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StarMapper: An Android-based Application to Map

Celestial Objects

John Jason O’Donnell, M.S.E.

The University of Texas at Austin, 2013

Supervisor: Adnan Aziz

This report describes StarMapper, a mobile application designed for the An-

droid platform that interactively maps the celestial sky and can provide Wikipedia

information about celestial objects to the user. The stars, constellations, plan-

ets, sun, and moon are all rendered in real-time and the user can navigate the

celestial map simply by pointing the device around the sky to find and identify

the different celestial objects. However, if the user prefers, a manual touch—

based map navigation feature is also available in StarMapper. While other

Android applications currently exist for mapping the sky, such as Google’s

Sky Map, StarMapper aims to enhance the experience by also providing addi-

tional information about celestial objects to the user by means of a simple click

on the screen. For obtaining more information about a particular constellation

or other celestial object, the user only needs to click on the object’s name in

the map, and the device’s web browser opens to the Wikipedia page of the

clicked object. Through this simple mechanism, the user can learn much more

about astronomy than just locations of celestial objects.
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Chapter 1

Introduction

StarMapper is an interactive, real-time, OpenGL-based application that

maps celestial objects to the device screen, allowing the user to find and see

constellations and stars by simply pointing the device in the sky. The user

can optionally navigate around the map through a manual touch feature, and

also retrieve information from Wikipedia by simply clicking on the names of

the constellations and other celestial objects. The targeted users for StarMap-

per are those who enjoy astronomy and stargazing, such as in the user stories

below.

1.1 User Story 1

Tim is a boy scout on a camping trip for the weekend. After his campfire

dinner, his troop retreats to their respective tents for the night. However, Tim

enjoys looking at the stars at night, and, with the night being clear, decides to

try finding new constellations. Tim opens up StarMapper on his smartphone

and pans it across the sky, easily finding new constellations because of the

intuitive nature of the application. In addition, he is able to locate the planet

Venus, and the star Vega, which he finds is part of the constellation Lyra.
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Wanting more information about Vega, he simply clicks on Vega’s name on

the map and his phone’s web browser opens up to the Wikipedia page for

Vega, where he finds that Vega is the fifth-brightest star in the night sky.

1.2 User Story 2

Bob is an amateur astronomer who enjoys bringing his telescope outside

the city at night to view different objects in the sky. One night, he is unsure

of which object he would like to view, so he opens StarMapper on his phone

and points it across the sky, discovering that Venus, Jupiter, and Mercury are

currently in their ’Dance of the Planets’ formation [22], a planetary conjunction

that only occurs about once a decade. He quickly points his telescope in their

direction to enjoy the spectacle.

1.3 Report Outline

The report begins with a general description of the Android platform,

followed by a discussion of the Android application architecture before delv-

ing into the design and implementation of the StarMapper application itself.

The report is concluded with a development overview, project challenges, key

learnings, and some final thoughts.
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Chapter 2

The Android Platform

Android is an open-source software platform developed by Google,

along with the support of the Open Handset Alliance [13]. It is intended as a

complete software stack that includes everything from the operating system,

through middleware, and up to the applications level. This unified approach

to mobile software development allows the application developers to run their

applications on different mobile devices powered by Android [20].

This chapter presents an overview of the Android platform architecture,

and the key principles underlying its design. The Android software stack con-

sists of a Linux kernel and collection of C/C++ libraries exposed through an

application framework that provides services and management of runtime and

applications. A diagram of the architecture is shown in Figure 2.1. The five

main components are: the Linux kernel, the core libraries, Android Runtime,

the application framework, and the applications themselves [9]. The following

sections will describe in more detail the purpose, principles, and interactions

of each platform component.

3



Figure 2.1: The Android Platform Architecture
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2.1 The Linux Kernel

The latest version of Android, Android 4.4 KitKat, is based on the

Linux kernel version 3.10, while all versions of Android older than 4.0 Ice

Cream Sandwich, were based on Linux kernel version 2.6.x. Android’s Linux

kernel has further architecture changes by Google outside the typical Linux

kernel development cycle, such as a power management feature called ’wake-

locks’ [24]. The Linux kernel acts as an abstraction layer between the device

hardware and the upper layers of the Android software stack. It was chosen

as the foundation of Android for several reasons, including its proven driver

model and the ability to reuse some existing drivers from Linux in Android. It

also contains memory and process management, a security model, networking,

and other core operating system infrastructure [16].

2.2 Native Libraries

The layer directly above the Linux kernel consists of the native libraries

used by the Android architecture. These libraries are written in C/C++, and

consist of components such as the surface manager, which is responsible for

displaying the correct draws from the appropriate applications at the correct

time, and to the appropriate pixels on the screen. The libraries also contain

two sets of graphics libraries: the OpenGL ES library and the SGL graphics

library. The OpenGL ES library is capable of rendering in 3D, while the SGL

library is the main 2D graphics library used by Android. The implementation

of the OpenGL ES library can be accelerated through hardware if the device

5



running the library is capable of it. Android is capable of utilizing both li-

braries within the same application, so both 2D and 3D renderings are possible

simultaneously. The StarMapper application described in this report utilizes

the OpenGL ES library for its 3D perspective capabilities.

The media framework is supplied by the Open Handset Alliance, and

includes all the codecs that make up the media experience, including mpeg4,

h.264, mp3, aac, and other audio and video codecs. The FreeType library

contains the functions necessary for bitmap and vector font rendering done by

Android. An implementation of SQLite is used for creating databases in the

system’s memory. These databases are useful for information storage and also

sharing of data between applications. An open-source browser engine called

WebKit is also included in the C/C++ libraries. It powers the web browser

included in Android, and is also the same engine that powers Apple’s Safari

browser. Google has enhanced the engine to render on small screens, such as

for mobile phones. Also included is the SSL (Secure Socket Layer) library,

which is responsible for network security.

Typically, the native C/C++ libraries are not directly accessed by the

Android application developer; they are accessed solely through the Java-based

Android core library APIs which will be described in the next section. In the

event that direct access to these libraries is needed, it can be achieved by using

the Android Native Development Kit (NDK), the purpose of which is to call

native methods of non-Java programming languages like C/C++ from within

Java code using the Java Native Interface (JNI) [19].

6



2.3 Android Runtime

The Android Runtime was designed by Google specifically to meet the

needs of running Android in an embedded environment [16]. An embedded

environment typically contains limited resources in regards to memory, cpu

power, and battery life. In order to run Android in this type of environment,

Google created the Dalvik Virtual Machine, a special type of a Java Virtual

Machine specifically designed and optimized for Android. The Dalvik Virtual

Machine, along with the Android core libraries, make up the Android Runtime.

2.3.1 The Dalvik Virtual Machine

The Linux kernel provides a multitasking execution environment that

allows multiple processes to execute concurrently. Thus, it is possible that

every active Android application could simply run as a process directly on the

Linux kernel. However, in reality, each Android application runs on its own

instance of the Dalvik Virtual Machine. Running applications in virtual ma-

chines provides a number of advantages. Firstly, applications are essentially

sandboxed, in that they cannot detrimentally interfere (either intentionally or

accidently) with the operating system, other applications or directly access the

device hardware. Secondly, this enforced level of abstraction makes applica-

tions platform neutral in that they are not tied to any specific hardware [19].

The Dalvik Virtual Machine was developed by Google and relies on

the underlying Linux kernel for low-level functionality. It is more efficient

than the standard Java Virtual Machine in terms of memory usage, and is

7



specifically designed to allow multiple instances to run efficiently within the

resource constraints of a mobile device [11]. In order to execute within a

Dalvik Virtual Machine, application code must be transformed from standard

Java class and JAR files at build time to the Dalvik executable format (.dex),

which on average has a 50% smaller footprint than standard Java bytecode [19].

Dex formatted bytecode data structures are also designed to be shared across

processes. This helps to allow multiple Dalvik Virtual Machine instances to

run simultaneously, one for each application that is running. Standard Java

files can usually be converted into Dex format using the dx tool included with

the Android SDK.

2.3.2 Android Core Libraries

The Android core libraries, also known as the Dalvik libraries, contain

the collection classes, I/O, and other tools and utilities that are typically used

both directly and indirectly by Android developers. These libraries form the

foundation of the Android framework. The core libraries fall into three main

categories: Dalvik Virtual Machine Specific Libraries, Java Interoperability

Libraries, and Android Libraries.

2.3.2.1 Dalvik Virtual Machine Specific Libraries

The Dalvik Virtual Machine libraries enable requesting or modifying

Virtual Machine specific information. Code that uses these classes is only

portable across Dalvik-based systems, but are generally not directly used by

8



most Android application developers [14]. Table 2.1 shows the different Dalvik

specific libraries, along with a description of each library [8].

Package Description
dalvik.annotation Defines annotations used within the Android system
dalvik.bytecode Provides classes surrounding the Dalvik bytecode
dalvik.system Provides utility and system information classes

Table 2.1: Dalvik VM Specific Libraries

2.3.2.2 Java Interoperability Libraries

Android applications are developed primarily with the Java program-

ming language. The standard Java development environment includes a vast

array of classes that are contained in the core Java runtime libraries. These

libraries provide support for tasks such as string handling, networking, file ma-

nipulation, and many others that are both familiar and widely used by Java

developers regardless of platform. The Java interoperability libraries are an

open source implementation, based on the Apache Harmony project [6], of a

subset of the standard Java core libraries that have been adapted and trans-

formed for use by applications running with a Dalvik Virtual Machine [19].

Table 2.2 lists some of the most commonly used Java interoperability libraries.

9



Library Description
java.io Provides I/O facilities
java.lang Provides core classes of Android, including Object
java.nio Provides buffer classes to handle data
java.security Provides classes of Java security framework
java.sql Provides interface for accessing SQL databases
java.util Provides an extensive set of utility classes

Table 2.2: Java Interoperability Libraries

2.3.2.3 Android Libraries

The Android libraries encompass the Java-based libraries that are spe-

cific to Android development. The libraries composing the Application Frame-

work fall into this category, in addition to those libraries that facilitate user

interface building, graphics drawing, and database access. A summary of some

key core Android libraries available to developers is given in Table 2.3.

Library Description
android.app Provides access to application model
android.content Facilitates content access between apps
android.hardware Provides API to access device hardware
android.opengl Java interface to Open GL ES 3D rendering API
android.media Provides classes to enable playback of audio/video
android.util Utility classes such as XML handling
android.view Building blocks of application UI
android.widget Collection of prebuilt UI components

Table 2.3: Android Libraries

10



2.4 The Application Framework

The Application Framework is a set of services that collectively form

the environment in which Android applications run and are managed. All An-

droid applications use the Application Framework as their base toolkit. This

framework implements the concept that Android applications are constructed

from reusable, interchangeable, and replaceable components. Because of this

framework, applications also have the ability to publish their capabilities along

with any corresponding data that can be found and reused by other applica-

tions [19]. Table 2.4 shows the managers, services, and providers that make

up the Android Application Framework.

Component Description
Activity Manager Controls application lifecycle
Window Manager Java abstraction layer for SurfaceManager
Content Providers Allows apps to shared data with other apps
Resource Manager Provides access to resources such as UI layout
Notifications Manager Allows apps to display notifications to user
View System Extensible set of views to create application UI
Package Manager Allows apps to find other apps installed on device
Telephony Manager Provides info about telephony services on device
Location Manager Provides access to location services
XMPP Services Provides API for XMPP comms protocol

Table 2.4: The Application Framework

Many of the components in the Application Framework are obvious in

their purpose, but the Content Provider component is a piece of the Appli-

cation Framework that deserves special consideration. It is the component

11



that allows applications to share their data with other applications, and is the

major driver behind reusability and interchangeability in the Android system.

2.5 Applications

The topmost layer in the Android software stack consists of applica-

tions. These comprise both the native applications provided with a particular

Android implementation (such as the web browser, phone, contacts, email,

etc.), and third-party applications downloaded, installed, or developed by the

user of the Android device, such as StarMapper. All of the applications on

this layer are built and use the same framework provided by the layers below

it. The next chapter will discuss in more detail the main building blocks that

can comprise a typical Android application design.

2.6 Summary

Understanding the overall architecture of the Android software stack

helps to create a strong foundation for Android application development. The

key goals of the Android architecture are performance and efficiency in both

application execution and the implementation of reuse in application design.

12



Chapter 3

StarMapper — An Android Application

This chapter will describe the design of StarMapper, an Android ap-

plication that interactively maps celestial objects and provides users with

Wikipedia-based information on those objects. Before reviewing the StarMap-

per application itself, however, we will first go over the general architecture of

an Android application.

3.1 The Android Application Architecture

Android applications are written in the Java programming language.

The Android SDK compiles the application code, along with any application

data or resource files, into an Android package file, with the suffix .apk. An

individual .apk file is considered one application. This is the file used by

Android devices to install the application [17].

Each Android application is comprised of one to four main component

types: Activities, Services, Content Providers, and Broadcast Receivers. An

application can have multiple instances of each of these components. Ac-

tivities, Services, and Broadcast Receivers can be activated between applica-

tions through an asynchronous message system called an Intent. The Content

13



Provider is activated through a ContentResolver. In addition to these com-

ponents, each application must also have a special file called a manifest file,

which declares the components used in the application, along with applica-

tion requirements. Application-specific resources such as image and audio files

make up the final piece of an Android application.

Figure 3.1: The Android Application Architecture

3.1.1 Android Application Components

3.1.1.1 Activities

An Activity is a single, standalone module of application functionality

that usually correlates directly to a single user interface screen and its cor-

responding functionality [18]. An email application, for example, might have
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three activities that comprise it: one for listing all emails, one for opening and

reading a particular email, and one for composing/replying to an email.

Activities are intended to be reusable and interchangeable components

that can be shared between applications. If another application being devel-

oped has a need to send out email messages, it can simply reuse the activity

that composes emails from the example previously mentioned, rather than

develop the same activity specifically for the new application.

Activities must also be implemented completely independent of other

activities in the application. In other words, an activity cannot rely on being

called at a known point in a program flow, since other applications may call

the activity outside of the current application.

3.1.1.2 Services

Services are tasks that do not have a user interface, have a long lifecycle,

and run in the background. They can be both started and managed from

Activities, Broadcast Receivers, or other Services. A Service is intended for

an application that needs to continue to perform a task, but does not need

a user interface visible to the user. Even without a user interface, they can

still notify the user of events through the use of notifications and toasts, which

are small messages that appear on the screen without interrupting the current

Activity visible to the user.

Services are given a higher priority than other processes by the Android

runtime and are only terminated as a last resort by the system to free up

15



resources [18]. If the runtime does need to kill a Service for its resources, that

Service will be automatically restarted once adequate resources are available.

One example of a Service is an audio streaming application. A user

may start a song from an Activity (UI screen) within the audio streaming

application, but once the music begins, the Activity can be closed, and the

user can use other Activities or applications while the music continues to play.

3.1.1.3 Broadcast Receivers

A Broadcast Receiver is a component that does not run until it is trig-

gered by an external event, such as the phone ringing, or the battery becoming

low. This external event is sent to the Broadcast Receiver through a mecha-

nism called a Broadcast Intent, which is described in more detail in the next

section. The Broadcast Receiver must be further configured with an Intent Fil-

ter to indicate the types of Broadcast Intents in which it is interested. When

a matching Broadcast Intent is received, the Broadcast Receiver is invoked

by the Android runtime regardless of whether the application that registered

the Receiver is currently running in the foreground. Broadcast Receivers then

have a limit of five seconds to complete any tasks that are required of it [18].

This is to ensure major processing work is not done inside the Receiver.

Broadcast Receivers operate in the background and, like Services, do

not have a user interface.
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3.1.1.4 Content Providers

A Content Provider is the mechanism that allows data to be shared

between applications within Android. The Contacts application built into

most Android implementations is a good example. It contains a Content

Provider that other applications can use to access the user’s stored database

of contacts on the Android device.

Content Providers can also be useful for reading and writing data that

is private to the application, and not shared with other applications. For

example, a NotePad application can use a content provider to save notes input

by the user.

3.1.2 Intents and Content Resolver

3.1.2.1 Intents

Activities, Services, and Broadcast Receivers are activated by an asyn-

chronous message called an Intent [17]. Intents bind components to each other

at runtime. They act as messengers for a component that requests an action

from other components, whether the other components belong to the current

application or another application. An Intent can specify whether to activate

a specific component, or just a specific type of component. In other words, the

Intent can be either explicit or implicit.

Activities and Services use Intents to determine what action to perform,

and the Intent may also specify the URI (Uniform Resource Identifier) of the

data to act upon. In cases where an Intent is used to request an Activity to
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start, an Intent can also be used for the requested Activity to return a result.

One example is allowing a user to select a contact from the user’s contact

database, and returning the contact information in a URI contained within an

Intent.

Broadcast Intents are system-wide Intents sent out to all applications

with a registered Broadcast Receiver. Broadcast Receivers whose registration

matches the Broadcast Intent are then invoked by the Android system. Unlike

Intents for Activities and Services, which define the action to perform, Broad-

cast Intents simply define the announcement being broadcast. A Broadcast

Intent can be an asynchronous Intent that is broadcast to all Broadcast Re-

ceivers at the same time, or it can ordered in such a way that it is sent to one

Receiver at a time, processed, then aborted or allowed to proceed on to the

next Broadcast Receiver.

3.1.2.2 Content Resolver

Content Providers are activated when targeted by a request from an

object called a Content Resolver. Content Resolvers handle all direct trans-

actions with Content Providers so that the component requesting the trans-

actions with the Provider only needs to call methods on the Content Resolver

object. This leaves a layer of abstraction and security between the requesting

component and the Content Provider.
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3.1.3 The Android Manifest

The Android Manifest file pulls together the various elements that com-

prise an Android application. It is an XML file that declares all the Activities,

Services, Broadcast Receivers, and Content Providers that make up the appli-

cation. Figure 3.2 shows the declaration of the main Activity component in

the StarMapper application. In addition to component declarations, the Man-

Figure 3.2: Activity Component Declaration in StarMapper Manifest File

ifest file also declares required user permissions needed by the application, the

minimum SDK version needed, required hardware and software features, and

and API libraries the application needs (other than the Android framework

APIs) [17].

3.1.4 Application Resources

A typical Android application will a contain a collection of resource files

that hold strings, images, fonts, and other types of data that appear in the user

interface in conjunction with the XML representation of the UI layout [17].

The resource files are typically stored in the application’s /res directory. The

19



subdirectories within the /res are allowed to have qualifiers in their names to

provide alternative resources for different device configurations, such as when

the device’s screen orientation is switched between portrait and landscape, and

also for different screen resolutions.

3.1.5 Summary

Activities, Services, Broadcast Receivers, and Content Providers are

combined together with an Android Manifest File and application resources to

create an Android application. Intents and Content Resolvers are the primary

means by which the four main components allow reuse, interoperability, and

data sharing between applications, and even between different components of

the same application. The Android Manifest file contains the declaration of all

the components for a particular application, in addition to other requirements

needed by the application. Application resources, along with XML layout files,

are used to form the user interface of the application.

Now that we have an understanding of the typical Android application

architecture, let us look into StarMapper, an Android application that follows

the Android application structure discussed here.

3.2 StarMapper Activity Class

The top-level component of the application is the StarMapper Activity

class. This Activity runs on application startup and instantiates many of the

central classes required for the application to function, such as the GLSurface-
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View object, and the main rendering class, called StarMapperRenderer, that

runs the OpenGL graphics engine that supplies the main user interface. It also

handles the hardware sensor setup, user preference settings, processes touch

inputs from the user, retrieves Content Providers, and instantiates the User

model class that represents data associated with the user of the application.

Figures 3.3 and 3.4 show UML class diagrams of the StarMapper Activity and

renderer, respectively. Some of the fields and methods in the classes have been

removed for brevity and clarity in the diagram.

3.2.1 Device Location

One of the first tasks the StarMapper Activity performs upon startup

is determine the device’s current location. The Android System provides a

Location Service that applications can access to achieve this. When accessed,

it returns a LocationManager object. An additional object, called a Criteria

object, can be used as a filter to help select the best content provider for lo-

cation based on the settings of the Criteria object. For a location provider,

the best provider would be able to return a location with the minimum accu-

racy required by the application. Two example location providers would be a

wireless network location provider, which gives coarse coordinates, and GPS,

which provides much more accurate results.

For the StarMapper application, it is necessary to achieve the highest

accuracy available since the quality of the application is highly dependent on

precise measurements and calculations of both the device and the celestial
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Figure 3.3: StarMapper Activity with Sensor, User, and Renderer Classes
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Figure 3.4: StarMapper Renderer with Celestial Object Classes and Managers
23



Figure 3.5: StarMapper GPS Location Provider

objects. Because of this dependency, GPS is used since it provides the most

accurate measurements. The current latitude and longitude of the device are

then retrieved from the content provider, and stored for future use. Figure 3.5

shows the section of the StarMapper Activity that provides the GPS coordi-

nates of the device.

3.2.2 Menu

The menu is where the user can adjust application settings such as

which celestial objects to display on the map interface, and also where the

user can adjust between auto and manual modes of the application. The auto

mode utilizes the hardware sensors to determine what section of the sky is

displayed on the device screen, and manual mode relies on touch input. Figure

3.6 shows the main options menu of StarMapper. Note that the Mode option

is not currently used by the application, and so does nothing when clicked.
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Figure 3.6: StarMapper Main Menu

3.2.3 User Settings

The menu of the StarMapper application is implemented through the

use of a Shared Preference and a Preference Fragment. These objects pro-

vided by the Android system allow an easy interface between the hardware

menu button on a device and the menu design the developer would like the

application to use. Fig 3.7 shows StarMapper’s settings page, which overlays

the main map when open.

3.2.3.1 Shared Preference

A Shared Preference object is an application-internal content provider

by which different components within an application keep the user’s current

settings in sync. One Shared Preference is instantiated for the entire appli-

cation and is accessed by each component as needed. Upon instantiation, an

XML file containing the application-specific settings is consumed by Android’s

PreferenceManager to set the user’s default values. This allows for easy mod-

ification of the settings menu after creation. Figure 3.8 shows StarMapper’s

preference XML. A Listener for the Shared Preferences object is then regis-

tered with Android to detect and update any settings changes made by the
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Figure 3.7: StarMapper Settings
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user.

Figure 3.8: StarMapper XML Preferences

3.2.3.2 Preference Fragment

The Preference Fragment controls the actual user settings in StarMap-

per. It operates as a modular section of the Activity in which it runs. It also

consumes the XML file shown in Figure 3.8 to determine the list and hierarchy

of preferences for the StarMapper application.
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3.3 The StarMapper Renderer

The StarMapper Renderer class is an implementation of the GLSur-

faceView.Renderer interface, and the main user interface to the StarMapper

application. It utilizes the OpenGL engine as the graphics renderer, and han-

dles all the associated setup and matrices involved with OpenGL, such as

loading the texture data and initializing the vertex and fragment shader pro-

grams. It also contains the instantiations of each celestial object manager, and

calls the methods of each manager to update the draw-related data of each

object.

The three main methods that need to be implemented in the GLSur-

faceView.Renderer interface are: onSurfaceCreated, onSurfaceChanged, and

onDrawFrame. The onSurfaceCreated method is called when the renderer is

created and is used as an initializer for OpenGL application-level settings,

such as loading the texture data. The onSurfaceChanged method is called

whenever the screen orientation changes, and can be used to control different

view layouts for an application to use as the user changes how he is holding the

device. The current width and height of the screen are passed into the method

as parameters and saved by the StarMapper application as field variables to

be used during OpenGL perspective matrix calculations. The OnDrawFrame

method is called once per frame by the application. It is this method that

calls all the draw methods of each object manager, which updates all the draw

data and performs the actual draws to screen through the use of OpenGL API

calls.
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3.3.1 OpenGL for Embedded Systems

Android utilizes OpenGL for Embedded Systems (OpenGL ES) as a

component within its core libraries. OpenGL ES is a subset of the OpenGL

rendering API, optimized for use within embedded environments, such as the

introduction of fixed-point data types, since embedded processors may not

have a floating-point unit.

StarMapper uses OpenGL ES version 2.0, which removes the fixed-

function pipeline dependency inherent in OpenGL ES version 1.x, and re-

places it with a programmable pipeline, as shown in Figure 3.9. This allows

Figure 3.9: OpenGL ES 2.0 Programmable Pipeline

more freedom to the graphics programmers, but also results in more code

since the pipeline must be implemented as custom shader programs [23]. The
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orange boxes in Figure 3.9 show the placement of the vertex and fragment

shaders written by the programmer within the graphics pipeline. Because

of the shader program requirement, the OpenGL ES 2.0 version required by

StarMapper must be declared in the Android manifest file. Furthermore, sup-

port for OpenGL ES 2.0 did not become available in Android until API level

8, so a required Android SDK version must also be specified in the manifest.

Figure 3.10 shows the StarMapper specifications.

Figure 3.10: StarMapper Required SDK/OpenGL Versions

3.3.1.1 Shader Programs

Shader programs are small programs written in GLSL (GL Shader Lan-

guage) and compiled to run on the device’s GPU [3]. StarMapper’s shaders are

set up inside the onSurfaceCreated method within the renderer. Setup includes

passing the shader programs as strings into the OpenGL API for compilation,

linking them to each other and the application, and binding the I/O of the

shader programs to Java handles in the renderer.

StarMapper’s vertex shader is responsible for translating the input ver-

tices of each celestial object from object coordinates into normalized device
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coordinates, where the X and Y axes ranges are (-1,1) [5]. To achieve this, an

MVP (ModelViewProjection) matrix is passed into the vertex shader which

acts as the vertex transformation matrix. The vertex shader is called once per

vertex.

The fragment shader in StarMapper provides the color to objects that

will be rendered. Unlike the vertex shader, the fragment shader is called

once per fragment (pixel), with the possibility of doing color interpolation

of fragments between vertices. Because the celestial object textures used in

StarMapper already have accurate color, the fragment shader simply maps

each color fragment to its corresponding color from the texture. No additional

lighting or coloring effects are needed.

3.3.1.2 OpenGL Matrices

OpenGL matrices translate all objects to be rendered from their own

space into the normalized device coordinates. The three main matrices used

are the model matrix, view matrix, and projection matrix.

The model in the case of StarMapper is the representation of the entire

sky. The sky can be thought of as a spherical shell that completely surrounds

the user, and this shell acts as the model object for which the model matrix is

defined. The model matrix shifts objects from object space, where the object

is the center of the universe, into world space, where different objects can be

placed relative to each other. Because the user is essentially always at the

center of this sky shell, the model matrix needs only be set to the identity
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matrix, and can be kept constant, as in Equation 3.1.

Mmodel =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.1)

The view matrix for StarMapper can be thought of as the ’camera’ ma-

trix, since it defines the eye location (where the camera is), the look direction

(where the camera is pointing), and the normal to the look direction (to deter-

mine whether the camera is upside down). Unlike the model matrix, which is

kept constant, the look and normal directions are constantly changing as the

user looks around the sky. The view matrix is a primary determiner of what

section of sky is currently displayed to the screen at any given time. Multi-

plying the vertices of any object by the combination of the model matrix and

view matrix will convert the vertices into modelview space. In other words,

it will translate the location of the vertices into their locations within the sky

shell. The view matrix is given in Equation 3.2.

Mview =


xeye xlook xnormal 0
yeye ylook ynormal 0
zeye zlook znormal 0
0 0 0 1

 (3.2)

The projection matrix in StarMapper is responsible for converting the

sky shell, which has a 3D (spherical) context, onto a 2D device screen [1]. To

achieve this, a gnomonic projection is used [25]. A gnomonic projection maps

the surface of a sphere onto a flat surface, from the point-of-view of the center

of the sphere. The projection matrix used in StarMapper is given in Equation
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3.3.

Mprojection =



1

A tan(FOV
2

)
0 0 0

0
1

tan(FOV
2

)
0 0

0 0 −(Zfar + Znear)

(Zfar − Znear)
− 2ZfarZnear

(Zfar − Znear)
0 0 −1 0


(3.3)

where

A = Aspect Ratio

FOV = Field of View in radians

Zfar = Furthest projection depth

Znear = Nearest projection depth

The field of view (FOV) must be given in radians because the Java trigono-

metric methods operate on only radians [7].

The product of the model, view, and projection matrices is the MVP

(ModelViewProjection) matrix, which is passed into the vertex shader, as

shown in Equation 3.4.

MMV P = (Mmodel ×Mview) ×Mprojection (3.4)

3.4 Celestial Object Managers

The celestial object managers maintain and update the data related

to each of the celestial objects displayed by StarMapper’s renderer, with one
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manager class for each of the seven types of celestial objects in the appli-

cation. Each manager is instantiated within the StarMapper Renderer class

and initialized within the onSurfaceCreated method that is called when the

Renderer class is instantiated in the StarMapper Activity. Initialization of

each class involves building the object data of each manager, creating the text

labels associated with each object, initializing all needed buffers for OpenGL

API calls, an initial update of the draw data of each object, and loading the

texture data. The following sections will describe in more detail each celestial

object manager.

3.4.1 The Constellation Manager

The constellation manager handles the constellation data, which in-

cludes the major stars that comprise each constellation and the lines that

connect them into the well-known figures such as Ursa Minor and Orion. The

data for the stars in each constellation comes from the Yale Bright Star Cat-

alogue, a star catalogue containing data for all stars with stellar magnitude

of 6.5 or greater, which is roughly every star visible to the naked eye from

Earth [10].

The data in the star catalogue includes information such as a star’s

apparent magnitude (the magnitude after factoring in atmospheric effects),

the right ascension and declination, and the constellation region in which the

star resides. The pertinent data from the star catalogue was translated into

a text file that is parsed and processed during initialization of the constella-
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tion manager. Each line of the text file contains all the data needed by the

application for one constellation. It contains the constellation name, each ma-

jor star’s name (Bayer designation) [2], the right ascension, declination, and

apparent magnitude of each major star. Each star is also assigned an integer

ID that is used to identify the star connectivity of the lines that make up the

constellation figure. The right ascension and declination are analogous to lat-

itude and longitude; they are used to position the star on the celestial sphere.

The magnitude is used to determine the size of the star texture on the screen,

representing the brightness of the star.

A Constellation class was created to hold the star and line data for each

constellation, and the constellation manager contains a set holding all of the

constellation objects. During each frame, the buffers containing the draw data

are updated with the latest data, then drawn using the OpenGL API draw

calls. Figure 3.11 below shows the Orion constellation as it is drawn in the

application, along with labels of two of its major stars, Betelgeuse and Rigel.

3.4.2 The Planet Manager

The planet manager handles all the planet data, which includes calcu-

lating and storing the real-time positions of each planet in the celestial sphere.

Because the planets follow elliptical orbits around the sun, their paths can be

represented mathematically with special factors known as the planetary orbital

elements. The six orbital elements used to represent each planet are given in

Table 3.1. Each orbital element consists of two components: the mean orbital
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Figure 3.11: The Orion Constellation in StarMapper
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Symbol Name
a Mean Distance from Sun
e Eccentricity
i Inclination
Ω Ascending Node Longitude
ω Perihelion Longitude
L Mean Longitude

Table 3.1: The Planetary Orbital Elements

element value, given by Emean, and the orbital element’s rate of change, given

by Eroc. Each orbital element Eorb is then given by

Eorb = Emean + Eroct (3.5)

where t equals some amount of time.

If we assume some point in time as the reference point where t = 0,

and we also know the position of the planet at t = 0, then we can calculate the

position of the planet at any given time starting from t = 0. This reference

point in time is known as an epoch. At the beginning of the epoch, the orbital

elements are equal to their mean orbital element values

Eorb = Emean

StarMapper uses the latest epoch available, called J2000.0, which began

at approximately 12:00 GMT on January 1, 2000. The mean orbital element

values and rates of change for each planet are precalculated and stored as

constants for the J2000.0 epoch, and we need only plug in the time since
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J2000.0 to calculate the real-time orbital elements for each planet. The current

time is retrieved according to the device’s time zone location using Android’s

GregorianCalendar and TimeZone classes. The J2000.0 time is then subtracted

from the current time, and the resulting time is used to calculate and store

each real-time orbital element for each planet. It is important to note that the

precalculated mean orbital element values and rates of change lose accuracy

over time due to gravitational perturbations and inexactitudes, so the latest

available epoch should always be used in the calculations to minimize the error.

To calculate the real-time positions of each planet in the celestial sphere,

Schlyter [15] has created simplified versions of Van Flandern’s and Pulkkinen’s

Low-Precision Formulae for Planetary Positions [21]. We must first calculate

the eccentric anomaly E. From Schlyter [15], we have

E = M + e sin(M)(1.0 + e cos(M)) (3.6)

where

M = L− ω

If more accuracy for the eccentric anomaly is required, we can set E0 = E, and

use the iterative formula [15] given by Equation 3.7 until the delta between

E0 and E1 is sufficiently close.

E = E0 − E0 − esin(E0) −M

1 − ecos(E0)
(3.7)

Next, the true anomaly, V , must be calculated. Again, from Schlyter [15], we

have

V = 2 arctan

(√
1 + e

1 − e
tan

(
E

2

))
(3.8)
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With the true anomaly, the heliocentric coordinates of the planets can be

calculated as follows [15]:

Xhelio = Rhelio cos(Ω) cos(V + ω − Ω) − sin(Ω) sin(V + ω − Ω) cos(i) (3.9)

Yhelio = Rhelio sin(Ω) cos(V + ω − Ω) + cos(Ω) sin(V + ω − Ω) cos(i) (3.10)

Zhelio = Rhelio sin(V + ω − Ω) sin(i) (3.11)

where Rhelio is the heliocentric radius of the planet, and is given by

Rhelio =
a(1 − e2)

(1 + e) cos(V )

We now have the heliocentric (Sun-centered) coordinates of the planet. How-

ever, we want the geocentric (Earth-centered) coordinates of the planet. We

can obtain ecliptic geocentric coordinates by subtracting the Earth’s heliocen-

tric coordinates from the planet’s heliocentric coordinates [15], as in Equations

3.12, 3.13, and 3.14.

Xgeo,ecl = Xhelio −Xhelio,Earth (3.12)

Ygeo,ecl = Yhelio − Yhelio,Earth (3.13)

Zgeo,ecl = Zhelio − Zhelio,Earth (3.14)

Earth’s heliocentric coordinates can be calculated using Equations 3.9, 3.10,

and 3.11.

Because the Earth travels along its own orbit at an angle to the celestial

equator, and not directly on the celestial equator, we must account for this

angle when converting to geocentric coordinates on the celestial sphere. This
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angle between Earth’s orbit and the celestial equator is called the ecliptic

obliquity, and is shown in Figure 3.12. The ecliptic obliquity, ε, is calculated

Figure 3.12: Earth’s Ecliptic Obliquity

on a per-epoch basis, and is considered a constant for that epoch. The value of

the ecliptic obliquity for the J2000.0 epoch and used by StarMapper is given

in Equation 3.15.

ε = 23.439281 (degrees) (3.15)

The final geocentric coordinates of the planet, from Schlyter [15], are then

given by

Xgeo = Xgeo,ecl (3.16)

Ygeo = Ygeo,ecl cos(ε) − Zgeo,ecl sin(ε) (3.17)

Zgeo = Ygeo,ecl sin(ε) + Zgeo,ecl cos(ε) (3.18)

From these, the planet’s right ascension and declination can be easily calcu-
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lated [15]:

RA = arctan

(
Ygeo
Xgeo

)
Dec = arctan

(
Zgeo√

X2
geo + Y 2

geo

)

A Planet class was created to hold all the planet position data calcu-

lated by the manager, and the manager contains a Planet set that holds all

the planet objects. Each frame, the planet manager’s draw method is called

to draw the planets to the screen in their calculated positions. Figure 3.13

below is a screenshot of StarMapper showing the planet Mars at the top of

the screen, along with the constellations Crater, Corvus, and Virgo.

3.4.3 The Sun Manager

The sun manager is similar to the planet manager in that it calculates

and stores the real-time position of the sun in the celestial sphere. The calcu-

lations are also similar to the planets in that the sun also has orbital element

values that are used to determine its position. While in actuality the Earth

orbits the Sun, we can treat the Earth as if it is centered, and the Sun orbits

around it. This allows us to represent the orbit of the Sun using the orbital

elements. In addition, the calculations are made simpler by the fact that we do

not need to do heliocentric-to-geocentric coordinate conversions, since repre-

senting the Earth as centered will allow us to calculate geocentric coordinates

by definition.

To calculate the sun’s real-time position, we introduce a few new orbital
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Figure 3.13: Screenshot of the Planet Mars in StarMapper

42



elements in Table 3.2. The sun manager uses the same epoch (J2000.0) and

Symbol Name
g Mean Anomaly of Sun
q Mean Longitude of Sun
L Geocentric Apparent Ecliptic
e Obliquity of Sun’s Ecliptic

Table 3.2: Orbital Elements of the Sun

current time (GregorianCalendar and TimeZone-based) as the planet man-

ager. The real-time orbital element values for the sun can be calculated using

Equation 3.5. Using precalculated values from the U.S. Naval Observatory

Astronomical Applications Department (USNOAAD) [4], we have

g = 357.529 + 0.98560028t

q = 280.459 + 0.98564736t

where t is the time since the J2000.0 epoch, and, from the USNOAAD [4],

L = q + 1.915 sin(g) + 0.020 sin(2g)

The sun’s ecliptic obliquity can be calculated by

e = 23.429 − 0.00000036t

Then the sun’s real-time right ascension and declination can be calculated [4]:

RA = arctan

(
cos(e) sin(L)

cos(L)

)
Dec = arcsin

(
sin(e) sin(L)

)

43



An instantiation of the Sun class in the sun manager holds the sun

object along with the real-time position data. Like the other managers, the

sun manager’s draw method is called once per frame from the onDrawFrame

method in the Renderer class. Figure 3.14 shows the sun as it is rendered in

StarMapper.

3.4.4 The Moon Manager

The moon manager handles the position calculations and data storage

for the moon in the celestial sphere. While the calculations of the moon’s

position may seem more complicated due to the moon orbiting around both

the Earth and the Sun, they are actually simplified by the fact that we only

care about the orbit in relation to Earth. Because of this, we can use the exact

same equations described in the Section 3.3.2 The Planet Manager, with one

main exception, the orbital element a. For the planets, a is equal to the mean

distance from the sun. However, for the moon, a is equal to the mean distance

from the Earth. By making this substitution, Equations 3.9, 3.10, and 3.11

give the geocentric coordinates of the moon, rather than heliocentric.

While the geocentric coordinates are directly returned, they must still

be adjusted for the ecliptic of the Earth. Furthermore, because the moon’s

position is tied to the Earth, which travels along the ecliptic, we cannot sim-

ply use the ecliptic obliquity constant as in Equations 3.16, 3.17, and 3.18.

We must account for the longitudinal ecliptic, εmoon,lon, and latitudinal ecliptic,

εmoon,lat, of the moon relative to the Earth’s ecliptic. Given that the moon’s
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Figure 3.14: Screenshot of the Sun in StarMapper
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ecliptic coordinates Xmoon,ecl, Ymoon,ecl, and Zmoon,ecl are calculated using Equa-

tions 3.9, 3.10, and 3.11 respectively, from Schlyter [15], the moon’s ecliptics

are calculated as follows:

εmoon,lon = arctan

(
Ymoon,ecl

Xmoon,ecl

)
εmoon,lat = arctan

(
Zmoon,ecl√

X2
moon,ecl + Y 2

moon,ecl

)

The geocentric ecliptic coordinates of the moon can then be calculated [15]:

Xgeo,ecl = a cos(εmoon,lon) cos(εmoon,lat)

Ygeo,ecl = a sin(εmoon,lon) cos(εmoon,lat)

Zgeo,ecl = a sin(εmoon,lat)

Finally, from Schlyter [15], the geocentric coordinates of the moon are calcu-

lated using the ecliptic obliquity constant from Equation 3.15:

Xgeo = Xgeo,ecl

Ygeo = Ygeo,ecl cos(ε) − Zgeo,ecl sin(ε)

Zgeo = Ygeo,ecl sin(ε) + Zgeo,ecl cos(ε)

And the right ascension and declination [15]:

RA = arctan

(
Ygeo
Xgeo

)

Dec = arctan

(
Zgeo√

X2
geo + Y 2

geo

)
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Because of the small size of the moon relative to the other masses in the

solar system, and its close proximity to the Earth, the moon is also affected

by other perturbations, such as the Evection and the Variation that cause

a small margin of error in regards to the previous calculations. While it is

possible to account for these errors through additional equations, the position

calculations up to this point will always be within two degrees of their true

value [15]. Because of the complexity of adding the perturbation calculations

for a minor improvement in accuracy, it was decided that two degrees of error in

the moon’s position was acceptable. Also, changes in the waxing and waning of

the moon were not included in the moon manager. Showing the current phase

of the moon is a prime candidate for future enhancement of the StarMapper

application.

The Moon class is instantiated in the moon manager and holds data

relevant to the moon. Figure 3.15 shows the moon in StarMapper.

3.4.5 The Grid Manager

The grid manager is responsible for creating and drawing the celes-

tial grid lines representing the right ascension and declination coordinates in

StarMapper. There are a total of 24 right ascension lines (one per 15 degrees)

and 10 declination lines (one per 18 degrees). Each of the grid lines is sepa-

rated into segments with vertices at each intersection of segments. This can

give a line the appearance of bending if needed. The more vertices a line has,

the smoother the bending will appear.
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Figure 3.15: The Moon in StarMapper
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The right ascension lines represent great circles on the celestial sphere,

and so will always appear to be straight lines in a gnomonic projection. Each

right ascension line therefore only has three vertices, one at each celestial pole,

and one at the celestial equator. The declination lines each have thirty-six

vertices, since they will always appear to bend except at the celestial equator.

A Grid class instantiated inside the grid manager stores all the data

relevant to the grid, for both right ascension and declination lines. Figure 3.16

shows the grid in StarMapper.

3.4.6 Background Star Manager

The background star manager randomly generates stars that are not

part of any constellations to make the map display more visually appealing.

Each of the stars that are part of the background have an apparent magnitude

of between 4.5 and 6.0. This makes them generally less bright than all except

the smallest constellation stars.

The random star generator randomly creates a right ascension and dec-

lination value for each background star. Due to the structure of the celestial

sphere, a weighted random generator needed to be used. A linear random

generator would have resulted in stars that appeared bunched at the celestial

poles, and sparse near the celestial equator. Therefore, the celestial sphere

was divided into 11 declination zones. A number was randomly generated be-

tween 0 and 100 that determined which declination zone a star was placed in

according to Table 3.3. The same Star class that is used by the constellation
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Figure 3.16: The Celestial Grid in StarMapper
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Random Number Declination Zone
0-3 0
4-9 1
10-18 2
19-30 3
31-42 4
43-57 5
58-69 6
70-81 7
82-90 8
91-96 9
97-100 10

Table 3.3: Declination Zone Placement of Randomly Generated Background
Stars

manager is used to create and store the data of each background star. A set of

these stars is then stored in the background star manager. Figure 3.17 shows

some background stars in StarMapper.

3.5 Touch Input

The StarMapper application is designed to be user interactive, and

part of that interaction involves the touch interface that is integrated into

most mobile devices today. The StarMapper Activity class has a method

for handling touch events called onTouchEvent that is passed a MotionEvent

object as a parameter. The MotionEvent object describes the type of touch

being passed into the method. How the onTouchEvent handles the touch input

is dependent on both the type of touch that occurred and the mode of operation
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Figure 3.17: Background Stars in StarMapper
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that StarMapper is in at the time of the touch input. The only exception

is clicking on celestial object labels. In this case, the mode of operation is

irrelevant.

The two modes of operation that StarMapper can operate in are auto

and manual mode. The user can alternate between modes by repeatedly se-

lecting the auto/manual screen button on StarMapper’s main options menu

(see Figure 3.6). In auto mode, the application uses the hardware sensors to

determine what section of the star map to display on the device screen. This

is based on how the user is holding or pointing the device. In manual mode,

the user applies touch inputs to move around the sky map, with additional

display features added specifically for manual-mode. The following sections

will describe in more detail how touch input is handled based on the mode of

operation.

3.5.1 Manual Mode Touch

In manual mode, the user must touch the device screen to navigate

around the star map. If the user simply presses down on the screen with

a single finger and drags it deliberately a detectable distance, the map will

be dragged in the same direction accordingly. The hardware sensors are also

disabled when in manual mode. This is done by unregistering the listeners

associated with each hardware sensor. Changes in sensor readings are then

ignored by StarMapper.

Certain navigation features for StarMapper are available only when the
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application is in manual mode. They include Zoom, Rotation, and Flinging.

Each of these navigation features are described below.

3.5.1.1 Zoom

The zoom feature allows the user to zoom in and out to see more or

less of the star map on the screen. The maximum field of view when zooming

out (min zoom) is 90 degrees, and the minimum field of view when zooming in

(max zoom) is 15 degrees. Using the zoom feature requires two simultaneous

touches of the device screen. To zoom in, the two touches must drag apart

diagonally in opposite directions, one towards the bottom left of the screen,

the other towards the upper right. To zoom out, both touches must drag

towards the center of the screen, one from the bottom left, the other from the

upper right. The zoom feature is implemented as a separate Zoom class to give

better encapsulation, allowing the min/max zoom limits to be easily modified.

The Zoom class is instantiated inside the StarMapper Activity and utilized

inside the onTouchEvent method. It implements a method called ZoomBy

that handles both zooming in and out, and returns the updated field of view

for the application after zoom.

3.5.1.2 Rotation

The rotation feature allows the user to rotate the star map around an

axis that projects perpendicular to the device screen (the Z-axis). Like the

zoom feature, it also requires two simultaneous touches of the device screen.
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Figure 3.18: StarMapper in Minimum Zoom
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Figure 3.19: Maximum Zoom on Ursa Minor (The Little Dipper)
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However, the dragging motion of the touches for rotation is distinct from

zooming. Whereas zooming requires diagonally dragging apart or together,

rotation requires rotating the two touches in either a clockwise or counter-

clockwise manner. The star map will rotate accordingly, while maintaining

the same field of view.

The mathematics behind the rotation feature is complex, requiring the

creation of a trigonometric rotation matrix based on the angle of rotation

that is then used for matrix/vector multiplication, but essentially the rotation

feature updates the Normal vector in the OpenGL View matrix (see Equation

3.2) while maintaining the Look and Eye vectors.

3.5.1.3 Flinging

Flinging is a feature that simulates inertia in the star map. It is ac-

tivated by pressing down with one finger on the device screen, then quickly

sliding and releasing. The result is that the star map is flung a certain dis-

tance, depending on how fast the user slid across the screen. The star map

will initially move quickly, then slow down over time, and eventually come

to a complete stop. It is useful for quickly navigating across the star map in

manual mode.

Flinging is defined in a separate Flinger class and is an extension of a

GestureDetector Listener. The onFling GestureDetector method is overridden

to customize the amount of inertia the star map simulates. The actual flinging

task runs on a separate, concurrent thread under a Java Scheduled Executor
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Service. This Service will run the fling task periodically until the star map’s

calculated inertia (a measure of the rate of change in the X and Y direction)

falls below a certain threshold. The concurrent thread of the Executor Service

is necessary, since the flinging task cannot run on the main thread or it would

freeze the application while waiting for each screen refresh from the fling.

3.5.2 Celestial Object Labels

Clicking the celestial object labels will open up the Android web browser

to the Wikipedia page of the object whose label was clicked, regardless of

whether the application is currently in auto or manual mode. The label click-

ing feature is designed as a quick way for the user to obtain information about

a celestial object of interest in the star map. Figure 3.20 shows the mobile

Wikipedia page of the sun after clicking on the Sun label in StarMapper.

The celestial object label clicking feature works by keeping track of the

X and Y coordinate box where each label resides. If the user clicks somewhere

in a label’s box, then releases within a twenty pixel threshold of where the

click occurred, the Wikipedia URL is built into a string and passed into an

Intent, which itself is passed into a startActivity method. Android will then

parse the URI within the Intent and open the web browser to the Wikipedia

page specified by the URL packaged inside the Intent.
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Figure 3.20: Wikipedia Page of the Sun
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3.6 Hardware Sensors

There are two hardware sensors used in auto mode of the StarMapper

application: the accelerometer sensor and the magnetic field sensor. The ac-

celerometer sensor determines the tilt of the device, such as if it were flat on a

table, or perpendicular to the floor, or at some angle inbetween. The magnetic

field sensor is used to determine the direction of North relative to where the

device is located. With these two readings, along with the GPS coordinates

of the device and the current time, StarMapper is able to accurately map

the stars to the device screen, revealing the constellations and other celestial

objects, as the user points the device around the sky.

An AccelerometerModel and MagneticFieldModel class are created to

model the hardware sensors and provide sensor data to StarMapper by imple-

menting sensor event listeners.

3.6.1 Sensor Service

When the StarMapper application is first started, an instance of An-

droid’s Sensor Service is retrieved. The Sensor Service contains sensor informa-

tion for the current device, including which sensors are available. StarMapper

checks to ensure both an accelerometer and magnetic field sensor are available;

if not, auto mode is disabled and the application only runs in manual mode.

Otherwise, listeners for the hardware sensors are registered with the Sensor

Service. The sensors then provide continuous readouts that can be retrieved

by overriding each sensor’s onSensorChanged method.
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3.6.2 Low-Pass Filter Sensor Smoothing Algorithm

Because the sensors provide continuous readouts, using the raw data

results in a jittery screen from sporadic outlier readings. This jitter can be

resolved through the use of a low-pass filter. The filter mitigates the impact

of outlier readings by giving weight to each reading. Thus, the cumulative

measurement of previous readings is not affected as much by the outliers,

resulting in a smoother screen. From Nichols [12],the algorithm code for the

low-pass filter used by both sensors is given in Figure 3.21.

Figure 3.21: Algorithm Code for Low-Pass Filter

3.7 The User Model

The user model represents the user of the application. It is defined as

a class named User and is instantiated in the top-level StarMapper Activity

during application startup. The user model stores information such as the

latitude and longitude of the user (obtained from the location provider men-
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tioned in Section 3.1.1), the current acceleration and magnetic field vectors of

the user’s device, and the zenith vector from the user’s location.

The user instance in the StarMapper Activity is defined as a public

field because many other classes constantly interact with it. For example,

each sensor readout updates its respective vector stored in the user instance,

which are then used to create transform matrices that update the user’s look

and normal vectors. The renderer also accesses the look and normal vectors

to update the OpenGL view matrix during each frame update.
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Chapter 4

Conclusion

This report has described StarMapper, an Android application that

maps the celestial sky and provides users with information about celestial

objects. In this chapter, we conclude the report with a project development

discussion of StarMapper, along with some key learnings and possible future

enhancements.

4.1 Development Overview

The project duration was approximately five months, spanning July

2013 – November 2013. Table 4.1 divides the timeline by component. The

time listed for each section includes the time needed to obtain or research

all necessary and relevant information, in addition to time needed for code

development. For example, the Constellations row lists 2.0 weeks committed

toward development. This includes the time needed to obtain the Yale Bright

Star Catalog, use it to create the text file of constellation data, create the

parser method for the text file, and develop the Constellation and Constellation

Manager classes.

The StarMapper application was developed in the Eclipse Integrated
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Project Component Time

StarMapper Activity
User Model 1.0 weeks
Preferences 1.0 weeks

Renderer
OpenGL 2.5 weeks
Constellations 2.0 weeks
Stars 1.5 weeks
Planets 1.5 weeks
Sun 0.5 weeks
Moon 1.0 weeks
Grid 0.5 weeks
Labels 1.5 weeks

Sensors
Accelerometer 1.0 weeks
Magnetic Field 1.0 weeks

Touch Input
Drag 0.5 weeks
Fling 0.5 weeks
Zoom 0.5 weeks
Rotate 1.0 weeks
Wikipedia 1.0 week

Utility Classes 1.5 weeks

TOTAL: 20.0 weeks

Table 4.1: Project Development Timeline
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Development Environment (IDE) for Windows with Android SDK Ver. 21

plugin. The StarMapper application is divided into several packages for better

organization and encapsulation. Table 4.2 below shows the packages along

with their size in LOC (lines of code). The total LOC count is 5161 lines.

The program package is by far the largest because it contains the top-level

StarMapper Activity class, StarMapper Renderer class, and all the celestial

object Manager classes.

Package Size (LOC)
com.starmapper.android.celestial 289
com.starmapper.android.constants 421
com.starmapper.android.grid 100
com.starmapper.android.math 149
com.starmapper.android.program 3042
com.starmapper.android.sensors 204
com.starmapper.android.user 181
com.starmapper.android.utils 775
TOTAL: 5161

Table 4.2: StarMapper Packages and LOC Sizes

Initial mock-ups of the user interface were created during the planning

stages of the StarMapper project, and used as a guide during development.

Figures 4.1, 4.2, and 4.3 show some initial ideas for how the StarMapper

application would look.
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Figure 4.1: UI Mock of the StarMapper Map

Figure 4.2: UI Mock of the Main Menu in StarMapper
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Figure 4.3: UI Mock of the Preferences Menu in StarMapper

4.2 Development Challenges and Testing

During the project, both hardware and software challenges needed to

be overcome for the application to be successful. Many challenges were both

identified and resolved through thorough testing of the application.

4.2.1 Hardware Challenges

One of the primary issues with the hardware sensors was the method by

which the data was delivered to the application. Continuous readouts of raw

data were constantly delivered to and utilized by the application, and sporadic

outlier readings resulted in a jittery, unreadable screen during initial hardware

sensor testing. Through online research I discovered a low-pass filter algorithm

by Nichols [12] that, when implemented on the sensor readings, alleviated the

jitter and smoothed the screen.
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4.2.2 Software Challenges

The Eclipse IDE Android Virtual Device (AVD) is an Android device

emulator that can be used for testing an application during development. How-

ever, the latest version of the AVD was very slow and nearly impossible to just

run StarMapper, let alone debug it. Fortunately, during the project I upgraded

my personal smartphone to a Samsung Galaxy S4 running Android OS Ver

4.2 (Jelly Bean) and was able to use that as the debug device. The Galaxy S4

was one of the most powerful smartphones available at the time of its release

and could be used very easily to download, debug, and test StarMapper during

development.

Coming from a background with no graphics software development ex-

perience, OpenGL was a time-consuming and difficult endeavor to undertake.

Learning and debugging the API was a major software challenge that con-

sumed a large portion of the project schedule. The OpenGL renderer ended

up as the major bottleneck in the project, and the only solution was to commit

the time and effort to develop it.

4.2.3 Testing

StarMapper was tested using both the built-in Eclipse IDE AVD em-

ulator and a Samsung Galaxy S4. Initial testing was done with the Eclipse

emulator, but I quickly discovered that the emulator was very slow and only

useful for very coarse testing, such as checking for application crashes. Fur-

thermore, it was impossible to simulate the hardware sensors in real-time by
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using the emulator. Therefore, after the first few weeks, most testing was done

by downloading the application apk to the Samsung Galaxy S4.

4.3 Key Learnings

This section describes some of the key learnings obtained during the

StarMapper project.

4.3.1 Java Development

Being unfamiliar with the Android platform and the Java programming

language in general, the StarMapper project presented a great opportunity to

learn more about mobile application software development using JDK and

the Android SDK. The knowledge obtained will be greatly beneficial to the

goal of gaining a more holistic understanding of mobile technology, given my

background in IC design targeted for the mobile market.

4.3.2 Reusability of Android

The Android team developed the Android platform with the idea of

reusing its components to save on redundancy and, by extension, time [16].

Almost all Android applications leverage this feature and StarMapper is no

different. StarMapper utilizes several providers and APIs built into the An-

droid system, such as the GPS location provider and hardware sensor APIs

for the accelerometer and magnetic field sensor. This availability application

developers to focus on the unique aspects of their applications, and not waste
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time rehashing existing code.

4.3.3 OpenGL

Learning and utilizing the OpenGL API correctly was the most diffi-

cult aspect of the the StarMapper project. OpenGL has many components

that must be developed or utilized correctly for proper functionality, such as

the matrix calculations, shader program development, and correct API calls.

The project timeline in Table 4.1 supports this assertion, with the OpenGL

component of the project taking 2.5 weeks, longer than any other compo-

nent. Adding to the complexity of using OpenGL was the intention of using

a gnomonic projection in the projection matrix. In any future projects using

OpenGL, sufficient time should be allotted for the development and testing of

the OpenGL component.

4.3.4 Other Learnings

For others who may be embarking on an Android application project,

there are a few things that would be beneficial to know beforehand:

� Ensure you have a solid understanding of Java before focusing on the

Android aspect of the project, because Java is the foundation of Android

application development.

� Utilize resources such as developer.android.com for information and

BKMs (best-known methods) about Android.
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� Android is built on the premise of reusability. Make sure to take advan-

tage by leveraging code and Android components that may already exist

in other applications

� Have an Android device, or, if available, several Android devices available

for testing during development. The device used for testing StarMapper

was a Samsung Galaxy S4.

� Plan out the entire project beforehand as best as possible with milestones

along the way to make the project more manageable.

There are also a few things to avoid during project development:

� If at all possible, avoid using the Eclipse IDE Android Virtual Device

(AVD) for testing. It is very slow. A better option is using an actual

Android device for testing.

� Avoid ’reinventing the wheel’. Many Android components that are

needed in your project may already exist in other applications. Leverage

them instead of rewriting a component.

� Do not wait until code development is finished before testing the appli-

cation. Because of the encapsulation properties of Java and Android, it

is easy to test components in isolation. While the StarMapper project

did not develop them, Java Unit Tests can be developed for this very

purpose.
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� Do not prioritize design aesthetics before functionality. Exorbitant amounts

of time can be spent trying to make an application visually appealing or

intuitive or ’cool’, but if it doesn’t work, nothing else matters.

� Do not make the application require a newer version of Android than

what is minimally required to function E.g. do not require Android SDK

ver. 22 if your application only requires Android SDK ver. 17. Doing so

will unnecessarily shrink the total available market for your application.

4.4 Future Enhancements

While StarMapper is fully functional, there are some enhancements

that could improve the overall experience for the user.

4.4.1 Moon Phase Display

Currently, StarMapper will always display the full moon in its position

in the celestial sky (even for a New Moon). This could be enhanced to display

the current phase of the moon, rendering a more accurate depiction of what

is actually in the sky. This enhancement would require additional textures of

the moon for each phase to be rendered, and the addition of some form of

moon calendar that can be compared against the current time to determine

the moon phase.
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4.4.2 Additional Celestial Objects

Currently, StarMapper is capable of displaying all 88 modern constel-

lations, major stars of the constellations, the planets, the sun, and the moon

(in addition to random background stars, the celestial grid, and labels for the

celestial objects). Future enhancements could include additional celestial ob-

jects, such as the International Space Station, comets, or distant well-known

galaxies.

4.4.3 Touch Features in Auto Mode

Most of the touch features in StarMapper are only enabled in manual

mode. However, auto mode could make use of additional touch features, such

as the ability to zoom in and out while still pointing the device around the

sky.

4.4.4 Improved Background Stars

The background star manager currently randomly generates all stars

that are not part of a constellation in StarMapper. However, the background

star manager can generate actual star locations by using data from the Yale

Bright Star catalog to present a more accurate experience for the user. The

best implementation would leverage code used for generating the constellations

to generate the background stars.
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4.4.5 Notifications

Notifications can be added to StarMapper that would inform the user

about special celestial events that may be occurring at the moment, such as the

’Dance of the Planets’ occurrence mentioned in User Story 2, a lunar eclipse,

or meteor showers that may be occurring at the moment. Knowing about

these rare occasions would enhance the experience for the user when they may

otherwise miss them.

4.5 Final Thoughts

Stargazing is an interesting and thought-provoking hobby that was the

inspiration for the StarMapper application. The two main goals of this project

were to provide an enjoyable and informative user experience for those Android

users interested in astronomy, and to also develop my own knowledge foun-

dation of both the Android platform and mobile application development in

general. While there is still room for enhancement in the application, I be-

lieve this project accomplishes both goals. StarMapper will hopefully both

entertain and educate its users, and has certainly increased my knowledge of

Android application development.
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