathematical 

program with equilibrium constraints (MPEC) is developed in this chapter. A solution 

approach based on the sensitivity analysis method is proposed. At the end, computational 
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results on two test networks are presented to demonstrate the application of the proposed 

solution approach.  

The chapter is structured as follows: section 5.2 reviews some of the existing 

work on sensitivity analysis and its application in solving optimization problems. Section 

5.3 proposed the MPEC model and section 5.4 present the sensitivity analysis based 

approach for solving the proposed MPEC model. Section 5.5 briefly states the genetic 

algorithm (GA) which could alternatively solve the proposed model. The results from the 

sensitivity analysis based (SAB) method and from GA are compared. The last section 

presents illustration examples. 

5.2, SENSITIVITY ANALYSIS IN TRAFFIC ASSIGNMENT 

Sensitivity analysis in traffic network equilibrium problems is typically concerned 

with the implicit relationship between the solution of the equilibrium flows and the 

changes in the input to the problem.  

A variety of problem formulation techniques have been used for the purpose of 

sensitivity analysis. A well-known method for sensitivity analysis was developed by 

(Tobin and Friesz 1988) for the Wardrop equilibrium modeling of traffic networks. 

Sensitivity analysis of the Wardrop equilibrium model based on Tobin and Friesz’s work 

has been extended to a number of generalizations. Yang (1997) developed and applied 

the sensitivity analysis for DUE model with elastic travel demand for solving congestion 

pricing and network design problems. Other extensions for such sensitivity analysis 

method including a DUE with steady state queuing (H. Yang 1995) and with randomly 

distributed values of time (Leurent 1998). Overall, existing work in the literature on 

traffic assignment sensitivity analysis derives almost exclusively from applications and 

extensions of Tobin and Friesz’s results (Cho et al. 2001; Patriksson and Rockafellar 
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2003); However, such DUE-style model receives many critics in the sense of non-

uniqueness of DUE path flows, which poses difficulty. Later Tobin and Friesz 

demonstrated a restricted formulation of the DUE problem to overcome this difficulty, 

but additional conditions need to be hold in the restricted formulation. In addition, some 

methods of sensitivity analysis for general variational inequality problems were also 

developed and applied to the DUE model on traffic networks (S. Dafermos 1988; 

kyparisis 1987; Noor 2009; Qiu and Magnanti 1989). 

Since the SUE models are known to give rise to unique path flows under mild 

conditions (Sheffi 1985). Bell and Iida (1997) studied the logit-based SUE assignment 

model, and showed the derivatives of sensitivity expressions. (Davis 1994) proposed an 

exact computational algorithms for sensitivity analysis of the logit SUE model and 

applied to network design problem for finding local optimal. Other efficient algorithms 

based on sensitivity analysis of Logit SUE model were developed later for traffic 

networks with fixed and elastic travel demands (Gentile and Papola 2001; H. Huang, J et 

al. 2001; Ying and Miyagi 2001; Ying et al. 2001). (Ying and Yang 2005) presented a 

computational method for sensitivity analysis for SUE with both auto and physically 

separate transit network. The algorithm was applied to the optimal pricing problem in a 

combined mode network.  

(Clark and Watling 2002) provided a formulation of sensitivity analysis method 

deal with Probit SUE models and later showed a variety of applications including the 

network design problems (Clark and Watling 2006). (Connors et al. 2007) derived the 

sensitivity expression for a formulation of multiple user class, variable demand Probit 

SUE and applied it on a network design problem. The Probit SUE network design 

problem they presented was solved using a gradient-based approach utilizing the 

sensitivity expressions derived. 



 132 

Besides the sensitivity analysis of traffic assignment models, (C. Yang and Chen 

2009) presented the sensitivity analysis method for combined travel demand models 

formulated as a non-linear programming problem based on Oppenheim's work 

(Oppenheim 1995). In addition, some applications such as Paradox analysis, access 

control, destination choice analysis and error analysis were presented in their work. 

(Abou Zeid and Chabin 2003) derived the sensitivity expression of equilibrium flows to 

congestion pricing in a dynamic traffic networks with combined choices of routes and 

departure time. 

5.3, NETWORK DESIGN MODEL FORMULATION 

The charging facility design problem herein is to determine the capacity and 

pricing strategy. The problem is formulated by using MPEC, where at upper-level, the 

revenue of the charging facility is maximized and at the lower-level the motorists react to 

the charging capacity and pricing. At the lower-level, the motorists take decisions 

following their own criteria and in the end a time-dependent equilibrium condition is 

reached. 

This model assumes that the location of charging facilities and topological design 

of the road network are known and fixed. In addition to the notations in Chapter 3 and 

Chapter 4, we have the following notations: 

s   destination index;  

also represent the charging facility link at that destination  

k
ɶ

 route index, where the charging facility link s is contained in the 

route, i.e. s k∈ ɶ , ,s k∀ ɶ , �k K K∈ ⊆ɶ  

,k y  route index of all routes, , ,k y K∈  

s
ρ  cost of per unit capacity at destination s  
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ϕ  scaling factors converting the cost (management and financing 

costs) of charging capacity to travel time units 

()
s
E ⋅  a function of charging capacity at destination s , cost function of 

managing and financing the charging infrastructure at destination 

s  
. ( )rs m

k
e t  charging cost for PEV travelers using route k between O-D pair 

( , )r s  for user class m ,arriving at charging facility at time t  

, , ( , , )rs b jP k t l  the joint probability of choosing departure time and duration of 

stay alternative ( , )t l  and the path k  for traveling between O-D 

pair ( , )r s  using type b vehicles and for the purpose of travel j  

Recall that the disutility (measured in time unit) for user class m departing at 

time interval t  and though route k  between O-D pair ( , )r s is a summation of the cost 

components:  

1) on board cost (travel time cost on route) , ( )rs m

k
T t ; 

2) charging waiting/congestion cost , ,( ( ))rs m rs m

s k
z t T t+ ; 

3) charging cost . ,( ( ))rs m rs m

k k
e t T t+ ; 

4) charging time cost ,rs m

k
ctp ; 

5) the schedule delay cost , , , ,( ( ) ( ( )))rs m rs m rs m rs m

k s k
SD t T t z t T t+ + +  

In this chapter, the electricity-charging cost , ( )rs m

k
e t  is time dependent and it is 

defined as follows: 

 
, ,

,

, ,

                          
2( )

1
[ ( ) (2 ) ],  

2 2

rs rs

h a a k a a k
rs m a a
k

rs rs

s a a k h a a k
a a

D
e d d

e t
D

e t d D e D d D

δ δ

δ δ

 ≤=  ⋅ − + < ≤

∑ ∑

∑ ∑
 (5.1) 
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The measured travel disutility, , ( )rs m

k
C t , is formulated as the summation of the 

above cost components: 

 

, , , ,

1 2

. , , ,

3

, , , , ,

4 5

( ) ( ) ( ( ))

            ( ( ) ( ( )))

            ( ( ) ( ( )))

rs m m rs m m rs m rs m

k k s k

m rs m rs m rs m rs m

k k s k

m rs m m rs m rs m rs m rs m

k k s k

C t T t z t T t

e t T t z t T t

ctp SD t T t z t T t

α α

α

α α

= + +

+ + + +

+ + + + +

 (5.2) 

5.3.1, the lower level problem  

The lower level problem in the network design problem is the problem stated in 

the previous chapter, but with time-dependent electricity-charging costs. The equivalent 

VI formulation to the hierarchical choice structure for motorists was presented in Chapter 

4 (E.q. 4.21). The feasible set Ω , of all the constraints that are associated with the joint 

travel choice was defined by equations (4.17)-(4.20). 

5.3.2, the upper level optimization problem  

The objective of the upper-level problem in this research is to optimize the 

revenue of the electricity-charging facility. This revenue is defined as the difference 

between charging facility incomes and costs, where the income is generated from the 

electricity-charging by PEV drivers, and the cost is from the investment of building the 

charging facility (financing cost) and the management cost.  

Both the income and the cost are considered on a daily basis. Let the income be 

noted as I  in the daily period, raised by electricity-charging. Let the cost (E ) be the 

sum of the daily management cost and the daily financing cost of the charging facility, 

which is a function of the charging facility capacity.  

The income from electricity-charging is the summation of all the electricity that 

all PEVs recharged at the charging facilities, and can be mathematically represented as 

follows, 
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 , ,

,
( ( )) (2 ) ( )rs m rs rs m

s ak a k k
rs m t ak

I e t t d D f tδ= ⋅ − ⋅∑∑∑∑ ∑ɶ ɶ ɶ

ɶ

 (5.3) 

where k
ɶ

 is the route which contains the charging facility link at destination s ;
, ( )rs m

k
t tɶ  is the arrival time at charging facility using the route k

ɶ
between O-D pair ( , )r s  

by user class m when departing from origin at time interval t . Therefore, 
, ( )rs m

k
t tɶ  

could be calculated as, 

 
, ,( ) ( )rs m rs m

k k
t t t T t= +ɶ ɶ  (5.4) 

Let the cost function ()
s
E ⋅  be a linear function of the charging capacity 

s
C . The 

cost can be calculated as follows, 

 ( )
s s s s

s s

E E C Cρ= =∑ ∑  (5.5) 

The revenue is thus, R I E= − , that is, 

 , ,

,
( ( )) (2 ) ( ) ( )rs m rs rs m

s a s sk a k k
rs m t a sk

R e t t d D f t E Cδ ϕ= ⋅ − ⋅ − ⋅∑∑∑∑ ∑ ∑ɶ ɶ ɶ

ɶ

 (5.6) 

Where ϕ is the scaling factor converting the management cost and financing cost 

to the time unites. In this way, the income and the cost are in the same unit. 

5.3.3, the MPEC problem  

Overall, the upper-level problem together with the lower-level problem 

constitutes the bi-level network design problem. It aims to maximize the revenue while 

subjects to the lower-level equilibrium constraint. The MPEC problem is summarized as 

follows: 

(A) 

 
, ( )

max  
s sC e t

R  (5.7) 

Subject to VI equation (4.21) and constraint (4.17)~(4.20) and, 
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 min max ,        ssC C C≤ ≤ ∀  (5.8) 

 min max( ) ,            se e t e s≤ ≤ ∀  (5.9) 

where the constraint (5.8) is the minimum and maximum capacity restriction 

constraint. Constraint (5.9) is imposed for a proper range of electricity-charging price, 

which can also be regarded as relevant to electric grid power supply. For example, if the 

electricity-charging pricing at a very low point, it may attract too much electricity 

demand at a destination, which might overloads the local transformer. To be in line with 

our assumption, the electricity-charging price at destination needs to be at least equal to 

or higher than the home electricity-charging price. 

5.4, SOLUTION APPROACH 

Solution algorithms for bi-level optimization problems where the traffic 

equilibrium arises as a lower-level problem can be developed by conducting a sensitivity 

analysis (H. Yang 1997). In this dissertation, a sensitivity analysis based solution strategy 

is adapted to search for the local optimum of the MPEC model developed. The sensitivity 

analysis expression is used to find the descent-gradients of the objective function. 

5.4.1, gradient based solution approach  

The upper-level problem, that is, the objective function with the pricing and 

capacity constraints, consists of nonlinear and implicit functions with decision variable 

vectors C  and e , where { , }sC s= ∀C  and { ( ), , }se t s t= ∀e . Let the decisions variable 

vector be ( , )=x C e , the gradient based method uses the iteration: 

 ( 1) ( ) ( )[ ]k k k

X k
P γ+ = +x x g  (5.10) 

where ( )kx is the k th iteration solution, ( )k
g is the gradients of the objective 

function R  (Eq. 5.7) at ( )kx , and 0
k
γ >  is the k th step size. [ ]

X
P y  is the 
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projection of a vector y  on the set X . By the Projection Theorem, the projection of 

any vector y on X exists. When X is closed and convex, the projection is unique 

(Nedich 2006). In the upper-level problem, the constraints are boxes, and the X is a box 

set { | , }
i i

X x a x b i= ≤ ≤ ∀ . The projection on X can be decompose into projections 

per coordinate, and the components of the projection [ ]
X
P x  vector are given by 

 

       if 

[ [ ]]        if 

       if 

i i i

X i i i i i

i i i

a x a

P x x a x b

b x b

 <= ≤ ≤ >

 (5.11) 

Noted that, the objective function R  is continuous over feasible set X , which 

ensures R∂  is nonempty for every x X∈ . As a maximization problem, at each 

iteration of the method, we take a step in the direction of a positive gradient. In order to 

maintain feasibility at each iteration, the step size needs to be limited be the upper level 

problem constraints. 

The gradient of objective function R is a column vector, that is g , and it can be 

calculated directly as follows, 

 
1 2

1 2 1 2 1 2

[ , ,..., ] , ,..., , ,..., , ,...
(1) (1) (2) (2)

T

n

R R R R R R
g g g

e e e e C C

 ∂ ∂ ∂ ∂ ∂ ∂ = =  ∂ ∂ ∂ ∂ ∂ ∂  
g  (5.12) 

where,  
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 (5.13) 

 
,

,

,
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( )(2 ) ( ')
s
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k

rs rs m

s a C sa k k
m akt t T t ts

R
e t d D f t

C
δ ϕρ

+ =

∂
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ɶ ɶ
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 (5.14) 



 138 

where , *( ')rs m

k
f tɶ  is the equilibrium path flows at current solution of vector C  

and e , and this equilibrium solution is a function of vector C  and e , that is 
, * , *( ') ( ')( , )rs m rs m

k k
f t f t= C eɶ ɶ .  

The solution approach solves a local approximation at each iteration. The gradient 

can be obtained on the basis of the derivatives of electricity-charging costs, path flows 

and operating costs with respect to the charging infrastructure supply and electricity-

charging pricing, which is shown in the next section. 

5.4.2, derivatives with respect to C  and e  

In this section, the derivatives of all variables with respect to the charging facility 

capacity supply and electricity-charging pricing are presented. From the electricity-

charging cost function (5.1) and the definition of the operating cost function of the 

charging facility (5.5), it is easy to see that  ( *) 0
s
E∇ =
e
C , and this term is neglected 

in the formulas of (5.14). 

Next, the gradient expressions, , ( )( *, *)rs m

k
f t∇
C

C eɶ , , ( )( *, *)rs m

k
f t∇
e

C eɶ , and 

( *)( *)
s
E∇ −
C
C C C  are derived. The gradients can be obtained by adopting the method 

that was proposed in (Tobin and Friesz 1988; Viti et al. 2003; H. Yang 1995; Zeid 2003). 

The flow on path k
ɶ

 between O-D pair ( , )r s  is a function of the disutilities of 

all choice alternatives of path between O-D pair ( , )r s  and departure time and duration 

of stay alternatives ( , )t l , that is, 

 

,,

,

,
( ', ')

( ')( )
( )

( ')s

rs mrs m

yrs m k

C rs mk
y t l sy

C tf t
f t

CC t

∂∂
∇ = ⋅

∂∂
∑∑ ɶ

ɶ  (5.15) 

The second term of the right hand side of the above equation (5.15) is as follows, 
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, ,
, ( ' ( '))
( ') ,     if  

0                           otherwise.

rs m rs m
rs m s y
y

s
s

z t T t
C t s y

C
C

∂ +∂  ∈=  ∂∂ 

 (5.16) 

The first tem of the right hand side of the above equation (5.15) can be derived as 

follows using our Logit model of route choices and departure time and duration of stay 

choices. 

 

, , , , ,

, , ,

( ) ( ( , , )) ( ( , , ))
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ɶ

ɶ ɶ

 (5.17) 

The parameter rs
q is the total trip rates between O-D pair ( , )r s  and is given and 

fixed. Therefore, it can be taken out of the partial derivatives. In chapter 4, it was shown 

that the probability of choosing alternative ( , )t l  is 
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'
( ', ')

exp( )
( , )

exp( )
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rs b j t
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t
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L
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L

β

β

−
=

−∑
 (5.18) 

And the probability of choosing alternative k  conditional on the choices of 

alternative ( , )t l (Eq. 4.12) is  
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C t
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C t

θ

θ

−
=

−∑
 (5.19) 

Therefore, we get the joint probability of alternative of route, departure time and 

duration of stay ( , , )k t l  as 
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 (5.20) 
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We have shown the way the cost propagated different levels of the Logit model, 

which satisfies Eq. (4.40), that is in Eq. (5.20) the term ,

'
'

exp( ( ))rs m

k
k

C tθ−∑  satisfy the 

following, 

 , ,

'
'

exp( ( )) exp( )rs m rs m

k t
k

C t Lθ θ− = −∑  (5.21) 

Substitute Eq. (5.21) into Eq. (5.20), 
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 (5.22) 

Next, we show the derivations of the term 
, ,

,

( ( , , ))

( ')

rs b j

rs m

y

P k t l

C t

∂

∂

ɶ

 in Eq. (5.17). The 

derivations are developed and conducted based on different cases as discussed in (Zeid 

2003), 

• Case I ,( , ) ( ', ')y k t l t l= =ɶ
, that is,  
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 (5.23) 



 141 

, ,

,

,
, , ,

,
( , )

, 2

( , )

,
, , ,

,

( ( , , ))

( )

( ( ) ) exp(( ) ( )) exp( )
( )

[ exp( )]

exp(( ) ( )) exp( ) ( )
( )

[ exp(

rs b j

rs m

k

rs m

rs m rs m rs mt

t trs m k
t l

k

rs m

t
t l

rs m

rs m rs m rs m t

t t rs mk

k

P k t l

C t

L
L C t L

C t

L

L
L C t L

C t

θ θ β θ β θ β

β

θ β θ β β

∂
=

∂

∂
− + − ⋅ − − ⋅ −

∂

−

∂
− − ⋅ − ⋅ −

−
−

∑

∑

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

, 2

( , )

)]rs m

t
t l

Lβ∑

 (5.24) 

From Eq. (4.40) and (5.19) we have, 
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Substitute (5.24) into Eq. (5.23), we get 
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 (5.26) 

Since, 

 , , , , , ,( , , ) ( / , ) ( , )rs b j rs b j rs b jP k t l P k t l P t l=ɶ ɶ
 (5.27) 

Therefore, 
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• Case II ,( , ) ( ', ')y k t l t l≠ =ɶ
, that is, 
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Substitute Eq. (5.21) and (5.24) to Eq. (5.30), we have 

, ,

,

, , , , , , , , , ,

, , , , , ,

( ( , , ))

( )

( ) ( / , ) ( , , ) ( , , )( ) ( / , ) ( , )

[( ) ( , )] ( / , ) ( , , )

rs b j

rs m

y

rs b j rs b j rs b j rs b j rs b j

rs b j rs b j rs b j

P k t l

C t

P y t l P k t l P k t l P y t l P t l

P t l P y t l P k t l

θ β β

θ β β

∂
=

∂

− − −

= − +

ɶ

ɶ ɶ

ɶ

 (5.31) 

• Case III ,( , ) ( ', ')y k t l t l= ≠ɶ
, that is, 
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Substitute Eq. (5.21) and (5.29) to Eq. (5.33) 
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• Case IV ,( , ) ( ', ')y k t l t l≠ ≠ɶ
, that is, 
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 (5.36) 

Substitute Eq. (5.21) and (5.24) to Eq. (5.36) 
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In summary, we have  
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Substitute (5.38) into Eq. (5.17), 
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(5.16), we can get the gradient expression of , ( )
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The above gradient expression is subject to s y∈ , otherwise, when s y∉ , 

, ( ) 0rs m

C k
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Similarly, we can derive the gradient expression of , ( )rs m

e k
f t∇ ɶ . Again, the flow 

on path k
ɶ

 between O-D pair ( , )r s  is a function of the disutilities of all choice 

alternatives of path between O-D pair ( , )r s  and departure time and duration of stay

( , )t l , that is 
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Where the term 
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travelers of the same class m between the same O-D pair ( , )r s taking the same route k
ɶ

and charging at the destination s could reach the destination’s charging facility at the 

same time ,rs m

k
tɶ  only if they depart from the origin at the same time interval. This 

assumption is intuitively reasonable, thus, we have the following expression, 
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Substitute (5.38) and (5.41) into Eq. (5.40), the gradient expression of , ( )rs m

k
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In other cases , ( ) 0rs m

k
f t∇ =
e ɶ

. 

The last derivative ( *)
s
E∇
C
C  can be simply derived as follows, 

 ( )
s s
C s s C s s s
E C Cρ ρ∇ = ∇ =  (5.43) 

The gradient expressions of the objective functions are shown in Eq. (5.39), (5.42) 

and (5.43). To be expended to detail, the upper-level problem is convex in the feasible 

space of variables C and e . The constraints for the upper-level problem are only box 

constraints Eq. (5.13) and (5.14). This upper-level problem can be solved using the 

gradient based method elaborated in the next section. 
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5.4.3, gradient-based method for the upper-level problem 

Using the sensitivity analysis expressions, the algorithm solves, at each iteration, 

an approximation of the objective function, subject to the box constraint. The step by step 

gradient based algorithm for solving the upper-level problem is as follows: 

Step 0. Initialization. Let (0) X∈x , , set 0k = . 

Step 1. Computing. Terminate if ( )kx  satisfies a stopping criterion 

 Otherwise, compute the gradient g (E.q. 5.12). 

Step 2. Computing. Compute the step size 
k
γ . The step size can be obtained by a 

Polynomial interpolation (e.g. quadratic interpolation) 

Step 3. Updating.  Update the solution 

 ( 1) ( ) ( )[ ]k k k

X k
P γ+ = +x x g  (5.44) 

Step 4. set 1k k= +  and go to Step 1.  

5.4.4, Algorithm for solving the bi-level problem 

The upper-level problem of optimizing the revenue can be solved using the 

gradient based method presented above. The algorithm of solving the lower-level VI 

formulation was given in the previous chapter. Up to this end, the bi-level program can 

be solved as follows, where the step-by-step procedure of the solution algorithm is 

described, and the flowchart of the algorithm is given in Fig. (5.1). 

Step 1 Initialize the charging infrastructure capacity at each destination 

( ) { }k k

s
C=C and the charging pricing at each charging infrastructure and time interval 

( ) { ( )}k k

s
e t=e . Set 0.k =  

Step 2 Solve the lower-level time-dependent stochastic network equilibrium 

problem for the above given ( )kC and ( )ke using the decomposition algorithm developed 

in the previous chapter, obtained the equilibrium solutions f and q . 
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Step 3 Calculate the derivative as shown in section (5.4.2), find the gradient 

expressions, , ( )( *, *)rs m

C k
f t∇ C eɶ , , ( )( *, *)rs m

e k
f t∇ C eɶ , and ( *)( *)

C s
E∇ −C C C  

Step 4 Use the above derivatives to get the gradient of the objective function. 

Solve the upper-level problem use the gradient based method (section 5.4.3). Obtain the 

updated charging infrastructure capacity at each destination ( )kC and the charging pricing 

at each time interval ( )ke . 

Step 5 Check the stop criterion, if satisfied, then stop and get the output. 

Otherwise, set 1k k= + and go to Step 2.  



 148 

( ) ( ){ ( ), }k k

s s
e t C

,

,

( )( *, *),

( )( *, *), ( *)( *)

rs m

C k

rs m

e C sk

f t

f t E

∇

∇ ∇ −

C e

C e C C C

ɶ

ɶ

( ),k
k

g γ
( ) ( )[ ]k k

X k
P x gγ+

, ( )rs mq t

, ( )rs m

k
f t , ( )rs m

k
C t

, ( )rs m

k
L t

 



 149 

Figure 5-1: Flowchart of Algorithm 

5.5, ILLUSTRATION EXAMPLE 

The model and solution method presented in the previous sections are 

implemented on two sample networks to gain insights and to test the model’s and 

solution approach’s capabilities. The two networks are the grid network and the Nguyen-

Dupuis network. This section gives the descriptions of the transportation networks used, 

the analysis of the results, and the evaluation of the results comparing to GA. 

The motivation is that for the first example network, the SAB method is 

evaluated. The main results of the proposed MPEC model are demonstrated on a middle 

sized network (Fig. 5-3), the network of Nguyen-Dupuis (Nguyen and Dupuis 1984). 

5.5.1, Network Data 

The presented model was solved on two sample networks. Both of the two 

networks are well-established networks and have been widely used in the literatures. The 

first one is a grid network (Y. W. Xu et al. 1999), with 9 nodes and 12 links and one O-D 

pair (the attributes of the network are described in Appendix C, Table C-1). The link IDs 

are shown on the links in the figure. The link length, free flow speed and the capacity of 

the links are shown in each column of the Table C-1. The example on the grid network 

(Fig 5-2) has one O-D pair (1, 9) with trip demand of 5,000, including 2,500 GVs and 

2,500 BEVs. The capacity of the charging infrastructure is constrained to [50, 1500], and 

the electricity-charging pricing of at destination (node 9) at different time of the day is 

within the range of [0.05, 5]. 

The second network is the Nguyen-Dupuis network (Nguyen and Dupuis 1984). 

The network topology is shown in Fig. 5-3, where the link numbers are marked on the 

links. The network has 13 nodes and 18 links with four O-D pairs. The O-D pairs and the 
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total trip demands (including both BEVs and GVs) between each O-D pair are given in 

Table 5-1, where BEVs penetration rate ranges from 11.75%~33.33% between different 

O-D pairs. The network attributes of this network is shown in Appendix C, Table C-2. 

The capacity of the charging infrastructure is constrained to [10, 900], and the electricity-

charging pricing of at destination (node 2 and node 3) at different time of the day is 

within the range of [0.05, 5]. 

 

 

Figure 5-2: A Grid Network Example  
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4

13

 

Figure 5-3: Nguyen-Dupuis Test Network 

 

 GVs BEVs 

 
2 3 2 3 

1 1300 1800 600 300 

4 1400 1500 700 200 

Table 5-1 Demand Matrix for Nguyen-Dupuis 

5.5.2, The grid network 

In this network example, the time period studied is between 6:00am~7:00pm. The 

time window of arrival for all drivers is between [1:00pm, 3:00pm]. The time interval is 1 

hour. 

5.5.2.1 The results 

Since the network is small, it is able to list all the path flow results in the solution. 

There are six different possible paths between O-D pair (1, 9) (see Table 5-2). The 
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lengths of these paths are shown in the third column (Table 5-2). The results show that, 

there are only 5 paths for BEVs, while 6 paths for GVs. This is because the path 1-2-6-10 

has a total length of 122, which is beyond the BEV effective range. Therefore, this path 

(1-2-6-10) is not feasible for BEV drivers. The path flow results depend very much on the 

parameter settled for each cost component in the total cost function (that is 

1 2 3
, ,m m mα α α …). The path flow results for BEVs and GVs are shown in Table 5-3 and 

Table 5-4 respectively.  

 

O-D Path# Length Path 

(1-9) 

1 122 1-2-6-10 

2 65 1-5-7-10 
3 80 1-5-9-12 

4 59 3-4-7-10 

5 74 3-4-9-12 
6 76 3-8-11-12 

Table 5-2 O-D Pair and Paths of the Grid Network 

path 6:00~7:00 7:00~8:00 8:00~9:00 
9:00 

~10:00 
10:00 

~11:00 
11:00 

~12:00 
12:00 

~13:00 

2 10.1728 22.1342 94.8685 62.8989 66.9487 60.0514 59.9737 

3 2.0886 1.8954 2.0177 0.3831 1.0901 0.5889 0.7392 

4 18.5765 52.5453 287.3591 237.3197 218.3452 201.8556 177.347 

5 4.1885 5.3928 9.8253 3.6663 5.3282 3.5689 4.3352 

6 3.3374 3.8241 5.7266 1.7131 3.2081 1.9956 2.4437 

path 
13:00~ 
14:00 

14:00~ 
15:00 

15:00~ 
16:00 

16:00~ 
17:00 

17:00~ 
18:00 

18:00~ 
19:00  

2 45.7100 50.6703 43.0564 21.1110 9.1044 9.1047   

3 0.3735 1.3625 0.7805 0.5031 0.4669 3.2501 
 

4 176.0713 184.5666 161.0143 80.5163 25.3885 14.1348 
 

5 2.2730 5.7106 4.0701 2.3709 1.6199 5.1891 
 

6 1.2651 3.5274 2.3067 1.3748 1.0397 4.3137 
 

Table 5-3 Path Flows of BEVs at Different Time of the Day 
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path 6:00~7:00 7:00~8:00 8:00~9:00 
9:00~ 
10:00 

10:00~ 
11:00 

11:00~ 
12:00 

12:00~ 
13:00 

1 0.3722 1.3755 7.8553 25.0939 28.4132 30.6832 33.3796 

2 1.1363 4.1998 27.2525 63.9581 71.5988 79.8431 82.8855 

3 0.8540 3.1551 15.0008 49.6495 95.6396 97.5488 96.8301 

4 1.2751 4.7133 28.2066 51.0779 56.4490 57.2375 53.3911 

5 0.9583 3.5408 18.6919 64.2601 75.4029 80.6828 86.4617 

6 0.9266 3.4236 17.1600 58.4972 83.3999 87.6265 91.2725 

path 
13:00~ 
14:00 

14:00~ 
15:00 

15:00~ 
16:00 

16:00~ 
17:00 

17:00~ 
18:00 

18:00~ 
19:00   

1 26.3747 13.8791 6.3582 2.1638 0.5733 0.1710 
 2 69.1804 40.8663 21.2136 7.7818 2.0703 0.6175 
 3 92.7285 45.8803 17.5225 5.3409 1.4069 0.4196 
 4 51.4734 36.1975 22.5745 8.9920 2.4023 0.7165 
 5 68.9943 40.6387 18.6467 6.1716 1.6326 0.4869 
 6 77.3742 42.1427 17.9496 5.7179 1.5095 0.4502   

Table 5-4 Path Flows of GVs at Different Time of the Day 

Table 5-3 and Table 5-4 give the path flows obtained at different time of the day 

respectively. In the numerical illustration, the weight of the electricity-charging cost, the 

charging time cost, or the charging waiting cost might be too high that there are very few 

BEVs on the path (1-5-9-12), path (3-4-9-12), or path (3-8-11-12) comparing to the flows 

on path(1-5-7-10) and path(3-4-7-10). As expected, the GV flows are indirectly 

influenced by the charging cost and the supply of the charging infrastructures. Those 

paths (path#3, #5, #6) with very limited BEV flows have more GV flows. Noted, for 

neither BEVs drivers nor GV drivers is path#1 a preferred path because of its length (The 

GV drivers’ fuel cost also depends on the route length). 

The result of the SAB method is displayed in Table 5-5. For example (1)e =0.05 

means at the first time interval, which is (6:00am~7:00am), the electricity-charging price 

at destination (node 9) for all BEVs is 0.05. The optimal capacity of the charging 

infrastructure at destination (node 9) is 100.085 at the local optimal solution. The 
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maximized revenue obtained is 19853.955. At each iteration, the solution moves closer to 

the optimum. After 4 quadratic approximation iterations, it results in an optimal point.  

 

(1)e  (2)e   (3)e   (4)e   (5)e   (6)e   (7)e   

0.8877 1.4704 2.1916 3.2545 2.9607 3.2393 3.0571 

(8)e  (9)e  (10)e  (11)e  (12)e  (13)e  Capacity 

3.4228 2.5105 2.5687 2.2630 1.7454 0.4518 100.085 

Table 5-5 Results from the SAB Method 

Convergence is assumed when the absolute change in the decision variables is 

less than 101+. The gradients of the revenue to the decision variables at each iteration 

(including the initial iteration) are displayed in Table 5-6. There are 14 decision variables 

in total, including 13 electricity-charging pricing variables and 1 capacity variable. The 

gradients at the 14 variables at shown in each row respectively. For example, the second 

row, i.e., 
1
g  row, represents the revenue gradients at (1)e . The last row, i.e. 

14
g  row, 

represents the revenue gradients at the current capacity 
9

C . It can be seen from the last 

row that, within a range of the initial solution of the charging infrastructure capacity 

(100), the revenue is not very sensitive to the capacity around a local optimal (e.g. at 

iteration 0, gradient is -0.22913) comparing to the electricity-charging pricing (e.g. at 

time interval 5, gradient is 72.1231). But it should be noted that, this also depends on the 

value of parameter 
s
ρ and ϕ .  

It is shown from Fig5-4 that the gradients reduce very fast at each iteration. At the 

solution of iteration 3, the gradients surface almost flat to zero. 
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 Iteration 0 1 2 3 4 

1
g  1.2126 9.8382 3.3688 0.1058 0.0889 

2
g   4.1466 26.7490 0.6874 0.4584 0.1747 

3
g  16.0726 27.7622 1.3025 0.9603 -0.1800 

4
g   72.3644 1.5431 2.0037 0.0326 -0.0013 

5
g  72.1231 1.4012 1.9300 0.0536 0.0000 

6
g  72.1229 1.4013 1.9146 0.0241 -0.0006 

7
g  69.1698 1.6615 2.0545 -0.0093 0.0040 

8
g  61.5592 2.4111 2.7935 -0.1376 -0.0144 

9
g  49.8231 4.2799 4.0383 -0.3025 -0.1316 

10
g  26.6582 13.2419 4.0402 -0.1624 -0.0829 

11
g  7.0966 31.6005 0.5867 0.4085 0.1317 

12
g  1.9690 15.9209 2.0426 0.3300 0.1798 

13
g  0.6670 4.8134 4.8445 0.0248 0.0241 

14
g  -0.22913 -0.14968 -0.05 -0.0253 -0.00499 

Table 5-6 Revenue Gradients 
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Figure 5-4: Revenue Gradients 

5.5.2.2 Comparing the results with genetic algorithm 

The sensitivity analysis based strategy for solving the bi-level problem is an 

optimization based heuristic method. The computational efficiency is achieved using the 

polynomial interpolation (the quadratic approximation) of finding the best solution at 

each iteration. Due to the non-convexity of the lower level problem, the method searches 

along the decent direction leading to local optima. In addition, the final solution depends 

very much on the initial solution given. Therefore, in this dissertation research, genetic 

algorithm (GA) is also briefly presented, which reduces the convergence to local optima 

solutions and increases the possibility of achieving a global optima point. However, the 

genetic algorithm is not the focus of this chapter. It will be briefly discussed in this 

section. The purpose of presenting the GA is for comparison with the results obtained 
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from sensitivity analysis based approach to see if the local optimal obtained from SAB 

method is reasonable. 

Although the solutions founded by most of the meta-heuristics are not proved to 

be optimal solutions, for the past two decades, it was shown from the experiences that 

meta-heuristics could find the optimal solution or a very good solution rapidly and 

effectively. This is particularly true for the combinatorial problems, such as network 

design problem (Gallo et al. 2010; Poorzahedy and Rouhani 2007). One of the well 

applied meta-heuristic algorithms is GA. It was shown in many literatures that GA 

outperforms the other two algorithms in their test problems (Karoonsoontawong and 

Waller 2006; Salhi and Drezner 2002; T. Xu et al. 2009a; T. Xu et al. 2009b). 

The notation used to describe a GA applied to our MEPC model is as follows: It 

works starting from an initial population. Each string of the population is a chromosome, 

which is a vector of gene of the electricity-charging pricing and charging infrastructure 

capacity value. For example, if there are 3 pricing variables and 2 capacity variables, a 

chromosome is a vector of length 5, with the first 3 gene representing the 3 pricing 

variables and the last 2 gene representing the 2 capacity variables. Each generation a new 

population is evaluated and operated to generate the next one based on the fitness 

function value. The fitness function value here is the objective value, that is, the revenue. 

For a thorough discussion of GA approaches, see Goldberg (1989) and Deb (2002). The 

GA results were obtained by utilizing the MATLAB GA optimization toolbox (R2008b).  

The parameter using in the code is informed by pervious work by (Jeon et al. 

2006) and (Duthie 2008). Their results suggest a mutation rate of zero and crossover rate 

of 0.85. The results from the GA algorithm for the grid network are shown in the 

following table. (Table 5-7). It can be seen that the optimal capacity obtained from the 

GA is 222.809, which is much different from the one from the SAB method (100.085). 



 158 

This may indicate that multiple local optima exist. The maximum revenue achieved is 

20545.571, which is slightly higher than the results obtained from the SAB method 

(19853.955). Therefore, in the point of maximizing revenue, the results obtained from 

GA method might be “better”. However, from the practical point, in the results of SAB 

might be better since the capacity needed is much less than that of GA method. In 

addition, the SAB method is efficient in terms of computation burden and time. Unlike 

GA, which solves the lower level equilibrium hundreds of times depending on the 

number of populations in each generation and the number of generations, the SAB 

method solves the lower level equilibrium twice for each quadratic approximation 

iteration. For the grid network, for example, the convergence achieved after 4 quadratic 

approximation iterations; therefore, it solves the lower level problem 8 times to obtain the 

result. 

 

(1)e  (2)e   (3)e   (4)e   (5)e   (6)e   (7)e   

0.348 0.305 0.691 0.638 0.935 0.828 0.914 

(8)e  (9)e  (10)e  (11)e  (12)e  (13)e  Capacity 
0.857 0.868 0.861 0.951 0.993 0.369 222.810 

Table 5-7 Results from the GA 

5.5.3, The Nguyen-Dupuis network 

In this network example, the time period studied is between 6:00am~7:00pm. The 

time window of arrival for all drivers is between [12:30pm, 3:30pm]. The time interval is 

1 hour. The numerical experiment is designed to illustrate the application of the network 

model developed in this chapter. 

The objective is to make a plan of enhanced capacity and the policies of 

electricity-charging fares. The original infrastructure capacities are 10 at each destination. 
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In this situation, 
min

10C = . The budget for the charging infrastructure only allows for a 

an additional capacity of 890, which means 
max

900C = . The electricity-charging 

pricing is greater than the home charging, where 
min

0.5e =  The policy allows a 

maximum electricity-charging price of 5, which means 
max

5e = .  

The results of electricity-charging pricing at charging infrastructure at destination 

node 2 and node 3 are shown in the following figure (Figure 5-5,). The optimal charging 

infrastructure capacities are 29.97 and 19.96 at destination 2 and 3 respectively. The total 

revenue from these charging infrastructures is 6100.298. Figure 5-5 shows that the 

highest pricing occurs between 9:00am and 3:00pm. This might be because this interval 

corresponds to the traffic rush hours. During this hour, the BEV drivers may not be that 

sensitive to the electricity-charging pricing since they tend to arrive at destination within 

the time window. Therefore, increasing the electricity-charging price at the rush hour will 

increase the revenue without a big loss of recharging demand. 

In general, the electricity-charging pricing at destination 3 is less than that at 

destination 2. This might indicate that the electricity-charging pricing at destination is 

relative to the total charging demand at this destination. The total number of BEVs 

heading to destination 3 is less than that heading to destination 2 (1300 v.s. 500). When 

the electricity-charging price goes higher, the BEV drivers might be able to switch to a 

path which does not require charging at destination. Since the BEV demand to destination 

3 is small, this switching will not increase a lot the travel time cost through those shorter 

paths, and such increase of travel time cost might be still lower than the increase of 

charging cost. In such case, the electricity-charging price could not be set too high. While 

the BEV demand to destination 2 is large, the switching to shorter paths will increase a 

lot the travel time cost on these paths. Such increase may be higher than the increase in 
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charging costs; therefore, the BEV drivers tend to stay on the longer paths even when the 

electricity-charging price increases. 

 

Figure 5-5: Electricity-Charging Pricing at Different Time of Day 

5.6, SUMMARY 

In this chapter, a new continuous equilibrium network design problem is 

presented to decide the electricity-charging pricing policy and capacity of the charging 

infrastructure at a tactical planning level. It is network design problem with time-

dependent multi-class equilibrium constraints. The problem application itself is new: it is 

the first time that the design of time-dependent electricity-charging pricing for plug-in 

electricity vehicles is conducted. 

The mathematical formulation with equilibrium constraints have been developed 

and been evaluated computationally. A sensitivity analysis based optimization method is 

used to find a local optimal of the problem. The derivatives of the gradients expressions 

are developed. The solution approach tackles the searching for step size by using the 



 161 

quadratic interpolation, which is a very efficient. It also deals with the box constrained 

variables by means of projection of the variables into the feasible set. 

The computational issues about the convergence and efficiency were addressed 

and the results are evaluated by comparing with genetic algorithm. The illustration 

examples also show the application of the model for the capacity enhancement of 

charging infrastructure and time-of day electricity-charging fare policy for BEVs. Finally, 

the analyses of the results are given.  
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Chapter 6 Conclusion and Future Work 

6.1 CONCLUSIONS 

The dissertation explored the possible future traffic patterns with PEVs by 

studying the travel behavior of PEV drivers. An extension was given to an optimal design 

of charging infrastructure capacity and pricing. A comprehensive study on different travel 

choices problems for PEV drivers has been presented. Different modeling approaches 

such as mathematical programming models and variational inequality models were 

developed to facilitate the study. The problems covered included stochastic user 

equilibrium traffic assignment (EVSUE and EVSUETP), time-dependent joint choices 

problem, and continuous network design problem. 

The first part of the dissertation focused on developing techniques for modeling 

stochastic traffic assignment for BEV drivers. Specifically, two separate models 

accounting for charging cost and charging time penalty cost were developed to capture 

the route choice behavior of BEV drivers. The proposed models require a path-based 

algorithm which is able to show the utilized routes by the motorists. Therefore, an 

algorithm based on the simplicial decomposition method was adopted. By the limitation 

of the BEV effective range and the recharging infrastructure’s availability, the utilized 

routes are constrained by the total length. Thus, a constrained shortest path problem was 

solved at each iteration using the lagrangian relaxation with enumeration method within 

the simplicial decomposition algorithm. The proposed models and solution algorithm 

were followed by the numerical analysis. It was found that the link flows pattern vary due 

to the BEV drivers’ behavior influenced by the charging price at home or at destination. 

Practically, it is more reasonable to regulate and control the charging price at destination 

and the impacts of this price on the BEV drivers’ behavior is larger. It was also found 

that, the higher charging price at home and/or destination, the lower the total vehicle 
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miles traveled would be. The numerical results also indicated the relationship between 

the electricity-charging speed at destination and the durations of stay of BEV drivers. On 

average, the duration of stay would rise when the charging speed decreases. But this 

deviation is not constant, as some drivers might not have to charge at the destination or 

might take other alternative routes to reduce extra time caused. When the charging speed 

increases, the total charging time penalty decreases initially very fast but slow down 

gradually. Based on the results of the numerical analysis, the developed model and 

algorithm were very well verified for the impact study of the charging price and the 

charging speed on BEV users' behavior and subsequently on the network flow. 

The investigation was carried out further by taking into account BEV drivers’ 

behavior in the time-dependent combined travel choices. The second part of the 

dissertation developed a variational inequality formulation concentrated on modeling the 

quasi-dynamic mixed flow equilibrium. Proof of the formulation’s equivalence to a two-

level nested-Logit choice structure was conducted, where the departure time and duration 

of stay belongs to the first level and the route choice belongs to the second. This 

combined travel choice modeling was built on the basis of EVSUE and EVSUETP, 

where the charging cost and charging time penalty for BEV drivers were considered 

simultaneously. In this study, a decomposition algorithm was proposed to solve the 

problem iteratively. As demonstrated, the proposed model formulation and solution 

approach could capture the feasible duration of stay choice set for BEV drivers, the 

electricity-charging cost of BEV drivers at destination, and the recharging behavior of the 

BEV drivers at destination. It was found that the temporal and spatial choice of BEV 

drivers could be influenced by the BEV effective range and the penetration rates, and 

these impacts would indirectly change the GV drivers’ behavior. 
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The last part of the dissertation extended the above time-dependent multi-class 

combined choices equilibrium with an application to a network design problem. In 

particular, this study proposed a methodology to design an optimal capacity and time-

dependent pricing strategy for the charging infrastructure. The problem was formulated 

as a mathematical program with equilibrium constraints. The sensitivity analysis based 

method for solving the network design problem showed its efficiency to find a local 

optimal solution. 

6.2 FUTURE WORK 

The dissertation work of modeling the PEV drivers’ behavior into transportation 

network equilibrium problems opens several directions for the future work. This section 

outlines a few directions as follows: 

The charging cost function and charging time penalty cost function used in this 

study is only suitable for BEV drivers. However, the modeling framework developed in 

this study can be adapted to other classes motorists than BEV drivers, such as plug-in 

hybrid vehicle drivers, as long as the motorists’ operating cost is a function of the path 

attributes (e.g. path length) that cannot be directly decomposed onto links. Additional 

cost components for traveling may be incorporated. 

There is a need to develop efficient solution algorithms to solve the path-based 

stochastic user equilibrium. The algorithm used in this dissertation is an approximation 

method that limited routes are generated as utilized routes. Ideas could be stimulate from 

those efficient algorithms used in deterministic user equilibrium, such as gradient 

projection method. The algorithm for solving the stochastic traffic assignment model runs 

through the algorithms for solving the variational inequality formulation and thus for 

solving the lower-level problem of the network design problem. Therefore, an efficient 
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algorithm for the stochastic traffic assignment will improve the computational burden and 

improve the solution quality at every part of this study. 

The cost components of the PEV drivers considered in this study use a single trip 

chain, i.e. a round trip as the study base, while one direction of the round trip is 

considered. To some extent, it could be categorized as a trip-based model. In the real 

word, the travel behavior is much complicated and a more complicated trip chain might 

be considered instead.  

In modeling the combined travel choices behavior, the demand elasticity could be 

taken into account. In addition, other travel choices, such as destination choices and mode 

choice could be incorporated. The study of demand elasticity and destination choice is 

meaningful. For example, the PEV drivers might switch their destinations according to 

the availability of charging infrastructure at destinations or change their travel plan 

regarding to the charging pricing. The equilibrium model with demand elasticity could be 

used as a lower-level problem in the network design problem studied in this dissertation, 

which would make the charging pricing and capacity design problem more realistic.  

The study only presented one case of extending the combined travel choices 

equilibrium. However, the equilibrium model can be used as a network analysis tool for a 

rich set of network design problems, such as location-allocation of charging infrastructure 

and time-dependent capacity of charging infrastructure. The network design problem can 

be to a discrete one other than a continuous one. 
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Appendix A 

Table A-1 Link Flow Patterns for Different Charging Cost at Home ( 1.2κ = , 0.1
s
e = ) 

link 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

1 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 

2 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 

3 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 1582.9 

4 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 

5 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 2501.1 

6 4347.1 4249.1 4249.1 4249.3 4147.2 4142.6 3971.9 3964.9 3964.9 

7 2931.0 2837.6 2833.2 2833.1 2731.2 2726.4 2555.7 2548.8 2548.8 

8 4347.1 4253.7 4249.3 4249.3 4147.3 4142.6 3971.9 3964.9 3964.9 

9 6169.9 6060.9 6050.0 6029.2 6018.9 6009.2 5833.6 5821.8 5821.8 

10 2823.8 2814.9 2806.1 2789.2 2883.1 2880.0 2877.0 2874.2 2874.2 

11 6169.9 6065.5 6050.2 6029.2 6019.1 6009.2 5833.6 5821.8 5821.8 

12 4579.5 4564.8 4554.7 4535.4 4525.8 4516.7 4341.5 4330.3 4330.3 

13 3368.8 3276.8 3278.4 3281.6 3283.3 3285.1 3287.0 3288.9 3288.9 

14 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 2749.9 

15 4579.5 4569.4 4554.9 4535.4 4525.9 4516.7 4341.6 4330.3 4330.3 

16 7026.0 7012.7 7004.1 6978.4 6965.7 6953.4 6775.1 6760.7 6760.7 

17 3434.1 3437.4 3436.4 3435.2 3435.0 3435.0 3269.0 3266.8 3266.8 

18 5400.3 5397.6 5399.6 5394.9 5392.7 5390.5 5554.6 5555.1 5555.1 

19 7026.1 7017.3 7004.3 6978.4 6965.8 6953.4 6775.1 6760.7 6760.7 

20 3434.1 3432.8 3436.3 3435.2 3435.0 3435.0 3269.0 3266.8 3266.8 

21 415.1 416.6 418.0 421.0 422.6 424.1 425.7 427.3 427.3 

22 6040.2 6048.9 6057.1 6072.4 6079.2 6085.9 6091.9 6097.6 6097.6 

23 3368.8 3276.8 3278.4 3281.6 3283.3 3285.1 3287.0 3288.9 3288.9 

24 415.1 416.6 418.0 421.0 422.6 424.1 425.7 427.3 427.3 

25 7291.3 7384.7 7384.7 7384.9 7385.1 7385.3 7385.6 7385.9 7385.9 

26 7333.3 7426.7 7426.7 7426.9 7427.1 7427.3 7427.6 7427.9 7427.9 

27 8239.8 8353.8 8373.9 8413.8 8440.3 8459.3 8644.1 8665.0 8665.0 

28 6033.0 6029.0 6025.4 6019.9 6025.0 6023.5 6022.5 6022.2 6022.2 

29 10583.4 10584.2 10584.3 10582.4 10580.7 10577.9 10740.7 10739.1 10739.1 

30 339.8 338.9 338.0 336.3 335.5 334.8 334.1 333.5 333.5 

31 2865.8 2856.8 2848.1 2831.2 2925.1 2922.0 2919.0 2916.2 2916.2 

32 8156.8 8270.8 8291.1 8330.8 8357.5 8376.3 8561.1 8582.0 8582.0 

33 4400.9 4506.2 4517.8 4540.5 4551.3 4561.7 4737.8 4749.9 4749.9 



 167 

34 6195.2 6216.7 6238.0 6279.9 6395.2 6420.1 6444.4 6468.0 6468.0 

35 2931.0 2833.0 2833.0 2833.1 2731.0 2726.4 2555.7 2548.8 2548.8 

36 4400.9 4506.2 4518.0 4540.5 4551.4 4561.7 4737.8 4749.9 4749.9 

37 5175.0 5164.7 5150.0 5130.5 5019.2 5005.6 4992.4 4979.9 4979.9 

38 5216.0 5201.1 5191.0 5171.5 5060.2 5046.6 5033.4 5020.9 5020.9 

39 4721.3 4709.4 4693.0 4670.4 4557.6 4542.5 4528.0 4514.2 4514.2 

40 6195.2 6216.7 6238.0 6279.9 6395.2 6420.1 6444.4 6468.0 6468.0 

41 3534.5 3541.7 3548.8 3324.6 3568.3 3341.6 3349.5 3357.0 3357.0 

42 3546.3 3559.1 3571.9 3834.8 3704.8 3954.8 3969.5 3983.9 3983.9 

43 6075.0 6071.0 6067.4 6061.9 6067.0 6065.5 6064.5 6064.2 6064.2 

44 3534.5 3541.7 3548.8 3324.6 3568.3 3341.6 3349.5 3357.0 3357.0 

45 8118.8 8137.3 8155.8 8193.0 8211.6 8230.3 8249.2 8268.1 8268.1 

46 9242.3 9227.2 9211.9 8943.5 9172.7 8924.8 8912.0 8899.4 8899.4 

47 6040.2 6048.9 6057.3 6072.4 6079.3 6085.9 6091.9 6097.6 6097.6 

48 10624.3 10625.1 10625.1 10623.4 10621.5 10618.9 10781.7 10780.1 10780.1 

49 10127.4 10150.7 10172.8 10213.7 10232.5 10250.2 10267.0 10282.8 10282.8 

50 5653.6 5646.5 5638.8 5621.5 5612.0 5601.7 5757.0 5748.1 5748.1 

51 339.8 338.9 338.0 336.3 335.5 334.8 334.1 333.5 333.5 

52 10127.4 10150.7 10172.8 10213.7 10232.5 10250.2 10267.0 10282.8 10282.8 

53 8453.4 8476.3 8498.1 8538.3 8556.8 8574.3 8590.8 8606.4 8606.4 

54 5400.3 5402.2 5399.7 5394.9 5392.7 5390.5 5554.6 5555.1 5555.1 

55 5694.5 5687.4 5679.7 5662.5 5653.0 5642.7 5798.0 5789.1 5789.1 

56 5033.3 5002.4 4976.8 4918.6 4890.4 4862.7 4835.5 4808.8 4808.8 

57 8118.8 8137.3 8155.8 8193.0 8211.6 8230.3 8249.2 8268.1 8268.1 

58 8453.4 8476.3 8498.1 8538.3 8556.8 8574.3 8590.8 8606.4 8606.4 

59 2474.4 2470.6 2467.8 2465.7 2466.2 2467.7 2470.3 2473.8 2473.8 

60 5033.3 5006.9 4976.8 4918.6 4890.4 4862.7 4835.5 4808.8 4808.8 

61 2474.4 2470.6 2467.8 2465.7 2466.2 2467.7 2470.3 2473.8 2473.8 

62 1955.9 1951.8 1952.4 1944.8 1941.2 1937.6 1934.2 1930.8 1930.8 

63 2300.6 2295.1 2289.8 2280.2 2275.8 2271.7 2267.8 2264.1 2264.1 

64 1914.9 1915.4 1911.4 1903.8 1900.2 1896.6 1893.2 1889.8 1889.8 

65 5507.2 5499.4 5491.6 5476.6 5476.5 5469.5 5462.9 5456.6 5456.6 

66 5546.2 5534.2 5527.0 5504.4 5486.5 5476.3 5466.4 5457.1 5457.1 

67 9242.3 9227.2 9211.9 8943.5 9172.7 8924.8 8912.0 8899.4 8899.4 

68 2300.6 2295.1 2289.8 2280.2 2275.8 2271.7 2267.8 2264.1 2264.1 

69 5507.2 5499.4 5491.6 5476.6 5476.5 5469.5 5462.9 5456.6 5456.6 

70 3680.7 3676.0 3671.2 3899.1 3656.9 3884.7 3877.5 3870.3 3870.3 

71 3546.3 3559.1 3571.9 3834.8 3704.8 3954.8 3969.5 3983.9 3983.9 
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72 3680.7 3676.0 3671.2 3899.1 3656.9 3884.7 3877.5 3870.3 3870.3 

73 2377.0 2377.0 2377.0 2377.0 2471.9 2476.7 2481.4 2485.9 2485.9 

74 4721.3 4704.8 4693.0 4670.4 4557.6 4542.5 4528.0 4514.2 4514.2 

75 5505.2 5497.8 5486.0 5463.4 5445.5 5435.3 5425.4 5416.1 5416.1 

76 2377.0 2377.0 2377.0 2377.0 2471.9 2476.7 2481.4 2485.9 2485.9 
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Table A-2 Link Flow Patterns for Different Charging Cost at Destination ( 1.2κ = , 0.08
h
e = ) 

Link 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 

1 1582.9 1582.9 1583.0 1583.0 1583.0 1583.1 1583.1 1583.1 1583.2 1583.2 1583.2 

2 2501.1 2501.1 2501.0 2501.0 2501.0 2500.9 2500.9 2500.9 2500.8 2500.8 2500.8 

3 1582.9 1582.9 1583.0 1583.0 1583.0 1583.1 1583.1 1583.1 1583.2 1583.2 1583.2 

4 2749.9 2749.9 2750.0 2750.0 2750.0 2750.1 2750.1 2750.1 2750.2 2750.2 2750.2 

5 2501.1 2501.1 2501.0 2501.0 2501.0 2500.9 2500.9 2500.9 2500.8 2500.8 2500.8 

6 3971.9 3934.4 3887.2 3864.3 3846.1 3832.1 3635.8 3595.0 3560.1 3531.6 3508.7 

7 2555.7 2518.3 2471.1 2448.3 2430.2 2402.7 2219.9 2179.1 2144.2 2115.8 2093.0 

8 3971.9 3934.4 3887.2 3864.3 3846.1 3818.6 3635.8 3595.0 3560.1 3531.6 3508.7 

9 5833.6 5807.6 5792.5 5712.0 5716.1 5707.3 5588.5 5488.8 5431.3 5370.9 5344.3 

10 2877.0 2890.1 2907.8 2974.4 2998.2 3018.5 2961.3 3026.5 3051.7 3033.4 2927.5 

11 5833.6 5807.6 5792.5 5773.3 5716.1 5707.3 5527.2 5550.1 5431.3 5370.9 5233.2 

12 4341.5 4316.4 4294.1 3639.2 3644.1 3636.1 3456.8 3419.2 3360.8 3301.0 3262.9 

13 3287.0 3286.2 3293.4 3867.7 3866.9 3866.1 3926.7 3864.6 3865.5 3864.9 3876.6 

14 2749.9 2749.9 2750.0 2750.0 2750.0 2750.1 2750.1 2750.1 2750.2 2750.2 2750.2 

15 4341.6 4316.4 4294.1 3639.2 3644.1 3636.1 3456.8 3419.2 3360.8 3301.0 3151.5 

16 6775.1 6745.9 6720.1 6062.3 6026.4 6011.2 5825.0 5781.2 5717.2 5650.0 5609.1 

17 3269.0 3034.3 2999.6 2970.6 2927.3 2905.1 3057.2 3042.2 2943.7 2924.0 2893.6 

18 5554.6 5374.4 5387.7 5398.3 5386.0 5387.1 5215.4 5212.4 5121.8 5107.9 5089.7 

19 6775.1 6745.9 6720.1 6062.3 6026.4 6011.2 5825.0 5781.2 5717.2 5650.0 5497.8 

20 3269.0 3034.3 2999.6 2970.6 2927.3 2905.1 3057.2 3042.2 2943.6 2924.0 2897.3 

21 425.7 425.7 425.9 425.9 426.0 426.0 596.4 596.4 601.7 601.9 603.9 

22 6091.9 6297.2 6305.9 5677.2 5684.5 5691.4 5872.1 5912.8 6006.9 6067.9 6201.1 

23 3287.0 3286.2 3293.4 3929.1 3866.9 3866.1 3865.3 3925.9 3865.5 3864.9 3876.8 

24 425.7 425.7 425.9 425.9 426.0 426.0 596.4 596.4 601.7 601.9 600.8 
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25 7385.6 7384.8 7392.2 7966.6 7965.9 7965.1 7855.3 7793.2 7799.4 7799.0 7812.7 

26 7427.6 7426.8 7434.2 8069.9 8007.9 8007.1 7836.0 7896.5 7841.4 7841.0 7851.9 

27 8644.1 8705.5 8745.3 8766.8 8930.4 8943.3 9127.2 9168.9 9207.1 9236.6 9372.4 

28 6022.5 6053.7 6179.3 6190.9 6057.1 6056.3 6055.5 6054.8 6054.0 6053.3 6064.9 

29 10740.7 10769.6 10690.9 11259.2 11276.1 11288.5 11363.4 11343.2 11377.8 11407.3 11781.9 

30 334.1 334.7 334.9 350.9 350.9 351.4 351.4 351.9 351.9 351.9 351.9 

31 2919.0 2932.1 2949.8 2955.0 3040.2 3047.0 3064.7 3007.2 3093.7 3075.4 3080.6 

32 8561.1 8622.5 8662.3 8683.8 8847.4 8860.3 9044.2 9085.9 9124.1 9153.6 9526.8 

33 4737.8 4781.1 4911.5 4932.9 4949.8 4962.7 5146.6 5188.4 5224.2 5253.4 5277.0 

34 6444.4 6439.3 6547.6 6614.1 6771.1 6791.4 6734.2 6799.4 6827.0 6808.9 6815.3 

35 2555.7 2518.3 2471.1 2448.3 2430.2 2416.2 2219.9 2179.1 2144.2 2115.8 2093.0 

36 4737.8 4781.1 4911.5 4932.9 4949.8 4962.7 5146.6 5188.4 5224.2 5253.4 5277.0 

37 4992.4 4969.4 4845.1 4843.0 4841.3 4826.3 4827.2 4828.0 4828.8 4829.5 4830.2 

38 5033.4 5010.4 4886.1 4884.0 4882.3 4880.9 4868.2 4869.0 4869.8 4870.5 4871.2 

39 4528.0 4502.0 4372.5 4367.9 4363.8 4346.6 4345.5 4344.5 4343.6 4342.8 4342.0 

40 6444.4 6439.3 6547.6 6552.8 6771.1 6777.9 6795.5 6738.1 6827.0 6808.9 7163.8 

41 3349.5 3325.3 3416.6 3478.7 3479.5 3480.3 3419.7 3481.8 3504.8 3540.2 3195.0 

42 3969.5 3988.4 4005.4 4009.8 4166.0 4185.5 4189.0 4192.1 4194.9 4198.6 4200.5 

43 6064.5 6095.7 6221.3 6232.9 6099.1 6098.3 6097.5 6096.8 6096.0 6095.3 6107.3 

44 3349.5 3325.3 3416.6 3417.4 3479.5 3480.3 3481.1 3420.5 3504.8 3540.2 3544.6 

45 8249.2 8453.8 8565.9 8647.3 8654.5 8661.3 8606.3 8673.5 8762.6 8804.1 8476.9 

46 8912.0 9096.2 9007.7 9015.4 8889.6 8896.5 8902.8 8908.7 8975.7 8982.5 8989.1 

47 6091.9 6297.2 6305.9 5677.2 5684.5 5691.4 5872.1 5912.8 6006.9 6067.9 6096.5 

48 10781.7 10811.1 10731.9 11361.5 11317.1 11329.5 11343.1 11445.5 11418.8 11448.2 11582.2 

49 10267.0 10472.9 11691.3 11609.9 11617.7 11625.6 11693.8 11639.6 11707.8 11743.8 11751.0 

50 5757.0 5784.0 4492.5 4511.9 4527.0 4538.2 4375.9 4381.6 4385.3 4387.9 4375.3 

51 334.1 334.2 334.9 350.9 350.9 351.4 351.4 352.0 352.0 352.0 352.0 

52 10267.0 10473.4 11691.3 11671.2 11617.7 11625.6 11632.5 11700.8 11707.7 11743.7 11386.7 
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53 8590.8 8796.7 10014.4 9949.1 9956.9 9964.3 10032.5 9977.5 10045.7 10081.7 10088.9 

54 5554.6 5374.4 5387.7 5398.3 5386.0 5387.1 5215.4 5212.4 5121.8 5107.9 5086.1 

55 5798.0 5825.0 4533.5 4552.9 4568.0 4579.2 4416.9 4422.6 4426.3 4428.9 4435.1 

56 4835.5 4625.4 3297.1 3285.7 3256.0 3243.7 3232.3 3221.8 3125.9 3107.9 3082.0 

57 8249.2 8453.8 8565.9 8585.9 8654.5 8661.3 8667.6 8612.2 8762.6 8804.1 8826.8 

58 8590.8 8796.7 10014.4 10010.4 9956.9 9964.3 9971.1 10038.9 10045.7 10081.7 9724.7 

59 2470.3 2469.1 3782.6 3782.1 3781.5 3781.0 3780.5 3780.0 3804.4 3810.2 3840.3 

60 4835.5 4625.4 3297.1 3285.7 3256.0 3243.7 3232.3 3221.8 3125.9 3107.9 3097.2 

61 2470.3 2469.1 3782.6 3782.1 3781.5 3781.0 3780.5 3780.0 3804.4 3810.2 3826.0 

62 1934.2 1932.0 1930.2 1928.6 1907.9 1903.9 1900.2 1896.6 1831.9 1827.3 1822.9 

63 2267.8 2061.0 2051.2 2042.0 2033.5 2025.7 2018.5 2012.0 2006.1 1999.4 1994.6 

64 1893.2 1891.0 1889.2 1887.6 1866.9 1862.9 1859.2 1855.6 1790.9 1786.3 1781.9 

65 5462.9 5442.3 5345.7 5345.7 5212.7 5212.7 5212.7 5212.7 5274.1 5275.8 5277.6 

66 5466.4 5457.3 5343.0 5341.3 5174.0 5170.0 5166.3 5162.7 5159.4 5156.5 5153.9 

67 8912.0 9096.2 9007.7 9015.4 8889.6 8896.5 8902.8 8908.7 8975.7 8982.5 8989.4 

68 2267.8 2061.0 2051.2 2042.0 2033.5 2025.7 2018.5 2012.0 2006.1 1999.4 1995.5 

69 5462.9 5442.3 5345.7 5345.7 5212.7 5212.7 5212.7 5212.7 5274.1 5275.8 5277.6 

70 3877.5 3875.4 3873.6 3872.2 3871.0 3870.0 3869.2 3868.6 3868.2 3866.6 3866.6 

71 3969.5 3988.4 4005.4 4009.8 4166.0 4172.0 4189.0 4192.1 4194.9 4198.6 4199.3 

72 3877.5 3875.4 3873.6 3872.2 3871.0 3870.0 3869.2 3868.6 3868.2 3866.6 3867.8 

73 2481.4 2498.3 2513.5 2516.5 2671.5 2690.0 2692.7 2695.2 2697.6 2699.7 2701.6 

74 4528.0 4502.0 4372.5 4367.9 4363.8 4360.1 4345.5 4344.5 4343.6 4342.8 4342.0 

75 5425.4 5416.3 5302.0 5300.3 5133.0 5129.0 5125.3 5121.7 5118.4 5115.5 5112.9 

76 2481.4 2498.3 2513.5 2516.5 2671.5 2676.5 2692.7 2695.2 2697.6 2699.7 2701.6 
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Appendix B 

Table B-1 Parameters of Link Travel Time and Length for Test Network 

Link ID Link Tails Link Heads free flow time length Capacity 

1 1 2 0.25 25 800 

2 1 3 0.2 10 700 

3 1 4 0.25 25 800 

4 2 3 0.2 20 700 

5 2 6 0.2 20 500 

6 3 4 0.2 20 600 

7 3 7 0.3 10 500 

8 4 8 0.2 20 500 

9 4 13 0.2 25 650 

10 5 2 0.2 25 800 

11 5 6 0.2 20 800 

12 5 9 0.2 13 800 

13 6 7 0.3 15 500 

14 6 9 0.3 20 500 

15 7 8 0.2 15 600 

16 7 10 0.2 5 600 

17 8 11 0.3 20 500 

18 8 13 0.1 20 650 

19 9 10 0.3 20 500 

20 9 12 0.1 25 700 

21 10 11 0.2 20 600 

22 10 12 0.2 15 650 

23 11 12 0.1 15 700 

24 11 13 0.2 15 650 
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Table B-2 Parameters for Numerical Experiments in Chapter 4 

1
1BEVα =  

1
1GVα =  1

0.8θ =
 

2
1.4BEVα =  

2 3 4
0GV GV GVα α α= = =  1

0.4β =
 

3
0.5BEVα =  

6
0.5GVα =  2

0.7θ =
 

4
2BEVα =  

5
2.8GVα =  2

0.3β =
 

5
2.8BEVα =  

1,

(1,12)
12 : 00lbt pm=  2,

(5,13)
8 : 30lbt am=

 

0.5, 1.5,m m

e l
mλ λ= = ∀

 
1,

(1,12)
2 : 00ubt pm=

 
2,

(5,13)
9 : 30ubt am=
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Table B-3 Path Flow Results for BEVs 

 Range 1 2 3 4 5 6 

81.6 199.216 2307.06 493.722 244.421 931.483 924.096 

88.4 224.537 2184.75 590.714 260.256 922.799 916.945 

95.2 255.75 2056.73 687.524 280.559 911.687 907.754 

102 302.596 1950.77 746.638 306.322 897.625 896.053 

108.8 361.071 1830.26 808.671 260.166 922.874 916.96 

115.6 416.44 1703.22 880.341 286.394 908.525 905.081 

122.4 443.921 1582 974.079 296.943 902.766 900.291 

129.2 478.41 1469.68 1051.91 310.516 895.366 894.118 

136 531.129 1381.73 1087.14 315.88 853.731 930.389 

142.8 594.877 1290.45 1114.67 344.749 904.018 851.233 

149.6 648.537 1205.01 1146.45 394.576 876.486 828.937 

156.4 675.322 1131.62 1193.06 432.523 855.964 811.513 

 

Table B-4 Path Flow Results for GVs 

  1 2 3 4 5 6 

81.6 499.326 5412.7 1087.97 631.382 2105.59 2163.03 

88.4 484.993 5461.36 1053.65 630.261 2104.55 2165.19 

95.2 469.992 5511.92 1018.09 628.821 2103.23 2167.94 

102 457.297 5553.31 989.393 626.988 2101.58 2171.43 

108.8 442.873 5599.92 957.209 630.254 2104.46 2165.29 

115.6 427.876 5648.64 923.483 628.419 2102.73 2168.85 

122.4 414.043 5695.01 890.95 627.659 2102.07 2170.28 

129.2 401.348 5736.85 861.8 626.682 2101.21 2172.11 

136 391.242 5768.49 840.265 628.472 2111.52 2160 

142.8 380.77 5800.73 818.504 622.615 2091.45 2185.93 

149.6 371.399 5829.89 798.713 619.261 2088.76 2191.98 

156.4 364.075 5853.73 782.196 617.064 2087.5 2195.43 
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Table B-5 Charging Demand at Destination Node 13 at Different Time of Day with Different BEV Ranges 

Time of Day 81.6 88.4 95.2 102 108.8 115.6 122.4 129.2 136 142.8 149.6 156.4 

6:00 ~ 7:00 0 0 0 0 0 0 0 0 0 0 0 0 

7:00 ~ 8:00 4.41 5.42633 6.59489 7.60829 8.84037 10.2409 11.6894 13.1662 14.4014 15.7433 17.0613 18.2398 

8:00 ~ 9:00 11.82 14.4733 17.4799 19.9558 22.8941 26.1032 29.1737 32.32 35.1585 38.167 41.1674 44.014 

9:00 ~ 10:00 22.77 27.5947 33.0685 37.6757 43.0906 48.984 54.6548 60.4796 65.8219 71.4605 77.1003 82.5102 

10:00 ~ 11:00 40.50 48.476 57.3194 64.5943 72.9577 81.8432 90.1586 98.6311 106.492 114.721 123.008 131.119 

11:00 ~ 12:00 94.96 112.622 131.652 147.054 164.513 182.822 199.883 216.584 231.307 246.43 261.286 275.496 

12:00 ~ 13:00 237.68 278.045 319.76 352.463 388.449 424.878 457.519 487.858 513.707 539.348 564.188 588.223 

13:00 ~ 14:00 377.56 434.395 490.946 533.816 579.488 623.641 660.063 694.035 725.818 756.702 786.497 815.698 

14:00 ~ 15:00 469.12 530.433 590.322 636.636 684.963 730.654 767.229 801.303 834.621 866.613 897.346 927.603 

15:00 ~ 16:00 322.57 357.707 391.056 415.576 439.789 461.082 475.725 490.817 509.803 527.281 544.981 564.592 

16:00 ~ 17:00 147.88 157.557 166.978 175.939 184.127 191.278 197.109 203.253 211.547 219.122 226.943 235.925 

17:00 ~ 18:00 1.43 2.1194 2.90787 3.39701 4.00149 4.6163 5.03359 5.4604 5.88492 6.31565 6.75166 7.19303 

18:00 ~ 19:00 0.01 0.0138 0.02075 0.03129 0.04667 0.06857 0.09939 0.12998 0.14874 0.17107 0.19174 0.20477 
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Table B-6 BEV Trip Demands at Different Time of Day under Different BEV Penetration Rate (1,12) 

Time 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

6:00 ~ 7:00 11.177 22.234 33.109 43.984 54.674 65.241 75.684 86.005 96.203 106.280 

7:00 ~ 8:00 19.648 39.076 58.172 77.268 96.030 114.569 132.886 150.983 168.861 186.523 

8:00 ~ 9:00 36.157 71.653 106.230 140.807 174.524 207.702 240.364 272.528 304.214 335.439 

9:00 ~ 10:00 60.462 121.444 183.173 244.901 307.345 370.242 433.575 497.328 561.483 626.022 

10:00 ~ 11:00 69.170 138.772 209.000 279.228 350.055 421.264 492.843 564.777 637.054 709.661 

11:00 ~ 12:00 88.195 176.692 265.653 354.614 444.050 533.815 623.914 714.353 805.140 896.277 

12:00 ~ 13:00 88.631 177.264 265.907 354.551 443.215 531.903 620.621 709.379 798.185 887.049 

13:00 ~ 14:00 83.696 167.181 250.350 333.519 416.379 499.037 581.499 663.772 745.861 827.775 

14:00 ~ 15:00 33.066 66.191 99.377 132.563 165.784 199.013 232.236 265.441 298.615 331.747 

15:00 ~ 16:00 8.087 16.089 23.961 31.834 39.575 47.227 54.791 62.268 69.656 76.957 

16:00 ~ 17:00 1.510 3.003 4.472 5.941 7.385 8.812 10.223 11.617 12.995 14.356 

17:00 ~ 18:00 0.185 0.367 0.547 0.727 0.903 1.078 1.250 1.421 1.589 1.756 

18:00 ~ 19:00 0.017 0.033 0.049 0.066 0.081 0.097 0.113 0.128 0.143 0.158 

Time 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 

6:00 ~ 7:00 116.236 126.074 135.794 145.399 154.891 164.270 173.540 182.703 191.772 200.794 

7:00 ~ 8:00 203.970 221.206 238.234 255.057 271.678 288.102 304.333 320.374 336.250 352.043 

8:00 ~ 9:00 366.217 396.564 426.495 456.022 485.158 513.915 542.306 570.341 598.070 625.651 

9:00 ~ 10:00 690.928 756.184 821.772 887.675 953.877 1020.362 1087.114 1154.117 1221.377 1288.974 

10:00 ~ 11:00 782.583 855.807 929.320 1003.108 1077.160 1151.461 1226.001 1300.765 1375.776 1451.174 

11:00 ~ 12:00 987.777 1079.642 1171.878 1264.489 1357.480 1450.854 1544.615 1638.765 1733.057 1826.389 

12:00 ~ 13:00 975.978 1064.983 1154.072 1243.254 1332.536 1421.927 1511.434 1601.064 1690.872 1781.083 

13:00 ~ 14:00 909.519 991.102 1072.530 1153.812 1234.954 1315.966 1396.853 1477.623 1558.332 1639.209 

14:00 ~ 15:00 364.824 397.836 430.771 463.618 496.368 529.010 561.534 593.934 626.221 658.490 

15:00 ~ 16:00 84.172 91.301 98.345 105.305 112.184 118.981 125.700 132.340 138.911 145.449 

16:00 ~ 17:00 15.701 17.031 18.344 19.642 20.924 22.191 23.444 24.682 25.907 27.126 

17:00 ~ 18:00 1.920 2.083 2.244 2.402 2.559 2.714 2.867 3.019 3.169 3.318 

18:00 ~ 19:00 0.173 0.188 0.202 0.217 0.231 0.245 0.259 0.272 0.286 0.299 



 177 

Table B-7 BEV Trip Demands at Different Time of Day under Different BEV Penetration Rate (5,13) 

Time 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

6:00 ~ 7:00 59.557 119.069 178.534 237.999 297.474 357.031 416.767 476.815 537.358 598.627 

7:00 ~ 8:00 92.941 185.864 278.792 371.719 464.740 557.943 651.475 745.547 840.443 936.528 

8:00 ~ 9:00 100.589 201.252 302.056 402.860 503.883 605.147 706.769 808.899 911.729 1015.490 

9:00 ~ 10:00 66.570 133.153 199.752 266.351 332.957 399.560 466.145 532.693 599.171 665.520 

10:00 ~ 11:00 21.724 43.431 65.039 86.647 107.961 128.825 148.925 167.828 184.968 199.641 

11:00 ~ 12:00 6.176 12.348 18.505 24.662 30.781 36.847 42.823 48.660 54.298 59.659 

12:00 ~ 13:00 1.752 3.503 5.253 7.002 8.752 10.504 12.260 14.023 15.797 17.588 

13:00 ~ 14:00 0.497 0.994 1.490 1.986 2.483 2.980 3.479 3.980 4.486 4.997 

14:00 ~ 15:00 0.141 0.282 0.423 0.563 0.704 0.845 0.987 1.129 1.272 1.418 

15:00 ~ 16:00 0.040 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.361 0.402 

16:00 ~ 17:00 0.011 0.023 0.034 0.045 0.057 0.068 0.079 0.091 0.102 0.114 

17:00 ~ 18:00 0.002 0.003 0.005 0.006 0.008 0.010 0.011 0.013 0.014 0.016 

18:00 ~ 19:00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Time 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

6:00 ~ 7:00 660.912 724.560 789.962 857.541 927.703 1000.778 1076.932 1158.783 1247.353 1342.009 

7:00 ~ 8:00 1034.262 1134.207 1237.030 1343.504 1454.502 1571.013 1694.243 1816.636 1936.912 2060.458 

8:00 ~ 9:00 1120.442 1226.867 1335.045 1445.215 1557.519 1671.934 1788.177 1908.406 2032.020 2156.853 

9:00 ~ 10:00 731.638 797.345 862.337 926.107 987.846 1046.304 1099.620 1147.888 1189.319 1219.345 

10:00 ~ 11:00 211.014 218.158 220.116 216.033 205.355 188.083 165.022 138.571 111.311 85.238 

11:00 ~ 12:00 64.659 69.204 73.202 76.566 79.219 81.105 82.182 82.637 82.506 81.805 

12:00 ~ 13:00 19.404 21.252 23.143 25.089 27.100 29.186 31.352 33.671 36.162 38.807 

13:00 ~ 14:00 5.517 6.048 6.592 7.155 7.737 8.343 8.972 9.646 10.370 11.139 

14:00 ~ 15:00 1.565 1.715 1.870 2.029 2.195 2.366 2.545 2.736 2.942 3.160 

15:00 ~ 16:00 0.444 0.487 0.530 0.576 0.623 0.671 0.722 0.776 0.834 0.896 

16:00 ~ 17:00 0.126 0.138 0.150 0.163 0.177 0.190 0.205 0.220 0.237 0.254 

17:00 ~ 18:00 0.018 0.019 0.021 0.023 0.025 0.027 0.029 0.031 0.033 0.036 

18:00 ~ 19:00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table B-8 GV Trip Demands at Different Time of Day under Different BEV Penetration Rate (1,12) 

Time 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

6:00 ~ 7:00 231.156 217.486 204.059 190.633 177.457 164.450 151.614 138.949 126.457 114.135 

7:00 ~ 8:00 406.459 382.328 358.651 334.973 311.757 288.852 266.258 243.976 222.005 200.343 

8:00 ~ 9:00 750.432 703.206 657.630 612.055 567.999 524.883 482.660 441.287 400.728 360.947 

9:00 ~ 10:00 1251.131 1189.348 1126.717 1064.085 1000.649 936.704 872.272 807.377 742.038 676.278 

10:00 ~ 11:00 1365.096 1297.188 1228.476 1159.764 1090.287 1020.321 949.889 879.007 807.695 735.971 

11:00 ~ 12:00 1606.445 1525.853 1444.633 1363.413 1281.553 1199.270 1116.550 1033.392 949.792 865.740 

12:00 ~ 13:00 1576.463 1495.079 1413.469 1331.858 1250.019 1168.023 1085.864 1003.537 921.035 838.352 

13:00 ~ 14:00 1454.195 1377.171 1300.257 1223.343 1146.545 1069.821 993.170 916.585 840.061 763.592 

14:00 ~ 15:00 657.466 623.062 588.499 553.936 519.250 484.505 449.716 414.900 380.071 345.245 

15:00 ~ 16:00 165.965 156.168 146.542 136.916 127.465 118.134 108.922 99.832 90.864 82.016 

16:00 ~ 17:00 30.983 29.151 27.352 25.553 23.788 22.045 20.324 18.627 16.953 15.301 

17:00 ~ 18:00 3.850 3.622 3.398 3.175 2.956 2.739 2.525 2.314 2.106 1.901 

18:00 ~ 19:00 0.359 0.338 0.317 0.296 0.275 0.255 0.235 0.216 0.196 0.177 

Time 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

6:00 ~ 7:00 101.984 90.002 78.187 66.539 55.054 43.731 32.567 21.559 10.705 0.000 

7:00 ~ 8:00 178.989 157.939 137.190 116.737 96.578 76.707 57.119 37.809 18.772 0.000 

8:00 ~ 9:00 321.914 283.598 245.974 209.016 172.701 137.004 101.906 67.386 33.426 0.000 

9:00 ~ 10:00 610.118 543.579 476.681 409.445 341.890 274.037 205.904 137.508 68.870 0.000 

10:00 ~ 11:00 663.854 591.361 518.511 445.321 371.809 297.993 223.888 149.510 74.878 0.000 

11:00 ~ 12:00 781.240 696.286 610.873 525.000 438.663 351.863 264.596 176.864 88.648 0.000 

12:00 ~ 13:00 755.480 672.411 589.138 505.655 421.955 338.032 253.880 169.494 84.871 0.000 

13:00 ~ 14:00 687.168 610.781 534.423 458.085 381.758 305.433 229.103 152.759 76.396 0.000 

14:00 ~ 15:00 310.436 275.657 240.921 206.243 171.633 137.104 102.665 68.329 34.106 0.000 

15:00 ~ 16:00 73.289 64.683 56.196 47.826 39.574 31.436 23.412 15.499 7.697 0.000 

16:00 ~ 17:00 13.672 12.066 10.482 8.921 7.381 5.863 4.366 2.891 1.435 0.000 

17:00 ~ 18:00 1.699 1.499 1.302 1.108 0.917 0.728 0.543 0.359 0.178 0.000 

18:00 ~ 19:00 0.158 0.140 0.121 0.103 0.085 0.068 0.051 0.033 0.017 0.000 
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Table B-9 GV Trip Demands at Different Time of Day under Different BEV Penetration Rate (5,13) 

Time 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

6:00 ~ 7:00 1134.525 1074.380 1014.310 954.240 894.251 834.322 774.458 714.667 654.953 595.318 

7:00 ~ 8:00 1770.708 1677.323 1583.977 1490.630 1397.329 1304.067 1210.852 1117.693 1024.596 931.569 

8:00 ~ 9:00 1907.515 1807.792 1707.946 1608.100 1508.109 1407.999 1307.746 1207.325 1106.713 1005.891 

9:00 ~ 10:00 1260.874 1194.636 1128.378 1062.119 995.845 929.567 863.290 797.022 730.770 664.545 

10:00 ~ 11:00 412.645 390.804 368.984 347.165 325.369 303.592 281.837 260.105 238.399 216.720 

11:00 ~ 12:00 117.316 111.106 104.901 98.697 92.499 86.306 80.118 73.936 67.760 61.590 

12:00 ~ 13:00 33.278 31.516 29.756 27.996 26.238 24.481 22.726 20.973 19.221 17.470 

13:00 ~ 14:00 9.439 8.940 8.440 7.941 7.443 6.944 6.446 5.949 5.452 4.956 

14:00 ~ 15:00 2.678 2.536 2.394 2.253 2.111 1.970 1.829 1.687 1.546 1.406 

15:00 ~ 16:00 0.759 0.719 0.679 0.639 0.599 0.559 0.519 0.479 0.439 0.399 

16:00 ~ 17:00 0.215 0.204 0.193 0.181 0.170 0.158 0.147 0.136 0.124 0.113 

17:00 ~ 18:00 0.041 0.039 0.036 0.034 0.032 0.030 0.028 0.026 0.024 0.021 

18:00 ~ 19:00 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 

Time 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 

6:00 ~ 7:00 535.761 476.275 416.840 357.428 298.002 238.515 178.931 119.528 60.003 0.000 

7:00 ~ 8:00 838.614 745.728 652.900 560.111 467.326 374.496 281.551 187.411 93.179 0.000 

8:00 ~ 9:00 904.851 803.604 702.184 600.661 499.148 397.810 296.871 196.930 97.948 0.000 

9:00 ~ 10:00 598.354 532.206 466.106 400.049 334.015 267.950 201.749 135.459 68.449 0.000 

10:00 ~ 11:00 195.065 173.429 151.802 130.172 108.522 86.838 65.116 43.465 21.793 0.000 

11:00 ~ 12:00 55.426 49.267 43.111 36.957 30.801 24.641 18.474 12.330 6.182 0.000 

12:00 ~ 13:00 15.722 13.975 12.229 10.483 8.737 6.990 5.240 3.497 1.754 0.000 

13:00 ~ 14:00 4.460 3.964 3.469 2.974 2.478 1.983 1.486 0.992 0.497 0.000 

14:00 ~ 15:00 1.265 1.124 0.984 0.843 0.703 0.562 0.422 0.281 0.141 0.000 

15:00 ~ 16:00 0.359 0.319 0.279 0.239 0.199 0.160 0.120 0.080 0.040 0.000 

16:00 ~ 17:00 0.102 0.090 0.079 0.068 0.057 0.045 0.034 0.023 0.011 0.000 

17:00 ~ 18:00 0.019 0.017 0.015 0.013 0.011 0.009 0.006 0.004 0.002 0.000 

18:00 ~ 19:00 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.000 0.000 
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5% 10% 15% 20% 25% 

29209 29064.5 28925.9 28787.3 28654.1 

30% 35% 40% 45% 50% 

28525 28399.4 28278.9 28164.1 28056 

55% 60% 65% 70% 75% 

27956 27866.6 27789.5 27727.8 27685.2 

80% 85% 90% 95% 100% 

27667 27679.1 27706.9 27727.5 27747.9 

Table B-10 Total System Travel Time Cost with Different BEV Penetration Rates 

5% 10% 15% 20% 25% 

1E+06 1003289 1016291 1006675 1008333 

30% 35% 40% 45% 50% 

1E+06 1011579 1013170 1014740 1016291 

55% 60% 65% 70% 75% 

1E+06 1019337 1020835 1022314 1023773 

80% 85% 90% 95% 100% 

1E+06 1026600 1028024 1029504 1031046 

Table B-11 Total Vehicle Miles Travelled with Different BEV Penetration Rates 
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Appendix C 

 

Link length 23 capacity 

1 20 60 210 

2 20 60 210 

3 11 60 210 

4 18 60 210 

5 15 60 210 

6 59 60 210 

7 7 60 210 

8 18 60 210 

9 20 60 210 

10 23 60 210 

11 22 60 210 

12 25 60 210 

Table C-1 Attributes of the Grid Network Links 
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Link From To Length f0 Capacity 

1 1 5 20.52 35 220 

2 1 12 26.40 35 220 

3 4 5 26.40 35 220 

4 4 9 35.20 35 220 

5 5 6 8.80 35 220 

6 5 9 26.40 35 220 

7 6 7 14.63 35 220 

8 6 10 38.12 35 220 

9 7 8 14.69 35 220 

10 7 11 26.40 35 220 

11 8 2 26.40 35 220 

12 9 10 29.32 35 220 

13 9 13 26.40 35 220 

14 10 11 17.60 35 220 

15 11 2 26.40 35 220 

16 11 3 23.49 35 220 

17 12 6 20.52 35 220 

18 12 8 41.09 35 220 

19 13 3 32.29 35 220 

Table C-2 Nguyen-Dupuis Test Network Attributes 
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